
DB2®

Data Recovery and High Availability Guide and Reference

DB2 Version 9

for Linux, UNIX, and Windows

SC10-4228-00

���DB2 9 BETA

DB2 9 BETA

DB2®

Data Recovery and High Availability Guide and Reference

DB2 Version 9

for Linux, UNIX, and Windows

SC10-4228-00

���DB2 9 BETA

Before using this information and the product it supports, be sure to read the general information under Notices.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2001, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

DB2 9 BETA

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

Contents

About this book vii

Who should use this book vii

How this book is structured vii

Part 1. Data recovery 1

Chapter 1. Developing a good backup

and recovery strategy 3

Developing a backup and recovery strategy 3

Deciding how often to back up 6

Storage considerations for recovery 8

Keeping related data together 9

Backup and restore operations between different

operating systems and hardware platforms 9

Crash recovery 10

Crash recovery - details 12

Recovering damaged table spaces 12

Recovering table spaces in recoverable databases 12

Recovering table spaces in non-recoverable

databases 13

Reducing the impact of media failure 14

Reducing the impact of transaction failure . . . 16

Recovering from transaction failures in a

partitioned database environment 16

Recovering from the failure of a database

partition server 19

Recovering indoubt transactions on the host

when DB2 Connect has the DB2 Syncpoint

Manager configured 20

Recovering indoubt transactions on the host

when DB2 Connect does not use the DB2

Syncpoint Manager 21

Disaster recovery 22

Version recovery 23

Rollforward recovery 24

Incremental backup and recovery 27

Incremental backup and recovery - details 28

Restoring from incremental backup images . . . 28

Limitations to automatic incremental restore . . 30

Monitoring the progress of backup, restore and

recovery operations 32

Understanding recovery logs 33

Recovery log details 35

Log mirroring 35

Reducing logging with the NOT LOGGED

INITIALLY parameter 36

Configuration parameters for database logging 37

Configuring database logging options 45

Log file management 46

Log file allocation and removal 48

Log file management through log archiving . . 49

Log archiving using db2tapemgr 51

Archiving log files to tape 52

Blocking transactions when the log directory file

is full 53

On demand log archive 54

Including log files with a backup image 54

How to prevent losing log files 56

Understanding the recovery history file 56

Recovery history file - garbage collection 58

Garbage collection 58

Understanding table space states 60

Enhancing recovery performance 61

Chapter 2. Database backup 63

Backup overview 63

Displaying backup information 65

Privileges, authorities, and authorization required to

use backup 66

Using backup 66

Backing up to tape 68

Backing up to named pipes 70

BACKUP DATABASE 71

db2Backup - Back up a database or table space . . 76

Backup sessions - CLP examples 84

Optimizing backup performance 84

Automatic database backup 85

Enabling automatic backup 86

Compatibility of online backup and other utilities 87

Chapter 3. Database restore 89

Restore overview 89

Privileges, authorities, and authorization required to

use restore 90

Using restore 90

Using incremental restore in a test and production

environment 92

Redefining table space containers during a restore

operation (redirected restore) 94

Restoring to an existing database 95

Restoring to a new database 96

Redefine table space containers by restoring a

database using an automatically generated script . . 97

Performing a redirected restore using an

automatically generated script 99

RESTORE DATABASE 100

db2Restore - Restore a database or table space . . 115

Restore sessions - CLP examples 127

Optimizing restore performance 129

Database rebuild 130

Rebuild - details 134

Choosing a target image for database rebuild 134

Restrictions for database rebuild 137

Rebuilding a database using selected table space

images 137

Rebuilding selected table spaces 139

Rebuilding a partitioned database 140

Rebuild and incremental backup images . . . 142

Rebuild and table space containers 143

Rebuild and temporary table spaces 144

© Copyright IBM Corp. 2001, 2006 iii

DB2 9 BETA

Rebuild sessions - CLP examples 145

Chapter 4. Rollforward recovery . . . 155

Rollforward overview 155

Privileges, authorities, and authorization required

to use rollforward 157

Using rollforward 157

Rolling forward changes in a table space 159

Recovering a dropped table 163

Recovering data with the load copy location file 165

Synchronizing clocks in a partitioned database

environment 166

Client/server timestamp conversion 167

ROLLFORWARD DATABASE 168

db2Rollforward - Roll forward a database 177

Rollforward sessions - CLP examples 187

Chapter 5. Database recover 191

Recover overview 191

Privileges, authorities, and authorization required

to use recover 192

Using recover 192

Client/server timestamp conversion 193

RECOVER DATABASE 193

db2Recover - Restore and roll forward a database 199

Part 2. High availability 205

Chapter 6. Introducing high

availability and failover support . . . 207

High availability 207

High availability through log shipping 209

High availability through online split mirror and

suspended I/O support 210

Online split mirror handling 212

Using a split mirror to clone a database . . . 212

Using a split mirror as a standby database . . 213

Using a split mirror as a backup image 214

Fault monitor facility for Linux and UNIX 215

db2fm - DB2 fault monitor 219

Chapter 7. High availability disaster

recovery (HADR) 221

High availability disaster recovery overview . . . 221

System requirements for high availability disaster

recovery (HADR) 222

Installation and storage requirements for high

availability disaster recovery 224

Restrictions for high availability disaster recovery

(HADR) 226

Standby database states in high availability disaster

recovery (HADR) 226

Synchronization modes for high availability

disaster recovery (HADR) 229

Replicated operations for high availability disaster

recovery (HADR) 232

Non-replicated operations for high availability

disaster recovery (HADR) 233

High availability disaster recovery (HADR)

commands overview 234

High availability disaster recovery (HADR)

management 237

Initializing high availability disaster recovery

(HADR) 238

START HADR 240

db2HADRStart - Start high availability disaster

recovery (HADR) operations 242

Stopping high availability disaster recovery

(HADR) 244

STOP HADR 246

db2HADRStop - Stop high availability disaster

recovery (HADR) operations 247

Database configuration for high availability

disaster recovery (HADR) 249

Database activation and deactivation in high

availability disaster recovery (HADR) 254

Automatic client reroute and high availability

disaster recovery (HADR) 255

Index logging and high availability disaster

recovery (HADR) 256

Log archiving configuration for high availability

disaster recovery (HADR) 257

Cluster managers and high availability disaster

recovery (HADR) 258

Switching database roles in high availability

disaster recovery (HADR) 259

Performing an HADR failover operation 261

TAKEOVER HADR 264

db2HADRTakeover - Instruct a database to take

over as the high availability disaster recovery

(HADR) primary database 266

Reintegrating a database after a takeover operation 268

Performing a rolling upgrade in a high availability

disaster recovery environment 269

Monitoring high availability disaster recovery

(HADR) 270

High availability disaster recovery (HADR)

performance 271

Chapter 8. Cluster support on AIX . . 275

High Availability Cluster Multi-Processing support 275

Chapter 9. Cluster support on the

Windows operating system 281

Microsoft Cluster Server support 281

Chapter 10. Cluster support for the

Solaris Operating Environment 285

Cluster support for the Solaris operating system 285

Sun Cluster 3.0 support 287

VERITAS Cluster Server support 290

Part 3. Appendixes 295

Appendix A. How to read the syntax

diagrams 297

iv Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Appendix B. Warning, error and

completion messages 301

Appendix C. Additional DB2

commands 303

System commands 303

db2adutl - Managing DB2 objects within TSM 303

db2ckbkp - Check backup 310

db2ckrst - Check incremental restore image

sequence 314

db2flsn - Find log sequence number 316

db2inidb - Initialize a mirrored database . . . 317

db2mscs - Set up Windows failover utility . . 319

db2rfpen - Reset rollforward pending state . . 322

CLP commands 323

ARCHIVE LOG 323

INITIALIZE TAPE 325

LIST HISTORY 326

PRUNE HISTORY/LOGFILE 329

REWIND TAPE 330

SET TAPE POSITION 331

UPDATE HISTORY 332

Appendix D. Additional APIs and

associated data structures 335

db2ArchiveLog - Archive the active log file . . . 335

db2HistoryCloseScan - End the history file scan 337

db2HistoryGetEntry - Get the next entry in the

history file 338

db2HistoryOpenScan - Start a history file scan . . 341

db2HistoryUpdate - Update a history file entry . . 345

db2Prune - Delete the history file entries or log

files from the active log path 348

db2ReadLogNoConn - Read the database logs

without a database connection 350

db2ReadLogNoConnInit - Initialize reading the

database logs without a database connection . . . 353

db2ReadLogNoConnTerm - Terminate reading the

database logs without a database connection . . . 355

db2ReadLog - Extracts log records 356

db2HistoryData 360

SQLU_LSN 366

Appendix E. Recovery sample

programs 367

Sample programs with embedded SQL 367

Appendix F. Cross-node recovery with

the db2adutl command and the

logarchopt1 and vendoropt database

configuration parameters 397

Appendix G. Tivoli Storage Manager 403

Configuring a Tivoli Storage Manager client . . . 403

Considerations for using Tivoli Storage Manager 404

Appendix H. Tivoli Space Manager

Hierarchical Storage Management

support for partitioned tables 407

Appendix I. User exit for database

recovery 409

Sample user exit programs 409

Calling format 410

Error handling 411

Appendix J. Backup and restore APIs

for vendor products 413

DB2 APIs for backup and restore to storage

managers 413

Operational overview 413

Operational hints and tips 418

Invoking a backup or a restore operation using

vendor products 419

sqluvint - Initialize and link to a vendor device 421

sqluvget - Read data from a vendor device . . . 426

sqluvput - Write data to a vendor device 427

sqluvend - Unlink a vendor device and release its

resources 429

sqluvdel - Delete committed session 430

db2VendorQueryApiVersion - Get the supported

level of the vendor storage API 431

db2VendorGetNextObj - Get next object on device 432

DB2_info 434

Vendor_info 437

Init_input 438

Init_output 439

Data 440

Return_code 440

APIs for compressed backups 441

DB2 APIs for using compression with backup

and restore operations 441

Appendix K. DB2 Database technical

information 445

Overview of the DB2 technical information . . . 445

Documentation feedback 445

DB2 technical library in PDF format 446

Ordering printed DB2 books 448

Displaying SQL state help from the command line

processor 449

Accessing different versions of the DB2

Information Center 449

Displaying topics in your preferred language in the

DB2 Information Center 450

Updating the DB2 Information Center installed on

your computer or intranet server 451

DB2 Visual Explain tutorial 452

DB2 troubleshooting information 453

Terms and Conditions 453

Appendix L. Notices 455

Trademarks 457

Index 459

Contents v

||

DB2 9 BETA

Contacting IBM 465

vi Data Recovery and High Availability Guide and Reference

DB2 9 BETA

About this book

This book provides detailed information about, and shows you how to use, the

IBM DB2 database backup, restore, and recovery utilities. The book also explains

the importance of high availability, and describes DB2 failover support on several

platforms.

Who should use this book

This manual is for database administrators, application programmers, and other

DB2 database users who are responsible for, or who want to understand, backup,

restore, and recovery operations on DB2 database systems.

It is assumed that you are familiar with the DB2 database system, Structured

Query Language (SQL), and with the operating system environment in which the

DB2 database system is running. This manual does not contain instructions for

installing DB2, which depend on your operating system.

How this book is structured

The following topics are covered:

Data Recovery

Chapter 1, “Developing a good backup and recovery strategy”

Discusses factors to consider when choosing database and table space

recovery methods, including backing up and restoring a database or table

space, and using rollforward recovery.

Chapter 2, “Database backup”

Describes the DB2 backup utility, used to create backup copies of a

database or table spaces.

Chapter 3, “Database restore”

Describes the DB2 restore utility, used to recreate damaged or corrupted

databases or table spaces that were previously backed up.

Chapter 4, “Rollforward recovery”

Describes the DB2 rollforward utility, used to recover a database by

applying transactions that were recorded in the database recovery log files.

Chapter 5, “Database recover”

Describes the DB2 recover utility, which performs the neccessary restore

and rollforward operations to recover a database to a specified time, based

on information found in the recovery history file.

High Availability

Chapter 6, “Introducing high availability and failover support”

Presents an overview of the high availability failover support that is

provided by DB2.

Chapter 7, “High availability disaster recovery (HADR)”

Discusses the concepts and procedures required to set up and manage a

high availability disaster recovery (HADR) environment.

© Copyright IBM Corp. 2001, 2006 vii

DB2 9 BETA

Chapter 8, “Cluster support on AIX”

Discusses DB2 support for high availability failover recovery on AIX,

which is currently implemented through the Enhanced Scalability (ES)

feature of High Availability Cluster Multi-processing (HACMP) for AIX.

Chapter 9, “Cluster support on the Windows operating system”

Discusses DB2 support for high availability failover recovery on Windows®

operating systems which is currently implemented through Microsoft®

Cluster Server (MSCS).

Chapter 10, “Cluster support for the Solaris Operating Environment”

Discusses DB2 support for high availability failover recovery in the Solaris

Operating Environment, which is currently implemented through Sun

Cluster 3.0 (SC3.0) or Veritas Cluster Server (VCS).

Appendixes

Appendix A, “How to read the syntax diagrams”

Explains the conventions used in syntax diagrams.

Appendix B, “Warning, error and completion messages”

Provides information about interpreting messages generated by the

database manager when a warning or error condition has been detected.

Appendix C, “Additional DB2 commands”

Describes recovery-related DB2 commands.

Appendix D, “Additional APIs and associated data structures”

Describes recovery-related APIs and their data structures.

Appendix E, “Recovery sample programs”

Provides the code listing for a sample program containing recovery-related

DB2 APIs and embedded SQL calls, and information on how to use them.

Appendix G, “Tivoli Storage Manager”

Provides information about the Tivoli Storage Manager (TSM) product,

which you can use to manage database or table space backup operations.

Appendix H, “Tivoli Space Manager Hierarchical Storage Management support

for partitioned tables”

Provides information about using the 18 Tivoli® Space Manager

Hierarchical Storage Manager (HSM) client program 19 automatically

migrates eligible files to secondary storage to maintain specific 20 levels of

free space on local file systems.

Appendix F, “Cross-node recovery with the db2adutl command and the

logarchopt1 and vendoropt database configuration parameters”

Provides examples that show how to perform cross-node recovery using

the db2adutl command, and the logarchopt1 and vendoropt database

configuration parameters.

Appendix I, “User exit for database recovery”

Discusses how user exit programs can be used with database log files, and

describes some sample user exit programs.

Appendix J, “Backup and restore APIs for vendor products”

Describes the function and use of APIs that enable DB2 to interface with

other vendor software.

viii Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Part 1. Data recovery

© Copyright IBM Corp. 2001, 2006 1

DB2 9 BETA

2 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Chapter 1. Developing a good backup and recovery strategy

This section discusses factors to consider when choosing database and table space

recovery methods, including backing up and restoring a database or table space,

and using rollforward recovery.

The following topics are covered:

v “Developing a backup and recovery strategy”

v “Deciding how often to back up” on page 6

v “Storage considerations for recovery” on page 8

v “Keeping related data together” on page 9

v “Backup and restore operations between different operating systems and

hardware platforms” on page 9

v “Crash recovery” on page 10

v “Disaster recovery” on page 22

v “Version recovery” on page 23

v “Rollforward recovery” on page 24

v “Incremental backup and recovery” on page 27

v “Monitoring the progress of backup, restore and recovery operations” on page

32

v “Understanding recovery logs” on page 33

v “Understanding the recovery history file” on page 56

v “Understanding table space states” on page 60

v “Enhancing recovery performance” on page 61

Developing a backup and recovery strategy

 A database can become unusable because of hardware or software failure, or both.

You might, at one time or another, encounter storage problems, power

interruptions, or application failures, and each failure scenario requires a different

recovery action. Protect your data against the possibility of loss by having a well

rehearsed recovery strategy in place. Some of the questions that you should answer

when developing your recovery strategy are:

v Will the database be recoverable?

v How much time can be spent recovering the database?

v How much time will pass between backup operations?

v How much storage space can be allocated for backup copies and archived logs?

v Will table space level backups be sufficient, or will full database backups be

necessary?

v Should I configure a standby system, either manually or through high

availability disaster recovery (HADR)?

A database recovery strategy should ensure that all information is available when

it is required for database recovery. It should include a regular schedule for taking

database backups and, in the case of partitioned database environments, include

backups when the system is scaled (when database partition servers or nodes are

added or dropped). Your overall strategy should also include procedures for

© Copyright IBM Corp. 2001, 2006 3

DB2 9 BETA

recovering command scripts, applications, user-defined functions (UDFs), stored

procedure code in operating system libraries, and load copies.

Different recovery methods are discussed in the sections that follow, and you will

discover which recovery method is best suited to your business environment.

The concept of a database backup is the same as any other data backup: taking a

copy of the data and then storing it on a different medium in case of failure or

damage to the original. The simplest case of a backup involves shutting down the

database to ensure that no further transactions occur, and then simply backing it

up. You can then recreate the database if it becomes damaged or corrupted in some

way.

The recreation of the database is called recovery. Version recovery is the restoration of

a previous version of the database, using an image that was created during a

backup operation. Rollforward recovery is the reapplication of transactions recorded

in the database log files after a database or a table space backup image has been

restored.

Crash recovery is the automatic recovery of the database if a failure occurs before all

of the changes that are part of one or more units of work (transactions) are

completed and committed. This is done by rolling back incomplete transactions

and completing committed transactions that were still in memory when the crash

occurred.

Recovery log files and the recovery history file are created automatically when a

database is created (Figure 1 on page 5). These log files are important if you need

to recover data that is lost or damaged.

Each database includes recovery logs, which are used to recover from application or

system errors. In combination with the database backups, they are used to recover

the consistency of the database right up to the point in time when the error

occurred.

The recovery history file contains a summary of the backup information that can be

used to determine recovery options, if all or part of the database must be

recovered to a given point in time. It is used to track recovery-related events such

as backup and restore operations, among others. This file is located in the database

directory.

The table space change history file, which is also located in the database directory,

contains information that can be used to determine which log files are required for

the recovery of a particular table space.

You cannot directly modify the recovery history file or the table space change

history file; however, you can delete entries from the files using the PRUNE

HISTORY command. You can also use the rec_his_retentn database configuration

parameter to specify the number of days that these history files will be retained.

4 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Data that is easily recreated can be stored in a non-recoverable database. This

includes data from an outside source that is used for read-only applications, and

tables that are not often updated, for which the small amount of logging does not

justify the added complexity of managing log files and rolling forward after a

restore operation. If both the logarchmeth1 and logarchmeth2 database configuration

parameters are set to “OFF” then the database is Non-recoverable. This means that

the only logs that are kept are those required for crash recovery. These logs are

known as active logs, and they contain current transaction data. Version recovery

using offline backups is the primary means of recovery for a non-recoverable

database. (An offline backup means that no other application can use the database

when the backup operation is in progress.) Such a database can only be restored

offline. It is restored to the state it was in when the backup image was taken and

rollforward recovery is not supported.

Data that cannot be easily recreated should be stored in a recoverable database.

This includes data whose source is destroyed after the data is loaded, data that is

manually entered into tables, and data that is modified by application programs or

users after it is loaded into the database. Recoverable databases have the logarchmeth1

or logarchmeth2 database configuration parameters set to a value other than “OFF”.

Active logs are still available for crash recovery, but you also have the archived logs,

which contain committed transaction data. Such a database can only be restored

offline. It is restored to the state it was in when the backup image was taken.

However, with rollforward recovery, you can roll the database forward (that is, past

the time when the backup image was taken) by using the active and archived logs

to either a specific point in time, or to the end of the active logs.

Recoverable database backup operations can be performed either offline or online

(online meaning that other applications can connect to the database during the

backup operation). Online table space restore and rollforward operations are

supported only if the database is recoverable. If the database is non-recoverable,

database restore and rollforward operations must be performed offline. During an

online backup operation, rollforward recovery ensures that all table changes are

captured and reapplied if that backup is restored.

If you have a recoverable database, you can back up, restore, and roll individual

table spaces forward, rather than the entire database. When you back up a table

Equivalent
physical object

Database

Table space
change history file

Recovery
history file

Recovery
log files

System

Instance

Database
object or concept

Figure 1. Database recovery files

Chapter 1. Developing a good backup and recovery strategy 5

DB2 9 BETA

space online, it is still available for use, and simultaneous updates are recorded in

the logs. When you perform an online restore or rollforward operation on a table

space, the table space itself is not available for use until the operation completes,

but users are not prevented from accessing tables in other table spaces.

 Automated backup operations:

 Since it can be time-consuming to determine whether and when to run

maintenance activities such as backup operations, you can use the Configure

Automatic Maintenance wizard to do this for you. With automatic maintenance,

you specify your maintenance objectives, including when automatic maintenance

can run. DB2® then uses these objectives to determine if the maintenance activities

need to be done and then runs only the required maintenance activities during the

next available maintenance window (a user-defined time period for the running of

automatic maintenance activities).

Note: You can still perform manual backup operations when automatic

maintenance is configured. DB2 will only perform automatic backup

operations if they are required.

 Related concepts:

v “Crash recovery” on page 10

v “High availability disaster recovery overview” on page 221

v “Rollforward recovery” on page 24

v “Version recovery” on page 23

 Related reference:

v “logarchmeth1 - Primary log archive method configuration parameter” in

Performance Guide

v “rec_his_retentn - Recovery history retention period configuration parameter” in

Performance Guide

Deciding how often to back up

 Your recovery plan should allow for regularly scheduled backup operations,

because backing up a database requires time and system resources. Your plan

might include a combination of full database backups and incremental backup

operations.

You should take full database backups regularly, even if you archive the logs

(which allows for rollforward recovery). To recover a database, you can use either

a full database backup image that contains all of the table space backup images, or

you can rebuild the database using selected table space images. Table space backup

images are also useful for recovering from an isolated disk failure or an application

error. In partitioned database environments, you only need to restore the table

spaces that reside on database partitions that have failed. You do not need to

restore all of the table spaces or all of the database partitions.

Although full database backups are no longer required for database recovery now

that you can rebuild a database from table space images, it is still good practice to

occasionally take a full backup of your database.

You should also consider not overwriting backup images and logs, saving at least

two full database backup images and their associated logs as an extra precaution.

6 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

If the amount of time needed to apply archived logs when recovering and rolling a

very active database forward is a major concern, consider the cost of backing up

the database more frequently. This reduces the number of archived logs you need

to apply when rolling forward.

You can initiate a backup operation while the database is either online or offline. If

it is online, other applications or processes can connect to the database, as well as

read and modify data while the backup operation is running. If the backup

operation is running offline, other applications cannot connect to the database.

To reduce the amount of time that the database is not available, consider using

online backup operations. Online backup operations are supported only if

rollforward recovery is enabled. If rollforward recovery is enabled and you have a

complete set of recovery logs, you can restore the database, should the need arise.

You can only use an online backup image for recovery if you have the logs that

span the time during which the backup operation was running.

Offline backup operations are faster than online backup operations, since there is

no contention for the data files.

The backup utility lets you back up selected table spaces. If you use DMS table

spaces, you can store different types of data in their own table spaces to reduce the

time required for backup operations. You can keep table data in one table space,

long field and LOB data in another table space, and indexes in yet another table

space. If you do this and a disk failure occurs, it is likely to affect only one of the

table spaces. Restoring or rolling forward one of these table spaces will take less

time than it would have taken to restore a single table space containing all of the

data.

You can also save time by taking backups of different table spaces at different

times, as long as the changes to them are not the same. So, if long field or LOB

data is not changed as frequently as the other data, you can back up these table

spaces less frequently. If long field and LOB data are not required for recovery, you

can also consider not backing up the table space that contains that data. If the LOB

data can be reproduced from a separate source, choose the NOT LOGGED option

when creating or altering a table to include LOB columns.

Note: Consider the following if you keep your long field data, LOB data, and

indexes in separate table spaces, but do not back them up together: If you

back up a table space that does not contain all of the table data, you cannot

perform point-in-time rollforward recovery on that table space. All the table

spaces that contain any type of data for a table must be rolled forward

simultaneously to the same point in time.

If you reorganize a table, you should back up the affected table spaces after the

operation completes. If you have to restore the table spaces, you will not have to

roll forward through the data reorganization.

The time required to recover a database is made up of two parts: the time required

to complete the restoration of the backup; and, if the database is enabled for

forward recovery, the time required to apply the logs during the rollforward

operation. When formulating a recovery plan, you should take these recovery costs

and their impact on your business operations into account. Testing your overall

recovery plan will assist you in determining whether the time required to recover

the database is reasonable given your business requirements. Following each test,

you might want to increase the frequency with which you take a backup. If

Chapter 1. Developing a good backup and recovery strategy 7

DB2 9 BETA

rollforward recovery is part of your strategy, this will reduce the number of logs

that are archived between backups and, as a result, reduce the time required to roll

the database forward after a restore operation.

 Related concepts:

v “Developing a backup and recovery strategy” on page 3

v “Incremental backup and recovery” on page 27

 Related reference:

v “Configuration parameters for database logging” on page 37

v Appendix I, “User exit for database recovery,” on page 409

Storage considerations for recovery

 When deciding which recovery method to use, consider the storage space required.

The version recovery method requires space to hold the backup copy of the

database and the restored database. The rollforward recovery method requires

space to hold the backup copy of the database or table spaces, the restored

database, and the archived database logs.

If a table contains long field or large object (LOB) columns, you should consider

placing this data into a separate table space. This will affect your storage space

considerations, as well as affect your plan for recovery. With a separate table space

for long field and LOB data, and knowing the time required to back up long field

and LOB data, you might decide to use a recovery plan that only occasionally

saves a backup of this table space. You can also choose, when creating or altering a

table to include LOB columns, not to log changes to those columns. This will

reduce the size of the required log space and the corresponding log archive space.

To prevent media failure from destroying a database and your ability to restore it,

keep the database backup, the database logs, and the database itself on different

devices. For this reason, it is highly recommended that you use the newlogpath

configuration parameter to put database logs on a separate device once the

database is created.

The database logs can use up a large amount of storage. If you plan to use the

rollforward recovery method, you must decide how to manage the archived logs.

Your choices are the following:

v Specify a log archiving method using the LOGARCHMETH1 or

LOGARCHMETH2 configuration parameters.

v Manually copy the logs to a storage device or directory other than the database

log path directory after they are no longer in the active set of logs.

v Use a user exit program to copy these logs to another storage device in your

environment.

 Related concepts:

v “Log file management through log archiving” on page 49

 Related reference:

v “Configuration parameters for database logging” on page 37

v “logarchmeth1 - Primary log archive method configuration parameter” in

Performance Guide

8 Data Recovery and High Availability Guide and Reference

|
|
|
|
|

DB2 9 BETA

v “logarchmeth2 - Secondary log archive method configuration parameter” in

Performance Guide

Keeping related data together

 In the process of designing your database, you will develop an understanding of

the relationships that exist between tables. These relationships can be expressed:

v At the application level, when transactions update more than one table

v At the database level, where referential integrity exists between tables, or where

triggers on one table affect another table.

You should consider these relationships when developing a recovery plan. You will

want to back up related sets of data together. Such sets can be established at either

the table space or the database level. By keeping related sets of data together, you

can recover to a point where all of the data is consistent. This is especially

important if you want to be able to perform point-in-time rollforward recovery on

table spaces.

 Related concepts:

v “Crash recovery” on page 10

v “Developing a backup and recovery strategy” on page 3

v “Disaster recovery” on page 22

v “Version recovery” on page 23

 Related tasks:

v “Using rollforward” on page 157

Backup and restore operations between different operating systems

and hardware platforms

 DB2 database systems support some backup and restore operations between

different operating systems and hardware platforms.

The supported platforms for DB2 backup and restore operations can be grouped

into one of three families:

v Big-endian Linux® and UNIX®

v Little-endian Linux and UNIX

v Windows

A database backup from one platform family can be restored on any system within

the same platform family. For Windows operating systems, you can restore a

database created on DB2 UDB V8 on a DB2 Version 9 database system. For Linux

and UNIX operating systems, as long as the endianness (big endian or little

endian) of the backup and restore platforms is the same, you can restore backups

that were produced on DB2 UDB V8 on DB2 Version 9.

The following table shows each of the Linux and UNIX platforms DB2 supports

and indicates whether the platforms are big endian or little endian:

 Table 1. Endianness of supported Linux and UNIX operating systems DB2 supports

Platform Endianness

AIX® big endian

Chapter 1. Developing a good backup and recovery strategy 9

DB2 9 BETA

Table 1. Endianness of supported Linux and UNIX operating systems DB2

supports (continued)

Platform Endianness

HP-UX big endian

HP on IPF big endian

Solaris Operating environment big endian

Linux on zSeries big endian

Linux on Power PC big endian

Linux on IA-64 little endian

Linux on AMD64 and Intel® EM64T little endian

32-bit Linux on x86 little endian

The target system must have the same (or later) version of the DB2 database

product as the source system. You cannot restore a backup created on one version

of the database product to a system running an earlier version of the database

product. For example, you can restore a V8 backup on a V9 database system, but

you cannot restore a V9 backup on a V8 database system.

In situations where certain backup and restore combinations are not allowed, you

can move tables between DB2 databases using other methods:

v db2move command

v Export utility followed by the import or the load utilities

 Related tasks:

v “Using backup” on page 66

v “Using restore” on page 90

 Related reference:

v “db2move - Database movement tool command” in Command Reference

v “EXPORT command” in Command Reference

v “IMPORT Command” in Command Reference

v “LOAD command” in Command Reference

Crash recovery

 Transactions (or units of work) against a database can be interrupted unexpectedly.

If a failure occurs before all of the changes that are part of the unit of work are

completed and committed, the database is left in an inconsistent and unusable

state. Crash recovery is the process by which the database is moved back to a

consistent and usable state. This is done by rolling back incomplete transactions

and completing committed transactions that were still in memory when the crash

occurred (Figure 2 on page 11). When a database is in a consistent and usable state,

it has attained what is known as a ″point of consistency″.

10 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

A transaction failure results from a severe error or condition that causes the

database or the database manager to end abnormally. Partially completed units of

work, or UOW that have not been flushed to disk at the time of failure, leave the

database in an inconsistent state. Following a transaction failure, the database must

be recovered. Conditions that can result in transaction failure include:

v A power failure on the machine, causing the database manager and the database

partitions on it to go down

v A hardware failure such as memory corruption, or disk, CPU, or network

failure.

v A serious operating system error that causes DB2 to go down

v An application terminating abnormally.

If you want the rollback of incomplete units of work to be done automatically by

the database manager, enable the automatic restart (autorestart) database

configuration parameter by setting it to ON. (This is the default value.) If you do

not want automatic restart behavior, set the autorestart database configuration

parameter to OFF. As a result, you will need to issue the RESTART DATABASE

command when a database failure occurs. If the database I/O was suspended

before the crash occurred, you must specify the WRITE RESUME option of the

RESTART DATABASE command in order for the crash recovery to continue. The

administration notification log records when the database restart operation begins.

If crash recovery is applied to a database that is enabled for forward recovery (that

is, the logarchmeth1 configuration parameter is not set to OFF), and an error occurs

during crash recovery that is attributable to an individual table space, that table

space will be taken offline, and cannot be accessed until it is repaired. Crash

recovery continues. At the completion of crash recovery, the other table spaces in

the database will be accessible, and connections to the database can be established.

However, if the table space that is taken offline is the table space that contains the

system catalogs, it must be repaired before any connections will be permitted.

 Related reference:

v “autorestart - Auto restart enable configuration parameter” in Performance Guide

v “logarchmeth1 - Primary log archive method configuration parameter” in

Performance Guide

1

2

3

4

rollback

rollback

rollback

rollback

Units of work

Crash
All four rolled back

TIME

Figure 2. Rolling Back Units of Work (Crash Recovery)

Chapter 1. Developing a good backup and recovery strategy 11

DB2 9 BETA

Crash recovery - details

Recovering damaged table spaces

 A damaged table space has one or more containers that cannot be accessed. This is

often caused by media problems that are either permanent (for example, a bad

disk), or temporary (for example, an offline disk, or an unmounted file system).

If the damaged table space is the system catalog table space, the database cannot

be restarted. If the container problems cannot be fixed leaving the original data

intact, the only available options are:

v To restore the database

v To restore the catalog table space.

Notes:

1. Table space restore is only valid for recoverable databases, because the

database must be rolled forward.

2. If you restore the catalog table space, you must perform a rollforward

operation to the end of logs.

If the damaged table space is not the system catalog table space, DB2 attempts to

make as much of the database available as possible.

If the damaged table space is the only temporary table space, you should create a

new temporary table space as soon as a connection to the database can be made.

Once created, the new temporary table space can be used, and normal database

operations requiring a temporary table space can resume. You can, if you want,

drop the offline temporary table space. There are special considerations for table

reorganization using a system temporary table space:

v If the database or the database manager configuration parameter indexrec is set

to RESTART, all invalid indexes must be rebuilt during database activation; this

includes indexes from a reorganization that crashed during the build phase.

v If there are incomplete reorganization requests in a damaged temporary table

space, you might have to set the indexrec configuration parameter to ACCESS to

avoid restart failures.

 Related tasks:

v “Recovering table spaces in non-recoverable databases” on page 13

v “Recovering table spaces in recoverable databases” on page 12

 Related reference:

v “RESTART DATABASE command” in Command Reference

v “RESTORE DATABASE ” on page 100

Recovering table spaces in recoverable databases

 When crash recovery is necessary, the damaged table spaces is taken offline and is

not accessible. It is placed in roll-forward pending state. If there are no additional

problems, a restart operation will succeed in bringing the database online even

with the damaged table space. Once online, the damaged table space is unusable,

but the rest of the database is usable. To fix the damaged table space and make it

useable, follow the procedure below.

12 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Procedure:

 To make the damaged table space useable, use one of the procedures that follow:

v Method 1

1. Fix the damaged containers without losing the original data.

2. Complete a table space rollforward operation to the end of the logs.

Note: The rollforward operation will first attempt to bring the table space

from offline to normal state.
v Method 2

1. Fix the damaged containers with or without losing the original data.

2. Perform a table space restore operation.

3. Complete a table space rollforward operation to the end of the logs or to a

point-in-time.

 Related concepts:

v “Recovering damaged table spaces” on page 12

v “Understanding table space states” on page 60

 Related tasks:

v “Recovering table spaces in non-recoverable databases” on page 13

 Related reference:

v “RESTART DATABASE command” in Command Reference

Recovering table spaces in non-recoverable databases

 When crash recovery is needed, but there are damaged table spaces, you can only

successfully restart the database if the damaged table spaces are dropped. In a

non-recoverable database, the logs necessary to recover the damaged table spaces

are not retained. Therefore, the only valid action against such table spaces is to

drop them.

 Procedure:

 To restart a database with damaged table spaces:

1. Invoke an unqualified restart database operation. It will succeed if there are no

damaged table spaces. If it fails (SQL0290N), look in the administration

notification log file for a complete list of table spaces that are currently

damaged.

2. If you are willing to drop all of the damaged table spaces, initiate another

restart database operation, listing all of the damaged table spaces under the

DROP PENDING TABLESPACES option. If a damaged table space is included

in the DROP PENDING TABLESPACES list, the table space is put into drop

pending state, and you must drop the table space after the recovery operation

is complete.

The restart operation continues without recovering the specified table spaces. If

a damaged table space is not included in the DROP PENDING TABLESPACES

list, the restart database operation fails with SQL0290N.

Chapter 1. Developing a good backup and recovery strategy 13

DB2 9 BETA

Note: Including a table space name in the DROP PENDING TABLESPACES list

does not mean that the table space will be in drop pending state. It will

be placed in this state only if the table space is found to be damaged

during the restart operation.

3. If the restart database operation is successful, invoke the LIST TABLESPACES

command to find out which table spaces are in drop pending state.

4. Issue DROP TABLESPACE statements to drop each of the table spaces that are

in drop pending state. Once you have done this, you will be able to reclaim the

space that the damaged table spaces were using or recreate the table spaces.

5. If you are unwilling to drop and lose the data in the damaged table spaces, you

can:

v Fix the damaged containers (without losing the original data).

v Reissue the RESTART DATABASE command.

v Perform a database restore operation.

 Related concepts:

v “Recovering damaged table spaces” on page 12

v “Understanding table space states” on page 60

 Related tasks:

v “Recovering table spaces in recoverable databases” on page 12

 Related reference:

v “RESTART DATABASE command” in Command Reference

Reducing the impact of media failure

 To reduce the probability of media failure, and to simplify recovery from this type

of failure:

v Mirror or duplicate the disks that hold the data and logs for important

databases.

v Use a Redundant Array of Independent Disks (RAID) configuration, such as

RAID Level 5.

v In a partitioned database environment, set up a rigorous procedure for handling

the data and the logs on the catalog partition. Because this database partition is

critical for maintaining the database:

– Ensure that it resides on a reliable disk

– Duplicate it

– Make frequent backups

– Do not put user data on it.

Protecting against disk failure

If you are concerned about the possibility of damaged data or logs due to a disk

crash, consider the use of some form of disk fault tolerance. Generally, this is

accomplished through the use of a disk array, which is a set of disks.

A disk array is sometimes referred to simply as a RAID (Redundant Array of

Independent Disks). Disk arrays can also be provided through software at the

operating system or application level. The point of distinction between hardware

and software disk arrays is how CPU processing of input/output (I/O) requests is

14 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

handled. For hardware disk arrays, I/O activity is managed by disk controllers; for

software disk arrays, this is done by the operating system or an application.

Hardware disk arrays: In a hardware disk array, multiple disks are used and

managed by a disk controller, complete with its own CPU. All of the logic required

to manage the disks forming this array is contained on the disk controller;

therefore, this implementation is operating system-independent.

There are several types of RAID architecture, differing in function and

performance, but only RAID level 1 and level 5 are commonly used today.

RAID level 1 is also known as disk mirroring or duplexing. Disk mirroring copies

data (a complete file) from one disk to a second disk, using a single disk controller.

Disk duplexing is similar to disk mirroring, except that disks are attached to a

second disk controller (like two SCSI adapters). Data protection is good: Either

disk can fail, and data is still accessible from the other disk. With disk duplexing, a

disk controller can also fail without compromising data protection. Performance is

good, but this implementation requires twice the usual number of disks.

RAID level 5 involves data and parity striping by sectors, across all disks. Parity is

interleaved with data, rather than being stored on a dedicated drive. Data

protection is good: If any disk fails, the data can still be accessed by using

information from the other disks, along with the striped parity information. Read

performance is good, but write performance is not. A RAID level 5 configuration

requires a minimum of three identical disks. The amount of disk space required for

overhead varies with the number of disks in the array. In the case of a RAID level

5 configuration with 5 disks, the space overhead is 20 percent.

When using a RAID (but not a RAID level 0) disk array, a failed disk will not

prevent you from accessing data on the array. When hot-pluggable or

hot-swappable disks are used in the array, a replacement disk can be swapped

with the failed disk while the array is in use. With RAID level 5, if two disks fail at

the same time, all data is lost (but the probability of simultaneous disk failures is

very small).

You might consider using a RAID level 1 hardware disk array or a software disk

array for your logs, because this provides recoverability to the point of failure, and

offers good write performance, which is important for logs. To do this, use the

mirrorlogpath configuration parameter to specify a mirror log path on a RAID level

1 file system. In cases where reliability is critical (because time cannot be lost

recovering data following a disk failure), and write performance is not so critical,

consider using a RAID level 5 hardware disk array. Alternatively, if write

performance is critical, and the cost of additional disk space is not significant,

consider a RAID level 1 hardware disk array for your data, as well as for your

logs.

For detailed information about the available RAID levels, visit the following web

site: http://www.acnc.com/04_01_00.html

Software disk arrays: A software disk array accomplishes much the same as does

a hardware disk array, but disk traffic is managed by either the operating system,

or by an application program running on the server. Like other programs, the

software array must compete for CPU and system resources. This is not a good

option for a CPU-constrained system, and it should be remembered that overall

disk array performance is dependent on the server’s CPU load and capacity.

Chapter 1. Developing a good backup and recovery strategy 15

DB2 9 BETA

http://www.acnc.com/04_01_00.html

A typical software disk array provides disk mirroring. Although redundant disks

are required, a software disk array is comparatively inexpensive to implement,

because costly disk controllers are not required.

CAUTION:

Having the operating system boot drive in the disk array prevents your system

from starting if that drive fails. If the drive fails before the disk array is

running, the disk array cannot allow access to the drive. A boot drive should be

separate from the disk array.

 Related concepts:

v “Backup overview” on page 63

v “Developing a backup and recovery strategy” on page 3

Reducing the impact of transaction failure

 To reduce the impact of a transaction failure, try to ensure:

v An uninterrupted power supply for each DB2 server

v Adequate disk space for database logs on all database partitions

v Reliable communication links among the database partition servers in a

partitioned database environment

v Synchronization of the system clocks in a partitioned database environment.

 Related concepts:

v “Synchronizing clocks in a partitioned database environment” on page 166

Recovering from transaction failures in a partitioned database

environment

 If a transaction failure occurs in a partitioned database environment, database

recovery is usually necessary on both the failed database partition server and any

other database partition server that was participating in the transaction:

v Crash recovery occurs on the failed database partition server after the antecedent

condition is corrected.

v Database partition failure recovery on the other (still active) database partition

servers occurs immediately after the failure has been detected.

In a partitioned database environment, the database partition server on which an

application is submitted is the coordinator partition, and the first agent that works

for the application is the coordinator agent. The coordinator agent is responsible

for distributing work to other database partition servers, and it keeps track of

which ones are involved in the transaction. When the application issues a

COMMIT statement for a transaction, the coordinator agent commits the

transaction by using the two-phase commit protocol. During the first phase, the

coordinator partition distributes a PREPARE request to all the other database

partition servers that are participating in the transaction. These servers then

respond with one of the following:

READ-ONLY No data change occurred at this server

YES Data change occurred at this server

NO Because of an error, the server is not prepared to

commit

16 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

If one of the servers responds with a NO, the transaction is rolled back. Otherwise,

the coordinator partition begins the second phase.

During the second phase, the coordinator partition writes a COMMIT log record,

then distributes a COMMIT request to all the servers that responded with a YES.

After all the other database partition servers have committed, they send an

acknowledgment of the COMMIT to the coordinator partition. The transaction is

complete when the coordinator agent has received all COMMIT acknowledgments

from all the participating servers. At this point, the coordinator agent writes a

FORGET log record.

Transaction failure recovery on an active database partition

server

If any database partition server detects that another server is down, all work that

is associated with the failed database partition server is stopped:

v If the still active database partition server is the coordinator partition for an

application, and the application was running on the failed database partition

server (and not ready to COMMIT), the coordinator agent is interrupted to do

failure recovery. If the coordinator agent is in the second phase of COMMIT

processing, SQL0279N is returned to the application, which in turn loses its

database connection. Otherwise, the coordinator agent distributes a ROLLBACK

request to all other servers participating in the transaction, and SQL1229N is

returned to the application.

v If the failed database partition server was the coordinator partition for the

application, agents that are still working for the application on the active servers

are interrupted to do failure recovery. The current transaction is rolled back

locally on each server, unless it has been prepared and is waiting for the

transaction outcome. In this situation, the transaction is left in doubt on the

active database partition servers, and the coordinator partition is not aware of

this (because it is not available).

v If the application connected to the failed database partition server (before it

failed), but neither the local database partition server nor the failed database

partition server is the coordinator partition, agents working for this application

are interrupted. The coordinator partition will either send a ROLLBACK or a

disconnect message to the other database partition servers. The transaction will

only be indoubt on database partition servers that are still active if the

coordinator partition returns SQL0279.

Any process (such as an agent or deadlock detector) that attempts to send a

request to the failed server is informed that it cannot send the request.

Transaction failure recovery on the failed database partition

server

If the transaction failure causes the database manager to end abnormally, you can

issue the db2start command with the RESTART option to restart the database

manager once the database partition has been restarted. If you cannot restart the

database partition, you can issue db2start to restart the database manager on a

different database partition.

If the database manager ends abnormally, database partitions on the server can be

left in an inconsistent state. To make them usable, crash recovery can be triggered

on a database partition server:

v Explicitly, through the RESTART DATABASE command

v Implicitly, through a CONNECT request when the autorestart database

configuration parameter has been set to ON

Chapter 1. Developing a good backup and recovery strategy 17

DB2 9 BETA

Crash recovery reapplies the log records in the active log files to ensure that the

effects of all complete transactions are in the database. After the changes have been

reapplied, all uncommitted transactions are rolled back locally, except for indoubt

transactions. There are two types of indoubt transaction in a partitioned database

environment:

v On a database partition server that is not the coordinator partition, a transaction

is in doubt if it is prepared but not yet committed.

v On the coordinator partition, a transaction is in doubt if it is committed but not

yet logged as complete (that is, the FORGET record is not yet written). This

situation occurs when the coordinator agent has not received all the COMMIT

acknowledgments from all the servers that worked for the application.

Crash recovery attempts to resolve all the indoubt transactions by doing one of the

following. The action that is taken depends on whether the database partition

server was the coordinator partition for an application:

v If the server that restarted is not the coordinator partition for the application, it

sends a query message to the coordinator agent to discover the outcome of the

transaction.

v If the server that restarted is the coordinator partition for the application, it

sends a message to all the other agents (subordinate agents) that the coordinator

agent is still waiting for COMMIT acknowledgments.

It is possible that crash recovery might not be able to resolve all the indoubt

transactions (for example, some of the database partition servers might not be

available). In this situation, the SQL warning message SQL1061W is returned.

Because indoubt transactions hold resources, such as locks and active log space, it

is possible to get to a point where no changes can be made to the database because

the active log space is being held up by indoubt transactions. For this reason, you

should determine whether indoubt transactions remain after crash recovery, and

recover all database partition servers that are required to resolve the indoubt

transactions as quickly as possible.

If one or more servers that are required to resolve an indoubt transaction cannot be

recovered in time, and access is required to database partitions on other servers,

you can manually resolve the indoubt transaction by making an heuristic decision.

You can use the LIST INDOUBT TRANSACTIONS command to query, commit,

and roll back the indoubt transaction on the server.

Note: The LIST INDOUBT TRANSACTIONS command is also used in a

distributed transaction environment. To distinguish between the two types

of indoubt transactions, the originator field in the output that is returned by

the LIST INDOUBT TRANSACTIONS command displays one of the

following:

v DB2 Enterprise Server Edition, which indicates that the transaction

originated in a partitioned database environment.

v XA, which indicates that the transaction originated in a distributed

environment.

Identifying the failed database partition server

When a database partition server fails, the application will typically receive one of

the following SQLCODEs. The method for detecting which database manager

failed depends on the SQLCODE received:

18 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

SQL0279N

This SQLCODE is received when a database partition server involved in a

transaction is terminated during COMMIT processing.

SQL1224N

This SQLCODE is received when the database partition server that failed is

the coordinator partition for the transaction.

SQL1229N

This SQLCODE is received when the database partition server that failed is

not the coordinator partition for the transaction.

 Determining which database partition server failed is a two-step process. The

SQLCA associated with SQLCODE SQL1229N contains the node number of the

server that detected the error in the sixth array position of the sqlerrd field. (The

node number that is written for the server corresponds to the node number in the

db2nodes.cfg file.) On the database partition server that detects the error, a

message that indicates the node number of the failed server is written to the

administration notification log.

Note: If multiple logical nodes are being used on a processor, the failure of one

logical node can cause other logical nodes on the same processor to fail.

 Related concepts:

v “Error recovery during two-phase commit” in Administration Guide: Planning

v “Two-phase commit” in Administration Guide: Planning

 Related tasks:

v “Resolving indoubt transactions manually” in Administration Guide: Planning

 Related reference:

v “db2start - Start DB2 command” in Command Reference

v “LIST INDOUBT TRANSACTIONS command” in Command Reference

Recovering from the failure of a database partition server

 Procedure:

 To recover from the failure of a database partition server:

1. Correct the problem that caused the failure.

2. Restart the database manager by issuing the db2start command from any

database partition server.

3. Restart the database by issuing the RESTART DATABASE command on the

failed database partition server or servers.

 Related concepts:

v “Recovering from transaction failures in a partitioned database environment” on

page 16

 Related reference:

v “db2start - Start DB2 command” in Command Reference

v “RESTART DATABASE command” in Command Reference

Chapter 1. Developing a good backup and recovery strategy 19

DB2 9 BETA

Recovering indoubt transactions on the host when DB2

Connect has the DB2 Syncpoint Manager configured

 If your application has accessed a host or iSeries™ database server during a

transaction, there are some differences in how indoubt transactions are recovered.

To access host or iSeries database servers, DB2 Connect is used. The recovery steps

differ if DB2 Connect has the DB2 Syncpoint Manager configured.

 Procedures:

 The recovery of indoubt transactions at host or iSeries servers is normally

performed automatically by the Transaction Manager (TM) and the DB2 Syncpoint

Manager (SPM). An indoubt transaction at a host or iSeries server does not hold

any resources at the local DB2 location, but does hold resources at the host or

iSeries server as long as the transaction is indoubt at that location. If the

administrator of the host or iSeries server determines that a heuristic decision must

be made, then the administrator might contact the local DB2 database

administrator (for example via telephone) to determine whether to commit or roll

back the transaction at the host or iSeries server. If this occurs, the LIST DRDA

INDOUBT TRANSACTIONS command can be used to determine the state of the

transaction at the DB2 Connect instance. The following steps can be used as a

guideline for most situations involving an SNA communications environment.

1. Connect to the SPM as shown below:

db2 => connect to db2spm

 Database Connection Information

 Database product = SPM0500

 SQL authorization ID = CRUS

 Local database alias = DB2SPM

2. Issue the LIST DRDA INDOUBT TRANSACTIONS command to display the

indoubt transactions known to the SPM. The example below shows one

indoubt transaction known to the SPM. The db_name is the local alias for the

host or iSeries server. The partner_lu is the fully qualified luname of the host or

iSeries server. This provides the best identification of the host or iSeries server,

and should be provided by the caller from the host or iSeries server. The luwid

provides a unique identifier for a transaction and is available at all hosts and

iSeries servers. If the transaction in question is displayed, then the uow_status

field can be used to determine the outcome of the transaction if the value is C

(commit) or R (rollback). If you issue the LIST DRDA INDOUBT

TRANSACTIONS command with the WITH PROMPTING parameter, you can

commit, roll back, or forget the transaction interactively.

db2 => list drda indoubt transactions

 DRDA Indoubt Transactions:

 1.db_name: DBAS3 db_alias: DBAS3 role: AR

 uow_status: C partner_status: I partner_lu: USIBMSY.SY12DQA

 corr_tok: USIBMST.STB3327L

 luwid: USIBMST.STB3327.305DFDA5DC00.0001

 xid: 53514C2000000017 00000000544D4442 0000000000305DFD A63055E962000000

 00035F

3. If an indoubt transaction for the partner_lu and for the luwid is not displayed,

or if the LIST DRDA INDOUBT TRANSACTIONS command returns as follows:

db2 => list drda indoubt transactions

SQL1251W No data returned for heuristic query.

20 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

then the transaction was rolled back.

There is another unlikely but possible situation that can occur. If an indoubt

transaction with the proper luwid for the partner_lu is displayed, but the

uow_status is ″I″, the SPM doesn’t know whether the transaction is to be

committed or rolled back. In this situation, you should use the WITH

PROMPTING parameter to either commit or roll back the transaction on the

DB2 Connect workstation. Then allow DB2 Connect to resynchronize with the

host or iSeries server based on the heuristic decision.

 Related tasks:

v “Recovering indoubt transactions on the host when DB2 Connect does not use

the DB2 Syncpoint Manager” on page 21

 Related reference:

v “db2start - Start DB2 command” in Command Reference

v “LIST INDOUBT TRANSACTIONS command” in Command Reference

v “RESTART DATABASE command” in Command Reference

Recovering indoubt transactions on the host when DB2

Connect does not use the DB2 Syncpoint Manager

 If your application has accessed a host or iSeries database server during a

transaction, there are some differences in how indoubt transactions are recovered.

To access host or iSeries database servers, DB2 Connect is used. The recovery steps

differ if DB2 Connecthas the DB2 Syncpoint Manager configured.™

 Procedure:

 Use the information in this section when TCP/IP connectivity is used to update

DB2 for z/OS® in a multisite update from either DB2 Connect Personal Edition or

DB2 Connect Enterprise Server Edition, and the DB2 Syncpoint Manager is not

used. The recovery of indoubt transactions in this situation differs from that for

indoubt transactions involving the DB2 Syncpoint Manager. When an indoubt

transaction occurs in this environment, an alert entry is generated at the client, at

the database server, and (or) at the Transaction Manager (TM) database, depending

on who detected the problem. The alert entry is placed in the db2alert.log file.

The resynchronization of any indoubt transactions occurs automatically as soon as

the TM and the participating databases and their connections are all available

again. You should allow automatic resynchronization to occur rather than

heuristically force a decision at the database server. If, however, you must do this

then use the following steps as a guideline.

Note: Because the DB2 Syncpoint Manager is not involved, you cannot use the

LIST DRDA INDOUBT TRANSACTIONS command.

1. On the z/OS host, issue the command DISPLAY THREAD TYPE(INDOUBT).

From this list identify the transaction that you want to heuristically complete.

For details about the DISPLAY command, see the DB2 for z/OS Command

Reference. The LUWID displayed can be matched to the same luwid at the

Transaction Manager Database.

2. Issue the RECOVER THREAD(<LUWID>) ACTION(ABORT|COMMIT)

command, depending on what you want to do.

Chapter 1. Developing a good backup and recovery strategy 21

DB2 9 BETA

For details about the RECOVER THREAD command, see the DB2 for z/OS

Command Reference.

 Related tasks:

v “Recovering indoubt transactions on the host when DB2 Connect has the DB2

Syncpoint Manager configured” on page 20

 Related reference:

v “LIST INDOUBT TRANSACTIONS command” in Command Reference

Disaster recovery

 The term disaster recovery is used to describe the activities that need to be done to

restore the database in the event of a fire, earthquake, vandalism, or other

catastrophic events. A plan for disaster recovery can include one or more of the

following:

v A site to be used in the event of an emergency

v A different machine on which to recover the database

v Off-site storage of either database backups, table space backups, or both, as well

as archived logs.

If your plan for disaster recovery is to restore the entire database on another

machine, it is recommended that you have at least one full database backup and

all the archived logs for the database. Although it is possible to rebuild a database

if you have a full table space backup of each table space in the database, this

method might involve numerous backup images and be more time-consuming

than recovery using a full database backup.

You can choose to keep a standby database up to date by applying the logs to it as

they are archived. Or, you can choose to keep the database or table space backups

and log archives in the standby site, and perform restore and rollforward

operations only after a disaster has occurred. (In the latter case, recent backup

images are preferable.) In a disaster situation, however, it is generally not possible

to recover all of the transactions up to the time of the disaster.

The usefulness of a table space backup for disaster recovery depends on the scope

of the failure. Typically, disaster recovery is less complicated and time-consuming

if you restore the entire database; therefore, a full database backup should be kept

at a standby site. If the disaster is a damaged disk, a table space backup of each

table space on that disk can be used to recover. If you have lost access to a

container because of a disk failure (or for any other reason), you can restore the

container to a different location.

Another way you can protect your data from partial or complete site failures is to

implement the DB2 high availability disaster recovery (HADR) feature. Once it is

set up, HADR protects against data loss by replicating data changes from a source

database, called the primary, to a target database, called the standby.

You can also protect your data from partial or complete site failures using

replication. Replication allows you to copy data on a regular basis to multiple

remote databases. DB2 database provides a number of replication tools that allow

you to specify what data should be copied, which database tables the data should

be copied to, and how often the updates should be copied.

22 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Storage mirroring, such as Peer-to-Peer Remote Copy (PPRC), can also be used to

protect your data. PPRC provides a synchronous copy of a volume or disk to

protect against disasters.

DB2 provides you with several options when planning for disaster recovery. Based

on your business needs, you might decide to use table space or full database

backups as a safeguard against data loss, or you might decide that your

environment is better suited to a solution like HADR. Whatever your choice, you

should test your recovery procedures in a test environment before implementing

them in your production environment.

 Related concepts:

v “High availability disaster recovery overview” on page 221

v “Redefining table space containers during a restore operation (redirected

restore)” on page 94

v “Using replication to move data” in Data Movement Utilities Guide and Reference

Version recovery

 Version recovery is the restoration of a previous version of the database, using an

image that was created during a backup operation. You use this recovery method

with non-recoverable databases (that is, databases for which you do not have

archived logs). You can also use this method with recoverable databases by using

the WITHOUT ROLLING FORWARD option on the RESTORE DATABASE

command. A database restore operation will restore the entire database using a

backup image created earlier. A database backup allows you to restore a database

to a state identical to the one at the time that the backup was made. However,

every unit of work from the time of the backup to the time of the failure is lost

(see Figure 3).

 Using the version recovery method, you must schedule and perform full backups

of the database on a regular basis.

In a partitioned database environment, the database is located across many

database partition servers (or nodes). You must restore all database partitions, and

the backup images that you use for the restore database operation must all have

CREATE
database

BACKUP
database

BACKUP
database

image

TIME

create

RESTORE
database

Units of work

Figure 3. Version Recovery. Shows that units of work from the time of the backup to the time

of the failure is lost.

Chapter 1. Developing a good backup and recovery strategy 23

|
|
|
|
|
|
|
|
|
|

DB2 9 BETA

been taken at the same time. (Each database partition is backed up and restored

separately.) A backup of each database partition taken at the same time is known

as a version backup.

 Related concepts:

v “Crash recovery” on page 10

v “Disaster recovery” on page 22

Rollforward recovery

 To use the rollforward recovery method, you must have taken a backup of the

database and archived the logs (by setting the logarchmeth1 and logarchmeth2

configuration parameters to a value other than OFF). Restoring the database and

specifying the WITHOUT ROLLING FORWARD option is equivalent to using the

version recovery method. The database is restored to a state identical to the one at

the time that the offline backup image was made. If you restore the database and

do not specify the WITHOUT ROLLING FORWARD option for the restore database

operation, the database will be in rollforward pending state at the end of the

restore operation. This allows rollforward recovery to take place.

Note: The WITHOUT ROLLING FORWARD option cannot be used if:

v You are restoring from an online backup image

v You are issuing a table space-level restore

The two types of rollforward recovery to consider are:

v Database rollforward recovery. In this type of rollforward recovery, transactions

recorded in database logs are applied following the database restore operation

(see Figure 4 on page 25). The database logs record all changes made to the

database. This method completes the recovery of the database to its state at a

particular point in time, or to its state immediately before the failure (that is, to

the end of the active logs.)

In a partitioned database environment, the database is located across many

database partitions, and the ROLLFORWARD DATABASE command must be

issued on the database partition where the catalog tables for the database resides

(catalog partition). If you are performing point-in-time rollforward recovery, all

database partitions must be rolled forward to ensure that all database partitions

are at the same level. If you need to restore a single database partition, you can

perform rollforward recovery to the end of the logs to bring it up to the same

level as the other database partitions in the database. Only recovery to the end

of the logs can be used if one database partition is being rolled forward.

Point-in-time recovery applies to all database partitions.

24 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

v Table space rollforward recovery. If the database is enabled for forward recovery, it

is also possible to back up, restore, and roll table spaces forward (see Figure 5 on

page 26). To perform a table space restore and rollforward operation, you need a

backup image of either the entire database (that is, all of the table spaces), or

one or more individual table spaces. You also need the log records that affect the

table spaces that are to be recovered. You can roll forward through the logs to

one of two points:

– The end of the logs; or,

– A particular point in time (called point-in-time recovery).

Table space rollforward recovery can be used in the following two situations:

v After a table space restore operation, the table space is always in rollforward

pending state, and it must be rolled forward. Invoke the ROLLFORWARD

DATABASE command to apply the logs against the table spaces to either a point

in time, or to the end of the logs.

v If one or more table spaces are in rollforward pending state after crash recovery,

first correct the table space problem. In some cases, correcting the table space

problem does not involve a restore database operation. For example, a power

loss could leave the table space in rollforward pending state. A restore database

operation is not required in this case. Once the problem with the table space is

corrected, you can use the ROLLFORWARD DATABASE command to apply the

logs against the table spaces to the end of the logs. If the problem is corrected

before crash recovery, crash recovery might be sufficient to take the database to

a consistent, usable state.

Note: If the table space in error contains the system catalog tables, you will not

be able to start the database. You must restore the SYSCATSPACE table

space, then perform rollforward recovery to the end of the logs.

CREATE
database

BACKUP
database

TIME

BACKUP
database

RESTORE
database

ROLLFORWARD

changes in logs
Units of workUnits of work

update update

n archived logs
1 active log

n archived logs
1 active log

Figure 4. Database Rollforward Recovery. There can be more than one active log in the case

of a long-running transaction.

Chapter 1. Developing a good backup and recovery strategy 25

DB2 9 BETA

In a partitioned database environment, if you are rolling a table space forward to a

point in time, you do not have to supply the list of database partitions on which the

table space resides. DB2 submits the rollforward request to all database partitions.

This means the table space must be restored on all database partitions on which

the table space resides.

In a partitioned database environment, if you are rolling a table space forward to

the end of the logs, you must supply the list of database partitions if you do not

want to roll the table space forward on all database partitions. If you want to roll

all table spaces (on all database partitions) that are in rollforward pending state

forward to the end of the logs, you do not have to supply the list of database

partitions. By default, the database rollforward request is sent to all database

partitions.

If you are rolling a table space forward that contains any piece of a partitioned

table and you are rolling it forward to a point in time, you must also roll all of the

other table spaces in which that table resides forward to the same point in time.

However, you can roll a single table space containing a piece of a partitioned table

forward to the end of logs.

Note: If a partitioned table has any attached, detached, or dropped data partitions,

then point-in-time rollforward must also include all table spaces for these

data partitions. To determine if a partitioned table has any attached,

detached, or dropped data partitions, query the SYSDATAPARTITIONS

catalog table.

 Related concepts:

v “Understanding recovery logs” on page 33

 Related reference:

v “ROLLFORWARD DATABASE ” on page 168

 Related samples:

v “dbrecov.out -- HOW TO RECOVER A DATABASE (C)”

v “dbrecov.sqc -- How to recover a database (C)”

BACKUP
table space(s)

RESTORE
table space(s)

n archived logs
1 active log

n archived logs
1 active log

update update

Units of work Units of workall changes to
end of logs

ROLLFORWARD

Time

Media
error

Figure 5. Table Space Rollforward Recovery. There can be more than one active log in the

case of a long-running transaction.

26 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

v “dbrecov.out -- HOW TO RECOVER A DATABASE (C++)”

v “dbrecov.sqC -- How to recover a database (C++)”

Incremental backup and recovery

 As the size of databases, and particularly warehouses, continues to expand into the

terabyte and petabyte range, the time and hardware resources required to back up

and recover these databases is also growing substantially. Full database and table

space backups are not always the best approach when dealing with large

databases, because the storage requirements for multiple copies of such databases

are enormous. Consider the following issues:

v When a small percentage of the data in a warehouse changes, it should not be

necessary to back up the entire database.

v Appending table spaces to existing databases and then taking only table space

backups is risky, because there is no guarantee that nothing outside of the

backed up table spaces has changed between table space backups.

To address these issues, DB2 provides incremental backup and recovery. An

incremental backup is a backup image that contains only pages that have been

updated since the previous backup was taken. In addition to updated data and

index pages, each incremental backup image also contains all of the initial database

meta-data (such as database configuration, table space definitions, database history,

and so on) that is normally stored in full backup images.

Notes:

1. If a table space contains long field or large object data and an incremental

backup is taken, all of the long field or large object data will be copied into the

backup image if any of the pages in that table space have been modified since

the previous backup.

2. If you take an incremental backup of a table space that contains a dirty page

(that is, a page that contains data that has been changed but has not yet been

written to disk) then all large object data is backed up. Normal data is backed

up only if it has changed.

Two types of incremental backup are supported:

v Incremental. An incremental backup image is a copy of all database data that has

changed since the most recent, successful, full backup operation. This is also

known as a cumulative backup image, because a series of incremental backups

taken over time will each have the contents of the previous incremental backup

image. The predecessor of an incremental backup image is always the most

recent successful full backup of the same object.

v Delta. A delta, or incremental delta, backup image is a copy of all database data

that has changed since the last successful backup (full, incremental, or delta) of

the table space in question. This is also known as a differential, or

non-cumulative, backup image. The predecessor of a delta backup image is the

most recent successful backup containing a copy of each of the table spaces in

the delta backup image.

The key difference between incremental and delta backup images is their behavior

when successive backups are taken of an object that is continually changing over

time. Each successive incremental image contains the entire contents of the

previous incremental image, plus any data that has changed, or is new, since the

previous full backup was produced. Delta backup images contain only the pages

that have changed since the previous image of any type was produced.

Chapter 1. Developing a good backup and recovery strategy 27

|
|
|
|

DB2 9 BETA

Combinations of database and table space incremental backups are permitted, in

both online and offline modes of operation. Be careful when planning your backup

strategy, because combining database and table space incremental backups implies

that the predecessor of a database backup (or a table space backup of multiple

table spaces) is not necessarily a single image, but could be a unique set of

previous database and table space backups taken at different times.

To restore the database or the table space to a consistent state, the recovery process

must begin with a consistent image of the entire object (database or table space) to

be restored, and must then apply each of the appropriate incremental backup

images in the order described below.

To enable the tracking of database updates, DB2 supports a new database

configuration parameter, trackmod, which can have one of two accepted values:

v NO. Incremental backup is not permitted with this configuration. Database page

updates are not tracked or recorded in any way. This is the default value.

v YES. Incremental backup is permitted with this configuration. When update

tracking is enabled, the change becomes effective at the first successful

connection to the database. Before an incremental backup can be taken on a

particular table space, a full backup of that table space is necessary.

For SMS and DMS table spaces, the granularity of this tracking is at the table space

level. In table space level tracking, a flag for each table space indicates whether or

not there are pages in that table space that need to be backed up. If no pages in a

table space need to be backed up, the backup operation can skip that table space

altogether.

Although minimal, the tracking of updates to the database can have an impact on

the runtime performance of transactions that update or insert data.

 Related tasks:

v “Restoring from incremental backup images” on page 28

Incremental backup and recovery - details

Restoring from incremental backup images

 Procedure:

 A restore operation from incremental backup images always consists of the

following steps:

1. Identifying the incremental target image.

Determine the final image to be restored, and request an incremental restore

operation from the DB2 restore utility. This image is known as the target image

of the incremental restore, because it will be the last image to be restored. The

incremental target image is specified using the TAKEN AT parameter in the

RESTORE DATABASE command.

2. Restoring the most recent full database or table space image to establish a

baseline against which each of the subsequent incremental backup images can

be applied.

3. Restoring each of the required full or table space incremental backup images, in

the order in which they were produced, on top of the baseline image restored

in Step 2.

28 Data Recovery and High Availability Guide and Reference

|
|
|
|

DB2 9 BETA

4. Repeating Step 3 until the target image from Step 1 is read a second time. The

target image is accessed twice during a complete incremental restore operation.

During the first access, only initial data is read from the image; none of the

user data is read. The complete image is read and processed only during the

second access.

The target image of the incremental restore operation must be accessed twice to

ensure that the database is initially configured with the correct history, database

configuration, and table space definitions for the database that will be created

during the restore operation. In cases where a table space has been dropped

since the initial full database backup image was taken, the table space data for

that image will be read from the backup images but ignored during

incremental restore processing.

There are two ways to restore incremental backup images.

v For an automatic incremental restore, the RESTORE command is issued only

once specifying the target image to be used. DB2 then uses the database history

to determine the remaining required backup images and restores them.

v For a manual incremental restore, the RESTORE command must be issued once

for each backup image that needs to be restored (as outlined in the steps above).

Automatic Incremental Restore Example

To restore a set of incremental backup images using automatic incremental restore,

specify the TAKEN AT timestamp option on the RESTORE DATABASE command.

Use the time stamp for the last image that you want to restore. For example:

 db2 restore db sample incremental automatic taken at 20031228152133

This will result in the DB2 restore utility performing each of the steps described at

the beginning of this section automatically. During the initial phase of processing,

the backup image with time stamp 20001228152133 is read, and the restore utility

verifies that the database, its history, and the table space definitions exist and are

valid.

During the second phase of processing, the database history is queried to build a

chain of backup images required to perform the requested restore operation. If, for

some reason this is not possible, and DB2 is unable to build a complete chain of

required images, the restore operation terminates, and an error message is

returned. In this case, an automatic incremental restore will not be possible, and

you will have issue the RESTORE DATABASE command with the INCREMENTAL

ABORT option. This will cleanup any remaining resources so that you can proceed

with a manual incremental restore.

Note: It is highly recommended that you not use the FORCE option of the PRUNE

HISTORY command. The default operation of this command prevents you

from deleting history entries that might be required for recovery from the

most recent, full database backup image, but with the FORCE option, it is

possible to delete entries that are required for an automatic restore

operation.

During the third phase of processing, DB2 will restore each of the remaining

backup images in the generated chain. If an error occurs during this phase, you

will have to issue the RESTORE DATABASE command with the INCREMENTAL

ABORT option to cleanup any remaining resources. You will then have to

determine if the error can be resolved before you re-issue the RESTORE command

or attempt the manual incremental restore again.

Chapter 1. Developing a good backup and recovery strategy 29

DB2 9 BETA

Manual Incremental Restore Example

To restore a set of incremental backup images, using manual incremental restore,

specify the target image using the TAKEN AT timestamp option of the RESTORE

DATABASE command and follow the steps outlined above. For example:

 1. db2 restore database sample incremental taken at <ts>

 where:

 <ts> points to the last incremental backup image (the target image)

 to be restored

 2. db2 restore database sample incremental taken at <ts1>

 where:

 <ts1> points to the initial full database (or table space) image

 3. db2 restore database sample incremental taken at <tsX>

 where:

 <tsX> points to each incremental backup image in creation sequence

 4. Repeat Step 3, restoring each incremental backup image up to and

 including image <ts>

If you are performing a database restore operation, and table space backup images

have been produced, the table space images must be restored in the chronological

order of their backup time stamps.

The db2ckrst utility can be used to query the database history and generate a list

of backup image time stamps needed for an incremental restore. A simplified

restore syntax for a manual incremental restore is also generated. It is

recommended that you keep a complete record of backups, and only use this

utility as a guide.

 Related concepts:

v “Incremental backup and recovery” on page 27

 Related reference:

v “db2ckrst - Check incremental restore image sequence ” on page 314

v “RESTORE DATABASE ” on page 100

Limitations to automatic incremental restore

1. If a table space name has been changed since the backup operation you want to

restore from, and you use the new name when you issue a table space level

restore operation, the required chain of backup images from the database

history will not be generated correctly and an error will occur (SQL2571N).

Example:

db2 backup db sample —> <ts1>

db2 backup db sample incremental —> <ts2>

db2 rename tablespace from userspace1 to t1

db2 restore db sample tablespace (’t1’) incremental automatic taken

at <ts2>

SQL2571N Automatic incremental restore is unable to proceed.

Reason code: "3".

Suggested workaround: Use manual incremental restore.

2. If you drop a database, the database history will be deleted. If you restore the

dropped database, the database history will be restored to its state at the time

30 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

of the restored backup and all history entries after that time will be lost. If you

then attempt to perform an automatic incremental restore that would need to

use any of these lost history entries, the RESTORE utility will attempt to restore

an incorrect chain of backups and will return an ″out of sequence″ error

(SQL2572N).

Example:

db2 backup db sample —> <ts1>

db2 backup db sample incremental —> <ts2>

db2 backup db sample incremental delta —> <ts3>

db2 backup db sample incremental delta —> <ts4>

db2 drop db sample

db2 restore db sample incremental automatic taken at <ts2>

db2 restore db sample incremental automatic taken at <ts4>

Suggested workarounds:

v Use manual incremental restore.

v Restore the history file first from image <ts4> before issuing an automatic

incremental restore.
3. If you restore a backup image from one database into another database and

then do an incremental (delta) backup, you can no longer use automatic

incremental restore to restore this backup image.

Example:

db2 create db a

db2 create db b

db2 update db cfg for a using trackmod on

db2 backup db a —> ts1

db2 restore db a taken at ts1 into b

db2 backup db b incremental —> ts2

db2 restore db b incremental automatic taken at ts2

SQL2542N No match for a database image file was found based on the source

database alias "B" and timestamp "ts1" provided.

Suggested workaround:

v Use manual incremental restore as follows:

db2 restore db b incremental taken at ts2

db2 restore db a incremental taken at ts1 into b

db2 restore db b incremental taken at ts2

v After the manual restore operation into database B, issue a full database

backup to start a new incremental chain

 Related concepts:

v “Incremental backup and recovery” on page 27

 Related tasks:

v “Restoring from incremental backup images” on page 28

 Related reference:

v “RESTORE DATABASE ” on page 100

Chapter 1. Developing a good backup and recovery strategy 31

DB2 9 BETA

Monitoring the progress of backup, restore and recovery operations

 You can use the LIST UTILITIES command to monitor backup, restore, and

rollforward operations on a database.

 Procedure:

 To use progress monitoring for backup, restore and recovery operations:

v Issue the LIST UTILITIES command and specify the SHOW DETAIL option.

 list utilities show detail

The following is an example of the output for monitoring the performance of an

offline database backup operation:

 LIST UTILITIES SHOW DETAIL

 ID = 2

 Type = BACKUP

 Database Name = SAMPLE

 Description = offline db

 Start Time = 10/30/2003 12:55:31.786115

 Throttling:

 Priority = Unthrottled

 Progress Monitoring:

 Estimated Percentage Complete = 41

 Total Work Units = 20232453 bytes

 Completed Work Units = 230637 bytes

 Start Time = 10/30/2003 12:55:31.786115

For backup operations, an initial estimate of the number of bytes to be processed

will be specified. As the backup operation progresses the number of bytes to be

processed will be updated. The bytes shown does not correspond to the size of the

image and should not be used as an estimate for backup image size. The actual

image might be much smaller depending on whether it is an incremental or

compressed backup.

For restore operations, no initial estimate will be given. Instead UNKNOWN will

be specified. As each buffer is read from the image, the actual amount of bytes

read will be updated. For automatic incremental restore operations where multiple

images might be restored, the progress will be tracked using phases. Each phase

represents an image to be restored from the incremental chain. Initially, only one

phase will be indicated. After the first image is restored, the total number of

phases will be indicated. As each image is restored the number of phases

completed will be updated, as will the number of bytes processed.

For crash recovery and rollforward recovery there will be two phases of progress

monitoring: FORWARD and BACKWARD. During the FORWARD phase, log files

are read and the log records are applied to the database. For crash recovery, the

total amount of work is estimated using the starting log sequence number up to

the end of the last log file. For rollforward recovery, when this phase begins

UNKNOWN will be specified for the total work estimate. The amount of work

processed in bytes will be updated as the process continues.

During the BACKWARD phase, any uncommitted changes applied during the

FORWARD phase are rolled back. An estimate for the amount of log data to be

processed in bytes will be provided. The amount of work processed in bytes will

be updated as the process continues.

32 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Related concepts:

v “Backup overview” on page 63

v “Crash recovery” on page 10

v “Restore overview” on page 89

v “Rollforward overview” on page 155

 Related reference:

v “LIST UTILITIES command” in Command Reference

Understanding recovery logs

 All databases have logs associated with them. These logs keep records of database

changes. If a database needs to be restored to a point beyond the last full, offline

backup, logs are required to roll the data forward to the point of failure.

There are two types of DB2 logging: circular and archive. Each provides a different

level of recovery capability:

v Circular logging is the default behavior when a new database is created. (The

logarchmeth1 and logarchmeth2 database configuration parameters are set to OFF.)

With this type of logging, only full, offline backups of the database are allowed.

The database must be offline (inaccessible to users) when a full backup is taken.

As the name suggests, circular logging uses a “ring” of online logs to provide

recovery from transaction failures and system crashes. The logs are used and

retained only to the point of ensuring the integrity of current transactions.

Circular logging does not allow you to roll a database forward through

transactions performed after the last full backup operation. All changes

occurring since the last backup operation are lost. Since this type of restore

operation recovers your data to the specific point in time at which a full backup

was taken, it is called version recovery.

Figure 6 shows that the active log uses a ring of log files when circular logging

is active.

DB2 server

Database Log Path

Transaction

Active Log Files

Circular Logs

Active

Log File

Figure 6. Circular Logging

Chapter 1. Developing a good backup and recovery strategy 33

DB2 9 BETA

Active logs are used during crash recovery to prevent a failure (system power or

application error) from leaving a database in an inconsistent state. Active logs

are located in the database log path directory.

v Archive logging is used specifically for rollforward recovery. Archived logs are

logs that were active but are no longer required for crash recovery. Use the

logarchmeth1 database configuration parameter to enable archive logging.

The advantage of choosing archive logging is that rollforward recovery can use

both archived logs and active logs to restore a database either to the end of the

logs, or to a specific point in time. The archived log files can be used to recover

changes made after the backup was taken. This is different from circular logging

where you can only recover to the time of the backup, and all changes made after

that are lost.

Taking online backups is only supported if the database is configured for archive

logging. During an online backup operation, all activities against the database are

logged. When an online backup image is restored, the logs must be rolled forward

at least to the point in time at which the backup operation completed. For this to

happen, the logs must have been archived and made available when the database

is restored. After an online backup is complete, DB2 forces the currently active log

to be closed, and as a result, it will be archived. This ensures that your online

backup has a complete set of archived logs available for recovery.

The following database configuration parameters allow you to change where

archived logs are stored: The newlogpath parameter, and the logarchmeth1 and

logarchmeth2 parameters. Changing the newlogpath parameter also affects where

active logs are stored.

To determine which log extents in the database log path directory are archived logs,

check the value of the loghead database configuration parameter. This parameter

indicates the lowest numbered log that is active. Those logs with sequence

numbers less than loghead are archived logs and can be moved. You can check the

value of this parameter by using the Control Center; or, by using the command

line processor and the GET DATABASE CONFIGURATION command to view the

″First active log file″. For more information about this configuration parameter, see

the Performance Guide book.

TIME

Units of work Units of work

update update

Logs are used between backups to track the changes to the databases.

BACKUP
database

n archived logs
1 active log

n archived logs
1 active log

Figure 7. Active and Archived Database Logs in Rollforward Recovery. There can be more

than one active log in the case of a long-running transaction.

34 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Related concepts:

v “Log mirroring” on page 35

 Related reference:

v “Configuration parameters for database logging” on page 37

v “logarchmeth1 - Primary log archive method configuration parameter” in

Performance Guide

v “loghead - First active log file configuration parameter” in Performance Guide

v Appendix I, “User exit for database recovery,” on page 409

Recovery log details

Log mirroring

 DB2 supports log mirroring at the database level. Mirroring log files helps protect

a database from:

v Accidental deletion of an active log

v Data corruption caused by hardware failure

If you are concerned that your active logs might be damaged (as a result of a disk

crash), you should consider using the MIRRORLOGPATH configuration parameter

to specify a secondary path for the database to manage copies of the active log,

mirroring the volumes on which the logs are stored.

The MIRRORLOGPATH configuration parameter allows the database to write an

identical second copy of log files to a different path. It is recommended that you

place the secondary log path on a physically separate disk (preferably one that is

also on a different disk controller). That way, the disk controller cannot be a single

point of failure.

When MIRRORLOGPATH is first enabled, it will not actually be used until the

next database startup. This is similar to the NEWLOGPATH configuration

parameter.

If there is an error writing to either the active log path or the mirror log path, the

database will mark the failing path as “bad”, write a message to the administration

notification log, and write subsequent log records to the remaining “good” log

path only. DB2 will not attempt to use the “bad” path again until the current log

file is either full or truncated. When DB2 needs to open the next log file, it will

verify that this path is valid, and if so, will begin to use it. If not, DB2 will not

attempt to use the path again until the next log file is accessed for the first time.

There is no attempt to synchronize the log paths, but DB2 keeps information about

access errors that occur, so that the correct paths are used when log files are

archived. If a failure occurs while writing to the remaining “good” path, the

database shuts down.

 Related concepts:

v “Log file management through log archiving” on page 49

v “Standby database states in high availability disaster recovery (HADR)” on page

226

 Related reference:

Chapter 1. Developing a good backup and recovery strategy 35

DB2 9 BETA

v “mirrorlogpath - Mirror log path configuration parameter” in Performance Guide

v “hadr_primary_log_file - HADR Primary Log File monitor element” in System

Monitor Guide and Reference

v “hadr_standby_log_file - HADR Standby Log File monitor element” in System

Monitor Guide and Reference

Reducing logging with the NOT LOGGED INITIALLY parameter

 If your application creates and populates work tables from master tables, and you

are not concerned about the recoverability of these work tables because they can be

easily recreated from the master tables, you might want to create the work tables

specifying the NOT LOGGED INITIALLY parameter on the CREATE TABLE

statement. The advantage of using the NOT LOGGED INITIALLY parameter is

that any changes made on the table (including insert, delete, update, or create

index operations) in the same unit of work that creates the table will not be

logged. This not only reduces the logging that is done, but can also increase the

performance of your application. You can achieve the same result for existing

tables by using the ALTER TABLE statement with the NOT LOGGED INITIALLY

parameter.

Notes:

1. You can create more than one table with the NOT LOGGED INITIALLY

parameter in the same unit of work.

2. Changes to the catalog tables and other user tables are still logged.

Because changes to the table are not logged, you should consider the following

when deciding to use the NOT LOGGED INITIALLY table attribute:

v All changes to the table will be flushed out to disk at commit time. This means

that the commit might take longer.

v If the NOT LOGGED INITIALLY attribute is activated and an activity occurs

that is not logged, the entire unit of work will be rolled back if a statement fails

or a ROLLBACK TO SAVEPOINT is executed (SQL1476N).

v If you are using high availability disaster recovery (HADR) you should not use

the NOT LOGGED INITIALLY table attribute. Tables created with the NOT

LOGGED INITIALLY option specified are not replicated. Attempts access such

tables after an HADR standby database takes over as the primary database will

result in an error.

v You cannot recover these tables when rolling forward. If the rollforward

operation encounters a table that was created or altered with the NOT LOGGED

INITIALLY option, the table is marked as unavailable. After the database is

recovered, any attempt to access the table returns SQL1477N.

Note: When a table is created, row locks are held on the catalog tables until a

COMMIT is done. To take advantage of the no logging behavior, you

must populate the table in the same unit of work in which it is created.

This has implications for concurrency.

Reducing logging with declared temporary tables

If you plan to use declared temporary tables as work tables, note the following:

v Declared temporary tables are not created in the catalogs; therefore locks are not

held.

v Logging is not performed against declared temporary tables, even after the first

COMMIT.

36 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

v Use the ON COMMIT PRESERVE option to keep the rows in the table after a

COMMIT; otherwise, all rows will be deleted.

v Only the application that creates the declared temporary table can access that

instance of the table.

v The table is implicitly dropped when the application connection to the database

is dropped.

v Errors in operation during a unit of work using a declared temporary table do

not cause the unit of work to be completely rolled back. However, an error in

operation in a statement changing the contents of a declared temporary table

will delete all the rows in that table. A rollback of the unit of work (or a

savepoint) will delete all rows in declared temporary tables that were modified

in that unit of work (or savepoint).

 Related concepts:

v “Application processes, concurrency, and recovery” in SQL Reference, Volume 1

 Related tasks:

v “Creating a table space” in Administration Guide: Implementation

 Related reference:

v “DECLARE GLOBAL TEMPORARY TABLE statement” in SQL Reference, Volume

2

Configuration parameters for database logging

Archive Retry Delay (archretrydelay)

Specifies the amount of time (in seconds) to wait between attempts to

archive log files after the previous attempt fails. The default value is 20.

Block on log disk full (blk_log_dsk_ful)

This configuration parameter can be set to prevent disk full errors from

being generated when DB2 cannot create a new log file in the active log

path. Instead, DB2 will attempt to create the log file every five minutes

until it succeeds. After each attempt, DB2 will write a message to the

administration notification log. The only way to confirm that your

application is hanging because of a log disk full condition is to monitor the

administration notification log. Until the log file is successfully created, any

user application that attempts to update table data will not be able to

commit transactions. Read-only queries might not be directly affected;

however, if a query needs to access data that is locked by an update

request or a data page that is fixed in the buffer pool by the updating

application, read-only queries will also appear to hang.

 Setting blk_log_dsk_ful to YES causes applications to hang when DB2

encounters a log disk full error. You are then able to resolve the error and

the transaction can continue. A disk full situation can be resolved by

moving old log files to another file system, or by increasing the size of the

file system so that hanging applications can complete.

 If blk_log_dsk_ful is set to NO, a transaction that receives a log disk full

error will fail and be rolled back. In some cases, the database will come

down if a transaction causes a log disk full error.

Failover Archive Path (failarchpath)

Specifies an alternate directory for the archive log files if the log archive

method specified fails. This directory is a temporary storage area for the

log files until the log archive method that failed becomes available again at

Chapter 1. Developing a good backup and recovery strategy 37

DB2 9 BETA

which time the log files will be moved from this directory to the log

archive method. By moving the log files to this temporary location, log

directory full situations might be avoided. This parameter must be a fully

qualified existing directory.

Log archive method 1 (logarchmeth1), log archive method 2 (logarchmeth2)

These parameters cause the database manager to archive log files to a

location that is not the active log path. If both of these parameters are

specified, each log file is archived twice. This means that you will have

two copies of archived log files in two different locations.

 Valid values for these parameters include a media type and, in some cases,

a target field. Use a colon (:) to separate the values. Valid values are:

OFF Specifies that the log archiving method is not to be used. If both

logarchmeth1 and logarchmeth2 are set to OFF, the database is

considered to be using circular logging and will not be rollforward

recoverable. This is the default.

LOGRETAIN

This value can only be used for logarchmeth1 and is equivalent to

setting the logretain configuration parameter to RECOVERY. If you

specify this value, the logretain configuration parameters will

automatically be updated.

USEREXIT

This value is only valid for logarchmeth1 and is equivalent to

setting the userexit configuration parameter to ON. If specify this

value, the userexit configuration parameter will be automatically

updated.

DISK This value must be followed by a colon(:) and then a fully

qualified existing path name where the log files will be archived.

For example, if you set logarchmeth1 to DISK:/u/dbuser/
archived_logs the archive log files will be placed in a directory

called /u/dbuser/archived_logs.

Note: If you are archiving to tape, you can use the db2tapemgr

utility to store and retrieve log files.

TSM If specified without any additional configuration parameters, this

value indicates that log files should be archived on the local TSM

server using the default management class. If followed by a

colon(:) and a TSM management class, the log files will be archived

using the specified management class.

VENDOR

Specifies that a vendor library will be used to archive the log files.

This value must be followed by a colon(:) and the name of the

library. The APIs provided in the library must use the backup and

restore APIs for vendor products.

Notes:

1. If either logarchmeth1 or logarchmeth2 is set to a value other than OFF, the

database is configured for rollforward recovery.

2. If you update the userexit or logretain configuration parameters

logarchmeth1 will automatically be updated and vice versa. However, if

you are using either userexit or logretain, logarchmeth2 must be set to OFF.

38 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Log archive options 1 (logarchopt1), log archive options 2 (logarchopt2)

Specifies a string which is passed on to the TSM server or vendor APIs.

For TSM, this field is used to allow the database to retrieve logs that were

generated on a different TSM node or by a different TSM user. The string

must be provided in the following format:

 "-fromnode=nodename -fromowner=ownername"

where nodename is the name of the TSM node that originally archived the

log files, and ownername is the name of the TSM user that originally

archived the log files. Each log archive options field corresponds to one of

the log archive methods: logarchopt1 is used with logarchmeth1, and

logarchopt2 is used with logarchmeth2.

Log Buffer (logbufsz)

This parameter allows you to specify the amount of memory to use as a

buffer for log records before writing these records to disk. The log records

are written to disk when any one of the following events occurs:

v A transaction commits

v The log buffer becomes full

v Some other internal database manager event occurs.

Increasing the log buffer size results in more efficient input/output (I/O)

activity associated with logging, because the log records are written to disk

less frequently, and more records are written each time. However, recovery

can take longer with a larger log buffer size value.

Log file size (logfilsiz)

This parameter specifies the size of each configured log, in number of 4-KB

pages.

 There is a 256-GB logical limit on the total active log space that you can

configure. This limit is the result of the upper limit on logfilsiz, which is

262144, and the upper limit on (logprimary + logsecond), which is 256.

 The size of the log file has a direct bearing on performance. There is a

performance cost for switching from one log to another. So, from a pure

performance perspective, the larger the log file size the better. This

parameter also indicates the log file size for archiving. In this case, a larger

log file is size it not necessarily better, since a larger log file size can

increase the chance of failure or cause a delay in log shipping scenarios.

When considering active log space, it might be better to have a larger

number of smaller log files. For example, if there are 2 very large log files

and a transaction starts close to the end of one log file, only half of the log

space remains available.

 Every time a database is deactivated (all connections to the database are

terminated), the log file that is currently being written is truncated. So, if a

database is frequently being deactivated, it is better not to choose a large

log file size because DB2 will create a large file only to have it truncated.

You can use the ACTIVATE DATABASE command to avoid this cost, and

having the buffer pool primed will also help with performance.

 Assuming that you have an application that keeps the database open to

minimize processing time when opening the database, the log file size

should be determined by the amount of time it takes to make offline

archived log copies.

 Minimizing log file loss is also an important consideration when setting

the log size. Archiving takes an entire log. If you use a single large log,

Chapter 1. Developing a good backup and recovery strategy 39

DB2 9 BETA

you increase the time between archiving. If the medium containing the log

fails, some transaction information will probably be lost. Decreasing the log

size increases the frequency of archiving but can reduce the amount of

information loss in case of a media failure since the smaller logs before the

one lost can be used.

Log retain (logretain)

This configuration parameter has been replaced by logarchmeth1. It is still

supported for compatibility with previous versions of DB2.

 If logretain is set to RECOVERY, archived logs are kept in the database log

path directory, and the database is considered to be recoverable, meaning

that rollforward recovery is enabled.

Note: The default value for the logretain database configuration parameter

does not support rollforward recovery. You must change the value of

this parameter if you are going to use rollforward recovery.

Maximum log per transaction (max_log)

This parameter indicates the percentage of primary log space that can be

consumed by one transaction. The value is a percentage of the value

specified for the logprimary configuration parameter.

 If the value is set to 0, there is no limit to the percentage of total primary

log space that a transaction can consume. If an application violates the

max_log configuration, the application will be forced to disconnect from the

database, the transaction will be rolled back, and error SQL1224N will be

returned.

 You can override this behavior by setting the

DB2_FORCE_APP_ON_MAX_LOG registry variable to FALSE. This will

cause transactions that violate the max_log configuration to fail and return

error SQL0964N. The application can still commit the work completed by

previous statements in the unit or work, or it can roll the work completed

back to undo the unit of work.

 This parameter, along with the num_log_span configuration parameter, can

be useful when infinite active logspace is enabled. If infinite logging is on

(that is, if logsecondary is -1) then transactions are not restricted to the

upper limit of the number of log files (logprimary + logsecond). When the

value of logprimary is reached, DB2 starts to archive the active logs, rather

than failing the transaction. This can cause problems if, for instance, there

is a long running transactions that has been left uncommitted (perhaps

caused by a bad application). If this occurs, the active logspace keeps

growing, which might lead to poor crash recovery performance. To prevent

this, you can specify values for either one or both of the max_log or

num_log_span configuration parameters.

Note: The following DB2 commands are excluded from the limitation

imposed by the max_log configuration parameter: ARCHIVE LOG,

BACKUP DATABASE, LOAD, REORG TABLE (online), RESTORE

DATABASE, and ROLLFORWARD DATABASE.

Mirror log path (mirrorlogpath)

To protect the logs on the primary log path from disk failure or accidental

deletion, you can specify that an identical set of logs be maintained on a

secondary (mirror) log path. To do this, change the value of this

configuration parameter to point to a different directory. Active logs that

40 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

are currently stored in the mirrored log path directory are not moved to

the new location if the database is configured for rollforward recovery.

 Because you can change the log path location, the logs needed for

rollforward recovery might exist in different directories. You can change

the value of this configuration parameter during a rollforward operation to

allow you to access logs in multiple locations.

 You must keep track of the location of the logs.

 Changes are not applied until the database is in a consistent state. The

configuration parameter database_consistent returns the status of the

database.

 To turn this configuration parameter off, set its value to DEFAULT.

Notes:

1. This configuration parameter is not supported if the primary log path

is a raw device.

2. The value specified for this parameter cannot be a raw device.

New log path (newlogpath)

The database logs are initially created in SQLOGDIR, which is a

subdirectory of the database directory. You can change the location in

which active logs and future archived logs are placed by changing the

value of this configuration parameter to point to a different directory or to

a device. Active logs that are currently stored in the database log path

directory are not moved to the new location if the database is configured

for rollforward recovery.

 Because you can change the log path location, the logs needed for

rollforward recovery might exist in different directories or on different

devices. You can change the value of this configuration parameter during a

rollforward operation to allow you to access logs in multiple locations.

 You must keep track of the location of the logs.

 Changes are not applied until the database is in a consistent state. The

configuration parameter database_consistent returns the status of the

database.

Number of Commits to Group (mincommit)

This parameter allows you to delay the writing of log records to disk until

a minimum number of commits have been performed. This delay can help

reduce the database manager overhead associated with writing log records

and, as a result, improve performance when you have multiple

applications running against a database, and many commits are requested

by the applications within a very short period of time.

 The grouping of commits occurs only if the value of this parameter is

greater than 1, and if the number of applications connected to the database

is greater than the value of this parameter. When commit grouping is in

effect, application commit requests are held until either one second has

elapsed, or the number of commit requests equals the value of this

parameter.

Number of archive retries on error (numarchretry)

Specifies the number of attempts that will be made to archive log files

using the specified log archive method before they are archived to the path

Chapter 1. Developing a good backup and recovery strategy 41

DB2 9 BETA

specified by the failarchpath configuration parameter. This parameter can

only be used if the failarchpath configuration parameter is set. The default

value is 5.

Number log span (num_log_span)

This parameter indicates the number of active log files that an active

transaction can span. If the value is set to 0, there is no limit to how many

log files one single transaction can span.

 If an application violates the num_log_span configuration, the application

will be forced to disconnect from the database and error SQL1224N will be

returned.

 This parameter, along with the max_log configuration parameter, can be

useful when infinite active logspace is enabled. If infinite logging is on

(that is, if logsecondary is -1) then transactions are not restricted to the

upper limit of the number of log files (logprimary + logsecond). When the

value of logprimary is reached, DB2 starts to archive the active logs, rather

than failing the transaction. This can cause problems if, for instance, there

is a long running transactions that has been left uncommitted (perhaps

caused by a bad application). If this occurs, the active logspace keeps

growing, which might lead to poor crash recovery performance. To prevent

this, you can specify values for either one or both of the max_log or

num_log_span configuration parameters.

Note: The following DB2 commands are excluded from the limitation

imposed by the num_log_span configuration parameter: ARCHIVE

LOG, BACKUP DATABASE, LOAD, REORG TABLE (online),

RESTORE DATABASE, and ROLLFORWARD DATABASE.

Overflow log path (overflowlogpath)

This parameter can be used for several functions, depending on your

logging requirements. You can specify a location for DB2 to find log files

that are needed for a rollforward operation. It is similar to the OVERFLOW

LOG PATH option of the ROLLFORWARD command; however, instead of

specifying the OVERFLOW LOG PATH option for every ROLLFORWARD

command issued, you can set this configuration parameter once. If both are

used, the OVERFLOW LOG PATH option will overwrite the overflowlogpath

configuration parameter for that rollforward operation.

 If logsecond is set to -1, you can specify a directory for DB2 to store active

log files retrieved from the archive. (Active log files must be retrieved for

rollback operations if they are no longer in the active log path).

 If overflowlogpath is not specified, DB2 will retrieve the log files into the

active log path. By specifying this parameter you can provide additional

resource for DB2 to store the retrieved log files. The benefit includes

spreading the I/O cost to different disks, and allowing more log files to be

stored in the active log path.

 For example, if you are using the db2ReadLog API for replication, you can

use overflowlogpath to specify a location for DB2 to search for log files that

are needed for this API. If the log file is not found (in either the active log

path or the overflow log path) and the database is configured with userexit

enabled, DB2 will retrieve the log file. You can also use this parameter to

specify a directory for DB2 to store the retrieved log files. The benefit

comes from reducing the I/O cost on the active log path and allowing

more log files to be stored in the active log path.

42 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

If you have configured a raw device for the active log path, overflowlogpath

must be configured if you want to set logsecond to -1, or if you want to use

the db2ReadLog API.

 To set overflowlogpath, specify a string of up to 242 bytes. The string must

point to a path name, and it must be a fully qualified path name, not a

relative path name. The path name must be a directory, not a raw device.

Note: In a partitioned database environment, the database partition

number is automatically appended to the path. This is done to

maintain the uniqueness of the path in multiple logical node

configurations.

Primary logs (logprimary)

This parameter specifies the number of primary logs of size logfilsiz that

will be created.

 A primary log, whether empty or full, requires the same amount of disk

space. Thus, if you configure more logs than you need, you use disk space

unnecessarily. If you configure too few logs, you can encounter a log-full

condition. As you select the number of logs to configure, you must

consider the size you make each log and whether your application can

handle a log-full condition. The total log file size limit on active log space

is 256 GB.

 If you are enabling an existing database for rollforward recovery, change

the number of primary logs to the sum of the number of primary and

secondary logs, plus 1. Additional information is logged for LONG

VARCHAR and LOB fields in a database enabled for rollforward recovery.

Secondary logs (logsecond)

This parameter specifies the number of secondary log files that are created

and used for recovery, if needed.

 If the primary log files become full, secondary log files (of size logfilsiz) are

allocated, one at a time as needed, up to the maximum number specified

by this parameter. If this parameter is set to -1, the database is configured

with infinite active log space. There is no limit on the size or number of

in-flight transactions running on the database. Infinite active logging is

useful in environments that must accommodate large jobs requiring more

log space than you would normally allocate to the primary logs.

Notes:

1. Log archiving must be enabled in order to set logsecond to -1.

2. If this parameter is set to -1, crash recovery time might be increased

since DB2 might need to retrieve archived log files.

User exit (userexit)

This configuration parameter has been replaced by logarchmeth1. It is still

supported for compatibility with previous versions of DB2.

 This parameter causes the database manager to call a user exit program for

archiving and retrieving logs. The log files are archived in a location that is

different from the active log path. If userexit is set to ON, rollforward

recovery is enabled.

 The data transfer speed of the device you use to store offline archived logs,

and the software used to make the copies, must at a minimum match the

average rate at which the database manager writes data in the logs. If the

transfer speed cannot keep up with new log data being generated, you

Chapter 1. Developing a good backup and recovery strategy 43

DB2 9 BETA

might run out of disk space if logging activity continues for a sufficiently

long period of time. The amount of time it takes to run out of disk space is

determined by the amount of free disk space. If this happens, database

processing stops.

 The data transfer speed is most significant when using tape or an optical

medium. Some tape devices require the same amount of time to copy a

file, regardless of its size. You must determine the capabilities of your

archiving device.

 Tape devices have other considerations. The frequency of the archiving

request is important. For example, if the time taken to complete any copy

operation is five minutes, the log should be large enough to hold five

minutes of log data during your peak work load. The tape device might

have design limits that restrict the number of operations per day. These

factors must be considered when you determine the log size.

Notes:

1. This value must be set to ON to enable infinite active log space.

2. The default value for the userexit database configuration parameter does

not support rollforward recovery, and must be changed if you are

going to use it.

 Related concepts:

v “Enhancing recovery performance” on page 61

v “Log archiving configuration for high availability disaster recovery (HADR)” on

page 257

v “Log file management” on page 46

 Related reference:

v “blk_log_dsk_ful - Block on log disk full configuration parameter” in Performance

Guide

v “logarchmeth1 - Primary log archive method configuration parameter” in

Performance Guide

v “logarchmeth2 - Secondary log archive method configuration parameter” in

Performance Guide

v “logbufsz - Log buffer size configuration parameter” in Performance Guide

v “logfilsiz - Size of log files configuration parameter” in Performance Guide

v “logprimary - Number of primary log files configuration parameter” in

Performance Guide

v “logretain - Log retain enable configuration parameter” in Performance Guide

v “logsecond - Number of secondary log files configuration parameter” in

Performance Guide

v “max_log - Maximum log per transaction configuration parameter” in

Performance Guide

v “mincommit - Number of commits to group configuration parameter” in

Performance Guide

v “mirrorlogpath - Mirror log path configuration parameter” in Performance Guide

v “newlogpath - Change the database log path configuration parameter” in

Performance Guide

v “num_log_span - Number log span configuration parameter” in Performance

Guide

44 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

v “overflowlogpath - Overflow log path configuration parameter” in Performance

Guide

v “userexit - User exit enable configuration parameter” in Performance Guide

v Appendix I, “User exit for database recovery,” on page 409

v “db2tapemgr - Manage log files on tape command” in Command Reference

v “UPDATE DATABASE CONFIGURATION command” in Command Reference

Configuring database logging options

 Use database logging configuration parameters to specify data logging options for

your database, such as the type of logging to use, the size of the log files, and the

location where log files should be stored.

 Prerequisites:

 To configure database logging options, you must have SYSADM, SYSCTRL, or

SYSMAINT authority.

 Procedure:

 You can configure database logging options using the UPDATE DATABASE

CONFIGURATION command on the command line processor (CLP), through the

Configure Database Logging wizard GUI in the Control Center, or by calling the

db2CfgSet API.

To configure database logging options using the UPDATE DATABASE

CONFIGURATION command on the command line processor:

1. Specify whether you want to use circular logging or archive logging. If you

want to use circular logging, the LOGARCHMETH1 and LOGARCHMETH2

database configuration parameters must be set to OFF. This is the default

setting. To use archive logging, you must set at least one of these database

configuration parameters to a value other than OFF. For example, if you want

to use archive logging and you want to save the archived logs to disk, issue the

following:

 db2 update db configuration for mydb using logarchmeth1

 disk:/u/dbuser/archived_logs

The archived logs will be placed in a directory called /u/dbuser/
archived_logs.

2. Specify values for other database logging configuration parameters, as required.

The following are additional configuration parameters for database logging:

v ARCHRETRYDELAY

v BLK_LOG_DSK_FUL

v FAILARCHPATH

v LOGARCHOPT1

v LOGARCHOPT2

v LOGBUFSZ

v LOGFILSIZ

v LOGPRIMARY

v LOGRETAIN

v LOGSECOND

Chapter 1. Developing a good backup and recovery strategy 45

DB2 9 BETA

v MAX_LOG

v MIRRORLOGPATH

v NEWLOGPATH

v MINCOMMIT

v NUMARCHRETRY

v NUM_LOG_SPAN

v OVERFLOWLOGPATH

v USEREXIT

For more information on these database logging configuration parameters, refer

to Configuration parameters for database logging.

To open the Configure Database Logging wizard:

1. From the Control Center, expand the object tree until you find the database for

which you want to set up logging.

2. Right-click on the database and select Configure Database Logging from the

pop-up menu. The Configure Database Logging wizard opens.

Detailed information is provided through the online help facility within the

Control Center.

 Related reference:

v “Configuration parameters for database logging” on page 37

Log file management

 Consider the following when managing database logs:

v The numbering scheme for archived logs starts with S0000000.LOG, and

continues through S9999999.LOG, accommodating a potential maximum of 10

million log files. The database manager resets to S0000000.LOG if:

– A database configuration file is changed to enable rollforward recovery

– A database configuration file is changed to disable rollforward recovery

– S9999999.LOG has been used.
DB2 reuses log file names after restoring a database (with or without rollforward

recovery). The database manager ensures that an incorrect log is not applied

during rollforward recovery. If DB2 reuses a log file name after a restore

operation, the new log files are archived to separate directories so that multiple

log files with the same name can be archived. The location of the log files is

recorded in the recovery history file so that they can be applied during

rollforward recovery. You must ensure that the correct logs are available for

rollforward recovery.

When a rollforward operation completes successfully, the last log that was used

is truncated, and logging begins with the next sequential log. Any log in the log

path directory with a sequence number greater than the last log used for

rollforward recovery is re-used. Any entries in the truncated log following the

truncation point are overwritten with zeros. Ensure that you make a copy of the

logs before invoking the rollforward utility. (You can invoke a user exit program

to copy the logs to another location.)

v If a database has not been activated (by way of the ACTIVATE DATABASE

command), DB2 truncates the current log file when all applications have

disconnected from the database. The next time an application connects to the

database, DB2 starts logging to a new log file. If many small log files are being

46 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

produced on your system, you might want to consider using the ACTIVATE

DATABASE command. This not only saves the overhead of having to initialize

the database when applications connect, it also saves the overhead of having to

allocate a large log file, truncate it, and then allocate a new large log file.

v An archived log can be associated with two or more different log sequences for a

database, because log file names are reused (see Figure 8). For example, if you

want to recover Backup 2, there are two possible log sequences that could be

used. If, during full database recovery, you roll forward to a point in time and

stop before reaching the end of the logs, you have created a new log sequence.

The two log sequences cannot be combined. If you have an online backup image

that spans the first log sequence, you must use this log sequence to complete

rollforward recovery.

If you have created a new log sequence after recovery, any table space backup

images on the old log sequence are invalid. This is usually recognized at restore

time, but the restore utility fails to recognize a table space backup image on an

old log sequence if a database restore operation is immediately followed by the

table space restore operation. Until the database is actually rolled forward, the

log sequence that is to be used is unknown. If the table space is on an old log

sequence, it must be “caught” by the table space rollforward operation. A restore

operation using an invalid backup image might complete successfully, but the

table space rollforward operation for that table space will fail, and the table

space will be left in restore pending state.

For example, suppose that a table space-level backup operation, Backup 3,

completes between S0000013.LOG and S0000014.LOG in the top log sequence (see

Figure 8). If you want to restore and roll forward using the database-level

backup image, Backup 2, you will need to roll forward through S0000012.LOG.

After this, you could continue to roll forward through either the top log

sequence or the (newer) bottom log sequence. If you roll forward through the

bottom log sequence, you will not be able to use the table space-level backup

image, Backup 3, to perform table space restore and rollforward recovery.

To complete a table space rollforward operation to the end of the logs using the

table space-level backup image, Backup 3, you will have to restore the

database-level backup image, Backup 2, and then roll forward using the top log

sequence. Once the table space-level backup image, Backup 3, has been restored,

you can initiate a rollforward operation to the end of the logs.

 Related concepts:

v “Log file management through log archiving” on page 49

 Related reference:

Restore Backup 2
and Roll Forward to

end of log 12.

Backup 1

. . .

. . .

Backup 2 Backup 3

S0000010.LOG S0000011.LOG S0000012.LOG S0000013.LOG S0000014.LOG

S0000013.LOG S0000014.LOG

Figure 8. Re-using Log File Names

Chapter 1. Developing a good backup and recovery strategy 47

DB2 9 BETA

v Appendix I, “User exit for database recovery,” on page 409

Log file allocation and removal

 Log files in the database log directory are never removed if they might be required

for crash recovery. However, if you have enabled infinite logging, log files will be

deleted once they have been successfully archived. When the logarchmeth1 database

configuration parameter is not set to OFF, a full log file becomes a candidate for

removal only after it is no longer required for crash recovery. A log file which is

required for crash recovery is called an active log. A log file which is not required

for crash recovery is called an archived log.

The process of allocating new log files and removing old log files is dependent on

the settings of the logarchmeth1 database configuration parameter:

Logarchmeth1 and Logarchmeth2 are set to OFF

Circular logging will be used. Rollforward recovery is not supported with

circular logging, while crash recovery is.

 During circular logging, new log files, other than secondary logs, are not

generated and old log files are not deleted. Log files are handled in a

circular fashion. That is, when the last log file is full, DB2 begins writing to

the first log file.

 A log full situation can occur if all of the log files are active and the

circular logging process cannot wrap to the first log file. Secondary log

files are created when all the primary log files are active and full.

Secondary log files are deleted when the database is deactivated or when

the space they are using is required for the active log files.

Logarchmeth1 is set to LOGRETAIN

Archive logging is used. The database is a recoverable database. Both

rollforward recovery and crash recovery are enabled. After you archive the

log files, you must delete them from the active log path so that the disk

space can be reused for new log files. Each time a log file becomes full,

DB2 begins writing records to another log file, and (if the maximum

number of primary and secondary logs has not been reached) creates a

new log file.

Logarchmeth1 is set to a value other than OFF or LOGRETAIN

Archive logging is used. The database is a recoverable database. Both

rollforward recovery and crash recovery are enabled. When a log file

becomes full, it is automatically archived.

 Log files are usually not deleted. Instead, when a new log file is required

and one is not available, an archived log file is renamed and used again.

An archived log file, is not deleted or renamed once it has been closed and

copied to the log archive directory. DB2 waits until a new log file is needed

and then renames the oldest archived log. A log file that has been moved

to the database directory during recovery is removed during the recovery

process when it is no longer needed. Until DB2 runs out of log space, you

will see old log files in the database directory.

 If an error occurs when log files are being archived, archiving is suspended

for the amount of time specified by the ARCHRETRYDELAY database

configuration parameter. You can also use the NUMARCHRETRY database

configuration parameter to specify the number of times that DB2 is to try

archiving a log file to the primary or secondary archive directory before it

tries to archive log files to the failover directory (specified by the

48 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

FAILARCHPATH database configuration parameter). NUMARCHRETRY is

only used if the FAILARCHPATH database configuration parameter is set.

If NUMARCHRETRY is set to 0, DB2 will continuously retry archiving

from the primary or the secondary log path.

 The easiest way to remove old log files is to restart the database. Once the

database is restarted, only new log files and log files that the user exit

program failed to archive will be found in the database directory.

 When a database is restarted, the minimum number of logs in the database

log directory will equal the number of primary logs which can be

configured using the logprimary database configuration parameter. It is

possible for more than the number of primary logs to be found in the log

directory. This can occur if the number of empty logs in the log directory

at the time the database was shut down, is greater than the value of the

logprimary configuration parameter at the time the database is restarted.

This will happen if the value of the logprimary configuration parameter is

changed between the database being shut down and restarted, or if

secondary logs are allocated and never used.

 When a database is restarted, if the number of empty logs is less than the

number of primary logs specified by the logprimary configuration

parameter, additional log files will be allocated to make up the difference.

If there are more empty logs than primary logs available in the database

directory, the database can be restarted with as many available empty logs

as are found in the database directory. After database shutdown, secondary

log files that have been created will remain in the active log path when the

database is restarted.

 Related concepts:

v “Log file management” on page 46

Log file management through log archiving

 The following are general considerations that apply to all methods of log

archiving:

v Specifying a value for the database configuration parameter logarchmeth1

indicates that you want the database manager to archive files or to retrieve log

files during rollforward recovery of databases using the method specified. A

request to retrieve a log file is made when the rollforward utility needs a log file

that is not found in the log path directory.

v Locally attached tape drives should not be used to store log files if you are using

any of the following:

– infinite logging

– online table space level recovery

– replication

– the Asynchronous Read Log API (db2ReadLog)

– high availability disaster recovery (HADR)

Any of these events can cause a log file to be retrieved, which can conflict with

log archiving operations.

v If you are using log archiving, the log manager will attempt to archive active

logs as they are filled. In some cases, if a database is deactivated before the log

Chapter 1. Developing a good backup and recovery strategy 49

DB2 9 BETA

manager is able to record the archive as successful, the log manager might try to

archive the log again when the database is activated. Thus, a log file can be

archived more than once.

v When archiving, a log file is passed to the log manager when it is full, even if

the log file is still active and is needed for normal processing. This allows copies

of the data to be moved away from volatile media as quickly as possible. The

log file passed to the log manager is retained in the log path directory until it is

no longer needed for normal processing. At this point, the disk space is reused.

v When a log file has been archived and it contains no open transactions, DB2

does not delete the file but renames it as the next log file when such a file is

needed. This results in a performance gain, because creating a new log file

(instead of renaming the file) causes all pages to be written out to guarantee the

disk space. It is more efficient to reuse than to free up and then reacquire the

necessary pages on disk.

v DB2 will not retrieve log files during crash recovery or rollback unless the

logsecond database configuration parameter is set to -1.

v Configuring log archiving does not guarantee rollforward recovery to the point

of failure, but only attempts to make the failure window smaller. As log files fill,

the log manager will asynchronously archive the logs. Should the disk

containing the log fail before a log file is filled, the data in that log file is lost.

Also, since the files are queued for archiving, the disk can fail before all the files

are copied, causing any log files in the queue to be lost.

In the case of a failure of the disk or device on which the log path resides, you

can use the MIRRORLOGPATH database configuration parameter to ensure that

your logs are written to the secondary path, as long as the disk or device on

which the mirror log path is located has not also failed.

v The configured size of each individual log file has a direct bearing on log

archiving. If each log file is very large, a large amount of data can be lost if a

disk fails. If you configure your database to use small log files the log manager

will archive the logs more frequently.

However, if you are moving the data to a slower device such as tape, you might

want to have larger log files to prevent the queue from building up. Using larger

log files is also recommended if archiving each file requires substantial

overhead, such as rewinding the tape device or establishing a connection to the

archive media.

v If you are using log archiving, the log manager will attempt to archive active

logs as they are filled. In some cases, the log manager will archive a log before it

is full. This will occur if the log file is truncated either due to database

deactivation, issuing of the ARCHIVE LOG command, at the end of an online

backup, or issuing the SET WRITE SUSPEND command.

Note: To free unused log space, the log file is truncated before it is archived.

v If you are archiving logs and backup images to a tape drive as a storage device

for logs and backup images, you need to ensure that the destination for the

backup images and the archived logs is not the same tape drive. Since some log

archiving can take place while a backup operation is in progress, an error can

occur when the two processes are trying to write to the same tape drive at the

same time.

The following considerations apply to calling a user exit program or a vendor

program for archiving and retrieving log files:

v DB2 opens a log file in read mode when it starts a user exit program to archive

the file. On some platforms, this prevents the user exit program from being able

50 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

to delete the log file. Other platforms, like AIX, allow processes, including the

user exit program, to delete log files. A user exit program should never delete a

log file after it is archived, because the file could still be active and needed for

crash recovery. DB2 manages disk space reuse when log files are archived.

v If a user exit or vendor program receives a request to archive a file that does not

exist (because there were multiple requests to archive and the file was deleted

after the first successful archiving operation), or to retrieve a file that does not

exist (because it is located in another directory or the end of the logs has been

reached), it should ignore this request and pass a successful return code.

v On Windows operating systems, you cannot use a REXX user exit to archive

logs.

v The user exit or vendor program should allow for the existence of different log

files with the same name after a point in time recovery; it should be written to

preserve both log files and to associate those log files with the correct recovery

path.

v If a user exit or vendor program is enabled for two or more databases that are

using the same tape device to archive log files, and a rollforward operation is

taking place on one of the databases, no other database should be active. If

another database tries to archive a log file while the rollforward operation is in

progress, the logs required for the rollforward operation might not be found or

the new log file archived to the tape device might overwrite the log files

previously stored on that tape device.

To prevent either situation from occurring, you can ensure that no other

databases on the database partition that calls the user exit program are open

during the rollforward operation, or you can write a user exit program to handle

this situation.

 Related concepts:

v “Log file management” on page 46

Log archiving using db2tapemgr

 Although DB2 does not provide direct archiving of log files to tape devices, if you

want to store archived log files to tape you can use the db2tapemgr utility. To use

this tool, the source database must have the database configuration parameter

LOGARCHMETH1 configured to a disk location on each database partition that

must have its log files moved to a tape device. When invoked, the db2tapemgr

utility copies archived log files from the disk location specified by

LOGARCHMETH1 to a specified tape device and updates the location of the log

files in the recovery history file. The configuration parameter LOGARCHMETH2 is

not used by the db2tapemgr utility, and can be set to any allowed archive media

type.

 STORE and DOUBLE STORE options:

 Issue the DB2TAPEMGR command with either the STORE or DOUBLE STORE

option to transfer archived logs from disk to tape.

v The STORE option stores a range or all log files from the log archive directory to

a specified tape device and deletes the files from disk.

v The DOUBLE STORE option scans the history file to see if logs have been stored

to tape previously.

– If a log has never been stored before, DB2TAPEMGR stores the log file to tape

and but does not delete it from disk.

Chapter 1. Developing a good backup and recovery strategy 51

DB2 9 BETA

– If a log has been stored before, DB2TAPEMGR stores the log file to tape and

deletes it from disk.

Use DOUBLE STORE if you want to keep duplicate copies of your archived logs

on tape and on disk, or if you want to store the same logs on two different

tapes.

When you issue the DB2TAPEMGR command with either the STORE or DOUBLE

STORE option, the db2tapemgr utility first scans the history file for entries where

the LOGARCHMETH1 configuration parameter is set to disk. If it finds that any

files that are supposed to be on disk, are not on disk, it issues a warning. If the

db2tapemgr utility finds no log files to store, it stops the operation and issues a

message to inform you that there is nothing to do.

If the db2tapemgr utility finds log files on disk, it then reads the tape header to

make sure that it can write the log files to the tape. It also updates the history for

those files that are currently on tape. If the update fails, the operation stops and an

error message is displayed.

If the tape is writeable, the db2tapemgr utility copies the logs to tape. After the

files have been copied, the log files are deleted from disk. Finally, the db2tapemgr

utility copies the history file to tape and deletes it from disk.

 RETRIEVE options:

 Issue the DB2TAPEMGR command with the RETRIEVE option to transfer files

from tape to disk.

v Use the RETRIEVE ALL LOGS or LOGS n TO n option to retrieve all archived

logs that meet your specified criteria and copy them to disk.

v Use the RETRIEVE FOR ROLLFORWARD TO POINT-IN-TIME option to retrieve

all archived logs required to perform a rollforward operation and copy them to

disk.

v Use the RETRIEVE HISTORY FILE option to retrieve the history file from tape

and copy it to disk.

 Related concepts:

v “Backing up to tape” on page 68

 Related reference:

v “db2tapemgr - Manage log files on tape command” in Command Reference

Archiving log files to tape

 Use the db2tapemgr utility to store archived log files to tape and to retrieve them

from tape

 Prerequisites:

 You must set the configuration parameter LOGARCHMETH1 to store archived log

files to disk in order to use the db2tapemgr utility to move the archived logs to

tape.

 Restrictions:

 v The db2tapemgr utility does not append log files to a tape. If a store operation

does not fill the entire tape, then the unused space is wasted.

52 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

v The db2tapemgr utility stores log files only once to any given tape. This

restriction exists to avoid any problems inherent to writing to tape media, such

as stretching of the tape.

v In a partitioned database environment, the db2tapemgr utility only executes

against one database partition at a time. You must run the appropriate command

for each database partition, specifying the database partition number using the

ON DBPARTITIONNUM option of the DB2TAPEMGR command. You must also

ensure that each database partition has access to a tape device.

 Procedure:

 The following example shows how to use the DB2TAPEMGR command to store all

log files from the primary archive log path for database sample on database

partition number 0 to a tape device and remove them from the archive log path:

 db2tapemgr db sample on dbpartitionnum 0 store on /dev/rmt0.1 all logs

The following example shows how to store the first 10 log files from the primary

archive log path to a tape device and remove them from the archive log path:

 db2tapemgr db sample on dbpartitionnum store on /dev/rmt0.1 10 logs

The following example shows how to store the first 10 log files from the primary

archive log path to a tape device and then store the same log files to a second tape

and remove them from the archive log path:

 db2tapemgr db sample on dbpartitionnum double store on /dev/rmt0.1 10 logs

 db2tapemgr db sample on dbpartitionnum double store on /dev/rmt1.1 10 logs

The following example shows how to retrieve all log files from a tape to a

directory:

 db2tapemgr db sample on dbpartitionnum retrieve all logs from /dev/rmt1.1

 to /home/dbuser/archived_logs

 Related concepts:

v “Log archiving configuration for high availability disaster recovery (HADR)” on

page 257

v “Log archiving using db2tapemgr” on page 51

 Related reference:

v “Configuration parameters for database logging” on page 37

Blocking transactions when the log directory file is full

 The blk_log_dsk_ful database configuration parameter can be set to prevent ″disk

full″ errors from being generated when DB2 cannot create a new log file in the

active log path.

Instead, DB2 attempts to create the log file every five minutes until it succeeds. If a

log archiving method is specified, DB2 also checks for the completion of log file

archiving. If an archived log file is archived successfully, DB2 can rename the

inactive log file to the new log file name and continue. After each attempt, DB2

writes a message to the administration notification log. The only way that you can

confirm that your application is hanging because of a log disk full condition is to

monitor the administration notification log.

Chapter 1. Developing a good backup and recovery strategy 53

DB2 9 BETA

Until the log file is successfully created, any user application that attempts to

update table data will not able to commit transactions. Read-only queries might

not be directly affected; however, if a query needs to access data that is locked by

an update request, or a data page that is fixed in the buffer pool by the updating

application, read-only queries will also appear to hang.

 Related concepts:

v “Log file management through log archiving” on page 49

v “Understanding recovery logs” on page 33

On demand log archive

 DB2 supports the closing (and, if enabled, the archiving) of the active log for a

recoverable database at any time. This allows you to collect a complete set of log

files up to a known point, and then to use these log files to update a standby

database.

You can initiate on demand log archiving by invoking the ARCHIVE LOG

command, or by calling the db2ArchiveLog API.

 Related concepts:

v “Log file management through log archiving” on page 49

 Related reference:

v “Configuration parameters for database logging” on page 37

v “ARCHIVE LOG ” on page 323

v “db2ArchiveLog - Archive the active log file” on page 335

Including log files with a backup image

 When performing an online backup operation, you can specify that the log files

required to restore and recover a database are included in the backup image. This

means that if you need to ship backup images to a disaster recovery site, you do

not have to send the log files separately or package them together yourself.

Further, you do not have to decide which log files are required to guarantee the

consistency of an online backup. This provides some protection against the

deletion of log files required for successful recovery.

To make use of this feature specify the INCLUDE LOGS option of the BACKUP

DATABASE command. When you specify this option, the backup utility will

truncate the currently active log file and copy the necessary set of log extents into

the backup image.

To restore the log files from a backup image, use the LOGTARGET option of the

RESTORE DATABASE command and specify a fully qualified path that exists on

the DB2 server. The restore database utility will then write the log files from the

image to the target path. If a log file with the same name already exists in the

target path, the restore operation will fail and an error will be returned. If the

LOGTARGET option is not specified, no log files will be restored from the backup

image.

If the LOGTARGET option is specified and the backup image does not include any

log files, an error will be returned before an attempt is made to restore any table

space data. The restore operation will also fail if an invalid or read-only path is

54 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

specified. During a database or table space restore where the LOGTARGET option

is specified, if one or more log files cannot be extracted, the restore operation fails

and an error is returned.

You can also choose to restore only the log files saved in the backup image. To do

this, specify the LOGS option with the LOGTARGET option of the RESTORE

DATABASE command. If the restore operation encounters any problems when

restoring log files in this mode, the restore operation fails and an error is returned.

During an automatic incremental restore operation, only the logs included in the

target image of the restore operation will be retrieved from the backup image. Any

logs that are included in intermediate images referenced during the incremental

restore process will not be extracted from those backup images. During a manual

incremental restore, if you specify a log target directory when restoring a backup

image that includes log files, the log files in that backup image will be restored.

If you roll a database forward that was restored from an online backup image that

includes log files, you might encounter error SQL1268N, which indicates

roll-forward recovery has stopped due to an error received when retrieving a log.

This error is generated when the target system to which you are attempting to

restore the backup image does not have access to the facility used by the source

system to archive its transaction logs.

If you specify the INCLUDE LOGS option of the BACKUP DATABASE command

when you back up a database, then subsequently perform a restore operation and

a roll-forward operation that use that backup image, DB2 will still search for

additional transaction logs when rolling the database forward, even though the

backup image includes logs. It is standard rollforward behaviour to continue to

search for additional transaction logs until no more logs are found. It is possible to

have more than one log file with the same timestamp. Consequently, DB2 does not

stop as soon as it finds the first timestamp that matches the point-in-time to which

you are rolling forward the database as there might be other log files that also

have that timestamp. Instead, DB2 continues to look at the transaction log until it

finds a timestamp greater than the point-in-time specified.

When no additional logs can be found, the rollforward operation ends successfully.

However, if there is an error while searching for additional transaction log files,

error SQL1268N is returned. Error SQL1268N can occur because during the initial

restore, certain database configuration parameters were reset or overwritten. Three

of these database configuration parameters are the TSM parameters,

TSM_NODENAME, TSM_OWNER and TSM_PASSWORD. They are all reset to

NULL. To rollforward to the end of logs, you need to reset these database

configuration parameters to correspond to the source system prior to the

rollforward operation. Alternatively, you can specify the NORETRIEVE option

when you issue the ROLLFORWARD DATABASE command. This will prevent the

DB2 database system from trying to obtain potentially missing transaction logs

elsewhere.

Notes:

1. This feature is available only on single-partition databases.

2. This feature is not supported for offline backups.

3. When logs are included in an online backup image, the resulting image cannot

be restored on releases of DB2 database prior to Version 8.2.

 Related tasks:

Chapter 1. Developing a good backup and recovery strategy 55

DB2 9 BETA

v “Restoring from incremental backup images” on page 28

 Related reference:

v “BACKUP DATABASE ” on page 71

v “RESTORE DATABASE ” on page 100

How to prevent losing log files

 In situations where you need to drop a database or perform a point-in-time

rollforward recovery, it is possible to lose log files that might be required for future

recovery operations. In these cases, it is important to make copies of all the logs in

the current database log path directory. Consider the following scenarios:

v If you plan to drop a database prior to a restore operation, you need to save the

log files in the active log path before issuing the DROP DATABASE command.

After the database has been restored, these log files might be required for

rollforward recovery because some of them might not have been archived before

the database was dropped. Normally, you are not required to drop a database

prior to issuing the RESTORE command. However, you might have to drop the

database (or drop the database on one database partition by specifying the AT

NODE option of DROP DATABASE command), because it has been damaged to

the extent that the RESTORE command fails. You might also decide to drop a

database prior to the restore operation to give yourself a fresh start.

v If you are rolling a database forward to a specific point in time, log data after

the time stamp you specify will be overwritten. If, after you have completed the

point-in-time rollforward operation and reconnected to the database, you

determine that you actually needed to roll the database forward to a later point

in time, you will not be able to because the logs will already have been

overwritten. It is possible that the original set of log files might have been

archived; however, DB2 might be calling a user exit program to automatically

archive the newly generated log files. Depending on how the user exit program

is written, this could cause the original set of log files in the archive log

directory to be overwritten. Even if both the original and new set of log files

exist in the archive log directory (as different versions of the same files), you

might have to determine which set of logs should be used for future recovery

operations.

 Related concepts:

v “Understanding recovery logs” on page 33

Understanding the recovery history file

 A recovery history file is created with each database and is automatically updated

whenever:

v A database or table spaces are backed up

v A database or table spaces are restored

v A database or table spaces are rolled forward

v A database is automatically rebuilt and more than one image is restored

v A table space is created

v A table space is altered

v A table space is quiesced

v A table space is renamed

56 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

v A table space is dropped

v A table is loaded

v A table is dropped (when dropped table recovery is enabled)

v A table is reorganized

v On-demand log archiving is invoked

v A new log file is written to (when using recoverable logging)

v A log file is archived (when using recoverable logging)

v A database is recovered

 You can use the summarized backup information in this file to recover all or part

of a database to a given point in time. The information in the file includes:

v An identification (ID) field to uniquely identify each entry

v The part of the database that was copied and how

v The time the copy was made

v The location of the copy (stating both the device information and the logical way

to access the copy)

v The last time a restore operation was done

v The time at which a table space was renamed, showing the previous and the

current name of the table space

v The status of a backup operation: active, inactive, expired, or deleted

v The last log sequence number saved by the database backup or processed

during a rollforward recovery operation.

To see the entries in the recovery history file, use the LIST HISTORY command.

Every backup operation (database, table space, or incremental) includes a copy of

the recovery history file. The recovery history file is associated with the database.

Dropping a database deletes the recovery history file. Restoring a database to a

new location restores the recovery history file. Restoring does not overwrite the

existing recovery history file unless the file that exists on disk has no entries. If

that is the case, the database history will be restored from the backup image.

If the current database is unusable or not available, and the associated recovery

history file is damaged or deleted, an option on the RESTORE command allows

only the recovery history file to be restored. The recovery history file can then be

reviewed to provide information on which backup to use to restore the database.

The size of the file is controlled by the rec_his_retentn configuration parameter that

specifies a retention period (in days) for the entries in the file. Even if the number

CREATE
database

BACKUP
database

BACKUP
database

TIME

BACKUP
database

RESTORE
database

RHF is the Recovery History File

RHF

create

RHF

update

RHF

update

RHF

update

RHF

update

ROLLFORWARD

changes in logs
Units of workUnits of work Units of work

RHF

update

Figure 9. Creating and Updating the Recovery History File

Chapter 1. Developing a good backup and recovery strategy 57

DB2 9 BETA

for this parameter is set to zero (0), the most recent full database backup (plus its

restore set) is kept. (The only way to remove this copy is to use the PRUNE with

FORCE option.) The retention period has a default value of 366 days. The period

can be set to an indefinite number of days by using -1. In this case, explicit

pruning of the file is required.

 Related reference:

v “LIST HISTORY ” on page 326

v “rec_his_retentn - Recovery history retention period configuration parameter” in

Performance Guide

Recovery history file - garbage collection

Garbage collection

 Although you can use the PRUNE HISTORY command at any time to remove

entries from the history file, it is recommended that such pruning be left to DB2.

The number of DB2 database backups recorded in the recovery history file is

monitored automatically by DB2 garbage collection. DB2 garbage collection is

invoked:

v After a full (non-incremental) database backup operation or full

(non-incremental) table space operation completes successfully.

v After a database restore operation, where a rollforward operation is not required,

completes successfully.

v After a database rollforward operation completes successfully.

The configuration parameter num_db_backups defines how many active full

(non-incremental) database backup images are kept. The value of this parameter is

used to scan the history file, starting with the last entry.

After every full (non-incremental) database backup operation, the rec_his_retentn

configuration parameter is used to prune expired entries from the history file.

An active database backup is one that can be restored and rolled forward using the

current logs to recover the current state of the database. An inactive database backup

is one that, if restored, moves the database back to a previous state.

 All active database backup images that are no longer needed are marked as

“expired”. These images are considered to be unnecessary, because more recent

backup images are available. All table space backup images and load backup

copies that were taken before the database backup image expired are also marked

as “expired”.

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

d2 d4d1 d3 LS1

t1 t4t3t2

Figure 10. Active Database Backups. The value of num_db_backups has been set to four.

58 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

All database backup images that are marked as “inactive” and that were taken

prior to the point at which an expired database backup was taken are also marked

as “expired”. All associated inactive table space backup images and load backup

copies are also marked as “expired”.

 If an active database backup image is restored, but it is not the most recent

database backup recorded in the history file, any subsequent database backup

images belonging to the same log sequence are marked as “inactive”.

If an inactive database backup image is restored, any inactive database backups

belonging to the current log sequence are marked as “active” again. All active

database backup images that are no longer in the current log sequence are marked

as “inactive”.

 DB2 garbage collection is also responsible for marking the history file entries for a

DB2 database or table space backup image as “inactive”, if that backup does not

correspond to the current log sequence, also called the current log chain. The current

log sequence is determined by the DB2 database backup image that has been

restored, and the log files that have been processed. Once a database backup image

is restored, all subsequent database backup images become “inactive”, because the

restored image begins a new log chain. (This is true if the backup image was

restored without rolling forward. If a rollforward operation has occurred, all

database backups that were taken after the break in the log chain are marked as

“inactive”. It is conceivable that an older database backup image will have to be

restored because the rollforward utility has gone through the log sequence

containing a damaged current backup image.)

d2 d4d1 d3

RS1 d5 d6

LS1

LS2

t1 t3t2

t5

t4

t7t6

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

Figure 11. Inactive Database Backups

d2 d4d1 d3 LS1

t1 t4t3t2

d5

t5

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

Figure 12. Expired Database Backups

Chapter 1. Developing a good backup and recovery strategy 59

DB2 9 BETA

When a database is migrated, all online database backup entries and all online or

offline table space backup entries in the history file are marked as ″expired″, so

that these entries are not selected by automatic rebuild as images required for

rebuilding. Load copy images and log archive entries are also marked as ″expired″,

since these types of entries cannot be used for recovery purposes.

A table space-level backup image becomes “inactive” if, after it is restored, the

current state of the database cannot be reached by applying the current log

sequence.

 Related concepts:

v “Understanding the recovery history file” on page 56

 Related reference:

v “PRUNE HISTORY/LOGFILE ” on page 329

Understanding table space states

 The current status of a table space is reflected by its state. The table space states

most commonly associated with recovery are:

v Backup pending. A table space is put in this state after a point-in-time rollforward

operation, or after a load operation with the no copy option. The table space

d2 d4d1 d3 LS1

RS1 d5 d6 LS2

t1 t3t2

t5

t4

t7t6 t8

d7

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

Figure 13. Mixed Active, Inactive, and Expired Database Backups

d2 d4d1 d3 LS1

RS1
d5 d6 LS2

t1 t3t2

t5

t4

t7t6 t8

d7

t10t9

d9d8

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

Figure 14. Expired Log Sequence

60 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

must be backed up before it can be used. (If it is not backed up, the table space

cannot be updated, but read-only operations are allowed.)

v Restore pending. A table space is put in this state if a rollforward operation on

that table space is cancelled, or if a rollforward operation on that table space

encounters an unrecoverable error, in which case the table space must be

restored and rolled forward again. A table space is also put in this state if,

during a restore operation, the table space cannot be restored.

v Rollforward-in-progress. A table space is put in this state when a rollforward

operation on that table space is in progress. Once the rollforward operation

completes successfully, the table space is no longer in rollforward-in-progress

state. The table space can also be taken out of this state if the rollforward

operation is cancelled.

v Rollforward pending. A table space is put in this state after it is restored, or

following an input/output (I/O) error. After it is restored, the table space can be

rolled forward to the end of the logs or to a point in time. Following an I/O

error, the table space must be rolled forward to the end of the logs.

 Related concepts:

v “Recovering damaged table spaces” on page 12

 Related tasks:

v “Rebuilding a database using selected table space images” on page 137

v “Rebuilding selected table spaces” on page 139

v “Recovering table spaces in non-recoverable databases” on page 13

v “Recovering table spaces in recoverable databases” on page 12

Enhancing recovery performance

 The following should be considered when thinking about recovery performance:

v You can improve performance for databases that are frequently updated by

placing the logs on a separate device. In the case of an online transaction

processing (OLTP) environment, often more I/O is needed to write data to the

logs than to store a row of data. Placing the logs on a separate device will

minimize the disk arm movement that is required to move between a log and

the database files.

You should also consider what other files are on the disk. For example, moving

the logs to the disk used for system paging in a system that has insufficient real

memory will defeat your tuning efforts.

DB2 automatically attempts to minimize the time it takes to complete a backup

or restore operation by choosing an optimal value for the number of buffers, the

buffer size and the parallelism settings. The values are based on the amount of

utility heap memory available, the number of processors available and the

database configuration.

v To reduce the amount of time required to complete a restore operation, use

multiple source devices.

v If a table contains large amounts of long field and LOB data, restoring it could

be very time consuming. If the database is enabled for rollforward recovery, the

RESTORE command provides the capability to restore selected table spaces. If

the long field and LOB data is critical to your business, restoring these table

spaces should be considered against the time required to complete the backup

task for these table spaces. By storing long field and LOB data in separate table

spaces, the time required to complete the restore operation can be reduced by

Chapter 1. Developing a good backup and recovery strategy 61

DB2 9 BETA

choosing not to restore the table spaces containing the long field and LOB data.

If the LOB data can be reproduced from a separate source, choose the NOT

LOGGED option when creating or altering a table to include LOB columns. If

you choose not to restore the table spaces that contain long field and LOB data,

but you need to restore the table spaces that contain the table, you must roll

forward to the end of the logs so that all table spaces that contain table data are

consistent.

Note: If you back up a table space that contains table data without the

associated long or LOB fields, you cannot perform point-in-time

rollforward recovery on that table space. All the table spaces for a table

must be rolled forward simultaneously to the same point in time.

v The following apply for both backup and restore operations:

– Multiple devices should be used.

– Do not overload the I/O device controller bandwidth.
v DB2 uses multiple agents to perform both crash recovery and database

rollforward recovery. You can expect better performance during these operations,

particularly on symmetric multi-processor (SMP) machines; using multiple

agents during database recovery takes advantage of the extra CPUs that are

available on SMP machines.

The agent type introduced by parallel recovery is db2agnsc. DB2 chooses the

number of agents to be used for database recovery based on the number of

CPUs on the machine.

DB2 distributes log records to these agents so that they can be reapplied

concurrently, where appropriate. For example, the processing of log records

associated with insert, delete, update, add key, and delete key operations can be

parallelized in this way. Because the log records are parallelized at the page level

(log records on the same data page are processed by the same agent),

performance is enhanced, even if all the work was done on one table.

 Related concepts:

v “Optimizing backup performance” on page 84

v “Restore overview” on page 89

62 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Chapter 2. Database backup

This section describes the DB2 backup utility, which is used to create backup

copies of a database or table spaces.

The following topics are covered:

v “Backup overview”

v “Privileges, authorities, and authorization required to use backup” on page 66

v “Using backup” on page 66

v “Backing up to tape” on page 68

v “Backing up to named pipes” on page 70

v “BACKUP DATABASE ” on page 71

v “db2Backup - Back up a database or table space” on page 76

v “Backup sessions - CLP examples” on page 84

v “Optimizing backup performance” on page 84

v “Automatic database backup” on page 85

v “Enabling automatic backup” on page 86

v “Compatibility of online backup and other utilities” on page 87

Backup overview

 The simplest form of the DB2 BACKUP DATABASE command requires only that

you specify the alias name of the database that you want to back up. For example:

 db2 backup db sample

If the command completes successfully, you will have acquired a new backup

image that is located in the path or the directory from which the command was

issued. It is located in this directory because the command in this example does

not explicitly specify a target location for the backup image.

Note: If the DB2 client and server are not located on the same system, DB2 will

determine which directory is the current working directory on the client

machine and use that as the backup target directory on the server. For this

reason, it is recommended that you specify a target directory for the backup

image.

Backup images are created at the target location specified when you invoke the

backup utility. This location can be:

v A directory (for backups to disk or diskette)

v A device (for backups to tape)

v A Tivoli Storage Manager (TSM) server

v Another vendor’s server

The recovery history file is updated automatically with summary information

whenever you invoke a database backup operation. This file is created in the same

directory as the database configuration file.

© Copyright IBM Corp. 2001, 2006 63

DB2 9 BETA

If you want to delete old backup images that are no longer required, you can

remove the files if the backups are stored as files. If you subsequently run a LIST

HISTORY command with the BACKUP option, information about the deleted

backup images will also be returned. You must use the PRUNE command to

remove those entries from the recovery history file.

If your backup objects were saved using Tivoli Storage Manager (TSM), you can

use the db2adutl utility to query, extract, verify, and delete the backup objects. On

Linux and UNIX, this utility is located in the sqllib/adsm directory, and on

Windows operating systems, it is located in sqllib\bin.

On all operating systems, file names for backup images created on disk consist of a

concatenation of several elements, separated by periods:

 DB_alias.Type.Inst_name.NODEnnnn.CATNnnnn.timestamp.Seq_num

For example:

 STAFF.0.DB201.NODE0000.CATN0000.19950922120112.001

Note: DB2 Universal Database™, Version 8.2.2 and earlier versions used a

four-level subdirectory tree when storing backup images on Windows

operating systems:

 DB_alias.Type\Inst_name\NODEnnnn\CATNnnnn\yyyymmdd\hhmmss.Seq_num

For example:

 SAMPLE.0\DB2\NODE0000\CATN0000\20010320\122644.001

Database alias A 1- to 8-character database alias name that was

specified when the backup utility was invoked.

Type Type of backup operation, where: 0 represents a

full database-level backup, 3 represents a table

space-level backup, and 4 represents a backup

image generated by the LOAD...COPY TO

command.

Instance name A 1- to 8-character name of the current instance

that is taken from the DB2INSTANCE

environment variable.

Node number The database partition number. In single partition

database environments, this is always NODE0000. In

partitioned database environments, it is NODExxxx,

where xxxx is the number assigned to the database

partition in the db2nodes.cfg file.

Catalog partition number The database partition number of the catalog

partition for the database. In single partition

database environments, this is always CATN0000. In

partitioned database environments, it is CATNxxxx,

where xxxx is the number assigned to the database

partition in the db2nodes.cfg file.

Time stamp A 14-character representation of the date and time

at which the backup operation was performed. The

time stamp is in the form yyyymmddhhnnss, where:

v yyyy represents the year (1995 to 9999)

v mm represents the month (01 to 12)

v dd represents the day of the month (01 to 31)

64 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

v hh represents the hour (00 to 23)

v nn represents the minutes (00 to 59)

v ss represents the seconds (00 to 59)

Sequence number A 3-digit number used as a file extension.

 When a backup image is written to tape:

v File names are not created, but the information described above is stored in the

backup header for verification purposes.

v A tape device must be available through the standard operating system

interface. In a large partitioned database environment, however, it might not be

practical to have a tape device dedicated to each database partition server. You

can connect the tape devices to one or more TSM servers, so that access to these

tape devices is provided to each database partition server.

v In a partitioned database environment, you can also use products that provide

virtual tape device functions, such as REELlibrarian 4.2 or CLIO/S. You can use

these products to access the tape device connected to other nodes (database

partition servers) through a pseudo tape device. Access to the remote tape

device is provided transparently, and the pseudo tape device can be accessed

through the standard operating system interface.

You cannot back up a database that is in an unusable state, except when that

database is in backup pending state. If any table space is in an abnormal state, you

cannot back up the database or that table space, unless it is in backup pending

state.

Concurrent backup operations on the same table space are not permitted. Once a

backup operation has been initiated on a table space, any subsequent attempts will

fail (SQL2048).

If a database or a table space is in a partially restored state because a system crash

occurred during the restore operation, you must successfully restore the database

or the table space before you can back it up.

A backup operation will fail if a list of the table spaces to be backed up contains

the name of a temporary table space.

The backup utility provides concurrency control for multiple processes that are

making backup copies of different databases. This concurrency control keeps the

backup target devices open until all the backup operations have ended. If an error

occurs during a backup operation, and an open container cannot be closed, other

backup operations targeting the same drive might receive access errors. To correct

such access errors, you must terminate the backup operation that caused the error

and disconnect from the target device. If you are using the backup utility for

concurrent backup operations to tape, ensure that the processes do not target the

same tape.

Displaying backup information

You can use db2ckbkp to display information about existing backup images. This

utility allows you to:

v Test the integrity of a backup image and determine whether or not it can be

restored.

v Display information that is stored in the backup header.

Chapter 2. Database backup 65

DB2 9 BETA

v Display information about the objects and the log file header in the backup

image.

 Related concepts:

v “Automatic database backup” on page 85

v “Developing a backup and recovery strategy” on page 3

v “Including log files with a backup image” on page 54

v “Understanding the recovery history file” on page 56

 Related reference:

v Appendix G, “Tivoli Storage Manager,” on page 403

Privileges, authorities, and authorization required to use backup

 Privileges enable users to create or access database resources. Authority levels

provide a method of grouping privileges and higher-level database manager

maintenance and utility operations. Together, these act to control access to the

database manager and its database objects. Users can access only those objects for

which they have the appropriate authorization; that is, the required privilege or

authority.

You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the backup

utility.

 Related reference:

v “BACKUP DATABASE ” on page 71

v “db2Backup - Back up a database or table space” on page 76

Using backup

 Use the BACKUP DATABASE command to take a copy of a database’s data and

store it on a different medium in case of failure or damage to the original. You can

back up an entire database, database partition, or only selected table spaces.

 Prerequisites:

 You do not need to be connected to the database that is to be backed up: the

backup database utility automatically establishes a connection to the specified

database, and this connection is terminated at the completion of the backup

operation. If you are connected to a database that is to be backed up, you will be

disconnected when the BACKUP DATABASE command is issued and the backup

operation will proceed.

The database can be local or remote. The backup image remains on the database

server, unless you are using a storage management product such as Tivoli Storage

Manager (TSM).

If you are performing an offline backup and if you have activated the database

using the ACTIVATE DATABASE statement, you must deactivate the database

before you run the offline backup. If there are active connections to the database,

in order to deactivate the database successfully, a user with SYSADM authority

must connect to the database and issue the following commands:

66 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

CONNECT TO database-alias

QUIESCE DATABASE immediate

CONNECT RESET

DEACTIVATE DATABASE database-alias

In a partitioned database environment, database partitions are backed up

individually. The operation is local to the database partition server on which you

invoke the utility. You can, however, issue db2_all from one of the database

partition servers in the instance to invoke the backup utility on a list of servers,

which you identify by node number. (Use the LIST NODES command to identify

the nodes, or database partition servers, that have user tables on them.) If you do

this, you must back up the catalog partition first, then back up the other database

partitions. You can also use the Command Editor to back up database partitions.

Because this approach does not support rollforward recovery, back up the database

residing on these nodes regularly. You should also keep a copy of the db2nodes.cfg

file with any backup copies you take, as protection against possible damage to this

file.

On a distributed request system, backup operations apply to the distributed

request database and the metadata stored in the database catalog (wrappers,

servers, nicknames, and so on). Data source objects (tables and views) are not

backed up, unless they are stored in the distributed request database.

If a database was created with a previous release of the database manager, and the

database has not been migrated, you must migrate the database before you can

back it up.

 Restrictions:

 The following restrictions apply to the backup utility:

v A table space backup operation and a table space restore operation cannot be

run at the same time, even if different table spaces are involved.

v If you want to be able to do rollforward recovery in a partitioned database

environment, you must regularly back up the database on the list of nodes, and

you must have at least one backup image of the rest of the nodes in the system

(even those that do not contain user data for that database). Two situations

require the backed-up image of a database partition at a database partition

server that does not contain user data for the database:

– You added a database partition server to the database system after taking the

last backup, and you need to do forward recovery on this database partition

server.

– Point-in-time recovery is used, which requires that all database partitions in

the system are in rollforward pending state.
v Online backup operations for DMS table spaces are incompatible with the

following operations:

– load

– reorganization (online and offline)

– drop table space

– table truncation

– index creation

– not logged initially (used with the CREATE TABLE and ALTER TABLE

statements)

Chapter 2. Database backup 67

DB2 9 BETA

v If you attempt to perform an offline backup of a database that is currently

active, you will receive an error. Before you run an offline backup you can make

sure the database is not active by issuing the DEACTIVATE DATABASE

command.

 Procedure:

 The backup utility can be invoked through the command line processor (CLP), the

Backup Database wizard in the Control Center, or the db2Backup application

programming interface (API).

Following is an example of the BACKUP DATABASE command issued through the

CLP:

 db2 backup database sample to c:\DB2Backups

To open the Backup Database wizard:

1. From the Control Center, expand the object tree until you find the database or

table space object that you want to back up.

2. Right-click on the object and select Backup from the pop-up menu. The Backup

Database wizard opens.

Detailed information is provided through the contextual help facility within the

Control Center.

If you performed an offline backup, after the backup completes, you must

reactivate the database:

ACTIVATE DATABASE database-alias

 Related concepts:

v “Administrative APIs in Embedded SQL or DB2 CLI Programs” in Administrative

API Reference

v “Introducing the plug-in architecture for the Control Center” in Administration

Guide: Implementation

 Related tasks:

v “Migrating databases” in Migration Guide

 Related reference:

v “BACKUP DATABASE ” on page 71

v “db2Backup - Back up a database or table space” on page 76

v “DEACTIVATE DATABASE command” in Command Reference

v “LIST DBPARTITIONNUMS command” in Command Reference

Backing up to tape

 When you back up your database or table space, you must correctly set your block

size and your buffer size. This is particularly true if you are using a variable block

size (on AIX, for example, if the block size has been set to zero).

There is a restriction on the number of fixed block sizes that can be used when

backing up. This restriction exists because DB2 writes out the backup image header

as a 4-KB block. The only fixed block sizes DB2 supports are 512, 1024, 2048, and

4096 bytes. If you are using a fixed block size, you can specify any backup buffer

68 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

size. However, you might find that your backup operation will not complete

successfully if the fixed block size is not one of the sizes that DB2 supports.

If your database is large, using a fixed block size means that your backup

operations might take a long time to complete. You might want to consider using a

variable block size.

Note: Use of a variable block size is currently not supported. If you must use this

option, ensure that you have well tested procedures in place that enable you

to recover successfully, using backup images that were created with a

variable block size.

When using a variable block size, you must specify a backup buffer size that is less

than or equal to the maximum limit for the tape devices that you are using. For

optimal performance, the buffer size must be equal to the maximum block size

limit of the device being used.

Before a tape device can be used on a Windows operating system, the following

command must be issued:

 db2 initialize tape on <device> using <blksize>

Where:

<device>

is a valid tape device name. The default on Windows operating systems is

\\.\TAPE0.

<blksize>

is the blocking factor for the tape. It must be a factor or multiple of 4096.

The default value is the default block size for the device.

Restoring from a backup image with variable block size might return an error. If

this happens, you might need to rewrite the image using an appropriate block size.

Following is an example on AIX:

 tctl -b 0 -Bn -f /dev/rmt0 read > backup_filename.file

 dd if=backup_filename.file of=/dev/rmt0 obs=4096 conv=sync

The backup image is dumped to a file called backup_filename.file. The dd

command dumps the image back onto tape, using a block size of 4096.

There is a problem with this approach if the image is too large to dump to a file.

One possible solution is to use the dd command to dump the image from one tape

device to another. This will work as long as the image does not span more than

one tape. When using two tape devices, the dd command is:

 dd if=/dev/rmt1 of=/dev/rmt0 obs=4096

If using two tape devices is not possible, you might be able to dump the image to

a raw device using the dd command, and then to dump the image from the raw

device to tape. The problem with this approach is that the dd command must keep

track of the number of blocks dumped to the raw device. This number must be

specified when the image is moved back to tape. If the dd command is used to

dump the image from the raw device to tape, the command dumps the entire

contents of the raw device to tape. The dd utility cannot determine how much of

the raw device is used to hold the image.

When using the backup utility, you will need to know the maximum block size

limit for your tape devices. Here are some examples:

Chapter 2. Database backup 69

DB2 9 BETA

Device Attachment Block Size Limit DB2 Buffer Size

Limit (in 4-KB

pages)

8 mm scsi 131,072 32

3420 s370 65,536 16

3480 s370 61 440 15

3490 s370 61 440 15

3490E s370 65,536 16

7332 (4 mm)1 scsi 262,144 64

3490e scsi 262,144 64

35902 scsi 2,097,152 512

3570 (magstar MP) 262,144 64

Notes:

1. The 7332 does not implement a block size limit. 256 KB is simply a suggested

value. Block size limit is imposed by the parent adapter.

2. While the 3590 does support a 2-MB block size, you could experiment with

lower values (like 256 KB), provided the performance is adequate for your

needs.

3. For information about your device limit, check your device documentation or

consult with the device vendor.

 Related concepts:

v “Backup overview” on page 63

 Related reference:

v “BACKUP DATABASE ” on page 71

v “db2Backup - Back up a database or table space” on page 76

Backing up to named pipes

 Support is now available for database backup to (and database restore from) local

named pipes on UNIX based systems.

 Prerequisites:

 Both the writer and the reader of the named pipe must be on the same machine.

The pipe must exist and be located on a local file system. Because the named pipe

is treated as a local device, there is no need to specify that the target is a named

pipe.

 Procedure:

 Following is an AIX example:

1. Create a named pipe:

 mkfifo /u/dmcinnis/mypipe

2. If this backup image is going to be used by the restore utility, the restore

operation must be invoked before the backup operation, so that it will not miss

any data:

70 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

db2 restore db sample into mynewdb from /u/dmcinnis/mypipe

3. Use this pipe as the target for a database backup operation:

 db2 backup db sample to /u/dmcinnis/mypipe

 Related tasks:

v “Using backup” on page 66

 Related reference:

v “BACKUP DATABASE ” on page 71

v “RESTORE DATABASE ” on page 100

BACKUP DATABASE

Creates a backup copy of a database or a table space.

For information on the backup operations supported by DB2 database systems

between different operating systems and hardware platforms, see ″Backup and

restore operations between different operating systems and hardware platforms″ in

the Related concepts section.

 Scope:

 This command only affects the database partition on which it is executed.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

 Required connection:

 Database. This command automatically establishes a connection to the specified

database. If a connection to the specified database already exists, that connection

will be terminated and a new connection established specifically for the backup

operation. The connection is terminated at the completion of the backup operation.

 Command syntax:

�� BACKUP DATABASE database-alias

DB

USER

username

USING

password

 �

�

�

,

TABLESPACE

(

tablespace-name

)

ONLINE

INCREMENTAL

DELTA

 �

BACKUP DATABASE

Chapter 2. Database backup 71

DB2 9 BETA

�

�

USE

TSM

XBSA

OPTIONS

″options-string″

OPEN

num-sessions

SESSIONS

@

file-name

,

TO

dir

dev

LOAD

library-name

OPTIONS

″options-string″

OPEN

num-sessions

SESSIONS

@

file-name

 �

�
WITH

num-buffers

BUFFERS

BUFFER

buffer-size

PARALLELISM

n
 �

�
COMPRESS

COMPRLIB

name

COMPROPTS

string

EXCLUDE

 �

�

UTIL_IMPACT_PRIORITY

priority

 EXCLUDE LOGS

INCLUDE LOGS

WITHOUT PROMPTING

��

 Command parameters:

DATABASE database-alias

Specifies the alias of the database to back up.

USER username

Identifies the user name under which to back up the database.

USING password

The password used to authenticate the user name. If the password is

omitted, the user is prompted to enter it.

TABLESPACE tablespace-name

A list of names used to specify the table spaces to be backed up.

ONLINE

 Specifies online backup. The default is offline backup. Online backups are

only available for databases configured with logretain or userexit enabled.

During an online backup, DB2 obtains IN (Intent None) locks on all tables

existing in SMS table spaces as they are processed and S (Share) locks on

LOB data in SMS table spaces.

INCREMENTAL

Specifies a cumulative (incremental) backup image. An incremental backup

image is a copy of all database data that has changed since the most recent

successful, full backup operation.

DELTA

Specifies a non-cumulative (delta) backup image. A delta backup image is

a copy of all database data that has changed since the most recent

successful backup operation of any type.

USE TSM

Specifies that the backup is to use Tivoli Storage Manager output.

USE XBSA

Specifies that the XBSA interface is to be used. Backup Services APIs

(XBSA) are an open application programming interface for applications or

facilities needing data storage management for backup or archiving

purposes.

OPTIONS

BACKUP DATABASE

72 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

″options-string″

Specifies options to be used for the backup operation.The string

will be passed to the vendor support library, for example TSM,

exactly as it was entered, without the quotes. Specifying this option

overrides the value specified by the VENDOROPT database

configuration parameter.

@file-name

Specifies that the options to be used for the backup operation are

contained in a file located on the DB2 server. The string will be

passed to the vendor support library, for example TSM. The file

must be a fully qualified file name.

OPEN num-sessions SESSIONS

The number of I/O sessions to be created between DB2 and TSM or

another backup vendor product. This parameter has no effect when

backing up to tape, disk, or other local device.

TO dir/dev

A list of directory or tape device names.The full path on which the

directory resides must be specified. If USE TSM, TO, and LOAD are

omitted, the default target directory for the backup image is the current

working directory of the client computer. This target directory or device

must exist on the database server. This parameter can be repeated to

specify the target directories and devices that the backup image will span.

If more than one target is specified (target1, target2, and target3, for

example), target1 will be opened first. The media header and special files

(including the configuration file, table space table, and history file) are

placed in target1. All remaining targets are opened, and are then used in

parallel during the backup operation. Because there is no general tape

support on Windows operating systems, each type of tape device requires

a unique device driver. To back up to the FAT file system on Windows

operating systems, users must conform to the 8.3 naming restriction.

 Use of tape devices or floppy disks might generate messages and prompts

for user input. Valid response options are:

c Continue. Continue using the device that generated the warning

message (for example, when a new tape has been mounted)

d Device terminate. Stop using only the device that generated the

warning message (for example, when there are no more tapes)

t Terminate. Abort the backup operation.

If the tape system does not support the ability to uniquely reference a

backup image, it is recommended that multiple backup copies of the same

database not be kept on the same tape.

LOAD library-name

The name of the shared library (DLL on Windows operating systems)

containing the vendor backup and restore I/O functions to be used. It can

contain the full path. If the full path is not given, it will default to the path

on which the user exit program resides.

WITH num-buffers BUFFERS

The number of buffers to be used. DB2 will automatically choose an

optimal value for this parameter unless you explicitly enter a value.

However, when creating a backup to multiple locations, a larger number of

buffers can be used to improve performance.

BACKUP DATABASE

Chapter 2. Database backup 73

DB2 9 BETA

BUFFER buffer-size

The size, in 4 KB pages, of the buffer used when building the backup

image. DB2 will automatically choose an optimal value for this parameter

unless you explicitly enter a value. The minimum value for this parameter

is 8 pages.

 If using tape with variable block size, reduce the buffer size to within the

range that the tape device supports. Otherwise, the backup operation

might succeed, but the resulting image might not be recoverable.

 With most versions of Linux, using DB2’s default buffer size for backup

operations to a SCSI tape device results in error SQL2025N, reason code 75.

To prevent the overflow of Linux internal SCSI buffers, use this formula:

 bufferpages <= ST_MAX_BUFFERS * ST_BUFFER_BLOCKS / 4

where bufferpages is the value you want to use with the BUFFER parameter,

and ST_MAX_BUFFERS and ST_BUFFER_BLOCKS are defined in the Linux kernel

under the drivers/scsi directory.

PARALLELISM n

Determines the number of table spaces which can be read in parallel by the

backup utility. DB2 will automatically choose an optimal value for this

parameter unless you explicitly enter a value.

UTIL_IMPACT_PRIORITY priority

Specifies that the backup will run in throttled mode, with the priority

specified. Throttling allows you to regulate the performance impact of the

backup operation. Priority can be any number between 1 and 100, with 1

representing the lowest priority, and 100 representing the highest priority.

If the UTIL_IMPACT_PRIORITY keyword is specified with no priority, the

backup will run with the default priority of 50. If

UTIL_IMPACT_PRIORITY is not specified, the backup will run in

unthrottled mode. An impact policy must be defined by setting the

util_impact_lim configuration parameter for a backup to run in throttled

mode.

COMPRESS

Indicates that the backup is to be compressed.

COMPRLIB name

Indicates the name of the library to be used to perform the

compression. The name must be a fully qualified path referring to

a file on the server. If this parameter is not specified, the default

DB2 compression library will be used. If the specified library

cannot be loaded, the backup will fail.

EXCLUDE

Indicates that the compression library will not be stored in the

backup image.

COMPROPTS string

Describes a block of binary data that will be passed to the

initialization routine in the compression library. DB2 will pass this

string directly from the client to the server, so any issues of byte

reversal or code page conversion will have to be handled by the

compression library. If the first character of the data block is ’@’,

the remainder of the data will be interpreted by DB2 as the name

of a file residing on the server. DB2 will then replace the contents

BACKUP DATABASE

74 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

of string with the contents of this file and will pass this new value

to the initialization routine instead. The maximum length for string

is 1024 bytes.

EXCLUDE LOGS

Specifies that the backup image should not include any log files. When

performing an offline backup operation, logs are excluded whether or not

this option is specified.

INCLUDE LOGS

Specifies that the backup image should include the range of log files

required to restore and roll forward this image to some consistent point in

time. This option is not valid for an offline backup.

WITHOUT PROMPTING

 Specifies that the backup will run unattended, and that any actions which

normally require user intervention will return an error message.

 Examples:

1. In the following example, the database WSDB is defined on all 4 database

partitions, numbered 0 through 3. The path /dev3/backup is accessible from all

database partitions. Database partition 0 is the catalog partition, and needs to

be backed-up separately since this is an offline backup. To perform an offline

backup of all the WSDB database partitions to /dev3/backup, issue the

following commands from one of the database partitions:

 db2_all ’<<+0< db2 BACKUP DATABASE wsdb TO /dev3/backup’

 db2_all ’|<<-0< db2 BACKUP DATABASE wsdb TO /dev3/backup’

In the second command, the db2_all utility will issue the same backup

command to each database partition in turn (except database partition 0). All

four database partition backup images will be stored in the /dev3/backup

directory.

2. In the following example database SAMPLE is backed up to a TSM server

using two concurrent TSM client sessions. DB2 calculates the optimal buffer

size for this environment.

 db2 backup database sample use tsm open 2 sessions with 4 buffers

3. In the following example, a table space-level backup of table spaces

(syscatspace, userspace1) of database payroll is done to tapes.

 db2 backup database payroll tablespace (syscatspace, userspace1) to

 /dev/rmt0, /dev/rmt1 with 8 buffers without prompting

4. The USE TSM OPTIONS keywords can be used to specify the TSM information

to use for the backup operation. The following example shows how to use the

USE TSM OPTIONS keywords to specify a fully qualified file name:

db2 backup db sample use TSM options @/u/dmcinnis/myoptions.txt

The file myoptions.txt contains the following information: -fromnode=bar

-fromowner=dmcinnis

5. Following is a sample weekly incremental backup strategy for a recoverable

database. It includes a weekly full database backup operation, a daily

non-cumulative (delta) backup operation, and a mid-week cumulative

(incremental) backup operation:

 (Sun) db2 backup db sample use tsm

 (Mon) db2 backup db sample online incremental delta use tsm

 (Tue) db2 backup db sample online incremental delta use tsm

 (Wed) db2 backup db sample online incremental use tsm

BACKUP DATABASE

Chapter 2. Database backup 75

DB2 9 BETA

(Thu) db2 backup db sample online incremental delta use tsm

 (Fri) db2 backup db sample online incremental delta use tsm

 (Sat) db2 backup db sample online incremental use tsm

6. In the following example, three identical target directories are specified for a

backup operation on database SAMPLE. You might want to do this if the target

file system is made up of multiple physical disks.

 db2 backup database sample to /dev3/backup, /dev3/backup, /dev3/backup

The data will be concurrently backed up to the three target directories, and

three backup images will be generated with extensions .001, .002, and .003.

 Usage notes:

 The data in a backup cannot be protected by the database server. Make sure that

backups are properly safeguarded, particularly if the backup contains

LBAC-protected data.

When backing up to tape, use of a variable block size is currently not supported. If

you must use this option, ensure that you have well tested procedures in place that

enable you to recover successfully, using backup images that were created with a

variable block size.

When using a variable block size, you must specify a backup buffer size that is less

than or equal to the maximum limit for the tape devices that you are using. For

optimal performance, the buffer size must be equal to the maximum block size

limit of the device being used.

 Related concepts:

v “Backup and restore operations between different operating systems and

hardware platforms” on page 9

v “Developing a backup and recovery strategy” on page 3

 Related tasks:

v “Using backup” on page 66

 Related reference:

v “BACKUP DATABASE command using the ADMIN_CMD procedure” in

Administrative SQL Routines and Views

db2Backup - Back up a database or table space

 Creates a backup copy of a database or a table space.

 Scope:

 This API only affects the database partition on which it is executed.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

BACKUP DATABASE

76 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Required connection:

 Database. This API automatically establishes a connection to the specified database.

The connection will be terminated upon the completion of the backup.

 API include file:

db2ApiDf.h

 API and data structure syntax:

SQL_API_RC SQL_API_FN

 db2Backup (

 db2Uint32 versionNumber,

 void * pDB2BackupStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2BackupStruct

{

 char *piDBAlias;

 char oApplicationId[SQLU_APPLID_LEN+1];

 char oTimestamp[SQLU_TIME_STAMP_LEN+1];

 struct db2TablespaceStruct *piTablespaceList;

 struct db2MediaListStruct *piMediaList;

 char *piUsername;

 char *piPassword;

 void *piVendorOptions;

 db2Uint32 iVendorOptionsSize;

 db2Uint32 oBackupSize;

 db2Uint32 iCallerAction;

 db2Uint32 iBufferSize;

 db2Uint32 iNumBuffers;

 db2Uint32 iParallelism;

 db2Uint32 iOptions;

 db2Uint32 iUtilImpactPriority;

 char *piComprLibrary;

 void *piComprOptions;

 db2Uint32 iComprOptionsSize;

} db2BackupStruct;

typedef SQL_STRUCTURE db2TablespaceStruct

{

 char **tablespaces;

 db2Uint32 numTablespaces;

} db2TablespaceStruct;

typedef SQL_STRUCTURE db2MediaListStruct

{

 char **locations;

 db2Uint32 numLocations;

 char locationType;

} db2MediaListStruct;

SQL_API_RC SQL_API_FN

 db2gBackup (

 db2Uint32 versionNumber,

 void * pDB2gBackupStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gBackupStruct

{

 char *piDBAlias;

 db2Uint32 iDBAliasLen;

 char *poApplicationId;

 db2Uint32 iApplicationIdLen;

 char *poTimestamp;

db2Backup - Back up a database or table space

Chapter 2. Database backup 77

DB2 9 BETA

db2Uint32 iTimestampLen;

 struct db2gTablespaceStruct *piTablespaceList;

 struct db2gMediaListStruct *piMediaList;

 char *piUsername;

 db2Uint32 iUsernameLen;

 char *piPassword;

 db2Uint32 iPasswordLen;

 void *piVendorOptions;

 db2Uint32 iVendorOptionsSize;

 db2Uint32 oBackupSize;

 db2Uint32 iCallerAction;

 db2Uint32 iBufferSize;

 db2Uint32 iNumBuffers;

 db2Uint32 iParallelism;

 db2Uint32 iOptions;

 db2Uint32 iUtilImpactPriority;

 char *piComprLibrary;

 db2Uint32 iComprLibraryLen;

 void *piComprOptions;

 db2Uint32 iComprOptionsSize;

} db2gBackupStruct;

typedef SQL_STRUCTURE db2gTablespaceStruct

{

 struct db2Char *tablespaces;

 db2Uint32 numTablespaces;

} db2gTablespaceStruct;

typedef SQL_STRUCTURE db2gMediaListStruct

{

 struct db2Char *locations;

 db2Uint32 numLocations;

 char locationType;

} db2gMediaListStruct;

typedef SQL_STRUCTURE db2Char

{

 char *pioData;

 db2Uint32 iLength;

 db2Uint32 oLength;

} db2Char;

 db2Backup API parameters:

 versionNumber

Input. Specifies the version and release level of the structure passed as the

second parameter pDB2BackupStruct.

pDB2BackupStruct

Input. A pointer to the db2BackupStruct structure.

pSqlca

Output. A pointer to the sqlca structure.

 db2BackupStruct data structure parameters:

 piDBAlias

Input. A string containing the database alias (as cataloged in the system

database directory) of the database to back up.

oApplicationId

Output. The API will return a string identifying the agent servicing the

application. Can be used to obtain information about the progress of the

backup operation using the database monitor.

db2Backup - Back up a database or table space

78 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

oTimestamp

Output. The API will return the time stamp of the backup image

piTablespaceList

Input. List of table spaces to be backed up. Required for table space level

backup only. Must be NULL for a database level backup. See structure

db2TablespaceStruct.

piMediaList

Input. This structure allows the caller to specify the destination for the

backup operation. The information provided depends on the value of the

locationType parameter. The valid values for locationType parameter

(defined in sqlutil header file, located in the include directory) are:

SQLU_LOCAL_MEDIA

Local devices (a combination of tapes, disks, or diskettes).

SQLU_TSM_MEDIA

TSM. If the locations pointer is set to NULL, the TSM shared

library provided with DB2 is used. If a different version of the

TSM shared library is desired, use SQLU_OTHER_MEDIA and

provide the shared library name.

SQLU_OTHER_MEDIA

Vendor product. Provide the shared library name in the locations

field.

SQLU_USER_EXIT

User exit. No additional input is required (only available when

server is on OS/2).

For more information, see the db2MediaListStruct structure.

piUsername

Input. A string containing the user name to be used when attempting a

connection. Can be NULL.

piPassword

Input. A string containing the password to be used with the user name.

Can be NULL.

piVendorOptions

Input. Used to pass information from the application to the vendor

functions. This data structure must be flat; that is, no level of indirection is

supported. Note that byte-reversal is not done, and code page is not

checked for this data.

iVendorOptionsSize

Input. The length of the piVendorOptions field, which cannot exceed 65535

bytes.

oBackupSize

Output. Size of the backup image (in MB).

iCallerAction

Input. Specifies action to be taken. Valid values (defined in db2ApiDf

header file, located in the include directory) are:

DB2BACKUP_BACKUP

Start the backup.

DB2BACKUP_NOINTERRUPT

Start the backup. Specifies that the backup will run unattended,

db2Backup - Back up a database or table space

Chapter 2. Database backup 79

DB2 9 BETA

and that scenarios which normally require user intervention will

either be attempted without first returning to the caller, or will

generate an error. Use this caller action, for example, if it is known

that all of the media required for the backup have been mounted,

and utility prompts are not desired.

DB2BACKUP_CONTINUE

Continue the backup after the user has performed some action

requested by the utility (mount a new tape, for example).

DB2BACKUP_TERMINATE

Terminate the backup after the user has failed to perform some

action requested by the utility.

DB2BACKUP_DEVICE_TERMINATE

Remove a particular device from the list of devices used by

backup. When a particular medium is full, backup will return a

warning to the caller (while continuing to process using the

remaining devices). Call backup again with this caller action to

remove the device which generated the warning from the list of

devices being used.

DB2BACKUP_PARM_CHK

Used to validate parameters without performing a backup. This

option does not terminate the database connection after the call

returns. After successful return of this call, it is expected that the

user will issue a call with SQLUB_CONTINUE to proceed with the

action.

DB2BACKUP_PARM_CHK_ONLY

Used to validate parameters without performing a backup. Before

this call returns, the database connection established by this call is

terminated, and no subsequent call is required.

iBufferSize

Input. Backup buffer size in 4 KB allocation units (pages). Minimum is 8

units.

iNumBuffers

Input. Specifies number of backup buffers to be used. Minimum is 2.

Maximum is limited by memory.

iParallelism

Input. Degree of parallelism (number of buffer manipulators). Minimum is

1. Maximum is 1024.

iOptions

Input. A bitmap of backup properties. The options are to be combined

using the bitwise OR operator to produce a value for iOptions. Valid

values (defined in db2ApiDf header file, located in the include directory)

are:

DB2BACKUP_OFFLINE

Offline gives an exclusive connection to the database.

DB2BACKUP_ONLINE

Online allows database access by other applications while the

backup operation occurs.

Note: An online backup operation may appear to hang if users are

holding locks on SMS LOB data.

db2Backup - Back up a database or table space

80 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

DB2BACKUP_DB

Full database backup.

DB2BACKUP_TABLESPACE

Table space level backup. For a table space level backup, provide a

list of table spaces in the piTablespaceList parameter.

DB2BACKUP_INCREMENTAL

Specifies a cumulative (incremental) backup image. An incremental

backup image is a copy of all database data that has changed since

the most recent successful, full backup operation.

DB2BACKUP_DELTA

Specifies a noncumulative (delta) backup image. A delta backup

image is a copy of all database data that has changed since the

most recent successful backup operation of any type.

DB2BACKUP_COMPRESS

Specifies that the backup should be compressed.

DB2BACKUP_INCLUDE_COMPR_LIB

Specifies that the library used for compressing the backup should

be included in the backup image.

DB2BACKUP_EXCLUDE_COMPR_LIB

Specifies that the library used for compressing the backup should

be not included in the backup image.

DB2BACKUP_INCLUDE_LOGS

Specifies that the backup image should also include the range of

log files required to restore and roll forward this image to some

consistent point in time. This option is not valid for an offline

backup or a multi-partition backup.

DB2BACKUP_EXCLUDE_LOGS

Specifies that the backup image should not include any log files.

Note: When performing an offline backup operation, logs are

excluded whether or not this option is specified.

iUtilImpactPriority

Input. Specifies the priority value to be used during a backup.

v If this value is non-zero, the utility will run throttled. Otherwise, the

utility will run unthrottled.

v If there are multiple concurrent utilities running, this parameter is used

to determine a relative priority between the throttled tasks. For example,

consider two concurrent backups, one with priority 2 and another with

priority 4. Both will be throttled, but the one with priority 4 will be

allotted more resources. Setting priorities to 2 and 4 is no different than

setting them to 5 and 10 or 30 and 60. Priorities values are purely

relative.

piComprLibrary

Input. Indicates the name of the external library to be used to perform

compression of the backup image. The name must be a fully-qualified path

referring to a file on the server. If the value is a null pointer or a pointer to

an empty string, DB2 will use the default library for compression. If the

specified library is not found, the backup will fail.

piComprOptions

Input. Describes a block of binary data that will be passed to the

db2Backup - Back up a database or table space

Chapter 2. Database backup 81

DB2 9 BETA

initialization routine in the compression library. DB2 will pass this string

directly from the client to the server, so any issues of byte-reversal or

code-page conversion will have to be handled by the compression library.

If the first character of the data block is ’@’, the remainder of the data will

be interpreted by DB2 as the name of a file residing on the server. DB2 will

then replace the contents of piComprOptions and iComprOptionsSize with

the contents and size of this file respectively and will pass these new

values to the initialization routine instead.

iComprOptionsSize

Input. A four-byte unsigned integer representing the size of the block of

data passed as piComprOptions. iComprOptionsSize shall be zero if and

only if piComprOptions is a null pointer.

 db2TablespaceStruct data structure specific parameters:

 tablespaces

Input. A pointer to the list of table spaces to be backed up. For C, the list is

null-terminated strings. In the generic case, it is a list of db2Char

structures.

numTablespaces

Input. Number of entries in the tablespaces parameter.

 db2MediaListStruct data structure parameters:

 locations

Input. A pointer to the list of media locations. For C, the list is

null-terminated strings. In the generic case, it is a list of db2Char

structures.

numLocations

Input. The number of entries in the locations parameter.

locationType

Input. A character indicating the media type. Valid values (defined in

sqlutil header file, located in the include directory.) are:

SQLU_LOCAL_MEDIA

Local devices (tapes, disks, diskettes, or named pipes).

SQLI_XBSA_MEDIA

XBSA interface.

SQLU_TSM_MEDIA

Tivoli Storage Manager.

SQLU_OTHER_MEDIA

Vendor library.

SQLU_USER_EXIT

User exit (only available when the server is on OS/2).

 db2gBackupStruct data structure specific parameters:

 iDBAliasLen

Input. A 4-byte unsigned integer representing the length in bytes of the

database alias.

db2Backup - Back up a database or table space

82 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

iApplicationIdLen

Input. A 4-byte unsigned integer representing the length in bytes of the

poApplicationId buffer. Should be equal to SQLU_APPLID_LEN+1

(defined in sqlutil.h).

iTimestampLen

Input. A 4-byte unsigned integer representing the length in bytes of the

poTimestamp buffer. Should be equal to SQLU_TIME_STAMP_LEN+1

(defined in sqlutil.h).

iUsernameLen

Input. A 4-byte unsigned integer representing the length in bytes of the

user name. Set to zero if no user name is provided.

iPasswordLen

Input. A 4-byte unsigned integer representing the length in bytes of the

password. Set to zero if no password is provided.

iComprLibraryLen

Input. A four-byte unsigned integer representing the length in bytes of the

name of the library specified in piComprLibrary. Set to zero if no library

name is given.

 db2Char data structure parameters:

 pioData

A pointer to a character data buffer. If NULL, no data will be returned.

iLength

Input. The size of the pioData buffer.

oLength

Output. The number of valid characters of data in the pioData buffer.

 Usage notes:

 This function is exempt from all label-based access control (LBAC) rules. It backs

up all data, even protected data. Also, the data in the backup itself is not protected

by LBAC. Any user with the backup and a place in which to restore it can gain

access to the data.

 Related tasks:

v “Using backup” on page 66

 Related reference:

v “SQLCA data structure” in Administrative API Reference

v “BACKUP DATABASE command using the ADMIN_CMD procedure” in

Administrative SQL Routines and Views

v “BACKUP DATABASE ” on page 71

v “db2Rollforward - Roll forward a database” on page 177

v “db2Restore - Restore a database or table space” on page 115

v “db2Recover - Restore and roll forward a database” on page 199

 Related samples:

v “dbrecov.sqc -- How to recover a database (C)”

v “dbrecov.sqC -- How to recover a database (C++)”

db2Backup - Back up a database or table space

Chapter 2. Database backup 83

DB2 9 BETA

Backup sessions - CLP examples

 Example 1

In the following example database SAMPLE is backed up to a TSM server using 2

concurrent TSM client sessions. The backup utility will compute the optimal

number of buffers. The optimal size of the buffers, in 4 KB pages, is automatically

calculated based on the amount of memory and the number of target devices that

are available. The parallelism setting is also automatically calculated and is based

on the number or processors available and the number of table spaces to be backed

up.

 db2 backup database sample use tsm open 2 sessions with 4 buffers

 db2 backup database payroll tablespace (syscatspace, userspace1) to

 /dev/rmt0, /dev/rmt1 with 8 buffers without prompting

Example 2

Following is a sample weekly incremental backup strategy for a recoverable

database. It includes a weekly full database backup operation, a daily

non-cumulative (delta) backup operation, and a mid-week cumulative

(incremental) backup operation:

 (Sun) db2 backup db kdr use tsm

 (Mon) db2 backup db kdr online incremental delta use tsm

 (Tue) db2 backup db kdr online incremental delta use tsm

 (Wed) db2 backup db kdr online incremental use tsm

 (Thu) db2 backup db kdr online incremental delta use tsm

 (Fri) db2 backup db kdr online incremental delta use tsm

 (Sat) db2 backup db kdr online incremental use tsm

Example 3

To initiate a backup operation to a tape device in a Windows environment, issue:

 db2 backup database sample to \\.\tape0

 Related tasks:

v “Using backup” on page 66

Optimizing backup performance

 When you perform a backup operation, DB2 will automatically choose an optimal

value for the number of buffers, the buffer size and the parallelism settings. The

values will be based on the amount of utility heap memory available, the number

of processors available, and the database configuration. The objective is to

minimize the time it takes to complete a backup operation. Unless you explicitly

enter a value for the following BACKUP DATABASE command parameters, DB2

will select one for them:

v WITH num-buffers BUFFERS

v PARALLELISM n

v BUFFER buffer-size

If the number of buffers and the buffer size are not specified, resulting in DB2

setting the values, it should have minimal affect on large databases. However, for

small databases, it can cause a large percentage increase in backup image size.

Even if the last data buffer written to disk contains little data, the full buffer is

84 Data Recovery and High Availability Guide and Reference

|
|
|
|

DB2 9 BETA

written to the image anyway. In a small database, this means that a considerable

percentage of the image size might be empty.

You can also choose to do any of the following to reduce the amount of time

required to complete a backup operation:

v Specify table space backup.

You can back up (and subsequently recover) part of a database by using the

TABLESPACE option on the BACKUP DATABASE command. This facilitates the

management of table data, indexes, and long field or large object (LOB) data in

separate table spaces.

v Increase the value of the PARALLELISM parameter on the BACKUP DATABASE

command so that it reflects the number of table spaces being backed up.

The PARALLELISM parameter defines the number of processes or threads that

are started to read data from the database and to compress data during a

compressed backup operation. Each process or thread is assigned to a specific

table space, so there is no benefit to specifying a value for the PARALLELISM

parameter that is larger than the number of table spaces being backed up. When

it finishes backing up this table space, it requests another. Note, however, that

each process or thread requires both memory and CPU overhead.

v Increase the backup buffer size.

The ideal backup buffer size is a multiple of the table space extent size plus one

page. If you have multiple table spaces with different extent sizes, specify a

value that is a common multiple of the extent sizes plus one page.

v Increase the number of buffers.

Use at least twice as many buffers as backup targets (or sessions) to ensure that

the backup target devices do not have to wait for data.

v Use multiple target devices.

 Related concepts:

v “Backup overview” on page 63

 Related tasks:

v “Using backup” on page 66

Automatic database backup

 A database may become unusable due to a wide variety of hardware or software

failures. Automatic database backup simplifies database backup management tasks

for the DBA by always ensuring that a recent full backup of the database is

performed as needed. It determines the need to perform a backup operation based

on one or more of the following measures:

v You have never completed a full database backup

v The time elapsed since the last full backup is more than a specified number of

hours

v The transaction log space consumed since the last backup is more than a

specified number of 4 KB pages (in archive logging mode only).

Protect your data by planning and implementing a disaster recovery strategy for

your system. If suitable to your needs, you may incorporate the automatic

database backup feature as part of your backup and recovery strategy.

Chapter 2. Database backup 85

|
|

DB2 9 BETA

If the database is enabled for roll-forward recovery (archive logging), then

automatic database backup can be enabled for either online or offline backup.

Otherwise, only offline backup is available. Automatic database backup supports

disk, tape, Tivoli Storage Manager (TSM), and vendor DLL media types.

Through the Configure Automatic Maintenance wizard in the Control Center or

Health Center, you can configure:

v The requested time or number of log pages between backups

v The backup media

v Whether it will be an online or offline backup.

If backup to disk is selected, the automatic backup feature will regularly delete

backup images from the directory specified in the Configure Automatic

Maintenance wizard. Only the most recent backup image is guaranteed to be

available at any given time. It is recommended that this directory be kept

exclusively for the automatic backup feature and not be used to store other backup

images.

The automatic database backup feature can be enabled or disabled by using the

auto_db_backup and auto_maint database configuration parameters. In a

partitioned database environment, the automatic database backup runs on each

database partition if the database configuration parameters are enabled on that

database partition.

 Related concepts:

v “Developing a backup and recovery strategy” on page 3

v “Automatic statistics collection” in Performance Guide

v “Catalog statistics” in Performance Guide

v “Table and index management for MDC tables” in Performance Guide

v “Table and index management for standard tables” in Performance Guide

v “Table reorganization” in Performance Guide

v “Health monitor” in System Monitor Guide and Reference

 Related reference:

v “auto_maint - Automatic maintenance configuration parameter” in Performance

Guide

Enabling automatic backup

 A database can become unusable due to a wide variety of hardware or software

failures. Ensuring that you have a recent, full backup of your database is an

integral part of planning and implementing a disaster recovery strategy for your

system. Use automatic database backup as part of your disaster recovery strategy

to enable DB2 to back up your database both properly and regularly.

 Procedure:

 You can turn this feature on using either the graphical user interface tools or the

command line interface.

v To set up your database for automatic backup using the graphical user interface

tools:

86 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

1. Open the Configure Automatic Maintenance wizard either from the Control

Center by right-clicking on a database object or from the Health Center by

right-clicking on the database instance that you want to configure for

automatic backup. Select Configure Automatic Maintenance from the

pop-up window.

2. Within this wizard, you can enable automatic backup and specify a

maintenance window for the execution of the BACKUP utility.
v To set up your database for automatic backup using the command line interface,

set each of the following configuration parameters to ON:

– AUTO_MAINT

– AUTO_DB_BACKUP

 Related concepts:

v “Automatic database backup” on page 85

Compatibility of online backup and other utilities

 Some utilities can be run at the same time as an online backup, but others cannot.

The following utilities are compatible with online backup:

v EXPORT

v ONLINE INSPECT

The following utilities are compatible with online backup only under certain

circumstances:

v ONLINE CREATE INDEX

In SMS mode, online index create and online backup will not be compatible due

to the ALTER TABLE lock. Online index create acquires it in exclusive mode

while online backup acquires it in share.

In DMS mode, online index create and online backup can run concurrently in

most cases. There is a possibility if you have a large number of indexes that the

online index create will internally acquire an online backup lock that will

conflict with any concurrent online backup.

v ONLINE INDEX REORG

As with online index create, online index reorganization is not compatible with

online backup due to the ALTER TABLE lock. Online index reorganization

acquires it in exclusive mode while online backup acquires it in share.

In DMS mode, online index reorganization and online backup can run

concurrently in most cases. As with online index create, there is a possibility if

you have a large number of indexes that the online index reorganization will

internally acquire an online backup lock that will conflict with any concurrent

online backup.

In addition, online index reorganization quiesces the table before the switch

phase and gets a Z lock, which prevents an online backup.

v REBALANCE

When online backup and rebalancer are running concurrently, online backup

will pause the rebalancer and does not wait for it to complete.

v IMPORT

The import utility is compatible with online backup except when the IMPORT

command is issued with the REPLACE option, in which case, import gets a Z

lock on the table and prevents an online backup from running concurrently.

Chapter 2. Database backup 87

DB2 9 BETA

v ONLINE LOAD

Online load is not compatible with online backup when the LOAD command is

issued with the COPY NO option. In this mode the utilities both modify the

table space state, causing one of the utilities to report an error.

Online load is compatible with online backup when the LOAD command is

issued with the COPY YES option, although there might still be some

compatibility issues. In SMS mode, the utilities can execute concurrently, but

they will hold incompatible table lock modes and consequently might be subject

to table lock waits. In DMS mode, the utilities both hold incompatible

″Internal-B″ (OLB) lock modes and might be subject to waits on that lock. If the

utilities execute on the same table space concurrently, the load utility might be

forced to wait for the backup utility to complete processing of the table space

before the load utility can proceed.

v ONLINE TABLE REORG

The clean up phase of online table reorganization cannot start while an online

backup is running. You can pause the table reorganization, if required, to allow

the online backup to finish before resuming the online table reorg.

You can start an online backup of a DMS table space when a table within the

same table space is being reorganized online. There might be lock waits

associated with the reorganization operation during the truncate phase.

You cannot start an online backup of an SMS table space when a table within

the same table space is being reorganized online. Both operations require an

exclusive lock.

v DDLs that require a Z lock (such as ALTER TABLE, DROP TABLE and DROP

INDEX)

Online DMS table space backup is compatible with DDLs that require a Z lock.

Online SMS table space backup must wait for the Z lock to be released.

The following utilities are not compatible with online backup:

v REORG TABLE

v RESTORE

v ROLLFORWARD

v RUNSTATS

v ONLINE BACKUP

v OFFLINE LOAD

v SET WRITE

 Related concepts:

v “Backup overview” on page 63

88 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Chapter 3. Database restore

This section describes the DB2 restore utility, which is used to recreate damaged or

corrupted databases or table spaces that were previously backed up.

The following topics are covered:

v “Restore overview”

v “Privileges, authorities, and authorization required to use restore” on page 90

v “Using restore” on page 90

v “Using incremental restore in a test and production environment” on page 92

v “Redefining table space containers during a restore operation (redirected

restore)” on page 94

v “Restoring to an existing database” on page 95

v “Restoring to a new database” on page 96

v “Redefine table space containers by restoring a database using an automatically

generated script” on page 97

v “Performing a redirected restore using an automatically generated script” on

page 99

v “RESTORE DATABASE ” on page 100

v “db2Restore - Restore a database or table space” on page 115

v “Restore sessions - CLP examples” on page 127

v “Optimizing restore performance” on page 129

v “Database rebuild” on page 130

v “Choosing a target image for database rebuild” on page 134

v “Restrictions for database rebuild” on page 137

v “Rebuilding a database using selected table space images” on page 137

v “Rebuilding selected table spaces” on page 139

v “Rebuilding a partitioned database” on page 140

v “Rebuild and incremental backup images” on page 142

v “Rebuild and table space containers” on page 143

v “Rebuild and temporary table spaces” on page 144

v “Rebuild sessions - CLP examples” on page 145

Restore overview

 The simplest form of the DB2 RESTORE DATABASE command requires only that

you specify the alias name of the database that you want to restore. For example:

 db2 restore db sample

In this example, because the SAMPLE database exists and will be replaced when

the RESTORE DATABASE command is issued, the following message is returned:

SQL2539W Warning! Restoring to an existing database that is the same as

the backup image database. The database files will be deleted.

Do you want to continue ? (y/n)

If you specify y, the restore operation should complete successfully.

© Copyright IBM Corp. 2001, 2006 89

DB2 9 BETA

A database restore operation requires an exclusive connection: that is, no

applications can be running against the database when the operation starts, and

the restore utility prevents other applications from accessing the database until the

restore operation completes successfully. A table space restore operation, however,

can be done online.

A table space is not usable until the restore operation (followed by rollforward

recovery) completes successfully.

If you have tables that span more than one table space, you should back up and

restore the set of table spaces together.

When doing a partial or subset restore operation, you can use either a table

space-level backup image, or a full database-level backup image and choose one or

more table spaces from that image. All the log files associated with these table

spaces from the time that the backup image was created must exist.

 Related concepts:

v “Database rebuild” on page 130

v “Including log files with a backup image” on page 54

 Related tasks:

v “Using restore” on page 90

 Related reference:

v “db2Restore - Restore a database or table space” on page 115

v “Restore sessions - CLP examples” on page 127

Privileges, authorities, and authorization required to use restore

 Privileges enable users to create or access database resources. Authority levels

provide a method of grouping privileges and higher-level database manager

maintenance and utility operations. Together, these act to control access to the

database manager and its database objects. Users can access only those objects for

which they have the appropriate authorization; that is, the required privilege or

authority.

You must have SYSADM, SYSCTRL, or SYSMAINT authority to restore to an

existing database from a full database backup. To restore to a new database, you

must have SYSADM or SYSCTRL authority.

 Related reference:

v “db2Restore - Restore a database or table space” on page 115

v “RESTORE DATABASE ” on page 100

Using restore

 Use the RESTORE DATABASE command to recover a database or table space after

a problem such as media or storage failure, power interruption, or application

failure. If you have backed up your database, or individual table spaces, you can

recreate them if they have become damaged or corrupted in some way.

 Prerequisites:

90 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

When restoring to an existing database, you should not be connected to the

database that is to be restored: the restore utility automatically establishes a

connection to the specified database, and this connection is terminated at the

completion of the restore operation. When restoring to a new database, an instance

attachment is required to create the database. When restoring to a new remote

database, you must first attach to the instance where the new database will reside.

Then, create the new database, specifying the code page and the territory of the

server. Restore will overwrite the code page of the destination database with that

of the backup image.

The database can be local or remote.

 Restrictions:

 The following restrictions apply to the restore utility:

v You can only use the restore utility if the database has been previously backed

up using the DB2 backup utility.

v A database restore operation cannot be started while the rollforward process is

running.

v You can restore a table space into an existing database only if the table space

currently exists, and if it is the same table space; “same” means that the table

space was not dropped and then recreated between the backup and the restore

operation. The database on disk and in the backup image must be the same.

v You cannot issue a table space-level restore of a table space-level backup to a

new database.

v You cannot perform an online table space-level restore operation involving the

system catalog tables.

v You cannot restore a backup taken in a single database partition environment

into an existing partitioned database environment. Instead you must restore the

backup to a single database partition environment and then add database

partitions as required.

v When restoring a backup image with one code page into a system with a

different codepage, the system code page will be overwritten by the code page

of the backup image.

v You cannot use the RESTORE DATABASE command to convert non-automatic

storage enabled table spaces to automatic storage enabled table space.

 Procedure:

 The restore utility can be invoked through the command line processor (CLP), the

Restore Database notebook or wizard in the Control Center, or the db2Restore

application programming interface (API).

Following is an example of the RESTORE DATABASE command issued through

the CLP:

 db2 restore db sample from D:\DB2Backups taken at 20010320122644

To open the Restore wizard:

1. From the Control Center, expand the object tree until you find the database or

table space object that you want to restore.

2. Right-click on the object and select Restore from the pop-up menu. The Restore

wizard opens.

Chapter 3. Database restore 91

DB2 9 BETA

Detailed information is provided through the contextual help facility within the

Control Center.

 Related concepts:

v “Introducing the plug-in architecture for the Control Center” in Administration

Guide: Implementation

v “Administrative APIs in Embedded SQL or DB2 CLI Programs” in Administrative

API Reference

v “Database rebuild” on page 130

v “Restore overview” on page 89

 Related reference:

v “db2Restore - Restore a database or table space” on page 115

v “Restore sessions - CLP examples” on page 127

v “RESTORE DATABASE ” on page 100

Using incremental restore in a test and production environment

 Once a production database is enabled for incremental backup and recovery, you

can use an incremental or delta backup image to create or refresh a test database.

You can do this by using either manual or automatic incremental restore. To restore

the backup image from the production database to the test database, use the INTO

target-database-alias option on the RESTORE DATABASE command. For example, in

a production database with the following backup images:

 backup db prod

 Backup successful. The timestamp for this backup image is : <ts1>

 backup db prod incremental

 Backup successful. The timestamp for this backup image is : <ts2>

an example of a manual incremental restore would be:

 restore db prod incremental taken at <ts2> into test without

 prompting

 DB20000I The RESTORE DATABASE command completed successfully.

 restore db prod incremental taken at <ts1> into test without

 prompting

 DB20000I The RESTORE DATABASE command completed successfully.

 restore db prod incremental taken at <ts2> into test without

 prompting

 DB20000I The RESTORE DATABASE command completed successfully.

If the database TEST already exists, the restore operation will overwrite any data

that is already there. If the database TEST does not exist, the restore utility will

create it and then populate it with the data from the backup images.

Since automatic incremental restore operations are dependent on the database

history, the restore steps change slightly based on whether or not the test database

exists. To perform an automatic incremental restore to the database TEST, its

history must contain the backup image history for database PROD. The database

history for the backup image will replace any database history that already exists

for database TEST if:

v the database TEST does not exist when the RESTORE DATABASE command is

issued, or

92 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

v the database TEST exists when the RESTORE DATABASE command is issued,

and the database TEST history contains no records.

The following example shows an automatic incremental restore to database TEST

which does not exist:

 restore db prod incremental automatic taken at <ts2> into test without

 prompting

 DB20000I The RESTORE DATABASE command completed successfully.

The restore utility will create the TEST database and populate it.

If the database TEST does exist and the database history is not empty, you must

drop the database before the automatic incremental restore operation as follows:

 drop db test

 DB20000I The DROP DATABASE command completed successfully.

 restore db prod incremental automatic taken at <ts2> into test without

 prompting

 DB20000I The RESTORE DATABASE command completed successfully.

If you do not want to drop the database, you can issue the PRUNE HISTORY

command using a timestamp far into the future and the WITH FORCE OPTION

parameter before issuing the RESTORE DATABASE command:

 connect to test

 Database Connection Information

 Database server = <server id>

 SQL authorization ID = <id>

 Local database alias = TEST

 prune history 9999 with force option

 DB20000I The PRUNE command completed successfully.

 connect reset

 DB20000I The SQL command completed successfully.

 restore db prod incremental automatic taken at <ts2> into test without

 prompting

 SQL2540W Restore is successful, however a warning "2539" was

 encountered during Database Restore while processing in No

 Interrupt mode.

In this case, the RESTORE DATABASE COMMAND will act in the same manner as

when the database TEST did not exist.

If the database TEST does exist and the database history is empty, you do not have

to drop the database TEST before the automatic incremental restore operation:

 restore db prod incremental automatic taken at <ts2> into test without

 prompting

 SQL2540W Restore is successful, however a warning "2539" was

 encountered during Database Restore while processing in No

 Interrupt mode.

You can continue taking incremental or delta backups of the test database without

first taking a full database backup. However, if you ever need to restore one of the

incremental or delta images you will have to perform a manual incremental

restore. This is because automatic incremental restore operations require that each

of the backup images restored during an automatic incremental restore be created

from the same database alias.

Chapter 3. Database restore 93

DB2 9 BETA

If you make a full database backup of the test database after you complete the

restore operation using the production backup image, you can take incremental or

delta backups and can restore them using either manual or automatic mode.

 Related concepts:

v “Incremental backup and recovery” on page 27

 Related reference:

v “BACKUP DATABASE ” on page 71

v “LIST HISTORY ” on page 326

v “RESTORE DATABASE ” on page 100

Redefining table space containers during a restore operation

(redirected restore)

 During a database backup operation, a record is kept of all the table space

containers associated with the table spaces that are being backed up. During a

restore operation, all containers listed in the backup image are checked to

determine if they exist and if they are accessible. If one or more of these containers

is inaccessible because of media failure (or for any other reason), the restore

operation will fail. A successful restore operation in this case requires redirection to

different containers. DB2 supports adding, changing, or removing table space

containers.

You can redefine table space containers by invoking the RESTORE DATABASE

command and specifying the REDIRECT parameter, or by using the Restore

Database wizard in the Control Center. The process for invoking a redirected

restore of an incremental backup image is similar to the process for invoking a

redirected restore of a non-incremental backup image. Issue the RESTORE

DATABASE command with the REDIRECT option and specify the backup image

that should be used for the incrementally restore of the database. Alternatively, you

can have DB2 generate a redirected restore script from a backup image, then you

can modify the script as required. See Performing a redirected restore using an

automatically generated script.

During a redirected restore operation, directory and file containers are

automatically created if they do not already exist. The database manager does not

automatically create device containers.

Container redirection provides considerable flexibility for managing table space

containers. For example, even though adding containers to SMS table spaces is not

supported, you could accomplish this by specifying an additional container when

invoking a redirected restore operation.

The following example shows how to perform a redirected restore on database

SAMPLE:

 db2 restore db sample redirect without prompting

 SQL1277W A redirected restore operation is being performed.

 Table space configuration can now be viewed and table spaces that do not

 use automatic storage can have their containers reconfigured.

 DB20000I The RESTORE DATABASE command completed successfully.

 db2 set tablespace containers for 2 using (path ’userspace1.0’, path

 ’userspace1.1’)

94 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

DB20000I The SET TABLESPACE CONTAINERS command completed successfully.

 db2 restore db sample continue

 DB20000I The RESTORE DATABASE command completed successfully.

 Related concepts:

v “Redefine table space containers by restoring a database using an automatically

generated script” on page 97

 Related tasks:

v “Performing a redirected restore using an automatically generated script” on

page 99

 Related reference:

v “Restore sessions - CLP examples” on page 127

 Related samples:

v “dbrecov.out -- HOW TO RECOVER A DATABASE (C)”

v “dbrecov.sqc -- How to recover a database (C)”

v “dbrecov.out -- HOW TO RECOVER A DATABASE (C++)”

v “dbrecov.sqC -- How to recover a database (C++)”

Restoring to an existing database

 You can restore any database or table space backup image to an existing database.

For a database-level restore, the backup image can differ from the existing database

in its alias name, its database name, or its database seed. For a table-space level

restore, you can restore a table space into an existing database only if the table

space currently exists, and if it is the same table space; ″same″ means that the table

space was not dropped and then recreated between the backup and the restore

operation. The database on disk and in the backup image must be the same.

A database seed is a unique identifier for a database that does not change during

the life of the database. The seed is assigned by the database manager when the

database is created. DB2 always uses the seed from the backup image.

When restoring to an existing database, the restore utility:

v Deletes table, index, and long field data from the existing database, and replaces

it with data from the backup image.

v Replaces table entries for each table space being restored.

v Retains the recovery history file, unless it is damaged or has no entries. If the

recovery history file is damaged or contains no entries, the database manager

copies the file from the backup image. If you want to replace the recovery

history file you can issue the RESTORE command with the REPLACE HISTORY

FILE option.

v Retains the authentication type for the existing database.

v Retains the database directories for the existing database. The directories define

where the database resides, and how it is cataloged.

v Compares the database seeds. If the seeds are different:

– Deletes the logs associated with the existing database.

– Copies the database configuration file from the backup image.

Chapter 3. Database restore 95

DB2 9 BETA

– Sets NEWLOGPATH to the value of the logpath database configuration

parameter if NEWLOGPATH was specified on the RESTORE DATABASE

command.

If the database seeds are the same:

– Deletes the logs if the image is for a non-recoverable database.

– Retains the current database configuration file, unless the file has been

corrupted, in which case the file is copied from the backup image.

– Sets NEWLOGPATH to the value of the logpath database configuration

parameter if NEWLOGPATH was specified on the RESTORE DATABASE

command; otherwise, copies the current log path to the database

configuration file. Validates the log path: If the path cannot be used by the

database, changes the database configuration to use the default log path.

 Related concepts:

v “Restore overview” on page 89

 Related tasks:

v “Using restore” on page 90

 Related reference:

v “db2Restore - Restore a database or table space” on page 115

v “RESTORE DATABASE ” on page 100

Restoring to a new database

 You can create a new database and then restore a full database backup image to it.

If you do not create a new database, the restore utility will create one.

When restoring to a new database, the restore utility:

v Creates a new database, using the database alias name that was specified

through the target database alias parameter. (If a target database alias was not

specified, the restore utility creates the database with an alias that is the same as

that specified through the source database alias parameter.)

v Restores the database configuration file from the backup image.

v Sets NEWLOGPATH to the value of the logpath database configuration

parameter if NEWLOGPATH was specified on the RESTORE DATABASE

command. Validates the log path: If the path cannot be used by the database,

changes the database configuration to use the default log path.

v Restores the authentication type from the backup image.

v Restores the comments from the database directories in the backup image.

v Restores the recovery history file for the database.

v Overwrites the code page of the database with the codepage of the backup

image.

 Related tasks:

v “Using restore” on page 90

 Related reference:

v “db2Restore - Restore a database or table space” on page 115

v “RESTORE DATABASE ” on page 100

96 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Redefine table space containers by restoring a database using an

automatically generated script

 When you restore a database, the restore utility assumes that the physical container

layout will be identical to that of the database when it was backed up. If you need

to change the location or size of any of the physical containers, you must issue the

RESTORE DATABASE command with the REDIRECT option. Using this option

requires that you specify the locations of physical containers stored in the backup

image and provide the complete set of containers for each non-automatic table

space that will be altered. You can capture the container information at the time of

the backup, but this can be cumbersome.

To make it easier to perform a redirected restore, the restore utility allows you to

generate a redirected restore script from an existing backup image by issuing the

RESTORE DATABASE command with the REDIRECT option and the GENERATE

SCRIPT option. The restore utility examines the backup image, extracts container

information from the backup image, and generates a CLP script that includes all of

the detailed container information. You can then modify any of the paths or

container sizes in the script, then run the CLP script to recreate the database with

the new set of containers. The script you generate can be used to restore a

database even if you only have a backup image and you do not know the layout

of the containers. The script is created on the client. Using the script as your basis,

you can decide where the restored database will require space for log files and

containers and you can change the log file and container paths accordingly.

The generated script consists of four sections:

Initialization

The first section sets command options and specifies the database

partitions on which the command will run. The following is an example of

the first section:

 UPDATE COMMAND OPTIONS USING S ON Z ON SAMPLE_NODE0000.out V ON;

 SET CLIENT ATTACH_DBPARTITIONNUM 0;

 SET CLIENT CONNECT_DBPARTITIONNUM 0;

where

v S ON specifies that execution of the command should stop if a command

error occurs

v Z ON SAMPLE_NODE0000.out specifies that output should be directed to a

file named <dbalias>_NODE<dbpartitionnum>.out

v V ON specifies that the current command should be printed to standard

output.

When running the script on a partitioned database environment, it is

important to specify the database partition on which the script

commands will run.

RESTORE command with the REDIRECT option

The second section starts the RESTORE command and uses the REDIRECT

option. This section can use all of the RESTORE command options, except

any options that cannot be used in conjunction with the REDIRECT option.

The following is an example of the second section:

 RESTORE DATABASE SAMPLE

 -- USER ’<username>’

 -- USING ’<password>’

 FROM ’/home/jseifert/backups’

 TAKEN AT 20050906194027

Chapter 3. Database restore 97

DB2 9 BETA

-- DBPATH ON ’<target-directory>’

 INTO SAMPLE

 -- NEWLOGPATH ’/home/jseifert/jseifert/NODE0000/SQL00001/SQLOGDIR/’

 -- WITH <num-buff> BUFFERS

 -- BUFFER <buffer-size>

 -- REPLACE HISTORY FILE

 -- REPLACE EXISTING

 REDIRECT

 -- PARALLELISM <n>

 -- WITHOUT ROLLING FORWARD

 -- WITHOUT PROMPTING

 ;

Table space definitions

This section contains table space definitions for each table space in the

backup image or specified on the command line. There is a section for each

table space, consisting of a comment block that contains information about

the name, type and size of the table space. The information is provided in

the same format as a table space snapshot. You can use the information

provided to determine the required size for the table space. For table

spaces that were created using automatic storage, this section does not

include a SET TABLESPACE CONTAINERS clause. The following is an

example of the third section:

 -- ***

 -- ** Tablespace name = SYSCATSPACE

 -- ** Tablespace ID = 0

 -- ** Tablespace Type = System managed space

 -- ** Tablespace Content Type = Any data

 -- ** Tablespace Page size (bytes) = 4096

 -- ** Tablespace Extent size (pages) = 32

 -- ** Using automatic storage = No

 -- ** Total number of pages = 5572

 -- ***

 SET TABLESPACE CONTAINERS FOR 0

 -- IGNORE ROLLFORWARD CONTAINER OPERATIONS

 USING (

 PATH ’SQLT0000.0’

);

 -- ***

 -- ** Tablespace name = TEMPSPACE1

 -- ** Tablespace ID = 1

 -- ** Tablespace Type = System managed space

 -- ** Tablespace Content Type = System Temporary data

 -- ** Tablespace Page size (bytes) = 4096

 -- ** Tablespace Extent size (pages) = 32

 -- ** Using automatic storage = No

 -- ** Total number of pages = 0

 -- ***

 SET TABLESPACE CONTAINERS FOR 1

 -- IGNORE ROLLFORWARD CONTAINER OPERATIONS

 USING (

 PATH ’SQLT0001.0’

);

 -- ***

 -- ** Tablespace name = DMS

 -- ** Tablespace ID = 2

 -- ** Tablespace Type = Database managed space

 -- ** Tablespace Content Type = Any data

 -- ** Tablespace Page size (bytes) = 4096

 -- ** Tablespace Extent size (pages) = 32

 -- ** Using automatic storage = No

 -- ** Auto-resize enabled = No

 -- ** Total number of pages = 2000

 -- ** Number of usable pages = 1960

 -- ** High water mark (pages) = 96

98 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

-- ***

 SET TABLESPACE CONTAINERS FOR 2

 -- IGNORE ROLLFORWARD CONTAINER OPERATIONS

 USING (

 FILE ’/tmp/dms1’ 1000

 , FILE ’/tmp/dms2’ 1000

);

RESTORE command with the CONTINUE option

The final section issues the RESTORE command with the CONTINUE

option, to complete the redirected restore. The following is an example of

the final section:

 RESTORE DATABASE SAMPLE CONTINUE;

 Related concepts:

v “Redefining table space containers during a restore operation (redirected

restore)” on page 94

 Related tasks:

v “Performing a redirected restore using an automatically generated script” on

page 99

 Related reference:

v “db2Restore - Restore a database or table space” on page 115

v “RESTORE DATABASE ” on page 100

Performing a redirected restore using an automatically generated

script

 When you perform a redirected restore operation, you need to specify the locations

of physical containers stored in the backup image and provide the complete set of

containers for each table space that will be altered. Use the following procedure to

generate a redirected restore script based on an existing backup image, modify the

generated script, then run the script to perform the redirected restore.

 Prerequisites:

 You can perform a redirected restore only if the database has been previously

backed up using the DB2 backup utility.

 Restrictions:

v If the database exists, you must be able to connect to it in order to generate the

script. Therefore, if the database requires migration or crash recovery this must

be done before you attempt to generate a redirected restore script.

v If you are working in a partitioned database environment, and the target

database does not exist, you cannot run the command to generate the redirected

restore script concurrently on all database partitions. Instead, the command to

generate the redirected restore script must be run one database partition at a

time, starting from the catalog partition.

Alternatively, you can first create a dummy database with the same name as

your target database. After the dummy database has been created, you can then

generate the redirected restore script concurrently on all database partitions.

Chapter 3. Database restore 99

DB2 9 BETA

v Even if you specify the REPLACE EXISTING option when you issue the

RESTORE command to generate the script, the REPLACE EXISTING option will

appear in the script commented out.

v For security reasons, your password will not appear in the generated script. You

need to fill in the password manually.

v You cannot generate a script for redirected restore using the Restore Wizard in

the Control Center.

 Procedure:

 To perform a redirected restore using a script:

1. Use the restore utility to generate a redirected restore script. The restore utility

can be invoked through the command line processor (CLP) or the db2Restore

application programming interface (API). The following is an example of the

RESTORE DATABASE command with the REDIRECT option and the

GENERATE SCRIPT option:

 db2 restore db test from /home/jseifert/backups taken at 20050304090733

 redirect generate script test_node0000.clp

This creates a redirected restore script on the client called test_node0000.clp.

2. Open the redirected restore script in a text editor to make any modifications

that are required. You can modify:

v Restore options

v Automatic storage paths

v Container layout and paths
3. Run the modified redirected restore script. For example:

 db2 -tvf test_node0000.clp

 Related concepts:

v “Redefine table space containers by restoring a database using an automatically

generated script” on page 97

v “Redefining table space containers during a restore operation (redirected

restore)” on page 94

 Related reference:

v “db2Restore - Restore a database or table space” on page 115

v “RESTORE DATABASE ” on page 100

RESTORE DATABASE

The RESTORE DATABASE command recreates a damaged or corrupted database

that has been backed up using the DB2 backup utility. The restored database is in

the same state that it was in when the backup copy was made. This utility can also

overwrite a database with a different image or restore the backup copy to a new

database.

For information on the restore operations supported by DB2 database systems

between different operating systems and hardware platforms, see ″Backup and

restore operations between different operating systems and hardware platforms″ in

the Related concepts section.

RESTORE DATABASE

100 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

The restore utility can also be used to restore backup images that were produced

on DB2 UDB Verson 8. If a migration is required, it will be invoked automatically

at the end of the restore operation.

If, at the time of the backup operation, the database was enabled for rollforward

recovery, the database can be brought to its previous state by invoking the

rollforward utility after successful completion of a restore operation.

This utility can also restore a table space level backup.

Incremental images and images only capturing differences from the time of the

previous capture (called a “delta image”) cannot be restored when there is a

difference in operating systems or word size (32-bit or 64-bit).

Following a successful restore operation from one environment to a different

environment, no incremental or delta backups are allowed until a non-incremental

backup is taken. (This is not a limitation following a restore operation within the

same environment.)

Even with a successful restore operation from one environment to a different

environment, there are some considerations: packages must be rebound before use

(using the BIND command, the REBIND command, or the db2rbind utility); SQL

procedures must be dropped and re-created; and all external libraries must be

rebuilt on the new platform. (These are not considerations when restoring to the

same environment.)

 Scope:

 This command only affects the node on which it is executed.

 Authorization:

 To restore to an existing database, one of the following:

v sysadm

v sysctrl

v sysmaint

To restore to a new database, one of the following:

v sysadm

v sysctrl

 Required connection:

 The required connection will vary based on the type of restore action:

v You require a database connection, to restore to an existing database. This

command automatically establishes an exclusive connection to the specified

database.

v You require an instance and a database connection, to restore to a new database.

The instance attachment is required to create the database.

To restore to a new database at an instance different from the current instance, it

is necessary to first attach to the instance where the new database will reside.

The new instance can be local or remote. The current instance is defined by the

value of the DB2INSTANCE environment variable.

RESTORE DATABASE

Chapter 3. Database restore 101

DB2 9 BETA

Command syntax:

�� RESTORE DATABASE

DB
 source-database-alias restore-options

CONTINUE

ABORT

 ��

restore-options:

USER

username

USING

password

 �

�

�

REBUILD WITH

ALL TABLESPACES IN DATABASE

ALL TABLESPACES IN IMAGE

EXCEPT

rebuild-tablespace-clause

rebuild-tablespace-clause

TABLESPACE

,

ONLINE

(

tablespace-name

)

HISTORY FILE

COMPRESSION LIBRARY

LOGS

 �

�
INCREMENTAL

AUTO

AUTOMATIC

ABORT

 �

�

�

USE

TSM

XBSA

OPTIONS

″options-string″

OPEN

num-sessions

SESSIONS

@

file-name

,

FROM

directory

device

LOAD

shared-library

OPTIONS

″options-string″

OPEN

num-sessions

SESSIONS

@

file-name

 �

�
TAKEN AT

date-time

TO

target-directory

DBPATH ON

target-directory

ON

path-list

DBPATH ON

target-directory

 �

�
INTO

target-database-alias

LOGTARGET

directory

NEWLOGPATH

directory
 �

�
WITH

num-buffers

BUFFERS

BUFFER

buffer-size

DLREPORT

filename
 �

�
REPLACE HISTORY FILE

REPLACE EXISTING

REDIRECT

GENERATE SCRIPT

script

 �

�
PARALLELISM

n

COMPRLIB

name

COMPROPTS

string

WITHOUT ROLLING FORWARD
 �

�
WITHOUT DATALINK

WITHOUT PROMPTING

rebuild-tablespace-clause:

�

 ,

TABLESPACE

(

tablespace-name

)

 Command parameters:

DATABASE source-database-alias

Alias of the source database from which the backup was taken.

RESTORE DATABASE

102 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

CONTINUE

Specifies that the containers have been redefined, and that the final step in

a redirected restore operation should be performed.

ABORT

This parameter:

v Stops a redirected restore operation. This is useful when an error has

occurred that requires one or more steps to be repeated. After RESTORE

DATABASE with the ABORT option has been issued, each step of a

redirected restore operation must be repeated, including RESTORE

DATABASE with the REDIRECT option.

v Terminates an incremental restore operation before completion.

USER username

Identifies the user name under which the database is to be restored.

USING password

The password used to authenticate the user name. If the password is

omitted, the user is prompted to enter it.

REBUILD WITH ALL TABLESPACES IN DATABASE

Restores the database with all the table spaces known to the database at

the time of the image being restored. This restore overwrites a database if

it already exists.

REBUILD WITH ALL TABLESPACES IN DATABASE EXCEPT

rebuild-tablespace-clause

Restores the database with all the table spaces known to the database at

the time of the image being restored except for those specified in the list.

This restore overwrites a database if it already exists.

REBUILD WITH ALL TABLESPACES IN IMAGE

Restores the database with only the table spaces in the image being

restored. This restore overwrites a database if it already exists.

REBUILD WITH ALL TABLESPACES IN IMAGE EXCEPT rebuild-tablespace-
clause Restores the database with only the table spaces in the image being

restored except for those specified in the list. This restore overwrites a

database if it already exists.

REBUILD WITH rebuild-tablespace-clause

Restores the database with only the list of table spaces specified. This

restore overwrites a database if it already exists.

TABLESPACE tablespace-name

A list of names used to specify the table spaces that are to be restored.

ONLINE

This keyword, applicable only when performing a table space-level restore

operation, is specified to allow a backup image to be restored online. This

means that other agents can connect to the database while the backup

image is being restored, and that the data in other table spaces will be

available while the specified table spaces are being restored.

HISTORY FILE

This keyword is specified to restore only the history file from the backup

image.

COMPRESSION LIBRARY

This keyword is specified to restore only the compression library from the

RESTORE DATABASE

Chapter 3. Database restore 103

DB2 9 BETA

backup image. If the object exists in the backup image, it will be restored

into the database directory. If the object does not exist in the backup image,

the restore operation will fail.

LOGS This keyword is specified to restore only the set of log files contained in

the backup image. If the backup image does not contain any log files, the

restore operation will fail. If this option is specified, the LOGTARGET

option must also be specified.

INCREMENTAL

Without additional parameters, INCREMENTAL specifies a manual

cumulative restore operation. During manual restore the user must issue

each restore command manually for each image involved in the restore. Do

so according to the following order: last, first, second, third and so on up

to and including the last image.

INCREMENTAL AUTOMATIC/AUTO

Specifies an automatic cumulative restore operation.

INCREMENTAL ABORT

Specifies abortion of an in-progress manual cumulative restore operation.

USE TSM

Specifies that the database is to be restored from TSM-managed output.

OPTIONS

″options-string″

Specifies options to be used for the restore operation.The string

will be passed to the vendor support library, for example TSM,

exactly as it was entered, without the quotes. Specifying this option

overrides the value specified by the VENDOROPT database

configuration parameter.

@file-name

Specifies that the options to be used for the restore operation are

contained in a file located on the DB2 server. The string will be

passed to the vendor support library, for example TSM. The file

must be a fully qualified file name.

OPEN num-sessions SESSIONS

Specifies the number of I/O sessions that are to be used with TSM or the

vendor product.

USE XBSA

Specifies that the XBSA interface is to be used. Backup Services APIs

(XBSA) are an open application programming interface for applications or

facilities needing data storage management for backup or archiving

purposes.

FROM directory/device

The fully qualified path name of the directory or device on which the

backup image resides. If USE TSM, FROM, and LOAD are omitted, the

default value is the current working directory of the client machine. This

target directory or device must exist on the target server/instance.

 On Windows operating systems, the specified directory must not be a

DB2-generated directory. For example, given the following commands:

 db2 backup database sample to c:\backup

 db2 restore database sample from c:\backup

RESTORE DATABASE

104 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Using these commands, the DB2 database system generates subdirectories

under the c:\backup directory to allow more than one backup to be placed

in the specified top level directory. The DB2 generated subdirectories

should be ignored. To specify precisely which backup image to restore, use

the TAKEN AT parameter. There can be several backup images stored on

the same path.

 If several items are specified, and the last item is a tape device, the user is

prompted for another tape. Valid response options are:

c Continue. Continue using the device that generated the warning

message (for example, continue when a new tape has been

mounted).

d Device terminate. Stop using only the device that generated the

warning message (for example, terminate when there are no more

tapes).

t Terminate. Abort the restore operation after the user has failed to

perform some action requested by the utility.

LOAD shared-library

The name of the shared library (DLL on Windows operating systems)

containing the vendor backup and restore I/O functions to be used. The

name can contain a full path. If the full path is not given, the value

defaults to the path on which the user exit program resides.

TAKEN AT date-time

The time stamp of the database backup image. The time stamp is

displayed after successful completion of a backup operation, and is part of

the path name for the backup image. It is specified in the form

yyyymmddhhmmss. A partial time stamp can also be specified. For example,

if two different backup images with time stamps 20021001010101 and

20021002010101 exist, specifying 20021002 causes the image with time

stamp 20021002010101 to be used. If a value for this parameter is not

specified, there must be only one backup image on the source media.

TO target-directory

This parameter states the target database directory. This parameter is

ignored if the utility is restoring to an existing database. The drive and

directory that you specify must be local. If the backup image contains a

database that is enabled for automatic storage then only the database

directory changes, the storage paths associated with the database do not

change.

DBPATH ON target-directory

This parameter states the target database directory. This parameter is

ignored if the utility is restoring to an existing database. The drive and

directory that you specify must be local. If the backup image contains a

database that is enabled for automatic storage and the ON parameter is not

specified then this parameter is synonymous with the TO parameter and

only the database directory changes, the storage paths associated with the

database do not change.

ON path-list

This parameter redefines the storage paths associated with an automatic

storage database. Using this parameter with a database that is not enabled

for automatic storage results in an error (SQL20321N). The existing storage

paths as defined within the backup image are no longer used and

automatic storage table spaces are automatically redirected to the new

RESTORE DATABASE

Chapter 3. Database restore 105

DB2 9 BETA

paths. If this parameter is not specified for an automatic storage database

then the storage paths remain as they are defined within the backup

image.

 One or more paths can be specified, each separated by a comma. Each path

must have an absolute path name and it must exist locally. If the database

does not already exist on disk and the DBPATH ON parameter is not

specified then the first path is used as the target database directory.

 For a multi-partition database the ON path-list option can only be specified

on the catalog partition. The catalog partition must be restored before any

other partitions are restored when the ON option is used. The restore of

the catalog-partition with new storage paths will place all non-catalog

nodes in a RESTORE_PENDING state. The non-catalog nodes can then be

restored in parallel without specifying the ON clause in the restore

command.

 In general, the same storage paths must be used for each partition in a

multi-partition database and they must all exist prior to executing the

RESTORE DATABASE command. One exception to this is where database

partition expressions are used within the storage path. Doing this allows

the database partition number to be reflected in the storage path such that

the resulting path name is different on each partition.

 You use the argument “ $N” ([blank]$N) to indicate a database partition

expression. A database partition expression can be used anywhere in the

storage path, and multiple database partition expressions can be specified.

Terminate the database partition expression with a space character;

whatever follows the space is appended to the storage path after the

database partition expression is evaluated. If there is no space character in

the storage path after the database partition expression, it is assumed that

the rest of the string is part of the expression. The argument can only be

used in one of the following forms:

 Table 2. . Operators are evaluated from left to right. % represents the modulus operator. The

database partition number in the examples is assumed to be 10.

Syntax Example Value

[blank]$N " $N" 10

[blank]$N+[number] " $N+100" 110

[blank]$N%[number] " $N%5" 0

[blank]$N+[number]%[number] " $N+1%5" 1

[blank]$N%[number]+[number] " $N%4+2" 4

a % is modulus.

INTO target-database-alias

The target database alias. If the target database does not exist, it is created.

 When you restore a database backup to an existing database, the restored

database inherits the alias and database name of the existing database.

When you restore a database backup to a nonexistent database, the new

database is created with the alias and database name that you specify. This

new database name must be unique on the system where you restore it.

LOGTARGET directory

The absolute path name of an existing directory on the database server, to

be used as the target directory for extracting log files from a backup image.

If this option is specified, any log files contained within the backup image

will be extracted into the target directory. If this option is not specified, log

RESTORE DATABASE

106 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

files contained within a backup image will not be extracted. To extract only

the log files from the backup image, specify the LOGS option.

NEWLOGPATH directory

The absolute pathname of a directory that will be used for active log files

after the restore operation. This parameter has the same function as the

newlogpath database configuration parameter, except that its effect is limited

to the restore operation in which it is specified. The parameter can be used

when the log path in the backup image is not suitable for use after the

restore operation; for example, when the path is no longer valid, or is

being used by a different database.

WITH num-buffers BUFFERS

The number of buffers to be used. The DB2 database system will

automatically choose an optimal value for this parameter unless you

explicitly enter a value. A larger number of buffers can be used to improve

performance when multiple sources are being read from, or if the value of

PARALLELISM has been increased.

BUFFER buffer-size

The size, in pages, of the buffer used for the restore operation. The DB2

database system will automatically choose an optimal value for this

parameter unless you explicitly enter a value. The minimum value for this

parameter is 8 pages.

 The restore buffer size must be a positive integer multiple of the backup

buffer size specified during the backup operation. If an incorrect buffer size

is specified, the buffers are allocated to be of the smallest acceptable size.

DLREPORT filename

The file name, if specified, must be specified as an absolute path. Reports

the files that become unlinked, as a result of a fast reconcile, during a

restore operation. This option is only to be used if the table being restored

has a DATALINK column type and linked files.

REPLACE HISTORY FILE

Specifies that the restore operation should replace the history file on disk

with the history file from the backup image.

REPLACE EXISTING

If a database with the same alias as the target database alias already exists,

this parameter specifies that the restore utility is to replace the existing

database with the restored database. This is useful for scripts that invoke

the restore utility, because the command line processor will not prompt the

user to verify deletion of an existing database. If the WITHOUT

PROMPTING parameter is specified, it is not necessary to specify

REPLACE EXISTING, but in this case, the operation will fail if events

occur that normally require user intervention.

REDIRECT

Specifies a redirected restore operation. To complete a redirected restore

operation, this command should be followed by one or more SET

TABLESPACE CONTAINERS commands, and then by a RESTORE

DATABASE command with the CONTINUE option. All commands

associated with a single redirected restore operation must be invoked from

the same window or CLP session. A redirected restore operation cannot be

performed against a table space that has automatic storage enabled.

GENERATE SCRIPT script

Creates a redirect restore script with the specified file name. The script

RESTORE DATABASE

Chapter 3. Database restore 107

DB2 9 BETA

name can be relative or absolute and the script will be generated on the

client side. If the file cannot be created on the client side, an error message

(SQL9304N) will be returned. If the file already exists, it will be

overwritten. Please see the examples below for further usage information.

WITHOUT ROLLING FORWARD

Specifies that the database is not to be put in rollforward pending state

after it has been successfully restored.

 If, following a successful restore operation, the database is in rollforward

pending state, the ROLLFORWARD command must be invoked before the

database can be used again.

 If this option is specified when restoring from an online backup image,

error SQL2537N will be returned.

 If backup image is of a recoverable database then WITHOUT ROLLING

FORWARD cannot be specified with REBUILD option.

WITHOUT DATALINK

Specifies that any tables with DATALINK columns are to be put in

DataLink_Reconcile_Pending (DRP) state, and that no reconciliation of

linked files is to be performed.

PARALLELISM n

Specifies the number of buffer manipulators that are to be created during

the restore operation. The DB2 database system will automatically choose

an optimal value for this parameter unless you explicitly enter a value.

COMPRLIB name

Indicates the name of the library to be used to perform the decompression.

The name must be a fully qualified path referring to a file on the server. If

this parameter is not specified, DB2 will attempt to use the library stored

in the image. If the backup was not compressed, the value of this

parameter will be ignored. If the specified library cannot be loaded, the

restore operation will fail.

COMPROPTS string

Describes a block of binary data that is passed to the initialization routine

in the decompression library. The DB2 database system passes this string

directly from the client to the server, so any issues of byte reversal or code

page conversion are handled by the decompression library. If the first

character of the data block is “@”, the remainder of the data is interpreted

by the DB2 database system as the name of a file residing on the server.

The DB2 database system will then replace the contents of string with the

contents of this file and pass the new value to the initialization routine

instead. The maximum length for the string is 1 024 bytes.

WITHOUT PROMPTING

Specifies that the restore operation is to run unattended. Actions that

normally require user intervention will return an error message. When

using a removable media device, such as tape or diskette, the user is

prompted when the device ends, even if this option is specified.

 Examples:

1. In the following example, the database WSDB is defined on all 4 database

partitions, numbered 0 through 3. The path /dev3/backup is accessible from all

database partitions. The following offline backup images are available from

/dev3/backup:

RESTORE DATABASE

108 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

wsdb.0.db2inst1.NODE0000.CATN0000.20020331234149.001

 wsdb.0.db2inst1.NODE0001.CATN0000.20020331234427.001

 wsdb.0.db2inst1.NODE0002.CATN0000.20020331234828.001

 wsdb.0.db2inst1.NODE0003.CATN0000.20020331235235.001

To restore the catalog partition first, then all other database partitions of the

WSDB database from the /dev3/backup directory, issue the following

commands from one of the database partitions:

 db2_all ’<<+0< db2 RESTORE DATABASE wsdb FROM /dev3/backup

 TAKEN AT 20020331234149

 INTO wsdb REPLACE EXISTING’

 db2_all ’<<+1< db2 RESTORE DATABASE wsdb FROM /dev3/backup

 TAKEN AT 20020331234427

 INTO wsdb REPLACE EXISTING’

 db2_all ’<<+2< db2 RESTORE DATABASE wsdb FROM /dev3/backup

 TAKEN AT 20020331234828

 INTO wsdb REPLACE EXISTING’

 db2_all ’<<+3< db2 RESTORE DATABASE wsdb FROM /dev3/backup

 TAKEN AT 20020331235235

 INTO wsdb REPLACE EXISTING’

The db2_all utility issues the restore command to each specified database

partition. When performing a restore using db2_all, you should always specify

REPLACE EXISTING and/or WITHOUT PROMPTING. Otherwise, if there is prompting,

the operation will look like it is hanging. This is because db2_all does not

support user prompting.

2. Following is a typical redirected restore scenario for a database whose alias is

MYDB:

a. Issue a RESTORE DATABASE command with the REDIRECT option.

 restore db mydb replace existing redirect

After successful completion of step 1, and before completing step 3, the

restore operation can be aborted by issuing:

 restore db mydb abort

b. Issue a SET TABLESPACE CONTAINERS command for each table space

whose containers must be redefined. For example:

 set tablespace containers for 5 using

 (file ’f:\ts3con1’ 20000, file ’f:\ts3con2’ 20000)

To verify that the containers of the restored database are the ones specified

in this step, issue the LIST TABLESPACE CONTAINERS command.

c. After successful completion of steps 1 and 2, issue:

 restore db mydb continue

This is the final step of the redirected restore operation.

d. If step 3 fails, or if the restore operation has been aborted, the redirected

restore can be restarted, beginning at step 1.
3. Following is a sample weekly incremental backup strategy for a recoverable

database. It includes a weekly full database backup operation, a daily

non-cumulative (delta) backup operation, and a mid-week cumulative

(incremental) backup operation:

 (Sun) backup db mydb use tsm

 (Mon) backup db mydb online incremental delta use tsm

 (Tue) backup db mydb online incremental delta use tsm

 (Wed) backup db mydb online incremental use tsm

RESTORE DATABASE

Chapter 3. Database restore 109

DB2 9 BETA

(Thu) backup db mydb online incremental delta use tsm

 (Fri) backup db mydb online incremental delta use tsm

 (Sat) backup db mydb online incremental use tsm

For an automatic database restore of the images created on Friday morning,

issue:

 restore db mydb incremental automatic taken at (Fri)

For a manual database restore of the images created on Friday morning, issue:

 restore db mydb incremental taken at (Fri)

 restore db mydb incremental taken at (Sun)

 restore db mydb incremental taken at (Wed)

 restore db mydb incremental taken at (Thu)

 restore db mydb incremental taken at (Fri)

4. To produce a backup image, which includes logs, for transportation to a remote

site:

 backup db sample online to /dev3/backup include logs

To restore that backup image, supply a LOGTARGET path and specify this path

during ROLLFORWARD:

 restore db sample from /dev3/backup logtarget /dev3/logs

 rollforward db sample to end of logs and stop overflow log path /dev3/logs

5. To retrieve only the log files from a backup image that includes logs:

 restore db sample logs from /dev3/backup logtarget /dev3/logs

6. The USE TSM OPTIONS keywords can be used to specify the TSM information

to use for the restore operation. On Windows platforms, omit the -fromowner

option.

v Specifying a delimited string:

restore db sample use TSM options ’"-fromnode=bar -fromowner=dmcinnis"’

v Specifying a fully qualified file:

restore db sample use TSM options @/u/dmcinnis/myoptions.txt

The file myoptions.txt contains the following information: -fromnode=bar

-fromowner=dmcinnis
7. The following is a simple restore of a multi-partition automatic storage enabled

database with new storage paths. The database was originally created with one

storage path, /myPath0:

v On the catalog partition issue: restore db mydb on /myPath1,/myPath2

v On all non-catalog partitions issue: restore db mydb

8. A script output of the following command on a non-auto storage database:

restore db sample from /home/jseifert/backups taken at 20050301100417 redirect

generate script SAMPLE_NODE0000.clp

would look like this:

-- **

-- ** automatically created redirect restore script

-- **

UPDATE COMMAND OPTIONS USING S ON Z ON SAMPLE_NODE0000.out V ON;

SET CLIENT ATTACH_DBPARTITIONNUM 0;

SET CLIENT CONNECT_DBPARTITIONNUM 0;

-- **

-- ** initialize redirected restore

-- **

RESTORE DATABASE SAMPLE

-- USER ‘<username>’

RESTORE DATABASE

110 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

-- USING ‘<password>’

FROM ‘/home/jseifert/backups’

TAKEN AT 20050301100417

-- DBPATH ON ‘<target-directory>’

INTO SAMPLE

-- NEWLOGPATH ‘/home/jseifert/jseifert/NODE0000/SQL00001/SQLOGDIR/’

-- WITH <num-buff> BUFFERS

-- BUFFER <buffer-size>

-- REPLACE HISTORY FILE

-- REPLACE EXISTING

REDIRECT

-- PARALLELISM <n>

-- WITHOUT ROLLING FORWARD

-- WITHOUT PROMPTING

;

-- **

-- ** tablespace definition

-- **

-- **

-- ** Tablespace name = SYSCATSPACE

-- ** Tablespace ID = 0

-- ** Tablespace Type = System managed space

-- ** Tablespace Content Type = Any data

-- ** Tablespace Page size (bytes) = 4096

-- ** Tablespace Extent size (pages) = 32

-- ** Using automatic storage = No

-- ** Total number of pages = 5572

-- **

SET TABLESPACE CONTAINERS FOR 0

-- IGNORE ROLLFORWARD CONTAINER OPERATIONS

USING (

 PATH ‘SQLT0000.0’

);

-- **

-- ** Tablespace name = TEMPSPACE1

-- ** Tablespace ID = 1

-- ** Tablespace Type = System managed space

-- ** Tablespace Content Type = System Temporary data

-- ** Tablespace Page size (bytes) = 4096

-- ** Tablespace Extent size (pages) = 32

-- ** Using automatic storage = No

-- ** Total number of pages = 0

-- **

SET TABLESPACE CONTAINERS FOR 1

-- IGNORE ROLLFORWARD CONTAINER OPERATIONS

USING (

 PATH ‘SQLT0001.0’

);

-- **

-- ** Tablespace name = USERSPACE1

-- ** Tablespace ID = 2

-- ** Tablespace Type = System managed space

-- ** Tablespace Content Type = Any data

-- ** Tablespace Page size (bytes) = 4096

-- ** Tablespace Extent size (pages) = 32

-- ** Using automatic storage = No

-- ** Total number of pages = 1

-- **

SET TABLESPACE CONTAINERS FOR 2

-- IGNORE ROLLFORWARD CONTAINER OPERATIONS

USING (

 PATH ‘SQLT0002.0’

);

-- **

-- ** Tablespace name = DMS

-- ** Tablespace ID = 3

-- ** Tablespace Type = Database managed space

RESTORE DATABASE

Chapter 3. Database restore 111

DB2 9 BETA

-- ** Tablespace Content Type = Any data

-- ** Tablespace Page size (bytes) = 4096

-- ** Tablespace Extent size (pages) = 32

-- ** Using automatic storage = No

-- ** Auto-resize enabled = No

-- ** Total number of pages = 2000

-- ** Number of usable pages = 1960

-- ** High water mark (pages) = 96

-- **

SET TABLESPACE CONTAINERS FOR 3

-- IGNORE ROLLFORWARD CONTAINER OPERATIONS

USING (

 FILE /tmp/dms1 1000

, FILE /tmp/dms2 1000

);

-- **

-- ** Tablespace name = RAW

-- ** Tablespace ID = 4

-- ** Tablespace Type = Database managed space

-- ** Tablespace Content Type = Any data

-- ** Tablespace Page size (bytes) = 4096

-- ** Tablespace Extent size (pages) = 32

-- ** Using automatic storage = No

-- ** Auto-resize enabled = No

-- ** Total number of pages = 2000

-- ** Number of usable pages = 1960

-- ** High water mark (pages) = 96

-- **

SET TABLESPACE CONTAINERS FOR 4

-- IGNORE ROLLFORWARD CONTAINER OPERATIONS

USING (

 DEVICE ‘/dev/hdb1’ 1000

, DEVICE ‘/dev/hdb2’ 1000

);

-- **

-- ** start redirect restore

-- **

RESTORE DATABASE SAMPLE CONTINUE;

-- **

-- ** end of file

-- **

9. A script output of the following command on an automatic storage database:

restore db test from /home/jseifert/backups taken at 20050304090733 redirect

generate script TEST_NODE0000.clp

would look like this:

-- **

-- ** automatically created redirect restore script

-- **

UPDATE COMMAND OPTIONS USING S ON Z ON TEST_NODE0000.out V ON;

SET CLIENT ATTACH_DBPARTITIONNUM 0;

SET CLIENT CONNECT_DBPARTITIONNUM 0;

-- **

-- ** initialize redirected restore

-- **

RESTORE DATABASE TEST

-- USER ‘<username>’

-- USING ‘<password>’

FROM ‘/home/jseifert/backups’

TAKEN AT 20050304090733

ON ‘/home/jseifert’

-- DBPATH ON <target-directory>

INTO TEST

-- NEWLOGPATH ‘/home/jseifert/jseifert/NODE0000/SQL00002/SQLOGDIR/’

-- WITH <num-buff> BUFFERS

RESTORE DATABASE

112 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

-- BUFFER <buffer-size>

-- REPLACE HISTORY FILE

-- REPLACE EXISTING

REDIRECT

-- PARALLELISM <n>

-- WITHOUT ROLLING FORWARD

-- WITHOUT PROMPTING

;

-- **

-- ** tablespace definition

-- **

-- **

-- ** Tablespace name = SYSCATSPACE

-- ** Tablespace ID = 0

-- ** Tablespace Type = Database managed space

-- ** Tablespace Content Type = Any data

-- ** Tablespace Page size (bytes) = 4096

-- ** Tablespace Extent size (pages) = 4

-- ** Using automatic storage = Yes

-- ** Auto-resize enabled = Yes

-- ** Total number of pages = 6144

-- ** Number of usable pages = 6140

-- ** High water mark (pages) = 5968

-- **

-- **

-- ** Tablespace name = TEMPSPACE1

-- ** Tablespace ID = 1

-- ** Tablespace Type = System managed space

-- ** Tablespace Content Type = System Temporary data

-- ** Tablespace Page size (bytes) = 4096

-- ** Tablespace Extent size (pages) = 32

-- ** Using automatic storage = Yes

-- ** Total number of pages = 0

-- **

-- **

-- ** Tablespace name = USERSPACE1

-- ** Tablespace ID = 2

-- ** Tablespace Type = Database managed space

-- ** Tablespace Content Type = Any data

-- ** Tablespace Page size (bytes) = 4096

-- ** Tablespace Extent size (pages) = 32

-- ** Using automatic storage = Yes

-- ** Auto-resize enabled = Yes

-- ** Total number of pages = 256

-- ** Number of usable pages = 224

-- ** High water mark (pages) = 96

-- **

-- **

-- ** Tablespace name = DMS

-- ** Tablespace ID = 3

-- ** Tablespace Type = Database managed space

-- ** Tablespace Content Type = Any data

-- ** Tablespace Page size (bytes) = 4096

-- ** Tablespace Extent size (pages) = 32

-- ** Using automatic storage = No

-- ** Auto-resize enabled = No

-- ** Total number of pages = 2000

-- ** Number of usable pages = 1960

-- ** High water mark (pages) = 96

-- **

SET TABLESPACE CONTAINERS FOR 3

-- IGNORE ROLLFORWARD CONTAINER OPERATIONS

USING (

 FILE ‘/tmp/dms1’ 1000

, FILE ‘/tmp/dms2’ 1000

);

-- **

RESTORE DATABASE

Chapter 3. Database restore 113

DB2 9 BETA

-- ** Tablespace name = RAW

-- ** Tablespace ID = 4

-- ** Tablespace Type = Database managed space

-- ** Tablespace Content Type = Any data

-- ** Tablespace Page size (bytes) = 4096

-- ** Tablespace Extent size (pages) = 32

-- ** Using automatic storage = No

-- ** Auto-resize enabled = No

-- ** Total number of pages = 2000

-- ** Number of usable pages = 1960

-- ** High water mark (pages) = 96

-- **

SET TABLESPACE CONTAINERS FOR 4

-- IGNORE ROLLFORWARD CONTAINER OPERATIONS

USING (

 DEVICE ‘/dev/hdb1’ 1000

, DEVICE ‘/dev/hdb2’ 1000

);

-- **

-- ** start redirect restore

-- **

RESTORE DATABASE TEST CONTINUE;

-- **

-- ** end of file

-- **

 Usage notes:

v A RESTORE DATABASE command of the form db2 restore db <name> will

perform a full database restore with a database image and will perform a table

space restore operation of the table spaces found in a table space image. A

RESTORE DATABASE command of the form db2 restore db <name> tablespace

performs a table space restore of the table spaces found in the image. In

addition, if a list of table spaces is provided with such a command, the explicitly

listed table spaces are restored.

v Following the restore operation of an online backup, you must perform a

roll-forward recovery.

v If a backup image is compressed, the DB2 database system detects this and

automatically decompresses the data before restoring it. If a library is specified

on the db2Restore API, it is used for decompressing the data. Otherwise, a check

is made to see if a library is stored in the backup image and if it exists it is used.

Finally, if there is not library stored in the backup image, the data cannot be

decompressed and the restore operation fails.

v If the compression library is to be restored from a backup image (either

explicitly by specifying the COMPRESSION LIBRARY option or implicitly by

performing a normal restore of a compressed backup), the restore operation

must be done on the same platform and operating system that the backup was

taken on. If the platform the backup was taken on is not the same as the

platform that the restore is being done on, the restore operation will fail, even if

DB2 normally supports cross-platform restores involving the two systems.

v To restore log files from the backup image that contains them, the LOGTARGET

option must be specified, providing the fully qualified and valid path that exists

on the DB2 server. If those conditions are satisfied, the restore utility will write

the log files from the image to the target path. If a LOGTARGET is specified

during a restore of a backup image that does not include logs, the restore

oepration will return an error before attempting to restore any table space data.

A restore operation will also fail with an error if an invalid, or read-only,

LOGTARGET path is specified.

RESTORE DATABASE

114 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

v If any log files exist in the LOGTARGET path at the time the RESTORE

DATABASE command is issued, a warning prompt will be returned to the user.

This warning will not be returned if WITHOUT PROMPTING is specified.

v During a restore operation where a LOGTARGET is specified, if any log file

cannot be extracted, the restore operation will fail and return an error. If any of

the log files being extracted from the backup image have the same name as an

existing file in the LOGTARGET path, the restore operation will fail and an error

will be returned. The restore database utility will not overwrite existing log files

in the LOGTARGET directory.

v You can also restore only the saved log set from a backup image. To indicate

that only the log files are to be restored, specify the LOGS option in addition to

the LOGTARGET path. Specifying the LOGS option without a LOGTARGET

path will result in an error. If any problem occurs while restoring log files in this

mode of operation, the restore operation will terminate immediately and an

error will be returned.

v During an automatic incremental restore operation, only the log files included in

the target image of the restore operation will be retrived from the backup image.

Any log files included in intermediate images referenced during the incremental

restore process will not be extracted from those intermediate backup images.

During a manual incremental restore operation, the LOGTARGET path should

only be specified with the final restore command to be issued.

v A backup targeted to be restored to another operating system or another DB2

database version must be an offline backup, and cannot be a delta or an

incremental backup image. The same is true for backups to be restored to a later

DB2 database version.

 Related concepts:

v “Backup and restore operations between different operating systems and

hardware platforms” on page 9

v “Developing a backup and recovery strategy” on page 3

 Related tasks:

v “Using restore” on page 90

 Related reference:

v “CREATE DATABASE command” in Command Reference

v “db2move - Database movement tool command” in Command Reference

db2Restore - Restore a database or table space

 Recreates a damaged or corrupted database that has been backed up using the

db2Backup API. The restored database is in the same state it was in when the

backup copy was made. This utility can also restore to a database with a name

different from the database name in the backup image (in addition to being able to

restore to a new database).

This utility can also be used to restore DB2 databases created in the two previous

releases.

This utility can also restore from a table space level backup, or restore table spaces

from within a database backup image.

 Scope:

RESTORE DATABASE

Chapter 3. Database restore 115

DB2 9 BETA

This API only affects the database partition from which it is called.

 Authorization:

 To restore to an existing database, one of the following:

v sysadm

v sysctrl

v sysmaint

To restore to a new database, one of the following:

v sysadm

v sysctrl

 Required connection:

 Database, to restore to an existing database. This API automatically establishes a

connection to the specified database and will release the connection when the

restore operation finishes.

Instance and database, to restore to a new database. The instance attachment is

required to create the database.

To restore to a new database at an instance different from the current instance (as

defined by the value of the DB2INSTANCE environment variable), it is necessary to

first attach to the instance where the new database will reside.

 API include file:

db2ApiDf.h

 API and data structure syntax:

SQL_API_RC SQL_API_FN

 db2Restore (

 db2Uint32 versionNumber,

 void * pDB2RestoreStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2RestoreStruct

{

 char *piSourceDBAlias;

 char *piTargetDBAlias;

 char oApplicationId[SQLU_APPLID_LEN+1];

 char *piTimestamp;

 char *piTargetDBPath;

 char *piReportFile;

 struct db2TablespaceStruct *piTablespaceList;

 struct db2MediaListStruct *piMediaList;

 char *piUsername;

 char *piPassword;

 char *piNewLogPath;

 void *piVendorOptions;

 db2Uint32 iVendorOptionsSize;

 db2Uint32 iParallelism;

 db2Uint32 iBufferSize;

 db2Uint32 iNumBuffers;

 db2Uint32 iCallerAction;

 db2Uint32 iOptions;

 char *piComprLibrary;

db2Restore - Restore a database or table space

116 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

void *piComprOptions;

 db2Uint32 iComprOptionsSize;

 char *piLogTarget;

 struct db2StoragePathsStruct *piStoragePaths;

 char *piRedirectScript;

} db2RestoreStruct;

typedef SQL_STRUCTURE db2TablespaceStruct

{

 char **tablespaces;

 db2Uint32 numTablespaces;

} db2TablespaceStruct;

typedef SQL_STRUCTURE db2MediaListStruct

{

 char **locations;

 db2Uint32 numLocations;

 char locationType;

} db2MediaListStruct;

typedef SQL_STRUCTURE db2StoragePathsStruct

{

 char **storagePaths;

 db2Uint32 numStoragePaths;

} db2StoragePathsStruct;

SQL_API_RC SQL_API_FN

 db2gRestore (

 db2Uint32 versionNumber,

 void * pDB2gRestoreStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gRestoreStruct

{

 char *piSourceDBAlias;

 db2Uint32 iSourceDBAliasLen;

 char *piTargetDBAlias;

 db2Uint32 iTargetDBAliasLen;

 char *poApplicationId;

 db2Uint32 iApplicationIdLen;

 char *piTimestamp;

 db2Uint32 iTimestampLen;

 char *piTargetDBPath;

 db2Uint32 iTargetDBPathLen;

 char *piReportFile;

 db2Uint32 iReportFileLen;

 struct db2gTablespaceStruct *piTablespaceList;

 struct db2gMediaListStruct *piMediaList;

 char *piUsername;

 db2Uint32 iUsernameLen;

 char *piPassword;

 db2Uint32 iPasswordLen;

 char *piNewLogPath;

 db2Uint32 iNewLogPathLen;

 void *piVendorOptions;

 db2Uint32 iVendorOptionsSize;

 db2Uint32 iParallelism;

 db2Uint32 iBufferSize;

 db2Uint32 iNumBuffers;

 db2Uint32 iCallerAction;

 db2Uint32 iOptions;

 char *piComprLibrary;

 db2Uint32 iComprLibraryLen;

 void *piComprOptions;

 db2Uint32 iComprOptionsSize;

 char *piLogTarget;

 db2Uint32 iLogTargetLen;

db2Restore - Restore a database or table space

Chapter 3. Database restore 117

DB2 9 BETA

struct db2gStoragePathsStruct *piStoragePaths;

 char *piRedirectScript;

 db2Uint32 iRedirectScriptLen;

} db2gRestoreStruct;

typedef SQL_STRUCTURE db2gTablespaceStruct

{

 struct db2Char *tablespaces;

 db2Uint32 numTablespaces;

} db2gTablespaceStruct;

typedef SQL_STRUCTURE db2gMediaListStruct

{

 struct db2Char *locations;

 db2Uint32 numLocations;

 char locationType;

} db2gMediaListStruct;

typedef SQL_STRUCTURE db2gStoragePathsStruct

{

 struct db2Char *storagePaths;

 db2Uint32 numStoragePaths;

} db2gStoragePathsStruct;

typedef SQL_STRUCTURE db2Char

{

 char *pioData;

 db2Uint32 iLength;

 db2Uint32 oLength;

} db2Char;

 db2Restore API parameters:

 versionNumber

Input. Specifies the version and release level of the structure passed as the

second parameter pDB2RestoreStruct.

pDB2RestoreStruct

Input. A pointer to the db2RestoreStruct structure.

pSqlca

Output. A pointer to the sqlca structure.

 db2RestoreStruct data structure parameters:

 piSourceDBAlias

Input. A string containing the database alias of the source database backup

image.

piTargetDBAlias

Input. A string containing the target database alias. If this parameter is

null, the value of the piSourceDBAlias parameter will be used.

oApplicationId

Output. The API will return a string identifying the agent servicing the

application. Can be used to obtain information about the progress of the

backup operation using the database monitor.

piTimestamp

Input. A string representing the time stamp of the backup image. This field

is optional if there is only one backup image in the source specified.

piTargetDBPath

Input. A string containing the relative or fully qualified name of the target

db2Restore - Restore a database or table space

118 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

database directory on the server. Used if a new database is to be created

for the restored backup; otherwise not used.

piReportFile

Input. The file name, if specified, must be fully qualified. The datalinks

files that become unlinked during a restore (as a result of a fast reconcile)

will be reported.

piTablespaceList

Input. List of table spaces to be restored. Used when restoring a subset of

table spaces from a database or table space backup image. For rebuild

cases, this can be an include list or exclude list of table spaces used to

rebuild your database. See the DB2TablespaceStruct structure. The

following restrictions apply:

v The database must be recoverable (for non-rebuild cases only); that is,

log retain or user exits must be enabled.

v The database being restored to must be the same database that was

used to create the backup image. That is, table spaces can not be added

to a database through the table space restore function.

v The rollforward utility will ensure that table spaces restored in a

partitioned database environment are synchronized with any other

database partition containing the same table spaces. If a table space

restore operation is requested and the piTablespaceList is NULL, the

restore utility will attempt to restore all of the table spaces in the backup

image.

v When restoring a table space that has been renamed since it was backed

up, the new table space name must be used in the restore command. If

the old table space name is used, it will not be found.

v In the case of rebuild, the list must be given for 3 of the 5 rebuild types:

DB2RESTORE_ALL_TBSP_IN_DB_EXC, DB2RESTORE_ALL_TBSP_IN_IMG_EXC and

DB2RESTORE_ALL_TBSP_IN_LIST

piMediaList

Input. Source media for the backup image. The information provided

depends on the value of the locationType parameter. The valid values for

locationType parameter (defined in sqlutil header file, located in the

include directory) are:

v SQLU_LOCAL_MEDIA - Local devices (a combination of tapes, disks, or

diskettes).

v SQLU_XBSA_MEDIA - XBSA interface. Backup Services APIs (XBSA) are an

open application programming interface for applications or facilities

needing data storage management for backup or archiving purposes.

v SQLU_TSM_MEDIA - TSM. If the locations pointer is set to NULL, the TSM

shared library provided with DB2 is used. If a different version of the

TSM shared library is desired, use SQLU_OTHER_MEDIA and provide

the shared library name.

v SQLU_OTHER_MEDIA - Vendor product. Provide the shared library name in

the locations field.

v SQLU_USER_EXIT - User exit. No additional input is required (only

available when server is on OS/2).

piUsername

Input. A string containing the user name to be used when attempting a

connection. Can be NULL.

db2Restore - Restore a database or table space

Chapter 3. Database restore 119

DB2 9 BETA

piPassword

Input. A string containing the password to be used with the user name.

Can be NULL.

piNewLogPath

Input. A string representing the path to be used for logging after the

restore has completed. If this field is null the default log path will be used.

piVendorOptions

Input. Used to pass information from the application to the vendor

functions. This data structure must be flat; that is, no level of indirection is

supported. Note that byte-reversal is not done, and the code page is not

checked for this data.

iVendorOptionsSize

Input. The length in bytes of the piVendorOptions parameter, which cannot

exceed 65535 bytes.

iParallelism

Input. Degree of parallelism (number of buffer manipulators). Minimum is

1. Maximum is 1024.

iBufferSize

Input. Backup buffer size in 4 KB allocation units (pages). Minimum is 8

units. The size entered for a restore must be equal to or an integer multiple

of the buffer size used to produce the backup image.

iNumBuffers

Input. Specifies number of restore buffers to be used.

iCallerAction

Input. Specifies action to be taken. Valid values (defined in db2ApiDf

header file, located in the include directory) are:

v DB2RESTORE_RESTORE - Start the restore operation.

v DB2RESTORE_NOINTERRUPT - Start the restore. Specifies that the restore will

run unattended, and that scenarios which normally require user

intervention will either be attempted without first returning to the caller,

or will generate an error. Use this caller action, for example, if it is

known that all of the media required for the restore have been mounted,

and utility prompts are not desired.

v DB2RESTORE_CONTINUE - Continue the restore after the user has

performed some action requested by the utility (mount a new tape, for

example).

v DB2RESTORE_TERMINATE - Terminate the restore after the user has failed to

perform some action requested by the utility.

v DB2RESTORE_DEVICE_TERMINATE - Remove a particular device from the list

of devices used by restore. When a particular device has exhausted its

input, restore will return a warning to the caller. Call restore again with

this caller action to remove the device which generated the warning

from the list of devices being used.

v DB2RESTORE_PARM_CHK - Used to validate parameters without performing

a restore. This option does not terminate the database connection after

the call returns. After a successful return of this call, it is expected that

the user will issue another call to this API with the iCallerAction

parameter set to the value DB2RESTORE_CONTINUE to continue with

the restore.

db2Restore - Restore a database or table space

120 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

v DB2RESTORE_PARM_CHK_ONLY - Used to validate parameters without

performing a restore. Before this call returns, the database connection

established by this call is terminated, and no subsequent call is required.

v DB2RESTORE_TERMINATE_INCRE - Terminate an incremental restore

operation before completion.

v DB2RESTORE_RESTORE_STORDEF - Initial call. Table space container

redefinition requested.

v DB2RESTORE_STORDEF_NOINTERRUPT - Initial call. The restore will run

uninterrupted. Table space container redefinition requested.

iOptions

Input. A bitmap of restore properties. The options are to be combined

using the bitwise OR operator to produce a value for iOptions. Valid

values (defined in db2ApiDf header file, located in the include directory)

are:

v DB2RESTORE_OFFLINE - Perform an offline restore operation.

v DB2RESTORE_ONLINE - Perform an online restore operation.

v DB2RESTORE_DB - Restore all table spaces in the database. This must be

run offline.

v DB2RESTORE_TABLESPACE - Restore only the table spaces listed in the

piTablespaceList parameter from the backup image. This can be online

or offline.

v DB2RESTORE_HISTORY - Restore only the history file.

v DB2RESTORE_COMPR_LIB - Indicates that the compression library is to be

restored. This option cannot be used simultaneously with any other type

of restore process. If the object exists in the backup image, it will be

restored into the database directory. If the object does not exist in the

backup image, the restore operation will fail.

v DB2RESTORE_LOGS - Specifies that only the set of log files contained in the

backup image are to be restored. If the backup image does not include

log files, the restore operation will fail. If this option is specified, the

piLogTarget parameter must also be specified.

v DB2RESTORE_INCREMENTAL - Perform a manual cumulative restore

operation.

v DB2RESTORE_AUTOMATIC - Perform an automatic cumulative (incremental)

restore operation. Must be specified with

DB2RESTORE_INCREMENTAL.

v DB2RESTORE_DATALINK - Perform reconciliation operations. Tables with a

defined DATALINK column must have RECOVERY YES option

specified.

v DB2RESTORE_NODATALINK - Do not perform reconciliation operations.

Tables with DATALINK data type columns are placed into

DataLink_Roconcile_pending (DRP) state. Tables with a defined

DATALINK column must have the RECOVERY YES option specified.

v DB2RESTORE_ROLLFWD - Place the database in rollforward pending state

after it has been successfully restored.

v DB2RESTORE_NOROLLFWD - Do not place the database in rollforward

pending state after it has been successfully restored. This cannot be

specified for backups taken online or for table space level restores. If,

following a successful restore, the database is in roll-forward pending

state, the db2Rollforward API must be called before the database can be

used.

db2Restore - Restore a database or table space

Chapter 3. Database restore 121

DB2 9 BETA

v DB2RESTORE_GENERATE_SCRIPT - Create a script, that can be used to

perform a redirected restore. piRedirectScript must contain a valid file

name. The iCallerAction need to be either

DB2RESTORE_RESTORE_STORDEF or

DB2RESTORE_STORDEF_NOINTERRUPT.

The following values should be used for rebuild operations only:

v DB2RESTORE_ALL_TBSP_IN_DB - Restores the database with all the table

spaces known to the database at the time of the image being restored.

This rebuild overwrites a database if it already exists.

v DB2RESTORE_ALL_TBSP_IN_DB_EXC - Restores the database with all the

table spaces known to the database at the time of the image being

restored except for those specified in the list pointed to by the

piTablespaceList parameter. This rebuild overwrites a database if it

already exists.

v DB2RESTORE_ALL_TBSP_IN_IMG - Restores the database with only the table

spaces in the image being restored. This rebuild overwrites a database if

it already exists.

v DB2RESTORE_ALL_TBSP_IN_IMG_EXC - Restores the database with only the

table spaces in the image being restored except for those specified in the

list pointed to by the piTablespaceList parameter. This rebuild overwrites

a database if it already exists.

v DB2RESTORE_ALL_TBSP_IN_LIST - Restores the database with only the

table spaces specified in the list pointed to by the piTablespaceList

parameter. This rebuild overwrites a database if it already exists.

NOTE: If the backup image is of a recoverable database then WITHOUT

ROLLING FORWARD (DB2RESTORE_NOROLLFWD) cannot be specified

with any of the above rebuild actions.

piComprLibrary

Input. Indicates the name of the external library to use to decompress the

backup image if the image is compressed. The name must be a

fully-qualified path that refers to a file on the server. If the value is a null

pointer or a pointer to an empty string, the DB2 database system attempts

to use the library stored in the image. If the backup is not compressed, the

value of this parameter will be ignored. If the specified library is not

found, the restore operation will fail.

piComprOptions

Input. This API parameter describes a block of binary data that will be

passed to the initialization routine in the decompression library. The DB2

database system passes this string directly from the client to the server, so

any issues of byte-reversal or code-page conversion must be handled by

the compression library. If the first character of the data block is ’@’, the

remainder of the data is interpreted as the name of a file residing on the

server. The DB2 database system then replaces the contents of the

piComprOptions and iComprOptionsSize parameters with the contents and

size of this file and passes these new values to the initialization routine.

iComprOptionsSize

Input. A four-byte unsigned integer that represents the size of the block of

data passed as piComprOptions. The iComprOptionsSize parameter should

be zero if and only if the piComprOptions value is a null pointer.

piLogTarget

Input. Specifies the absolute path of a directory on the database server that

must be used as the target directory for extracting log files from a backup

db2Restore - Restore a database or table space

122 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

image. If this parameter is specified, any log files included in the backup

image are extracted into the target directory. If this parameter is not

specified, log files included in the backup image are not extracted. To

extract only the log files from the backup image, DB2RESTORE_LOGS

value should be passed to the iOptions parameter.

piStoragePaths

Input. A structure containing fields that describe a list of storage paths

used for automatic storage. Set this to NULL if automatic storage is not

enabled for the database.

piRedirectScript

Input. The file name for the redirect restore script that will be created on

client side. The file name can be specified relative or absolute. The

iOptions field need to have the DB2RESTORE_GENERATE_SCRIPT bit set.

 db2TablespaceStruct data structure specific parameters:

 tablespaces

Input. A pointer to the list of table spaces to be backed up. For C, the list is

null-terminated strings. In the generic case, it is a list of db2Char

structures.

numTablespaces

Input. Number of entries in the tablespaces parameter.

 db2MediaListStruct data structure parameters:

 locations

Input. A pointer to the list of media locations. For C, the list is

null-terminated strings. In the generic case, it is a list of db2Char

structures.

numLocations

Input. The number of entries in the locations parameter.

locationType

Input. A character indicating the media type. Valid values (defined in

sqlutil header file, located in the include directory.) are:

v SQLU_LOCAL_MEDIA - Local devices (tapes, disks, diskettes, or named

pipes).

v SQLI_XBSA_MEDIA - XBSA interface.

v SQLU_TSM_MEDIA - Tivoli Storage Manager.

v SQLU_OTHER_MEDIA - Vendor library.

v SQLU_USER_EXIT - User exit (only available when the server is on OS/2).

 db2StoragePathsStruct data structure parameters:

 storagePaths

Input. An array of strings containing fully qualified names of storage paths

on the server that will be used for automatic storage table spaces. In a

multi-partition database the same storage paths are used on all database

partitions. If a multi-partiton database is being restored with new storage

paths, then the catalog partition must be restored before any other

database partitions are restored.

numStoragePaths

Input. The number of storage paths in the storagePaths parameter of the

db2StoragePathsStruct structure.

db2Restore - Restore a database or table space

Chapter 3. Database restore 123

DB2 9 BETA

db2gRestoreStruct data structure specific parameters:

 iSourceDBAliasLen

Input. Specifies the length in bytes of the piSourceDBAlias parameter.

iTargetDBAliasLen

Input. Specifies the length in bytes of the piTargetDBAlias parameter.

iApplicationIdLen

Input. Specifies the length in bytes of the poApplicatoinId parameter.

Should be equal to SQLU_APPLID_LEN + 1. The constant

SQLU_APPLID_LEN is defined in sqlutil header file that is located in the

include directory.

iTimestampLen

Input. Specifies the length in bytes of the piTimestamp parameter.

iTargetDBPathLen

Input. Specifies the length in bytes of the piTargetDBPath parameter.

iReportFileLen

Input. Specifies the length in bytes of the piReportFile parameter.

iUsernameLen

Input. Specifies the length in bytes of the piUsername parameter. Set to

zero if no user name is provided.

iPasswordLen

Input. Specifies the length in bytes of the piPassword parameter. Set to

zero if no password is provided.

iNewLogPathLen

Input. Specifies the length in bytes of the piNewLogPath parameter.

iLogTargetLen

Input. Specifies the length in bytes of the piLogTarget parameter.

iRedirectScriptLen

Input. A four-byte unsigned integer representing the length in bytes of the

name of the library specified in piRedirectScript. Set to zero if no script

name is given.

 db2Char data structure parameters:

 pioData

A pointer to a character data buffer. If NULL, no data will be returned.

iLength

Input. The size of the pioData buffer.

oLength

Output. The number of valid characters of data in the pioData buffer.

 Usage notes:

v For offline restore, this utility connects to the database in exclusive mode. The

utility fails if any application, including the calling application, is already

connected to the database that is being restored. In addition, the request will fail

if the restore utility is being used to perform the restore, and any application,

including the calling application, is already connected to any database on the

same workstation. If the connect is successful, the API locks out other

applications until the restore is completed.

db2Restore - Restore a database or table space

124 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

v The current database configuration file will not be replaced by the backup copy

unless it is unusable. In this case, if the file is replaced, a warning message is

returned.

v The database or table space must have been backed up using the db2Backup

API.

v If the caller action value is DB2RESTORE_NOINTERRUPT, the restore continues

without prompting the application. If the caller action value is

DB2RESTORE_RESTORE, and the utility is restoring to an existing database, the

utility returns control to the application with a message requesting some user

interaction. After handling the user interaction, the application calls RESTORE

DATABASE again, with the caller action value set to indicate whether processing

is to continue (DB2RESTORE_CONTINUE) or terminate

(DB2RESTORE_TERMINATE) on the subsequent call. The utility finishes

processing, and returns an SQLCODE in the sqlca.

v To close a device when finished, set the caller action value to

DB2RESTORE_DEVICE_TERMINATE. If, for example, a user is restoring from 3

tape volumes using 2 tape devices, and one of the tapes has been restored, the

application obtains control from the API with an SQLCODE indicating end of

tape. The application can prompt the user to mount another tape, and if the user

indicates ″no more″, return to the API with caller action value

SQLUD_DEVICE_TERMINATE to signal end of the media device. The device

driver will be terminated, but the rest of the devices involved in the restore will

continue to have their input processed until all segments of the restore set have

been restored (the number of segments in the restore set is placed on the last

media device during the backup process). This caller action can be used with

devices other than tape (vendor supported devices).

v To perform a parameter check before returning to the application, set caller

action value to DB2RESTORE_PARM_CHK.

v Set caller action value to DB2RESTORE_RESTORE_STORDEF when performing

a redirected restore; used in conjunction with the sqlbstsc API.

v If a system failure occurs during a critical stage of restoring a database, the user

will not be able to successfully connect to the database until a successful restore

is performed. This condition will be detected when the connection is attempted,

and an error message is returned. If the backed-up database is not configured

for roll-forward recovery, and there is a usable current configuration file with

either of these parameters enabled, following the restore, the user will be

required to either take a new backup of the database, or disable the log retain

and user exit parameters before connecting to the database.

v Although the restored database will not be dropped (unless restoring to a

nonexistent database), if the restore fails, it will not be usable.

v If the restore type specifies that the history file in the backup is to be restored, it

will be restored over the existing history file for the database, effectively erasing

any changes made to the history file after the backup that is being restored. If

this is undesirable, restore the history file to a new or test database so that its

contents can be viewed without destroying any updates that have taken place.

v If, at the time of the backup operation, the database was enabled for roll

forward recovery, the database can be brought to the state it was in prior to the

occurrence of the damage or corruption by issuing db2Rollforward after

successful execution of db2Restore. If the database is recoverable, it will default

to roll forward pending state after the completion of the restore.

v If the database backup image is taken offline, and the caller does not want to

roll forward the database after the restore, the DB2RESTORE_NOROLLFWD

option can be used for the restore. This results in the database being useable

db2Restore - Restore a database or table space

Chapter 3. Database restore 125

DB2 9 BETA

immediately after the restore. If the backup image is taken online, the caller

must roll forward through the corresponding log records at the completion of

the restore.

v To restore log files from a backup image that contains them, the LOGTARGET

option must be specified, assuming a fully qualified and valid path exists on the

DB2 server. If those conditions are satisfied, the restore utility writes the log files

from the image to the target path. If LOGTARGET is specified during a

restoration of a backup image that does not include logs, the restore operation

returns an error before attempting to restore any table space data. A restore

operation also fails with an error if an invalid or read-only LOGTARGET path is

specified.

v If any log files exist in the LOGTARGET path at the time the RESTORE

command is issued, a warning prompt is returned to user. This warning is not

returned if WITHOUT PROMPTING is specified.

v During a restore operation in which a LOGTARGET is specified, if any log file

cannot be extracted, the restore operation fails and returns an error. If any of the

log files being extracted from the backup image have the same name as an

existing file in the LOGTARGET path, the restore operation fails and an error is

returned. The restore utility does not overwrite existing log files in the

LOGTARGET directory.

v You can restore only the saved log set from a backup image. To indicate that

only the log files are to be restored, specify the LOGS option in addition to the

LOGTARGET path. Specifying the LOGS option without a LOGTARGET path

results in an error. If any problem occurs while restoring log files in this mode

the restore operation terminates immediately and an error is returned.

v During an automatic incremental restore operation, only the logs included in

the target image of the restore operation are retrieved from the backup image.

Any logs that are included in intermediate images that are referenced during the

incremental restore process are not extracted from those intermediate backup

images. During a manual incremental restore operation, the LOGTARGET path

should be specified only with the final restore command.

v If a backup is compressed, the DB2 database system detects this state and

automatically decompresses the data before restoring it. If a library is specified

on the db2Restore API, it is used for decompressing the data. If a library is not

specified on the db2Restore API, the library stored in the backup image is used.

And if there is no library stored in the backup image, the data cannot be

decompressed and the restore operation fails.

v If the compression library is being restored from a backup image (either

explicitly by specifying the DB2RESTORE_COMPR_LIB restore type or implicitly

by performing a normal restoration of a compressed backup), the restore

operation must be done on the same platform and operating system that the

backup was taken on. If the platforms are different, the restore operation will

fail, even when the DB2 database system normally supports cross-platform

restore operations involving the two systems.

v If restoring a database that is enabled for automatic storage, the storage paths

associated with the database can be redefined or they can remain as they were

previously. To keep the storage path definitions as is, do not provide any storage

paths as part of the restore operation. Otherwise, specify a new set of storage

paths to associate with the database. Automatic storage table spaces will be

automatically redirected to the new storage paths during the restore operation.

 Related tasks:

v “Using restore” on page 90

db2Restore - Restore a database or table space

126 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Related reference:

v “sqlemgdb API - Migrate previous version of DB2 database to current version”

in Administrative API Reference

v “SQLCA data structure” in Administrative API Reference

v “RESTORE DATABASE ” on page 100

v “db2Rollforward - Roll forward a database” on page 177

v “db2Backup - Back up a database or table space” on page 76

v “db2Recover - Restore and roll forward a database” on page 199

 Related samples:

v “dbrecov.sqc -- How to recover a database (C)”

v “dbrecov.sqC -- How to recover a database (C++)”

Restore sessions - CLP examples

 Example 1

Following is a typical non-incremental redirected restore scenario for a database

whose alias is MYDB:

1. Issue a RESTORE DATABASE command with the REDIRECT option.

 db2 restore db mydb replace existing redirect

2. Issue a SET TABLESPACE CONTAINERS command for each table space whose

containers you want to redefine. For example, in a Windows environment:

 db2 set tablespace containers for 5 using

 (file ’f:\ts3con1’20000, file ’f:\ts3con2’20000)

To verify that the containers of the restored database are the ones specified in

this step, issue the LIST TABLESPACE CONTAINERS command for every table

space whose container locations are being redefined.

3. After successful completion of steps 1 and 2, issue:

 db2 restore db mydb continue

This is the final step of the redirected restore operation.

4. If step 3 fails, or if the restore operation has been aborted, the redirected restore

can be restarted, beginning at step 1.

Notes:

1. After successful completion of step 1, and before completing step 3, the restore

operation can be aborted by issuing:

 db2 restore db mydb abort

2. If step 3 fails, or if the restore operation has been aborted, the redirected restore

can be restarted, beginning at step 1.

Example 2

Following is a typical manual incremental redirected restore scenario for a database

whose alias is MYDB and has the following backup images:

 backup db mydb

 Backup successful. The timestamp for this backup image is : <ts1>

 backup db mydb incremental

 Backup successful. The timestamp for this backup image is : <ts2>

db2Restore - Restore a database or table space

Chapter 3. Database restore 127

DB2 9 BETA

1. Issue a RESTORE DATABASE command with the INCREMENTAL and

REDIRECT options.

 db2 restore db mydb incremental taken at <ts2> replace existing redirect

2. Issue a SET TABLESPACE CONTAINERS command for each table space whose

containers must be redefined. For example, in a Windows environment:

 db2 set tablespace containers for 5 using

 (file ’f:\ts3con1’20000, file ’f:\ts3con2’20000)

To verify that the containers of the restored database are the ones specified in

this step, issue the LIST TABLESPACE CONTAINERS command.

3. After successful completion of steps 1 and 2, issue:

 db2 restore db mydb continue

4. The remaining incremental restore commands can now be issued as follows:

 db2 restore db mydb incremental taken at <ts1>

 db2 restore db mydb incremental taken at <ts2>

This is the final step of the redirected restore operation.

Notes:

1. After successful completion of step 1, and before completing step 3, the restore

operation can be aborted by issuing:

 db2 restore db mydb abort

2. After successful completion of step 3, and before issuing all the required

commands in step 4, the restore operation can be aborted by issuing:

 db2 restore db mydb incremental abort

3. If step 3 fails, or if the restore operation has been aborted, the redirected restore

can be restarted, beginning at step 1.

4. If either restore command fails in step 4, the failing command can be reissued

to continue the restore process.

Example 3

Following is a typical automatic incremental redirected restore scenario for the

same database:

1. Issue a RESTORE DATABASE command with the INCREMENTAL

AUTOMATIC and REDIRECT options.

 db2 restore db mydb incremental automatic taken at <ts2>

 replace existing redirect

2. Issue a SET TABLESPACE CONTAINERS command for each table space whose

containers must be redefined. For example, in a Windows environment:

 db2 set tablespace containers for 5 using

 (file ’f:\ts3con1’20000, file ’f:\ts3con2’20000)

To verify that the containers of the restored database are the ones specified in

this step, issue the LIST TABLESPACE CONTAINERS command.

3. After successful completion of steps 1 and 2, issue:

 db2 restore db mydb continue

This is the final step of the redirected restore operation.

Notes:

1. After successful completion of step 1, and before completing step 3, the restore

operation can be aborted by issuing:

128 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

db2 restore db mydb abort

2. If step 3 fails, or if the restore operation has been aborted, the redirected restore

can be restarted, beginning at step 1 after issuing:

 db2 restore db mydb incremental abort

 Related tasks:

v “Using restore” on page 90

 Related reference:

v “LIST TABLESPACE CONTAINERS command” in Command Reference

v “Rebuild sessions - CLP examples” on page 145

v “SET TABLESPACE CONTAINERS command” in Command Reference

Optimizing restore performance

 When you perform a restore operation, DB2 will automatically choose an optimal

value for the number of buffers, the buffer size and the parallelism settings. The

values will be based on the amount of utility heap memory available, the number

of processors available and the database configuration. The objective is to minimize

the time it takes to complete a restore operation. Unless you explicitly enter a

value for the following RESTORE DATABASE command parameters, DB2 will

select one for them:

v WITH num-buffers BUFFERS

v PARALLELISM n

v BUFFER buffer-size

For restore operations, a multiple of the buffer size used by the backup operation

will always be used. The values specified by the database manager configuration

parameters BACKBUFSZ and RESTBUFSZ are ignored. If you want to use these

values, you must explicitly specify a buffer size when you issue the RESTORE

DATABASE command.

You can also choose to do any of the following to reduce the amount of time

required to complete a restore operation:

v Increase the restore buffer size.

The restore buffer size must be a positive integer multiple of the backup buffer

size specified during the backup operation. If an incorrect buffer size is

specified, the buffers allocated will be the smallest acceptable size.

v Increase the number of buffers.

The value you specify must be a multiple of the number of pages that you

specified for the backup buffer. The minimum number of pages is 8.

v Increase the value of the PARALLELISM parameter.

This will increase the number of buffer manipulators (BM) that will be used to

write to the database during the restore operation.

 Related concepts:

v “Restore overview” on page 89

 Related tasks:

v “Using restore” on page 90

Chapter 3. Database restore 129

DB2 9 BETA

Database rebuild

 Rebuilding a database is the process of restoring a database or a subset of its table

spaces using a set of restore operations. The functionality provided with database

rebuild makes DB2 more robust and versatile, and provides you with a more

complete recovery solution.

The ability to rebuild a database from table space backup images means that you

no longer have to take as many full database backups. As databases grow in size,

opportunities for taking a full database backup are becoming limited. With table

space backup as an alternative, you no longer need to take full database backups

as frequently. Instead, you can take more frequent table space backups and plan to

use them, along with log files, in case of a disaster.

In a recovery situation, if you need to bring a subset of table spaces online faster

than others, you can use rebuild to accomplish this. The ability to bring only a

subset of table spaces online is especially useful in a test and production

environment.

Rebuilding a database involves a series of potentially many restore operations. A

rebuild operation can use a database image, or table space images, or both. It can

use full backups, or incremental backups, or both. The initial restore operation

restores the target image, which defines the structure of the database that can be

restored (such as the table space set and the database configuration). For

recoverable databases, rebuilding allows you to build a database that is

connectable and that contains the subset of table spaces that you need to have

online, while keeping table spaces that can be recovered at a later time offline.

The method you use to rebuild your database depends on whether it is recoverable

or non-recoverable.

v If the database is recoverable, use one of the following methods:

– Using a full or incremental database or table space backup image as your

target, rebuild your database by restoring SYSCATSPACE and any other table

spaces from the target image only using the REBUILD option. You can then

roll your database forward to a point in time.

– Using a full or incremental database or table space backup image as your

target, rebuild your database by specifying the set of table spaces defined in

the database at the time of the target image to be restored using the REBUILD

option. SYSCATSPACE must be part of this set. This operation will restore

those table spaces specified that are defined in the target image and then use

the recovery history file to find and restore any other required backup images

for the remaining table spaces not in the target image automatically. Once the

restores are complete, roll your database forward to a point in time.
v If the database is non-recoverable:

– Using a full or incremental database backup image as your target, rebuild

your database by restoring SYSCATSPACE and any other table spaces from

the target image using the appropriate REBUILD syntax. When the restore

completes you can connect to the database.

 Specifying the target image:

 To perform a rebuild of a database, you start by issuing the RESTORE command,

specifying the most recent backup image that you use as the target of the restore

operation. This image is known as the target image of the rebuild operation,

130 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

because it defines the structure of the database to be restored, including the table

spaces that can be restored, the database configuration, and the log sequence. The

rebuild target image is specified using the TAKEN AT parameter in the RESTORE

DATABASE command. The target image can be any type of backup (full, table

space, incremental, online or offline). The table spaces defined in the database at

the time the target image was created will be the table spaces available to rebuild

the database.

You must specify the table spaces you want restored using one of the following

methods:

v Specify that you want all table spaces defined in the database to be restored and

provide an exception list if there are table spaces you want to exclude

v Specify that you want all table spaces that have user data in the target image to

be restored and provide an exception list if there are table spaces you want to

exclude

v Specify the list of table spaces defined in the database that you want to restore

Once you know the table spaces you want the rebuilt database to contain, issue the

RESTORE command with the appropriate REBUILD option and specify the target

image to be used.

 Rebuild phase:

 After you issue the RESTORE command with the appropriate REBUILD option

and the target image has been successfully restored, the database is considered to

be in the rebuild phase. After the target image is restored, any additional table

space restores that occur will restore data into existing table spaces, as defined in

the rebuilt database. These table spaces will then be rolled forward with the

database at the completion of the rebuild operation.

If you issue the RESTORE command with the appropriate REBUILD option and

the database does not exist, a new database is created based on the attributes in

the target image. If the database does exist, you will receive a warning message

notifying you that the rebuild phase is starting. You will be asked if you want to

continue the rebuild operation or not.

The rebuild operation restores all initial metadata from the target image. This

includes all data that belongs to the database and does not belong to the table

space data or the log files. Examples of initial metadata are:

v Table spaces definitions

v The history file, which is a database file that records administrative operations

The rebuild operation also restores the database configuration. The target image

sets the log chain that determines what images can be used for the remaining

restores during the rebuild phase. Only images on the same log chain can be used.

If a database already exists on disk and you want the history file to come from the

target image, then you should specify the REPLACE HISTORY FILE option. The

history file on disk at this time is used by the automatic logic to find the remaining

images needed to rebuild the database.

Once the target image is restored:

Chapter 3. Database restore 131

DB2 9 BETA

v if the database is recoverable, the database is put into roll-forward pending state

and all table spaces that you restore are also put into roll-forward pending state.

Any table spaces defined in the database but not restored are put in restore

pending state.

v If the database is not recoverable, then the database and the table spaces

restored will go into normal state. Any table spaces not restored are put in drop

pending state, as they can no longer be recovered. For this type of database, the

rebuild phase is complete.

For recoverable databases, the rebuild phase ends when the first ROLLFORWARD

DATABASE command is issued and the rollforward utility begins processing log

records. If a rollforward operation fails after starting to process log records and a

restore operation is issued next, the restore is not considered to be part of the

rebuild phase. Such restores should be considered as normal table space restores

that are not part of the rebuild phase.

 Automatic processing:

 After the target image is restored, the restore utility determines if there are

remaining table spaces that need to be restored. If there are, they are restored using

the same connection that was used for running the RESTORE DATABASE

command with the REBUILD option. The utility uses the history file on disk to

find the most recent backup images taken prior to the target image that contains

each of the remaining table spaces that needs to be restored. The restore utility

uses the backup image location data stored in the history file to restore each of

these images automatically. These subsequent restores, which are table space level

restores, can be performed only offline. If the image selected does not belong on

the current log chain, an error is returned. Each table space that is restored from

that image is placed in roll-forward pending state.

The restore utility tries to restore all required table spaces automatically. In some

cases, it will not be able to restore some table spaces due to problems with the

history file, or an error will occur restoring one of the required images. In such a

case, you can either finish the rebuild manually or correct the problem and re-issue

the rebuild.

If automatic rebuilding cannot complete successfully, the restore utility writes to

the diagnostics log (db2diag.log) any information it gathered for the remaining

restore steps. You can use this information to complete the rebuild manually.

If a database is being rebuilt, only containers belonging to table spaces that are

part of the rebuild process will be acquired.

If any containers need to be redefined through redirected restore, you will need to

set the new path and size of the new container for the remaining restores and the

subsequent rollforward operation.

If the data for a table space restored from one of these remaining images cannot fit

into the new container definitions, the table space is put into restore pending state

and a warning message is returned at the end of the restore. You can find

additional information about the problem in the diagnostic log.

 Completing the rebuild phase:

 Once all the intended table spaces have been restored you have two options based

on the configuration of the database. If the database is non-recoverable, the

132 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

database will be connectable and any table spaces restored will be online. Any

table spaces that are in drop pending state can no longer be recovered and should

be dropped if future backups will be performed on the database.

If the database is recoverable, you can issue the rollforward command to bring the

table spaces that were restored online. If SYSCATSPACE has not been restored, the

rollforward will fail and this table space will have to be restored before the

rollforward operation can begin. This means that during the rebuild phase,

SYSCATSPACE must be restored.

Note: In a partitioned database environment, SYSCATSPACE does not exist on

non-catalog partitions so it cannot be rebuilt there. However, on the catalog

partition, SYSCATSPACE must be one of the table spaces that is rebuilt, or

the rollforward operation will not succeed.

Rolling the database forward brings the database out of roll-forward pending state

and rolls any table spaces in roll-forward pending state forward. The rollforward

utility will not operate on any table space in restore pending state.

The stop time for the rollforward operation must be a time that is later than the

end time of the most recent backup image restored during the rebuild phase. An

error will occur if any other time is given. If the rollforward operation is not able

to reach the backup time of the oldest image that was restored, the rollforward

utility will not be able to bring the database up to a consistent point, and the

rollforward fails.

You must have all log files for the time frame between the earliest and most recent

backup images available for the rollforward utility to use. The logs required are

those logs which follow the log chain from the earliest backup image to the target

backup image, as defined by the truncation array in the target image, otherwise

the rollforward operation will fail. If any backup images more recent than the

target image were restored during the rebuild phase, then the additional logs from

the target image to the most recent backup image restored are required. If the logs

are not made available, the rollforward operation will put those table spaces that

were not reached by the logs into restore pending state. You can issue the LIST

HISTORY command to show the restore rebuild entry with the log range that will

be required by roll forward.

The correct log files must be available. If you rely on the rollforward utility to

retrieve the logs, you must ensure that the DB2 Log Manager is configured to

indicate the location from which log files can be retrieved. If the log path or

archive path has changed, you need to use the OVERFLOW LOG PATH option of

the ROLLFORWARD DATABASE command.

Use the AND STOP option of the ROLLFORWARD DATABASE command to make

the database available when the rollforward command successfully completes. At

this point, the database is no longer in roll-forward pending state. If the

rollforward operation begins, but an error occurs before it successfully completes,

the rollforward operation stops at the point of the failure and an error is returned.

The database remains in roll-forward pending state. You must take steps to correct

the problem (for example, fix the log file) and then issue another rollforward

operation to continue processing.

If the error cannot be fixed, you will be able to bring the database up at the point

of the failure by issuing the ROLLFORWARD STOP command. Any log data

beyond that point in the logs will no longer be available once the STOP option is

Chapter 3. Database restore 133

DB2 9 BETA

used. The database comes up at that point and any table spaces that have been

recovered are online. Table spaces that have not yet been recovered are in restore

pending state. The database is in the normal state.

You will have to decide what is the best way to recover the remaining table spaces

in restore pending state. This could be by doing a new restore and roll forward of

a table space or by re-issuing the whole rebuild operation again. This will depend

on the type of problems encountered. In the situation where SYSCATSPACE is one

of the table spaces in restore pending state, the database will not be connectable.

 Related concepts:

v “Choosing a target image for database rebuild” on page 134

v “Rebuild and incremental backup images” on page 142

 Related tasks:

v “Rebuilding a database using selected table space images” on page 137

v “Rebuilding a partitioned database” on page 140

 Related reference:

v “Rebuild sessions - CLP examples” on page 145

Rebuild - details

Choosing a target image for database rebuild

 The rebuild target image should be the most recent backup image that you want to

use as the starting point of your restore operation. This image is known as the

target image of the rebuild operation, because it defines the structure of the

database to be restored, including the table spaces that can be restored, the

database configuration, and the log sequence. It can be any type of backup (full,

table space, incremental, online or offline).

The target image sets the log sequence (or log chain) that determines what images

can be used for the remaining restores during the rebuild phase. Only images on

the same log chain can be used.

The following examples illustrate how to choose the image you should use as the

target image for a rebuild operation.

Suppose there is a database called SAMPLE that has the following table spaces in

it:

v SYSCATSPACE (system catalogs)

v USERSP1 (user data table space)

v USERSP2 (user data table space)

v USERSP3 (user data table space)

Figure 15 on page 135 shows that the following database-level backups and table

space-level backups that have been taken, in chronological order:

1. Full database backup DB1

2. Full table space backup TS1

3. Full table space backup TS2

4. Full table space backup TS3

134 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

5. Database restore and roll forward to a point between TS1 and TS2

6. Full table space backup TS4

7. Full table space backup TS5

 Example 1:

 The following example demonstrates the CLP commands you need to issue to

rebuild database SAMPLE to the current point of time. First you need to choose

the table spaces you want to rebuild. Since your goal is to rebuild the database to

the current point of time you need to select the most recent backup image as your

target image. The most recent backup image is image TS5, which is on log chain 2:

 db2 restore db sample rebuild with all tablespaces in database taken at

 TS5 without prompting

 db2 rollforward db sample to end of logs

 db2 rollforward db sample stop

Figure 15. Database and table space-level backups of database SAMPLE

Chapter 3. Database restore 135

DB2 9 BETA

This restores backup images TS5, TS4, TS1 and DB1 automatically, then rolls the

database forward to the end of log chain 2.

Note: All logs belonging to log chain 2 must be accessible for the rollforward

operations to complete.

 Example 2:

 This second example demonstrates the CLP commands you need to issue to

rebuild database SAMPLE to the end of log chain 1. The target image you select

should be the most recent backup image on log chain 1, which is TS3:

 db2 restore db sample rebuild with all tablespaces in database

 taken at TS3 without prompting

 db2 rollforward db sample to end of logs

 db2 rollforward db sample stop

This restores backup images TS3, TS2, TS1 and DB1 automatically, then rolls the

database forward to the end of log chain 1.

Note: All logs belonging to log chain 1 must be accessible for the rollforward

operations to complete.

 Choosing the wrong target image for rebuild:

 Suppose there is a database called SAMPLE2 that has the following table spaces in

it:

v SYSCATSPACE (system catalogs)

v USERSP1 (user data table space)

v USERSP2 (user data table space)

Figure 16 shows the backup log chain for SAMPLE2, which consists of the

following backups:

1. BK1 is a full database backup, which includes all table spaces

2. BK2 is a full table space backup of USERSP1

3. BK3 is a full table space backup of USERSP2

Figure 16. Backup log chain for database SAMPLE2

136 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

The following example demonstrates the CLP command you need to issue to

rebuild the database from BK3 using table spaces SYSCATSPACE and USERSP2:

 db2 restore db sample2 rebuild with tablespace (SYSCATSPACE,

 USERSP2) taken at BK3 without prompting

Now suppose that after this restore completes, you decide that you also want to

restore USERSP1, so, you issue the following command:

 db2 restore db sample2 tablespace (USERSP1) taken at BK2

This restore fails and provides a message that says BK2 is from the wrong log

chain (SQL2154N). As you can see in Figure 16 on page 136, the only image that

can be used to restore USERSP1 is BK1. Therefore, you need to type the following

command:

 db2 restore db sample2 tablespace (USERSP1) taken at BK1

This succeeds so that database can be rolled forward accordingly.

 Related concepts:

v “Database rebuild” on page 130

 Related reference:

v “Rebuild sessions - CLP examples” on page 145

Restrictions for database rebuild

 The following list is a summary of database rebuild restrictions:

v One of the table spaces you rebuild must be SYSCATSPACE on the catalog

partition.

v You cannot perform a rebuild operation using the Control Center GUI tools. You

must either issue commands using the command line processor (CLP) or use the

corresponding application programming interfaces (APIs).

v The REBUILD option cannot be used against a pre-Version 9.1 target image

unless the image is that of an offline database backup. If the target image is an

offline database backup then only the table spaces in this image can be used for

the rebuild. The database will need to be migrated after the rebuild operation

successfully completes. Attempts to rebuild using any other type of pre-Version

9.1 target image will result in an error.

v The REBUILD option cannot be issued against a target image from a different

operating system than the one being restored on unless the target image is a full

database backup. If the target image is a full database backup then only the

table spaces in this image can be used for the rebuild. Attempts to rebuild using

any other type of target image from a different operating system than the one

being restored on will result in an error.

 Related concepts:

v “Database rebuild” on page 130

Rebuilding a database using selected table space images

 Database rebuild enables you to recreate an entire database using table-space level

backup images. Because you can make use of table-space level images to rebuild a

database it means that you do not have to rely as heavily on full database backups

Chapter 3. Database restore 137

DB2 9 BETA

Procedure:

 To rebuild a database using table-space level backup images, consider the

following example.

In this example, there is a recoverable database called SAMPLE with the following

table spaces in it:

v SYSCATSPACE (system catalogs)

v USERSP1 (user data table space)

v USERSP2 (user data table space)

v USERSP3 (user data table space)

The following backups have been taken:

v BK1 is a backup of SYSCATSPACE and USERSP1

v BK2 is a backup of USERSP2 and USERSP3

v BK3 is a backup of USERSP3

The following procedure demonstrates using the RESTORE DATABASE and

ROLLFORWARD DATABASE commands, issued through the CLP, to rebuild the

database using table space-level backup images:

 db2 restore db sample rebuild with all tablespaces in database

 taken at BK3 without prompting

 db2 rollforward db sample to end of logs

 db2 rollforward db sample stop

At this point the database is connectable and all table spaces are in NORMAL

state.

 Related concepts:

v “Rebuild and incremental backup images” on page 142

v “Understanding table space states” on page 60

Figure 17. Backup images available for database SAMPLE

138 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Related tasks:

v “Rebuilding a partitioned database” on page 140

 Related reference:

v “Rebuild sessions - CLP examples” on page 145

Rebuilding selected table spaces

 Rebuilding a database allows you to build a database that contains a subset of the

table spaces that make up the original database. Rebuilding only a subset of table

spaces within a database can be useful in the following situations:

v In a test and development environment in which you want to work on only a

subset of table spaces.

v In a recovery situation in which you need to bring table spaces that are more

critical online faster than others, you can first restore a subset of table spaces

then restore other table spaces at a later time.

 Procedure:

 To rebuild a database that contains a subset of the table spaces that make up the

original database, consider the following example.

In this example, there is a database named SAMPLE that has the following table

spaces:

v SYSCATSPACE (system catalogs)

v USERSP1 (user data table space)

v USERSP2 (user data table space)

v USERSP3 (user data table space)

The following backups have been taken:

v BK1 is a backup of SYSCATSPACE and USERSP1

v BK2 is a backup of USERSP2 and USERSP3

v BK3 is a backup of USERSP3

Chapter 3. Database restore 139

DB2 9 BETA

The following procedure demonstrates using the RESTORE DATABASE and

ROLLFORWARD DATABASE commands, issued through the CLP, to rebuild just

SYSCATSPACE and USERSP1 to end of logs:

 db2 restore db mydb rebuild with all tablespaces in image

 taken at BK1 without prompting

 db2 rollforward db mydb to end of logs

 db2 rollforward db mydb stop

At this point the database is connectable and only SYSCATSPACE and USERSP1

are in NORMAL state. USERSP2 and USERSP3 are in restore-pending state. You

can still restore USERSP2 and USERSP3 at a later time.

 Related concepts:

v “Choosing a target image for database rebuild” on page 134

v “Database rebuild” on page 130

v “Rebuild and incremental backup images” on page 142

v “Rebuild and table space containers” on page 143

v “Restrictions for database rebuild” on page 137

v “Understanding table space states” on page 60

 Related tasks:

v “Rebuilding a database using selected table space images” on page 137

v “Rebuilding a partitioned database” on page 140

 Related reference:

v “Rebuild sessions - CLP examples” on page 145

Rebuilding a partitioned database

 Procedure:

Figure 18. Backup images available for database SAMPLE

140 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

To rebuild a partitioned database, rebuild each database partition separately. For

each database partition, beginning with the catalog partition, first restore all the

table spaces that you require. Any table spaces that are not restored are placed in

restore pending state. Once all the database partitions are restored, you then issue

the ROLLFORWARD DATABASE command on the catalog partition to roll all of

the database partitions forward.

Note: If, at a later date, you need to restore any table spaces that were not

originally included in the rebuild phase, you need to make sure that when

you subsequently roll the table space forward that the rollforward utility

keeps all the data across the database partitions synchronized. If a table

space is missed during the original restore and rollforward operation, it

might not be detected until there is an attempt to access the data and a data

access error occurs. You will then need to restore and roll the missing table

space forward to get it back in sync with the rest of the partitions.

To rebuild a partitioned database using table-space level backup images, consider

the following example.

In this example, there is a recoverable database called SAMPLE with three

database partitions:

v Database partition 1 contains table spaces SYSCATSPACE, USERSP1 and

USERSP2, and is the catalog partition

v Database partition 2 contains table spaces USERSP1 and USERSP3

v Database partition 3 contains table spaces USERSP1, USERSP2 and USERSP3

The following backups have been taken, where BKxy represents backup number x

on partition y:

v BK11 is a backup of SYSCATSPACE, USERSP1 and USERSP2

v BK12 is a backup of USERSP2 and USERSP3

v BK13 is a backup of USERSP1, USERSP2 and USERSP3

v BK21 is a backup of USERSP1

v BK22 is a backup of USERSP1

v BK23 is a backup of USERSP1

v BK31 is a backup of USERSP2

v BK33 is a backup of USERSP2

v BK42 is a backup of USERSP3

v BK43 is a backup of USERSP3

The following procedure demonstrates using the RESTORE DATABASE and

ROLLFORWARD DATABASE commands, issued through the CLP, to rebuild the

entire database to the end of logs.

1. On database partition 1, issue a RESTORE DATABASE command with the

REBUILD option:

 db2 restore db sample rebuild with all tablespaces in database

 taken at BK31 without prompting

2. On database partition 2, issue a RESTORE DATABASE command with the

REBUILD option:

 db2 restore db sample rebuild with tablespaces in database

 taken at BK42 without prompting

3. On database partition 3, issue a RESTORE DATABASE command with the

REBUILD option:

Chapter 3. Database restore 141

DB2 9 BETA

db2 restore db sample rebuild with all tablespaces in database

 taken at BK43 without prompting

4. On the catalog partition, issue a ROLLFORWARD DATABASE command with

the TO END OF LOGS option:

 db2 rollforward db sample to end of logs

5. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db sample stop

At this point the database is connectable on all database partitions and all table

spaces are in NORMAL state.

 Related concepts:

v “Choosing a target image for database rebuild” on page 134

v “Database rebuild” on page 130

v “Rebuild and incremental backup images” on page 142

v “Rebuild and table space containers” on page 143

v “Restrictions for database rebuild” on page 137

 Related tasks:

v “Rebuilding a database using selected table space images” on page 137

v “Rebuilding selected table spaces” on page 139

 Related reference:

v “Rebuild sessions - CLP examples” on page 145

Rebuild and incremental backup images

 You can rebuild a database using incremental images. By default, the restore utility

tries to use automatic incremental restore for all incremental images. This means

that if you do not use the INCREMENTAL option of the RESTORE DATABASE

command, but the target image is an incremental backup image, the restore utility

will issue the rebuild operation using automatic incremental restore. If the target

image is not an incremental image, but another required image is an incremental

image then the restore utility will make sure those incremental images are restored

using automatic incremental restore. The restore utility will behave in the same

way whether you specify the INCREMENTAL option with the AUTOMATIC

option or not.

If you specify the INCREMENTAL option but not the AUTOMATIC option, you

will need to perform the entire rebuild process manually. The restore utility will

just restore the initial metadata from the target image, as it would in a regular

manual incremental restore. You will then need to complete the restore of the

target image using the required incremental restore chain. Then you will need to

restore the remaining images to rebuild the database.

It is recommended that you use automatic incremental restore to rebuild your

database. Only in the event of a restore failure, should you attempt to rebuild a

database using manual methods.

 Related concepts:

v “Database rebuild” on page 130

v “Choosing a target image for database rebuild” on page 134

142 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

v “Rebuild and table space containers” on page 143

v “Restrictions for database rebuild” on page 137

 Related tasks:

v “Rebuilding a database using selected table space images” on page 137

v “Rebuilding a partitioned database” on page 140

v “Rebuilding selected table spaces” on page 139

 Related reference:

v “Rebuild sessions - CLP examples” on page 145

Rebuild and table space containers

 During a rebuild, only those table spaces that are part of the rebuild process will

have their containers acquired. The containers belonging to each table space will be

acquired at the time the table space user data is restored out of an image.

When the target image is restored, each table space known to the database at the

time of the backup will have its definitions only restored. This means the database

created by the rebuild will have knowledge of the same table spaces it did at

backup time. For those table spaces that should also have their user data restored

from the target image, their containers will also be acquired at this time.

Any remaining table spaces that are restored through intermediate table space

restores will have their containers acquired at the time the image is restored that

contains the table space data.

 Rebuild with redirected restore:

 In the case of redirected restore, all table space containers must be defined during

the restore of the target image. If you specify the REDIRECT option, control will be

given back to you to redefine your table space containers. If you have redefined

table space containers using the SET TABLESPACE CONTAINERS command then

those new containers will be acquired at that time. Any table space containers that

you have not redefined will be acquired as normal, at the time the table space user

data is restored out of an image.

If the data for a table space that is restored cannot fit into the new container

definitions, the table space will be put into restore-pending state and a warning

(SQL2563W) will be returned to the you at the end of the restore. There will be a

message in the DB2 diagnostics log detailing the problem.

 Related concepts:

v “Choosing a target image for database rebuild” on page 134

v “Database rebuild” on page 130

v “Rebuild and incremental backup images” on page 142

v “Restrictions for database rebuild” on page 137

 Related tasks:

v “Rebuilding a database using selected table space images” on page 137

v “Rebuilding a partitioned database” on page 140

v “Rebuilding selected table spaces” on page 139

Chapter 3. Database restore 143

DB2 9 BETA

Related reference:

v “Rebuild sessions - CLP examples” on page 145

Rebuild and temporary table spaces

 In general, a DB2 backup image is made up of the following components:

v Initial database metadata, such as the table space definitions, database

configuration file, and history file.

v Data for non-temporary table spaces specified to the BACKUP utility

v Final database metadata such as the log file header

v Log files (if the INCLUDE LOGS option was specified)

In every backup image, whether it is a database or table space backup, a full or

incremental (delta) backup, these core components can always be found.

A database backup image will contain all of the above components, as well as data

for every table space defined in the database at the time of the backup.

A table space backup image will always include the database metadata listed

above, but it will only contain data for those table spaces that are specified to the

backup utility.

Temporary table spaces are treated differently than non-temporary table spaces.

Temporary table space data is never backed up, but their existence is important to

the framework of the database. Although temporary table space data is never

backed up, the temporary table spaces are considered part of the database, so they

are specially marked in the metadata that is stored with a backup image. This

makes it look like they are in the backup image. In addition, the table space

definitions hold information about the existence of any temporary table spaces.

Although no backup image ever contains data for a temporary table space, during

a database rebuild operation when the target image is restored (regardless the type

of image), temporary table spaces are also restored, only in the sense that their

containers are acquired and allocated. The acquisition and allocation of containers

is done automatically as part of the rebuild processing. As a result, when

rebuilding a database, you cannot exclude temporary table spaces.

 Related concepts:

v “Choosing a target image for database rebuild” on page 134

v “Database rebuild” on page 130

v “Rebuild and incremental backup images” on page 142

v “Rebuild and table space containers” on page 143

 Related tasks:

v “Rebuilding a database using selected table space images” on page 137

v “Rebuilding a partitioned database” on page 140

v “Rebuilding selected table spaces” on page 139

 Related reference:

v “Rebuild sessions - CLP examples” on page 145

144 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Rebuild sessions - CLP examples

 Scenario 1:

 In the following examples, there is a recoverable database called MYDB with the

following table spaces in it:

v SYSCATSPACE (system catalogs)

v USERSP1 (user data table space)

v USERSP2 (user data table space)

v USERSP3 (user data table space)

The following backups have been taken:

v BK1 is a backup of SYSCATSPACE and USERSP1

v BK2 is a backup of USERSP2 and USERSP3

v BK3 is a backup of USERSP3

Example 1

The following rebuilds the entire database to the most recent point in time:

1. Issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in database

 taken at BK3 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS

option (this assumes all logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in NORMAL

state.

Example 2

The following rebuilds just SYSCATSPACE and USERSP2 to a point in time (where

end of BK3 is less recent than the point in time, which is less recent than end of

logs):

1. Issue a RESTORE DATABASE command with the REBUILD option and specify

the table spaces you want to include.

 db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP2)

 taken at BK2 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO PIT option (this

assumes all logs have been saved and are accessible):

 db2 rollforward db mydb to PIT

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and only SYSCATSPACE and USERSP2

are in NORMAL state. USERSP1 and USERSP3 are in RESTORE_PENDING state.

To restore USERSP1 and USERSP3 at a later time, using normal table space restores

(without the REBUILD option):

Chapter 3. Database restore 145

DB2 9 BETA

1. Issue the RESTORE DATABASE command without the REBUILD option and

specify the table space you want to restore. First restore USERSPI:

 db2 restore db mydb tablespace (USERSP1) taken at BK1 without prompting

2. Then restore USERSP3:

 db2 restore db mydb tablespace taken at BK3 without prompting

3. Issue a ROLLFORWARD DATABASE command with the END OF LOGS option

and specify the table spaces to be restored (this assumes all logs have been

saved and are accessible):

 db2 rollforward db mydb to end of logs tablespace (USERSP1, USERSP3)

The rollforward will replay all logs up to the PIT and then stop for these two

table spaces since no work has been done on them since the first rollforward.

4. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

Example 3

The following rebuilds just SYSCATSPACE and USERSP1 to end of logs:

1. Issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in image

 taken at BK1 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS

option (this assumes all logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and only SYSCATSPACE and USERSP1

are in NORMAL state. USERSP2 and USERSP3 are in RESTORE_PENDING state.

Example 4

In the following example, the backups BK1 and BK2 are no longer in the same

location as stated in the history file, but this is not known when the rebuild is

issued.

1. Issue a RESTORE DATABASE command with the REBUILD option , specifying

that you want to rebuild the entire database to the most recent point in time:

 db2 restore db mydb rebuild with all tablespaces in database

 taken at BK3 without prompting

At this point, the target image is restored successfully, but an error is returned

from the restore utility stating it could not find a required image.

2. You must now complete the rebuild manually. Since the database is in the

rebuild phase this can be done as follows:

a. Issue a RESTORE DATABASE command and specify the location of the BK1

backup image:

 db2 restore db mydb tablespace taken at BK1 from <location>

 without prompting

b. Issue a RESTORE DATABASE command and specify the location of the BK2

backup image:

 db2 restore db mydb tablespace (USERSP2) taken at BK2 from

 <location> without prompting

146 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

c. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS

option (this assumes all logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs

d. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in NORMAL

state.

Example 5

In this example, table space USERSP3 contains independent data that is needed for

generating a specific report, but you do not want the report generation to interfere

with the original database. In order to gain access to the data but not affect the

original database, you can use REBUILD to generate a new database with just this

table space and SYSCATSPACE. SYSCATSPACE is also required so that the

database will be connectable after the restore and roll forward operations.

To build a new database with the most recent data in SYSCATSPACE and

USERSP3:

1. Issue a RESTORE DATABASE command with the REBUILD option, and specify

that table spaces SYSCATSPACE and USERSP3 are to be restored to a new

database, NEWDB:

 db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP3)

 taken at BK3 into newdb without prompting

2. Issue a ROLLFORWARD DATABASE command on NEWDB with the TO END

OF LOGS option (this assumes all logs have been saved and are accessible):

 db2 rollforward db newdb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db newdb stop

At this point the new database is connectable and only SYSCATSPACE and

USERSP3 are in NORMAL state. USERSP1 and USERSP2 are in

RESTORE_PENDING state.

Note: If container paths are an issue between the current database and the new

database (for example, if the containers for the original database need to be

altered because the file system does not exist or if the containers are already

in use by the original database) then you will need to perform a redirected

restore. The example above assumes the default autostorage database paths

are used for the table spaces.

 Scenario 2:

 In the following example, there is a recoverable database called MYDB that has

SYSCATSPACE and one thousand user table spaces named Txxxx, where x stands

for the table space number (for example, T0001). There is one full database backup

image (BK1)

Example 6

The following restores all table spaces except T0999 and T1000:

1. Issue a RESTORE DATABASE command with the REBUILD option:

Chapter 3. Database restore 147

DB2 9 BETA

db2 restore db mydb rebuild with all tablespaces in image except

 tablespace (T0999, T1000) taken at BK1 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS

option (this assumes all logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database will be connectable and all table spaces except T0999

and T1000 will be in NORMAL state. T0999 and T1000 will be in

RESTORE_PENDING state.

 Scenario 3:

 The examples in this scenario demonstrate how to rebuild a recoverable database

using incremental backups. In the following examples, there is a database called

MYDB with the following table spaces in it:

v SYSCATSPACE (system catalogs)

v USERSP1 (data table space)

v USERSP2 (user data table space)

v USERSP3 (user data table space)

The following backups have been taken:

v FULL1 is a full backup of SYSCATSPACE, USERSP1, USERSP2 and USERSP3

v DELTA1 is a delta backup of SYSCATSPACE and USERSP1

v INCR1 is an incremental backup of USERSP2 and USERSP3

v DELTA2 is a delta backup of SYSCATSPACE, USERSP1, USERSP2 and USERSP3

v DELTA3 is a delta backup of USERSP2

v FULL2 is a full backup of USERSP1

Example 7

The following rebuilds just SYSCATSPACE and USERSP2 to the most recent point

in time using incremental automatic restore.

1. Issue a RESTORE DATABASE command with the REBUILD option. The

INCREMENTAL AUTO option is optional. The restore utility will detect what

the granularity of the image is and use automatic incremental restore if it is

required.

 db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP2)

 incremental auto taken at DELTA3 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS

option (this assumes all logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and only SYSCATSPACE and USERSP2

are in NORMAL state. USERSP1 and USERSP3 are in RESTORE_PENDING state.

Example 8

148 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

The following rebuilds the entire database to the most recent point in time using

incremental automatic restore.

1. Issue a RESTORE DATABASE command with the REBUILD option. The

INCREMENTAL AUTO option is optional. The restore utility will detect what

the granularity of the image is and use automatic incremental restore if it is

required.

 db2 restore db mydb rebuild with all tablespaces in database

 incremental auto taken at DELTA3 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS

option (this assumes all logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in NORMAL

state.

Example 9

The following rebuilds the entire database, except for USERSP3, to the most recent

point in time.

1. Issue a RESTORE DATABASE command with the REBUILD option. Although

the target image is a non-incremental image, the restore utility will detect that

the required rebuild chain includes incremental images and it will

automatically restore those images incrementally.

 db2 restore db mydb rebuild with all tablespaces in database except

 tablespace (USERSP3) taken at FULL2 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS

option (this assumes all logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

 Scenario 4:

 The examples in this scenario demonstrate how to rebuild a recoverable database

using backup images that contain log files. In the following examples, there is a

database called MYDB with the following table spaces in it:

v SYSCATSPACE (system catalogs)

v USERSP1 (user data table space)

v USERSP2 (user data table space)

Example 10

The following rebuilds the database with just SYSCATSPACE and USERSP2 to the

most recent point in time. There is a full online database backup image (BK1),

which includes log files.

1. Issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP2)

 taken at BK1 logtarget /logs without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS

option (this assumes all logs after the end of BK1 have been saved and are

accessible):

Chapter 3. Database restore 149

DB2 9 BETA

db2 rollforward db mydb to end of logs overflow log path (/logs)

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and only SYSCATSPACE and USERSP2

are in NORMAL state. USERSP1 is in RESTORE_PENDING state.

Example 11

The following rebuilds the database to the most recent point in time. There are two

full online table space backup images that include log files:

v BK1 is a backup of SYSCATSPACE, using log files 10-45

v BK2 is a backup of USERSP1 and USERSP2, using log files 64-80
1. Issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in database

 taken at BK2 logtarget /logs without prompting

The rollforward operation will start at log file 10, which it will always find in

the overflow log path if not in the primary log file path. The log range 46-63,

since they are not contained in any backup image, will need to be made

available for roll forward.

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS

option, using the overflow log path for log files 64-80:

 db2 rollforward db mydb to end of logs overflow log path (/logs)

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in NORMAL

state.

 Scenario 5:

 In the following examples, there is a recoverable database called MYDB with the

following table spaces in it:

v SYSCATSPACE (0), SMS system catalog (relative container)

v USERSP1 (1) SMS user data table space (relative container)

v USERSP2 (2) DMS user data table space (absolute container /usersp2)

v USERSP3 (3) DMS user data table space (absolute container /usersp3)

The following backups have been taken:

v BK1 is a backup of SYSCATSPACE and USERSP1

v BK2 is a backup of USERSP2 and USERSP3

v BK3 is a backup of USERSP3

Example 12

The following rebuilds the entire database to the most recent point in time using

redirected restore.

1. Issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in database

 taken at BK3 redirect without prompting

150 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

2. Issue a SET TABLESPACE CONTAINERS command for each table space whose

containers you want to redefine. For example:

 db2 set tablespace containers for 3 using (file ’/newusersp2’ 10000)

3. db2 set tablespace containers for 4 using (file ’/newusersp3’ 15000)

4. Issue a RESTORE DATABASE command with the CONTINUE option:

 db2 restore db mydb continue

5. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS

option (this assumes all logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs

6. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in NORMAL

state.

 Scenario 6:

 In the following examples, there is a database called MYDB with three database

partitions:

v Database partition 1 contains table spaces SYSCATSPACE, USERSP1 and

USERSP2, and is the catalog partition

v Database partition 2 contains table spaces USERSP1 and USERSP3

v Database partition 3 contains table spaces USERSP1, USERSP2 and USERSP3

The following backups have been taken, where BKxy represents backup number x

on partition y:

v BK11 is a backup of SYSCATSPACE, USERSP1 and USERSP2

v BK12 is a backup of USERSP2 and USERSP3

v BK13 is a backup of USERSP1, USERSP2 and USERSP3

v BK21 is a backup of USERSP1

v BK22 is a backup of USERSP1

v BK23 is a backup of USERSP1

v BK31 is a backup of USERSP2

v BK33 is a backup of USERSP2

v BK42 is a backup of USERSP3

v BK43 is a backup of USERSP3

Example 13

The following rebuilds the entire database to the end of logs.

1. On database partition 1, issue a RESTORE DATABASE command with the

REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in database

 taken at BK31 without prompting

2. On database partition 2, issue a RESTORE DATABASE command with the

REBUILD option:

 db2 restore db mydb rebuild with tablespaces in database taken at

 BK42 without prompting

3. On database partition 3, issue a RESTORE DATABASE command with the

REBUILD option:

Chapter 3. Database restore 151

DB2 9 BETA

db2 restore db mydb rebuild with all tablespaces in database

 taken at BK43 without prompting

4. On the catalog partition, issue a ROLLFORWARD DATABASE command with

the TO END OF LOGS option (assumes all logs have been saved and are

accessible on all database partitions):

 db2 rollforward db mydb to end of logs

5. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable on all database partitions and all table

spaces are in NORMAL state.

Example 14

The following rebuilds SYSCATSPACE, USERSP1 and USERSP2 to the most recent

point in time.

1. On database partition 1, issue a RESTORE DATABASE command with the

REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in database

 taken at BK31 without prompting

2. On database partition 2, issue a RESTORE DATABASE command with the

REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in image taken at

 BK22 without prompting

3. On database partition 3, issue a RESTORE DATABASE command with the

REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in image taken at

 BK33 without prompting

Note: this command omitted USERSP1, which is needed to complete the

rebuild operation.

4. On the catalog partition, issue a ROLLFORWARD DATABASE command with

the TO END OF LOGS option:

 db2 rollforward db mydb to end of logs

5. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

The rollforward succeeds and the database is connectable on all database

partitions. All table spaces are in NORMAL state, except USERSP3, which is in

RESTORE PENDING state on all database partitions on which it exists, and

USERSP1, which is in RESTORE PENDING state on database partition 3.

When an attempt is made to access data in USERSP1 on database partition 3, a

data access error will occur. To fix this, USERSP1 will need to be recovered:

a. On database partitions 3, issue a RESTORE DATABASE command,

specifying a backup image that contains USERSP1:

 db2 restore db mydb tablespace taken at BK23 without prompting

b. On the catalog partition, issue a ROLLFORWARD DATABASE command

with the TO END OF LOGS option and the AND STOP option:

 db2 rollforward db mydb to end of logs on dbpartitionnum (3) and stop

At this point USERSP1 on database partition 3 can have its data accessed since it is

in NORMAL state.

152 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Scenario 7:

 In the following examples, there is a nonrecoverable database called MYDB with the

following table spaces:

v SYSCATSPACE (0), SMS system catalog

v USERSP1 (1) SMS user data table space

v USERSP2 (2) DMS user data table space

v USERSP3 (3) DMS user data table space

There is just one backup of the database, BK1:

Example 15

The following demonstrates using rebuild on a nonrecoverable database.

Rebuild the database using only SYSCATSPACE and USERSP1:

 db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP1)

 taken at BK1 without prompting

Following the restore, the database is connectable. If you issue the LIST

TABLESPACES command you see that that SYSCATSPACE and USERSP1 are in

NORMAL state, while USERSP2 and USERSP3 are in DELETE_PENDING/
OFFLINE state. You can now work with the two table spaces that are in NORMAL

state.

If you want to do a database backup, you will first need to drop USERSP2 and

USERSP3 using the DROP TABLESPACE command, otherwise, the backup will fail.

To restore USERSP2 and USERSP3 at a later time, you need to reissue a database

restore from BK1.

 Related concepts:

v “Choosing a target image for database rebuild” on page 134

v “Database rebuild” on page 130

v “Rebuild and incremental backup images” on page 142

v “Rebuild and table space containers” on page 143

v “Restrictions for database rebuild” on page 137

 Related tasks:

v “Rebuilding a database using selected table space images” on page 137

v “Rebuilding a partitioned database” on page 140

v “Rebuilding selected table spaces” on page 139

Chapter 3. Database restore 153

DB2 9 BETA

154 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Chapter 4. Rollforward recovery

This section describes the DB2 rollforward utility, which is used to recover a

database by applying transactions that were recorded in the database recovery log

files.

The following topics are covered:

v “Rollforward overview”

v “Privileges, authorities, and authorization required to use rollforward” on page

157

v “Using rollforward” on page 157

v “Rolling forward changes in a table space” on page 159

v “Recovering a dropped table” on page 163

v “Recovering data with the load copy location file” on page 165

v “Synchronizing clocks in a partitioned database environment” on page 166

v “Client/server timestamp conversion” on page 167

v “ROLLFORWARD DATABASE ” on page 168

v “db2Rollforward - Roll forward a database” on page 177

v “Rollforward sessions - CLP examples” on page 187

Rollforward overview

 The simplest form of the DB2 ROLLFORWARD DATABASE command requires

only that you specify the alias name of the database that you want to rollforward

recover. For example:

 db2 rollforward db sample to end of logs and stop

In this example, the command returns:

 Rollforward Status

 Input database alias = sample

 Number of nodes have returned status = 1

 Node number = 0

 Rollforward status = not pending

 Next log file to be read =

 Log files processed = -

 Last committed transaction = 2001-03-11-02.39.48.000000

DB20000I The ROLLFORWARD command completed successfully.

The following is one approach you can use to perform rollforward recovery:

1. Invoke the rollforward utility without the STOP option.

2. Invoke the rollforward utility with the QUERY STATUS option

If you specify recovery to the end of the logs, the QUERY STATUS option can

indicate that one or more log files is missing, if the returned point in time is

earlier than you expect.

If you specify point-in-time recovery, the QUERY STATUS option will help you

to ensure that the rollforward operation has completed at the correct point.

© Copyright IBM Corp. 2001, 2006 155

DB2 9 BETA

3. Invoke the rollforward utility with the STOP option. After the operation stops,

it is not possible to roll additional changes forward.

An alternate approach you can use to perform rollforward recovery is the

following:

1. Invoke the rollforward utility with the AND STOP option.

2. The need to take further steps depends on the outcome of the rollforward

operation:

v If it is successful, the rollforward is complete and the database will be

connectable and usable. At this point it is not possible to roll additional

changes forward.

v If any errors were returned, take whatever action is required to fix the

problem (for example, if there is a missing logfile, find the log file, or if there

are retrieve errors, ensure that log archiving is working). Then reissue the

rollforward utility with the AND STOP option.

A database must be restored successfully (using the restore utility) before it can be

rolled forward, but a table space does not. A table space can be temporarily put in

rollforward pending state, but not require a restore operation to undo it (following

a power interruption, for example).

When the rollforward utility is invoked:

v If the database is in rollforward pending state, the database is rolled forward. If

table spaces are also in rollforward pending state, you must invoke the

rollforward utility again after the database rollforward operation completes to

roll the table spaces forward.

v If the database is not in rollforward pending state, but table spaces in the

database are in rollforward pending state:

– If you specify a list of table spaces, only those table spaces are rolled forward.

– If you do not specify a list of table spaces, all table spaces that are in

rollforward pending state are rolled forward.

A database rollforward operation runs offline. The database is not available for use

until the rollforward operation completes successfully, and the operation cannot

complete unless the STOP option was specified when the utility was invoked.

A table space rollforward operation can run offline. The database is not available

for use until the rollforward operation completes successfully. This occurs if the

end of the logs is reached, or if the STOP option was specified when the utility

was invoked.

You can perform an online rollforward operation on table spaces, as long as

SYSCATSPACE is not included. When you perform an online rollforward operation

on a table space, the table space is not available for use, but the other table spaces

in the database are available.

When you first create a database, it is enabled for circular logging only. This means

that logs are reused, rather than being saved or archived. With circular logging,

rollforward recovery is not possible: only crash recovery or version recovery can be

done. Archived logs document changes to a database that occur after a backup was

taken. You enable log archiving (and rollforward recovery) by setting the

logarchmeth1 database configuration parameter to a value other than its default of

156 Data Recovery and High Availability Guide and Reference

|
|

|

|
|

|
|
|

|
|
|
|

DB2 9 BETA

OFF. When you set logarchmeth1 to a value other than OFF, the database is placed in

backup pending state, and you must take an offline backup of the database before

it can be used again.

Note: Entries will be made in the recovery history file for each log file that is used

in a rollforward operation.

 Related concepts:

v “Understanding recovery logs” on page 33

v “Recovering data with the load copy location file” on page 165

 Related reference:

v “Configuration parameters for database logging” on page 37

v “ROLLFORWARD DATABASE ” on page 168

v “logarchmeth1 - Primary log archive method configuration parameter” in

Performance Guide

Privileges, authorities, and authorization required to use rollforward

 Privileges enable users to create or access database resources. Authority levels

provide a method of grouping privileges and higher-level database manager

maintenance and utility operations. Together, these act to control access to the

database manager and its database objects. Users can access only those objects for

which they have the appropriate authorization; that is, the required privilege or

authority.

You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the

rollforward utility.

 Related reference:

v “db2Rollforward - Roll forward a database” on page 177

v “ROLLFORWARD DATABASE ” on page 168

Using rollforward

 Use the ROLLFORWARD DATABASE command to apply transactions that were

recorded in the database log files to a restored database backup image or table

space backup image.

 Prerequisites:

 You should not be connected to the database that is to be rollforward recovered:

the rollforward utility automatically establishes a connection to the specified

database, and this connection is terminated at the completion of the rollforward

operation.

Do not restore table spaces without cancelling a rollforward operation that is in

progress; otherwise, you might have a table space set in which some table spaces

are in rollforward in progress state, and some table spaces are in rollforward

pending state. A rollforward operation that is in progress will only operate on the

tables spaces that are in rollforward in progress state.

The database can be local or remote.

Chapter 4. Rollforward recovery 157

DB2 9 BETA

Restrictions:

 The following restrictions apply to the rollforward utility:

v You can invoke only one rollforward operation at a time. If there are many table

spaces to recover, you can specify all of them in the same operation.

v If you have renamed a table space following the most recent backup operation,

ensure that you use the new name when rolling the table space forward. The

previous table space name will not be recognized.

v You cannot cancel a rollforward operation that is running. You can only cancel a

rollforward operation that has completed, but for which the STOP option has

not been specified, or a rollforward operation that has failed before completing.

v You cannot continue a table space rollforward operation to a point in time,

specifying a time stamp that is less than the previous one. If a point in time is

not specified, the previous one is used. You can issue a rollforward operation

that ends at a specified point in time by just specifying STOP, but this is only

allowed if the table spaces involved were all restored from the same offline

backup image. In this case, no log processing is required. If you start another

rollforward operation with a different table space list before the in-progress

rollforward operation is either completed or cancelled, an error message

(SQL4908) is returned. Invoke the LIST TABLESPACES command on all database

partitions to determine which table spaces are currently being rolled forward

(rollforward in progress state), and which table spaces are ready to be rolled

forward (rollforward pending state). You have three options:

– Finish the in-progress rollforward operation on all table spaces.

– Finish the in-progress rollforward operation on a subset of table spaces. (This

might not be possible if the rollforward operation is to continue to a specific

point in time, which requires the participation of all database partitions.)

– Cancel the in-progress rollforward operation.
v In a partitioned database environment, the rollforward utility must be invoked

from the catalog partition of the database.

v Point in time rollforward of a table space is available only from DB2 Version 9

clients. You should migrate any clients running an earlier version of the database

product to Version 9 in order to roll a table space forward to a point in time.

 Procedure:

 The rollforward utility can be invoked through the command line processor (CLP),

the Restore wizard in the Control Center, or the db2Rollforward application

programming interface (API).

Following is an example of the ROLLFORWARD DATABASE command issued

through the CLP:

 db2 rollforward db sample to end of logs and stop

To open the Restore wizard:

1. From the Control Center, expand the object tree until you find the database or

table space object that you want to restore.

2. Right-click on the object and select Roll-forward from the pop-up menu. The

Rollforward wizard opens.

Detailed information is provided through the contextual help facility within the

Control Center.

158 Data Recovery and High Availability Guide and Reference

|

|
|

|
|

DB2 9 BETA

Related concepts:

v “Introducing the plug-in architecture for the Control Center” in Administration

Guide: Implementation

v “Administrative APIs in Embedded SQL or DB2 CLI Programs” in Administrative

API Reference

 Related reference:

v “db2Rollforward - Roll forward a database” on page 177

v “ROLLFORWARD DATABASE ” on page 168

Rolling forward changes in a table space

 If the database is enabled for forward recovery, you have the option of backing up,

restoring, and rolling forward table spaces instead of the entire database. You

might want to implement a recovery strategy for individual table spaces because

this can save time: it takes less time to recover a portion of the database than it

does to recover the entire database. For example, if a disk is bad, and it contains

only one table space, that table space can be restored and rolled forward without

having to recover the entire database, and without impacting user access to the rest

of the database, unless the damaged table space contains the system catalog tables;

in this situation, you cannot connect to the database. (The system catalog table

space can be restored independently if a table space-level backup image containing

the system catalog table space is available.) Table space-level backups also allow

you to back up critical parts of the database more frequently than other parts, and

requires less time than backing up the entire database.

After a table space is restored, it is always in rollforward pending state. To make

the table space usable, you must perform rollforward recovery on it. In most cases,

you have the option of rolling forward to the end of the logs, or rolling forward to

a point in time. You cannot, however, roll table spaces containing system catalog

tables forward to a point in time. These table spaces must be rolled forward to the

end of the logs to ensure that all table spaces in the database remain consistent.

When a table space is rolled forward, DB2 will process all log files even if they do

not contain log records that affect that table space. To skip the log files known not

to contain any log records affecting the table space, set the

DB2_COLLECT_TS_REC_INFO registry variable to ON. This is the default value.

To ensure that the information required for skipping log files is collected, the

registry variable must be set before the log files are created and used.

The table space change history file (DB2TSCHG.HIS), located in the database

directory, keeps track of which logs should be processed for each table space. You

can view the contents of this file using the db2logsForRfwd utility, and delete

entries from it using the PRUNE HISTORY command. During a database restore

operation, DB2TSCHG.HIS is restored from the backup image and then brought up

to date during the database rollforward operation. If no information is available for

a log file, it is treated as though it is required for the recovery of every table space.

Since information for each log file is flushed to disk after the log becomes inactive,

this information can be lost as a result of a crash. To compensate for this, if a

recovery operation begins in the middle of a log file, the entire log is treated as

though it contains modifications to every table space in the system. After this, the

active logs will be processed and the information for them will be rebuilt. If

information for older or archived log files is lost in a crash situation and no

Chapter 4. Rollforward recovery 159

DB2 9 BETA

information for them exists in the data file, they will be treated as though they

contain modifications for every table space during the table space recovery

operation.

Before rolling a table space forward, invoke the LIST TABLESPACES SHOW

DETAIL command. This command returns the minimum recovery time, which is the

earliest point in time to which the table space can be rolled forward. The minimum

recovery time is updated when data definition language (DDL) statements are run

against the table space, or against tables in the table space. The table space must be

rolled forward to at least the minimum recovery time, so that it becomes

synchronized with the information in the system catalog tables. If recovering more

than one table space, the table spaces must be rolled forward to at least the highest

minimum recovery time of all the table spaces being recovered. In a partitioned

database environment, issue the LIST TABLESPACES SHOW DETAIL command on

all database partitions. The table spaces must be rolled forward to at least the

highest minimum recovery time of all the table spaces on all database partitions.

If you are rolling table spaces forward to a point in time, and a table is contained

in multiple table spaces, all of these table spaces must be rolled forward

simultaneously. If, for example, the table data is contained in one table space, and

the index for the table is contained in another table space, you must roll both table

spaces forward simultaneously to the same point in time.

If the data and the long objects in a table are in separate table spaces, and the long

object data has been reorganized, the table spaces for both the data and the long

objects must be restored and rolled forward together. You should take a backup of

the affected table spaces after the table is reorganized.

If you want to roll a table space forward to a point in time, and a table in the table

space is either:

v An underlying table for a materialized query or staging table that is in another

table space

v A materialized query or staging table for a table in another table space

You should roll both table spaces forward to the same point in time. If you do not,

the materialized query or staging table is placed in set integrity pending state at

the end of the rollforward operation. The materialized query table will need to be

fully refreshed, and the staging table will be marked as incomplete.

If you want to roll a table space forward to a point in time, and a table in the table

space participates in a referential integrity relationship with another table that is

contained in another table space, you should roll both table spaces forward

simultaneously to the same point in time. If you do not, the child table in the

referential integrity relationship will be placed in set integrity pending state at the

end of the rollforward operation. When the child table is later checked for

constraint violations, a check on the entire table is required. If any of the following

tables exist, they will also be placed in set integrity pending state with the child

table:

v Any descendent materialized query tables for the child table

v Any descendent staging tables for the child table

v Any descendent foreign key tables of the child table

These tables will require full integrity processing to bring them out of the set

integrity pending state. If you roll both table spaces forward simultaneously, the

constraint will remain active at the end of the point-in-time rollforward operation.

160 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Ensure that a point-in-time table space rollforward operation does not cause a

transaction to be rolled back in some table spaces, and committed in others. This

can happen if:

v A point-in-time rollforward operation is performed on a subset of the table

spaces that were updated by a transaction, and that point in time precedes the

time at which the transaction was committed.

v Any table contained in the table space being rolled forward to a point in time

has an associated trigger, or is updated by a trigger that affects table spaces

other than the one that is being rolled forward.

The solution is to find a suitable point in time that will prevent this from

happening.

You can issue the QUIESCE TABLESPACES FOR TABLE command to create a

transaction-consistent point in time for rolling table spaces forward. The quiesce

request (in share, intent to update, or exclusive mode) waits (through locking) for

all running transactions against those table spaces to complete, and blocks new

requests. When the quiesce request is granted, the table spaces are in a consistent

state. To determine a suitable time to stop the rollforward operation, you can look

in the recovery history file to find quiesce points, and check whether they occur

after the minimum recovery time.

After a table space point-in-time rollforward operation completes, the table space is

put in backup pending state. You must take a backup of the table space, because

all updates made to it between the point in time to which you rolled forward and

the current time have been removed. You can no longer roll the table space

forward to the current time from a previous database- or table space-level backup

image. The following example shows why the table space-level backup image is

required, and how it is used. (To make the table space available, you can either

back up the entire database, the table space that is in backup pending state, or a

set of table spaces that includes the table space that is in backup pending state.)

 In the preceding example, the database is backed up at time T1. Then, at time T3,

table space TABSP1 is rolled forward to a specific point in time (T2), The table

space is backed up after time T3. Because the table space is in backup pending

state, this backup operation is mandatory. The time stamp of the table space

backup image is after time T3, but the table space is at time T2. Log records from

between T2 and T3 are not applied to TABSP1. At time T4, the database is restored,

using the backup image created at T1, and rolled forward to the end of the logs.

Table space TABSP1 is put in restore pending state at time T3, because the

database manager assumes that operations were performed on TABSP1 between T3

and T4 without the log changes between T2 and T3 having been applied to the

table space. If these log changes were in fact applied as part of the rollforward

Database Time of rollforward of Restore

backup table space TABSP1 to database.

 T2. Back up TABSP1. Roll forward

 to end of logs.

T1 T2 T3 T4

| | | |

| | | |

|---

 | Logs are not

 applied to TABSP1

 between T2 and T3

 when it is rolled

 forward to T2.

Figure 19. Table Space Backup Requirement

Chapter 4. Rollforward recovery 161

DB2 9 BETA

operation against the database, this assumption would be incorrect. The table

space-level backup that must be taken after the table space is rolled forward to a

point in time allows you to roll that table space forward past a previous

point-in-time rollforward operation (T3 in the example).

Assuming that you want to recover table space TABSP1 to T4, you would restore

the table space from a backup image that was taken after T3 (either the required

backup, or a later one), then roll TABSP1 forward to the end of the logs.

In the preceding example, the most efficient way of restoring the database to time

T4 would be to perform the required steps in the following order:

1. Restore the database.

2. Restore the table space.

3. Roll the database forward.

4. Roll the table space forward.

Because you restore the table space before rolling the database forward, resource is

not used to apply log records to the table space when the database is rolled

forward.

If you cannot find the TABSP1 backup image that follows time T3, or you want to

restore TABSP1 to T3 (or earlier), you can:

v Roll the table space forward to T3. You do not need to restore the table space

again, because it was restored from the database backup image.

v Restore the table space again, using the database backup taken at time T1, then

roll the table space forward to a time that precedes time T3.

v Drop the table space.

In a partitioned database environment:

v You must simultaneously roll all parts of a table space forward to the same point

in time at the same time. This ensures that the table space is consistent across

database partitions.

v If some database partitions are in rollforward pending state, and on other

database partitions, some table spaces are in rollforward pending state (but the

database partitions are not), you must first roll the database partitions forward,

and then roll the table spaces forward.

v If you intend to roll a table space forward to the end of the logs, you do not

have to restore it at each database partition; you only need to restore it at the

database partitions that require recovery. If you intend to roll a table space

forward to a point in time, however, you must restore it at each database

partition.

In a database with partitioned tables:

v If you are rolling a table space containing any piece of a partitioned table

forward to a point in time, you must also roll all of the other table spaces in

which that table resides forward to the same point in time. However, rolling a

single table space containing a piece of a partitioned table forward to the end of

logs is allowed. If a partitioned table has any attached, detached, or dropped

data partitions, then point-in-time rollforward must also include all table spaces

for these data partitions. In order to determine if a partitioned table has any

attached, detached, or dropped data partitions, query the

SYSCAT.DATAPARTITIONS catalog view.

162 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Related concepts:

v “Recovering data with the load copy location file” on page 165

 Related reference:

v “ROLLFORWARD DATABASE ” on page 168

v “SET INTEGRITY statement” in SQL Reference, Volume 2

Recovering a dropped table

 You might occasionally drop a table that contains data you still need. If this is the

case, you should consider making your critical tables recoverable following a drop

table operation.

You could recover the table data by invoking a database restore operation,

followed by a database rollforward operation to a point in time before the table

was dropped. This can be time-consuming if the database is large, and your data

will be unavailable during recovery.

The dropped table recovery feature lets you recover your dropped table data using

table space-level restore and rollforward operations. This will be faster than

database-level recovery, and your database will remain available to users.

 Prerequisites:

 For a dropped table to be recoverable, the table space in which the table resides

must have the DROPPED TABLE RECOVERY option turned on. This can be done

during table space creation, or by invoking the ALTER TABLESPACE statement.

The DROPPED TABLE RECOVERY option is table space-specific and limited to

regular table spaces. To determine if a table space is enabled for dropped table

recovery, you can query the DROP_RECOVERY column in the

SYSCAT.TABLESPACES catalog table.

The dropped table recovery option is on by default when you create a table space.

If you do not want to enable a table space for dropped table recovery, you can

either explicitly set the DROPPED TABLE RECOVERY option to OFF when you

issue the CREATE TABLESPACE command, or you can use the ALTER

TABLESPACE command to disable dropped table recovery for an existing table

space. The dropped table recovery feature may have a performance impact on

forward recovery if there are many drop table operations to recover or if the

history file is large.

When a DROP TABLE statement is run against a table whose table space is

enabled for dropped table recovery, an additional entry (identifying the dropped

table) is made in the log files. An entry is also made in the recovery history file,

containing information that can be used to recreate the table.

For partitioned tables, dropped table recovery is always on even if the dropped

table recovery is turned off for non-partitioned tables in one or more table spaces.

Only one dropped table log record is written for a partitioned table. This log

record is sufficient to recover all the data partitions of the table.

 Restrictions:

 There are some restrictions on the type of data that is recoverable from a dropped

table. It is not possible to recover:

Chapter 4. Rollforward recovery 163

DB2 9 BETA

v Large object (LOB) or long field data. The DROPPED TABLE RECOVERY option

is not supported for large table spaces. If you attempt to recover a dropped table

that contains LOB or LONG VARCHAR columns, these columns will be set to

NULL in the generated export file. The DROPPED TABLE RECOVERY option

can only be used for regular table spaces, not for temporary or large table

spaces.

v The metadata associated with row types. (The data is recovered, but not the

metadata.) The data in the hierarchy table of the typed table will be recovered.

This data might contain more information than appeared in the typed table that

was dropped.

v XML data. If you attempt to recover a dropped table that contains XML data, the

corresponding column data will be empty.

If the table was in reorg pending state when it was dropped, the CREATE TABLE

DDL in the history file will not match exactly that of the import file. The import

file will be in the format of the table before the first REORG-recommended ALTER

was performed, but the CREATE TABLE statement in the history file will match

the state of the table including the results of any ALTER TABLE statements.″

If the data being recovered is of the GRAPHIC or VARGRAPHIC data type, it

might include more than one code page. In order to recover this data, you need to

specify the USEGRAPHICCODEPAGE file type modifier of the IMPORT or LOAD

commands. In this case, using the LOAD command to recover the data will

increase the performance of the recovery operation.

 Procedure:

 Only one dropped table can be recovered at a time. You can recover a dropped

table by doing the following:

1. Identify the dropped table by invoking the LIST HISTORY DROPPED TABLE

command. The dropped table ID is listed in the Backup ID column.

2. Restore a database- or table space-level backup image taken before the table

was dropped.

3. Create an export directory to which files containing the table data are to be

written. This directory must either be accessible to all database partitions, or

exist on each database partition. Subdirectories under this export directory are

created automatically by each database partition. These subdirectories are

named NODEnnnn, where nnnn represents the database partition or node number.

Data files containing the dropped table data as it existed on each database

partition are exported to a lower subdirectory called data. For example,

\export_directory\NODE0000\data.

4. Roll forward to a point in time after the table was dropped, using the

RECOVER DROPPED TABLE option on the ROLLFORWARD DATABASE

command. Alternatively, roll forward to the end of the logs, so that updates to

other tables in the table space or database are not lost.

5. Recreate the table using the CREATE TABLE statement from the recovery

history file.

6. Import the table data that was exported during the rollforward operation into

the table. If the table was in reorg pending state when the drop took place, the

contents of the CREATE TABLE DDL might need to be changed to match the

contents of the data file.

 Related tasks:

v “Creating a table space” in Administration Guide: Implementation

164 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Related reference:

v “ALTER TABLESPACE statement” in SQL Reference, Volume 2

v “CREATE TABLE statement” in SQL Reference, Volume 2

v “LIST HISTORY ” on page 326

v “ROLLFORWARD DATABASE ” on page 168

Recovering data with the load copy location file

 The DB2LOADREC registry variable is used to identify the file with the load copy

location information. This file is used during rollforward recovery to locate the

load copy. It has information about:

v Media type

v Number of media devices to be used

v Location of the load copy generated during a table load operation

v File name of the load copy, if applicable

If the location file does not exist, or no matching entry is found in the file, the

information from the log record is used.

The information in the file might be overwritten before rollforward recovery takes

place.

Notes:

1. In a multi-partition database, the DB2LOADREC registry variable must be set

for all the database partition servers using the db2set command.

2. In a multi-partition database, the load copy file must exist at each database

partition server, and the file name (including the path) must be the same.

3. If an entry in the file identified by the DB2LOADREC registry variable is not

valid, the old load copy location file is used to provide information to replace

the invalid entry.

The following information is provided in the location file. The first five parameters

must have valid values, and are used to identify the load copy. The entire structure

is repeated for each load copy recorded. For example:

TIMestamp 19950725182542 * Time stamp generated at load time

DBPartition 0 * DB Partition number (OPTIONAL)

SCHema PAYROLL * Schema of table loaded

TABlename EMPLOYEES * Table name

DATabasename DBT * Database name

DB2instance toronto * DB2INSTANCE

BUFfernumber NULL * Number of buffers to be used for

 recovery

SESsionnumber NULL * Number of sessions to be used for

 recovery

TYPeofmedia L * Type of media - L for local device

 A for TSM

 O for other vendors

LOCationnumber 3 * Number of locations

 ENTry /u/toronto/dbt.payroll.employes.001

 ENT /u/toronto/dbt.payroll.employes.002

 ENT /dev/rmt0

TIM 19950725192054

DBP 18

SCH PAYROLL

TAB DEPT

DAT DBT

DB2 toronto

Chapter 4. Rollforward recovery 165

DB2 9 BETA

BUF NULL

SES NULL

TYP A

TIM 19940325192054

SCH PAYROLL

TAB DEPT

DAT DBT

DB2 toronto

BUF NULL

SES NULL

TYP O

SHRlib /@sys/lib/backup_vendor.a

Notes:

1. The first three characters in each keyword are significant. All keywords are

required in the specified order. Blank lines are not accepted.

2. The time stamp is in the form yyyymmddhhmmss.

3. All fields are mandatory, except for BUF and SES (which can be NULL), and

DBP (which can be missing from the list).. If SES is NULL, the value specified

by the numloadrecses configuration parameter is used. If BUF is NULL, the

default value is SES+2.

4. If even one of the entries in the location file is invalid, the previous load copy

location file is used to provide those values.

5. The media type can be local device (L for tape, disk or diskettes), TSM (A), or

other vendor (O). If the type is L, the number of locations, followed by the

location entries, is required. If the type is A, no further input is required. If the

type is O, the shared library name is required.

6. The SHRlib parameter points to a library that has a function to store the load

copy data.

7. If you invoke a load operation, specifying the COPY NO or the

NONRECOVERABLE option, and do not take a backup copy of the database or

affected table spaces after the operation completes, you cannot restore the

database or table spaces to a point in time that follows the load operation. That

is, you cannot use rollforward recovery to recreate the database or table spaces

to the state they were in following the load operation. You can only restore the

database or table spaces to a point in time that precedes the load operation.

If you want to use a particular load copy, you can use the recovery history file for

the database to determine the time stamp for that specific load operation. In a

multi-partition database, the recovery history file is local to each database partition.

 Related reference:

v Appendix G, “Tivoli Storage Manager,” on page 403

Synchronizing clocks in a partitioned database environment

 You should maintain relatively synchronized system clocks across the database

partition servers to ensure smooth database operations and unlimited forward

recoverability. Time differences among the database partition servers, plus any

potential operational and communications delays for a transaction should be less

than the value specified for the max_time_diff (maximum time difference among

nodes) database manager configuration parameter.

To ensure that the log record time stamps reflect the sequence of transactions in a

partitioned database environment, DB2 uses the system clock on each machine as

the basis for the time stamps in the log records. If, however, the system clock is set

166 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

ahead, the log clock is automatically set ahead with it. Although the system clock

can be set back, the clock for the logs cannot, and remains at the same advanced

time until the system clock matches this time. The clocks are then in synchrony.

The implication of this is that a short term system clock error on a database node

can have a long lasting effect on the time stamps of database logs.

For example, assume that the system clock on database partition server A is

mistakenly set to November 7, 2005 when the year is 2003, and assume that the

mistake is corrected after an update transaction is committed in the database

partition at that database partition server. If the database is in continual use, and is

regularly updated over time, any point between November 7, 2003 and November

7, 2005 is virtually unreachable through rollforward recovery. When the COMMIT

on database partition server A completes, the time stamp in the database log is set

to 2005, and the log clock remains at November 7, 2005 until the system clock

matches this time. If you attempt to roll forward to a point in time within this time

frame, the operation will stop at the first time stamp that is beyond the specified

stop point, which is November 7, 2003.

Although DB2 cannot control updates to the system clock, the max_time_diff

database manager configuration parameter reduces the chances of this type of

problem occurring:

v The configurable values for this parameter range from 1 minute to 24 hours.

v When the first connection request is made to a non-catalog partition, the

database partition server sends its time to the catalog partition for the database.

The catalog partition then checks that the time on the database partition

requesting the connection, and its own time are within the range specified by

the max_time_diff parameter. If this range is exceeded, the connection is refused.

v An update transaction that involves more than two database partition servers in

the database must verify that the clocks on the participating database partition

servers are in synchrony before the update can be committed. If two or more

database partition servers have a time difference that exceeds the limit allowed

by max_time_diff, the transaction is rolled back to prevent the incorrect time from

being propagated to other database partition servers.

 Related reference:

v “max_time_diff - Maximum time difference among nodes configuration

parameter” in Performance Guide

Client/server timestamp conversion

 This section explains the generation of timestamps in a client/server environment:

v If you specify a local time for a rollforward operation, all messages returned will

also be in local time.

Note: All times are converted on the server and (in partitioned database

environments) on the catalog database partition.

v The timestamp string is converted to GMT on the server, so the time represents

the server’s time zone, not the client’s. If the client is in a different time zone

from the server, the server’s local time should be used.

v If the timestamp string is close to the time change due to daylight savings time,

it is important to know whether the stop time is before or after the time change

so that it is specified correctly.

 Related concepts:

Chapter 4. Rollforward recovery 167

DB2 9 BETA

v “Rollforward overview” on page 155

v “Synchronizing clocks in a partitioned database environment” on page 166

ROLLFORWARD DATABASE

Recovers a database by applying transactions recorded in the database log files.

Invoked after a database or a table space backup image has been restored, or if any

table spaces have been taken offline by the database due to a media error. The

database must be recoverable (that is, the logarchmeth1 or logarchmeth2 database

configuration parameters must be set to a value other than OFF) before the

database can be recovered with rollforward recovery.

 Scope:

 In a partitioned database environment, this command can only be invoked from

the catalog partition. A database or table space rollforward operation to a specified

point in time affects all database partitions that are listed in the db2nodes.cfg file.

A database or table space rollforward operation to the end of logs affects the

database partitions that are specified. If no database partitions are specified, it

affects all database partitions that are listed in the db2nodes.cfg file; if rollforward

recovery is not needed on a particular partition, that partition is ignored.

For partitioned tables, you are also required to roll forward related table spaces to

the same point in time. This applies to table spaces containing data partitions of a

table. If a single table space contains a portion of a partitioned table, rolling

forward to the end of the logs is still allowed.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

 Required connection:

 None. This command establishes a database connection.

 Command syntax:

�� ROLLFORWARD DATABASE database-alias

DB

USER

username

USING

password

 �

�
USING UTC TIME

TO

isotime

USING LOCAL TIME

ON ALL DBPARTITIONNUMS

AND COMPLETE

END OF LOGS

AND STOP

On Database Partition clause

COMPLETE

STOP

On Database Partition clause

CANCEL

USING UTC TIME

QUERY STATUS

USING LOCAL TIME

 �

ROLLFORWARD DATABASE

168 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

�

�

TABLESPACE

ONLINE

,

(

tablespace-name

)

ONLINE

 �

�
OVERFLOW LOG PATH

(

log-directory

)

,

Log Overflow clause

NORETRIEVE
 �

�
RECOVER DROPPED TABLE

drop-table-id

TO

export-directory
 ��

On Database Partition clause:

 ON Database Partition List clause

ALL DBPARTITIONNUMS

EXCEPT

Database Partition List clause

Database Partition List clause:

 DBPARTITIONNUM

DBPARTITIONNUMS
 (�

�

�

 ,

db-partition-number1

TO

db-partition-number2

)

Log Overflow clause:

�

 ,

log-directory

ON DBPARTITIONNUM

db-partition-number1

 Command parameters:

DATABASE database-alias

The alias of the database that is to be rollforward recovered.

USER username

The user name under which the database is to be rollforward recovered.

USING password

The password used to authenticate the user name. If the password is

omitted, you will be prompted to enter it.

TO

isotime

The point in time to which all committed transactions are to be

rolled forward (including the transaction committed precisely at

that time, as well as all transactions committed previously).

 This value is specified as a time stamp, a 7-part character string

that identifies a combined date and time. The format is

yyyy-mm-dd-hh.mm.ss (year, month, day, hour, minutes, seconds),

expressed in Coordinated Universal Time (UTC, formerly known as

GMT). UTC helps to avoid having the same time stamp associated

ROLLFORWARD DATABASE

Chapter 4. Rollforward recovery 169

DB2 9 BETA

with different logs (because of a change in time associated with

daylight savings time, for example). The time stamp in a backup

image is based on the local time at which the backup operation

started. The CURRENT TIMEZONE special register specifies the

difference between UTC and local time at the application server.

The difference is represented by a time duration (a decimal number

in which the first two digits represent the number of hours, the

next two digits represent the number of minutes, and the last two

digits represent the number of seconds). Subtracting CURRENT

TIMEZONE from a local time converts that local time to UTC.

USING LOCAL TIME

Allows you to rollforward to a point in time that is the server’s

local time rather than UTC time.

Notes:

1. If you specify a local time for rollforward, all messages

returned to you will also be in local time. All times are

converted on the server, and in partitioned database

environments, on the catalog database partition.

2. The timestamp string is converted to UTC on the server, so the

time is local to the server’s time zone, not the client’s. If the

client is in one time zone and the server in another, the server’s

local time should be used. This is different from the local time

option from the Control Center, which is local to the client.

3. If the timestamp string is close to the time change of the clock

due to daylight savings, it is important to know if the stop time

is before or after the clock change, and specify it correctly.

4. Subsequent ROLLFORWARD commands that cannot specify the

USING LOCAL TIME clause will have all messages returned to

you in local time if this option is specified.

END OF LOGS

Specifies that all committed transactions from all online archive log

files listed in the database configuration parameter logpath are to be

applied.

ALL DBPARTITIONNUMS

Specifies that transactions are to be rolled forward on all database

partitions specified in the db2nodes.cfg file. This is the default if a

database partition clause is not specified.

EXCEPT

Specifies that transactions are to be rolled forward on all database

partitions specified in the db2nodes.cfg file, except those specified in the

database partition list.

ON DBPARTITIONNUM / ON DBPARTITIONNUMS

Roll the database forward on a set of database partitions.

db-partition-number1

Specifies a database partition number in the database partition list.

db-partition-number2

Specifies the second database partition number, so that all database

partitions from db-partition-number1 up to and including

db-partition-number2 are included in the database partition list.

ROLLFORWARD DATABASE

170 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

COMPLETE / STOP

Stops the rolling forward of log records, and completes the rollforward

recovery process by rolling back any incomplete transactions and turning

off the rollforward pending state of the database. This allows access to the

database or table spaces that are being rolled forward. These keywords are

equivalent; specify one or the other, but not both. The keyword AND

permits specification of multiple operations at once; for example, db2

rollforward db sample to end of logs and complete. When rolling table

spaces forward to a point in time, the table spaces are placed in backup

pending state.

CANCEL

Cancels the rollforward recovery operation. This puts the database or one

or more table spaces on all database partitions on which forward recovery

has been started in restore pending state:

v If a database rollforward operation is not in progress (that is, the database

is in rollforward pending state), this option puts the database in restore

pending state.

v If a table space rollforward operation is not in progress (that is, the table

spaces are in rollforward pending state), a table space list must be

specified. All table spaces in the list are put in restore pending state.

v If a table space rollforward operation is in progress (that is, at least one

table space is in rollforward in progress state), all table spaces that are in

rollforward in progress state are put in restore pending state. If a table

space list is specified, it must include all table spaces that are in

rollforward in progress state. All table spaces on the list are put in

restore pending state.

v If rolling forward to a point in time, any table space name that is passed

in is ignored, and all table spaces that are in rollforward in progress

state are put in restore pending state.

v If rolling forward to the end of the logs with a table space list, only the

table spaces listed are put in restore pending state.

This option cannot be used to cancel a rollforward operation that is actually

running. It can only be used to cancel a rollforward operation that is in

progress but not actually running at the time. A rollforward operation can

be in progress but not running if:

v It terminated abnormally.

v The STOP option was not specified.

v An error caused it to fail. Some errors, such as rolling forward through a

non-recoverable load operation, can put a table space into restore

pending state.

Use this option with caution, and only if the rollforward operation that is

in progress cannot be completed because some of the table spaces have

been put in rollforward pending state or in restore pending state. When in

doubt, use the LIST TABLESPACES command to identify the table spaces

that are in rollforward in progress state, or in rollforward pending state.

QUERY STATUS

Lists the log files that the database manager has rolled forward, the next

archive file required, and the time stamp (in UTC) of the last committed

transaction since rollforward processing began. In a partitioned database

environment, this status information is returned for each database

partition. The information returned contains the following fields:

ROLLFORWARD DATABASE

Chapter 4. Rollforward recovery 171

DB2 9 BETA

Database partition number

Rollforward status

Status can be: database or table space rollforward pending,

database or table space rollforward in progress, database or table

space rollforward processing STOP, or not pending.

Next log file to be read

A string containing the name of the next required log file. In a

partitioned database environment, use this information if the

rollforward utility fails with a return code indicating that a log file

is missing or that a log information mismatch has occurred.

Log files processed

A string containing the names of processed log files that are no

longer needed for recovery, and that can be removed from the

directory. If, for example, the oldest uncommitted transaction starts

in log file x, the range of obsolete log files will not include x; the

range ends at x - 1.

Last committed transaction

A string containing a time stamp in ISO format

(yyyy-mm-dd-hh.mm.ss) suffixed by either “UTC” or “Local” (see

USING LOCAL TIME). This time stamp marks the last transaction

committed after the completion of rollforward recovery. The time

stamp applies to the database. For table space rollforward recovery,

it is the time stamp of the last transaction committed to the

database.

QUERY STATUS is the default value if the TO, STOP, COMPLETE, or

CANCEL clauses are omitted. If TO, STOP, or COMPLETE was specified,

status information is displayed if the command has completed successfully.

If individual table spaces are specified, they are ignored; the status request

does not apply only to specified table spaces.

TABLESPACE

This keyword is specified for table space-level rollforward recovery.

tablespace-name

Mandatory for table space-level rollforward recovery to a point in time.

Allows a subset of table spaces to be specified for rollforward recovery to

the end of the logs. In a partitioned database environment, each table space

in the list does not have to exist at each database partition that is rolling

forward. If it does exist, it must be in the correct state.

 For partitioned tables, point in time roll-forward of a table space

containing any piece of a partitioned table must also roll-forward all of the

other table spaces in which that table resides to the same point in time.

Roll-forward to the end of the logs for a single table space containing a

piece of a partitioned table is still allowed.

 If a partitioned table has any attached or detached data partitions, then PIT

rollforward must include all table spaces for these data partitions as well.

To determine if a partitioned table has any attached, detached, or dropped

data partitions, query the Status field of the SYSDATAPARTITIONS catalog

table.

 Because a partitioned table can reside in multiple table spaces, it will

generally be necessary to roll forward multiple table spaces. Data that is

recovered via dropped table recovery is written to the export directory

specified in the ROLLFORWARD DATABASE command. It is possible to

ROLLFORWARD DATABASE

172 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

roll forward all table spaces in one command, or do repeated roll forward

operations for subsets of the table spaces involved. If the ROLLFORWARD

DATABASE command is done for one or a few table spaces, then all data

from the table that resided in those table spaces will be recovered. A

warning will be written to the notify log if the ROLLFORWARD

DATABASE command did not specify the full set of the table spaces

necessary to recover all the data for the table. Allowing rollforward of a

subset of the table spaces makes it easier to deal with cases where there is

more data to be recovered than can fit into a single export directory.

ONLINE

This keyword is specified to allow table space-level rollforward recovery to

be done online. This means that other agents are allowed to connect while

rollforward recovery is in progress.

OVERFLOW LOG PATH log-directory

Specifies an alternate log path to be searched for archived logs during

recovery. Use this parameter if log files were moved to a location other

than that specified by the logpath database configuration parameter. In a

partitioned database environment, this is the (fully qualified) default

overflow log path for all database partitions. A relative overflow log path can

be specified for single-partition databases. The OVERFLOW LOG PATH

command parameter will overwrite the value (if any) of the database

configuration parameter OVERFLOWLOGPATH.

log-directory ON DBPARTITIONNUM

In a partitioned database environment, allows a different log path to

override the default overflow log path for a specific database partition.

NORETRIEVE

Allows you to control which log files are to be rolled forward on the

standby machine by allowing you to disable the retrieval of archived logs.

The benefits of this are:

v By controlling the logfiles to be rolled forward, you can ensure that the

standby machine is X hours behind the production machine, to avoid

affecting both the systems.

v If the standby system does not have access to archive (eg. if TSM is the

archive, it only allows the original machine to retrieve the files)

v It might also be possible that while the production system is archiving a

file, the standby system is retrieving the same file, and it might then get

an incomplete log file. Noretrieve would solve this problem.

RECOVER DROPPED TABLE drop-table-id

Recovers a dropped table during the rollforward operation. The table ID

can be obtained using the LIST HISTORY command. For partitioned tables,

the drop-table-id identifies the table as a whole, so that all data partitions

of the table can be recovered in a single roll-forward command.

TO export-directory

Specifies a directory to which files containing the table data are to be

written. The directory must be accessible to all database partitions.

 Examples:

 Example 1

ROLLFORWARD DATABASE

Chapter 4. Rollforward recovery 173

DB2 9 BETA

The ROLLFORWARD DATABASE command permits specification of multiple

operations at once, each being separated with the keyword AND. For example, to

roll forward to the end of logs, and complete, the separate commands:

 db2 rollforward db sample to end of logs

 db2 rollforward db sample complete

can be combined as follows:

 db2 rollforward db sample to end of logs and complete

Although the two are equivalent, it is recommended that such operations be done

in two steps. It is important to verify that the rollforward operation has progressed

as expected, before stopping it and possibly missing logs. This is especially

important if a bad log is found during rollforward recovery, and the bad log is

interpreted to mean the “end of logs”. In such cases, an undamaged backup copy

of that log could be used to continue the rollforward operation through more logs.

However if the rollforward AND STOP option is used, and the rollforward

encounters an error, the error will be returned to you. In this case, the only way to

force the rollforward to stop and come online despite the error (i.e. to come online

at that point in the logs before the error) is to issue the rollforward STOP

command.

Example 2

Roll forward to the end of the logs (two table spaces have been restored):

 db2 rollforward db sample to end of logs

 db2 rollforward db sample to end of logs and stop

These two statements are equivalent. Neither AND STOP or AND COMPLETE is

needed for table space rollforward recovery to the end of the logs. Table space

names are not required. If not specified, all table spaces requiring rollforward

recovery will be included. If only a subset of these table spaces is to be rolled

forward, their names must be specified.

Example 3

After three table spaces have been restored, roll one forward to the end of the logs,

and the other two to a point in time, both to be done online:

 db2 rollforward db sample to end of logs tablespace(TBS1) online

 db2 rollforward db sample to 1998-04-03-14.21.56 and stop

 tablespace(TBS2, TBS3) online

Two rollforward operations cannot be run concurrently. The second command can

only be invoked after the first rollforward operation completes successfully.

Example 4

After restoring the database, roll forward to a point in time, using OVERFLOW

LOG PATH to specify the directory where the user exit saves archived logs:

 db2 rollforward db sample to 1998-04-03-14.21.56 and stop

 overflow log path (/logs)

Example 5 (partitioned database environments)

There are three database partitions: 0, 1, and 2. Table space TBS1 is defined on all

database partitions, and table space TBS2 is defined on database partitions 0 and 2.

ROLLFORWARD DATABASE

174 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

After restoring the database on database partition 1, and TBS1 on database

partitions 0 and 2, roll the database forward on database partition 1:

 db2 rollforward db sample to end of logs and stop

This returns warning SQL1271 (“Database is recovered but one or more table

spaces are off-line on database partition(s) 0 and 2.”).

 db2 rollforward db sample to end of logs

This rolls TBS1 forward on database partitions 0 and 2. The clause

TABLESPACE(TBS1) is optional in this case.

Example 6 (partitioned database environments)

After restoring table space TBS1 on database partitions 0 and 2 only, roll TBS1

forward on database partitions 0 and 2:

 db2 rollforward db sample to end of logs

Database partition 1 is ignored.

 db2 rollforward db sample to end of logs tablespace(TBS1)

This fails, because TBS1 is not ready for rollforward recovery on database partition

1. Reports SQL4906N.

 db2 rollforward db sample to end of logs on dbpartitionnums (0, 2)

 tablespace(TBS1)

This completes successfully.

 db2 rollforward db sample to 1998-04-03-14.21.56 and stop

 tablespace(TBS1)

This fails, because TBS1 is not ready for rollforward recovery on database partition

1; all pieces must be rolled forward together. With table space rollforward to a

point in time, the database partition clause is not accepted. The rollforward

operation must take place on all the database partitions on which the table space

resides.

After restoring TBS1 on database partition 1:

 db2 rollforward db sample to 1998-04-03-14.21.56 and stop

 tablespace(TBS1)

This completes successfully.

Example 7 (partitioned database environment)

After restoring a table space on all database partitions, roll forward to point in

time 2, but do not specify AND STOP. The rollforward operation is still in progress.

Cancel and roll forward to point in time 1:

 db2 rollforward db sample to pit2 tablespace(TBS1)

 db2 rollforward db sample cancel tablespace(TBS1)

 ** restore TBS1 on all database partitions **

 db2 rollforward db sample to pit1 tablespace(TBS1)

 db2 rollforward db sample stop tablespace(TBS1)

Example 8 (partitioned database environments)

ROLLFORWARD DATABASE

Chapter 4. Rollforward recovery 175

DB2 9 BETA

Rollforward recover a table space that resides on eight database partitions (3 to 10)

listed in the db2nodes.cfg file:

 db2 rollforward database dwtest to end of logs tablespace (tssprodt)

This operation to the end of logs (not point in time) completes successfully. The

database partitions on which the table space resides do not have to be specified.

The utility defaults to the db2nodes.cfg file.

Example 9 (partitioned database environment)

Rollforward recover six small table spaces that reside on a single-partition database

partition group (on database partition 6):

 db2 rollforward database dwtest to end of logs on dbpartitionnum (6)

 tablespace(tsstore, tssbuyer, tsstime, tsswhse, tsslscat, tssvendor)

This operation to the end of logs (not point in time) completes successfully.

 Usage notes:

 If restoring from an image that was created during an online backup operation, the

specified point in time for the rollforward operation must be later than the time at

which the online backup operation completed. If the rollforward operation is

stopped before it passes this point, the database is left in rollforward pending state.

If a table space is in the process of being rolled forward, it is left in rollforward in

progress state.

If one or more table spaces is being rolled forward to a point in time, the

rollforward operation must continue at least to the minimum recovery time, which

is the last update to the system catalogs for this table space or its tables. The

minimum recovery time (in Coordinated Universal Time, or UTC) for a table space

can be retrieved using the LIST TABLESPACES SHOW DETAIL command.

Rolling databases forward might require a load recovery using tape devices. If

prompted for another tape, you can respond with one of the following:

c Continue. Continue using the device that generated the warning message

(for example, when a new tape has been mounted)

d Device terminate. Stop using the device that generated the warning

message (for example, when there are no more tapes)

t Terminate. Take all affected tablespaces offline, but continue rollforward

processing.

If the rollforward utility cannot find the next log that it needs, the log name is

returned in the SQLCA, and rollforward recovery stops. If no more logs are

available, use the STOP option to terminate rollforward recovery. Incomplete

transactions are rolled back to ensure that the database or table space is left in a

consistent state.

 Compatibilities:

 For compatibility with versions earlier than Version 8:

v The keyword NODE can be substituted for DBPARTITIONNUM.

v The keyword NODES can be substituted for DBPARTITIONNUMS.

v Point in time rollforward is not supported with pre-V9.1 clients due to V9.1

support for partitioned tables.

ROLLFORWARD DATABASE

176 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Related concepts:

v “Developing a backup and recovery strategy” on page 3

 Related tasks:

v “Using rollforward” on page 157

db2Rollforward - Roll forward a database

 Recovers a database by applying transactions recorded in the database log files.

Called after a database or a table space backup has been restored, or if any table

spaces have been taken offline by the database due to a media error. The database

must be recoverable (that is, either the logarchmeth1 database configuration

parameter or the logarchmeth2 database configuration parameter must be set to a

value other than OFF) before the database can be recovered with rollforward

recovery.

 Scope:

 In a partitioned database environment, this API can only be called from the catalog

partition. A database or table space rollforward call specifying a point-in-time

affects all database partition servers that are listed in the db2nodes.cfg file. A

database or table space rollforward call specifying end of logs affects the database

partition servers that are specified. If no database partition servers are specified, it

affects all database partition servers that are listed in the db2nodes.cfg file; if no

roll forward is needed on a particular database partition server, that database

partition server is ignored.

For partitioned tables, you are also required to roll forward related table spaces to

the same point in time. Related table spaces contain attached, detached, and

dropped data partitions or indexes of a table. Rollforward to the end of the logs

for a single table space containing a piece of a partitioned table is still allowed.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

 Required connection:

 None. This API establishes a database connection.

 API include file:

db2ApiDf.h

 API and data structure syntax:

SQL_API_RC SQL_API_FN

 db2Rollforward (

 db2Uint32 versionNumber,

 void * pDB2RollforwardStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2RollforwardStruct

{

ROLLFORWARD DATABASE

Chapter 4. Rollforward recovery 177

DB2 9 BETA

struct db2RfwdInputStruct *piRfwdInput;

 struct db2RfwdOutputStruct *poRfwdOutput;

} db2RollforwardStruct;

typedef SQL_STRUCTURE db2RfwdInputStruct

{

 sqluint32 iVersion;

 char *piDbAlias;

 db2Uint32 iCallerAction;

 char *piStopTime;

 char *piUserName;

 char *piPassword;

 char *piOverflowLogPath;

 db2Uint32 iNumChngLgOvrflw;

 struct sqlurf_newlogpath *piChngLogOvrflw;

 db2Uint32 iConnectMode;

 struct sqlu_tablespace_bkrst_list *piTablespaceList;

 db2int32 iAllNodeFlag;

 db2int32 iNumNodes;

 SQL_PDB_NODE_TYPE *piNodeList;

 db2int32 iNumNodeInfo;

 char *piDroppedTblID;

 char *piExportDir;

 db2Uint32 iRollforwardFlags;

} db2RfwdInputStruct;

typedef SQL_STRUCTURE db2RfwdOutputStruct

{

 char *poApplicationId;

 sqlint32 *poNumReplies;

 struct sqlurf_info *poNodeInfo;

 db2Uint32 oRollforwardFlags;

} db2RfwdOutputStruct;

SQL_STRUCTURE sqlurf_newlogpath

{

 SQL_PDB_NODE_TYPE nodenum;

 unsigned short pathlen;

 char logpath[SQL_LOGPATH_SZ+SQL_LOGFILE_NAME_SZ+1];

};

typedef SQL_STRUCTURE sqlu_tablespace_bkrst_list

{

 sqlint32 num_entry;

 struct sqlu_tablespace_entry *tablespace;

} sqlu_tablespace_bkrst_list;

typedef SQL_STRUCTURE sqlu_tablespace_entry

{

 sqluint32 reserve_len;

 char tablespace_entry[SQLU_MAX_TBS_NAME_LEN+1];

 char filler[1];

} sqlu_tablespace_entry;

SQL_STRUCTURE sqlurf_info

{

 SQL_PDB_NODE_TYPE nodenum;

 sqlint32 state;

 unsigned char nextarclog[SQLUM_ARCHIVE_FILE_LEN+1];

 unsigned char firstarcdel[SQLUM_ARCHIVE_FILE_LEN+1];

 unsigned char lastarcdel[SQLUM_ARCHIVE_FILE_LEN+1];

 unsigned char lastcommit[SQLUM_TIMESTAMP_LEN+1];

};

SQL_API_RC SQL_API_FN

 db2gRollforward (

 db2Uint32 versionNumber,

db2Rollforward - Roll forward a database

178 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

void * pDB2gRollforwardStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gRollforwardStruct

{

 struct db2gRfwdInputStruct *piRfwdInput;

 struct db2RfwdOutputStruct *poRfwdOutput;

} db2gRollforwardStruct;

typedef SQL_STRUCTURE db2gRfwdInputStruct

{

 db2Uint32 iDbAliasLen;

 db2Uint32 iStopTimeLen;

 db2Uint32 iUserNameLen;

 db2Uint32 iPasswordLen;

 db2Uint32 iOvrflwLogPathLen;

 db2Uint32 iDroppedTblIDLen;

 db2Uint32 iExportDirLen;

 sqluint32 iVersion;

 char *piDbAlias;

 db2Uint32 iCallerAction;

 char *piStopTime;

 char *piUserName;

 char *piPassword;

 char *piOverflowLogPath;

 db2Uint32 iNumChngLgOvrflw;

 struct sqlurf_newlogpath *piChngLogOvrflw;

 db2Uint32 iConnectMode;

 struct sqlu_tablespace_bkrst_list *piTablespaceList;

 db2int32 iAllNodeFlag;

 db2int32 iNumNodes;

 SQL_PDB_NODE_TYPE *piNodeList;

 db2int32 iNumNodeInfo;

 char *piDroppedTblID;

 char *piExportDir;

 db2Uint32 iRollforwardFlags;

} db2gRfwdInputStruct;

 db2Rollforward API parameters:

 versionNumber

Input. Specifies the version and release level of the structure passed as the

second parameter.

pDB2RollforwardStruct

Input. A pointer to the db2RollforwardStruct structure.

pSqlca

Output. A pointer to the sqlca structure.

 db2RollforwardStruct data structure parameters:

 piRfwdInput

Input. A pointer to the db2RfwdInputStruct structure.

poRfwdOutput

Output. A pointer to the db2RfwdOutputStruct structure.

 db2RfwdInputStruct data structure parameters:

 iVersion

Input. The version ID of the rollforward parameters. It is defined as

SQLUM_RFWD_VERSION.

db2Rollforward - Roll forward a database

Chapter 4. Rollforward recovery 179

DB2 9 BETA

piDbAlias

Input. A string containing the database alias. This is the alias that is

cataloged in the system database directory.

iCallerAction

Input. Specifies action to be taken. Valid values (defined in db2ApiDf

header file, located in the include directory) are:

DB2ROLLFORWARD_ROLLFWD

Rollforward to the point in time specified by the piStopTime

parameter. For database rollforward, the database is left in

rollforward-pending state. For table space rollforward to a point in

time, the table spaces are left in rollforward-in-progress state.

DB2ROLLFORWARD_STOP

End roll-forward recovery by rolling forward the database using

available log files and then rolling it back. Uncommitted

transactions are backed out and the rollforward-pending state of

the database or table spaces is turned off. A synonym for this value

is DB2ROLLFORWARD_RFWD_COMPLETE.

DB2ROLLFORWARD_RFWD_STOP

Rollforward to the point in time specified by piStopTime, and end

roll-forward recovery. The rollforward-pending state of the

database or table spaces is turned off. A synonym for this value is

DB2ROLLFORWARD_RFWD_COMPLETE.

DB2ROLLFORWARD_QUERY

Query values for nextarclog, firstarcdel, lastarcdel, and lastcommit.

Return database status and a node number.

DB2ROLLFORWARD_PARM_CHECK

Validate parameters without performing the roll forward.

DB2ROLLFORWARD_CANCEL

Cancel the rollforward operation that is currently running. The

database or table space are put in recovery pending state.

Note: This option cannot be used while the rollforward is actually

running. It can be used if the rollforward is paused (that is,

waiting for a STOP), or if a system failure occurred during

the rollforward. It should be used with caution.

Rolling databases forward may require a load recovery using tape

devices. The rollforward API will return with a warning message if

user intervention on a device is required. The API can be called

again with one of the following three caller actions:

DB2ROLLFORWARD_LOADREC_CONT

Continue using the device that generated the warning message (for

example, when a new tape has been mounted).

DB2ROLLFORWARD_DEVICE_TERM

Stop using the device that generated the warning message (for

example, when there are no more tapes).

DB2ROLLFORWARD_LOAD_REC_TERM

Terminate all devices being used by load recovery.

piStopTime

Input. A character string containing a time stamp in ISO format. Database

recovery will stop when this time stamp is exceeded. Specify

db2Rollforward - Roll forward a database

180 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

SQLUM_INFINITY_TIMESTAMP to roll forward as far as possible. May be

NULL for DB2ROLLFORWARD_QUERY,

DB2ROLLFORWARD_PARM_CHECK, and any of the load recovery

(DB2ROLLFORWARD_LOADREC_xxx) caller actions.

piUserName

Input. A string containing the user name of the application. Can be NULL.

piPassword

Input. A string containing the password of the supplied user name (if any).

Can be NULL.

piOverflowLogPath

Input. This parameter is used to specify an alternate log path to be used.

In addition to the active log files, archived log files need to be moved (by

the user) into the logpath before they can be used by this utility. This can

be a problem if the database does not have sufficient space in the logpath.

The overflow log path is provided for this reason. During roll-forward

recovery, the required log files are searched, first in the logpath, and then

in the overflow log path. The log files needed for table space roll-forward

recovery can be brought into either the logpath or the overflow log path. If

the caller does not specify an overflow log path, the default value is the

logpath. In a partitioned database environment, the overflow log path must

be a valid, fully qualified path; the default path is the default overflow log

path for each node. In a single-partition database environment, the

overflow log path can be relative if the server is local.

iNumChngLgOvrflw

Input. Partitioned database environments only. The number of changed

overflow log paths. These new log paths override the default overflow log

path for the specified database partition server only.

piChngLogOvrflw

Input. Partitioned database environments only. A pointer to a structure

containing the fully qualified names of changed overflow log paths. These

new log paths override the default overflow log path for the specified

database partition server only.

iConnectMode

Input. Valid values (defined in db2ApiDf header file, located in the include

directory) are:

DB2ROLLFORWARD_OFFLINE

Offline roll forward. This value must be specified for database

roll-forward recovery.

DB2ROLLFORWARD_ONLINE

Online roll forward.

piTablespaceList

Input. A pointer to a structure containing the names of the table spaces to

be rolled forward to the end-of-logs or to a specific point in time. If not

specified, the table spaces needing rollforward will be selected.

 For partitioned tables, point in time (PIT) roll-forward of a table space

containing any piece of a partitioned table must also roll forward all of the

other table spaces in which that table resides to the same point in time.

Roll forward to the end of the logs for a single table space containing a

piece of a partitioned table is still allowed.

db2Rollforward - Roll forward a database

Chapter 4. Rollforward recovery 181

DB2 9 BETA

If a partitioned table has any attached, detached or dropped data

partitions, then PIT roll-forward must include all table spaces for these

data partitions as well. To determine if a partitioned table has any

attached, detached, or dropped data partitions, query the Status field of the

SYSDATAPARTITIONS catalog table.

 Because a partitioned table can reside in multiple table spaces, it is

generally necessary to roll forward multiple table spaces. Data that is

recovered via dropped table recovery is written to the export directory

specified in the piExportDir parameter. It is possible to roll forward all

table spaces in one command, or do repeated roll-forward operations for

subsets of the table spaces involved. A warning will be written to the

notify log if the db2Rollforward API did not specify the full set of the table

spaces necessary to recover all the data for the table. A warning will be

returned to the user with full details of all partitions not recovered on the

command found in the administration notification log.

 Allowing the roll forward of a subset of the table spaces makes it easier to

deal with cases where there is more data to be recovered than can fit into a

single export directory.

iAllNodeFlag

Input. Partitioned database environments only. Indicates whether the

rollforward operation is to be applied to all database partition servers

defined in db2nodes.cfg. Valid values are:

DB2_NODE_LIST

Apply to database partition servers in a list that is passed in

piNodeList.

DB2_ALL_NODES

Apply to all database partition servers. This is the default value.

The piNodeList parameter must be set to NULL, if this value is

used.

DB2_ALL_EXCEPT

Apply to all database partition servers except those in a list that is

passed in piNodeList.

DB2_CAT_NODE_ONLY

Apply to the catalog partition only. The piNodeList parameter

must be set to NULL, if this value is used.

iNumNodes

Input. Specifies the number of database partition servers in the piNodeList

array.

piNodeList

Input. A pointer to an array of database partition server numbers on which

to perform the roll-forward recovery.

iNumNodeInfo

Input. Defines the size of the output parameter poNodeInfo, which must

be large enough to hold status information from each database partition

that is being rolled forward. In a single-partition database environment,

this parameter should be set to 1. The value of this parameter should be

the same as the number of database partition servers for which this API is

being called.

piDroppedTblID

Input. A string containing the ID of the dropped table whose recovery is

db2Rollforward - Roll forward a database

182 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

being attempted. For partitioned tables, the drop-table-id identifies the

table as a whole, so that all data partitions of the table can be recovered in

a single roll-forward command.

piExportDir

Input. The name of the directory into which the dropped table data will be

exported.

iRollforwardFlags

Input. Specifies the rollforward flags. Valid values (defined in db2ApiDf

header file, located in the include directory) are:

DB2ROLLFORWARD_EMPTY_FLAG

No flags specified.

DB2ROLLFORWARD_LOCAL_TIME

Allows the user to rollforward to a point in time that is the user’s

local time rather than GMT time. This makes it easier for users to

rollforward to a specific point in time on their local machines, and

eliminates potential user errors due to the translation of local to

GMT time.

DB2ROLLFORWARD_NO_RETRIEVE

Controls which log files to be rolled forward on the standby

machine by allowing the user to disable the retrieval of archived

logs. By controlling the log files to be rolled forward, one can

ensure that the standby machine is X hours behind the production

machine, to prevent the user affecting both systems. This option is

useful if the standby system does not have access to archive, for

example, if TSM is the archive, it only allows the original machine

to retrieve the files. It will also remove the possibility that the

standby system would retrieve an incomplete log file while the

production system is archiving a file and the standby system is

retrieving the same file.

 db2RfwdOutputStruct data structure parameters:

 poApplicationId

Output. The application ID.

poNumReplies

Output. The number of replies received.

poNodeInfo

Output. Database partition reply information.

oRollforwardFlags

Output. Rollforward output flags. Valid values are:

DB2ROLLFORWARD_OUT_LOCAL_TIME

Indicates to user that the last committed transaction timestamp is

displayed in local time rather than UTC. Local time is based on the

server’s local time, not on the client’s. In a partitioned database

environment, local time is based on the catalog partition’s local

time.

 sqlurf_newlogpath data structure parameters:

 nodenum

Input. The number of the database partition that this structure details.

db2Rollforward - Roll forward a database

Chapter 4. Rollforward recovery 183

DB2 9 BETA

pathlen

Input. The total length of the logpath field.

logpath

Input. A fully qualified path to be used for a specific node for the

rollforward operation.

 sqlu_tablespace_bkrst_list data structure parameters:

 num_entry

Input. The number of structures contained in the list pointed to by the

tablespace parameter.

tablespace

Input. A pointer to a list of sqlu_tablespace_entry structures.

 sqlu_tablespace_entry data structure parameters:

 reserve_len

Input. Specifies the length in bytes of the tablespace_entry parameter.

tablespace_entry

Input. The name of the table space to rollforward.

filler Filler used for proper alignment of data structure in memory.

 sqlurf_info data structure parameters:

 nodenum

Output. The number of the database partition that this structure contains

information for.

state Output. The current state of the database or tablespaces that were included

in the rollfoward on a database partition.

nextarclog

Output. If the rollforward has completed, this field will be empty. If the

rollforward has not yet completed, this will be the name of the next log file

which will be processed for the rollforward.

firstarcdel

Output. The first log file replayed by the rollforward.

lastarcdel

Output. The last log file replayed by the rollforward.

lastcommit

Output. The time of the last committed transaction.

 db2gRfwdInputStruct data structure specific parameters:

 iDbAliasLen

Input. Specifies the length in bytes of the database alias.

iStopTimeLen

Input. Specifies the length in bytes of the stop time parameter. Set to zero

if no stop time is provided.

iUserNameLen

Input. Specifies the length in bytes of the user name. Set to zero if no user

name is provided.

db2Rollforward - Roll forward a database

184 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

iPasswordLen

Input. Specifies the length in bytes of the password. Set to zero if no

password is provided.

iOverflowLogPathLen

Input. Specifies the length in bytes of the overflow log path. Set to zero if

no overflow log path is provided.

iDroppedTblIDLen

Input. Specifies the length in bytes of the dropped table ID

(piDroppedTblID parameter). Set to zero if no dropped table ID is

provided.

iExportDirLen

Input. Specifies the length in bytes of the dropped table export directory

(piExportDir parameter). Set to zero if no dropped table export directory is

provided.

 Usage notes:

 The database manager uses the information stored in the archived and the active

log files to reconstruct the transactions performed on the database since its last

backup.

The action performed when this API is called depends on the rollforward_pending

flag of the database prior to the call. This can be queried using db2CfgGet - Get

Configuration Parameters. The rollforward_pending flag is set to DATABASE if the

database is in roll-forward pending state. It is set to TABLESPACE if one or more

table spaces are in SQLB_ROLLFORWARD_PENDING or

SQLB_ROLLFORWARD_IN_PROGRESS state. The rollforward_pending flag is set

to NO if neither the database nor any of the table spaces needs to be rolled

forward.

If the database is in roll-forward pending state when this API is called, the

database will be rolled forward. Table spaces are returned to normal state after a

successful database roll-forward, unless an abnormal state causes one or more table

spaces to go offline. If the rollforward_pending flag is set to TABLESPACE, only

those table spaces that are in roll-forward pending state, or those table spaces

requested by name, will be rolled forward.

Note: If table space rollforward terminates abnormally, table spaces that were

being rolled forward will be put in SQLB_ROLLFORWARD_IN_PROGRESS

state. In the next invocation of ROLLFORWARD DATABASE, only those

table spaces in SQLB_ROLLFORWARD_IN_PROGRESS state will be

processed. If the set of selected table space names does not include all table

spaces that are in SQLB_ROLLFORWARD_IN_PROGRESS state, the table

spaces that are not required will be put into SQLB_RESTORE_PENDING

state.

If the database is not in roll-forward pending state and no point in time is

specified, any table spaces that are in rollforward-in-progress state will be rolled

forward to the end of logs. If no table spaces are in rollforward-in-progress state,

any table spaces that are in rollforward pending state will be rolled forward to the

end of logs.

db2Rollforward - Roll forward a database

Chapter 4. Rollforward recovery 185

DB2 9 BETA

This API reads the log files, beginning with the log file that is matched with the

backup image. The name of this log file can be determined by calling this API with

a caller action of DB2ROLLFORWARD_QUERY before rolling forward any log

files.

The transactions contained in the log files are reapplied to the database. The log is

processed as far forward in time as information is available, or until the time

specified by the stop time parameter.

Recovery stops when any one of the following events occurs:

v No more log files are found

v A time stamp in the log file exceeds the completion time stamp specified by the

stop time parameter

v An error occurs while reading the log file.

Some transactions might not be recovered. The value returned in lascommit

indicates the time stamp of the last committed transaction that was applied to the

database.

If the need for database recovery was caused by application or human error, the

user may want to provide a time stamp value in piStopTime, indicating that

recovery should be stopped before the time of the error. This applies only to full

database roll-forward recovery, and to table space rollforward to a point in time. It

also permits recovery to be stopped before a log read error occurs, determined

during an earlier failed attempt to recover.

When the rollforward_recovery flag is set to DATABASE, the database is not

available for use until roll-forward recovery is terminated. Termination is

accomplished by calling the API with a caller action of DB2ROLLFORWARD_STOP

or DB2ROLLFORWARD_RFWRD_STOP to bring the database out of roll-forward

pending state. If the rollforward_recovery flag is TABLESPACE, the database is

available for use. However, the table spaces in SQLB_ROLLFORWARD_PENDING

and SQLB_ROLLFORWARD_IN_PROGRESS states will not be available until the

API is called to perform table space roll-forward recovery. If rolling forward table

spaces to a point in time, the table spaces are placed in backup pending state after

a successful rollforward.

When the RollforwardFlags option is set to DB2ROLLFORWARD_LOCAL_TIME,

all messages returned to the user will also be in local time. All times are converted

on the server, and on the catalog partition, if it is a partitioned database

environment. The timestamp string is converted to GMT on the server, so the time

is local to the server’s time zone, not the client’s. If the client is in one time zone

and the server in another, the server’s local time should be used. This is different

from the local time option from the Control Center, which is local to the client. If

the timestamp string is close to the time change of the clock due to daylight

savings, it is important to know if the stop time is before or after the clock change,

and specify it correctly.

 Related tasks:

v “Using rollforward” on page 157

 Related reference:

v “SQLCA data structure” in Administrative API Reference

v “ROLLFORWARD DATABASE ” on page 168

db2Rollforward - Roll forward a database

186 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

v “db2Backup - Back up a database or table space” on page 76

v “db2Restore - Restore a database or table space” on page 115

v “db2Recover - Restore and roll forward a database” on page 199

 Related samples:

v “dbrecov.sqc -- How to recover a database (C)”

v “dbrecov.sqC -- How to recover a database (C++)”

Rollforward sessions - CLP examples

 Example 1

The ROLLFORWARD DATABASE command permits specification of multiple

operations at once, each being separated with the keyword AND. For example, to

roll forward to the end of logs, and complete, the separate commands are:

 db2 rollforward db sample to end of logs

 db2 rollforward db sample complete

can be combined as follows:

 db2 rollforward db sample to end of logs and complete

Although the two are equivalent, it is recommended that such operations be done

in two steps. It is important to verify that the rollforward operation has progressed

as expected before you stop it, so that you do not miss any logs.

If the rollforward command encounters an error, the rollforward operation will not

complete. The error will be returned, and you will then be able to fix the error and

reissue the command. If, however, you are unable to fix the error, you can force the

rollforward to complete by issuing the following:

 db2 rollforward db sample complete

This command brings the database online at the point in the logs before the failure.

Example 2

Roll the database forward to the end of the logs (two table spaces have been

restored):

 db2 rollforward db sample to end of logs

 db2 rollforward db sample to end of logs and stop

These two statements are equivalent. Neither AND STOP or AND COMPLETE is

needed for table space rollforward recovery to the end of the logs. Table space

names are not required. If not specified, all table spaces requiring rollforward

recovery will be included. If only a subset of these table spaces is to be rolled

forward, their names must be specified.

Example 3

After three table spaces have been restored, roll one forward to the end of the logs,

and the other two to a point in time, both to be done online:

 db2 rollforward db sample to end of logs tablespace(TBS1) online

 db2 rollforward db sample to 1998-04-03-14.21.56.245378 and stop

 tablespace(TBS2, TBS3) online

db2Rollforward - Roll forward a database

Chapter 4. Rollforward recovery 187

DB2 9 BETA

Note that two rollforward operations cannot be run concurrently. The second

command can only be invoked after the first rollforward operation completes

successfully.

Example 4

After restoring the database, roll forward to a point in time, using OVERFLOW

LOG PATH to specify the directory where the user exit saves archived logs:

 db2 rollforward db sample to 1998-04-03-14.21.56.245378 and stop

 overflow log path (/logs)

Example 5 (partitioned database environments)

There are three database partitions: 0, 1, and 2. Table space TBS1 is defined on all

database partitions, and table space TBS2 is defined on database partitions 0 and 2.

After restoring the database on database partition 1, and TBS1 on database

partitions 0 and 2, roll the database forward on database partition 1:

 db2 rollforward db sample to end of logs and stop

This returns warning SQL1271 (“Database is recovered but one or more table

spaces are offline on database partitions 0 and 2.”).

 db2 rollforward db sample to end of logs

This rolls TBS1 forward on database partitions 0 and 2. The clause

TABLESPACE(TBS1) is optional in this case.

Example 6 (partitioned database environments)

After restoring table space TBS1 on database partitions 0 and 2 only, roll TBS1

forward on database partitions 0 and 2:

 db2 rollforward db sample to end of logs

Database partition 1 is ignored.

 db2 rollforward db sample to end of logs tablespace(TBS1)

This fails, because TBS1 is not ready for rollforward recovery on database partition

1. Reports SQL4906N.

 db2 rollforward db sample to end of logs on

 dbpartitionnums (0, 2) tablespace(TBS1)

This completes successfully.

 db2 rollforward db sample to 1998-04-03-14.21.56.245378 and stop

 tablespace(TBS1)

This fails, because TBS1 is not ready for rollforward recovery on database partition

1; all pieces must be rolled forward together.

Note: With table space rollforward to a point in time, the dbpartitionnum clause is

not accepted. The rollforward operation must take place on all the database

partitions on which the table space resides.

After restoring TBS1 on database partition 1:

 db2 rollforward db sample to 1998-04-03-14.21.56.245378 and stop

 tablespace(TBS1)

188 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

This completes successfully.

Example 7 (partitioned database environments)

After restoring a table space on all database partitions, roll forward to PIT2, but do

not specify AND STOP. The rollforward operation is still in progress. Cancel and roll

forward to PIT1:

 db2 rollforward db sample to pit2 tablespace(TBS1)

 db2 rollforward db sample cancel tablespace(TBS1)

 ** restore TBS1 on all dbpartitionnums **

 db2 rollforward db sample to pit1 tablespace(TBS1)

 db2 rollforward db sample stop tablespace(TBS1)

Example 8 (partitioned database environments)

Rollforward recover a table space that resides on eight database partitions (3 to 10)

listed in the db2nodes.cfg file:

 db2 rollforward database dwtest to end of logs tablespace (tssprodt)

This operation to the end of logs (not point in time) completes successfully. The

database partitions on which the table space resides do not have to be specified.

The utility defaults to the db2nodes.cfg file.

Example 9 (partitioned database environments)

Rollforward recover six small table spaces that reside on a single database partition

database partition group (on database partition 6):

 db2 rollforward database dwtest to end of logs on dbpartitionnum (6)

 tablespace(tsstore, tssbuyer, tsstime, tsswhse, tsslscat, tssvendor)

This operation to the end of logs (not point in time) completes successfully.

Example 10 (Partitioned tables - Rollforward to end of log on all data partitions)

A partitioned table is created using table spaces tbsp1, tbsp2, tbsp3 with an index

in tbsp0. Later on, a user adds data partitions to the table in tbsp4, and attaches

data partitions from the table in tbsp5. All table spaces can be rolled forward to

END OF LOGS.

 db2 rollforward db PBARDB to END OF LOGS and stop

 tablespace(tbsp0, tbsp1, tbsp2, tbsp3, tbsp4, tbsp5)

This completes successfully.

Example 11 (Partitioned tables - Rollforward to end of logs on one table space)

A partitioned table is created initially using table spaces tbsp1, tbsp2, tbsp3 with an

index in tbsp0. Later on, a user adds data partitions to the table in tbsp4, and

attaches data partitions from the table in tbsp5. Table space tbsp4 becomes corrupt

and requires a restore and rollforward to end of logs.

 db2 rollforward db PBARDB to END OF LOGS and stop tablespace(tbsp4)

This completes successfully.

Chapter 4. Rollforward recovery 189

DB2 9 BETA

Example 12 (Partitioned tables - Rollforward to PIT of all data partitions

including those added, attached, detached or with indexes)

A partitioned table is created using table spaces tbsp1, tbsp2, tbsp3 with an index

in tbsp0. Later on, a user adds data partitions to the table in tbsp4, attaches data

partitions from the table in tbsp5, and detaches data partitions from tbsp1. The

user performs a rollforward to PIT with all the table spaces used by the partitioned

table including those table spaces specified in the INDEX IN clause.

 db2 rollforward db PBARDB to 2005-08-05-05.58.53.000000 and stop

 tablespace(tbsp0, tbsp1, tbsp2, tbsp3, tbsp4, tbsp5)

This completes successfully.

Example 13 (Partitioned tables - Rollforward to PIT on a subset of the table

spaces)

A partitioned table is created using three table spaces (tbsp1, tbsp2, tbsp3). Later,

the user detaches all data partitions from tbsp3. The rollfoward to PIT is only

permitted on tbsp1 and tbsp2.

 db2 rollforward db PBARDB to 2005-08-05-06.02.42.000000 and stop

 tablespace(tbsp1, tbsp2)

This completes successfully.

 Related concepts:

v “Rollforward overview” on page 155

 Related reference:

v “db2Rollforward - Roll forward a database” on page 177

v “ROLLFORWARD DATABASE ” on page 168

190 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Chapter 5. Database recover

This section describes the DB2 recover utility, which performs the neccessary

restore and rollforward operations to recover a database to a specified time, based

on information found in the recovery history file.

The following topics are covered:

v “Recover overview”

v “Privileges, authorities, and authorization required to use recover” on page 192

v “Using recover” on page 192

v “Client/server timestamp conversion” on page 193

v “RECOVER DATABASE” on page 193

v “db2Recover - Restore and roll forward a database” on page 199

Recover overview

 The recover utility performs the necessary restore and rollforward operations to

recover a database to a specified time, based on information found in the recovery

history file. When you use this utility, you specify that the database be recovered

to a point-in-time or to the end of the log files. The utility will then select the best

suitable backup image and perform the recovery operations.

The recover utility does not support the following RESTORE DATABASE

command options:

v TABLESPACE tablespace-name. Table space restore operations are not supported.

v INCREMENTAL. Incremental restore operations are not supported.

v OPEN num-sessions SESSIONS. You cannot indicate the number of I/O sessions

that are to be used with TSM or another vendor product.

v BUFFER buffer-size. You cannot set the size of the buffer used for the restore

operation.

v DLREPORT filename. You cannot specify a file name for reporting files that

become unlinked.

v WITHOUT ROLLING FORWARD. You cannot specify that the database is not to

be placed in rollforward pending state after a successful restore operation.

v PARALLELISM n. You cannot indicate the degree of parallelism for the restore

operation.

v WITHOUT PROMPTING. You cannot specify that a restore operation is to run

unattended

In addition, the recover utility does not allow you to specify any of the REBUILD

options. However, the recovery utility will automatically use the appropriate

REBUILD option if it cannot locate any database backup images based on the

information in the recovery history file.

 Related concepts:

v “Client/server timestamp conversion” on page 167

 Related tasks:

© Copyright IBM Corp. 2001, 2006 191

DB2 9 BETA

v “Using recover” on page 192

 Related reference:

v “Configuration parameters for database logging” on page 37

Privileges, authorities, and authorization required to use recover

 Privileges enable users to create or access database resources. Authority levels

provide a method of grouping privileges and higher-level database manager

maintenance and utility operations. Together, these act to control access to the

database manager and its database objects. Users can access only those objects for

which they have the appropriate authorization; that is, the required privilege or

authority.

You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the recover

utility.

 Related reference:

v “db2Recover - Restore and roll forward a database” on page 199

v “RECOVER DATABASE” on page 193

Using recover

 Use the RECOVER DATABASE command to recover a database to a specified time,

using information found in the recovery history file.

If you issue the RECOVER DATABASE command following an incomplete recover

operation that ended during the rollforward phase, the recover utility will attempt

to continue the previous recover operation, without redoing the restore phase. If

you want to force the recover utility to redo the restore phase, issue the RECOVER

DATABASE command with the RESTART option to force the recover utility to

ignore any prior recover operation that failed to complete. If you are using the

application programming interface (API), specify the caller action

DB2RECOVER_RESTART for the iRecoverAction field to force the recover utility to

redo the restore phase.

If the RECOVER DATABASE command is interrupted during the restore phase, it

cannot be continued. You need to reissue the RECOVER DATABASE command.

 Prerequisites:

 You should not be connected to the database that is to be recovered: the recover

database utility automatically establishes a connection to the specified database,

and this connection is terminated at the completion of the recover operation.

The database can be local or remote.

 Procedure:

 You can invoke the recover utility through the command line processor (CLP) or

the db2Recover application programming interface (API).

The following example shows how to use the RECOVER DATABASE command

through the CLP:

192 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

db2 recover db sample

Note: In a partitioned database environment, the recover utility must be invoked

from the catalog partition of the database.

 Related concepts:

v “Recover overview” on page 191

 Related reference:

v “RECOVER DATABASE” on page 193

v “db2Recover - Restore and roll forward a database” on page 199

Client/server timestamp conversion

 This section explains the generation of timestamps in a client/server environment:

v If you specify a local time for a rollforward operation, all messages returned will

also be in local time.

Note: All times are converted on the server and (in partitioned database

environments) on the catalog node.

v The timestamp string is converted to GMT on the server, so the time represents

the server’s time zone, not the client’s. If the client is in a different time zone

from the server, the server’s local time should be used.

v If the timestamp string is close to the time change due to daylight savings time,

it is important to know whether the stop time is before or after the time change

so that it is specified correctly.

 Related concepts:

v “Rollforward overview” on page 155

v “Synchronizing clocks in a partitioned database environment” on page 166

RECOVER DATABASE

 Restores and rolls forward a database to a particular point in time or to the end of

the logs.

 Scope:

 In a partitioned database environment, this command can only be invoked from

the catalog partition. A database recover operation to a specified point in time

affects all database partitions that are listed in the db2nodes.cfg file. A database

recover operation to the end of logs affects the database partitions that are

specified. If no partitions are specified, it affects all database partitions that are

listed in the db2nodes.cfg file.

 Authorization:

 To recover an existing database, one of the following:

v sysadm

v sysctrl

v sysmaint

RECOVER DATABASE

Chapter 5. Database recover 193

DB2 9 BETA

To recover to a new database, one of the following:

v sysadm

v sysctrl

 Required connection:

 To recover an existing database, a database connection is required. This command

automatically establishes a connection to the specified database and will release the

connection when the recover operation finishes. To recover to a new database, an

instance attachment and a database connection are required. The instance

attachment is required to create the database.

 Command syntax:

�� RECOVER DATABASE source-database-alias

DB
 �

�
USING LOCAL TIME

TO

isotime

USING UTC TIME

ON ALL DBPARTITIONNUMS

END OF LOGS

On Database Partition clause

 �

�
USER

username

USING

password

 �

�
USING HISTORY FILE

(

history-file

)

,

History File clause

 �

�
OVERFLOW LOG PATH

(

log-directory

)

,

Log Overflow clause

 �

�
COMPRLIB

lib-name

COMPROPTS

options-string

RESTART
 ��

On Database Partition clause:

 ON Database Partition List clause

ALL DBPARTITIONNUMS

EXCEPT

Database Partition List clause

Database Partition List clause:

�

 ,

DBPARTITIONNUM

(

db-partition-number1

)

DBPARTITIONNUMS

TO

db-partition-number2

Log Overflow clause:

�

 ,

log-directory

ON DBPARTITIONNUM

db-partition-number1

RECOVER DATABASE

194 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

History File clause:

�

 ,

history-file

ON DBPARTITIONNUM

db-partition-number1

 Command parameters:

DATABASE database-alias

The alias of the database that is to be recovered.

USER username

The user name under which the database is to be recovered.

USING password

The password used to authenticate the user name. If the password is

omitted, the user is prompted to enter it.

TO

isotime The point in time to which all committed transactions are to be

recovered (including the transaction committed precisely at that

time, as well as all transactions committed previously).

 This value is specified as a time stamp, a 7-part character string

that identifies a combined date and time. The format is

yyyy-mm-dd-hh.mm.ss.nnnnnn (year, month, day, hour, minutes,

seconds, microseconds), expressed in Coordinated Universal Time

(UTC, formerly known as GMT). UTC helps to avoid having the

same time stamp associated with different logs (because of a

change in time associated with daylight savings time, for example).

The time stamp in a backup image is based on the local time at

which the backup operation started. The CURRENT TIMEZONE

special register specifies the difference between UTC and local time

at the application server. The difference is represented by a time

duration (a decimal number in which the first two digits represent

the number of hours, the next two digits represent the number of

minutes, and the last two digits represent the number of seconds).

Subtracting CURRENT TIMEZONE from a local time converts that

local time to UTC.

USING LOCAL TIME

Specifies the point in time to which to recover. This option allows

the user to recover to a point in time that is the server’s local time

rather than UTC time.

Notes:

1. If the user specifies a local time for recovery, all messages

returned to the user will also be in local time. All times are

converted on the server, and in partitioned database

environments, on the catalog database partition.

2. The timestamp string is converted to UTC on the server, so the

time is local to the server’s time zone, not the client’s. If the

client is in one time zone and the server in another, the server’s

local time should be used. This is different from the local time

option from the Control Center, which is local to the client.

3. If the timestamp string is close to the time change of the clock

due to daylight saving time, it is important to know if the stop

time is before or after the clock change, and specify it correctly.

RECOVER DATABASE

Chapter 5. Database recover 195

DB2 9 BETA

USING UTC TIME

Specifies the point in time to which to recover.

END OF LOGS

Specifies that all committed transactions from all online archive log

files listed in the database configuration parameter logpath are to be

applied.

ON ALL DBPARTITIONNUMS

Specifies that transactions are to be rolled forward on all database

partitions specified in the db2nodes.cfg file. This is the default if a

database partition clause is not specified.

EXCEPT

Specifies that transactions are to be rolled forward on all database

partitions specified in the db2nodes.cfg file, except those specified in the

database partition list.

ON DBPARTITIONNUM / ON DBPARTITIONNUMS

Roll the database forward on a set of database partitions.

db-partition-number1

Specifies a database partition number in the database partition list.

db-partition-number2

Specifies the second database partition number, so that all database

partitions from db-partition-number1 up to and including

db-partition-number2 are included in the database partition list.

USING HISTORY FILE history-file

history-file ON DBPARTITIONNUM

In a partitioned database environment, allows a different history file

OVERFLOW LOG PATH log-directory

Specifies an alternate log path to be searched for archived logs during

recovery. Use this parameter if log files were moved to a location other

than that specified by the logpath database configuration parameter. In a

partitioned database environment, this is the (fully qualified) default

overflow log path for all database partitions. A relative overflow log path can

be specified for single-partition databases.

 The OVERFLOW LOG PATH command parameter will overwrite the value

(if any) of the database configuration parameter overflowlogpath.

COMPRLIB lib-name

Indicates the name of the library to be used to perform the decompression.

The name must be a fully qualified path referring to a file on the server. If

this parameter is not specified, DB2 will attempt to use the library stored

in the image. If the backup was not compressed, the value of this

parameter will be ignored. If the specified library cannot be loaded, the

restore operation will fail.

COMPROPTS options-string

Describes a block of binary data that is passed to the initialization routine

in the decompression library. The DB2 database system passes this string

directly from the client to the server, so any issues of byte reversal or code

page conversion are handled by the decompression library. If the first

character of the data block is “@”, the remainder of the data is interpreted

by the DB2 database system as the name of a file residing on the server.

The DB2 database system will then replace the contents of string with the

RECOVER DATABASE

196 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

contents of this file and pass the new value to the initialization routine

instead. The maximum length for the string is 1 024 bytes.

RESTART

The RESTART keyword can be used if a prior RECOVER operation was

interrupted or otherwise did not complete. Starting in v91, a subsequent

RECOVER command will attempt to continue the previous RECOVER, if

possible. Using the RESTART keyword forces RECOVER to start with a fresh

restore and then rollforward to the PIT specified.

log-directory ON DBPARTITIONNUM

In a partitioned database environment, allows a different log path to

override the default overflow log path for a specific database partition.

 Examples:

 In a single-partition database environment, where the database being recovered

currently exists, and so the most recent version of the history file is available in the

dftdbpath:

1. To use the latest backup image and rollforward to the end of logs using all

default values:

 RECOVER DB SAMPLE

2. To recover the database to a PIT, issue the following. The most recent image

that can be used will be restored, and logs applied until the PIT is reached.

 RECOVER DB SAMPLE TO 2001-12-31-04.00.00

3. To recover the database using a saved version of the history file. issue the

following. For example, if the user needs to recover to an extremely old PIT

which is no longer contained in the current history file, the user will have to

provide a version of the history file from this time period. If the user has saved

a history file from this time period, this version can be used to drive the

recover.

 RECOVER DB SAMPLE TO 1999-12-31-04.00.00

 USING HISTORY FILE (/home/user/old1999files/db2rhist.asc)

In a single-partition database environment, where the database being recovered

does not exist, you must use the USING HISTORY FILE clause to point to a history

file.

1. If you have not made any backups of the history file, so that the only version

available is the copy in the backup image, the recommendation is to issue a

RESTORE followed by a ROLLFORWARD. However, to use RECOVER, you

would first have to extract the history file from the image to some location, for

example /home/user/oldfiles/db2rhist.asc, and then issue this command.

(This version of the history file does not contain any information about log files

that are required for rollforward, so this history file is not useful for

RECOVER.)

 RECOVER DB SAMPLE TO END OF LOGS

 USING HISTORY FILE (/home/user/fromimage/db2rhist.asc)

2. If you have been making periodic or frequent backup copies of the history, the

USING HISTORY clause should be used to point to this version of the history

file. If the file is /home/user/myfiles/db2rhist.asc, issue the command:

 RECOVER DB SAMPLE TO PIT

 USING HISTORY FILE (/home/user/myfiles/db2rhist.asc)

(In this case, you can use any copy of the history file, not necessarily the latest,

as long as it contains a backup taken before the point-in-time (PIT) requested.)

RECOVER DATABASE

Chapter 5. Database recover 197

DB2 9 BETA

In a partitioned database envrionment, where the database exists on all database

partitions, and the latest history file is available on dftdbpath on all database

partitions:

1. To recover the database to a PIT on all nodes. DB2 will verify that the PIT is

reachable on all nodes before starting any restore operations.

 RECOVER DB SAMPLE TO 2001-12-31-04.00.00

2. To recover the database to this PIT on all nodes. DB2 will verify that the PIT is

reachable on all nodes before starting any restore operations. The RECOVER

operation on each node is identical to a single-partition RECOVER.

 RECOVER DB SAMPLE TO END OF LOGS

3. Even though the most recent version of the history file is in the dftdbpath, you

might want to use several specific history files. Unless otherwise specified, each

database partition will use the history file found locally at

/home/user/oldfiles/db2rhist.asc. The exceptions are nodes 2 and 4. Node 2

will use: /home/user/node2files/db2rhist.asc, and node 4 will use:

/home/user/node4files/db2rhist.asc.

 RECOVER DB SAMPLE TO 1999-12-31-04.00.00

 USING HISTORY FILE (/home/user/oldfiles/db2rhist.asc,

 /home/user/node2files/db2rhist.asc ON DBPARTITIONNUM 2,

 /home/user/node4files/db2rhist.asc ON DBPARTITIONNUM 4)

4. It is possible to recover a subset of nodes instead of all nodes, however a PIT

RECOVER can not be done in this case, the recover must be done to EOL.

 RECOVER DB SAMPLE TO END OF LOGS ON DBPARTITIONNUMS(2 TO 4, 7, 9)

In a partitioned database environment, where the database does not exist:

1. If you have not made any backups of the history file, so that the only version

available is the copy in the backup image, the recommendation is to issue a

RESTORE followed by a ROLLFORWARD. However, to use RECOVER, you

would first have to extract the history file from the image to some location, for

example, /home/user/oldfiles/db2rhist.asc, and then issue this command.

(This version of the history file does not contain any information about log files

that are required for rollforward, so this history file is not useful for the

recover.)

 RECOVER DB SAMPLE TO PIT

 USING HISTORY FILE (/home/user/fromimage/db2rhist.asc)

2. If you have been making periodic or frequent backup copies of the history, the

USING HISTORY clause should be used to point to this version of the history

file. If the file is /home/user/myfiles/db2rhist.asc, you can issue the following

command:

 RECOVER DB SAMPLE TO END OF LOGS

 USING HISTORY FILE (/home/user/myfiles/db2rhist.asc)

 Usage notes:

v Recovering a database might require a load recovery using tape devices. If

prompted for another tape, the user can respond with one of the following:

c Continue. Continue using the device that generated the warning

message (for example, when a new tape has been mounted).

d Device terminate. Stop using the device that generated the warning

message (for example, when there are no more tapes).

t Terminate. Terminate all devices.
v If there is a failure during the restore portion of the recover operation, you can

reissue the RECOVER DATABASE command. If the restore operation was

RECOVER DATABASE

198 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

successful, but there was an error during the rollforward operation, you can

issue a ROLLFORWARD DATABASE command, since it is not necessary (and it

is time-consuming) to redo the entire recover operation.

v In a partitioned database environment, if there is an error during the restore

portion of the recover operation, it is possible that it is only an error on a single

database partition. Instead of reissuing the RECOVER DATABASE command,

which restores the database on all database partitions, it is more efficient to issue

a RESTORE DATABASE command for the database partition that failed,

followed by a ROLLFORWARD DATABASE command.

 Related concepts:

v “Developing a backup and recovery strategy” on page 3

 Related tasks:

v “Using recover” on page 192

db2Recover - Restore and roll forward a database

 Restores and rolls forward a database to a particular point in time or to the end of

the logs.

 Scope:

 In a partitioned database environment, this API can only be called from the catalog

partition. If no database partition servers are specified, it affects all database

partition servers that are listed in the db2nodes.cfg file. If a point in time is

specified, the API affects all database partitions.

 Authorization:

 To recover an existing database, one of the following:

v sysadm

v sysctrl

v sysmaint

To recover to a new database, one of the following:

v sysadm

v sysctrl

 Required connection:

 To recover an existing database, a database connection is required. This API

automatically establishes a connection to the specified database and will release the

connection when the recover operation finishes. Instance and database, to recover

to a new database. The instance attachment is required to create the database.

 API include file:

db2ApiDf.h

 API and data structure syntax:

SQL_API_RC SQL_API_FN

 db2Recover (

 db2Uint32 versionNumber,

RECOVER DATABASE

Chapter 5. Database recover 199

DB2 9 BETA

void * pDB2RecovStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2RecoverStruct

{

 char *piSourceDBAlias;

 char *piUsername;

 char *piPassword;

 db2Uint32 iRecoverCallerAction;

 db2Uint32 iOptions;

 sqlint32 *poNumReplies;

 struct sqlurf_info *poNodeInfo;

 char *piStopTime;

 char *piOverflowLogPath;

 db2Uint32 iNumChngLgOvrflw;

 struct sqlurf_newlogpath *piChngLogOvrflw;

 db2int32 iAllNodeFlag;

 db2int32 iNumNodes;

 SQL_PDB_NODE_TYPE *piNodeList;

 db2int32 iNumNodeInfo;

 char *piHistoryFile;

 db2Uint32 iNumChngHistoryFile;

 struct sqlu_histFile *piChngHistoryFile;

 char *piComprLibrary;

 void *piComprOptions;

 db2Uint32 iComprOptionsSize;

} db2RecoverStruct;

SQL_STRUCTURE sqlu_histFile

{

 SQL_PDB_NODE_TYPE nodeNum;

 unsigned short filenameLen;

 char filename[SQL_FILENAME_SZ+1];

};

SQL_API_RC SQL_API_FN

 db2gRecover (

 db2Uint32 versionNumber,

 void * pDB2gRecoverStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gRecoverStruct

{

 char *piSourceDBAlias;

 db2Uint32 iSourceDBAliasLen;

 char *piUserName;

 db2Uint32 iUserNameLen;

 char *piPassword;

 db2Uint32 iPasswordLen;

 db2Uint32 iRecoverCallerAction;

 db2Uint32 iOptions;

 sqlint32 *poNumReplies;

 struct sqlurf_info *poNodeInfo;

 char *piStopTime;

 db2Uint32 iStopTimeLen;

 char *piOverflowLogPath;

 db2Uint32 iOverflowLogPathLen;

 db2Uint32 iNumChngLgOvrflw;

 struct sqlurf_newlogpath *piChngLogOvrflw;

 db2int32 iAllNodeFlag;

 db2int32 iNumNodes;

 SQL_PDB_NODE_TYPE *piNodeList;

 db2int32 iNumNodeInfo;

 char *piHistoryFile;

 db2Uint32 iHistoryFileLen;

 db2Uint32 iNumChngHistoryFile;

 struct sqlu_histFile *piChngHistoryFile;

db2Recover - Restore and roll forward a database

200 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

char *piComprLibrary;

 db2Uint32 iComprLibraryLen;

 void *piComprOptions;

 db2Uint32 iComprOptionsSize;

} db2gRecoverStruct;

 db2Recover API parameters:

 versionNumber

Input. Specifies the version and release level of the structure passed as the

second parameter pDB2RecoverStruct.

pDB2RecoverStruct

Input. A pointer to the db2RecoverStruct structure.

pSqlca

Output. A pointer to the sqlca structure.

 db2RecoverStruct data structure parameters:

 piSourceDBAlias

Input. A string containing the database alias of the database to be

recovered.

piUserName

Input. A string containing the user name to be used when attempting a

connection. Can be NULL.

piPassword

Input. A string containing the password to be used with the user name.

Can be NULL.

iRecoverCallerAction

Input. Valid values are:

DB2RECOVER

Starts the recover operation. Specifies that the recover will run

unattended, and that scenarios that normally require user

intervention will either be attempted without first returning to the

caller, or will generate an error. Use this caller action, for example,

if it is known that all of the media required for the recover have

been mounted, and utility prompts are not desired.

DB2RECOVER_RESTART

Allows the user to ignore a prior recover and start over from the

beginning.

DB2RECOVER_CONTINUE

Continue using the device that generated the warning message (for

example, when a new tape has been mounted).

DB2RECOVER_LOADREC_TERM

Terminate all devices being used by load recovery.

DB2RECOVER_DEVICE_TERM

Stop using the device that generated the warning message (for

example, when there are no more tapes).

DB2RECOVER_PARM_CHK_ONLY

Used to validate parameters without performing a recover

operation. Before this call returns, the database connection

established by this call is terminated, and no subsequent call is

required.

db2Recover - Restore and roll forward a database

Chapter 5. Database recover 201

DB2 9 BETA

DB2RECOVER_DEVICE_TERMINATE

Removes a particular device from the list of devices used by the

recover operation. When a particular device has exhausted its

input, recover will return a warning to the caller. Call the recover

utility again with this caller action to remove the device that

generated the warning from the list of devices being used.

iOptions

Input. Valid values are:

- DB2RECOVER_EMPTY_FLAG

No flags specified.

- DB2RECOVER_LOCAL_TIME

Indicates that the value specified for the stop time by piStopTime

is in local time, not GMT. This is the default setting.

- DB2RECOVER_GMT_TIME

This flag indicates that the value specified for the stop time by

piStopTime is in GMT (Greenwich Mean Time).

poNumReplies

Output. The number of replies received.

poNodeInfo

Output. Database partition reply information.

piStopTime

Input. A character string containing a time stamp in ISO format. Database

recovery will stop when this time stamp is exceeded. Specify

SQLUM_INFINITY_TIMESTAMP to roll forward as far as possible. May be

NULL for DB2ROLLFORWARD_QUERY,

DB2ROLLFORWARD_PARM_CHECK, and any of the load recovery

(DB2ROLLFORWARD_LOADREC_) caller actions.

piOverflowLogPath

Input. This parameter is used to specify an alternate log path to be used.

In addition to the active log files, archived log files need to be moved (by

the user) into the location specified by the logpath configuration parameter

before they can be used by this utility. This can be a problem if the user

does not have sufficient space in the log path. The overflow log path is

provided for this reason. During roll-forward recovery, the required log

files are searched, first in the log path, and then in the overflow log path.

The log files needed for table space rollforward recovery can be brought

into either the log path or the overflow log path. If the caller does not

specify an overflow log path, the default value is the log path.

 In a partitioned database environment, the overflow log path must be a

valid, fully qualified path; the default path is the default overflow log path

for each database partition. In a single-partition database environment, the

overflow log path can be relative if the server is local.

iNumChngLgOvrflw

Input. Partitioned database environments only. The number of changed

overflow log paths. These new log paths override the default overflow log

path for the specified database partition server only.

piChngLogOvrflw

Input. Partitioned database environments only. A pointer to a structure

db2Recover - Restore and roll forward a database

202 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

containing the fully qualified names of changed overflow log paths. These

new log paths override the default overflow log path for the specified

database partition server only.

iAllNodeFlag

Input. Partitioned database environments only. Indicates whether the

rollforward operation is to be applied to all database partition servers

defined in db2nodes.cfg. Valid values are:

DB2_NODE_LIST

Apply to database partition servers in a list that is passed in

piNodeList.

DB2_ALL_NODES

Apply to all database partition servers. piNodeList should be

NULL. This is the default value.

DB2_ALL_EXCEPT

Apply to all database partition servers except those in a list that is

passed in piNodeList.

DB2_CAT_NODE_ONLY

Apply to the catalog partition only. piNodeList should be NULL.

iNumNodes

Input. Specifies the number of database partition servers in the piNodeList

array.

piNodeList

Input. A pointer to an array of database partition server numbers on which

to perform the rollforward recovery.

iNumNodeInfo

Input. Defines the size of the output parameter poNodeInfo, which must

be large enough to hold status information from each database partition

that is being rolled forward. In a single-partition database environment,

this parameter should be set to 1. The value of this parameter should be

the same as the number of database partition servers for which this API is

being called.

piHistoryFile

History file.

iNumChngHistoryFile

Number of history files in list.

piChngHistoryFile

List of history files.

piComprLibrary

Input. Indicates the name of the external library to be used to perform

decompression of the backup image if the image is compressed. The name

must be a fully-qualified path referring to a file on the server. If the value

is a null pointer or a pointer to an empty string, DB2 will attempt to use

the library stored in the image. If the backup was not compressed, the

value of this parameter will be ignored. If the specified library is not

found, the restore will fail.

piComprOptions

Input. Describes a block of binary data that will be passed to the

initialization routine in the decompression library. DB2 will pass this string

directly from the client to the server, so any issues of byte-reversal or

db2Recover - Restore and roll forward a database

Chapter 5. Database recover 203

DB2 9 BETA

code-page conversion will have to be handled by the compression library.

If the first character of the data block is ’@’, the remainder of the data will

be interpreted by DB2 as the name of a file residing on the server. DB2 will

then replace the contents of piComprOptions and iComprOptionsSize with

the contents and size of this file respectively and will pass these new

values to the initialization routine instead.

iComprOptionsSize

Input. Represents the size of the block of data passed as piComprOptions.

iComprOptionsSize shall be zero if and only if piComprOptions is a null

pointer.

 sqlu_histFile data structure parameters:

 nodeNum

Input. Specifies which database partition this entry should be used for.

filenameLen

Input. Length in bytes of filename.

filename

Input. Path to the history file for this database partition. The path must

end with a slash.

 db2gRecoverStruct data structure specific parameters:

 iSourceDBAliasLen

Specifies the length in bytes of the piSourceDBAlias parameter.

iUserNameLen

Specified the length in bytes of the piUsername parameter.

iPasswordLen

Specifies the length in bytes of the piPassword parameter.

iStopTimeLen

Specifies the length in bytes of the piStopTime parameter.

iOverflowLogPathLen

Specifies the length in bytes of the piOverflowLogPath parameter.

iHistoryFileLen

Specifies the length in bytes of the piHistoryFile parameter.

iComprLibraryLen

Input. Specifies the length in bytes of the name of the library specified in

the piComprLibrary parameter. Set to zero if no library name is given.

 Related tasks:

v “Using recover” on page 192

 Related reference:

v “SQLCA data structure” in Administrative API Reference

v “RECOVER DATABASE” on page 193

v “db2Rollforward - Roll forward a database” on page 177

v “db2Backup - Back up a database or table space” on page 76

v “db2Restore - Restore a database or table space” on page 115

db2Recover - Restore and roll forward a database

204 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Part 2. High availability

© Copyright IBM Corp. 2001, 2006 205

DB2 9 BETA

206 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Chapter 6. Introducing high availability and failover support

Successful e-businesses depend on the uninterrupted availability of transaction

processing systems, which in turn are driven by database management systems,

such as DB2, that must be available 24 hours a day and 7 days a week (“24 x 7”).

This section discusses the following:

v “High availability”

v “High availability through log shipping” on page 209

v “High availability through online split mirror and suspended I/O support” on

page 210

v “Fault monitor facility for Linux and UNIX” on page 215

v “db2fm - DB2 fault monitor ” on page 219

High availability

 High availability (HA) is the term that is used to describe systems that run and are

available to customers more or less all the time. For this to occur:

v Transactions must be processed efficiently, without appreciable performance

degradations (or even loss of availability) during peak operating periods. In a

partitioned database environment, DB2 can take advantage of both intrapartition

and interpartition parallelism to process transactions efficiently. Intrapartition

parallelism can be used in an SMP environment to process the various

components of a complex SQL statement simultaneously. Interpartition parallelism

in a partitioned database environment refers to the simultaneous processing of a

query on all participating nodes; each database partition processes a subset of

the rows in the table.

v Systems must be able to recover quickly when hardware or software failures

occur, or when disaster strikes. DB2 has an advanced continuous checkpointing

system and a parallel recovery capability that allow for extremely fast crash

recovery.

The ability to recover quickly can also depend on having a proven backup and

recovery strategy in place.

v Software that powers the enterprise databases must be continuously running

and available for transaction processing. To keep the database manager running,

you must ensure that another database manager can take over if it fails. This is

called failover. Failover capability allows for the automatic transfer of workload

from one system to another when there is hardware failure.

You can implement failover capability through the high availability disaster

recovery (HADR) database replication feature. HADR is a high availability solution

that protects against data loss by replicating changes from a source database, called

the primary database, to a target database, called the standby database.

Failover protection can also be achieved by keeping a copy of your database on

another machine that is perpetually rolling the log files forward. Log shipping is the

process of copying whole log files to a standby machine, either from an archive

device, or through a user exit program running against the primary database. With

this approach, the primary database is restored to the standby machine, using

either the DB2 restore utility or the split mirror function. You can also use

suspended I/O support to quickly initialize the new database. The standby

© Copyright IBM Corp. 2001, 2006 207

DB2 9 BETA

database on the standby machine continuously rolls the log files forward. If the

primary database fails, any remaining log files are copied over to the standby

machine. After a rollforward to the end of the logs and stop operation, all clients

are reconnected to the standby database on the standby machine.

Failover support can also be provided through platform-specific software that you

can add to your system. For example:

v Tivoli System Automation for Linux.

For detailed information about Tivoli System Automation, see the whitepaper

entitled “Highly Available DB2 Universal Database using Tivoli System

Automation for Linux”, which is available from the “DB2 Database for Linux,

UNIX, and Windows and DB2 Connect Online Support” web site

(http://www.ibm.com/software/data/pubs/papers/).

v High Availability Cluster Multi-Processing, Enhanced Scalability, for AIX.

For detailed information about HACMP/ES, see the white paper entitled “IBM®

DB2 Universal Database Enterprise Edition for AIX and HACMP/ES”, which is

available from the “DB2 Database for Linux, UNIX, and Windows Support” web

site (http://www.ibm.com/software/data/pubs/papers/).

v Microsoft Cluster Server, for Windows operating systems.

For information about Microsoft Cluster Server see the following white paper

which is available from the “ DB2 Database for Linux, UNIX, and Windows

Support” web site (http://www.ibm.com/software/data/pubs/papers/):

“Implementing IBM DB2 Universal Database V8.1 Enterprise Server Edition with

Microsoft Cluster Server”.

v Sun Cluster, or VERITAS Cluster Server, for the Solaris operating system.

For information about Sun Cluster, see the white paper entitled “DB2 Universal

Database and High Availability on Sun Cluster 3.X”, which is available from the

“DB2 Database for Linux, UNIX, and Windows Support” web site

(http://www.ibm.com/software/data/pubs/papers/). For information about

VERITAS Cluster Server, see the white paper entitled “DB2 UDB and High

Availability with VERITAS Cluster Server”, which is available from the “IBM

Support and downloads” Web site (http://www.ibm.com/support/
docview.wss?uid=swg21045033).

v Multi-Computer/ServiceGuard, for Hewlett-Packard.

For detailed information about HP MC/ServiceGuard, see the white paper

which discusses IBM DB2 ESE V8.1 with HP MC/ServiceGuard High

Availability Software, which is available from the “IBM DB2 Information

Management Products for HP” web site (http://www.ibm.com/software/data/
hp/).

Failover strategies are usually based on clusters of systems. A cluster is a group of

connected systems that work together as a single system. Each physical machine

within a cluster contains one or more logical nodes. Clustering allows servers to

back each other up when failures occur, by picking up the workload of the failed

server.

IP address takeover (or IP takeover) is the ability to transfer a server IP address

from one machine to another when a server goes down; to a client application, the

two machines appear at different times to be the same server.

The client should treat this IP address in the same way as a physical address or

hostname. For example, when cataloguing the instance on the client you should

use the server’s transferable IP address or a hostname that resolves to this address.

208 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

http://www.ibm.com/software/data/pubs/papers/
http://www.ibm.com/software/data/pubs/papers/
http://www.ibm.com/software/data/pubs/papers/
http://www.ibm.com/software/data/pubs/papers/
http://www.ibm.com/support/docview.wss?uid=swg21045033
http://www.ibm.com/support/docview.wss?uid=swg21045033
http://www.ibm.com/software/data/hp/
http://www.ibm.com/software/data/hp/

Failover software can use heartbeat monitoring or keepalive packets between systems

to confirm availability. Heartbeat monitoring involves system services that

maintain constant communication between all the nodes in a cluster. If a heartbeat

is not detected, failover to a backup system starts. End users are usually not aware

that a system has failed.

The two most common failover strategies on the market are known as idle standby

and mutual takeover, although the configurations associated with these terms might

also be associated with different terms that depend on the vendor:

Idle Standby

In this configuration, one system is used to run a DB2 instance, and the

second system is “idle”, or in standby mode, ready to take over the

instance if there is an operating system or hardware failure involving the

first system. Overall system performance is not impacted, because the

standby system is idle until needed.

Mutual Takeover

In this configuration, each system is the designated backup for another

system. Overall system performance can be impacted, because the backup

system must do extra work following a failover: it must do its own work

plus the work that was being done by the failed system.

 Failover strategies can be used to failover an instance, a database partition, or

multiple logical nodes.

 Related concepts:

v “Parallelism” in Administration Guide: Planning

v “Developing a backup and recovery strategy” on page 3

v “High availability disaster recovery overview” on page 221

v “High Availability Cluster Multi-Processing support” on page 275

v “Microsoft Cluster Server support” on page 281

v “High availability through online split mirror and suspended I/O support” on

page 210

v “Cluster support for the Solaris operating system” on page 285

v “Sun Cluster 3.0 support” on page 287

v “VERITAS Cluster Server support” on page 290

High availability through log shipping

 Log shipping is the process of copying whole log files to a standby machine either

from an archive device, or through a user exit program running against the

primary database. The standby database is continuously rolling forward through

the log files produced by the production machine. When the production machine

fails, a failover occurs and the following takes place:

v The remaining logs are transferred over to the standby machine.

v The standby database rolls forward to the end of the logs and stops.

v The clients reconnect to the standby database and resume operations.

The standby machine has its own resources (for example, disks), but must have the

same physical and logical definitions as the production database. When using this

approach the primary database is restored to the standby machine, by using restore

utility or the split mirror function.

Chapter 6. Introducing high availability and failover support 209

DB2 9 BETA

To ensure that you are able to recover your database in a disaster recovery

situation consider the following:

v The archive location should be geographically separate from the primary site.

v Remotely mirror the log at the standby database site

v Use a synchronous mirror for no loss support. You can do this using modern

disk subsystems such as ESS and EMC, or another remote mirroring technology.

NVRAM cache (both local and remote) is also recommended to minimize the

performance impact of a disaster recovery situation.

Notes:

1. When the standby database processes a log record indicating that an index

rebuild took place on the primary database, the indexes on the standby server

are not automatically rebuilt. The index will be rebuilt on the standby server

either at the first connection to the database, or at the first attempt to access the

index after the standby server is taken out of rollforward pending state. It is

recommended that the standby server be resynchronized with the primary

server if any indexes on the primary server are rebuilt.

2. If the load utility is run on the primary database with the COPY YES option

specified, the standby database must have access to the copy image.

3. If the load utility is run on the primary database with the COPY NO option

specified, the standby database should be resynchronized, otherwise the table

space will be placed in restore pending state.

4. There are two ways to initialize a standby machine:

a. By restoring to it from a backup image.

b. By creating a split mirror of the production system and issuing the

db2inidb command with the STANDBY option.

Only after the standby machine has been initialized can you issue the

ROLLFORWARD command on the standby system.

5. Operations that are not logged will not be replayed on the standby database.

As a result, it is recommended that you re-sync the standby database after such

operations. You can do this through online split mirror and suspended I/O

support.

 Related concepts:

v “High availability disaster recovery overview” on page 221

v “High availability through online split mirror and suspended I/O support” on

page 210

 Related tasks:

v “Using a split mirror as a standby database” on page 213

 Related reference:

v Appendix I, “User exit for database recovery,” on page 409

High availability through online split mirror and suspended I/O support

 Suspended I/O supports continuous system availability by providing a full

implementation for online split mirror handling; that is, splitting a mirror without

shutting down the database. A split mirror is an “instantaneous” copy of the

database that can be made by mirroring the disks containing the data, and splitting

the mirror when a copy is required. Disk mirroring is the process of writing all of

210 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

your data to two separate hard disks; one is the mirror of the other. Splitting a

mirror is the process of separating the primary and secondary copies of the

database.

If you would rather not back up a large database using the DB2 backup utility, you

can make copies from a mirrored image by using suspended I/O and the split

mirror function. This approach also:

v Eliminates backup operation overhead from the production machine

v Represents a fast way to clone systems

v Represents a fast implementation of idle standby failover. There is no initial

restore operation, and if a rollforward operation proves to be too slow, or

encounters errors, reinitialization is very fast.

The db2inidb command initializes the split mirror so that it can be used:

v As a clone database

v As a standby database

v As a backup image

This command can only be issued against a split mirror, and it must be run before

the split mirror can be used.

In a partitioned database environment, you do not have to suspend I/O writes on

all database partitions simultaneously. You can suspend a subset of one or more

database partitions to create split mirrors for performing offline backups. If the

catalog partition is included in the subset, it must be the last database partition to

be suspended.

In a partitioned database environment, the db2inidb command must be run on

every database partition before the split image from any of the database partitions

can be used. The tool can be run on all database partitions simultaneously using

the db2_all command. If; however, you are using the RELOCATE USING option,

you cannot use the db2_all command to run db2inidb on all of the database

partitions simultaneously. A separate configuration file must be supplied for each

database partition, that includes the NODENUM value of the database partition

being changed. For example, if the name of a database is being changed, every

database partition will be affected and the db2relocatedb command must be run

with a separate configuration file on each database partition. If containers

belonging to a single database partition are being moved, the db2relocatedb

command only needs to be run once on that database partition.

Note: Ensure that the split mirror contains all containers and directories which

comprise the database, including the volume directory. To gather this

information, refer to the DBPATHS administrative view, which shows all the

files and directories of the database that need to be split.

 Related tasks:

v “Using a split mirror as a backup image” on page 214

v “Using a split mirror as a standby database” on page 213

v “Using a split mirror to clone a database” on page 212

 Related reference:

v “DBPATHS administrative view – Retrieve database paths” in Administrative SQL

Routines and Views

Chapter 6. Introducing high availability and failover support 211

DB2 9 BETA

Online split mirror handling

Using a split mirror to clone a database

 Use the following procedure to create a clone database. Although you can write to

clone databases, they are generally used for read-only activities such as running

reports.

 Restrictions:

 You cannot back up a cloned database, restore the backup image on the original

system, or roll forward through log files produced on the original system. You can

use the AS SNAPSHOT option, but this provides only an instantaneous copy of the

database at that time when the I/O is suspended; any other outstanding

uncommited work will be rolled back after the db2inidb command is executed on

the clone.

 Procedure:

 To clone a database, follow these steps:

1. Suspend I/O on the primary database:

 db2 set write suspend for database

2. Use appropriate operating system-level commands to split the mirror or

mirrors from the primary database.

Note: Ensure that you copy the entire database directory including the volume

directory. You must also copy the log directory and any container

directories that exist outside the database directory. To gather this

information, refer to the DBPATHS administrative view, which shows all

the files and directories of the database that need to be split.

3. Resume I/O on the primary database:

 db2 set write resume for database

4. Catalog the mirrored database on the secondary system.

Note: By default, a mirrored database cannot exist on the same system as the

primary database. It must be located on a secondary system that has the

same directory structure and uses the same instance name as the primary

database. If the mirrored database must exist on the same system as the

primary database, you can use the db2relocatedb utility or the

RELOCATE USING option of the db2inidb command to accomplish this.

5. Start the database instance on the secondary system:

 db2start

6. Initialize the mirrored database on the secondary system:

 db2inidb database_alias as snapshot

If required, specify the RELOCATE USING option of the db2inidb command to

relocate the clone database:

 db2inidb database_alias as snapshot relocate using relocatedbcfg.txt

where the relocatedbcfg.txt file contains the information required to relocate the

database.

212 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Notes:

a. This command will roll back transactions that are in flight when the split

occurs, and start a new log chain sequence so that any logs from the

primary database cannot be replayed on the cloned database.

b. The database directory (including the volume directory), the log directory,

and the container directories must be moved to the desired location before

you use the RELOCATE USING option.

 Related concepts:

v “High availability through online split mirror and suspended I/O support” on

page 210

 Related tasks:

v “Using a split mirror as a backup image” on page 214

v “Using a split mirror as a standby database” on page 213

 Related reference:

v “DBPATHS administrative view – Retrieve database paths” in Administrative SQL

Routines and Views

v “db2relocatedb - Relocate database command” in Command Reference

v “SET WRITE command” in Command Reference

Using a split mirror as a standby database

 Use the following procedure to create a split mirror of a database for use as a

standby database. If a failure occurs on the primary database and crash recovery is

necessary, you can use the standby database to take over for the primary database.

 Procedure:

 To use a split mirror as a standby database, follow these steps:

 1. Suspend I/O on the primary database:

 db2 set write suspend for database

 2. Use appropriate operating system-level commands to split the mirror or

mirrors from the primary database.

Note: Ensure that you copy the entire database directory including the

volume directory. You must also copy the log directory and any

container directories that exist outside the database directory. To gather

this information, refer to the DBPATHS administrative view, which

shows all the files and directories of the database that need to be split.

 3. Resume I/O on the primary database:

 db2 set write resume for database

 4. Catalog the mirrored database on the secondary system.

Note: By default, a mirrored database cannot exist on the same system as the

primary database. It must be located on a secondary system that has

the same directory structure and uses the same instance name as the

primary database. If the mirrored database must exist on the same

system as the primary database, you can use the db2relocatedb utility

or the RELOCATE USING option of the db2inidb command to

accomplish this.

Chapter 6. Introducing high availability and failover support 213

DB2 9 BETA

5. Start the database instance on the secondary system:

 db2start

 6. Initialize the mirrored database on the secondary system by placing it in

rollforward pending state:

 db2inidb database_alias as standby

If required, specify the RELOCATE USING option of the db2inidb command

to relocate the standby database:

 db2inidb database_alias as standby relocate using relocatedbcfg.txt

where the relocatedbcfg.txt file contains the information required to relocate

the database.

Notes:

a. If you have only DMS table spaces (database managed space), you can

take a full database backup to offload the overhead of taking a backup on

the production database.

b. The database directory (including the volume directory), the log directory,

and the container directories must be moved to the desired location before

you use the RELOCATE USING option.
 7. Set up a user exit program to retrieve the log files from the primary system.

 8. Roll the database forward to the end of the logs or to a point-in-time.

 9. Continue retrieving log files, and rolling the database forward through the

logs until you reach the end of the logs or the point-in-time required for the

standby database.

10. To bring the standby database online issue the ROLLFORWARD command

with the STOP option specified.

Note: The logs from the primary database cannot be applied to the mirrored

database once it has been taken out of rollforward pending state.

 Related concepts:

v “High availability through online split mirror and suspended I/O support” on

page 210

 Related tasks:

v “Using a split mirror to clone a database” on page 212

v “Using a split mirror as a backup image” on page 214

 Related reference:

v “DBPATHS administrative view – Retrieve database paths” in Administrative SQL

Routines and Views

v “db2inidb - Initialize a mirrored database ” on page 317

v “db2relocatedb - Relocate database command” in Command Reference

v “SET WRITE command” in Command Reference

Using a split mirror as a backup image

 Use the following procedure to create a split mirror of a primary database for use

as a backup image. This procedure can be used instead of performing backup

database operations on the primary database.

214 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Procedure:

 To use a split mirror as a “backup image”, follow these steps:

1. Suspend I/O on the primary database:

 db2 set write suspend for database

2. Use appropriate operating system-level commands to split the mirror or

mirrors from the primary database.

Note: Ensure that you copy the entire database directory including the volume

directory. You must also copy the log directory and any container

directories that exist outside the database directory. To gather this

information, refer to the DBPATHS administrative view, which shows all

the files and directories of the database that need to be split.

3. Resume I/O on the primary database:

 db2 set write resume for database

4. A failure occurs on the primary system, necessitating a restore from backup.

5. Stop the primary database instance:

 db2stop

6. Use operating system-level commands to copy the split-off data over the

primary system. Do not copy the split-off log files, because the primary logs

will be needed for rollforward recovery.

7. Start the primary database instance:

 db2start

8. Initialize the primary database:

 db2inidb database_alias as mirror

9. Roll the primary database forward to the end of the logs or to a point-in-time

and stop.

 Related concepts:

v “High availability through online split mirror and suspended I/O support” on

page 210

 Related tasks:

v “Using a split mirror to clone a database” on page 212

v “Using a split mirror as a standby database” on page 213

 Related reference:

v “db2inidb - Initialize a mirrored database ” on page 317

v “DBPATHS administrative view – Retrieve database paths” in Administrative SQL

Routines and Views

Fault monitor facility for Linux and UNIX

 On UNIX based systems, the Fault Monitor Facility improves the availability of

non-clustered DB2 environments through a sequence of processes that work

together to ensure that DB2 database is running. That is, the init daemon monitors

the Fault Monitor Coordinator (FMC), the FMC monitors the fault monitors and

the fault monitors monitor the DB2 database system.

The Fault Monitor Coordinator (FMC) is the process of the Fault Monitor Facility

that is started at the UNIX boot sequence. The init daemon starts the FMC and will

Chapter 6. Introducing high availability and failover support 215

DB2 9 BETA

restart it if it terminates abnormally. The FMC starts one fault monitor for each

DB2 instance. Each fault monitor runs as a daemon process and has the same user

privileges as the DB2 instance. Once a fault monitor is started, it will be monitored

to make sure it does not exit prematurely. If a fault monitor fails, it will be

restarted by the FMC. Each fault monitor will, in turn, be responsible for

monitoring one DB2 instance. If the DB2 instance exits prematurely, the fault

monitor will restart it.

Notes:

1. If you are using a high availability clustering product (that is, HACMP™ or

MSCS), the fault monitor facility must be turned off since the instance startup

and shut down is controlled by the clustering product.

2. The fault monitor will only become inactive if the db2stop command is issued.

If a DB2 instance is shut down in any other way, the fault monitor will start it

up again.

The health monitor and the fault monitor are tools that work on a single database

instance. The health monitor uses health indicators to evaluate the health of specific

aspects of database manager performance or database performance. A health

indicator measures the health of some aspect of a specific class of database objects,

such as a table space. Health indicators can be evaluated against specific criteria to

determine the health of that class of database object. In addition, health indicators

can generate alerts to notify you when an indicator exceeds a threshold or

indicates a database object is in a non-normal state

By comparison, the fault monitor is solely responsible for keeping the instance it is

monitoring up and running. If the DB2 instance it is monitoring terminates

unexpectedly, the fault monitor restarts the instance. The fault monitor is not

available on Windows.

Fault Monitor Registry File

A fault monitor registry file is created for every instance on each physical machine

when the fault monitor daemon is started. The values in this file specify the

behavior of the fault monitors. The file can be found in the /sqllib/ directory and

is called fm.<machine_name>.reg. This file can be altered using the db2fm

command. The entries are as follows:

 FM_ON = no

 FM_ACTIVE = yes

 START_TIMEOUT = 600

 STOP_TIMEOUT = 600

 STATUS_TIMEOUT = 20

 STATUS_INTERVAL = 20

 RESTART_RETRIES = 3

 ACTION_RETRIES = 3

 NOTIFY_ADDRESS = <instance_name>@<machine_name>

where:

FM_ON

Specifies whether or not the fault monitor should be started. If the value is

set to NO, the fault monitor daemon will not be started, or will be turned

off if it had already been started. The default value is NO.

FM_ACTIVE

Specifies whether or note the fault monitor is active. The fault monitor will

only take action if both FM_ON and FM_ACTIVE are set to YES. If FM_ON

is set to YES and FM_ACTIVE is set to NO, the fault monitor daemon will be

216 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

started, but it will not be active. That means that is will not try to bring

DB2 back online if it shuts down. The default value is YES.

START_TIMEOUT

Specifies the amount of time within which the fault monitor must start the

service it is monitoring. The default value is 600 seconds.

STOP_TIMEOUT

Specifies the amount of time within which the fault monitor must bring

down the service it is monitoring. The default value is 600 seconds.

STATUS_TIMEOUT

Specifies the amount of time within which the fault monitor must get the

status of the service it is monitoring. The default value is 20 seconds.

STATUS_INTERVAL

Specifies the minimum time between two consecutive calls to obtain the

status of the service that is being monitored. The default value is 20

seconds.

RESTART_RETRIES

Specifies the number of times the fault monitor will try to obtain the status

of the service being monitored after a failed attempt. Once this number is

reached the fault monitor will take action to bring the service back online.

The default value is 3.

ACTION_RETRIES

Specifies the number of times the fault monitor will attempt to bring the

service back online. The default value is 3.

NOTIFY_ADDRESS

Specifies the e-mail address to which the fault monitor will send

notification messages. The default is <instance_name>@<machine_name>)

 This file can be altered using the db2fm command. For example:

To update the START_TIMEOUT value to 100 seconds for instance DB2INST1, type

the following command from a DB2 database command window:

 db2fm -i db2inst1 -T 100

To update the STOP_TIMEOUT value to 200 seconds for instance DB2INST1, type

the following command:

 db2fm -i db2inst1 -T /200

To update the START_TIMEOUT value to 100 seconds and the STOP_TIMEOUT

value to 200 seconds for instance DB2INST1, type the following command:

 db2fm -i db2inst1 -T 100/200

To turn on fault monitoring for instance DB2INST1, type the following command:

 db2fm -i db2inst1 -f yes

To turn off fault monitoring for instance DB2INST1, type the following command:

 db2fm -i db2inst1 -f no

Note: If the fault monitor registry file does not exist, the default values will be

used.

To confirm that fault monitor is no longer running for DB2INST1, type the

following command on UNIX systems:

Chapter 6. Introducing high availability and failover support 217

DB2 9 BETA

ps -ef|grep -i fm

On Linux, type the following command:

 ps auxw|grep -i fm

An entry that shows db2fmd and DB2INST1 indicates that the fault monitor is still

running on that instance. To turn off the fault monitor, type the following

command as the instance owner:

 db2fm -i db2inst1 -D

You can prevent the FMC from being launched by using the DB2 Fault Monitor

Controller Utility (FMCU). The FMCU must be run as root because it accesses the

system’s inittab file. To block the FMC from being run, type the following

command as root:

 db2fmcu -d

Note: If you apply a DB2 fix pack this will be reset so that the inittab will again be

configured to include the FMC. To prevent the FMC from being launched

after you have applied a fix pack, you must reissue the above command.

To reverse the db2fmcu -d command and reconfigure the inittab to include the

FMC, type the following command:

 db2fmcu -u -p ←installpath→

where ←installpath→ is the directory where db2fmcd is installed.

You can also enable FMC to automatically start the instance when the system is

first booted. To enable this feature for instance DB2INST1, type the following

command:

 db2iauto -on db2inst1

To turn off the autostart behaviour, type the following command:

 db2iauto -off db2inst1

You can also prevent fault monitor processes from being launched for a specific

instances on the system by changing a field in the global registry record for the

instance. To change the global registry field to disable fault monitors for instance

DB2INST1, type the following command as root:

 db2greg -updinstrec instancename=db2inst1!startatboot=0

To reverse this command and re-enable fault monitors for instance DB2INST1, type

the following command as root:

 db2greg -updinstrec instancename=db2inst1!startatboot=1"

 Related reference:

v “db2fm - DB2 fault monitor ” on page 219

218 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

db2fm - DB2 fault monitor

 Controls the DB2 fault monitor daemon. You can use db2fm to configure the fault

monitor.

This command is only available on UNIX operating systems.

 Authorization:

 Authorization over the instance against which you are running the command.

 Required connection:

 None.

 Command syntax:

�� db2fm -t service

-i

instance
 -m module path

-u

-d

-s

-k

-U

-D

-S

-K

-f

on

off

-a

on

off

-T

T1/T2

-l

I1/I2

-R

R1/R2

-n

email

-h

-?

 ��

 Command parameters:

-m module-path

Defines the full path of the fault monitor shared library for the product

being monitored. The default is $INSTANCEHOME/sqllib/lib/libdb2gcf.

-t service

Gives the unique text descriptor for a service.

-i instance

Defines the instance of the service.

-u Brings the service up.

-U Brings the fault monitor daemon up.

-d Brings the instance down.

-D Brings the fault monitor daemon down.

-k Kills the service.

-K Kills the fault monitor daemon.

-s Returns the status of the service.

db2fm - DB2 Fault Monitor

Chapter 6. Introducing high availability and failover support 219

DB2 9 BETA

-S Returns the status of the fault monitor daemon. The status of the service or

fault monitor can be one of the following

v Not properly installed,

v INSTALLED PROPERLY but NOT ALIVE,

v ALIVE but NOT AVAILABLE (maintenance),

v AVAILABLE, or

v UNKNOWN

-f on|off

Turns fault monitor on or off. If this option is set off, the fault monitor

daemon will not be started, or the daemon will exit if it was running.

-a on|off

Activates or deactivate fault monitoring. If this option if set off, the fault

monitor will not be actively monitoring, which means if the service goes

down it will not try to bring it back.

-T T1/T2

Overwrites the start and stop time-out.

 For example:

v -T 15/10 updates the two time-outs respectively

v -T 15 updates the start time-out to 15 secs

v -T /10 updates the stop time-out to 10 secs

-I I1/I2

Sets the status interval and time-out respectively.

-R R1/R2

Sets the number of retries for the status method and action before giving

up.

-n email

Sets the email address for notification of events.

-h Prints usage.

-? Prints usage.

 Related concepts:

v “Fault monitor facility for Linux and UNIX” on page 215

db2fm - DB2 Fault Monitor

220 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Chapter 7. High availability disaster recovery (HADR)

High availability disaster recovery overview

 DB2 database high availability disaster recovery (HADR) is a database replication

feature that provides a high availability solution for both partial and complete site

failures. HADR protects against data loss by replicating data changes from a source

database, called the primary, to a target database, called the standby. A database

that does not use HADR is referred to as a standard database.

HADR might be your best option if most or all of your database requires

protection, or if you perform DDL operations that must be automatically replicated

on the standby database.

Applications can only access the current primary database. Updates to the standby

database occur by rolling forward log data that is generated on the primary

database and shipped to the standby database.

A partial site failure can be caused by a hardware, network, or software (DB2

database system or operating system) failure. Without HADR, a partial site failure

requires restarting the database management system (DBMS) server that contains

the database. The length of time it takes to restart the database and the server

where it resides is unpredictable. It can take several minutes before the database is

brought back to a consistent state and made available. With HADR, the standby

database can take over in seconds. Further, you can redirect the clients that were

using the original primary database to the standby database (new primary

database) by using automatic client reroute or retry logic in the application.

A complete site failure can occur when a disaster, such as a fire, causes the entire

site to be destroyed. Because HADR uses TCP/IP for communication between the

primary and standby databases, they can be situated in different locations. For

example, your primary database might be located at your head office in one city,

while your standby database is located at your sales office in another city. If a

disaster occurs at the primary site, data availability is maintained by having the

remote standby database take over as the primary database with full DB2

functionality. After a takeover operation occurs, you can bring the original primary

database back up and return it to its primary database status; this is known as

failback.

With HADR, you can choose the level of protection you want from potential loss

of data by specifying one of three synchronization modes: synchronous, near

synchronous, or asynchronous.

After the failed original primary server is repaired, it can rejoin the HADR pair as

a standby database if the two copies of the database can be made consistent. After

the original primary database is reintegrated into the HADR pair as the standby

database, you can switch the roles of the databases to enable the original primary

database to once again be the primary database.

HADR is only one of several replication solutions offered in the DB2 product

family. WebSphere® Information Integrator and the DB2 database system include

SQL replication and Q replication solutions that can also be used, in some

© Copyright IBM Corp. 2001, 2006 221

DB2 9 BETA

configurations, to provide high availability. These functions maintain logically

consistent copies of database tables at multiple locations. In addition, they provide

flexibility and complex functionality such as support for column and row filtering,

data transformation, updates to any copy of a table, and they can be used in

partitioned database environments.

 Related concepts:

v “Automatic client reroute and high availability disaster recovery (HADR)” on

page 255

v “Database configuration for high availability disaster recovery (HADR)” on page

249

v “High availability through log shipping” on page 209

v “Restrictions for high availability disaster recovery (HADR)” on page 226

v “Synchronization modes for high availability disaster recovery (HADR)” on page

229

v “System requirements for high availability disaster recovery (HADR)” on page

222

v “Catchup state” in Administration Guide: Planning

v “Client reroute” in Administration Guide: Planning

v “Failback” in Administration Guide: Planning

v “Peer state” in Administration Guide: Planning

System requirements for high availability disaster recovery (HADR)

 To achieve optimal performance with high availability disaster recovery (HADR),

ensure that your system meets the following requirements for hardware, operating

systems, and for the DB2 database system.

Recommendation: For better performance, use the same hardware and software for

the system where the primary database resides and for the system where the

standby database resides. If the system where the standby database resides has

fewer resources than the system where the primary database resides, it is possible

that the standby database will be unable to keep up with the transaction load

generated by the primary database. This can cause the standby database to fall

behind or the performance of the primary database to degrade. In a failover

situation, the new primary database should have the resources to service the client

applications adequately.

 Hardware and operating system requirements:

 Recommendation: Use identical host computers for the HADR primary and

standby databases. That is, they should be from the same vendor and have the

same architecture.

The operating system on the primary and standby databases should be the same

version, including patches. You can violate this rule for a short time during a

rolling upgrade, but take extreme caution.

A TCP/IP interface must be available between the HADR host machines, and a

high-speed, high-capacity network is recommended.

 DB2 database requirements:

222 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

The versions of the database systems for the primary and standby databases must

be identical; for example, both must be either version 8 or version 9. During rolling

upgrades, the modification level (for example, the fix pack level) of the database

system for the standby database can be later than that of the primary database for

a short while to test the new level. However, you should not keep this

configuration for an extended period of time. The primary and standby databases

will not connect to each other if the modification level of the database system for

the primary database is later than that of the standby database.

The DB2 database software for both the primary and standby databases must have

the same bit size (32 or 64 bit). Table spaces and their containers must be identical

on the primary and standby databases. Properties that must be identical include

the table space type (DMS or SMS), table space size, container path, container size,

and container file type (raw device or file system). The amount of space allocated

for log files should also be the same on both the primary and standby databases.

When you issue a table space statement on the primary database, such as CREATE

TABLESPACE, ALTER TABLESPACE, or DROP TABLESPACE, it is replayed on the

standby database. You must ensure that the devices involved are set up on both of

the databases before you issue the table space statement on the primary database.

If you create a table space on the primary database and log replay fails on the

standby database because the containers are not available, the primary database

does not receive an error message stating that the log replay failed.

To check for log replay errors, you must monitor the db2diag.log and the

administration log on the standby database when you are creating new table

spaces.

If a takeover operation occurs, the new table space that you created is not available

on the new primary database. To recover from this situation, restore the table space

on the new primary database from a backup image.

In the following example, table space MY_TABLESPACE is restored on database

MY_DATABASE before it is used as the new primary database:

1. db2 connect to my_database

2. db2 list tablespaces show detail

Note: Run the db2 list tablespaces show detail command to show the status

of all table spaces and to obtain the table space ID number required for

Step 5.

3. db2 stop hadr on database my_database

4. db2 "restore database my_database tablespace (my_tablespace) online

redirect"

5. db2 "set tablespace containers for my_tablespace_ID_# ignore rollforward

container operations using (path ’/my_new_container_path/’)"

6. db2 "restore database my_database continue"

7. db2 rollforward database my_database to end of logs and stop tablespace

"(my_tablespace)"

8. db2 start hadr on database my_database as primary

The primary and standby databases do not require the same database path. If

relative container paths are used, the same relative path might map to different

absolute container paths on the primary and standby databases.

Chapter 7. High availability disaster recovery (HADR) 223

DB2 9 BETA

Automatic storage databases are fully supported by HADR, including replication

of the ALTER DATABASE statement with the ADD STORAGE ON clause. Similar

to table space containers, the storage path must exist on both primary and standby.

The primary and standby databases must have the same database name. This

means that they must be in different instances.

Redirected restore is not supported. That is, HADR does not support redirecting

table space containers. However, database directory and log directory changes are

supported. Table space containers created by relative paths will be restored to

paths relative to the new database directory.

 Buffer pool requirements:

 Since buffer pool operations are also replayed on the standby database, it is

important that the primary and standby databases have the same amount of

memory.

 Related concepts:

v “Restrictions for high availability disaster recovery (HADR)” on page 226

v “High availability disaster recovery overview” on page 221

 Related tasks:

v “Performing a rolling upgrade in a high availability disaster recovery

environment” on page 269

Installation and storage requirements for high availability disaster

recovery

 Automatic storage databases are fully supported by HADR, including replication

of the ALTER DATABASE statement with the ADD STORAGE ON clause. Similar

to table space containers, the storage path must exist on both primary and standby.

Symbolic links can be used to create identical paths. The primary and standby

databases can be on the same computer. Even though their database storage starts

at the same path, they do not conflict because the actual directories used have

instance names embedded in them (since the primary and standby databases must

have the same database name, they must be in different instances). The storage

path is formulated as storage_path_name/inst_name/dbpart_name/db_name/
tbsp_name/container_name.

Table spaces and their containers must be identical on the primary and standby

databases. Properties that must be identical include: the table space type (DMS or

SMS), table space size, container path, container size, and container file type (raw

device or file system). If the database is enabled for automatic storage then the

storage paths must be identical. This includes the path names and the amount of

space on each that is devoted to the database. The amount of space allocated for

log files should also be the same on both the primary and standby databases.

When you issue a table space statement on the primary database, such as CREATE

TABLESPACE, ALTER TABLESPACE, or DROP TABLESPACE, it is replayed on the

standby database. You must ensure that the devices involved are set up on both of

the databases before you issue the table space statement on the primary database.

224 Data Recovery and High Availability Guide and Reference

|
|
|

|
|

|
|
|
|

DB2 9 BETA

If the table space setup is not identical on the primary and standby databases, log

replay on the standby database might encounter errors such as OUT OF SPACE or

TABLE SPACE CONTAINER NOT FOUND. Similarly, if the databases are enabled

for automatic storage and the storage paths are not identical, log records associated

with the ADD STORAGE ON clause of the ALTER DATABASE statement will not

be replayed. As a result, the existing storage paths might prematurely run out of

space on the standby system and automatic storage table spaces will not be able to

increase in size. If any of these situations occurs, the affected table space is put in

rollforward pending state and is ignored in subsequent log replay. If a takeover

operation occurs, the table space will not be available to applications.

If the problem is noticed on the standby system prior to a takeover then the

resolution is to re-establish the standby database while addressing the storage

issues. The steps to do this include:

v Deactivating the standby database.

v Dropping the standby database.

v Ensuring the necessary filesystems exist with enough free space for the

subsequent restore and rollforward.

v Restoring the database at the standby system using a recent backup of the

primary database (or, reinitialize using split mirror or flash copy with the

db2inidb command). If the primary database is enabled for automatic storage

then do not redefine the storage paths during the restore. Also, table space

containers should not be redirected as part of the restore.

v Restarting HADR on the standby system.

However, if the problem is noticed with the standby database after a takeover has

occurred (or if a choice was made to not address the storage issues until this time)

then the resolution is based on the type of problem that was encountered.

If the database is enabled for automatic storage and space is not available on the

storage paths associated with the standby database then follow these steps:

1. Make space available on the storage paths by extending the filesystems, or by

removing unnecessary non-DB2 files on them.

2. Perform a table space rollforward to the end of logs.

In the case where the addition or extension of containers as part of log replay

could not occur, if the necessary backup images and log file archives are available,

you might be able to recover the table space by first issuing the SET TABLESPACE

CONTAINERS statement with the IGNORE ROLLFORWARD CONTAINER

OPERATIONS option and then issuing the ROLLFORWARD command.

The primary and standby databases do not require the same database path. If

relative container paths are used, the same relative path might map to different

absolute container paths on the primary and standby databases. Consequently, if

the primary and standby databases are placed on the same computer, all table

space containers must be defined with relative paths so that they map to different

paths for primary and standby.

 Installation requirements:

 For HADR, instance paths should be the same on the primary and the standby

databases. Using different instance paths can cause problems in some situations,

Chapter 7. High availability disaster recovery (HADR) 225

DB2 9 BETA

such as if an SQL stored procedure invokes a user-defined function (UDF) and the

path to the UDF object code is expected to be on the same directory for both the

primary and standby server.

 Related concepts:

v “High availability disaster recovery overview” on page 221

Restrictions for high availability disaster recovery (HADR)

 The following list is a summary of high availability disaster recovery (HADR)

restrictions:

v HADR is not supported in a partitioned database environment.

v The primary and standby databases must have the same operating system

version and the same version of the DB2 database system, except for a short

time during a rolling upgrade.

v The DB2 database system release on the primary and standby databases must be

the same bit size (32 or 64 bit).

v Reads on the standby database are not supported. Clients cannot connect to the

standby database.

v Log archiving can only be performed by the current primary database.

v Self Tuning Memory Manager (STMM) can be run only on the current primary

database.

v Backup operations are not supported on the standby database.

v Non-logged operations, such as changes to database configuration parameters

and to the recovery history file, are not replicated to the standby database.

v Load operations with the COPY NO option specified are not supported.

v Use of Data Links is not supported.

v HADR does not support the use of raw i/o (direct disk access) for database log

files. If HADR is started via the START HADR command, or the database is

activated (restarted) with HADR configured, and raw logs are detected, the

associated command will fail.

 Related concepts:

v “High availability disaster recovery overview” on page 221

v “Non-replicated operations for high availability disaster recovery (HADR)” on

page 233

v “Replicated operations for high availability disaster recovery (HADR)” on page

232

v “System requirements for high availability disaster recovery (HADR)” on page

222

Standby database states in high availability disaster recovery (HADR)

 With the high availability disaster recovery (HADR) feature, when the standby

database is started, it enters local catchup state and attempts to read the log files in

its local log path. If it does not find a log file in the local log path and a log

archiving method has been specified, the log file is retrieved using the specified

method. After the log files are read, they are replayed on the standby database.

During this time, a connection to the primary database is not required; however, if

226 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

a connection does not exist, the standby database tries to connect to the primary

database. When the end of local log files is reached, the standby database enters

remote catchup pending state.

The standby database remains in remote catchup pending state until a connection

to the primary database is established, at which time the standby database enters

remote catchup state. During this time, the primary database reads log data from

its log path or by way of a log archiving method and sends the log files to the

standby database. The standby database receives and replays the log data. When

all of the log files on disk have been replayed by the standby database, the

primary and standby systems enter peer state.

When in peer state, log pages are shipped to the standby database whenever the

primary database flushes a log page to disk. The log pages are written to the local

log files on the standby database to ensure that the primary and standby databases

have identical log file sequences. The log pages can then be replayed on the

standby database.

You can see the state of the standby database by issuing the GET SNAPSHOT

command with the DATABASE ON option. For example, if you have standby

database MUSIC, you can issue the following command to see its state:

 get snapshot for database on music

If the command is issued on the standby database, one of the standby database

states is returned in the State field. If the query is issued on a primary database

that is connected to a standby database, the state of the standby database is

returned. If the primary database is not connected to a standby database,

disconnected is returned.

Database startup

Local catchup

Remote catchup

Remote catchup
pending

Peer state

Connection
lost

Connection
lost

Connected

Figure 20. States of the standby database

Chapter 7. High availability disaster recovery (HADR) 227

DB2 9 BETA

The following output shows the HADR status section returned by the GET

SNAPSHOT command:

 HADR status

 Role = Primary

 State = Peer

 Synchronization mode = Sync

 Connection status = Connected, 11-03-2002 12:23:09.35092

 Heartbeat missed = 0

 Local host = host1.ibm.com

 Local service = hadr_service

 Remote host = host2.ibm.com

 Remote service = hadr_service

 Remote instance = dbinst2

 timeout(seconds) = 120

 Primary log position(file, page, LSN) = S0001234.LOG, 12, 0000000000BB800C

 Standby log position(file, page, LSN) = S0001234.LOG, 12, 0000000000BB800C

 Log gap running average(bytes) = 8723

Notes:

1. If the connection between the primary and standby databases is lost during

remote catchup or peer state, the standby database will enter remote catchup

pending state.

2. Because the standby database writes the log files it receives to its local log path,

you must not use a shared network or local file system as the log path for both

the primary and standby databases. You will receive an error message if DB2

detects a shared log path.

3. To speed up the catchup process, you can use a shared log archive device.

However, if the shared device is a serial device such as a tape drive, you might

experience performance degradation on both the primary and standby

databases because of mixed read and write operations.

4. You can manually copy the primary database log files into the standby

database log path to be used for local catchup. This must be done before you

start the standby database, because when the end of the local log files is

reached, the standby database will enter remote catchup pending state and will

not try to access the log files again. Also, if the standby database enters remote

catchup state, copying log files into its log path will interfere with the writing

of local log files by the standby database. If more local log files become

available after the standby database enters remote catchup pending state, you

can shut down the standby database and restart it to ensure that it re-enters

local catchup state.

5. When a log file is truncated, either as the result of an explicit log truncation, or

as a result of stopping and restarting the primary database, the primary moves

to the beginning of the next log file. The standby, however, stays at the end of

the last log file. As a result, the HADR snapshot will show a log gap. As soon

as the primary writes any log, the log will be replicated and the standby will

update its log position.

 Related concepts:

v “Log file management” on page 46

v “Log file management through log archiving” on page 49

v “Synchronization modes for high availability disaster recovery (HADR)” on page

229

 Related tasks:

v “Performing a rolling upgrade in a high availability disaster recovery

environment” on page 269

228 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

v “Reintegrating a database after a takeover operation” on page 268

v “Switching database roles in high availability disaster recovery (HADR)” on

page 259

v “Performing an HADR failover operation” on page 261

 Related reference:

v “GET SNAPSHOT command” in Command Reference

v “Configuration parameters for database logging” on page 37

v Appendix I, “User exit for database recovery,” on page 409

v “logarchmeth1 - Primary log archive method configuration parameter” in

Performance Guide

v “logarchmeth2 - Secondary log archive method configuration parameter” in

Performance Guide

Synchronization modes for high availability disaster recovery (HADR)

 With high availability disaster recovery (HADR), you can specify one of three

synchronization modes to choose your preferred level of protection from potential

loss of data. The synchronization mode indicates how log writing is managed

between the primary and standby databases. These modes apply only when the

primary and standby databases are in peer state.

Use the HADR_SYNCMODE configuration parameter to set the synchronization

mode. Valid values are:

SYNC (synchronous)

This mode provides the greatest protection against transaction loss, and

using it results in the longest transaction response time among the three

modes.

 In this mode, log writes are considered successful only when logs have

been written to log files on the primary database and when the primary

database has received acknowledgement from the standby database that

the logs have also been written to log files on the standby database. The

log data is guaranteed to be stored at both sites.

 If the standby database crashes before it can replay the log records, the

next time it starts it can retrieve and replay them from its local log files. If

the primary database fails, a failover to the standby database guarantees

that any transaction that has been committed on the primary database has

also been committed on the standby database. After the failover operation,

when the client reconnects to the new primary database, there can be

transactions committed on the new primary database that were never

reported as committed to the original primary. This occurs when the

primary database fails before it processes an acknowledgement message

from the standby database. Client applications should consider querying

the database to determine whether any such transactions exist.

 If the primary database loses its connection to the standby database, the

databases are no longer considered to be in peer state and transactions will

not be held back waiting for acknowledgement from the standby database.

If the failover operation is performed when the databases are disconnected,

there is no guarantee that all of the transactions committed on the primary

database will appear on the standby database.

Chapter 7. High availability disaster recovery (HADR) 229

DB2 9 BETA

If the primary database fails when the databases are in peer state, it can

rejoin the HADR pair as a standby database after a failover operation.

Because a transaction is not considered to be committed until the primary

database receives acknowledgement from the standby database that the

logs have also been written to log files on the standby database, the log

sequence on the primary will be the same as the log sequence on the

standby database. The original primary database (now a standby database)

just needs to catch up by replaying the new log records generated on the

new primary database since the failover operation.

 If the primary database is not in peer state when it fails, its log sequence

might be different from the log sequence on the standby database. If a

failover operation has to be performed, the log sequence on the primary

and standby databases might be different because the standby database

starts its own log sequence after the failover. Because some operations

cannot be undone (for example, dropping a table), it is not possible to

revert the primary database to the point in time when the new log

sequence was created. If the log sequences are different and you issue the

START HADR command with the STANDBY option on the original

primary, you will receive a message that the command was successful.

However, this message is issued before reintegration is attempted. If

reintegration fails, pair validation messages will be issued to the

administration log and the diagnostics log on both the primary and the

standby. The reintegrated standby will remain the standby, but the primary

will reject the standby during pair validation causing the standby database

to shut down. If the original primary database successfully rejoins the

HADR pair, you can achieve failback of the database by issuing the

TAKEOVER HADR command without specifying the BY FORCE option. If

the original primary database cannot rejoin the HADR pair, you can

reinitialize it as a standby database by restoring a backup image of the

new primary database.

NEARSYNC (near synchronous)

While this mode has a shorter transaction response time than synchronous

mode, it also provides slightly less protection against transaction loss.

 In this mode, log writes are considered successful only when the log

records have been written to the log files on the primary database and

when the primary database has received acknowledgement from the

standby system that the logs have also been written to main memory on

the standby system. Loss of data occurs only if both sites fail

simultaneously and if the target site has not transferred to nonvolatile

storage all of the log data that it has received.

 If the standby database crashes before it can copy the log records from

memory to disk, the log records will be lost on the standby database.

Usually, the standby database can get the missing log records from the

primary database when the standby database restarts. However, if a failure

on the primary database or the network makes retrieval impossible and a

failover is required, the log records will never appear on the standby

database, and transactions associated with these log records will never

appear on the standby database.

 If transactions are lost, the new primary database is not identical to the

original primary database after a failover operation. Client applications

should consider resubmitting these transactions to bring the application

state up to date.

230 Data Recovery and High Availability Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

DB2 9 BETA

If the primary database fails when the primary and standby databases are

in peer state, it is possible that the original primary database cannot to

rejoin the HADR pair as a standby database without being reinitialized

using a full restore operation. If the failover involves lost log records

(because both the primary and standby databases have failed), the log

sequences on the primary and standby databases will be different and

attempts to restart the original primary database as a standby database

without first performing a restore operation will fail. If the original

primary database successfully rejoins the HADR pair, you can achieve

failback of the database by issuing the TAKEOVER HADR command

without specifying the BY FORCE option. If the original primary database

cannot rejoin the HADR pair, you can reinitialize it as a standby database

by restoring a backup image of the new primary database.

ASYNC (asynchronous)

This mode has the highest chance of transaction loss if the primary system

fails. It also has the shortest transaction response time among the three

modes.

 In this mode, log writes are considered successful only when the log

records have been written to the log files on the primary database and

have been delivered to the TCP layer of the primary system’s host

machine. Because the primary system does not wait for acknowledgement

from the standby system, transactions might be considered committed

when they are still on their way to the standby.

 A failure on the primary database host machine, on the network, or on the

standby database can cause log records in transit to be lost. If the primary

database is available, the missing log records can be resent to the standby

database when the pair reestablishes a connection. However, if a failover

operation is required while there are missing log records, those log records

will never reach the standby database, causing the associated transactions

to be lost in the failover.

 If transactions are lost, the new primary database is not exactly the same as

the original primary database after a failover operation. Client applications

should consider resubmitting these transactions to bring the application

state up to date.

 If the primary database fails when the primary and standby databases are

in peer state, it is possible that the original primary database will not be

able to rejoin the HADR pair as a standby database without being

reinitialized using a full restore operation. If the failover involves lost log

records, the log sequences on the primary and standby databases will be

different, and attempts to restart the original primary database as a

standby database will fail. Because there is a greater possibility of log

records being lost if a failover occurs in asynchronous mode, there is also a

greater possibility that the primary database will not be able to rejoin the

HADR pair. If the original primary database successfully rejoins the HADR

pair, you can achieve failback of the database by issuing the TAKEOVER

HADR command without specifying the BY FORCE option. If the original

primary database cannot rejoin the HADR pair, you can reinitialize it as a

standby database by restoring a backup image of the new primary

database.

 Related concepts:

v “Standby database states in high availability disaster recovery (HADR)” on page

226

Chapter 7. High availability disaster recovery (HADR) 231

DB2 9 BETA

Related tasks:

v “Reintegrating a database after a takeover operation” on page 268

 Related reference:

v “hadr_syncmode - HADR synchronization mode for log write in peer state

configuration parameter” in Performance Guide

Replicated operations for high availability disaster recovery (HADR)

 In high availability disaster recovery (HADR), the following operations are

replicated from the primary to the standby database:

v Data definition language (DDL)

v Data manipulation language (DML)

v Buffer pool operations

v Table space operations

v Online reorganization

v Offline reorganization

v Metadata for stored procedures and user defined functions (UDF) (but not the

related object or library files)

During an online reorganization, all operations are logged in detail. As a result,

HADR can replicate the operation without the standby database falling further

behind than it would for more typical database updates. However, this behavior

can potentially have a large impact on the system because of the large number of

log records generated.

While offline reorganizations are not logged as extensively as online

reorganizations, operations are typically logged per hundreds or thousands of

affected rows. This means that the standby database could fall behind because it

waits for each log record and then replays many updates at once. If the offline

reorganization is non-clustered, a single log record is generated after the entire

reorganization operation. This mode has the greatest impact on the ability of the

standby database to keep up with the primary database. The standby database will

perform the entire reorganization after it receives the log record from the primary

database.

HADR does not replicate stored procedure and UDF object and library files. You

must create the files on identical paths on both the primary and standby databases.

If the standby database cannot find the referenced object or library file, the stored

procedure or UDF invocation will fail on the standby database.

 Related concepts:

v “Database configuration for high availability disaster recovery (HADR)” on page

249

v “Non-replicated operations for high availability disaster recovery (HADR)” on

page 233

v “Restrictions for high availability disaster recovery (HADR)” on page 226

v “Index reorganization” in Performance Guide

v “Table reorganization” in Performance Guide

232 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Non-replicated operations for high availability disaster recovery

(HADR)

 High availability disaster recovery (HADR) uses database logs to replicate data to

the standby database. Non-logged operations are allowed on the primary database,

but not replicated to the standby database. The following are examples of cases in

which operations on the primary database are not replicated to the standby

database:

v Tables created with the NOT LOGGED INITIALLY option specified are not

replicated. Attempts to access such tables after an HADR standby database takes

over as the primary database will result in an error.

v BLOBs and CLOBs that are larger than 1GB cannot be logged, so they cannot be

replicated. Non-logged BLOBs and CLOBs are not replicated. However, the

space for them will be allocated on the standby database. The data for the LOB

column will be binary zeroes. All logged BLOBs and CLOBs are replicated.

v Datalinks are not supported in HADR databases. If the START HADR or the

ACTIVATE DATABASE command is issued, or if a first client connection brings

up a database that is in an HADR role (primary or standby), and the

DATALINKS database manager configuration parameter is set to YES, the

operation will fail. To use the HADR database, set the DATALINKS

configuration parameter to NO, shut down the instance, then restart it.

Note: Existing datalink columns are not affected when a database is converted

from a standard database to a primary or standby database. Even if the

DATALINKS configuration parameter is set to NO, you can still create

new datalink columns in an HADR database. However, you cannot insert,

update or select datalink columns.

v Updates to database configuration using the UPDATE DATABASE

CONFIGURATION and UPDATE DATABASE MANAGER CONFIGURATION

commands are not replicated.

v Database configuration and database manager configuration parameters are not

replicated.

v For user-defined functions (UDFs), changes to objects external to the database

(such as related objects and library files) are not replicated. They will need to be

setup on the standby via other means.

v The recovery history file (db2rhist.asc), and changes to it, are not automatically

shipped from the primary database to the standby database.

You can place an initial copy of the history file (obtained from the backup image

of the primary) on the standby database by issuing the RESTORE DATABASE

command with the REPLACE HISTORY FILE option:

 RESTORE DB KELLY REPLACE HISTORY FILE

After HADR is initialized and subsequent backup activities take place on the

primary database, the history file on the standby database will become out of

date. However, a copy of the history file is stored in each backup image. You can

update the history file on the standby by extracting the history file from a

backup image using the following command:

 RESTORE DB KELLY HISTORY FILE

Do not use regular operating system commands to copy the history file in the

database directory from the primary database to the standby database. The

history file can become corrupted if the primary is updating the files when the

copy is made.

Chapter 7. High availability disaster recovery (HADR) 233

DB2 9 BETA

If a takeover operation occurs and the standby database has an up-to-date

history file, backup and restore operations on the new primary will generate

new records in the history file and blend seamlessly with the records generated

on the original primary. If the history file is out of date or has missing entries,

an automatic incremental restore might not be possible; instead, a manual

incremental restore operation will be required.

 Related concepts:

v “Database configuration for high availability disaster recovery (HADR)” on page

249

v “Replicated operations for high availability disaster recovery (HADR)” on page

232

v “Restrictions for high availability disaster recovery (HADR)” on page 226

v “Understanding the recovery history file” on page 56

v “Index reorganization” in Performance Guide

v “Table reorganization” in Performance Guide

High availability disaster recovery (HADR) commands overview

 There are three high availability disaster recover (HADR) commands used to

manage HADR:

v Start HADR

v Stop HADR

v Takeover HADR

To invoke these commands, use the command line processor or the administrative

API. You can also invoke these commands using the GUIs available from the

Manage High Availability Disaster Recovery window in the Control Center. To

open the Manage High Availability Disaster Recovery window from the Control

Center, right-click a database and click High Availability Disaster

Recovery-—>Manage.

Issuing the START HADR command with either the AS PRIMARY or AS

STANDBY option changes the database role to the one specified if the database is

not already in that role. This command also activates the database, if it is not

already activated.

The STOP HADR command changes an HADR database (either primary or

standby) into a standard database. Any database configuration parameters related

to HADR remain unchanged so that the database can easily be reactivated as an

HADR database.

The TAKEOVER HADR command, which you can issue on the standby database

only, changes the standby database to a primary database. When you do not

specify the BY FORCE option, the primary and standby databases switch roles.

When you do specify the BY FORCE option, the standby database unilaterally

switches to become the primary database. In this case, the standby database

attempts to stop transaction processing on the old primary database. However,

there is no guarantee that transaction processing will stop. Use the BY FORCE

option to force a takeover operation for failover conditions only. To whatever

extent possible, ensure that the current primary has definitely failed, or shut it

down yourself, prior to issuing the TAKEOVER HADR command with the BY

FORCE option.

234 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

HADR database role switching

A database can be switched between primary and standard roles dynamically and

repeatedly. When the database is either online or offline, you can issue both the

START HADR command with the AS PRIMARY option and the STOP HADR

command.

You can switch a database between standby and standard roles statically. You can

do so repeatedly only if the database remains in rollforward pending state. You can

issue the START HADR command with the AS STANDBY option to change a

standard database to standby while the database is offline and in rollforward

pending state. Use the STOP HADR command to change a standby database to a

standard database while the database is offline. The database remains in

rollforward pending state after you issue the STOP HADR command. Issuing a

subsequent START HADR command with the AS STANDBY option returns the

database to standby. If you issue the ROLLFORWARD DATABASE command with

the STOP option after stopping HADR on a standby database, you cannot bring it

back to standby. Because the database is out of rollforward pending state, you can

use it as a standard database. This is referred to as taking a snapshot of the

standby database. After changing an existing standby database into a standard

database, consider creating a new standby database for high availability purposes.

To switch the role of the primary and standby databases, perform a takeover

operation without using the BY FORCE option.

To change the standby to primary unilaterally (without changing the primary to

standby), use forced takeover. Subsequently, you might be able to reintegrate the

old primary as a new standby.

HADR role is persistent. Once an HADR role is established, it remains with the

database, even through repeated stopping and restarting of the DB2 instance or

deactivation and activation of the DB2 database.

Starting the standby is asynchronous

When you issue the START HADR command with the AS STANDBY option, the

command returns as soon as the relevant engine dispatchable units (EDUs) are

successfully started. The command does not wait for the standby to connect to the

primary database. In contrast, the primary database is not considered started until

it connects to a standby database (with the exception of when the START HADR

command is issued on the primary with the BY FORCE option). If the standby

database encounters an error, such as the connection being rejected by the primary

database, the START HADR command with the AS STANDBY option might have

already returned successfully. As a result, there is no user prompt to which HADR

can return an error indication. The HADR standby will write a message to the DB2

diagnostic log and shut itself down. You should monitor the status of the HADR

standby to ensure that it successfully connects with the HADR primary.

Replay errors, which are errors that the standby encounters while replaying log

records, can also bring down the standby database. These errors might occur, for

example, when there is not enough memory to create a buffer pool, or if the path

is not found while creating a table space. You should continuously monitor the

status of the standby database.

Do not run HADR commands from a client using a database alias enabled for

client reroute

Chapter 7. High availability disaster recovery (HADR) 235

DB2 9 BETA

When automatic client reroute is set up, the database server has a predefined

alternate server so that client applications can switch between working with either

the original database server or the alternative server with only minimal

interruption of the work. In such an environment, when a client connects to the

database via TCP, the actual connection can go to either the original database or to

the alternate database. HADR commands are implemented to identify the target

database through regular client connection logic. Consequently, if the target

database has an alternative database defined, it is difficult to determine the

database on which the command is actually operating. Although an SQL client

does not need to know which database it is connecting to, HADR commands must

be applied on a specific database. To accommodate this limitation, HADR

commands should be issued locally on the server machine so that client reroute is

bypassed (client reroute affects only TCP/IP connections).

HADR commands must be run on a server with a valid license

The START HADR, STOP HADR, and TAKEOVER HADR commands require that

a valid HADR license has been installed on the server where the command is

executed. If the license is not present, these commands will fail and return a

command-specific error code (SQL01767N, SQL01769N, or SQL01770N,

respectively) along with a reason code of 98. To correct the problem, either install a

valid HADR license using db2licm, or install a version of the server that contains a

valid HADR license as part of its distribution.

 Related concepts:

v “Automatic client reroute description and setup” in Administration Guide:

Implementation

v “Automatic client reroute and high availability disaster recovery (HADR)” on

page 255

v “High availability disaster recovery overview” on page 221

 Related tasks:

v “Initializing high availability disaster recovery (HADR)” on page 238

v “Performing an HADR failover operation” on page 261

v “Stopping high availability disaster recovery (HADR)” on page 244

v “Switching database roles in high availability disaster recovery (HADR)” on

page 259

 Related reference:

v “db2HADRStart - Start high availability disaster recovery (HADR) operations”

on page 242

v “db2HADRStop - Stop high availability disaster recovery (HADR) operations”

on page 247

v “db2HADRTakeover - Instruct a database to take over as the high availability

disaster recovery (HADR) primary database” on page 266

v “Command line processor features” in Command Reference

v “START HADR” on page 240

v “STOP HADR” on page 246

v “TAKEOVER HADR” on page 264

236 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

High availability disaster recovery (HADR) management

 High availability disaster recovery management involves configuring and

maintaining the status of your HADR system.

Managing HADR includes such tasks as:

v Initializing high availability disaster recovery (HADR)

v Stopping high availability disaster recovery (HADR)

v Switching database roles in high availability disaster recovery (HADR)

v Performing an HADR failover operation

v Monitoring high availability disaster recovery (HADR)

v Checking or altering database configuration parameters related to HADR. See:

Configuring DB2 with configuration parameters

v Cataloging an HADR database (if required). See: Cataloging a database

You can manage HADR using the following methods:

v Command line processor

v Control Center GUI tools

v DB2 administrative API

 Related concepts:

v “Automatic client reroute and high availability disaster recovery (HADR)” on

page 255

v “Cluster managers and high availability disaster recovery (HADR)” on page 258

v “Database activation and deactivation in high availability disaster recovery

(HADR)” on page 254

v “High availability disaster recovery (HADR) performance” on page 271

v “Index logging and high availability disaster recovery (HADR)” on page 256

v “Monitoring high availability disaster recovery (HADR)” on page 270

 Related tasks:

v “Performing an HADR failover operation” on page 261

v “Configuring DB2 with configuration parameters” in Performance Guide

v “Cataloging a database” in Administration Guide: Implementation

v “Initializing high availability disaster recovery (HADR)” on page 238

v “Performing a rolling upgrade in a high availability disaster recovery

environment” on page 269

v “Stopping high availability disaster recovery (HADR)” on page 244

v “Switching database roles in high availability disaster recovery (HADR)” on

page 259

 Related reference:

v “db2HADRStart - Start high availability disaster recovery (HADR) operations”

on page 242

v “db2HADRStop - Stop high availability disaster recovery (HADR) operations”

on page 247

v “db2HADRTakeover - Instruct a database to take over as the high availability

disaster recovery (HADR) primary database” on page 266

v “START HADR” on page 240

Chapter 7. High availability disaster recovery (HADR) 237

DB2 9 BETA

v “STOP HADR” on page 246

v “TAKEOVER HADR” on page 264

Initializing high availability disaster recovery (HADR)

 Use the following procedure to set up and initialize the primary and standby

databases for high availability disaster recovery (HADR).

 Procedure:

 HADR can be initialized through the command line processor (CLP), the Set Up

High Availability Disaster Recovery (HADR) wizard in the Control Center, or by

calling the db2HADRStart API.

To use the CLP to initialize HADR on your system for the first time:

1. Determine the host name, host IP address, and the service name or port

number for each of the HADR databases.

If a host has multiple network interfaces, ensure that the HADR host name or

IP address maps to the intended one. You need to allocate separate HADR

ports in /etc/services for each protected database. These cannot be the same as

the ports allocated to the instance. The host name can only map to one IP

address.

Note: The instance names for the primary and standby databases do not have

to be the same.

2. Create the standby database by restoring a backup image or by initializing a

split mirror, based on the existing database that is to be the primary.

In the following example, the BACKUP DATABASE and RESTORE DATABASE

commands are used to initialize database SOCKS as a standby database. In this

case, an NFS mounted file system is accessible at both sites.

Issue the following command at the primary database:

 backup db socks to /nfs1/backups/db2/socks

Issue the following command at the standby database:

 restore db socks from /nfs1/backups/db2/socks replace history file

The following example illustrates how to use the db2inidb utility to initialize

the standby database using a split mirror of the primary database. This

procedure is an alternative to the backup and restore procedure illustrated

above.

Issue the following command at the standby database:

 db2inidb socks as standby

Notes:

a. The database names for the primary and standby databases must be the

same.

b. It is recommended that you do not issue the ROLLFORWARD DATABASE

command on the standby database after the restore operation or split mirror

initialization. The results of using a rollforward operation might differ

slightly from replaying the logs using HADR on the standby database. If

the databases are not identical, issuing the START HADR command with

the AS STANDBY option will fail.

c. When using the RESTORE DATABASE command, it is recommended that

the REPLACE HISTORY FILE option is used.

238 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

d. When creating the standby database using the RESTORE DATABASE

command, you must ensure that the standby remains in rollforward mode.

This means that you cannot issue the ROLLFORWARD DATABASE

command with either the COMPLETE option or the STOP option. An error

will be returned if the START HADR command with the AS STANDBY

option is attempted on the database after rollforward is stopped.

e. The following RESTORE DATABASE command options should be avoided

when setting up the standby database: TABLESPACE, INTO, REDIRECT,

and WITHOUT ROLLING FORWARD.

f. When setting up the standby database using the db2inidb utility, do not use

the SNAPSHOT or MIRROR options. You can specify the RELOCATE

USING option to change one or more of the following configuration

attributes: instance name, log path, and database path. However, you must

not change the database name or the table space container paths.
3. Set the HADR configuration parameters on the primary and standby databases.

Note: It is very important that you set the following configuration parameters

after the standby databases has been created:

v HADR_LOCAL_HOST

v HADR_LOCAL_SVC

v HADR_REMOTE_HOST

v HADR_REMOTE_SVC

v HADR_REMOTE_INST

If they are set prior to creating the standby database, the settings on the

standby database will reflect what is set on the primary database.

4. Connect to the standby instance and start HADR on the standby database, as in

the following example:

 START HADR ON DB SOCKS AS STANDBY

Note: Usually, the standby database is started first. If you start the primary

database first, this startup procedure will fail if the standby database is

not started within the time period specified by the HADR_TIMEOUT

database configuration parameter.

5. Connect to the primary instance and start HADR on the primary database, as

in the following example:

 START HADR ON DB SOCKS AS PRIMARY

6. HADR is now started on the primary and standby databases.

To open the Set Up High Availability Disaster Recovery (HADR) Databases wizard:

1. From the Control Center expand the object tree until you find the database for

which you want to configure HADR.

2. Right-click the database and click High Availability Disaster Recovery → Set Up

in the pop-up menu. The Set Up High Availability Disaster Recovery Databases

wizard opens.

Additional information is provided through the contextual help facility within the

Control Center.

Note: You can start HADR within the Set Up High Availability Disaster Recovery

Databases wizard, or you can just use the wizard to initialize HADR, then

start it at another time. To open the Start HADR window:

Chapter 7. High availability disaster recovery (HADR) 239

DB2 9 BETA

1. From the Control Center, expand the object tree until you find the

database for which you want to manage HADR. Right-click the database

and click High Availability Disaster Recovery→Manage in the pop-up

menu. The Manage High Availability Disaster Recovery window opens.

2. Click Start HADR. The Start HADR window opens.

 Related concepts:

v “Database configuration for high availability disaster recovery (HADR)” on page

249

v “High availability disaster recovery overview” on page 221

 Related tasks:

v “Stopping high availability disaster recovery (HADR)” on page 244

v “Using a split mirror as a backup image” on page 214

v “Using restore” on page 90

 Related reference:

v “START HADR” on page 240

v “db2HADRStart - Start high availability disaster recovery (HADR) operations”

on page 242

START HADR

 Starts HADR operations for a database.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

 Required connection:

 Instance. The command establishes a database connection if one does not exist, and

closes the database connection when the command completes.

 Command syntax:

�� START HADR ON DATABASE database-alias

DB
 �

�
USER

user-name

USING

password

 AS PRIMARY

BY FORCE

STANDBY

 ��

 Command parameters:

DATABASE database-alias

Identifies the database on which HADR operations are to start.

USER user-name

Identifies the user name under which the HADR operations are to be

started.

START HADR

240 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

USING password

The password used to authenticate user-name.

AS PRIMARY

Specifies that HADR primary operations are to be started on the database.

BY FORCE

Specifies that the HADR primary database will not wait for the

standby database to connect to it. After a start BY FORCE, the

primary database will still accept valid connections from the

standby database whenever the standby later becomes available.

When BY FORCE is used, the database will perform crash recovery if

necessary, regardless of the value of database configuration

parameter AUTORESTART. Other methods of starting a primary

database (such as non-forced START HADR command,

ACTIVATE DATABASE command, or client connection) will

respect the AUTORESTART setting.

Caution: Use the START HADR command with the AS PRIMARY

BY FORCE option with caution. If the standby database has

been changed to a primary and the original primary

database is restarted by issuing the START HADR

command with the AS PRIMARY BY FORCE option, both

copies of your database will be operating independently

as primaries. (This is sometimes referred to as split brain

or dual primary.) In this case, each primary database can

accept connections and perform transactions, and neither

receives and replays the updates made by the other. As a

result, the two copies of the database will become

inconsistent with each other.

AS STANDBY

Specifies that HADR standby operations are to be started on the database.

The standby database will attempt to connect to the HADR primary

database until a connection is successfully established, or until the

connection attempt is explicitly rejected by the primary. (The connection

might be rejected by the primary database if an HADR configuration

parameter is set incorrectly or if the database copies are inconsistent, both

conditions for which continuing to retry the connection is not appropriate.)

 Usage notes:

 The following table shows database behavior in various conditions:

Database status

Behavior upon START HADR

command with the AS PRIMARY

option

Behavior upon START HADR

command with the AS STANDBY

option

Inactive standard

database

Activated as HADR primary

database.

Database starts as an standby

database if it is in

rollforward-pending mode (which

can be the result of a restore or a

split mirror) or in rollforward

in-progress mode. Otherwise, an

error is returned.

Active standard

database

Database enters HADR primary

role.

Error message returned.

START HADR

Chapter 7. High availability disaster recovery (HADR) 241

DB2 9 BETA

Database status

Behavior upon START HADR

command with the AS PRIMARY

option

Behavior upon START HADR

command with the AS STANDBY

option

Inactive primary

database

Activated as HADR primary

database.

After a failover, this reintegrates

the failed primary into the HADR

pair as the new standby database.

Some restrictions apply.

Active primary

database

Warning message issued. Error message returned.

Inactive standby

database

Error message returned. Starts the database as the standby

database.

Active standby

database

Error message returned. Warning message issued.

When issuing the START HADR command, the corresponding error codes might

be generated: SQL01767N, SQL01769N, or SQL01770N with a reason code of 98.

The reason code indicates that there is no installed license for HADR on the server

where the command was issued. To correct the problem, install a valid HADR

license using the db2licm or install a version of the server that contains a valid

HADR license as part of its distribution.

 Related tasks:

v “Initializing high availability disaster recovery (HADR)” on page 238

db2HADRStart - Start high availability disaster recovery (HADR)

operations

 Starts HADR operations on a database.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

 Required connection:

 Instance. The API establishes a database connection if one does not exist, and

closes the database connection when the API completes.

 API include file:

db2ApiDf.h

 API and data structure syntax:

SQL_API_RC SQL_API_FN

 db2HADRStart (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2HADRStartStruct

{

START HADR

242 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

char *piDbAlias;

 char *piUserName;

 char *piPassword;

 db2Uint32 iDbRole;

 db2Uint16 iByForce;

} db2HADRStartStruct;

SQL_API_RC SQL_API_FN

 db2gHADRStart (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gHADRStartStruct

{

 char *piDbAlias;

 db2Uint32 iAliasLen;

 char *piUserName;

 db2Uint32 iUserNameLen;

 char *piPassword;

 db2Uint32 iPasswordLen;

 db2Uint32 iDbRole;

 db2Uint16 iByForce;

} db2gHADRStartStruct;

 db2HADRStart API parameters:

 versionNumber

Input. Specifies the version and release level of the structure passed as the

second parameter pParmStruct.

pParmStruct

Input. A pointer to the db2HADRStartStruct structure.

pSqlca

Output. A pointer to the sqlca structure.

 db2HADRStartStruct data structure parameters:

 piDbAlias

Input. A pointer to the database alias.

piUserName

Input. A pointer to the user name under which the command will be

executed.

piPassword

Input. A pointer to a string containing the password.

iDbRole

Input. Specifies which HADR database role should be started on the

specified database. Valid values are:

DB2HADR_DB_ROLE_PRIMARY

Start HADR operations on the database in the primary role.

DB2HADR_DB_ROLE_STANDBY

Start HADR operations on the database in the standby role.

iByForce

Input. This argument is ignored if the iDbRole parameter is set to

DB2HADR_DB_ROLE_STANDBY. Valid values are:

db2HADRStart - Start high availability disaster recovery (HADR) operations

Chapter 7. High availability disaster recovery (HADR) 243

DB2 9 BETA

DB2HADR_NO_FORCE

Specifies that HADR is started on the primary database only if a

standby database connects to it within a prescribed time limit.

DB2HADR_FORCE

Specifies that HADR is to be started by force, without waiting for

the standby database to connect to the primary database.

 db2gHADRStartStruct data structure specific parameters:

 iAliasLen

Input. Specifies the length in bytes of the database alias.

iUserNameLen

Input. Specifies the length in bytes of the user name.

iPasswordLen

Input. Specifies the length in bytes of the password.

 Related tasks:

v “Initializing high availability disaster recovery (HADR)” on page 238

 Related reference:

v “SQLCA data structure” in Administrative API Reference

v “db2HADRStop - Stop high availability disaster recovery (HADR) operations”

on page 247

v “db2HADRTakeover - Instruct a database to take over as the high availability

disaster recovery (HADR) primary database” on page 266

Stopping high availability disaster recovery (HADR)

 Use the STOP HADR command to stop high availability disaster recovery (HADR)

operations on the primary or standby database. You can choose to stop HADR on

one or both of the databases. If you are performing maintenance on the standby

system, you only need to stop HADR on the standby database. If you want to stop

using HADR completely, you can stop HADR on both databases.

Warning: If you want to stop the specified database but you still want it to

maintain its role as either an HADR primary or standby database, do

not issue the STOP HADR command. If you issue the STOP HADR

command the database will become a standard database and might

require reinitialization in order to resume operations as an HADR

database. Instead, issue the DEACTIVATE DATABASE command.

 Restrictions:

 You can issue the STOP HADR command against a primary or a standby database

only. If you issue this command against a standard database an error will be

returned.

 Procedure:

 You can stop HADR by using the command line processor (CLP), the Manage

High Availability Disaster Recovery (HADR) window in the Control Center, or the

db2HADRStop application programming interface (API).

db2HADRStart - Start high availability disaster recovery (HADR) operations

244 Data Recovery and High Availability Guide and Reference

|
|
|
|
|
|

DB2 9 BETA

To use the CLP to stop HADR operations on the primary or standby database,

issue the STOP HADR command on the database where you want to stop HADR

operations.

In the following example, HADR operations are stopped on database SOCKS:

 STOP HADR ON DATABASE SOCKS

If you issue this command against an inactive primary database, the database

switches to a standard database and remains offline.

If you issue this command against an inactive standby database the database

switches to a standard database, is placed in rollforward pending state, and

remains offline.

If you issue this command on an active primary database, logs stop being shipped

to the standby database and all HADR engine dispatchable units (EDUs) are shut

down on the primary database. The database switches to a standard database and

remains online. Transaction processing can continue. You can issue the START

HADR command with the AS PRIMARY option to switch the role of the database

back to primary database.

If you issue this command on an active standby database, an error message is

returned, indicating that you must deactivate the standby database before

attempting to convert it to a standard database.

To open the Stop HADR window:

1. From the Control Center, expand the object tree until you find the database for

which you want to manage HADR. Right-click the database and click High

Availability Disaster Recovery→Manage in the pop-up menu. The Manage High

Availability Disaster Recovery window opens.

2. Click Stop HADR. The Stop HADR window opens.

3. If you want to stop HADR on one database only, clear the check box for the

other database.

4. If only one database is started (either the primary database or the standby

database), the name of that database is displayed in the Stop HADR window.

5. Click OK. The window closes. A progress indicator might open to indicate

when the command is running. When it completes, you will get a notification

indicating whether or not it is successful.

Additional information is provided through the contextual help facility within the

Control Center.

 Related concepts:

v “High availability disaster recovery overview” on page 221

v “High availability disaster recovery (HADR) commands overview” on page 234

 Related tasks:

v “Initializing high availability disaster recovery (HADR)” on page 238

 Related reference:

v “db2HADRStart - Start high availability disaster recovery (HADR) operations”

on page 242

db2HADRStart - Start high availability disaster recovery (HADR) operations

Chapter 7. High availability disaster recovery (HADR) 245

DB2 9 BETA

v “db2HADRStop - Stop high availability disaster recovery (HADR) operations”

on page 247

v “START HADR” on page 240

v “STOP HADR” on page 246

STOP HADR

 Stops HADR operations for a database.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

 Required connection:

 Instance. The command establishes a database connection if one does not exist, and

closes the database connection when the command completes.

 Command syntax:

�� STOP HADR ON DATABASE database-alias

DB
 �

�
USER

user-name

USING

password

 ��

 Command parameters:

DATABASE database-alias

Identifies the database on which HADR operations are to stop.

USER user-name

Identifies the user name under which the HADR operations are to be

stopped.

USING password

The password used to authenticate user-name.

 Usage notes:

 The following table shows database behavior in various conditions:

 Database status Behavior upon STOP HADR command

Inactive standard database Error message returned.

Active standard database Error message returned.

Inactive primary database Database role changes to standard. Database configuration

parameter hadr_db_role is updated to STANDARD. Database

remains offline. At the next restart, enters standard role.

db2HADRStart - Start high availability disaster recovery (HADR) operations

246 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Database status Behavior upon STOP HADR command

Active primary database Stops shipping logs to the HADR standby database and

shuts down all HADR EDUs on the HADR primary

database. Database role changes to standard and database

remains online. Database remains in standard role until an

explicit START HADR command with the AS PRIMARY

option is issued. Open sessions and transactions are not

affected by the STOP HADR command. You can repeatedly

issue STOP HADR and START HADR commands while the

database remains online. These commands take effect

dynamically.

Inactive standby database Database role changes to standard. Database configuration

parameter hadr_db_role is updated to STANDARD. Database

remains offline. Database is put into rollforward pending

mode.

Active standby database Error message returned: Deactivate the standby database

before attempting to convert it to a standard database.

When issuing the STOP HADR command, the corresponding error codes might be

generated: SQL01767N, SQL01769N, or SQL01770N with a reason code of 98. The

reason code indicates that there is no installed license for HADR on the server

where the command was issued. To correct the problem, install a valid HADR

license using the db2licm or install a version of the server that contains a valid

HADR license as part of its distribution.

 Related tasks:

v “Stopping high availability disaster recovery (HADR)” on page 244

db2HADRStop - Stop high availability disaster recovery (HADR)

operations

 Stops HADR operations on a database.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

 Required connection:

 Instance. The API establishes a database connection if one does not exist, and

closes the database connection when the API completes.

 API include file:

db2ApiDf.h

 API and data structure syntax:

SQL_API_RC SQL_API_FN

 db2HADRStop (

 db2Uint32 versionNumber,

 void * pParmStruct,

STOP HADR

Chapter 7. High availability disaster recovery (HADR) 247

DB2 9 BETA

struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2HADRStopStruct

{

 char *piDbAlias;

 char *piUserName;

 char *piPassword;

} db2HADRStopStruct;

SQL_API_RC SQL_API_FN

 db2gHADRStop (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gHADRStopStruct

{

 char *piDbAlias;

 db2Uint32 iAliasLen;

 char *piUserName;

 db2Uint32 iUserNameLen;

 char *piPassword;

 db2Uint32 iPasswordLen;

} db2gHADRStopStruct;

 db2HADRStop API parameters:

 versionNumber

Input. Specifies the version and release level of the structure passed as the

second parameter pParmStruct.

pParmStruct

Input. A pointer to the db2HADRStopStruct structure.

pSqlca

Output. A pointer to the sqlca structure.

 db2HADRStopStruct data structure parameters:

 piDbAlias

Input. A pointer to the database alias.

piUserName

Input. A pointer to the user name under which the command will be

executed.

piPassword

Input. A pointer to a string containing the password.

 db2gHADRStopStruct data structure specific parameters:

 iAliasLen

Input. Specifies the length in bytes of the database alias.

iUserNameLen

Input. Specifies the length in bytes of the user name.

iPasswordLen

Input. Specifies the length in bytes of the password.

 Related tasks:

v “Stopping high availability disaster recovery (HADR)” on page 244

 Related reference:

db2HADRStop - Stop high availability disaster recovery (HADR) operations

248 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

v “SQLCA data structure” in Administrative API Reference

v “db2HADRStart - Start high availability disaster recovery (HADR) operations”

on page 242

v “db2HADRTakeover - Instruct a database to take over as the high availability

disaster recovery (HADR) primary database” on page 266

Database configuration for high availability disaster recovery (HADR)

 To achieve optimal performance with high availability disaster recovery (HADR),

ensure that your database configuration meets the following requirements.

Recommendation: To the extent possible, the database configuration parameters

and database manager configuration parameters should be identical on the systems

where the primary and standby databases reside. If the configuration parameters

are not properly set on the standby database the following problems might occur:

v Error messages might be returned on the standby database while replaying the

log files that were shipped from the primary database.

v After a takeover operation, the new primary database will not be able to handle

the workload, resulting in performance problems or in applications receiving

error messages they were not receiving when they were connected to the

original primary database.

Changes to the configuration parameters on the primary database are not

automatically propagated to the standby database and must be made manually on

the standby database. For dynamic configuration parameters, changes will take

effect without shutting down and restarting the database management system

(DBMS) or the database. For non-dynamic configuration parameters, changes will

take effect after the standby database is restarted.

 Size of log files configuration parameter on the standby database:

 One exception to the configuration parameter behavior described above is the

LOGFILSIZ database configuration parameter. Although this parameter is not

replicated to the standby database, to guarantee identical log files on both

databases, the standby database ignores the local LOGFILSIZ configuration and

creates local log files that match the size of the log files on the primary database.

After a takeover, the original standby (new primary) will keep using the value that

was set on the original primary until the database is restarted. At that point, the

new primary will revert to the value configured locally. In addition, the new

primary also truncates the current log file and resizes any pre-created log files.

If the databases keep switching roles via non-forced takeover and neither database

is deactivated, then the log file size used will always be the one established by the

very first primary. However, if there is a deactivate and then a restart on the

original standby (new primary) then it would use the log file size configured

locally. This log file size would continue to be used if the original primary takes

over again. Only after a deactivate and restart on the original primary would the

log file size revert back to the settings on the original primary.

 Log receive buffer size on the standby database:

 By default, the log receive buffer size on the standby database will be two times

the value specified for the LOGBUFSZ configuration parameter on the primary

database. There might be times when this size is not sufficient. For example, when

db2HADRStop - Stop high availability disaster recovery (HADR) operations

Chapter 7. High availability disaster recovery (HADR) 249

DB2 9 BETA

the HADR synchronization mode is asynchronous and the primary and standby

databases are in peer state, if the primary database is experiencing a high

transaction load, the log receive buffer on the standby database might fill to

capacity and the log shipping operation from the primary database might stall. To

manage these temporary peaks, you can increase the size of the log receive buffer

on the standby database by modifying the DB2_HADR_BUF_SIZE registry

variable.

 Load operations and HADR:

 If a load operation is executed on the primary database with the COPY YES

option, the command will execute on the primary database and the data will be

replicated to the standby database as long as the copy can be accessed through the

path or device specified by the LOAD command. If the standby database cannot

access the data, the table space in which the table is stored is marked bad on the

standby database. The standby database will skip future log records that pertain to

this table space. To ensure that the load operation can access the copy on the

standby database, it is recommended that you use a shared location for the output

file from the COPY YES option. Alternatively, you can deactivate the standby

database while the load operation is performed, perform the load on the primary,

place a copy of the output file in the standby path, and then activate the standby

database.

If a load operation is executed on the primary database with the

NONRECOVERABLE option, the command will execute on the primary database

and the table on the standby database will be marked bad. The standby database

will skip future log records that pertain to this table. You can choose to issue the

LOAD command with the COPY YES and REPLACE options specified to bring the

table back, or you can drop the table to recover the space.

Since executing a load operation with the COPY NO option is not supported with

HADR, the command is automatically converted to a load operation with the

NONRECOVERABLE option. To enable a load operation with the COPY NO

option to be converted to a load operation with the COPY YES option, set the

DB2_LOAD_COPY_NO_OVERRIDE registry variable on the primary database.

This registry variable is ignored by the standby database. Ensure that the device or

directory specified on the primary database can be accessed by the standby

database using the same path, device, or load library.

If you are using Tivoli Storage Manager (TSM) to perform a load operation with

the COPY YES option, you might need to set the VENDOROPT configuration

parameter on the primary and standby databases. Depending on how TSM is

configured, the values on the primary and standby databases might not be the

same. Also, when using TSM to perform a load operation with the COPY YES

option, you must issue the db2adutl command with the GRANT option to give the

standby database read access for the files that are loaded.

If table data is replicated by a load operation with the COPY YES option specified,

the indexes will be replicated as follows:

v If the indexing mode is set to REBUILD and the table attribute is set to LOG

INDEX BUILD, or the table attribute is set to DEFAULT and the

LOGINDEXBUILD database configuration parameter is set to ON, the primary

database will include the rebuilt index object in the copy file to enable the

standby database to replicate the index object. If the index object on the standby

database is marked bad before the load operation, it will become usable again

after the load operation as a result of the index rebuild.

db2HADRStop - Stop high availability disaster recovery (HADR) operations

250 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

v If the indexing mode is set to INCREMENTAL and the table attribute is set to

LOG INDEX BUILD, or the table attribute is set to NULL and

LOGINDEXBUILD database configuration parameter on the primary database is

set to ON, the index object on the standby database is updated only if it is not

marked bad before the load operation. Otherwise, the index is marked bad on

the standby database.

 HADR configuration parameters:

 Several new database configuration parameters are available to support HADR.

Setting these parameters does not change the role of a database. You must issue

the START HADR or STOP HADR commands to change the role of a database.

HADR configuration parameters are not dynamic. Any changes made to an HADR

configuration parameter are not effective until the database has been shut down

and restarted. In a partitioned database environment, the HADR configuration

parameters are visible and can be changed, but they are ignored.

The local host name of the primary database must be the same as the remote host

name of the standby database, and the local host name of the standby database

must be the same as the remote host name of the primary database. Use the

HADR_LOCAL_HOST and HADR_REMOTE_HOST configuration parameters to

set the local and remote hosts for each database. Configuration consistency for the

local and remote host names is checked when a connection is established to ensure

that the remote host specified is the expected database.

An HADR database can be configured to use either IPv4 or IPv6 to locate its

partner database. If the host server does not support IPv6, the database will use

IPv4. If the server does support IPv6, whether the database uses IPv4 or IPv6

depends upon the format of the address specified for the HADR_LOCAL_HOST

and HADR_REMOTE_HOST configuration parameters. The database attempts to

resolve the two parameters to the same IP format. The following table shows how

the IP mode is determined for IPv6-enabled servers:

 IP mode used for

HADR_LOCAL_HOST

IP mode used for

HADR_REMOTE_HOST

IP mode used for HADR

communications

IPv4 address IPv4 address IPv4

IPv4 address IPv6 address Error

IPv4 address hostname, maps to v4 only IPv4

IPv4 address hostname, maps to v6 only Error

IPv4 address hostname, maps to v4 and v6 IPv4

IPv6 address IPv4 address Error

IPv6 address IPv6 address IPv6

IPv6 address hostname, maps to v4 only Error

IPv6 address hostname, maps to v6 only IPv6

IPv6 address hostname, maps to v4 and v6 IPv6

hostname, maps to v4 only IPv4 address IPv4

hostname, maps to v4 only IPv6 address Error

hostname, maps to v4 only hostname, maps to v4 only IPv4

hostname, maps to v4 only hostname, maps to v6 only Error

hostname, maps to v4 only hostname, maps to v4 and v6 IPv4

db2HADRStop - Stop high availability disaster recovery (HADR) operations

Chapter 7. High availability disaster recovery (HADR) 251

DB2 9 BETA

IP mode used for

HADR_LOCAL_HOST

IP mode used for

HADR_REMOTE_HOST

IP mode used for HADR

communications

hostname, maps to v6 only IPv4 address Error

hostname, maps to v6 only IPv6 address IPv6

hostname, maps to v6 only hostname, maps to v4 only Error

hostname, maps to v6 only hostname, maps to v6 only IPv6

hostname, maps to v6 only hostname, maps to v4 and v6 IPv6

hostname, maps to v4 and v6 IPv4 address IPv4

hostname, maps to v4 and v6 IPv6 address IPv6

hostname, maps to v4 and v6 hostname, maps to v4 only IPv4

hostname, maps to v4 and v6 hostname, maps to v6 only IPv6

hostname, maps to v4 and v6 hostname, maps to v4 and v6 IPv6

The primary and standby databases can make HADR connections only if they use

the same format. If one server is IPv6 enabled (but also supports IPv4) and the

other server only supports IPv4, at least one of the HADR_LOCAL_HOST or

HADR_REMOTE_HOST parameters must specify an IPv4 address. This tells the

database to use IPv4 even if the server supports IPv6.

When you specify values for the high availability disaster recovery (HADR) local

service and remote service parameters (HADR_LOCAL_SVC and

HADR_REMOTE_SVC) while preparing an update database configuration

command, the values you specify must be ports that are not in use for any other

service, including other DB2 components or other HADR databases. In particular,

you cannot set either parameter value to the TCP/IP port used by the server to

await communications from remote clients (the SVCENAME database manager

configuration parameter) or the next port (SVCENAME + 1).

If the primary and standby databases are on different machines, they can use the

same port number or service name; otherwise, different values should be used. The

HADR_LOCAL_SVC and HADR_REMOTE_SVC parameters can be set to either a

port number or a service name.

The synchronization mode (HADR_SYNCMODE) and time-out period

(HADR_TIMEOUT) must be identical on both the primary and standby databases.

The consistency of these configuration parameters is checked when an HADR pair

establishes a connection.

TCP connections are used for communication between the primary and standby

databases. A primary database that is not connected to a standby database, either

because it is starting up or because the connection is lost, will listen on its local

port for new connections. A standby database that is not connected to a primary

database will continue issuing connection requests to its remote host.

Although the local host and local service parameters (HADR_LOCAL_HOST,

HADR_LOCAL_SVC) are only used on the primary database, you should still set

them on the standby database to ensure that they are ready if the standby database

has to take over as the primary database.

When the primary database starts, it waits for a standby to connect for a minimum

of 30 seconds or for the number of seconds specified by the value of the

HADR_TIMEOUT database configuration parameter, whichever is longer. If the

db2HADRStop - Stop high availability disaster recovery (HADR) operations

252 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

standby does not connect in the specified time, the startup will fail. (The one

exception to this is when the START HADR command is issued with the BY

FORCE option.)

After an HADR pair establishes a connection, they will exchange heart beat

messages. The heartbeat interval is one-quarter of the value of the

HADR_TIMEOUT database configuration parameter, or 30 seconds, whichever is

shorter. The HADR_HEARTBEAT monitor element shows the number of heartbeats

a database expected to receive but did not receive from the other database. If one

database does not receive any message from the other database within the number

of seconds specified by HADR_TIMEOUT, it will initiate a disconnect. This means

that at most it takes the number of seconds specified by HADR_TIMEOUT for a

primary to detect the failure of either the standby or the intervening network. In

HADR peer state, problems with the standby or network the will only block

primary transaction processing for the number of seconds specified by the

HADR_TIMEOUT configuration parameter, at most. If you set this configuration

parameter too low, you will receive false alarms and frequent disconnections.

Note: For maximal availability, as soon as the connection between the primary and

the standby is closed (either because the standby closed the connection, a

network error is detected, or timeout is reached), the primary drops out of

peer state to avoid blocking transactions.

The following sample configuration is for the primary and standby databases.

On the primary:

 HADR_LOCAL_HOST host1.ibm.com

 HADR_LOCAL_SVC hadr_service

 HADR_REMOTE_HOST host2.ibm.com

 HADR_REMOTE_SVC hadr_service

 HADR_REMOTE_INST dbinst2

 HADR_TIMEOUT 120

 HADR_SYNCMODE NEARSYNC

On the standby:

 HADR_LOCAL_HOST host2.ibm.com

 HADR_LOCAL_SVC hadr_service

 HADR_REMOTE_HOST host1.ibm.com

 HADR_REMOTE_SVC hadr_service

 HADR_REMOTE_INST dbinst1

 HADR_TIMEOUT 120

 HADR_SYNCMODE NEARSYNC

 Related concepts:

v “High availability disaster recovery overview” on page 221

v “Log archiving configuration for high availability disaster recovery (HADR)” on

page 257

 Related reference:

v “hadr_db_role - HADR database role configuration parameter” in Performance

Guide

v “hadr_local_host - HADR local host name configuration parameter” in

Performance Guide

v “hadr_local_svc - HADR local service name configuration parameter” in

Performance Guide

db2HADRStop - Stop high availability disaster recovery (HADR) operations

Chapter 7. High availability disaster recovery (HADR) 253

DB2 9 BETA

v “hadr_remote_host - HADR remote host name configuration parameter” in

Performance Guide

v “hadr_remote_inst - HADR instance name of the remote server configuration

parameter” in Performance Guide

v “hadr_remote_svc - HADR remote service name configuration parameter” in

Performance Guide

v “hadr_syncmode - HADR synchronization mode for log write in peer state

configuration parameter” in Performance Guide

v “hadr_timeout - HADR timeout value configuration parameter” in Performance

Guide

v “vendoropt - Vendor options configuration parameter” in Performance Guide

Database activation and deactivation in high availability disaster

recovery (HADR)

 If a standard database is started by a client connection, the database is shut down

when the last client disconnects. If an HADR primary database is started by a

client connection, it is equivalent to starting the database by using the ACTIVATE

DATABASE command. To shut down an HADR primary database that was started

by a client connection, you need to explicitly issue the DEACTIVATE DATABASE

command.

On a standard database in rollforward pending state, the ACTIVATE DATABASE

and DEACTIVATE DATABASE commands are not applicable. You can only

continue rollforward, stop rollforward, or use START HADR start the database as

an HADR standby database. Once a database is started as an HADR standby, you

can use the ACTIVATE DATABASE and DEACTIVATE DATABASE commands to

start and stop the database.

Activate a primary database using the following methods:

v client connection

v ACTIVATE DATABASE command

v START HADR command with the AS PRIMARY option

Deactivate a primary database using the following methods:

v DEACTIVATE DATABASE command

v db2stop command with the FORCE option

Activate a standby database using the following methods:

v ACTIVATE DATABASE command

v START HADR command with the AS STANDBY option

Deactivate a standby database using the following methods:

v DEACTIVATE DATABASE command

v db2stop command with the FORCE option

 Related concepts:

v “Database configuration for high availability disaster recovery (HADR)” on page

249

v “High availability disaster recovery (HADR) commands overview” on page 234

v “High availability disaster recovery overview” on page 221

db2HADRStop - Stop high availability disaster recovery (HADR) operations

254 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Related reference:

v “ACTIVATE DATABASE command” in Command Reference

v “db2stop - Stop DB2 command” in Command Reference

v “DEACTIVATE DATABASE command” in Command Reference

Automatic client reroute and high availability disaster recovery (HADR)

 The automatic client reroute feature can be used with high availability disaster

recovery to allow client applications to recover from a loss of communication with

the server and to continue working with minimal interruption. Rerouting is only

possible when an alternate database location has been specified at the server.

Automatic client reroute is only supported with TCP/IP protocol.

Note: Client reroute is enabled by default if you set up HADR using the Set Up

High Availability Disaster Recovery (HADR) Databases wizard in the

Control Center.

You can use automatic client reroute with HADR to make client applications

connect to the new primary database after a takeover operation. If automatic client

reroute is not enabled, client applications will receive error message SQL30081, and

no further attempts will be made to establish a connection with the server. The

following example explains how to use the UPDATE ALTERNATE SERVER FOR

DATABASE command to set up automatic client reroute with HADR.

Example

Your system is set up as follows:

v You have a client where database MUSIC is catalogued as being located at host

HORNET.

v Database MUSIC is the primary database and its corresponding standby

database, also MUSIC, resides on host MONTERO with port number 456, which

is assigned by the SVCENAME configuration parameter.

To enable automatic client reroute, update the alternate server for database MUSIC

on host HORNET:

 db2 update alternate server for database music using hostname montero port 456

After this command is issued, the client must successfully connect to host

HORNET to obtain the alternate server information. Then, if a communication

error occurs between the client and database MUSIC at host HORNET, the client

will first attempt to reconnect to database MUSIC at host HORNET. If this fails, the

client will then attempt to establish a connection with the standby database MUSIC

on host MONTERO.

Notes:

1. The alternate host location is stored in the system database directory file at the

server.

2. To enable the automatic client reroute feature, you must use the UPDATE

ALTERNATE SERVER FOR DATABASE command. Automatic client reroute

does not use the HADR_REMOTE_HOST and HADR_REMOTE_SVC database

configuration parameters.

 Related concepts:

v “High availability disaster recovery (HADR) commands overview” on page 234

db2HADRStop - Stop high availability disaster recovery (HADR) operations

Chapter 7. High availability disaster recovery (HADR) 255

DB2 9 BETA

v “High availability disaster recovery overview” on page 221

 Related tasks:

v “Switching database roles in high availability disaster recovery (HADR)” on

page 259

 Related reference:

v “UPDATE ALTERNATE SERVER FOR DATABASE command” in Command

Reference

v “db2UpdateAlternateServerForDB API - Update the alternate server for a

database alias in the system database directory” in Administrative API Reference

v “Automatic client reroute roadmap” in Administration Guide: Implementation

Index logging and high availability disaster recovery (HADR)

 Consider the following recommendations when setting configuration parameters

for high availability disaster recovery (HADR) databases.

Using the LOGINDEXBUILD database configuration parameter

Recommendation: For HADR databases, set the LOGINDEXBUILD database

configuration parameter to ON to ensure that complete information is logged for

index creation, recreation, and reorganization. Although this means that index

builds might take longer on the primary system and that more log space is

required, the indexes will be rebuilt on the standby system during HADR log

replay and will be available when a failover takes place. If index builds on the

primary system are not logged and a failover occurs, any invalid indexes that

remain after the failover is complete will have to be rebuilt before they can be

accessed. While the indexes are being recreated, they cannot be accessed by any

applications.

Note: If the LOG INDEX BUILD table attribute is set to its default value of NULL,

DB2 will use the value specified for the LOGINDEXBUILD database

configuration parameter. If the LOG INDEX BUILD table attribute is set to

ON or OFF, the value specified for the LOGINDEXBUILD database

configuration parameter will be ignored.

You might choose to set the LOG INDEX BUILD table attribute to OFF on one or

more tables for either of the following reasons:

v You do not have enough active log space to support logging of the index builds.

v The index data is very large and the table is not accessed often; therefore, it is

acceptable for the indexes to be recreated at the end of the takeover operation.

In this case, set the INDEXREC configuration parameter to RESTART. Because

the table is not frequently accessed, this setting will cause the system to recreate

the indexes at the end of the takeover operation instead of waiting for the first

time the table is accessed after the takeover operation.

If the LOG INDEX BUILD table attribute is set to OFF on one or more tables, any

index build operation on those tables might cause the indexes to be recreated any

time a takeover operation occurs. Similarly, if the LOG INDEX BUILD table

attribute is set to its default value of NULL, and the LOGINDEXBUILD database

configuration parameter is set to OFF, any index build operation on a table might

db2HADRStop - Stop high availability disaster recovery (HADR) operations

256 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

cause the indexes on that table to be recreated any time a takeover operation

occurs. You can prevent the indexes from being recreated by taking one of the

following actions:

v After all invalid indexes are recreated on the new primary database, take a

backup of the database and apply it to the standby database. As a result of

doing this, the standby database does not have to apply the logs used for

recreating invalid indexes on the primary database, which would mark those

indexes as rebuild required on the standby database.

v Set the LOG INDEX BUILD table attribute to ON, or set the LOG INDEX BUILD

table attribute to NULL and the LOGINDEXBUILD configuration parameter to

ON on the standby database to ensure that the index recreation will be logged.

Using the INDEXREC database configuration parameter

Recommendation: Set the INDEXREC database configuration parameter to

RESTART (the default) on both the primary and standby databases. This will cause

invalid indexes to be rebuilt after a takeover operation is complete. If any index

builds have not been logged, this setting allows DB2 to check for invalid indexes

and to rebuild them. This process takes place in the background, and the database

will be accessible after the takeover operation has completed successfully.

If a transaction accesses a table that has invalid indexes before the indexes have

been rebuilt by the background recreate index process, the invalid indexes will be

rebuilt by the first transaction that accesses it.

 Related reference:

v “indexrec - Index re-creation time configuration parameter” in Performance Guide

v “logindexbuild - Log index pages created configuration parameter” in

Performance Guide

v “ALTER TABLE statement” in SQL Reference, Volume 2

Log archiving configuration for high availability disaster recovery

(HADR)

 The recommended approach to configuring log archiving for HADR is to configure

both the primary and standby databases to have automatic log retrieval capability

from all log archive locations used. Both the primary and standby databases need

to be able to retrieve log files from all the log archive locations to which either of

the databases might archive log files.

If either the standby database or the primary database is unable to access all log

archive locations, then you must manually copy log files from the log archive to

the following locations:

v the standby database logpath or archive location for local catch-up

v the primary database logpath or archive location for remote catch-up

Only the current primary database can perform log archiving. If the primary and

standby databases are set up with separate archiving locations, logs are archived

only to the primary database’s archiving location. In the event of a takeover, the

standby database becomes the new primary database and any logs archived from

that point on are saved to the original standby database’s archiving location. In

such a configuration, logs are archived to one location or the other, but not both;

db2HADRStop - Stop high availability disaster recovery (HADR) operations

Chapter 7. High availability disaster recovery (HADR) 257

DB2 9 BETA

with the exception that following a takeover, the new primary database might

archive a few logs that the original primary database had already archived.

After a takeover, if the new primary database (original standby database)

experiences a media failure and needs to perform a restore and rollforward, it

might need to access logs that only exist in the original primary database archive

location.

The standby database will not delete a log file from its local logpath until it has

been notified by the primary database that the primary database has archived it.

This behavior provides added protection against the loss of log files. If the primary

database fails and its log disk becomes corrupted before a particular log file is

archived on the primary database, the standby database will not delete that log file

from its own disk because it has not received notification that the primary

database successfully archived the log file. If the standby database then takes over

as the new primary database, it will archive that log file before recycling it. If both

the logarchmeth1 and logarchmeth2 configuration parameters are in use, the standby

database will not recycle a log file until the primary database has archived it using

both methods.

 Related concepts:

v “Log file management through log archiving” on page 49

v “Standby database states in high availability disaster recovery (HADR)” on page

226

v “Crash recovery” on page 10

v “Database configuration for high availability disaster recovery (HADR)” on page

249

v “High availability disaster recovery overview” on page 221

 Related reference:

v “hadr_standby_log_file - HADR Standby Log File monitor element” in System

Monitor Guide and Reference

v “logarchmeth1 - Primary log archive method configuration parameter” in

Performance Guide

v “logarchmeth2 - Secondary log archive method configuration parameter” in

Performance Guide

v “hadr_primary_log_file - HADR Primary Log File monitor element” in System

Monitor Guide and Reference

v “Configuration parameters for database logging” on page 37

Cluster managers and high availability disaster recovery (HADR)

 You can use high availability disaster recovery (HADR) with a cluster manager to

enhance the availability of the DBMS. There are two ways you can configure

HADR to do this:

v Set up an HADR pair where the primary and standby databases are serviced by

the same cluster manager.

This configuration is best suited to environments where the primary and

standby databases are located at the same site and where the fastest possible

failover is required. These environments would benefit from using HADR to

maintain DBMS availability, rather using crash recovery or another recovery

method.

db2HADRStop - Stop high availability disaster recovery (HADR) operations

258 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

You can use the cluster manager to quickly detect a problem and to initiate a

takeover operation. Because HADR requires separate storage for the DBMS, the

cluster manager should be configured with separate volume control. This

configuration prevents the cluster manager from waiting for failover to occur on

the volume before using the DBMS on the standby system. You can use the

automatic client reroute feature to redirect client applications to the new primary

database.

v Set up an HADR pair where the primary and standby databases are not serviced

by the same cluster manager.

This configuration is best suited to environments where the primary and

standby databases are located at different sites and where high availability is

required for disaster recovery in the event of a complete site failure. There are

several ways you can implement this configuration. When an HADR primary or

standby database is part of a cluster, there are two possible failover scenarios.

– If a partial site failure occurs and a node to which the DBMS can fail over

remains available, you can choose to perform a cluster failover. In this case,

the IP address and volume failover is performed using the cluster manager;

HADR is not affected.

– If a complete site failure occurs where the primary database is located, you

can use HADR to maintain DBMS availability by initiating a takeover

operation. If a complete site failure occurs where the standby database is

located, you can repair the site or move the standby database to another site.

 Related concepts:

v “Automatic client reroute and high availability disaster recovery (HADR)” on

page 255

v “High availability disaster recovery overview” on page 221

 Related tasks:

v “Switching database roles in high availability disaster recovery (HADR)” on

page 259

Switching database roles in high availability disaster recovery (HADR)

 During high availability disaster recovery (HADR), use the TAKEOVER HADR

command to switch the roles of the primary and standby databases.

 Restrictions:

v The TAKEOVER HADR command can only be issued on the standby database.

If the primary database is not connected to the standby database when the

command is issued, the takeover operation will fail.

v The TAKEOVER HADR command can only be used to switch the roles of the

primary and standby databases if the databases are in peer state. If the standby

database is in any other state, an error message will be returned.

 Procedure:

 You can switch the HADR database roles using the command line processor (CLP),

the Manage High Availability Disaster Recovery (HADR) window in the Control

Center, or the db2HADRTakeover application programming interface (API).

db2HADRStop - Stop high availability disaster recovery (HADR) operations

Chapter 7. High availability disaster recovery (HADR) 259

DB2 9 BETA

To use the CLP to initiate a takeover operation on the standby database, issue the

TAKEOVER HADR command without the BY FORCE option on the standby

database.

In the following example, the takeover operation takes place on the standby

database LEAFS:

 TAKEOVER HADR ON DB LEAFS

A log full error is slightly more likely to occur immediately following a takeover

operation. To limit the possibility of such an error, an asynchronous buffer pool

flush is automatically started at the end of each takeover. The likelihood of a log

full error decreases as the asynchronous buffer pool flush progresses. Additionally,

if your configuration provides a sufficient amount of active log space, a log full

error is even more unlikely. If a log full error does occur, the current transaction is

aborted and rolled back.

Usage note: Issuing the TAKEOVER HADR command without the BY FORCE

option will cause any applications currently connected to the HADR

primary database to be forced off. This action is designed to work in

coordination with automatic client reroute to assist in rerouting clients

to the new HADR primary database after a role switch. However, if

the forcing off of applications from the primary would be disruptive

in your environment, you might want to implement your own

procedure to shut down such applications prior to performing a role

switch, and then restart them with the new HADR primary database

as their target after the role switch is completed.

To open the Takeover HADR window:

1. From the Control Center, expand the object tree until you find the database for

which you want to manage HADR. Right-click the database and click High

Availability Disaster Recovery→Manage in the pop-up menu. The Manage High

Availability Disaster Recovery window opens.

2. Ensure that the databases are in peer state

3. Click Takeover HADR. The Takeover HADR window opens.

4. Select that you want to switch the database roles.

5. If both databases in the HADR pair have been started as standby databases,

select one of the databases to take over as the primary database.

6. Click OK. The window closes. A progress indicator might open to indicate

when the command is running. When it completes, you will get a notification

indicating whether or not it is successful.

7. Refresh the Manage High Availability Disaster Recovery window to ensure that

the databases have switched roles.

8. If you are not using the automatic client reroute feature, redirect client

applications to the new primary database.

Additional information is provided through the contextual help facility within the

Control Center.

 Related concepts:

v “Automatic client reroute and high availability disaster recovery (HADR)” on

page 255

v “High availability disaster recovery overview” on page 221

260 Data Recovery and High Availability Guide and Reference

|
|
|
|
|
|
|

DB2 9 BETA

v “Standby database states in high availability disaster recovery (HADR)” on page

226

 Related tasks:

v “Reintegrating a database after a takeover operation” on page 268

Performing an HADR failover operation

 When you want the current standby database to become the new primary database

because the current primary database is not available, you can perform a failover.

Warning: This procedure might cause a loss of data. Review the following

information before performing this emergency procedure:

v Ensure that the primary database is no longer processing database

transactions. If the primary database is still running, but cannot

communicate with the standby database, executing a forced takeover

operation (issuing the TAKEOVER HADR command with the BY

FORCE option) could result in two primary databases. When there are

two primary databases, each database will have different data, and the

two databases can no longer be automatically synchronized.

– Deactivate the primary database or stop its instance, if possible.

(This might not be possible if the primary system has hung,

crashed, or is otherwise inaccessible.) After a takeover operation is

performed, if the failed database is later restarted, it will not

automatically assume the role of primary database.
v The likelihood and extent of transaction loss depends on your specific

configuration and circumstances:

– If the primary database fails while in peer state and the

synchronization mode is synchronous (SYNC), the standby

database will not lose transactions that were reported committed to

an application before the primary database failed.

– If the primary database fails while in peer state and the

synchronization mode is near synchronous (NEARSYNC), the

standby database can only lose transactions committed by the

primary database if both the primary and the standby databases

fail at the same time.

– If the primary database fails while in peer state and the

synchronization mode is asynchronous (ASYNC), the standby

database can lose transactions committed by the primary database

if the standby database did not receive all of the log records for the

transactions before the takeover operation was performed. The

standby database can also lose transactions committed by the

primary database if both the primary and the standby databases

fail at the same time.

– If the primary database fails while in remote catchup pending state,

transactions that have not been received and processed by the

standby database will be lost.

Note: Any log gap shown in the database snapshot will represent

the gap at the last time the primary and standby databases

were communicating with each other; the primary database

might have processed a very large number of transactions

since that time.

Chapter 7. High availability disaster recovery (HADR) 261

DB2 9 BETA

v Ensure that any application that connects to the new primary (or that

is rerouted to the new primary by client reroute), is prepared to

handle the following:

– There is data loss during failover. The new primary does not have

all of the transactions committed on the old primary. This can

happen even when the HADR_SYNCMODE configuration

parameter is set to SYNC. Because an HADR standby applies logs

sequentially, you can assume that if a transaction in an SQL session

is committed on the new primary, all previous transactions in the

same session have also been committed on the new primary. The

commit sequence of transactions across multiple sessions can be

determined only with detailed analysis of the log stream.

– It is possible that a transaction can be issued to the original

primary, committed on the original primary and replicated to the

new primary (original standby), but not be reported as committed

because the original primary crashed before it could report to the

client that the transaction was committed. Any application you

write should be able to handle that transactions issued to the

original primary, but not reported as committed on the original

primary, are committed on the new primary (original standby).

– Some operations are not replicated, such as changes to database

configuration and to external UDF objects.

 Restrictions:

v The TAKEOVER HADR command can only be issued on the standby database.

v HADR does not interface with the DB2 fault monitor (db2fm) which can be used

to automatically restart a failed database. If the fault monitor is enabled, you

should be aware of possible fault monitor action on a presumably failed primary

database.

v A takeover operation can only take place if the primary and standby databases

are in peer state or the standby database is in remote catchup pending state. If

the standby database is in any other state, an error will be returned.

Note: You can make a standby database that is in local catchup state available

for normal use by converting it to a standard database. To do this, shut

the database down by issuing the DEACTIVATE DATABASE command,

and then issue the STOP HADR command. Once HADR has been

stopped, you must complete a rollforward operation on the former

standby database before it can be used. A database cannot rejoin an

HADR pair after it has been converted from a standby database to a

standard database. To restart HADR on the two servers, follow the

procedure for initializing HADR.

 Procedure:

 In a failover scenario, a takeover operation can be performed through the

command line processor (CLP), the Manage High Availability Disaster Recovery

window in the Control Center, or the db2HADRTakeover application

programming interface (API).

The following procedure shows you how to initiate a failover on the primary or

standby database using the CLP:

1. Completely disable the failed primary database. When a database encounters

internal errors, normal shutdown commands might not completely shut it

262 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

down. You might need to use operating system commands to remove resources

such as processes, shared memory, or network connections.

2. Issue the TAKEOVER HADR command with the BY FORCE option on the

standby database. In the following example the failover takes place on database

LEAFS:

 TAKEOVER HADR ON DB LEAFS BY FORCE

The BY FORCE option is required because the primary is expected to be offline.

If the primary database is not completely disabled, the standby database will

still have a connection to the primary and will send a message to the primary

database asking it to shutdown. The standby database will still switch to the

role of primary database whether or not it receives confirmation from that the

primary database has been shutdown.

To open the Takeover HADR window:

1. From the Control Center, expand the object tree until you find the database for

which you want to manage HADR. Right-click the database and click High

Availability Disaster Recovery→Manage in the pop-up menu. The Manage High

Availability Disaster Recovery window opens.

2. Click Takeover HADR. The Takeover HADR window opens.

3. Select that you want to execute a failover operation.

4. If both databases in the HADR pair have been started as standby databases,

select one of the databases to take over as the primary database.

5. Click OK. The window closes. A progress indicator might open to indicate

when the command is running. When it completes, you will get a notification

indicating whether or not it is successful.

6. Refresh the Manage High Availability Disaster Recovery window to ensure that

the standby database has taken over as the new primary.

7. If you are not using the automatic client reroute feature, redirect client

applications to the new primary database.

Detailed information is provided through the online help facility within the

Control Center.

 Related concepts:

v “High availability disaster recovery overview” on page 221

v “Standby database states in high availability disaster recovery (HADR)” on page

226

v “Synchronization modes for high availability disaster recovery (HADR)” on page

229

 Related tasks:

v “Initializing high availability disaster recovery (HADR)” on page 238

v “Switching database roles in high availability disaster recovery (HADR)” on

page 259

 Related reference:

v “DEACTIVATE DATABASE command” in Command Reference

v “ROLLFORWARD DATABASE ” on page 168

v “STOP HADR” on page 246

v “TAKEOVER HADR” on page 264

Chapter 7. High availability disaster recovery (HADR) 263

DB2 9 BETA

TAKEOVER HADR

 Instructs an HADR standby database to take over as the new HADR primary

database for the HADR pair.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

 Required connection:

 Instance. The command establishes a database connection if one does not exist, and

closes the database connection when the command completes.

 Command syntax:

�� TAKEOVER HADR ON DATABASE database-alias

DB
 �

�
USER

user-name

USING

password

BY FORCE
 ��

 Command parameters:

DATABASE database-alias

Identifies the current HADR standby database that should take over as the

HADR primary database.

USER user-name

Identifies the user name under which the takeover operation is to be

started.

USING password

The password used to authenticate user-name.

BY FORCE

Specifies that the database will not wait for confirmation that the original

HADR primary database has been shut down. This option is required if

the HADR pair is not in peer state.

 Usage notes:

 The following table shows the behavior of the TAKEOVER HADR command

when issued on an active standby for each possible state and option combination.

An error message is returned if this command is issued on an inactive standby

database.

 Standby

state

BY FORCE

option used Takeover behavior

Local

catchup or

remote

catchup

No Error message returned

TAKEOVER HADR

264 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Standby

state

BY FORCE

option used Takeover behavior

Local

catchup or

remote

catchup

Yes Error message returned

Peer No Primary database and standby database switch roles.

If no failure is encountered during takeover, there will be no

data loss. However, if failures are encountered during

takeover, data loss might occur and the roles of the primary

and standby might or might not have been changed. The

following is a guideline for handling failures during a takeover

in which the primary and standby switch roles:

1. If a failure occurs during a takeover operation, the roles of

the HADR databases might or might not have been

changed. If possible, make sure both databases are online.

Check the HADR role of the available database or

databases using the Snapshot Monitor, or by checking the

value of the database configuration parameter hadr_db_role.

2. If the intended new primary is still in standby role, and

takeover is still desired, re-issue the TAKEOVER HADR

command (see the next guideline regarding the BY FORCE

option).

3. It is possible to end up with both databases in standby

role. In that case, the TAKEOVER HADR command with

the BY FORCE option can be issued at whichever node

should now become the primary. The BY FORCE option is

required in this case because the two standbys cannot

establish the usual HADR primary-standby connection.

Peer Yes The standby notifies the primary to shut itself (the primary)

down. The standby stops receiving logs from the primary,

finishes replaying the logs it has already received, and then

becomes a primary. The standby does not wait for any

acknowledgement from the primary to confirm that it has

received the takeover notification or that it has shut down.

Because of this, if the primary is processing transactions at the

time of the takeover, it is unlikely that it will be able to be

later restarted as a standby. It is recommended that you shut

down the primary database first before issuing a TAKEOVER

HADR command with the BY FORCE option.

Remote

catchup

pending

No Error message returned.

Remote

catchup

pending

Yes The standby becomes a primary.

When issuing the TAKEOVER HADR command, the corresponding error codes

might be generated: SQL01767N, SQL01769N, or SQL01770N with a reason code of

98. The reason code indicates that there is no installed license for HADR on the

server where the command was issued. To correct the problem, install a valid

HADR license using the db2licm or install a version of the server that contains a

valid HADR license as part of its distribution.

 Related tasks:

TAKEOVER HADR

Chapter 7. High availability disaster recovery (HADR) 265

DB2 9 BETA

v “Switching database roles in high availability disaster recovery (HADR)” on

page 259

db2HADRTakeover - Instruct a database to take over as the high

availability disaster recovery (HADR) primary database

 Instructs a standby database to take over as the primary database. This API can be

called against a standby database only.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

 Required connection:

 Instance. The API establishes a database connection if one does not exist, and

closes the database connection when the API completes.

 API include file:

db2ApiDf.h

 API and data structure syntax:

SQL_API_RC SQL_API_FN

 db2HADRTakeover (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2HADRTakeoverStruct

{

 char *piDbAlias;

 char *piUserName;

 char *piPassword;

 db2Uint16 iByForce;

} db2HADRTakeoverStruct;

SQL_API_RC SQL_API_FN

 db2gHADRTakeover (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gHADRTakeoverStruct

{

 char *piDbAlias;

 db2Uint32 iAliasLen;

 char *piUserName;

 db2Uint32 iUserNameLen;

 char *piPassword;

 db2Uint32 iPasswordLen;

 db2Uint16 iByForce;

} db2gHADRTakeoverStruct;

 db2HADRTakeover API parameters:

TAKEOVER HADR

266 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

versionNumber

Input. Specifies the version and release level of the structure passed as the

second parameter pParmStruct.

pParmStruct

Input. A pointer to the db2HADRTakeoverStruct structure.

pSqlca

Output. A pointer to the sqlca structure.

 db2HADRTakeoverStruct data structure parameters:

 piDbAlias

Input. A pointer to the database alias.

piUserName

Input. A pointer to the user name under which the command will be

executed.

piPassword

Input. A pointer to a string containing the password.

iByForce

Input. Valid values are:

DB2HADR_NO_FORCE

Specifies that a takeover occurs only if the two systems are in peer

state with communication established; this results in a role reversal

between the HADR primary and HADR standby databases.

DB2HADR_FORCE

Specifies that the standby database takes over as the primary

database without waiting for confirmation that the original

primary database has been shut down. Forced takeover must be

issued when the standby database is in either remote catchup

pending or peer state.

 db2gHADRTakeoverStruct data structure specific parameters:

 iAliasLen

Input. Specifies the length in bytes of the database alias.

iUserNameLen

Input. Specifies the length in bytes of the user name.

iPasswordLen

Input. Specifies the length in bytes of the password.

 Related tasks:

v “Switching database roles in high availability disaster recovery (HADR)” on

page 259

 Related reference:

v “SQLCA data structure” in Administrative API Reference

v “db2HADRStart - Start high availability disaster recovery (HADR) operations”

on page 242

v “db2HADRStop - Stop high availability disaster recovery (HADR) operations”

on page 247

db2HADRTakeover - Instruct a database to take over as the high availability disaster

recovery (HADR) primary database

Chapter 7. High availability disaster recovery (HADR) 267

DB2 9 BETA

Reintegrating a database after a takeover operation

 If you executed a takeover operation in a high availability disaster recovery

(HADR) environment because the primary database failed, you can bring the failed

database back online and use it as a standby database or return it to its status as

primary database.

To reintegrate the failed primary database into the HADR pair as the new standby

database:

1. Repair the system where the original primary database resided. This could

involve repairing failed hardware or rebooting the crashed operating system.

2. Restart the failed primary database as a standby database. In the following

example, database LEAFS is started as a standby database:

 START HADR ON DB LEAFS AS STANDBY

Note: Reintegration will fail if the two copies of the database have

incompatible log streams. In particular, HADR requires that the original

primary database did not apply any logged operation that was never

reflected on the original standby database before it took over as the new

primary database. If this did occur, you can restart the original primary

database as a standby database by restoring a backup image of the new

primary database or by initializing a split mirror.

Successful return of this command does not indicate that reintegration

has succeeded; it means only that the database has been started.

Reintegration is still in progress. If reintegration subsequently fails, the

database will shut itself down. You should monitor standby states using

the GET SNAPSHOT FOR DATABASE command or the db2pd tool to

make sure that the standby database stays online and proceeds with the

normal state transition. If necessary, you can check the administration log

file db2diag.log to find out the status of the database.

After the original primary database has rejoined the HADR pair as the standby

database, you can choose to perform a failback operation to switch the roles of the

databases to enable the original primary database to be once again the primary

database. To perform this failback operation, issue the following command on the

standby database:

 TAKEOVER HADR ON DB LEAFS

Notes:

1. If the HADR databases are not in peer state or the pair is not connected, this

command will fail.

2. Open sessions on the primary database are forced closed and inflight

transactions are rolled back.

3. When switching the roles of the primary and standby databases, the BY FORCE

option of the TAKEOVER HADR command cannot be specified.

 Related concepts:

v “Standby database states in high availability disaster recovery (HADR)” on page

226

v “Synchronization modes for high availability disaster recovery (HADR)” on page

229

 Related tasks:

db2HADRTakeover - Instruct a database to take over as the high availability disaster

recovery (HADR) primary database

268 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

v “Switching database roles in high availability disaster recovery (HADR)” on

page 259

 Related reference:

v “db2pd - Monitor and troubleshoot DB2 database command” in Command

Reference

v “TAKEOVER HADR” on page 264

Performing a rolling upgrade in a high availability disaster recovery

environment

 Use this procedure in a high availability disaster recovery (HADR) environment

when you upgrade software (operating system or DB2 database system) or

hardware, or when you make changes to database configuration parameters. This

procedure keeps database service available throughout the upgrade process, with

only a momentary service interruption when processing is switched from one

database to the other. Because HADR performs optimally when both the primary

and standby databases are on identical systems, you should apply changes to both

systems as quickly as possible.

Note: All DB2 database system fix packs and upgrades should be implemented in

a test environment before being applied to your production system.

 Prerequisites:

 The HADR pair should be in peer state before starting the rolling upgrade.

 Restrictions:

 This procedure will not work to migrate from an earlier to a later version of a DB2

database system; for example, you cannot use this procedure to migrate from a

version 8 to a version 9 database system. You can use this procedure to update

your database system from one modification level to another only, for example by

applying a fix pack.

This procedure will not work if you update the DB2 HADR configuration

parameters. Updates to HADR configuration parameters should be made

separately. Because HADR requires the parameters on the primary and standby to

be the same, this might require both the primary and standby databases to be

deactivated and updated at the same time.

 Procedure:

 To perform a rolling upgrade in an HADR environment:

1. Upgrade the system where the standby database resides:

a. Use the DEACTIVATE DATABASE command to shut down the standby

database.

b. If necessary, shut down the instance on the standby database.

c. Make changes to one or more of the following: the software, the hardware,

or the DB2 configuration parameters.

Note: You cannot change any HADR configuration parameters when

performing a rolling upgrade.

db2HADRTakeover - Instruct a database to take over as the high availability disaster

recovery (HADR) primary database

Chapter 7. High availability disaster recovery (HADR) 269

DB2 9 BETA

d. If necessary, restart the instance on the standby database.

e. Use the ACTIVATE DATABASE command to restart the standby database.

f. Ensure that the standby database enters peer state. Use the GET SNAPSHOT

command to check this.
2. Switch the roles of the primary and standby databases:

a. Issue the TAKEOVER HADR command on the standby database.

b. Direct clients to the new primary database. This can be done using

automatic client reroute.

Note: Because the standby database takes over as the primary database, the

new primary database is now upgraded. If you are applying a DB2

database system fix pack, the TAKEOVER HADR command will change

the role of the original primary database to standby database. However,

the command will not let the new standby database connect to the newly

upgraded primary database. Because the new standby database uses an

older version of the DB2 database system, it might not understand the

new log records generated by the upgraded primary database, and it will

be shut down. In order for the new standby database to reconnect with

the new primary database (that is, for the HADR pair to reform), the

new standby database must also be upgraded.

3. Upgrade original primary database (which is now the standby database) using

the same procedure as in Step 1 above. When you have done this, both

databases are upgraded and connected to each other in HADR peer state. The

HADR system provides full database service and full high availability

protection.

4. Optional. To return to your original configuration, switch the roles of the

primary and standby database as in step 2.

 Related concepts:

v “Automatic client reroute and high availability disaster recovery (HADR)” on

page 255

v “Standby database states in high availability disaster recovery (HADR)” on page

226

v “System requirements for high availability disaster recovery (HADR)” on page

222

 Related reference:

v “ACTIVATE DATABASE command” in Command Reference

v “DEACTIVATE DATABASE command” in Command Reference

v “GET SNAPSHOT command” in Command Reference

Monitoring high availability disaster recovery (HADR)

 You can use the following methods to monitor the status of your HADR databases.

db2pd utility

This utility retrieves information from the DB2 memory sets. For example,

to view information about high availability disaster recovery for database

MYDB, issue the following:

 db2pd -db mydb -hadr

GET SNAPSHOT FOR DATABASE command

This command collects status information and formats the output. The

db2HADRTakeover - Instruct a database to take over as the high availability disaster

recovery (HADR) primary database

270 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

information returned represents a snapshot of the database manager

operational status at the time the command was issued. HADR information

appears in the output under the heading HADR status.

db2GetSnapshot API

This API collects database manager monitor information and returns it to a

user-allocated data buffer. The information returned represents a snapshot

of the database manager operational status at the time the API was called.

 HADR configuration parameters are not dynamic:

 If you change a parameter while the HADR database is online, the changes are

visible when you issue a db2 get db cfg for the database. However, the changes

are not effective until you stop and restart the database. To retrieve the parameters

that are currently effective, use the GET SNAPSHOT command, the db2pd tool, or

the snapshot monitor API.

 HADR database roles:

 The current role of a database is indicated by the database configuration parameter

hadr_db_role. Valid values for this configuration parameter are PRIMARY,

STANDBY, or STANDARD (the latter indicates the database is not an HADR

database).

 Status of the standby database:

 When a database is in the standby role, it is also in rollforward pending state.

Consequently, the standby database configuration will indicate:

Rollforward pending = DATABASE

Restore pending = YES

 Related reference:

v “db2GetSnapshot API - Get a snapshot of the database manager operational

status” in Administrative API Reference

v “db2pd - Monitor and troubleshoot DB2 database command” in Command

Reference

v “GET SNAPSHOT command” in Command Reference

v “High availability disaster recovery monitor elements” in System Monitor Guide

and Reference

High availability disaster recovery (HADR) performance

 For optimum HADR performance, consider the following recommendations for

managing your system:

v Network bandwidth must be greater than the database log generation rate.

v Network delays affect the primary only in SYNC and NEARSYNC modes.

v The slowdown in system performance as a result of using SYNC mode can be

significantly larger than that of the other synchronization modes. In SYNC

mode, the primary database sends log pages to the standby database only after

the log pages have been successfully written to the primary database log disk. In

order to protect the integrity of the system, the primary database waits for an

acknowledgement from the standby before notifying an application that a

transaction was prepared or committed. The standby database sends the

db2HADRTakeover - Instruct a database to take over as the high availability disaster

recovery (HADR) primary database

Chapter 7. High availability disaster recovery (HADR) 271

DB2 9 BETA

acknowledgement only after it writes the received log pages to the standby

database disk. The resulting overhead is: the log write on the standby database

plus round-trip messaging.

v In NEARSYNC mode, the primary database writes and sends log pages in

parallel. The primary then waits for an acknowledgement from the standby. The

standby database acknowledges as soon as the log pages are received into its

memory. On a fast network, the overhead to the primary database is minimal.

The acknowledgement might have already arrived by the time the primary

database finishes local log write.

v For ASYNC mode, the log write and send are also in parallel; however, in this

mode the primary database does not wait for an acknowledgement from the

standby. Therefore, network delay is not an issue. Performance overhead is even

smaller with ASYNC mode than with NEARSYNC mode.

v For each log write on the primary, the same log pages are also sent to the

standby. Each write operation is called a flush. The size of the flush is limited to

the log buffer size on the primary database (which is controlled by the database

configuration parameter LOGBUFSZ). The exact size of each flush is

nondeterministic. A larger log buffer does not necessarily lead to a larger flush

size.

v The standby database should be powerful enough to replay the logged

operations of the database as fast as they are generated on the primary. Identical

primary and standby hardware is recommended.

v In most systems, the logging capability is not driven to its limit. Even in SYNC

mode, there might not be an observable slow down on the primary database.

For example, if the limit of logging is 40 Mb per second with HADR enabled,

but the system was just running at 30 Mb per second before HADR is enabled,

then you might not notice any difference in overall system performance.

 Network congestion:

 If the standby database is too slow replaying log pages, its log-receiving buffer

might fill up, thereby preventing the buffer from receiving more log pages. In

SYNC and NEARSYNC modes, if the primary database flushes its log buffer one

more time, the data will likely be buffered in the network pipeline consisting of the

primary machine, the network, and the standby database. Because the standby

database does not have free buffer to receive the data, it cannot acknowledge, so

the primary database becomes blocked while waiting for the standby database’s

acknowledgement.

In ASYNC mode, the primary database continues to send log pages until the

pipeline fills up and it cannot send additional log pages. This condition is called

congestion. Congestion is reported by the hadr_connect_status monitor element. For

SYNC and NEARSYNC modes, the pipeline can usually absorb a single flush and

congestion will not occur. However, the primary database remains blocked waiting

for an acknowledgement from the standby database on the flush operation.

Congestion can also occur if the standby database is replaying log records that take

a long time to replay, such as database or table reorganization log records.

Increasing the size of the standby database log-receiving buffer can help to reduce

congestion, although it might not remove all of the causes of congestion. By

default, the size of the standby database log-receiving buffer is two times the size

of the primary database log-writing buffer. The database configuration parameter

db2HADRTakeover - Instruct a database to take over as the high availability disaster

recovery (HADR) primary database

272 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

LOGBUFSZ specifies the size of the primary database log-writing buffer. The DB2

registry variable DB2_HADR_BUF_SIZE can be used to tune the size of the

standby database log-receiving buffer.

 Related concepts:

v “Synchronization modes for high availability disaster recovery (HADR)” on page

229

db2HADRTakeover - Instruct a database to take over as the high availability disaster

recovery (HADR) primary database

Chapter 7. High availability disaster recovery (HADR) 273

DB2 9 BETA

db2HADRTakeover - Instruct a database to take over as the high availability disaster

recovery (HADR) primary database

274 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Chapter 8. Cluster support on AIX

High Availability Cluster Multi-Processing support

 Enhanced Scalability (ES) is a feature of High Availability Cluster Multi-Processing

(HACMP) for AIX. This feature provides the same failover recovery and has the

same event structure as HACMP. Enhanced scalability also provides:

v Larger HACMP clusters.

v Additional error coverage through user-defined events. Monitored areas can

trigger user-defined events, which can be as diverse as the death of a process, or

the fact that paging space is nearing capacity. Such events include pre- and

post-events that can be added to the failover recovery process, if needed. Extra

functions that are specific to the different implementations can be placed within

the HACMP pre- and post-event streams.

A rules file (/usr/sbin/cluster/events/rules.hacmprd) contains the HACMP

events. User-defined events are added to this file. The script files that are to be

run when events occur are part of this definition.

v HACMP client utilities for monitoring and detecting status changes (in one or

more clusters) from AIX physical nodes outside of the HACMP cluster.

The nodes in HACMP ES clusters exchange messages called heartbeats, or keepalive

packets, by which each node informs the other nodes about its availability. A node

that has stopped responding causes the remaining nodes in the cluster to invoke

recovery. The recovery process is called a node_down event and can also be referred

to as failover. The completion of the recovery process is followed by the

re-integration of the node into the cluster. This is called a node_up event.

There are two types of events: standard events that are anticipated within the

operations of HACMP ES, and user-defined events that are associated with the

monitoring of parameters in hardware and software components.

One of the standard events is the node_down event. When planning what should

be done as part of the recovery process, HACMP allows two failover options: hot

(or idle) standby, and mutual takeover.

Note: When using HACMP, ensure that DB2 instances are not started at boot time

by using the db2iauto utility as follows:

 db2iauto -off InstName

where InstName is the login name of the instance.

Cluster Configuration

In a hot standby configuration, the AIX processor node that is the takeover node is

not running any other workload. In a mutual takeover configuration, the AIX

processor node that is the takeover node is running other workloads.

Generally, in a partitioned database environment, DB2 database runs in mutual

takeover mode with database partitions on each node. One exception is a scenario

in which the catalog partition is part of a hot standby configuration.

© Copyright IBM Corp. 2001, 2006 275

DB2 9 BETA

When planning a large DB2 installation on an RS/6000® SP™ using HACMP ES,

you need to consider how to divide the nodes of the cluster within or between the

RS/6000 SP frames. Having a node and its backup in different SP frames allows

takeover in the event one frame goes down (that is, the frame power/switch board

fails). However, such failures are expected to be exceedingly rare, because there are

N+1 power supplies in each SP frame, and each SP switch has redundant paths,

along with N+1 fans and power. In the case of a frame failure, manual intervention

might be required to recover the remaining frames. This recovery procedure is

documented in the SP Administration Guide. HACMP ES provides for recovery of

SP node failures; recovery of frame failures is dependent on the proper layout of

clusters within one or more SP frames.

Another planning consideration is how to manage big clusters. It is easier to

manage a small cluster than a big one; however, it is also easier to manage one big

cluster than many smaller ones. When planning, consider how your applications

will be used in your cluster environment. If there is a single, large, homogeneous

application running, for example, on 16 nodes, it is probably easier to manage the

configuration as a single cluster rather than as eight two-node clusters. If the same

16 nodes contain many different applications with different networks, disks, and

node relationships, it is probably better to group the nodes into smaller clusters.

Keep in mind that nodes integrate into an HACMP cluster one at a time; it will be

faster to start a configuration of multiple clusters rather than one large cluster.

HACMP ES supports both single and multiple clusters, as long as a node and its

backup are in the same cluster.

HACMP ES failover recovery allows pre-defined (also known as cascading)

assignment of a resource group to a physical node. The failover recovery procedure

also allows floating (or rotating) assignment of a resource group to a physical node.

IP addresses, and external disk volume groups, or file systems, or NFS file

systems, and application servers within each resource group specify either an

application or an application component, which can be manipulated by HACMP

ES between physical nodes by failover and reintegration. Failover and reintegration

behavior is specified by the type of resource group created, and by the number of

nodes placed in the resource group.

For example, consider a DB2 database partition (logical node). If its log and table

space containers were placed on external disks, and other nodes were linked to

those disks, it would be possible for those other nodes to access these disks and to

restart the database partition (on a takeover node). It is this type of operation that

is automated by HACMP. HACMP ES can also be used to recover NFS file systems

used by DB2 instance main user directories.

Read the HACMP ES documentation thoroughly as part of your planning for

recovery with DB2 database in a partitioned database environment. You should

read the Concepts, Planning, Installation, and Administration guides, then build

the recovery architecture for your environment. For each subsystem that you have

identified for recovery, based on known points of failure, identify the HACMP

clusters that you need, as well as the recovery nodes (either hot standby or mutual

takeover).

It is strongly recommended that both disks and adapters be mirrored in your

external disk configuration. For DB2 physical nodes that are configured for

HACMP, care is required to ensure that nodes on the volume group can vary from

the shared external disks. In a mutual takeover configuration, this arrangement

requires some additional planning, so that the paired nodes can access each other’s

276 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

volume groups without conflicts. In a partitioned database environment, this

means that all container names must be unique across all databases.

One way to achieve uniqueness is to include the database partition number as part

of the name. You can specify a node expression for container string syntax when

creating either SMS or DMS containers. When you specify the expression, the node

number can be part of the container name or, if you specify additional arguments,

the results of those arguments can be part of the container name. Use the argument

″ $N″ ([blank]$N) to indicate the node expression. The argument must occur at the

end of the container string, and can only be used in one of the following forms:

 Table 3. Arguments for Creating Containers. The node number is assumed to be five.

Syntax Example Value

[blank]$N ″ $N″ 5

[blank]$N+[number] ″ $N+1011″ 1016

[blank]$N%[number] ″ $N%3″ 2

[blank]$N+[number]%[number] ″ $N+12%13″ 4

[blank]$N%[number]+[number] ″ $N%3+20″ 22

Notes:

1. % is modulus.

2. In all cases, the operators are evaluated from left to right.

Following are some examples of how to create containers using this special

argument:

v Creating containers for use on a two-node system.

 CREATE TABLESPACE TS1 MANAGED BY DATABASE USING

 (device ’/dev/rcont $N’ 20000)

The following containers would be used:

 /dev/rcont0 - on Node 0

 /dev/rcont1 - on Node 1

v Creating containers for use on a four-node system.

 CREATE TABLESPACE TS2 MANAGED BY DATABASE USING

 (file ’/DB2/containers/TS2/container $N+100’ 10000)

The following containers would be used:

 /DB2/containers/TS2/container100 - on Node 0

 /DB2/containers/TS2/container101 - on Node 1

 /DB2/containers/TS2/container102 - on Node 2

 /DB2/containers/TS2/container103 - on Node 3

v Creating containers for use on a two-node system.

 CREATE TABLESPACE TS3 MANAGED BY SYSTEM USING

 (’/TS3/cont $N%2, ’/TS3/cont $N%2+2’)

The following containers would be used:

 /TS3/cont0 - on Node 0

 /TS3/cont2 - on Node 0

 /TS3/cont1 - on Node 1

 /TS3/cont3 - on Node 1

Configuring DB2 Database Partitions for HACMP ES

Chapter 8. Cluster support on AIX 277

DB2 9 BETA

Once configured, each database partition in an instance is started by HACMP ES,

one physical node at a time. Multiple clusters are recommended for starting

parallel DB2 configurations that are larger than four nodes. Note that in a 64-node

parallel DB2 configuration, it is faster to start 32 two-node HACMP clusters in

parallel, than four 16-node clusters.

A script file is packaged with DB2 Enterprise Server Edition to assist in configuring

for HACMP ES failover or recovery in either hot standby or mutual takeover

nodes. The script file is called rc.db2pe.ee for a single node and rc.db2pe.eee for

multiple nodes. They are located in the sqllib/samples/hacmp/es directory. Copy

the appropriate file to /usr/bin and rename it to rc.db2pe.

In addition, DB2 buffer pool sizes can be customized during failover in mutual

takeover configurations from within rc.db2pe. (Buffer pool sizes can be configured

to ensure proper resource allocation when two database partitions run on one

physical node.)

HACMP ES Event Monitoring and User-defined Events

Initiating a failover operation if a process dies on a given node, is an example of a

user-defined event. Examples that illustrate user-defined events, such as shutting

down a database partition and forcing a transaction abort to free paging space, can

be found in the samples/hacmp/es subdirectory.

A rules file, /user/sbin/cluster/events/rules.hacmprd, contains HACMP events.

Each event description in this file has the following nine components:

v Event name, which must be unique.

v State, or qualifier for the event. The event name and state are the rule triggers.

HACMP ES Cluster Manager initiates recovery only if it finds a rule with a

trigger corresponding to the event name and state.

v Resource program path, a full-path specification of the xxx.rp file containing the

recovery program.

v Recovery type. This is reserved for future use.

v Recovery level. This is reserved for future use.

v Resource variable name, which is used for Event Manager events.

v Instance vector, which is used for Event Manager events. This is a set of

elements of the form ″name=value″. The values uniquely identify the copy of the

resource in the system and, by extension, the copy of the resource variable.

v Predicate, which is used for Event Manager events. This is a relational

expression between a resource variable and other elements. When this

expression is true, the Event Management subsystem generates an event to

notify the Cluster Manager and the appropriate application.

v Rearm predicate, which is used for Event Manager events. This is a predicate

used to generate an event that alters the status of the primary predicate. This

predicate is typically the inverse of the primary predicate. It can also be used

with the event predicate to establish an upper and a lower boundary for a

condition of interest.

Each object requires one line in the event definition, even if the line is not used. If

these lines are removed, HACMP ES Cluster Manager cannot parse the event

definition properly, and this can cause the system to hang. Any line beginning with

″#″ is treated as a comment line.

278 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Note: The rules file requires exactly nine lines for each event definition, not

counting any comment lines. When adding a user-defined event at the

bottom of the rules file, it is important to remove the unnecessary empty

line at the end of the file, or the node will hang.

HACMP ES uses PSSP event detection to treat user-defined events. The PSSP Event

Management subsystem provides comprehensive event detection by monitoring

various hardware and software resources.

The process can be summarized as follows:

1. Either Group Services/ES (for predefined events) or Event Management (for

user-defined events) notifies HACMP ES Cluster Manager of the event.

2. Cluster Manager reads the rules.hacmprd file, and determines the recovery

program that is mapped to the event.

3. Cluster Manager runs the recovery program, which consists of a sequence of

recovery commands.

4. The recovery program executes the recovery commands, which can be shell

scripts or binary commands. (In HACMP for AIX, the recovery commands are

the same as the HACMP event scripts.)

5. Cluster Manager receives the return status from the recovery commands. An

unexpected status ″hangs″ the cluster until manual intervention (using smit

cm_rec_aids or the /usr/sbin/cluster/utilities/clruncmd command) is

carried out.

For detailed information on the implementation and design of highly available

IBM DB2 database environments on AIX see the following white papers which are

available from the ″DB2 Database for Linux, UNIX,and Windows Support″ web

site (http://www.ibm.com/software/data/pubs/papers/).:

v ″IBM DB2 Universal Database Enterprise Edition for AIX and HACMP/ES″

v ″IBM DB2 Universal Database Enterprise - Extended Edition for AIX and

HACMP/ES″

v ″Automating IBM DB2 UDB HADR with HACMP″

 Related reference:

v “db2start - Start DB2 command” in Command Reference

Chapter 8. Cluster support on AIX 279

DB2 9 BETA

http://www.ibm.com/software/data/pubs/papers/

280 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Chapter 9. Cluster support on the Windows operating system

Microsoft Cluster Server support

 Introduction

Microsoft Cluster Server (MSCS) is a feature of Windows 2000 Server and

Windows Server 2003 operating systems. It is the software that supports the

connection of two servers (up to four servers in DataCenter Server) into a cluster

for high availability and easier management of data and applications. MSCS can

also automatically detect and recover from server or application failures. It can be

used to move server workloads to balance machine utilization and to provide for

planned maintenance without downtime.

The following DB2 products have support for MSCS:

v DB2 Workgroup Server Edition

v DB2 Enterprise Server Edition (DB2 ESE)

v DB2 Connect Enterprise Server Edition (DB2 CEE)

DB2 MSCS Components

A cluster is a configuration of two or more nodes, each of which is an independent

computer system. The cluster appears to network clients as a single server.

 The nodes in an MSCS cluster are connected using one or more shared storage

buses and one or more physically independent networks. The network that

connects only the servers but does not connect the clients to the cluster is referred

to as a private network. The network that supports client connections is referred to

as the public network. There are one or more local disks on each node. Each shared

storage bus attaches to one or more disks. Each disk on the shared bus is owned

by only one node of the cluster at a time. The DB2 software resides on the local

Machine A Machine B

C: C:

E:

F:

SQLLIB SQLLIB

(Each machine has DB2 code
installed on a local disk)

Quorum disk
used by MSCS

DB2 Group 0

DB2 Group 1

Cluster disks in a disk tower

D:

Figure 21. Example MSCS Configuration

© Copyright IBM Corp. 2001, 2006 281

DB2 9 BETA

disk. DB2 database files (for example tables, indexes, log files) reside on the shared

disks. Because MSCS does not support the use of raw partitions in a cluster, it is

not possible to configure DB2 to use raw devices in an MSCS environment.

The DB2 Resource

In an MSCS environment, a resource is an entity that is managed by the clustering

software. For example, a disk, an IP address, or a generic service can be managed

as a resource. DB2 integrates with MSCS by creating its own resource type called

DB2 Server. Each DB2 Server resource manages a DB2 instance, and when running

in a partitioned database environment, each DB2 Server resource manages a

database partition. The name of the DB2 Server resource is the instance name,

although in the case of a partitioned database environment, the name of the DB2

Server resource consists of both the instance name and the database partition (or

node) number.

Pre-online and Post-online Script

You can run scripts both before and after a DB2 resource is brought online. These

scripts are referred to as pre-online and post-online scripts respectively. Pre-online

and post-online scripts are .BAT files that can run DB2 and system commands.

In a situation when multiple instances of DB2 might be running on the same

machine, you can use the pre-online and post-online scripts to adjust the

configuration so that both instances can be started successfully. In the event of a

failover, you can use the post-online script to perform manual database recovery.

Post-online script can also be used to start any applications or services that depend

on DB2.

The DB2 Group

Related or dependent resources are organized into resource groups. All resources

in a group move between cluster nodes as a unit. For example, in a typical DB2

single partition cluster environment, there will be a DB2 group that contains the

following resources:

1. DB2 resource. The DB2 resource manages the DB2 instance (or node).

2. IP Address resource. The IP Address resource allows client applications to

connect to the DB2 server.

3. Network Name resource. The Network Name resource allows client

applications to connect to the DB2 server by using a name rather than using an

IP address. The Network Name resource has a dependency on the IP Address

resource. The Network Name resource is optional. (Configuring a Network

Name resource can affect the failover performance.)

4. One or more Physical Disk resources. Each Physical Disk resource manages a

shared disk in the cluster.

Note: The DB2 resource is configured to depend on all other resources in the same

group so the DB2 server can only be started after all other resources are

online.

Failover Configurations

Two types of configuration are available:

v Hot standby

282 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

v Mutual takeover

In a partitioned database environment, the clusters do not all have to have the

same type of configuration. You can have some clusters that are set up to use hot

standby, and others that are set up for mutual takeover. For example, if your DB2

instance consists of five workstations, you can have two machines set up to use a

mutual takeover configuration, two to use a hot standby configuration, and one

machine not configured for failover support.

Hot Standby Configuration

In a hot standby configuration, one machine in the MSCS cluster provides

dedicated failover support, and the other machine participates in the database

system. If the machine participating in the database system fails, the database

server on it will be started on the failover machine. If, in a partitioned database

environment, you are running multiple logical nodes on a machine and it fails, the

logical nodes will be started on the failover machine. Figure 22 shows an example

of a hot standby configuration.

 Mutual Takeover Configuration

In a mutual takeover configuration, both workstations participate in the database

system (that is, each machine has at least one database server running on it). If one

of the workstations in the MSCS cluster fails, the database server on the failing

machine will be started to run on the other machine. In a mutual takeover

configuration, a database server on one machine can fail independently of the

database server on another machine. Any database server can be active on any

machine at any given point in time. Figure 23 on page 284 shows an example of a

mutual takeover configuration.

Workstation BWorkstation A

Cluster

Instance A Instance A

Figure 22. Hot Standby Configuration

Chapter 9. Cluster support on the Windows operating system 283

DB2 9 BETA

For detailed information on the implementation and design of highly available

IBM DB2 database environments on the Windows Operating System see the

following white papers which are available from the ″DB2 Database for Linux,

UNIX,and Windows Support″ web site (http://www.ibm.com/software/data/
pubs/papers/).:

v ″Implementing IBM DB2 Universal Database Enterprise - Extended Edition with

Microsoft Cluster Server″

v ″Implementing IBM DB2 Universal Database Enterprise Edition with Microsoft

Cluster Server″

v ″DB2 Universal Database for Windows: High Availability Support Using

Microsoft Cluster Server - Overview″

 Related concepts:

v “High availability” on page 207

Workstation BWorkstation A

Cluster

Instance A

Instance B

Instance A

Instance B

Figure 23. Mutual Takeover Configuration

284 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

http://www.ibm.com/software/data/pubs/papers/
http://www.ibm.com/software/data/pubs/papers/

Chapter 10. Cluster support for the Solaris Operating

Environment

Cluster support for the Solaris operating system

 High availability in the Solaris operating system can be achieved through DB2

working with Sun Cluster, or Veritas Cluster Server (VCS). For information about

Sun Cluster, see the white paper entitled “DB2 Universal Database and High

Availability on Sun Cluster 3.X”, which is available from the “DB2 Database for

Linux, UNIX, and Windows Support” web site (http://www.ibm.com/software/
data/pubs/papers/). For information about VERITAS Cluster Server, see the white

paper entitled “DB2 and High Availability on VERITAS Cluster Server”, which is

available from the “IBM Support and downloads” Web site (http://
www.ibm.com/support/docview.wss?uid=swg21045033).

Note: When using Sun Cluster 3.0 or Veritas Cluster Server, ensure that DB2

instances are not started at boot time by using the db2iauto utility as

follows:

 db2iauto -off InstName

where InstName is the login name of the instance.

High Availability

The computer systems that host data services contain many distinct components,

and each component has a ″mean time before failure″ (MTBF) associated with it.

The MTBF is the average time that a component will remain usable. The MTBF for

a quality hard drive is in the order of one million hours (approximately 114 years).

While this seems like a long time, one out of 200 disks is likely to fail within a

6-month period.

Although there are a number of methods to increase availability for a data service,

the most common is an HA cluster. A cluster, when used for high availability,

consists of two or more machines, a set of private network interfaces, one or more

public network interfaces, and some shared disks. This special configuration allows

a data service to be moved from one machine to another. By moving the data

service to another machine in the cluster, it should be able to continue providing

access to its data. Moving a data service from one machine to another is called a

failover, as illustrated in Figure 24 on page 286.

© Copyright IBM Corp. 2001, 2006 285

DB2 9 BETA

http://www.ibm.com/support/docview.wss?uid=swg21045033
http://www.ibm.com/support/docview.wss?uid=swg21045033

The private network interfaces are used to send heartbeat messages, as well as

control messages, among the machines in the cluster. The public network interfaces

are used to communicate directly with clients of the HA cluster. The disks in an

HA cluster are connected to two or more machines in the cluster, so that if one

machine fails, another machine has access to them.

A data service running on an HA cluster has one or more logical public network

interfaces and a set of disks associated with it. The clients of an HA data service

connect via TCP/IP to the logical network interfaces of the data service only. If a

failover occurs, the data service, along with its logical network interfaces and set of

disks, are moved to another machine.

One of the benefits of an HA cluster is that a data service can recover without the

aid of support staff, and it can do so at any time. Another benefit is redundancy.

All of the parts in the cluster should be redundant, including the machines

themselves. The cluster should be able to survive any single point of failure.

Even though highly available data services can be very different in nature, they

have some common requirements. Clients of a highly available data service expect

the network address and host name of the data service to remain the same, and

expect to be able to make requests in the same way, regardless of which machine

the data service is on.

Consider a web browser that is accessing a highly available web server. The

request is issued with a URL (Uniform Resource Locator), which contains both a

host name, and the path to a file on the web server. The browser expects both the

host name and the path to remain the same after failover of the web server. If the

browser is downloading a file from the web server, and the server is failed over,

the browser will need to reissue the request.

Availability of a data service is measured by the amount of time the data service is

available to its users. The most common unit of measurement for availability is the

percentage of ″up time″; this is often referred to as the number of ″nines″:

Data 3Data 0 Switch

Data 1

Data 2

Machine A

Machine C

Machine B

Machine D

Figure 24. Failover. When Machine B fails its data service is moved to another machine in

the cluster so that the data can still be accessed.

286 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

99.99% => service is down for (at most) 52.6 minutes / yr

 99.999% => service is down for (at most) 5.26 minutes / yr

 99.9999% => service is down for (at most) 31.5 seconds / yr

When designing and testing an HA cluster:

1. Ensure that the administrator of the cluster is familiar with the system and

what should happen when a failover occurs.

2. Ensure that each part of the cluster is truly redundant and can be replaced

quickly if it fails.

3. Force a test system to fail in a controlled environment, and make sure that it

fails over correctly each time.

4. Keep track of the reasons for each failover. Although this should not happen

often, it is important to address any issues that make the cluster unstable. For

example, if one piece of the cluster caused a failover five times in one month,

find out why and fix it.

5. Ensure that the support staff for the cluster is notified when a failover occurs.

6. Do not overload the cluster. Ensure that the remaining systems can still handle

the workload at an acceptable level after a failover.

7. Check failure-prone components (such as disks) often, so that they can be

replaced before problems occur.

Fault Tolerance

Another way to increase the availability of a data service is fault tolerance. A fault

tolerant machine has all of its redundancy built in, and should be able to withstand

a single failure of any part, including CPU and memory. Fault tolerant machines

are most often used in niche markets, and are usually expensive to implement. An

HA cluster with machines in different geographical locations has the added

advantage of being able to recover from a disaster affecting only a subset of those

locations.

An HA cluster is the most common solution to increase availability because it is

scalable, easy to use, and relatively inexpensive to implement.

 Related concepts:

v “Sun Cluster 3.0 support” on page 287

v “VERITAS Cluster Server support” on page 290

Sun Cluster 3.0 support

 This section provides an overview of how DB2 works with Sun Cluster 3.0 to

achieve high availability, and includes a description of the high availability agent,

which acts as a mediator between the two software products (see Figure 25 on

page 288).

Chapter 10. Cluster support for the Solaris Operating Environment 287

DB2 9 BETA

Failover

Sun Cluster 3.0 provides high availability by enabling application failover. Each

node is periodically monitored and the cluster software automatically relocates a

cluster-aware application from a failed primary node to a designated secondary

node. When a failover occurs, clients might experience a brief interruption in

service and might have to reconnect to the server. However, they will not be aware

of the physical server from which they are accessing the application and the data.

By allowing other nodes in a cluster to automatically host workloads when the

primary node fails, Sun Cluster 3.0 can significantly reduce downtime and increase

productivity.

Multihost Disks

Sun Cluster 3.0 requires multihost disk storage. This means that disks can be

connected to more than one node at a time. In the Sun Cluster 3.0 environment,

multihost storage allows disk devices to become highly available. Disk devices that

reside on multihost storage can tolerate single node failures since there is still a

physical path to the data through the alternate server node. Multihost disks can be

accessed globally through a primary node. If client requests are accessing the data

through one node and that node fails, the requests are switched over to another

node that has a direct connection to the same disks. A volume manager provides

for mirrored or RAID 5 configurations for data redundancy of the multihost disks.

Currently, Sun Cluster 3.0 supports Solstice DiskSuite and VERITAS Volume

Manager as volume managers. Combining multihost disks with disk mirroring and

striping protects against both node failure and individual disk failure.

Global Devices

Global devices are used to provide cluster-wide, highly available access to any

device in a cluster, from any node, regardless of the device’s physical location. All

disks are included in the global namespace with an assigned device ID (DID) and

are configured as global devices. Therefore, the disks themselves are visible from

all cluster nodes.

File systems/Global File Systems

A cluster or global file system is a proxy between the kernel (on one node) and the

underlying file system volume manager (on a node that has a physical connection

to one or more disks). Cluster file systems are dependent on global devices with

physical connections to one or more nodes. They are independent of the

underlying file system and volume manager. Currently, cluster file systems can be

DB2 HA Agent SC3.0

Figure 25. DB2 database, Sun Cluster 3.0, and High Availability. The relationship between

DB2 database, Sun Cluster 3.0 and the high availability agent.

288 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

built on UFS using either Solstice DiskSuite or VERITAS Volume Manager. The

data only becomes available to all nodes if the file systems on the disks are

mounted globally as a cluster file system.

Device Group

All multihost disks must be controlled by the Sun Cluster framework. Disk groups,

managed by either Solstice DiskSuite or VERITAS Volume Manager, are first

created on the multihost disk. Then, they are registered as Sun Cluster disk device

groups. A disk device group is a type of global device. Multihost device groups are

highly available. Disks are accessible through an alternate path if the node

currently mastering the device group fails. The failure of the node mastering the

device group does not affect access to the device group except for the time

required to perform the recovery and consistency checks. During this time, all

requests are blocked (transparently to the application) until the system makes the

device group available.

Resource Group Manager (RGM)

The RGM, provides the mechanism for high availability and runs as a daemon on

each cluster node. It automatically starts and stops resources on selected nodes

according to pre-configured policies. The RGM allows a resource to be highly

available in the event of a node failure or to reboot by stopping the resource on the

affected node and starting it on another. The RGM also automatically starts and

stops resource-specific monitors that can detect resource failures and relocate

failing resources onto another node.

Data Services

The term data service is used to describe a third-party application that has been

configured to run on a cluster rather than on a single server. A data service

includes the application software and Sun Cluster 3.0 software that starts, stops

and monitors the application. Sun Cluster 3.0 supplies data service methods that

are used to control and monitor the application within the cluster. These methods

run under the control of the Resource Group Manager (RGM), which uses them to

start, stop, and monitor the application on the cluster nodes. These methods, along

with the cluster framework software and multihost disks, enable applications to

become highly available data services. As highly available data services, they can

prevent significant application interruptions after any single failure within the

cluster, regardless of whether the failure is on a node, on an interface component

or in the application itself. The RGM also manages resources in the cluster,

including network resources (logical host names and shared addresses)and

application instances.

Resource Type, Resource and Resource Group

A resource type is made up of the following:

1. A software application to be run on the cluster.

2. Control programs used as callback methods by the RGM to manage the

application as a cluster resource.

3. A set of properties that form part of the static configuration of a cluster.

The RGM uses resource type properties to manage resources of a particular type.

A resource inherits the properties and values of its resource type. It is an instance

of the underlying application running on the cluster. Each instance requires a

Chapter 10. Cluster support for the Solaris Operating Environment 289

DB2 9 BETA

unique name within the cluster. Each resource must be configured in a resource

group. The RGM brings all resources in a group online and offline together on the

same node. When the RGM brings a resource group online or offline, it invokes

callback methods on the individual resources in the group.

The nodes on which a resource group is currently online are called its primary

nodes, or its primaries.A resource group is mastered by each of its primaries. Each

resource group has an associated Nodelist property, set by the cluster

administrator, to identify all potential primaries or masters of the resource group.

For detailed information on the implementation and design of highly available

IBM DB2 database environments on the Sun Cluster 3.0 platform see the white

paper entitled ″DB2 and High Availability on Sun Cluster 3.0″ which is available

from the ″DB2 Database for Lunix, UNIX, and Windows Support″ web site

(http://www.ibm.com/software/data/pubs/papers/).

 Related concepts:

v “Cluster support for the Solaris operating system” on page 285

v “VERITAS Cluster Server support” on page 290

VERITAS Cluster Server support

 VERITAS Cluster Server can be used to eliminate both planned and unplanned

downtime. It can facilitate server consolidation and effectively manage a wide

range of applications in heterogeneous environments. VERITAS Cluster Server

supports up to 32 node clusters in both storage area network (SAN) and traditional

client/server environments, VERITAS Cluster Server can protect everything from a

single critical database instance, to very large multi-application clusters in

networked storage environments. This section provides a brief summary of the

features of VERITAS Cluster Server.

Hardware Requirements

Following is a list of hardware currently supported by VERITAS Cluster Server:

v For server nodes:

– Any SPARC/Solaris server from Sun Microsystems running Solaris 2.6 or later

with a minimum of 128MB RAM.
v For disk storage:

– EMC Symmetrix, IBM Enterprise Storage Server®, HDS 7700 and 9xxx, Sun

T3, Sun A5000, Sun A1000, Sun D1000 and any other disk storage supported

by VCS 2.0 or later; your VERITAS representative can confirm which disk

subsystems are supported or you can refer to VCS documentation.

– Typical environments will require mirrored private disks (in each cluster

node) for the DB2 binaries and shared disks between nodes for the DB2 data.
v For network interconnects:

– For the public network connections, any network connection supporting

IP-based addressing.

– For the heartbeat connections (internal to the cluster), redundant heartbeat

connections are required; this requirement can be met through the use of two

additional Ethernet controllers per server or one additional Ethernet controller

per server and the use of one shared GABdisk per cluster

Software Requirements

290 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

http://www.ibm.com/software/data/pubs/papers/

The following VERITAS software components are qualified configurations:

v VERITAS Volume Manager 3.2 or later, VERITAS File System 3.4 or later,

VERITAS Cluster Server 2.0 or later.

v DB Edition for DB2 for Solaris 1.0 or later.

While VERITAS Cluster Server does not require a volume manager, the use of

VERITAS Volume Manager is strongly recommended for ease of installation,

configuration and management.

Failover

VERITAS Cluster Server is an availability clustering solution that manages the

availability of application services, such as DB2 database, by enabling application

failover. The state of each individual cluster node and its associated software

services are regularly monitored. When a failure occurs that disrupts the

application service (in this case, the DB2 database service), either VERITAS Cluster

Server or the VCS HA-DB2 Agent, or both will detect the failure and automatically

take steps to restore the service. The steps take to restore the service can include

restarting the DB2 database system on the same node or moving DB2 database

system to another node in the cluster and restarting it on that node. If an

application needs to be migrated to a new node, VERITAS Cluster Server moves

everything associated with the application (that is, network IP addresses,

ownership of underlying storage) to the new node so that users will not be aware

that the service is actually running on another node. They will still access the

service using the same IP addresses, but those addresses will now point to a

different cluster node.

When a failover occurs with VERITAS Cluster Server, users might or might not see

a disruption in service. This will be based on the type of connection (stateful or

stateless) that the client has with the application service. In application

environments with stateful connections (like DB2 database), users might see a brief

interruption in service and might need to reconnect after the failover has

completed. In application environments with stateless connections (like NFS), users

might see a brief delay in service but generally will not see a disruption and will

not need to log back on.

By supporting an application as a service that can be automatically migrated

between cluster nodes, VERITAS Cluster Server can not only reduce unplanned

downtime, but can also shorten the duration of outages associated with planned

downtime (for maintenance and upgrades). Failovers can also be initiated

manually. If a hardware or operating system upgrade must be performed on a

particular node, the DB2 database system can be migrated to another node in the

cluster, the upgrade can be performed, and then the DB2 database system can be

migrated back to the original node.

Applications recommended for use in these types of clustering environments

should be crash tolerant. A crash tolerant application can recover from an

unexpected crash while still maintaining the integrity of committed data. Crash

tolerant applications are sometimes referred to as cluster friendly applications. DB2

database system is a crash tolerant application.

For information on how to decrease the amount of time it takes to perform a

failover using a VERITAS CFS, CVM, and VCS solution, see the white paper

entitled “DB2 UDB Version 8 and VERITAS Database Edition: Accelerating Failover

Times in DB2 UDB Database Environments”, which is available from the “DB2

Chapter 10. Cluster support for the Solaris Operating Environment 291

DB2 9 BETA

Database for Linux, UNIX, and Windows Support” web site (http://
www.ibm.com/software/data/pubs/papers/).

Shared Storage

When used with the VCS HA-DB2 Agent, Veritas Cluster Server requires shared

storage. Shared storage is storage that has a physical connection to multiple nodes

in the cluster. Disk devices resident on shared storage can tolerate node failures

since a physical path to the disk devices still exists through one or more alternate

cluster nodes.

Through the control of VERITAS Cluster Server, cluster nodes can access shared

storage through a logical construct called ″disk groups″. Disk groups represent a

collection of logically defined storage devices whose ownership can be atomically

migrated between nodes in a cluster. A disk group can only be imported to a

single node at any given time. For example, if Disk Group A is imported to Node 1

and Node 1 fails, Disk Group A can be exported from the failed node and

imported to a new node in the cluster. VERITAS Cluster Server can simultaneously

control multiple disk groups within a single cluster.

In addition to allowing disk group definition, a volume manager can provide for

redundant data configurations, using mirroring or RAID 5, on shared storage.

VERITAS Cluster Server supports VERITAS Volume Manager and Solstice

DiskSuite as logical volume managers. Combining shared storage with disk

mirroring and striping can protect against both node failure and individual disk or

controller failure.

VERITAS Cluster Server Global Atomic Broadcast(GAB) and Low Latency

Transport (LLT)

An internode communication mechanism is required in cluster configurations so

that nodes can exchange information concerning hardware and software status,

keep track of cluster membership, and keep this information synchronized across

all cluster nodes. The Global Atomic Broadcast (GAB) facility, running across a low

latency transport (LLT), provides the high speed, low latency mechanism used by

VERITAS Cluster Server to do this. GAB is loaded as a kernel module on each

cluster node and provides an atomic broadcast mechanism that ensures that all

nodes get status update information at the same time.

By leveraging kernel-to-kernel communication capabilities, LLT provides high

speed, low latency transport for all information that needs to be exchanged and

synchronized between cluster nodes. GAB runs on top of LLT. VERITAS Cluster

Server does not use IP as a heartbeat mechanism, but offers two other more

reliable options. GAB with LLT, can be configured to act as a heartbeat mechanism,

or a GABdisk can be configured as a disk-based heartbeat. The heartbeat must run

over redundant connections. These connections can either be two private Ethernet

connections between cluster nodes, or one private Ethernet connection and one

GABdisk connection. The use of two GABdisks is not a supported configuration

since the exchange of cluster status between nodes requires a private Ethernet

connection.

For more information about GAB or LLT, or how to configure them in VERITAS

Cluster Server configurations, consult the VERITAS Cluster Server 2.0 User’s Guide

for Solaris.

Bundled and Enterprise Agents

292 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

http://www.ibm.com/software/data/pubs/papers/
http://www.ibm.com/software/data/pubs/papers/

An agent is a program that is designed to manage the availability of a particular

resource or application. When an agent is started, it obtains the necessary

configuration information from VCS and then periodically monitors the resource or

application and updates VCS with the status. In general, agents are used to bring

resources online, take resources offline, or monitor resources and provide four

types of services: start, stop, monitor and clean. Start and stop are used to bring

resources online or offline, monitor is used to test a particular resource or

application for its status, and clean is used in the recovery process.

A variety of bundled agents are included as part of VERITAS Cluster Server and

are installed when VERITAS Cluster Server is installed. The bundled agents are

VCS processes that manage predefined resource types commonly found in cluster

configurations (that is, IP, mount, process and share), and they help to simplify

cluster installation and configuration considerably. There are over 20 bundled

agents with VERITAS Cluster Server.

Enterprise agents tend to focus on specific applications such as the DB2 database

application. The VCS HA-DB2 Agent can be considered an Enterprise Agent, and it

interfaces with VCS through the VCS Agent framework.

VCS Resources, Resource Types and Resource Groups

A resource type is an object definition used to define resources within a VCS

cluster that will be monitored. A resource type includes the resource type name

and a set of properties associated with that resource that are salient from a high

availability point of view. A resource inherits the properties and values of its

resource type, and resource names must be unique on a cluster-wide basis.

There are two types of resources: persistent and standard (non-persistent).

Persistent resources are resources such as network interface controllers (NICs) that

are monitored but are not brought online or taken offline by VCS. Standard

resources are those whose online and offline status is controlled by VCS.

The lowest level object that is monitored is a resource, and there are various

resource types (that is, share, mount). Each resource must be configured into a

resource group, and VCS will bring all resources in a particular resource group

online and offline together. To bring a resource group online or offline, VCS will

invoke the start or stop methods for each of the resources in the group. There are

two types of resource groups: failover and parallel. A highly available DB2

database configuration, regardless of whether it is partitioned database

environment or not, will use failover resource groups.

A ″primary″ or ″master″ node is a node that can potentially host a resource. A

resource group attribute called systemlist is used to specify which nodes within a

cluster can be primaries for a particular resource group. In a two node cluster,

usually both nodes are included in the systemlist, but in larger, multi-node

clusters that might be hosting several highly available applications there might be

a requirement to ensure that certain application services (defined by their resources

at the lowest level) can never fail over to certain nodes.

Dependencies can be defined between resource groups, and VERITAS Cluster

Server depends on this resource group dependency hierarchy in assessing the

impact of various resource failures and in managing recovery. For example, if the

resource group ClientApp1 can not be brought online unless the resource group

DB2 has already been successfully started, resource group ClientApp1 is

considered dependent on resource group DB2.

Chapter 10. Cluster support for the Solaris Operating Environment 293

DB2 9 BETA

For detailed information on the implementation and design of highly available

IBM DB2 database environments with the VERITAS Cluster Server see the technote

entitled ″DB2 UDB and High Availability with VERITAS Cluster Server″ which you

can view by going to the following web site: http://www.ibm.com/support, and

searching for the keyword ″1045033″.

 Related concepts:

v “Cluster support for the Solaris operating system” on page 285

v “Sun Cluster 3.0 support” on page 287

294 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

http://www.ibm.com/software/data/pubs/papers/

Part 3. Appendixes

© Copyright IBM Corp. 2001, 2006 295

DB2 9 BETA

296 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Appendix A. How to read the syntax diagrams

 Throughout this book, syntax is described using the structure defined as follows:

Read the syntax diagrams from left to right and top to bottom, following the path

of the line.

The ��─── symbol indicates the beginning of a syntax diagram.

The ───� symbol indicates that the syntax is continued on the next line.

The �─── symbol indicates that the syntax is continued from the previous line.

The ──�� symbol indicates the end of a syntax diagram.

Syntax fragments start with the ├─── symbol and end with the ───┤ symbol.

Required items appear on the horizontal line (the main path).

�� required_item ��

Optional items appear below the main path.

�� required_item

optional_item
 ��

If an optional item appears above the main path, that item has no effect on

execution, and is used only for readability.

��

required_item
 optional_item

��

If you can choose from two or more items, they appear in a stack.

If you must choose one of the items, one item of the stack appears on the main

path.

�� required_item required_choice1

required_choice2
 ��

If choosing one of the items is optional, the entire stack appears below the main

path.

�� required_item

optional_choice1

optional_choice2

 ��

© Copyright IBM Corp. 2001, 2006 297

DB2 9 BETA

If one of the items is the default, it will appear above the main path, and the

remaining choices will be shown below.

��

required_item
 default_choice

optional_choice

optional_choice

��

An arrow returning to the left, above the main line, indicates an item that can be

repeated. In this case, repeated items must be separated by one or more blanks.

��

required_item

�

repeatable_item

��

If the repeat arrow contains a comma, you must separate repeated items with a

comma.

��

required_item

�

 ,

repeatable_item

��

A repeat arrow above a stack indicates that you can make more than one choice

from the stacked items or repeat a single choice.

Keywords appear in uppercase (for example, FROM). They must be spelled exactly

as shown. Variables appear in lowercase (for example, column-name). They

represent user-supplied names or values in the syntax.

If punctuation marks, parentheses, arithmetic operators, or other such symbols are

shown, you must enter them as part of the syntax.

Sometimes a single variable represents a larger fragment of the syntax. For

example, in the following diagram, the variable parameter-block represents the

whole syntax fragment that is labeled parameter-block:

�� required_item parameter-block ��

parameter-block:

 parameter1

parameter2

parameter3

parameter4

Adjacent segments occurring between “large bullets” (*) may be specified in any

sequence.

�� required_item item1 * item2 * item3 * item4 ��

How to read the syntax diagrams

298 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

The above diagram shows that item2 and item3 may be specified in either order.

Both of the following are valid:

 required_item item1 item2 item3 item4

 required_item item1 item3 item2 item4

How to read the syntax diagrams

Appendix A. How to read the syntax diagrams 299

DB2 9 BETA

How to read the syntax diagrams

300 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Appendix B. Warning, error and completion messages

 Messages generated by the various utilities are included among the SQL messages.

These messages are generated by the database manager when a warning or error

condition has been detected. Each message has a message identifier that consists of

a prefix (SQL) and a four- or five-digit message number. There are three message

types: notification, warning, and critical. Message identifiers ending with an N are

error messages. Those ending with a W indicate warning or informational messages.

Message identifiers ending with a C indicate critical system errors.

The message number is also referred to as the SQLCODE. The SQLCODE is passed

to the application as a positive or negative number, depending on its message type

(N, W, or C). N and C yield negative values, whereas W yields a positive value.

DB2 returns the SQLCODE to the application, and the application can get the

message associated with the SQLCODE. DB2 also returns an SQLSTATE value for

conditions that could be the result of an SQL or XQuery statement. Some

SQLCODE values have associated SQLSTATE values.

You can use the information contained in this topic to identify an error or problem,

and to resolve the problem by using the appropriate recovery action. This

information can also be used to understand where messages are generated and

logged.

SQL messages, and the message text associated with SQLSTATE values, are also

accessible from the operating system command line. To access help for these error

messages, enter the following at the operating system command prompt:

 db2 ? SQLnnnnn

where nnnnn represents the message number. On UNIX based systems, the use of

double quotation mark delimiters is recommended; this will avoid problems if

there are single character file names in the directory:

 db2 "? SQLnnnnn"

The message identifier accepted as a parameter for the db2 command is not case

sensitive, and the terminating letter is not required. Therefore, the following

commands will produce the same result:

 db2 ? SQL0000N

 db2 ? sql0000

 db2 ? SQL0000n

If the message text is too long for your screen, use the following command (on

UNIX based operating systems and others that support the ″more″ pipe):

 db2 ? SQLnnnnn | more

You can also redirect the output to a file which can then be browsed.

Help can also be invoked from interactive input mode. To access this mode, enter

the following at the operating system command prompt:

 db2

To get DB2 message help in this mode, type the following at the command prompt

(db2 =>):

© Copyright IBM Corp. 2001, 2006 301

DB2 9 BETA

? SQLnnnnn

The message text associated with SQLSTATEs can be retrieved by issuing:

 db2 ? nnnnn

 or

 db2 ? nn

where nnnnn is a five-character SQLSTATE value (alphanumeric), and nn is a

two-digit SQLSTATE class code (the first two digits of the SQLSTATE value).

 Related concepts:

v “Introduction to Messages” in Message Reference Volume 1

302 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Appendix C. Additional DB2 commands

This appendix describes recovery-related system and CLP commands that are not

discussed in detail in this manual.

System commands

db2adutl - Managing DB2 objects within TSM

Allows users to query, extract, verify, and delete backup images, logs, and load

copy images saved using Tivoli Storage Manager (TSM). Also allows users to grant

and revoke access to objects on a TSM server.

On UNIX operating systems, this utility is located in the sqllib/adsm directory. On

Windows operating systems, it is located in sqllib\bin.

 Authorization:

 None

 Required connection:

 None

 Command syntax:

�� db2adutl db2-object-options

access-control-options
 ��

db2-object-options:

 QUERY-options

EXTRACT-options

DELETE-options

VERIFY-options

COMPRLIB

decompression-library
 �

�
COMPROPTS

decompression-options

VERBOSE
 �

�
DATABASE

database_name

DB

DBPARTITIONNUM

db-partition-number
 �

�
PASSWORD

password

NODENAME

node_name

OWNER

owner
 �

�
WITHOUT PROMPTING

© Copyright IBM Corp. 2001, 2006 303

DB2 9 BETA

QUERY-options:

 QUERY

TABLESPACE

NONINCREMENTAL

SHOW INACTIVE

FULL

INCREMENTAL

DELTA

LOADCOPY

LOGS

BETWEEN

sn1

AND

sn2

CHAIN

n

EXTRACT-options:

 EXTRACT �

�

TABLESPACE

NONINCREMENTAL

SHOW INACTIVE

SUBSET

TAKEN AT

timestamp

FULL

INCREMENTAL

DELTA

LOADCOPY

LOGS

BETWEEN

sn1

AND

sn2

CHAIN

n

DELETE-options:

 DELETE �

�

TABLESPACE

NONINCREMENTAL

KEEP

n

FULL

INCREMENTAL

OLDER

timestamp

DELTA

THAN

n

days

LOADCOPY

TAKEN AT

timestamp

LOGS

BETWEEN

sn1

AND

sn2

CHAIN

n

VERIFY-options:

 VERIFY

verify-options

TABLESPACE

NONINCREMENTAL

SHOW INACTIVE

TAKEN AT

timestamp

FULL

INCREMENTAL

DELTA

LOADCOPY

verify-options:

 ALL

CHECK

DMS

HEADER

LFH

TABLESPACES

SGF

HEADERONLY

TABLESPACESONLY

SGFONLY

OBJECT

PAGECOUNT

db2adutl - Managing DB2 objects within TSM

304 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

access-control-options:

GRANT

ALL

ON

ALL

FOR

DATABASE

database_name

USER

user_name

NODENAME

node_name

DB

REVOKE

ALL

ON

ALL

FOR

ALL

USER

user_name

NODENAME

node_name

DATABASE

database_name

DB

QUERYACCESS

FOR

ALL

DATABASE

database_name

DB

 �

�
PASSWORD

password

 Command parameters:

QUERY

Queries the TSM server for DB2 objects.

EXTRACT

Copies DB2 objects from the TSM server to the current directory on the

local machine.

DELETE

Either deactivates backup objects or deletes log archives on the TSM server.

VERIFY

Performs consistency checking on the backup copy that is on the server.

This parameter causes the entire backup image to be transferred over the

network.

ALL Displays all available information.

CHECK

Displays results of checkbits and checksums.

DMS Displays information from headers of DMS table space data pages.

HEADER

Displays the media header information.

HEADERONLY

Displays the same information as HEADER but only reads the 4 K

media header information from the beginning of the image. It does

not validate the image.

LFH Displays the log file header (LFH) data.

OBJECT

Displays detailed information from the object headers.

PAGECOUNT

Displays the number of pages of each object type found in the

image.

SGF Displays the automatic storage paths in the image.

SGFONLY

Displays only the automatic storage paths in the image but does

not validate the image.

TABLESPACES

Displays the table space details, including container information,

for the table spaces in the image.

db2adutl - Managing DB2 objects within TSM

Appendix C. Additional DB2 commands 305

DB2 9 BETA

TABLESPACESONLY

Displays the same information as TABLESPACES but does not

validate the image.

TABLESPACE

Includes only table space backup images.

FULL Includes only full database backup images.

NONINCREMENTAL

Includes only non-incremental backup images.

INCREMENTAL

Includes only incremental backup images.

DELTA

Includes only incremental delta backup images.

LOADCOPY

Includes only load copy images.

LOGS Includes only log archive images

BETWEEN sn1 AND sn2

Specifies that the logs between log sequence number 1 and log sequence

number 2 are to be used.

CHAIN n

Specifies the chain ID of the logs to be used.

SHOW INACTIVE

Includes backup objects that have been deactivated.

SUBSET

Extracts pages from an image to a file. To extract pages, you will need an

input and an output file. The default input file is called extractPage.in. You

can override the default input file name by setting the DB2LISTFILE

environment variable to a full path. The format of the input file is as

follows:

 For SMS table spaces:

 S <tbspID> <objID> <objType> <startPage> <numPages>

Notes:

1. <startPage> is an object page number that is object-relative.

For DMS table spaces:

 D <tbspID> <objType> <startPage> <numPages>

Notes:

1. <objType> is only needed if verifying DMS load copy images.

2. <startPage> is an object page number that is pool-relative.

For log files:

 L <log num> <startPos> <numPages>

For other data (for example, initial data):

 O <objType> <startPos> <numBytes>

The default output file is extractPage.out. You can override the default

output file name by setting the DB2EXTRACTFILE environment variable to

a full path.

db2adutl - Managing DB2 objects within TSM

306 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

TAKEN AT timestamp

Specifies a backup image by its time stamp.

KEEP n

Deactivates all objects of the specified type except for the most recent n by

time stamp.

OLDER THAN timestamp or n days

Specifies that objects with a time stamp earlier than timestamp or n days

will be deactivated.

COMPRLIB decompression-library

Indicates the name of the library to be used to perform the decompression.

The name must be a fully qualified path referring to a file on the server. If

this parameter is not specified, DB2 will attempt to use the library stored

in the image. If the backup was not compressed, the value of this

parameter will be ignored. If the specified library cannot be loaded, the

operation will fail.

COMPROPTS decompression-options

Describes a block of binary data that will be passed to the initialization

routine in the decompression library. DB2 will pass this string directly from

the client to the server, so any issues of byte reversal or code page

conversion will have to be handled by the decompression library. If the

first character of the data block is ’@’, the remainder of the data will be

interpreted by DB2 as the name of a file residing on the server. DB2 will

then replace the contents of the data block with the contents of this file

and will pass this new value to the initialization routine instead. The

maximum length for this string is 1024 bytes.

DATABASE database_name

Considers only those objects associated with the specified database name.

DBPARTITIONNUM db-partition-number

Considers only those objects created by the specified database partition

number.

PASSWORD password

Specifies the TSM client password for this node, if required. If a database is

specified and the password is not provided, the value specified for the

tsm_password database configuration parameter is passed to TSM;

otherwise, no password is used.

NODENAME node_name

Considers only those images associated with a specific TSM node name.

OWNER owner

Considers only those objects created by the specified owner.

WITHOUT PROMPTING

The user is not prompted for verification before objects are deleted.

VERBOSE

Displays additional file information.

GRANT ALL / USER user_name

Adds access rights to the TSM files on the current TSM node to all users or

to the users specified. Granting access to users gives them access for all

current and future files related to the database specified.

db2adutl - Managing DB2 objects within TSM

Appendix C. Additional DB2 commands 307

DB2 9 BETA

REVOKE ALL / USER user_name

Removes access rights to the TSM files on the current TSM node from all

users or to the users specified.

QUERYACCESS

Retrieves the current access list. A list of users and TSM nodes is

displayed.

ON ALL / NODENAME node_name

Specifies the TSM node for which access rights will be changed.

FOR ALL / DATABASE database_name

Specifies the database to be considered.

 Examples:

1. The following is sample output from the command db2 backup database

rawsampl use tsm

 Backup successful. The timestamp for this backup is : 20031209184503

The following is sample output from the command db2adutl query issued

following the backup operation:

 Query for database RAWSAMPL

 Retrieving FULL DATABASE BACKUP information.

 1 Time: 20031209184403, Oldest log: S0000050.LOG, Sessions: 1

 Retrieving INCREMENTAL DATABASE BACKUP information.

 No INCREMENTAL DATABASE BACKUP images found for RAWSAMPL

 Retrieving DELTA DATABASE BACKUP information.

 No DELTA DATABASE BACKUP images found for RAWSAMPL

 Retrieving TABLESPACE BACKUP information.

 No TABLESPACE BACKUP images found for RAWSAMPL

 Retrieving INCREMENTAL TABLESPACE BACKUP information.

 No INCREMENTAL TABLESPACE BACKUP images found for RAWSAMPL

 Retrieving DELTA TABLESPACE BACKUP information.

 No DELTA TABLESPACE BACKUP images found for RAWSAMPL

 Retrieving LOCAL COPY information.

 No LOCAL COPY images found for RAWSAMPL

 Retrieving log archive information.

 Log file: S0000050.LOG, Chain Num: 0, DB Partition Number: 0,

 Taken at 2003-12-09-18.46.13

 Log file: S0000051.LOG, Chain Num: 0, DB Partition Number: 0,

 Taken at 2003-12-09-18.46.43

 Log file: S0000052.LOG, Chain Num: 0, DB Partition Number: 0,

 Taken at 2003-12-09-18.47.12

 Log file: S0000053.LOG, Chain Num: 0, DB Partition Number: 0,

 Taken at 2003-12-09-18.50.14

 Log file: S0000054.LOG, Chain Num: 0, DB Partition Number: 0,

 Taken at 2003-12-09-18.50.56

 Log file: S0000055.LOG, Chain Num: 0, DB Partition Number: 0,

 Taken at 2003-12-09-18.52.39

2. The following is sample output from the command db2adutl delete full

taken at 20031209184503 db rawsampl

 Query for database RAWSAMPL

 Retrieving FULL DATABASE BACKUP information.

 Taken at: 20031209184503 DB Partition Number: 0 Sessions: 1

db2adutl - Managing DB2 objects within TSM

308 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Do you want to delete this file (Y/N)? y

 Are you sure (Y/N)? y

 Retrieving INCREMENTAL DATABASE BACKUP information.

 No INCREMENTAL DATABASE BACKUP images found for RAWSAMPL

 Retrieving DELTA DATABASE BACKUP information.

 No DELTA DATABASE BACKUP images found for RAWSAMPL

The following is sample output from the command db2adutl query issued

following the operation that deleted the full backup image. Note the timestamp

for the backup image.

 Query for database RAWSAMPL

 Retrieving FULL DATABASE BACKUP information.

 1 Time: 20031209184403, Oldest log: S0000050.LOG, Sessions: 1

 Retrieving INCREMENTAL DATABASE BACKUP information.

 No INCREMENTAL DATABASE BACKUP images found for RAWSAMPL

 Retrieving DELTA DATABASE BACKUP information.

 No DELTA DATABASE BACKUP images found for RAWSAMPL

 Retrieving TABLESPACE BACKUP information.

 No TABLESPACE BACKUP images found for RAWSAMPL

 Retrieving INCREMENTAL TABLESPACE BACKUP information.

 No INCREMENTAL TABLESPACE BACKUP images found for RAWSAMPL

 Retrieving DELTA TABLESPACE BACKUP information.

 No DELTA TABLESPACE BACKUP images found for RAWSAMPL

 Retrieving LOCAL COPY information.

 No LOCAL COPY images found for RAWSAMPL

 Retrieving log archive information.

 Log file: S0000050.LOG, Chain Num: 0, DB Partition Number: 0,

 Taken at 2003-12-09-18.46.13

 Log file: S0000051.LOG, Chain Num: 0, DB Partition Number: 0,

 Taken at 2003-12-09-18.46.43

 Log file: S0000052.LOG, Chain Num: 0, DB Partition Number: 0,

 Taken at 2003-12-09-18.47.12

 Log file: S0000053.LOG, Chain Num: 0, DB Partition Number: 0,

 Taken at 2003-12-09-18.50.14

 Log file: S0000054.LOG, Chain Num: 0, DB Partition Number: 0,

 Taken at 2003-12-09-18.50.56

 Log file: S0000055.LOG, Chain Num: 0, DB Partition Number: 0,

 Taken at 2003-12-09-18.52.39

3. The following is sample output from the command db2adutl queryaccess for

all

 Node User Database Name type

 bar2 jchisan sample B

 <all> <all> test B

 Access Types: B – Backup images L – Logs A - both

 Usage Notes:

db2adutl - Managing DB2 objects within TSM

Appendix C. Additional DB2 commands 309

DB2 9 BETA

One parameter from each group below can be used to restrict what backup images

types are included in the operation:

Granularity:

v FULL - include only database backup images.

v TABLESPACE - include only table space backup images.

Cumulativeness:

v NONINCREMENTAL - include only non-incremental backup images.

v INCREMENTAL - include only incremental backup images.

v DELTA - include only incremental delta backup images.

 Compatibilities:

 For compatibility with versions earlier than Version 8:

v The keyword NODE can be substituted for DBPARTITIONNUM.

 Related concepts:

v Appendix F, “Cross-node recovery with the db2adutl command and the

logarchopt1 and vendoropt database configuration parameters,” on page 397

db2ckbkp - Check backup

This utility can be used to test the integrity of a backup image and to determine

whether or not the image can be restored. It can also be used to display the

metadata stored in the backup header.

 Authorization:

 Anyone can access the utility, but users must have read permissions on image

backups in order to execute this utility against them.

 Required connection:

 None

 Command syntax:

db2adutl - Managing DB2 objects within TSM

310 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

��

db2ckbkp

�

,

-a

-c

-d

-e

-h

-l

-n

-o

-p

-s

-t

-cl

decompressionLib

-co

decompressionOpts

-H

-S

-T

�

 ,

filename

��

 Command parameters:

-a Displays all available information.

-c Displays results of checkbits and checksums.

-cl decompressionLib

Indicates the name of the library to be used to perform the decompression.

The name must be a fully qualified path referring to a file on the server. If

this parameter is not specified, DB2 will attempt to use the library stored

in the image. If the backup was not compressed, the value of this

parameter will be ignored. If the specified library cannot be loaded, the

operation will fail.

-co decompressionOpts

Describes a block of binary data that will be passed to the initialization

routine in the decompression library. DB2 will pass this string directly from

the client to the server, so any issues of byte reversal or code page

conversion will have to be handled by the decompression library. If the

first character of the data block is ’@’, the remainder of the data will be

interpreted by DB2 as the name of a file residing on the server. DB2 will

then replace the contents of string with the contents of this file and will

pass this new value to the initialization routine instead. The maximum

length for string is 1024 bytes.

-d Displays information from the headers of DMS table space data pages.

-e Extracts pages from an image to a file. To extract pages, you will need an

input and an output file. The default input file is called extractPage.in. You

can override the default input file name by setting the DB2LISTFILE

environment variable to a full path. The format of the input file is as

follows:

 For SMS table spaces:

 S <tbspID> <objID> <objType> <startPage> <numPages>

db2ckbkp - Check Backup

Appendix C. Additional DB2 commands 311

DB2 9 BETA

Notes:

1. <startPage> is an object page number that is object-relative.

For DMS table spaces:

 D <tbspID> <objType> <startPage> <numPages>

Notes:

1. <objType> is only needed if verifying DMS load copy images.

2. <startPage> is an object page number that is pool-relative.

For log files:

 L <log num> <startPos> <numPages>

For other data (for example, initial data):

 O <objType> <startPos> <numBytes>

The default output file is extractPage.out. You can override the default

output file name by setting the DB2EXTRACTFILE environment variable to

a full path.

-h Displays media header information including the name and path of the

image expected by the restore utility.

-H Displays the same information as -h but only reads the 4K media header

information from the beginning of the image. It does not validate the

image. This option cannot be used in combination with any other options.

-l Displays log file header (LFH) and mirror log file header (MFH) data.

-n Prompt for tape mount. Assume one tape per device.

-o Displays detailed information from the object headers.

-p Displays the number of pages of each object type. This option will not

show the number of pages for all different object types if the backup was

done for DMS tablespaces data. It only shows the total of all pages as

SQLUDMSTABLESPACEDATA. The object types for SQLUDMSLOBDATA and

SQLUDMSLONGDATA will be zero for DMS tablespaces.

-s Displays the automatic storage paths in the image.

-S Displays the same information as -s but does not validate the image. This

option cannot be used in combination with any other options.

-t Displays table space details, including container information, for the table

spaces in the image.

-T Displays the same information as -t but does not validate the image. This

option cannot be used in combination with any other options.

filename

The name of the backup image file. One or more files can be checked at a

time.

Notes:

1. If the complete backup consists of multiple objects, the validation will

only succeed if db2ckbkp is used to validate all of the objects at the

same time.

2. When checking multiple parts of an image, the first backup image

object (.001) must be specified first.

 Examples:

db2ckbkp - Check Backup

312 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Example 1 (on UNIX platforms)

 db2ckbkp SAMPLE.0.krodger.NODE0000.CATN0000.19990817150714.001

 SAMPLE.0.krodger.NODE0000.CATN0000.19990817150714.002

 SAMPLE.0.krodger.NODE0000.CATN0000.19990817150714.003

 [1] Buffers processed: ##

 [2] Buffers processed: ##

 [3] Buffers processed: ##

 Image Verification Complete - successful.

Example 2

 db2ckbkp -h SAMPLE2.0.krodger.NODE0000.CATN0000.19990818122909.001

 =====================

 MEDIA HEADER REACHED:

 =====================

 Server Database Name -- SAMPLE2

 Server Database Alias -- SAMPLE2

 Client Database Alias -- SAMPLE2

 Timestamp -- 19990818122909

 Database Partition Number -- 0

 Instance -- krodger

 Sequence Number -- 1

 Release ID -- 900

 Database Seed -- 65E0B395

 DB Comment’s Codepage (Volume) -- 0

 DB Comment (Volume) --

 DB Comment’s Codepage (System) -- 0

 DB Comment (System) --

 Authentication Value -- 255

 Backup Mode -- 0

 Include Logs -- 0

 Compression -- 0

 Backup Type -- 0

 Backup Gran. -- 0

 Status Flags -- 11

 System Cats inc -- 1

 Catalog Database Partition No. -- 0

 DB Codeset -- ISO8859-1

 DB Territory --

 LogID -- 1074717952

 LogPath -- /home/krodger/krodger/NODE0000/

 SQL00001/SQLOGDIR

 Backup Buffer Size -- 4194304

 Number of Sessions -- 1

 Platform -- 0

 The proper image file name would be:

 SAMPLE2.0.krodger.NODE0000.CATN0000.19990818122909.001

 [1] Buffers processed: ####

 Image Verification Complete - successful.

 Usage notes:

1. If a backup image was created using multiple sessions, db2ckbkp can examine

all of the files at the same time. Users are responsible for ensuring that the

session with sequence number 001 is the first file specified.

2. This utility can also verify backup images that are stored on tape (except

images that were created with a variable block size). This is done by preparing

the tape as for a restore operation, and then invoking the utility, specifying the

tape device name. For example, on UNIX based systems:

 db2ckbkp -h /dev/rmt0

db2ckbkp - Check Backup

Appendix C. Additional DB2 commands 313

DB2 9 BETA

and on Windows:

 db2ckbkp -d \\.\tape1

3. If the image is on a tape device, specify the tape device path. You will be

prompted to ensure it is mounted, unless option ’-n’ is given. If there are

multiple tapes, the first tape must be mounted on the first device path given.

(That is the tape with sequence 001 in the header).

The default when a tape device is detected is to prompt the user to mount the

tape. The user has the choice on the prompt. Here is the prompt and options:

(where the device I specified is on device path /dev/rmt0)

 Please mount the source media on device /dev/rmt0.

 Continue(c), terminate only this device(d), or abort this tool(t)?

 (c/d/t)

The user will be prompted for each device specified, and when the device

reaches the end of tape.

 Related reference:

v “db2adutl - Managing DB2 objects within TSM” on page 303

db2ckrst - Check incremental restore image sequence

Queries the database history and generates a list of timestamps for the backup

images that are required for an incremental restore. A simplified restore syntax for

a manual incremental restore is also generated.

 Authorization:

 None

 Required connection:

 None

 Command syntax:

�� db2ckrst -d database name -t timestamp

database

-r

tablespace

 �

�

�

-n

tablespace name

-h

-u

-?

 ��

 Command parameters:

-d database name

Specifies the alias name for the database that will be restored.

-t timestamp

Specifies the timestamp for a backup image that will be incrementally

restored.

-r Specifies the type of restore that will be executed. The default is database.

If TABLESPACE is chosen and no table space names are given, the utility

looks into the history entry of the specified image and uses the table space

names listed to do the restore.

db2ckbkp - Check Backup

314 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

-n tablespace name

Specifies the name of one or more table spaces that will be restored. If a

database restore type is selected and a list of table space names is

specified, the utility will continue as a table space restore using the table

space names given.

-h/-u/-?

Displays help information. When this option is specified, all other options

are ignored, and only the help information is displayed.

 Examples:

 db2ckrst -d mr -t 20001015193455 -r database

 db2ckrst -d mr -t 20001015193455 -r tablespace

 db2ckrst -d mr -t 20001015193455 -r tablespace -n tbsp1 tbsp2

 > db2 backup db mr

 Backup successful. The timestamp for this backup image is : 20001016001426

 > db2 backup db mr incremental

 Backup successful. The timestamp for this backup image is : 20001016001445

 > db2ckrst -d mr -t 20001016001445

 Suggested restore order of images using timestamp 20001016001445 for

 database mr.

 ===

 db2 restore db mr incremental taken at 20001016001445

 db2 restore db mr incremental taken at 20001016001426

 db2 restore db mr incremental taken at 20001016001445

 ===

 > db2ckrst -d mr -t 20001016001445 -r tablespace -n userspace1

 Suggested restore order of images using timestamp 20001016001445 for

 database mr.

 ===

 db2 restore db mr tablespace (USERSPACE1) incremental taken at

 20001016001445

 db2 restore db mr tablespace (USERSPACE1) incremental taken at

 20001016001426

 db2 restore db mr tablespace (USERSPACE1) incremental taken at

 20001016001445

 ===

 Usage notes:

 The db2ckrst utility will not be enhanced for the rebuilding of a database. Due to

the constraints of the history file, the utility will not be able to supply the correct

list if several table spaces need to be restored from more than one image.

The database history must exist in order for this utility to be used. If the database

history does not exist, specify the HISTORY FILE option in the RESTORE

command before using this utility.

If the FORCE option of the PRUNE HISTORY command is used, you can delete

entries that are required for automatic incremental restoration of databases. Manual

restores will still work correctly. Use of this command can also prevent the dbckrst

utility from being able to correctly analyse the complete chain of required backup

images. The default operation of the PRUNE HISTORY command prevents

required entries from being deleted. It is recommended that you do not use the

FORCE option of the PRUNE HISTORY command.

db2ckrst - Check Incremental Restore Image Sequence

Appendix C. Additional DB2 commands 315

DB2 9 BETA

This utility should not be used as a replacement for keeping records of your

backups.

 Related tasks:

v “Restoring from incremental backup images” on page 28

 Related reference:

v “PRUNE HISTORY/LOGFILE ” on page 329

v “RESTORE DATABASE ” on page 100

db2flsn - Find log sequence number

Returns the name of the file that contains the log record identified by a specified

log sequence number (LSN).

 Authorization:

 None

 Command syntax:

�� db2flsn

-q

-db

dbname

-file

LFH-file

 input_LSN ��

 Command parameters:

-q Specifies that only the log file name be printed. No error or warning

messages will be printed, and status can only be determined through the

return code. Valid error codes are:

v -100 Invalid input

v -101 Cannot open LFH file

v -102 Failed to read LFH file

v -103 Invalid LFH

v -104 Database is not recoverable

v -105 LSN too big

v -106 Invalid database

v -500 Logical error

Other valid return codes are:

v 0 Successful execution

v 99 Warning: the result is based on the last known log file size.

-db dbname

Specifies the database name which you want to investigate.

-file LFH-name

Specifies the full path of the LFH file including the file name.

input_LSN

A 12 or 16 character string that represents the internal (6 or 8 byte)

hexadecimal value with leading zeros.

 Examples:

db2ckrst - Check Incremental Restore Image Sequence

316 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

db2flsn 000000BF0030

 Given LSN is contained in log page 2 in log file S0000002.LOG

 db2flsn -q 000000BF0030

 S0000002.LOG

 db2flsn 000000BE0030

 Given LSN is contained in log page 2 in log file S0000001.LOG

 db2flsn -q 000000BE0030

 S0000001.LOG

 db2flsn -db flsntest 0000000000FA0000

 Warning: the result is based on the last known log file size (6

 4K pages starting from log extent 10). The input_LSN might be before

 the database becomes recoverable.

 Given LSN is contained in log page 2 in log file S0000002.LOG

 db2flsn -q -db flsntest 0000000000FA0000

 S0000002.LOG

 db2flsn -file C:\DB2\NODE0000\SQL00001\SQLOGCTL.LFH 0000000000FA4368

 Given LSN is contained in log page 6 in log file S0000002.LOG

 Usage notes:

v If neither -db nor -file are specified, the tool assumes the LFH file is

SQLOGCTL.LFH in the current directory.

v The tool uses the logfilsiz database configuration parameter. DB2 records the

three most recent values for this parameter, and the first log file that is created

with each logfilsiz value; this enables the tool to work correctly when logfilsiz

changes. If the specified LSN predates the earliest recorded value of logfilsiz, the

tool uses this value, and returns a warning. The tool can be used with database

managers prior to UDB Version 5.2; in this case, the warning is returned even

with a correct result (obtained if the value of logfilsiz remains unchanged).

v This tool can only be used with recoverable databases. A database is recoverable

if it is configured with the logarchmeth1 or logarchmeth2 configuration parameters

set to a value other than OFF.

 Related reference:

v “DB2 log records” in Administrative API Reference

v “SQLU_LSN ” on page 366

db2inidb - Initialize a mirrored database

Initializes a mirrored database in a split mirror environment. The mirrored

database can be initialized as a clone of the primary database, placed in roll

forward pending state, or used as a backup image to restore the primary database.

This command can only be run against a split mirror database, and it must be run

before the split mirror can be used.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

db2flsn - Find Log Sequence Number

Appendix C. Additional DB2 commands 317

DB2 9 BETA

Required connection:

 None

 Command syntax:

�� db2inidb database_alias AS SNAPSHOT

STANDBY

MIRROR

RELOCATE USING

configFile
 ��

 Command parameters:

database_alias

Specifies the alias of the database to be initialized.

SNAPSHOT

Specifies that the mirrored database will be initialized as a clone of the

primary database.

STANDBY

Specifies that the database will be placed in roll forward pending state.

New logs from the primary database can be fetched and applied to the

standby database. The standby database can then be used in place of the

primary database if it goes down.

MIRROR

Specifies that the mirrored database is to be used as a backup image which

can be used to restore the primary database.

RELOCATE USING configFile

Specifies that the database files are to be relocated based on the

information listed in the specified configFile prior to initializing the

database as a snapshot, standby, or mirror. The format of configFile is

described in db2relocatedb - Relocate database command.

 Usage notes:

 Do not issue the db2 connect to <database> command before issuing the db2init

<database> as mirror command. Attempting to connect to a split mirror database

before initializing it erases the log files needed during roll forward recovery. The

connect sets your database back to the state it was in when you suspended the

database. If the database is marked as consistent when it was suspended, the DB2

database system concludes there is no need for crash recovery and empties the

logs for future use. If the logs have been emptied, attempting to roll forward

results in the SQL4970N error message being returned.

In a partitioned database environment, db2inidb must be run on every database

partition before the split mirror from any of the database partitions can be used.

db2inidb can be run on all database partitions simultaneously using the db2_all

command.

If; however, you are using the RELOCATE USING option, you cannot use the

db2_all command to run db2inidb on all of the partitions simultaneously. A

separate configuration file must be supplied for each partition, that includes the

NODENUM value of the database partition being changed. For example, if the

name of a database is being changed, every database partition will be affected and

the db2relocatedb command must be run with a separate configuration file on

db2inidb - Initialize a Mirrored Database

318 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

each database partition. If containers belonging to a single database partition are

being moved, the db2relocatedb command only needs to be run once on that

database partition.

If the RELOCATE USING configFile parameter is specified and the database is

relocated successfully, the specified configFile will be copied into the database

directory and renamed to db2path.cfg. During a subsequent crash recovery or

rollforward recovery, this file will be used to rename container paths as log files

are being processed.

If a clone database is being initialized, the specified configFile will be automatically

removed from the database directory after a crash recovery is completed.

If a standby database or mirrored database is being initialized, the specified

configFile will be automatically removed from the database directory after a

rollforward recovery is completed or canceled. New container paths can be added

to the db2path.cfg file after db2inidb has been run. This would be necessary when

CREATE or ALTER TABLESPACE operations are done on the original database and

different paths must be used on the standby database.

 Related tasks:

v “Using a split mirror to clone a database” on page 212

v “Using a split mirror as a backup image” on page 214

v “Using a split mirror as a standby database” on page 213

 Related reference:

v “db2relocatedb - Relocate database command” in Command Reference

v “rah and db2_all command descriptions” in Administration Guide: Implementation

db2mscs - Set up Windows failover utility

Creates the infrastructure for DB2 failover support on Windows using Microsoft

Cluster Server (MSCS). This utility can be used to enable failover in both

single-partition and partitioned database environments.

 Authorization:

 The user must be logged on to a domain user account that belongs to the

Administrators group of each machine in the MSCS cluster.

 Command syntax:

�� db2mscs

-f:

input_file

-u:

instance_name

 ��

 Command parameters:

-f:input_file

Specifies the DB2MSCS.CFG input file to be used by the MSCS utility. If this

parameter is not specified, the DB2MSCS utility reads the DB2MSCS.CFG file

that is in the current directory.

db2inidb - Initialize a Mirrored Database

Appendix C. Additional DB2 commands 319

DB2 9 BETA

-u:instance_name

This option allows you to undo the db2mscs operation and revert the

instance back to the non-MSCS instance specified by instance_name.

 Usage notes:

 The DB2MSCS utility is a standalone command line utility used to transform a

non-MSCS instance into an MSCS instance. The utility will create all MSCS groups,

resources, and resource dependencies. It will also copy all DB2 information stored

in the Windows registry to the cluster portion of the registry as well as moving the

instance directory to a shared cluster disk. The DB2MSCS utility takes as input a

configuration file provided by the user specifying how the cluster should be set

up. The DB2MSCS.CFG file is an ASCII text file that contains parameters that are

read by the DB2MSCS utility. You specify each input parameter on a separate line

using the following format: PARAMETER_KEYWORD=parameter_value. For example:

 CLUSTER_NAME=FINANCE

 GROUP_NAME=DB2 Group

 IP_ADDRESS=9.21.22.89

Two example configuration files can be found in the CFG subdirectory under the

DB2 install directory. The first, DB2MSCS.EE, is an example for single-partition

database environments. The second, DB2MSCS.EEE, is an example for partitioned

database environments.

The parameters for the DB2MSCS.CFG file are as follows:

DB2_INSTANCE

The name of the DB2 instance. This parameter has a global scope and

should be specified only once in the DB2MSCS.CFG file.

DAS_INSTANCE

The name of the DB2 Admin Server instance. Specify this parameter to

migrate the DB2 Admin Server to run in the MSCS environment. This

parameter has a global scope and should be specified only once in the

DB2MSCS.CFG file.

CLUSTER_NAME

The name of the MSCS cluster. All the resources specified following this

line are created in this cluster until another CLUSTER_NAME parameter is

specified.

DB2_LOGON_USERNAME

The user name of the domain account for the DB2 service (specified as

domain\user). This parameter has a global scope and should be specified

only once in the DB2MSCS.CFG file.

DB2_LOGON_PASSWORD

The password of the domain account for the DB2 service. This parameter

has a global scope and should be specified only once in the DB2MSCS.CFG

file.

GROUP_NAME

The name of the MSCS group. If this parameter is specified, a new MSCS

group is created if it does not exist. If the group already exists, it is used as

the target group. Any MSCS resource specified after this parameter is

created in this group or moved into this group until another

GROUP_NAME parameter is specified. Specify this parameter once for

each group.

db2mscs - Set up Windows Failover Utility

320 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

DB2_NODE

The database partition number of the database partition server (or database

partition) to be included in the current MSCS group. If multiple logical

database partitions exist on the same machine, each database partition

requires a separate DB2_NODE parameter. Specify this parameter after the

GROUP_NAME parameter so that the DB2 resources are created in the

correct MSCS group. This parameter is required for a multi-partitioned

database system.

IP_NAME

The name of the IP Address resource. The value for the IP_NAME is

arbitrary, but it must be unique in the cluster. When this parameter is

specified, an MSCS resource of type IP Address is created. This parameter

is required for remote TCP/IP connections. This parameter is optional in a

single partition database environment. A recommended name is the

hostname that corresponds to the IP address.

IP_ADDRESS

The TCP/IP address for the IP resource specified by the preceding

IP_NAME parameter. This parameter is required if the IP_NAME

parameter is specified. This is a new IP address that is not used by any

machine in the network.

IP_SUBNET

The TCP/IP subnet mask for the IP resource specified by the preceding

IP_NAME parameter. This parameter is required if the IP_NAME

parameter is specified.

IP_NETWORK

The name of the MSCS network to which the preceding IP Address

resource belongs. This parameter is optional. If it is not specified, the first

MSCS network detected by the system is used. The name of the MSCS

network must be entered exactly as seen under the Networks branch in

Cluster Administrator. The previous four IP keywords are used to create an

IP Address resource.

NETNAME_NAME

The name of the Network Name resource. Specify this parameter to create

the Network Name resource. This parameter is optional for single partition

database environment. You must specify this parameter for the instance

owning machine in a partitioned database environment.

NETNAME_VALUE

The value for the Network Name resource. This parameter must be

specified if the NETNAME_NAME parameter is specified.

NETNAME_DEPENDENCY

The name for the IP resource that the Network Name resource depends on.

Each Network Name resource must have a dependency on an IP Address

resource. This parameter is optional. If it is not specified, the Network

Name resource has a dependency on the first IP resource in the group.

SERVICE_DISPLAY_NAME

The display name of the Generic Service resource. Specify this parameter if

you want to create a Generic Service resource.

SERVICE_NAME

The service name of the Generic Service resource. This parameter must be

specified if the SERVICE_DISPLAY_NAME parameter is specified.

db2mscs - Set up Windows Failover Utility

Appendix C. Additional DB2 commands 321

DB2 9 BETA

SERVICE_STARTUP

Optional startup parameter for the Generic Resource service.

DISK_NAME

The name of the physical disk resource to be moved to the current group.

Specify as many disk resources as you need. The disk resources must

already exist. When the DB2MSCS utility configures the DB2 instance for

failover support, the instance directory is copied to the first MSCS disk in

the group. To specify a different MSCS disk for the instance directory, use

the INSTPROF_DISK parameter. The disk name used should be entered

exactly as seen in Cluster Administrator.

INSTPROF_DISK

An optional parameter to specify an MSCS disk to contain the DB2

instance directory. If this parameter is not specified the DB2MSCS utility

uses the first disk that belongs to the same group.

INSTPROF_PATH

An optional parameter to specify the exact path where the instance

directory will be copied. This parameter must be specified when using

IPSHAdisks, a ServerRAID Netfinity disk resource (for example,

INSTPROF_PATH=p:\db2profs). INSTPROF_PATH will take precedence

over INSTPROF_DISK if both are specified.

TARGET_DRVMAP_DISK

An optional parameter to specify the target MSCS disk for database drive

mapping for a the multi-partitioned database system. This parameter will

specify the disk the database will be created on by mapping it from the

drive the create database command specifies. If this parameter is not

specified, the database drive mapping must be manually registered using

the DB2DRVMP utility.

DB2_FALLBACK

An optional parameter to control whether or not the applications should be

forced off when the DB2 resource is brought offline. If not specified, then

the setting for DB2_FALLBACK will beYES. If you do not want the

applications to be forced off, then set DB2_FALLBACK to NO.

 Related reference:

v “db2drvmp - DB2 database drive map command” in Command Reference

db2rfpen - Reset rollforward pending state

Puts a database in rollforward pending state. If you are using high availability

disaster recovery (HADR), the database is reset to a standard database.

 Authorization:

 None

 Required connection:

 None

 Command syntax:

db2mscs - Set up Windows Failover Utility

322 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

�� db2rfpen ON database_alias -log logfile_path ��

 Command parameters:

database_alias

Specifies the name of the database to be placed in rollforward pending

state. If you are using high availability disaster recovery (HADR), the

database is reset to a standard database.

-log logfile_path

Specifies the log file path.

 Related concepts:

v “High availability disaster recovery overview” on page 221

CLP commands

ARCHIVE LOG

Closes and truncates the active log file for a recoverable database.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

v dbadm

 Required connection:

 None. This command establishes a database connection for the duration of the

command.

 Command syntax:

�� ARCHIVE LOG FOR DATABASE

DB
 database-alias �

�
USER

username

USING

password

 �

�
On Database Partition Number Clause

 ��

On Database Partition Number Clause:

 ON Database Partition Number List Clause

ALL DBPARTITIONNUMS

EXCEPT

Database Partition Number List Clause

db2rfpen - Reset rollforward pending state

Appendix C. Additional DB2 commands 323

|

|

|

|

|

|

|

|

|

|
|

|

||||||||||||||||
|

|
|||||||||||||||||||
|

|
||||||||||||||

|

|

|||||||||||||||||||||||||||||

|

DB2 9 BETA

Database Partition Number List Clause:

 DBPARTITIONNUM

DBPARTITIONNUMS
 �

�

�

 ,

(

db-partition-number

)

TO

db-partition-number

 Command parameters:

DATABASE database-alias

Specifies the alias of the database whose active log is to be archived.

USER username

Identifies the user name under which a connection will be attempted.

USING password

Specifies the password to authenticate the user name.

ON ALL DBPARTITIONNUMS

Specifies that the command should be issued on all database partitions in

the db2nodes.cfg file. This is the default if a database partition number

clause is not specified.

EXCEPT

Specifies that the command should be issued on all database partitions in

the db2nodes.cfg file, except those specified in the database partition

number list.

ON DBPARTITIONNUM/ON DBPARTITIONNUMS

Specifies that the logs should be archived for the specified database on a

set of database partitions.

db-partition-number

Specifies a database partition number in the database partition number list.

TO db-partition-number

Used when specifying a range of database partitions for which the logs

should be archived. All database partitions from the first database partition

number specified up to and including the second database partition

number specified are included in the database partition number list.

 Usage notes:

 This command can be used to collect a complete set of log files up to a known

point. The log files can then be used to update a standby database.

This command can only be executed when the invoking application or shell does

not have a database connection to the specified database. This prevents a user from

executing the command with uncommitted transactions. As such, the ARCHIVE

LOG command will not forcibly commit the user’s incomplete transactions. If the

invoking application or shell already has a database connection to the specified

database, the command will terminate and return an error. If another application

has transactions in progress with the specified database when this command is

executed, there will be a slight performance degradation since the command

flushes the log buffer to disk. Any other transactions attempting to write log

records to the buffer will have to wait until the flush is complete.

ARCHIVE LOG

324 Data Recovery and High Availability Guide and Reference

|

||||||||||||||
|

|
||||||||||||||||||||||||

|
|

|
|

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

DB2 9 BETA

If used in a partitioned database environment, a subset of database partitions can

be specified by using a database partition number clause. If the database partition

number clause is not specified, the default behavior for this command is to close

and archive the active log on all database partitions.

Using this command will use up a portion of the active log space due to the

truncation of the active log file. The active log space will resume its previous size

when the truncated log becomes inactive. Frequent use of this command can

drastically reduce the amount of the active log space available for transactions.

 Compatibilities:

 For compatibility with versions earlier than Version 8:

v The keyword NODE can be substituted for DBPARTITIONNUM.

v The keyword NODES can be substituted for DBPARTITIONNUMS.

 Related reference:

v “db2ArchiveLog - Archive the active log file” on page 335

INITIALIZE TAPE

Initializes tapes for backup and restore operations to streaming tape devices. This

command is only supported on Windows operating systems.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

 Required connection:

 None.

 Command syntax:

�� INITIALIZE TAPE

ON

device

USING

blksize
 ��

 Command parameters:

ON device

Specifies a valid tape device name. The default value is \\.\TAPE0.

USING blksize

Specifies the block size for the device, in bytes. The device is initialized to

use the block size specified, if the value is within the supported range of

block sizes for the device.

 The buffer size specified for the BACKUP DATABASE command and for

RESTORE DATABASE must be divisible by the block size specified here.

 If a value for this parameter is not specified, the device is initialized to use

its default block size. If a value of zero is specified, the device is initialized

ARCHIVE LOG

Appendix C. Additional DB2 commands 325

|
|
|
|

|
|
|
|

|

|

|

|

|

|

DB2 9 BETA

to use a variable length block size; if the device does not support variable

length block mode, an error is returned.

 When backing up to tape, use of a variable block size is currently not

supported. If you must use this option, ensure that you have well tested

procedures in place that enable you to recover successfully, using backup

images that were created with a variable block size.

 When using a variable block size, you must specify a backup buffer size

that is less than or equal to the maximum limit for the tape devices that

you are using. For optimal performance, the buffer size must be equal to

the maximum block size limit of the device being used.

 Related reference:

v “RESTORE DATABASE ” on page 100

v “BACKUP DATABASE ” on page 71

v “REWIND TAPE ” on page 330

v “SET TAPE POSITION ” on page 331

v “INITIALIZE TAPE command using the ADMIN_CMD procedure” in

Administrative SQL Routines and Views

LIST HISTORY

Lists entries in the history file. The history file contains a record of recovery and

administrative events. Recovery events include full database and table space level

backup, incremental backup, restore, and rollforward operations. Additional logged

events include create, alter, drop, or rename table space, reorganize table, drop

table, and load.

 Authorization:

 None

 Required connection:

 Instance. You must attach to any remote database in order to run this command

against it. For a local database, an explicit attachment is not required.

 Command syntax:

�� LIST HISTORY

BACKUP

ROLLFORWARD

DROPPED TABLE

LOAD

CREATE TABLESPACE

ALTER TABLESPACE

RENAME TABLESPACE

REORG

ARCHIVE LOG

 �

INITIALIZE TAPE

326 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

� ALL

SINCE

timestamp

CONTAINING

schema.object_name

object_name

 FOR database-alias

DATABASE

DB

 ��

 Command parameters:

HISTORY

Lists all events that are currently logged in the history file.

BACKUP

Lists backup and restore operations.

ROLLFORWARD

Lists rollforward operations.

DROPPED TABLE

Lists dropped table records. A dropped table record is created only when

the table is dropped and the table space containing it has the DROPPED

TABLE RECOVERY option enabled. Returns the CREATE TABLE syntax

for partitioned tables and indicates which table spaces contained data for

the table that was dropped.

LOAD

Lists load operations.

CREATE TABLESPACE

Lists table space create and drop operations.

RENAME TABLESPACE

Lists table space renaming operations.

REORG

Lists reorganization operations. Includes information for each reorganized

data partition of a partitioned table.

ALTER TABLESPACE

Lists alter table space operations.

ARCHIVE LOG

Lists archive log operations and the archived logs.

ALL Lists all entries of the specified type in the history file.

SINCE timestamp

A complete time stamp (format yyyymmddhhmmss), or an initial prefix

(minimum yyyy) can be specified. All entries with time stamps equal to or

greater than the time stamp provided are listed.

CONTAINING schema.object_name

This qualified name uniquely identifies a table.

CONTAINING object_name

This unqualified name uniquely identifies a table space.

FOR DATABASE database-alias

Used to identify the database whose recovery history file is to be listed.

 Examples:

 db2 list history since 19980201 for sample

 db2 list history backup containing userspace1 for sample

 db2 list history dropped table all for db sample

 Usage notes:

LIST HISTORY

Appendix C. Additional DB2 commands 327

DB2 9 BETA

The SYSIBMADM.DB_HISTORY administrative view can be used to retrieves data

from all database partitions.

The report generated by this command contains the following symbols:

Operation

 A - Create table space

 B - Backup

 C - Load copy

 D - Dropped table

 F - Roll forward

 G - Reorganize table

 L - Load

 N - Rename table space

 O - Drop table space

 Q - Quiesce

 R - Restore

 T - Alter table space

 U - Unload

 X - Archive log

Type

Archive Log types:

 P - Primary log path

 M - Secondary (mirror) log path

 N - Archive log command

 F - Failover archive path

 1 - Primary log archive method

 2 - Secondary log archive method

Backup types:

 F - Offline

 N - Online

 I - Incremental offline

 O - Incremental online

 D - Delta offline

 E - Delta online

 R - Rebuild

Rollforward types:

 E - End of logs

 P - Point in time

Load types:

 I - Insert

 R - Replace

Alter table space types:

 C - Add containers

 R - Rebalance

Quiesce types:

 S - Quiesce share

 U - Quiesce update

 X - Quiesce exclusive

 Z - Quiesce reset

 Related concepts:

v “Developing a backup and recovery strategy” on page 3

LIST HISTORY

328 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Related reference:

v “DB_HISTORY administrative view – Retrieve history file information” in

Administrative SQL Routines and Views

PRUNE HISTORY/LOGFILE

Used to delete entries from the recovery history file or to delete log files from the

active log file path. Deleting entries from the recovery history file might be

necessary if the file becomes excessively large and the retention period is high.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

v dbadm

 Required connection:

 Database

 Command syntax:

�� PRUNE HISTORY timestamp

WITH FORCE OPTION

AND DELETE

LOGFILE PRIOR TO

log-file-name

 ��

 Command parameters:

HISTORY timestamp

Identifies a range of entries in the recovery history file that will be deleted.

A complete time stamp (in the form yyyymmddhhmmss), or an initial prefix

(minimum yyyy) can be specified. All entries with time stamps equal to or

less than the time stamp provided are deleted from the recovery history

file.

WITH FORCE OPTION

Specifies that the entries will be pruned according to the time stamp

specified, even if some entries from the most recent restore set are deleted

from the file. A restore set is the most recent full database backup

including any restores of that backup image. If this parameter is not

specified, all entries from the backup image forward will be maintained in

the history.

AND DELETE

Specifies that the associated log archives will be physically deleted (based

on the location information) when the history file entry is removed. This

option is especially useful for ensuring that archive storage space is

recovered when log archives are no longer needed. If you are archiving

logs via a user exit program, the logs cannot be deleted using this option.

LOGFILE PRIOR TO log-file-name

Specifies a string for a log file name, for example S0000100.LOG. All log

LIST HISTORY

Appendix C. Additional DB2 commands 329

DB2 9 BETA

files prior to (but not including) the specified log file will be deleted. The

LOGRETAIN database configuration parameter must be set to RECOVERY or

CAPTURE.

 Examples:

 To remove the entries for all restores, loads, table space backups, and full database

backups taken before and including December 1, 1994 from the recovery history

file, enter:

 db2 prune history 199412

199412 is interpreted as 19941201000000.

 Usage notes:

 If the FORCE option is used, you might delete entries that are required for

automatic restoration of databases. Manual restores will still work correctly. Use of

this command can also prevent the dbckrst utility from being able to correctly

analyze the complete chain of required backup images. Using the PRUNE

HISTORY command without the FORCE option prevents required entries from

being deleted.

Pruning backup entries from the history file causes related file backups on DB2

Data Links Manager servers to be deleted.

 Related concepts:

v “Developing a backup and recovery strategy” on page 3

 Related reference:

v “PRUNE HISTORY/LOGFILE command using the ADMIN_CMD procedure” in

Administrative SQL Routines and Views

REWIND TAPE

Rewinds tapes for backup and restore operations to streaming tape devices. This

command is only supported on Windows operating systems.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

 Required connection:

 None.

 Command syntax:

�� REWIND TAPE

ON

device
 ��

 Command parameters:

PRUNE HISTORY/LOGFILE

330 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

ON device

Specifies a valid tape device name. The default value is \\.\TAPE0.

 Related reference:

v “INITIALIZE TAPE ” on page 325

v “SET TAPE POSITION ” on page 331

v “REWIND TAPE command using the ADMIN_CMD procedure” in

Administrative SQL Routines and Views

SET TAPE POSITION

Sets the positions of tapes for backup and restore operations to streaming tape

devices. This command is only supported on Windows operating systems.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

 Required connection:

 None.

 Command syntax:

�� SET TAPE POSITION

ON

device
 TO position ��

 Command parameters:

ON device

Specifies a valid tape device name. The default value is \\.\TAPE0.

TO position

Specifies the mark at which the tape is to be positioned. DB2 for Windows

writes a tape mark after every backup image. A value of 1 specifies the

first position, 2 specifies the second position, and so on. If the tape is

positioned at tape mark 1, for example, archive 2 is positioned to be

restored.

 Related reference:

v “ADMIN_CMD procedure – Run administrative commands” in Administrative

SQL Routines and Views

v “SET TAPE POSITION command using the ADMIN_CMD procedure” in

Administrative SQL Routines and Views

v “INITIALIZE TAPE ” on page 325

v “REWIND TAPE ” on page 330

REWIND TAPE

Appendix C. Additional DB2 commands 331

DB2 9 BETA

UPDATE HISTORY

Updates the location, device type, comment, or status in a history file entry.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

v dbadm

 Required connection:

 Database

 Command syntax:

�� UPDATE HISTORY FOR object-part

EID

eid
 WITH �

� LOCATION new-location DEVICE TYPE new-device-type

COMMENT

new-comment

STATUS

new-status

 ��

 Command parameters:

FOR object-part

Specifies the identifier for the history entry to be updated. It is a time

stamp with an optional sequence number from 001 to 999. This parameter

cannot be used to update the entry status. To update the entry status,

specify an EID instead.

EID eid

Specifies the history entry ID.

LOCATION new-location

Specifies the new physical location of a backup image. The interpretation

of this parameter depends on the device type.

DEVICE TYPE new-device-type

Specifies a new device type for storing the backup image. Valid device

types are:

D Disk

K Diskette

T Tape

A TSM

U User exit

P Pipe

N Null device

X XBSA

Q SQL statement

UPDATE HISTORY

332 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

O Other

COMMENT new-comment

Specifies a new comment to describe the entry.

STATUS new-status

Specifies a new status for an entry. Only backup entries can have their

status updated. Valid values are:

A Active. Most entries are active.

I Inactive. Backup images that are no longer on the active log chain

become inactive.

E Expired. Backup images that are no longer required because there

are more than NUM_DB_BACKUPS active images are flagged as

expired.

D Deleted. Backup images that are no longer available for recovery

should be marked as having been deleted.

 Example:

 To update the history file entry for a full database backup taken on April 13, 1997

at 10:00 a.m., enter:

 db2 update history for 19970413100000001 with

 location /backup/dbbackup.1 device type d

 Usage notes:

 The primary purpose of the database history file is to record information, but the

data contained in the history is used directly by automatic restore operations.

During any restore where the AUTOMATIC option is specified, the history of

backup images and their locations will be referenced and used by the restore

utility to fulfill the automatic restore request. If the automatic restore function is to

be used and backup images have been relocated since they were created, it is

recommended that the database history record for those images be updated to

reflect the current location. If the backup image location in the database history is

not updated, automatic restore will not be able to locate the backup images, but

manual restore commands can still be used successfully.

 Related concepts:

v “Developing a backup and recovery strategy” on page 3

 Related reference:

v “ADMIN_CMD procedure – Run administrative commands” in Administrative

SQL Routines and Views

v “UPDATE HISTORY command using the ADMIN_CMD procedure” in

Administrative SQL Routines and Views

UPDATE HISTORY

Appendix C. Additional DB2 commands 333

DB2 9 BETA

UPDATE HISTORY

334 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Appendix D. Additional APIs and associated data structures

This appendix describes recovery-related APIs and their data structures that are

not discussed in detail in this manual.

db2ArchiveLog - Archive the active log file

 Closes and truncates the active log file for a recoverable database. If user exit is

enabled, it also issues an archive request.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

v dbadm

 Required connection:

 This API automatically establishes a connection to the specified database. If a

connection to the specified database already exists, the API will return an error.

 API include file:

db2ApiDf.h

 API and data structure syntax:

SQL_API_RC SQL_API_FN

 db2ArchiveLog (

 db2Uint32 versionNumber,

 void * pDB2ArchiveLogStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ArchiveLogStruct

{

 char *piDatabaseAlias;

 char *piUserName;

 char *piPassword;

 db2Uint16 iAllNodeFlag;

 db2Uint16 iNumNodes;

 SQL_PDB_NODE_TYPE *piNodeList;

 db2Uint32 iOptions;

} db2ArchiveLogStruct;

SQL_API_RC SQL_API_FN

 db2gArchiveLog (

 db2Uint32 versionNumber,

 void * pDB2ArchiveLogStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gArchiveLogStruct

{

 db2Uint32 iAliasLen;

 db2Uint32 iUserNameLen;

 db2Uint32 iPasswordLen;

© Copyright IBM Corp. 2001, 2006 335

DB2 9 BETA

char *piDatabaseAlias;

 char *piUserName;

 char *piPassword;

 db2Uint16 iAllNodeFlag;

 db2Uint16 iNumNodes;

 SQL_PDB_NODE_TYPE *piNodeList;

 db2Uint32 iOptions;

} db2gArchiveLogStruct;

 db2ArchiveLog API parameters:

 versionNumber

Input. Specifies the version and release level of the variable passed in as

the second parameter, pDB2ArchiveLogStruct.

pDB2ArchiveLogStruct

Input. A pointer to the db2ArchiveLogStruct structure.

pSqlca

Output. A pointer to the sqlca structure.

 db2ArchiveLogStruct data structure parameters:

 piDatabaseAlias

Input. A string containing the database alias (as cataloged in the system

database directory) of the database for which the active log is to be

archived.

piUserName

Input. A string containing the user name to be used when attempting a

connection.

piPassword

Input. A string containing the password to be used when attempting a

connection.

iAllNodeFlag

Applicable to partitioned database environment only. Input. Flag indicating

whether the operation should apply to all nodes listed in the db2nodes.cfg

file. Valid values are:

DB2ARCHIVELOG_NODE_LIST

Apply to nodes in a node list that is passed in piNodeList.

DB2ARCHIVELOG_ALL_NODES

Apply to all nodes. piNodeList should be NULL. This is the

default value.

DB2ARCHIVELOG_ALL_EXCEPT

Apply to all nodes except those in the node list passed in

piNodeList.

iNumNodes

Partitioned database environment only. Input. Specifies the number of

nodes in the piNodeList array.

piNodeList

Partitioned database environment only. Input. A pointer to an array of

node numbers against which to apply the archive log operation.

iOptions

Input. Reserved for future use.

 db2gArchiveLogStruct data structure specific parameters:

db2ArchiveLog - Archive the active log file

336 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

iAliasLen

Input. A 4-byte unsigned integer representing the length in bytes of the

database alias.

iUserNameLen

Input. A 4-byte unsigned integer representing the length in bytes of the

user name. Set to zero if no user name is used.

iPasswordLen

Input. A 4-byte unsigned integer representing the length in bytes of the

password. Set to zero if no password is used.

 Related reference:

v “ARCHIVE LOG ” on page 323

v “SQLCA data structure” in Administrative API Reference

db2HistoryCloseScan - End the history file scan

 Ends a history file scan and frees DB2 resources required for the scan. This API

must be preceded by a successful call to thedb2HistoryOpenScan API.

 Authorization:

 None

 Required connection:

 Instance. It is not necessary to call the sqleatin API before calling this API.

 API include file:

db2ApiDf.h

 API and data structure syntax:

SQL_API_RC SQL_API_FN

 db2HistoryCloseScan (

 db2Uint32 versionNumber,

 void * piHandle,

 struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN

 db2gHistoryCloseScan (

 db2Uint32 versionNumber,

 void * piHandle,

 struct sqlca * pSqlca);

 db2HistoryCloseScan API parameters:

 versionNumber

Input. Specifies the version and release level of the second parameter,

piHandle.

piHandle

Input. Specifies a pointer to the handle for scan access that was returned

by the db2HistoryOpenScan API.

pSqlca

Output. A pointer to the sqlca structure.

 Usage notes:

db2ArchiveLog - Archive the active log file

Appendix D. Additional APIs and associated data structures 337

DB2 9 BETA

For a detailed description of the use of the history file APIs, refer to the

db2HistoryOpenScan API.

 REXX API syntax:

CLOSE RECOVERY HISTORY FILE :scanid

 REXX API parameters:

 scanid Host variable containing the scan identifier returned from OPEN

RECOVERY HISTORY FILE SCAN.

 Related reference:

v “LIST HISTORY ” on page 326

v “db2HistoryGetEntry - Get the next entry in the history file” on page 338

v “db2HistoryOpenScan - Start a history file scan” on page 341

v “db2HistoryUpdate - Update a history file entry” on page 345

v “db2Prune - Delete the history file entries or log files from the active log path”

on page 348

v “SQLCA data structure” in Administrative API Reference

 Related samples:

v “dbrecov.sqc -- How to recover a database (C)”

v “dbrecov.sqC -- How to recover a database (C++)”

db2HistoryGetEntry - Get the next entry in the history file

 Gets the next entry from the history file. This API must be preceded by a

successful call to the db2HistoryOpenScan API.

 Authorization:

 None

 Required connection:

 Instance. It is not necessary to call sqleatin before calling this API.

 API include file:

db2ApiDf.h

 API and data structure syntax:

SQL_API_RC SQL_API_FN

 db2HistoryGetEntry (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2HistoryGetEntryStruct

{

 struct db2HistoryData *pioHistData;

 db2Uint16 iHandle;

 db2Uint16 iCallerAction;

} db2HistoryGetEntryStruct;

SQL_API_RC SQL_API_FN

db2HistoryCloseScan - End the history file scan

338 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

db2gHistoryGetEntry (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

 db2HistoryGetEntry API parameters:

 versionNumber

Input. Specifies the version and release level of the structure passed in as

the second parameter, pParmStruct.

pParmStruct

Input. A pointer to the db2HistoryGetEntryStruct structure.

pSqlca

Output. A pointer to the sqlca structure.

 db2HistoryGetEntryStruct data structure parameters:

 pioHistData

Input. A pointer to the db2HistData structure.

iHandle

Input. Contains the handle for scan access that was returned by the

db2HistoryOpenScan API.

iCallerAction

Input. Specifies the type of action to be taken. Valid values (defined in

db2ApiDf header file, located in the include directory) are:

DB2HISTORY_GET_ENTRY

Get the next entry, but without any command data.

DB2HISTORY_GET_DDL

Get only the command data from the previous fetch.

DB2HISTORY_GET_ALL

Get the next entry, including all data.

 Usage notes:

 The records that are returned will have been selected using the values specified in

the call to the db2HistoryOpenScan API.

For a detailed description of the use of the history file APIs, refer to the

db2HistoryOpenScan API.

 REXX API syntax:

GET RECOVERY HISTORY FILE ENTRY :scanid [USING :value]

 REXX API parameters:

 scanid Host variable containing the scan identifier returned from OPEN

RECOVERY HISTORY FILE SCAN.

value A compound REXX host variable into which the history file entry

information is returned. In the following, XXX represents the host variable

name:

XXX.0 Number of first level elements in the variable (always 15)

XXX.1 Number of table space elements

db2HistoryGetEntry - Get the next entry in the history file

Appendix D. Additional APIs and associated data structures 339

DB2 9 BETA

XXX.2 Number of used table space elements

XXX.3 OPERATION (type of operation performed)

XXX.4 OBJECT (granularity of the operation)

XXX.5 OBJECT_PART (time stamp and sequence number)

XXX.6 OPTYPE (qualifier of the operation)

XXX.7 DEVICE_TYPE (type of device used)

XXX.8 FIRST_LOG (earliest log ID)

XXX.9 LAST_LOG (current log ID)

XXX.10

BACKUP_ID (identifier for the backup)

XXX.11

SCHEMA (qualifier for the table name)

XXX.12

TABLE_NAME (name of the loaded table)

XXX.13.0

NUM_OF_TABLESPACES (number of table spaces involved in

backup or restore)

XXX.13.1

Name of the first table space backed up/restored

XXX.13.2

Name of the second table space backed up/restored

XXX.13.3

and so on

XXX.14

LOCATION (where backup or copy is stored)

XXX.15

COMMENT (text to describe the entry).

 Related reference:

v “LIST HISTORY ” on page 326

v “db2HistoryData ” on page 360

v “db2HistoryCloseScan - End the history file scan” on page 337

v “db2HistoryOpenScan - Start a history file scan” on page 341

v “db2HistoryUpdate - Update a history file entry” on page 345

v “db2Prune - Delete the history file entries or log files from the active log path”

on page 348

v “SQLCA data structure” in Administrative API Reference

v “DB_HISTORY administrative view – Retrieve history file information” in

Administrative SQL Routines and Views

 Related samples:

v “dbrecov.sqc -- How to recover a database (C)”

v “dbrecov.sqC -- How to recover a database (C++)”

db2HistoryGetEntry - Get the next entry in the history file

340 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

db2HistoryOpenScan - Start a history file scan

 This API starts a history file scan.

 Authorization:

 None

 Required connection:

 Instance. If the database is cataloged as remote, call the sqleatin API before calling

this API.

 API include file:

db2ApiDf.h

 API and data structure syntax:

SQL_API_RC SQL_API_FN

 db2HistoryOpenScan (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2HistoryOpenStruct

{

 char *piDatabaseAlias;

 char *piTimestamp;

 char *piObjectName;

 db2Uint32 oNumRows;

 db2Uint32 oMaxTbspaces;

 db2Uint16 iCallerAction;

 db2Uint16 oHandle;

} db2HistoryOpenStruct;

SQL_API_RC SQL_API_FN

 db2gHistoryOpenScan (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gHistoryOpenStruct

{

 char *piDatabaseAlias;

 char *piTimestamp;

 char *piObjectName;

 db2Uint32 iAliasLen;

 db2Uint32 iTimestampLen;

 db2Uint32 iObjectNameLen;

 db2Uint32 oNumRows;

 db2Uint32 oMaxTbspaces;

 db2Uint16 iCallerAction;

 db2Uint16 oHandle;

} db2gHistoryOpenStruct;

 db2HistoryOpenScan API parameters:

 versionNumber

Input. Specifies the version and release level of the structure passed in as

the second parameter, pParmStruct.

pParmStruct

Input or Output. A pointer to the db2HistoryOpenStruct data structure.

db2HistoryOpenScan - Start a history file scan

Appendix D. Additional APIs and associated data structures 341

DB2 9 BETA

pSqlca

Output. A pointer to the sqlca structure.

 db2HistoryOpenStruct data structure parameters:

 piDatabaseAlias

Input. A pointer to a string containing the database alias.

piTimestamp

Input. A pointer to a string specifying the time stamp to be used for

selecting records. Records whose time stamp is equal to or greater than this

value are selected. Setting this parameter to NULL, or pointing to zero,

prevents the filtering of entries using a time stamp.

piObjectName

Input. A pointer to a string specifying the object name to be used for

selecting records. The object may be a table or a table space. If it is a table,

the fully qualified table name must be provided. Setting this parameter to

NULL, or pointing to zero, prevents the filtering of entries using the object

name.

oNumRows

Output. Upon return from the API call, this parameter contains the number

of matching history file entries.

oMaxTbspaces

Output. The maximum number of table space names stored with any

history entry.

iCallerAction

Input. Specifies the type of action to be taken. Valid values (defined in

db2ApiDf header file, located in the include directory) are:

DB2HISTORY_LIST_HISTORY

Lists all events that are currently logged in the history file.

DB2HISTORY_LIST_BACKUP

Lists backup and restore operations.

DB2HISTORY_LIST_ROLLFORWARD

Lists rollforward operations.

DB2HISTORY_LIST_DROPPED_TABLE

Lists dropped table records. The DDL field associated with an

entry is not returned. To retrieve the DDL information for an entry,

db2HistoryGetEntry must be called with a caller action of

DB2HISTORY_GET_DDL immediately after the entry is fetched.

DB2HISTORY_LIST_LOAD

Lists load operations.

DB2HISTORY_LIST_CRT_TABLESPACE

Lists table space create and drop operations.

DB2HISTORY_LIST_REN_TABLESPACE

Lists table space renaming operations.

DB2HISTORY_LIST_ALT_TABLESPACE

Lists alter table space operations. The DDL field associated with an

entry is not returned. To retrieve the DDL information for an entry,

db2HistoryGetEntry must be called with a caller action of

DB2HISTORY_GET_DDL immediately after the entry is fetched.

db2HistoryOpenScan - Start a history file scan

342 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

DB2HISTORY_LIST_REORG

Lists REORGANIZE TABLE operations. This value is not currently

supported.

oHandle

Output. Upon return from the API, this parameter contains the handle for

scan access. It is subsequently used in the db2HistoryGetEntry, and

db2HistoryCloseScan APIs.

 db2gHistoryOpenStruct data structure specific parameters:

 iAliasLen

Input. Specifies the length in bytes of the database alias string.

iTimestampLen

Input. Specifies the length in bytes of the timestamp string.

iObjectNameLen

Input. Specifies the length in bytes of the object name string.

 Usage notes:

 The combination of time stamp, object name and caller action can be used to filter

records. Only records that pass all specified filters are returned.

The filtering effect of the object name depends on the value specified:

v Specifying a table will return records for load operations, because this is the only

information for tables in the history file.

v Specifying a table space will return records for backup, restore, and load

operations for the table space.

Note: To return records for tables, they must be specified as schema.tablename.

Specifying tablename will only return records for table spaces.

A maximum of eight history file scans per process is permitted.

To list every entry in the history file, a typical application will perform the

following steps:

1. Call the db2HistoryOpenScan API, which returns parameter value oNumRows.

2. Allocate a db2HistData structure with space for n oTablespace fields, where n is

an arbitrary number.

3. Set the iNumTablespaces field of the db2HistoryData structure to n.

4. In a loop, perform the following:

v Call the db2HistoryGetEntry API to fetch from the history file.

v If db2HistoryGetEntry API returns an SQLCODE value of SQL_RC_OK, use

the oNumTablespaces field of the db2HistoryData structure to determine the

number of table space entries returned.

v If db2HistoryGetEntry API returns an SQLCODE value of

SQLUH_SQLUHINFO_VARS_WARNING, not enough space has been

allocated for all of the table spaces that DB2 is trying to return; free and

reallocate the db2HistoryData structure with enough space for

oDB2UsedTablespace table space entries, and set iDB2NumTablespace to

oDB2UsedTablespace.

v If db2HistoryGetEntry API returns an SQLCODE value of

SQLE_RC_NOMORE, all history file entries have been retrieved.

db2HistoryOpenScan - Start a history file scan

Appendix D. Additional APIs and associated data structures 343

DB2 9 BETA

v Any other SQLCODE indicates a problem.
5. When all of the information has been fetched, call the db2HistoryCloseScan API

to free the resources allocated by the call to db2HistoryOpenScan.

The macro SQLUHINFOSIZE(n) (defined in sqlutil header file) is provided to help

determine how much memory is required for a db2HistoryData structure with

space for n oTablespace entries.

 REXX API syntax:

OPEN [BACKUP] RECOVERY HISTORY FILE FOR database_alias

[OBJECT objname] [TIMESTAMP :timestamp]

USING :value

 REXX API parameters:

 database_alias

The alias of the database that is to have its history file listed.

objname

Specifies the object name to be used for selecting records. The object may

be a table or a table space. If it is a table, the fully qualified table name

must be provided. Setting this parameter to NULL prevents the filtering of

entries using objname.

timestamp

Specifies the time stamp to be used for selecting records. Records whose

time stamp is equal to or greater than this value are selected. Setting this

parameter to NULL prevents the filtering of entries using timestamp.

value A compound REXX host variable to which history file information is

returned. In the following, XXX represents the host variable name.

XXX.0 Number of elements in the variable (always 2)

XXX.1 Identifier (handle) for future scan access

XXX.2 Number of matching history file entries.

 Related reference:

v “LIST HISTORY ” on page 326

v “db2HistoryCloseScan - End the history file scan” on page 337

v “db2HistoryGetEntry - Get the next entry in the history file” on page 338

v “db2HistoryUpdate - Update a history file entry” on page 345

v “db2Prune - Delete the history file entries or log files from the active log path”

on page 348

v “SQLCA data structure” in Administrative API Reference

 Related samples:

v “dbrecov.sqc -- How to recover a database (C)”

v “dbrecov.sqC -- How to recover a database (C++)”

db2HistoryOpenScan - Start a history file scan

344 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

db2HistoryUpdate - Update a history file entry

 Updates the location, device type, or comment in a history file entry.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

v dbadm

 Required connection:

 Database. To update entries in the history file for a database other than the default

database, a connection to the database must be established before calling this API.

 API include file:

db2ApiDf.h

 API and data structure syntax:

SQL_API_RC SQL_API_FN

 db2HistoryUpdate (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2HistoryUpdateStruct

{

 char *piNewLocation;

 char *piNewDeviceType;

 char *piNewComment;

 char *piNewStatus;

 db2HistoryEID iEID;

} db2HistoryUpdateStruct;

typedef SQL_STRUCTURE db2HistoryEID

{

 SQL_PDB_NODE_TYPE ioNode;

 db2Uint32 ioHID;

} db2HistoryEID;

SQL_API_RC SQL_API_FN

 db2gHistoryUpdate (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gHistoryUpdateStruct

{

 char *piNewLocation;

 char *piNewDeviceType;

 char *piNewComment;

 char *piNewStatus;

 db2Uint32 iNewLocationLen;

 db2Uint32 iNewDeviceLen;

 db2Uint32 iNewCommentLen;

 db2Uint32 iNewStatusLen;

 db2HistoryEID iEID;

} db2gHistoryUpdateStruct;

db2HistoryUpdate - Update a history file entry

Appendix D. Additional APIs and associated data structures 345

DB2 9 BETA

db2HistoryUpdate API parameters:

 versionNumber

Input. Specifies the version and release level of the structure passed in as

the second parameter, pParmStruct.

pParmStruct

Input. A pointer to the db2HistoryUpdateStruct structure.

pSqlca

Output. A pointer to the sqlca structure.

 db2HistoryUpdateStruct data structure parameters:

 piNewLocation

Input. A pointer to a string specifying a new location for the backup,

restore, or load copy image. Setting this parameter to NULL, or pointing to

zero, leaves the value unchanged.

piNewDeviceType

Input. A pointer to a string specifying a new device type for storing the

backup, restore, or load copy image. Setting this parameter to NULL, or

pointing to zero, leaves the value unchanged.

piNewComment

Input. A pointer to a string specifying a new comment to describe the

entry. Setting this parameter to NULL, or pointing to zero, leaves the

comment unchanged.

piNewStatus

Input. A pointer to a string specifying a new status type for the entry.

Setting this parameter to NULL, or pointing to zero, leaves the status

unchanged.

iEID Input. A unique identifier that can be used to update a specific entry in the

history file.

 db2HistoryEID data structure parameters:

 ioNode

This parameter can be used as either an input or output parameter.

 Indicates the node number.

ioHID This parameter can be used as either an input or output parameter.

 Indicates the local history file entry ID.

 db2gHistoryUpdateStruct data structure specific parameters:

 iNewLocationLen

Input. Specifies the length in bytes of the piNewLocation parameter.

iNewDeviceLen

Input. Specifies the length in bytes of the piNewDeviceType parameter.

iNewCommentLen

Input. Specifies the length in bytes of the piNewComment parameter.

iNewStatusLen

Input. Specifies the length in bytes of the piNewStatus paramter.

 Usage notes:

db2HistoryUpdate - Update a history file entry

346 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

This is an update function, and all information prior to the change is replaced and

cannot be recreated. These changes are not logged.

The primary purpose of the database history file is to record information, but the

data contained in the history is used directly by automatic restore operations.

During any restore where the AUTOMATIC option is specified, the history of

backup images and their locations will be referenced and used by the restore

utility to fulfill the automatic restore request. If the automatic restore function is to

be used and backup images have been relocated since they were created, it is

recommended that the database history record for those images be updated to

reflect the current location. If the backup image location in the database history is

not updated, automatic restore will not be able to locate the backup images, but

manual restore commands can still be used successfully.

 REXX API syntax:

UPDATE RECOVERY HISTORY USING :value

 REXX API parameters:

 value A compound REXX host variable containing information pertaining to the

new location of a history file entry. In the following, XXX represents the

host variable name:

XXX.0 Number of elements in the variable (must be between 1 and 4)

XXX.1 OBJECT_PART (time stamp with a sequence number from 001 to

999)

XXX.2 New location for the backup or copy image (this parameter is

optional)

XXX.3 New device used to store the backup or copy image (this

parameter is optional)

XXX.4 New comment (this parameter is optional).

 Related reference:

v “db2Backup - Back up a database or table space” on page 76

v “db2HistoryCloseScan - End the history file scan” on page 337

v “db2HistoryGetEntry - Get the next entry in the history file” on page 338

v “db2HistoryOpenScan - Start a history file scan” on page 341

v “db2Prune - Delete the history file entries or log files from the active log path”

on page 348

v “db2Rollforward - Roll forward a database” on page 177

v “SQLCA data structure” in Administrative API Reference

v “UPDATE HISTORY ” on page 332

 Related samples:

v “dbrecov.sqc -- How to recover a database (C)”

v “dbrecov.sqC -- How to recover a database (C++)”

db2HistoryUpdate - Update a history file entry

Appendix D. Additional APIs and associated data structures 347

DB2 9 BETA

db2Prune - Delete the history file entries or log files from the active

log path

 Deletes entries from the history file or log files from the active log path.

 Authorization:

 One of the following:

v sysadm

v sysctrl

v sysmaint

v dbadm

 Required connection:

 Database. To delete entries from the history file for any database other than the

default database, a connection to the database must be established before calling

this API.

 API include file:

db2ApiDf.h

 API and data structure syntax:

SQL_API_RC SQL_API_FN

 db2Prune (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2PruneStruct

{

 char *piString;

 db2HistoryEID iEID;

 db2Uint32 iAction;

 db2Uint32 iOptions;

} db2PruneStruct;

SQL_API_RC SQL_API_FN

 db2gPrune (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gPruneStruct

{

 db2Uint32 iStringLen;

 char *piString;

 db2HistoryEID iEID;

 db2Uint32 iAction;

 db2Uint32 iOptions;

} db2gPruneStruct;

 db2Prune API parameters:

 versionNumber

Input. Specifies the version and release level of the structure passed in as

the second parameter, pParmStruct.

db2Prune - Delete the history file entries or log files from the active log path

348 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

pParmStruct

Input. A pointer to the db2PruneStruct structure.

pSqlca

Output. A pointer to the sqlca structure.

 db2PruneStruct data structure parameters:

 piString

Input. A pointer to a string specifying a time stamp or a log sequence

number (LSN). The time stamp or part of a time stamp (minimum yyyy, or

year) is used to select records for deletion. All entries equal to or less than

the time stamp will be deleted. A valid time stamp must be provided; a

NULL parameter value is invalid.

 This parameter can also be used to pass an LSN, so that inactive logs can

be pruned.

iEID Input. Specifies a unique identifier that can be used to prune a single entry

from the history file.

iAction

Input. Specifies the type of action to be taken. Valid values (defined in

db2ApiDf header file, located in the include directory) are:

DB2PRUNE_ACTION_HISTORY

Remove history file entries.

DB2PRUNE_ACTION_LOG

Remove log files from the active log path.

iOptions

Input. Valid values (defined in db2ApiDf header file, located in the include

directory) are:

DB2PRUNE_OPTION_FORCE

Force the removal of the last backup.

DB2PRUNE_OPTION_DELETE

Delete log files that are pruned from the history file.

DB2PRUNE_OPTION_LSNSTRING

Specify that the value of piString is an LSN, used when a caller

action of DB2PRUNE_ACTION_LOG is specified.

 db2gPruneStruct data structure specific parameters:

 iStringLen

Input. Specifies the length in bytes of piString.

 Usage notes:

 Pruning the history file does not delete the actual backup or load files. The user

must manually delete these files to free up the space they consume on storage

media.

If the latest full database backup is deleted from the media (in addition to being

pruned from the history file), the user must ensure that all table spaces, including

the catalog table space and the user table spaces, are backed up. Failure to do so

may result in a database that cannot be recovered, or the loss of some portion of

the user data in the database.

db2Prune - Delete the history file entries or log files from the active log path

Appendix D. Additional APIs and associated data structures 349

DB2 9 BETA

REXX API syntax:

PRUNE RECOVERY HISTORY BEFORE :timestamp [WITH FORCE OPTION]

 REXX API parameters:

 timestamp

A host variable containing a time stamp. All entries with time stamps

equal to or less than the time stamp provided are deleted from the history

file.

WITH FORCE OPTION

If specified, the history file will be pruned according to the time stamp

specified, even if some entries from the most recent restore set are deleted

from the file. If not specified, the most recent restore set will be kept, even

if the time stamp is less than or equal to the time stamp specified as input.

 Related reference:

v “PRUNE HISTORY/LOGFILE ” on page 329

v “db2HistoryCloseScan - End the history file scan” on page 337

v “db2HistoryGetEntry - Get the next entry in the history file” on page 338

v “db2HistoryOpenScan - Start a history file scan” on page 341

v “db2HistoryUpdate - Update a history file entry” on page 345

v “SQLCA data structure” in Administrative API Reference

v “ADMIN_CMD procedure – Run administrative commands” in Administrative

SQL Routines and Views

 Related samples:

v “dbrecov.sqc -- How to recover a database (C)”

v “dbrecov.sqC -- How to recover a database (C++)”

db2ReadLogNoConn - Read the database logs without a database

connection

 Extracts log records from the DB2 database logs and queries the Log Manager for

current log state information. Prior to using this API, call the

db2ReadLogNoConnInit API to allocate the memory that is passed as an input

parameter to this API. After calling this API, call the db2ReadLogNoConnTerm API

to deallocate the memory.

 Authorization:

 None

 Required connection:

 None

 API include file:

db2ApiDf.h

 API and data structure syntax:

db2Prune - Delete the history file entries or log files from the active log path

350 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

SQL_API_RC SQL_API_FN

 db2ReadLogNoConn (

 db2Uint32 versionNumber,

 void * pDB2ReadLogNoConnStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ReadLogNoConnStruct

{

 db2Uint32 iCallerAction;

 SQLU_LSN *piStartLSN;

 SQLU_LSN *piEndLSN;

 char *poLogBuffer;

 db2Uint32 iLogBufferSize;

 char *piReadLogMemPtr;

 db2ReadLogNoConnInfoStruct *poReadLogInfo;

} db2ReadLogNoConnStruct;

typedef SQL_STRUCTURE db2ReadLogNoConnInfoStruct

{

 SQLU_LSN firstAvailableLSN;

 SQLU_LSN firstReadLSN;

 SQLU_LSN nextStartLSN;

 db2Uint32 logRecsWritten;

 db2Uint32 logBytesWritten;

 db2Uint32 lastLogFullyRead;

 db2TimeOfLog currentTimeValue;

} db2ReadLogNoConnInfoStruct;

 db2ReadLogNoConn API parameters:

 versionNumber

Input. Specifies the version and release level of the structure passed as the

second parameter, pDB2ReadLogNoConnStruct.

pDB2ReadLogNoConnStruct

Input. A pointer to the db2ReadLogNoConnStruct structure.

pSqlca

Output. A pointer to the sqlca structure.

 db2ReadLogNoConnStruct data structure parameters:

 iCallerAction

Input. Specifies the action to be performed. Valid values are:

DB2READLOG_READ

Read the database log from the starting log sequence to the ending

log sequence number and return log records within this range.

DB2READLOG_READ_SINGLE

Read a single log record (propagatable or not) identified by the

starting log sequence number.

DB2READLOG_QUERY

Query the database log. Results of the query will be sent back via

the db2ReadLogNoConnInfoStruct structure.

piStartLSN

Input. The starting log sequence number specifies the starting relative byte

address for the reading of the log. This value must be the start of an actual

log record.

piEndLSN

Input. The ending log sequence number specifies the ending relative byte

db2ReadLogNoConn - Read the database logs without a database connection

Appendix D. Additional APIs and associated data structures 351

DB2 9 BETA

address for the reading of the log. This value must be greater than

piStartLsn, and does not need to be the end of an actual log record.

poLogBuffer

Output. The buffer where all the propagatable log records read within the

specified range are stored sequentially. This buffer must be large enough to

hold a single log record. As a guideline, this buffer should be a minimum

of 32 bytes. Its maximum size is dependent on the size of the requested

range.

 Each log record in the buffer is prefixed by a six byte log sequence number

(LSN), representing the LSN of the following log record.

iLogBufferSize

Input. Specifies the size, in bytes, of the log buffer.

piReadLogMemPtr

Input. Block of memory of size iReadLogMemoryLimit that was allocated

in the initialization call. This memory contains persistent data that the API

requires at each invocation. This memory block must not be reallocated or

altered in any way by the caller.

poReadLogInfo

Output. A pointer to the db2ReadLogNoConnInfoStruct structure.

 db2ReadLogNoConnInfoStruct data structure parameters:

 firstAvailableLSN

First available LSN in available logs.

firstReadLSN

First LSN read on this call.

nextStartLSN

Next readable LSN.

logRecsWritten

Number of log records written to the log buffer field, poLogBuffer.

logBytesWritten

Number of bytes written to the log buffer field, poLogBuffer.

lastLogFullyRead

Number indicating the last log file that was read to completion.

currentTimeValue

Reserved for future use.

 Usage notes:

 The db2ReadLogNoConn API requires a memory block that must be allocated

using the db2ReadLogNoConnInit API. The memory block must be passed as an

input parameter to all subsequent db2ReadLogNoConn API calls, and must not be

altered.

When requesting a sequential read of log, the API requires a log sequence number

(LSN) range and the allocated memory . The API will return a sequence of log

records based on the filter option specified when initialized and the LSN range.

When requesting a query, the read log information structure will contain a valid

starting LSN, to be used on a read call. The value used as the ending LSN on a

read can be one of the following:

v A value greater than the caller-specified startLSN.

db2ReadLogNoConn - Read the database logs without a database connection

352 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

v FFFF FFFF FFFF which is interpreted by the asynchronous log reader as the end

of the available logs.

The propagatable log records read within the starting and ending LSN range are

returned in the log buffer. A log record does not contain its LSN, it is contained in

the buffer before the actual log record. Descriptions of the various DB2 log records

returned by db2ReadLogNoConn can be found in the DB2 Log Records section.

After the initial read, in order to read the next sequential log record, use the

nextStartLSN value returned in db2ReadLogNoConnInfoStruct. Resubmit the call,

with this new starting LSN and a valid ending LSN and the next block of records

is then read. An sqlca code of SQLU_RLOG_READ_TO_CURRENT means the log

reader has read to the end of the available log files.

When the API will no longer be used, use db2ReadLogNoConnTerm to terminate

the memory.

This API reads data from the DB2 logs. Label-based access control (LBAC) is not

enforced on such logs. Thus, an application that calls this API can potentially gain

access to table data if the caller has sufficient authority to call the API and is able

to understand the log records format.

 Related reference:

v “db2ReadLogNoConnInit - Initialize reading the database logs without a

database connection” on page 353

v “db2ReadLogNoConnTerm - Terminate reading the database logs without a

database connection” on page 355

v “DB2 log records” in Administrative API Reference

v “SQLCA data structure” in Administrative API Reference

v “db2ReadLog - Extracts log records” on page 356

db2ReadLogNoConnInit - Initialize reading the database logs without a

database connection

 Allocates the memory to be used by db2ReadLogNoConn in order to extract log

records from the DB2 database logs and query the Log Manager for current log

state information.

 Authorization:

 None

 Required connection:

 None

 API include file:

db2ApiDf.h

 API and data structure syntax:

SQL_API_RC SQL_API_FN

 db2ReadLogNoConnInit (

 db2Uint32 versionNumber,

 void * pDB2ReadLogNoConnInitStruct,

db2ReadLogNoConn - Read the database logs without a database connection

Appendix D. Additional APIs and associated data structures 353

DB2 9 BETA

struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ReadLogNoConnInitStruct

{

 db2Uint32 iFilterOption;

 char *piLogFilePath;

 char *piOverflowLogPath;

 db2Uint32 iRetrieveLogs;

 char *piDatabaseName;

 char *piNodeName;

 db2Uint32 iReadLogMemoryLimit;

 char **poReadLogMemPtr;

} db2ReadLogNoConnInitStruct;

 db2ReadLogNoConnInit API parameters:

 versionNumber

Input. Specifies the version and release level of the structure passed as the

second parameter pDB2ReadLogNoConnInitStruct.

pDB2ReadLogNoConnInitStruct

Input. A pointer to the db2ReadLogNoConnInitStruct structure.

pSqlca

Output. A pointer to the sqlca structure.

 db2ReadLogNoConnInitStruct data structure parameters:

 iFilterOption

Input. Specifies the level of log record filtering to be used when reading

the log records. Valid values are:

DB2READLOG_FILTER_OFF

Read all log records in the given LSN range.

DB2READLOG_FILTER_ON

Reads only log records in the given LSN range marked as

propagatable. This is the traditional behavior of the asynchronous

log read API.

piLogFilePath

Input. Path where the log files to be read are located.

piOverflowLogPath

Input. Alternate path where the log files to be read may be located.

iRetrieveLogs

Input. Option specifying if userexit should be invoked to retrieve log files

that cannot be found in either the log file path or the overflow log path.

Valid values are:

DB2READLOG_RETRIEVE_OFF

Userexit should not be invoked to retrieve missing log files.

DB2READLOG_RETRIEVE_LOGPATH

Userexit should be invoked to retrieve missing log files into the

specified log file path.

DB2READLOG_RETRIEVE_OVERFLOW

Userexit should be invoked to retrieve missing log files into the

specified overflow log path.

piDatabaseName

Input. Name of the database that owns the recovery logs being read. This

is required if the retrieve option above is specified.

db2ReadLogNoConnInit - Initialize reading the database logs without a database

connection

354 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

piNodeName

Input. Name of the node that owns the recovery logs being read. This is

required if the retrieve option above is specified.

iReadLogMemoryLimit

Input. Maximum number of bytes that the API may allocate internally.

poReadLogMemPtr

Output. API-allocated block of memory of size iReadLogMemoryLimit.

This memory contains persistent data that the API requires at each

invocation. This memory block must not be reallocated or altered in any

way by the caller.

 Usage notes:

 The memory initialized by db2ReadLogNoConnInit must not be altered.

When db2ReadLogNoConn will no longer be used, invoke

db2ReadLogNoConnTerm to deallocate the memory initialized by

db2ReadLogNoConnInit.

 Related reference:

v “db2ReadLogNoConn - Read the database logs without a database connection”

on page 350

v “db2ReadLogNoConnTerm - Terminate reading the database logs without a

database connection” on page 355

v “DB2 log records” in Administrative API Reference

v “SQLCA data structure” in Administrative API Reference

db2ReadLogNoConnTerm - Terminate reading the database logs

without a database connection

 Deallocates the memory used by the db2ReadLogNoConn API, originally

initialized by the db2ReadLogNoConnInit API.

 Authorization:

 None

 Required connection:

 None

 API include file:

db2ApiDf.h

 API and data structure syntax:

SQL_API_RC SQL_API_FN

 db2ReadLogNoConnTerm (

 db2Uint32 versionNumber,

 void * pDB2ReadLogNoConnTermStruct,

 struct sqlca * pSqlca);

db2ReadLogNoConnInit - Initialize reading the database logs without a database

connection

Appendix D. Additional APIs and associated data structures 355

DB2 9 BETA

typedef SQL_STRUCTURE db2ReadLogNoConnTermStruct

{

 char **poReadLogMemPtr;

} db2ReadLogNoConnTermStruct;

 db2ReadLogNoConnTerm API parameters:

 versionNumber

Input. Specifies the version and release level of the structure passed as the

second parameter pDB2ReadLogNoConnTermStruct.

pDB2ReadLogNoConnTermStruct

Input. A pointer to the db2ReadLogNoConnTermStruct structure.

pSqlca

Output. A pointer to the sqlca structure.

 db2ReadLogNoConnTermStruct data structure parameters:

 poReadLogMemPtr

Output. Pointer to the block of memory allocated in the initialization call.

This pointer will be freed and set to NULL.

 Related reference:

v “db2ReadLogNoConn - Read the database logs without a database connection”

on page 350

v “db2ReadLogNoConnInit - Initialize reading the database logs without a

database connection” on page 353

v “DB2 log records” in Administrative API Reference

v “SQLCA data structure” in Administrative API Reference

db2ReadLog - Extracts log records

 Extracts log records from the DB2 database logs and the Log Manager for current

log state information. This API can only be used with recoverable databases. A

database is recoverable if the database configuration parameters logarchmeth1

and/or logarchmeth2 are not set to OFF.

 Authorization:

 One of the following:

v sysadm

v dbadm

 Required connection:

 Database

 API include file:

db2ApiDf.h

 API and data structure syntax:

SQL_API_RC SQL_API_FN

 db2ReadLog (

 db2Uint32 versionNumber,

 void * pDB2ReadLogStruct,

 struct sqlca * pSqlca);

db2ReadLogNoConnTerm - Terminate reading the database logs without a database

connection

356 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

typedef SQL_STRUCTURE db2ReadLogStruct

{

 db2Uint32 iCallerAction;

 SQLU_LSN *piStartLSN;

 SQLU_LSN *piEndLSN;

 char *poLogBuffer;

 db2Uint32 iLogBufferSize;

 db2Uint32 iFilterOption;

 db2ReadLogInfoStruct *poReadLogInfo;

} db2ReadLogStruct;

typedef SQL_STRUCTURE db2ReadLogInfoStruct

{

 SQLU_LSN initialLSN;

 SQLU_LSN firstReadLSN;

 SQLU_LSN nextStartLSN;

 db2Uint32 logRecsWritten;

 db2Uint32 logBytesWritten;

 SQLU_LSN firstReusedLSN;

 db2Uint32 timeOfLSNReuse;

 db2TimeOfLog currentTimeValue;

} db2ReadLogInfoStruct;

typedef SQL_STRUCTURE db2TimeOfLog

{

 db2Uint32 seconds;

 db2Uint32 accuracy;

} db2TimeOfLog;

 db2ReadLog API parameters:

 versionNumber

Input. Specifies the version and release level of the structure passed as the

second parameter, pDB2ReadLogStruct.

pDB2ReadLogStruct

Input. A pointer to the db2ReadLogStruct structure.

pSqlca

Output. A pointer to the sqlca structure.

 db2ReadLogStruct data structure parameters:

 iCallerAction

Input. Specifies the action to be performed.

DB2READLOG_READ

Read the database log from the starting log sequence to the ending

log sequence number and return log records within this range.

DB2READLOG_READ_SINGLE

Read a single log record (propagatable or not) identified by the

starting log sequence number.

DB2READLOG_QUERY

Query the database log. Results of the query will be sent back via

the db2ReadLogInfoStruct structure.

piStartLsn

Input. The starting log sequence number specifies the starting relative byte

address for the reading of the log. This value must be the start of an actual

log record.

db2ReadLog - Extracts log records

Appendix D. Additional APIs and associated data structures 357

DB2 9 BETA

piEndLsn

Input. The ending log sequence number specifies the ending relative byte

address for the reading of the log. This value must be greater than the

startLsn parameter, and does not need to be the end of an actual log

record.

poLogBuffer

Output. The buffer where all the propagatable log records read within the

specified range are stored sequentially. This buffer must be large enough to

hold a single log record. As a guideline, this buffer should be a minimum

of 32 bytes. Its maximum size is dependent on the size of the requested

range. Each log record in the buffer is prefixed by a six byte log sequence

number (LSN), representing the LSN of the following log record.

iLogBufferSize

Input. Specifies the size, in bytes, of the log buffer.

iFilterOption

Input. Specifies the level of log record filtering to be used when reading

the log records. Valid values are:

DB2READLOG_FILTER_OFF

Read all log records in the given LSN range.

DB2READLOG_FILTER_ON

Reads only log records in the given LSN range marked as

propagatable. This is the traditional behavior of the asynchronous

log read API. The log records that are returned when this value is

used are documented in the ″DB2 log records″ topic. All other log

records are for IBM internal use only and are therefore not

documented.

poReadLogInfo

Output. A structure detailing information regarding the call and the

database log.

 db2ReadLogInfoStruct data structure parameters:

 initialLSN

The first LSN used, or that will be used, by the database since it was

activated.

firstReadLSN

The first LSN present in poLogBuffer parameter.

nextStartLSN

The start of the next log record the caller should read. Because some log

records can be filtered and not returned in poLogBuffer parameter, using

this LSN as the start of the next read instead of the end of the last log

record in poLogBuffer parameter will prevent rescanning log records which

have already been filtered.

logRecsWritten

The number of log records written to poLogBuffer parameter.

logBytesWritten

The total number of bytes of data written to poLogBuffer parameter.

firstReusedLSN

The first LSN to be reused due to a database restore or rollforward

operation.

db2ReadLog - Extracts log records

358 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

timeOfLSNReuse

The time at which the LSN represented by firstReusedLSN was reused.

The time is the number of seconds since January 1, 1970.

currentTimeValue

The current time according to the database.

 db2TimeOfLog data structure parameters:

 seconds

The number of seconds since Januray 1, 1970.

accuracy

A high accuracy counter which allows callers to distinguish the order of

events when comparing timestamps that occurred within the same second.

 Usage notes:

 If the requested action is to read the log, you must provide a log sequence number

range and a buffer to hold the log records. This API reads the log sequentially,

bounded by the requested LSN range, and returns log records associated with

tables defined with the DATA CAPTURE CHANGES clause, and a

db2ReadLogInfoStruct structure with the current active log information. If the

requested action is a query of the database log (indicated by specifying the value

DB2READLOG_QUERY), the API returns a db2ReadLogInfoStruct structure with

the current active log information.

To use the Asynchronous Log Reader, first query the database log for a valid

starting LSN. Following the query call, the read log information structure

(db2ReadLogInfoStruct) will contain a valid starting LSN (in the initialLSN

member), to be used on a read call. The value used as the ending LSN on a read

can be one of the following:

v A value greater than initialLSN

v FFFF FFFF FFFF, which is interpreted by the asynchronous log reader as the end

of the current log.

The propagatable log records that are read within the starting and ending LSN

range are returned in the log buffer. A log record does not contain its LSN; it is

contained in the buffer before the actual log record. Descriptions of the various

DB2 log records returned by db2ReadLog the DB2 Log Records section.

To read the next sequential log record after the initial read, use the nextStartLSN

field returned in the db2ReadLogStruct structure. Resubmit the call, with this new

starting LSN and a valid ending LSN. The next block of records is then read. An

sqlca code of SQLU_RLOG_READ_TO_CURRENT means that the log reader has

read to the end of the current active log.

This API reads data from the DB2 logs. Label-based access control (LBAC) is not

enforced on such logs. Thus, an application that calls this API can gain access to

table data if the caller has sufficient authority to call the API and is able to

understand the log records format.

The db2ReadLog API works on the current database connection. If multiple

database connections are created with the same process, then use the concurrent

access APIs to manage the multiple contexts.

db2ReadLog - Extracts log records

Appendix D. Additional APIs and associated data structures 359

DB2 9 BETA

Calling the db2ReadLog API from an application can result in an error when the

application disconnects from the database if a commit or rollback is not performed

before the disconnect:

v A CLI0116E error might be generated if the db2ReadLog API is called from a

CLI application.

v A SQL0428N error might be generated if the db2ReadLog API is called from an

embedded SQL application written in C.

Workaround 1: For non-embedded SQL applications, set autocommit mode on

before calling the db2ReadLog API.

Workaround 2: Issue a COMMIT or ROLLBACK statement after calling the

db2ReadLog API and before disconnecting from the database.

 Related reference:

v “db2ReadLogNoConnInit - Initialize reading the database logs without a

database connection” on page 353

v “db2ReadLogNoConnTerm - Terminate reading the database logs without a

database connection” on page 355

v “DB2 log records” in Administrative API Reference

v “SQLCA data structure” in Administrative API Reference

v “db2ReadLogNoConn - Read the database logs without a database connection”

on page 350

 Related samples:

v “dbrecov.sqc -- How to recover a database (C)”

v “dbrecov.sqC -- How to recover a database (C++)”

db2HistoryData

 This structure is used to return information after a call to the db2HistoryGetEntry

API.

 Table 4. Fields in the db2HistoryData Structure

Field Name Data Type Description

ioHistDataID char(8) An 8-byte structure identifier

and ″eye-catcher″ for storage

dumps. The only valid value

is SQLUHINF. No symbolic

definition for this string

exists.

db2ReadLog - Extracts log records

360 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Table 4. Fields in the db2HistoryData Structure (continued)

Field Name Data Type Description

oObjectPart db2Char The first 14 characters are a

time stamp with format

yyyymmddhhmmss,

indicating when the

operation was begun. The

next 3 characters are a

sequence number. Each

backup operation can result

in multiple entries in this file

when the backup image is

saved in multiple files or on

multiple tapes. The sequence

number allows multiple

locations to be specified.

Restore and load operations

have only a single entry in

this file, which corresponds

to sequence number ″001″ of

the corresponding backup.

The time stamp, combined

with the sequence number,

must be unique.

oEndTime db2Char A time stamp with format

yyyymmddhhmmss,

indicating when the

operation was completed.

oFirstLog db2Char The earliest log file ID

(ranging from S0000000 to

S9999999): - Required to

apply rollforward recovery

for an online backup -

Required to apply

rollforward recovery for an

offline backup - Applied

after restoring a full database

or table space level backup

that was current when the

load started.

oLastLog db2Char The latest log file ID

(ranging from S0000000 to

S9999999): - Required to

apply rollforward recovery

for an online backup -

Required to apply

rollforward recovery to the

current point in time for an

offline backup - Applied

after restoring a full database

or table space level backup

that was current when the

load operation finished (will

be the same as oFirstLog if

roll forward recovery is not

applied).

oID db2Char Unique backup or table

identifier.

db2HistoryData

Appendix D. Additional APIs and associated data structures 361

DB2 9 BETA

Table 4. Fields in the db2HistoryData Structure (continued)

Field Name Data Type Description

oTableQualifier db2Char Table qualifier.

oTableName db2Char Table name.

oLocation db2Char For backups and load copies,

this field indicates where the

data has been saved. For

operations that require

multiple entries in the file,

the sequence number defined

by oObjectPart parameter

identifies which part of the

backup is found in the

specified location. For restore

and load operations, the

location always identifies

where the first part of the

data restored or loaded

(corresponding to sequence

″001″ for multi-part backups)

has been saved. The data in

oLocation is interpreted

differently, depending on

oDeviceType parameter: - For

disk or diskette (D or K), a

fully qualified file name - For

tape (T), a volume label - For

TSM (A), the server name -

For user exit or other (U or

O), free form text.

oComment db2Char Free form text comment.

oCommandText db2Char Command text, or DDL.

oLastLSN SQLU_LSN Last log sequence number.

oEID Structure Unique entry identifier.

poEventSQLCA Structure Result sqlca of the recorded

event.

poTablespace db2Char A list of table space names.

iNumTablespaces db2Uint32 Number of entries in the

poTablespace list that are

available for use by the

db2HistoryGetEntry API.

db2HistoryData

362 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Table 4. Fields in the db2HistoryData Structure (continued)

Field Name Data Type Description

oNumTablespaces db2Uint32 Number of entries in the

poTablespace list that were

used by the

db2HistoryGetEntry API.

Each table space backup

contains one or more table

spaces. Each table space

restore operation replaces

one or more table spaces. If

this field is not zero

(indicating a table space level

backup or restore), the next

lines in this file contain the

name of the table space

backed up or restored,

represented by an

18-character string. One table

space name appears on each

line.

oOperation char See following table.

oObject char Granularity of the operation:

D for full database, P for

table space, and T for table.

oOptype char See the table titled ″Valid

oOptype Values in the

db2HistData Structure″.

oStatus char Entry status: A for action, D

for deleted ,E for expired, I

for inactive, N for not yet

committed, a for active

backup,but some datalink

servers have not yet

completed the backup, and i

for inactive backup, but

some datalink servers have

not yet completed the

backup

oDeviceType char Device type. This field

determines how the

oLocation field is interpreted:

A for TSM, C for client, D for

disk, K for diskette, L for

local, O for other (for other

vendor device support), P for

pipe, Q for cursor, S for

server, T for tape, and U for

user exit.

 Table 5. Valid oOperation Values in the db2HistoryData Structure

Value Description C Definition COBOL/FORTRAN Definition

A add table

space

DB2HISTORY_OP_ADD_

TABLESPACE

DB2HIST_OP_ADD_ TABLESPACE

B backup DB2HISTORY_OP_BACKUP DB2HIST_OP_BACKUP

C load copy DB2HISTORY_OP_LOAD_COPY DB2HIST_OP_LOAD_COPY

db2HistoryData

Appendix D. Additional APIs and associated data structures 363

DB2 9 BETA

Table 5. Valid oOperation Values in the db2HistoryData Structure (continued)

Value Description C Definition COBOL/FORTRAN Definition

D dropped

table

DB2HISTORY_OP_DROPPED_ TABLE DB2HIST_OP_DROPPED_TABLE

F rollforward DB2HISTORY_OP_ROLLFWD DB2HIST_OP_ROLLFWD

G reorganize

table

DB2HISTORY_OP_REORG DB2HIST_OP_REORG

L load DB2HISTORY_OP_LOAD DB2HIST_OP_LOAD

N rename table

space

DB2HISTORY_OP_REN_

TABLESPACE

DB2HIST_OP_REN_ TABLESPACE

O drop table

space

DB2HISTORY_OP_DROP_

TABLESPACE

DB2HIST_OP_DROP_ TABLESPACE

Q quiesce DB2HISTORY_OP_QUIESCE DB2HIST_OP_QUIESCE

R restore DB2HISTORY_OP_RESTORE DB2HIST_OP_RESTORE

T alter table

space

DB2HISTORY_OP_ALT_ TABLESPACE DB2HIST_OP_ALT_TBS

U unload DB2HISTORY_OP_UNLOAD DB2HIST_OP_UNLOAD

X log archive DB2HISTORY_OP_ARCHIVE_LOG DB2HIST_OP_ARCHIVE_LOG

 Table 6. Valid oOptype Values in the db2HistData Structure

oOperation oOptype Description C/COBOL/FORTRAN Definition

B F N I O D

E

offline, online,

incremental offline,

incremental online,

delta offline, delta

online

DB2HISTORY_OPTYPE_OFFLINE,

DB2HISTORY_OPTYPE_ONLINE,

DB2HISTORY_OPTYPE_INCR_OFFLINE,

DB2HISTORY_OPTYPE_INCR_ONLINE,

DB2HISTORY_OPTYPE_DELTA_OFFLINE,

DB2HISTORY_OPTYPE_DELTA_ONLINE

F E P end of logs, point in

time

DB2HISTORY_OPTYPE_EOL,

DB2HISTORY_OPTYPE_PIT

G F N offline, online DB2HISTORY_OPTYPE_OFFLINE,

DB2HISTORY_OPTYPE_ONLINE

L I R insert, replace DB2HISTORY_OPTYPE_INSERT,

DB2HISTORY_OPTYPE_REPLACE

Q S U X Z quiesce share, quiesce

update, quiesce

exclusive, quiesce reset

DB2HISTORY_OPTYPE_SHARE,

DB2HISTORY_OPTYPE_UPDATE,

DB2HISTORY_OPTYPE_EXCL,

DB2HISTORY_OPTYPE_RESET

R F N I O R offline, online,

incremental offline,

incremental online,

rebuild

DB2HISTORY_OPTYPE_OFFLINE,

DB2HISTORY_OPTYPE_ONLINE,

DB2HISTORY_OPTYPE_INCR_OFFLINE,

DB2HISTORY_OPTYPE_INCR_ONLINE,

DB2HISTORY_OPTYPE_REBUILD

T C R add containers,

rebalance

DB2HISTORY_OPTYPE_ADD_CONT,

DB2HISTORY_OPTYPE_REB

X N P M F 1

2

archive log command,

primary log path,

mirror log path, archive

fail path, log archive

method 1, log archive

method 2

DB2HISTORY_OPTYPE_ARCHIVE_CMD,

DB2HISTORY_OPTYPE_PRIMARY,

DB2HISTORY_OPTYPE_MIRROR,

DB2HISTORY_OPTYPE_ARCHFAIL,

DB2HISTORY_OPTYPE_ARCH1,

DB2HISTORY_OPTYPE_ARCH2

 Table 7. Fields in the db2HistoryEID Structure

Field Name Data Type Description

ioNode ioHID SQL_PDB_NODE_TYPE

db2Uint32

Node number. Local history

file entry ID.

db2HistoryData

364 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

API and data structure syntax:

typedef SQL_STRUCTURE db2HistoryData

{

 char ioHistDataID[8];

 db2Char oObjectPart;

 db2Char oEndTime;

 db2Char oFirstLog;

 db2Char oLastLog;

 db2Char oID;

 db2Char oTableQualifier;

 db2Char oTableName;

 db2Char oLocation;

 db2Char oComment;

 db2Char oCommandText;

 SQLU_LSN oLastLSN;

 db2HistoryEID oEID;

 struct sqlca *poEventSQLCA;

 struct db2Char *poTablespace;

 db2Uint32 iNumTablespaces;

 db2Uint32 oNumTablespaces;

 char oOperation;

 char oObject;

 char oOptype;

 char oStatus;

 char oDeviceType;

} db2HistoryData;

typedef SQL_STRUCTURE db2Char

{

 char *pioData;

 db2Uint32 iLength;

 db2Uint32 oLength;

} db2Char;

typedef SQL_STRUCTURE db2HistoryEID

{

 SQL_PDB_NODE_TYPE ioNode;

 db2Uint32 ioHID;

} db2HistoryEID;

 db2Char data structure parameters:

 pioData

A pointer to a character data buffer. If NULL, no data will be returned.

iLength

Input. The size of the pioData buffer.

oLength

Output. The number of valid characters of data in the pioData buffer.

 db2HistoryEID data structure parameters:

 ioNode

This parameter can be used as either an input or output parameter.

Indicates the node number.

ioHID This parameter can be used as either an input or output parameter.

Indicates the local history file entry ID.

 Related reference:

v “db2HistoryGetEntry - Get the next entry in the history file” on page 338

v “SQLCA data structure” in Administrative API Reference

db2HistoryData

Appendix D. Additional APIs and associated data structures 365

DB2 9 BETA

SQLU_LSN

 This union, used by the db2ReadLog API, contains the definition of the log

sequence number. A log sequence number (LSN) represents a relative byte address

within the database log. All log records are identified by this number. An LSN

represents the byte offset of the log record from the beginning of the database log.

 Table 8. Fields in the SQLU-LSN Union

Field Name Data Type Description

lsnChar Array of UNSIGNED CHAR Specifies the 6-member

character array log sequence

number.

lsnWord Array of UNSIGNED SHORT Specifies the 3-member short

array log sequence number.

 API and data structure syntax:

typedef union SQLU_LSN

{

 unsigned char lsnChar[6];

 unsigned short lsnWord[3];

} SQLU_LSN;

 Related reference:

v “db2ReadLog - Extracts log records” on page 356

SQLU_LSN

366 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Appendix E. Recovery sample programs

Sample programs with embedded SQL

The following sample programs shows how to use DB2 backup and restore APIs

to:

v Read and update a database recovery file entry

v Read database log files with a database connection

v Read database log files with no database connection

v Restore a database from a backup image

v Perform a rollforward operation after a database restore operation

Note: These sample files can be found in sqllib/samples/c and

sqllib/samples/cpp directory.

 dbredirect sample program:

 The dbredirect sample files show how to perform a redirected restore of database.

/**

** Licensed Materials - Property of IBM

**

** Governed under the terms of the International

** License Agreement for Non-Warranted Sample Code.

**

** (C) COPYRIGHT International Business Machines Corp. 2003

** All Rights Reserved.

**

** US Government Users Restricted Rights - Use, duplication or

** disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

**

** SOURCE FILE NAME: dbredirect.sqc

**

** SAMPLE: How to perform Redirected Restore of a database

**

** This program ends in ".sqc" even though it does not contain

** embedded SQL statements. It links in the embedded SQL utility

** file for database connection and disconnection, so it needs the

** embedded SQL extension for the precompiler.

**

** Note:

** You must be disconnected from the sample database to run

** this program. To ensure you are, enter ’db2 connect reset’

** on the command line prior to running dbredirect. If the target

** database for the redirected restore already exists, SQLCODE 2529

** will be displayed.

**

** DB2 API USED:

** db2CfgSet -- Set Configuration

** db2Restore -- Restore Database

**

** OUTPUT FILE: dbredirect.out (available in the online documentation)

**

** For detailed information about database backup and database recovery, see

** the Data Recovery and High Availability Guide and Reference. This manual

** will help you to determine which database and table space recovery methods

** are best suited to your business environment.

© Copyright IBM Corp. 2001, 2006 367

DB2 9 BETA

**

** For more information on the sample programs, see the README file.

**

** For information on developing C applications, see the Application

** Development Guide.

**

** For information on using SQL statements, see the SQL Reference.

**

** For information on DB2 APIs, see the Administrative API Reference.

**

** For the latest information on programming, building, and running DB2

** applications, visit the DB2 application development website:

** http://www.software.ibm.com/data/db2/udb/ad

**/

#include "utilrecov.c"

/* local function prototypes */

int DbBackupAndRedirectedRestore(char *, char *, char *, char *, char *);

/* support function called by DbBackupAndRedirectedRestore() */

int InaccessableContainersRedefine(char *);

int main(int argc, char *argv[])

{

 int rc = 0;

 char nodeName[SQL_INSTNAME_SZ + 1] = { 0 };

 char serverWorkingPath[SQL_PATH_SZ + 1] = { 0 };

 char redirectedRestoredDbAlias[SQL_ALIAS_SZ + 1] = { 0 };

 char dbAlias[SQL_ALIAS_SZ + 1] = { 0 };

 char user[USERID_SZ + 1] = { 0 };

 char pswd[PSWD_SZ + 1] = { 0 };

 /* check the command line arguments */

 rc = CmdLineArgsCheck3(argc, argv, dbAlias, nodeName, user, pswd);

 CHECKRC(rc, "CmdLineArgsCheck3");

 printf("\nTHIS SAMPLE SHOWS HOW TO PERFORM A REDIRECTED RESTORE\n");

 printf("FROM A DATABASE BACKUP.\n");

 strcpy(redirectedRestoredDbAlias, "RRDB");

 /* attach to a local or remote instance */

 rc = InstanceAttach(nodeName, user, pswd);

 CHECKRC(rc, "Instance Attach");

 /* get the server working path */

 rc = ServerWorkingPathGet(dbAlias, serverWorkingPath);

 CHECKRC(rc, "ServerWorkingPathGet");

 printf("\nNOTE: Backup images will be created on the server\n");

 printf(" in the directory %s,\n", serverWorkingPath);

 printf(" and will not be deleted by the program.\n");

 /* call the sample function */

 rc = DbRecoveryHistoryFilePrune(dbAlias, user, pswd);

 CHECKRC(rc, "DbRecoveryHistoryFilePrune");

 rc = DbBackupAndRedirectedRestore(dbAlias,

 redirectedRestoredDbAlias,

 user, pswd, serverWorkingPath);

 CHECKRC(rc, "DbBackupAndRedirectedRestore");

 /* Detach from the local or remote instance */

 rc = InstanceDetach(nodeName);

 CHECKRC(rc, "InstanceDetach");

 return 0;

Sample Programs with embedded SQL

368 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

} /* end main */

int DbBackupAndRedirectedRestore(char dbAlias[],

 char restoredDbAlias[],

 char user[],

 char pswd[], char serverWorkingPath[])

{

 int rc = 0;

 struct sqlca sqlca;

 db2CfgParam cfgParameters[1];

 db2Cfg cfgStruct;

 unsigned short logretain = 0;

 char restoreTimestamp[SQLU_TIME_STAMP_LEN + 1] = { 0 };

 db2BackupStruct backupStruct;

 db2TablespaceStruct tablespaceStruct;

 db2MediaListStruct mediaListStruct;

 db2Uint32 backupImageSize = 0;

 db2RestoreStruct restoreStruct;

 db2TablespaceStruct rtablespaceStruct;

 db2MediaListStruct rmediaListStruct;

 printf("\n**************************\n");

 printf("*** REDIRECTED RESTORE ***\n");

 printf("**************************\n");

 printf("\nUSE THE DB2 APIs:\n");

 printf(" db2CfgSet -- Upate Configuration\n");

 printf(" db2Backup -- Backup Database\n");

 printf(" sqlecrea -- Create Database\n");

 printf(" db2Restore -- Restore Database\n");

 printf(" sqlbmtsq -- Tablespace Query\n");

 printf(" sqlbtcq -- Tablespace Container Query\n");

 printf(" sqlbstsc -- Set Tablespace Containers\n");

 printf(" sqlefmem -- Free Memory\n");

 printf(" sqledrpd -- Drop Database\n");

 printf("TO BACK UP AND DO A REDIRECTED RESTORE OF A DATABASE.\n");

 printf("\n Update \’%s\’ database configuration:\n", dbAlias);

 printf(" - Disable the database configuration parameter LOGRETAIN \n");

 printf(" i.e., set LOGRETAIN = OFF/NO\n");

 /* initialize cfgParameters */

 /* SQLF_DBTN_LOG_RETAIN is a token of the updatable database configuration

 parameter ’logretain’; it is used to update the database configuration

 file */

 cfgParameters[0].flags = 0;

 cfgParameters[0].token = SQLF_DBTN_LOG_RETAIN;

 cfgParameters[0].ptrvalue = (char *)&logretain;

 /* disable the database configuration parameter ’logretain’ */

 logretain = SQLF_LOGRETAIN_DISABLE;

 /* initialize cfgStruct */

 cfgStruct.numItems = 1;

 cfgStruct.paramArray = cfgParameters;

 cfgStruct.flags = db2CfgDatabase | db2CfgDelayed;

 cfgStruct.dbname = dbAlias;

 /* get database configuration */

 db2CfgSet(db2Version810, (void *)&cfgStruct, &sqlca);

 DB2_API_CHECK("Db Log Retain -- Disable");

 /*******************************/

 /* BACK UP THE DATABASE */

 /*******************************/

Sample Programs with embedded SQL

Appendix E. Recovery sample programs 369

DB2 9 BETA

/* Calling up the routine for database backup */

 rc = DbBackup(dbAlias, user, pswd, serverWorkingPath, &backupStruct);

 CHECKRC(rc, "DbBackup");

 /******************************/

 /* RESTORE THE DATABASE */

 /******************************/

 strcpy(restoreTimestamp, backupStruct.oTimestamp);

 rtablespaceStruct.tablespaces = NULL;

 rtablespaceStruct.numTablespaces = 0;

 rmediaListStruct.locations = &serverWorkingPath;

 rmediaListStruct.numLocations = 1;

 rmediaListStruct.locationType = SQLU_LOCAL_MEDIA;

 restoreStruct.piSourceDBAlias = dbAlias;

 restoreStruct.piTargetDBAlias = restoredDbAlias;

 restoreStruct.piTimestamp = restoreTimestamp;

 restoreStruct.piTargetDBPath = NULL;

 restoreStruct.piReportFile = NULL;

 restoreStruct.piTablespaceList = &rtablespaceStruct;

 restoreStruct.piMediaList = &rmediaListStruct;

 restoreStruct.piUsername = user;

 restoreStruct.piPassword = pswd;

 restoreStruct.piNewLogPath = NULL;

 restoreStruct.piVendorOptions = NULL;

 restoreStruct.iVendorOptionsSize = 0;

 restoreStruct.iParallelism = 1;

 restoreStruct.iBufferSize = 1024; /* 1024 x 4KB */

 restoreStruct.iNumBuffers = 2;

 restoreStruct.iOptions = DB2RESTORE_OFFLINE | DB2RESTORE_DB |

 DB2RESTORE_NODATALINK | DB2RESTORE_NOROLLFWD;

 printf("\n Restoring a database ...\n");

 printf(" - source image alias : %s\n", dbAlias);

 printf(" - source image time stamp: %s\n", restoreTimestamp);

 printf(" - target database : %s\n", restoredDbAlias);

 restoreStruct.iCallerAction = DB2RESTORE_RESTORE_STORDEF;

 /* The API db2Restore is used to restore a database that has been backed

 up using the API db2Backup. */

 db2Restore(db2Version810, &restoreStruct, &sqlca);

 /* If restoring to a different database and restoreDbAlias already exists,

 SQLCODE 2529 is expected. */

 if (strcmp(dbAlias, restoredDbAlias))

 {

 printf("\n SQLCODE 2529 is expected if target database ’%s’ already exists\n",

 restoredDbAlias);

 }

 EXPECTED_WARN_CHECK("database restore -- start");

 while (sqlca.sqlcode != 0)

 {

 /* continue the restore operation */

 printf("\n Continuing the restore operation...\n");

 /* depending on the sqlca.sqlcode value, user action may be

 required, such as mounting a new tape */

 if (sqlca.sqlcode == SQLUD_INACCESSABLE_CONTAINER)

 {

 /* redefine the table space container layout */

Sample Programs with embedded SQL

370 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

printf("\n Find and redefine inaccessable containers.\n");

 rc = InaccessableContainersRedefine(serverWorkingPath);

 CHECKRC(rc, "InaccessableContainersRedefine");

 }

 restoreStruct.iCallerAction = DB2RESTORE_CONTINUE;

 /* restore the database */

 db2Restore(db2Version810, &restoreStruct, &sqlca);

 DB2_API_CHECK("database restore -- continue");

 }

 printf("\n Restore finished.\n");

 /* drop the restored database */

 rc = DbDrop(restoredDbAlias);

 CHECKRC(rc, "DbDrop");

 return 0;

} /* DbBackupAndRedirectedRestore */

int InaccessableContainersRedefine(char serverWorkingPath[])

{

 struct sqlca sqlca;

 sqluint32 numTablespaces = 0;

 struct SQLB_TBSPQRY_DATA **ppTablespaces = NULL;

 sqluint32 numContainers = 0;

 struct SQLB_TBSCONTQRY_DATA *pContainers = NULL;

 int tspNb = 0;

 int contNb = 0;

 char pathSep[2] = { 0 };

 /* The API sqlbmtsq provides a one-call interface to the table space query

 data. The query data for all table spaces in the database is returned

 in an array. */

 sqlbmtsq(&sqlca,

 &numTablespaces, &ppTablespaces, SQLB_RESERVED1, SQLB_RESERVED2);

 DB2_API_CHECK("tablespaces -- get");

 /* refedine the inaccessable containers */

 for (tspNb = 0; tspNb < numTablespaces; tspNb++)

 {

 /* The API sqlbtcq provides a one-call interface to the table space

 container query data. The query data for all the containers in a table

 space, or for all containers in all table spaces, is returned in an

 array. */

 sqlbtcq(&sqlca, ppTablespaces[tspNb]->id, &numContainers, &pContainers);

 DB2_API_CHECK("tablespace containers -- get");

 for (contNb = 0; contNb < numContainers; contNb++)

 {

 if (!pContainers[contNb].ok)

 {

 /* redefine inaccessable container */

 printf("\n Redefine inaccessable container:\n");

 printf(" - table space name: %s\n", ppTablespaces[tspNb]->name);

 printf(" - default container name: %s\n",

 pContainers[contNb].name);

 if (strstr(pContainers[contNb].name, "/"))

 { /* UNIX */

 strcpy(pathSep, "/");

 }

 else

 { /* Intel */

 strcpy(pathSep, "\\");

 }

 switch (pContainers[contNb].contType)

Sample Programs with embedded SQL

Appendix E. Recovery sample programs 371

DB2 9 BETA

{

 case SQLB_CONT_PATH:

 printf(" - container type: path\n");

 sprintf(pContainers[contNb].name, "%s%sSQLT%04d.%d",

 serverWorkingPath, pathSep,

 ppTablespaces[tspNb]->id, pContainers[contNb].id);

 printf(" - new container name: %s\n",

 pContainers[contNb].name);

 break;

 case SQLB_CONT_DISK:

 case SQLB_CONT_FILE:

 default:

 printf(" Unknown container type.\n");

 break;

 }

 }

 }

 /* The API sqlbstsc is used to set or redefine table space containers

 while performing a ’redirected’ restore of the database. */

 sqlbstsc(&sqlca,

 SQLB_SET_CONT_FINAL_STATE,

 ppTablespaces[tspNb]->id, numContainers, pContainers);

 DB2_API_CHECK("tablespace containers -- redefine");

 /* The API sqlefmem is used here to free memory allocated by DB2 for use

 with the API sqlbtcq (Tablespace Container Query). */

 sqlefmem(&sqlca, pContainers);

 DB2_API_CHECK("tablespace containers memory -- free");

 }

 /* The API sqlefmem is used here to free memory allocated by DB2 for

 use with the API sqlbmtsq (Tablespace Query). */

 sqlefmem(&sqlca, ppTablespaces);

 DB2_API_CHECK("tablespaces memory -- free");

 return 0;

} /* InaccessableContainersRedefine */

 dbhistfile sample program:

 The dbhistfile sample files show how to read and update a database recovery file

entry.

/**

** Licensed Materials - Property of IBM

**

** Governed under the terms of the International

** License Agreement for Non-Warranted Sample Code.

**

** (C) COPYRIGHT International Business Machines Corp. 2003

** All Rights Reserved.

**

** US Government Users Restricted Rights - Use, duplication or

** disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

**

** SOURCE FILE NAME: dbhistfile.sqc

**

** SAMPLE: How to read and update a database recovery history file entry.

**

** This program ends in ".sqc" even though it does not contain

** embedded SQL statements. It links in the embedded SQL utility

** file for database connection and disconnection, so it needs the

** embedded SQL extension for the precompiler.

**

Sample Programs with embedded SQL

372 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

** DB2 APIs USED:

** db2HistoryCloseScan -- Close Recovery History File Scan

** db2HistoryGetEntry -- Get Next Recovery History File Entry

** db2HistoryOpenScan -- Open Recovery History File Scan

** db2HistoryUpdate -- Update Recovery History File

**

** OUTPUT FILE: dbhistfile.out (available in the online documentation)

**

** For more information on the sample programs, see the README file.

**

** For information on developing C applications, see the Application

** Development Guide.

**

** For information on using SQL statements, see the SQL Reference.

**

** For information on DB2 APIs, see the Administrative API Reference.

**

** For the latest information on programming, building, and running DB2

** applications, visit the DB2 application development website:

** http://www.software.ibm.com/data/db2/udb/ad

**/

#include "utilrecov.c"

/* local function prototypes */

int DbRecoveryHistoryFileRead(char *);

int DbFirstRecoveryHistoryFileEntryUpdate(char *, char *, char *);

int HistoryEntryDataFieldsAlloc(struct db2HistoryData *);

int HistoryEntryDisplay(struct db2HistoryData);

int HistoryEntryDataFieldsFree(struct db2HistoryData *);

int main(int argc, char *argv[])

{

 int rc = 0;

 char nodeName[SQL_INSTNAME_SZ + 1] = { 0 };

 char serverWorkingPath[SQL_PATH_SZ + 1] = { 0 };

 sqluint16 savedLogRetainValue = 0;

 char dbAlias[SQL_ALIAS_SZ + 1] = { 0 };

 char user[USERID_SZ + 1] = { 0 };

 char pswd[PSWD_SZ + 1] = { 0 };

 /* check the command line arguments */

 rc = CmdLineArgsCheck3(argc, argv, dbAlias, nodeName, user, pswd);

 CHECKRC(rc, "CmdLineArgsCheck3");

 printf("\nTHIS SAMPLE SHOWS HOW TO READ A DATABASE RECOVERY HISTORY FILE \n");

 printf("AND UPDATE A RECOVERY HISTORY FILE ENTRY. \n");

 /* attach to a local or remote instance */

 rc = InstanceAttach(nodeName, user, pswd);

 CHECKRC(rc, "Instance Attach");

 /* get the server working path */

 rc = ServerWorkingPathGet(dbAlias, serverWorkingPath);

 CHECKRC(rc, "ServerWorkingPathGet");

 rc = DbRecoveryHistoryFileRead(dbAlias);

 CHECKRC(rc, "DbRecoveryHistoryFileRead");

 rc = DbFirstRecoveryHistoryFileEntryUpdate(dbAlias, user, pswd);

 CHECKRC(rc, "DbFirstRecoveryHistoryFileEntryUpdate");

 /* Detach from the local or remote instance */

 rc = InstanceDetach(nodeName);

 CHECKRC(rc, "InstanceDetach");

 return 0;

Sample Programs with embedded SQL

Appendix E. Recovery sample programs 373

DB2 9 BETA

} /* end main */

int DbRecoveryHistoryFileRead(char dbAlias[])

{

 int rc = 0;

 struct sqlca sqlca;

 struct db2HistoryOpenStruct dbHistoryOpenParam;

 sqluint32 numEntries = 0;

 sqluint16 recoveryHistoryFileHandle = 0;

 sqluint32 entryNb = 0;

 struct db2HistoryGetEntryStruct dbHistoryEntryGetParam;

 struct db2HistoryData histEntryData;

 printf("\n***\n");

 printf("*** READ A DATABASE RECOVERY HISTORY FILE ***\n");

 printf("***\n");

 printf("\nUSE THE DB2 APIs:\n");

 printf(" db2HistoryOpenScan -- Open Recovery History File Scan\n");

 printf(" db2HistoryGetEntry -- Get Next Recovery History File Entry\n");

 printf(" db2HistoryCloseScan -- Close Recovery History File Scan\n");

 printf("TO READ A DATABASE RECOVERY HISTORY FILE.\n");

 /* initialize the data structures */

 dbHistoryOpenParam.piDatabaseAlias = dbAlias;

 dbHistoryOpenParam.piTimestamp = NULL;

 dbHistoryOpenParam.piObjectName = NULL;

 dbHistoryOpenParam.iCallerAction = DB2HISTORY_LIST_HISTORY;

 dbHistoryEntryGetParam.pioHistData = &histEntryData;

 dbHistoryEntryGetParam.iCallerAction = DB2HISTORY_GET_ALL;

 rc = HistoryEntryDataFieldsAlloc(&histEntryData);

 CHECKRC(rc, "HistoryEntryDataFieldsAlloc");

 /***/

 /* OPEN THE DATABASE RECOVERY HISTORY FILE */

 /***/

 printf("\n Open recovery history file for ’%s’ database.\n", dbAlias);

 /* open the recovery history file to scan */

 db2HistoryOpenScan(db2Version810, &dbHistoryOpenParam, &sqlca);

 DB2_API_CHECK("database recovery history file -- open");

 numEntries = dbHistoryOpenParam.oNumRows;

 /* dbHistoryOpenParam.oHandle returns the handle for scan access */

 recoveryHistoryFileHandle = dbHistoryOpenParam.oHandle;

 dbHistoryEntryGetParam.iHandle = recoveryHistoryFileHandle;

 /**/

 /* READ AN ENTRY IN THE RECOVERY HISTORY FILE */

 /**/

 for (entryNb = 0; entryNb < numEntries; entryNb++)

 {

 printf("\n Read entry number %u.\n", entryNb);

 /* get the next entry from the recovery history file */

 db2HistoryGetEntry(db2Version810, &dbHistoryEntryGetParam, &sqlca);

 DB2_API_CHECK("database recovery history file entry -- read")

 /* display the entries in the recovery history file */

 printf("\n Display entry number %u.\n", entryNb);

 rc = HistoryEntryDisplay(histEntryData);

 CHECKRC(rc, "HistoryEntryDisplay");

 }

 /**/

 /* CLOSE THE DATABASE RECOVERY HISTORY FILE */

 /**/

Sample Programs with embedded SQL

374 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

printf("\n Close recovery history file for ’%s’ database.\n", dbAlias);

 /* The API db2HistoryCloseScan ends the recovery history file scan and

 frees DB2 resources required for the scan. */

 db2HistoryCloseScan(db2Version810, &recoveryHistoryFileHandle, &sqlca);

 DB2_API_CHECK("database recovery history file -- close");

 /* free the allocated memory */

 rc = HistoryEntryDataFieldsFree(&histEntryData);

 CHECKRC(rc, "HistoryEntryDataFieldsFree");

 return 0;

} /* DbRecoveryHistoryFileRead */

int DbFirstRecoveryHistoryFileEntryUpdate(char dbAlias[], char user[],

 char pswd[])

{

 int rc = 0;

 struct sqlca sqlca;

 struct db2HistoryOpenStruct dbHistoryOpenParam;

 sqluint16 recoveryHistoryFileHandle = 0;

 struct db2HistoryGetEntryStruct dbHistoryEntryGetParam;

 struct db2HistoryData histEntryData;

 char newLocation[DB2HISTORY_LOCATION_SZ + 1] = { 0 };

 char newComment[DB2HISTORY_COMMENT_SZ + 1] = { 0 };

 struct db2HistoryUpdateStruct dbHistoryUpdateParam;

 printf("\n***\n");

 printf("*** UPDATE A DATABASE RECOVERY HISTORY FILE ENTRY ***\n");

 printf("***\n");

 printf("\nUSE THE DB2 APIs:\n");

 printf(" db2HistoryOpenScan -- Open Recovery History File Scan\n");

 printf(" db2HistoryGetEntry -- Get Next Recovery History File Entry\n");

 printf(" db2HistoryUpdate -- Update Recovery History File\n");

 printf(" db2HistoryCloseScan -- Close Recovery History File Scan\n");

 printf("TO UPDATE A DATABASE RECOVERY HISTORY FILE ENTRY.\n");

 /* initialize data structures */

 dbHistoryOpenParam.piDatabaseAlias = dbAlias;

 dbHistoryOpenParam.piTimestamp = NULL;

 dbHistoryOpenParam.piObjectName = NULL;

 dbHistoryOpenParam.iCallerAction = DB2HISTORY_LIST_HISTORY;

 dbHistoryEntryGetParam.pioHistData = &histEntryData;

 dbHistoryEntryGetParam.iCallerAction = DB2HISTORY_GET_ALL;

 rc = HistoryEntryDataFieldsAlloc(&histEntryData);

 CHECKRC(rc, "HistoryEntryDataFieldsAlloc");

 /***/

 /* OPEN THE DATABASE RECOVERY HISTORY FILE */

 /***/

 printf("\n Open the recovery history file for ’%s’ database.\n",

 dbAlias);

 /* The API db2HistoryOpenScan starts a recovery history file scan */

 db2HistoryOpenScan(db2Version810, &dbHistoryOpenParam, &sqlca);

 DB2_API_CHECK("database recovery history file -- open");

 /* dbHistoryOpenParam.oHandle returns the handle for scan access */

 recoveryHistoryFileHandle = dbHistoryOpenParam.oHandle;

 dbHistoryEntryGetParam.iHandle = recoveryHistoryFileHandle;

 /***/

 /* READ THE FIRST ENTRY IN THE RECOVERY HISTORY FILE */

 /***/

 printf("\n Read the first entry in the recovery history file.\n");

Sample Programs with embedded SQL

Appendix E. Recovery sample programs 375

DB2 9 BETA

/* The API db2HistoryGetEntry gets the next entry from the recovery

 history file. */

 db2HistoryGetEntry(db2Version810, &dbHistoryEntryGetParam, &sqlca);

 DB2_API_CHECK("first recovery history file entry -- read");

 printf("\n Display the first entry.\n");

 /* HistoryEntryDisplay is a support function used to display the entries

 in the recovery history file. */

 rc = HistoryEntryDisplay(histEntryData);

 CHECKRC(rc, "HistoryEntryDisplay");

 /* update the first history file entry */

 rc = DbConn(dbAlias, user, pswd);

 CHECKRC(rc, "DbConn");

 strcpy(newLocation, "this is the NEW LOCATION");

 strcpy(newComment, "this is the NEW COMMENT");

 printf("\n Update the first entry in the history file:\n");

 printf(" new location = ’%s’\n", newLocation);

 printf(" new comment = ’%s’\n", newComment);

 dbHistoryUpdateParam.piNewLocation = newLocation;

 dbHistoryUpdateParam.piNewDeviceType = NULL;

 dbHistoryUpdateParam.piNewComment = newComment;

 dbHistoryUpdateParam.iEID.ioNode = histEntryData.oEID.ioNode;

 dbHistoryUpdateParam.iEID.ioHID = histEntryData.oEID.ioHID;

 /* The API db2HistoryUpdate can be used to update the location,

 device type, or comment in a history file entry. */

 /* Call this API to update the location and comment of the first

 entry in the history file: */

 db2HistoryUpdate(db2Version810, &dbHistoryUpdateParam, &sqlca);

 DB2_API_CHECK("first history file entry -- update");

 rc = DbDisconn(dbAlias);

 CHECKRC(rc, "DbDisconn");

 /**/

 /* CLOSE THE DATABASE RECOVERY HISTORY FILE */

 /**/

 printf("\n Close recovery history file for ’%s’ database.\n", dbAlias);

 /* The API db2HistoryCloseScan ends the recovery history file scan and

 frees DB2 resources required for the scan. */

 db2HistoryCloseScan(db2Version810, &recoveryHistoryFileHandle, &sqlca);

 DB2_API_CHECK("database recovery history file -- close");

 /**/

 /* RE-OPEN THE DATABASE RECOVERY HISTORY FILE */

 /**/

 printf("\n Open the recovery history file for ’%s’ database.\n",

 dbAlias);

 /* starts a recovery history file scan */

 db2HistoryOpenScan(db2Version810, &dbHistoryOpenParam, &sqlca);

 DB2_API_CHECK("database recovery history file -- open");

 recoveryHistoryFileHandle = dbHistoryOpenParam.oHandle;

 dbHistoryEntryGetParam.iHandle = recoveryHistoryFileHandle;

 printf("\n Read the first recovery history file entry.\n");

 /**/

 /* READ THE FIRST ENTRY IN THE RECOVERY HISTORY FILE AFTER MODIFICATION */

 /**/

 db2HistoryGetEntry(db2Version810, &dbHistoryEntryGetParam, &sqlca);

 DB2_API_CHECK("first recovery history file entry -- read");

Sample Programs with embedded SQL

376 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

printf("\n Display the first entry.\n");

 rc = HistoryEntryDisplay(histEntryData);

 CHECKRC(rc, "HistoryEntryDisplay");

 /**/

 /* CLOSE THE DATABASE RECOVERY HISTORY FILE */

 /**/

 printf("\n Close the recovery history file for ’%s’ database.\n",

 dbAlias);

 /* ends the recovery history file scan */

 db2HistoryCloseScan(db2Version810, &recoveryHistoryFileHandle, &sqlca);

 DB2_API_CHECK("database recovery history file -- close");

 /* free the allocated memory */

 rc = HistoryEntryDataFieldsFree(&histEntryData);

 CHECKRC(rc, "HistoryEntryDataFieldsFree");

 return 0;

} /* DbFirstRecoveryHistoryFileEntryUpdate */

/***/

/* HistoryEntryDataFieldsAlloc */

/* Allocates memory for all the fields in a database recovery history */

/* file entry */

/***/

int HistoryEntryDataFieldsAlloc(struct db2HistoryData *pHistEntryData)

{

 int rc = 0;

 sqluint32 tsNb = 0;

 strcpy(pHistEntryData->ioHistDataID, "SQLUHINF");

 pHistEntryData->oObjectPart.pioData = malloc(DB2HISTORY_OBJPART_SZ + 1);

 pHistEntryData->oObjectPart.iLength = DB2HISTORY_OBJPART_SZ + 1;

 pHistEntryData->oEndTime.pioData = malloc(DB2HISTORY_TIMESTAMP_SZ + 1);

 pHistEntryData->oEndTime.iLength = DB2HISTORY_TIMESTAMP_SZ + 1;

 pHistEntryData->oFirstLog.pioData = malloc(DB2HISTORY_LOGFILE_SZ + 1);

 pHistEntryData->oFirstLog.iLength = DB2HISTORY_LOGFILE_SZ + 1;

 pHistEntryData->oLastLog.pioData = malloc(DB2HISTORY_LOGFILE_SZ + 1);

 pHistEntryData->oLastLog.iLength = DB2HISTORY_LOGFILE_SZ + 1;

 pHistEntryData->oID.pioData = malloc(DB2HISTORY_ID_SZ + 1);

 pHistEntryData->oID.iLength = DB2HISTORY_ID_SZ + 1;

 pHistEntryData->oTableQualifier.pioData =

 malloc(DB2HISTORY_TABLE_QUAL_SZ + 1);

 pHistEntryData->oTableQualifier.iLength = DB2HISTORY_TABLE_QUAL_SZ + 1;

 pHistEntryData->oTableName.pioData = malloc(DB2HISTORY_TABLE_NAME_SZ + 1);

 pHistEntryData->oTableName.iLength = DB2HISTORY_TABLE_NAME_SZ + 1;

 pHistEntryData->oLocation.pioData = malloc(DB2HISTORY_LOCATION_SZ + 1);

 pHistEntryData->oLocation.iLength = DB2HISTORY_LOCATION_SZ + 1;

 pHistEntryData->oComment.pioData = malloc(DB2HISTORY_COMMENT_SZ + 1);

 pHistEntryData->oComment.iLength = DB2HISTORY_COMMENT_SZ + 1;

 pHistEntryData->oCommandText.pioData = malloc(DB2HISTORY_COMMAND_SZ + 1);

 pHistEntryData->oCommandText.iLength = DB2HISTORY_COMMAND_SZ + 1;

 pHistEntryData->poEventSQLCA =

 (struct sqlca *)malloc(sizeof(struct sqlca));

Sample Programs with embedded SQL

Appendix E. Recovery sample programs 377

DB2 9 BETA

pHistEntryData->poTablespace = (db2Char *) malloc(3 * sizeof(db2Char));

 for (tsNb = 0; tsNb < 3; tsNb++)

 {

 pHistEntryData->poTablespace[tsNb].pioData = malloc(18 + 1);

 pHistEntryData->poTablespace[tsNb].iLength = 18 + 1;

 }

 pHistEntryData->iNumTablespaces = 3;

 return 0;

} /* HistoryEntryDataFieldsAlloc */

/***/

/* HistoryEntryDisplay */

/* Displays the fields of an entry in the database recovery history file */

/***/

int HistoryEntryDisplay(struct db2HistoryData histEntryData)

{

 int rc = 0;

 int bufLen = 0;

 char *buf = NULL;

 sqluint32 tsNb = 0;

 bufLen =

 MIN(histEntryData.oObjectPart.oLength,

 histEntryData.oObjectPart.iLength);

 buf = malloc(bufLen + 1);

 memcpy(buf, histEntryData.oObjectPart.pioData, bufLen);

 buf[bufLen] = ’\0’;

 printf(" object part: %s\n", buf);

 free(buf);

 bufLen =

 MIN(histEntryData.oEndTime.oLength, histEntryData.oEndTime.iLength);

 buf = malloc(bufLen + 1);

 memcpy(buf, histEntryData.oEndTime.pioData, bufLen);

 buf[bufLen] = ’\0’;

 printf(" end time: %s\n", buf);

 free(buf);

 bufLen =

 MIN(histEntryData.oFirstLog.oLength, histEntryData.oFirstLog.iLength);

 buf = malloc(bufLen + 1);

 memcpy(buf, histEntryData.oFirstLog.pioData, bufLen);

 buf[bufLen] = ’\0’;

 printf(" first log: %s\n", buf);

 free(buf);

 bufLen =

 MIN(histEntryData.oLastLog.oLength, histEntryData.oLastLog.iLength);

 buf = malloc(bufLen + 1);

 memcpy(buf, histEntryData.oLastLog.pioData, bufLen);

 buf[bufLen] = ’\0’;

 printf(" last log: %s\n", buf);

 free(buf);

 bufLen = MIN(histEntryData.oID.oLength, histEntryData.oID.iLength);

 buf = malloc(bufLen + 1);

 memcpy(buf, histEntryData.oID.pioData, bufLen);

 buf[bufLen] = ’\0’;

 printf(" ID: %s\n", buf);

 free(buf);

 bufLen =

 MIN(histEntryData.oTableQualifier.oLength,

 histEntryData.oTableQualifier.iLength);

Sample Programs with embedded SQL

378 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

buf = malloc(bufLen + 1);

 memcpy(buf, histEntryData.oTableQualifier.pioData, bufLen);

 buf[bufLen] = ’\0’;

 printf(" table qualifier: %s\n", buf);

 free(buf);

 bufLen =

 MIN(histEntryData.oTableName.oLength, histEntryData.oTableName.iLength);

 buf = malloc(bufLen + 1);

 memcpy(buf, histEntryData.oTableName.pioData, bufLen);

 buf[bufLen] = ’\0’;

 printf(" table name: %s\n", buf);

 free(buf);

 bufLen =

 MIN(histEntryData.oLocation.oLength, histEntryData.oLocation.iLength);

 buf = malloc(bufLen + 1);

 memcpy(buf, histEntryData.oLocation.pioData, bufLen);

 buf[bufLen] = ’\0’;

 printf(" location: %s\n", buf);

 free(buf);

 bufLen =

 MIN(histEntryData.oComment.oLength, histEntryData.oComment.iLength);

 buf = malloc(bufLen + 1);

 memcpy(buf, histEntryData.oComment.pioData, bufLen);

 buf[bufLen] = ’\0’;

 printf(" comment: %s\n", buf);

 free(buf);

 bufLen =

 MIN(histEntryData.oCommandText.oLength,

 histEntryData.oCommandText.iLength);

 buf = malloc(bufLen + 1);

 memcpy(buf, histEntryData.oCommandText.pioData, bufLen);

 buf[bufLen] = ’\0’;

 printf(" command text: %s\n", buf);

 printf(" history file entry ID: %u\n", histEntryData.oEID.ioHID);

 printf(" table spaces:\n");

 free(buf);

 for (tsNb = 0; tsNb < histEntryData.oNumTablespaces; tsNb++)

 {

 bufLen =

 MIN(histEntryData.poTablespace[tsNb].oLength,

 histEntryData.poTablespace[tsNb].iLength);

 buf = malloc(bufLen + 1);

 memcpy(buf, histEntryData.poTablespace[tsNb].pioData, bufLen);

 buf[bufLen] = ’\0’;

 printf(" %s\n", buf);

 free(buf);

 }

 printf(" type of operation: %c\n", histEntryData.oOperation);

 printf(" granularity of the operation: %c\n", histEntryData.oObject);

 printf(" operation type: %c\n", histEntryData.oOptype);

 printf(" entry status: %c\n", histEntryData.oStatus);

 printf(" device type: %c\n", histEntryData.oDeviceType);

 printf(" SQLCA:\n");

 printf(" sqlcode: %ld\n", histEntryData.poEventSQLCA->sqlcode);

 bufLen = SQLUDF_SQLSTATE_LEN;

 buf = malloc(bufLen + 1);

 memcpy(buf, histEntryData.poEventSQLCA->sqlstate, bufLen);

 buf[bufLen] = ’\0’;

 printf(" sqlstate: %s\n", buf);

Sample Programs with embedded SQL

Appendix E. Recovery sample programs 379

DB2 9 BETA

free(buf);

 bufLen = histEntryData.poEventSQLCA->sqlerrml;

 buf = malloc(bufLen + 1);

 memcpy(buf, histEntryData.poEventSQLCA->sqlerrmc, bufLen);

 buf[bufLen] = ’\0’;

 printf(" message: %s\n", buf);

 free(buf);

 return 0;

} /* HistoryEntryDisplay */

/***/

/* HistoryEntryDataFieldsFree */

/* Deallocates the memory for database recovery history file structures */

/***/

int HistoryEntryDataFieldsFree(struct db2HistoryData *pHistEntryData)

{

 int rc = 0;

 sqluint32 tsNb = 0;

 free(pHistEntryData->oObjectPart.pioData);

 free(pHistEntryData->oEndTime.pioData);

 free(pHistEntryData->oFirstLog.pioData);

 free(pHistEntryData->oLastLog.pioData);

 free(pHistEntryData->oID.pioData);

 free(pHistEntryData->oTableQualifier.pioData);

 free(pHistEntryData->oTableName.pioData);

 free(pHistEntryData->oLocation.pioData);

 free(pHistEntryData->oComment.pioData);

 free(pHistEntryData->oCommandText.pioData);

 free(pHistEntryData->poEventSQLCA);

 pHistEntryData->oObjectPart.pioData = NULL;

 pHistEntryData->oEndTime.pioData = NULL;

 pHistEntryData->oFirstLog.pioData = NULL;

 pHistEntryData->oLastLog.pioData = NULL;

 pHistEntryData->oID.pioData = NULL;

 pHistEntryData->oTableQualifier.pioData = NULL;

 pHistEntryData->oTableName.pioData = NULL;

 pHistEntryData->oLocation.pioData = NULL;

 pHistEntryData->oComment.pioData = NULL;

 pHistEntryData->oCommandText.pioData = NULL;

 pHistEntryData->poEventSQLCA = NULL;

 for (tsNb = 0; tsNb < 3; tsNb++)

 {

 free(pHistEntryData->poTablespace[tsNb].pioData);

 pHistEntryData->poTablespace[tsNb].pioData = NULL;

 }

 free(pHistEntryData->poTablespace);

 pHistEntryData->poTablespace = NULL;

 return 0;

} /* HistoryEntryDataFieldsFree */

 dblogconn sample program:

 The dblogconn sample files show how to read database log files with a database

connection.

/**

** Licensed Materials - Property of IBM

**

** Governed under the terms of the International

** License Agreement for Non-Warranted Sample Code.

**

Sample Programs with embedded SQL

380 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

** (C) COPYRIGHT International Business Machines Corp. 2003

** All Rights Reserved.

**

** US Government Users Restricted Rights - Use, duplication or

** disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

**

** SOURCE FILE NAME: dblogconn.sqc

**

** SAMPLE: How to read database log files asynchronously with a database

** connection

**

** Note:

** You must be initially disconnected from the sample database

** to run this program. To ensure you are, enter ’db2 connect

** reset’ on the command line prior to running dblogconn.

**

** DB2 API USED:

** db2CfgSet -- Set Configuration

** db2ReadLog -- Asynchronous Read Log

**

** SQL STATEMENTS USED:

** ALTER TABLE

** COMMIT

** DELETE

** INSERT

** ROLLBACK

** CONNECT RESET

**

** OUTPUT FILE: dblogconn.out (available in the online documentation)

**

** For detailed information about database backup and database recovery, see

** the Data Recovery and High Availability Guide and Reference. This manual

** will help you to determine which database and table space recovery methods

** are best suited to your business environment.

**

** For more information on the sample programs, see the README file.

**

** For information on developing C applications, see the Application

** Development Guide.

**

** For information on using SQL statements, see the SQL Reference.

**

** For information on DB2 APIs, see the Administrative API Reference.

**

** For the latest information on programming, building, and running DB2

** applications, visit the DB2 application development website:

** http://www.software.ibm.com/data/db2/udb/ad

**/

#include "utilrecov.c"

#include "utilemb.h"

/* local function prototypes */

int DbLogRecordsForCurrentConnectionRead(char *, char *, char *, char *);

int main(int argc, char *argv[])

{

 int rc = 0;

 char nodeName[SQL_INSTNAME_SZ + 1] = { 0 };

 char serverWorkingPath[SQL_PATH_SZ + 1] = { 0 };

 sqluint16 savedLogRetainValue = 0;

 char dbAlias[SQL_ALIAS_SZ + 1] = { 0 };

 char user[USERID_SZ + 1] = { 0 };

 char pswd[PSWD_SZ + 1] = { 0 };

 /* check the command line arguments */

Sample Programs with embedded SQL

Appendix E. Recovery sample programs 381

DB2 9 BETA

rc = CmdLineArgsCheck3(argc, argv, dbAlias, nodeName, user, pswd);

 CHECKRC(rc, "CmdLineArgsCheck3");

 printf("\nTHIS SAMPLE SHOWS HOW TO READ DATABASE LOGS ASYNCHRONOUSLY\n");

 printf("WITH A DATABASE CONNECTION.\n");

 /* attach to a local or remote instance */

 rc = InstanceAttach(nodeName, user, pswd);

 CHECKRC(rc, "Instance Attach");

 /* get the server working path */

 rc = ServerWorkingPathGet(dbAlias, serverWorkingPath);

 CHECKRC(rc, "ServerWorkingPathGet");

 /* call the function to do asynchronous log read */

 rc = DbLogRecordsForCurrentConnectionRead(dbAlias,

 user, pswd, serverWorkingPath);

 CHECKRC(rc, "DbLogRecordsForCurrentConnectionRead");

 /* Detach from the local or remote instance */

 rc = InstanceDetach(nodeName);

 CHECKRC(rc, "InstanceDetach");

 return 0;

} /* end main */

int DbLogRecordsForCurrentConnectionRead(char dbAlias[],

 char user[],

 char pswd[],

 char serverWorkingPath[])

{

 int rc = 0;

 struct sqlca sqlca;

 db2CfgParam cfgParameters[1];

 db2Cfg cfgStruct;

 unsigned short logretain = 0;

 db2BackupStruct backupStruct;

 db2TablespaceStruct tablespaceStruct;

 db2MediaListStruct mediaListStruct;

 db2Uint32 backupImageSize = 0;

 db2RestoreStruct restoreStruct;

 db2TablespaceStruct rtablespaceStruct;

 db2MediaListStruct rmediaListStruct;

 SQLU_LSN startLSN;

 SQLU_LSN endLSN;

 char *logBuffer = NULL;

 sqluint32 logBufferSize = 0;

 db2ReadLogInfoStruct readLogInfo;

 db2ReadLogStruct readLogInput;

 int i = 0;

 printf("\n*****************************\n");

 printf("*** ASYNCHRONOUS READ LOG ***\n");

 printf("*****************************\n");

 printf("\nUSE THE DB2 APIs:\n");

 printf(" db2CfgSet -- Set Configuration\n");

 printf(" db2Backup -- Backup Database\n");

 printf(" db2ReadLog -- Asynchronous Read Log\n");

 printf("AND THE SQL STATEMENTS:\n");

 printf(" CONNECT\n");

 printf(" ALTER TABLE\n");

 printf(" COMMIT\n");

 printf(" INSERT\n");

 printf(" DELETE\n");

 printf(" ROLLBACK\n");

Sample Programs with embedded SQL

382 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

printf(" CONNECT RESET\n");

 printf("TO READ LOG RECORDS FOR THE CURRENT CONNECTION.\n");

 printf("\n Update \’%s\’ database configuration:\n", dbAlias);

 printf(" - Enable the database configuration parameter LOGRETAIN \n");

 printf(" i.e., set LOGRETAIN = RECOVERY/YES\n");

 /* initialize cfgParameters */

 cfgParameters[0].flags = 0;

 cfgParameters[0].token = SQLF_DBTN_LOG_RETAIN;

 cfgParameters[0].ptrvalue = (char *)&logretain;

 /* enable LOGRETAIN */

 logretain = SQLF_LOGRETAIN_RECOVERY;

 /* initialize cfgStruct */

 cfgStruct.numItems = 1;

 cfgStruct.paramArray = cfgParameters;

 cfgStruct.flags = db2CfgDatabase | db2CfgDelayed;

 cfgStruct.dbname = dbAlias;

 /* get database configuration */

 db2CfgSet(db2Version810, (void *)&cfgStruct, &sqlca);

 DB2_API_CHECK("Db Log Retain -- Enable");

 tablespaceStruct.tablespaces = NULL;

 tablespaceStruct.numTablespaces = 0;

 mediaListStruct.locations = &serverWorkingPath;

 mediaListStruct.numLocations = 1;

 mediaListStruct.locationType = SQLU_LOCAL_MEDIA;

 /* Calling up the routine for database backup */

 rc = DbBackup(dbAlias, user, pswd, serverWorkingPath, &backupStruct);

 CHECKRC(rc, "DbBackup");

 /* connect to the database */

 rc = DbConn(dbAlias, user, pswd);

 CHECKRC(rc, "DbConn");

 /* invoke SQL statements to fill database log */

 printf("\n Invoke the following SQL statements:\n"

 " ALTER TABLE emp_resume DATA CAPTURE CHANGES;\n"

 " COMMIT;\n"

 " INSERT INTO emp_resume\n"

 " VALUES(’000777’, ’ascii’, ’This is a new resume.’);\n"

 " (’777777’, ’ascii’, ’This is another new resume’);\n"

 " COMMIT;\n"

 " DELETE FROM emp_resume WHERE empno = ’000777’;\n"

 " DELETE FROM emp_resume WHERE empno = ’777777’;\n"

 " COMMIT;\n"

 " DELETE FROM emp_resume WHERE empno = ’000140’;\n"

 " ROLLBACK;\n"

 " ALTER TABLE emp_resume DATA CAPTURE NONE;\n" " COMMIT;\n");

 EXEC SQL ALTER TABLE emp_resume DATA CAPTURE CHANGES;

 EMB_SQL_CHECK("SQL statement 1 -- invoke");

 EXEC SQL COMMIT;

 EMB_SQL_CHECK("SQL statement 2 -- invoke");

 EXEC SQL INSERT INTO emp_resume

 VALUES(’000777’, ’ascii’, ’This is a new resume.’),

 (’777777’, ’ascii’, ’This is another new resume’);

 EMB_SQL_CHECK("SQL statement 3 -- invoke");

 EXEC SQL COMMIT;

Sample Programs with embedded SQL

Appendix E. Recovery sample programs 383

DB2 9 BETA

EMB_SQL_CHECK("SQL statement 4 -- invoke");

 EXEC SQL DELETE FROM emp_resume WHERE empno = ’000777’;

 EMB_SQL_CHECK("SQL statement 5 -- invoke");

 EXEC SQL DELETE FROM emp_resume WHERE empno = ’777777’;

 EMB_SQL_CHECK("SQL statement 6 -- invoke");

 EXEC SQL COMMIT;

 EMB_SQL_CHECK("SQL statement 7 -- invoke");

 EXEC SQL DELETE FROM emp_resume WHERE empno = ’000140’;

 EMB_SQL_CHECK("SQL statement 8 -- invoke");

 EXEC SQL ROLLBACK;

 EMB_SQL_CHECK("SQL statement 9 -- invoke");

 EXEC SQL ALTER TABLE emp_resume DATA CAPTURE NONE;

 EMB_SQL_CHECK("SQL statement 10 -- invoke");

 EXEC SQL COMMIT;

 EMB_SQL_CHECK("SQL statement 11 -- invoke");

 printf("\n Start reading database log.\n");

 logBuffer = NULL;

 logBufferSize = 0;

 /*

 * The API db2ReadLog (Asynchronous Read Log) is used to extract

 * records from the database logs, and to query the log manager for

 * current log state information. This API can only be used on

 * recoverable databases.

 */

 /* Query the log manager for current log state information. */

 readLogInput.iCallerAction = DB2READLOG_QUERY;

 readLogInput.piStartLSN = NULL;

 readLogInput.piEndLSN = NULL;

 readLogInput.poLogBuffer = NULL;

 readLogInput.iLogBufferSize = 0;

 readLogInput.iFilterOption = DB2READLOG_FILTER_ON;

 readLogInput.poReadLogInfo = &readLogInfo;

 db2ReadLog(db2Version810, &readLogInput, &sqlca);

 DB2_API_CHECK("database log info -- get");

 logBufferSize = 64 * 1024; /* Maximum size of a log buffer */

 logBuffer = (char *)malloc(logBufferSize);

 memcpy(&startLSN, &(readLogInfo.initialLSN), sizeof(startLSN));

 memcpy(&endLSN, &(readLogInfo.nextStartLSN), sizeof(endLSN));

 /*

 * Extract a log record from the database logs, and read the first

 * log sequence asynchronously.

 */

 readLogInput.iCallerAction = DB2READLOG_READ;

 readLogInput.piStartLSN = &startLSN;

 readLogInput.piEndLSN = &endLSN;

 readLogInput.poLogBuffer = logBuffer;

 readLogInput.iLogBufferSize = logBufferSize;

 readLogInput.iFilterOption = DB2READLOG_FILTER_ON;

 readLogInput.poReadLogInfo = &readLogInfo;

 db2ReadLog(db2Version810, &readLogInput, &sqlca);

 if (sqlca.sqlcode != SQLU_RLOG_READ_TO_CURRENT)

Sample Programs with embedded SQL

384 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

{

 DB2_API_CHECK("database logs -- read");

 }

 else

 {

 if (readLogInfo.logRecsWritten == 0)

 {

 printf("\n Database log empty.\n");

 }

 }

 /* display log buffer */

 rc = LogBufferDisplay(logBuffer, readLogInfo.logRecsWritten);

 CHECKRC(rc, "LogBufferDisplay");

 while (sqlca.sqlcode != SQLU_RLOG_READ_TO_CURRENT)

 {

 /* read the next log sequence */

 memcpy(&startLSN, &(readLogInfo.nextStartLSN), sizeof(startLSN));

 /*

 * Extract a log record from the database logs, and read the

 * next log sequence asynchronously.

 */

 db2ReadLog(db2Version810, &readLogInput, &sqlca);

 if (sqlca.sqlcode != SQLU_RLOG_READ_TO_CURRENT)

 {

 DB2_API_CHECK("database logs -- read");

 }

 /* display log buffer */

 rc = LogBufferDisplay(logBuffer, readLogInfo.logRecsWritten);

 CHECKRC(rc, "LogBufferDisplay");

 }

 /* free the log buffer */

 free(logBuffer);

 logBuffer = NULL;

 logBufferSize = 0;

 /* disconnect from the database */

 rc = DbDisconn(dbAlias);

 CHECKRC(rc, "DbDisconn");

 return 0;

} /* DbLogRecordsForCurrentConnectionRead */

 dblognoconn sample program:

 The dblognoconn sample files show how to read database log files with no

database connection.

/**

** Licensed Materials - Property of IBM

**

** Governed under the terms of the International

** License Agreement for Non-Warranted Sample Code.

**

** (C) COPYRIGHT International Business Machines Corp. 2003

** All Rights Reserved.

**

** US Government Users Restricted Rights - Use, duplication or

** disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

**

** SOURCE FILE NAME: dblognoconn.sqc

**

Sample Programs with embedded SQL

Appendix E. Recovery sample programs 385

DB2 9 BETA

** SAMPLE: How to read database log files asynchronously

** with no database connection

**

** This program ends in ".sqc" even though it does not contain

** embedded SQL statements. It links in the embedded SQL utility

** file for database connection and disconnection, so it needs the

** embedded SQL extension for the precompiler.

**

** Note:

** You must be disconnected from the sample database to run

** this program. To ensure you are, enter ’db2 connect reset’

** on the command line prior to running dblognoconn.

**

** DB2 API USED:

** db2CfgSet -- Set Configuration

** db2ReadLogNoConnInit -- Read log without a db connection

** db2ReadLog -- Asynchronous Read Log

**

** OUTPUT FILE: dblognoconn.out (available in the online documentation)

**

** For detailed information about database backup and database recovery, see

** the Data Recovery and High Availability Guide and Reference. This manual

** will help you to determine which database and table space recovery methods

** are best suited to your business environment.

**

** For more information on the sample programs, see the README file.

**

** For information on developing C applications, see the Application

** Development Guide.

**

** For information on using SQL statements, see the SQL Reference.

**

** For information on DB2 APIs, see the Administrative API Reference.

**

** For the latest information on programming, building, and running DB2

** applications, visit the DB2 application development website:

** http://www.software.ibm.com/data/db2/udb/ad

**/

#include "utilrecov.c"

#include "utilemb.h"

/* local function prototypes */

int DbReadLogRecordsNoConn(char *);

int main(int argc, char *argv[])

{

 int rc = 0;

 char nodeName[SQL_INSTNAME_SZ + 1] = { 0 };

 char serverWorkingPath[SQL_PATH_SZ + 1] = { 0 };

 sqluint16 savedLogRetainValue = 0;

 char dbAlias[SQL_ALIAS_SZ + 1] = { 0 };

 char user[USERID_SZ + 1] = { 0 };

 char pswd[PSWD_SZ + 1] = { 0 };

 /* check the command line arguments */

 rc = CmdLineArgsCheck3(argc, argv, dbAlias, nodeName, user, pswd);

 CHECKRC(rc, "CmdLineArgsCheck3");

 printf("\nTHIS SAMPLE SHOWS HOW TO READ DATABASE LOGS ASYNCHRONOUSLY\n");

 printf("WITH NO DATABASE CONNECTION.\n");

 /* get the server working path */

 rc = ServerWorkingPathGet(dbAlias, serverWorkingPath);

 CHECKRC(rc, "ServerWorkingPathGet");

 rc = DbRecoveryHistoryFilePrune(dbAlias, user, pswd);

Sample Programs with embedded SQL

386 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

CHECKRC(rc, "DbRecoveryHistoryFilePrune");

 /* Detach from the local or remote instance */

 rc = InstanceDetach(nodeName);

 CHECKRC(rc, "InstanceDetach");

 rc = DbReadLogRecordsNoConn(dbAlias);

 CHECKRC(rc, "DbReadLogRecordsNoConn");

 return 0;

} /* end main */

int DbReadLogRecordsNoConn(char dbAlias[])

{

 int rc = 0;

 struct sqlca sqlca;

 char logPath[SQL_PATH_SZ + 1] = { 0 };

 db2CfgParam cfgParameters[1];

 db2Cfg cfgStruct;

 char nodeName[] = "NODE0000\0";

 db2Uint32 readLogMemSize = 0;

 char *readLogMemory = NULL;

 struct db2ReadLogNoConnInitStruct readLogInit;

 struct db2ReadLogNoConnInfoStruct readLogInfo;

 struct db2ReadLogNoConnStruct readLogInput;

 SQLU_LSN startLSN;

 SQLU_LSN endLSN;

 char *logBuffer = NULL;

 db2Uint32 logBufferSize = 0;

 struct db2ReadLogNoConnTermStruct readLogTerm;

 printf("\n*********************************\n");

 printf("*** NO DB CONNECTION READ LOG ***\n");

 printf("*********************************\n");

 printf("\nUSE THE DB2 APIs:\n");

 printf(" db2ReadLogNoConnInit -- Initialize No Db Connection Read Log\n");

 printf(" db2ReadLogNoConn -- No Db Connection Read Log\n");

 printf(" db2ReadLogNoConnTerm -- Terminate No Db Connection Read Log\n");

 printf("TO READ LOG RECORDS FROM A DATABASE LOG DIRECTORY.\n");

 /* Determine the logpath to read log files from */

 cfgParameters[0].flags = 0;

 cfgParameters[0].token = SQLF_DBTN_LOGPATH;

 cfgParameters[0].ptrvalue =

 (char *)malloc((SQL_PATH_SZ + 1) * sizeof(char));

 /* Initialize cfgStruct */

 cfgStruct.numItems = 1;

 cfgStruct.paramArray = cfgParameters;

 cfgStruct.flags = db2CfgDatabase;

 cfgStruct.dbname = dbAlias;

 db2CfgGet(db2Version810, (void *)&cfgStruct, &sqlca);

 DB2_API_CHECK("log path -- get");

 strcpy(logPath, cfgParameters[0].ptrvalue);

 free(cfgParameters[0].ptrvalue);

 cfgParameters[0].ptrvalue = NULL;

 /*

 * First we must allocate memory for the API’s control blocks and log

 * buffer

 */

 readLogMemSize = 4 * 4096;

 readLogMemory = (char *)malloc(readLogMemSize);

 /* Invoke the initialization API to set up the control blocks */

Sample Programs with embedded SQL

Appendix E. Recovery sample programs 387

DB2 9 BETA

readLogInit.iFilterOption = DB2READLOG_FILTER_ON;

 readLogInit.piLogFilePath = logPath;

 readLogInit.piOverflowLogPath = NULL;

 readLogInit.iRetrieveLogs = DB2READLOG_RETRIEVE_OFF;

 readLogInit.piDatabaseName = dbAlias;

 readLogInit.piNodeName = nodeName;

 readLogInit.iReadLogMemoryLimit = readLogMemSize;

 readLogInit.poReadLogMemPtr = &readLogMemory;

 db2ReadLogNoConnInit(db2Version810, &readLogInit, &sqlca);

 if (sqlca.sqlcode != SQLU_RLOG_LSNS_REUSED)

 {

 DB2_API_CHECK("database logs no db conn -- initialization");

 }

 /* Query for the current log information */

 readLogInput.iCallerAction = DB2READLOG_QUERY;

 readLogInput.piStartLSN = NULL;

 readLogInput.piEndLSN = NULL;

 readLogInput.poLogBuffer = NULL;

 readLogInput.iLogBufferSize = 0;

 readLogInput.piReadLogMemPtr = readLogMemory;

 readLogInput.poReadLogInfo = &readLogInfo;

 db2ReadLogNoConn(db2Version810, &readLogInput, &sqlca);

 if (sqlca.sqlcode != 0)

 {

 DB2_API_CHECK("database logs no db conn -- query");

 }

 /* Read some log records */

 logBufferSize = 64 * 1024; /* Maximum size of a log buffer */

 logBuffer = (char *)malloc(logBufferSize);

 memcpy(&startLSN, &(readLogInfo.nextStartLSN), sizeof(startLSN));

 endLSN.lsnWord[0] = 0xffff;

 endLSN.lsnWord[1] = 0xffff;

 endLSN.lsnWord[2] = 0xffff;

 readLogInput.iCallerAction = DB2READLOG_READ;

 readLogInput.piStartLSN = &startLSN;

 readLogInput.piEndLSN = &endLSN;

 readLogInput.poLogBuffer = logBuffer;

 readLogInput.iLogBufferSize = logBufferSize;

 readLogInput.piReadLogMemPtr = readLogMemory;

 readLogInput.poReadLogInfo = &readLogInfo;

 db2ReadLogNoConn(db2Version810, &readLogInput, &sqlca);

 if (sqlca.sqlcode != SQLU_RLOG_READ_TO_CURRENT)

 {

 DB2_API_CHECK("database logs no db conn -- read");

 }

 else

 {

 if (readLogInfo.logRecsWritten == 0)

 {

 printf("\n Database log empty.\n");

 }

 }

 /* Display the log records read */

 rc = LogBufferDisplay(logBuffer, readLogInfo.logRecsWritten);

 CHECKRC(rc, "LogBufferDisplay");

 while (sqlca.sqlcode != SQLU_RLOG_READ_TO_CURRENT)

 {

 /* read the next log sequence */

 memcpy(&startLSN, &(readLogInfo.nextStartLSN), sizeof(startLSN));

Sample Programs with embedded SQL

388 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

/*

 * Extract a log record from the database logs, and read the

 * next log sequence asynchronously.

 */

 db2ReadLogNoConn(db2Version810, &readLogInput, &sqlca);

 if (sqlca.sqlcode != SQLU_RLOG_READ_TO_CURRENT)

 {

 DB2_API_CHECK("database logs no db conn -- read");

 }

 /* display log buffer */

 rc = LogBufferDisplay(logBuffer, readLogInfo.logRecsWritten);

 CHECKRC(rc, "LogBufferDisplay");

 }

 printf("\nRead to end of logs.\n\n");

 free(logBuffer);

 logBuffer = NULL;

 logBufferSize = 0;

 readLogTerm.poReadLogMemPtr = &readLogMemory;

 db2ReadLogNoConnTerm(db2Version810, &readLogTerm, &sqlca);

 DB2_API_CHECK("database logs no db conn -- terminate");

 return 0;

} /* DbReadLogRecordsNoConn */

 dbrestore sample program:

 The dbrestore sample files show how to restore a database from a backup image.

/**

** Licensed Materials - Property of IBM

**

** Governed under the terms of the International

** License Agreement for Non-Warranted Sample Code.

**

** (C) COPYRIGHT International Business Machines Corp. 2003

** All Rights Reserved.

**

** US Government Users Restricted Rights - Use, duplication or

** disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

**

** SOURCE FILE NAME: dbrestore.sqc

**

** SAMPLE: How to restore a database from a backup

**

** This program ends in ".sqc" even though it does not contain

** embedded SQL statements. It links in the embedded SQL utility

** file for database connection and disconnection, so it needs the

** embedded SQL extension for the precompiler.

**

** Note:

** You must be disconnected from the sample database to run

** this program. To ensure you are, enter ’db2 connect reset’

** on the command line prior to running dbrestore.

**

** DB2 API USED:

** db2CfgSet -- Set Configuration

** db2Restore -- Restore Database

**

** OUTPUT FILE: dbrestore.out (available in the online documentation)

**

** For detailed information about database backup and database recovery, see

** the Data Recovery and High Availability Guide and Reference. This manual

Sample Programs with embedded SQL

Appendix E. Recovery sample programs 389

DB2 9 BETA

** will help you to determine which database and table space recovery methods

** are best suited to your business environment.

**

** For more information on the sample programs, see the README file.

**

** For information on developing C applications, see the Application

** Development Guide.

**

** For information on using SQL statements, see the SQL Reference.

**

** For information on DB2 APIs, see the Administrative API Reference.

**

** For the latest information on programming, building, and running DB2

** applications, visit the DB2 application development website:

** http://www.software.ibm.com/data/db2/udb/ad

**/

#include "utilrecov.c"

/* local function prototypes */

int DbBackupAndRestore(char *, char *, char *, char *, char *);

int main(int argc, char *argv[])

{

 int rc = 0;

 char nodeName[SQL_INSTNAME_SZ + 1] = { 0 };

 char serverWorkingPath[SQL_PATH_SZ + 1] = { 0 };

 char restoredDbAlias[SQL_ALIAS_SZ + 1] = { 0 };

 char dbAlias[SQL_ALIAS_SZ + 1] = { 0 };

 char user[USERID_SZ + 1] = { 0 };

 char pswd[PSWD_SZ + 1] = { 0 };

 /* check the command line arguments */

 rc = CmdLineArgsCheck3(argc, argv, dbAlias, nodeName, user, pswd);

 CHECKRC(rc, "CmdLineArgsCheck3");

 printf("\nTHIS SAMPLE SHOWS HOW TO RESTORE A DATABASE FROM A\n");

 printf("BACKUP.\n");

 strcpy(restoredDbAlias, dbAlias);

 /* attach to a local or remote instance */

 rc = InstanceAttach(nodeName, user, pswd);

 CHECKRC(rc, "Instance Attach");

 /* get the server working path */

 rc = ServerWorkingPathGet(dbAlias, serverWorkingPath);

 CHECKRC(rc, "ServerWorkingPathGet");

 printf("\nNOTE: Backup images will be created on the server\n");

 printf(" in the directory %s,\n", serverWorkingPath);

 printf(" and will not be deleted by the program.\n");

 /* prune the recovery history file */

 rc = DbRecoveryHistoryFilePrune(dbAlias, user, pswd);

 CHECKRC(rc, "DbRecoveryHistoryFilePrune");

 rc = DbBackupAndRestore(dbAlias,

 restoredDbAlias, user, pswd, serverWorkingPath);

 CHECKRC(rc, "DbBackupAndRestore");

 /* Detach from the local or remote instance */

 rc = InstanceDetach(nodeName);

 CHECKRC(rc, "InstanceDetach");

 return 0;

} /* end main */

Sample Programs with embedded SQL

390 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

int DbBackupAndRestore(char dbAlias[],

 char restoredDbAlias[], char user[],

 char pswd[], char serverWorkingPath[])

{

 int rc = 0;

 struct sqlca sqlca;

 db2CfgParam cfgParameters[1];

 db2Cfg cfgStruct;

 unsigned short logretain = 0;

 char restoreTimestamp[SQLU_TIME_STAMP_LEN + 1] = { 0 };

 db2BackupStruct backupStruct;

 db2TablespaceStruct tablespaceStruct;

 db2MediaListStruct mediaListStruct;

 db2Uint32 backupImageSize = 0;

 db2RestoreStruct restoreStruct;

 db2TablespaceStruct rtablespaceStruct;

 db2MediaListStruct rmediaListStruct;

 printf("\n**************************************\n");

 printf("*** BACK UP AND RESTORE A DATABASE ***\n");

 printf("**************************************\n");

 printf("\nUSE THE DB2 APIs:\n");

 printf(" db2CfgSet -- Set Configuration\n");

 printf(" db2Backup -- Backup Database\n");

 printf(" db2Restore -- Restore Database\n");

 printf("TO BACK UP AND RESTORE A DATABASE.\n");

 printf("\n Update \’%s\’ database configuration:\n", dbAlias);

 printf(" - Disable the database configuration parameter LOGRETAIN\n");

 printf(" i.e., set LOGRETAIN = OFF/NO\n");

 /* initialize cfgParameters */

 /* SQLF_DBTN_LOG_RETAIN is a token of the updatable database configuration

 parameter ’logretain’; it is used to update the database configuration

 file */

 cfgParameters[0].flags = 0;

 cfgParameters[0].token = SQLF_DBTN_LOG_RETAIN;

 cfgParameters[0].ptrvalue = (char *)&logretain;

 /* disable the database configuration parameter ’logretain’ */

 logretain = SQLF_LOGRETAIN_DISABLE;

 /* initialize cfgStruct */

 cfgStruct.numItems = 1;

 cfgStruct.paramArray = cfgParameters;

 cfgStruct.flags = db2CfgDatabase | db2CfgDelayed;

 cfgStruct.dbname = dbAlias;

 /* set database configuration */

 db2CfgSet(db2Version810, (void *)&cfgStruct, &sqlca);

 DB2_API_CHECK("Db Log Retain -- Disable");

 /******************************/

 /* BACKUP THE DATABASE */

 /******************************/

 /* Calling up the routine for database backup */

 rc = DbBackup(dbAlias, user, pswd, serverWorkingPath, &backupStruct);

 CHECKRC(rc, "DbBackup");

 /******************************/

 /* RESTORE THE DATABASE */

 /******************************/

 strcpy(restoreTimestamp, backupStruct.oTimestamp);

Sample Programs with embedded SQL

Appendix E. Recovery sample programs 391

DB2 9 BETA

printf("\n Restoring a database ...\n");

 printf(" - source image alias : %s\n", dbAlias);

 printf(" - source image time stamp: %s\n", restoreTimestamp);

 printf(" - target database : %s\n", restoredDbAlias);

 rtablespaceStruct.tablespaces = NULL;

 rtablespaceStruct.numTablespaces = 0;

 rmediaListStruct.locations = &serverWorkingPath;

 rmediaListStruct.numLocations = 1;

 rmediaListStruct.locationType = SQLU_LOCAL_MEDIA;

 restoreStruct.piSourceDBAlias = dbAlias;

 restoreStruct.piTargetDBAlias = restoredDbAlias;

 restoreStruct.piTimestamp = restoreTimestamp;

 restoreStruct.piTargetDBPath = NULL;

 restoreStruct.piReportFile = NULL;

 restoreStruct.piTablespaceList = &rtablespaceStruct;

 restoreStruct.piMediaList = &rmediaListStruct;

 restoreStruct.piUsername = user;

 restoreStruct.piPassword = pswd;

 restoreStruct.piNewLogPath = NULL;

 restoreStruct.piVendorOptions = NULL;

 restoreStruct.iVendorOptionsSize = 0;

 restoreStruct.iParallelism = 1;

 restoreStruct.iBufferSize = 1024; /* 1024 x 4KB */

 restoreStruct.iNumBuffers = 2;

 restoreStruct.iCallerAction = DB2RESTORE_RESTORE;

 restoreStruct.iOptions =

 DB2RESTORE_OFFLINE | DB2RESTORE_DB | DB2RESTORE_NODATALINK |

 DB2RESTORE_NOROLLFWD;

 /* The API db2Restore is used to restore a database that has been backed

 up using the API db2Backup. */

 db2Restore(db2Version810, &restoreStruct, &sqlca);

 EXPECTED_WARN_CHECK("database restore -- start");

 while (sqlca.sqlcode != 0)

 {

 /* continue the restore operation */

 printf("\n Continuing the restore operation...\n");

 /* depending on the sqlca.sqlcode value, user action may be

 required, such as mounting a new tape */

 restoreStruct.iCallerAction = DB2RESTORE_CONTINUE;

 /* restore the database */

 db2Restore(db2Version810, &restoreStruct, &sqlca);

 DB2_API_CHECK("database restore -- continue");

 }

 printf("\n Restore finished.\n");

 return 0;

} /* DbBackupAndRestore */

 dbrollfwd sample program:

 The dbrollfwd sample files show how to perform rollforward operation after a

database restore operation.

/**

** Licensed Materials - Property of IBM

**

** Governed under the terms of the International

Sample Programs with embedded SQL

392 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

** License Agreement for Non-Warranted Sample Code.

**

** (C) COPYRIGHT International Business Machines Corp. 2003

** All Rights Reserved.

**

** US Government Users Restricted Rights - Use, duplication or

** disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

**

** SOURCE FILE NAME: dbrollfwd.sqc

**

** SAMPLE: How to perform rollforward after restore of a database

**

** This program ends in ".sqc" even though it does not contain

** embedded SQL statements. It links in the embedded SQL utility

** file for database connection and disconnection, so it needs the

** embedded SQL extension for the precompiler.

**

** Note:

** You must be disconnected from the sample database to run

** this program. To ensure you are, enter ’db2 connect reset’

** on the command line prior to running dbrollfwd.

**

** DB2 APIs USED:

** db2CfgSet -- Set Configuration

** db2Restore -- Restore Database

** db2Rollforward -- Rollforward Database

**

** OUTPUT FILE: dbrollfwd.out (available in the online documentation)

**

** For detailed information about database backup and database recovery, see

** the Data Recovery and High Availability Guide and Reference. This manual

** will help you to determine which database and table space recovery methods

** are best suited to your business environment.

**

** For more information on the sample programs, see the README file.

**

** For information on developing C applications, see the Application

** Development Guide.

**

** For information on using SQL statements, see the SQL Reference.

**

** For information on DB2 APIs, see the Administrative API Reference.

**

** For the latest information on programming, building, and running DB2

** applications, visit the DB2 application development website:

** http://www.software.ibm.com/data/db2/udb/ad

**/

#include "utilrecov.c"

/* local function prototypes */

int DbBackupRestoreAndRollforward(char *, char *, char *, char *, char *);

int main(int argc, char *argv[])

{

 int rc = 0;

 char nodeName[SQL_INSTNAME_SZ + 1] = { 0 };

 char serverWorkingPath[SQL_PATH_SZ + 1] = { 0 };

 char rolledForwardDbAlias[SQL_ALIAS_SZ + 1] = { 0 };

 char dbAlias[SQL_ALIAS_SZ + 1] = { 0 };

 char user[USERID_SZ + 1] = { 0 };

 char pswd[PSWD_SZ + 1] = { 0 };

 /* check the command line arguments */

 rc = CmdLineArgsCheck3(argc, argv, dbAlias, nodeName, user, pswd);

 CHECKRC(rc, "CmdLineArgsCheck3");

Sample Programs with embedded SQL

Appendix E. Recovery sample programs 393

DB2 9 BETA

printf("\nTHIS SAMPLE SHOWS HOW TO PERFORM ROLLFORWARD AFTER\n");

 printf("RESTORE OF A DATABASE.\n");

 strcpy(rolledForwardDbAlias, "RFDB");

 /* attach to a local or remote instance */

 rc = InstanceAttach(nodeName, user, pswd);

 CHECKRC(rc, "Instance Attach");

 /* get the server working path */

 rc = ServerWorkingPathGet(dbAlias, serverWorkingPath);

 CHECKRC(rc, "ServerWorkingPathGet");

 printf("\nNOTE: Backup images will be created on the server\n");

 printf(" in the directory %s,\n", serverWorkingPath);

 printf(" and will not be deleted by the program.\n");

 rc = DbBackupRestoreAndRollforward(dbAlias, rolledForwardDbAlias, user,

 pswd, serverWorkingPath);

 CHECKRC(rc, "DbBackupRestoreAndRollforward");

 /* Detach from the local or remote instance */

 rc = InstanceDetach(nodeName);

 CHECKRC(rc, "InstanceDetach");

 return 0;

} /* end main */

int DbBackupRestoreAndRollforward(char dbAlias[],

 char rolledForwardDbAlias[],

 char user[], char pswd[],

 char serverWorkingPath[])

{

 int rc = 0;

 struct sqlca sqlca;

 db2CfgParam cfgParameters[1];

 db2Cfg cfgStruct;

 unsigned short logretain = 0;

 char restoreTimestamp[SQLU_TIME_STAMP_LEN + 1] = { 0 };

 db2BackupStruct backupStruct;

 db2TablespaceStruct tablespaceStruct;

 db2MediaListStruct mediaListStruct;

 db2Uint32 backupImageSize;

 db2RestoreStruct restoreStruct;

 db2TablespaceStruct rtablespaceStruct;

 db2MediaListStruct rmediaListStruct;

 db2RfwdInputStruct rfwdInput;

 db2RfwdOutputStruct rfwdOutput;

 db2RollforwardStruct rfwdStruct;

 char rollforwardAppId[SQLU_APPLID_LEN + 1] = { 0 };

 sqlint32 numReplies = 0;

 struct sqlurf_info nodeInfo;

 printf("\n****************************\n");

 printf("*** ROLLFORWARD RECOVERY ***\n");

 printf("****************************\n");

 printf("\nUSE THE DB2 APIs:\n");

 printf(" db2CfgSet -- Set Configuration\n");

 printf(" db2Backup -- Backup Database\n");

 printf(" sqlecrea -- Create Database\n");

 printf(" db2Restore -- Restore Database\n");

 printf(" db2Rollforward -- Rollforward Database\n");

 printf(" sqledrpd -- Drop Database\n");

 printf("TO BACK UP, RESTORE, AND ROLLFORWARD A DATABASE.\n");

 printf("\n Update \’%s\’ database configuration:\n", dbAlias);

 printf(" - Enable the configuration parameter LOGRETAIN \n");

 printf(" i.e., set LOGRETAIN = RECOVERY/YES\n");

Sample Programs with embedded SQL

394 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

/* initialize cfgParameters */

 cfgParameters[0].flags = 0;

 cfgParameters[0].token = SQLF_DBTN_LOG_RETAIN;

 cfgParameters[0].ptrvalue = (char *)&logretain;

 /* enable the configuration parameter ’logretain’ */

 logretain = SQLF_LOGRETAIN_RECOVERY;

 /* initialize cfgStruct */

 cfgStruct.numItems = 1;

 cfgStruct.paramArray = cfgParameters;

 cfgStruct.flags = db2CfgDatabase | db2CfgDelayed;

 cfgStruct.dbname = dbAlias;

 /* get database configuration */

 db2CfgSet(db2Version810, (void *)&cfgStruct, &sqlca);

 DB2_API_CHECK("Db Log Retain -- Enable");

 /******************************/

 /* BACKUP THE DATABASE */

 /******************************/

 /* Calling the routine for database backup */

 rc = DbBackup(dbAlias, user, pswd, serverWorkingPath, &backupStruct);

 CHECKRC(rc, "DbBackup");

 /* To restore a remote database, you will first need to create an empty database

 if the client’s code page is different from the server’s code page.

 If this is the case, uncomment the call to DbCreate(). It will create

 an empty database on the server with the server’s code page. */

 /*

 rc = DbCreate(dbAlias, rolledForwardDbAlias);

 CHECKRC(rc, "DbCreate");

 */

 /******************************/

 /* RESTORE THE DATABASE */

 /******************************/

 strcpy(restoreTimestamp, backupStruct.oTimestamp);

 rtablespaceStruct.tablespaces = NULL;

 rtablespaceStruct.numTablespaces = 0;

 rmediaListStruct.locations = &serverWorkingPath;

 rmediaListStruct.numLocations = 1;

 rmediaListStruct.locationType = SQLU_LOCAL_MEDIA;

 restoreStruct.piSourceDBAlias = dbAlias;

 restoreStruct.piTargetDBAlias = rolledForwardDbAlias;

 restoreStruct.piTimestamp = restoreTimestamp;

 restoreStruct.piTargetDBPath = NULL;

 restoreStruct.piReportFile = NULL;

 restoreStruct.piTablespaceList = &rtablespaceStruct;

 restoreStruct.piMediaList = &rmediaListStruct;

 restoreStruct.piUsername = user;

 restoreStruct.piPassword = pswd;

 restoreStruct.piNewLogPath = NULL;

 restoreStruct.piVendorOptions = NULL;

 restoreStruct.iVendorOptionsSize = 0;

 restoreStruct.iParallelism = 1;

 restoreStruct.iBufferSize = 1024; /* 1024 x 4KB */

 restoreStruct.iNumBuffers = 2;

 restoreStruct.iCallerAction = DB2RESTORE_RESTORE;

 restoreStruct.iOptions =

 DB2RESTORE_OFFLINE | DB2RESTORE_DB | DB2RESTORE_NODATALINK |

 DB2RESTORE_ROLLFWD;

 printf("\n Restoring a database ...\n");

Sample Programs with embedded SQL

Appendix E. Recovery sample programs 395

DB2 9 BETA

printf(" - source image alias : %s\n", dbAlias);

 printf(" - source image time stamp: %s\n", restoreTimestamp);

 printf(" - target database : %s\n", rolledForwardDbAlias);

 /* The API db2Restore is used to restore a database that has been backed

 up using the API db2Backup. */

 db2Restore(db2Version810, &restoreStruct, &sqlca);

 DB2_API_CHECK("database restore -- start");

 while (sqlca.sqlcode != 0)

 {

 /* continue the restore operation */

 printf("\n Continuing the restore operation...\n");

 /* Depending on the sqlca.sqlcode value, user action may be

 required, such as mounting a new tape. */

 restoreStruct.iCallerAction = DB2RESTORE_CONTINUE;

 /* restore the database */

 db2Restore(db2Version810, &restoreStruct, &sqlca);

 DB2_API_CHECK("database restore -- continue");

 }

 printf("\n Restore finished.\n");

 /******************************/

 /* ROLLFORWARD RECOVERY */

 /******************************/

 printf("\n Rolling forward database ’%s’...\n", rolledForwardDbAlias);

 rfwdInput.iVersion = SQLUM_RFWD_VERSION;

 rfwdInput.piDbAlias = rolledForwardDbAlias;

 rfwdInput.iCallerAction = DB2ROLLFORWARD_RFWD_STOP;

 rfwdInput.piStopTime = SQLUM_INFINITY_TIMESTAMP;

 rfwdInput.piUserName = user;

 rfwdInput.piPassword = pswd;

 rfwdInput.piOverflowLogPath = serverWorkingPath;

 rfwdInput.iNumChngLgOvrflw = 0;

 rfwdInput.piChngLogOvrflw = NULL;

 rfwdInput.iConnectMode = DB2ROLLFORWARD_OFFLINE;

 rfwdInput.piTablespaceList = NULL;

 rfwdInput.iAllNodeFlag = DB2_ALL_NODES;

 rfwdInput.iNumNodes = 0;

 rfwdInput.piNodeList = NULL;

 rfwdInput.piDroppedTblID = NULL;

 rfwdInput.piExportDir = NULL;

 rfwdInput.iNumNodeInfo = 1;

 rfwdInput.iRollforwardFlags = DB2ROLLFORWARD_EMPTY_FLAG;

 rfwdOutput.poApplicationId = rollforwardAppId;

 rfwdOutput.poNumReplies = &numReplies;

 rfwdOutput.poNodeInfo = &nodeInfo;

 rfwdStruct.piRfwdInput = &rfwdInput;

 rfwdStruct.poRfwdOutput = &rfwdOutput;

 /* rollforward database */

 /* The API db2Rollforward rollforward recovers a database by

 applying transactions recorded in the database log files. */

 db2Rollforward(db2Version810, &rfwdStruct, &sqlca);

 DB2_API_CHECK("rollforward -- start");

 printf(" Rollforward finished.\n");

 /* drop the restored database */

 rc = DbDrop(rolledForwardDbAlias);

 CHECKRC(rc, "DbDrop");

 return 0;

} /* DbBackupRestoreAndRollforward */

Sample Programs with embedded SQL

396 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Appendix F. Cross-node recovery with the db2adutl command

and the logarchopt1 and vendoropt database configuration

parameters

 The examples that follow show how to perform cross-node recovery using the

db2adutl command, and the logarchopt1 and vendoropt database configuration

parameters.

For the following examples, computer 1 is called bar and is running AIX. The

owner of this machine is roecken. The database on bar is called zample. Computer

2 is called dps. This machine is also running AIX, and is owned by regress9.

 PASSWORDACCESS = generate:

 Computer 1:

1. Set up the database for log archiving to TSM. Update the database

configuration parameter logarchmeth1 for the zample database:

 bar:/home/roecken> db2 update db cfg for zample using LOGARCHMETH1 tsm

The following information is returned:

 DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

Note: Before updating the database configuration, you might have to take an

offline backup of the database.

2. Force off applications:

 db2 force applications all

3. Verify that all applications have been forced off:

 db2 list applications

You should receive a message that says no data was returned.

Note: In a partitioned database environment, you must perform this step on all

database partitions.

4. Take a backup of the database:

 db2 backup db zample use tsm

Information similar to the following is returned:

 Backup successful. The timestamp for this backup image is : 20040216151025

Note: In a partitioned database environment, you must perform this step on all

database partitions. You must backup the catalog partition first, then you

can back up all other database partitions concurrently.

5. Connect to the zample database, then create a table in it.

6. Load data into the new table. In this example, the table is called a, and the data

is being loaded from a delimited ASCII file called mr. The COPY YES option is

specified to make a copy of the data that is loaded, and the USE TSM option

specifies that the copy of the data is stored on Tivoli Storage Manager.

Note: You can only specify the COPY YES option if the database is enabled for

rollforward recovery; that is, the logarchmeth1 database configuration

parameter must be set to either USEREXIT or LOGRETAIN.

© Copyright IBM Corp. 2001, 2006 397

DB2 9 BETA

bar:/home/roecken> db2 load from mr of del modified by noheader replace

 into a copy yes use tsm

The utility returns a series of messages to indicate its progress:

 SQL3109N The utility is beginning to load data from file "/home/roecken/mr".

 SQL3500W The utility is beginning the "LOAD" phase at time "02/16/2004

 15:12:13.392633".

 SQL3519W Begin Load Consistency Point. Input record count = "0".

 SQL3520W Load Consistency Point was successful.

 SQL3110N The utility has completed processing. "1" rows were read from the

 input file.

 SQL3519W Begin Load Consistency Point. Input record count = "1".

 SQL3520W Load Consistency Point was successful.

 SQL3515W The utility has finished the "LOAD" phase at time "02/16/2004

 15:12:13.445718".

 Number of rows read = 1

 Number of rows skipped = 0

 Number of rows loaded = 1

 Number of rows rejected = 0

 Number of rows deleted = 0

 Number of rows committed = 1

There should now be one backup image, one load copy image and one log file

on TSM. A query on the zample database can be run as follows:

 bar:/home/roecken/sqllib/adsm> db2adutl query db zample

The following information is returned:

 Retrieving FULL DATABASE BACKUP information.

 1 Time: 20040216151025 Oldest log: S0000000.LOG DB Partition Number: 0

 Sessions: 1

 Retrieving INCREMENTAL DATABASE BACKUP information.

 No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

 Retrieving DELTA DATABASE BACKUP information.

 No DELTA DATABASE BACKUP images found for ZAMPLE

 Retrieving TABLESPACE BACKUP information.

 No TABLESPACE BACKUP images found for ZAMPLE

 Retrieving INCREMENTAL TABLESPACE BACKUP information.

 No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

 Retrieving DELTA TABLESPACE BACKUP information.

 No DELTA TABLESPACE BACKUP images found for ZAMPLE

 Retrieving LOAD COPY information.

 1 Time: 20040216151213

398 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Retrieving LOG ARCHIVE information.

 Log file: S0000000.LOG, Chain Num: 0, DB Partition Number: 0,

 Taken at: 2004-02-16-15.10.38

7. To enable cross-node recovery, another node and account must be given access

to the objects on the bar computer. In this example, access is given to the node

dps and the user regress9.

 bar:/home/roecken/sqllib/adsm> db2adutl grant user regress9

 on nodename dps for db zample

The following information is returned:

 Successfully added permissions for regress9 to access ZAMPLE on node dps.

To query the results of the db2adutl grant operation, issue the following

command:

 bar:/home/roecken/sqllib/adsm> db2adutl queryaccess

The following information is returned:

 Node Username Database Name Type

 --

 DPS regress9 ZAMPLE A

 --

 Access Types: B - backup images L - logs A - both

 PASSWORDACCESS = generate environment:

 Computer 2:

 Computer 2, dps, is not yet set up. A db2adutl query on dps for the zample

database returns the following results:

 dps:/home/regress9/sqllib/adsm> db2adutl query db zample

 --- Database directory is empty ---

 Warning: There are no file spaces created by DB2 on the ADSM server

 Warning: No DB2 backup images found in ADSM for any alias.

 dps:/home/regress9/sqllib/adsm> db2adutl query db zample nodename

 bar owner roecken

 --- Database directory is empty ---

 Query for database ZAMPLE

 Retrieving FULL DATABASE BACKUP information.

 1 Time: 20040216151025 Oldest log: S0000000.LOG DB Partition Number: 0

 Sessions: 1

 Retrieving INCREMENTAL DATABASE BACKUP information.

 No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

 Retrieving DELTA DATABASE BACKUP information.

 No DELTA DATABASE BACKUP images found for ZAMPLE

 Retrieving TABLESPACE BACKUP information.

 No TABLESPACE BACKUP images found for ZAMPLE

 Retrieving INCREMENTAL TABLESPACE BACKUP information.

 No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

Appendix F. Cross-node recovery example 399

DB2 9 BETA

Retrieving DELTA TABLESPACE BACKUP information.

 No DELTA TABLESPACE BACKUP images found for ZAMPLE

 Retrieving LOAD COPY information.

 1 Time: 20040216151213

 Retrieving LOG ARCHIVE information.

 Log file: S0000000.LOG, Chain Num: 0, DB Partition Number: 0,

 Taken at: 2004-02-16-15.10.38

The zample database does not yet exist on the dps computer.

1. Restore the zample database to the dps computer:

 dps:/home/regress9> db2 restore db zample use tsm options

 "’-fromnode=bar -fromowner=roecken’" without prompting

The following information is returned:

 DB20000I The RESTORE DATABASE command completed successfully.

Note: If the zample database already existed on dps, the OPTIONS parameter

would be omitted, and the database configuration parameter vendoropt

would be used. This configuration parameter overrides the OPTIONS

parameter for a backup or restore operation.

A rollforward operation on the zample database will fail because the

rollforward utility cannot find the log files. A rollforward operation such as the

following:

 dps:/home/regress9> db2 rollforward db zample to end of logs and stop

Returns the following error:

 SQL4970N Roll-forward recovery on database "ZAMPLE" cannot reach the

 specified stop point (end-of-log or point-in-time) because of missing log

 file(s) on node(s) "0".

2. To force the rollforward utility to look for log files on another machine, you

must configure the proper logarchopt value, in this situation the logarchopt1

database configuration parameter:

 dps:/home/regress9> db2 update db cfg for zample using logarchopt1

 "’-fromnode=bar -fromowner=roecken’"

3. For the rollforward utility to be able to use the load copy images, you must

also set the vendoropt database configuration parameter:

 dps:/home/regress9> db2 update db cfg for zample using VENDOROPT

 "’-fromnode=bar -fromowner=roecken’"

4. The zample database can now be rolled forward::

 dps:/home/regress9> db2 rollforward db zample to end of logs and stop

The following information is returned:

 Rollforward Status

 Input database alias = zample

 Number of nodes have returned status = 1

 Node number = 0

 Rollforward status = not pending

 Next log file to be read =

 Log files processed = S0000000.LOG - S0000000.LOG

 Last committed transaction = 2004-02-16-20.10.38.000000 UTC

 DB20000I The ROLLFORWARD command completed successfully.

 PASSWORDACCESS = prompt environment:

400 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

In a PROMPT environment, extra information is required, specifically the TSM

nodename and password of the machine where the objects were created.

For db2adutl, update the dsm.sys file (called the dsm.opt file on Windows-based

platforms) and add NODENAME bar (because bar is the name of the source

computer) to the server clause:

 dps:/home/regress9/sqllib/adsm> db2adutl query db zample nodename bar

 owner roecken password *******

The following information is returned:

 Query for database ZAMPLE

 Retrieving FULL DATABASE BACKUP information.

 1 Time: 20040216151025 Oldest log: S0000000.LOG DB Partition Number: 0

 Sessions: 1

 Retrieving INCREMENTAL DATABASE BACKUP information.

 No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

 Retrieving DELTA DATABASE BACKUP information.

 No DELTA DATABASE BACKUP images found for ZAMPLE

 Retrieving TABLESPACE BACKUP information.

 No TABLESPACE BACKUP images found for ZAMPLE

 Retrieving INCREMENTAL TABLESPACE BACKUP information.

 No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

 Retrieving DELTA TABLESPACE BACKUP information.

 No DELTA TABLESPACE BACKUP images found for ZAMPLE

 Retrieving LOAD COPY information.

 1 Time: 20040216151213

 Retrieving LOG ARCHIVE information.

 Log file: S0000000.LOG, Chain Num: 0, DB Partition Number: 0,

 Taken at: 2004-02-16-15.10.38

1. If the database does not exist, create an empty zample database. If the zample

database already exists, this step, and the next two steps that update the

database configuration, can be skipped.

 dps:/home/regress9> db2 create db zample

2. Update the database configuration parameter tsm_nodename for the zample

database:

 dps:/home/regress9> db2 update db cfg for zample using tsm_nodename bar

3. Update the database configuration parameter tsm_password for the zample

database:

 dps:/home/regress9> db2 update db cfg for zample using

 tsm_password ********

4. Restore the zample database:

 dps:/home/regress9> db2 restore db zample use tsm options

 "’-fromnode=bar -fromowner=roecken’" without prompting

The restore operation completes successfully, but a warning is issued:

Appendix F. Cross-node recovery example 401

DB2 9 BETA

SQL2540W Restore is successful, however a warning "2523" was

 encountered during Database Restore while processing in No

 Interrupt mode.

Again, at this point, the rollforward utility cannot find the correct log files:

 dps:/home/regress9> db2 rollforward db zample to end of logs and stop

The following error message is returned:

 SQL1268N Roll-forward recovery stopped due to error "-2112880618"

 while retrieving log file "S0000000.LOG" for database "ZAMPLE" on node "0".

5. Because the database restore operation replaces the database configuration file,

the TSM database configuration values must be set to the correct values. First

the tsm_nodename configuration parameter must be reset:

 dps:/home/regress9> db2 update db cfg for zample using tsm_nodename bar

6. The tsm_password database configuration parameter must be reset:

 dps:/home/regress9> db2 update db cfg for zample using tsm_password *******

7. The logarchopt1 database configuration parameter must be reset so the

rollforward utility can find the correct log files:

 dps:/home/regress9> db2 update db cfg for zample using logarchopt1

 "’-fromnode=bar -fromowner=roecken’"

8. The vendoropt database configuration parameter must also be reset so that the

load recovery file can also be used:

 dps:/home/regress9> db2 update db cfg for zample using VENDOROPT

 "’-fromnode=bar -fromowner=roecken’"

9. When the database configuration parameters are set, the database can be rolled

forward:

 dps:/home/regress9> db2 rollforward db zample to end of logs and stop

A ROLLFORWARD QUERY STATUS command on the zample database shows

the following:

 Rollforward Status

 Input database alias = zample

 Number of nodes have returned status = 1

 Node number = 0

 Rollforward status = not pending

 Next log file to be read =

 Log files processed = S0000000.LOG - S0000000.LOG

 Last committed transaction = 2004-02-16-20.10.38.000000 UTC

 DB20000I The ROLLFORWARD command completed successfully.

 Related reference:

v “db2adutl - Managing DB2 objects within TSM” on page 303

v “logarchopt1 - Primary log archive options configuration parameter” in

Performance Guide

v “vendoropt - Vendor options configuration parameter” in Performance Guide

402 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Appendix G. Tivoli Storage Manager

 When calling the BACKUP DATABASE or RESTORE DATABASE commands, you

can specify that you want to use the Tivoli Storage Manager (TSM) product to

manage database or table space backup or restore operation. The minimum

required level of TSM client API is Version 4.2.0, except on the following:

v 64-bit Solaris systems, which require TSM client API Version 4.2.1.

v 64-bit Windows operating systems, which require TSM client API Version 5.1.

v All Windows X64 systems, which require TSM client API Version 5.3.2.

v 32-bit Linux for iSeries and pSeries®, which require at minimum TSM client API

Version 5.1.5

v 64-bit Linux for iSeries and pSeries, which require at minimum TSM client API

Version 5.2.2

v 64-bit Linux on AMD Opteron systems, which require a minimum TSM client

API Version 5.2.0.

v Linux for zSeries®, which requires a minimum TSM client API Version 5.2.2.

Configuring a Tivoli Storage Manager client

Before the database manager can use the TSM option, the following steps might be

required to configure the TSM environment:

1. A functioning TSM client and server must be installed and configured. In

addition, the TSM client API must be installed on each DB2 server.

2. Set the environment variables used by the TSM client API:

DSMI_DIR Identifies the user-defined directory path where the API trusted

agent file (dsmtca) is located.

DSMI_CONFIG

Identifies the user-defined directory path to the dsm.opt file,

which contains the TSM user options. Unlike the other two

variables, this variable should contain a fully qualified path and

file name.

DSMI_LOG Identifies the user-defined directory path where the error log

(dsierror.log) will be created.

Note: In a multi-partition database environment these settings must be

specified in the sqllib/userprofile directory.

3. If any changes are made to these environment variables and the database

manager is running, you should:

v Stop the database manager using the db2stop command.

v Start the database manager using the db2start command.
4. Depending on the server’s configuration, a Tivoli client might require a

password to interface with a TSM server. If the TSM environment is configured

to use PASSWORDACCESS=generate, the Tivoli client needs to have its password

established.

The executable file dsmapipw is installed in the sqllib/adsm directory of the

instance owner. This executable allows you to establish and reset the TSM

password.

© Copyright IBM Corp. 2001, 2006 403

DB2 9 BETA

To execute the dsmapipw command, you must be logged in as the local

administrator or “root” user. When this command is executed, you will be

prompted for the following information:

v Old password, which is the current password for the TSM node, as recognized

by the TSM server. The first time you execute this command, this password

will be the one provided by the TSM administrator at the time your node

was registered on the TSM server.

v New password, which is the new password for the TSM node, stored at the

TSM server. (You will be prompted twice for the new password, to check for

input errors.)

Note: Users who invoke the BACKUP DATABASE or RESTORE DATABASE

commands do not need to know this password. You only need to run the

dsmapipw command to establish a password for the initial connection,

and after the password has been reset on the TSM server.

Considerations for using Tivoli Storage Manager

To use specific features within TSM, you might be required to give the fully

qualified path name of the object using the feature. (Remember that on Windows

operating systems, the \ will be used instead of /.) The fully qualified path name

of:

v A full database backup object is: /<database>/NODEnnnn/
FULL_BACKUP.timestamp.seq_no

v An incremental database backup object is: /<database>/NODEnnnn/
DB_INCR_BACKUP.timestamp.seq_no

v An incremental delta database backup object is_ /<database>/NODEnnnn/
DB_DELTA_BACKUP.timestamp.seq_no

v A full table space backup object is: /<database>/NODEnnnn/
TSP_BACKUP.timestamp.seq_no

v An incremental table space backup object is: /<database>/NODEnnnn/
TSP_INCR_BACKUP.timestamp.seq_no

v An incremental delta table space backup object is: /<database>/NODEnnnn/
TSP_DELTA_BACKUP.timestamp.seq_no

where <database> is the database alias name, and NODEnnnn is the node number.

The names shown in uppercase characters must be entered as shown.

v In the case where you have multiple backup images using the same database

alias name, the time stamp and sequence number become the distinguishing part

of a fully qualified name. You will need to query TSM to determine which

backup version to use.

v TSM does not allow identical object names. If two different databases are backed

up to TSM and they have the same database alias name, node number, and

timestamp of backup, TSM marks one of them as inactive. You should use a

unique TSM database alias names for each DB2 instance.

v Individual backup images are pooled into file spaces that TSM manages.

Individual backup images can only be manipulated through the TSM APIs, or

through db2adutl which uses these APIs.

v The TSM server will time out a session if the Tivoli client does not respond

within the period of time specified by the COMMTIMEOUT parameter in the server’s

configuration file. Three factors can contribute to a timeout problem:

404 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

– The COMMTIMEOUT parameter might be set too low at the TSM server. For

example, during a restore operation, a timeout can occur if large DMS table

spaces are being created. The recommended value for this parameter is 6000

seconds.

– The DB2 backup or restore buffer might be too large.

– Database activity during an online backup operation might be too high.
v Use multiple sessions to increase throughput (only if sufficient hardware is

available on the TSM server).

v If you perform an online backup operation and specify the USE TSM option and

the INCLUDE LOGS option, a deadlock can occur if the two processes try to

write to the same tape drive at the same time. If you are using a tape drive as a

storage device for logs and backup images, you need to define two separate tape

pools for TSM, one for the backup image and one for the archived logs.

 Related concepts:

v “Log file management” on page 46

 Related reference:

v “db2adutl - Managing DB2 objects within TSM” on page 303

Appendix G. Tivoli Storage Manager 405

DB2 9 BETA

406 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Appendix H. Tivoli Space Manager Hierarchical Storage

Management support for partitioned tables

 The Tivoli Space Manager Hierarchical Storage Manager (HSM) client program

automatically migrates eligible files to secondary storage to maintain specific levels

of free space on local file systems.

With table partitioning, table data is divided across multiple storage objects called

data partitions. HSM supports the backup of individual data partitions to

secondary storage.

When using SMS table spaces, each data partition range is represented as a file in

the corresponding directory. Therefore, it is very easy to migrate individual ranges

of data (data partitions) to secondary storage.

When using DMS table spaces, each container is represented as a file. In this case,

infrequently accessed ranges should be stored in their own table space. When you

issue a CREATE TABLE statement using the EVERY clause, use the NO CYCLE

clause to ensure that the number of table spaces listed in the table level IN clause

match the number of data partitions being created. This is demonstrated in the

following example:

Example 1

CREATE TABLE t1 (c INT) IN tbsp1, tbsp2, tbsp3 NO CYCLE

 PARTITION BY RANGE(c)

 (STARTING FROM 2 ENDING AT 6 EVERY 2);

 Related concepts:

v “Log file management” on page 46

 Related reference:

v “CREATE TABLE statement” in SQL Reference, Volume 2

v “db2adutl - Managing DB2 objects within TSM” on page 303

v Appendix G, “Tivoli Storage Manager,” on page 403

© Copyright IBM Corp. 2001, 2006 407

DB2 9 BETA

408 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Appendix I. User exit for database recovery

 You can develop a user exit program to automate log file archiving and retrieval.

Before invoking a user exit program for log file archiving or retrieval, ensure that

the logarchmeth1 database configuration parameter has been set to USEREXIT. This

also enables your database for rollforward recovery.

When a user exit program is invoked, the database manager passes control to the

executable file, db2uext2. The database manager passes parameters to db2uext2

and, on completion, the program passes a return code back to the database

manager. Because the database manager handles a limited set of return conditions,

the user exit program should be able to handle error conditions (see “Error

handling” on page 411). And because only one user exit program can be invoked

within a database manager instance, it must have a section for each of the

operations it might be asked to perform.

The following topics are covered:

v “Sample user exit programs”

v “Calling format” on page 410

v “Error handling” on page 411

Sample user exit programs

Sample user exit programs are provided for all supported platforms. You can

modify these programs to suit your particular requirements. The sample programs

are well commented with information that will help you to use them most

effectively.

You should be aware that user exit programs must copy log files from the active

log path to the archive log path. Do not remove log files from the active log path.

(This could cause problems during database recovery.) DB2 removes archived log

files from the active log path when these log files are no longer needed for

recovery.

Following is a description of the sample user exit programs that are shipped with

DB2 database.

v UNIX based systems

The user exit sample programs for DB2 for UNIX based systems are found in

the sqllib/samples/c subdirectory. Although the samples provided are coded in

C, your user exit program can be written in a different programming language.

Your user exit program must be an executable file whose name is db2uext2.

There are four sample user exit programs for UNIX based systems:

– db2uext2.ctsm

This sample uses Tivoli Storage Manager to archive and retrieve database log

files.

– db2uext2.ctape

This sample uses tape media to archive and retrieve database log files .

– db2uext2.cdisk

This sample uses the operating system COPY command and disk media to

archive and retrieve database log files.

© Copyright IBM Corp. 2001, 2006 409

DB2 9 BETA

– db2uxt2.cxbsa

This sample works with the XBSA Draft 0.8 published by the X/Open group.

It can be used to archive and retrieve database log files. This sample is only

supported on AIX.
v Windows operating systems

The user exit sample programs for DB2 for Windows operating systems are

found in the sqllib\samples\c subdirectory. Although the samples provided are

coded in C, your user exit program can be written in a different programming

language.

Your user exit program must be an executable file whose name is db2uext2.

There are two sample user exit programs for Windows operating systems:

– db2uext2.ctsm

This sample uses Tivoli Storage Manager to archive and retrieve database log

files.

– db2uext2.cdisk

This sample uses the operating system COPY command and disk media to

archive and retrieve database log files.

Calling format

When the database manager calls a user exit program, it passes a set of parameters

(of data type CHAR) to the program. The calling format is dependent on your

operating system:

 db2uext2 -OS<os> -RL<db2rel> -RQ<request> -DB<dbname>

 -NN<nodenum> -LP<logpath> -LN<logname> -AP<tsmpasswd>

 -SP<startpage> -LS<logsize>

os Specifies the platform on which the instance is running. Valid

values are: AIX, Solaris, HP-UX, SCO, Linux, and NT.

db2rel Specifies the DB2 release level. For example, SQL07020.

request Specifies a request type. Valid values are: ARCHIVE and RETRIEVE.

dbname Specifies a database name.

nodenum Specifies the local node number, such as 5, for example.

logpath Specifies the fully qualified path to the log files. The path must

contain the trailing path separator. For example,

/u/database/log/path/, or d:\logpath\.

logname Specifies the name of the log file that is to be archived or retrieved,

such as S0000123.LOG, for example.

tsmpasswd Specifies the TSM password. (If a value for the database

configuration parameter tsm_password has previously been

specified, that value is passed to the user exit program.)

startpage Specifies the number of 4-KB offset pages of the device at which

the log extent starts.

logsize Specifies the size of the log extent, in 4-KB pages. This parameter is

only valid if a raw device is used for logging.

410 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Error handling

Your user exit program should be designed to provide specific and meaningful

return codes, so that the database manager can interpret them correctly. Because

the user exit program is called by the underlying operating system command

processor, the operating system itself could return error codes. And because these

error codes are not remapped, use the operating system message help utility to

obtain information about them.

Table 9 shows the codes that can be returned by a user exit program, and describes

how these codes are interpreted by the database manager. If a return code is not

listed in the table, it is treated as if its value were 32.

 Table 9. User Exit Program Return Codes. Applies to archiving and retrieval operations

only.

Return Code Explanation

0 Successful.

4 Temporary resource error encountered.a

8 Operator intervention is required.a

12 Hardware error.b

16 Error with the user exit program or a software function used by the

program.b

20 Error with one or more of the parameters passed to the user exit program.

Verify that the user exit program is correctly processing the specified

parameters.b

24 The user exit program was not found.

b

28 Error caused by an input/output (I/O) failure, or by the operating

system.b

32 The user exit program was terminated by the user.b

255 Error caused by the user exit program not being able to load the library

file for the executable.c

Appendix I. User exit for database recovery 411

DB2 9 BETA

Table 9. User Exit Program Return Codes (continued). Applies to archiving and retrieval

operations only.

Return Code Explanation

a For archiving or retrieval requests, a return code of 4 or 8 causes a retry in five minutes.

If the user exit program continues to return 4 or 8 on retrieve requests for the same log file,

DB2 will continue to retry until successful. (This applies to rollforward operations, or calls

to the db2ReadLog API, which is used by the replication utility.)

b User exit requests are suspended for five minutes. During this time, all requests are

ignored, including the request that caused the error condition. Following this five-minute

suspension, the next request is processed. If this request is processed without error,

processing of new user exit requests continues, and DB2 reissues the archive request that

failed or was suspended previously. If a return code greater than 8 is generated during the

retry, requests are suspended for an additional five minutes. The five-minute suspensions

continue until the problem is corrected, or the database is stopped and restarted. Once all

applications have disconnected from the database, DB2 issues an archive request for any

log file that might not have been successfully archived previously. If the user exit program

fails to archive log files, your disk might become filled with log files, and performance

might be degraded. Once the disk becomes full, the database manager will not accept

further application requests for database updates. If the user exit program was called to

retrieve log files, rollforward recovery is suspended, but not stopped, unless the

ROLLFORWARD STOP option was specified. If the STOP option was not specified, you

can correct the problem and resume recovery.

c If the user exit program returns error code 255, it is likely that the program cannot load

the library file for the executable. To verify this, manually invoke the user exit program.

More information is displayed.

Note: During archiving and retrieval operations, an alert message is issued for all return

codes except 0, and 4. The alert message contains the return code from the user exit

program, and a copy of the input parameters that were provided to the user exit program.

 Related concepts:

v “Log file management through log archiving” on page 49

 Related reference:

v “Configuration parameters for database logging” on page 37

412 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Appendix J. Backup and restore APIs for vendor products

DB2 APIs for backup and restore to storage managers

 DB2 provides an interface that can be used by third-party media management

products to store and retrieve data for backup and restore operations and log files.

This interface is designed to augment the backup, restore, and log archiving data

targets of diskette, disk, tape, and Tivoli Storage Manager, that are supported as a

standard part of DB2.

These third-party media management products will be referred to as vendor

products in the remainder of this section.

DB2 defines a set of API prototypes that provide a general purpose data interface

to backup, restore, and log archiving that can be used by many vendors. These

APIs are to be provided by the vendor in a shared library on UNIX based systems,

or DLL on the Windows operating system. When the APIs are invoked by DB2, the

shared library or DLL specified by the calling backup, restore, or log archiving

routine is loaded and the APIs provided by the vendor are called to perform the

required tasks.

Sample files demonstrating the DB2 vendor functionality are located on UNIX

platforms in the sqllib/samples/BARVendor directory, and on Windows in the

sqllib\samples\BARVendor directory.

The following are the definitions for terminology used in the descriptions of the

backup and restore vendor storage plug-in APIs.

Backup and restore vendor storage plug-in

A dynamically loadable library that DB2 will load to access user-written

backup and restore APIs for vendor products.

Input Indicates that DB2 will fill in the value for the backup and restore vendor

storage plug-in API parameter.

Output

Indicates that the backup and restore vendor storage plug-in API will fill in

the value for the API parameter.

Operational overview

Seven APIs are defined to provide a data interface between DB2 and the vendor

product:

v sqluvint - Initialize and link to a vendor device

v sqluvget - Read data from a vendor device

v sqluvput - Write data to a vendor device

v sqluvend - Unlink the device and release its resources

v sqluvdel - Delete committed session

v db2VendorQueryApiVersion - Query device supported API level

v db2VendorGetNextObj - Get next object on device

© Copyright IBM Corp. 2001, 2006 413

DB2 9 BETA

DB2 will call these APIs, and they should be provided by the vendor product in a

shared library on UNIX based systems, or in a DLL on the Windows operating

system.

Note: The shared library or DLL code will be run as part of the database engine

code. Therefore, it must be reentrant and thoroughly debugged. An errant

API may compromise data integrity of the database.

The sequence of APIs that DB2 will call during a specific backup or restore

operation depends on:

v The number of sessions that will be utilized.

v Whether it is a backup, a restore, a log archive, or a log retrieve operation.

v The PROMPTING mode that is specified on the backup or restore operation.

v The characteristics of the vendor device on which the data is stored.

v The errors that may be encountered during the operation.

Number of sessions

DB2 supports the backup and restore of database objects using one or more data

streams or sessions. A backup or restore using three sessions would require three

physical or logical devices to be available. When vendor device support is being

used, it is the vendor’s APIs that are responsible for managing the interface to each

physical or logical device. DB2 simply sends or receives data buffers to or from the

vendor provided APIs.

The number of sessions to be used is specified as a parameter by the application

that calls the backup or restore database function. This value is provided in the

INIT-INPUT structure used by the sqluvint API.

DB2 will continue to initialize sessions until the specified number is reached, or it

receives an SQLUV_MAX_LINK_GRANT warning return code from an sqluvint

call. In order to warn DB2 that it has reached the maximum number of sessions

that it can support, the vendor product will require code to track the number of

active sessions. Failure to warn DB2 could lead to a DB2 initialize session request

that fails, resulting in a termination of all sessions and the failure of the entire

backup or restore operation.

When the operation is backup, DB2 writes a media header record at the beginning

of each session. The record contains information that DB2 uses to identify the

session during a restore operation. DB2 uniquely identifies each session by

appending a sequence number to the name of the backup image. The number

starts at one for the first session, and is incremented by one each time another

session is initiated with an sqluvint call for a backup or a restore operation.

When the backup operation completes successfully, DB2 writes a media trailer to

the last session it closes. This trailer includes information that tells DB2 how many

sessions were used to perform the backup operation. During a restore operation,

this information is used to ensure all the sessions, or data streams, have been

restored.

Operation with no errors, warnings, or prompting

For backing up an image to a vendor device, the following sequence of calls is

issued by DB2 for each session:

 db2VendorQueryApiVersion

followed by 1

APIs for backup and restore to storage managers

414 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

sqluvint, action = SQLUV_WRITE

followed by 1 to n

 sqluvput

followed by 1

 sqluvend, action = SQLUV_COMMIT

When DB2 issues an sqluvend call (action SQLUV_COMMIT), it expects the

vendor product to appropriately save the output data. A return code of

SQLUV_OK to DB2 indicates success.

The DB2-INFO structure, used on the sqluvint call, contains the information

required to identify the backup. A sequence number is supplied. The vendor

product may choose to save this information. DB2 will use it during restore to

identify the backup that will be restored.

Note: For backing up a log file to a vendor device, use action =

SQLUV_ARCHIVE with the sqluvint call.

For restoring an image from a vendor device, the sequence of calls for each session

is:

 db2VendorQueryApiVersion

followed by 1

 sqluvint, action = SQLUV_READ

followed by 1 to n

 sqluvget

followed by 1

 sqluvend, action = SQLUV_COMMIT

The information in the DB2-INFO structure used on the sqluvint call will contain

the information required to identify the backup. A sequence number is not

supplied. DB2 expects that all backup objects (session outputs committed during a

backup) will be returned. The first backup object returned is the object generated

with sequence number 1, and all other objects are restored in no specific order.

DB2 checks the media tail to ensure that all objects have been processed.

Note: For restoring a log file from a vendor device, use action =

SQLUV_RETRIEVE with the sqluvint call.

Note: Not all vendor products will keep a record of the names of the backup

objects. This is most likely when the backups are being done to tapes, or

other media of limited capacity. During the initialization of restore sessions,

the identification information can be utilized to stage the necessary backup

objects so that they are available when required; this may be most useful

when juke boxes or robotic systems are used to store the backups. DB2 will

always check the media header (first record in each session’s output) to

ensure that the correct data is being restored.

For searching a vendor device for an image or archived log file, the following

sequence of calls is issued by DB2 for each session:

 sqluvint, action = SQLUV_QUERY_IMAGES or SQLUV_QUERY_LOGS

APIs for backup and restore to storage managers

Appendix J. Backup and restore APIs for vendor products 415

DB2 9 BETA

followed by 1 to n

 db2VendorGetNextObj

followed by 1

 sqluvend, action = SQLUV_COMMIT

Prompting mode

When a backup or a restore operation is initiated, two prompting modes are

possible:

v WITHOUT PROMPTING or NOINTERRUPT, where there is no opportunity for

the vendor product to write messages to the user, or for the user to respond to

them.

v PROMPTING or INTERRUPT, where the user can receive and respond to

messages from the vendor product.

For PROMPTING mode, backup and restore define three possible user responses:

v Continue

The operation of reading or writing data to the device will resume.

v Device terminate

The device will receive no additional data, and the session is terminated.

v Terminate

The entire backup or restore operation is terminated.

The use of the PROMPTING and WITHOUT PROMPTING modes is discussed in

the sections that follow.

Device characteristics

For purposes of the vendor device support APIs, two general types of devices are

defined:

v Limited capacity devices requiring user action to change the media; for example,

a tape drive, diskette, or CDROM drive.

v Very large capacity devices, where normal operations do not require the user to

handle media; for example, a juke box, or an intelligent robotic media handling

device.

A limited capacity device may require that the user be prompted to load additional

media during the backup or restore operation. Generally DB2 is not sensitive to the

order in which the media is loaded for either backup or restore operations. It also

provides facilities to pass vendor media handling messages to the user. This

prompting requires that the backup or restore operation be initiated with

PROMPTING on. The media handling message text is specified in the description

field of the return code structure.

If PROMPTING is on, and DB2 receives an SQLUV_ENDOFMEDIA or an

SQLUV_ENDOFMEDIA_NO_DATA return code from a sqluvput (write) or a

sqluvget (read) call, DB2:

v Marks the last buffer sent to the session to be resent, if the call was sqluvput. It

will be put to a session later.

v Calls the session with sqluvend (action = SQLUV_COMMIT). If successful

(SQLUV_OK return code), DB2:

– Sends a vendor media handling message to the user from the return code

structure that signaled the end-of-media condition.

APIs for backup and restore to storage managers

416 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

– Prompts the user for a continue, device terminate, or terminate response.
v If the response is continue, DB2 initializes another session using the sqluvint call,

and if successful, begins writing data to or reading data from the session. To

uniquely identify the session when writing, DB2 increments the sequence

number. The sequence number is available in the DB2-INFO structure used with

sqluvint, and is in the media header record, which is the first data record sent to

the session.

DB2 will not start more sessions than requested when a backup or a restore

operation is started, or indicated by the vendor product with a

SQLUV_MAX_LINK_GRANT warning on an sqluvint call.

v If the response is device terminate, DB2 does not attempt to initialize another

session, and the number of active sessions is reduced by one. DB2 does not

allow all sessions to be terminated by device terminate responses; at least one

session must be kept active until the backup or restore operation completes.

v If the response is terminate, DB2 terminates the backup or restore operation. For

more information on exactly what DB2 does to terminate the sessions, see “If

error conditions are returned to DB2.”

Because backup or restore performance is often dependent on the number of

devices being used, it is important that parallelism be maintained. For backup

operations, users are encouraged to respond with a continue, unless they know

that the remaining active sessions will hold the data that is still to be written out.

For restore operations, users are also encouraged to respond with a continue until

all media have been processed.

If the backup or the restore mode is WITHOUT PROMPTING, and DB2 receives an

SQLUV_ENDOFMEDIA or an SQLUV_ENDOFMEDIA_NO_DATA return code

from a session, it will terminate the session and not attempt to open another

session. If all sessions return end-of-media to DB2 before the backup or the restore

operation is complete, the operation will fail. Because of this, WITHOUT

PROMPTING should be used carefully with limited capacity devices; it does,

however, make sense to operate in this mode with very large capacity devices.

It is possible for the vendor product to hide media mounting and switching actions

from DB2, so that the device appears to have infinite capacity. Some very large

capacity devices operate in this mode. In these cases, it is critical that all the data

that was backed up be returned to DB2 in the same order when a restore operation

is in progress. Failure to do so could result in missing data, but DB2 assumes a

successful restore operation, because it has no way of detecting the missing data.

DB2 writes data to the vendor product with the assumption that each buffer will

be contained on one and only one media (for example, a tape). It is possible for the

vendor product to split these buffers across multiple media without DB2’s

knowledge. In this case, the order in which the media is processed during a restore

operation is critical, because the vendor product will be responsible for returning

reconstructed buffers from the multiple media to DB2. Failure to do so will result

in a failed restore operation.

If error conditions are returned to DB2

When performing a backup or a restore operation, DB2 expects that all sessions

will complete successfully; otherwise, the entire backup or restore operation fails.

A session signals successful completion to DB2 with an SQLUV_OK return code on

the sqluvend call, action = SQLUV_COMMIT.

APIs for backup and restore to storage managers

Appendix J. Backup and restore APIs for vendor products 417

DB2 9 BETA

If unrecoverable errors are encountered, the session is terminated by DB2. These

can be DB2 errors, or errors returned to DB2 from the vendor product. Because all

sessions must commit successfully to have a complete backup or restore operation,

the failure of one causes DB2 to terminate the other sessions associated with the

operation.

If the vendor product responds to a call from DB2 with an unrecoverable return

code, the vendor product can optionally provide additional information, using

message text placed in the description field of the RETURN-CODE structure. This

message text is presented to the user, along with the DB2 information, so that

corrective action can be taken.

There will be backup scenarios in which a session has committed successfully, and

another session associated with the backup operation experiences an unrecoverable

error. Because all sessions must complete successfully before a backup operation is

considered successful, DB2 must delete the output data in the committed sessions:

DB2 issues a sqluvdel call to request deletion of the object. This call is not

considered an I/O session, and is responsible for initializing and terminating any

connection that may be necessary to delete the backup object.

The DB2-INFO structure will not contain a sequence number; sqluvdel will delete

all backup objects that match the remaining parameters in the DB2-INFO structure.

Warning conditions

It is possible for DB2 to receive warning return codes from the vendor product; for

example, if a device is not ready, or some other correctable condition has occurred.

This is true for both read and write operations.

On sqluvput and sqluvget calls, the vendor can set the return code to

SQLUV_WARNING, and optionally provide additional information, using message

text placed in the description field of the RETURN-CODE structure. This message

text is presented to the user so that corrective action can be taken. The user can

respond in one of three ways: continue, device terminate, or terminate:

v If the response is continue, DB2 attempts to rewrite the buffer using sqluvput

during a backup operation. During a restore operation, DB2 issues an sqluvget

call to read the next buffer.

v If the response is device terminate or terminate, DB2 terminates the entire backup

or restore operation in the same way that it would respond after an

unrecoverable error (for example, it will terminate active sessions and delete

committed sessions).

Operational hints and tips

This section provides some hints and tips for building vendor products.

History file

The history file can be used as an aid in database recovery operations. It is

associated with each database, and is automatically updated with each backup or

restore operation. Information in the file can be viewed, updated, or pruned

through the following facilities:

v Control Center

v Command line processor (CLP)

– LIST HISTORY command

– UPDATE HISTORY FILE command

– PRUNE HISTORY command

APIs for backup and restore to storage managers

418 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

v APIs

– db2HistoryOpenScan

– db2HistoryGetEntry

– db2HistoryCloseScan

– db2HistoryUpdate

– db2Prune

For information about the layout of the file, see db2HistData.

When a backup operation completes, one or more records is written to the file. If

the output of the backup operation was directed to vendor devices and the LOAD

keyword was used, the DEVICE field in the history record contains an O. If the

backup operation was directed to TSM, the DEVICE field contains an A. The

LOCATION field contains either:

v The vendor file name specified when the backup operation was invoked.

v The name of the shared library, if no vendor file name was specified.

For more information about specifying this option, see “Invoking a backup or a

restore operation using vendor products.”

The LOCATION field can be updated using the Control Center, the CLP, or an API.

The location of backup information can be updated if limited capacity devices (for

example, removable media) have been used to hold the backup image, and the

media is physically moved to a different (perhaps off-site) storage location. If this

is the case, the history file can be used to help locate a backup image if a recovery

operation becomes necessary.

Invoking a backup or a restore operation using vendor

products

Vendor products can be specified when invoking the DB2 backup or the DB2

restore utility from:

v The Control Center

v The command line processor (CLP)

v An application programming interface (API).

The Control Center

The Control Center is the graphical user interface for database administration that

is shipped with DB2.

 To specify The Control Center input variable for

backup or restore operations

Use of vendor device and library name Is Use Library. Specify the library name (on

UNIX based systems) or the DLL name (on

the Windows operating system).

Number of sessions Is Sessions.

Vendor options Is not supported.

Vendor file name Is not supported.

Transfer buffer size Is (for backup) Size of each Buffer, and (for

restore) not applicable.

APIs for backup and restore to storage managers

Appendix J. Backup and restore APIs for vendor products 419

DB2 9 BETA

The command line processor (CLP)

The command line processor (CLP) can be used to invoke the DB2 BACKUP

DATABASE or the RESTORE DATABASE command.

 To specify The command line processor parameter

for backup is for restore is

Use of vendor device and

library name

library-name shared-library

Number of sessions num-sessions num-sessions

Vendor options options-string options-string

Vendor file name file-name file-name

Transfer buffer size buffer-size buffer-size

Backup and restore API function calls

Two API function calls support backup and restore operations: db2Backup for

backup and db2Restore for restore.

 To specify The API parameter (for both db2Backup

and db2Restore) is

Use of vendor device and library name as follows: In structure sqlu_media_list,

specify a media type of

SQLU_OTHER_MEDIA, and then in

structure sqlu_vendor, specify a shared

library or DLL in shr_lib.

Number of sessions as follows: In structure sqlu_media_list,

specify sessions.

Vendor options PVendorOptions

Vendor file name as follows: In structure sqlu_media_list,

specify a media type of

SQLU_OTHER_MEDIA, and then in

structure sqlu_vendor, specify a file name in

filename.

Transfer buffer size BufferSize

 Related concepts:

v “DB2 database system plug-ins for customizing database management” in

Administrative API Reference

 Related reference:

v “db2VendorGetNextObj - Get next object on device” on page 432

v “db2VendorQueryApiVersion - Get the supported level of the vendor storage

API” on page 431

v “Data ” on page 440

v “DB2_info ” on page 434

v “Init_input ” on page 438

v “Init_output ” on page 439

v “Return_code ” on page 440

v “sqluvdel - Delete committed session” on page 430

v “sqluvend - Unlink a vendor device and release its resources” on page 429

APIs for backup and restore to storage managers

420 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

v “sqluvget - Read data from a vendor device” on page 426

v “sqluvint - Initialize and link to a vendor device” on page 421

v “sqluvput - Write data to a vendor device” on page 427

v “Vendor_info ” on page 437

sqluvint - Initialize and link to a vendor device

 Provides information for initializing a vendor device and for establishing a logical

link between DB2 and the vendor device.

 Authorization:

 None

 Required connection:

 Database

 API include file:

sqluvend.h

 API and data structure syntax:

int sqluvint (struct Init_input *in,

 struct Init_output *out,

 struct Return_code *return_code);

 sqluvint API parameters:

 in Input. Structure that contains information provided by DB2 to establish a

logical link with the vendor device.

out Output. Structure that contains the output returned by the vendor device.

return_code

Output. Structure that contains the return code to be passed to DB2, and a

brief text explanation.

 Usage notes:

 For each media I/O session, DB2 will call this API to obtain a device handle. If for

any reason, the vendor storage API encounters an error during initialization, it will

indicate it via a return code. If the return code indicates an error, DB2 may choose

to terminate the operation by calling the sqluvend API. Details on possible return

codes, and the DB2 reaction to each of these, is contained in the return codes table

(see table below).

The Init_input structure contains elements that can be used by the vendor product

to determine if the backup or restore can proceed:

size_HI_order and size_LOW_order

This is the estimated size of the backup. They can be used to determine if

the vendor devices can handle the size of the backup image. They can be

used to estimate the quantity of removable media that will be required to

hold the backup. It might be beneficial to fail at the first sqluvint call if

problems are anticipated.

APIs for backup and restore to storage managers

Appendix J. Backup and restore APIs for vendor products 421

DB2 9 BETA

req_sessions

The number of user requested sessions can be used in conjunction with the

estimated size and the prompting level to determine if the backup or

restore operation is possible.

prompt_lvl

The prompting level indicates to the vendor if it is possible to prompt for

actions such as changing removable media (for example, put another tape

in the tape drive). This might suggest that the operation cannot proceed

since there will be no way to prompt the user. If the prompting level is

WITHOUT PROMPTING and the quantity of removable media is greater

than the number of sessions requested, DB2 will not be able to complete

the operation successfully.

DB2 names the backup being written or the restore to be read via fields in the

DB2_info structure. In the case of an action = SQLUV_READ, the vendor product

must check for the existence of the named object. If it cannot be found, the return

code should be set to SQLUV_OBJ_NOT_FOUND so that DB2 will take the

appropriate action.

After initialization is completed successfully, DB2 will continue by calling other

data transfer APIs, but may terminate the session at any time with an sqluvend

call.

 Return codes:

 Table 10. Valid Return Codes for sqluvint and Resulting DB2 Action

Literal in Header

File

Description Probable Next Call Other Comments

SQLUV_OK Operation successful. sqluvput, sqluvget

(see comments)

If action =

SQLUV_WRITE, the

next call will be to

the sqluvput API (to

BACKUP data). If

action =

SQLUV_READ,

verify the existence

of the named object

prior to returning

SQLUV_OK; the next

call will be to the

sqluvget API to

restore data.

SQLUV_LINK_

EXIST

Session activated

previously.

No further calls. Session initialization

fails. Free up

memory allocated for

this session and

terminate. A

sqluvend API call

will not be received,

since the session was

never established.

sqluvint - Initialize and link to a vendor device

422 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Table 10. Valid Return Codes for sqluvint and Resulting DB2 Action (continued)

Literal in Header

File

Description Probable Next Call Other Comments

SQLUV_COMM_

ERROR

Communication error

with device.

No further calls. Session initialization

fails. Free up

memory allocated for

this session and

terminate. A

sqluvend API call

will not be received,

since the session was

never established.

SQLUV_INV_

VERSION

The DB2 and vendor

products are

incompatible

No further calls. Session initialization

fails. Free up

memory allocated for

this session and

terminate. A

sqluvend API call

will not be received,

since the session was

never established.

SQLUV_INV_

ACTION

Invalid action is

requested. This could

also be used to

indicate that the

combination of

parameters results in

an operation which is

not possible.

No further calls. Session initialization

fails. Free up

memory allocated for

this session and

terminate. A

sqluvend API call

will not be received,

since the session was

never established.

SQLUV_NO_

DEV_AVAIL

No device is

available for use at

the moment.

No further calls. Session initialization

fails. Free up

memory allocated for

this session and

terminate. A

sqluvend API call

will not be received,

since the session was

never established.

SQLUV_OBJ_

NOT_FOUND

Object specified

cannot be found. This

should be used when

the action on the

sqluvint call is ″R″

(read) and the

requested object

cannot be found

based on the criteria

specified in the

DB2_info structure.

No further calls. Session initialization

fails. Free up

memory allocated for

this session and

terminate. A

sqluvend API call

will not be received,

since the session was

never established.

sqluvint - Initialize and link to a vendor device

Appendix J. Backup and restore APIs for vendor products 423

DB2 9 BETA

Table 10. Valid Return Codes for sqluvint and Resulting DB2 Action (continued)

Literal in Header

File

Description Probable Next Call Other Comments

SQLUV_OBJS_

FOUND

More than 1 object

matches the specified

criteria. This will

result when the

action on the sqluvint

call is ″R″ (read) and

more than one object

matches the criteria

in the DB2_info

structure.

No further calls. Session initialization

fails. Free up

memory allocated for

this session and

terminate. A

sqluvend API call

will not be received,

since the session was

never established.

SQLUV_INV_

USERID

Invalid userid

specified.

No further calls. Session initialization

fails. Free up

memory allocated for

this session and

terminate. A

sqluvend API call

will not be received,

since the session was

never established.

SQLUV_INV_

PASSWORD

Invalid password

provided.

No further calls. Session initialization

fails. Free up

memory allocated for

this session and

terminate. A

sqluvend API call

will not be received,

since the session was

never established.

SQLUV_INV_

OPTIONS

Invalid options

encountered in the

vendor options field.

No further calls. Session initialization

fails. Free up

memory allocated for

this session and

terminate. A

sqluvend API call

will not be received,

since the session was

never established.

SQLUV_INIT_

FAILED

Initialization failed

and the session is to

be terminated.

No further calls. Session initialization

fails. Free up

memory allocated for

this session and

terminate. A

sqluvend API call

will not be received,

since the session was

never established.

sqluvint - Initialize and link to a vendor device

424 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Table 10. Valid Return Codes for sqluvint and Resulting DB2 Action (continued)

Literal in Header

File

Description Probable Next Call Other Comments

SQLUV_DEV_

ERROR

Device error. No further calls. Session initialization

fails. Free up

memory allocated for

this session and

terminate. A

sqluvend API call

will not be received,

since the session was

never established.

SQLUV_MAX_

LINK_GRANT

Max number of links

established.

sqluvput, sqluvget

(see comments).

This is treated as a

warning by DB2. The

warning tells DB2

not to open

additional sessions

with the vendor

product, because the

maximum number of

sessions it can

support has been

reached (note: this

could be due to

device availability). If

action =

SQLUV_WRITE

(BACKUP), the next

call will be to

sqluvput API. If

action =

SQLUV_READ,

verify the existence

of the named object

prior to returning

SQLUV_MAX_LINK_

GRANT; the next call

will be to the

sqluvget API to

restore data.

SQLUV_IO_ ERROR I/O error. No further calls. Session initialization

fails. Free up

memory allocated for

this session and

terminate. A

sqluvend API call

will not be received,

since the session was

never established.

SQLUV_NOT_

ENOUGH_ SPACE

There is not enough

space to store the

entire backup image;

the size estimate is

provided as a 64-bit

value in bytes.

No further calls. Session initialization

fails. Free up

memory allocated for

this session and

terminate. A

sqluvend API call

will not be received,

since the session was

never established.

sqluvint - Initialize and link to a vendor device

Appendix J. Backup and restore APIs for vendor products 425

DB2 9 BETA

Related reference:

v “DB2 APIs for backup and restore to storage managers” on page 413

v “Init_input ” on page 438

v “Init_output ” on page 439

v “Return_code ” on page 440

sqluvget - Read data from a vendor device

 After a vendor device has been initialized with the sqluvint API, DB2 calls this API

to read from the device during a restore operation.

 Authorization:

 None

 Required connection:

 Database

 API include file:

sqluvend.h

 API and data structure syntax:

int sqluvget (void * hdle,

 struct Data *data,

 struct Return_code *return_code);

 sqluvget API parameters:

 hdle Input. Pointer to space allocated for the Data structure (including the data

buffer) and Return_code.

data Input or output. A pointer to the Data structure.

return_code

Output. The return code from the API call.

 Usage notes:

 This API is used by the restore utility.

 Return codes:

 Table 11. Valid Return Codes for sqluvget and Resulting DB2 Action

Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. sqluvget DB2 processes the

data

SQLUV_COMM_ERROR Communication error with

device.

sqluvend, action =

SQLU_ABORT (see

note below

The session will be

terminated.

SQLUV_INV_ACTION Invalid action is requested. sqluvend, action =

SQLU_ABORT (see

note below

The session will be

terminated.

SQLUV_INV_DEV_HANDLE Invalid device handle. sqluvend, action =

SQLU_ABORT (see

note below

The session will be

terminated.

sqluvint - Initialize and link to a vendor device

426 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Table 11. Valid Return Codes for sqluvget and Resulting DB2 Action (continued)

Literal in Header File Description Probable Next Call Other Comments

SQLUV_INV_BUFF_SIZE Invalid buffer size specified. sqluvend, action =

SQLU_ABORT (see

note below

The session will be

terminated.

SQLUV_DEV_ERROR Device error. sqluvend, action =

SQLU_ABORT (see

note below

The session will be

terminated.

SQLUV_WARNING Warning. This should not be used

to indicate end-of- media to DB2;

use SQLUV_ENDOFMEDIA or

SQLUV_ENDOFMEDIA_NO

_DATA for this

purpose.However, device not

ready conditions can be indicated

using this return code.

sqluvget, or sqluvend,

action= SQLU_ABORT

SQLUV_LINK_NOT_EXIST No link currently exists sqluvend, action =

SQLU_ABORT (see

note below

The session will be

terminated.

SQLUV_MORE_DATA Operation successful; more data

available.

sqluvget

SQLUV_ENDOFMEDIA_NO_

DATA

End of media and 0 bytes read

(for example, end of tape).

sqluvend

SQLUV_ENDOFMEDIA End of media and >0 bytes read

(for example, end of tape).

sqluvend DB2 processes the

data, and then

handles the end-of-

media condition.

SQLUV_IO_ERROR I/O error. sqluvend, action =

SQLU_ABORT (see

note below

The session will be

terminated.

Note: Next call: If the next call is an sqluvend, action = SQLU_ABORT, this session

and all other active sessions will be terminated.

 Related reference:

v “DB2 APIs for backup and restore to storage managers” on page 413

v “Data ” on page 440

v “Return_code ” on page 440

sqluvput - Write data to a vendor device

 After a vendor device has been initialized with the sqluvint API, DB2 calls this API

to write to the device during a backup operation.

 Authorization:

 None

 Required connection:

 Database

 API include file:

sqluvend.h

 API and data structure syntax:

int sqluvput (void * hdle,

 struct Data *data,

 struct Return_code *return_code);

sqluvget - Read data from a vendor device

Appendix J. Backup and restore APIs for vendor products 427

DB2 9 BETA

sqluvput API parameters:

 hdle Input. Pointer to space allocated for the DATA structure (including the data

buffer) and Return_code.

data Output. Data buffer filled with data to be written out.

return_code

Output. The return code from the API call.

 Usage notes:

 This API is used by the backup utility.

 Return codes:

 Table 12. Valid Return Codes for sqluvput and Resulting DB2 Action

Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. sqluvput or sqluvend,

if complete (for

example, DB2 has no

more data)

Inform other

processes of

successful operation.

SQLUV_COMM_ERROR Communication error with

device.

sqluvend, action =

SQLU_ABORT (see

note below).

The session will be

terminated.

SQLUV_INV_ACTION Invalid action is requested. sqluvend, action =

SQLU_ABORT (see

note below).

The session will be

terminated.

SQLUV_INV_DEV_HANDLE Invalid device handle. sqluvend, action =

SQLU_ABORT (see

note below).

The session will be

terminated.

SQLUV_INV_BUFF_SIZE Invalid buffer size specified. sqluvend, action =

SQLU_ABORT (see

note below).

The session will be

terminated.

SQLUV_ENDOFMEDIA End of media reached, for

example, end of tape.

sqluvend

SQLUV_DATA_RESEND Device requested to have buffer

sent again.

sqluvput DB2 will retransmit

the last buffer. This

will only be done

once.

SQLUV_DEV_ERROR Device error. sqluvend, action =

SQLU_ABORT (see

note below).

The session will be

terminated.

SQLUV_WARNING Warning. This should not be used

to indicate end-of- media to DB2;

use SQLUV_ENDOFMEDIA for

this purpose. However, device

not ready conditions can be

indicated using this return code.

sqluvput

SQLUV_LINK_NOT_EXIST No link currently exists. sqluvend, action =

SQLU_ABORT (see

note below).

The session will be

terminated.

SQLUV_IO_ERROR I/O error. sqluvend, action =

SQLU_ABORT (see

note below).

The session will be

terminated.

Note: Next call: If the next call is an sqluvend, action = SQLU_ABORT, this session

and all other active sessions will be terminated. Committed sessions are

deleted with an sqluvint, sqluvdel, and sqluvend sequence of calls.

 Related reference:

v “DB2 APIs for backup and restore to storage managers” on page 413

v “Data ” on page 440

sqluvput - Write data to a vendor device

428 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

v “Return_code ” on page 440

sqluvend - Unlink a vendor device and release its resources

 Unlinks a vendor device and frees all of its related resources. All unused resources

(for example, allocated space and file handles) must be released before the

sqluvend API call returns to DB2.

 Authorization:

 None

 Required connection:

 Database

 API include file:

sqluvend.h

 API and data structure syntax:

int sqluvend (sqlint32 action,

 void *hdle,

 struct Init_output *in_out,

 struct Return_code *return_code);

 sqluvend API parameters:

 action Input. Used to commit or abort the session:

v SQLUV_COMMIT (0 = to commit)

v SQLUV_ABORT (1 = to abort)

hdle Input. Pointer to the Init_output structure.

in_out Output. Space for Init_output de-allocated. The data has been committed

to stable storage for a backup if action is to commit. The data is purged for

a backup if the action is to abort.

return_code

Output. The return code from the API call.

 Usage notes:

 This API is called for each session that has been opened. There are two possible

action codes:

Commit

Output of data to this session, or the reading of data from the session, is

complete.

 For a write (backup) session, if the vendor returns to DB2 with a return

code of SQLUV_OK, DB2 assumes that the output data has been

appropriately saved by the vendor product, and can be accessed if

referenced in a later sqluvint call.

 For a read (restore) session, if the vendor returns to DB2 with a return

code of SQLUV_OK, the data should not be deleted, because it may be

needed again. If the vendor returns SQLUV_COMMIT_FAILED, DB2

assumes that there are problems with the entire backup or restore

sqluvput - Write data to a vendor device

Appendix J. Backup and restore APIs for vendor products 429

DB2 9 BETA

operation. All active sessions are terminated by sqluvend calls with action

= SQLUV_ABORT. For a backup operation, committed sessions receive a

sqluvint, sqluvdel, and sqluvend sequence of calls.

Abort A problem has been encountered by DB2, and there will be no more

reading or writing of data to the session.

 For a write (backup) session, the vendor should delete the partial output

dataset, and use a SQLUV_OK return code if the partial output is deleted.

DB2 assumes that there are problems with the entire backup. All active

sessions are terminated by sqluvend calls with action = SQLUV_ABORT,

and committed sessions receive a sqluvint, sqluvdel, and sqluvend

sequence of calls.

 For a read (restore) session, the vendor should not delete the data (because

it may be needed again), but should clean up and return to DB2 with a

SQLUV_OK return code. DB2 terminates all the restore sessions by

sqluvend calls with action = SQLUV_ABORT. If the vendor returns

SQLUV_ABORT_FAILED to DB2, the caller is not notified of this error,

because DB2 returns the first fatal failure and ignores subsequent failures.

In this case, for DB2 to have called sqluvend with action =

SQLUV_ABORT, an initial fatal error must have occurred.

 Return codes:

 Table 13. Valid Return Codes for sqluvend and Resulting DB2 Action

Literal in Header File Description Probable Next

Call

Other

Comments

SQLUV_OK Operation

successful

No further calls Free all memory

allocated for this

session and

terminate.

SQLUV_COMMIT_FAILED Commit request

failed.

No further calls Free all memory

allocated for this

session and

terminate.

SQLUV_ABORT_FAILED Abort request

failed.

No further calls

 Related reference:

v “DB2 APIs for backup and restore to storage managers” on page 413

v “Init_output ” on page 439

v “Return_code ” on page 440

sqluvdel - Delete committed session

 Deletes committed sessions from a vendor device.

 Authorization:

 None

 Required connection:

 Database

sqluvend - Unlink a vendor device and release its resources

430 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

API include file:

sqluvend.h

 API and data structure syntax:

int sqluvdel (struct Init_input *in,

 struct Init_output *vendorDevData,

 struct Return_code *return_code);

 sqluvdel API parameters:

 in Input. Space allocated for Init_input and Return_code.

vendorDevData

Output. Structure containing the output returned by the vendor device.

return_code

Output. Return code from the API call. The object pointed to by the

Init_input structure is deleted.

 Usage notes:

 If multiple sessions are opened, and some sessions are committed, but one of them

fails, this API is called to delete the committed sessions. No sequence number is

specified; sqluvdel is responsible for finding all of the objects that were created

during a particular backup operation, and deleting them. Information in the

Init_input structure is used to identify the output data to be deleted. The call to

sqluvdel is responsible for establishing any connection or session that is required

to delete a backup object from the vendor device. If the return code from this call

is SQLUV_DELETE_FAILED, DB2 does not notify the caller, because DB2 returns

the first fatal failure and ignores subsequent failures. In this case, for DB2 to have

called the sqluvdel API, an initial fatal error must have occurred.

 Return codes:

 Table 14. Valid return codes for sqluvdel and resulting database server action

Literal in header file Description Probable next call

SQLUV_OK Operation successful No further calls

SQLUV_DELETE_FAILED Delete request failed No further calls

 Related reference:

v “DB2 APIs for backup and restore to storage managers” on page 413

v “Init_input ” on page 438

v “Init_output ” on page 439

v “Return_code ” on page 440

db2VendorQueryApiVersion - Get the supported level of the vendor

storage API

 Determines which level of the vendor storage API is supported by the backup and

restore vendor storage plug-in. If the specified vendor storage plug-in is not

compatible with DB2, then it will not be used.

sqluvdel - Delete committed session

Appendix J. Backup and restore APIs for vendor products 431

DB2 9 BETA

If a vendor storage plug-in does not have this API implemented for logs, then it

cannot be used and DB2 will report an error. This will not affect images that

currently work with existing vendor libraries.

 Authorization:

 None

 Required connection:

 Database.

 API include file:

db2VendorApi.h

 API and data structure syntax:

void db2VendorQueryApiVersion (db2Uint32 * supportedVersion);

 db2VendorQueryApiVersion API parameters:

 supportedVersion

Output. Returns the version of the vendor storage API the vendor library

supports.

 Usage notes:

 This API will be called before any other vendor storage APIs are invoked.

 Related reference:

v “DB2 APIs for backup and restore to storage managers” on page 413

db2VendorGetNextObj - Get next object on device

 This API is called after a query has been set up (using the sqluvint API) to get the

next object (image or archived log file) that matches the search criteria. Only one

search for either images or log files can be set up at one time.

 Authorization:

 None

 Required connection:

 Database.

 API include file:

db2VendorApi.h

 API and data structure syntax:

int db2VendorGetNextObj (void * vendorCB,

 struct db2VendorQueryInfo * queryInfo,

 struct Return_code * returnCode);

typedef struct db2VendorQueryInfo

{

 db2Uint64 sizeEstimate;

db2VendorQueryApiVersion - Get the supported level of the vendor storage API

432 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

db2Uint32 type;

 SQL_PDB_NODE_TYPE dbPartitionNum;

 db2Uint16 sequenceNum;

 char db2Instance[SQL_INSTNAME_SZ + 1];

 char dbname[SQL_DBNAME_SZ + 1];

 char dbalias[SQL_ALIAS_SZ + 1];

 char timestamp[SQLU_TIME_STAMP_LEN + 1];

 char filename[DB2VENDOR_MAX_FILENAME_SZ + 1];

 char owner[DB2VENDOR_MAX_OWNER_SZ + 1];

 char mgmtClass[DB2VENDOR_MAX_MGMTCLASS_SZ + 1];

 char oldestLogfile[DB2_LOGFILE_NAME_LEN + 1];

} db2VendorQueryInfo;

 db2VendorGetNextObj API parameters:

 vendorCB

Input. Pointer to space allocated by the vendor library.

queryInfo

Output. Pointer to a db2VendorQueryInfo structure to be filled in by the

vendor library.

returnCode

Output. The return code from the API call.

 db2VendorQueryInfo data structure parameters:

 sizeEstimate

Specifies the estimated size of the object.

type Specifies the image type if the object is a backup image.

dbPartitionNum

Specifies the number of the database partition that the object belongs to.

sequenceNum

Specifies the file extension for the backup image. Valid only if the object is

a backup.

db2Instance

Specifies the name of the instance that the object belongs to.

dbname

Specifes the name of the database that the object belongs to.

dbalias

Specifies the alias of the database that the object belongs to.

timestamp

Specifies the time stamp used to identify the backup image. Valid only if

the object is a backup image.

filename

Specifies the name of the object if the object is a load copy image or an

archived log file.

owner Specifies the owner of the object.

mgmtClass

Specifies the management class the object was stored under (used by TSM).

oldestLogfile

Specifies the oldest log file stored with a backup image.

 Usage notes:

db2VendorGetNextObj - Get next object on device

Appendix J. Backup and restore APIs for vendor products 433

DB2 9 BETA

Not all parameters will pertain to each object or each vendor. The mandatory

parameters that need to be filled out are db2Instance, dbname, dbalias, timestamp

(for images), filename (for logs and load copy images), owner, sequenceNum (for

images) and dbPartitionNum. The remaining parameters will be left for the specific

vendors to define. If a parameter does not pertain, then it should be initialized to

″″ for strings and 0 for numeric types.

 Related reference:

v “DB2 APIs for backup and restore to storage managers” on page 413

v “Return_code ” on page 440

DB2_info

 Contains information about the DB2 product and the database that is being backed

up or restored. This structure is used to identify DB2 to the vendor device and to

describe a particular session between DB2 and the vendor device. It is passed to

the backup and restore vendor storage plug-in as part of the Init_input data

structure.

 Table 15. Fields in the DB2_info Structure.

Field Name Data Type Description

DB2_id char An identifier for the DB2

product. Maximum length of

the string it points to is 8

characters.

version char The current version of the

DB2 product. Maximum

length of the string it points

to is 8 characters.

release char The current release of the

DB2 product. Set to NULL if

it is insignificant. Maximum

length of the string it points

to is 8 characters.

level char The current level of the DB2

product. Set to NULL if it is

insignificant. Maximum

length of the string it points

to is 8 characters.

action char Specifies the action to be

taken. Maximum length of

the string it points to is 1

character.

filename char The file name used to

identify the backup image. If

it is NULL, the server_id,

db2instance, dbname, and

timestamp will uniquely

identify the backup image.

Maximum length of the

string it points to is 255

characters.

db2VendorGetNextObj - Get next object on device

434 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Table 15. Fields in the DB2_info Structure. (continued)

Field Name Data Type Description

server_id char A unique name identifying

the server where the

database resides. Maximum

length of the string it points

to is 8 characters.

db2instance char The db2instance ID. This is

the user ID invoking the

command. Maximum length

of the string it points to is 8

characters.

type char Specifies the type of backup

being taken or the type of

restore being performed. The

following are possible values:

When action is

SQLUV_WRITE: 0 - full

database backup 3 - table

space level backup When

action is SQLUV_READ: 0 -

full restore 3 - online table

space restore 4 - table space

restore 5 - history file restore

dbname char The name of the database to

be backed up or restored.

Maximum length of the

string it points to is 8

characters.

alias char The alias of the database to

be backed up or restored.

Maximum length of the

string it points to is 8

characters.

timestamp char The time stamp used to

identify the backup image.

Maximum length of the

string it points to is 26

characters.

sequence char Specifies the file extension

for the backup image. For

write operations, the value

for the first session is 1 and

each time another session is

initiated with an sqluvint

call, the value is incremented

by 1. For read operations, the

value is always zero.

Maximum length of the

string it points to is 3

characters.

obj_list struct sqlu_gen_list Reserved for future use.

max_bytes_per_txn sqlint32 Specifies to the vendor in

bytes, the transfer buffer size

specified by the user.

DB2_info

Appendix J. Backup and restore APIs for vendor products 435

DB2 9 BETA

Table 15. Fields in the DB2_info Structure. (continued)

Field Name Data Type Description

image_filename char Reserved for future use.

reserve void Reserved for future use.

nodename char Name of the node at which

the backup was generated.

password char Password for the node at

which the backup was

generated.

owner char ID of the backup originator.

mcNameP char Management class.

nodeNum SQL_PDB_NODE_TYPE Node number. Numbers

greater than 255 are

supported by the vendor

interface.

Note: All char data type fields are null-terminated strings.

The filename, or server_id, db2instance, type, dbname and timestamp uniquely

identifies the backup image. The sequence number, specified by sequence,

identifies the file extension. When a backup image is to be restored, the same

values must be specified to retrieve the backup image. Depending on the vendor

product, if filename is used, the other parameters may be set to NULL, and vice

versa.

 API and data structure syntax:

typedef struct DB2_info

{

 char *DB2_id;

 char *version;

 char *release;

 char *level;

 char *action;

 char *filename;

 char *server_id;

 char *db2instance;

 char *type;

 char *dbname;

 char *alias;

 char *timestamp;

 char *sequence;

 struct sqlu_gen_list

 *obj_list;

 sqlint32 max_bytes_per_txn;

 char *image_filename;

 void *reserve;

 char *nodename;

 char *password;

 char *owner;

 char *mcNameP;

 SQL_PDB_NODE_TYPE nodeNum;

} DB2_info ;

 Related reference:

v “DB2 APIs for backup and restore to storage managers” on page 413

DB2_info

436 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Vendor_info

 Contains information, returned to DB2 as part of the Init_output structure,

identifying the vendor and the version of the vendor device.

 Table 16. Fields in the Vendor_info Structure.

Field Name Data Type Description

vendor_id char An identifier for the vendor.

Maximum length of the

string it points to is 64

characters.

version char The current version of the

vendor product. Maximum

length of the string it points

to is 8 characters.

release char The current release of the

vendor product. Set to NULL

if it is insignificant.

Maximum length of the

string it points to is 8

characters.

level char The current level of the

vendor product. Set to NULL

if it is insignificant.

Maximum length of the

string it points to is 8

characters.

server_id char A unique name identifying

the server where the

database resides. Maximum

length of the string it points

to is 8 characters.

max_bytes_per_txn sqlint32 The maximum supported

transfer buffer size. Specified

by the vendor, in bytes. This

is used only if the return

code from the vendor

initialize API is

SQLUV_BUFF_SIZE,

indicating that an invalid

buffer size wasspecified.

num_objects_in_backup sqlint32 The number of sessions that

were used to make a

complete backup. This is

used to determine when all

backup images have been

processed during a restore

operation.

reserve void Reserved for future use.

Note: All char data type fields are NULL-terminated strings.

 API and data structure syntax:

Vendor_info

Appendix J. Backup and restore APIs for vendor products 437

DB2 9 BETA

typedef struct Vendor_info

{

 char *vendor_id;

 char *version;

 char *release;

 char *level;

 char *server_id;

 sqlint32 max_bytes_per_txn;

 sqlint32 num_objects_in_backup;

 void *reserve;

} Vendor_info;

 Related reference:

v “DB2 APIs for backup and restore to storage managers” on page 413

Init_input

 Contains information provided by DB2 to set up and to establish a logical link

with a vendor device. This data structure is used by DB2 to send information to

the backup and restore vendor storage plug-in through the sqluvint and sqluvdel

APIs.

 Table 17. Fields in the Init_input Structure.

Field Name Data Type Description

DB2_session struct DB2_info A description of the session

from the perspective of DB2.

size_options unsigned short The length of the options

field. When using the DB2

backup or restore function,

the data in this field is

passed directly from the

VendorOptionsSize

parameter.

size_HI_order sqluint32 High order 32 bits of DB size

estimate in bytes; total size is

64 bits.

size_LOW_order sqluint32 Low order 32 bits of DB size

estimate in bytes; total size is

64 bits.

options void This information is passed

from the application when

the backup or the restore

function is invoked. This

data structure must be flat;

in other words, no level of

indirection is supported.

Byte-reversal is not done,

and the code page for this

data is not checked. When

using the DB2 backup or

restore function, the data in

this field is passed directly

from the pVendorOptions

parameter.

reserve void Reserved for future use.

Vendor_info

438 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Table 17. Fields in the Init_input Structure. (continued)

Field Name Data Type Description

prompt_lvl char Prompting level requested by

the user when a backup or a

restore operation was

invoked. Maximum length of

the string it points to is 1

character. This field is a

NULL-terminated string.

num_sessions unsigned short Number of sessions

requested by the user when

a backup or a restore

operation was invoked.

 API and data structure syntax:

typedef struct Init_input

{

 struct DB2_info *DB2_session;

 unsigned short size_options;

 sqluint32 size_HI_order;

 sqluint32 size_LOW_order;

 void *options;

 void *reserve;

 char *prompt_lvl;

 unsigned short num_sessions;

} Init_input;

 Related reference:

v “DB2 APIs for backup and restore to storage managers” on page 413

Init_output

 Contains a control block for the session and information returned by the backup

and restore vendor storage plug-in to DB2. This data structure is used by the

sqluvint and sqluvdel APIs.

 Table 18. Fields in the Init_output Structure

Field Name Data Type Description

vendor_session struct Vendor_info Contains information to

identify the vendor to DB2.

pVendorCB void Vendor control block.

reserve void Reserved for future use.

 API and data structure syntax:

typedef struct Init_output

{

 struct Vendor_info * vendor_session;

 void * pVendorCB;

 void * reserve;

} Init_output ;

 Related reference:

v “DB2 APIs for backup and restore to storage managers” on page 413

Init_input

Appendix J. Backup and restore APIs for vendor products 439

DB2 9 BETA

Data

 Contains data transferred between DB2 and a vendor device. This structure is used

by the sqluvput API when data is being written to the vendor device and by the

sqluvget API when data is being read from the vendor device.

 Table 19. Fields in the Data Structure

Field Name Data Type Description

obj_num sqlint32 The sequence number

assigned by DB2 during a

backup operation.

buff_size sqlint32 The size of the buffer.

actual_buf_size sqlint32 The actual number of bytes

sent or received. This must

not exceed buff_size.

dataptr void Pointer to the data buffer.

DB2 allocates space for the

buffer.

reserve void Reserved for future use.

 API and data structure syntax:

typedef struct Data

{

 sqlint32 obj_num;

 sqlint32 buff_size;

 sqlint32 actual_buff_size;

 void *dataptr;

 void *reserve;

} Data;

 Related reference:

v “DB2 APIs for backup and restore to storage managers” on page 413

Return_code

 Contains the return code for and a short explanation of the error being returned to

DB2 by the backup and restore vendor storage plug-in. This data structure is used

by all the vendor storage plug-in APIs.

 Table 20. Fields in the Return_code Structure

Field Name Data Type Description

return_code (see note below) sqlint32 Return code from the vendor

API.

description char A short description of the

return code.

reserve void Reserved for future use.

Note: This is a vendor-specific return code that is not the same as the value

returned by various DB2 APIs. See the individual API descriptions for the

return codes that are accepted from vendor products.

 API and data structure syntax:

Data

440 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

typedef struct Return_code

{

 sqlint32 return_code;

 char description[SQLUV_COMMENT_LEN];

 void *reserve;

} Return_code;

 Related reference:

v “DB2 APIs for backup and restore to storage managers” on page 413

APIs for compressed backups

DB2 APIs for using compression with backup and restore

operations

 DB2 provides APIs that can be used by third-party compression products to

compress and decompress backup images. This interface is designed to augment or

replace the compression library that is supported as a standard part of DB2. The

compression plug-in interface can be used with the backup and restore DB2 APIs

or the backup and restore plug-ins for vendor storage devices.

DB2 defines a set of API prototypes that provide a general purpose interface for

compression and decompression that can be used by many vendors. These APIs

are to be provided by the vendor in a shared library on Linux and UNIX systems,

or DLL on the Windows operating system. When the APIs are invoked by DB2, the

shared library or DLL specified by the calling backup or restore routine is loaded

and the APIs provided by the vendor are called to perform the required tasks.

Operational overview

Eight APIs are defined to interface DB2 and the vendor product:

v InitCompression - Initialize the compression library

v GetSavedBlock - Get vendor block for backup image

v Compress - Compress a block of data

v GetMaxCompressedSize - Estimate largest possible buffer size

v TermCompression - Terminate the compression library

v InitDecompression - Initialize the decompression library

v Decompress - Decompress a block of data

v TermDecompression - Terminate the decompression library

DB2 will provide the definition for the COMPR_DB2INFO structure; the vendor

will provide definitions for each of the other structures and APIs for using

compression with backup and restore. The structures, prototypes, and constants are

defined in the file sqlucompr.h, which is shipped with DB2.

DB2 will call these APIs, and they should be provided by the vendor product in a

shared library on Linux and UNIX systems, or in a DLL on the Windows operating

system.

Note: The shared library or DLL code will be run as part of the database engine

code. Therefore, it must be reentrant and thoroughly debugged. An errant

function might compromise data integrity of the database.

Return_code

Appendix J. Backup and restore APIs for vendor products 441

DB2 9 BETA

Sample calling sequence

For backup, the following sequence of calls is issued by DB2 for each session:

 InitCompression

followed by 0 to 1

 GetMaxCompressedSize

 Compress

followed by 1

 TermCompress

For restore, the sequence of calls for each session is:

 InitDecompression

followed by 1 to n

 Decompress

followed by 1

 TermCompression

Compression plug-in interface return codes

The following are the return codes that the APIs might return. Except where

specified, DB2 will terminate the backup or restore when any non-zero return code

is returned.

 SQLUV_OK

0

Operation succeeded

 SQLUV_BUFFER_TOO_SMALL

100

Target buffer is too small. When indicated on backup, the tgtAct field shall indicate

the estimated size required to compress the object. DB2 will retry the operation

with a buffer at least as large as specified. When indicated on restore, the operation

will fail.

 SQLUV_PARTIAL_BUFFER

101

A buffer was partially compressed. When indicated on backup, the srcAct field

shall indicate the actual amount of data actually compressed and the tgtAct field

shall indicate the actual size of the compressed data. When indicated on restore,

the operation will fail.

 SQLUV_NO_MEMORY

102

Out of memory

 SQLUV_EXCEPTION

103

DB2 APIs for using compression with backup and restore operations

442 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

A signal or exception was raised in the code.

 SQLUV_INTERNAL_ERROR

104

An internal error was detected.

The difference between SQLUV_BUFFER_TOO_SMALL and

SQLUV_PARTIAL_BUFFER is that when SQLUV_PARTIAL_BUFFER is returned,

DB2 will consider the data in the output buffer to be valid.

 Related concepts:

v “DB2 database system plug-ins for customizing database management” in

Administrative API Reference

 Related reference:

v “Compress API - Compress a block of data” in Administrative API Reference

v “COMPR_CB data structure” in Administrative API Reference

v “COMPR_DB2INFO data structure” in Administrative API Reference

v “COMPR_PIINFO data structure” in Administrative API Reference

v “db2Backup - Back up a database or table space” on page 76

v “db2Restore - Restore a database or table space” on page 115

v “Decompress API - Decompress a block of data” in Administrative API Reference

v “GetMaxCompressedSize API - Estimate largest possible buffer size” in

Administrative API Reference

v “GetSavedBlock API - Get the vendor of block data for the backup image” in

Administrative API Reference

v “InitCompression API - Initialize the compression library” in Administrative API

Reference

v “TermDecompression API - Stop the decompression library” in Administrative

API Reference

v “InitDecompression API - Initialize the decompression library” in Administrative

API Reference

v “TermCompression API - Stop the compression library” in Administrative API

Reference

DB2 APIs for using compression with backup and restore operations

Appendix J. Backup and restore APIs for vendor products 443

DB2 9 BETA

DB2 APIs for using compression with backup and restore operations

444 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Appendix K. DB2 Database technical information

Overview of the DB2 technical information

 DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF CD)

– printed books
v Command line help

– Command help

– Message help
v Sample programs

IBM periodically makes documentation updates available. If you access the online

version on the DB2 Information Center at ibm.com®, you do not need to install

documentation updates because this version is kept up-to-date by IBM. If you have

installed the DB2 Information Center, it is recommended that you install the

documentation updates. Documentation updates allow you to update the

information that you installed from the DB2 Information Center CD or downloaded

from Passport Advantage as new information becomes available.

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hard-copy books. To get the most current information, install

the documentation updates as they become available, or refer to the DB2

Information Center at ibm.com.

You can access additional DB2 technical information such as technotes, white

papers, and Redbooks™ online at ibm.com. Access the DB2 Information

Management software library site at http://www.ibm.com/software/data/sw-
library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how we can improve the DB2 documentation, send an e-mail to

db2docs@ca.ibm.com. The DB2 documentation team reads all of your feedback, but

cannot respond to you directly. Provide specific examples wherever possible so

that we can better understand your concerns. If you are providing feedback on a

specific topic or help file, include the topic title and URL.

Do not use this e-mail address to contact DB2 Customer Support. If you have a

DB2 technical issue that the documentation does not resolve, contact your local

IBM service center for assistance.

© Copyright IBM Corp. 2001, 2006 445

DB2 9 BETA

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/

Related concepts:

v “Features of the DB2 Information Center” in Online DB2 Information Center

v “Sample files” in Samples Topics

 Related tasks:

v “Invoking command help from the command line processor” in Command

Reference

v “Invoking message help from the command line processor” in Command

Reference

v “Updating the DB2 Information Center installed on your computer or intranet

server” on page 451

 Related reference:

v “DB2 technical library in PDF format” on page 446

DB2 technical library in PDF format

 The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order.

Although the tables identify books available in print, the books might not be

available in your country or region.

The information in these books is fundamental to all DB2 users; you will find this

information useful whether you are a programmer, a database administrator, or

someone who works with DB2 Connect or other DB2 products.

 Table 21. DB2 technical information

Name Form Number Available in print

Administration Guide:

Implementation

SC10-4221 Yes

Administration Guide: Planning SC10-4223 Yes

Administrative API Reference SC10-4231 Yes

Administrative SQL Routines and

Views

SC10-4293 No

Call Level Interface Guide and

Reference, Volume 1

SC10-4224 Yes

Call Level Interface Guide and

Reference, Volume 2

SC10-4225 Yes

Command Reference SC10-4226 No

Data Movement Utilities Guide

and Reference

SC10-4227 Yes

Data Recovery and High

Availability Guide and Reference

SC10-4228 Yes

Developing ADO.NET and OLE

DB Applications

SC10-4230 Yes

Developing Embedded SQL

Applications

SC10-4232 Yes

Developing SQL and External

Routines

SC10-4373 No

446 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

http://www.ibm.com/shop/publications/order

Table 21. DB2 technical information (continued)

Name Form Number Available in print

Developing Java™ Applications SC10-4233 Yes

Developing Perl and PHP

Applications

SC10-4234 No

Getting Started with Database

Application Development

SC10-4252 Yes

Getting started with DB2

installation and administration on

Linux and Windows

GC10-4247 Yes

Message Reference Volume 1 SC10-4238 No

Message Reference Volume 2 SC10-4239 No

Migration Guide GC10-4237 Yes

Net Search Extender

Administration and User’s Guide

Note: HTML for this

document is not installed from

the HTML documentation CD.

SH12-6842 Yes

Performance Guide SC10-4222 Yes

Query Patroller Administration

and User’s Guide

GC10-4241 Yes

Quick Beginnings for DB2

Clients

GC10-4242 No

Quick Beginnings for DB2

Servers

GC10-4246 Yes

Spatial Extender and Geodetic

Data Management Feature User’s

Guide and Reference

SC18-9749 Yes

SQL Guide SC10-4248 Yes

SQL Reference, Volume 1 SC10-4249 Yes

SQL Reference, Volume 2 SC10-4250 Yes

System Monitor Guide and

Reference

SC10-4251 Yes

Troubleshooting Guide GC10-4240 No

Visual Explain Tutorial SC10-4319 No

What’s New SC10-4253 Yes

XML Extender Administration

and Programming

SC18-9750 Yes

XML Guide SC10-4254 Yes

XQuery Reference SC18-9796 Yes

 Table 22. DB2 Connect-specific technical information

Name Form Number Available in print

DB2 Connect User’s Guide SC10-4229 Yes

Quick Beginnings for DB2

Connect Personal Edition

GC10-4244 Yes

Appendix K. DB2 Database technical information 447

DB2 9 BETA

Table 22. DB2 Connect-specific technical information (continued)

Name Form Number Available in print

Quick Beginnings for DB2

Connect Servers

GC10-4243 Yes

 Table 23. WebSphere Information Integration technical information

Name Form Number Available in print

WebSphere Information

Integration: Administration Guide

for Federated Systems

SC19-1001 Yes

WebSphere Information

Integration: ASNCLP Program

Reference for Replication and

Event Publishing

SC19-1000 Yes

WebSphere Information

Integration: Configuration Guide

for Federated Data Sources

SC19-1034 No

WebSphere Information

Integration: SQL Replication

Guide and Reference

SC19-1002 Yes

Note: The DB2 Release Notes provide additional information specific to your

product’s release and fix pack level. For more information, see the related

links.

 Related concepts:

v “Overview of the DB2 technical information” on page 445

v “About the Release Notes” in Release notes

 Related tasks:

v “Ordering printed DB2 books” on page 448

Ordering printed DB2 books

 If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation CD are unavailable in print. For example, neither volume of the DB2

Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation CD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation CD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/
db2help/.

 Procedure:

448 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/

To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

– Locate the contact information for your local representative from one of the

following Web sites:

- The IBM directory of world wide contacts at www.ibm.com/planetwide

- The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
– When you call, specify that you want to order a DB2 publication.

– Provide your representative with the titles and form numbers of the books

that you want to order.

 Related concepts:

v “Overview of the DB2 technical information” on page 445

 Related reference:

v “DB2 technical library in PDF format” on page 446

Displaying SQL state help from the command line processor

 DB2 returns an SQLSTATE value for conditions that could be the result of an SQL

statement. SQLSTATE help explains the meanings of SQL states and SQL state class

codes.

 Procedure:

 To invoke SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

 Related tasks:

v “Invoking command help from the command line processor” in Command

Reference

v “Invoking message help from the command line processor” in Command

Reference

Accessing different versions of the DB2 Information Center

 For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/.

Appendix K. DB2 Database technical information 449

DB2 9 BETA

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/.

 Related tasks:

v “Updating the DB2 Information Center installed on your computer or intranet

server” on page 451

Displaying topics in your preferred language in the DB2 Information

Center

 The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

 Procedure:

 To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

v To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the fonts

required to display the topics in the preferred language.

v To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

To display topics in your preferred language in the Firefox browser:

1. In Firefox, select the Tools —> Options —> Languages button. The Languages

panel is displayed in the Preferences window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

v To add a new language to the list, click the Add... button to select a language

from the Add Languages window.

v To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you might have to also

change the regional settings of your operating system to the locale and language of

your choice.

 Related concepts:

v “Overview of the DB2 technical information” on page 445

450 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Updating the DB2 Information Center installed on your computer or

intranet server

 If you have a locally-installed DB2 Information Center, updated topics can be

available for download. The 'Last updated' value found at the bottom of most

topics indicates the current level for that topic.

To determine if there is an update available for the entire DB2 Information Center,

look for the 'Last updated' value on the Information Center home page. Compare

the value in your locally installed home page to the latest value which is available

on the IBM hosted Information Center home page. If they are the same, you have

the latest documentation level and no update is required. If the are not the same,

you should update your locally-installed Information Center.

Updating your locally-installed DB2 Information Center requires that you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to download and apply updates.

2. Use the Update feature to determine if update packages are available from

IBM. If update packages are available, use the Update feature to download the

packages. (The Update feature is only available in stand-alone mode.)

3. Stop the stand-alone Information Center, and restart the DB2 Information

Center service on your computer.

 Procedure:

 To update the DB2 Information Center installed on your computer or intranet

server:

1. Stop the DB2 Information Center service.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Stop.

v On Linux, enter the following command:

/etc/init.d/db2icdv9 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the C:\Program

Files\IBM\DB2 Information Center\Version 9 directory.

c. Run the help_start.bat file using the fully qualified path for the DB2

Information Center:

<DB2 Information Center dir>\doc\bin\help_start.bat

v On Linux:

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the /opt/ibm/db2ic/V9

directory.

b. Run the help_start.sh file using the fully qualified path for the DB2

Information Center:

<DB2 Information Center dir>/doc/bin/help_start

Appendix K. DB2 Database technical information 451

DB2 9 BETA

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

The systems default Web browser launches to display the stand-alone

Information Center.

3. Click the Update button (

). On the right hand panel of the Information

Center, click Find Updates. A list of updates for existing documentation

displays.

4. To initiate the download process, check the selections you want to download,

then click Install Updates.

5. After the download and installation process has completed, click Finish.

6. Stop the stand-alone Information Center.

v On Windows, run the help_end.bat file using the fully qualified path for the

DB2 Information Center:

<DB2 Information Center dir>\doc\bin\help_end.bat

v On Linux, run the help_end.sh file using the fully qualified path for the DB2

Information Center:

<DB2 Information Center dir>/doc/bin/help_end

7. Restart the DB2 Information Center service.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv9 start

The updated DB2 Information Center displays the new and updated topics.

 Related concepts:

v “DB2 Information Center installation options” in Quick Beginnings for DB2 Servers

 Related tasks:

v “Installing the DB2 Information Center using the DB2 Setup wizard (Linux)” in

Quick Beginnings for DB2 Servers

v “Installing the DB2 Information Center using the DB2 Setup wizard (Windows)”

in Quick Beginnings for DB2 Servers

DB2 Visual Explain tutorial

 The DB2 Visual Explain tutorial helps you learn about analyzing, optimizing, and

tuning SQL statements for better performance. Lessons provide step-by-step

instructions.

 Before you begin:

 You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

 DB2 Visual Explain tutorial:

 To view the tutorial, click on the title.

Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

452 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

http://publib.boulder.ibm.com/infocenter/db2help/

Related concepts:

v “Visual Explain overview” in Administration Guide: Implementation

DB2 troubleshooting information

 A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting

Guide or the Support and Troubleshooting section of the DB2 Information

Center. There you will find information on how to isolate and identify

problems using DB2 diagnostic tools and utilities, solutions to some of the

most common problems, and other advice on how to solve problems you

might encounter with your DB2 products.

 DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/udb/support.html

 Related concepts:

v “Introduction to problem determination” in Troubleshooting Guide

v “Overview of the DB2 technical information” on page 445

Terms and Conditions

 Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

Appendix K. DB2 Database technical information 453

DB2 9 BETA

http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/db2/udb/support.html

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

454 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Appendix L. Notices

 IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country/region or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product, and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2001, 2006 455

DB2 9 BETA

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

Office of the Lab Director

8200 Warden Avenue

Markham, Ontario

L6G 1C7

CANADA

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs, in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment

to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

456 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

Company, product, or service names identified in the documents of the DB2

Version 9 documentation library may be trademarks or service marks of

International Business Machines Corporation or other companies. Information on

the trademarks of IBM Corporation in the United States, other countries, or both is

located at http://www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

and have been used in at least one of the documents in the DB2 documentation

library:

Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel, Itanium®, Pentium®, and Xeon® are trademarks of Intel Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix L. Notices 457

DB2 9 BETA

http://www.ibm.com/legal/copytrade.shtml

458 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Index

A
active logs 33

administration notification log 10

AIX
backup and restore support 9

APIs
db2ArchiveLog 335

db2Backup 76

db2HADRStart 242

db2HADRStop 247

db2HADRTakeover 266

db2HistoryCloseScan 337

db2HistoryGetEntry 338

db2HistoryOpenScan 341

db2HistoryUpdate 345

db2Prune 348

db2ReadLog 356

db2ReadLogNoConn 350

db2ReadLogNoConnInit 353

db2ReadLogNoConnTerm 355

db2Recover 199

db2Restore 115

db2Rollforward 177

db2VendorGetNextObj 432

db2VendorQueryApiVersion 431

sqluvdel 430

sqluvend 429

sqluvget 426

sqluvint 421

sqluvput 427

Archive Active Log API 335

ARCHIVE LOG command 323

archive logging 33, 49

archived logs
offline 33

online 33

archiving log files
to tape 51, 52

archiving logs on demand 54

ASYNC
synchronization mode 229

Asynchronous Read Log API 356

automatic backup
enabling 86

automatic client reroute
high availability disaster recovery

(HADR) 234, 255

automatic incremental restore
limitations 30

automatic maintenance 85

backup 3, 86

automatic restart 10

B
backing up

databases
automatically 86

to named pipes 70

to tape 68

backup and restore vendor products 413

Backup database API 76

BACKUP DATABASE command 66, 71

backup image
including log files with 54

Backup Services APIs (XBSA) 71

backup utility
authorities and privileges required to

use 66

displaying information 63

examples 84

monitoring progress 32

overview 63

performance 84

restrictions 66

troubleshooting 63

backups
active 58

automated 3

automatic 85

container names 63

expired 58

frequency 6

images 63

inactive 58

incremental 27

log chain 58

log sequence 58

offline 6

online 6

operating system restrictions 9

storage considerations 8

user exit program 8

blklogdskful database configuration

parameter 37

C
cascading assignment 275

check backup command 310

check incremental restore image sequence

command 314

circular logging 33, 48

client reroute
high availability disaster recovery

(HADR) 255

clone database
creating 212

close history file scan API 337

cluster managers
high availability disaster recovery

(HADR) 258

clusters
hacmp 275

commands
ARCHIVE LOG 323

BACKUP DATABASE 71

db2adutl 303

cross-node recovery example 397

db2ckbkp 310

db2ckrst 314

commands (continued)
db2flsn 316

db2fm 219

db2inidb 317

db2mscs 319

INITIALIZE TAPE 325

LIST HISTORY 326

PRUNE HISTORY/LOGFILE 329

RECOVER DATABASE 193

RESTORE DATABASE 100

REWIND TAPE 330

ROLLFORWARD DATABASE 168

SET TAPE POSITION 331

START HADR 240

STOP HADR 246

TAKEOVER HADR 264

UPDATE HISTORY FILE 332

completion messages 301

Compression plug-in interface 441

configuration parameters
database logging 37, 45

logarchopt1
cross-node recovery example 397

vendoropt
cross-node recovery example 397

configure automatic maintenance

wizard 85

configuring
high availability disaster

recovery 249

contacting IBM 461

containers
names 63

continuous availability 285

crash recovery 10

creating
clone database 212

cross-node database recovery

example 397

D
damaged table space 12

non-recoverable 13

recoverable 12

data and parity striping by sectors (RAID

level 5) 14

DATA structure 440

data structures
DB2-INFO 434

db2HistData 360

INIT-OUTPUT 439

RETURN-CODE 440

SQLU-LSN 366

used by vendor APIs 413

VENDOR-INFO 437

database configuration parameters
autorestart 10

database logs 33

configuration parameters 37

© Copyright IBM Corp. 2001, 2006 459

DB2 9 BETA

database objects
recovery history file 3

recovery log file 3

table space change history file 3

database partition servers
recovering from failure 19

database partitions
synchronization 166

database rebuild
and temporary table spaces 144

choosing a target image 134

examples 145

partitioned databases 140

restrictions 137

table space containers 143

using incremental backup

images 142

using selected table space

images 137

databases
activating and deactivating

high availability disaster

recovery 254

backing up
automatically 86

backup history file 329

nonrecoverable 3

rebuilding 130

recoverable 3

recovering 168

restoring (rebuilding) 100

rollforward recovery 24, 168

DB2 Data Links Manager
garbage collection 58

DB2 Fault Monitor command 219

DB2 Information Center
updating 451

versions 449

viewing in different languages 450

DB2 sync point manager (SPM)
recovery of indoubt transactions 20

DB2-INFO structure 434

db2adutl command 303

cross-node recovery example 397

db2ArchiveLog API 335

db2Backup API 66, 76

db2ckbkp command 310

db2ckrst command 314

db2flsn command 316

db2fm command 215, 219

db2HADRStart API 242

db2HADRStop API 247

db2HADRTakeover API 266

db2HistData structure 360

db2HistoryCloseScan API 337

db2HistoryGetEntry API 338

db2HistoryOpenScan API 341

db2HistoryUpdate API 345

db2inidb command 214, 317

db2inidb tool 210

DB2LOADREC registry variable 165

db2mscs command 319

db2Prune API 348

db2ReadLog API 356

db2ReadLogNoConn API 350

db2ReadLogNoConnInit API 353

db2ReadLogNoConnTerm API 355

db2Recover API 192, 199

db2Restore API 90, 115

db2rfpen command 322

db2Rollforward API 157, 177

db2tapemgr
archiving log files to tape 51

db2VendorGetNextObj API 432

db2VendorQueryApiVersion API 431

Delete Committed Session API 430

disaster recovery 22

high availability (HADR)

overview 221

requirements for high

availability 224

disk arrays
hardware 14

reducing failure 14

software 14

disk failure protection 14

disk mirroring (RAID level 1) 14

disks
RAID (redundant array of

independent disks) 14

striping 14

displaying information
backup utility 63

documentation 445, 446

terms and conditions of use 453

dropped table recovery 163

DSMICONFIG 403

DSMIDIR 403

DSMILOG 403

dual logging 35

duplexing (RAID level 1) 14

E
enhanced scalability (ES) 275

error handling
log full 37

error messages
during rollforward 177

overview 301

ES (enhanced scalability) 275

event monitors
high-availability on AIX 275

examples
backup sessions 84

database rebuild sessions 145

restore sessions 127

rollforward sessions 187

export utility
compatibility with online backup 87

F
failback operation 268

failed database partition server 16

failover
high availability disaster recovery

(HADR) 261

failover support 207

AIX 275

idle standby 207

mutual takeover 207

overview 285

failover support (continued)
Solaris operating system 285

Sun Cluster 3.0 287

Windows 281

failure transaction 10

Fault Monitor Facility 215

fault tolerance 285

file systems
journaled 207

Find Log Sequence Number

command 316

flushing logs 33

G
garbage collection 58

Get Next History File Entry API 338

H
HACMP (high availability cluster

multi-processing) 275

HADR (high availability disaster

recovery) 221

automatic client reroute 255

cluster managers 258

commands 234

configuring 249

database activation and

deactivation 254

failback 268

failover 261

initializing 238

load operations 249

log archiving 257

managing 237

monitoring 270

performance 271

performing a rolling upgrade 269

replicated operations 232, 233

requirements 224

restrictions 226

sample configuration 249

setting up 238

stopping 244

Switching database roles 259

synchronization modes 229

system requirements 222

hardware disk arrays 14

heartbeat 275, 285

help
displaying 450

for SQL statements 449

high availability 207, 281, 285

Sun Cluster 3.0 287

through log shipping 209

high availability cluster multi-processing

(HACMP)
description 275

high availability disaster recovery

(HADR)
automatic client reroute 255

cluster managers 258

commands 234

configuring 249

460 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

high availability disaster recovery

(HADR) (continued)
database activation and

deactivation 254

failback 268

failover 261

initializing 238

load operations 249

managing 237

monitoring 270

overview 221

performance 271

performing a rolling upgrade 269

primary reintegration 268

replicated operations 232, 233

requirements 224

restrictions 226

sample configuration 249

stopping 244

switching database roles 268

Switching database roles 259

synchronization modes 229

system requirements 222

hot standby configuration 275

HP on IPF
backup and restore support 9

HP-UX
backup and restore support 9

I
images

backup 63

incremental backup and recovery 27

incremental backup images
using when rebuilding a

database 142

incremental restore 28, 92

index logging
high availability disaster recovery

(HADR) 256

indoubt transactions
recovering

on the host 20

recovery
with DB2 syncpoint manager 20

without DB2 syncpoint

manager 21

Information Center
updating 451

versions 449

viewing in different languages 450

INIT-INPUT structure 438

INIT-OUTPUT structure 439

Initialize a Mirrored Database

command 317

Initialize and Link to Device API 421

Initialize Read Log Without a Database

Connection API 353

INITIALIZE TAPE command 325

J
JFS (Journaled File System)

AIX considerations 207

Journaled File System (JFS)
AIX considerations 207

K
keepalive packets 275

L
Linux on AMD64 and Intel EM64T

backup and restore support 9

Linux on IA-64
backup and restore support 9

Linux on Power PC
backup and restore support 9

Linux zSeries
backup and restore support 9

LIST HISTORY command 56, 326

load copy location file 165

local catchup state 226

log archiving
configuration 257

log chain 58

log file management
ACTIVATE DATABASE command 46

log files
archiving 49

to tape 52

including in backup image 54

log sequence 58

log shipping
high availability 209

logarchmeth1 configuration parameter
and HADR (high availability disaster

recovery) 257

logarchmeth2 configuration parameter
and HADR (high availability disaster

recovery) 257

logarchopt1 configuration parameter
cross-node recovery example 397

LOGBUFSZ configuration parameter 37

LOGFILSIZ configuration parameter 37

and HADR (high availability disaster

recovery) 249

logging
archive 33

circular 33

configuration parameters 45

indexes
high availability disaster recovery

(HADR) 256

LOGPRIMARY configuration

parameter 37

logretain configuration parameter 37

logs
active 33

allocation 48

archiving on demand 54

circular logging 48

database 33

directory, full 53

flushing 33

listing during roll forward 168

managing 46

mirroring 35

offline archived 33

logs (continued)
online archived 33

preventing loss 56

removal 48

storage required 8

user exit program 8

LOGSECOND configuration parameter
description 37

M
managing

high availability disaster recovery

(HADR) 237

media failure
catalog partition considerations 14

logs 8

reducing the impact of 14

messages
overview 301

Microsoft Cluster Server (MSCS) 281

mincommit database configuration

parameter 37

mirroring
logs 35

MIRRORLOGPATH configuration

parameter 35

mirrorlogpath database configuration

parameter 37

monitoring
high availability disaster recovery

(HADR) 270

progress
backup 32

crash recovery 32

restore 32

rollforward 32

MSCS (Microsoft Cluster Server) 281

multiple instances
use with Tivoli Storage Manager 403

mutual takeover configuration 275

N
Named Pipes

backing up to 70

NEARSYNC synchronization mode 229

newlogpath database configuration

parameter 37

node synchronization 166

nodedown event 275

nodeup event 275

nonrecoverable databases
backup and recovery 3

notices 455

O
offline archived logs 33

offline backup
compatibility with online backup 87

offline load
compatibility with online backup 87

on demand log archiving 54

online
archived logs 33

Index 461

DB2 9 BETA

online backup
compatility with other utilities 87

online create index
compatibility with online backup 87

online index reorg
compatibility with online backup 87

online inspect
compatibility with online backup 87

online load
compatibility with online backup 87

online table reorg
compatibility with online backup 87

Open History File Scan API 341

optimizing
backup performance 84

restore performance 129

ordering DB2 books 448

overflowlogpath database configuration

parameter 37

P
parallel recovery 61

partitioned database environments
transaction failure recovery in 16

partitioned databases
database rebuild 140

partitioned tables
backing up 407

peer state 226

pending states 60

performance
optimizing high availability disaster

recovery (HADR) 271

recovery 61

point of consistency
database 10

primary reintegration
high availability disaster recovery

(HADR) 268

printed books
ordering 448

privileges
backup 66

restore utility 90

roll-forward utility 157

problem determination
online information 453

tutorials 453

protecting against disk failure 14

Prune History File API 348

PRUNE HISTORY/LOGFILE

command 329

R
RAID (Redundant Array of Independent

Disks) devices
level 1 (disk mirroring or

duplexing) 14

level 5 (data and parity striping by

sectors) 14

Read Log Without a Database Connection

API 350

Reading Data from Device API 426

rebalance
compatibility with online backup 87

rebuilding
databases 130

table space containers 143

using incremental backup

images 142

selected table spaces 130, 139

Recover Database API 199

RECOVER DATABASE command 192,

193

authorities and privileges

required 192

recoverable databases
description 3

recovering
databases

overview 191

from failure of database partition

server 19

recovery
crash 10

cross-node example 397

damaged table spaces 12, 13

database 100

database rebuild 130

dropped tables 163

history file 56

incremental 27

operating system restrictions 9

parallel 61

performance 61

point-in-time 24

reducing logging 36

roll-forward 24

storage considerations 8

strategy overview 3

time required 6

to end of logs 24

two-phase commit protocol 16

user exit 409

version 23

with roll forward 168

without roll forward 100

redefining table space containers
restore utility 94

using a script 97

redirected restore 94

using a script 97

using generated script 99

reducing
impact of media failure 14

impact of transaction failure 16

logging
with declared temporary

tables 36

with the NOT LOGGED

INITIALLY parameter 36

Redundant Array of Independent Disks

(RAID)
reducing the impact of media

failure 14

registry variables
DB2LOADREC 165

relationships
between tables 9

remote catchup pending state 226

remote catchup state 226

reorg table
compatibility with online backup 87

reorganization
automatic 85

replicated operations
high availability disaster recovery

(HADR) 232, 233

Reset rollforward pending state

command 322

RESTART DATABASE command 10

Restore database API 115

RESTORE DATABASE command 90, 100

restore utility
authorities and privileges required to

use 90

compatibility with online backup 87

examples 127

monitoring progress 32

overview 89

performance 89, 129

redefining table space containers 94

restoring to a new database 96

restoring to an existing database 95

restrictions 90

restoring
automatic incremental

limitations 30

data to a new database 96

data to an existing database 95

databases
incremental 27

rollforward recovery 24

earlier versions of DB2 databases 100

incremental 28, 92

restrictions
high availability disaster recovery

(HADR) 226

RETURN-CODE structure 440

REWIND TAPE command 330

roll-forward recovery
configuration file parameters

supporting 37

database 24

log management considerations 46

log sequence 46

table space 24, 159

Rollforward Database API 177

ROLLFORWARD DATABASE

command 157, 168

rollforward utility
authorities and privileges required to

use 157

compatibility with online backup 87

examples 187

load copy location file 165

monitoring progress 32

overview 155

recovering a dropped table 163

restrictions 157

rolling upgrade
performing 269

rotating assignment 275

rules file 275

runstats
compatibility with online backup 87

462 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

S
scalability 275

seed database 95, 96

SET TAPE POSITION command 331

Set Up Windows Failover utility

command 319

set write
compatibility with online backup 87

site failure
high availability disaster recovery

(HADR) 221

software disk arrays 14

Solaris
backup and restore support 9

SP frame 275

split mirror
as backup image 214

as clone database 212

as standby database 213

handling 210

SQL messages 301

SQL statements
displaying help 449

SQLCODE
overview 301

SQLSTATE
overview 301

SQLU-LSN structure 366

sqluvdel API 430

sqluvend API 429

sqluvget API 426

sqluvint API 421

sqluvput API 427

standby database
states 226

Start HADR API 242

START HADR command 234, 240

states
pending 60

standby database 226

statistics collection
automatic 85

statistics profiling
automatic 85

Stop HADR API 247

STOP HADR command 234, 246

stopping
high availability disaster recovery

(HADR) 244

storage
media failure 8

requirements
backup and recovery 8

Sun Cluster 3.0
high availability 287

suspended I/O to support continuous

availability 210

switching database roles
high availability disaster recovery

(HADR) 268

switching HADR database roles 259

SYNC
synchronization mode 229

synchronization
database partition 166

node 166

recovery considerations 166

synchronization modes
high availability disaster recovery

(HADR) 229

syntax
description 297

system requirements
high availability disaster recovery

(HADR) 222

T
table space containers

when rebuilding a database 143

table spaces
rebuild a database using selected table

spaces 137

rebuilding 130, 139

recovery 12, 13

restoring 24

roll-forward recovery 24, 159

tables
relationships 9

Take Over as Primary Database API 266

TAKEOVER HADR command 234, 264

performing a failover operation 261

switching database roles 259

tape backup 68, 71

tape drives
storing log files on 49, 51, 52

target image
for rebuild 134

temporary table spaces
and database rebuild 144

Terminate Read Log Without a Database

Connection API 355

terms and conditions
use of publications 453

time
database recovery time 6

timestamps
conversion

client/server environment 167,

193

Tivoli Storage Manager (TSM)
backup restrictions 403

client setup 403

timeout problem resolution 403

using 403

with BACKUP DATABASE

command 403

with partitioned tables 407

with RESTORE DATABASE

command 403

transactions
blocking when log directory is

full 53

failure recovery
crashes 16

n the failed database partition

server 16

on active database partition

server 16

reducing the impact of failure 10

troubleshooting
online information 453

tutorials 453

TSM archived images 303

tutorials
troubleshooting and problem

determination 453

Visual Explain 452

two-phase commit
protocol 16

U
Unlink the Device and Release its

Resources API 429

Update History File API 345

UPDATE HISTORY FILE command 332

updates
DB2 Information Center 451

Information Center 451

user exit programs
archive and retrieve

considerations 49

backup 8

calling format 409

error handling 409

for database recovery 409

logs 8

sample programs 409

user-defined events 275

userexit database configuration

parameter 37

V
vendor products

backup and restore 413

DATA structure 440

description 413

INIT-INPUT structure 438

operation 413

VENDOR-INFO structure 437

vendoropt configuration parameter
cross-node recovery example 397

VERITAS Cluster Server 290

high availability 290

version levels
version recovery of the database 23

Visual Explain
tutorial 452

W
warning messages

overview 301

Windows
failover 281

Work with TSM Archived Images

command 303

Writing Data to Device API 427

X
XBSA (Backup Services APIs) 71

Index 463

DB2 9 BETA

464 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

Contacting IBM

 To contact IBM in your country or region, check the IBM Directory of Worldwide

Contacts at http://www.ibm.com/planetwide

To learn more about DB2 products, go to

http://www.ibm.com/software/data/db2/.

© Copyright IBM Corp. 2001, 2006 465

DB2 9 BETA

http://www.ibm.com/planetwide
http://www.ibm.com/software/data/db2/udb/

466 Data Recovery and High Availability Guide and Reference

DB2 9 BETA

DB2 9 BETA

����

Printed in USA

SC10-4228-00

DB2 9 BETA

Sp
in
e
in
fo
rm
at
io
n:

 IB
M

DB

2
DB

2
Ve

rs
io

n
9

Da
ta

Re

co
ve

ry

an

d
Hi

gh

Av

ai
la

bi
lit

y
Gu

id
e

an
d

Re
fe

re
nc

e
�
�

�

DB2 9 BETA

	Contents
	About this book
	Who should use this book
	How this book is structured

	Part 1. Data recovery
	Chapter 1. Developing a good backup and recovery strategy
	Developing a backup and recovery strategy
	Deciding how often to back up
	Storage considerations for recovery
	Keeping related data together
	Backup and restore operations between different operating systems and hardware platforms
	Crash recovery
	Crash recovery - details
	Recovering damaged table spaces
	Recovering table spaces in recoverable databases
	Recovering table spaces in non-recoverable databases
	Reducing the impact of media failure
	Protecting against disk failure

	Reducing the impact of transaction failure
	Recovering from transaction failures in a partitioned database environment
	Transaction failure recovery on an active database partition server
	Transaction failure recovery on the failed database partition server
	Identifying the failed database partition server

	Recovering from the failure of a database partition server
	Recovering indoubt transactions on the host when DB2 Connect has the DB2 Syncpoint Manager configured
	Recovering indoubt transactions on the host when DB2 Connect does not use the DB2 Syncpoint Manager

	Disaster recovery
	Version recovery
	Rollforward recovery
	Incremental backup and recovery
	Incremental backup and recovery - details
	Restoring from incremental backup images
	Limitations to automatic incremental restore

	Monitoring the progress of backup, restore and recovery operations
	Understanding recovery logs
	Recovery log details
	Log mirroring
	Reducing logging with the NOT LOGGED INITIALLY parameter
	Reducing logging with declared temporary tables

	Configuration parameters for database logging
	Configuring database logging options
	Log file management
	Log file allocation and removal
	Log file management through log archiving
	Log archiving using db2tapemgr
	Archiving log files to tape
	Blocking transactions when the log directory file is full
	On demand log archive
	Including log files with a backup image
	How to prevent losing log files

	Understanding the recovery history file
	Recovery history file - garbage collection
	Garbage collection

	Understanding table space states
	Enhancing recovery performance

	Chapter 2. Database backup
	Backup overview
	Displaying backup information

	Privileges, authorities, and authorization required to use backup
	Using backup
	Backing up to tape
	Backing up to named pipes
	BACKUP DATABASE
	db2Backup - Back up a database or table space
	Backup sessions - CLP examples
	Optimizing backup performance
	Automatic database backup
	Enabling automatic backup
	Compatibility of online backup and other utilities

	Chapter 3. Database restore
	Restore overview
	Privileges, authorities, and authorization required to use restore
	Using restore
	Using incremental restore in a test and production environment
	Redefining table space containers during a restore operation (redirected restore)
	Restoring to an existing database
	Restoring to a new database
	Redefine table space containers by restoring a database using an automatically generated script
	Performing a redirected restore using an automatically generated script
	RESTORE DATABASE
	db2Restore - Restore a database or table space
	Restore sessions - CLP examples
	Optimizing restore performance
	Database rebuild
	Rebuild - details
	Choosing a target image for database rebuild
	Restrictions for database rebuild
	Rebuilding a database using selected table space images
	Rebuilding selected table spaces
	Rebuilding a partitioned database
	Rebuild and incremental backup images
	Rebuild and table space containers
	Rebuild and temporary table spaces
	Rebuild sessions - CLP examples

	Chapter 4. Rollforward recovery
	Rollforward overview
	Privileges, authorities, and authorization required to use rollforward
	Using rollforward
	Rolling forward changes in a table space
	Recovering a dropped table
	Recovering data with the load copy location file
	Synchronizing clocks in a partitioned database environment
	Client/server timestamp conversion
	ROLLFORWARD DATABASE
	db2Rollforward - Roll forward a database
	Rollforward sessions - CLP examples

	Chapter 5. Database recover
	Recover overview
	Privileges, authorities, and authorization required to use recover
	Using recover
	Client/server timestamp conversion
	RECOVER DATABASE
	db2Recover - Restore and roll forward a database

	Part 2. High availability
	Chapter 6. Introducing high availability and failover support
	High availability
	High availability through log shipping
	High availability through online split mirror and suspended I/O support
	Online split mirror handling
	Using a split mirror to clone a database
	Using a split mirror as a standby database
	Using a split mirror as a backup image

	Fault monitor facility for Linux and UNIX
	db2fm - DB2 fault monitor

	Chapter 7. High availability disaster recovery (HADR)
	High availability disaster recovery overview
	System requirements for high availability disaster recovery (HADR)
	Installation and storage requirements for high availability disaster recovery
	Restrictions for high availability disaster recovery (HADR)
	Standby database states in high availability disaster recovery (HADR)
	Synchronization modes for high availability disaster recovery (HADR)
	Replicated operations for high availability disaster recovery (HADR)
	Non-replicated operations for high availability disaster recovery (HADR)
	High availability disaster recovery (HADR) commands overview
	High availability disaster recovery (HADR) management
	Initializing high availability disaster recovery (HADR)
	START HADR
	db2HADRStart - Start high availability disaster recovery (HADR) operations
	Stopping high availability disaster recovery (HADR)
	STOP HADR
	db2HADRStop - Stop high availability disaster recovery (HADR) operations
	Database configuration for high availability disaster recovery (HADR)
	Database activation and deactivation in high availability disaster recovery (HADR)
	Automatic client reroute and high availability disaster recovery (HADR)
	Index logging and high availability disaster recovery (HADR)
	Log archiving configuration for high availability disaster recovery (HADR)
	Cluster managers and high availability disaster recovery (HADR)
	Switching database roles in high availability disaster recovery (HADR)
	Performing an HADR failover operation
	TAKEOVER HADR
	db2HADRTakeover - Instruct a database to take over as the high availability disaster recovery (HADR) primary database
	Reintegrating a database after a takeover operation
	Performing a rolling upgrade in a high availability disaster recovery environment
	Monitoring high availability disaster recovery (HADR)
	High availability disaster recovery (HADR) performance

	Chapter 8. Cluster support on AIX
	High Availability Cluster Multi-Processing support

	Chapter 9. Cluster support on the Windows operating system
	Microsoft Cluster Server support

	Chapter 10. Cluster support for the Solaris Operating Environment
	Cluster support for the Solaris operating system
	Sun Cluster 3.0 support
	VERITAS Cluster Server support

	Part 3. Appendixes
	Appendix A. How to read the syntax diagrams
	Appendix B. Warning, error and completion messages
	Appendix C. Additional DB2 commands
	System commands
	db2adutl - Managing DB2 objects within TSM
	db2ckbkp - Check backup
	db2ckrst - Check incremental restore image sequence
	db2flsn - Find log sequence number
	db2inidb - Initialize a mirrored database
	db2mscs - Set up Windows failover utility
	db2rfpen - Reset rollforward pending state

	CLP commands
	ARCHIVE LOG
	INITIALIZE TAPE
	LIST HISTORY
	PRUNE HISTORY/LOGFILE
	REWIND TAPE
	SET TAPE POSITION
	UPDATE HISTORY

	Appendix D. Additional APIs and associated data structures
	db2ArchiveLog - Archive the active log file
	db2HistoryCloseScan - End the history file scan
	db2HistoryGetEntry - Get the next entry in the history file
	db2HistoryOpenScan - Start a history file scan
	db2HistoryUpdate - Update a history file entry
	db2Prune - Delete the history file entries or log files from the active log path
	db2ReadLogNoConn - Read the database logs without a database connection
	db2ReadLogNoConnInit - Initialize reading the database logs without a database connection
	db2ReadLogNoConnTerm - Terminate reading the database logs without a database connection
	db2ReadLog - Extracts log records
	db2HistoryData
	SQLU_LSN

	Appendix E. Recovery sample programs
	Sample programs with embedded SQL

	Appendix F. Cross-node recovery with the db2adutl command and the logarchopt1 and vendoropt database configuration parameters
	Appendix G. Tivoli Storage Manager
	Configuring a Tivoli Storage Manager client
	Considerations for using Tivoli Storage Manager

	Appendix H. Tivoli Space Manager Hierarchical Storage Management support for partitioned tables
	Appendix I. User exit for database recovery
	Sample user exit programs
	Calling format
	Error handling

	Appendix J. Backup and restore APIs for vendor products
	DB2 APIs for backup and restore to storage managers
	Operational overview
	Number of sessions
	Operation with no errors, warnings, or prompting
	Prompting mode
	Device characteristics
	If error conditions are returned to DB2
	Warning conditions

	Operational hints and tips
	History file

	Invoking a backup or a restore operation using vendor products
	The Control Center
	The command line processor (CLP)
	Backup and restore API function calls

	sqluvint - Initialize and link to a vendor device
	sqluvget - Read data from a vendor device
	sqluvput - Write data to a vendor device
	sqluvend - Unlink a vendor device and release its resources
	sqluvdel - Delete committed session
	db2VendorQueryApiVersion - Get the supported level of the vendor storage API
	db2VendorGetNextObj - Get next object on device
	DB2_info
	Vendor_info
	Init_input
	Init_output
	Data
	Return_code
	APIs for compressed backups
	DB2 APIs for using compression with backup and restore operations
	Operational overview
	Sample calling sequence
	Compression plug-in interface return codes

	Appendix K. DB2 Database technical information
	Overview of the DB2 technical information
	Documentation feedback

	DB2 technical library in PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	DB2 Visual Explain tutorial
	DB2 troubleshooting information
	Terms and Conditions

	Appendix L. Notices
	Trademarks

	Index
	Contacting IBM

