
DB2®

Data Movement Utilities Guide and Reference

DB2 Version 9

for Linux, UNIX, and Windows

SC10-4227-00

���

DB2 9 BETA

DB2 9 BETA

DB2®

Data Movement Utilities Guide and Reference

DB2 Version 9

for Linux, UNIX, and Windows

SC10-4227-00

���

DB2 9 BETA

Before using this information and the product it supports, be sure to read the general information under Notices.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

DB2 9 BETA

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

Contents

About This Book v

Who Should Use this Book v

How this Book is Structured v

Chapter 1. Export 1

Export Overview 1

Changes to previous export behavior introduced

in DB2 Version 9.1 2

Privileges, authorities and authorization required to

use export 3

Exporting data 4

Exporting XML data 5

LOB and XML file behavior with regard to import

and export 7

Using export with identity columns 9

Recreating an exported table 9

Exporting large objects (LOBS) 10

EXPORT 11

EXPORT command using the ADMIN_CMD

procedure 15

db2Export - Export data from a database 19

File type modifiers for the export utility 27

Export Sessions - CLP Examples 33

Chapter 2. Import 35

Import Overview 35

Changes to previous import behavior introduced

in DB2 Version 9.1 36

Privileges, authorities, and authorization required to

use import 38

Importing data 38

Importing XML data 40

Using import in a client/server environment . . . 40

Using import with buffered inserts 41

Using import with identity columns 42

Using import with generated columns 43

Using import to recreate an exported table 45

Importing large objects (LOBS) 46

Importing user-defined distinct types (UDTs) . . . 47

Table locking during import 47

IMPORT 49

IMPORT command using the ADMIN_CMD

procedure 61

db2Import - Import data into a table, hierarchy,

nickname or view 73

File type modifiers for the import utility 87

Character set and NLS considerations 97

Import sessions - CLP examples 97

Chapter 3. Load 101

Load overview 102

Changes to Previous Load Behavior Introduced

in DB2 V9.1 105

Changes to previous load behavior introduced

in DB2 UDB Version 8 106

Parallelism and loading 108

Privileges, authorities, and authorizations required

to use Load 109

Loading data 110

Read access load operations 113

Building indexes 115

Using load with identity columns 117

Using load with generated columns 118

Checking for integrity violations following a load

operation 121

Refreshing dependent immediate materialized

query tables 123

Propagating dependent immediate staging tables 124

Multidimensional clustering considerations . . . 125

Load considerations for partitioned tables 126

Restarting an interrupted load operation 129

Restarting or Terminating an Allow Read Access

Load Operation 130

Recovering data with the load copy location file 131

LOAD 132

LOAD command using the ADMIN_CMD

procedure 145

LOAD QUERY 158

db2Load - Load data into a table 161

db2LoadQuery - Get the status of a load operation 181

File type modifiers for the load utility 188

Load exception table 199

Load dump file 200

Load temporary files 201

Load utility log records 201

Table locking, table states and table space states 202

Character set and national language support . . . 205

Pending states after a load operation 205

Optimizing load performance 206

Load - CLP examples 211

Chapter 4. Loading data in a

partitioned database environment . . 215

Load in a partitioned database environment -

overview 215

Loading data in a partitioned database

environment 217

Monitoring a load operation in a partitioned

database environment using the LOAD QUERY

command 223

Restarting or terminating a load operation in a

partitioned database environment 225

Load configuration options for partitioned

database environments 227

Examples of loading data in a partitioned database

environment 232

Migration and version compatibility 235

Loading data in a partitioned database

environment - hints and tips 235

© Copyright IBM Corp. 1993, 2006 iiiDB2 9 BETA

Chapter 5. Moving Data Between

Systems 239

Moving data across platforms - file format

considerations 239

PC/IXF File Format 239

Delimited ASCII (DEL) File Format 240

WSF File Format 240

Moving XML data 240

XML data movement overview 240

Important considerations for XML data

movement 241

XML data specifier 242

XQuery data model 243

Moving data with DB2 Connect 243

db2move - Database movement tool 246

db2relocatedb - Relocate database 253

Delimiter restrictions for moving data 257

Moving data between typed tables 258

Moving Data Between Typed Tables - Details . . . 259

Traverse Order 259

Selection During Data Movement 260

Examples of Moving Data Between Typed

Tables 261

Using replication to move data 263

IBM Replication Tools 264

The IBM Replication Tools by Component . . . 264

Moving data using the CURSOR file type 265

Moving data using a customized application (user

exit) 268

Appendix A. How to read the syntax

diagrams 275

Appendix B. Differences between the

import and load utility 279

Appendix C. Export/Import/Load

Sessions - API Sample Program . . . 281

Appendix D. File Formats 291

Export/Import/Load Utility File Formats 291

Delimited ASCII (DEL) File Format 292

Example and Data Type Descriptions 293

Example DEL File 293

DEL Data Type Descriptions 294

Non-delimited ASCII (ASC) file format 297

Example and Data Type Descriptions 297

Example ASC File 297

ASC Data Type Descriptions 298

PC Version of IXF File Format 300

PC Version of IXF File Format - Details 302

PC/IXF Record Types 302

PC/IXF data types 318

PC/IXF Data Type Descriptions 323

General Rules Governing PC/IXF File Import

into Databases 326

Data Type-Specific Rules Governing PC/IXF File

Import into Databases 328

FORCEIN Option 330

Differences Between PC/IXF and Version 0

System/370 IXF 336

Worksheet File Format (WSF) 337

Appendix E. Export/Import/Load utility

unicode considerations 339

Restrictions for Code Pages 1394, 1392 and 5488 340

Restrictions for XML data movement 340

Incompatibilities 340

Appendix F. Bind files used by the

export, import and load utilities . . . 343

Appendix G. Warning, error and

completion messages 345

Appendix H. DB2 Database technical

information 347

DB2 documentation and help 347

Documentation feedback 347

Updating the DB2 Information Center installed on

your computer or intranet server 348

Accessing different versions of the DB2

Information Center 349

Displaying topics in your preferred language in the

DB2 Information Center 350

Overview of DB2 technical information 351

DB2 technical information 351

Ordering printed DB2 books 353

Displaying SQL state help from the command line

processor 354

DB2 Visual Explain tutorial 355

DB2 troubleshooting information 355

Terms and Conditions 356

Appendix I. Notices 357

Trademarks 359

Index 361

Contacting IBM 365

iv Data Movement Utilities DB2 9 BETA

About This Book

This book provides information about, and shows you how to use, the following

DB2 database for Linux™, UNIX®, and Windows® data movement utilities:

v The import and export utilities move data between a table or view and another

database or spreadsheet program; between DB2 databases; and between DB2

databases and host databases using DB2 Connect™. The export utility moves

data from a database into operating system files; you can then use those files to

import or load that data into another database.

v The load utility moves data into tables, extends existing indexes, and generates

statistics. Load moves data much faster than the import utility when large

amounts of data are involved. Data unloaded using the export utility can be

loaded with the load utility.

v When the load utility is used in a partitioned database environment, large

amounts of data can be distributed and loaded into different database partitions.

v DataPropagator is a component of the DB2 database system that allows

automatic copying of table updates to other tables in other DB2 relational

databases.

Other vendor’s products that move data in and out of databases are also available,

but are not discussed in this book.

Who Should Use this Book

This manual is for database administrators, application programmers, and other

DB2 users who perform the following tasks:

v Load data into DB2 tables from operating system files

v Move data between DB2 databases, and between DB2 and other applications (for

example, spreadsheets)

v Archive data

It is assumed that you are familiar with the DB2 database system, Structured

Query Language (SQL), and with the operating system environment in which the

DB2 database is running. If you are using native XML data store, you should also

be familiar with handling XML data through SQL/XML and XQuery.

How this Book is Structured

The following topics are covered:

Chapter 1, “Export,” on page 1

Describes the DB2 export utility, used to move data from DB2 tables into

files.

Chapter 2, “Import,” on page 35

Describes the DB2 import utility, used to move data from files into DB2

tables or views.

Chapter 3, “Load,” on page 101

Describes the DB2 load utility, used to move large volumes of data into

DB2 tables.

© Copyright IBM Corp. 1993, 2006 vDB2 9 BETA

Chapter 4, “Loading data in a partitioned database environment,” on page 215

Describes loading data in a partitioned database environment.

Chapter 5, “Moving Data Between Systems,” on page 239

Describes how to use the DB2 export, import, and load utilities to transfer

data across platforms, and to and from DRDA host databases.

DataPropagator, another method for moving data between databases in an

enterprise, is also described.

Appendix A, “How to read the syntax diagrams,” on page 275

Explains the conventions used in syntax diagrams.

Appendix B, “Differences between the import and load utility,” on page 279

Summarizes the important differences between the DB2 load and import

utilities.

Appendix C, “Export/Import/Load Sessions - API Sample Program,” on page 281

Includes an API sample program that illustrates how to export data to a

file, import data to a table, load data into a table, and check the status of a

load operation.

“Export/Import/Load Utility File Formats” on page 291

Describes external file formats supported by the database manager export,

import, and load utilities.

Appendix E, “Export/Import/Load utility unicode considerations,” on page 339

Discusses unicode consideration when using the export, import and load

utilities.

Appendix F, “Bind files used by the export, import and load utilities,” on page

343 Lists bind files with their default isolation levels, as well as which utilities

use them and for what purpose.

Appendix G, “Warning, error and completion messages,” on page 345

Provides information about interpreting messages generated by the

database manager when a warning or error condition has been detected.

vi Data Movement Utilities DB2 9 BETA

Chapter 1. Export

This chapter describes the DB2 export utility, which is used to write data from a

DB2 database to one or more files stored outside of the database. The exported

data can then be imported or loaded into another DB2 database, using the DB2

import or the DB2 load utility, respectively, or it can be imported into another

application (for example, a spreadsheet).

The following topics are covered:

v “Export Overview”

v “Privileges, authorities and authorization required to use export” on page 3

v “Exporting data” on page 4

v “Exporting XML data” on page 5

v “Using export with identity columns” on page 9

v “Recreating an exported table” on page 9

v “Exporting large objects (LOBS)” on page 10

v “EXPORT ” on page 11

v “EXPORT command using the ADMIN_CMD procedure” on page 15

v “db2Export - Export data from a database” on page 19

v “File type modifiers for the export utility” on page 27

v “Export Sessions - CLP Examples” on page 33

For information about exporting data out of typed tables, see “Moving data

between typed tables” on page 258. For information about exporting data from a

DRDA server database to a file on the DB2 Connect workstation, and the reverse,

see “Moving data with DB2 Connect” on page 243.

Export Overview

 The export utility exports data from a database to an operating system file, which

can be in one of several external file formats. This operating system file can then

be used to move the table data to a different server such as DB2 Universal

Database for iSeries™.

The following information is required when exporting data:

v An SQL SELECT statement specifying the data to be exported.

v The path and name of the operating system file that will store the exported data.

v The format of the data in the input file. This format can be IXF, WSF, or DEL.

v When exporting typed tables, you might need to provide the subtable traverse

order within the hierarchy. If the IXF format is to be used, the default order is

recommended. When specifying the order, recall that the subtables must be

traversed in the PRE-ORDER fashion. When exporting typed tables, you cannot

provide a SELECT statement directly. Instead, you must specify the target

subtable name, and optionally a WHERE clause. The export utility uses this

information, along with the traverse order, to generate and execute the required

SELECT statement.

You can also specify:

© Copyright IBM Corp. 1993, 2006 1DB2 9 BETA

v New column names when exporting to IXF or WSF files. If you do not want to

specify new column names, the column names in the existing table or view are

used in the exported file.

v Additional options to customize the export operation.

v A message file name. During DB2 database operations such as exporting,

importing, loading, binding, or restoring data, you can specify that message files

be created to contain the error, warning, and informational messages associated

with those operations. Specify the name of these files with the MESSAGES

parameter. These message files are standard ASCII text files. Each message in a

message file begins on a new line and contains information provided by the DB2

message retrieval facility. To print them, use the printing procedure for your

operating system; to view them, use any ASCII editor.

Changes to previous export behavior introduced in DB2

Version 9.1

Following is a summary of syntax changes and changes to export behavior

introduced in DB2 Version 9.1:

v In DB2 Universal Database Version 8 (DB2 UDB Version 8), the exported lob file

is named, for example, filename.001, filename.002. The default name used by the

export utility for lob files is, for example, db2exp.001, db2exp.002. In DB2 V9.1,

the exported lob file has a .lob extension, for example, filename.001.lob,

filename.002.lob. The default name is named after the input data file name, for

example, <datafile>.001.lob, <datafile>.002.lob. If the input date file is generated

in DB2 UDB V8, the DB2 V9.1 import utility can read it correctly.

v In DB2 UDB V8, if the LOBS TO option is not specified, then the default export

path is the current working directory. In DB2 V9.1, if the LOBS TO option is not

specified, then the default export path is the directory in which the exported

data file resides.

v In DB2 V9.1, message SQL3040N is improved. Two errors are returned.

SQL3040N is returned for lobfile errors and SQL3235N is returned for lob path

errors. The invalid file name or path name is shown in the message.

v In DB2 UDB V8, the LOBFILE option can contain a path. As a result, the LOB

Location Specifier (LLS) in the exported data file also contains a path name. In

DB2 V9.1, the LOBFILE option cannot contain a path. For backward

compatibility, if the LLS in the input data file contains a path, the Version 9.1

import utility can read the file and import the lob data correctly.

v In DB2 UDB V8, the import and export utilities fail if both the LOBSINFILE and

CODEPAGE modifiers are specified together. In DB2 V9.1, both modifiers can be

specified together.

v In DB2 UDB V8, if LOBSINFILE is specified and LOBS TO is specified, the

specified directory is used for LOB data. Otherwise, LOB data is placed in

current working directory. In DB2 V9.1, if LOBSINFILE is specified and LOBS

TO is specified, the specified directory is used for LOB data. Otherwise, LOB

data is placed in data file directory.

v In DB2 UDB V8, if LOBSINFILE is not specified, then the specified LOBS TO

and LOBFILE are ignored. In DB2 V9.1, specifying LOBS TO or LOBFILE implies

LOBSINFILE.

v In DB2 UDB V8, export data and message files are created with the default mask

on Unix platforms. On Windows platforms, files are created with full

permissions if Extended Security is not enabled, and they are created with

administrators group full permission and owner read permission if Extended

Security is enabled. In DB2 V9.1 export data and message files are created with

the user specified umask on unix platforms. On Windows platforms, parent

2 Data Movement Utilities DB2 9 BETA

directory attributes are inherited if Extended Security is not enabled . If

Extended Security is enabled, the administrators group has full permission,

while the DB2USERS group has read and execute permissions.

v In DB2 V9.1, SQL27984W is returned for the following export scenarios:

– index column names contain hexadecimal values of 0x2B or 0x2D

– table contains XML columns

– table is multidimensional clustered

– table contains a table partitioning key

– index name that is longer than 128 bytes due to codepage conversion

– table is a protected table

– contains action strings other than SELECT * FROM <TABLE-NAME>

– method N is specified
SQL27984W Some information has not been saved to the PC/IXF file

during Export. This file will not be supported in

Import CREATE mode. Reason code="<reason-code>".

 Related concepts:

v “Examples of db2batch tests” in Performance Guide

v “Exporting large objects (LOBS)” on page 10

v “Moving data between typed tables” on page 258

v “Privileges, authorities and authorization required to use export” on page 3

v “Recreating an exported table” on page 9

v “Using export with identity columns” on page 9

 Related tasks:

v “Exporting data” on page 4

 Related reference:

v “Export Sessions - CLP Examples” on page 33

v “Export/Import/Load Utility File Formats” on page 291

v “EXPORT ” on page 11

Privileges, authorities and authorization required to use export

 Privileges enable users to create or access database resources. Authority levels

provide a method of grouping privileges and higher-level database manager

maintenance and utility operations. Together, these act to control access to the

database manager and its database objects. Users can access only those objects for

which they have the appropriate authorization; that is, the required privilege or

authority.

You must have SYSADM or DBADM authority, or CONTROL or SELECT privilege

for each table participating in the export operation.

 Related reference:

v “db2Export - Export data from a database” on page 19

v “EXPORT ” on page 11

Chapter 1. Export 3DB2 9 BETA

Exporting data

The export utility exports data from a database to one of several external file

formats. You can specify the data to be exported by supplying an SQL SELECT

statement, or by providing hierarchical information for typed tables.

 Authorization:

 One of the following authorities is required to export data from a database:

v sysadm

v dbadm

or CONTROL or SELECT privilege on each participating table or view.

v When exporting data from a table with protected rows, only those rows that the

session authorization ID is allowed to read are exported.

v If the select includes any protected columns that the session authorization ID is

not allowed to read the export fails and an error (SQLCODE 42512) is returned.

 Prerequisites:

 Before invoking the export utility, you must be connected (or be able to implicitly

connect) to the database from which the data will be exported. If implicit connect

is enabled, a connection to the default database is established. Utility access to

Linux, UNIX, or Windows database servers from Linux, UNIX, or Windows clients

must be a direct connection through the engine and not through a DB2 Connect

gateway or loop back environment.

Since the utility will issue a COMMIT statement, you should complete all

transactions and release all locks by performing either a COMMIT or a

ROLLBACK before invoking the export utility. There is no requirement for other

user applications accessing the table and using separate connections to disconnect.

 Restrictions:

 The following restrictions apply to the export utility:

v This utility does not support tables with structured type columns.

 Procedure:

 The export utility can be invoked through the command line processor (CLP), the

Export Table notebook in the Control Centre, or an application programming

interface (API), db2Export.

The following is an example of the EXPORT command issued through the CLP:

 db2 export to staff.ixf of ixf select * from userid.staff

For complete syntax and usage information, see the EXPORT command.

To open the Export Table notebook:

1. From the Control Center, expand the object tree until you find the Tables or

Views folder.

2. Click on the folder you want to work with. Any existing tables or views are

displayed in the pane on the right side of the window (the contents pane).

4 Data Movement Utilities DB2 9 BETA

3. Right-click on the table or view you want in the contents pane, and select

Export from the pop-up menu. The Export Table notebook opens.

Detailed information about the Export Table notebook is provided through the

Control Center online help facility.

 Related concepts:

v “Export Overview” on page 1

 Related reference:

v “EXPORT ” on page 11

v “EXPORT ” on page 11

v “Export/Import/Load Utility File Formats” on page 291

v “ROLLBACK statement” in SQL Reference, Volume 2

Exporting XML data

 When exporting XML data, the resulting QDM (XQuery Data Model) instances are

written to a file or files separate from the main data file containing exported

relational data. This is true even if neither the XMLFILE nor the XML TO option is

specified. By default, exported QDM instances are all concatenated to the same

XML file. You can use the XMLINSEPFILES file type modifier to specify that each

QDM instance be written to a separate file.

The destination paths and base names of the exported XML files can be specified

with the XML TO and XMLFILE options. By default, exported XML files are

written to the path of the exported data file. The default base name for exported

XML files is the name of the exported data file, with an appending 3-digit

sequence number, and the .xml extension.

 Examples:

 For the following examples, imagine a table USER.T1 containing four columns and

two rows:

 C1 INTEGER

 C2 XML

 C3 VARCHAR(10)

 C4 XML

 Table 1. USER.T1

C1 C2 C3 C4

2 <?xml version=″1.0″

encoding=″UTF-8″ ?><note

time=″12:00:00″><to>You</
to><from> Me</
from><heading>note1</heading>

<body>Hello World!</body></
note>

’char1’ <?xml version=″1.0″

encoding=″UTF-8″ ?><note

time=″13:00:00″><to>Him</
to><from> Her</
from><heading>note2</heading>

<body>Hello World!</body></
note>

4 NULL ’char2’ <?xml version=″1.0″

encoding=″UTF-8″ ?><note

time=″14:00:00″><to>Us</to><from>

Them</from><heading>note3</
heading> <body>Hello

World!</body></note>

Chapter 1. Export 5DB2 9 BETA

Example 1:

 The following command exports the contents of USER.T1 in Delimited ASCII

(DEL) format to the file ″/mypath/t1export.del″. Because the XML TO and

XMLFILE options are not specified, the XML documents contained in columns C2

and C4 are written to the same path as the main exported file ″/mypath″. The base

name for these files is ″t1export.del.xml″. The XMLSAVESCHEMA option indicates

that XML schema information is saved during the export procedure.

 EXPORT TO /mypath/t1export.del OF DEL XMLSAVESCHEMA SELECT * FROM USER.T1

The exported file ″/mypath/t1export.del″ contains:

 2,"<XDS FIL=’t1export.del.001.xml’ OFF=’0’ LEN=’144’ />","char1",

 "<XDS FIL=’t1export.del.001.xml’ OFF=’144’ LEN=’145’ />"

 4,,"char2","<XDS FIL=’t1export.del.001.xml’ OFF=’289’

 LEN=’145’ SCH=’S1.SCHEMA_A’ />"

The exported XML file ″/mypath/t1export.del.001.xml″ contains:

 <?xml version="1.0" encoding="UTF-8" ?><note time="12:00:00"><to>You</to>

 <from>Me</from><heading>note1</heading><body>Hello World!</body>

 </note><?xml version="1.0" encoding="UTF-8" ?><note time="13:00:00"><to>Him

 </to><from>Her</from><heading>note2</heading><body>Hello World!

 </body></note><?xml version="1.0" encoding="UTF-8" ?><note time="14:00:00">

 <to>Us</to><from>Them</from><heading>note3</heading><body>

 Hello World!</body></note>

 Example 2:

 The following command exports the contents of USER.T1 in DEL format to the file

″t1export.del″. XML documents contained in columns C2 and C4 are written to the

path ″/home/user/xmlpath″. The XML files are named with the base name

″xmldocs″, with multiple exported XML documents written to the same XML file.

The XMLSAVESCHEMA option indicates that XML schema information is saved

during the export procedure.

 EXPORT TO /mypath/t1export.del OF DEL XML TO /home/user/xmlpath

 XMLFILE xmldocs XMLSAVESCHEMA SELECT * FROM USER.T1

The exported DEL file ″/home/user/t1export.del″ contains:

 2,"<XDS FIL=’xmldocs.001.xml’ OFF=’0’ LEN=’144’ />","char1",

 "<XDS FIL=’xmldocs.001.xml’ OFF=’144’ LEN=’145’ />"

 4,,"char2","<XDS FIL=’xmldocs.001.xml’ OFF=’289’

 LEN=’145’ SCH=’S1.SCHEMA_A’ />"

The exported XML file ″/home/user/xmlpath/xmldocs.001.xml″ contains:

 <?xml version="1.0" encoding="UTF-8" ?><note time="12:00:00"><to>You</to>

 <from>Me</from><heading>note1</heading><body>Hello World!</body>

 </note><?xml version="1.0" encoding="UTF-8" ?><note time="13:00:00">

 <to>Him</to><from>Her</from><heading>note2</heading><body>

 Hello World!</body></note><?xml version="1.0" encoding="UTF-8" ?>

 <note time="14:00:00"><to>Us</to><from>Them</from><heading>

 note3</heading><body>Hello World!</body></note>

 Example 3:

 The following command is similar to Example 2, except that each exported XML

document is written to a separate XML file.

 EXPORT TO /mypath/t1export.del OF DEL XML TO /home/user/xmlpath

 XMLFILE xmldocs MODIFIED BY XMLINSEPFILES XMLSAVESCHEMA

 SELECT * FROM USER.T1

6 Data Movement Utilities DB2 9 BETA

The exported file ″/mypath/t1export.del″ contains:

 2,"<XDS FIL=’xmldocs.001.xml’ />","char1","<XDS FIL=’xmldocs.002.xml’ />"

 4,,"char2","<XDS FIL=’xmldocs.004.xml’ SCH=’S1.SCHEMA_A’ />"

The exported XML file ″/home/user/xmlpath/xmldocs.001.xml″ contains:

 <?xml version="1.0" encoding="UTF-8" ?><note time="12:00:00"><to>You</to>

 <from>Me</from><heading>note1</heading><body>Hello World!</body>

 </note>

The exported XML file ″/home/user/xmlpath/xmldocs.002.xml″ contains:

 <?xml version="1.0" encoding="UTF-8" ?><note time="13:00:00"><to>Him</to>

 <from>Her</from><heading>note2</heading><body>Hello World!</body>

 </note>

The exported XML file ″/home/user/xmlpath/xmldocs.004.xml″ contains:

 <?xml version="1.0" encoding="UTF-8" ?><note time="14:00:00"><to>Us</to>

 <from>Them</from><heading>note3</heading><body>Hello World!</body>

 </note>

 Example 4:

 The following command writes the result of an XQuery to an XML file.

 EXPORT TO /mypath/t1export.del OF DEL XML TO /home/user/xmlpath

 XMLFILE xmldocs MODIFIED BY XMLNODECLARATION select

 xmlquery(’$m/note/from/text()’ passing by ref c4 as "m" returning sequence)

 from USER.T1

The exported DEL file ″/mypath/t1export.del″ contains:

 "<XDS FIL=’xmldocs.001.xml’ OFF=’0’ LEN=’3’ />"

 "<XDS FIL=’xmldocs.001.xml’ OFF=’3’ LEN=’4’ />"

The exported XML file ″/home/user/xmlpath/xmldocs.001.xml″ contains:

 HerThem

Note: The result of this particular XQuery does not produce well-formed XML

documents. Therefore, the file exported above could not be directly

imported into an XML column.

 Related concepts:

v “Importing XML data” on page 40

v “XML data specifier” on page 242

v “Native XML data store overview” in XML Guide

 Related reference:

v “LOB and XML file behavior with regard to import and export” on page 7

v “EXPORT ” on page 11

LOB and XML file behavior with regard to import and export

 LOB and XML files have certain shared behaviors with regard to the import and

export utilities.

When exporting data, if one or more LOB paths are specified with the LOBS TO

option, the export utility will cycle between the paths to write each successful LOB

value to the appropriate LOB file. Similarly, if one or more XML paths are specified

Chapter 1. Export 7DB2 9 BETA

with the XML TO option, the export utility will cycle between the paths to write

each successive QDM (XQuery Data Model) instance to the appropriate XML file.

By default, LOB values and QDM instances are written to the same path to which

the exported relational data is written. Unless the LOBSINSEPFILES or

XMLINSEPFILES file type modifier is set, both LOB files and XML files can have

multiple values concatenated to the same file.

The LOBFILE option provides a means to specify the base name of the LOB files

generated by the export utility. Similarly, the XMLFILE option provides a means to

specify the base name of the XML files generated by the export utility. The default

LOB file base name is the name of the exported data file, with the extension .lob.

The default XML file base name is the name of the exported data file, with the

extension .xml. The full name of the exported LOB file or XML file therefore

consists of the base name, followed by a number extension that is padded to three

digits, and the extension .lob or .xml.

When importing data, a LOB Location Specifier (LLS) is compatible with an XML

target column, and an XML Data Specifier (XDS) is compatible with a LOB target

column. If the LOBS FROM option is not specified, the LOB files to import are

assumed to reside in the same path as the input relational data file. Similarly, if the

XML FROM option is not specified, the XML files to import are assumed to reside

in the same path as the input relational data file.

 Example 1:

 For the following EXPORT command:

 EXPORT TO /mypath/t1export.del OF DEL MODIFIED BY LOBSINFILE

 SELECT * FROM USER.T1

All LOB values are written to the file ″/mypath/t1export.del.001.lob″, and all

QDM instances are written to the file ″/mypath/t1export.del.001.xml″.

 Example 2:

 For the following EXPORT command:

 EXPORT TO /mypath/t1export.del OF DEL LOBS TO /lob1,/lob2

 MODIFIED BY LOBSINFILE SELECT * FROM USER.T1

The first LOB value will be written to the file ″/lob1/t1export.del.001.lob″, the

second will be written to the file ″/lob2/t1export.del.002.lob″, the third will be

appended to ″/lob1/t1export.del.001.lob″, the fourth will be appended to

″/lob2/t1export.del.002.lob″, and so on.

 Example 3:

 For the following EXPORT command:

 EXPORT TO /mypath/t1export.del OF DEL XML TO /xml1,/xml2 XMLFILE xmlbase

 MODIFIED BY XMLINSEPFILES SELECT * FROM USER.T1

The first QDM instance will be written to the file ″/xml1/xmlbase.001.xml″, the

second will be written to the file ″/xml2/xmlbase.002.xml″, the third will be

written to ″/xml1/xmlbase.003.xml″, the fourth will be written to

″/xml2/xmlbase.004.xml″, and so on.

 Example 4:

8 Data Movement Utilities DB2 9 BETA

For a table ″mytable″ that contains a single XML column, and the following

IMPORT command:

 IMPORT FROM myfile.del of del LOBS FROM /lobpath XML FROM /xmlpath

 MODIFIED BY LOBSINFILE XMLCHAR replace into mytable

If ″myfile.del″ contains the following data:

 mylobfile.001.lob.123.456/

The import utility will try to import an XML document from the file

″/lobpath/mylobfile.001.lob″, starting at file offset 123, with its length being 456

bytes.

The file ″mylobfile.001.lob″ is assumed to be in the LOB path, as opposed to the

XML path, since the value is referred to by a LOB Location Specifier (LLS) instead

of an XML Data Specifier (XDS).

The document is assumed to be encoded in the character codepage, since the

XMLCHAR file type modifier is specified.

 Related concepts:

v “XML data type” in XML Guide

v “Exporting XML data” on page 5

v “Importing XML data” on page 40

Using export with identity columns

 The export utility can be used to export data from a table containing an identity

column. If the SELECT statement specified for the export operation is of the form

″select * from tablename″, and the METHOD option is not used, exporting identity

column properties to IXF files is supported. The REPLACE_CREATE and the

CREATE options of the IMPORT command can then be used to recreate the table,

including its identity column properties. If such an IXF file is created from a table

containing an identity column of type GENERATED ALWAYS, the only way that

the data file can be successfully imported is to specify the identityignore

modifier. Otherwise, all rows will be rejected (SQL3550W).

 Related concepts:

v “Identity columns” in Administration Guide: Planning

Recreating an exported table

 A table can be saved by using the export utility and specifying the IXF file format.

The saved table (including its indexes) can then be recreated using the import

utility.

If the column names specified in the index contain either ’-’ or ’+’ characters, the

index information is not collected and warning SQL27984W is returned. The export

utility completes and the data exported is not affected. The index information is

not saved in the IXF file. If you are recreating the table by using the IMPORT

CREATE command, the indexes are not recreated. You must create the indexes

separately, using the db2look utility.

Chapter 1. Export 9DB2 9 BETA

During an IMPORT CREATE command, warning SQL27984W is returned when

some information has not been saved to the PC/IXF file during the export

operation. Some information is not saved to the PC/IXF file in the following

situations:

v index column names contain hexadecimal values of 0x2B or 0x2D

v table contains XML columns

v table is multidimensional clustered

v table contains a table partitioning key

v index name that is longer than 128 bytes due to codepage conversion

v table is a protected table

v contains action strings other than SELECT * FROM <TABLE-NAME>

v method N is specified

The export operation fails if the data you are exporting exceeds the space available

on the file system on which the exported file is created. In this case, you should

limit the amount of data selected by specifying conditions on the WHERE clause,

so that the export file fits on the target file system. You can invoke the export

utility multiple times to export all of the data.

The DEL and ASC file formats do not contain descriptions of the target table, but

they do contain the record data. To recreate a table with data stored in these file

formats, create the target table, and then use the load, or import utility to populate

the table from these files. The db2look utility can be used to capture the original

table definitions, and to generate the corresponding data definition language

(DDL).

 Related concepts:

v “Export Overview” on page 1

v “Import Overview” on page 35

v “Using import to recreate an exported table” on page 45

 Related reference:

v “db2look - DB2 statistics and DDL extraction tool command” in Command

Reference

v “Export/Import/Load Utility File Formats” on page 291

v “EXPORT ” on page 11

v “IMPORT ” on page 49

Exporting large objects (LOBS)

 When exporting data from large object (LOB) columns, the default action is to

select the first 32KB of data, and to place this data in the same file as the rest of

the column data.

Note: The IXF file format does not store the LOB options of the column, such as

whether or not the LOB column is logged. This means that the import utility

cannot recreate a table containing a LOB column that is defined to be 1GB

or larger.

A LOB Location Specifier (LLS) is used to store multiple LOBs in a single file when

exporting LOB information. When exporting data using the lobsinfile modifier,

the export utility selects the entire LOB file and places it in one of the LOB files.

10 Data Movement Utilities DB2 9 BETA

There might be multiple LOBs per LOB file and multiple LOB files in each LOB

path. The data file will contain the LLS records. Use the lobsinsepfiles file type

modifier to write each LOB into separate file.

An LLS is a string indicating where LOB data can be found within a file. The

format of the LLS is filename.ext.nnn.mmm/, where filename.ext is the name of

the file that contains the LOB, nnn is the offset of the LOB within the file

(measured in bytes), and mmm is the length of the LOB (in bytes). For example, an

LLS of db2exp.001.123.456/ indicates that the LOB is located in the file

db2exp.001, begins at an offset of 123 bytes into the file, and is 456 bytes long. If

the indicated size in the LLS is 0, the LOB is considered to have a length of 0. If

the length is -1, the LOB is considered to be NULL and the offset and file name are

ignored.

 Related reference:

v “EXPORT ” on page 11

v “Large objects (LOBs)” in SQL Reference, Volume 1

v “db2Export - Export data from a database” on page 19

EXPORT

Exports data from a database to one of several external file formats. The user

specifies the data to be exported by supplying an SQL SELECT statement, or by

providing hierarchical information for typed tables.

 Authorization:

 One of the following:

v sysadm

v dbadm

or CONTROL or SELECT privilege on each participating table or view.

 Required connection:

 Command syntax:

�� EXPORT TO filename OF filetype

�

,

LOBS TO

lob-path

 �

�

�

,

LOBFILE

filename

�

,

XML TO

xml-path

 �

�

�

,

XMLFILE

filename

�

MODIFIED BY

filetype-mod

 �

EXPORT

Chapter 1. Export 11DB2 9 BETA

�
XMLSAVESCHEMA

�

,

METHOD N

(

column-name

)

 �

� select-statement

XQUERY

xquery-statement

HIERARCHY

STARTING

sub-table-name

traversal-order-list

where-clause

 ��

traversal-order-list:

�

 ,

(

sub-table-name

)

 Command parameters:

HIERARCHY traversal-order-list

Export a sub-hierarchy using the specified traverse order. All sub-tables

must be listed in PRE-ORDER fashion. The first sub-table name is used as

the target table name for the SELECT statement.

HIERARCHY STARTING sub-table-name

Using the default traverse order (OUTER order for ASC, DEL, or WSF files,

or the order stored in PC/IXF data files), export a sub-hierarchy starting

from sub-table-name.

LOBFILE filename

Specifies one or more base file names for the LOB files. When name space

is exhausted for the first name, the second name is used, and so on. The

maximum number of file names that can be specified is 999. This will

implicitly activate the LOBSINFILE behavior.

 When creating LOB files during an export operation, file names are

constructed by appending the current base name from this list to the

current path (from lob-path), and then appending a 3-digit sequence

number and the three character identifier lob. For example, if the current

LOB path is the directory /u/foo/lob/path/, and the current LOB file name

is bar, the LOB files created will be /u/foo/lob/path/bar.001.lob,

/u/foo/lob/path/bar.002.lob, and so on.

LOBS TO lob-path

Specifies one or more paths to directories in which the LOB files are to be

stored. There will be at least one file per LOB path, and each file will

contain at least one LOB. The maximum number of paths that can be

specified is 999. This will implicitly activate the LOBSINFILE behavior.

METHOD N column-name

Specifies one or more column names to be used in the output file. If this

parameter is not specified, the column names in the table are used. This

parameter is valid only for WSF and IXF files, but is not valid when

exporting hierarchical data.

MODIFIED BY filetype-mod

Specifies file type modifier options. See File type modifiers for the export

utility.

OF filetype

Specifies the format of the data in the output file:

EXPORT

12 Data Movement Utilities DB2 9 BETA

v DEL (delimited ASCII format), which is used by a variety of database

manager and file manager programs.

v WSF (work sheet format), which is used by programs such as:

– Lotus 1-2-3

– Lotus Symphony

When exporting BIGINT or DECIMAL data, only values that fall within

the range of type DOUBLE can be exported accurately. Although values

that do not fall within this range are also exported, importing or loading

these values back might result in incorrect data, depending on the

operating system.

v IXF (integrated exchange format, PC version), in which most of the table

attributes, as well as any existing indexes, are saved in the IXF file,

except when columns are specified in the SELECT statement. With this

format, the table can be recreated, while with the other file formats, the

table must already exist before data can be imported into it.

select-statement

Specifies the SELECT or XQUERY statement that will return the data to be

exported. If the statement causes an error, a message is written to the

message file (or to standard output). If the error code is one of SQL0012W,

SQL0347W, SQL0360W, SQL0437W, or SQL1824W, the export operation

continues; otherwise, it stops.

TO filename

 If the name of a file that already exists is specified, the export utility

overwrites the contents of the file; it does not append the information.

XMLFILE filename

Specifies one or more base file names for the XML files. When name space

is exhausted for the first name, the second name is used, and so on.

 When creating XML files during an export operation, file names are

constructed by appending the current base name from this list to the

current path (from xml-path), appending a 3-digit sequence number, and

appending the three character identifier xml. For example, if the current

XML path is the directory /u/foo/xml/path/, and the current XML file

name is bar, the XML files created will be /u/foo/xml/path/bar.001.xml,

/u/foo/xml/path/bar.002.xml, and so on.

XML TO xml-path

Specifies one or more paths to directories in which the XML files are to be

stored. There will be at least one file per XML path, and each file will

contain at least one XQuery Data Model (QDM) instance. If more than one

path is specified, then QDM instances are distributed evenly among the

paths.

XMLSAVESCHEMA

Specifies that XML schema information should be saved for all XML

columns. For each exported XML document that was validated against an

XML schema when it was inserted, the fully qualified SQL identifier of that

schema will be stored as an (SCH) attribute inside the corresponding XML

Data Specifier (XDS). If the exported document was not validated against

an XML schema or the schema object no longer exists in the database, an

SCH attribute will not be included in the corresponding XDS.

EXPORT

Chapter 1. Export 13DB2 9 BETA

The schema and name portions of the SQL identifier are stored as the

″OBJECTSCHEMA″ and ″OBJECTNAME″ values in the row of the

SYSCAT.XSROBJECTS catalog table corresponding to the XML schema.

 The XMLSAVESCHEMA option is not compatible with XQuery sequences that

do not produce well-formed XML documents.

 Usage notes:

v Be sure to complete all table operations and release all locks before starting an

export operation. This can be done by issuing a COMMIT after closing all

cursors opened WITH HOLD, or by issuing a ROLLBACK.

v Table aliases can be used in the SELECT statement.

v The messages placed in the message file include the information returned from

the message retrieval service. Each message begins on a new line.

v The export utility produces a warning message whenever a character column

with a length greater than 254 is selected for export to DEL format files.

v PC/IXF import should be used to move data between databases. If character

data containing row separators is exported to a delimited ASCII (DEL) file and

processed by a text transfer program, fields containing the row separators will

shrink or expand.

v The file copying step is not necessary if the source and the target databases are

both accessible from the same client.

v DB2 Connect can be used to export tables from DRDA servers such as DB2 for

OS/390, DB2 for VM and VSE, and DB2 for OS/400. Only PC/IXF export is

supported.

v The export utility will not create multiple-part PC/IXF files when invoked from

an AIX system.

v The export utility will store the NOT NULL WITH DEFAULT attribute of the

table in an IXF file if the SELECT statement provided is in the form SELECT *

FROM tablename.

v When exporting typed tables, subselect statements can only be expressed by

specifying the target table name and the WHERE clause. Fullselect and

select-statement cannot be specified when exporting a hierarchy.

v For file formats other than IXF, it is recommended that the traversal order list be

specified, because it tells DB2 how to traverse the hierarchy, and what sub-tables

to export. If this list is not specified, all tables in the hierarchy are exported, and

the default order is the OUTER order. The alternative is to use the default order,

which is the order given by the OUTER function.

v Use the same traverse order during an import operation. The load utility does

not support loading hierarchies or sub-hierarchies.

v When exporting data from a table that has protected rows, the LBAC credentials

held by the session authorization id might limit the rows that are exported.

Rows that the session authorization ID does not have read access to will not be

exported. No error or warning is given.

v If the LBAC credentials held by the session authorization id do not allow

reading from one or more protected columns included in the export then the

export fails and an error (SQLSTATE 42512) is returned.

v Export packages are bound using DATETIME ISO format, thus, all

date/time/timestamp values are converted into ISO format when cast to a string

representation. Since the CLP packages are bound using DATETIME LOC format

(locale specific format), you may see inconsistant behaviour between CLP and

export if the CLP DATETIME format is different from ISO. For instance, the

following SELECT statement may return expected results:

EXPORT

14 Data Movement Utilities DB2 9 BETA

db2 select col2 from tab1 where char(col2)=’05/10/2005’;

 COL2

 05/10/2005

 05/10/2005

 05/10/2005

 3 record(s) selected.

But an export command using the same select clause will not:

 db2 export to test.del of del select col2 from test

 where char(col2)=’05/10/2005’;

 Number of rows exported: 0

Now, replacing the LOCALE date format with ISO format gives the expected

results:

 db2 export to test.del of del select col2 from test

 where char(col2)=’2005-05-10’;

 Number of rows exported: 3

 Related concepts:

v “Export Overview” on page 1

v “Privileges, authorities and authorization required to use export” on page 3

 Related tasks:

v “Exporting data” on page 4

 Related reference:

v “ADMIN_CMD procedure – Run administrative commands” in Administrative

SQL Routines and Views

v “EXPORT command using the ADMIN_CMD procedure” on page 15

v “Export Sessions - CLP Examples” on page 33

v “LOB and XML file behavior with regard to import and export” on page 7

EXPORT command using the ADMIN_CMD procedure

Exports data from a database to one of several external file formats. The user

specifies the data to be exported by supplying an SQL SELECT statement, or by

providing hierarchical information for typed tables.

 Authorization:

 One of the following:

v sysadm

v dbadm

or CONTROL or SELECT privilege on each participating table or view.

 Required connection:

 Command syntax:

�� EXPORT TO filename OF filetype

�

,

LOBS TO

lob-path

 �

EXPORT

Chapter 1. Export 15DB2 9 BETA

�

�

,

LOBFILE

filename

�

,

XML TO

xml-path

 �

�

�

,

XMLFILE

filename

�

MODIFIED BY

filetype-mod

 �

�
XMLSAVESCHEMA

�

,

METHOD N

(

column-name

)

 �

� select-statement

XQUERY

xquery-statement

HIERARCHY

STARTING

sub-table-name

traversal-order-list

where-clause

 ��

traversal-order-list:

�

 ,

(

sub-table-name

)

 Command parameters:

HIERARCHY traversal-order-list

Export a sub-hierarchy using the specified traverse order. All sub-tables

must be listed in PRE-ORDER fashion. The first sub-table name is used as

the target table name for the SELECT statement.

HIERARCHY STARTING sub-table-name

Using the default traverse order (OUTER order for ASC, DEL, or WSF files,

or the order stored in PC/IXF data files), export a sub-hierarchy starting

from sub-table-name.

LOBFILE filename

Specifies one or more base file names for the LOB files. When name space

is exhausted for the first name, the second name is used, and so on. The

maximum number of file names that can be specified is 999. This will

implicitly activate the LOBSINFILE behavior.

 When creating LOB files during an export operation, file names are

constructed by appending the current base name from this list to the

current path (from lob-path), and then appending a 3-digit sequence

number and the three character identifier lob. For example, if the current

LOB path is the directory /u/foo/lob/path/, and the current LOB file name

is bar, the LOB files created will be /u/foo/lob/path/bar.001.lob,

/u/foo/lob/path/bar.002.lob, and so on.

LOBS TO lob-path

Specifies one or more paths to directories in which the LOB files are to be

stored. There will be at least one file per LOB path, and each file will

contain at least one LOB. The maximum number of paths that can be

specified is 999. This will implicitly activate the LOBSINFILE behavior.

METHOD N column-name

Specifies one or more column names to be used in the output file. If this

EXPORT using ADMIN_CMD

16 Data Movement Utilities DB2 9 BETA

parameter is not specified, the column names in the table are used. This

parameter is valid only for WSF and IXF files, but is not valid when

exporting hierarchical data.

MODIFIED BY filetype-mod

Specifies file type modifier options. See File type modifiers for the export

utility.

OF filetype

Specifies the format of the data in the output file:

v DEL (delimited ASCII format), which is used by a variety of database

manager and file manager programs.

v WSF (work sheet format), which is used by programs such as:

– Lotus 1-2-3

– Lotus Symphony

When exporting BIGINT or DECIMAL data, only values that fall within

the range of type DOUBLE can be exported accurately. Although values

that do not fall within this range are also exported, importing or loading

these values back might result in incorrect data, depending on the

operating system.

v IXF (integrated exchange format, PC version), in which most of the table

attributes, as well as any existing indexes, are saved in the IXF file,

except when columns are specified in the SELECT statement. With this

format, the table can be recreated, while with the other file formats, the

table must already exist before data can be imported into it.

select-statement

Specifies the SELECT or XQUERY statement that will return the data to be

exported. If the statement causes an error, a message is written to the

message file (or to standard output). If the error code is one of SQL0012W,

SQL0347W, SQL0360W, SQL0437W, or SQL1824W, the export operation

continues; otherwise, it stops.

TO filename

 If the name of a file that already exists is specified, the export utility

overwrites the contents of the file; it does not append the information.

XMLFILE filename

Specifies one or more base file names for the XML files. When name space

is exhausted for the first name, the second name is used, and so on.

 When creating XML files during an export operation, file names are

constructed by appending the current base name from this list to the

current path (from xml-path), appending a 3-digit sequence number, and

appending the three character identifier xml. For example, if the current

XML path is the directory /u/foo/xml/path/, and the current XML file

name is bar, the XML files created will be /u/foo/xml/path/bar.001.xml,

/u/foo/xml/path/bar.002.xml, and so on.

XML TO xml-path

Specifies one or more paths to directories in which the XML files are to be

stored. There will be at least one file per XML path, and each file will

contain at least one XQuery Data Model (QDM) instance. If more than one

path is specified, then QDM instances are distributed evenly among the

paths.

XMLSAVESCHEMA

Specifies that XML schema information should be saved for all XML

EXPORT using ADMIN_CMD

Chapter 1. Export 17DB2 9 BETA

columns. For each exported XML document that was validated against an

XML schema when it was inserted, the fully qualified SQL identifier of that

schema will be stored as an (SCH) attribute inside the corresponding XML

Data Specifier (XDS). If the exported document was not validated against

an XML schema or the schema object no longer exists in the database, an

SCH attribute will not be included in the corresponding XDS.

 The schema and name portions of the SQL identifier are stored as the

″OBJECTSCHEMA″ and ″OBJECTNAME″ values in the row of the

SYSCAT.XSROBJECTS catalog table corresponding to the XML schema.

 The XMLSAVESCHEMA option is not compatible with XQuery sequences that

do not produce well-formed XML documents.

 Usage notes:

v Be sure to complete all table operations and release all locks before starting an

export operation. This can be done by issuing a COMMIT after closing all

cursors opened WITH HOLD, or by issuing a ROLLBACK.

v Table aliases can be used in the SELECT statement.

v The messages placed in the message file include the information returned from

the message retrieval service. Each message begins on a new line.

v The export utility produces a warning message whenever a character column

with a length greater than 254 is selected for export to DEL format files.

v PC/IXF import should be used to move data between databases. If character

data containing row separators is exported to a delimited ASCII (DEL) file and

processed by a text transfer program, fields containing the row separators will

shrink or expand.

v The file copying step is not necessary if the source and the target databases are

both accessible from the same client.

v DB2 Connect can be used to export tables from DRDA servers such as DB2 for

OS/390, DB2 for VM and VSE, and DB2 for OS/400. Only PC/IXF export is

supported.

v The export utility will not create multiple-part PC/IXF files when invoked from

an AIX system.

v The export utility will store the NOT NULL WITH DEFAULT attribute of the

table in an IXF file if the SELECT statement provided is in the form SELECT *

FROM tablename.

v When exporting typed tables, subselect statements can only be expressed by

specifying the target table name and the WHERE clause. Fullselect and

select-statement cannot be specified when exporting a hierarchy.

v For file formats other than IXF, it is recommended that the traversal order list be

specified, because it tells DB2 how to traverse the hierarchy, and what sub-tables

to export. If this list is not specified, all tables in the hierarchy are exported, and

the default order is the OUTER order. The alternative is to use the default order,

which is the order given by the OUTER function.

v Use the same traverse order during an import operation. The load utility does

not support loading hierarchies or sub-hierarchies.

v When exporting data from a table that has protected rows, the LBAC credentials

held by the session authorization id might limit the rows that are exported.

Rows that the session authorization ID does not have read access to will not be

exported. No error or warning is given.

EXPORT using ADMIN_CMD

18 Data Movement Utilities DB2 9 BETA

v If the LBAC credentials held by the session authorization id do not allow

reading from one or more protected columns included in the export then the

export fails and an error (SQLSTATE 42512) is returned.

v Export packages are bound using DATETIME ISO format, thus, all

date/time/timestamp values are converted into ISO format when cast to a string

representation. Since the CLP packages are bound using DATETIME LOC format

(locale specific format), you may see inconsistant behaviour between CLP and

export if the CLP DATETIME format is different from ISO. For instance, the

following SELECT statement may return expected results:

 db2 select col2 from tab1 where char(col2)=’05/10/2005’;

 COL2

 05/10/2005

 05/10/2005

 05/10/2005

 3 record(s) selected.

But an export command using the same select clause will not:

 db2 export to test.del of del select col2 from test

 where char(col2)=’05/10/2005’;

 Number of rows exported: 0

Now, replacing the LOCALE date format with ISO format gives the expected

results:

 db2 export to test.del of del select col2 from test

 where char(col2)=’2005-05-10’;

 Number of rows exported: 3

 Related concepts:

v “Privileges, authorities and authorization required to use export” on page 3

 Related reference:

v “ADMIN_CMD procedure – Run administrative commands” in Administrative

SQL Routines and Views

v “ADMIN_GET_MSGS table function – Retrieve messages generated by a data

movement utility that is executed through the ADMIN_CMD procedure” in

Administrative SQL Routines and Views

v “ADMIN_REMOVE_MSGS procedure – Clean up messages generated by a data

movement utility that is executed through the ADMIN_CMD procedure” in

Administrative SQL Routines and Views

v “db2Export - Export data from a database” on page 19

v “Miscellaneous variables” in Performance Guide

v “db2pd - Monitor and troubleshoot DB2 database command” in Command

Reference

db2Export - Export data from a database

 Exports data from a database to one of several external file formats. The user

specifies the data to be exported by supplying an SQL SELECT statement, or by

providing hierarchical information for typed tables.

 Authorization:

 One of the following:

EXPORT using ADMIN_CMD

Chapter 1. Export 19DB2 9 BETA

v sysadm

v dbadm

or CONTROL or SELECT privilege on each participating table or view. Label-based

access control (LBAC) is enforced for this function. The data that is exported may

be limited by the LBAC credentials of the caller if the data is protected by LBAC.

 Required connection:

 Database. If implicit connect is enabled, a connection to the default database is

established.

 API include file:

db2ApiDf.h

 API and data structure syntax:

SQL_API_RC SQL_API_FN

 db2Export (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ExportStruct

{

 char *piDataFileName;

 struct sqlu_media_list *piLobPathList;

 struct sqlu_media_list *piLobFileList;

 struct sqldcol *piDataDescriptor;

 struct sqllob *piActionString;

 char *piFileType;

 struct sqlchar *piFileTypeMod;

 char *piMsgFileName;

 db2int16 iCallerAction;

 struct db2ExportOut *poExportInfoOut;

 struct db2ExportIn *piExportInfoIn;

 struct sqlu_media_list *piXmlPathList;

 struct sqlu_media_list *piXmlFileList;

} db2ExportStruct;

typedef SQL_STRUCTURE db2ExportIn

{

 db2Uint16 *piXmlSaveSchema;

} db2ExportIn;

typedef SQL_STRUCTURE db2ExportOut

{

 db2Uint64 oRowsExported;

} db2ExportOut;

SQL_API_RC SQL_API_FN

 db2gExport (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gExportStruct

{

 char *piDataFileName;

 struct sqlu_media_list *piLobPathList;

 struct sqlu_media_list *piLobFileList;

 struct sqldcol *piDataDescriptor;

 struct sqllob *piActionString;

 char *piFileType;

db2Export - Export data from a database

20 Data Movement Utilities DB2 9 BETA

struct sqlchar *piFileTypeMod;

 char *piMsgFileName;

 db2int16 iCallerAction;

 struct db2ExportOut *poExportInfoOut;

 db2Uint16 iDataFileNameLen;

 db2Uint16 iFileTypeLen;

 db2Uint16 iMsgFileNameLen;

 struct db2ExportIn *piExportInfoIn;

 struct sqlu_media_list *piXmlPathList;

 struct sqlu_media_list *piXmlFileList;

} db2gExportStruct;

 db2Export API parameters:

 versionNumber

Input. Specifies the version and release level of the structure passed as the

second parameter pParmStruct.

pParmStruct

Input. A pointer to the db2ExportStruct structure.

pSqlca

Output. A pointer to the sqlca structure.

 db2ExportStruct data structure parameters:

 piDataFileName

Input. A string containing the path and the name of the external file into

which the data is to be exported.

piLobPathList

Input. Pointer to an sqlu_media_list structure with its media_type field set

to SQLU_LOCAL_MEDIA, and its sqlu_media_entry structure listing paths

on the client where the LOB files are to be stored. Exported LOB data will

be distributed evenly among all the paths listed in the sqlu_media_entry

structure.

piLobFileList

Input. Pointer to an sqlu_media_list structure with its media_type field set

to SQLU_CLIENT_LOCATION, and its sqlu_location_entry structure

containing base file names.

 When the name space is exhausted using the first name in this list, the API

will use the second name, and so on. When creating LOB files during an

export operation, file names are constructed by appending the current base

name from this list to the current path (from piLobPathList), and then

appending a 3-digit sequence number and the .lob extension. For example,

if the current LOB path is the directory /u/foo/lob/path, the current LOB

file name is bar, and the LOBSINSEPFILES file type modifier is set, then

the created LOB files will be /u/foo/LOB/path/bar.001.lob,

/u/foo/LOB/path/bar.002.lob, and so on. If the LOBSINSEPFILES file

type modifier is not set, then all the LOB documents will be concatenated

and put into one file /u/foo/lob/path/bar.001.lob

piDataDescriptor

Input. Pointer to an sqldcol structure specifying the column names for the

output file. The value of the dcolmeth field determines how the remainder

of the information provided in this parameter is interpreted by the export

utility. Valid values for this parameter (defined in sqlutil header file,

located in the include directory) are:

db2Export - Export data from a database

Chapter 1. Export 21DB2 9 BETA

SQL_METH_N

Names. Specify column names to be used in the output file.

SQL_METH_D

Default. Existing column names from the table are to be used in

the output file. In this case, the number of columns and the

column specification array are both ignored. The column names are

derived from the output of the SELECT statement specified in

pActionString.

piActionString

Input. Pointer to an sqllob structure containing a valid dynamic SQL

SELECT statement. The structure contains a 4-byte long field, followed by

the characters that make up the SELECT statement. The SELECT statement

specifies the data to be extracted from the database and written to the

external file.

 The columns for the external file (from piDataDescriptor), and the database

columns from the SELECT statement, are matched according to their

respective list/structure positions. The first column of data selected from

the database is placed in the first column of the external file, and its

column name is taken from the first element of the external column array.

piFileType

Input. A string that indicates the format of the data within the external file.

Supported external file formats (defined in sqlutil header file) are:

SQL_DEL

Delimited ASCII, for exchange with dBase, BASIC, and the IBM

Personal Decision Series programs, and many other database

managers and file managers.

SQL_WSF

Worksheet formats for exchange with Lotus Symphony and 1-2-3

programs.

SQL_IXF

PC version of the Integrated Exchange Format, the preferred

method for exporting data from a table. Data exported to this file

format can later be imported or loaded into the same table or into

another database manager table.

piFileTypeMod

Input. A pointer to an sqldcol structure containing a 2-byte long field,

followed by an array of characters that specify one or more processing

options. If this pointer is NULL, or the structure pointed to has zero

characters, this action is interpreted as selection of a default specification.

 Not all options can be used with all of the supported file types. See related

link below: ″File type modifiers for the export utility.″

piMsgFileName

Input. A string containing the destination for error, warning, and

informational messages returned by the utility. It can be the path and the

name of an operating system file or a standard device. If the file already

exists, the information is appended . If it does not exist, a file is created.

iCallerAction

Input. An action requested by the caller. Valid values (defined in sqlutil

header file, located in the include directory) are:

db2Export - Export data from a database

22 Data Movement Utilities DB2 9 BETA

SQLU_INITIAL

Initial call. This value must be used on the first call to the API. If

the initial call or any subsequent call returns and requires the

calling application to perform some action prior to completing the

requested export operation, the caller action must be set to one of

the following:

SQLU_CONTINUE

Continue processing. This value can only be used on subsequent

calls to the API, after the initial call has returned with the utility

requesting user input (for example, to respond to an end of tape

condition). It specifies that the user action requested by the utility

has completed, and the utility can continue processing the initial

request.

SQLU_TERMINATE

Terminate processing. This value can only be used on subsequent

calls to the API, after the initial call has returned with the utility

requesting user input (for example, to respond to an end of tape

condition). It specifies that the user action requested by the utility

was not performed, and the utility is to terminate processing the

initial request.

poExportInfoOut

A pointer to the db2ExportOut structure.

piExportInfoIn

Input. Pointer to the db2ExportIn structure.

piXmlPathList

Input. Pointer to an sqlu_media_list structure with its media_type field set

to SQLU_LOCAL_MEDIA, and its sqlu_media_entry structure listing paths

on the client where the XML files are to be stored. Exported XML data will

be distributed evenly among all the paths listed in the sqlu_media_entry

structure.

piXmlFileList

Input. Pointer to an sqlu_media_list structure with its media_type field set

to SQLU_CLIENT_LOCATION, and its sqlu_location_entry structure

containing base file names.

 When the name space is exhausted using the first name in this list, the API

will use the second name, and so on. When creating XML files during an

export operation, file names are constructed by appending the current base

name from this list to the current path (from piXmlFileList), and then

appending a 3-digit sequence number and the .xml extension. For example,

if the current XML path is the directory /u/foo/xml/path, the current

XML file name is bar, and the XMLINSEPFILES file type modifier is set,

then the created XML files will be /u/foo/xml/path/bar.001.xml,

/u/foo/xml/path/bar.002.xml, and so on. If the XMLINSEPFILES file type

modifier is not set, then all the XML documents will be concatenated and

put into one file /u/foo/xml/path/bar.001.xml

 db2ExportIn data structure parameters:

 piXmlSaveSchema

Input. Indicates that the SQL identifier of the XML schema used to validate

each exported XML document should be saved in the exported data file.

Possible values are TRUE and FALSE.

db2Export - Export data from a database

Chapter 1. Export 23DB2 9 BETA

db2ExportOut data structure parameters:

 oRowsExported

Output. Returns the number of records exported to the target file.

 db2gExportStruct data structure specific parameters:

 iDataFileNameLen

Input. A 2-byte unsigned integer representing the length in bytes of the

data file name.

iFileTypeLen

Input. A 2-byte unsigned integer representing the length in bytes of the file

type.

iMsgFileNameLen

Input. A 2-byte unsigned integer representing the length in bytes of the

message file name.

 Usage notes:

 Before starting an export operation, you must complete all table operations and

release all locks in one of two ways:

v Close all open cursors that were defined with the WITH HOLD clause, and

commit the data changes by executing the COMMIT statement.

v Roll back the data changes by executing the ROLLBACK statement.

Table aliases can be used in the SELECT statement.

The messages placed in the message file include the information returned from the

message retrieval service. Each message begins on a new line.

If the export utility produces warnings, the message will be written out to a

message file, or standard output if one is not specified.

A warning message is issued if the number of columns (dcolnum field of sqldcol

structure) in the external column name array, piDataDescriptor, is not equal to the

number of columns generated by the SELECT statement. In this case, the number

of columns written to the external file is the lesser of the two numbers. Excess

database columns or external column names are not used to generate the output

file.

If the db2uexpm.bnd module or any other shipped .bnd files are bound manually,

the format option on the binder must not be used.

DB2 Connect can be used to export tables from DRDA servers such as DB2 for

z/OS and OS/390, DB2 for VM and VSE, and DB2 for iSeries. Only PC/IXF export

is supported.

PC/IXF import should be used to move data between databases. If character data

containing row separators is exported to a delimited ASCII (DEL) file and

processed by a text transfer program, fields containing the row separators will

shrink or expand.

The export utility will not create multiple-part PC/IXF files when invoked from an

AIX system.

db2Export - Export data from a database

24 Data Movement Utilities DB2 9 BETA

Index definitions for a table are included in the PC/IXF file when the contents of a

single database table are exported to a PC/IXF file with a pActionString parameter

beginning with SELECT * FROM tablename, and the piDataDescriptor parameter

specifying default names. Indexes are not saved for views, or if the SELECT clause

of the piActionString includes a join. A WHERE clause, a GROUP BY clause, or a

HAVING clause in the piActionString parameter will not prevent the saving of

indexes. In all of these cases, when exporting from typed tables, the entire

hierarchy must be exported.

The export utility will store the NOT NULL WITH DEFAULT attribute of the table

in an IXF file if the SELECT statement provided is in the form: SELECT * FROM

tablename.

When exporting typed tables, subselect statements can only be expressed by

specifying 7the target table name and the WHERE clause. Fullselect and

select-statement cannot be specified when exporting a hierarchy.

For file formats other than IXF, it is recommended that the traversal order list be

specified, because it tells DB2 how to traverse the hierarchy, and what sub-tables to

export. If this list is not specified, all tables in the hierarchy are exported, and the

default order is the OUTER order. The alternative is to use the default order, which

is the order given by the OUTER function.

Note: Use the same traverse order during an import operation. The load utility

does not support loading hierarchies or sub-hierarchies.

 DB2 Data Links Manager considerations:

 To ensure that a consistent copy of the table and the corresponding files referenced

by the DATALINK columns are copied for export, do the following:

1. Issue the command: QUIESCE TABLESPACES FOR TABLE tablename SHARE.

This ensures that no update transactions are in progress when EXPORT is run.

2. Issue the EXPORT command.

3. Run the dlfm_export utility at each Data Links server. Input to the dlfm_export

utility is the control file name, which is generated by the export utility. This

produces a tar (or equivalent) archive of the files listed within the control file.

dlfm_export does not capture the ACLs information of the files that are

archived.

4. Issue the command: QUIESCE TABLESPACES FOR TABLE tablename RESET.

This makes the table available for updates.

EXPORT is executed as an SQL application. The rows and columns satisfying the

SELECT statement conditions are extracted from the database. For the DATALINK

columns, the SELECT statement should not specify any scalar function.

Successful execution of EXPORT results in generation of the following files:

v An export data file as specified in the EXPORT command. A DATALINK column

value in this file has the same format as that used by the IMPORT and LOAD

utilities. When the DATALINK column value is the SQL NULL value, handling

is the same as that for other data types.

v Control files server_name, which are generated for each Data Links server. On

the Windows operating system, a single control file, ctrlfile.lst, is used by all

Data Links servers. These control files are placed in the directory <data-file

path>/dlfm/YYYYMMDD/HHMMSS (on the Windows operating system,

db2Export - Export data from a database

Chapter 1. Export 25DB2 9 BETA

ctrlfile.lst is placed in the directory <data-file path>\dlfm\YYYYMMDD\
HHMMSS). YYYYMMDD represents the date (year month day), and HHMMSS

represents the time (hour minute second).

 REXX API syntax:

EXPORT :stmt TO datafile OF filetype

[MODIFIED BY :filetmod] [USING :dcoldata]

MESSAGES msgfile [ROWS EXPORTED :number]

CONTINUE EXPORT

STOP EXPORT

 REXX API parameters:

 stmt A REXX host variable containing a valid dynamic SQL SELECT statement.

The statement specifies the data to be extracted from the database.

datafile

Name of the file into which the data is to be exported.

filetype

The format of the data in the export file. The supported file formats are:

DEL Delimited ASCII

WSF Worksheet format

IXF PC version of Integrated Exchange Format.

filetmod

A host variable containing additional processing options.

dcoldata

A compound REXX host variable containing the column names to be used

in the export file. In the following, XXX represents the name of the host

variable:

XXX.0 Number of columns (number of elements in the remainder of the

variable).

XXX.1 First column name.

XXX.2 Second column name.

XXX.3 and so on.

If this parameter is NULL, or a value for dcoldata has not been specified,

the utility uses the column names from the database table.

msgfile

File, path, or device name where error and warning messages are to be

sent.

number

A host variable that will contain the number of exported rows.

 Related tasks:

v “Exporting data” on page 4

 Related reference:

v “sqlchar data structure” in Administrative API Reference

db2Export - Export data from a database

26 Data Movement Utilities DB2 9 BETA

v “sqldcol data structure” in Administrative API Reference

v “sqllob data structure” in Administrative API Reference

v “sqlu_media_list data structure” in Administrative API Reference

v “SQLCA data structure” in Administrative API Reference

v “ADMIN_CMD procedure – Run administrative commands” in Administrative

SQL Routines and Views

v “EXPORT ” on page 11

v “EXPORT command using the ADMIN_CMD procedure” on page 15

v “db2Import - Import data into a table, hierarchy, nickname or view” on page 73

v “db2Load - Load data into a table” on page 161

 Related samples:

v “expsamp.sqb -- Export and import tables with table data to a DRDA database

(IBM COBOL)”

v “impexp.sqb -- Export and import tables with table data (IBM COBOL)”

v “tload.sqb -- How to export and load table data (IBM COBOL)”

v “tbmove.sqc -- How to move table data (C)”

v “tbmove.sqC -- How to move table data (C++)”

File type modifiers for the export utility

 Table 2. Valid file type modifiers for the export utility: All file formats

Modifier Description

lobsinfile lob-path specifies the path to the files containing LOB data.

Each path contains at least one file that contains at least one LOB pointed to by a

Lob Location Specifier (LLS) in the data file. The LLS is a string representation of

the location of a LOB in a file stored in the LOB file path. The format of an LLS is

filename.ext.nnn.mmm/, where filename.ext is the name of the file that contains the

LOB, nnn is the offset in bytes of the LOB within the file, and mmm is the length

of the LOB in bytes. For example, if the string db2exp.001.123.456/ is stored in

the data file, the LOB is located at offset 123 in the file db2exp.001, and is 456

bytes long.

If you specify the “lobsinfile” modifier when using EXPORT, the LOB data is

placed in the locations specified by the LOBS TO clause. Otherwise the LOB data

is sent to the data file directory. The LOBS TO clause specifies one or more paths

to directories in which the LOB files are to be stored. There will be at least one

file per LOB path, and each file will contain at least one LOB. The LOBS TO or

LOBFILE options will implicitly activate the LOBSINFILE behavior.

To indicate a null LOB , enter the size as -1. If the size is specified as 0, it is

treated as a 0 length LOB. For null LOBS with length of -1, the offset and the file

name are ignored. For example, the LLS of a null LOB might be db2exp.001.7.-1/.

xmlinsepfiles Each XQuery Data Model (QDM) instance is written to a separate file. By default,

multiple values are concatenated together in the same file.

lobsinsepfiles Each LOB value is written to a separate file. By default, multiple values are

concatenated together in the same file.

xmlnodeclaration QDM instances are written without an XML declaration tag. By default, QDM

instances are exported with an XML declaration tag at the beginning that includes

an encoding attribute.

db2Export - Export data from a database

Chapter 1. Export 27DB2 9 BETA

Table 2. Valid file type modifiers for the export utility: All file formats (continued)

Modifier Description

xmlchar QDM instances are written in the character codepage. Note that the character

codepage is the value specified by the codepage file type modifier, or the

application codepage if it is not specified. By default, QDM instances are written

out in Unicode.

xmlgraphic If the xmlgraphic modifier is specified with the EXPORT command, the exported

XML document will be encoded in the UTF-16 code page regardless of the

application code page or the codepage file type modifier.

 Table 3. Valid file type modifiers for the export utility: DEL (delimited ASCII) file format

Modifier Description

chardelx x is a single character string delimiter. The default value is a double quotation

mark ("). The specified character is used in place of double quotation marks to

enclose a character string.2 If you want to explicitly specify the double quotation

mark as the character string delimiter, it should be specified as follows:

 modified by chardel""

The single quotation mark (') can also be specified as a character string delimiter

as follows:

 modified by chardel''

codepage=x x is an ASCII character string. The value is interpreted as the code page of the

data in the output data set. Converts character data from this code page to the

application code page during the export operation.

For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted to the

range of x00 to x3F, inclusive. The codepage modifier cannot be used with the

lobsinfile modifier.

coldelx x is a single character column delimiter. The default value is a comma (,). The

specified character is used in place of a comma to signal the end of a column.2

In the following example, coldel; causes the export utility to use the semicolon

character (;) as a column delimiter for the exported data:

 db2 "export to temp of del modified by coldel;

 select * from staff where dept = 20"

decplusblank Plus sign character. Causes positive decimal values to be prefixed with a blank

space instead of a plus sign (+). The default action is to prefix positive decimal

values with a plus sign.

decptx x is a single character substitute for the period as a decimal point character. The

default value is a period (.). The specified character is used in place of a period as

a decimal point character.2

nochardel Column data will not be surrounded by character delimiters. This option should

not be specified if the data is intended to be imported or loaded using DB2. It is

provided to support vendor data files that do not have character delimiters.

Improper usage might result in data loss or corruption.

This option cannot be specified with chardelx or nodoubledel. These are mutually

exclusive options.

nodoubledel Suppresses recognition of double character delimiters.2

File type modifiers for the export utility

28 Data Movement Utilities DB2 9 BETA

Table 3. Valid file type modifiers for the export utility: DEL (delimited ASCII) file format (continued)

Modifier Description

striplzeros Removes the leading zeros from all exported decimal columns.

Consider the following example:

 db2 create table decimalTable (c1 decimal(31, 2))

 db2 insert into decimalTable values (1.1)

 db2 export to data of del select * from decimalTable

 db2 export to data of del modified by STRIPLZEROS

 select * from decimalTable

In the first export operation, the content of the exported file data will be

+00000000000000000000000000001.10. In the second operation, which is identical

to the first except for the striplzeros modifier, the content of the exported file

data will be +1.10.

File type modifiers for the export utility

Chapter 1. Export 29DB2 9 BETA

Table 3. Valid file type modifiers for the export utility: DEL (delimited ASCII) file format (continued)

Modifier Description

timestampformat=″x″ x is the format of the time stamp in the source file.4 Valid time stamp elements

are:

 YYYY - Year (four digits ranging from 0000 - 9999)

 M - Month (one or two digits ranging from 1 - 12)

 MM - Month (two digits ranging from 01 - 12;

 mutually exclusive with M and MMM)

 MMM - Month (three-letter case-insensitive abbreviation for

 the month name; mutually exclusive with M and MM)

 D - Day (one or two digits ranging from 1 - 31)

 DD - Day (two digits ranging from 1 - 31; mutually exclusive with D)

 DDD - Day of the year (three digits ranging from 001 - 366;

 mutually exclusive with other day or month elements)

 H - Hour (one or two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24 for a 24 hour system)

 HH - Hour (two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24 for a 24 hour system;

 mutually exclusive with H)

 M - Minute (one or two digits ranging from 0 - 59)

 MM - Minute (two digits ranging from 0 - 59;

 mutually exclusive with M, minute)

 S - Second (one or two digits ranging from 0 - 59)

 SS - Second (two digits ranging from 0 - 59;

 mutually exclusive with S)

 SSSSS - Second of the day after midnight (5 digits

 ranging from 00000 - 86399; mutually

 exclusive with other time elements)

 UUUUUU - Microsecond (6 digits ranging from 000000 - 999999;

 mutually exclusive with all other microsecond elements)

 UUUUU - Microsecond (5 digits ranging from 00000 - 99999,

 maps to range from 000000 - 999990;

 mutually exclusive with all other microseond elements)

 UUUU - Microsecond (4 digits ranging from 0000 - 9999,

 maps to range from 000000 - 999900;

 mutually exclusive with all other microseond elements)

 UUU - Microsecond (3 digits ranging from 000 - 999,

 maps to range from 000000 - 999000;

 mutually exclusive with all other microseond elements)

 UU - Microsecond (2 digits ranging from 00 - 99,

 maps to range from 000000 - 990000;

 mutually exclusive with all other microseond elements)

 U - Microsecond (1 digit ranging from 0 - 9,

 maps to range from 000000 - 900000;

 mutually exclusive with all other microseond elements)

 TT - Meridian indicator (AM or PM)

Following is an example of a time stamp format:

 "YYYY/MM/DD HH:MM:SS.UUUUUU"

The MMM element will produce the following values: ’Jan’, ’Feb’, ’Mar’, ’Apr’,

’May’, ’Jun’, ’Jul’, ’Aug’, ’Sep’, ’Oct’, ’Nov’, and ’Dec’. ’Jan’ is equal to month 1,

and ’Dec’ is equal to month 12.

The following example illustrates how to export data containing user-defined

time stamp formats from a table called ’schedule’:

 db2 export to delfile2 of del

 modified by timestampformat="yyyy.mm.dd hh:mm tt"

 select * from schedule

File type modifiers for the export utility

30 Data Movement Utilities DB2 9 BETA

Table 4. Valid file type modifiers for the export utility: IXF file format

Modifier Description

codepage=x x is an ASCII character string. The value is interpreted as the code page of the

data in the output data set. Converts character data from this code page to the

application code page during the export operation.

For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted to the

range of x00 to x3F, inclusive. The codepage modifier cannot be used with the

lobsinfile modifier.

 Table 5. Valid file type modifiers for the export utility: WSF file format

Modifier Description

1 Creates a WSF file that is compatible with Lotus 1-2-3 Release 1, or Lotus 1-2-3

Release 1a.5 This is the default.

2 Creates a WSF file that is compatible with Lotus Symphony Release 1.0.5

3 Creates a WSF file that is compatible with Lotus 1-2-3 Version 2, or Lotus

Symphony Release 1.1.5

4 Creates a WSF file containing DBCS characters.

Notes:

 1. The export utility does not issue a warning if an attempt is made to use

unsupported file types with the MODIFIED BY option. If this is attempted, the

export operation fails, and an error code is returned.

 2. Delimiter restrictions for moving data lists restrictions that apply to the

characters that can be used as delimiter overrides.

 3. The export utility normally writes

v date data in YYYYMMDD format

v char(date) data in ″YYYY-MM-DD″ format

v time data in ″HH.MM.SS″ format

v time stamp data in ″YYYY-MM-DD-HH. MM.SS.uuuuuu″ format

Data contained in any datetime columns specified in the SELECT statement

for the export operation will also be in these formats.

 4. For time stamp formats, care must be taken to avoid ambiguity between the

month and the minute descriptors, since they both use the letter M. A month

field must be adjacent to other date fields. A minute field must be adjacent to

other time fields. Following are some ambiguous time stamp formats:

 "M" (could be a month, or a minute)

 "M:M" (Which is which?)

 "M:YYYY:M" (Both are interpreted as month.)

 "S:M:YYYY" (adjacent to both a time value and a date value)

In ambiguous cases, the utility will report an error message, and the operation

will fail.

Following are some unambiguous time stamp formats:

 "M:YYYY" (Month)

 "S:M" (Minute)

 "M:YYYY:S:M" (Month....Minute)

 "M:H:YYYY:M:D" (Minute....Month)

 5. These files can also be directed to a specific product by specifying an L for

Lotus 1-2-3, or an S for Symphony in the filetype-mod parameter string. Only

one value or product designator can be specified.

File type modifiers for the export utility

Chapter 1. Export 31DB2 9 BETA

6. The WSF file format is not supported for XML columns.

 7. All QDM instances are written to XML files that are separate from the main

data file, even if neither the ″XMLFILE″ nor the ″XML TO″ clause is specified.

By default, XML files are written to the path of the exported data file. The

default base name for XML files is the name of the exported data file with the

″.xml″ appended to it.

 8. All QDM instances are written with an XML declaration at the beginning that

includes an encoding attribute, unless the XMLNODECLARATION file type

modifier is specified.

 9. By default, all QDM instances are written in Unicode unless the XMLCHAR

or XMLGRAPHIC file type modifier is specified.

10. The default path for XML data and LOB data is the path of the main data file.

The default XML file base name is the main data file. The default LOB file

base name is the main data file. For example, if the main data file is

/mypath/myfile.del

, the default path for XML data and LOB data is

/mypath"

, the default XML file base name is

myfile.del

, and the default LOB file base name is

myfile.del

.

The LOBSINFILE file type modifier must be specified in order to have LOB

files generated.

11. The export utility appends a numeric identifier to each LOB file or XML file.

The identifier is a 3 digit, 0 padded sequence value, starting at

.001

. After the 999th LOB file or XML file, the identifier will no longer be padded

with zeroes (for example, the 1000th LOG file or XML file will have an

extension of

.1000

. Following the numeric identifier is a three character type identifier

representing the data type, either

.lob

or

.xml

. For example, a generated LOB file would have a name in the format

myfile.del.001.lob

, and a generated XML file would be have a name in the format

myfile.del.001.xml

.

12. It is possible to have the export utility export QDM instances that are not

well-formed documents by specifying an XQuery. However, you will not be

File type modifiers for the export utility

32 Data Movement Utilities DB2 9 BETA

able to import or load these exported documents directly into an XML

column, since XML columns can only contain complete documents.

 Related reference:

v “Delimiter restrictions for moving data” on page 257

v “db2Export - Export data from a database” on page 19

v “EXPORT ” on page 11

Export Sessions - CLP Examples

 The following example shows how to export information from the STAFF table in

the SAMPLE database (to which the user must be connected) to myfile.ixf, with

the output in IXF format. If the database connection is not through DB2 Connect,

the index definitions (if any) will be stored in the output file; otherwise, only the

data will be stored:

 db2 export to myfile.ixf of ixf messages msgs.txt select * from staff

The following example shows how to export the information about employees in

Department 20 from the STAFF table in the SAMPLE database (to which the user

must be connected) to awards.ixf, with the output in IXF format:

 db2 export to awards.ixf of ixf messages msgs.txt select * from staff

 where dept = 20

The following example shows how to export LOBs to a DEL file:

 db2 export to myfile.del of del lobs to mylobs/

 lobfile lobs1, lobs2 modified by lobsinfile

 select * from emp_photo

The following example shows how to export LOBs to a DEL file, specifying a

second directory for files that might not fit into the first directory:

 db2 export to myfile.del of del

 lobs to /db2exp1/, /db2exp2/ modified by lobsinfile

 select * from emp_photo

The following example shows how to export data to a DEL file, using a single

quotation mark as the string delimiter, a semicolon as the column delimiter, and a

comma as the decimal point. The same convention should be used when importing

data back into the database:

 db2 export to myfile.del of del

 modified by chardel’’ coldel; decpt,

 select * from staff

 Related concepts:

v “Export Overview” on page 1

 Related tasks:

v “Exporting data” on page 4

 Related reference:

v “EXPORT ” on page 11

File type modifiers for the export utility

Chapter 1. Export 33DB2 9 BETA

34 Data Movement Utilities DB2 9 BETA

Chapter 2. Import

This chapter describes the DB2 import utility, which uses the SQL INSERT

statement to write data from an input file into a table or view. If the target table or

view already contains data, you can either replace or append to the existing data.

The following topics are covered:

v “Import Overview”

v “Privileges, authorities, and authorization required to use import” on page 38

v “Importing data” on page 38

v “Importing XML data” on page 40

v “Using import in a client/server environment” on page 40

v “Using import with buffered inserts” on page 41

v “Using import with identity columns” on page 42

v “Using import with generated columns” on page 43

v “Using import to recreate an exported table” on page 45

v “Importing large objects (LOBS)” on page 46

v “Importing user-defined distinct types (UDTs)” on page 47

v “Table locking during import” on page 47

v “IMPORT ” on page 49

v “IMPORT command using the ADMIN_CMD procedure” on page 61

v “db2Import - Import data into a table, hierarchy, nickname or view” on page 73

v “File type modifiers for the import utility” on page 87

v “Character set and NLS considerations” on page 97

v “Import sessions - CLP examples” on page 97

For information about importing data from typed tables, see “Moving data

between typed tables” on page 258. For information about importing data from a

file on the DB2 Connect workstation to a DRDA server database, and the reverse,

see “Moving data with DB2 Connect” on page 243.

Import Overview

 The import utility inserts data from an input file into a table or updatable view. If

the table or view receiving the imported data already contains data, you can either

replace or append to the existing data.

The following information is required when importing data:

v The path and the name of the input file.

v The name or alias of the target table or view.

v The format of the data in the input file. This format can be IXF, WSF, DEL, or

ASC.

v Whether the input data is to be inserted into the table or view, or whether

existing data in the table or view is to be updated or replaced by the input data.

v A message file name, if the utility is invoked through the application

programming interface (API), db2Import.

© Copyright IBM Corp. 1993, 2006 35DB2 9 BETA

v When working with typed tables, you might need to provide the method or

order by which to progress through all of the structured types. The order of

proceeding top-to-bottom, left-to-right through all of the supertables and

subtables in the hierarchy is called the traverse order. This order is important

when moving data between table hierarchies, because it determines where the

data is moved in relation to other data.

When working with typed tables, you might also need to provide the subtable

list. This list shows into which subtables and attributes to import data.

You can also specify:

v The method to use for importing the data: column location, column name, or

relative column position.

v The number of rows to INSERT before committing the changes to the table.

Requesting periodic COMMITs reduces the number of rows that are lost if a

failure and a ROLLBACK occur during the import operation. It also prevents the

DB2® logs from getting full when processing a large input file.

v The number of file records to skip before beginning the import operation. If an

error occurs, you can restart the import operation immediately following the last

row that was successfully imported and committed.

v The names of the columns within the table or view into which the data is to be

inserted.

v A message file name. During DB2 operations such as exporting, importing,

loading, binding, or restoring data, you can specify that message files be created

to contain the error, warning, and informational messages associated with those

operations. Specify the name of these files with the MESSAGES parameter. These

message files are standard ASCII text files. Each message in a message file

begins on a new line and contains information provided by the DB2 message

retrieval facility. To print them, use the printing procedure for your operating

system; to view them, use any ASCII editor.

Note: Specifying target table column names or a specific importing method makes

importing to a remote database slower.

Changes to previous import behavior introduced in DB2

Version 9.1

The following is a summary of changes introduced in DB2 Version 9.1:

v In DB2 UDB V8, if a lob file is not found, the row is rejected if the column is not

nullable, or NULL if the column is nullable. In DB2 V9.1, if a lob file is not

found, the row is rejected regardless of the nullability of the column.

v In DB2 UDB V8, if the ixf file codepage is different from the application

codepage, the import utility returns SQL3050W. In DB2 V9, SQL3050W is not

returned. In DB2 V9.1, message SQL3040N is improved, to return two separate

errors. SQL3040N is returned for lobfile errors and SQL3235N is returned for lob

path errors. The invalid file name or path name is indicated in the message.

v In DB2 UDB V8, if the LOB Location Specifier (LLS) contains a path, for

example, the LLS is /home/try/newlob.001.12.345/ and the path is invalid,

SQL3040N reason code 6 is returned and the utility exits immediately. In DB2

V9.1, the row is rejected and processing continues. In DB2 V9.1, the exported

LLS never contains a path name.

v In DB2 UDB V8, the import and export utilities fail if both the LOBSINFILE and

CODEPAGE modifiers are specified together. In DB2 V9.1, both modifiers can be

specified together.

36 Data Movement Utilities DB2 9 BETA

v In DB2 UDB V8, if LOBSINFILE is not specified, then the specified LOBS FROM

is ignored. In DB2 V9.1, specifying LOBS FROM implies LOBSINFILE.

v In DB2 UDB V8, if LOBSINFILE is specified, and LOBS FROM is specified, the

specified lob directory is searched first, then the current working directory. If

LOBS FROM is not specified, the current working directory is searched. In DB2

V9.1, if LOBSINFILE is specified, and LOBS FROM is specified, the specified lob

directory is searched first, then the current working directory. If LOBS FROM is

not specified, the data file directory is search first, then the current working

directory.

v In DB2 UDB V8, import data and message files are created with the default

mask on unix platforms. On Windows platforms, files are created with full

permissions if Extended Security is not enabled and with administrators group

full permission and owner read permission if Extended Security is enabled. In

DB2 V9.1, import data and message files are created with the user specified

umask on unix platforms. On Windows platforms, parent directory attributes are

inherited if Extended Security is not enabled . If Extended Security is enabled,

the administrators group has full permission, while the DB2USERS group has

read and execute permissions.

v During IMPORT CREATE from an IXF file exported in DB2 Version 9.1, the

following error is returned:

SQL3311N This PC/IXF file is not supported in Import CREATE

mode. Reason code ="<reason-code>".

The possible causes include:

– the index column names contain hexadecimal values of 0x2B or 0x2D

– file is exported from a table containing XML columns

– file was exported from an MDC table

– file was exported from table with a table partitioning key

– index name contains more than 128 bytes after codepage conversion

– file was exported from a protected table

– action string other than SELECT * FROM <TABLE-NAME> was used during

the export operation

– method N was used during the export operation

This file cannot be used in IMPORT CREATE operations to recreate the table

because some information is missing. For reason codes 1, 3, 4, 5, 7 and 8, you

can use the file type modifier FORCECREATE to force the CREATE operation

with this file. For reason codes 2 and 6, you can use the db2look tool to extract

table information and perform IMPORT INSERT or REPLACE operation.

 Related concepts:

v “Moving data between typed tables” on page 258

 Related tasks:

v “Importing data” on page 38

 Related reference:

v “Export/Import/Load Utility File Formats” on page 291

v “Import sessions - CLP examples” on page 97

v “IMPORT ” on page 49

Chapter 2. Import 37DB2 9 BETA

Privileges, authorities, and authorization required to use import

 Privileges enable users to create or access database resources. Authority levels

provide a method of grouping privileges and higher-level database manager

maintenance and utility operations. Together, these act to control access to the

database manager and its database objects. Users can access only those objects for

which they have the appropriate authorization; that is, the required privilege or

authority.

To use the import utility to create a new table, you must have SYSADM authority,

DBADM authority, or CREATETAB privilege for the database. To replace data in

an existing table or view, you must have SYSADM authority, DBADM authority, or

CONTROL privilege for the table or view, or INSERT, SELECT, UPDATE and

DELETE privileges for the table or view. To append data to an existing table or

view, you must have SELECT and INSERT privileges for the table or view. To use

the REPLACE or REPLACE_CREATE option on a table, the session authorization

ID must have the authority to drop the table.

 Notes:

 v To import data into a table that has protected columns, the session authorization

ID must have LBAC credentials that allow write access to all protected columns

in the table.

v To import data into a table that has protected rows, the session authorization ID

must have been granted a security label for write access that is part of the

security policy protecting the table.

 Related reference:

v “IMPORT ” on page 49

v “db2Import - Import data into a table, hierarchy, nickname or view” on page 73

Importing data

 The import utility inserts data from an external file with a supported file format

into a table, hierarchy, view or nickname. The load utility is a faster alternative, but

the load utility does not support loading data at the hierarchy level.

 Prerequisites:

 Before invoking the import utility, you must be connected to (or be able to

implicitly connect to) the database into which the data will be imported. If implicit

connect is enabled, a connection to the default database is established. Utility

access to DB2 for Linux, UNIX, or Windows database servers from DB2 for Linux,

UNIX, or Windows clients must be a direct connection through the engine and not

through a DB2 Connect gateway or loop back environment. Since the utility will

issue a COMMIT or a ROLLBACK statement, you should complete all transactions

and release all locks by issuing a COMMIT statement or a ROLLBACK operation

before invoking import.

 Restrictions:

 The following restrictions apply to the import utility:

38 Data Movement Utilities DB2 9 BETA

v If the existing table is a parent table containing a primary key that is referenced

by a foreign key in a dependent table, its data cannot be replaced, only

appended to.

v You cannot perform an import replace operation into an underlying table of a

materialized query table defined in refresh immediate mode.

v You cannot import data into a system table, a summary table, or a table with a

structured type column.

v You cannot import data into declared temporary tables.

v Views cannot be created through the import utility.

v Referential constraints and foreign key definitions are not preserved when

creating tables from PC/IXF files. (Primary key definitions are preserved if the

data was previously exported using SELECT *.)

v Because the import utility generates its own SQL statements, the maximum

statement size of 2MB might, in some cases, be exceeded.

v You cannot recreate a partitioned table or an multidimensional clustered table

(MDC) using the CREATE or REPLACE_CREATE import options.

v You cannot recreate tables containing XML columns.

The following limitation applies to the import utility:

If the volume of output messages generated by an import operation against a

remote database exceeds 60KB, the utility will keep the first 30KB and the last

30KB.

 Procedure:

 The import utility can be invoked through the command line processor (CLP), the

Import Table notebook in the Control Centre, or by calling an application

programming interface (API), db2Import from a client application.

Following is an example of the IMPORT command issued through the CLP:

 db2 import from stafftab.ixf of ixf insert into userid.staff

To open the Import Table notebook:

1. From the Control Center, expand the object tree until you find the Tables folder.

2. Click on the Tables folder. Any existing tables are displayed in the pane on the

right side of the window (the contents pane).

3. Right-click on the table you want in the contents pane, and select Import from

the pop-up menu. The Import Table notebook opens.

Detailed information about the Import Table notebook is provided through the

Control Center online help facility.

 Related concepts:

v “Import Overview” on page 35

v “Importing large objects (LOBS)” on page 46

 Related reference:

v “ROLLBACK statement” in SQL Reference, Volume 2

v “Import sessions - CLP examples” on page 97

v “IMPORT ” on page 49

Chapter 2. Import 39DB2 9 BETA

Importing XML data

 When importing data into an XML table column, you can use the XML FROM

option to specify the paths of the input XML data file or files. For example, For an

XML file ″/home/user/xmlpath/xmldocs.001.xml″ that had previously been

exported, the following command could be used to import the data back into the

table.

 IMPORT FROM t1export.del OF DEL XML FROM /home/user/xmlpath INSERT INTO USER.T1

 Validating Inserted Documents Against Schemas:

 The XMLVALIDATE option allows XML documents to be validated against XML

schemas as they are imported. In the following example, incoming XML

documents are validated against schema information that was saved when the

XML documents were exported:

 IMPORT FROM t1export.del OF DEL XML FROM /home/user/xmlpath XMLVALIDATE

 USING XDS INSERT INTO USER.T1

 Specifying Parse Options:

 You can use the XMLPARSE option to specify whether whitespace in the imported

XML documents is preserved or stripped. In the following example, all imported

XML documents are validated against XML schema information that was saved

when the XML documents were exported, and these documents are parsed with

whitespace preserved.

 IMPORT FROM t1export.del OF DEL XML FROM /home/user/xmlpath XMLPARSE PRESERVE

 WHITESPACE XMLVALIDATE USING XDS INSERT INTO USER.T1

 Related concepts:

v “Exporting XML data” on page 5

v “Native XML data store overview” in XML Guide

 Related reference:

v “LOB and XML file behavior with regard to import and export” on page 7

v “IMPORT ” on page 49

Using import in a client/server environment

 When you import a file to a remote database, a stored procedure can be called to

perform the import on the server. A stored procedure will not be called when:

v The application and database code pages are different.

v The file being imported is a multiple-part PC/IXF file.

v The method used for importing the data is either column name or relative

column position.

v The target column list provided is longer than 4KB.

v The LOBS FROM clause or the lobsinfile modifier is specified.

v The NULL INDICATORS clause is specified for ASC files.

When import uses a stored procedure, messages are created in the message file

using the default language installed on the server. The messages are in the

language of the application if the language at the client and the server are the

same.

40 Data Movement Utilities DB2 9 BETA

The import utility creates two temporary files in the tmp subdirectory of the sqllib

directory (or the directory indicated by the DB2INSTPROF registry variable, if

specified). One file is for data, and the other file is for messages generated by the

import utility.

If you receive an error about writing or opening data on the server, ensure that:

v The directory exists.

v There is sufficient disk space for the files.

v The instance owner has write permission in the directory.

 Related concepts:

v “Import Overview” on page 35

Using import with buffered inserts

 In a partitioned database environment, the import utility can be enabled to use

buffered inserts. This reduces the messaging that occurs when data is imported,

resulting in better performance; however, since details about a failed buffered

insert are not returned, this option should only be enabled if you are not

concerned about error reporting.

When buffered inserts are used, import sets a default WARNINGCOUNT value to

1. As a result, the utility will fail if any rows are rejected. If a record is rejected, the

utility will roll back the current transaction. The number of committed records can

be used to determine which records were successfully inserted into the database.

The number of committed records can be non zero only if the COMMITCOUNT

option was specified.

If a different WARNINGCOUNT value is explicitly specified on the import

command, and some rows were rejected, the row summary output by the utility

can be incorrect. This is due to a combination of the asynchronous error reporting

used with buffered inserts and the fact that an error detected during the insertion

of a group of rows causes all the rows of that group to be backed out. Since the

utility would not reliably report which input records were rejected, it would be

difficult to determine which records were committed and which records need to be

re-inserted into the database.

Use the DB2 bind utility to request buffered inserts. The import package,

db2uimpm.bnd, must be rebound against the database using the INSERT BUF

option. For example:

 db2 connect to your_database

 db2 bind db2uimpm.bnd insert buf

Buffered inserts feature cannot be used in conjunction with import operations in

which the INSERT_UPDATE parameter is specified. Bind file

db2uImpInsUpdate.bnd enforces this restriction. This file should never be bound

with the INSERT BUF option. This causes the import operations in which the

INSERT_UPDATE parameter is specified, to fail. Import operations in which the

INSERT, REPLACE or REPLACE_CREATE parameter is specified are not affected

by the binding of the new file.

 Related concepts:

v “Import Overview” on page 35

Chapter 2. Import 41DB2 9 BETA

Using import with identity columns

 The import utility can be used to import data into a table containing an identity

column. If no identity-related file type modifiers are used, the utility works

according to the following rules:

v If the identity column is GENERATED ALWAYS, an identity value is generated

for a table row whenever the corresponding row in the input file is missing a

value for the identity column, or a NULL value is explicitly given. If a

non-NULL value is specified for the identity column, the row is rejected

(SQL3550W).

v If the identity column is GENERATED BY DEFAULT, the import utility makes

use of user-supplied values, if they are provided; if the data is missing or

explicitly NULL, a value is generated.

The import utility does not perform any extra validation of user-supplied identity

values beyond what is normally done for values of the identity column’s data type

(that is, SMALLINT, INT, BIGINT, or DECIMAL). Duplicate values will not be

reported. In addition, the compound=x modifier cannot be used when importing

data into a table with an identity column.

Two file type modifiers are supported by the import utility to simplify its use with

tables that contain an identity column:

v The identitymissing modifier makes importing a table with an identity column

more convenient if the input data file does not contain any values (not even

NULLS) for the identity column. For example, consider a table defined with the

following SQL statement:

 create table table1 (c1 char(30),

 c2 int generated by default as identity,

 c3 real,

 c4 char(1))

A user might want to import data from a file (import.del) into TABLE1, and this

data might have been exported from a table that does not have an identity

column. The following is an example of such a file:

 Robert, 45.2, J

 Mike, 76.9, K

 Leo, 23.4, I

One way to import this file would be to explicitly list the columns to be

imported through the IMPORT command as follows:

 db2 import from import.del of del replace into table1 (c1, c3, c4)

For a table with many columns, however, this syntax might be cumbersome and

prone to error. An alternate method of importing the file is to use the

identitymissing file type modifier as follows:

 db2 import from import.del of del modified by identitymissing

 replace into table1

v The identityignore modifier is in some ways the opposite of the

identitymissing modifier: it indicates to the import utility that even though the

input data file contains data for the identity column, the data should be ignored,

and an identity value should be generated for each row. For example, a user

might want to import the following data from a file (import.del) into TABLE1,

as defined above:

 Robert, 1, 45.2, J

 Mike, 2, 76.9, K

 Leo, 3, 23.4, I

42 Data Movement Utilities DB2 9 BETA

If the user-supplied values of 1, 2, and 3 are not to be used for the identity

column, the user could issue the following IMPORT command:

 db2 import from import.del of del method P(1, 3, 4)

 replace into table1 (c1, c3, c4)

Again, this approach might be cumbersome and prone to error if the table has

many columns. The identityignore modifier simplifies the syntax as follows:

 db2 import from import.del of del modified by identityignore

 replace into table1

When a table with an identity column is exported to an IXF file, the

REPLACE_CREATE and the CREATE options of the IMPORT command can be

used to recreate the table, including its identity column properties. If such an

IXF file is created from a table containing an identity column of type

GENERATED ALWAYS, the only way that the data file can be successfully

imported is to specify the identityignore modifier. Otherwise, all rows will be

rejected (SQL3550W).

 Related concepts:

v “Identity columns” in Administration Guide: Planning

Using import with generated columns

 The import utility can be used to import data into a table containing (non-identity)

generated columns.

If no generated column-related file type modifiers are used, the import utility

works according to the following rules:

v A value will be generated for a generated column whenever the corresponding

row in the input file is missing a value for the column, or a NULL value is

explicitly given. If a non-NULL value is supplied for a generated column, the

row is rejected (SQL3550W).

v If the server generates a NULL value for a generated column that is not nullable,

the row of data to which this field belongs is rejected (SQL0407N). This could

happen, for example, if a non-nullable generated column were defined as the

sum of two table columns that have NULL values supplied to them in the input

file.

Two file type modifiers are supported by the import utility to simplify its use with

tables that contain generated columns:

v The generatedmissing modifier makes importing data into a table with

generated columns more convenient if the input data file does not contain any

values (not even NULLS) for all generated columns present in the table. For

example, consider a table defined with the following SQL statement:

 create table table1 (c1 int,

 c2 int,

 g1 int generated always as (c1 + c2),

 g2 int generated always as (2 * c1),

 c3 char(1))

A user might want to import data from a file (load.del) into TABLE1, and this

data might have been exported from a table that does not have any generated

columns. The following is an example of such a file:

 1, 5, J

 2, 6, K

 3, 7, I

Chapter 2. Import 43DB2 9 BETA

One way to import this file would be to explicitly list the columns to be

imported through the IMPORT command as follows:

 db2 import from import.del of del replace into table1 (c1, c2, c3)

For a table with many columns, however, this syntax might be cumbersome and

prone to error. An alternate method of importing the file is to use the

generatedmissing file type modifier as follows:

 db2 import from import.del of del modified by generatedmissing

 replace into table1

v The generatedignore modifier is in some ways the opposite of the

generatedmissing modifier: it indicates to the import utility that even though the

input data file contains data for all generated columns, the data should be

ignored, and values should be generated for each row. For example, a user

might want to import the following data from a file (import.del) into TABLE1,

as defined above:

 1, 5, 10, 15, J

 2, 6, 11, 16, K

 3, 7, 12, 17, I

The user-supplied, non-NULL values of 10, 11, and 12 (for g1), and 15, 16, and

17 (for g2) result in the row being rejected (SQL3550W). To avoid this, the user

could issue the following IMPORT command:

 db2 import from import.del of del method P(1, 2, 5)

 replace into table1 (c1, c2, c3)

Again, this approach might be cumbersome and prone to error if the table has

many columns. The generatedignore modifier simplifies the syntax as follows:

 db2 import from import.del of del modified by generatedignore

 replace into table1

v When using the INSERT_UPDATE clause, if the generated column is also a

primary key and the generatedignore modifier is specified, the IMPORT

command honours the generatedignore modifier. The IMPORT command does

not substitute the user supplied value for this column in the WHERE clause of

the UPDATE statement.

 Related concepts:

v “Generated Columns” in SQL Guide

v “Import Overview” on page 35

v “Importing large objects (LOBS)” on page 46

v “Using import in a client/server environment” on page 40

v “Using import to recreate an exported table” on page 45

v “Using import with buffered inserts” on page 41

v “Using import with identity columns” on page 42

 Related tasks:

v “Importing data” on page 38

 Related reference:

v “Import sessions - CLP examples” on page 97

v “IMPORT ” on page 49

44 Data Movement Utilities DB2 9 BETA

Using import to recreate an exported table

 You can use the import utility to recreate a table that was saved through the export

utility. The table must have been exported to an IXF file, and the SELECT

statement used during the export operation must have met certain conditions (for

example, no column names can be used in the SELECT clause; only select * is

permitted). When creating a table from an IXF file, not all attributes of the original

table are preserved. For example, referential constraints, foreign key definitions,

and user-defined data types are not retained. The following attributes of the

original table are retained:

v Primary key name, and definition

v Column information:

– Column name

– Column data type, including user-defined distinct types, which are preserved

as their base type

– Identity properties

– Lengths (except for lob_file types)

– Code page (if applicable)

– Identity options

– Whether the column is defined as nullable or not nullable

– Default values for constants, if any, but not other types of default values
v Index Information (provided the column names in the index do not contain

characters ’-’ or ’+’):

– Index name

– Index creator name

– Column names, and whether each column is sorted in ascending, or in

descending order

– Whether the index is defined as unique

– Whether the index is clustered

– Whether the index allows reverse scans

– pctfree values

– minpctused values

The following attributes of the original table are not retained (This list is not

exhaustive, use with care):

v Whether the source was a normal table, a materialized query table, a view, or a

set of columns from any or all of these sources

v Unique constraints and other types of constraints or triggers (not including

Primary Key constraints).

v Table information:

– Materialized query table definition (if applicable)

– Materialized query table options (if applicable)

– Table space options; however, this information can be specified through the

IMPORT command

– Multidimensional clustering (MDC) dimensions

– Partitioned table dimensions

– Table partitionng key

– Not logged initially property

Chapter 2. Import 45DB2 9 BETA

– Check constraints

– Table codepage

– Protected table properties

– Table or value compression options
v Column information:

– Any default value except constant values

– LOB options (if any)

– XML properties

– References clause of the create table statement (if any)

– Referential constraints (if any)

– Check constraints (if any)

– Generated column options (if any)

– Columns dependent on database scope Sequences
v Index information:

– Include columns (if any)

– Index name, if the index is a primary key index

– Descending order of keys, if the index is a primary key index (Ascending is

the default)

– Index column names contain hexadecimal values of 0x2B or 0x2D

– Index name contains more than 128 bytes after codepage conversion

– PCTFREE2 value

– UNIQUE constraints

 Related concepts:

v “Export Overview” on page 1

v “Import Overview” on page 35

v “Recreating an exported table” on page 9

 Related reference:

v “EXPORT ” on page 11

v “IMPORT ” on page 49

Importing large objects (LOBS)

 When importing into large object (LOB) columns, the data can come either from

the same file as the rest of the column data, or from separate files. If the data is

coming from separate files, the LOBSINFILE file type modifier must be specified

for DEL, ASC and WSF files.

The column in the main input data file contains either the import data (default), or

the name of a file where the import data is stored.

Notes:

1. When LOB data is stored in the main input data file, no more than 32KB of

data is allowed. Truncation warnings are ignored.

2. All of the LOB data must be stored in the main file, or each LOB is stored in

separate files. The main file cannot have a mixture of LOB data and file names.

LOB values are imported from separate files by using the lobsinfile modifier,

and the LOBS FROM clause.

46 Data Movement Utilities DB2 9 BETA

A LOB Location Specifier (LLS) can be used to store multiple LOBs in a single file

when importing, exporting and loading LOB information.

An LLS is a string indicating where LOB data can be found within a file. The

format of the LLS is filename.ext.nnn.mmm/, where filename.ext is the name of

the file that contains the LOB, nnn is the offset of the LOB within the file

(measured in bytes), and mmm is the length of the LOB (in bytes). For example, an

LLS of db2exp.001.123.456/ indicates that the LOB is located in the file

db2exp.001, begins at an offset of 123 bytes into the file, and is 256 bytes long. If

the indicated size in the LLS is 0, the LOB is considered to have a length of 0. If

the length is -1, the LOB is considered to be NULL and the offset and file name are

ignored.

When importing or loading data with the modified by lobsinfile option

specified, An LLS will be expected for each of the corresponding LOB columns. If

something other than an LLS is encountered for a LOB column, the database will

treat it as a LOB file, and will load the entire file as the LOB.

 Related reference:

v “IMPORT ” on page 49

v “Data Type-Specific Rules Governing PC/IXF File Import into Databases” on

page 328

v “General Rules Governing PC/IXF File Import into Databases” on page 326

v “Large objects (LOBs)” in SQL Reference, Volume 1

Importing user-defined distinct types (UDTs)

 The import utility casts user-defined distinct types (UDTs) to similar base data

types automatically. This saves you from having to explicitly cast UDTs to the base

data types. Casting allows for comparisons between UDTs and the base data types

in SQL.

 Related concepts:

v “User-defined distinct types” in SQL Guide

Table locking during import

 The import utility supports two table locking modes. The offline mode (ALLOW

NO ACCESS) prevents concurrent applications from accessing table data. This is

the default mode. The online mode (ALLOW WRITE ACCESS) allows concurrent

applications both read and write access to the import target table.

By default, the import utility is bound to the database with isolation level RS (read

stability).

 Online Import (ALLOW WRITE ACCESS):

 The Import utility acquires a nonexclusive (IX) lock on the target table. Holding

this lock on the table has the following implications:

v If there are other applications holding an incompatible table lock, the import

utility will not start inserting data until all of these applications commit or roll

back their changes.

Chapter 2. Import 47DB2 9 BETA

v While import is running, any other application requesting an incompatible table

lock will wait until the import commits or rolls back the current transaction.

Note that import’s table lock does not persist across a transaction boundary. As a

result, online import has to request and potentially wait for a table lock after

every commit.

v If there are other applications holding an incompatible row lock, the import

utility will stop inserting data until all of these applications commit or roll back

their changes.

v While import is running, any other application requesting an incompatible row

lock will wait until the import operation commits or rolls back the current

transaction.

To preserve the online properties, and to reduce the chance of a deadlock, online

import will periodically commit the current transaction and release all row locks

before escalating to an exclusive (X) table lock. Consequently, during an online

import, commits might be performed even if the commitcount option was not

used. A commit frequency can either be explicitly specified, or the AUTOMATIC

commit mode can be used. No commits will be performed if a commitcount value

of zero is explicitly specified. Note that a deadlock will occur if the concurrent

application holding a conflicting row lock attempts to escalate to a table lock.

Import runs in the online mode if ’ALLOW WRITE ACCESS’ is specified. The

online mode is not compatible with the following:

v REPLACE, CREATE and REPLACE_CREATE import modes

v Buffered inserts

v Imports into a target view

v Imports into a hierarchy table

v Imports into a target table using table lock size

 Offline Import (ALLOW NO ACCESS):

 If a large number of rows is being imported into a table, the existing lock might

escalate to an exclusive lock. If another application working on the same table is

holding some row locks, a deadlock will occur if the lock escalates to an exclusive

lock. To avoid this, the import utility requests an exclusive lock on the table at the

beginning of its operation. This is the default import behavior.

Holding a lock on the table has two implications. First, if there are other

applications holding a table lock, or row locks on the import target table, the

import utility will wait until all of those applications commit or roll back their

changes. Second, while import is running, any other application requesting locks

will wait until the import operation has completed. Import runs in the offline

mode if ’ALLOW WRITE ACCESS’ is not specified.

 Related concepts:

v “Table locking, table states and table space states” on page 202

48 Data Movement Utilities DB2 9 BETA

IMPORT

Inserts data from an external file with a supported file format into a table,

hierarchy, view or nickname. LOAD is a faster alternative, but the load utility does

not support loading data at the hierarchy level.

 Authorization:

v IMPORT using the INSERT option requires one of the following:

– sysadm

– dbadm

– CONTROL privilege on each participating table, view, or nickname

– INSERT and SELECT privilege on each participating table or view
v IMPORT to an existing table using the INSERT_UPDATE option, requires one of

the following:

– sysadm

– dbadm

– CONTROL privilege on each participating table, view, or nickname

– INSERT, SELECT, UPDATE and DELETE privilege on each participating table

or view
v IMPORT to an existing table using the REPLACE or REPLACE_CREATE option,

requires one of the following:

– sysadm

– dbadm

– CONTROL privilege on the table or view

– INSERT, SELECT, and DELETE privilege on the table or view
v IMPORT to a new table using the CREATE or REPLACE_CREATE option,

requires one of the following:

– sysadm

– dbadm

– CREATETAB authority on the database and USE privilege on the table space,

as well as one of:

- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist

- CREATIN privilege on the schema, if the schema name of the table refers to

an existing schema
v IMPORT to a hierarchy that does not exist using the CREATE, or the

REPLACE_CREATE option, requires one of the following:

– sysadm

– dbadm

– CREATETAB authority on the database and USE privilege on the table space

and one of:

- IMPLICIT_SCHEMA authority on the database, if the schema name of the

table does not exist

- CREATEIN privilege on the schema, if the schema of the table exists

- CONTROL privilege on every sub-table in the hierarchy, if the

REPLACE_CREATE option on the entire hierarchy is used
v IMPORT to an existing hierarchy using the REPLACE option requires one of the

following:

IMPORT

Chapter 2. Import 49DB2 9 BETA

– sysadm

– dbadm

– CONTROL privilege on every sub-table in the hierarchy
v To import data into a table that has protected columns, the session authorization

ID must have LBAC credentials that allow write access to all protected columns

in the table. Otherwise the import fails and an error (SQLSTATE 42512) is

returned.

v To import data into a table that has protected rows, the session authorization ID

must hold LBAC credentials that meets these criteria:

– It is part of the security policy protecting the table

– It was granted to the session authorization ID for write access

The label on the row to insert, the user’s LBAC credentials, the security policy

definition, and the LBAC rules determine determine the label on the row.

v If the REPLACE or REPLACE_CREATE option is specified, the session

authorization ID must have the authority to drop the table.

 Required connection:

 Command syntax:

�� IMPORT FROM filename OF filetype

�

,

LOBS FROM

lob-path

�

,

XML FROM

xml-path

 �

�

�

MODIFIED BY

filetype-mod

 �

�

�

�

�

�

,

METHOD

L

(

column-start

column-end

)

,

NULL INDICATORS

(

null-indicator-list

)

,

N

(

column-name

)

,

P

(

column-position

)

 �

�
XMLPARSE

STRIP

WHITESPACE

PRESERVE

 �

�

XMLVALIDATE USING

XDS

Ignore and Map parameters

DEFAULT

schema-sqlid

SCHEMA

schema-sqlid

SCHEMALOCATION HINTS

 ALLOW NO ACCESS

ALLOW WRITE ACCESS

�

�
COMMITCOUNT

n

AUTOMATIC

RESTARTCOUNT

n

SKIPCOUNT

ROWCOUNT

n

WARNINGCOUNT

n

NOTIMEOUT
 �

IMPORT

50 Data Movement Utilities DB2 9 BETA

�

�

�

 INSERT INTO table-name

INSERT_UPDATE

,

REPLACE

REPLACE_CREATE

(

insert-column

)

hierarchy description

CREATE

INTO

table-name

tblspace-specs

,

(

insert-column

)

hierarchy description

AS ROOT TABLE

UNDER

sub-table-name

 ��

Ignore and Map parameters:

�

,

IGNORE

(

schema-sqlid

)

 �

�

�

,

MAP

(

(

schema-sqlid

,

schema-sqlid

)

)

hierarchy description:

 ALL TABLES

sub-table-list

IN

HIERARCHY

STARTING

sub-table-name

traversal-order-list

sub-table-list:

�

�

 ,

(

sub-table-name

)

,

(

insert-column

)

traversal-order-list:

�

 ,

(

sub-table-name

)

tblspace-specs:

IN

tablespace-name

INDEX IN

tablespace-name

LONG IN

tablespace-name

 Command parameters:

ALL TABLES

An implicit keyword for hierarchy only. When importing a hierarchy, the

default is to import all tables specified in the traversal order.

ALLOW NO ACCESS

Runs import in the offline mode. An exclusive (X) lock on the target table

IMPORT

Chapter 2. Import 51DB2 9 BETA

is acquired before any rows are inserted. This prevents concurrent

applications from accessing table data. This is the default import behavior.

ALLOW WRITE ACCESS

Runs import in the online mode. An intent exclusive (IX) lock on the target

table is acquired when the first row is inserted. This allows concurrent

readers and writers to access table data. Online mode is not compatible

with the REPLACE, CREATE, or REPLACE_CREATE import options.

Online mode is not supported in conjunction with buffered inserts. The

import operation will periodically commit inserted data to prevent lock

escalation to a table lock and to avoid running out of active log space.

These commits will be performed even if the COMMITCOUNT option was

not used. During each commit, import will lose its IX table lock, and will

attempt to reacquire it after the commit. This parameter is required when

you import to a nickname and COMMITCOUNT must be specified with a

valid number (AUTOMATIC is not considered a valid option).

AS ROOT TABLE

Creates one or more sub-tables as a stand-alone table hierarchy.

COMMITCOUNT n/AUTOMATIC

Performs a COMMIT after every n records are imported. When a number n

is specified, import performs a COMMIT after every n records are

imported. When compound inserts are used, a user-specified commit

frequency of n is rounded up to the first integer multiple of the compound

count value. When AUTOMATIC is specified, import internally determines

when a commit needs to be performed. The utility will commit for either

one of two reasons:

v to avoid running out of active log space

v to avoid lock escalation from row level to table level

If the ALLOW WRITE ACCESS option is specified, and the

COMMITCOUNT option is not specified, the import utility will perform

commits as if COMMITCOUNT AUTOMATIC had been specified.

If the IMPORT command encounters an SQL0964C (Transaction Log Full)

while inserting or updating a record and the COMMITCOUNT n is specified,

IMPORT will attempt to resolve the issue by performing an unconditional

commit and then reattempt to insert or update the record. If this does not

help resolve the log full condition (which would be the case when the log

full is attributed to other activity on the database), then the IMPORT

command will fail as expected, however the number of rows committed

may not be a multiple of the COMMITCOUNT n value. The RESTARTCOUNT or

SKIPCOUNT option can be used to avoid processing those row already

committed.

CREATE

Creates the table definition and row contents in the code page of the

database. If the data was exported from a DB2 table, sub-table, or

hierarchy, indexes are created. If this option operates on a hierarchy, and

data was exported from DB2, a type hierarchy will also be created. This

option can only be used with IXF files.

 This parameter is not valid when you import to a nickname.

Note: If the data was exported from an MVS host database, and it contains

LONGVAR fields whose lengths, calculated on the page size, are less

than 254, CREATE might fail because the rows are too long. See

Using import to recreate an exported table for a list of restrictions.

IMPORT

52 Data Movement Utilities DB2 9 BETA

In this case, the table should be created manually, and IMPORT with

INSERT should be invoked, or, alternatively, the LOAD command

should be used.

DEFAULT schema-sqlid

This option can only be used when the USING XDS parameter is specified.

The schema specified through the DEFAULT clause identifies a schema to

use for validation when the XML Data Specifier (XDS) of an imported

XML document does not contain an SCH attribute identifying an XML

Schema.

 The DEFAULT clause takes precedence over the IGNORE and MAP

clauses. If an XDS satisfies the DEFAULT clause, the IGNORE and MAP

specifications will be ignored.

FROM filename

HIERARCHY

Specifies that hierarchical data is to be imported.

IGNORE schema-sqlid

This option can only be used when the USING XDS parameter is specified.

The IGNORE clause specifies a list of one or more schemas to ignore if

they are identified by an SCH attribute. If an SCH attribute exists in the

XML Data Specifier for an imported XML document, and the schema

identified by the SCH attribute is included in the list of schemas to

IGNORE, then no schema validation will occur for the imported XML

document.

 If a schema is specified in the IGNORE clause, it cannot also be present in

the left side of a schema pair in the MAP clause.

 The IGNORE clause applies only to the XDS. A schema that is mapped by

the MAP clause will not be subsequently ignored if specified by the

IGNORE clause.

IN tablespace-name

Identifies the table space in which the table will be created. The table space

must exist, and must be a REGULAR table space. If no other table space is

specified, all table parts are stored in this table space. If this clause is not

specified, the table is created in a table space created by the authorization

ID. If none is found, the table is placed into the default table space

USERSPACE1. If USERSPACE1 has been dropped, table creation fails.

INDEX IN tablespace-name

Identifies the table space in which any indexes on the table will be created.

This option is allowed only when the primary table space specified in the

IN clause is a DMS table space. The specified table space must exist, and

must be a REGULAR or LARGE DMS table space.

Note: Specifying which table space will contain an index can only be done

when the table is created.

insert-column

Specifies the name of a column in the table or the view into which data is

to be inserted.

INSERT

Adds the imported data to the table without changing the existing table

data.

IMPORT

Chapter 2. Import 53DB2 9 BETA

INSERT_UPDATE

Adds rows of imported data to the target table, or updates existing rows

(of the target table) with matching primary keys.

INTO table-name

Specifies the database table into which the data is to be imported. This

table cannot be a system table, a declared temporary table or a summary

table.

 One can use an alias for INSERT, INSERT_UPDATE, or REPLACE, except

in the case of a down-level server, when the fully qualified or the

unqualified table name should be used. A qualified table name is in the

form: schema.tablename. The schema is the user name under which the table

was created.

LOBS FROM lob-path

The names of the LOB data files are stored in the main data file (ASC,

DEL, or IXF), in the column that will be loaded into the LOB column. The

maximum number of paths that can be specified is 999. This will implicitly

activate the LOBSINFILE behaviour.

 This parameter is not valid when you import to a nickname.

LONG IN tablespace-name

Identifies the table space in which the values of any long columns (LONG

VARCHAR, LONG VARGRAPHIC, LOB data types, or distinct types with

any of these as source types) will be stored. This option is allowed only if

the primary table space specified in the IN clause is a DMS table space.

The table space must exist, and must be a LARGE DMS table space.

MAP schema-sqlid

This option can only be used when the USING XDS parameter is specified.

Use the MAP clause to specify alternate schemas to use in place of those

specified by the SCH attribute of an XML Data Specifier (XDS) for each

imported XML document. The MAP clause specifies a list of one or more

schema pairs, where each pair represents a mapping of one schema to

another. The first schema in the pair represents a schema that is referred to

by an SCH attribute in an XDS. The second schema in the pair represents

the schema that should be used to perform schema validation.

 If a schema is present in the left side of a schema pair in the MAP clause,

it cannot also be specified in the IGNORE clause.

 Once a schema pair mapping is applied, the result is final. The mapping

operation is non-transitive, and therefore the schema chosen will not be

subsequently applied to another schema pair mapping.

 A schema cannot be mapped more than once, meaning that it cannot

appear on the left side of more than one pair.

METHOD

L Specifies the start and end column numbers from which to import

data. A column number is a byte offset from the beginning of a

row of data. It is numbered starting from 1.

Note: This method can only be used with ASC files, and is the

only valid option for that file type.

N Specifies the names of the columns to be imported.

Note: This method can only be used with IXF files.

IMPORT

54 Data Movement Utilities DB2 9 BETA

P Specifies the field numbers of the input data fields to be imported.

Note: This method can only be used with IXF or DEL files, and is

the only valid option for the DEL file type.

MODIFIED BY filetype-mod

Specifies file type modifier options. See File type modifiers for the import

utility.

NOTIMEOUT

Specifies that the import utility will not time out while waiting for locks.

This option supersedes the locktimeout database configuration parameter.

Other applications are not affected.

NULL INDICATORS null-indicator-list

This option can only be used when the METHOD L parameter is specified.

That is, the input file is an ASC file. The null indicator list is a

comma-separated list of positive integers specifying the column number of

each null indicator field. The column number is the byte offset of the null

indicator field from the beginning of a row of data. There must be one

entry in the null indicator list for each data field defined in the METHOD

L parameter. A column number of zero indicates that the corresponding

data field always contains data.

 A value of Y in the NULL indicator column specifies that the column data

is NULL. Any character other than Y in the NULL indicator column

specifies that the column data is not NULL, and that column data specified

by the METHOD L option will be imported.

 The NULL indicator character can be changed using the MODIFIED BY

option, with the nullindchar file type modifier.

OF filetype

Specifies the format of the data in the input file:

v ASC (non-delimited ASCII format)

v DEL (delimited ASCII format), which is used by a variety of database

manager and file manager programs

v WSF (work sheet format), which is used by programs such as:

– Lotus 1-2-3

– Lotus Symphony
v IXF (integrated exchange format, PC version), which means it was

exported from the same or another DB2 table. An IXF file also contains

the table definition and definitions of any existing indexes, except when

columns are specified in the SELECT statement.

Th WSF file type is not supported when you import to a nickname.

REPLACE

Deletes all existing data from the table by truncating the data object, and

inserts the imported data. The table definition and the index definitions are

not changed. This option can only be used if the table exists. If this option

is used when moving data between hierarchies, only the data for an entire

hierarchy, not individual subtables, can be replaced.

 This parameter is not valid when you import to a nickname.

 This option does not honour the CREATE TABLE statement’s NOT

LOGGED INITIALLY (NLI) clause or the ALTER TABLE statement’s

ACTIVE NOT LOGGED INITIALLY clause.

IMPORT

Chapter 2. Import 55DB2 9 BETA

If an import with the REPLACE option is performed within the same

transaction as a CREATE TABLE or ALTER TABLE statement where the

NLI clause is invoked, the import will not honor the NLI clause. All inserts

will be logged.

Workaround 1

Delete the contents of the table using the DELETE statement, then

invoke the import with INSERT statement

Workaround 2

Drop the table and recreate it, then invoke the import with INSERT

statement.

This limitation applies to DB2 UDB Version 7 and DB2 UDB Version 8

REPLACE_CREATE

If the table exists, deletes all existing data from the table by truncating the

data object, and inserts the imported data without changing the table

definition or the index definitions.

 If the table does not exist, creates the table and index definitions, as well as

the row contents, in the code page of the database. See Using import to

recreate an exported table for a list of restrictions.

 This option can only be used with IXF files. If this option is used when

moving data between hierarchies, only the data for an entire hierarchy, not

individual subtables, can be replaced.

 This parameter is not valid when you import to a nickname.

RESTARTCOUNT n

Specifies that an import operation is to be started at record n + 1. The first

n records are skipped. This option is functionally equivalent to

SKIPCOUNT. RESTARTCOUNT and SKIPCOUNT are mutually exclusive.

ROWCOUNT n

Specifies the number n of physical records in the file to be imported

(inserted or updated). Allows a user to import only n rows from a file,

starting from the record determined by the SKIPCOUNT or

RESTARTCOUNT options. If the SKIPCOUNT or RESTARTCOUNT

options are not specified, the first n rows are imported. If SKIPCOUNT m

or RESTARTCOUNT m is specified, rows m+1 to m+n are imported. When

compound inserts are used, user specified rowcount n is rounded up to the

first integer multiple of the compound count value.

SKIPCOUNT n

Specifies that an import operation is to be started at record n + 1. The first

n records are skipped. This option is functionally equivalent to

RESTARTCOUNT. SKIPCOUNT and RESTARTCOUNT are mutually

exclusive.

STARTING sub-table-name

A keyword for hierarchy only, requesting the default order, starting from

sub-table-name. For PC/IXF files, the default order is the order stored in the

input file. The default order is the only valid order for the PC/IXF file

format.

sub-table-list

For typed tables with the INSERT or the INSERT_UPDATE option, a list of

sub-table names is used to indicate the sub-tables into which data is to be

imported.

IMPORT

56 Data Movement Utilities DB2 9 BETA

traversal-order-list

For typed tables with the INSERT, INSERT_UPDATE, or the REPLACE

option, a list of sub-table names is used to indicate the traversal order of

the importing sub-tables in the hierarchy.

UNDER sub-table-name

Specifies a parent table for creating one or more sub-tables.

WARNINGCOUNT n

Stops the import operation after n warnings. Set this parameter if no

warnings are expected, but verification that the correct file and table are

being used is desired. If the import file or the target table is specified

incorrectly, the import utility will generate a warning for each row that it

attempts to import, which will cause the import to fail. If n is zero, or this

option is not specified, the import operation will continue regardless of the

number of warnings issued.

XML FROM xml-path

Specifies one or more paths that contain the XML files.

XMLPARSE

Specifies how XML documents are parsed. If this option is not specified,

the parsing behaviour for XML documents will be determined by the value

of the CURRENT XMLPARSE OPTION special register.

STRIP WHITESPACE

Specifies to remove whitespace when the XML document is parsed.

PRESERVE WHITESPACE

Specifies not to remove whitespace when the XML document is

parsed.

XMLVALIDATE

Specifies that XML documents are validated against a schema, when

applicable.

USING XDS

XML documents are validated against the XML schema identified

by the XML Data Specifier (XDS) in the main data file. By default,

if the XMLVALIDATE option is invoked with the USING XDS

clause, the schema used to perform validation will be determined

by the SCH attribute of the XDS. If an SCH attribute is not present

in the XDS, no schema validation will occur unless a default

schema is specified by the DEFAULT clause.

 The DEFAULT, IGNORE, and MAP clauses can be used to modify

the schema determination behavior. These three optional clauses

apply directly to the specifications of the XDS, and not to each

other. For example, if a schema is selected because it is specified by

the DEFAULT clause, it will not be ignored if also specified by the

IGNORE clause. Similarly, if a schema is selected because it is

specified as the first part of a pair in the MAP clause, it will not be

re-mapped if also specified in the second part of another MAP

clause pair.

USING SCHEMA schema-sqlid

XML documents are validated against the XML schema with the

specified SQL identifier. In this case, the SCH attribute of the XML

Data Specifier (XDS) will be ignored for all XML columns.

IMPORT

Chapter 2. Import 57DB2 9 BETA

USING SCHEMALOCATION HINTS

XML documents are validated against the schemas identified by

XML schema location hints in the source XML documents. If a

schemaLocation (SCH) attribute is not found in the XML

document, no validation will occur. When the USING

SCHEMALOCATION HINTS clause is specified, the SCH attribute

of the XML Data Specifier (XDS) will be ignored for all XML

columns.

See examples of the XMLVALIDATE option below.

 Usage notes:

 Be sure to complete all table operations and release all locks before starting an

import operation. This can be done by issuing a COMMIT after closing all cursors

opened WITH HOLD, or by issuing a ROLLBACK.

The import utility adds rows to the target table using the SQL INSERT statement.

The utility issues one INSERT statement for each row of data in the input file. If an

INSERT statement fails, one of two actions result:

v If it is likely that subsequent INSERT statements can be successful, a warning

message is written to the message file, and processing continues.

v If it is likely that subsequent INSERT statements will fail, and there is potential

for database damage, an error message is written to the message file, and

processing halts.

The utility performs an automatic COMMIT after the old rows are deleted during a

REPLACE or a REPLACE_CREATE operation. Therefore, if the system fails, or the

application interrupts the database manager after the table object is truncated, all

of the old data is lost. Ensure that the old data is no longer needed before using

these options.

If the log becomes full during a CREATE, REPLACE, or REPLACE_CREATE

operation, the utility performs an automatic COMMIT on inserted records. If the

system fails, or the application interrupts the database manager after an automatic

COMMIT, a table with partial data remains in the database. Use the REPLACE or

the REPLACE_CREATE option to rerun the whole import operation, or use

INSERT with the RESTARTCOUNT parameter set to the number of rows

successfully imported.

By default, automatic COMMITs are not performed for the INSERT or the

INSERT_UPDATE option. They are, however, performed if the COMMITCOUNT

parameter is not zero. If automatic COMMITs are not performed, a full log results

in a ROLLBACK.

Offline import does not perform automatic COMMITs if any of the following

conditions is true:

v the target is a view, not a table

v compound inserts are used

v buffered inserts are used

By default, online import performs automatic COMMITs to free both the active log

space and the lock list. Automatic COMMITs are not performed only if a

COMMITCOUNT value of zero is specified.

IMPORT

58 Data Movement Utilities DB2 9 BETA

Whenever the import utility performs a COMMIT, two messages are written to the

message file: one indicates the number of records to be committed, and the other is

written after a successful COMMIT. When restarting the import operation after a

failure, specify the number of records to skip, as determined from the last

successful COMMIT.

The import utility accepts input data with minor incompatibility problems (for

example, character data can be imported using padding or truncation, and numeric

data can be imported with a different numeric data type), but data with major

incompatibility problems is not accepted.

One cannot REPLACE or REPLACE_CREATE an object table if it has any

dependents other than itself, or an object view if its base table has any dependents

(including itself). To replace such a table or a view, do the following:

1. Drop all foreign keys in which the table is a parent.

2. Run the import utility.

3. Alter the table to recreate the foreign keys.

If an error occurs while recreating the foreign keys, modify the data to maintain

referential integrity.

Referential constraints and foreign key definitions are not preserved when creating

tables from PC/IXF files. (Primary key definitions are preserved if the data was

previously exported using SELECT *.)

Importing to a remote database requires enough disk space on the server for a

copy of the input data file, the output message file, and potential growth in the

size of the database.

If an import operation is run against a remote database, and the output message

file is very long (more than 60KB), the message file returned to the user on the

client might be missing messages from the middle of the import operation. The

first 30KB of message information and the last 30KB of message information are

always retained.

Importing PC/IXF files to a remote database is much faster if the PC/IXF file is on

a hard drive rather than on diskettes.

The database table or hierarchy must exist before data in the ASC, DEL, or WSF

file formats can be imported; however, if the table does not already exist, IMPORT

CREATE or IMPORT REPLACE_CREATE creates the table when it imports data

from a PC/IXF file. For typed tables, IMPORT CREATE can create the type

hierarchy and the table hierarchy as well.

PC/IXF import should be used to move data (including hierarchical data) between

databases. If character data containing row separators is exported to a delimited

ASCII (DEL) file and processed by a text transfer program, fields containing the

row separators will shrink or expand. The file copying step is not necessary if the

source and the target databases are both accessible from the same client.

The data in ASC and DEL files is assumed to be in the code page of the client

application performing the import. PC/IXF files, which allow for different code

pages, are recommended when importing data in different code pages. If the

PC/IXF file and the import utility are in the same code page, processing occurs as

for a regular application. If the two differ, and the FORCEIN option is specified,

IMPORT

Chapter 2. Import 59DB2 9 BETA

the import utility assumes that data in the PC/IXF file has the same code page as

the application performing the import. This occurs even if there is a conversion

table for the two code pages. If the two differ, the FORCEIN option is not

specified, and there is a conversion table, all data in the PC/IXF file will be

converted from the file code page to the application code page. If the two differ,

the FORCEIN option is not specified, and there is no conversion table, the import

operation will fail. This applies only to PC/IXF files on DB2 clients on the AIX

operating system.

For table objects on an 8 KB page that are close to the limit of 1012 columns,

import of PC/IXF data files might cause DB2 to return an error, because the

maximum size of an SQL statement was exceeded. This situation can occur only if

the columns are of type CHAR, VARCHAR, or CLOB. The restriction does not

apply to import of DEL or ASC files. If PC/IXF files are being used to create a new

table, an alternative is use db2look to dump the DDL statement that created the

table, and then to issue that statement through the CLP.

DB2 Connect can be used to import data to DRDA servers such as DB2 for

OS/390, DB2 for VM and VSE, and DB2 for OS/400. Only PC/IXF import (INSERT

option) is supported. The RESTARTCOUNT parameter, but not the

COMMITCOUNT parameter, is also supported.

When using the CREATE option with typed tables, create every sub-table defined

in the PC/IXF file; sub-table definitions cannot be altered. When using options

other than CREATE with typed tables, the traversal order list enables one to

specify the traverse order; therefore, the traversal order list must match the one

used during the export operation. For the PC/IXF file format, one need only

specify the target sub-table name, and use the traverse order stored in the file.

The import utility can be used to recover a table previously exported to a PC/IXF

file. The table returns to the state it was in when exported.

Data cannot be imported to a system table, a declared temporary table, or a

summary table.

Views cannot be created through the import utility.

On the Windows operating system:

v Importing logically split PC/IXF files is not supported.

v Importing bad format PC/IXF or WSF files is not supported.

Security labels in their internal format might contain newline characters. If you

import the file using the DEL file format, those newline characters can be mistaken

for delimiters. If you have this problem use the older default priority for delimiters

by specifying the delprioritychar file type modifier in the IMPORT command.

 Federated considerations:

 When using the IMPORT command and the INSERT, UPDATE, or

INSERT_UPDATE command parameters, you must ensure that you have

CONTROL privilege on the participating nickname. You must ensure that the

nickname you wish to use when doing an import operation already exists. There

are also several restrictions you should be aware of as shown in the IMPORT

command parameters section.

IMPORT

60 Data Movement Utilities DB2 9 BETA

Related concepts:

v “Import Overview” on page 35

v “Privileges, authorities, and authorization required to use import” on page 38

 Related tasks:

v “Importing data” on page 38

 Related reference:

v “XMLPARSE scalar function” in SQL Reference, Volume 1

v “ADMIN_CMD procedure – Run administrative commands” in Administrative

SQL Routines and Views

v “db2look - DB2 statistics and DDL extraction tool command” in Command

Reference

v “IMPORT command using the ADMIN_CMD procedure” on page 61

v “Import sessions - CLP examples” on page 97

v “LOB and XML file behavior with regard to import and export” on page 7

IMPORT command using the ADMIN_CMD procedure

Inserts data from an external file with a supported file format into a table,

hierarchy, view or nickname. LOAD is a faster alternative, but the load utility does

not support loading data at the hierarchy level.

 Authorization:

v IMPORT using the INSERT option requires one of the following:

– sysadm

– dbadm

– CONTROL privilege on each participating table, view, or nickname

– INSERT and SELECT privilege on each participating table or view
v IMPORT to an existing table using the INSERT_UPDATE option, requires one of

the following:

– sysadm

– dbadm

– CONTROL privilege on each participating table, view, or nickname

– INSERT, SELECT, UPDATE and DELETE privilege on each participating table

or view
v IMPORT to an existing table using the REPLACE or REPLACE_CREATE option,

requires one of the following:

– sysadm

– dbadm

– CONTROL privilege on the table or view

– INSERT, SELECT, and DELETE privilege on the table or view
v IMPORT to a new table using the CREATE or REPLACE_CREATE option,

requires one of the following:

– sysadm

– dbadm

– CREATETAB authority on the database and USE privilege on the table space,

as well as one of:

IMPORT

Chapter 2. Import 61DB2 9 BETA

- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist

- CREATIN privilege on the schema, if the schema name of the table refers to

an existing schema
v IMPORT to a hierarchy that does not exist using the CREATE, or the

REPLACE_CREATE option, requires one of the following:

– sysadm

– dbadm

– CREATETAB authority on the database and USE privilege on the table space

and one of:

- IMPLICIT_SCHEMA authority on the database, if the schema name of the

table does not exist

- CREATEIN privilege on the schema, if the schema of the table exists

- CONTROL privilege on every sub-table in the hierarchy, if the

REPLACE_CREATE option on the entire hierarchy is used
v IMPORT to an existing hierarchy using the REPLACE option requires one of the

following:

– sysadm

– dbadm

– CONTROL privilege on every sub-table in the hierarchy
v To import data into a table that has protected columns, the session authorization

ID must have LBAC credentials that allow write access to all protected columns

in the table. Otherwise the import fails and an error (SQLSTATE 42512) is

returned.

v To import data into a table that has protected rows, the session authorization ID

must hold LBAC credentials that meets these criteria:

– It is part of the security policy protecting the table

– It was granted to the session authorization ID for write access

The label on the row to insert, the user’s LBAC credentials, the security policy

definition, and the LBAC rules determine determine the label on the row.

v If the REPLACE or REPLACE_CREATE option is specified, the session

authorization ID must have the authority to drop the table.

 Required connection:

 Command syntax:

�� IMPORT FROM filename OF filetype

�

,

LOBS FROM

lob-path

�

,

XML FROM

xml-path

 �

�

�

MODIFIED BY

filetype-mod

 �

IMPORT using ADMIN_CMD

62 Data Movement Utilities DB2 9 BETA

�

�

�

�

�

,

METHOD

L

(

column-start

column-end

)

,

NULL INDICATORS

(

null-indicator-list

)

,

N

(

column-name

)

,

P

(

column-position

)

 �

�
XMLPARSE

STRIP

WHITESPACE

PRESERVE

 �

�

XMLVALIDATE USING

XDS

Ignore and Map parameters

DEFAULT

schema-sqlid

SCHEMA

schema-sqlid

SCHEMALOCATION HINTS

 ALLOW NO ACCESS

ALLOW WRITE ACCESS

�

�
COMMITCOUNT

n

AUTOMATIC

RESTARTCOUNT

n

SKIPCOUNT

ROWCOUNT

n

WARNINGCOUNT

n

NOTIMEOUT
 �

�

�

�

 INSERT INTO table-name

INSERT_UPDATE

,

REPLACE

REPLACE_CREATE

(

insert-column

)

hierarchy description

CREATE

INTO

table-name

tblspace-specs

,

(

insert-column

)

hierarchy description

AS ROOT TABLE

UNDER

sub-table-name

 ��

Ignore and Map parameters:

�

,

IGNORE

(

schema-sqlid

)

 �

�

�

,

MAP

(

(

schema-sqlid

,

schema-sqlid

)

)

hierarchy description:

 ALL TABLES

sub-table-list

IN

HIERARCHY

STARTING

sub-table-name

traversal-order-list

sub-table-list:

�

�

 ,

(

sub-table-name

)

,

(

insert-column

)

IMPORT using ADMIN_CMD

Chapter 2. Import 63DB2 9 BETA

traversal-order-list:

�

 ,

(

sub-table-name

)

tblspace-specs:

IN

tablespace-name

INDEX IN

tablespace-name

LONG IN

tablespace-name

 Command parameters:

ALL TABLES

An implicit keyword for hierarchy only. When importing a hierarchy, the

default is to import all tables specified in the traversal order.

ALLOW NO ACCESS

Runs import in the offline mode. An exclusive (X) lock on the target table

is acquired before any rows are inserted. This prevents concurrent

applications from accessing table data. This is the default import behavior.

ALLOW WRITE ACCESS

Runs import in the online mode. An intent exclusive (IX) lock on the target

table is acquired when the first row is inserted. This allows concurrent

readers and writers to access table data. Online mode is not compatible

with the REPLACE, CREATE, or REPLACE_CREATE import options.

Online mode is not supported in conjunction with buffered inserts. The

import operation will periodically commit inserted data to prevent lock

escalation to a table lock and to avoid running out of active log space.

These commits will be performed even if the COMMITCOUNT option was

not used. During each commit, import will lose its IX table lock, and will

attempt to reacquire it after the commit. This parameter is required when

you import to a nickname and COMMITCOUNT must be specified with a

valid number (AUTOMATIC is not considered a valid option).

AS ROOT TABLE

Creates one or more sub-tables as a stand-alone table hierarchy.

COMMITCOUNT n/AUTOMATIC

Performs a COMMIT after every n records are imported. When a number n

is specified, import performs a COMMIT after every n records are

imported. When compound inserts are used, a user-specified commit

frequency of n is rounded up to the first integer multiple of the compound

count value. When AUTOMATIC is specified, import internally determines

when a commit needs to be performed. The utility will commit for either

one of two reasons:

v to avoid running out of active log space

v to avoid lock escalation from row level to table level

If the ALLOW WRITE ACCESS option is specified, and the

COMMITCOUNT option is not specified, the import utility will perform

commits as if COMMITCOUNT AUTOMATIC had been specified.

If the IMPORT command encounters an SQL0964C (Transaction Log Full)

while inserting or updating a record and the COMMITCOUNT n is specified,

IMPORT will attempt to resolve the issue by performing an unconditional

commit and then reattempt to insert or update the record. If this does not

IMPORT using ADMIN_CMD

64 Data Movement Utilities DB2 9 BETA

help resolve the log full condition (which would be the case when the log

full is attributed to other activity on the database), then the IMPORT

command will fail as expected, however the number of rows committed

may not be a multiple of the COMMITCOUNT n value. The RESTARTCOUNT or

SKIPCOUNT option can be used to avoid processing those row already

committed.

CREATE

Creates the table definition and row contents in the code page of the

database. If the data was exported from a DB2 table, sub-table, or

hierarchy, indexes are created. If this option operates on a hierarchy, and

data was exported from DB2, a type hierarchy will also be created. This

option can only be used with IXF files.

 This parameter is not valid when you import to a nickname.

Note: If the data was exported from an MVS host database, and it contains

LONGVAR fields whose lengths, calculated on the page size, are less

than 254, CREATE might fail because the rows are too long. See

Using import to recreate an exported table for a list of restrictions.

In this case, the table should be created manually, and IMPORT with

INSERT should be invoked, or, alternatively, the LOAD command

should be used.

DEFAULT schema-sqlid

This option can only be used when the USING XDS parameter is specified.

The schema specified through the DEFAULT clause identifies a schema to

use for validation when the XML Data Specifier (XDS) of an imported

XML document does not contain an SCH attribute identifying an XML

Schema.

 The DEFAULT clause takes precedence over the IGNORE and MAP

clauses. If an XDS satisfies the DEFAULT clause, the IGNORE and MAP

specifications will be ignored.

FROM filename

HIERARCHY

Specifies that hierarchical data is to be imported.

IGNORE schema-sqlid

This option can only be used when the USING XDS parameter is specified.

The IGNORE clause specifies a list of one or more schemas to ignore if

they are identified by an SCH attribute. If an SCH attribute exists in the

XML Data Specifier for an imported XML document, and the schema

identified by the SCH attribute is included in the list of schemas to

IGNORE, then no schema validation will occur for the imported XML

document.

 If a schema is specified in the IGNORE clause, it cannot also be present in

the left side of a schema pair in the MAP clause.

 The IGNORE clause applies only to the XDS. A schema that is mapped by

the MAP clause will not be subsequently ignored if specified by the

IGNORE clause.

IN tablespace-name

Identifies the table space in which the table will be created. The table space

must exist, and must be a REGULAR table space. If no other table space is

specified, all table parts are stored in this table space. If this clause is not

specified, the table is created in a table space created by the authorization

IMPORT using ADMIN_CMD

Chapter 2. Import 65DB2 9 BETA

ID. If none is found, the table is placed into the default table space

USERSPACE1. If USERSPACE1 has been dropped, table creation fails.

INDEX IN tablespace-name

Identifies the table space in which any indexes on the table will be created.

This option is allowed only when the primary table space specified in the

IN clause is a DMS table space. The specified table space must exist, and

must be a REGULAR or LARGE DMS table space.

Note: Specifying which table space will contain an index can only be done

when the table is created.

insert-column

Specifies the name of a column in the table or the view into which data is

to be inserted.

INSERT

Adds the imported data to the table without changing the existing table

data.

INSERT_UPDATE

Adds rows of imported data to the target table, or updates existing rows

(of the target table) with matching primary keys.

INTO table-name

Specifies the database table into which the data is to be imported. This

table cannot be a system table, a declared temporary table or a summary

table.

 One can use an alias for INSERT, INSERT_UPDATE, or REPLACE, except

in the case of a down-level server, when the fully qualified or the

unqualified table name should be used. A qualified table name is in the

form: schema.tablename. The schema is the user name under which the table

was created.

LOBS FROM lob-path

The names of the LOB data files are stored in the main data file (ASC,

DEL, or IXF), in the column that will be loaded into the LOB column. The

maximum number of paths that can be specified is 999. This will implicitly

activate the LOBSINFILE behaviour.

 This parameter is not valid when you import to a nickname.

LONG IN tablespace-name

Identifies the table space in which the values of any long columns (LONG

VARCHAR, LONG VARGRAPHIC, LOB data types, or distinct types with

any of these as source types) will be stored. This option is allowed only if

the primary table space specified in the IN clause is a DMS table space.

The table space must exist, and must be a LARGE DMS table space.

MAP schema-sqlid

This option can only be used when the USING XDS parameter is specified.

Use the MAP clause to specify alternate schemas to use in place of those

specified by the SCH attribute of an XML Data Specifier (XDS) for each

imported XML document. The MAP clause specifies a list of one or more

schema pairs, where each pair represents a mapping of one schema to

another. The first schema in the pair represents a schema that is referred to

by an SCH attribute in an XDS. The second schema in the pair represents

the schema that should be used to perform schema validation.

IMPORT using ADMIN_CMD

66 Data Movement Utilities DB2 9 BETA

If a schema is present in the left side of a schema pair in the MAP clause,

it cannot also be specified in the IGNORE clause.

 Once a schema pair mapping is applied, the result is final. The mapping

operation is non-transitive, and therefore the schema chosen will not be

subsequently applied to another schema pair mapping.

 A schema cannot be mapped more than once, meaning that it cannot

appear on the left side of more than one pair.

METHOD

L Specifies the start and end column numbers from which to import

data. A column number is a byte offset from the beginning of a

row of data. It is numbered starting from 1.

Note: This method can only be used with ASC files, and is the

only valid option for that file type.

N Specifies the names of the columns to be imported.

Note: This method can only be used with IXF files.

P Specifies the field numbers of the input data fields to be imported.

Note: This method can only be used with IXF or DEL files, and is

the only valid option for the DEL file type.

MODIFIED BY filetype-mod

Specifies file type modifier options. See File type modifiers for the import

utility.

NOTIMEOUT

Specifies that the import utility will not time out while waiting for locks.

This option supersedes the locktimeout database configuration parameter.

Other applications are not affected.

NULL INDICATORS null-indicator-list

This option can only be used when the METHOD L parameter is specified.

That is, the input file is an ASC file. The null indicator list is a

comma-separated list of positive integers specifying the column number of

each null indicator field. The column number is the byte offset of the null

indicator field from the beginning of a row of data. There must be one

entry in the null indicator list for each data field defined in the METHOD

L parameter. A column number of zero indicates that the corresponding

data field always contains data.

 A value of Y in the NULL indicator column specifies that the column data

is NULL. Any character other than Y in the NULL indicator column

specifies that the column data is not NULL, and that column data specified

by the METHOD L option will be imported.

 The NULL indicator character can be changed using the MODIFIED BY

option, with the nullindchar file type modifier.

OF filetype

Specifies the format of the data in the input file:

v ASC (non-delimited ASCII format)

v DEL (delimited ASCII format), which is used by a variety of database

manager and file manager programs

v WSF (work sheet format), which is used by programs such as:

IMPORT using ADMIN_CMD

Chapter 2. Import 67DB2 9 BETA

– Lotus 1-2-3

– Lotus Symphony
v IXF (integrated exchange format, PC version), which means it was

exported from the same or another DB2 table. An IXF file also contains

the table definition and definitions of any existing indexes, except when

columns are specified in the SELECT statement.

Th WSF file type is not supported when you import to a nickname.

REPLACE

Deletes all existing data from the table by truncating the data object, and

inserts the imported data. The table definition and the index definitions are

not changed. This option can only be used if the table exists. If this option

is used when moving data between hierarchies, only the data for an entire

hierarchy, not individual subtables, can be replaced.

 This parameter is not valid when you import to a nickname.

 This option does not honour the CREATE TABLE statement’s NOT

LOGGED INITIALLY (NLI) clause or the ALTER TABLE statement’s

ACTIVE NOT LOGGED INITIALLY clause.

 If an import with the REPLACE option is performed within the same

transaction as a CREATE TABLE or ALTER TABLE statement where the

NLI clause is invoked, the import will not honor the NLI clause. All inserts

will be logged.

Workaround 1

Delete the contents of the table using the DELETE statement, then

invoke the import with INSERT statement

Workaround 2

Drop the table and recreate it, then invoke the import with INSERT

statement.

This limitation applies to DB2 UDB Version 7 and DB2 UDB Version 8

REPLACE_CREATE

If the table exists, deletes all existing data from the table by truncating the

data object, and inserts the imported data without changing the table

definition or the index definitions.

 If the table does not exist, creates the table and index definitions, as well as

the row contents, in the code page of the database. See Using import to

recreate an exported table for a list of restrictions.

 This option can only be used with IXF files. If this option is used when

moving data between hierarchies, only the data for an entire hierarchy, not

individual subtables, can be replaced.

 This parameter is not valid when you import to a nickname.

RESTARTCOUNT n

Specifies that an import operation is to be started at record n + 1. The first

n records are skipped. This option is functionally equivalent to

SKIPCOUNT. RESTARTCOUNT and SKIPCOUNT are mutually exclusive.

ROWCOUNT n

Specifies the number n of physical records in the file to be imported

(inserted or updated). Allows a user to import only n rows from a file,

starting from the record determined by the SKIPCOUNT or

RESTARTCOUNT options. If the SKIPCOUNT or RESTARTCOUNT

IMPORT using ADMIN_CMD

68 Data Movement Utilities DB2 9 BETA

options are not specified, the first n rows are imported. If SKIPCOUNT m

or RESTARTCOUNT m is specified, rows m+1 to m+n are imported. When

compound inserts are used, user specified rowcount n is rounded up to the

first integer multiple of the compound count value.

SKIPCOUNT n

Specifies that an import operation is to be started at record n + 1. The first

n records are skipped. This option is functionally equivalent to

RESTARTCOUNT. SKIPCOUNT and RESTARTCOUNT are mutually

exclusive.

STARTING sub-table-name

A keyword for hierarchy only, requesting the default order, starting from

sub-table-name. For PC/IXF files, the default order is the order stored in the

input file. The default order is the only valid order for the PC/IXF file

format.

sub-table-list

For typed tables with the INSERT or the INSERT_UPDATE option, a list of

sub-table names is used to indicate the sub-tables into which data is to be

imported.

traversal-order-list

For typed tables with the INSERT, INSERT_UPDATE, or the REPLACE

option, a list of sub-table names is used to indicate the traversal order of

the importing sub-tables in the hierarchy.

UNDER sub-table-name

Specifies a parent table for creating one or more sub-tables.

WARNINGCOUNT n

Stops the import operation after n warnings. Set this parameter if no

warnings are expected, but verification that the correct file and table are

being used is desired. If the import file or the target table is specified

incorrectly, the import utility will generate a warning for each row that it

attempts to import, which will cause the import to fail. If n is zero, or this

option is not specified, the import operation will continue regardless of the

number of warnings issued.

XML FROM xml-path

Specifies one or more paths that contain the XML files.

XMLPARSE

Specifies how XML documents are parsed. If this option is not specified,

the parsing behaviour for XML documents will be determined by the value

of the CURRENT XMLPARSE OPTION special register.

STRIP WHITESPACE

Specifies to remove whitespace when the XML document is parsed.

PRESERVE WHITESPACE

Specifies not to remove whitespace when the XML document is

parsed.

XMLVALIDATE

Specifies that XML documents are validated against a schema, when

applicable.

USING XDS

XML documents are validated against the XML schema identified

by the XML Data Specifier (XDS) in the main data file. By default,

if the XMLVALIDATE option is invoked with the USING XDS

IMPORT using ADMIN_CMD

Chapter 2. Import 69DB2 9 BETA

clause, the schema used to perform validation will be determined

by the SCH attribute of the XDS. If an SCH attribute is not present

in the XDS, no schema validation will occur unless a default

schema is specified by the DEFAULT clause.

 The DEFAULT, IGNORE, and MAP clauses can be used to modify

the schema determination behavior. These three optional clauses

apply directly to the specifications of the XDS, and not to each

other. For example, if a schema is selected because it is specified by

the DEFAULT clause, it will not be ignored if also specified by the

IGNORE clause. Similarly, if a schema is selected because it is

specified as the first part of a pair in the MAP clause, it will not be

re-mapped if also specified in the second part of another MAP

clause pair.

USING SCHEMA schema-sqlid

XML documents are validated against the XML schema with the

specified SQL identifier. In this case, the SCH attribute of the XML

Data Specifier (XDS) will be ignored for all XML columns.

USING SCHEMALOCATION HINTS

XML documents are validated against the schemas identified by

XML schema location hints in the source XML documents. If a

schemaLocation (SCH) attribute is not found in the XML

document, no validation will occur. When the USING

SCHEMALOCATION HINTS clause is specified, the SCH attribute

of the XML Data Specifier (XDS) will be ignored for all XML

columns.

See examples of the XMLVALIDATE option below.

 Usage notes:

 Be sure to complete all table operations and release all locks before starting an

import operation. This can be done by issuing a COMMIT after closing all cursors

opened WITH HOLD, or by issuing a ROLLBACK.

The import utility adds rows to the target table using the SQL INSERT statement.

The utility issues one INSERT statement for each row of data in the input file. If an

INSERT statement fails, one of two actions result:

v If it is likely that subsequent INSERT statements can be successful, a warning

message is written to the message file, and processing continues.

v If it is likely that subsequent INSERT statements will fail, and there is potential

for database damage, an error message is written to the message file, and

processing halts.

The utility performs an automatic COMMIT after the old rows are deleted during a

REPLACE or a REPLACE_CREATE operation. Therefore, if the system fails, or the

application interrupts the database manager after the table object is truncated, all

of the old data is lost. Ensure that the old data is no longer needed before using

these options.

If the log becomes full during a CREATE, REPLACE, or REPLACE_CREATE

operation, the utility performs an automatic COMMIT on inserted records. If the

system fails, or the application interrupts the database manager after an automatic

COMMIT, a table with partial data remains in the database. Use the REPLACE or

IMPORT using ADMIN_CMD

70 Data Movement Utilities DB2 9 BETA

the REPLACE_CREATE option to rerun the whole import operation, or use

INSERT with the RESTARTCOUNT parameter set to the number of rows

successfully imported.

By default, automatic COMMITs are not performed for the INSERT or the

INSERT_UPDATE option. They are, however, performed if the COMMITCOUNT

parameter is not zero. If automatic COMMITs are not performed, a full log results

in a ROLLBACK.

Offline import does not perform automatic COMMITs if any of the following

conditions is true:

v the target is a view, not a table

v compound inserts are used

v buffered inserts are used

By default, online import performs automatic COMMITs to free both the active log

space and the lock list. Automatic COMMITs are not performed only if a

COMMITCOUNT value of zero is specified.

Whenever the import utility performs a COMMIT, two messages are written to the

message file: one indicates the number of records to be committed, and the other is

written after a successful COMMIT. When restarting the import operation after a

failure, specify the number of records to skip, as determined from the last

successful COMMIT.

The import utility accepts input data with minor incompatibility problems (for

example, character data can be imported using padding or truncation, and numeric

data can be imported with a different numeric data type), but data with major

incompatibility problems is not accepted.

One cannot REPLACE or REPLACE_CREATE an object table if it has any

dependents other than itself, or an object view if its base table has any dependents

(including itself). To replace such a table or a view, do the following:

1. Drop all foreign keys in which the table is a parent.

2. Run the import utility.

3. Alter the table to recreate the foreign keys.

If an error occurs while recreating the foreign keys, modify the data to maintain

referential integrity.

Referential constraints and foreign key definitions are not preserved when creating

tables from PC/IXF files. (Primary key definitions are preserved if the data was

previously exported using SELECT *.)

Importing to a remote database requires enough disk space on the server for a

copy of the input data file, the output message file, and potential growth in the

size of the database.

If an import operation is run against a remote database, and the output message

file is very long (more than 60KB), the message file returned to the user on the

client might be missing messages from the middle of the import operation. The

first 30KB of message information and the last 30KB of message information are

always retained.

IMPORT using ADMIN_CMD

Chapter 2. Import 71DB2 9 BETA

Importing PC/IXF files to a remote database is much faster if the PC/IXF file is on

a hard drive rather than on diskettes.

The database table or hierarchy must exist before data in the ASC, DEL, or WSF

file formats can be imported; however, if the table does not already exist, IMPORT

CREATE or IMPORT REPLACE_CREATE creates the table when it imports data

from a PC/IXF file. For typed tables, IMPORT CREATE can create the type

hierarchy and the table hierarchy as well.

PC/IXF import should be used to move data (including hierarchical data) between

databases. If character data containing row separators is exported to a delimited

ASCII (DEL) file and processed by a text transfer program, fields containing the

row separators will shrink or expand. The file copying step is not necessary if the

source and the target databases are both accessible from the same client.

The data in ASC and DEL files is assumed to be in the code page of the client

application performing the import. PC/IXF files, which allow for different code

pages, are recommended when importing data in different code pages. If the

PC/IXF file and the import utility are in the same code page, processing occurs as

for a regular application. If the two differ, and the FORCEIN option is specified,

the import utility assumes that data in the PC/IXF file has the same code page as

the application performing the import. This occurs even if there is a conversion

table for the two code pages. If the two differ, the FORCEIN option is not

specified, and there is a conversion table, all data in the PC/IXF file will be

converted from the file code page to the application code page. If the two differ,

the FORCEIN option is not specified, and there is no conversion table, the import

operation will fail. This applies only to PC/IXF files on DB2 clients on the AIX

operating system.

For table objects on an 8 KB page that are close to the limit of 1012 columns,

import of PC/IXF data files might cause DB2 to return an error, because the

maximum size of an SQL statement was exceeded. This situation can occur only if

the columns are of type CHAR, VARCHAR, or CLOB. The restriction does not

apply to import of DEL or ASC files. If PC/IXF files are being used to create a new

table, an alternative is use db2look to dump the DDL statement that created the

table, and then to issue that statement through the CLP.

DB2 Connect can be used to import data to DRDA servers such as DB2 for

OS/390, DB2 for VM and VSE, and DB2 for OS/400. Only PC/IXF import (INSERT

option) is supported. The RESTARTCOUNT parameter, but not the

COMMITCOUNT parameter, is also supported.

When using the CREATE option with typed tables, create every sub-table defined

in the PC/IXF file; sub-table definitions cannot be altered. When using options

other than CREATE with typed tables, the traversal order list enables one to

specify the traverse order; therefore, the traversal order list must match the one

used during the export operation. For the PC/IXF file format, one need only

specify the target sub-table name, and use the traverse order stored in the file.

The import utility can be used to recover a table previously exported to a PC/IXF

file. The table returns to the state it was in when exported.

Data cannot be imported to a system table, a declared temporary table, or a

summary table.

Views cannot be created through the import utility.

IMPORT using ADMIN_CMD

72 Data Movement Utilities DB2 9 BETA

On the Windows operating system:

v Importing logically split PC/IXF files is not supported.

v Importing bad format PC/IXF or WSF files is not supported.

Security labels in their internal format might contain newline characters. If you

import the file using the DEL file format, those newline characters can be mistaken

for delimiters. If you have this problem use the older default priority for delimiters

by specifying the delprioritychar file type modifier in the IMPORT command.

 Federated considerations:

 When using the IMPORT command and the INSERT, UPDATE, or

INSERT_UPDATE command parameters, you must ensure that you have

CONTROL privilege on the participating nickname. You must ensure that the

nickname you wish to use when doing an import operation already exists. There

are also several restrictions you should be aware of as shown in the IMPORT

command parameters section.

 Related concepts:

v “Privileges, authorities, and authorization required to use import” on page 38

 Related tasks:

v “Importing data” on page 38

 Related reference:

v “ADMIN_CMD procedure – Run administrative commands” in Administrative

SQL Routines and Views

v “ADMIN_GET_MSGS table function – Retrieve messages generated by a data

movement utility that is executed through the ADMIN_CMD procedure” in

Administrative SQL Routines and Views

v “ADMIN_REMOVE_MSGS procedure – Clean up messages generated by a data

movement utility that is executed through the ADMIN_CMD procedure” in

Administrative SQL Routines and Views

v “db2Import - Import data into a table, hierarchy, nickname or view” on page 73

v “db2look - DB2 statistics and DDL extraction tool command” in Command

Reference

v “db2pd - Monitor and troubleshoot DB2 database command” in Command

Reference

db2Import - Import data into a table, hierarchy, nickname or view

 Inserts data from an external file with a supported file format into a table,

hierarchy, nickname or view. The load utility is faster than this function. The load

utility, however, does not support loading data at the hierarchy level or loading

into a nickname.

 Authorization:

 v IMPORT using the INSERT option requires one of the following:

– sysadm

– dbadm

– CONTROL privilege on each participating table, view or nickname

– INSERT and SELECT privilege on each participating table or view

IMPORT using ADMIN_CMD

Chapter 2. Import 73DB2 9 BETA

v IMPORT to an existing table using the INSERT_UPDATE option, requires one of

the following:

– sysadm

– dbadm

– CONTROL privilege on the table, view or nickname

– INSERT, SELECT, UPDATE and DELETE privilege on each participating table

or view
v IMPORT to an existing table using the REPLACE or REPLACE_CREATE option,

requires one of the following:

– sysadm

– dbadm

– CONTROL privilege on the table or view

– INSERT, SELECT, and DELETE privilege on the table or view
v IMPORT to a new table using the CREATE or REPLACE_CREATE option,

requires one of the following:

– sysadm

– dbadm

– CREATETAB authority on the database and USE privilege on the table space,

as well as one of:

- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist

- CREATIN privilege on the schema, if the schema name of the table refers to

an existing schema
v IMPORT to a table or a hierarchy that does not exist using the CREATE, or the

REPLACE_CREATE option, requires one of the following:

– sysadm

– dbadm

– CREATETAB authority on the database, and one of:

- IMPLICIT_SCHEMA authority on the database, if the schema name of the

table does not exist

- CREATEIN privilege on the schema, if the schema of the table exists

- CONTROL privilege on every sub-table in the hierarchy, if the

REPLACE_CREATE option on the entire hierarchy is used
v IMPORT to an existing hierarchy using the REPLACE option requires one of the

following:

– sysadm

– dbadm

– CONTROL privilege on every sub-table in the hierarchy

 Required connection:

 Database. If implicit connect is enabled, a connection to the default database is

established.

 API include file:

db2ApiDf.h

 API and data structure syntax:

db2Import - Import data into a table, hierarchy, nickname or view

74 Data Movement Utilities DB2 9 BETA

SQL_API_RC SQL_API_FN

 db2Import (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ImportStruct

{

 char *piDataFileName;

 struct sqlu_media_list *piLobPathList;

 struct sqldcol *piDataDescriptor;

 struct sqlchar *piActionString;

 char *piFileType;

 struct sqlchar *piFileTypeMod;

 char *piMsgFileName;

 db2int16 iCallerAction;

 struct db2ImportIn *piImportInfoIn;

 struct db2ImportOut *poImportInfoOut;

 db2int32 *piNullIndicators;

 struct sqlu_media_list *piXmlPathList;

} db2ImportStruct;

typedef SQL_STRUCTURE db2ImportIn

{

 db2Uint64 iRowcount;

 db2Uint64 iRestartcount;

 db2Uint64 iSkipcount;

 db2int32 *piCommitcount;

 db2Uint32 iWarningcount;

 db2Uint16 iNoTimeout;

 db2Uint16 iAccessLevel;

 db2Uint16 *piXmlParse;

 struct db2DMUXmlValidate *piXmlValidate;

} db2ImportIn;

typedef SQL_STRUCTURE db2ImportOut

{

 db2Uint64 oRowsRead;

 db2Uint64 oRowsSkipped;

 db2Uint64 oRowsInserted;

 db2Uint64 oRowsUpdated;

 db2Uint64 oRowsRejected;

 db2Uint64 oRowsCommitted;

} db2ImportOut;

typedef SQL_STRUCTURE db2DMUXmlMapSchema

{

 struct db2Char iMapFromSchema;

 struct db2Char iMapToSchema;

} db2DMUXmlMapSchema;

typedef SQL_STRUCTURE db2DMUXmlValidateXds

{

 struct db2Char *piDefaultSchema;

 db2Uint32 iNumIgnoreSchemas;

 struct db2Char *piIgnoreSchemas;

 db2Uint32 iNumMapSchemas;

 struct db2DMUXmlMapSchema *piMapSchemas;

} db2DMUXmlValidateXds;

typedef SQL_STRUCTURE db2DMUXmlValidateSchema

{

 struct db2Char *piSchema;

} db2DMUXmlValidateSchema;

typedef SQL_STRUCTURE db2DMUXmlValidate

{

db2Import - Import data into a table, hierarchy, nickname or view

Chapter 2. Import 75DB2 9 BETA

db2Uint16 iUsing;

 struct db2DMUXmlValidateXds *piXdsArgs;

 struct db2DMUXmlValidateSchema *piSchemaArgs;

} db2DMUXmlValidate;

SQL_API_RC SQL_API_FN

 db2gImport (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gImportStruct

{

 char *piDataFileName;

 struct sqlu_media_list *piLobPathList;

 struct sqldcol *piDataDescriptor;

 struct sqlchar *piActionString;

 char *piFileType;

 struct sqlchar *piFileTypeMod;

 char *piMsgFileName;

 db2int16 iCallerAction;

 struct db2gImportIn *piImportInfoIn;

 struct dbg2ImportOut *poImportInfoOut;

 db2int32 *piNullIndicators;

 db2Uint16 iDataFileNameLen;

 db2Uint16 iFileTypeLen;

 db2Uint16 iMsgFileNameLen;

 struct sqlu_media_list *piXmlPathList;

} db2gImportStruct;

typedef SQL_STRUCTURE db2gImportIn

{

 db2Uint64 iRowcount;

 db2Uint64 iRestartcount;

 db2Uint64 iSkipcount;

 db2int32 *piCommitcount;

 db2Uint32 iWarningcount;

 db2Uint16 iNoTimeout;

 db2Uint16 iAccessLevel;

 db2Uint16 *piXmlParse;

 struct db2DMUXmlValidate *piXmlValidate;

} db2gImportIn;

typedef SQL_STRUCTURE db2gImportOut

{

 db2Uint64 oRowsRead;

 db2Uint64 oRowsSkipped;

 db2Uint64 oRowsInserted;

 db2Uint64 oRowsUpdated;

 db2Uint64 oRowsRejected;

 db2Uint64 oRowsCommitted;

} db2gImportOut;

 db2Import API parameters:

 versionNumber

Input. Specifies the version and release level of the structure passed in as

the second parameter pParmStruct.

pParmStruct

Input/Output. A pointer to the db2ImportStruct structure.

pSqlca

Output. A pointer to the sqlca structure.

 db2ImportStruct data structure parameters:

db2Import - Import data into a table, hierarchy, nickname or view

76 Data Movement Utilities DB2 9 BETA

piDataFileName

Input. A string containing the path and the name of the external input file

from which the data is to be imported.

piLobPathList

Input. Pointer to an sqlu_media_list with its media_type field set to

SQLU_LOCAL_MEDIA, and its sqlu_media_entry structure listing paths

on the client where the LOB files can be found. This parameter is not valid

when you import to a nickname.

piDataDescriptor

Input. Pointer to an sqldcol structure containing information about the

columns being selected for import from the external file. The value of the

dcolmeth field determines how the remainder of the information provided

in this parameter is interpreted by the import utility. Valid values for this

parameter are:

SQL_METH_N

Names. Selection of columns from the external input file is by

column name.

SQL_METH_P

Positions. Selection of columns from the external input file is by

column position.

SQL_METH_L

Locations. Selection of columns from the external input file is by

column location. The database manager rejects an import call with

a location pair that is invalid because of any one of the following

conditions:

v Either the beginning or the ending location is not in the range

from 1 to the largest signed 2-byte integer.

v The ending location is smaller than the beginning location.

v The input column width defined by the location pair is not

compatible with the type and the length of the target column.

A location pair with both locations equal to zero indicates that a

nullable column is to be filled with NULLs.

SQL_METH_D

Default. If piDataDescriptor is NULL, or is set to SQL_METH_D,

default selection of columns from the external input file is done. In

this case, the number of columns and the column specification

array are both ignored. For DEL, IXF, or WSF files, the first n

columns of data in the external input file are taken in their natural

order, where n is the number of database columns into which the

data is to be imported.

piActionString

Input. Pointer to an sqlchar structure containing a 2-byte long field,

followed by an array of characters identifying the columns into which data

is to be imported.

 The character array is of the form:

{INSERT | INSERT_UPDATE | REPLACE | CREATE | REPLACE_CREATE}

INTO {tname[(tcolumn-list)] |

[{ALL TABLES | (tname[(tcolumn-list)][, tname[(tcolumn-list)]])}]

[IN] HIERARCHY {STARTING tname | (tname[, tname])}

[UNDER sub-table-name | AS ROOT TABLE]}

[DATALINK SPECIFICATION datalink-spec]

db2Import - Import data into a table, hierarchy, nickname or view

Chapter 2. Import 77DB2 9 BETA

INSERT

Adds the imported data to the table without changing the existing

table data.

INSERT_UPDATE

Adds the imported rows if their primary key values are not in the

table, and uses them for update if their primary key values are

found. This option is only valid if the target table has a primary

key, and the specified (or implied) list of target columns being

imported includes all columns for the primary key. This option

cannot be applied to views.

REPLACE

Deletes all existing data from the table by truncating the table

object, and inserts the imported data. The table definition and the

index definitions are not changed. (Indexes are deleted and

replaced if indexixf is in FileTypeMod, and FileType is SQL_IXF.) If

the table is not already defined, an error is returned.

Note: If an error occurs after the existing data is deleted, that data

is lost.

This parameter is not valid when you import to a nickname.

CREATE

Creates the table definition and the row contents using the

information in the specified PC/IXF file, if the specified table is not

defined. If the file was previously exported by DB2, indexes are

also created. If the specified table is already defined, an error is

returned. This option is valid for the PC/IXF file format only. This

parameter is not valid when you import to a nickname.

REPLACE_CREATE

Replaces the table contents using the PC/IXF row information in

the PC/IXF file, if the specified table is defined. If the table is not

already defined, the table definition and row contents are created

using the information in the specified PC/IXF file. If the PC/IXF

file was previously exported by DB2, indexes are also created. This

option is valid for the PC/IXF file format only.

Note: If an error occurs after the existing data is deleted, that data

is lost.

This parameter is not valid when you import to a nickname.

tname The name of the table, typed table, view, or object view into which

the data is to be inserted. An alias for REPLACE,

INSERT_UPDATE, or INSERT can be specified, except in the case

of a down-level server, when a qualified or unqualified name

should be specified. If it is a view, it cannot be a read-only view.

tcolumn-list

A list of table or view column names into which the data is to be

inserted. The column names must be separated by commas. If

column names are not specified, column names as defined in the

CREATE TABLE or the ALTER TABLE statement are used. If no

column list is specified for typed tables, data is inserted into all

columns within each sub-table.

db2Import - Import data into a table, hierarchy, nickname or view

78 Data Movement Utilities DB2 9 BETA

sub-table-name

Specifies a parent table when creating one or more sub-tables

under the CREATE option.

ALL TABLES

An implicit keyword for hierarchy only. When importing a

hierarchy, the default is to import all tables specified in the

traversal-order-list.

HIERARCHY

Specifies that hierarchical data is to be imported.

STARTING

Keyword for hierarchy only. Specifies that the default order,

starting from a given sub-table name, is to be used.

UNDER

Keyword for hierarchy and CREATE only. Specifies that the new

hierarchy, sub-hierarchy, or sub-table is to be created under a given

sub-table.

AS ROOT TABLE

Keyword for hierarchy and CREATE only. Specifies that the new

hierarchy, sub-hierarchy, or sub-table is to be created as a

stand-alone hierarchy.

DATALINK SPECIFICATION datalink-spec

Specifies parameters pertaining to DB2 Data Links Manager. These

parameters can be specified using the same syntax as in the

IMPORT command.

The tname and the tcolumn-list parameters correspond to the tablename

and the colname lists of SQL INSERT statements, and have the same

restrictions.

 The columns in tcolumn-list and the external columns (either specified or

implied) are matched according to their position in the list or the structure

(data from the first column specified in the sqldcol structure is inserted

into the table or view field corresponding to the first element of the

tcolumn-list).

 If unequal numbers of columns are specified, the number of columns

actually processed is the lesser of the two numbers. This could result in an

error (because there are no values to place in some non-nullable table

fields) or an informational message (because some external file columns are

ignored).

 This parameter is not valid when you import to a nickname.

piFileType

Input. A string that indicates the format of the data within the external file.

Supported external file formats are:

SQL_ASC

Non-delimited ASCII.

SQL_DEL

Delimited ASCII, for exchange with dBase, BASIC, and the IBM

Personal Decision Series programs, and many other database

managers and file managers.

SQL_IXF

PC version of the Integrated Exchange Format, the preferred

db2Import - Import data into a table, hierarchy, nickname or view

Chapter 2. Import 79DB2 9 BETA

method for exporting data from a table so that it can be imported

later into the same table or into another database manager table.

SQL_WSF

Worksheet formats for exchange with Lotus Symphony and 1-2-3

programs. The WSF file type is not supported when you import to

a nickname.

piFileTypeMod

Input. A pointer to a structure containing a 2-byte long field, followed by

an array of characters that specify one or more processing options. If this

pointer is NULL, or the structure pointed to has zero characters, this action

is interpreted as selection of a default specification.

 Not all options can be used with all of the supported file types. See related

link ″File type modifiers for the import utility″.

piMsgFileName

Input. A string containing the destination for error, warning, and

informational messages returned by the utility. It can be the path and the

name of an operating system file or a standard device. If the file already

exists, it is appended to. If it does not exist, a file is created.

iCallerAction

Input. An action requested by the caller. Valid values are:

SQLU_INITIAL

Initial call. This value must be used on the first call to the API. If

the initial call or any subsequent call returns and requires the

calling application to perform some action prior to completing the

requested import operation, the caller action must be set to one of

the following:

SQLU_CONTINUE

Continue processing. This value can only be used on subsequent

calls to the API, after the initial call has returned with the utility

requesting user input (for example, to respond to an end of tape

condition). It specifies that the user action requested by the utility

has completed, and the utility can continue processing the initial

request.

SQLU_TERMINATE

Terminate processing. This value can only be used on subsequent

calls to the API, after the initial call has returned with the utility

requesting user input (for example, to respond to an end of tape

condition). It specifies that the user action requested by the utility

was not performed, and the utility is to terminate processing the

initial request.

piImportInfoIn

Input. Pointer to the db2ImportIn structure.

poImportInfoOut

Output. Pointer to the db2ImportOut structure.

piNullIndicators

Input. For ASC files only. An array of integers that indicate whether or not

the column data is nullable. The number of elements in this array must

match the number of columns in the input file; there is a one-to-one

ordered correspondence between the elements of this array and the

columns being imported from the data file. Therefore, the number of

db2Import - Import data into a table, hierarchy, nickname or view

80 Data Movement Utilities DB2 9 BETA

elements must equal the dcolnum field of the piDataDescriptor parameter.

Each element of the array contains a number identifying a column in the

data file that is to be used as a null indicator field, or a zero indicating that

the table column is not nullable. If the element is not zero, the identified

column in the data file must contain a Y or an N. A Y indicates that the

table column data is NULL, and N indicates that the table column data is

not NULL.

piXmlPathList

Input. Pointer to an sqlu_media_list with its media_type field set to

SQLU_LOCAL_MEDIA, and its sqlu_media_entry structure listing paths

on the client where the XML files can be found.

 db2ImportIn data structure parameters:

 iRowcount

Input. The number of physical records to be loaded. Allows a user to load

only the first iRowcount rows in a file. If iRowcount is 0, import will

attempt to process all the rows from the file.

iRestartcount

Input. The number of records to skip before starting to insert or update

records. Functionally equivalent to iSkipcount parameter. iRestartcount and

iSkipcount parameters are mutually exclusive.

iSkipcount

Input. The number of records to skip before starting to insert or update

records. Functionally equivalent to iRestartcount.

piCommitcount

Input. The number of records to import before committing them to the

database. A commit is performed whenever piCommitcount records are

imported. A NULL value specifies the default commit count value, which

is zero for offline import and AUTOMATIC for online import.

Commitcount AUTOMATIC is specified by passing in the value

DB2IMPORT_COMMIT_AUTO.

iWarningcount

Input. Stops the import operation after iWarningcount warnings. Set this

parameter if no warnings are expected, but verification that the correct file

and table are being used is desired. If the import file or the target table is

specified incorrectly, the import utility will generate a warning for each

row that it attempts to import, which will cause the import to fail.

 If iWarningcount is 0, or this option is not specified, the import operation

will continue regardless of the number of warnings issued.

iNoTimeout

Input. Specifies that the import utility will not time out while waiting for

locks. This option supersedes the locktimeout database configuration

parameter. Other applications are not affected. Valid values are:

DB2IMPORT_LOCKTIMEOUT

Indicates that the value of the locktimeout configuration parameter

is respected.

DB2IMPORT_NO_LOCKTIMEOUT

Indicates there is no timeout.

iAccessLevel

Input. Specifies the access level. Valid values are:

db2Import - Import data into a table, hierarchy, nickname or view

Chapter 2. Import 81DB2 9 BETA

- SQLU_ALLOW_NO_ACCESS

Specifies that the import utility locks the table exclusively.

- SQLU_ALLOW_WRITE_ACCESS

Specifies that the data in the table should still be accessible to

readers and writers while the import is in progress.

An intent exclusive (IX) lock on the target table is acquired when the first

row is inserted. This allows concurrent readers and writers to access table

data. Online mode is not compatible with the REPLACE, CREATE, or

REPLACE_CREATE import options. Online mode is not supported in

conjunction with buffered inserts. The import operation will periodically

commit inserted data to prevent lock escalation to a table lock and to avoid

running out of active log space. These commits will be performed even if

the piCommitCount parameter was not used. During each commit, import

will lose its IX table lock, and will attempt to reacquire it after the commit.

This parameter is required when you import to a nickname and

piCommitCount parameter must be specified with a valid number

(AUTOMATIC is not considered a valid option).

piXmlParse

Input. Type of parsing that should occur for XML documents. Valid values

found in the db2ApiDf header file in the include directory, are:

DB2DMU_XMLPARSE_PRESERVE_WS

Whitespace should be preserved.

DB2DMU_XMLPARSE_STRIP_WS

Whitespace should be stripped.

piXmlValidate

Input. Pointer to the db2DMUXmlValidate structure. Indicates that XML

schema validation should occur for XML documents.

 db2ImportOut data structure parameters:

 oRowsRead

Output. Number of records read from the file during import.

oRowsSkipped

Output. Number of records skipped before inserting or updating begins.

oRowsInserted

Output. Number of rows inserted into the target table.

oRowsUpdated

Output. Number of rows in the target table updated with information from

the imported records (records whose primary key value already exists in

the table).

oRowsRejected

Output. Number of records that could not be imported.

oRowsCommitted

Output. Number of records imported successfully and committed to the

database.

 db2DMUXmlMapSchema data structure parameters:

 iMapFromSchema

Input. The SQL identifier of the XML schema to map from.

db2Import - Import data into a table, hierarchy, nickname or view

82 Data Movement Utilities DB2 9 BETA

iMapToSchema

Input. The SQL identifier of the XML schema to map to.

 db2DMUXmlValidateXds data structure parameters:

 piDefaultSchema

Input. The SQL identifier of the XML schema that should be used for

validation when an XDS does not contain an SCH attribute.

iNumIgnoreSchemas

Input. The number of XML schemas that will be ignored during XML

schema validation if they are referred to by an SCH attribute in XDS.

piIgnoreSchemas

Input. The list of XML schemas that will be ignored during XML schema

validation if they are referred to by an SCH attribute in XDS.

iNumMapSchemas

Input. The number of XML schemas that will be mapped during XML

schema validation. The first schema in the schema map pair represents a

schema that is referred to by an SCH attribute in an XDS. The second

schema in the pair represents the schema that should be used to perform

schema validation.

piMapSchemas

Input. The list of XML schema pairs, where each pair represents a mapping

of one schema to a different one. The first schema in the pair represents a

schema that is referred to by an SCH attribute in an XDS. The second

schema in the pair represents the schema that should be used to perform

schema validation.

 db2DMUXmlValidateSchema data structure parameters:

 piSchema

Input. The SQL identifier of the XML schema to use.

 db2DMUXmlValidate data structure parameters:

 iUsing

Input. A specification of what to use to perform XML schema validation.

Valid values found in the db2ApiDf header file in the include directory,

are:

- DB2DMU_XMLVAL_XDS

Validation should occur according to the XDS. This corresponds to

the CLP ″XMLVALIDATE USING XDS″ clause.

- DB2DMU_XMLVAL_SCHEMA

Validation should occur according to a specified schema. This

corresponds to the CLP ″XMLVALIDATE USING SCHEMA″ clause.

- DB2DMU_XMLVAL_SCHEMALOC_HINTS

Validation should occur according to schemaLocation hints found

within the XML document. This corresponds to the

″XMLVALIDATE USING SCHEMALOCATION HINTS″ clause.

piXdsArgs

Input. Pointer to a db2DMUXmlValidateXds structure, representing

arguments that correspond to the CLP ″XMLVALIDATE USING XDS″

clause.

db2Import - Import data into a table, hierarchy, nickname or view

Chapter 2. Import 83DB2 9 BETA

This parameter applies only when the iUsing parameter in the same

structure is set to DB2DMU_XMLVAL_XDS.

piSchemaArgs

Input. Pointer to a db2DMUXmlValidateSchema structure, representing

arguments that correspond to the CLP ″XMLVALIDATE USING SCHEMA″

clause.

 This parameter applies only when the iUsing parameter in the same

structure is set to DB2DMU_XMLVAL_SCHEMA.

 db2gImportStruct data structure specific parameters:

 iDataFileNameLen

Input. Specifies the length in bytes of piDataFileName parameter.

iFileTypeLen

Input. Specifies the length in bytes of piFileType parameter.

iMsgFileNameLen

Input. Specifies the length in bytes of piMsgFileName parameter.

 Usage notes:

 Before starting an import operation, you must complete all table operations and

release all locks in one of two ways:

v Close all open cursors that were defined with the WITH HOLD clause, and

commit the data changes by executing the COMMIT statement.

v Roll back the data changes by executing the ROLLBACK statement.

The import utility adds rows to the target table using the SQL INSERT statement.

The utility issues one INSERT statement for each row of data in the input file. If an

INSERT statement fails, one of two actions result:

v If it is likely that subsequent INSERT statements can be successful, a warning

message is written to the message file, and processing continues.

v If it is likely that subsequent INSERT statements will fail, and there is potential

for database damage, an error message is written to the message file, and

processing halts.

The utility performs an automatic COMMIT after the old rows are deleted during a

REPLACE or a REPLACE_CREATE operation. Therefore, if the system fails, or the

application interrupts the database manager after the table object is truncated, all

of the old data is lost. Ensure that the old data is no longer needed before using

these options.

If the log becomes full during a CREATE, REPLACE, or REPLACE_CREATE

operation, the utility performs an automatic COMMIT on inserted records. If the

system fails, or the application interrupts the database manager after an automatic

COMMIT, a table with partial data remains in the database. Use the REPLACE or

the REPLACE_CREATE option to rerun the whole import operation, or use

INSERT with the iRestartcount parameter set to the number of rows successfully

imported.

By default, automatic COMMITs are not performed for the INSERT or the

INSERT_UPDATE option. They are, however, performed if the *piCommitcount

parameter is not zero. A full log results in a ROLLBACK.

db2Import - Import data into a table, hierarchy, nickname or view

84 Data Movement Utilities DB2 9 BETA

Whenever the import utility performs a COMMIT, two messages are written to the

message file: one indicates the number of records to be committed, and the other is

written after a successful COMMIT. When restarting the import operation after a

failure, specify the number of records to skip, as determined from the last

successful COMMIT.

The import utility accepts input data with minor incompatibility problems (for

example, character data can be imported using padding or truncation, and numeric

data can be imported with a different numeric data type), but data with major

incompatibility problems is not accepted.

One cannot REPLACE or REPLACE_CREATE an object table if it has any

dependents other than itself, or an object view if its base table has any dependents

(including itself). To replace such a table or a view, do the following:

1. Drop all foreign keys in which the table is a parent.

2. Run the import utility.

3. Alter the table to recreate the foreign keys.

If an error occurs while recreating the foreign keys, modify the data to maintain

referential integrity.

Referential constraints and foreign key definitions are not preserved when creating

tables from PC/IXF files. (Primary key definitions are preserved if the data was

previously exported using SELECT *.)

Importing to a remote database requires enough disk space on the server for a

copy of the input data file, the output message file, and potential growth in the

size of the database.

If an import operation is run against a remote database, and the output message

file is very long (more than 60 KB), the message file returned to the user on the

client may be missing messages from the middle of the import operation. The first

30 KB of message information and the last 30 KB of message information are

always retained.

Importing PC/IXF files to a remote database is much faster if the PC/IXF file is on

a hard drive rather than on diskettes. Non-default values for piDataDescriptor, or

specifying an explicit list of table columns in piActionString, makes importing to a

remote database slower.

The database table or hierarchy must exist before data in the ASC, DEL, or WSF

file formats can be imported; however, if the table does not already exist, IMPORT

CREATE or IMPORT REPLACE_CREATE creates the table when it imports data

from a PC/IXF file. For typed tables, IMPORT CREATE can create the type

hierarchy and the table hierarchy as well.

PC/IXF import should be used to move data (including hierarchical data) between

databases. If character data containing row separators is exported to a delimited

ASCII (DEL) file and processed by a text transfer program, fields containing the

row separators will shrink or expand.

The data in ASC and DEL files is assumed to be in the code page of the client

application performing the import. PC/IXF files, which allow for different code

pages, are recommended when importing data in different code pages. If the

PC/IXF file and the import utility are in the same code page, processing occurs as

db2Import - Import data into a table, hierarchy, nickname or view

Chapter 2. Import 85DB2 9 BETA

for a regular application. If the two differ, and the FORCEIN option is specified,

the import utility assumes that data in the PC/IXF file has the same code page as

the application performing the import. This occurs even if there is a conversion

table for the two code pages. If the two differ, the FORCEIN option is not

specified, and there is a conversion table, all data in the PC/IXF file will be

converted from the file code page to the application code page. If the two differ,

the FORCEIN option is not specified, and there is no conversion table, the import

operation will fail. This applies only to PC/IXF files on DB2 for AIX clients.

For table objects on an 8KB page that are close to the limit of 1012 columns, import

of PC/IXF data files may cause DB2 to return an error, because the maximum size

of an SQL statement was exceeded. This situation can occur only if the columns

are of type CHAR, VARCHAR, or CLOB. The restriction does not apply to import

of DEL or ASC files.

DB2 Connect can be used to import data to DRDA servers such as DB2 for

OS/390, DB2 for VM and VSE, and DB2 for OS/400. Only PC/IXF import (INSERT

option) is supported. The restartcnt parameter, but not the commitcnt parameter, is

also supported.

When using the CREATE option with typed tables, create every sub-table defined

in the PC/IXF file; sub-table definitions cannot be altered. When using options

other than CREATE with typed tables, the traversal order list enables one to

specify the traverse order; therefore, the traversal order list must match the one

used during the export operation. For the PC/IXF file format, one need only

specify the target sub-table name, and use the traverse order stored in the file. The

import utility can be used to recover a table previously exported to a PC/IXF file.

The table returns to the state it was in when exported.

Data cannot be imported to a system table, a declared temporary table, or a

summary table.

Views cannot be created through the import utility.

On the Windows operating system:

v Importing logically split PC/IXF files is not supported.

v Importing bad format PC/IXF or WSF files is not supported.

 Federated considerations:

 When using the db2Import API and the INSERT, UPDATE, or INSERT_UPDATE

parameters, you must ensure that you have CONTROL privilege on the

participating nickname. You must ensure that the nickname you wish to use when

doing an import operation already exists.

 Related tasks:

v “Importing data” on page 38

 Related reference:

v “IMPORT ” on page 49

v “SQLCA data structure” in Administrative API Reference

v “sqldcol data structure” in Administrative API Reference

v “sqlu_media_list data structure” in Administrative API Reference

v “IMPORT command using the ADMIN_CMD procedure” on page 61

db2Import - Import data into a table, hierarchy, nickname or view

86 Data Movement Utilities DB2 9 BETA

v “db2Export - Export data from a database” on page 19

v “db2Load - Load data into a table” on page 161

 Related samples:

v “expsamp.sqb -- Export and import tables with table data to a DRDA database

(IBM COBOL)”

v “impexp.sqb -- Export and import tables with table data (IBM COBOL)”

v “tbmove.sqc -- How to move table data (C)”

v “dtformat.sqc -- Load and import data format extensions (C)”

v “tbmove.sqC -- How to move table data (C++)”

File type modifiers for the import utility

 Table 6. Valid file type modifiers for the import utility: All file formats

Modifier Description

compound=x x is a number between 1 and 100 inclusive. Uses nonatomic compound SQL to

insert the data, and x statements will be attempted each time.

If this modifier is specified, and the transaction log is not sufficiently large, the

import operation will fail. The transaction log must be large enough to

accommodate either the number of rows specified by COMMITCOUNT, or the

number of rows in the data file if COMMITCOUNT is not specified. It is therefore

recommended that the COMMITCOUNT option be specified to avoid transaction

log overflow.

This modifier is incompatible with INSERT_UPDATE mode, hierarchical tables,

and the following modifiers: usedefaults, identitymissing, identityignore,

generatedmissing, and generatedignore.

generatedignore This modifier informs the import utility that data for all generated columns is

present in the data file but should be ignored. This results in all values for the

generated columns being generated by the utility. This modifier cannot be used

with the generatedmissing modifier.

generatedmissing If this modifier is specified, the utility assumes that the input data file contains no

data for the generated columns (not even NULLs), and will therefore generate a

value for each row. This modifier cannot be used with the generatedignore

modifier.

identityignore This modifier informs the import utility that data for the identity column is

present in the data file but should be ignored. This results in all identity values

being generated by the utility. The behavior will be the same for both

GENERATED ALWAYS and GENERATED BY DEFAULT identity columns. This

means that for GENERATED ALWAYS columns, no rows will be rejected. This

modifier cannot be used with the identitymissing modifier.

identitymissing If this modifier is specified, the utility assumes that the input data file contains no

data for the identity column (not even NULLs), and will therefore generate a

value for each row. The behavior will be the same for both GENERATED

ALWAYS and GENERATED BY DEFAULT identity columns. This modifier cannot

be used with the identityignore modifier.

db2Import - Import data into a table, hierarchy, nickname or view

Chapter 2. Import 87DB2 9 BETA

Table 6. Valid file type modifiers for the import utility: All file formats (continued)

Modifier Description

lobsinfile lob-path specifies the path to the files containing LOB data.

Each path contains at least one file that contains at least one LOB pointed to by a

Lob Location Specifier (LLS) in the data file. The LLS is a string representation of

the location of a LOB in a file stored in the LOB file path. The format of an LLS is

filename.ext.nnn.mmm/, where filename.ext is the name of the file that contains the

LOB, nnn is the offset in bytes of the LOB within the file, and mmm is the length

of the LOB in bytes. For example, if the string db2exp.001.123.456/ is stored in

the data file, the LOB is located at offset 123 in the file db2exp.001, and is 456

bytes long.

The LOBS FROM clause specifies where the LOB files are located when the

“lobsinfile” modifier is used. The LOBS FROM clause will implicitly activate the

LOBSINFILE behavior. The LOBS FROM clause conveys to the IMPORT utility

the list of paths to search for the LOB files while importing the data.

To indicate a null LOB, enter the size as -1. If the size is specified as 0, it is

treated as a 0 length LOB. For null LOBS with length of -1, the offset and the file

name are ignored. For example, the LLS of a null LOB might be db2exp.001.7.-1/.

no_type_id Valid only when importing into a single sub-table. Typical usage is to export data

from a regular table, and then to invoke an import operation (using this modifier)

to convert the data into a single sub-table.

nodefaults If a source column for a target table column is not explicitly specified, and the

table column is not nullable, default values are not loaded. Without this option, if

a source column for one of the target table columns is not explicitly specified, one

of the following occurs:

v If a default value can be specified for a column, the default value is loaded

v If the column is nullable, and a default value cannot be specified for that

column, a NULL is loaded

v If the column is not nullable, and a default value cannot be specified, an error

is returned, and the utility stops processing.

norowwarnings Suppresses all warnings about rejected rows.

seclabelchar Indicates that security labels in the input source file are in the string format for

security label values rather than in the default encoded numeric format. IMPORT

converts each security label into the internal format as it is loaded. If a string is

not in the proper format the row is not loaded and a warning (SQLSTATE 01H53)

is returned. If the string does not represent a valid security label that is part of

the security policy protecting the table then the row is not loaded and a warning

(SQLSTATE 01H53, SQLCODE SQL3243W)) is returned.

This modifier cannot be specified if the seclabelname modifier is specified,

otherwise the import fails and an error (SQLCODE SQL3525N) is returned.

seclabelname Indicates that security labels in the input source file are indicated by their name

rather than the default encoded numeric format. IMPORT will convert the name

to the appropriate security label if it exists. If no security label exists with the

indicated name for the security policy protecting the table the row is not loaded

and a warning (SQLSTATE 01H53, SQLCODE SQL3244W) is returned.

This modifier cannot be specified if the seclabelchar modifier is specified,

otherwise the import fails and an error (SQLCODE SQL3525N) is returned.

Note: If the file type is ASC, any spaces following the name of the security label

will be interpreted as being part of the name. To avoid this use the striptblanks

file type modifier to make sure the spaces are removed.

File type modifiers for the import utility

88 Data Movement Utilities DB2 9 BETA

Table 6. Valid file type modifiers for the import utility: All file formats (continued)

Modifier Description

usedefaults If a source column for a target table column has been specified, but it contains no

data for one or more row instances, default values are loaded. Examples of

missing data are:

v For DEL files: two adjacent column delimiters (",,") or two adjacent column

delimiters separated by an arbitrary number of spaces (", ,") are specified for a

column value.

v For DEL/ASC/WSF files: A row that does not have enough columns, or is not

long enough for the original specification.

Note: For ASC files, NULL column values are not considered explicitly

missing, and a default will not be substituted for NULL column values. NULL

column values are represented by all space characters for numeric, date, time,

and /timestamp columns, or by using the NULL INDICATOR for a column of

any type to indicate the column is NULL.

Without this option, if a source column contains no data for a row instance, one

of the following occurs:

v For DEL/ASC/WSF files: If the column is nullable, a NULL is loaded. If the

column is not nullable, the utility rejects the row.

 Table 7. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL)

Modifier Description

codepage=x x is an ASCII character string. The value is interpreted as the code page of the

data in the output data set. Converts character data from this code page to the

application code page during the import operation.

The following rules apply:

v For pure DBCS (graphic) mixed DBCS, and EUC, delimiters are restricted to the

range of x00 to x3F, inclusive.

v nullindchar must specify symbols included in the standard ASCII set between

code points x20 and x7F, inclusive. This refers to ASCII symbols and code

points.

Notes:

1. The codepage modifier cannot be used with the lobsinfile modifier.

2. If data expansion occurs when the code page is converted from the

application code page to the database code page, the data might be truncated

and loss of data can occur.

dateformat=″x″ x is the format of the date in the source file.2 Valid date elements are:

 YYYY - Year (four digits ranging from 0000 - 9999)

 M - Month (one or two digits ranging from 1 - 12)

 MM - Month (two digits ranging from 1 - 12;

 mutually exclusive with M)

 D - Day (one or two digits ranging from 1 - 31)

 DD - Day (two digits ranging from 1 - 31;

 mutually exclusive with D)

 DDD - Day of the year (three digits ranging

 from 001 - 366; mutually exclusive

 with other day or month elements)

A default value of 1 is assigned for each element that is not specified. Some

examples of date formats are:

 "D-M-YYYY"

 "MM.DD.YYYY"

 "YYYYDDD"

File type modifiers for the import utility

Chapter 2. Import 89DB2 9 BETA

Table 7. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

implieddecimal The location of an implied decimal point is determined by the column definition;

it is no longer assumed to be at the end of the value. For example, the value

12345 is loaded into a DECIMAL(8,2) column as 123.45, not 12345.00.

timeformat=″x″ x is the format of the time in the source file.2 Valid time elements are:

 H - Hour (one or two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24

 for a 24 hour system)

 HH - Hour (two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24

 for a 24 hour system; mutually exclusive

 with H)

 M - Minute (one or two digits ranging

 from 0 - 59)

 MM - Minute (two digits ranging from 0 - 59;

 mutually exclusive with M)

 S - Second (one or two digits ranging

 from 0 - 59)

 SS - Second (two digits ranging from 0 - 59;

 mutually exclusive with S)

 SSSSS - Second of the day after midnight (5 digits

 ranging from 00000 - 86399; mutually

 exclusive with other time elements)

 TT - Meridian indicator (AM or PM)

A default value of 0 is assigned for each element that is not specified. Some

examples of time formats are:

 "HH:MM:SS"

 "HH.MM TT"

 "SSSSS"

File type modifiers for the import utility

90 Data Movement Utilities DB2 9 BETA

Table 7. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

timestampformat=″x″ x is the format of the time stamp in the source file.2 Valid time stamp elements

are:

 YYYY - Year (four digits ranging from 0000 - 9999)

 M - Month (one or two digits ranging from 1 - 12)

 MM - Month (two digits ranging from 01 - 12;

 mutually exclusive with M and MMM)

 MMM - Month (three-letter case-insensitive abbreviation for

 the month name; mutually exclusive with M and MM)

 D - Day (one or two digits ranging from 1 - 31)

 DD - Day (two digits ranging from 1 - 31; mutually exclusive with D)

 DDD - Day of the year (three digits ranging from 001 - 366;

 mutually exclusive with other day or month elements)

 H - Hour (one or two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24 for a 24 hour system)

 HH - Hour (two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24 for a 24 hour system;

 mutually exclusive with H)

 M - Minute (one or two digits ranging from 0 - 59)

 MM - Minute (two digits ranging from 0 - 59;

 mutually exclusive with M, minute)

 S - Second (one or two digits ranging from 0 - 59)

 SS - Second (two digits ranging from 0 - 59;

 mutually exclusive with S)

 SSSSS - Second of the day after midnight (5 digits

 ranging from 00000 - 86399; mutually

 exclusive with other time elements)

 UUUUUU - Microsecond (6 digits ranging from 000000 - 999999;

 mutually exclusive with all other microsecond elements)

 UUUUU - Microsecond (5 digits ranging from 00000 - 99999,

 maps to range from 000000 - 999990;

 mutually exclusive with all other microseond elements)

 UUUU - Microsecond (4 digits ranging from 0000 - 9999,

 maps to range from 000000 - 999900;

 mutually exclusive with all other microseond elements)

 UUU - Microsecond (3 digits ranging from 000 - 999,

 maps to range from 000000 - 999000;

 mutually exclusive with all other microseond elements)

 UU - Microsecond (2 digits ranging from 00 - 99,

 maps to range from 000000 - 990000;

 mutually exclusive with all other microseond elements)

 U - Microsecond (1 digit ranging from 0 - 9,

 maps to range from 000000 - 900000;

 mutually exclusive with all other microseond elements)

 TT - Meridian indicator (AM or PM)

A default value of 1 is assigned for unspecified YYYY, M, MM, D, DD, or DDD

elements. A default value of ’Jan’ is assigned to an unspecified MMM element. A

default value of 0 is assigned for all other unspecified elements. Following is an

example of a time stamp format:

 "YYYY/MM/DD HH:MM:SS.UUUUUU"

The valid values for the MMM element include: ’jan’, ’feb’, ’mar’, ’apr’, ’may’,

’jun’, ’jul’, ’aug’, ’sep’, ’oct’, ’nov’ and ’dec’. These values are case insensitive.

The following example illustrates how to import data containing user defined

date and time formats into a table called schedule:

 db2 import from delfile2 of del

 modified by timestampformat="yyyy.mm.dd hh:mm tt"

 insert into schedule

File type modifiers for the import utility

Chapter 2. Import 91DB2 9 BETA

Table 7. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

usegraphiccodepage If usegraphiccodepage is given, the assumption is made that data being imported

into graphic or double-byte character large object (DBCLOB) data fields is in the

graphic code page. The rest of the data is assumed to be in the character code

page. The graphic code page is associated with the character code page. IMPORT

determines the character code page through either the codepage modifier, if it is

specified, or through the code page of the application if the codepage modifier is

not specified.

This modifier should be used in conjunction with the delimited data file

generated by drop table recovery only if the table being recovered has graphic

data.

Restrictions

The usegraphiccodepage modifier MUST NOT be specified with DEL files created

by the EXPORT utility, as these files contain data encoded in only one code page.

The usegraphiccodepage modifier is also ignored by the double-byte character

large objects (DBCLOBs) in files.

xmlchar Specifies that XML documents are encoded in the character code page.

This option is useful for processing XML documents that are encoded in the

specified character code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute,

the encoding must match the character code page, otherwise the row containing

the document will be rejected. Note that the character codepage is the value

specified by the codepage file type modifier, or the application codepage if it is

not specified. By default, either the documents are encoded in Unicode, or they

contain a declaration tag with an encoding attribute.

xmlgraphic Specifies that XML documents are encoded in the specified graphic code page.

This option is useful for processing XML documents that are encoded in a specific

graphic code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute,

the encoding must match the graphic code page, otherwise the row containing

the document will be rejected. Note that the graphic code page is the graphic

component of the value specified by the codepage file type modifier, or the

graphic component of the application code page if it is not specified. By default,

documents are either encoded in Unicode, or they contain a declaration tag with

an encoding attribute.

Note: If the xmlgraphic modifier is specified with the IMPORT command, the

XML document to be imported must be encoded in the UTF-16 code page.

Otherwise, the XML document may be rejected with a parsing error, or it may be

imported into the table with data corruption.

 Table 8. Valid file type modifiers for the import utility: ASC (non-delimited ASCII) file format

Modifier Description

nochecklengths If nochecklengths is specified, an attempt is made to import each row, even if the

source data has a column definition that exceeds the size of the target table

column. Such rows can be successfully imported if code page conversion causes

the source data to shrink; for example, 4-byte EUC data in the source could

shrink to 2-byte DBCS data in the target, and require half the space. This option

is particularly useful if it is known that the source data will fit in all cases despite

mismatched column definitions.

File type modifiers for the import utility

92 Data Movement Utilities DB2 9 BETA

Table 8. Valid file type modifiers for the import utility: ASC (non-delimited ASCII) file format (continued)

Modifier Description

nullindchar=x x is a single character. Changes the character denoting a null value to x. The

default value of x is Y.3

This modifier is case sensitive for EBCDIC data files, except when the character is

an English letter. For example, if the null indicator character is specified to be the

letter N, then n is also recognized as a null indicator.

reclen=x x is an integer with a maximum value of 32 767. x characters are read for each

row, and a new-line character is not used to indicate the end of the row.

striptblanks Truncates any trailing blank spaces when loading data into a variable-length field.

If this option is not specified, blank spaces are kept.

In the following example, striptblanks causes the import utility to truncate

trailing blank spaces:

 db2 import from myfile.asc of asc

 modified by striptblanks

 method l (1 10, 12 15) messages msgs.txt

 insert into staff

This option cannot be specified together with striptnulls. These are mutually

exclusive options. This option replaces the obsolete t option, which is supported

for back-level compatibility only.

striptnulls Truncates any trailing NULLs (0x00 characters) when loading data into a

variable-length field. If this option is not specified, NULLs are kept.

This option cannot be specified together with striptblanks. These are mutually

exclusive options. This option replaces the obsolete padwithzero option, which is

supported for back-level compatibility only.

 Table 9. Valid file type modifiers for the import utility: DEL (delimited ASCII) file format

Modifier Description

chardelx x is a single character string delimiter. The default value is a double quotation

mark ("). The specified character is used in place of double quotation marks to

enclose a character string.34 If you want to explicitly specify the double quotation

mark as the character string delimiter, it should be specified as follows:

 modified by chardel""

The single quotation mark (') can also be specified as a character string delimiter.

In the following example, chardel'' causes the import utility to interpret any

single quotation mark (') it encounters as a character string delimiter:

 db2 "import from myfile.del of del

 modified by chardel''

 method p (1, 4) insert into staff (id, years)"

coldelx x is a single character column delimiter. The default value is a comma (,). The

specified character is used in place of a comma to signal the end of a column.34

In the following example, coldel; causes the import utility to interpret any

semicolon (;) it encounters as a column delimiter:

 db2 import from myfile.del of del

 modified by coldel;

 messages msgs.txt insert into staff

decplusblank Plus sign character. Causes positive decimal values to be prefixed with a blank

space instead of a plus sign (+). The default action is to prefix positive decimal

values with a plus sign.

File type modifiers for the import utility

Chapter 2. Import 93DB2 9 BETA

Table 9. Valid file type modifiers for the import utility: DEL (delimited ASCII) file format (continued)

Modifier Description

decptx x is a single character substitute for the period as a decimal point character. The

default value is a period (.). The specified character is used in place of a period as

a decimal point character.34

In the following example, decpt; causes the import utility to interpret any

semicolon (;) it encounters as a decimal point:

 db2 "import from myfile.del of del

 modified by chardel'

 decpt; messages msgs.txt insert into staff"

delprioritychar The current default priority for delimiters is: record delimiter, character delimiter,

column delimiter. This modifier protects existing applications that depend on the

older priority by reverting the delimiter priorities to: character delimiter, record

delimiter, column delimiter. Syntax:

 db2 import ... modified by delprioritychar ...

For example, given the following DEL data file:

 "Smith, Joshua",4000,34.98<row delimiter>

 "Vincent,<row delimiter>, is a manager", ...

 ... 4005,44.37<row delimiter>

With the delprioritychar modifier specified, there will be only two rows in this

data file. The second <row delimiter> will be interpreted as part of the first data

column of the second row, while the first and the third <row delimiter> are

interpreted as actual record delimiters. If this modifier is not specified, there will

be three rows in this data file, each delimited by a <row delimiter>.

keepblanks Preserves the leading and trailing blanks in each field of type CHAR, VARCHAR,

LONG VARCHAR, or CLOB. Without this option, all leading and trailing blanks

that are not inside character delimiters are removed, and a NULL is inserted into

the table for all blank fields.

nochardel The import utility will assume all bytes found between the column delimiters to

be part of the column’s data. Character delimiters will be parsed as part of

column data. This option should not be specified if the data was exported using

DB2 (unless nochardel was specified at export time). It is provided to support

vendor data files that do not have character delimiters. Improper usage might

result in data loss or corruption.

This option cannot be specified with chardelx, delprioritychar or nodoubledel.

These are mutually exclusive options.

nodoubledel Suppresses recognition of double character delimiters.

 Table 10. Valid file type modifiers for the import utility: IXF file format

Modifier Description

forcein Directs the utility to accept data despite code page mismatches, and to suppress

translation between code pages.

Fixed length target fields are checked to verify that they are large enough for the

data. If nochecklengths is specified, no checking is done, and an attempt is made

to import each row.

indexixf Directs the utility to drop all indexes currently defined on the existing table, and

to create new ones from the index definitions in the PC/IXF file. This option can

only be used when the contents of a table are being replaced. It cannot be used

with a view, or when a insert-column is specified.

File type modifiers for the import utility

94 Data Movement Utilities DB2 9 BETA

Table 10. Valid file type modifiers for the import utility: IXF file format (continued)

Modifier Description

indexschema=schema Uses the specified schema for the index name during index creation. If schema is

not specified (but the keyword indexschema is specified), uses the connection user

ID. If the keyword is not specified, uses the schema in the IXF file.

nochecklengths If nochecklengths is specified, an attempt is made to import each row, even if the

source data has a column definition that exceeds the size of the target table

column. Such rows can be successfully imported if code page conversion causes

the source data to shrink; for example, 4-byte EUC data in the source could

shrink to 2-byte DBCS data in the target, and require half the space. This option

is particularly useful if it is known that the source data will fit in all cases despite

mismatched column definitions.

forcecreate Specifies that the table should be created with possible missing or limited

information after returning SQL3311N during an import operation.

 Table 11. IMPORT behavior when using codepage and usegraphiccodepage

codepage=N usegraphiccodepage IMPORT behavior

Absent Absent All data in the file is assumed to be in the application

code page.

Present Absent All data in the file is assumed to be in code page N.

Warning: Graphic data will be corrupted when

imported into the database if N is a single-byte code

page.

Absent Present Character data in the file is assumed to be in the

application code page. Graphic data is assumed to be in

the code page of the application graphic data.

If the application code page is single-byte, then all data

is assumed to be in the application code page.

Warning: If the application code page is single-byte,

graphic data will be corrupted when imported into the

database, even if the database contains graphic columns.

Present Present Character data is assumed to be in code page N. Graphic

data is assumed to be in the graphic code page of N.

If N is a single-byte or double-byte code page, then all

data is assumed to be in code page N.

Warning: Graphic data will be corrupted when

imported into the database if N is a single-byte code

page.

Notes:

 1. The import utility does not issue a warning if an attempt is made to use

unsupported file types with the MODIFIED BY option. If this is attempted, the

import operation fails, and an error code is returned.

 2. Double quotation marks around the date format string are mandatory. Field

separators cannot contain any of the following: a-z, A-Z, and 0-9. The field

separator should not be the same as the character delimiter or field delimiter

in the DEL file format. A field separator is optional if the start and end

positions of an element are unambiguous. Ambiguity can exist if (depending

on the modifier) elements such as D, H, M, or S are used, because of the

variable length of the entries.

File type modifiers for the import utility

Chapter 2. Import 95DB2 9 BETA

For time stamp formats, care must be taken to avoid ambiguity between the

month and the minute descriptors, since they both use the letter M. A month

field must be adjacent to other date fields. A minute field must be adjacent to

other time fields. Following are some ambiguous time stamp formats:

 "M" (could be a month, or a minute)

 "M:M" (Which is which?)

 "M:YYYY:M" (Both are interpreted as month.)

 "S:M:YYYY" (adjacent to both a time value and a date value)

In ambiguous cases, the utility will report an error message, and the operation

will fail.

Following are some unambiguous time stamp formats:

 "M:YYYY" (Month)

 "S:M" (Minute)

 "M:YYYY:S:M" (Month....Minute)

 "M:H:YYYY:M:D" (Minute....Month)

Some characters, such as double quotation marks and back slashes, must be

preceded by an escape character (for example, \).

 3. The character must be specified in the code page of the source data.

The character code point (instead of the character symbol), can be specified

using the syntax xJJ or 0xJJ, where JJ is the hexadecimal representation of the

code point. For example, to specify the # character as a column delimiter, use

one of the following:

 ... modified by coldel# ...

 ... modified by coldel0x23 ...

 ... modified by coldelX23 ...

 4. Delimiter restrictions for moving data lists restrictions that apply to the

characters that can be used as delimiter overrides.

 5. The following file type modifers are not allowed when importing into a

nickname:

v indexixf

v indexschema

v dldelfiletype

v nodefaults

v usedefaults

v no_type_idfiletype

v generatedignore

v generatedmissing

v identityignore

v identitymissing

v lobsinfile

 6. The WSF file format is not supported for XML columns.

 7. The CREATE mode is not supported for XML columns.

 8. All XML data must reside in XML files that are separate from the main data

file. An XML Data Specifier (XDS) (or a NULL value) must exist for each XML

column in the main data file.

 9. XML documents are assumed to be in Unicode format or to contain a

declaration tag that includes an encoding attribute, unless the XMLCHAR or

XMLGRAPHIC file type modifier is specified.

10. Rows containing documents that are not well-formed will be rejected.

File type modifiers for the import utility

96 Data Movement Utilities DB2 9 BETA

11. If the XMLVALIDATE option is specified, documents that successfully validate

against their matching schema will be annotated with the schema information

as they are inserted. Rows containing documents that fail to validate against

their matching schema will be rejected. To successfully perform the validation,

the privileges held by the user invoking the import must include at least one

of the following:

v SYSADM or DBADM authority

v USAGE privilege on the XML schema to be used in the validation

 Related reference:

v “Delimiter restrictions for moving data” on page 257

v “db2Import - Import data into a table, hierarchy, nickname or view” on page 73

v “IMPORT ” on page 49

Character set and NLS considerations

 Unequal code page situations, involving expansion or contraction of the character

data, can sometimes occur. For example, Japanese or Traditional-Chinese Extended

UNIX Code (EUC) and double-byte character sets (DBCS) might encode different

lengths for the same character. Normally, comparison of input data length to target

column length is performed before reading in any data. If the input length is

greater than the target length, NULLs are inserted into that column if it is nullable.

Otherwise, the request is rejected. If the nochecklengths modifier is specified, no

initial comparison is performed, and an attempt is made to import the data. If the

data is too long after translation is complete, the row is rejected. Otherwise, the

data is imported.

 Related concepts:

v “Character set and national language support” on page 205

 Related reference:

v “IMPORT ” on page 49

Import sessions - CLP examples

 Example 1

The following example shows how to import information from myfile.ixf to the

STAFF table:

 db2 import from myfile.ixf of ixf messages msg.txt insert into staff

SQL3150N The H record in the PC/IXF file has product "DB2 01.00", date

"19970220", and time "140848".

SQL3153N The T record in the PC/IXF file has name "myfile",

qualifier " ", and source " ".

SQL3109N The utility is beginning to load data from file "myfile".

SQL3110N The utility has completed processing. "58" rows were read from the

input file.

SQL3221W ...Begin COMMIT WORK. Input Record Count = "58".

SQL3222W ...COMMIT of any database changes was successful.

File type modifiers for the import utility

Chapter 2. Import 97DB2 9 BETA

SQL3149N "58" rows were processed from the input file. "58" rows were

successfully inserted into the table. "0" rows were rejected.

Example 3 (Importing into a Table with an Identity Column)

TABLE1 has 4 columns:

v C1 VARCHAR(30)

v C2 INT GENERATED BY DEFAULT AS IDENTITY

v C3 DECIMAL(7,2)

v C4 CHAR(1)

TABLE2 is the same as TABLE1, except that C2 is a GENERATED ALWAYS

identity column.

Data records in DATAFILE1 (DEL format):

 "Liszt"

 "Hummel",,187.43, H

 "Grieg",100, 66.34, G

 "Satie",101, 818.23, I

Data records in DATAFILE2 (DEL format):

 "Liszt", 74.49, A

 "Hummel", 0.01, H

 "Grieg", 66.34, G

 "Satie", 818.23, I

The following command generates identity values for rows 1 and 2, since no

identity values are supplied in DATAFILE1 for those rows. Rows 3 and 4, however,

are assigned the user-supplied identity values of 100 and 101, respectively.

 db2 import from datafile1.del of del replace into table1

To import DATAFILE1 into TABLE1 so that identity values are generated for all

rows, issue one of the following commands:

 db2 import from datafile1.del of del method P(1, 3, 4)

 replace into table1 (c1, c3, c4)

 db2 import from datafile1.del of del modified by identityignore

 replace into table1

To import DATAFILE2 into TABLE1 so that identity values are generated for each

row, issue one of the following commands:

 db2 import from datafile2.del of del replace into table1 (c1, c3, c4)

 db2 import from datafile2.del of del modified by identitymissing

 replace into table1

If DATAFILE1 is imported into TABLE2 without using any of the identity-related

file type modifiers, rows 1 and 2 will be inserted, but rows 3 and 4 will be rejected,

because they supply their own non-NULL values, and the identity column is

GENERATED ALWAYS.

Example 4 (Importing Using Null Indicators)

TABLE1 has 5 columns:

v COL1 VARCHAR 20 NOT NULL WITH DEFAULT

v COL2 SMALLINT

v COL3 CHAR 4

File type modifiers for the import utility

98 Data Movement Utilities DB2 9 BETA

v COL4 CHAR 2 NOT NULL WITH DEFAULT

v COL5 CHAR 2 NOT NULL

ASCFILE1 has 6 elements:

v ELE1 positions 01 to 20

v ELE2 positions 21 to 22

v ELE5 positions 23 to 23

v ELE3 positions 24 to 27

v ELE4 positions 28 to 31

v ELE6 positions 32 to 32

v ELE6 positions 33 to 40

Data Records:

 1...5....10...15...20...25...30...35...40

 Test data 1 XXN 123abcdN

 Test data 2 and 3 QQY wxyzN

 Test data 4,5 and 6 WWN6789 Y

The following command imports records from ASCFILE1 into TABLE1:

 db2 import from ascfile1 of asc

 method L (1 20, 21 22, 24 27, 28 31)

 null indicators (0, 0, 23, 32)

 insert into table1 (col1, col5, col2, col3)

Notes:

1. Since COL4 is not provided in the input file, it will be inserted into TABLE1

with its default value (it is defined NOT NULL WITH DEFAULT).

2. Positions 23 and 32 are used to indicate whether COL2 and COL3 of TABLE1

will be loaded NULL for a given row. If there is a Y in the column’s null

indicator position for a given record, the column will be NULL. If there is an N,

the data values in the column’s data positions of the input record (as defined in

L(........)) are used as the source of column data for the row. In this example,

neither column in row 1 is NULL; COL2 in row 2 is NULL; and COL3 in row 3

is NULL.

3. In this example, the NULL INDICATORS for COL1 and COL5 are specified as

0 (zero), indicating that the data is not nullable.

4. The NULL INDICATOR for a given column can be anywhere in the input

record, but the position must be specified, and the Y or N values must be

supplied.

 Related concepts:

v “Import Overview” on page 35

v “Importing large objects (LOBS)” on page 46

v “Importing user-defined distinct types (UDTs)” on page 47

v “Importing XML data” on page 40

 Related tasks:

v “Importing data” on page 38

 Related reference:

v Appendix B, “Differences between the import and load utility,” on page 279

File type modifiers for the import utility

Chapter 2. Import 99DB2 9 BETA

File type modifiers for the import utility

100 Data Movement Utilities DB2 9 BETA

Chapter 3. Load

This chapter describes the DB2 load utility, which moves data from files, named

pipes, devices or a cursor into a DB2 table. These data sources can reside either on

the database partition where the database resides, or on a remotely connected

client. If the table receiving the new data already contains data, you can replace or

append to the existing data.

The following topics are covered:

v “Load overview” on page 102

v “Parallelism and loading” on page 108

v “Privileges, authorities, and authorizations required to use Load” on page 109

v “Loading data” on page 110

v “Read access load operations” on page 113

v “Building indexes” on page 115

v “Using load with identity columns” on page 117

v “Using load with generated columns” on page 118

v “Checking for integrity violations following a load operation” on page 121

v “Refreshing dependent immediate materialized query tables” on page 123

v “Propagating dependent immediate staging tables” on page 124

v “Multidimensional clustering considerations ” on page 125

v “Load considerations for partitioned tables” on page 126

v “Restarting an interrupted load operation” on page 129

v “Recovering data with the load copy location file” on page 131

v “LOAD ” on page 132

v “LOAD command using the ADMIN_CMD procedure” on page 145

v “LOAD QUERY ” on page 158

v “db2Load - Load data into a table” on page 161

v “db2LoadQuery - Get the status of a load operation” on page 181

v “File type modifiers for the load utility” on page 188

v “Load exception table” on page 199

v “Load dump file” on page 200

v “Load temporary files” on page 201

v “Load utility log records” on page 201

v “Table locking, table states and table space states” on page 202

v “Character set and national language support” on page 205

v “Pending states after a load operation” on page 205

v “Optimizing load performance” on page 206

v “Load - CLP examples” on page 211

© Copyright IBM Corp. 1993, 2006 101DB2 9 BETA

Load overview

 The load utility is capable of efficiently moving large quantities of data into newly

created tables, or into tables that already contain data. The utility can handle most

data types, including large objects (LOBs) and user-defined types (UDTs). The load

utility is faster than the import utility, because it writes formatted pages directly

into the database, while the import utility performs SQL INSERTs. The load utility

does not fire triggers, and does not perform referential or table constraints

checking (other than validating the uniqueness of the indexes).

The load process consists of four distinct phases (see Figure 1):

v Load, during which the data is written to the table.

During the load phase, data is loaded into the table, and index keys and table

statistics are collected, if necessary. Save points, or points of consistency, are

established at intervals specified through the SAVECOUNT parameter in the

LOAD command. Messages are generated, indicating how many input rows

were successfully loaded at the time of the save point. If a failure occurs, you

can restart the load operation; the RESTART option automatically restarts the

load operation from the last successful consistency point. The TERMINATE

option rolls back the failed load operation.

v Build, during which indexes are produced.

During the build phase, indexes are produced based on the index keys collected

during the load phase. The index keys are sorted during the load phase, and

index statistics are collected (If STATISTICS USE PROFILE option was specified,

and profile indicates collecting index stats). The statistics are similar to those

collected through the RUNSTATS command. If a failure occurs during the build

phase, the RESTART option automatically restarts the load operation at the

appropriate point.

v Delete, during which the rows that caused a unique key violation are removed

from the table. Unique key violations are placed into the exception table, if one

was specified, and messages about rejected rows are written to the message file.

Following the completion of the load process, review these messages, resolve

any problems, and insert corrected rows into the table.

Do not attempt to delete or to modify any temporary files created by the load

utility. Some temporary files are critical to the delete phase. If a failure occurs

during the delete phase, the RESTART option automatically restarts the load

operation at the appropriate point.

Note: Each deletion event is logged. If you have a large number of records that

violate the uniqueness condition, the log could fill up during the delete

phase.

v Index copy, during which the index data is copied from a system temporary

table space to the original table space. This will only occur if a system

Load
Phase
Starts

Load
Phase
Ends

Build
Phase
Starts

Delete
Phase
Starts

Build
Phase
Ends

Phase
Ends

Delete Index Copy
Phase
Starts

Index Copy
Phase
Ends

Figure 1. The Four Phases of the Load Process: Load, Build, Delete, and Index Copy. While

the load operation is taking place, the target table is in the load in progress state. If the table

has constraints, the table will also be in the set integrity pending state. If the ALLOW READ

ACCESS option was specified, the table will also be in the read access only state.

102 Data Movement Utilities DB2 9 BETA

temporary table space was specified for index creation during a load operation

with the READ ACCESS option specified.

Note: After you invoke the load utility, you can use the LIST UTILITIES command

to monitor the progress of the load operation. For more information, refer to

LIST UTILITIES command.

The following information is required when loading data:

v The path and the name of the input file, named pipe, or device.

v The name or alias of the target table.

v The format of the input source. This format can be DEL, ASC, PC/IXF, or

CURSOR.

v Whether the input data is to be appended to the table, or is to replace the

existing data in the table.

v A message file name, if the utility is invoked through the application

programming interface (API), db2Load.

You can also specify:

v That the data to be loaded resides on the client, if the load utility is invoked

from a remotely connected client.

v The method to use for loading the data: column location, column name, or

relative column position.

v How often the utility is to establish consistency points. Use the SAVECOUNT

parameter to specify this value. If this parameter is specified, a load restart

operation will start at the last consistency point, instead of at the beginning.

v The names of the table columns into which the data is to be inserted.

v Whether or not pre-existing data in the table can be queried while the load

operation is in progress.

Note: This can be accomplished by using the READ ACCESS option and is not

supported when the load utility is invoked in REPLACE mode.

v Whether the load operation should wait for other utilities or applications to

finish using the table or force the other applications off before proceeding.

v An alternate system temporary table space in which to build the index.

Note: This is only supported when the READ ACCESS option is specified with

a full index rebuild.

v The paths and the names of the input files in which LOBs are stored. The

lobsinfile modifier tells the load utility that all LOB data is being loaded from

files.

v A message file name. During operations such as exporting, importing, loading,

binding, or restoring data, you can specify that message files be created to

contain the error, warning, and informational messages associated with those

operations. Specify the name of these files with the MESSAGES parameter. These

message files are standard ASCII text files. To print them, use the printing

procedure for your operating system; to view them, use any ASCII editor.

Notes:

1. You can only view the contents of a message file after the operation is

finished.

2. Each message in a message file begins on a new line and contains

information provided by the DB2 message retrieval facility.

Chapter 3. Load 103DB2 9 BETA

v Whether column values being loaded have implied decimal points. The

implieddecimal modifier tells the load utility that decimal points are to be

applied to the data as it enters the table. For example, the value 12345 is loaded

into a DECIMAL(8,2) column as 123.45, not 12345.00.

v Whether the utility should modify the amount of free space available after a

table is loaded. Additional free space permits INSERT and UPDATE growth to

the table following the completion of a load operation. Reduced free space keeps

related rows more closely together and can enhance table performance.

v Whether statistics are to be gathered during the load process. This option is only

supported if the load operation is running in REPLACE mode.

If data is appended to a table, statistics are not collected. To collect current

statistics on an appended table, invoke the runstats utility following completion

of the load process. If gathering statistics on a table with a unique index, and

duplicate keys are deleted during the delete phase, statistics are not updated to

account for the deleted records. If you expect to have a significant number of

duplicate records, do not collect statistics during the load operation. Instead,

invoke the runstats utility following completion of the load process.

v Whether to collect statistics during the load operation. Statistics are collected

according to the profile defined for the table. The profile must be created by the

RUNSTATS command before the LOAD command is executed. If the profile

does not exist and the load operation is instructed to collect statistics according

to the profile, the load will fail, and an error message will be returned.

v Whether to keep a copy of the changes made. This is done to enable rollforward

recovery of the database. This option is not supported if rollforward recovery is

disabled for the database; that is, if the database configuration parameters

logarchmeth1 and logarchmeth2 are set to OFF. If no copy is made, and rollforward

recovery is enabled, the table space is left in backup pending state at the

completion of the load operation.

Logging is required for fully recoverable databases. The load utility almost

completely eliminates the logging associated with the loading of data. In place of

logging, you have the option of making a copy of the loaded portion of the

table. If you have a database environment that allows for database recovery

following a failure, you can do one of the following:

– Explicitly request that a copy of the loaded portion of the table be made.

– Take a backup of the table spaces in which the table resides immediately after

the completion of the load operation.
If you are loading a table that already contains data, and the database is

non-recoverable, ensure that you have a backed-up copy of the database, or the

table spaces for the table being loaded, before invoking the load utility, so that

you can recover from errors.

If you want to perform a sequence of multiple load operations on a recoverable

database, the sequence of operations will be faster if you specify that each load

operation is non-recoverable, and take a backup at the end of the load sequence,

than if you invoke each of the load operations with the COPY YES option. You

can use the NONRECOVERABLE option to specify that a load transaction is to

be marked as non-recoverable, and that it will not be possible to recover it by a

subsequent rollforward operation. The rollforward utility will skip the

transaction, and will mark the table into which data was being loaded as

"invalid". The utility will also ignore any subsequent transactions against that

table. After the rollforward operation is completed, such a table can only be

dropped (see Figure 2 on page 105). With this option, table spaces are not put in

104 Data Movement Utilities DB2 9 BETA

backup pending state following the load operation, and a copy of the loaded

data does not have to be made during the load operation.

v Whether to log all index modifications. If the database configuration parameter

logindexbuild is set, and if the load operation is invoked with the COPY YES

recoverability option and the INCREMENTAL indexing option, the load will log

all index modifications. The benefit of using these options is that when you roll

forward through the log records for this load, you will also recover the indexes

(whereas normally the indexes would not be recovered unless the load had used

REBUILD indexing mode).

v The fully qualified path to be used when creating temporary files during a load

operation. The name is specified by the TEMPFILES PATH parameter of the

LOAD command. The default value is the database path. The path resides on

the server machine, and is accessed by the DB2 instance exclusively. Therefore,

any path name qualification given to this parameter must reflect the directory

structure of the server, not the client, and the DB2 instance owner must have

read and write permission on the path. This is true even if you are the instance

owner. If you are not the instance owner, you must specify a location that is

writable by the instance owner.

Changes to Previous Load Behavior Introduced in DB2 V9.1

Following is a summary of changes to load behavior introduced in DB2 Version

9.1:

v In DB2 UDB Version 8, if a lob file is not found, the row is rejected if the column

is not nullable, or NULL if the column is nullable. In DB2 Version 9.1, if a lob

file is not found, the row is rejected regardless of the nullability of the column.

v In DB2 Version 9.1, message SQL3040N is split into two distinct messages.

SQL3040N is returned for lobfile errors and SQL3235N is returned for lob path

errors. The invalid file name or path name is indicated in the message.

v In DB2 UDB Version 8, if the LOB Location Specifier (LLS) contains a path, for

example, the LLS is /home/try/newlob.001.12.345/ and the path is invalid,

SQL3040N reason code 6 is returned and the utility exits immediately. In DB2

Version 9.1, the row is rejected and processing continues. In DB2 V9.1, the

exported LLS never contains a path name.

v In DB2 UDB Version 8, if LOBSINFILE is specified, and LOBS FROM is

specified, the specified lob directory is searched. If LOBS FROM is not specified,

the current working directory is searched. In DB2 V9.1, if LOBSINFILE is

specified and

– loading from a local client and LOBS FROM is specified, the specified lob

directory is searched first, then the current working directory is searched.

– loading from a local client and LOBS FROM is not specified, the path where

the input data files reside is searched first, then the current working directory

is searched. If there are multiple input data files, the utility must verify

full DB
restore

rollforward
begins

load to table X
ignored

transaction to
table X ignored

rollforward
ends

table X
dropped

(recovery time-line)

Figure 2. Non-recoverable Processing During a Roll Forward Operation

Chapter 3. Load 105DB2 9 BETA

whether the input data files come from the same path. If not, an SQL3052N

message is returned and you are asked to specify the LOBS FROM option.

– loading from a remote client and LOBS FROM is specified, the specified lob

directory is searched.

– loading from a remote client and LOBS FROM is not specified, the data file

directory is searched.

– remote load (load with CLIENT option is specified) and LOBS FROM is

specified, the specified lob directory is searched.

– remote load and LOBS FROM is not specified, an SQL3052N message is

returned and you are asked to specify the LOBS FROM option.
v In DB2 UDB Version 8, a LOAD FROM CURSOR operation does not allow

loading of mismatched codepage tables. An example of a mismatch includes a

non-Unicode database with Unicode tables. In DB2 Version 9.1, codepage

conversion is supported in the LOAD FROM CURSOR operation.

v In DB2 UDB Version 8 the FILE_TRANSFER_CMD handles the fetching of data.

In DB2 Version 9.1 the fetching of data from the source-db is handled by the

load utility using a user exit process.

Changes to previous load behavior introduced in DB2 UDB

Version 8

Following is a summary of syntax changes and changes to load behavior

introduced in DB2 UDB Version 8:

v Prior to DB2 UDB Version 8, load required exclusive access to table spaces that

contained objects belonging to the table being loaded. In DB2 UDB Version 8,

load operates at the table level and no longer requires exclusive access to the

table space. Load will place a lock only on the table objects associated with the

load operation taking place. Concurrent access to other table objects in the same

table spaces is permitted.

Note: Prior to DB2 UDB Version 8, when the COPY NO option was specified on

a recoverable database, the table space was put in backup pending state

only after the load operation was committed. In DB2 UDB Version 8, the

table space will be placed in backup pending state when the load

operation begins and will remain in that state even if the load operation

fails and is rolled back. As in previous releases, when the COPY NO

option is specified and load operation completes successfully, the

rollforward utility will put dependent table spaces in restore pending

state during a rollforward operation.

v You can also specify that users have read access to the data that existed in the

table prior to the load. This means that after the load operation has completed,

you will not be able to view the new data if there are constraints on the table

and integrity checking has not been completed. You can also specify that the

index be rebuilt in a separate table space during a load operation by specifying

the READ ACCESS and INDEXING MODE REBUILD options. The index will be

copied back to the original table space during the index copy phase which

occurs after the other phases of the load operation.

v The functionality of the LOAD QUERY command has been expanded and it now

returns the table state of the target into which data is being loaded in addition

to the status information it previously included on a load operation in progress.

The LOAD QUERY command might also be used to query the table state

whether or not a load operation is in progress on that table.

v Extent allocations in DMS table spaces are now logged. The LOAD command

will now write two log records for every extent it allocates in a DMS table space.

106 Data Movement Utilities DB2 9 BETA

Also, when the READ ACCESS and INDEXING MODE INCREMENTAL options

are specified, some log records will be written while data is being incrementally

inserted into the index.

v Dependent table spaces will no longer be quiesced prior to a load operation.

When the COPY NO option is specified, the new table space state load in progress

will be used. The load in progress table space state prevents the backup of

dependent tables during a load operation. The load in progress table space state

is different from the load in progress table state in that all load operations use

the load in progress table state, but load operations with the COPY NO option

specified also use the load in progress table space state.

v When executing a load operation with the ALLOW READ ACCESS and

INDEXING MODE REBUILD options, a new copy of the indexes is created in

addition to the original indexes. This means that the space requirement for the

index table space might have to be doubled. To avoid this, the USE

TABLESPACE option can be used to specify a temporary table space for the

storage of new indexes. After the new indexes are built in the temporary table

space, the target table is taken offline before the new indexes are copied into the

target table space.

v Calls to quiesce table spaces from the LOAD command have been removed. If

you quiesce table spaces in exclusive mode prior to a load operation, you will

now have to explicitly remove the table spaces from the quiesced exclusive state.

In previous releases, after issuing the following commands LOAD would have

implicitly reset the quiesced table spaces and made them accessible to other

applications:

 quiesce tablespaces for table t1 exclusive

 load from data.del of del insert into t1

In DB2 UDB Version 8, you must issue the following command to remove the

table space from the quiesced exclusive state:

 quiesce tablespaces for table t1 reset

v A LOCK WITH FORCE option has been added to the LOAD command. It

allows you to force other applications to release locks they have on a table and

to allow the load operation to proceed and acquire the locks it needs.

v The load utility now has the ability to load from an SQL statement, using the

CURSOR file type.

v Loading data that resides on a remotely connected client is now supported

under the following conditions:

– The database that the client is connected to is in a partitioned database

environment.

– The database that the client is connected to is cataloged against an already

cataloged database.
v Loading data into multi-dimensional clustering (MDC) tables is supported.

v Prior to DB2 UDB Version 8, following a load operation the target table

remained in set integrity pending state if it contained generated columns. The

load utility will now generate column values, and you are no longer required

issue the SET INTEGRITY statement after a load operation.

v Tables can be loaded into a multi-partition database using the load API

(db2Load).

 Related concepts:

v “Rollforward recovery” in Data Recovery and High Availability Guide and Reference

Chapter 3. Load 107DB2 9 BETA

v “Load considerations for partitioned tables” on page 126

v “Loading data in a partitioned database environment - hints and tips” on page

235

 Related tasks:

v “Loading data” on page 110

v “Loading data in a partitioned database environment” on page 217

 Related reference:

v “LIST UTILITIES command” in Command Reference

v “Load configuration options for partitioned database environments” on page 227

v “RUNSTATS command” in Command Reference

Parallelism and loading

 The load utility takes advantage of a hardware configuration in which multiple

processors or multiple storage devices are used, such as in a symmetric

multiprocessor (SMP) environment. There are several ways in which parallel

processing of large amounts of data can take place using the load utility. One way

is through the use of multiple storage devices, which allows for I/O parallelism

during the load operation (see Figure 3). Another way involves the use of multiple

processors in an SMP environment, which allows for intra-partition parallelism (see

Figure 4). Both can be used together to provide even faster loading of data.

 Related concepts:

v “Load considerations for partitioned tables” on page 126

v “Load overview” on page 102

Disk Disk Disk

I/O
Subagent

I/O
Subagent

I/O
Subagent

Figure 3. Taking Advantage of I/O Parallelism When Loading Data

parse,
convert fields,
build record,
insert into table

parse,
convert fields,
build record,
insert into table

Source data (DEL, ASC, IXF, CURSOR)

Database

parse,
convert fields,
build record,
insert into table

parse,
convert fields,
build record,
insert into table

Figure 4. Taking Advantage of Intra-partition Parallelism When Loading Data

108 Data Movement Utilities DB2 9 BETA

v “Optimizing load performance” on page 206

 Related tasks:

v “Loading data in a partitioned database environment” on page 217

 Related reference:

v “Load configuration options for partitioned database environments” on page 227

Privileges, authorities, and authorizations required to use Load

 To load data into a table, you must have one of the following:

v SYSADM authority

v DBADM authority

v LOAD authority on the database and

– INSERT privilege on the table when the load utility is invoked in INSERT

mode, TERMINATE mode (to terminate a previous load insert operation), or

RESTART mode (to restart a previous load insert operation)

– INSERT and DELETE privilege on the table when the load utility is invoked

in REPLACE mode, TERMINATE mode (to terminate a previous load replace

operation), or RESTART mode (to restart a previous load replace operation)

– INSERT privilege on the exception table, if such a table is used as part of the

load operation.

Since all load processes (and all DB2 server processes, in general), are owned by

the instance owner, and all of these processes use the identification of the instance

owner to access needed files, the instance owner must have read access to input

data files. These input data files must be readable by the instance owner, regardless

of who invokes the command.

If the REPLACE option is specified, the session authorization ID must have the

authority to drop the table.

On Windows, and Windows.NET operating systems where DB2 is running as a

Windows service, if you are loading data from files that reside on a network drive,

you must configure the DB2 service to run under a user account that has read

access to these files.

 Notes:

 v To load data into a table that has protected columns, the session authorization

ID must have LBAC credentials that allow write access to all protected columns

in the table.

v To load data into a table that has protected rows, the session authorization ID

must have been granted a security label for write access that is part of the

security policy protecting the table.

 Related reference:

v “db2Load - Load data into a table” on page 161

v “LOAD ” on page 132

Chapter 3. Load 109DB2 9 BETA

Loading data

 The load utility is capable of efficiently moving large quantities of data into newly

created tables, or into tables that already contain data.

 Prerequisites:

 Before invoking the load utility, you must be connected to (or be able to implicitly

connect to) the database into which the data will be loaded. Since the utility will

issue a COMMIT statement, you should complete all transactions and release all

locks by issuing either a COMMIT or a ROLLBACK statement before invoking the

load utility.

Data is loaded in the sequence that appears in the input file, except when using

multi-dimensional clustering (MDC) tables, partitioned tables, or the ANYORDER

clause. If a particular sequence is desired, sort the data before attempting a load

operation.

If clustering is required, the data should be sorted on the clustering index prior to

loading. When loading data into multidimensional clustered tables (MDC), sorting

is not required prior to the load operation, and data is clustered according to the

MDC table definition.

When loading data into partitioned tables, sorting is not required prior to the load

operation, and data is partitioned according to the table definition.

 Authorization:

 One of the following:

v sysadm

v dbadm

v load authority on the database and

– INSERT privilege on the table when the load utility is invoked in INSERT

mode, TERMINATE mode (to terminate a previous load insert operation), or

RESTART mode (to restart a previous load insert operation)

– INSERT and DELETE privilege on the table when the load utility is invoked

in REPLACE mode, TERMINATE mode (to terminate a previous load replace

operation), or RESTART mode (to restart a previous load replace operation)

– INSERT privilege on the exception table, if such a table is used as part of the

load operation.
v To load data into a table that has protected columns, the session authorization

ID must have LBAC credentials that allow write access to all protected columns

in the table.

v To load data into a table that has protected rows, the session authorization ID

must have been granted a security label for write access that is part of the

security policy protecting the table.

v If the REPLACE option is specified, the authorization ID must have the

authority to drop the table.

Since all load processes (and all DB2 server processes, in general) are owned by the

instance owner, and all of these processes use the identification of the instance

110 Data Movement Utilities DB2 9 BETA

owner to access needed files, the instance owner must have read access to input

data files. These input data files must be readable by the instance owner, regardless

of who invokes the command.

 Restrictions:

 The following restrictions apply to the load utility:

v Loading data into nicknames is not supported.

v Loading data into typed tables, or tables with structured type columns, is not

supported.

v Loading data into declared temporary tables is not supported.

v You cannot create or drop tables in a table space that is in backup pending state.

v You cannot load data into a database accessed through DB2 Connect or a server

level prior to DB2 Version 2. Options that are only available with the current

cannot be used with a server from the previous release.

v If an error occurs during a LOAD REPLACE operation, the original data in the

table is lost. Retain a copy of the input data to allow the load operation to be

restarted.

v Triggers are not activated on newly loaded rows. Business rules associated with

triggers are not enforced by the load utility.

v Loading data into tables containing XML columns is not supported.

The following restrictions apply to the load utility when loading into a partitioned

table:

v Consistency points are not supported.

v Loading data into a subset of data partitions while keeping the remaining data

partitions fully online is not supported.

v The exception table used by a load operation or a set integrity pending

operation cannot be partitioned.

v A unique index cannot be rebuilt when the load utility is running in insert mode

or restart mode, and the load target table has any detached dependents.

 Procedure:

 The load utility can be invoked through the command line processor (CLP), the

Load wizard in the Control Centre, or an application programming interface (API),

db2Load.

The following is an example of the LOAD command issued through the CLP:

 db2 load from stafftab.ixf of ixf messages staff.msgs

 insert into userid.staff copy yes use tsm data buffer 4000

In this example:

v Any warning or error messages are placed in the staff.msgs file.

v A copy of the changes made is stored in Tivoli® Storage Manager (TSM).

v Four thousand pages of buffer space are to be used during the load operation.

The following is another example of the LOAD command issued through the CLP:

 db2 load from stafftab.ixf of ixf messages staff.msgs

 tempfiles path /u/myuser replace into staff

In this example:

Chapter 3. Load 111DB2 9 BETA

v The table data is being replaced.

v The TEMPFILES PATH parameter is used to specify /u/myuser as the server path

into which temporary files will be written.

Note: These examples use relative path names for the load input file. Relative path

names are only allowed on calls from a client on the same database partition

as the database. The use of fully qualified path names is recommended.

To open the Load wizard:

1. From the Control Center, expand the object tree until you find the Tables folder.

2. Click on the Tables folder. Any existing tables are displayed in the pane on the

right side of the window (the contents pane).

3. Right-click on the table you want in the contents pane, and select Load from

the pop-up menu. The Load wizard opens.

4. Specify the required information on each page of the wizard to successfully

load your data.

Detailed information about the Load wizard is provided through its online help

facility.

After you invoke the load utility, you can use the LIST UTILITIES command to

monitor the progress of the load operation. In the case of a load operation

performed in either INSERT mode, REPLACE mode, or RESTART mode, detailed

progress monitoring support is available. Issue the LIST UTILITIES command with

the SHOW DETAILS option to view detailed information about the current load

phase. Details are not available for a load operation performed in TERMINATE

mode. The LIST UTILITIES command will simply show that a load terminate

utility is currently running.

A load operation maintains unique constraints, range constraints for partitioned

tables, generated columns, and LBAC security rules. For all other constraints the

table is placed in the SET INTEGRITY PENDING state at the beginning of a load

operation. After the load operation is complete, the SET INTEGRITY statement

must be used to take the table out of SET INTEGRITY PENDING state.

 Related concepts:

v “Load considerations for partitioned tables” on page 126

v “Load overview” on page 102

v “Loading data in a partitioned database environment - hints and tips” on page

235

 Related tasks:

v “Troubleshooting load issues” in Troubleshooting Guide

v “Loading data in a partitioned database environment” on page 217

 Related reference:

v “Tivoli Storage Manager” in Data Recovery and High Availability Guide and

Reference

v “Load configuration options for partitioned database environments” on page 227

v “LIST UTILITIES command” in Command Reference

v “LOAD ” on page 132

112 Data Movement Utilities DB2 9 BETA

Read access load operations

 The load utility provides two options that control the amount of access other

applications have to a table being loaded. The ALLOW NO ACCESS option locks

the table exclusively and allows no access to the table data while the table is being

loaded. This is the default behavior. The ALLOW READ ACCESS option prevents

all write access to the table by other applications, but allows read access to

pre-loaded data. This section deals with the ALLOW READ ACCESS option.

Table data and index data that exist prior to the start of a load operation are visible

to queries while the load operation is in progress. Consider the following example:

1. Create a table with one integer column:

 create table ED (ed int)

2. Load three rows:

 load from File1 of del insert into ED

 ...

 Number of rows read = 3

 Number of rows skipped = 0

 Number of rows loaded = 3

 Number of rows rejected = 0

 Number of rows deleted = 0

 Number of rows committed = 3

3. Query the table:

 select * from ED

 ED

 1

 2

 3

 3 record(s) selected.

4. Perform a load operation with the ALLOW READ ACCESS option specified

and load two more rows of data:

 load from File2 of del insert into ED allow read access

5. At the same time, on another connection query the table while the load

operation is in progress:

 select * from ED

 ED

 1

 2

 3

 3 record(s) selected.

6. Wait for the load operation to finish and then query the table:

 select * from ED

 ED

 1

 2

 3

 4

 5

 5 record(s) selected.

Chapter 3. Load 113DB2 9 BETA

The ALLOW READ ACCESS option is very useful when loading large amounts of

data because it gives users access to table data at all times, even when the load

operation is in progress or after a load operation has failed. The behavior of a load

operation in ALLOW READ ACCESS mode is independent of the isolation level of

the application. That is, readers with any isolation level can always read the

pre-existing data, but they will not be able to read the newly loaded data until the

load operation has finished.

Read access is provided throughout the load operation except for two instances at

the beginning and end of the operation.

Firstly, the load operation acquires a special Z-lock for a short duration of time

near the end of its setup phase. If an application holds an incompatible lock on the

table prior to the load operation requesting this special Z-lock, then the load

operation waits a finite amount of time for this incompatible lock to be released

before timing out and failing. The amount of time is determined by the

LOCKTIMEOUT database configuration parameter. If the LOCK WITH FORCE

option is specified then the load operation forces other applications off to avoid

timing out. The load operation acquires the special Z-lock, commits the phase,

releases the lock and then continues onto the load phase. Any application that

requests a lock on the table for reading after the start of the load operation in

ALLOW READ ACCESS mode, is granted the lock and it does not conflict with

this special Z-lock. New applications attempting to read existing data from the

target table are able to do so.

Secondly, before data is committed at the end of the load operation, the utility

acquires an exclusive lock (Z-lock) on the table. The load utility waits until all

applications that hold locks on the table, release them. This can cause a delay

before the data is committed. The LOCK WITH FORCE option is used to force off

conflicting applications, and allow the load operation to proceed without having to

wait. Usually, a load operation in ALLOW READ ACCESS mode acquires an

exclusive lock for a short amount of time; however, if the USE <tablespaceName>

option is specified, the exclusive lock lasts for the entire period of the index copy

phase.

Notes:

1. If a load operation is aborted, it remains at the same access level that was

specified when the load operation was issued. So, if a load operation in

ALLOW NO ACCESS mode aborts, the table data is inaccessible until a load

terminate or a load restart is issued. If a load operation in ALLOW READ

ACCESS mode aborts, the pre-loaded table data is still accessible for read

access.

2. If the ALLOW READ ACCESS option was specified for an aborted load

operation, it can also be specified for the load restart or load terminate

operation. However, if the aborted load operation specified the ALLOW NO

ACCESS option, the ALLOW READ ACCESS option cannot be specified for the

load restart or load terminate operation.

The ALLOW READ ACCESS option is not supported if:

v The REPLACE option is specified. Since a load replace operation truncates the

existing table data before loading the new data, there is no pre-existing data to

query until after the load operation is complete.

v The indexes have been marked invalid and are waiting to be rebuilt. Indexes can

be marked invalid in some rollforward scenarios or through the use of the

db2dart command.

114 Data Movement Utilities DB2 9 BETA

v The INDEXING MODE DEFERRED option is specified. This mode marks the

indexes as requiring a rebuild.

v An ALLOW NO ACCESS load operation is being restarted or terminated. Until

it is brought fully online, a load operation in ALLOW READ ACCESS mode

cannot take place on the table.

v A load operation is taking place to a table that is in SET INTEGRITY PENDING

NO ACCESS state. This is also the case for multiple load operations on tables

with constraints. A table is not brought online until the SET INTEGRITY

statement is issued.

Generally, if table data is taken offline, read access is not available during a load

operation until the table data is back online.

 Related concepts:

v “Building indexes” on page 115

v “Checking for integrity violations following a load operation” on page 121

v “Table locking, table states and table space states” on page 202

Building indexes

 Indexes are built during the build phase of a load operation. There are four

indexing modes that can be specified in the LOAD command:

1. REBUILD. All indexes are rebuilt.

2. INCREMENTAL. Indexes are extended with new data.

3. AUTOSELECT. The load utility automatically decides between REBUILD or

INCREMENTAL mode. This is the default.

Note: You might decide to explicitly choose an indexing mode because the

behavior of the REBUILD and INCREMENTAL modes are quite

different.

4. DEFERRED. The load utility does not attempt index creation if this mode is

specified. Indexes are marked as needing a refresh, and a rebuild might be

forced the first time they are accessed. This option is not compatible with the

ALLOW READ ACCESS option because it does not maintain the indexes and

index scanners require a valid index.

Load operations that specify the ALLOW READ ACCESS option require special

consideration in terms of space usage and logging depending on the type of

indexing mode chosen. When the ALLOW READ ACCESS option is specified, the

load utility keeps indexes available for queries even while they are being rebuilt.

When a load operation in ALLOW READ ACCESS mode specifies the INDEXING

MODE INCREMENTAL option, the load utility writes some log records that

protect the integrity of the index tree. The number of log records written is a

fraction of the number of inserted keys and is a number considerably less than

would be needed by a similar SQL insert operation. A load operation in ALLOW

NO ACCESS mode with the INDEXING MODE INCREMENTAL option specified

writes only a small log record beyond the normal space allocation logs.

When a load operation in ALLOW READ ACCESS mode specifies the INDEXING

MODE REBUILD option, new indexes are built as a shadow either in the same table

space as the original index or in a system temporary table space. The original

indexes remain intact and are available during the load operation and are only

Chapter 3. Load 115DB2 9 BETA

replaced by the new indexes at the end of the load operation while the table is

exclusively locked. If the load operation fails and the transaction is rolled back, the

original indexes remain intact.

Building new indexes in the same table space as the original

By default, the shadow index is built in the same table space as the original index.

Since both the original index and the new index are maintained simultaneously,

there must be sufficient table space to hold both indexes at the same time. If the

load operation is aborted, the extra space used to build the new index is released.

If the load operation commits, the space used for the original index is released and

the new index becomes the current index. When the new indexes are built in the

same table space as the original indexes, replacing the original indexes takes place

almost instantaneously.

If the indexes are built in a DMS table space, you cannot see the new shadow index.

If the indexes are built within an SMS table space, you can see index files in the

table space directory with the .IN1 suffix and the .INX suffix. These suffixes do not

indicate which is the original index and which is the shadow index.

Building new indexes in a system temporary table space

The new index can be built in a system temporary table space to avoid running

out of space in the original table space. The USE <tablespaceName> option allows

the indexes to be rebuilt in a system temporary table space when using INDEXING

MODE REBUILD and ALLOW READ ACCESS options. The system temporary

table can be an SMS or a DMS table space, but the page size of the system

temporary table space must match the page size of the original index table space.

The USE <tablespaceName> option is ignored if the load operation is not in

ALLOW READ ACCESS mode, or if the indexing mode is incompatible. The USE

<tablespaceName> option is only supported for the INDEXING MODE REBUILD

or INDEXING MODE AUTOSELECT options. If the INDEXING MODE

AUTOSELECT option is specified and the load utility selects incremental

maintenance of the indexes, the USE <tablespaceName> option is ignored.

A load restart operation can use an alternate table space for building an index even

if the original load operation did not use an alternate table space. A load restart

operation cannot be issued in ALLOW READ ACCESS mode if the original load

operation was not issued in ALLOW READ ACCESS mode. Load terminate

operations do not rebuild indexes, so the USE <tablespaceName> option is

ignored.

During the build phase of the load operation, the indexes are built in the system

temporary table space. Then, during the index copy phase, the index is copied

from the system temporary table space to the original index table space. To make

sure that there is sufficient space in the original index table space for the new

index, space is allocated in the original table space during the build phase. So, if

the load operation runs out of index space, it will do so during the build phase. If

this happens, the original index is not lost.

The index copy phase occurs after the build and delete phases. Before the index

copy phase begins, the table is locked exclusively. That is, it is unavailable for read

access throughout the index copy phase. Since the index copy phase is a physical

copy, the table might be unavailable for a significant amount of time.

116 Data Movement Utilities DB2 9 BETA

Note: If either the system temporary table space or the index table space are DMS

table spaces, the read from the system temporary table space can cause

random I/O on the system temporary table space and can cause a delay.

The write to the index table space is still optimized and the

DISK_PARALLELISM values are used.

 Related concepts:

v “Load overview” on page 102

v “Read access load operations” on page 113

Using load with identity columns

 The load utility can be used to load data into a table containing an identity

column. If no identity-related file type modifiers are used, the utility works

according to the following rules:

v If the identity column is GENERATED ALWAYS, an identity value is generated

for a table row whenever the corresponding row in the input file is missing a

value for the identity column, or a NULL value is explicitly given. If a

non-NULL value is specified for the identity column, the row is rejected

(SQL3550W).

v If the identity column is GENERATED BY DEFAULT, the load utility makes use

of user-supplied values, if they are provided; if the data is missing or explicitly

NULL, a value is generated.

The load utility does not perform any extra validation of user-supplied identity

values beyond what is normally done for values of the identity column’s data type

(that is, SMALLINT, INT, BIGINT, or DECIMAL). Duplicate values are not

reported.

The assignment of identity column values is managed in parallel by the load

utility. Because of this the load utility cannot guarantee that identity column values

are assigned to rows in the same order that these rows appear in the datafile.

Identity column values are therefore assigned in arbitrary order. The exception to

this rule occurs when the CPU_PARALLELISM 1 option is specified in a

single-partition database. In this case, rows are not processed in parallel, resulting

in identity column values being implicitly assigned in the same order that rows

appear in the datafile parameter.

For a multi-partition database, when an identity column is in the distribution key

for a table, or the identity column is referenced in a generated column that is part

of the distribution key, and the identityoverride modifier is not specified, every

loading database partition must be in the load phase in order for a RESTART

operation to occur. All of the database partitions must be in the load phase because

hashing of rows during the restarted load might be different from the hashing in

the initial load, due to the dependence on the identity column. In this case, you

usually need to use the TERMINATE option to terminate the load operation.

Three (mutually exclusive) file type modifiers are supported by the load utility to

simplify its use with tables that contain an identity column:

v The identitymissing modifier makes loading a table with an identity column

more convenient if the input data file does not contain any values (not even

NULLS) for the identity column. For example, consider a table defined with the

following SQL statement:

Chapter 3. Load 117DB2 9 BETA

create table table1 (c1 varchar(30),

 c2 int generated by default as identity,

 c3 decimal(7,2),

 c4 char(1))

If you want to load TABLE1 with data from a file (load.del) that has been

exported from a table that does not have an identity column, see the following

example:

 Robert, 45.2, J

 Mike, 76.9, K

 Leo, 23.4, I

One way to load this file would be to explicitly list the columns to be loaded

through the LOAD command as follows:

 db2 load from load.del of del replace into table1 (c1, c3, c4)

For a table with many columns, however, this syntax might be cumbersome and

prone to error. An alternate method of loading the file is to use the

identitymissing file type modifier as follows:

 db2 load from load.del of del modified by identitymissing

 replace into table1

v The identityignore modifier is in some ways the opposite of the

identitymissing modifier: it indicates to the load utility that even though the

input data file contains data for the identity column, the data should be ignored,

and an identity value should be generated for each row. For example, a user

might want to load TABLE1, as defined above, from a data file (load.del)

containing the following data:

 Robert, 1, 45.2, J

 Mike, 2, 76.9, K

 Leo, 3, 23.4, I

If the user-supplied values of 1, 2, and 3 are not used for the identity column,

you can issue the following LOAD command:

 db2 load from load.del of del method P(1, 3, 4)

 replace into table1 (c1, c3, c4)

Again, this approach might be cumbersome and prone to error if the table has

many columns. The identityignore modifier simplifies the syntax as follows:

 db2 load from load.del of del modified by identityignore

 replace into table1

v The identityoverride modifier is used for loading user-supplied values into a

table with a GENERATED ALWAYS identity column. This can be quite useful

when migrating data from another database system, and the table must be

defined as GENERATED ALWAYS, or when loading a table from data that was

recovered using the DROPPED TABLE RECOVERY option on the

ROLLFORWARD DATABASE command. When this modifier is used, any rows

with no data (or NULL data) for the identity column are rejected (SQL3116W).

Note: When using this modifier, it is possible to violate the uniqueness property

of GENERATED ALWAYS columns.

 Related concepts:

v “Identity columns” in Administration Guide: Planning

Using load with generated columns

 The load utility can be used to load data into a table containing (non-identity)

generated columns. The column values are generated by this utility.

118 Data Movement Utilities DB2 9 BETA

Note: If you initiate a load operation between a Version 7 or earlier client and a

Version 8 or later server, the load utility will place tables with generated

columns in the set integrity pending state.

If a table has been placed in set integrity pending state because a Version 7 or

earlier client was used to load data into a table with generated columns, the

following statement will take the table out of set integrity pending state and force

the generation of values:

 SET INTEGRITY FOR tablename IMMEDIATE CHECKED FORCE GENERATED;

If no generated column-related file type modifiers are used, the load utility works

according to the following rules:

v Values are created for generated columns when the corresponding row of the

data file is missing a value for the column or a NULL value is supplied. If a

non-NULL value is supplied for a generated column, the row is rejected

(SQL3550W).

v If a NULL value is created for a generated column that is not nullable, the entire

row of data is rejected (SQL0407N). This could occur if, for example, a

non-nullable generated column is defined as the sum of two table columns that

include NULL values in the data file.

Three (mutually exclusive) file type modifiers are supported by the load utility to

simplify its use with tables that contain generated columns:

v The generatedmissing modifier makes loading a table with generated columns

more convenient if the input data file does not contain any values (not even

NULLS) for all generated columns present in the table. For example, consider a

table defined with the following SQL statement:

 CREATE TABLE table1 (c1 INT,

 c2 INT,

 g1 INT GENERATED ALWAYS AS (c1 + c2),

 g2 INT GENERATED ALWAYS AS (2 * c1),

 c3 CHAR(1))

If you want to load TABLE1 with data from a file (load.del) that has been

exported from a table that does not have any generated columns, see the

following example:

 1, 5, J

 2, 6, K

 3, 7, I

One way to load this file would be to explicitly list the columns to be loaded

through the LOAD command as follows:

 DB2 LOAD FROM load.del of del REPLACE INTO table1 (c1, c2, c3)

For a table with many columns, however, this syntax might be cumbersome and

prone to error. An alternate method of loading the file is to use the

generatedmissing file type modifier as follows:

 DB2 LOAD FROM load.del of del MODIFIED BY generatedmissing

 REPLACE INTO table1

v The generatedignore modifier is in some ways the opposite of the

generatedmissing modifier: it indicates to the load utility that even though the

input data file contains data for all generated columns present in the target table,

the data should be ignored, and the computed values should be loaded into

each generated column. For example, if you want to load TABLE1, as defined

above, from a data file (load.del) containing the following data:

 1, 5, 10, 15, J

 2, 6, 11, 16, K

 3, 7, 12, 17, I

Chapter 3. Load 119DB2 9 BETA

The user-supplied, non-NULL values of 10, 11, and 12 (for g1), and 15, 16, and

17 (for g2) result in the row being rejected (SQL3550W). To avoid this, the user

could issue the following LOAD command:

 DB2 LOAD FROM load.del of del method P(1, 2, 5)

 REPLACE INTO table1 (c1, c2, c3)

Again, this approach might be cumbersome and prone to error if the table has

many columns. The generatedignore modifier simplifies the syntax as follows:

 DB2 LOAD FROM load.del of del MODIFIED BY generatedignore

 REPLACE INTO table1

v The generatedoverride modifier is used for loading user-supplied values into a

table with generated columns. This can be useful when migrating data from

another database system, or when loading a table from data that was recovered

using the RECOVER DROPPED TABLE option of the ROLLFORWARD

DATABASE command. When this modifier is used, any rows with no data (or

NULL data) for non-nullable generated columns are rejected (SQL3116W).

When this modifier is used, the table is placed in the set integrity pending state

after the load operation. To take the table out of set integrity pending state

without verifying the user-supplied values, issue the following command:

 SET INTEGRITY FOR table-name GENERATED COLUMN IMMEDIATE

 UNCHECKED

To take the table out of set integrity pending state and force verification of the

user-supplied values, issue the following command:

 SET INTEGRITY FOR table-name IMMEDIATE CHECKED.

If a generated column is in any of the partitioning, dimension or distribution keys,

the generatedoverride modifier is ignored and the load utility generates values as

if the generatedignore modifier is specified. Loading an incorrect generated

column value in this case can place the record in the wrong physical location, such

as the wrong data partition, MDC block or database partition. For example, once a

record is on a wrong data partition, the set integrity operation has to move it to a

different physical location, which cannot be accomplished during online set

integrity operations.

For these generated columns, the data for the dependent columns must appear

within the first 32KB of data for each row being loaded.

For example, consider a table created with the following SQL statement:

 CREATE TABLE table1 (c1 INT, c2 INT, g1 INT GENERATED ALWAYS AS (c1 + c2))

 DISTRIBUTE BY hash (g1)

In order to successfully load data into this table, all of the data for columns c1 and

c2 must be located within the first 32KB of each row being loaded. Any row that

does not satisfy this restriction is rejected.

Note: There is one case where load does NOT support generating column values:

that is when one of the generated column expressions contains a

user-defined function that is FENCED. If you attempt to load into such a

table the load utility will fail. However, you can provide your own values

for these types of generated columns by using the generatedoverride file

type modifier of the load utility.

 Related concepts:

v “Generated Columns” in SQL Guide

120 Data Movement Utilities DB2 9 BETA

Checking for integrity violations following a load operation

 Following a load operation, the loaded table might be in set integrity pending state

in either READ or NO ACCESS mode if any of the following conditions exist:

v The table has table check constraints or referential integrity constraints defined

on it.

v The table has generated columns and a V7 or earlier client was used to initiate

the load operation.

v The table has descendent immediate materialized query tables or descendent

immediate staging tables referencing it.

v The table is a staging table or a materialized query table.

The STATUS flag of the SYSCAT.TABLES entry corresponding to the loaded table

indicates the set integrity pending state of the table. For the loaded table to be

fully usable, the STATUS must have a value of N and the ACCESS MODE must have a

value of F, indicating that the table is fully accessible and in normal state.

If the loaded table has descendent tables, the SET INTEGRITY PENDING

CASCADE parameter can be specified to indicate whether or not the set integrity

pending state of the loaded table should be immediately cascaded to the

descendent tables.

If the loaded table has constraints as well as descendent foreign key tables,

dependent materialized query tables and dependent staging tables, and if all of the

tables are in normal state prior to the load operation, the following will result

based on the load parameters specified:

INSERT, ALLOW READ ACCESS, and SET INTEGRITY PENDING CASCADE

IMMEDIATE

The loaded table, its dependent materialized query tables and dependent

staging tables are placed in set integrity pending state with read access.

INSERT, ALLOW READ ACCESS, and SET INTEGRITY PENDING CASCADE

DEFERRED

Only the loaded table is placed in set integrity pending with read access.

Descendent foreign key tables, descendent materialized query tables and

descendent staging tables remain in their original states.

INSERT, ALLOW NO ACCESS, and SET INTEGRITY PENDING CASCADE

IMMEDIATE

The loaded table, its dependent materialized query tables and dependent

staging tables are placed in set integrity pending state with no access.

INSERT or REPLACE, ALLOW NO ACCESS, and SET INTEGRITY PENDING

CASCADE DEFERRED

Only the loaded table is placed in set integrity pending state with no

access. Descendent foreign key tables, descendent immediate materialized

query tables and descendent immediate staging tables remain in their

original states.

REPLACE, ALLOW NO ACCESS, and SET INTEGRITY PENDING CASCADE

IMMEDIATE

The table and all its descendent foreign key tables, descendent immediate

materialized query tables, and descendent immediate staging tables are

placed in set integrity pending state with no access.

Chapter 3. Load 121DB2 9 BETA

Note: Specifying the ALLOW READ ACCESS option in a load replace operation

results in an error.

To remove the set integrity pending state, use the SET INTEGRITY statement. The

SET INTEGRITY statement checks a table for constraints violations, and takes the

table out of set integrity pending state. If all the load operations are performed in

INSERT mode, the SET INTEGRITY statement can be used to incrementally process

the constraints (that is, it checks only the appended portion of the table for

constraints violations). For example:

 db2 load from infile1.ixf of ixf insert into table1

 db2 set integrity for table1 immediate checked

Only the appended portion of TABLE1 is checked for constraint violations.

Checking only the appended portion for constraints violations is faster than

checking the entire table, especially in the case of a large table with small amounts

of appended data.

If a table is loaded with the SET INTEGRITY PENDING CASCADE DEFERRED

option specified, and the SET INTEGRITY statement is used to check for integrity

violations, the descendent tables are placed in set integrity pending state with no

access. To take the tables out of this state, you must issue an explicit request.

If a table with dependent materialized query tables or dependent staging tables is

loaded using the INSERT option, and the SET INTEGRITY statement is used to

check for integrity violations, the table is taken out of set integrity pending state

and placed in No Data Movement state. This is done to facilitate the subsequent

incremental refreshes of the dependent materialized query tables and the

incremental propagation of the dependent staging tables. In the No Data

Movement state, operations that might cause the movement of rows within the

table are not allowed.

You can override the No Data Movement state by specifying the FULL ACCESS

option when you issue the SET INTEGRITY statement. The table is fully accessible,

however a full recomputation of the dependent materialized query tables takes

place in subsequent REFRESH TABLE statements and the dependent staging tables

are forced into an incomplete state.

If the ALLOW READ ACCESS option is specified for a load operation, the table

remains in read access state until the SET INTEGRITY statement is used to check

for constraints violations. Applications can query the table for data that existed

prior to the load operation once it has been committed, but will not be able to

view the newly loaded data until the SET INTEGRITY statement is issued.

Several load operations can take place on a table before checking for constraints

violations. If all of the load operations are completed in ALLOW READ ACCESS

mode, only the data that existed in the table prior to the first load operation is

available for queries.

One or more tables can be checked in a single invocation of this statement. If a

dependent table is to be checked on its own, the parent table can not be in set

integrity pending state. Otherwise, both the parent table and the dependent table

must be checked at the same time. In the case of a referential integrity cycle, all the

tables involved in the cycle must be included in a single invocation of the SET

INTEGRITY statement. It might be convenient to check the parent table for

constraints violations while a dependent table is being loaded. This can only occur

if the two tables are not in the same table space.

122 Data Movement Utilities DB2 9 BETA

When issuing the SET INTEGRITY statement, you can specify the INCREMENTAL

option to explicitly request incremental processing. In most cases, this option is not

needed, because the DB2 database selects incremental processing. If incremental

processing is not possible, full processing is used automatically. When the

INCREMENTAL option is specified, but incremental processing is not possible, an

error is returned if:

v New constraints are added to the table while it is in set integrity pending state.

v A load replace operation takes place, or the NOT LOGGED INITIALLY WITH

EMPTY TABLE option is activated, after the last integrity check on the table.

v A parent table is load replaced or checked for integrity non-incrementally.

v The table is in set integrity pending state before migration. Full processing is

required the first time the table is checked for integrity after migration.

v The table space containing the table or its parent is rolled forward to a point in

time and the table and its parent reside in different table spaces.

If a table has one or more W values in the CONST_CHECKED column of the

SYSCAT.TABLES catalog, and if the NOT INCREMENTAL option is not specified

in the SET INTEGRITY statement, the table is incrementally processed and the

CONST_CHECKED column of SYSCAT.TABLES is marked as U to indicate that not

all data has been verified by the system.

The SET INTEGRITY statement does not activate any DELETE triggers as a result

of deleting rows that violate constraints, but once the table is removed from set

integrity pending state, triggers are active. Thus, if you correct data and insert

rows from the exception table into the loaded table, any INSERT triggers defined

on the table are activated. The implications of this should be considered. One

option is to drop the INSERT trigger, insert rows from the exception table, and

then recreate the INSERT trigger.

 Related concepts:

v “Load exception table” on page 199

v “Pending states after a load operation” on page 205

v “Read access load operations” on page 113

 Related reference:

v “SET INTEGRITY statement” in SQL Reference, Volume 2

v “Exception tables” in SQL Reference, Volume 1

Refreshing dependent immediate materialized query tables

 If the underlying table of an immediate refresh materialized query table is loaded

using the INSERT option, executing the SET INTEGRITY statement on the

dependent materialized query tables defined with REFRESH IMMEDIATE will

result in an incremental refresh of the materialized query table. During an

incremental refresh, the rows corresponding to the appended rows in the

underlying tables are updated and inserted into the materialized query tables.

Incremental refresh is faster in the case of large underlying tables with small

amounts of appended data. There are cases in which incremental refresh is not

allowed, and full refresh (that is, recomputation of the materialized query table

definition query) will be used.

When the INCREMENTAL option is specified, but incremental processing of the

materialized query table is not possible, an error is returned if:

Chapter 3. Load 123DB2 9 BETA

v A load replace operation has taken place into an underlying table of the

materialized query table or the NOT LOGGED INITIALLY WITH EMPTY

TABLE option has been activated since the last integrity check on the underlying

table.

v The materialized query table has been loaded (in either REPLACE or INSERT

mode).

v An underlying table has been taken out of Set Integrity Pending state before the

materialized query table is refreshed by using the FULL ACCESS option during

integrity checking.

v An underlying table of the materialized query table has been checked for

integrity non-incrementally.

v The materialized query table was in Set Integrity Pending state before migration.

v The table space containing the materialized query table or its underlying table

has been rolled forward to a point in time, and the materialized query table and

its underlying table reside in different table spaces.

If the materialized query table has one or more W values in the CONST_CHECKED

column of the SYSCAT.TABLES catalog, and if the NOT INCREMENTAL option is

not specified in the SET INTEGRITY statement, the table will be incrementally

refreshed and the CONST_CHECKED column of SYSCAT.TABLES will be marked

U to indicate that not all data has been verified by the system.

The following example illustrates a load insert operation into the underlying table

UTI of the materialized query table AST1. UT1 will be checked for data integrity

and will be placed in no data movement mode. UT1 will be put back into full

access state once the incremental refresh of AST1 is complete. In this scenario, both

the integrity checking for UT1 and the refreshing of AST1 will be processed

incrementally.

 LOAD FROM IMTFILE1.IXF of IXF INSERT INTO UT1;

 LOAD FROM IMTFILE2.IXF of IXF INSERT INTO UT1;

 SET INTEGRITY FOR UT1 IMMEDIATE CHECKED;

 REFRESH TABLE AST1;

 Related concepts:

v “Checking for integrity violations following a load operation” on page 121

Propagating dependent immediate staging tables

 If the table being loaded is an underlying table of a staging table with the

immediate propagate attribute, and if the load operation is done in insert mode,

the subsequent propagation into the dependent immediate staging tables will be

incremental.

During incremental propagation, the rows corresponding to the appended rows in

the underlying tables are appended into the staging tables. Incremental

propagation is faster in the case of large underlying tables with small amounts of

appended data. Performance will also be improved if the staging table is used to

refresh its dependent deferred materialized query table. There are cases in which

incremental propagation is not allowed, and the staging table will be marked

incomplete. That is, the staging byte of the CONST_CHECKED column will have a

value of F. In this state, the staging table can not be used to refresh its dependent

deferred materialized query table, and a full refresh will be required in the

materialized query table maintenance process.

124 Data Movement Utilities DB2 9 BETA

If a table is in incomplete state and the INCREMENTAL option has been specified,

but incremental propagation of the table is not possible, an error is returned. If any

of the following have taken place, the system will turn off immediate data

propagation and set the table state to incomplete:

v A load replace operation has taken place on an underlying table of the staging

table, or the NOT LOGGED INITIALLY WITH EMPTY TABLE option has been

activated after the last integrity check on the underlying table.

v The dependent materialized query table of the staging table, or the staging table

has been loaded in REPLACE or INSERT mode.

v An underlying table has been taken out of Set Integrity Pending state before the

staging table has been propagated by using the FULL ACCESS option during

integrity checking.

v An underlying table of the staging table has been checked for integrity

non-incrementally.

v The table space containing the staging table or its underlying table has been

rolled forward to a point in time, and the staging table and its underlying table

reside in different table spaces.

If the staging table has a W value in the CONST_CHECKED column of the

SYSCAT.TABLES catalog, and the NOT INCREMENTAL option is not specified,

incremental propagation to the staging table takes place and the

CONST_CHECKED column of SYSCAT.TABLES will be marked as U to indicate

that not all data has been verified by the system.

The following example illustrates a load insert operation into the underlying table

UT1 of staging table G1 and its dependent deferred materialized query table AST1.

In this scenario, both the integrity checking for UT1 and the refreshing of AST1

will be processed incrementally:

 LOAD FROM IMTFILE1.IXF of IXF INSERT INTO UT1;

 LOAD FROM IMTFILE2.IXF of IXF INSERT INTO UT1;

 SET INTEGRITY FOR UT1,G1 IMMEDIATE CHECKED;

 REFRESH TABLE AST1 INCREMENTAL;

 Related concepts:

v “Checking for integrity violations following a load operation” on page 121

Multidimensional clustering considerations

 The following restrictions apply when loading data into multi-dimensional

clustering (MDC) tables:

v The SAVECOUNT option of the LOAD command is not supported.

v The TOTALFREESPACE file type modifier is not supported since these tables

manage their own free space.

v The ANYORDER modifier is required for MDC tables. If a load is executed into

an MDC table without the ANYORDER modifier, it will be explicitly enabled by

the utility.

When using the LOAD command with MDC, violations of unique constraints will

be handled as follows:

v If the table included a unique key prior to the load operation and duplicate

records are loaded into the table, the original record will remain and the new

records will be deleted during the delete phase.

Chapter 3. Load 125DB2 9 BETA

v If the table did not include a unique key prior to the load operation and both a

unique key and duplicate records are loaded into the table, only one of the

records with the unique key will be loaded and the others will be deleted during

the delete phase.

Note: There is no explicit technique for determining which record will be loaded

and which will be deleted.

Performance Considerations

To improve the performance of the load utility when loading MDC tables, the

UTIL_HEAP_SZ database configuration parameter value should be increased. The

mdc-load algorithm will perform significantly better when more memory is

available to the utility.. This will reduce disk I/O during the clustering of data that

is performed during the load phase. When the DATA BUFFER option of LOAD

command is specified, its value should also be increased. If the LOAD command is

being used to load several MDC tables concurrently, the UTIL_HEAP_SZ

configuration parameter should be increased accordingly.

MDC load operations will always have a build phase since all MDC tables have

block indexes.

During the load phase, extra logging for the maintenance of the block map will be

performed. There are approximately two extra log records per extent allocated. To

ensure good performance, the LOGBUFSZ database configuration parameter

should be set to a value that takes this into account.

A system temporary table with an index is used to load data into MDC tables. The

size of the table is proportional to the number of distinct cells loaded. The size of

each row in the table is proportional to the size of the MDC dimension key. To

minimize disk I/O caused by the manipulation of this table during a load

operation, ensure that the buffer pool for the temporary table space is large

enough.

 Related concepts:

v “Optimizing load performance” on page 206

v “Multidimensional clustering tables” in Administration Guide: Planning

Load considerations for partitioned tables

 All of the existing load features are supported when the target table is partitioned

with the exception of the following general restrictions:

v Consistency points are not supported.

v Loading data into a subset of data partitions while the remaining data partitions

remain fully online is not supported.

v The exception table used by a load operation cannot be partitioned.

v A unique index cannot be rebuilt when the load utility is running in insert mode

or restart mode, and the load target table has any detached dependents.

v Similar to loading MDC tables, exact ordering of input data records is not

preserved when loading partitioned tables. Ordering is only maintained within

the cell or data partition.

v Load operations utilizing multiple formatters on each database partition only

preserve approximate ordering of input records. Running a single formatter on

126 Data Movement Utilities DB2 9 BETA

each database partition, groups the input records by cell or table partitioning

key. To run a single formatter on each database partition, explicitly request

CPU_PARALLELISM of 1.

General load behavior

The load utility inserts data records into the correct data partition. There is no

requirement to use an external utility, such as a splitter, to partition the input data

before loading.

The load utility does not access any detached or attached data partitions. Data is

inserted into visible data partitions only. Visible data partitions are neither attached

nor detached. In addition, a load replace operation does not truncate detached or

attached data partitions. Since the load utility acquires locks on the catalog system

tables, the load utility waits for any uncommitted ALTER TABLE transactions.

Such transactions acquire an exclusive lock on the relevant rows in the catalog

tables, and the exclusive lock must terminate before the load operation can

proceed. This means that there can be no uncommitted ALTER TABLE ...ATTACH,

DETACH, or ADD PARTITION transactions while load operation is running. Any

input source records destined for an attached or detached data partition are

rejected, and can be retrieved from the exception table if one is specified. An

informational message is written to the message file to indicate some of the target

table data partitions were in an attached or detached state. Locks on the relevant

catalog table rows corresponding to the target table prevent users from changing

the partitioning of the target table by issuing any ALTER TABLE ...ATTACH,

DETACH, or ADD PARTITION operations while the load utility is running.

Handling of invalid rows

When the load utility encounters a record that does not belong to any of the visible

data partitions the record is rejected and the load utility continues processing. The

number of records rejected because of the range constraint violation is not

explicitly displayed, but is included in the overall number of rejected records.

Rejecting a record because of the range violation does not increase the number of

row warnings. A single message (SQL0327N) is written to the load utility message

file indicating that range violations are found, but no per-record messages are

logged. The load utility offers an option to have otherwise valid rows that were

rejected because of a range constraint violation, inserted into the exception table. In

addition to all columns of the target table, the exception table includes columns

describing the type of violation that had occurred for a particular row. Rows

containing invalid data, including data that cannot be partitioned, are written to

the dump file. Because exception table inserts are expensive, you can control which

constraint violations are inserted into the exception table. If you do not specify the

exception table, or opt not to have range violating rows inserted into the exception

table, information about rows violating the range constraint are lost.

History file

If the target table is partitioned, the corresponding history file entry does not

include a list of the table spaces spanned by the target table. A different operation

granularity identifier (’R’ instead of ’T’) indicates that a load operation ran against

a partitioned table.

Terminating a load operation

Chapter 3. Load 127DB2 9 BETA

Terminating a load replace completely truncates all visible data partitions,

terminating a load insert truncates all visible data partitions to their lengths before

the load. Indices are invalidated during a termination of an online load operation

that failed in the load copy phase. Indices are also invalidated when terminating

an offline load operation that touched the index (It is invalidated because the

indexing mode is rebuild, or a key was inserted during incremental maintenance

leaving the index in an inconsistent state). Loading data into multiple targets does

not have any effect on load recovery operations except for the inability to restart

the load operation from a consistency point taken during the load phase In this

case, the SAVECOUNT load option is ignored if the target table is partitioned. This

behavior is consistent with loading data into a MDC target table.

Generated columns

If a generated column is in any of the partitioning, dimension or distribution keys,

the GENERATEDOVERRIDE modifier is ignored and the load utility generates

values as if the GENERATEDIGNORE modifier is specified. Loading an incorrect

generated column value in this case can place the record in the wrong physical

location, such as the wrong data partition, MDC block or database partition. For

example, once a record is on a wrong data partition, set integrity has to move it to

a different physical location, which cannot be accomplished during online set

integrity operations.

Data availability

The current online load algorithm extends to partitioned tables. An online load

(’ALLOW READ ACCESS) specified on the LOAD command allows concurrent

readers to access the whole table, including both loading and non-loading data

partitions.

Data partition states

After a successful load, visible data partitions might change to either or both SET

INTEGRITY PENDING or READ ONLY state, under certain conditions. Data

partitions might be placed in these states if there are constraints on the table which

the load operation cannot maintain. Such constraints might include check

contrainsts and detached materialized query tables. A failed load operation leaves

all visible data partitions in the LOAD PENDING state.

Error isolation

Error isolation at the data partition level is not supported. Isolating the errors

means continuing a load on data partitions that did not run into an error and

stopping on data partitions that did run into an error. Errors can be isolated

between different database partitions, but the load utility cannot commit

transactions on a subset of visible data partitions and rollback the remaining

visible data partitions.

Other considerations

v Incremental indexing is not supported if any of the indexes are marked invalid.

An index is considered invalid if it requires a rebuild or if detached dependents

require validation with the SET INTEGRITY statement.

v Loading into tables partitioned using any combination of partitioned by range,

distributed by hash or organized by dimension algorithms is also supported.

128 Data Movement Utilities DB2 9 BETA

v For log records which include the list of object and table space IDs affected by

the load, the size of these log records (LOAD START and COMMIT (PENDING

LIST)) could grow considerably and hence reduce the amount of active log space

available to other applications.

v When a table is both partitioned and distributed, a partitioned database load

might not affect all database partitions. Only the objects on the output database

partitions are changed.

v During a load operation, memory consumption for partitioned tables increases

with the number of tables. Note, that the total increase is not linear as only a

small percentage of the overall memory requirement is proportional to the

number of data partitions.

 Related concepts:

v “Load in a partitioned database environment - overview” on page 215

v “Partitioned tables” in Administration Guide: Planning

v “Data partitions” in Administration Guide: Planning

v “Load overview” on page 102

 Related tasks:

v “Loading data into a table using the Load wizard” in Administration Guide:

Implementation

v “Loading data” on page 110

 Related reference:

v “LOAD ” on page 132

v “db2Load - Load data into a table” on page 161

v “Load - CLP examples” on page 211

v “Restrictions on native XML data store” in XML Guide

Restarting an interrupted load operation

 If the load utility cannot start because of a user error, such as a nonexistent data

file or invalid column names, it will terminate and leave the table in a normal

state.

If a failure occurs while loading data, you can restart the load operation from the

last consistency point (using the RESTART option), or reload the entire table (using

the REPLACE option). Specify the same parameters as in the previous invocation,

so that the utility can find the necessary temporary files. Because the SAVECOUNT

parameter is not supported for multi-dimensional clustering (MDC) tables, a load

restart will only take place at the beginning of the load, build, or delete phase.

Note: A load operation that specified the ALLOW READ ACCESS option can be

restarted using either the ALLOW READ ACCESS option or the ALLOW

NO ACCESS option. Conversely, a load operation that specified the ALLOW

NO ACCESS option can not be restarted using the ALLOW READ ACCESS

option.

Chapter 3. Load 129DB2 9 BETA

Restarting or Terminating an Allow Read Access Load

Operation

A aborted load operation that specified the ALLOW READ ACCESS option might

also be restarted or terminated using the ALLOW READ ACCESS option. This will

allow other applications to query the table data while the terminate or restart

operation is in progress. As with a load operation in ALLOW READ ACCESS

mode, the table is locked exclusively prior to the data being committed.

If the index object is unavailable or marked invalid, a load restart or terminate

operation in ALLOW READ ACCESS mode will not be permitted.

If the original load operation was aborted in the index copy phase, a restart

operation in the ALLOW READ ACCESS mode is not permitted because the index

might be corrupted.

If a load operation in ALLOW READ ACCESS mode was aborted in the load

phase, it will restart in the load phase. If it was aborted in any phase other than

the load phase, it will restart in the build phase. If the original load operation was

in ALLOW NO ACCESS mode, a restart operation might occur in the delete phase

if the original load operation reached that point and the index is valid. If the index

is marked invalid, the load utility will restart the load operation from the build

phase.

Note: All load restart operations will choose the REBUILD indexing mode even if

the INDEXING MODE INCREMENTAL option is specified.

Issuing a LOAD TERMINATE command will generally cause the aborted load

operation to be rolled back with minimal delay. However, when issuing a LOAD

TERMINATE command for a load operation where ALLOW READ ACCESS and

INDEXING MODE INCREMENTAL are specified, there might be a delay while the

load utility scans the indexes and corrects any inconsistencies. The length of this

delay will depend on the size of the indexes and will occur whether or not the

ALLOW READ ACCESS option is specified for the load terminate operation. The

delay will not occur if the original load operation failed prior to the build phase.

Note: The delay resulting from corrections to inconsistencies in the index will be

considerably less than the delay caused by marking the indexes as invalid

and rebuilding them.

A load restart operation cannot be undertaken on a table that is in the not load

restartable table state. The table can be placed in the not load restartable table state

during a rollforward operation. This can occur if you roll forward to a point in

time that is prior to the end of a load operation, or if you roll forward through an

aborted load operation but do not roll forward to the end of the load terminate or

load restart operation.

 Related concepts:

v “Restarting or terminating a load operation in a partitioned database

environment” on page 225

v “Table locking, table states and table space states” on page 202

v “Load dump file” on page 200

v “Load exception table” on page 199

v “Load overview” on page 102

130 Data Movement Utilities DB2 9 BETA

Related reference:

v “Load configuration options for partitioned database environments” on page 227

Recovering data with the load copy location file

 The DB2LOADREC registry variable is used to identify the file with the load copy

location information. This file is used during rollforward recovery to locate the

load copy. It has information about:

v Media type

v Number of media devices to be used

v Location of the load copy generated during a table load operation

v File name of the load copy, if applicable

If the location file does not exist, or no matching entry is found in the file, the

information from the log record is used.

The information in the file might be overwritten before rollforward recovery takes

place.

Notes:

1. In a multi-partition database, the DB2LOADREC registry variable must be set

for all the database partition servers using the db2set command.

2. In a multi-partition database, the load copy file must exist at each database

partition server, and the file name (including the path) must be the same.

3. If an entry in the file identified by the DB2LOADREC registry variable is not

valid, the old load copy location file is used to provide information to replace

the invalid entry.

The following information is provided in the location file. The first five parameters

must have valid values, and are used to identify the load copy. The entire structure

is repeated for each load copy recorded. For example:

TIMestamp 19950725182542 * Time stamp generated at load time

DBPartition 0 * DB Partition number (OPTIONAL)

SCHema PAYROLL * Schema of table loaded

TABlename EMPLOYEES * Table name

DATabasename DBT * Database name

DB2instance toronto * DB2INSTANCE

BUFfernumber NULL * Number of buffers to be used for

 recovery

SESsionnumber NULL * Number of sessions to be used for

 recovery

TYPeofmedia L * Type of media - L for local device

 A for TSM

 O for other vendors

LOCationnumber 3 * Number of locations

 ENTry /u/toronto/dbt.payroll.employes.001

 ENT /u/toronto/dbt.payroll.employes.002

 ENT /dev/rmt0

TIM 19950725192054

DBP 18

SCH PAYROLL

TAB DEPT

DAT DBT

DB2 toronto

BUF NULL

SES NULL

TYP A

TIM 19940325192054

Chapter 3. Load 131DB2 9 BETA

SCH PAYROLL

TAB DEPT

DAT DBT

DB2 toronto

BUF NULL

SES NULL

TYP O

SHRlib /@sys/lib/backup_vendor.a

Notes:

1. The first three characters in each keyword are significant. All keywords are

required in the specified order. Blank lines are not accepted.

2. The time stamp is in the form yyyymmddhhmmss.

3. All fields are mandatory, except for BUF and SES (which can be NULL), and

DBP (which can be missing from the list).. If SES is NULL, the value specified

by the numloadrecses configuration parameter is used. If BUF is NULL, the

default value is SES+2.

4. If even one of the entries in the location file is invalid, the previous load copy

location file is used to provide those values.

5. The media type can be local device (L for tape, disk or diskettes), TSM (A), or

other vendor (O). If the type is L, the number of locations, followed by the

location entries, is required. If the type is A, no further input is required. If the

type is O, the shared library name is required.

6. The SHRlib parameter points to a library that has a function to store the load

copy data.

7. If you invoke a load operation, specifying the COPY NO or the

NONRECOVERABLE option, and do not take a backup copy of the database or

affected table spaces after the operation completes, you cannot restore the

database or table spaces to a point in time that follows the load operation. That

is, you cannot use rollforward recovery to recreate the database or table spaces

to the state they were in following the load operation. You can only restore the

database or table spaces to a point in time that precedes the load operation.

If you want to use a particular load copy, you can use the recovery history file for

the database to determine the time stamp for that specific load operation. In a

multi-partition database, the recovery history file is local to each database partition.

 Related reference:

v “Tivoli Storage Manager” in Data Recovery and High Availability Guide and

Reference

LOAD

 Loads data into a DB2 table. Data residing on the server can be in the form of a

file, tape, or named pipe. If the COMPRESS attribute for the table is set to YES, the

data loaded will be subject to compression on every data and database partition

for which a dictionary already exists in the table.

 Restrictions:

 The load utility does not support loading data at the hierarchy level. The load

utility is not compatible with range-clustered tables.

 Scope:

LOAD

132 Data Movement Utilities DB2 9 BETA

This command can be issued against multiple database partitions in a single

request.

 Authorization:

 One of the following:

v sysadm

v dbadm

v load authority on the database and

– INSERT privilege on the table when the load utility is invoked in INSERT

mode, TERMINATE mode (to terminate a previous load insert operation), or

RESTART mode (to restart a previous load insert operation)

– INSERT and DELETE privilege on the table when the load utility is invoked

in REPLACE mode, TERMINATE mode (to terminate a previous load replace

operation), or RESTART mode (to restart a previous load replace operation)

– INSERT privilege on the exception table, if such a table is used as part of the

load operation.
v To load data into a table that has protected columns, the session authorization

ID must have LBAC credentials that allow write access to all protected columns

in the table. Otherwise the load fails and an error (SQLSTATE 5U014) is

returned.

v To load data into a table that has protected rows, the session authorization id

must hold a security label that meets these criteria:

– It is part of the security policy protecting the table

– It was granted to the session authorization ID for write access

If the session authorization id does not hold such a security label then the load

fails and an error (SQLSTATE 5U014) is returned. This security label is used to

protect a loaded row if the session authorization ID's LBAC credentials do not

allow it to write to the security label that protects that row in the data. This does

not happen, however, when the security policy protecting the table was created

with the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option of

the CREATE SECURITY POLICY statement. In this case the load fails and an

error (SQLSTATE 42519) is returned.

v If the REPLACE option is specified, the session authorization ID must have the

authority to drop the table.

Since all load processes (and all DB2 server processes, in general) are owned by the

instance owner, and all of these processes use the identification of the instance

owner to access needed files, the instance owner must have read access to input

data files. These input data files must be readable by the instance owner, regardless

of who invokes the command.

 Required connection:

 Instance. An explicit attachment is not required. If a connection to the database has

been established, an implicit attachment to the local instance is attempted.

 Command syntax:

��

LOAD

FROM

�

 ,

filename

pipename

device

OF

filetype

�

,

LOBS FROM

lob-path

�

MODIFIED BY

filetype-mod

�

LOAD

Chapter 3. Load 133DB2 9 BETA

�

�

�

�

�

,

METHOD

L

(

column-start

column-end

)

,

NULL INDICATORS

(

null-indicator-list

)

,

N

(

column-name

)

,

P

(

column-position

)

SAVECOUNT

n

ROWCOUNT

n
 �

�
WARNINGCOUNT

n

TEMPFILES PATH

temp-pathname
 INSERT

REPLACE

RESTART

TERMINATE

�

 INTO table-name

,

(

insert-column

)

 �

�

�

,

(1)

(2)

FOR EXCEPTION

table-name

NORANGEEXC

NOUNIQUEEXC

STATISTICS

USE PROFILE

NO

 �

�

�

NO

COPY

YES

USE TSM

OPEN

num-sess

SESSIONS

,

TO

device/directory

LOAD

lib-name

OPEN

num-sess

SESSIONS

NONRECOVERABLE

DATA BUFFER

buffer-size

SORT BUFFER

buffer-size
 �

�
CPU_PARALLELISM

n

DISK_PARALLELISM

n

YES

FETCH_PARALLELISM

NO

INDEXING MODE

AUTOSELECT

REBUILD

INCREMENTAL

DEFERRED

 �

�
 ALLOW NO ACCESS

ALLOW READ ACCESS

USE

tablespace-name

SET INTEGRITY PENDING CASCADE

IMMEDIATE

DEFERRED

LOCK WITH FORCE

�

�
SOURCEUSEREXIT

executable

REDIRECT

INPUT FROM

BUFFER

input-buffer

PARALLELIZE

FILE

input-file

OUTPUT TO FILE

output-file

OUTPUT TO FILE

output-file

 �

�

�

PARTITIONED DB CONFIG

partitioned-db-option

 ��

Notes:

1 These keywords can appear in any order.

2 Each of these keywords can only appear once.

 Command parameters:

FROM filename/pipename/device/

Notes:

1. If data is exported into a file using the EXPORT command using the

ADMIN_CMD procedure, the data file is owned by the fenced user ID.

This file is not usually accessible by the instance owner. To run the

LOAD from CLP or the ADMIN_CMD procedure, the data file must be

accessible by the instance owner ID, so read access to the data file must

be granted to the instance owner.

2. Loading data from multiple IXF files is supported if the files are

physically separate, but logically one file. It is not supported if the files

are both logically and physically separate. (Multiple physical files

LOAD

134 Data Movement Utilities DB2 9 BETA

would be considered logically one if they were all created with one

invocation of the EXPORT command.)

OF filetype

Specifies the format of the data:

v ASC (non-delimited ASCII format)

v DEL (delimited ASCII format)

v IXF (integrated exchange format, PC version), exported from the same or

from another DB2 table

v CURSOR (a cursor declared against a SELECT or VALUES statement).

LOBS FROM lob-path

The path to the data files containing LOB values to be loaded. The path

must end with a slash (/). The names of the LOB data files are stored in

the main data file (ASC, DEL, or IXF), in the column that will be loaded

into the LOB column. The maximum number of paths that can be specified

is 999. This will implicitly activate the LOBSINFILE behaviour.

 This option is ignored when specified in conjunction with the CURSOR

filetype.

MODIFIED BY filetype-mod

Specifies file type modifier options. See File type modifiers for the load

utility.

METHOD

L Specifies the start and end column numbers from which to load

data. A column number is a byte offset from the beginning of a

row of data. It is numbered starting from 1. This method can only

be used with ASC files, and is the only valid method for that file

type.

NULL INDICATORS null-indicator-list

This option can only be used when the METHOD L

parameter is specified; that is, the input file is an ASC file).

The null indicator list is a comma-separated list of positive

integers specifying the column number of each null

indicator field. The column number is the byte offset of the

null indicator field from the beginning of a row of data.

There must be one entry in the null indicator list for each

data field defined in the METHOD L parameter. A column

number of zero indicates that the corresponding data field

always contains data.

 A value of Y in the NULL indicator column specifies that

the column data is NULL. Any character other than Y in

the NULL indicator column specifies that the column data

is not NULL, and that column data specified by the

METHOD L option will be loaded.

 The NULL indicator character can be changed using the

MODIFIED BY option.

N Specifies the names of the columns in the data file to be loaded.

The case of these column names must match the case of the

corresponding names in the system catalogs. Each table column

that is not nullable should have a corresponding entry in the

METHOD N list. For example, given data fields F1, F2, F3, F4, F5,

and F6, and table columns C1 INT, C2 INT NOT NULL, C3 INT

LOAD

Chapter 3. Load 135DB2 9 BETA

NOT NULL, and C4 INT, method N (F2, F1, F4, F3) is a valid

request, while method N (F2, F1) is not valid. This method can

only be used with file types IXF or CURSOR.

P Specifies the field numbers (numbered from 1) of the input data

fields to be loaded. Each table column that is not nullable should

have a corresponding entry in the METHOD P list. For example,

given data fields F1, F2, F3, F4, F5, and F6, and table columns C1

INT, C2 INT NOT NULL, C3 INT NOT NULL, and C4 INT, method

P (2, 1, 4, 3) is a valid request, while method P (2, 1) is not

valid. This method can only be used with file types IXF, DEL, or

CURSOR, and is the only valid method for the DEL file type.

SAVECOUNT n

Specifies that the load utility is to establish consistency points after every n

rows. This value is converted to a page count, and rounded up to intervals

of the extent size. Since a message is issued at each consistency point, this

option should be selected if the load operation will be monitored using

LOAD QUERY. If the value of n is not sufficiently high, the

synchronization of activities performed at each consistency point will

impact performance.

 The default value is zero, meaning that no consistency points will be

established, unless necessary.

 This option is ignored when specified in conjunction with the CURSOR

filetype.

ROWCOUNT n

Specifies the number of n physical records in the file to be loaded. Allows

a user to load only the first n rows in a file.

WARNINGCOUNT n

Stops the load operation after n warnings. Set this parameter if no

warnings are expected, but verification that the correct file and table are

being used is desired. If the load file or the target table is specified

incorrectly, the load utility will generate a warning for each row that it

attempts to load, which will cause the load to fail. If n is zero, or this

option is not specified, the load operation will continue regardless of the

number of warnings issued. If the load operation is stopped because the

threshold of warnings was encountered, another load operation can be

started in RESTART mode. The load operation will automatically continue

from the last consistency point. Alternatively, another load operation can

be initiated in REPLACE mode, starting at the beginning of the input file.

TEMPFILES PATH temp-pathname

Specifies the name of the path to be used when creating temporary files

during a load operation, and should be fully qualified according to the

server database partition.

 Temporary files take up file system space. Sometimes, this space

requirement is quite substantial. Following is an estimate of how much file

system space should be allocated for all temporary files:

v 136 bytes for each message that the load utility generates

v 15KB overhead if the data file contains long field data or LOBs. This

quantity can grow significantly if the INSERT option is specified, and

there is a large amount of long field or LOB data already in the table.

LOAD

136 Data Movement Utilities DB2 9 BETA

INSERT

One of four modes under which the load utility can execute. Adds the

loaded data to the table without changing the existing table data.

REPLACE

One of four modes under which the load utility can execute. Deletes all

existing data from the table, and inserts the loaded data. The table

definition and index definitions are not changed. If this option is used

when moving data between hierarchies, only the data for an entire

hierarchy, not individual subtables, can be replaced.

RESTART

One of four modes under which the load utility can execute. Restarts a

previously interrupted load operation. The load operation will

automatically continue from the last consistency point in the load, build, or

delete phase.

TERMINATE

One of four modes under which the load utility can execute. Terminates a

previously interrupted load operation, and rolls back the operation to the

point in time at which it started, even if consistency points were passed.

The states of any table spaces involved in the operation return to normal,

and all table objects are made consistent (index objects might be marked as

invalid, in which case index rebuild will automatically take place at next

access). If the load operation being terminated is a load REPLACE, the

table will be truncated to an empty table after the load TERMINATE

operation. If the load operation being terminated is a load INSERT, the

table will retain all of its original records after the load TERMINATE

operation.

 The load terminate option will not remove a backup pending state from

table spaces.

INTO table-name

Specifies the database table into which the data is to be loaded. This table

cannot be a system table or a declared temporary table. An alias, or the

fully qualified or unqualified table name can be specified. A qualified table

name is in the form schema.tablename. If an unqualified table name is

specified, the table will be qualified with the CURRENT SCHEMA.

insert-column

Specifies the table column into which the data is to be inserted.

 The load utility cannot parse columns whose names contain one or more

spaces. For example,

 will fail because of the Int 4 column. The solution is to enclose such

column names with double quotation marks:

FOR EXCEPTION table-name

Specifies the exception table into which rows in error will be copied. Any

row that is in violation of a unique index or a primary key index is copied.

If an unqualified table name is specified, the table will be qualified with

the CURRENT SCHEMA.

 Information that is written to the exception table is not written to the

dump file. In a partitioned database environment, an exception table must

be defined for those database partitions on which the loading table is

defined. The dump file, on the other hand, contains rows that cannot be

loaded because they are invalid or have syntax errors.

LOAD

Chapter 3. Load 137DB2 9 BETA

NORANGEEXC

Indicates that if a row is rejected because of a range violation it will not be

inserted into the exception table.

NOUNIQUEEXC

Indicates that if a row is rejected because it violates a unique constraint it

will not be inserted into the exception table.

STATISTICS USE PROFILE

Instructs load to collect statistics during the load according to the profile

defined for this table. This profile must be created before load is executed.

The profile is created by the RUNSTATS command. If the profile does not

exist and load is instructed to collect statistics according to the profile, a

warning is returned and no statistics are collected.

STATISTICS NO

Specifies that no statistics are to be collected, and that the statistics in the

catalogs are not to be altered. This is the default.

COPY NO

Specifies that the table space in which the table resides will be placed in

backup pending state if forward recovery is enabled (that is, logretain or

userexit is on). The COPY NO option will also put the table space state into

the Load in Progress table space state. This is a transient state that will

disappear when the load completes or aborts. The data in any table in the

table space cannot be updated or deleted until a table space backup or a

full database backup is made. However, it is possible to access the data in

any table by using the SELECT statement.

 LOAD with COPY NO on a recoverable database leaves the table spaces in

a backup pending state. For example, performing a LOAD with COPY NO

and INDEXING MODE DEFERRED will leave indexes needing a refresh.

Certain queries on the table might require an index scan and will not

succeed until the indexes are refreshed. The index cannot be refreshed if it

resides in a table space which is in the backup pending state. In that case,

access to the table will not be allowed until a backup is taken. Index

refresh is done automatically by the database when the index is accessed

by a query.

COPY YES

Specifies that a copy of the loaded data will be saved. This option is

invalid if forward recovery is disabled (both logretain and userexit are off).

USE TSM

Specifies that the copy will be stored using Tivoli Storage Manager

(TSM).

OPEN num-sess SESSIONS

The number of I/O sessions to be used with TSM or the vendor

product. The default value is 1.

TO device/directory

Specifies the device or directory on which the copy image will be

created.

LOAD lib-name

The name of the shared library (DLL on Windows operating

systems) containing the vendor backup and restore I/O functions

to be used. It can contain the full path. If the full path is not given,

it will default to the path where the user exit programs reside.

LOAD

138 Data Movement Utilities DB2 9 BETA

NONRECOVERABLE

Specifies that the load transaction is to be marked as non-recoverable and

that it will not be possible to recover it by a subsequent roll forward

action. The roll forward utility will skip the transaction and will mark the

table into which data was being loaded as "invalid". The utility will also

ignore any subsequent transactions against that table. After the roll

forward operation is completed, such a table can only be dropped or

restored from a backup (full or table space) taken after a commit point

following the completion of the non-recoverable load operation.

 With this option, table spaces are not put in backup pending state

following the load operation, and a copy of the loaded data does not have

to be made during the load operation.

WITHOUT PROMPTING

Specifies that the list of data files contains all the files that are to be

loaded, and that the devices or directories listed are sufficient for the entire

load operation. If a continuation input file is not found, or the copy targets

are filled before the load operation finishes, the load operation will fail,

and the table will remain in load pending state.

DATA BUFFER buffer-size

Specifies the number of 4KB pages (regardless of the degree of parallelism)

to use as buffered space for transferring data within the utility. If the value

specified is less than the algorithmic minimum, the minimum required

resource is used, and no warning is returned.

 This memory is allocated directly from the utility heap, whose size can be

modified through the util_heap_sz database configuration parameter.

 If a value is not specified, an intelligent default is calculated by the utility

at run time. The default is based on a percentage of the free space available

in the utility heap at the instantiation time of the loader, as well as some

characteristics of the table.

SORT BUFFER buffer-size

This option specifies a value that overrides the SORTHEAP database

configuration parameter during a load operation. It is relevant only when

loading tables with indexes and only when the INDEXING MODE

parameter is not specified as DEFERRED. The value that is specified

cannot exceed the value of SORTHEAP. This parameter is useful for

throttling the sort memory that is used when loading tables with many

indexes without changing the value of SORTHEAP, which would also

affect general query processing.

CPU_PARALLELISM n

Specifies the number of processes or threads that the load utility will

spawn for parsing, converting, and formatting records when building table

objects. This parameter is designed to exploit intra-partition parallelism. It

is particularly useful when loading presorted data, because record order in

the source data is preserved. If the value of this parameter is zero, or has

not been specified, the load utility uses an intelligent default value (usually

based on the number of CPUs available) at run time.

Notes:

1. If this parameter is used with tables containing either LOB or LONG

VARCHAR fields, its value becomes one, regardless of the number of

system CPUs or the value specified by the user.

LOAD

Chapter 3. Load 139DB2 9 BETA

2. Specifying a small value for the SAVECOUNT parameter causes the

loader to perform many more I/O operations to flush both data and

table metadata. When CPU_PARALLELISM is greater than one, the

flushing operations are asynchronous, permitting the loader to exploit

the CPU. When CPU_PARALLELISM is set to one, the loader waits on

I/O during consistency points. A load operation with

CPU_PARALLELISM set to two, and SAVECOUNT set to 10 000,

completes faster than the same operation with CPU_PARALLELISM set

to one, even though there is only one CPU.

DISK_PARALLELISM n

Specifies the number of processes or threads that the load utility will

spawn for writing data to the table space containers. If a value is not

specified, the utility selects an intelligent default based on the number of

table space containers and the characteristics of the table.

FETCH_PARALLELISM YES/NO

When performing a load from a cursor where the cursor is declared using

the DATABASE keyword, or when using the API sqlu_remotefetch_entry

media entry, and this option is set to YES, the load utility attempts to

parallelize fetching from the remote data source if possible. If set to NO, no

parallel fetching is performed. The default value is YES. For more

information, see Moving data using the CURSOR file type.

INDEXING MODE

Specifies whether the load utility is to rebuild indexes or to extend them

incrementally. Valid values are:

AUTOSELECT

The load utility will automatically decide between REBUILD or

INCREMENTAL mode. The decision is based on the amount of

data being loaded and the depth of the index tree. Information

relating to the depth of the index tree is stored in the index object.

RUNSTATS is not required to populate this information.

AUTOSELECT is the default indexing mode.

REBUILD

All indexes will be rebuilt. The utility must have sufficient

resources to sort all index key parts for both old and appended

table data.

INCREMENTAL

Indexes will be extended with new data. This approach consumes

index free space. It only requires enough sort space to append

index keys for the inserted records. This method is only supported

in cases where the index object is valid and accessible at the start

of a load operation (it is, for example, not valid immediately

following a load operation in which the DEFERRED mode was

specified). If this mode is specified, but not supported due to the

state of the index, a warning is returned, and the load operation

continues in REBUILD mode. Similarly, if a load restart operation

is begun in the load build phase, INCREMENTAL mode is not

supported.

 Incremental indexing is not supported when all of the following

conditions are true:

v The LOAD COPY option is specified (logarchmeth1 with the

USEREXIT or LOGRETAIN option).

v The table resides in a DMS table space.

LOAD

140 Data Movement Utilities DB2 9 BETA

v The index object resides in a table space that is shared by other

table objects belonging to the table being loaded.

To bypass this restriction, it is recommended that indexes be placed

in a separate table space.

DEFERRED

The load utility will not attempt index creation if this mode is

specified. Indexes will be marked as needing a refresh. The first

access to such indexes that is unrelated to a load operation might

force a rebuild, or indexes might be rebuilt when the database is

restarted. This approach requires enough sort space for all key

parts for the largest index. The total time subsequently taken for

index construction is longer than that required in REBUILD mode.

Therefore, when performing multiple load operations with deferred

indexing, it is advisable (from a performance viewpoint) to let the

last load operation in the sequence perform an index rebuild,

rather than allow indexes to be rebuilt at first non-load access.

 Deferred indexing is only supported for tables with non-unique

indexes, so that duplicate keys inserted during the load phase are

not persistent after the load operation.

ALLOW NO ACCESS

Load will lock the target table for exclusive access during the load. The

table state will be set to Load In Progress during the load. ALLOW NO

ACCESS is the default behavior. It is the only valid option for LOAD

REPLACE.

 When there are constraints on the table, the table state will be set to Set

Integrity Pending as well as Load In Progress. The SET INTEGRITY

statement must be used to take the table out of Set Integrity Pending state.

ALLOW READ ACCESS

Load will lock the target table in a share mode. The table state will be set

to both Load In Progress and Read Access. Readers can access the

non-delta portion of the data while the table is being load. In other words,

data that existed before the start of the load will be accessible by readers to

the table, data that is being loaded is not available until the load is

complete. LOAD TERMINATE or LOAD RESTART of an ALLOW READ

ACCESS load can use this option; LOAD TERMINATE or LOAD RESTART

of an ALLOW NO ACCESS load cannot use this option. Furthermore, this

option is not valid if the indexes on the target table are marked as

requiring a rebuild.

 When there are constraints on the table, the table state will be set to Set

Integrity Pending as well as Load In Progress, and Read Access. At the end

of the load, the table state Load In Progress will be removed but the table

states Set Integrity Pending and Read Access will remain. The SET

INTEGRITY statement must be used to take the table out of Set Integrity

Pending. While the table is in Set Integrity Pending and Read Access

states, the non-delta portion of the data is still accessible to readers, the

new (delta) portion of the data will remain inaccessible until the SET

INTEGRITY statement has completed. A user can perform multiple loads

on the same table without issuing a SET INTEGRITY statement. Only the

original (checked) data will remain visible, however, until the SET

INTEGRITY statement is issued.

 ALLOW READ ACCESS also supports the following modifiers:

LOAD

Chapter 3. Load 141DB2 9 BETA

USE tablespace-name

If the indexes are being rebuilt, a shadow copy of the index is built

in table space tablespace-name and copied over to the original table

space at the end of the load during an INDEX COPY PHASE. Only

system temporary table spaces can be used with this option. If not

specified then the shadow index will be created in the same table

space as the index object. If the shadow copy is created in the same

table space as the index object, the copy of the shadow index object

over the old index object is instantaneous. If the shadow copy is in

a different table space from the index object a physical copy is

performed. This could involve considerable I/O and time. The

copy happens while the table is offline at the end of a load during

the INDEX COPY PHASE.

 Without this option the shadow index is built in the same table

space as the original. Since both the original index and shadow

index by default reside in the same table space simultaneously,

there might be insufficient space to hold both indexes within one

table space. Using this option ensures that you retain enough table

space for the indexes.

 This option is ignored if the user does not specify INDEXING

MODE REBUILD or INDEXING MODE AUTOSELECT. This option

will also be ignored if INDEXING MODE AUTOSELECT is chosen

and load chooses to incrementally update the index.

SET INTEGRITY PENDING CASCADE

If LOAD puts the table into Set Integrity Pending state, the SET

INTEGRITY PENDING CASCADE option allows the user to specify

whether or not Set Integrity Pending state of the loaded table is

immediately cascaded to all descendents (including descendent foreign key

tables, descendent immediate materialized query tables and descendent

immediate staging tables).

IMMEDIATE

Indicates that Set Integrity Pending state is immediately extended

to all descendent foreign key tables, descendent immediate

materialized query tables and descendent staging tables. For a

LOAD INSERT operation, Set Integrity Pending state is not

extended to descendent foreign key tables even if the IMMEDIATE

option is specified.

 When the loaded table is later checked for constraint violations

(using the IMMEDIATE CHECKED option of the SET INTEGRITY

statement), descendent foreign key tables that were placed in Set

Integrity Pending Read Access state will be put into Set Integrity

Pending No Access state.

DEFERRED

Indicates that only the loaded table will be placed in the Set

Integrity Pending state. The states of the descendent foreign key

tables, descendent immediate materialized query tables and

descendent immediate staging tables will remain unchanged.

 Descendent foreign key tables might later be implicitly placed in

Set Integrity Pending state when their parent tables are checked for

constraint violations (using the IMMEDIATE CHECKED option of

the SET INTEGRITY statement). Descendent immediate

materialized query tables and descendent immediate staging tables

LOAD

142 Data Movement Utilities DB2 9 BETA

will be implicitly placed in Set Integrity Pending state when one of

its underlying tables is checked for integrity violations. A warning

(SQLSTATE 01586) will be issued to indicate that dependent tables

have been placed in Set Integrity Pending state. See the Notes

section of the SET INTEGRITY statement in the SQL Reference for

when these descendent tables will be put into Set Integrity Pending

state.

If the SET INTEGRITY PENDING CASCADE option is not specified:

v Only the loaded table will be placed in Set Integrity Pending state. The

state of descendent foreign key tables, descendent immediate

materialized query tables and descendent immediate staging tables will

remain unchanged, and can later be implicitly put into Set Integrity

Pending state when the loaded table is checked for constraint violations.

If LOAD does not put the target table into Set Integrity Pending state, the

SET INTEGRITY PENDING CASCADE option is ignored.

LOCK WITH FORCE

The utility acquires various locks including table locks in the process of

loading. Rather than wait, and possibly timeout, when acquiring a lock,

this option allows load to force off other applications that hold conflicting

locks on the target table. Applications holding conflicting locks on the

system catalog tables will not be forced off by the load utility. Forced

applications will roll back and release the locks the load utility needs. The

load utility can then proceed. This option requires the same authority as

the FORCE APPLICATIONS command (SYSADM or SYSCTRL).

 ALLOW NO ACCESS loads might force applications holding conflicting

locks at the start of the load operation. At the start of the load the utility

can force applications that are attempting to either query or modify the

table.

 ALLOW READ ACCESS loads can force applications holding conflicting

locks at the start or end of the load operation. At the start of the load the

load utility can force applications that are attempting to modify the table.

At the end of the load operation, the load utility can force applications that

are attempting to either query or modify the table.

SOURCEUSEREXITexecutable

Specifies an executable filename which will be called to feed data into the

utility.

REDIRECT

INPUT FROM

BUFFER input-buffer

The stream of bytes specified in input-buffer is

passed into the STDIN file descriptor of the process

executing the given executable.

FILE input-file

The contents of this client-side file are passed into

the STDIN file descriptor of the process executing

the given executable.

OUTPUT TO

LOAD

Chapter 3. Load 143DB2 9 BETA

FILE output-file

The STDOUT and STDERR file descriptors are

captured to the fully qualified server-side file

specified.

PARALLELIZE

Increases the throughput of data coming into the load utility by

invoking multiple user exit processes simultaneously. This option is

only applicable in multi-partition database environments and is

ingored in single-partition database enviroments.

For more information, see Moving data using a customized application

(user exit).

PARTITIONED DB CONFIG

Allows you to execute a load into a table distributed across multiple

database partitions. The PARTITIONED DB CONFIG parameter allows you

to specify partitioned database-specific configuration options. The

partitioned-db-option values can be any of the following:

PART_FILE_LOCATION x

OUTPUT_DBPARTNUMS x

PARTITIONING_DBPARTNUMS x

MODE x

MAX_NUM_PART_AGENTS x

ISOLATE_PART_ERRS x

STATUS_INTERVAL x

PORT_RANGE x

CHECK_TRUNCATION

MAP_FILE_INPUT x

MAP_FILE_OUTPUT x

TRACE x

NEWLINE

DISTFILE x

OMIT_HEADER

RUN_STAT_DBPARTNUM x

Detailed descriptions of these options are provided in Load configuration

options for partitioned database environments.

RESTARTCOUNT

Reserved.

USING directory

Reserved.

 Usage notes:

v Data is loaded in the sequence that appears in the input file. If a particular

sequence is desired, the data should be sorted before a load is attempted.

v The load utility builds indexes based on existing definitions. The exception

tables are used to handle duplicates on unique keys. The utility does not enforce

referential integrity, perform constraints checking, or update materialized query

tables that are dependent on the tables being loaded. Tables that include

referential or check constraints are placed in Set Integrity Pending state.

Summary tables that are defined with REFRESH IMMEDIATE, and that are

dependent on tables being loaded, are also placed in Set Integrity Pending state.

Issue the SET INTEGRITY statement to take the tables out of Set Integrity

Pending state. Load operations cannot be carried out on replicated materialized

query tables.

LOAD

144 Data Movement Utilities DB2 9 BETA

v If a clustering index exists on the table, the data should be sorted on the

clustering index prior to loading. Data does not need to be sorted prior to

loading into a multidimensional clustering (MDC) table, however.

v If you specify an exception table when loading into a protected table, any rows

that are protected by invalid security labels will be sent to that table. This might

allow users that have access to the exception table to access to data that they

would not normally be authorized to access. For better security be careful who

you grant exception table access to, delete each row as soon as it is repaired and

copied to the table being loaded, and drop the exception table as soon as you

are done with it.

v Security labels in their internal format might contain newline characters. If you

load the file using the DEL file format, those newline characters can be mistaken

for delimiters. If you have this problem use the older default priority for

delimiters by specifying the delprioritychar file type modifier in the LOAD

command.

v For performing a load using the CURSOR filetype where the DATABASE keyword

was specified during the DECLARE CURSOR command, the user ID and

password used to authenticate against the database currently connected to (for

the load) will be used to authenticate against the source database (specified by

the DATABASE option of the DECLARE CURSOR command). If no user ID or

password was specified for the connection to the loading database, a user ID

and password for the source database must be specified during the DECLARE

CURSOR command.

 Related concepts:

v “Load overview” on page 102

v “Privileges, authorities, and authorizations required to use Load” on page 109

 Related tasks:

v “Loading data” on page 110

 Related reference:

v “QUIESCE TABLESPACES FOR TABLE command” in Command Reference

v “LOAD command using the ADMIN_CMD procedure” on page 145

v “Load - CLP examples” on page 211

v “Load configuration options for partitioned database environments” on page 227

LOAD command using the ADMIN_CMD procedure

 Loads data into a DB2 table. Data residing on the server can be in the form of a

file, tape, or named pipe. If the COMPRESS attribute for the table is set to YES, the

data loaded will be subject to compression on every data and database partition

for which a dictionary already exists in the table.

 Restrictions:

 The load utility does not support loading data at the hierarchy level. The load

utility is not compatible with range-clustered tables.

 Scope:

 This command can be issued against multiple database partitions in a single

request.

LOAD

Chapter 3. Load 145DB2 9 BETA

Authorization:

 One of the following:

v sysadm

v dbadm

v load authority on the database and

– INSERT privilege on the table when the load utility is invoked in INSERT

mode, TERMINATE mode (to terminate a previous load insert operation), or

RESTART mode (to restart a previous load insert operation)

– INSERT and DELETE privilege on the table when the load utility is invoked

in REPLACE mode, TERMINATE mode (to terminate a previous load replace

operation), or RESTART mode (to restart a previous load replace operation)

– INSERT privilege on the exception table, if such a table is used as part of the

load operation.
v To load data into a table that has protected columns, the session authorization

ID must have LBAC credentials that allow write access to all protected columns

in the table. Otherwise the load fails and an error (SQLSTATE 5U014) is

returned.

v To load data into a table that has protected rows, the session authorization id

must hold a security label that meets these criteria:

– It is part of the security policy protecting the table

– It was granted to the session authorization ID for write access

If the session authorization id does not hold such a security label then the load

fails and an error (SQLSTATE 5U014) is returned. This security label is used to

protect a loaded row if the session authorization ID's LBAC credentials do not

allow it to write to the security label that protects that row in the data. This does

not happen, however, when the security policy protecting the table was created

with the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option of

the CREATE SECURITY POLICY statement. In this case the load fails and an

error (SQLSTATE 42519) is returned.

v If the REPLACE option is specified, the session authorization ID must have the

authority to drop the table.

Since all load processes (and all DB2 server processes, in general) are owned by the

instance owner, and all of these processes use the identification of the instance

owner to access needed files, the instance owner must have read access to input

data files. These input data files must be readable by the instance owner, regardless

of who invokes the command.

 Required connection:

 Instance. An explicit attachment is not required. If a connection to the database has

been established, an implicit attachment to the local instance is attempted.

 Command syntax:

��

LOAD

FROM

�

 ,

filename

pipename

device

OF

filetype

�

,

LOBS FROM

lob-path

�

MODIFIED BY

filetype-mod

�

LOAD using ADMIN_CMD

146 Data Movement Utilities DB2 9 BETA

�

�

�

�

�

,

METHOD

L

(

column-start

column-end

)

,

NULL INDICATORS

(

null-indicator-list

)

,

N

(

column-name

)

,

P

(

column-position

)

SAVECOUNT

n

ROWCOUNT

n
 �

�
WARNINGCOUNT

n

TEMPFILES PATH

temp-pathname
 INSERT

REPLACE

RESTART

TERMINATE

�

 INTO table-name

,

(

insert-column

)

 �

�

�

,

(1)

(2)

FOR EXCEPTION

table-name

NORANGEEXC

NOUNIQUEEXC

STATISTICS

USE PROFILE

NO

 �

�

�

NO

COPY

YES

USE TSM

OPEN

num-sess

SESSIONS

,

TO

device/directory

LOAD

lib-name

OPEN

num-sess

SESSIONS

NONRECOVERABLE

DATA BUFFER

buffer-size

SORT BUFFER

buffer-size
 �

�
CPU_PARALLELISM

n

DISK_PARALLELISM

n

YES

FETCH_PARALLELISM

NO

INDEXING MODE

AUTOSELECT

REBUILD

INCREMENTAL

DEFERRED

 �

�
 ALLOW NO ACCESS

ALLOW READ ACCESS

USE

tablespace-name

SET INTEGRITY PENDING CASCADE

IMMEDIATE

DEFERRED

LOCK WITH FORCE

�

�
SOURCEUSEREXIT

executable

REDIRECT

INPUT FROM

BUFFER

input-buffer

PARALLELIZE

FILE

input-file

OUTPUT TO FILE

output-file

OUTPUT TO FILE

output-file

 �

�

�

PARTITIONED DB CONFIG

partitioned-db-option

 ��

Notes:

1 These keywords can appear in any order.

2 Each of these keywords can only appear once.

 Command parameters:

FROM filename/pipename/device/

Notes:

1. If data is exported into a file using the EXPORT command using the

ADMIN_CMD procedure, the data file is owned by the fenced user ID.

This file is not usually accessible by the instance owner. To run the

LOAD from CLP or the ADMIN_CMD procedure, the data file must be

accessible by the instance owner ID, so read access to the data file must

be granted to the instance owner.

2. Loading data from multiple IXF files is supported if the files are

physically separate, but logically one file. It is not supported if the files

are both logically and physically separate. (Multiple physical files

LOAD using ADMIN_CMD

Chapter 3. Load 147DB2 9 BETA

would be considered logically one if they were all created with one

invocation of the EXPORT command.)

OF filetype

Specifies the format of the data:

v ASC (non-delimited ASCII format)

v DEL (delimited ASCII format)

v IXF (integrated exchange format, PC version), exported from the same or

from another DB2 table

v CURSOR (a cursor declared against a SELECT or VALUES statement).

LOBS FROM lob-path

The path to the data files containing LOB values to be loaded. The path

must end with a slash (/). The names of the LOB data files are stored in

the main data file (ASC, DEL, or IXF), in the column that will be loaded

into the LOB column. The maximum number of paths that can be specified

is 999. This will implicitly activate the LOBSINFILE behaviour.

 This option is ignored when specified in conjunction with the CURSOR

filetype.

MODIFIED BY filetype-mod

Specifies file type modifier options. See File type modifiers for the load

utility.

METHOD

L Specifies the start and end column numbers from which to load

data. A column number is a byte offset from the beginning of a

row of data. It is numbered starting from 1. This method can only

be used with ASC files, and is the only valid method for that file

type.

NULL INDICATORS null-indicator-list

This option can only be used when the METHOD L

parameter is specified; that is, the input file is an ASC file).

The null indicator list is a comma-separated list of positive

integers specifying the column number of each null

indicator field. The column number is the byte offset of the

null indicator field from the beginning of a row of data.

There must be one entry in the null indicator list for each

data field defined in the METHOD L parameter. A column

number of zero indicates that the corresponding data field

always contains data.

 A value of Y in the NULL indicator column specifies that

the column data is NULL. Any character other than Y in

the NULL indicator column specifies that the column data

is not NULL, and that column data specified by the

METHOD L option will be loaded.

 The NULL indicator character can be changed using the

MODIFIED BY option.

N Specifies the names of the columns in the data file to be loaded.

The case of these column names must match the case of the

corresponding names in the system catalogs. Each table column

that is not nullable should have a corresponding entry in the

METHOD N list. For example, given data fields F1, F2, F3, F4, F5,

and F6, and table columns C1 INT, C2 INT NOT NULL, C3 INT

LOAD using ADMIN_CMD

148 Data Movement Utilities DB2 9 BETA

NOT NULL, and C4 INT, method N (F2, F1, F4, F3) is a valid

request, while method N (F2, F1) is not valid. This method can

only be used with file types IXF or CURSOR.

P Specifies the field numbers (numbered from 1) of the input data

fields to be loaded. Each table column that is not nullable should

have a corresponding entry in the METHOD P list. For example,

given data fields F1, F2, F3, F4, F5, and F6, and table columns C1

INT, C2 INT NOT NULL, C3 INT NOT NULL, and C4 INT, method

P (2, 1, 4, 3) is a valid request, while method P (2, 1) is not

valid. This method can only be used with file types IXF, DEL, or

CURSOR, and is the only valid method for the DEL file type.

SAVECOUNT n

Specifies that the load utility is to establish consistency points after every n

rows. This value is converted to a page count, and rounded up to intervals

of the extent size. Since a message is issued at each consistency point, this

option should be selected if the load operation will be monitored using

LOAD QUERY. If the value of n is not sufficiently high, the

synchronization of activities performed at each consistency point will

impact performance.

 The default value is zero, meaning that no consistency points will be

established, unless necessary.

 This option is ignored when specified in conjunction with the CURSOR

filetype.

ROWCOUNT n

Specifies the number of n physical records in the file to be loaded. Allows

a user to load only the first n rows in a file.

WARNINGCOUNT n

Stops the load operation after n warnings. Set this parameter if no

warnings are expected, but verification that the correct file and table are

being used is desired. If the load file or the target table is specified

incorrectly, the load utility will generate a warning for each row that it

attempts to load, which will cause the load to fail. If n is zero, or this

option is not specified, the load operation will continue regardless of the

number of warnings issued. If the load operation is stopped because the

threshold of warnings was encountered, another load operation can be

started in RESTART mode. The load operation will automatically continue

from the last consistency point. Alternatively, another load operation can

be initiated in REPLACE mode, starting at the beginning of the input file.

TEMPFILES PATH temp-pathname

Specifies the name of the path to be used when creating temporary files

during a load operation, and should be fully qualified according to the

server database partition.

 Temporary files take up file system space. Sometimes, this space

requirement is quite substantial. Following is an estimate of how much file

system space should be allocated for all temporary files:

v 136 bytes for each message that the load utility generates

v 15KB overhead if the data file contains long field data or LOBs. This

quantity can grow significantly if the INSERT option is specified, and

there is a large amount of long field or LOB data already in the table.

LOAD using ADMIN_CMD

Chapter 3. Load 149DB2 9 BETA

INSERT

One of four modes under which the load utility can execute. Adds the

loaded data to the table without changing the existing table data.

REPLACE

One of four modes under which the load utility can execute. Deletes all

existing data from the table, and inserts the loaded data. The table

definition and index definitions are not changed. If this option is used

when moving data between hierarchies, only the data for an entire

hierarchy, not individual subtables, can be replaced.

RESTART

One of four modes under which the load utility can execute. Restarts a

previously interrupted load operation. The load operation will

automatically continue from the last consistency point in the load, build, or

delete phase.

TERMINATE

One of four modes under which the load utility can execute. Terminates a

previously interrupted load operation, and rolls back the operation to the

point in time at which it started, even if consistency points were passed.

The states of any table spaces involved in the operation return to normal,

and all table objects are made consistent (index objects might be marked as

invalid, in which case index rebuild will automatically take place at next

access). If the load operation being terminated is a load REPLACE, the

table will be truncated to an empty table after the load TERMINATE

operation. If the load operation being terminated is a load INSERT, the

table will retain all of its original records after the load TERMINATE

operation.

 The load terminate option will not remove a backup pending state from

table spaces.

INTO table-name

Specifies the database table into which the data is to be loaded. This table

cannot be a system table or a declared temporary table. An alias, or the

fully qualified or unqualified table name can be specified. A qualified table

name is in the form schema.tablename. If an unqualified table name is

specified, the table will be qualified with the CURRENT SCHEMA.

insert-column

Specifies the table column into which the data is to be inserted.

 The load utility cannot parse columns whose names contain one or more

spaces. For example,

 will fail because of the Int 4 column. The solution is to enclose such

column names with double quotation marks:

FOR EXCEPTION table-name

Specifies the exception table into which rows in error will be copied. Any

row that is in violation of a unique index or a primary key index is copied.

If an unqualified table name is specified, the table will be qualified with

the CURRENT SCHEMA.

 Information that is written to the exception table is not written to the

dump file. In a partitioned database environment, an exception table must

be defined for those database partitions on which the loading table is

defined. The dump file, on the other hand, contains rows that cannot be

loaded because they are invalid or have syntax errors.

LOAD using ADMIN_CMD

150 Data Movement Utilities DB2 9 BETA

NORANGEEXC

Indicates that if a row is rejected because of a range violation it will not be

inserted into the exception table.

NOUNIQUEEXC

Indicates that if a row is rejected because it violates a unique constraint it

will not be inserted into the exception table.

STATISTICS USE PROFILE

Instructs load to collect statistics during the load according to the profile

defined for this table. This profile must be created before load is executed.

The profile is created by the RUNSTATS command. If the profile does not

exist and load is instructed to collect statistics according to the profile, a

warning is returned and no statistics are collected.

STATISTICS NO

Specifies that no statistics are to be collected, and that the statistics in the

catalogs are not to be altered. This is the default.

COPY NO

Specifies that the table space in which the table resides will be placed in

backup pending state if forward recovery is enabled (that is, logretain or

userexit is on). The COPY NO option will also put the table space state into

the Load in Progress table space state. This is a transient state that will

disappear when the load completes or aborts. The data in any table in the

table space cannot be updated or deleted until a table space backup or a

full database backup is made. However, it is possible to access the data in

any table by using the SELECT statement.

 LOAD with COPY NO on a recoverable database leaves the table spaces in

a backup pending state. For example, performing a LOAD with COPY NO

and INDEXING MODE DEFERRED will leave indexes needing a refresh.

Certain queries on the table might require an index scan and will not

succeed until the indexes are refreshed. The index cannot be refreshed if it

resides in a table space which is in the backup pending state. In that case,

access to the table will not be allowed until a backup is taken. Index

refresh is done automatically by the database when the index is accessed

by a query.

COPY YES

Specifies that a copy of the loaded data will be saved. This option is

invalid if forward recovery is disabled (both logretain and userexit are off).

USE TSM

Specifies that the copy will be stored using Tivoli Storage Manager

(TSM).

OPEN num-sess SESSIONS

The number of I/O sessions to be used with TSM or the vendor

product. The default value is 1.

TO device/directory

Specifies the device or directory on which the copy image will be

created.

LOAD lib-name

The name of the shared library (DLL on Windows operating

systems) containing the vendor backup and restore I/O functions

to be used. It can contain the full path. If the full path is not given,

it will default to the path where the user exit programs reside.

LOAD using ADMIN_CMD

Chapter 3. Load 151DB2 9 BETA

NONRECOVERABLE

Specifies that the load transaction is to be marked as non-recoverable and

that it will not be possible to recover it by a subsequent roll forward

action. The roll forward utility will skip the transaction and will mark the

table into which data was being loaded as "invalid". The utility will also

ignore any subsequent transactions against that table. After the roll

forward operation is completed, such a table can only be dropped or

restored from a backup (full or table space) taken after a commit point

following the completion of the non-recoverable load operation.

 With this option, table spaces are not put in backup pending state

following the load operation, and a copy of the loaded data does not have

to be made during the load operation.

WITHOUT PROMPTING

Specifies that the list of data files contains all the files that are to be

loaded, and that the devices or directories listed are sufficient for the entire

load operation. If a continuation input file is not found, or the copy targets

are filled before the load operation finishes, the load operation will fail,

and the table will remain in load pending state.

DATA BUFFER buffer-size

Specifies the number of 4KB pages (regardless of the degree of parallelism)

to use as buffered space for transferring data within the utility. If the value

specified is less than the algorithmic minimum, the minimum required

resource is used, and no warning is returned.

 This memory is allocated directly from the utility heap, whose size can be

modified through the util_heap_sz database configuration parameter.

 If a value is not specified, an intelligent default is calculated by the utility

at run time. The default is based on a percentage of the free space available

in the utility heap at the instantiation time of the loader, as well as some

characteristics of the table.

SORT BUFFER buffer-size

This option specifies a value that overrides the SORTHEAP database

configuration parameter during a load operation. It is relevant only when

loading tables with indexes and only when the INDEXING MODE

parameter is not specified as DEFERRED. The value that is specified

cannot exceed the value of SORTHEAP. This parameter is useful for

throttling the sort memory that is used when loading tables with many

indexes without changing the value of SORTHEAP, which would also

affect general query processing.

CPU_PARALLELISM n

Specifies the number of processes or threads that the load utility will

spawn for parsing, converting, and formatting records when building table

objects. This parameter is designed to exploit intra-partition parallelism. It

is particularly useful when loading presorted data, because record order in

the source data is preserved. If the value of this parameter is zero, or has

not been specified, the load utility uses an intelligent default value (usually

based on the number of CPUs available) at run time.

Notes:

1. If this parameter is used with tables containing either LOB or LONG

VARCHAR fields, its value becomes one, regardless of the number of

system CPUs or the value specified by the user.

LOAD using ADMIN_CMD

152 Data Movement Utilities DB2 9 BETA

2. Specifying a small value for the SAVECOUNT parameter causes the

loader to perform many more I/O operations to flush both data and

table metadata. When CPU_PARALLELISM is greater than one, the

flushing operations are asynchronous, permitting the loader to exploit

the CPU. When CPU_PARALLELISM is set to one, the loader waits on

I/O during consistency points. A load operation with

CPU_PARALLELISM set to two, and SAVECOUNT set to 10 000,

completes faster than the same operation with CPU_PARALLELISM set

to one, even though there is only one CPU.

DISK_PARALLELISM n

Specifies the number of processes or threads that the load utility will

spawn for writing data to the table space containers. If a value is not

specified, the utility selects an intelligent default based on the number of

table space containers and the characteristics of the table.

FETCH_PARALLELISM YES/NO

When performing a load from a cursor where the cursor is declared using

the DATABASE keyword, or when using the API sqlu_remotefetch_entry

media entry, and this option is set to YES, the load utility attempts to

parallelize fetching from the remote data source if possible. If set to NO, no

parallel fetching is performed. The default value is YES. For more

information, see Moving data using the CURSOR file type.

INDEXING MODE

Specifies whether the load utility is to rebuild indexes or to extend them

incrementally. Valid values are:

AUTOSELECT

The load utility will automatically decide between REBUILD or

INCREMENTAL mode. The decision is based on the amount of

data being loaded and the depth of the index tree. Information

relating to the depth of the index tree is stored in the index object.

RUNSTATS is not required to populate this information.

AUTOSELECT is the default indexing mode.

REBUILD

All indexes will be rebuilt. The utility must have sufficient

resources to sort all index key parts for both old and appended

table data.

INCREMENTAL

Indexes will be extended with new data. This approach consumes

index free space. It only requires enough sort space to append

index keys for the inserted records. This method is only supported

in cases where the index object is valid and accessible at the start

of a load operation (it is, for example, not valid immediately

following a load operation in which the DEFERRED mode was

specified). If this mode is specified, but not supported due to the

state of the index, a warning is returned, and the load operation

continues in REBUILD mode. Similarly, if a load restart operation

is begun in the load build phase, INCREMENTAL mode is not

supported.

 Incremental indexing is not supported when all of the following

conditions are true:

v The LOAD COPY option is specified (logarchmeth1 with the

USEREXIT or LOGRETAIN option).

v The table resides in a DMS table space.

LOAD using ADMIN_CMD

Chapter 3. Load 153DB2 9 BETA

v The index object resides in a table space that is shared by other

table objects belonging to the table being loaded.

To bypass this restriction, it is recommended that indexes be placed

in a separate table space.

DEFERRED

The load utility will not attempt index creation if this mode is

specified. Indexes will be marked as needing a refresh. The first

access to such indexes that is unrelated to a load operation might

force a rebuild, or indexes might be rebuilt when the database is

restarted. This approach requires enough sort space for all key

parts for the largest index. The total time subsequently taken for

index construction is longer than that required in REBUILD mode.

Therefore, when performing multiple load operations with deferred

indexing, it is advisable (from a performance viewpoint) to let the

last load operation in the sequence perform an index rebuild,

rather than allow indexes to be rebuilt at first non-load access.

 Deferred indexing is only supported for tables with non-unique

indexes, so that duplicate keys inserted during the load phase are

not persistent after the load operation.

ALLOW NO ACCESS

Load will lock the target table for exclusive access during the load. The

table state will be set to Load In Progress during the load. ALLOW NO

ACCESS is the default behavior. It is the only valid option for LOAD

REPLACE.

 When there are constraints on the table, the table state will be set to Set

Integrity Pending as well as Load In Progress. The SET INTEGRITY

statement must be used to take the table out of Set Integrity Pending state.

ALLOW READ ACCESS

Load will lock the target table in a share mode. The table state will be set

to both Load In Progress and Read Access. Readers can access the

non-delta portion of the data while the table is being load. In other words,

data that existed before the start of the load will be accessible by readers to

the table, data that is being loaded is not available until the load is

complete. LOAD TERMINATE or LOAD RESTART of an ALLOW READ

ACCESS load can use this option; LOAD TERMINATE or LOAD RESTART

of an ALLOW NO ACCESS load cannot use this option. Furthermore, this

option is not valid if the indexes on the target table are marked as

requiring a rebuild.

 When there are constraints on the table, the table state will be set to Set

Integrity Pending as well as Load In Progress, and Read Access. At the end

of the load, the table state Load In Progress will be removed but the table

states Set Integrity Pending and Read Access will remain. The SET

INTEGRITY statement must be used to take the table out of Set Integrity

Pending. While the table is in Set Integrity Pending and Read Access

states, the non-delta portion of the data is still accessible to readers, the

new (delta) portion of the data will remain inaccessible until the SET

INTEGRITY statement has completed. A user can perform multiple loads

on the same table without issuing a SET INTEGRITY statement. Only the

original (checked) data will remain visible, however, until the SET

INTEGRITY statement is issued.

 ALLOW READ ACCESS also supports the following modifiers:

LOAD using ADMIN_CMD

154 Data Movement Utilities DB2 9 BETA

USE tablespace-name

If the indexes are being rebuilt, a shadow copy of the index is built

in table space tablespace-name and copied over to the original table

space at the end of the load during an INDEX COPY PHASE. Only

system temporary table spaces can be used with this option. If not

specified then the shadow index will be created in the same table

space as the index object. If the shadow copy is created in the same

table space as the index object, the copy of the shadow index object

over the old index object is instantaneous. If the shadow copy is in

a different table space from the index object a physical copy is

performed. This could involve considerable I/O and time. The

copy happens while the table is offline at the end of a load during

the INDEX COPY PHASE.

 Without this option the shadow index is built in the same table

space as the original. Since both the original index and shadow

index by default reside in the same table space simultaneously,

there might be insufficient space to hold both indexes within one

table space. Using this option ensures that you retain enough table

space for the indexes.

 This option is ignored if the user does not specify INDEXING

MODE REBUILD or INDEXING MODE AUTOSELECT. This option

will also be ignored if INDEXING MODE AUTOSELECT is chosen

and load chooses to incrementally update the index.

SET INTEGRITY PENDING CASCADE

If LOAD puts the table into Set Integrity Pending state, the SET

INTEGRITY PENDING CASCADE option allows the user to specify

whether or not Set Integrity Pending state of the loaded table is

immediately cascaded to all descendents (including descendent foreign key

tables, descendent immediate materialized query tables and descendent

immediate staging tables).

IMMEDIATE

Indicates that Set Integrity Pending state is immediately extended

to all descendent foreign key tables, descendent immediate

materialized query tables and descendent staging tables. For a

LOAD INSERT operation, Set Integrity Pending state is not

extended to descendent foreign key tables even if the IMMEDIATE

option is specified.

 When the loaded table is later checked for constraint violations

(using the IMMEDIATE CHECKED option of the SET INTEGRITY

statement), descendent foreign key tables that were placed in Set

Integrity Pending Read Access state will be put into Set Integrity

Pending No Access state.

DEFERRED

Indicates that only the loaded table will be placed in the Set

Integrity Pending state. The states of the descendent foreign key

tables, descendent immediate materialized query tables and

descendent immediate staging tables will remain unchanged.

 Descendent foreign key tables might later be implicitly placed in

Set Integrity Pending state when their parent tables are checked for

constraint violations (using the IMMEDIATE CHECKED option of

the SET INTEGRITY statement). Descendent immediate

materialized query tables and descendent immediate staging tables

LOAD using ADMIN_CMD

Chapter 3. Load 155DB2 9 BETA

will be implicitly placed in Set Integrity Pending state when one of

its underlying tables is checked for integrity violations. A warning

(SQLSTATE 01586) will be issued to indicate that dependent tables

have been placed in Set Integrity Pending state. See the Notes

section of the SET INTEGRITY statement in the SQL Reference for

when these descendent tables will be put into Set Integrity Pending

state.

If the SET INTEGRITY PENDING CASCADE option is not specified:

v Only the loaded table will be placed in Set Integrity Pending state. The

state of descendent foreign key tables, descendent immediate

materialized query tables and descendent immediate staging tables will

remain unchanged, and can later be implicitly put into Set Integrity

Pending state when the loaded table is checked for constraint violations.

If LOAD does not put the target table into Set Integrity Pending state, the

SET INTEGRITY PENDING CASCADE option is ignored.

LOCK WITH FORCE

The utility acquires various locks including table locks in the process of

loading. Rather than wait, and possibly timeout, when acquiring a lock,

this option allows load to force off other applications that hold conflicting

locks on the target table. Applications holding conflicting locks on the

system catalog tables will not be forced off by the load utility. Forced

applications will roll back and release the locks the load utility needs. The

load utility can then proceed. This option requires the same authority as

the FORCE APPLICATIONS command (SYSADM or SYSCTRL).

 ALLOW NO ACCESS loads might force applications holding conflicting

locks at the start of the load operation. At the start of the load the utility

can force applications that are attempting to either query or modify the

table.

 ALLOW READ ACCESS loads can force applications holding conflicting

locks at the start or end of the load operation. At the start of the load the

load utility can force applications that are attempting to modify the table.

At the end of the load operation, the load utility can force applications that

are attempting to either query or modify the table.

SOURCEUSEREXITexecutable

Specifies an executable filename which will be called to feed data into the

utility.

REDIRECT

INPUT FROM

BUFFER input-buffer

The stream of bytes specified in input-buffer is

passed into the STDIN file descriptor of the process

executing the given executable.

FILE input-file

The contents of this client-side file are passed into

the STDIN file descriptor of the process executing

the given executable.

OUTPUT TO

LOAD using ADMIN_CMD

156 Data Movement Utilities DB2 9 BETA

FILE output-file

The STDOUT and STDERR file descriptors are

captured to the fully qualified server-side file

specified.

PARALLELIZE

Increases the throughput of data coming into the load utility by

invoking multiple user exit processes simultaneously. This option is

only applicable in multi-partition database environments and is

ingored in single-partition database enviroments.

For more information, see Moving data using a customized application

(user exit).

PARTITIONED DB CONFIG

Allows you to execute a load into a table distributed across multiple

database partitions. The PARTITIONED DB CONFIG parameter allows you

to specify partitioned database-specific configuration options. The

partitioned-db-option values can be any of the following:

PART_FILE_LOCATION x

OUTPUT_DBPARTNUMS x

PARTITIONING_DBPARTNUMS x

MODE x

MAX_NUM_PART_AGENTS x

ISOLATE_PART_ERRS x

STATUS_INTERVAL x

PORT_RANGE x

CHECK_TRUNCATION

MAP_FILE_INPUT x

MAP_FILE_OUTPUT x

TRACE x

NEWLINE

DISTFILE x

OMIT_HEADER

RUN_STAT_DBPARTNUM x

Detailed descriptions of these options are provided in Load configuration

options for partitioned database environments.

RESTARTCOUNT

Reserved.

USING directory

Reserved.

 Usage notes:

v Data is loaded in the sequence that appears in the input file. If a particular

sequence is desired, the data should be sorted before a load is attempted.

v The load utility builds indexes based on existing definitions. The exception

tables are used to handle duplicates on unique keys. The utility does not enforce

referential integrity, perform constraints checking, or update materialized query

tables that are dependent on the tables being loaded. Tables that include

referential or check constraints are placed in Set Integrity Pending state.

Summary tables that are defined with REFRESH IMMEDIATE, and that are

dependent on tables being loaded, are also placed in Set Integrity Pending state.

Issue the SET INTEGRITY statement to take the tables out of Set Integrity

Pending state. Load operations cannot be carried out on replicated materialized

query tables.

LOAD using ADMIN_CMD

Chapter 3. Load 157DB2 9 BETA

v If a clustering index exists on the table, the data should be sorted on the

clustering index prior to loading. Data does not need to be sorted prior to

loading into a multidimensional clustering (MDC) table, however.

v If you specify an exception table when loading into a protected table, any rows

that are protected by invalid security labels will be sent to that table. This might

allow users that have access to the exception table to access to data that they

would not normally be authorized to access. For better security be careful who

you grant exception table access to, delete each row as soon as it is repaired and

copied to the table being loaded, and drop the exception table as soon as you

are done with it.

v Security labels in their internal format might contain newline characters. If you

load the file using the DEL file format, those newline characters can be mistaken

for delimiters. If you have this problem use the older default priority for

delimiters by specifying the delprioritychar file type modifier in the LOAD

command.

v For performing a load using the CURSOR filetype where the DATABASE keyword

was specified during the DECLARE CURSOR command, the user ID and

password used to authenticate against the database currently connected to (for

the load) will be used to authenticate against the source database (specified by

the DATABASE option of the DECLARE CURSOR command). If no user ID or

password was specified for the connection to the loading database, a user ID

and password for the source database must be specified during the DECLARE

CURSOR command.

 Related concepts:

v “Privileges, authorities, and authorizations required to use Load” on page 109

v “Load overview” on page 102

 Related reference:

v “ADMIN_GET_MSGS table function – Retrieve messages generated by a data

movement utility that is executed through the ADMIN_CMD procedure” in

Administrative SQL Routines and Views

v “ADMIN_REMOVE_MSGS procedure – Clean up messages generated by a data

movement utility that is executed through the ADMIN_CMD procedure” in

Administrative SQL Routines and Views

v “EXPORT command using the ADMIN_CMD procedure” on page 15

v “ADMIN_CMD procedure – Run administrative commands” in Administrative

SQL Routines and Views

v “Load configuration options for partitioned database environments” on page 227

v “db2pd - Monitor and troubleshoot DB2 database command” in Command

Reference

LOAD QUERY

Checks the status of a load operation during processing and returns the table state.

If a load is not processing, then the table state alone is returned. A connection to

the same database, and a separate CLP session are also required to successfully

invoke this command. It can be used either by local or remote users.

 Authorization:

 None

LOAD using ADMIN_CMD

158 Data Movement Utilities DB2 9 BETA

Required connection:

 Database

 Command syntax:

�� LOAD QUERY TABLE table-name

TO

local-message-file

NOSUMMARY

SUMMARYONLY

 �

�
SHOWDELTA

 ��

 Command parameters:

NOSUMMARY

Specifies that no load summary information (rows read, rows skipped,

rows loaded, rows rejected, rows deleted, rows committed, and number of

warnings) is to be reported.

SHOWDELTA

Specifies that only new information (pertaining to load events that have

occurred since the last invocation of the LOAD QUERY command) is to be

reported.

SUMMARYONLY

Specifies that only load summary information is to be reported.

TABLE table-name

Specifies the name of the table into which data is currently being loaded. If

an unqualified table name is specified, the table will be qualified with the

CURRENT SCHEMA.

TO local-message-file

Specifies the destination for warning and error messages that occur during

the load operation. This file cannot be the message-file specified for the

LOAD command. If the file already exists, all messages that the load utility

has generated are appended to it.

 Examples:

 A user loading a large amount of data into the STAFF table wants to check the

status of the load operation. The user can specify:

 db2 connect to <database>

 db2 load query table staff to /u/mydir/staff.tempmsg

The output file /u/mydir/staff.tempmsg might look like the following:

SQL3501W The table space(s) in which the table resides will not be placed in

backup pending state since forward recovery is disabled for the database.

SQL3109N The utility is beginning to load data from file

"/u/mydir/data/staffbig.del"

SQL3500W The utility is beginning the "LOAD" phase at time "03-21-2002

11:31:16.597045".

SQL3519W Begin Load Consistency Point. Input record count = "0".

SQL3520W Load Consistency Point was successful.

SQL3519W Begin Load Consistency Point. Input record count = "104416".

LOAD QUERY

Chapter 3. Load 159DB2 9 BETA

SQL3520W Load Consistency Point was successful.

SQL3519W Begin Load Consistency Point. Input record count = "205757".

SQL3520W Load Consistency Point was successful.

SQL3519W Begin Load Consistency Point. Input record count = "307098".

SQL3520W Load Consistency Point was successful.

SQL3519W Begin Load Consistency Point. Input record count = "408439".

SQL3520W Load Consistency Point was successful.

SQL3532I The Load utility is currently in the "LOAD" phase.

Number of rows read = 453376

Number of rows skipped = 0

Number of rows loaded = 453376

Number of rows rejected = 0

Number of rows deleted = 0

Number of rows committed = 408439

Number of warnings = 0

Tablestate:

 Load in Progress

 Usage Notes:

 In addition to locks, the load utility uses table states to control access to the table.

The LOAD QUERY command can be used to determine the table state; LOAD

QUERY can be used on tables that are not currently being loaded. For a

partitioned table, the state reported is the most restrictive of the corresponding

visible data partition states. For example, if a single data partition is in the READ

ACCESS state and all other data partitions are in NORMAL state, the load query

operation returns the READ ACCESS state. A load operation will not leave a subset

of data partitions in a state different from the rest of the table. The table states

described by LOAD QUERY are as follows:

Normal

No table states affect the table.

Set Integrity Pending

The table has constraints which have not yet been verified. Use the SET

INTEGRITY statement to take the table out of Set Integrity Pending state.

The load utility places a table in Set Integrity Pending state when it begins

a load operation on a table with constraints.

Load in Progress

There is a load operation in progress on this table.

Load Pending

A load operation has been active on this table but has been aborted before

the data could be committed. Issue a LOAD TERMINATE, LOAD

RESTART, or LOAD REPLACE command to bring the table out of this

state.

Read Access Only

The table data is available for read access queries. Load operations using

the ALLOW READ ACCESS option place the table in read access only

state.

LOAD QUERY

160 Data Movement Utilities DB2 9 BETA

Reorg Pending

A reorg recommended ALTER TABLE statement has been executed on the

table. A classic reorg must be performed before the table is accessable

again.

Unavailable

The table is unavailable. The table can only be dropped or restored from a

backup. Rolling forward through a non-recoverable load operation will

place a table in the unavailable state.

Not Load Restartable

The table is in a partially loaded state that will not allow a load restart

operation. The table will also be in load pending state. Issue a LOAD

TERMINATE or a LOAD REPLACE command to bring the table out of the

not load restartable state. A table is placed in not load restartable state

when a rollforward operation is performed after a failed load operation

that has not been successfully restarted or terminated, or when a restore

operation is performed from an online backup that was taken while the

table was in load in progress or load pending state. In either case, the

information required for a load restart operation is unreliable, and the not

load restartable state prevents a load restart operation from taking place.

Unknown

The LOAD QUERY command is unable determine the table state.

The progress of a load operation can also be monitored with the LIST UTILITIES

command.

 Related concepts:

v “Load overview” on page 102

v “Monitoring a load operation in a partitioned database environment using the

LOAD QUERY command” on page 223

v “Table locking, table states and table space states” on page 202

 Related reference:

v “LIST UTILITIES command” in Command Reference

db2Load - Load data into a table

 Loads data into a DB2 table. Data residing on the server may be in the form of a

file, cursor, tape, or named pipe. Data residing on a remotely connected client may

be in the form of a fully qualified file, a cursor, or named pipe. Although faster

than the import utility, the load utility does not support loading data at the

hierarchy level or loading into a nickname.

 Authorization:

 One of the following:

v sysadm

v dbadm

v load authority on the database and:

– INSERT privilege on the table when the load utility is invoked in INSERT

mode, TERMINATE mode (to terminate a previous load insert operation), or

RESTART mode (to restart a previous load insert operation)

LOAD QUERY

Chapter 3. Load 161DB2 9 BETA

– INSERT and DELETE privilege on the table when the load utility is invoked

in REPLACE mode, TERMINATE mode (to terminate a previous load replace

operation), or RESTART mode (to restart a previous load replace operation)

– INSERT privilege on the exception table, if such a table is used as part of the

load operation.

Note: In general, all load processes and all DB2 server processes are owned by the

instance owner. All of these processes use the identification of the instance

owner to access needed files. Therefore, the instance owner must have read

access to the input files, regardless of who invokes the command.

 Required connection:

 Database. If implicit connect is enabled, a connection to the default database is

established. Utility access to Linux, UNIX, or Windows database servers from

Linux, UNIX, or Windows clients must be a direct connection through the engine

and not through a DB2 Connect gateway or loop back environment.

Instance. An explicit attachment is not required. If a connection to the database has

been established, an implicit attachment to the local instance is attempted.

 API include file:

db2ApiDf.h

 API and data structure syntax:

SQL_API_RC SQL_API_FN

 db2Load (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2LoadStruct

{

 struct sqlu_media_list *piSourceList;

 struct sqlu_media_list *piLobPathList;

 struct sqldcol *piDataDescriptor;

 struct sqlchar *piActionString;

 char *piFileType;

 struct sqlchar *piFileTypeMod;

 char *piLocalMsgFileName;

 char *piTempFilesPath;

 struct sqlu_media_list *piVendorSortWorkPaths;

 struct sqlu_media_list *piCopyTargetList;

 db2int32 *piNullIndicators;

 struct db2LoadIn *piLoadInfoIn;

 struct db2LoadOut *poLoadInfoOut;

 struct db2PartLoadIn *piPartLoadInfoIn;

 struct db2PartLoadOut *poPartLoadInfoOut;

 db2int16 iCallerAction;

} db2LoadStruct;

typedef SQL_STRUCTURE db2LoadUserExit

{

 db2Char iSourceUserExitCmd;

 struct db2Char *piInputStream;

 struct db2Char *piInputFileName;

 struct db2Char *piOutputFileName;

 db2Uint16 *piEnableParallelism;

} db2LoadUserExit;

typedef SQL_STRUCTURE db2LoadIn

db2Load - Load data into a table

162 Data Movement Utilities DB2 9 BETA

{

 db2Uint64 iRowcount;

 db2Uint64 iRestartcount;

 char *piUseTablespace;

 db2Uint32 iSavecount;

 db2Uint32 iDataBufferSize;

 db2Uint32 iSortBufferSize;

 db2Uint32 iWarningcount;

 db2Uint16 iHoldQuiesce;

 db2Uint16 iCpuParallelism;

 db2Uint16 iDiskParallelism;

 db2Uint16 iNonrecoverable;

 db2Uint16 iIndexingMode;

 db2Uint16 iAccessLevel;

 db2Uint16 iLockWithForce;

 db2Uint16 iCheckPending;

 char iRestartphase;

 char iStatsOpt;

 db2Uint16 iSetIntegrityPending;

 struct db2LoadUserExit *piSourceUserExit;

} db2LoadIn;

typedef SQL_STRUCTURE db2LoadOut

{

 db2Uint64 oRowsRead;

 db2Uint64 oRowsSkipped;

 db2Uint64 oRowsLoaded;

 db2Uint64 oRowsRejected;

 db2Uint64 oRowsDeleted;

 db2Uint64 oRowsCommitted;

} db2LoadOut;

typedef SQL_STRUCTURE db2PartLoadIn

{

 char *piHostname;

 char *piFileTransferCmd;

 char *piPartFileLocation;

 struct db2LoadNodeList *piOutputNodes;

 struct db2LoadNodeList *piPartitioningNodes;

 db2Uint16 *piMode;

 db2Uint16 *piMaxNumPartAgents;

 db2Uint16 *piIsolatePartErrs;

 db2Uint16 *piStatusInterval;

 struct db2LoadPortRange *piPortRange;

 db2Uint16 *piCheckTruncation;

 char *piMapFileInput;

 char *piMapFileOutput;

 db2Uint16 *piTrace;

 db2Uint16 *piNewline;

 char *piDistfile;

 db2Uint16 *piOmitHeader;

 SQL_PDB_NODE_TYPE *piRunStatDBPartNum;

} db2PartLoadIn;

typedef SQL_STRUCTURE db2LoadNodeList

{

 SQL_PDB_NODE_TYPE *piNodeList;

 db2Uint16 iNumNodes;

} db2LoadNodeList;

typedef SQL_STRUCTURE db2LoadPortRange

{

 db2Uint16 iPortMin;

 db2Uint16 iPortMax;

} db2LoadPortRange;

typedef SQL_STRUCTURE db2PartLoadOut

db2Load - Load data into a table

Chapter 3. Load 163DB2 9 BETA

{

 db2Uint64 oRowsRdPartAgents;

 db2Uint64 oRowsRejPartAgents;

 db2Uint64 oRowsPartitioned;

 struct db2LoadAgentInfo *poAgentInfoList;

 db2Uint32 iMaxAgentInfoEntries;

 db2Uint32 oNumAgentInfoEntries;

} db2PartLoadOut;

typedef SQL_STRUCTURE db2LoadAgentInfo

{

 db2int32 oSqlcode;

 db2Uint32 oTableState;

 SQL_PDB_NODE_TYPE oNodeNum;

 db2Uint16 oAgentType;

} db2LoadAgentInfo;

SQL_API_RC SQL_API_FN

 db2gLoad (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gLoadStruct

{

 struct sqlu_media_list *piSourceList;

 struct sqlu_media_list *piLobPathList;

 struct sqldcol *piDataDescriptor;

 struct sqlchar *piActionString;

 char *piFileType;

 struct sqlchar *piFileTypeMod;

 char *piLocalMsgFileName;

 char *piTempFilesPath;

 struct sqlu_media_list *piVendorSortWorkPaths;

 struct sqlu_media_list *piCopyTargetList;

 db2int32 *piNullIndicators;

 struct db2gLoadIn *piLoadInfoIn;

 struct db2LoadOut *poLoadInfoOut;

 struct db2gPartLoadIn *piPartLoadInfoIn;

 struct db2PartLoadOut *poPartLoadInfoOut;

 db2int16 iCallerAction;

 db2Uint16 iFileTypeLen;

 db2Uint16 iLocalMsgFileLen;

 db2Uint16 iTempFilesPathLen;

} db2gLoadStruct;

typedef SQL_STRUCTURE db2gLoadIn

{

 db2Uint64 iRowcount;

 db2Uint64 iRestartcount;

 char *piUseTablespace;

 db2Uint32 iSavecount;

 db2Uint32 iDataBufferSize;

 db2Uint32 iSortBufferSize;

 db2Uint32 iWarningcount;

 db2Uint16 iHoldQuiesce;

 db2Uint16 iCpuParallelism;

 db2Uint16 iDiskParallelism;

 db2Uint16 iNonrecoverable;

 db2Uint16 iIndexingMode;

 db2Uint16 iAccessLevel;

 db2Uint16 iLockWithForce;

 db2Uint16 iCheckPending;

 char iRestartphase;

 char iStatsOpt;

 db2Uint16 iUseTablespaceLen;

 db2Uint16 iSetIntegrityPending;

db2Load - Load data into a table

164 Data Movement Utilities DB2 9 BETA

struct db2LoadUserExit *piSourceUserExit;

} db2gLoadIn;

typedef SQL_STRUCTURE db2gPartLoadIn

{

 char *piHostname;

 char *piFileTransferCmd;

 char *piPartFileLocation;

 struct db2LoadNodeList *piOutputNodes;

 struct db2LoadNodeList *piPartitioningNodes;

 db2Uint16 *piMode;

 db2Uint16 *piMaxNumPartAgents;

 db2Uint16 *piIsolatePartErrs;

 db2Uint16 *piStatusInterval;

 struct db2LoadPortRange *piPortRange;

 db2Uint16 *piCheckTruncation;

 char *piMapFileInput;

 char *piMapFileOutput;

 db2Uint16 *piTrace;

 db2Uint16 *piNewline;

 char *piDistfile;

 db2Uint16 *piOmitHeader;

 void *piReserved1;

 db2Uint16 iHostnameLen;

 db2Uint16 iFileTransferLen;

 db2Uint16 iPartFileLocLen;

 db2Uint16 iMapFileInputLen;

 db2Uint16 iMapFileOutputLen;

 db2Uint16 iDistfileLen;

} db2gPartLoadIn;

 db2Load API parameters:

 versionNumber

Input. Specifies the version and release level of the structure passed as the

second parameter pParmStruct.

pParmStruct

Input. A pointer to the db2LoadStruct structure.

pSqlca

Output. A pointer to the sqlca structure.

 db2LoadStruct data structure parameters:

 piSourceList

Input. A pointer to an sqlu_media_list structure used to provide a list of

source files, devices, vendors, pipes, or SQL statements.

 The information provided in this structure depends on the value of the

media_type field. Valid values (defined in sqlutil header file, located in the

include directory) are:

SQLU_SQL_STMT

If the media_type field is set to this value, the caller provides an

SQL query through the pStatement field of the target field. The

pStatement field is of type sqlu_statement_entry. The sessions field

must be set to the value of 1, since the load utility only accepts a

single SQL query per load.

SQLU_SERVER_LOCATION

If the media_type field is set to this value, the caller provides

information through sqlu_location_entry structures. The sessions

db2Load - Load data into a table

Chapter 3. Load 165DB2 9 BETA

field indicates the number of sqlu_location_entry structures

provided. This is used for files, devices, and named pipes.

SQLU_CLIENT_LOCATION

If the media_type field is set to this value, the caller provides

information through sqlu_location_entry structures. The sessions

field indicates the number of sqlu_location_entry structures

provided. This is used for fully qualified files and named pipes.

Note that this media_type is only valid if the API is being called

via a remotely connected client.

SQLU_TSM_MEDIA

If the media_type field is set to this value, the sqlu_vendor

structure is used, where filename is the unique identifier for the

data to be loaded. There should only be one sqlu_vendor entry,

regardless of the value of sessions. The sessions field indicates the

number of TSM sessions to initiate. The load utility will start the

sessions with different sequence numbers, but with the same data

in the one sqlu_vendor entry.

SQLU_OTHER_MEDIA

If the media_type field is set to this value, the sqlu_vendor

structure is used, where shr_lib is the shared library name, and

filename is the unique identifier for the data to be loaded. There

should only be one sqlu_vendor entry, regardless of the value of

sessions. The sessions field indicates the number of other vendor

sessions to initiate. The load utility will start the sessions with

different sequence numbers, but with the same data in the one

sqlu_vendor entry.

piLobPathList

Input. A pointer to an sqlu_media_list structure. For IXF, ASC, and DEL

file types, a list of fully qualified paths or devices to identify the location

of the individual LOB files to be loaded. The file names are found in the

IXF, ASC, or DEL files, and are appended to the paths provided.

 The information provided in this structure depends on the value of the

media_type field. Valid values (defined in sqlutil header file, located in the

include directory) are:

SQLU_LOCAL_MEDIA

If set to this value, the caller provides information through

sqlu_media_entry structures. The sessions field indicates the

number of sqlu_media_entry structures provided.

SQLU_TSM_MEDIA

If set to this value, the sqlu_vendor structure is used, where

filename is the unique identifier for the data to be loaded. There

should only be one sqlu_vendor entry, regardless of the value of

sessions. The sessions field indicates the number of TSM sessions

to initiate. The load utility will start the sessions with different

sequence numbers, but with the same data in the one sqlu_vendor

entry.

SQLU_OTHER_MEDIA

If set to this value, the sqlu_vendor structure is used, where shr_lib

is the shared library name, and filename is the unique identifier for

the data to be loaded. There should only be one sqlu_vendor entry,

regardless of the value of sessions. The sessions field indicates the

number of other vendor sessions to initiate. The load utility will

db2Load - Load data into a table

166 Data Movement Utilities DB2 9 BETA

start the sessions with different sequence numbers, but with the

same data in the one sqlu_vendor entry.

piDataDescriptor

Input. Pointer to an sqldcol structure containing information about the

columns being selected for loading from the external file.

 If the pFileType parameter is set to SQL_ASC, the dcolmeth field of this

structure must either be set to SQL_METH_L or be set to SQL_METH_D

and specifies a file name with POSITIONSFILE pFileTypeMod modifier

which contains starting and ending pairs and null indicator positions. The

user specifies the start and end locations for each column to be loaded.

 If the file type is SQL_DEL, dcolmeth can be either SQL_METH_P or

SQL_METH_D. If it is SQL_METH_P, the user must provide the source

column position. If it is SQL_METH_D, the first column in the file is

loaded into the first column of the table, and so on.

 If the file type is SQL_IXF, dcolmeth can be one of SQL_METH_P,

SQL_METH_D, or SQL_METH_N. The rules for DEL files apply here,

except that SQL_METH_N indicates that file column names are to be

provided in the sqldcol structure.

piActionString

Input. Pointer to an sqlchar structure, followed by an array of characters

specifying an action that affects the table.

 The character array is of the form:

"INSERT|REPLACE|RESTART|TERMINATE

INTO tbname [(column_list)]

[DATALINK SPECIFICATION datalink-spec]

[FOR EXCEPTION e_tbname]"

INSERT

Adds the loaded data to the table without changing the existing

table data.

REPLACE

Deletes all existing data from the table, and inserts the loaded data.

The table definition and the index definitions are not changed.

RESTART

Restarts a previously interrupted load operation. The load

operation will automatically continue from the last consistency

point in the load, build, or delete phase.

TERMINATE

Terminates a previously interrupted load operation, and rolls back

the operation to the point in time at which it started, even if

consistency points were passed. The states of any table spaces

involved in the operation return to normal, and all table objects are

made consistent (index objects may be marked as invalid, in which

case index rebuild will automatically take place at next access). If

the table spaces in which the table resides are not in load pending

state, this option does not affect the state of the table spaces.

 The load terminate option will not remove a backup pending state

from table spaces.

tbname

The name of the table into which the data is to be loaded. The

table cannot be a system table or a declared temporary table. An

db2Load - Load data into a table

Chapter 3. Load 167DB2 9 BETA

alias, or the fully qualified or unqualified table name can be

specified. A qualified table name is in the form schema.tablename.

If an unqualified table name is specified, the table will be qualified

with the CURRENT SCHEMA.

(column_list)

A list of table column names into which the data is to be inserted.

The column names must be separated by commas. If a name

contains spaces or lowercase characters, it must be enclosed by

quotation marks.

DATALINK SPECIFICATION datalink-spec

Specifies parameters pertaining to DB2 Data Links. These

parameters can be specified using the same syntax as in the LOAD

command.

FOR EXCEPTION e_tbname

Specifies the exception table into which rows in error will be

copied. The exception table is used to store copies of rows that

violate unique index rules, range constraints and security policies.

piFileType

Input. A string that indicates the format of the input data source.

Supported external formats (defined in sqlutil) are:

SQL_ASC

Non-delimited ASCII.

SQL_DEL

Delimited ASCII, for exchange with dBase, BASIC, and the IBM

Personal Decision Series programs, and many other database

managers and file managers.

SQL_IXF

PC version of the Integrated Exchange Format, the preferred

method for exporting data from a table so that it can be loaded

later into the same table or into another database manager table.

SQL_CURSOR

An SQL query. The sqlu_media_list structure passed in through the

piSourceList parameter is of type SQLU_SQL_STMT, and refers to

an actual SQL query and not a cursor declared against one.

piFileTypeMod

Input. A pointer to the sqlchar structure, followed by an array of characters

that specify one or more processing options. If this pointer is NULL, or the

structure pointed to has zero characters, this action is interpreted as

selection of a default specification.

 Not all options can be used with all of the supported file types. See related

link ″File type modifiers for the load utility.″

piLocalMsgFileName

Input. A string containing the name of a local file to which output

messages are to be written.

piTempFilesPath

Input. A string containing the path name to be used on the server for

temporary files. Temporary files are created to store messages, consistency

points, and delete phase information.

db2Load - Load data into a table

168 Data Movement Utilities DB2 9 BETA

piVendorSortWorkPaths

Input. A pointer to the sqlu_media_list structure which specifies the

Vendor Sort work directories.

piCopyTargetList

Input. A pointer to an sqlu_media_list structure used (if a copy image is to

be created) to provide a list of target paths, devices, or a shared library to

which the copy image is to be written.

 The values provided in this structure depend on the value of the

media_type field. Valid values for this parameter (defined in sqlutil header

file, located in the include directory) are:

SQLU_LOCAL_MEDIA

If the copy is to be written to local media, set the media_type to

this value and provide information about the targets in

sqlu_media_entry structures. The sessions field specifies the

number of sqlu_media_entry structures provided.

SQLU_TSM_MEDIA

If the copy is to be written to TSM, use this value. No further

information is required.

SQLU_OTHER_MEDIA

If a vendor product is to be used, use this value and provide

further information via an sqlu_vendor structure. Set the shr_lib

field of this structure to the shared library name of the vendor

product. Provide only one sqlu_vendor entry, regardless of the

value of sessions. The sessions field specifies the number of

sqlu_media_entry structures provided. The load utility will start

the sessions with different sequence numbers, but with the same

data provided in the one sqlu_vendor entry.

piNullIndicators

Input. For ASC files only. An array of integers that indicate whether or not

the column data is nullable. There is a one-to-one ordered correspondence

between the elements of this array and the columns being loaded from the

data file. That is, the number of elements must equal the dcolnum field of

the pDataDescriptor parameter. Each element of the array contains a

number identifying a location in the data file that is to be used as a NULL

indicator field, or a zero indicating that the table column is not nullable. If

the element is not zero, the identified location in the data file must contain

a Y or an N. A Y indicates that the table column data is NULL, and N

indicates that the table column data is not NULL.

piLoadInfoIn

Input. A pointer to the db2LoadIn structure.

poLoadInfoOut

Input. A pointer to the db2LoadOut structure.

piPartLoadInfoIn

Input. A pointer to the db2PartLoadIn structure.

poPartLoadInfoOut

Output. A pointer to the db2PartLoadOut structure.

iCallerAction

Input. An action requested by the caller. Valid values (defined in sqlutil

header file, located in the include directory) are:

db2Load - Load data into a table

Chapter 3. Load 169DB2 9 BETA

SQLU_INITIAL

Initial call. This value (or SQLU_NOINTERRUPT) must be used on

the first call to the API.

SQLU_NOINTERRUPT

Initial call. Do not suspend processing. This value (or

SQLU_INITIAL) must be used on the first call to the API.

 If the initial call or any subsequent call returns and requires the

calling application to perform some action prior to completing the

requested load operation, the caller action must be set to one of the

following:

SQLU_CONTINUE

Continue processing. This value can only be used on subsequent

calls to the API, after the initial call has returned with the utility

requesting user input (for example, to respond to an end of tape

condition). It specifies that the user action requested by the utility

has completed, and the utility can continue processing the initial

request.

SQLU_TERMINATE

Terminate processing. Causes the load utility to exit prematurely,

leaving the table spaces being loaded in LOAD_PENDING state.

This option should be specified if further processing of the data is

not to be done.

SQLU_ABORT

Terminate processing. Causes the load utility to exit prematurely,

leaving the table spaces being loaded in LOAD_PENDING state.

This option should be specified if further processing of the data is

not to be done.

SQLU_RESTART

Restart processing.

SQLU_DEVICE_TERMINATE

Terminate a single device. This option should be specified if the

utility is to stop reading data from the device, but further

processing of the data is to be done.

 db2LoadUserExit data structure parameters:

 iSourceUserExitCmd

Input. The fully qualified name of an executable that will be used to feed

data to the utility. For security reasons, the executable must be placed

within the sqllib/bin directory on the server. This parameter is mandatory

if the piSourceUserExit structure is not NULL.

 The piInputStream, piInputFileName, piOutputFileName and

piEnableParallelism fields are optional. See the Data Movement Utilities

Guide for a detailed description.

piInputStream

Input. A generic byte-stream that will be passed directly to the user-exit

application via STDIN. You have complete control over what data is

contained in this byte-stream and in what format. The load utility will

simply carry this byte-stream over to the server and pass it into the

user-exit application by feeding the process’ STDIN (it will not codepage

convert or modify the byte-stream). Your user-exit application would read

the arguments from STDIN and use the data however intended.

db2Load - Load data into a table

170 Data Movement Utilities DB2 9 BETA

One important attribute of this feature is the ability to hide sensitive

information (such as userid/passwords). See the Data Movement Utilities

Guide for a detailed description.

piInputFileName

Input. Contains the name of a fully qualified client-side file, whose

contents will be passed into the user-exit application by feeding the

process’ STDIN.

piOutputFileName

Input. The fully qualified name of a server-side file. The STDOUT and

STDERR streams of the process which is executing the user-exit application

will be streamed into this file. When piEnableParallelism is RUE, multiple

files will be created (one per user-exit instance), and each file name will be

appended with a 3 digit numeric node-number value, such as

<filename>.000).

piEnableParallelism

Input. A flag indicating that the utility should attempt to parallelize the

invocation of the user-exit application. See the Data Movement Utilities

Guide for a detailed description.

 db2LoadIn data structure parameters:

 iRowcount

Input. The number of physical records to be loaded. Allows a user to load

only the first rowcnt rows in a file.

iRestartcount

Input. Reserved for future use.

piUseTablespace

Input. If the indexes are being rebuilt, a shadow copy of the index is built

in tablespace iUseTablespaceName and copied over to the original

tablespace at the end of the load. Only system temporary table spaces can

be used with this option. If not specified then the shadow index will be

created in the same tablespace as the index object.

 If the shadow copy is created in the same tablespace as the index object,

the copy of the shadow index object over the old index object is

instantaneous. If the shadow copy is in a different tablespace from the

index object a physical copy is performed. This could involve considerable

I/O and time. The copy happens while the table is offline at the end of a

load.

 This field is ignored if iAccessLevel is SQLU_ALLOW_NO_ACCESS.

 This option is ignored if the user does not specify INDEXING MODE

REBUILD or INDEXING MODE AUTOSELECT. This option will also be

ignored if INDEXING MODE AUTOSELECT is chosen and load chooses to

incrementally update the index.

iSavecount

The number of records to load before establishing a consistency point. This

value is converted to a page count, and rounded up to intervals of the

extent size. Since a message is issued at each consistency point, this option

should be selected if the load operation will be monitored using

db2LoadQuery - Load Query. If the value of savecnt is not sufficiently

high, the synchronization of activities performed at each consistency point

will impact performance.

db2Load - Load data into a table

Chapter 3. Load 171DB2 9 BETA

The default value is 0, meaning that no consistency points will be

established, unless necessary.

iDataBufferSize

The number of 4KB pages (regardless of the degree of parallelism) to use

as buffered space for transferring data within the utility. If the value

specified is less than the algorithmic minimum, the required minimum is

used, and no warning is returned.

 This memory is allocated directly from the utility heap, whose size can be

modified through the util_heap_sz database configuration parameter.

 If a value is not specified, an intelligent default is calculated by the utility

at run time. The default is based on a percentage of the free space available

in the utility heap at the instantiation time of the loader, as well as some

characteristics of the table.

iSortBufferSize

Input. This option specifies a value that overrides the SORTHEAP database

configuration parameter during a load operation. It is relevant only when

loading tables with indexes and only when the iIndexingMode parameter

is not specified as SQLU_INX_DEFERRED. The value that is specified

cannot exceed the value of SORTHEAP. This parameter is useful for

throttling the sort memory used by LOAD without changing the value of

SORTHEAP, which would also affect general query processing.

iWarningcount

Input. Stops the load operation after warningcnt warnings. Set this

parameter if no warnings are expected, but verification that the correct file

and table are being used is desired. If the load file or the target table is

specified incorrectly, the load utility will generate a warning for each row

that it attempts to load, which will cause the load to fail. If warningcnt is

0, or this option is not specified, the load operation will continue

regardless of the number of warnings issued.

 If the load operation is stopped because the threshold of warnings was

exceeded, another load operation can be started in RESTART mode. The

load operation will automatically continue from the last consistency point.

Alternatively, another load operation can be initiated in REPLACE mode,

starting at the beginning of the input file.

iHoldQuiesce

Input. A flag whose value is set to TRUE if the utility is to leave the table

in quiesced exclusive state after the load, and to FALSE if it is not.

iCpuParallelism

Input. The number of processes or threads that the load utility will spawn

for parsing, converting and formatting records when building table objects.

This parameter is designed to exploit intra-partition parallelism. It is

particularly useful when loading presorted data, because record order in

the source data is preserved. If the value of this parameter is zero, the load

utility uses an intelligent default value at run time. Note: If this parameter

is used with tables containing either LOB or LONG VARCHAR fields, its

value becomes one, regardless of the number of system CPUs, or the value

specified by the user.

iDiskParallelism

Input. The number of processes or threads that the load utility will spawn

for writing data to the table space containers. If a value is not specified, the

db2Load - Load data into a table

172 Data Movement Utilities DB2 9 BETA

utility selects an intelligent default based on the number of table space

containers and the characteristics of the table.

iNonrecoverable

Input. Set to SQLU_NON_RECOVERABLE_LOAD if the load transaction is

to be marked as non-recoverable, and it will not be possible to recover it

by a subsequent roll forward action. The rollforward utility will skip the

transaction, and will mark the table into which data was being loaded as

″invalid″. The utility will also ignore any subsequent transactions against

that table. After the roll forward is completed, such a table can only be

dropped. With this option, table spaces are not put in backup pending

state following the load operation, and a copy of the loaded data does not

have to be made during the load operation. Set to

SQLU_RECOVERABLE_LOAD if the load transaction is to be marked as

recoverable.

iIndexingMode

Input. Specifies the indexing mode. Valid values (defined in sqlutil header

file, located in the include directory) are:

SQLU_INX_AUTOSELECT

LOAD chooses between REBUILD and INCREMENTAL indexing

modes.

SQLU_INX_REBUILD

Rebuild table indexes.

SQLU_INX_INCREMENTAL

Extend existing indexes.

SQLU_INX_DEFERRED

Do not update table indexes.

iAccessLevel

Input. Specifies the access level. Valid values are:

SQLU_ALLOW_NO_ACCESS

Specifies that the load locks the table exclusively.

SQLU_ALLOW_READ_ACCESS

Specifies that the original data in the table (the non-delta portion)

should still be visible to readers while the load is in progress. This

option is only valid for load appends, such as a load insert, and

will be ignored for load replace.

iLockWithForce

Input. A boolean flag. If set to TRUE load will force other applications as

necessary to ensure that it obtains table locks immediately. This option

requires the same authority as the FORCE APPLICATIONS command

(SYSADM or SYSCTRL).

 SQLU_ALLOW_NO_ACCESS loads may force conflicting applications at

the start of the load operation. At the start of the load the utility may force

applications that are attempting to either query or modify the table.

 SQLU_ALLOW_READ_ACCESS loads may force conflicting applications at

the start or end of the load operation. At the start of the load the load

utility may force applications that are attempting to modify the table. At

the end of the load the load utility may force applications that are

attempting to either query or modify the table.

db2Load - Load data into a table

Chapter 3. Load 173DB2 9 BETA

iCheckPending

This parameter is being deprecated as of Version 9.1. Use the

iSetIntegrityPending parameter instead.

iRestartphase

Input. Reserved. Valid value is a single space character ’ ’.

iStatsOpt

Input. Granularity of statistics to collect. Valid values are:

SQLU_STATS_NONE

No statistics to be gathered.

SQLU_STATS_USE_PROFILE

Statistics are collected based on the profile defined for the current

table. This profile must be created using the RUNSTATS command.

If no profile exists for the current table, a warning is returned and

no statistics are collected.

iSetIntegrityPending

Input. Specifies to put the table into set integrity pending state. If the value

SQLU_SI_PENDING_CASCADE_IMMEDIATE is specified, set integrity

pending state will be immediately cascaded to all dependent and

descendent tables. If the value

SQLU_SI_PENDING_CASCADE_DEFERRED is specified, the cascade of

set integrity pending state to dependent tables will be deferred until the

target table is checked for integrity violations.

SQLU_SI_PENDING_CASCADE_DEFERRED is the default value if the

option is not specified.

 db2LoadOut data structure parameters:

 oRowsRead

Output. Number of records read during the load operation.

oRowsSkipped

Output. Number of records skipped before the load operation begins.

oRowsLoaded

Output. Number of rows loaded into the target table.

oRowsRejected

Output. Number of records that could not be loaded.

oRowsDeleted

Output. Number of duplicate rows deleted.

oRowsCommitted

Output. The total number of processed records: the number of records

loaded successfully and committed to the database, plus the number of

skipped and rejected records.

 db2PartLoadIn data structure parameters:

 piHostname

Input. The hostname for the iFileTransferCmd parameter. If NULL, the

hostname will default to ″nohost″.

piFileTransferCmd

Input. File transfer command parameter. If not required, it must be set to

NULL. See the Data Movement Guide for a full description of this

parameter.

db2Load - Load data into a table

174 Data Movement Utilities DB2 9 BETA

piPartFileLocation

Input. In PARTITION_ONLY, LOAD_ONLY, and

LOAD_ONLY_VERIFY_PART modes, this parameter can be used to specify

the location of the partitioned files. This location must exist on each

database partition specified by the piOutputNodes option.

 For the SQL_CURSOR file type, this parameter cannot be NULL and the

location does not refer to a path, but to a fully qualified file name. This

will be the fully qualified base file name of the partitioned files that are

created on each output database partition for PARTITION_ONLY mode, or

the location of the files to be read from each database partition for

LOAD_ONLY mode. For PARTITION_ONLY mode, multiple files may be

created with the specified base name if there are LOB columns in the target

table. For file types other than SQL_CURSOR, if the value of this

parameter is NULL, it will default to the current directory.

piOutputNodes

Input. The list of Load output database partitions. A NULL indicates that

all nodes on which the target table is defined.

piPartitioningNodes

Input. The list of partitioning nodes. A NULL indicates the default. Refer to

the Load command in the Data Movement Guide and Reference for a

description of how the default is determined.

piMode

Input. Specifies the load mode for partitioned databases. Valid values

(defined in db2ApiDf header file, located in the include directory) are:

- DB2LOAD_PARTITION_AND_LOAD

Data is distributed (perhaps in parallel) and loaded simultaneously

on the corresponding database partitions.

- DB2LOAD_PARTITION_ONLY

Data is distributed (perhaps in parallel) and the output is written

to files in a specified location on each loading database partition.

For file types other than SQL_CURSOR, the name of the output file

on each database partition will have the form filename.xxx, where

filename is the name of the first input file specified by piSourceList

and xxx is the database partition number.For the SQL_CURSOR file

type, the name of the output file on each database partition will be

determined by the piPartFileLocation parameter. Refer to the

piPartFileLocation parameter for information about how to specify

the location of the database partition file on each database

partition.

Note: This mode cannot be used for a CLI LOAD.

DB2LOAD_LOAD_ONLY

Data is assumed to be already distributed; the distribution process

is skipped, and the data is loaded simultaneously on the

corresponding database partitions. For file types other than

SQL_CURSOR, the input file name on each database partition is

expected to be of the form filename.xxx, where filename is the

name of the first file specified by piSourceList and xxx is the

13-digit database partition number. For the SQL_CURSOR file type,

the name of the input file on each database partition will be

determined by the piPartFileLocation parameter. Refer to the

db2Load - Load data into a table

Chapter 3. Load 175DB2 9 BETA

piPartFileLocation parameter for information about how to specify

the location of the database partition file on each database

partition.

Note: This mode cannot be used when loading a data file located

on a remote client, nor can it be used for a CLI LOAD.

DB2LOAD_LOAD_ONLY_VERIFY_PART

Data is assumed to be already distributed, but the data file does

not contain a database partition header. The distribution process is

skipped, and the data is loaded simultaneously on the

corresponding database partitions. During the load operation, each

row is checked to verify that it is on the correct database partition.

Rows containing database partition violations are placed in a

dumpfile if the dumpfile file type modifier is specified. Otherwise,

the rows are discarded. If database partition violations exist on a

particular loading database partition, a single warning will be

written to the load message file for that database partition. The

input file name on each database partition is expected to be of the

form filename.xxx, where filename is the name of the first file

specified by piSourceList and xxx is the 13-digit database partition

number.

Note: This mode cannot be used when loading a data file located

on a remote client, nor can it be used for a CLI LOAD.

DB2LOAD_ANALYZE

An optimal distribution map with even distribution across all

database partitions is generated.

piMaxNumPartAgents

Input. The maximum number of partitioning agents. A NULL value

indicates the default, which is 25.

piIsolatePartErrs

Input. Indicates how the load operation will react to errors that occur on

individual database partitions. Valid values (defined in db2ApiDf header

file, located in the include directory) are:

DB2LOAD_SETUP_ERRS_ONLY

In this mode, errors that occur on a database partition during

setup, such as problems accessing a database partition or problems

accessing a table space or table on a database partition, will cause

the load operation to stop on the failing database partitions but to

continue on the remaining database partitions. Errors that occur on

a database partition while data is being loaded will cause the

entire operation to fail and rollback to the last point of consistency

on each database partition.

DB2LOAD_LOAD_ERRS_ONLY

In this mode, errors that occur on a database partition during setup

will cause the entire load operation to fail. When an error occurs

while data is being loaded, the database partitions with errors will

be rolled back to their last point of consistency. The load operation

will continue on the remaining database partitions until a failure

occurs or until all the data is loaded. On the database partitions

where all of the data was loaded, the data will not be visible

following the load operation. Because of the errors in the other

database partitions the transaction will be aborted. Data on all of

db2Load - Load data into a table

176 Data Movement Utilities DB2 9 BETA

the database partitions will remain invisible until a load restart

operation is performed. This will make the newly loaded data

visible on the database partitions where the load operation

completed and resume the load operation on database partitions

that experienced an error.

Note: This mode cannot be used when iAccessLevel is set to

SQLU_ALLOW_READ_ACCESS and a copy target is also

specified.

DB2LOAD_SETUP_AND_LOAD_ERRS

In this mode, database partition-level errors during setup or

loading data cause processing to stop only on the affected database

partitions. As with the DB2LOAD_LOAD_ERRS_ONLY mode,

when database partition errors do occur while data is being

loaded, the data on all database partitions will remain invisible

until a load restart operation is performed.

Note: This mode cannot 1be used when iAccessLevel is set to

SQLU_ALLOW_READ_ACCESS and a copy target is also

specified.

DB2LOAD_NO_ISOLATION

Any error during the Load operation causes the transaction to be

aborted. If this parameter is NULL, it will default to

DB2LOAD_LOAD_ERRS_ONLY, unless iAccessLevel is set to

SQLU_ALLOW_READ_ACCESS and a copy target is also specified,

in which case the default is DB2LOAD_NO_ISOLATION.

piStatusInterval

Input. Specifies the number of megabytes (MB) of data to load before

generating a progress message. Valid values are whole numbers in the

range of 1 to 4000. If NULL is specified, a default value of 100 will be

used.

piPortRange

Input. The TCP port range for internal communication. If NULL, the port

range used will be 6000-6063.

piCheckTruncation

Input. Causes Load to check for record truncation at Input/Output. Valid

values are TRUE and FALSE. If NULL, the default is FALSE.

piMapFileInput

Input. Distribution map input filename. If the mode is not ANALYZE, this

parameter should be set to NULL. If the mode is ANALYZE, this

parameter must be specified.

piMapFileOutput

Input. Distribution map output filename. The rules for piMapFileInput

apply here as well.

piTrace

Input. Specifies the number of records to trace when you need to review a

dump of all the data conversion process and the output of hashing values.

If NULL, the number of records defaults to 0.

piNewline

Input. Forces Load to check for newline characters at end of ASC data

db2Load - Load data into a table

Chapter 3. Load 177DB2 9 BETA

records if RECLEN file type modifier is also specified. Possible values are

TRUE and FALSE. If NULL, the value defaults to FALSE.

piDistfile

Input. Name of the database partition distribution file. If a NULL is

specified, the value defaults to ″DISTFILE″.

piOmitHeader

Input. Indicates that a distribution map header should not be included in

the database partition file when using DB2LOAD_PARTITION_ONLY

mode. Possible values are TRUE and FALSE. If NULL, the default is

FALSE.

piRunStatDBPartNum

Specifies the database partition on which to collect statistics. The default

value is the first database partition in the output database partition list.

 db2LoadNodeList data structure parameters:

 piNodeList

Input. An array of node numbers.

iNumNodes

Input. The number of nodes in the piNodeList array. A 0 indicates the

default, which is all nodes on which the target table is defined.

 db2LoadPortRange data structure parameters:

 iPortMin

Input. Lower port number.

iPortMax

Input. Higher port number.

 db2PartLoadOut data structure parameters:

 oRowsRdPartAgents

Output. Total number of rows read by all partitioning agents.

oRowsRejPartAgents

Output. Total number of rows rejected by all partitioning agents.

oRowsPartitioned

Output. Total number of rows partitioned by all partitioning agents.

poAgentInfoList

Output. During a load operation into a partitioned database, the following

load processing entities may be involved: load agents, partitioning agents,

pre-partitioning agents, file transfer command agents and load-to-file

agents (these are described in the Data Movement Guide). The purpose of

the poAgentInfoList output parameter is to return to the caller information

about each load agent that participated in a load operation. Each entry in

the list contains the following information:

oAgentType

A tag indicating what kind of load agent the entry describes.

oNodeNum

The number of the database partition on which the agent executed.

oSqlcode

The final sqlcode resulting from the agent’s processing.

db2Load - Load data into a table

178 Data Movement Utilities DB2 9 BETA

oTableState

The final status of the table on the database partition on which the

agent executed (relevant only for load agents).

It is up to the caller of the API to allocate memory for this list prior to

calling the API. The caller should also indicate the number of entries for

which they allocated memory in the iMaxAgentInfoEntries parameter. If

the caller sets poAgentInfoList to NULL or sets iMaxAgentInfoEntries to 0,

then no information will be returned about the load agents.

iMaxAgentInfoEntries

Input. The maximum number of agent information entries allocated by the

user for poAgentInfoList. In general, setting this parameter to 3 times the

number of database partitions involved in the load operation should be

sufficient.

oNumAgentInfoEntries

Output. The actual number of agent information entries produced by the

load operation. This number of entries will be returned to the user in the

poAgentInfoList parameter as long as iMaxAgentInfoEntries is greater than

or equal to oNumAgentInfoEntries. If iMaxAgentInfoEntries is less than

oNumAgentInfoEntries, then the number of entries returned in

poAgentInfoList is equal to iMaxAgentInfoEntries.

 db2LoadAgentInfo data structure parameters:

 oSqlcode

Output. The final sqlcode resulting from the agent’s processing.

oTableState

Output. The purpose of this output parameter is not to report every

possible state of the table after the load operation. Rather, its purpose is to

report only a small subset of possible tablestates in order to give the caller

a general idea of what happened to the table during load processing. This

value is relevant for load agents only. The possible values are:

DB2LOADQUERY_NORMAL

Indicates that the load completed successfully on the database

partition and the table was taken out of the LOAD IN PROGRESS

(or LOAD PENDING) state. In this case, the table still could be in

SET INTEGRITY PENDING state due to the need for further

constraints processing, but this will not reported as this is normal.

DB2LOADQUERY_UNCHANGED

Indicates that the load job aborted processing due to an error but

did not yet change the state of the table on the database partition

from whatever state it was in prior to calling db2Load. It is not

necessary to perform a load restart or terminate operation on such

database partitions.

DB2LOADQUERY_LOADPENDING

Indicates that the load job aborted during processing but left the

table on the database partition in the LOAD PENDING state,

indicating that the load job on that database partition must be

either terminated or restarted.

oNodeNum

Output. The number of the database partition on which the agent

executed.

db2Load - Load data into a table

Chapter 3. Load 179DB2 9 BETA

oAgentType

Output. The agent type. Valid values (defined in db2ApiDf header file,

located in the include directory) are :

v DB2LOAD_LOAD_AGENT

v DB2LOAD_PARTITIONING_AGENT

v DB2LOAD_PRE_PARTITIONING_AGENT

v DB2LOAD_FILE_TRANSFER_AGENT

v DB2LOAD_LOAD_TO_FILE_AGENT

 db2gLoadStruct data structure specific parameters:

 iFileTypeLen

Input. Specifies the length in bytes of iFileType parameter.

iLocalMsgFileLen

Input. Specifies the length in bytes of iLocalMsgFileName parameter.

iTempFilesPathLen

Input. Specifies the length in bytes of iTempFilesPath parameter.

 db2gLoadIn data structure specific parameters:

 iUseTablespaceLen

Input. The length in bytes of piUseTablespace parameter.

 db2gPartLoadIn data structure specific parameters:

 piReserved1

Reserved for future use.

iHostnameLen

Input. The length in bytes of piHostname parameter.

iFileTransferLen

Input. The length in bytes of piFileTransferCmd parameter.

iPartFileLocLen

Input. The length in bytes of piPartFileLocation parameter.

iMapFileInputLen

Input. The length in bytes of piMapFileInput parameter.

iMapFileOutputLen

Input. The length in bytes of piMapFileOutput parameter.

iDistfileLen

Input. The length in bytes of piDistfile parameter.

 Usage notes:

 Data is loaded in the sequence that appears in the input file. If a particular

sequence is desired, the data should be sorted before a load is attempted.

The load utility builds indexes based on existing definitions. The exception tables

are used to handle duplicates on unique keys. The utility does not enforce

referential integrity, perform constraints checking, or update summary tables that

are dependent on the tables being loaded. Tables that include referential or check

constraints are placed in set integrity pending state. Summary tables that are

defined with REFRESH IMMEDIATE, and that are dependent on tables being

loaded, are also placed in set integrity pending state. Issue the SET INTEGRITY

db2Load - Load data into a table

180 Data Movement Utilities DB2 9 BETA

statement to take the tables out of set integrity pending state. Load operations

cannot be carried out on replicated summary tables.

For clustering indexes, the data should be sorted on the clustering index prior to

loading. The data need not be sorted when loading into an multi-dimensionally

clustered (MDC) table.

 Related tasks:

v “Loading data” on page 110

 Related reference:

v “LOAD ” on page 132

v “sqldcol data structure” in Administrative API Reference

v “sqlu_media_list data structure” in Administrative API Reference

v “db2LoadQuery - Get the status of a load operation” on page 181

v “db2Export - Export data from a database” on page 19

v “db2Import - Import data into a table, hierarchy, nickname or view” on page 73

 Related samples:

v “dtformat.sqc -- Load and import data format extensions (C)”

v “tbload.sqc -- How to load into a partitioned database (C)”

v “tbmove.sqc -- How to move table data (C)”

v “tbmove.sqC -- How to move table data (C++)”

db2LoadQuery - Get the status of a load operation

 Checks the status of a load operation during processing.

 Authorization:

 None

 Required connection:

 Database

 API include file:

db2ApiDf.h

 API and data structure syntax:

SQL_API_RC SQL_API_FN

 db2LoadQuery (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2LoadQueryStruct

{

 db2Uint32 iStringType;

 char *piString;

 db2Uint32 iShowLoadMessages;

 struct db2LoadQueryOutputStruct *poOutputStruct;

 char *piLocalMessageFile;

} db2LoadQueryStruct;

db2Load - Load data into a table

Chapter 3. Load 181DB2 9 BETA

typedef SQL_STRUCTURE db2LoadQueryOutputStruct

{

 db2Uint32 oRowsRead;

 db2Uint32 oRowsSkipped;

 db2Uint32 oRowsCommitted;

 db2Uint32 oRowsLoaded;

 db2Uint32 oRowsRejected;

 db2Uint32 oRowsDeleted;

 db2Uint32 oCurrentIndex;

 db2Uint32 oNumTotalIndexes;

 db2Uint32 oCurrentMPPNode;

 db2Uint32 oLoadRestarted;

 db2Uint32 oWhichPhase;

 db2Uint32 oWarningCount;

 db2Uint32 oTableState;

} db2LoadQueryOutputStruct;

typedef SQL_STRUCTURE db2LoadQueryOutputStruct64

{

 db2Uint64 oRowsRead;

 db2Uint64 oRowsSkipped;

 db2Uint64 oRowsCommitted;

 db2Uint64 oRowsLoaded;

 db2Uint64 oRowsRejected;

 db2Uint64 oRowsDeleted;

 db2Uint32 oCurrentIndex;

 db2Uint32 oNumTotalIndexes;

 db2Uint32 oCurrentMPPNode;

 db2Uint32 oLoadRestarted;

 db2Uint32 oWhichPhase;

 db2Uint32 oWarningCount;

 db2Uint32 oTableState;

} db2LoadQueryOutputStruct64;

typedef SQL_STRUCTURE db2LoadQueryStruct64

{

 db2Uint32 iStringType;

 char *piString;

 db2Uint32 iShowLoadMessages;

 struct db2LoadQueryOutputStruct64 *poOutputStruct;

 char *piLocalMessageFile;

} db2LoadQueryStruct64;

SQL_API_RC SQL_API_FN

 db2gLoadQuery (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gLoadQueryStruct

{

 db2Uint32 iStringType;

 db2Uint32 iStringLen;

 char *piString;

 db2Uint32 iShowLoadMessages;

 struct db2LoadQueryOutputStruct *poOutputStruct;

 db2Uint32 iLocalMessageFileLen;

 char *piLocalMessageFile;

} db2gLoadQueryStruct;

typedef SQL_STRUCTURE db2gLoadQueryStru64

{

 db2Uint32 iStringType;

 db2Uint32 iStringLen;

 char *piString;

 db2Uint32 iShowLoadMessages;

db2LoadQuery - Get the status of a load operation

182 Data Movement Utilities DB2 9 BETA

struct db2LoadQueryOutputStruct64 *poOutputStruct;

 db2Uint32 iLocalMessageFileLen;

 char *piLocalMessageFile;

} db2gLoadQueryStru64;

 db2LoadQuery API parameters:

 versionNumber

Input. Specifies the version and release level of the structure passed in as

the second parameter, pParmStruct.

pParmStruct

Input. A pointer to the db2LoadQueryStruct structure.

pSqlca

Output. A pointer to the sqlca structure.

 db2LoadQueryStruct data structure parameters:

 iStringType

Input. Specifies a type for piString. Valid values (defined in db2ApiDf

header file, located in the include directory) are:

DB2LOADQUERY_TABLENAME

Specifies a table name for use by the db2LoadQuery API.

piString

Input. Specifies a temporary files path name or a table name, depending

on the value of iStringType.

iShowLoadMessages

Input. Specifies the level of messages that are to be returned by the load

utility. Valid values (defined in db2ApiDf header file, located in the include

directory) are:

DB2LOADQUERY_SHOW_ALL_MSGS

Return all load messages.

DB2LOADQUERY_SHOW_NO_MSGS

Return no load messages.

DB2LOADQUERY_SHOW_NEW_MSGS

Return only messages that have been generated since the last call

to this API.

poOutputStruct

Output. A pointer to the db2LoadQueryOutputStruct structure, which

contains load summary information. Set to NULL if a summary is not

required.

piLocalMessageFile

Input. Specifies the name of a local file to be used for output messages.

 db2LoadQueryOutputStruct data structure parameters:

 oRowsRead

Output. Number of records read so far by the load utility.

oRowsSkipped

Output. Number of records skipped before the load operation began.

oRowsCommitted

Output. Number of rows committed to the target table so far.

db2LoadQuery - Get the status of a load operation

Chapter 3. Load 183DB2 9 BETA

oRowsLoaded

Output. Number of rows loaded into the target table so far.

oRowsRejected

Output. Number of rows rejected from the target table so far.

oRowsDeleted

Output. Number of rows deleted from the target table so far (during the

delete phase).

oCurrentIndex

Output. Index currently being built (during the build phase).

oNumTotalIndexes

Output. Total number of indexes to be built (during the build phase).

oCurrentMPPNode

Output. Indicates which database partition server is being queried (for

partitioned database environment mode only).

oLoadRestarted

Output. A flag whose value is TRUE if the load operation being queried is

a load restart operation.

oWhichPhase

Output. Indicates the current phase of the load operation being queried.

Valid values (defined in db2ApiDf header file, located in the include

directory) are:

DB2LOADQUERY_LOAD_PHASE

Load phase.

DB2LOADQUERY_BUILD_PHASE

Build phase.

DB2LOADQUERY_DELETE_PHASE

Delete phase.

DB2LOADQUERY_INDEXCOPY_PHASE

Index copy phase.

oWarningCount

Output. Total number of warnings returned so far.

oTableState

Output. The table states. Valid values (defined in db2ApiDf header file,

located in the include directory) are:

DB2LOADQUERY_NORMAL

No table states affect the table.

DB2LOADQUERY_SI_PENDING

The table has constraints and the constraints have yet to be

verified. Use the SET INTEGRITY command to take the table out

of the DB2LOADQUERY_SI_PENDING state. The load utility puts

a table into the DB2LOADQUERY_SI_PENDING state when it

begins a load on a table with constraints.

DB2LOADQUERY_LOAD_IN_PROGRESS

There is a load actively in progress on this table.

DB2LOADQUERY_LOAD_PENDING

A load has been active on this table but has been aborted before

the load could commit. Issue a load terminate, a load restart, or a

db2LoadQuery - Get the status of a load operation

184 Data Movement Utilities DB2 9 BETA

load replace to bring the table out of the

DB2LOADQUERY_LOAD_PENDING state.

DB2LOADQUERY_REORG_PENDING

A reorg recommended alter has been performed on this table. A

classic reorg must be performed before the table will be accessible.

DB2LOADQUERY_READ_ACCESS

The table data is available for read access queries. Loads using the

DB2LOADQUERY_READ_ACCESS option put the table into Read

Access Only state.

DB2LOADQUERY_NOTAVAILABLE

The table is unavailable. The table may only be dropped or it may

be restored from a backup. Rollforward through a non-recoverable

load will put a table into the unavailable state.

DB2LOADQUERY_NO_LOAD_RESTART

The table is in a partially loaded state that will not allow a load

restart. The table will also be in the Load Pending state. Issue a

load terminate or a load replace to bring the table out of the No

Load Restartable state. The table can be placed in the

DB2LOADQUERY_NO_LOAD_RESTART state during a

rollforward operation. This can occur if you rollforward to a point

in time that is prior to the end of a load operation, or if you roll

forward through an aborted load operation but do not roll forward

to the end of the load terminate or load restart operation.

DB2LOADQUERY_TYPE1_INDEXES

The table currently uses type-1 indexes. The indexes can be

converted to type-2 using the CONVERT option when using the

REORG utility on the indexes.

 db2LoadQueryOutputStruct64 data structure parameters:

 oRowsRead

Output. Number of records read so far by the load utility.

oRowsSkipped

Output. Number of records skipped before the load operation began.

oRowsCommitted

Output. Number of rows committed to the target table so far.

oRowsLoaded

Output. Number of rows loaded into the target table so far.

oRowsRejected

Output. Number of rows rejected from the target table so far.

oRowsDeleted

Output. Number of rows deleted from the target table so far (during the

delete phase).

oCurrentIndex

Output. Index currently being built (during the build phase).

oNumTotalIndexes

Output. Total number of indexes to be built (during the build phase).

oCurrentMPPNode

Output. Indicates which database partition server is being queried (for

partitioned database environment mode only).

db2LoadQuery - Get the status of a load operation

Chapter 3. Load 185DB2 9 BETA

oLoadRestarted

Output. A flag whose value is TRUE if the load operation being queried is

a load restart operation.

oWhichPhase

Output. Indicates the current phase of the load operation being queried.

Valid values (defined in db2ApiDf header file, located in the include

directory) are:

DB2LOADQUERY_LOAD_PHASE

Load phase.

DB2LOADQUERY_BUILD_PHASE

Build phase.

DB2LOADQUERY_DELETE_PHASE

Delete phase.

DB2LOADQUERY_INDEXCOPY_PHASE

Index copy phase.

oWarningCount

Output. Total number of warnings returned so far.

oTableState

Output. The table states. Valid values (defined in db2ApiDf header file,

located in the include directory) are:

DB2LOADQUERY_NORMAL

No table states affect the table.

DB2LOADQUERY_SI_PENDING

The table has constraints and the constraints have yet to be

verified. Use the SET INTEGRITY command to take the table out

of the DB2LOADQUERY_SI_PENDING state. The load utility puts

a table into the DB2LOADQUERY_SI_PENDING state when it

begins a load on a table with constraints.

DB2LOADQUERY_LOAD_IN_PROGRESS

There is a load actively in progress on this table.

DB2LOADQUERY_LOAD_PENDING

A load has been active on this table but has been aborted before

the load could commit. Issue a load terminate, a load restart, or a

load replace to bring the table out of the

DB2LOADQUERY_LOAD_PENDING state.

DB2LOADQUERY_REORG_PENDING

A reorg recommended alter has been performed on this table. A

classic reorg must be performed before the table will be accessible.

DB2LOADQUERY_READ_ACCESS

The table data is available for read access queries. Loads using the

DB2LOADQUERY_READ_ACCESS option put the table into Read

Access Only state.

DB2LOADQUERY_NOTAVAILABLE

The table is unavailable. The table may only be dropped or it may

be restored from a backup. Rollforward through a non-recoverable

load will put a table into the unavailable state.

DB2LOADQUERY_NO_LOAD_RESTART

The table is in a partially loaded state that will not allow a load

db2LoadQuery - Get the status of a load operation

186 Data Movement Utilities DB2 9 BETA

restart. The table will also be in the Load Pending state. Issue a

load terminate or a load replace to bring the table out of the No

Load Restartable state. The table can be placed in the

DB2LOADQUERY_NO_LOAD_RESTART state during a

rollforward operation. This can occur if you rollforward to a point

in time that is prior to the end of a load operation, or if you roll

forward through an aborted load operation but do not roll forward

to the end of the load terminate or load restart operation.

DB2LOADQUERY_TYPE1_INDEXES

The table currently uses type-1 indexes. The indexes can be

converted to type-2 using the CONVERT option when using the

REORG utility on the indexes.

 db2LoadQueryStruct64 data structure parameters:

 iStringType

Input. Specifies a type for piString. Valid values (defined in db2ApiDf

header file, located in the include directory) are:

DB2LOADQUERY_TABLENAME

Specifies a table name for use by the db2LoadQuery API.

piString

Input. Specifies a temporary files path name or a table name, depending

on the value of iStringType.

iShowLoadMessages

Input. Specifies the level of messages that are to be returned by the load

utility. Valid values (defined in db2ApiDf header file, located in the include

directory) are:

DB2LOADQUERY_SHOW_ALL_MSGS

Return all load messages.

DB2LOADQUERY_SHOW_NO_MSGS

Return no load messages.

DB2LOADQUERY_SHOW_NEW_MSGS

Return only messages that have been generated since the last call

to this API.

poOutputStruct

Output. A pointer to the db2LoadQueryOutputStruct structure, which

contains load summary information. Set to NULL if a summary is not

required.

piLocalMessageFile

Input. Specifies the name of a local file to be used for output messages.

 db2gLoadQueryStruct data structure specific parameters:

 iStringLen

Input. Specifies the length in bytes of piString parameter.

iLocalMessageFileLen

Input. Specifies the length in bytes of piLocalMessageFile parameter.

 db2gLoadQueryStru64 data structure specific parameters:

 iStringLen

Input. Specifies the length in bytes of piString parameter.

db2LoadQuery - Get the status of a load operation

Chapter 3. Load 187DB2 9 BETA

iLocalMessageFileLen

Input. Specifies the length in bytes of piLocalMessageFile parameter.

 Usage notes:

 This API reads the status of the load operation on the table specified by piString,

and writes the status to the file specified by pLocalMsgFileName.

 Related concepts:

v “Monitoring a load operation in a partitioned database environment using the

LOAD QUERY command” on page 223

 Related reference:

v “LOAD QUERY ” on page 158

v “SQLCA data structure” in Administrative API Reference

v “db2Load - Load data into a table” on page 161

 Related samples:

v “loadqry.sqb -- Query the current status of a load (MF COBOL)”

v “tbload.sqc -- How to load into a partitioned database (C)”

v “tbmove.sqc -- How to move table data (C)”

v “tbmove.sqC -- How to move table data (C++)”

File type modifiers for the load utility

 Table 12. Valid file type modifiers for the load utility: All file formats

Modifier Description

anyorder This modifier is used in conjunction with the cpu_parallelism parameter. Specifies

that the preservation of source data order is not required, yielding significant

additional performance benefit on SMP systems. If the value of cpu_parallelism is

1, this option is ignored. This option is not supported if SAVECOUNT > 0, since

crash recovery after a consistency point requires that data be loaded in sequence.

generatedignore This modifier informs the load utility that data for all generated columns is

present in the data file but should be ignored. This results in all generated

column values being generated by the utility. This modifier cannot be used with

either the generatedmissing or the generatedoverride modifier.

generatedmissing If this modifier is specified, the utility assumes that the input data file contains no

data for the generated column (not even NULLs). This results in all generated

column values being generated by the utility. This modifier cannot be used with

either the generatedignore or the generatedoverride modifier.

db2LoadQuery - Get the status of a load operation

188 Data Movement Utilities DB2 9 BETA

Table 12. Valid file type modifiers for the load utility: All file formats (continued)

Modifier Description

generatedoverride This modifier instructs the load utility to accept user-supplied data for all

generated columns in the table (contrary to the normal rules for these types of

columns). This is useful when migrating data from another database system, or

when loading a table from data that was recovered using the RECOVER

DROPPED TABLE option on the ROLLFORWARD DATABASE command. When

this modifier is used, any rows with no data or NULL data for a non-nullable

generated column will be rejected (SQL3116W). When this modifier is used, the

table will be placed in Set Integrity Pending state. To take the table out of Set

Integrity Pending state without verifying the user-supplied values, issue the

following command after the load operation:

SET INTEGRITY FOR < table-name > GENERATED COLUMN

 IMMEDIATE UNCHECKED

To take the table out of Set Integrity Pending state and force verification of the

user-supplied values, issue the following command after the load operation:

SET INTEGRITY FOR < table-name > IMMEDIATE CHECKED.

When this modifier is specified and there is a generated column in any of the

partitioning keys, dimension keys or distribution keys, then the LOAD command

will automatically convert the modifier to generatedignore and proceed with the

load. This will have the effect of regenerating all of the generated column values.

This modifier cannot be used with either the generatedmissing or the

generatedignore modifier.

identityignore This modifier informs the load utility that data for the identity column is present

in the data file but should be ignored. This results in all identity values being

generated by the utility. The behavior will be the same for both GENERATED

ALWAYS and GENERATED BY DEFAULT identity columns. This means that for

GENERATED ALWAYS columns, no rows will be rejected. This modifier cannot

be used with either the identitymissing or the identityoverride modifier.

identitymissing If this modifier is specified, the utility assumes that the input data file contains no

data for the identity column (not even NULLs), and will therefore generate a

value for each row. The behavior will be the same for both GENERATED

ALWAYS and GENERATED BY DEFAULT identity columns. This modifier cannot

be used with either the identityignore or the identityoverride modifier.

identityoverride This modifier should be used only when an identity column defined as

GENERATED ALWAYS is present in the table to be loaded. It instructs the utility

to accept explicit, non-NULL data for such a column (contrary to the normal rules

for these types of identity columns). This is useful when migrating data from

another database system when the table must be defined as GENERATED

ALWAYS, or when loading a table from data that was recovered using the

DROPPED TABLE RECOVERY option on the ROLLFORWARD DATABASE

command. When this modifier is used, any rows with no data or NULL data for

the identity column will be rejected (SQL3116W). This modifier cannot be used

with either the identitymissing or the identityignore modifier. The load utility

will not attempt to maintain or verify the uniqueness of values in the table’s

identity column when this option is used.

File type modifiers for the load utility

Chapter 3. Load 189DB2 9 BETA

Table 12. Valid file type modifiers for the load utility: All file formats (continued)

Modifier Description

indexfreespace=x x is an integer between 0 and 99 inclusive. The value is interpreted as the

percentage of each index page that is to be left as free space when load rebuilds

the index. Load with INDEXING MODE INCREMENTAL ignores this option. The

first entry in a page is added without restriction; subsequent entries are added

the percent free space threshold can be maintained. The default value is the one

used at CREATE INDEX time.

This value takes precedence over the PCTFREE value specified in the CREATE

INDEX statement; the registry variable DB2 INDEX FREE takes precedence over

indexfreespace. The indexfreespace option affects index leaf pages only.

lobsinfile lob-path specifies the path to the files containing LOB data. The ASC, DEL, or IXF

load input files contain the names of the files having LOB data in the LOB

column.

This option is not supported in conjunction with the CURSOR filetype.

The LOBS FROM clause specifies where the LOB files are located when the

“lobsinfile” modifier is used. The LOBS FROM clause will implicitly activate the

LOBSINFILE behavior. The LOBS FROM clause conveys to the LOAD utility the

list of paths to search for the LOB files while loading the data.

Each path contains at least one file that contains at least one LOB pointed to by a

Lob Location Specifier (LLS) in the data file. The LLS is a string representation of

the location of a LOB in a file stored in the LOB file path. The format of an LLS is

filename.ext.nnn.mmm/, where filename.ext is the name of the file that contains the

LOB, nnn is the offset in bytes of the LOB within the file, and mmm is the length

of the LOB in bytes. For example, if the string db2exp.001.123.456/ is stored in

the data file, the LOB is located at offset 123 in the file db2exp.001, and is 456

bytes long.

To indicate a null LOB , enter the size as -1. If the size is specified as 0, it is

treated as a 0 length LOB. For null LOBS with length of -1, the offset and the file

name are ignored. For example, the LLS of a null LOB might be db2exp.001.7.-1/.

noheader Skips the header verification code (applicable only to load operations into tables

that reside in a single-partition database partition group).

If the default MPP load (mode PARTITION_AND_LOAD) is used against a table

residing in a single-partition database partition group, the file is not expected to

have a header. Thus the noheader modifier is not needed. If the LOAD_ONLY

mode is used, the file is expected to have a header. The only circumstance in

which you should need to use the noheader modifier is if you wanted to perform

LOAD_ONLY operation using a file that does not have a header.

norowwarnings Suppresses all warnings about rejected rows.

pagefreespace=x x is an integer between 0 and 100 inclusive. The value is interpreted as the

percentage of each data page that is to be left as free space. If the specified value

is invalid because of the minimum row size, (for example, a row that is at least

3 000 bytes long, and an x value of 50), the row will be placed on a new page. If a

value of 100 is specified, each row will reside on a new page. The PCTFREE

value of a table determines the amount of free space designated per page. If a

pagefreespace value on the load operation or a PCTFREE value on a table have

not been set, the utility will fill up as much space as possible on each page. The

value set by pagefreespace overrides the PCTFREE value specified for the table.

File type modifiers for the load utility

190 Data Movement Utilities DB2 9 BETA

Table 12. Valid file type modifiers for the load utility: All file formats (continued)

Modifier Description

seclabelchar Indicates that security labels in the input source file are in the string format for

security label values rather than in the default encoded numeric format. LOAD

converts each security label into the internal format as it is loaded. If a string is

not in the proper format the row is not loaded and a warning (SQLSTATE 01H53,

SQLCODE SQL3242W) is returned. If the string does not represent a valid

security label that is part of the security policy protecting the table then the row

is not loaded and a warning (SQLSTATE 01H53, SQLCODE SQL3243W) is

returned.

This modifier cannot be specified if the seclabelname modifier is specified,

otherwise the load fails and an error (SQLCODE SQL3525N) is returned.

seclabelname Indicates that security labels in the input source file are indicated by their name

rather than the default encoded numeric format. LOAD will convert the name to

the appropriate security label if it exists. If no security label exists with the

indicated name for the security policy protecting the table the row is not loaded

and a warning (SQLSTATE 01H53, SQLCODE SQL3244W) is returned.

This modifier cannot be specified if the seclabelchar modifier is specified,

otherwise the load fails and an error (SQLCODE SQL3525N) is returned.

Note: If the file type is ASC, any spaces following the name of the security label

will be interpreted as being part of the name. To avoid this use the striptblanks

file type modifier to make sure the spaces are removed.

totalfreespace=x x is an integer greater than or equal to 0 . The value is interpreted as the

percentage of the total pages in the table that is to be appended to the end of the

table as free space. For example, if x is 20, and the table has 100 data pages after

the data has been loaded, 20 additional empty pages will be appended. The total

number of data pages for the table will be 120. The data pages total does not

factor in the number of index pages in the table. This option does not affect the

index object. If two loads are done with this option specified, the second load will

not reuse the extra space appended to the end by the first load.

usedefaults If a source column for a target table column has been specified, but it contains no

data for one or more row instances, default values are loaded. Examples of

missing data are:

v For DEL files: two adjacent column delimiters (",,") or two adjacent column

delimiters separated by an arbitrary number of spaces (", ,") are specified for a

column value.

v For DEL/ASC/WSF files: A row that does not have enough columns, or is not

long enough for the original specification. For ASC files, NULL column values

are not considered explicitly missing, and a default will not be substituted for

NULL column values. NULL column values are represented by all space

characters for numeric, date, time, and /timestamp columns, or by using the

NULL INDICATOR for a column of any type to indicate the column is NULL.

Without this option, if a source column contains no data for a row instance, one

of the following occurs:

v For DEL/ASC/WSF files: If the column is nullable, a NULL is loaded. If the

column is not nullable, the utility rejects the row.

File type modifiers for the load utility

Chapter 3. Load 191DB2 9 BETA

Table 13. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL)

Modifier Description

codepage=x x is an ASCII character string. The value is interpreted as the code page of the

data in the input data set. Converts character data (and numeric data specified in

characters) from this code page to the database code page during the load

operation.

The following rules apply:

v For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted to

the range of x00 to x3F, inclusive.

v For DEL data specified in an EBCDIC code page, the delimiters might not

coincide with the shift-in and shift-out DBCS characters.

v nullindchar must specify symbols included in the standard ASCII set between

code points x20 and x7F, inclusive. This refers to ASCII symbols and code

points. EBCDIC data can use the corresponding symbols, even though the code

points will be different.

This option is not supported in conjunction with the CURSOR filetype.

dateformat=″x″ x is the format of the date in the source file.1 Valid date elements are:

 YYYY - Year (four digits ranging from 0000 - 9999)

 M - Month (one or two digits ranging from 1 - 12)

 MM - Month (two digits ranging from 1 - 12;

 mutually exclusive with M)

 D - Day (one or two digits ranging from 1 - 31)

 DD - Day (two digits ranging from 1 - 31;

 mutually exclusive with D)

 DDD - Day of the year (three digits ranging

 from 001 - 366; mutually exclusive

 with other day or month elements)

A default value of 1 is assigned for each element that is not specified. Some

examples of date formats are:

 "D-M-YYYY"

 "MM.DD.YYYY"

 "YYYYDDD"

dumpfile = x x is the fully qualified (according to the server database partition) name of an

exception file to which rejected rows are written. A maximum of 32 KB of data is

written per record. Following is an example that shows how to specify a dump

file:

 db2 load from data of del

 modified by dumpfile = /u/user/filename

 insert into table_name

The file will be created and owned by the instance owner. To override the default

file permissions, use the dumpfileaccessall file type modifier.

Notes:

1. In a partitioned database environment, the path should be local to the loading

database partition, so that concurrently running load operations do not

attempt to write to the same file.

2. The contents of the file are written to disk in an asynchronous buffered mode.

In the event of a failed or an interrupted load operation, the number of

records committed to disk cannot be known with certainty, and consistency

cannot be guaranteed after a LOAD RESTART. The file can only be assumed

to be complete for a load operation that starts and completes in a single pass.

File type modifiers for the load utility

192 Data Movement Utilities DB2 9 BETA

Table 13. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

dumpfileaccessall Grants read access to ’OTHERS’ when a dump file is created.

This file type modifier is only valid when:

1. it is used in conjunction with dumpfile file type modifier

2. the user has SELECT privilege on the load target table

3. it is issued on a DB2 server database partition that resides on a UNIX

operating system

fastparse Reduced syntax checking is done on user-supplied column values, and

performance is enhanced. Tables loaded under this option are guaranteed to be

architecturally correct, and the utility is guaranteed to perform sufficient data

checking to prevent a segmentation violation or trap. Data that is in correct form

will be loaded correctly.

implieddecimal The location of an implied decimal point is determined by the column definition;

it is no longer assumed to be at the end of the value. For example, the value

12345 is loaded into a DECIMAL(8,2) column as 123.45, not 12345.00.

This modifier cannot be used with the packeddecimal modifier.

timeformat=″x″ x is the format of the time in the source file.1 Valid time elements are:

 H - Hour (one or two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24

 for a 24 hour system)

 HH - Hour (two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24

 for a 24 hour system; mutually exclusive

 with H)

 M - Minute (one or two digits ranging

 from 0 - 59)

 MM - Minute (two digits ranging from 0 - 59;

 mutually exclusive with M)

 S - Second (one or two digits ranging

 from 0 - 59)

 SS - Second (two digits ranging from 0 - 59;

 mutually exclusive with S)

 SSSSS - Second of the day after midnight (5 digits

 ranging from 00000 - 86399; mutually

 exclusive with other time elements)

 TT - Meridian indicator (AM or PM)

A default value of 0 is assigned for each element that is not specified. Some

examples of time formats are:

 "HH:MM:SS"

 "HH.MM TT"

 "SSSSS"

File type modifiers for the load utility

Chapter 3. Load 193DB2 9 BETA

Table 13. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

timestampformat=″x″ x is the format of the time stamp in the source file.1 Valid time stamp elements

are:

 YYYY - Year (four digits ranging from 0000 - 9999)

 M - Month (one or two digits ranging from 1 - 12)

 MM - Month (two digits ranging from 01 - 12;

 mutually exclusive with M and MMM)

 MMM - Month (three-letter case-insensitive abbreviation for

 the month name; mutually exclusive with M and MM)

 D - Day (one or two digits ranging from 1 - 31)

 DD - Day (two digits ranging from 1 - 31; mutually exclusive with D)

 DDD - Day of the year (three digits ranging from 001 - 366;

 mutually exclusive with other day or month elements)

 H - Hour (one or two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24 for a 24 hour system)

 HH - Hour (two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24 for a 24 hour system;

 mutually exclusive with H)

 M - Minute (one or two digits ranging from 0 - 59)

 MM - Minute (two digits ranging from 0 - 59;

 mutually exclusive with M, minute)

 S - Second (one or two digits ranging from 0 - 59)

 SS - Second (two digits ranging from 0 - 59;

 mutually exclusive with S)

 SSSSS - Second of the day after midnight (5 digits

 ranging from 00000 - 86399; mutually

 exclusive with other time elements)

 UUUUUU - Microsecond (6 digits ranging from 000000 - 999999;

 mutually exclusive with all other microsecond elements)

 UUUUU - Microsecond (5 digits ranging from 00000 - 99999,

 maps to range from 000000 - 999990;

 mutually exclusive with all other microseond elements)

 UUUU - Microsecond (4 digits ranging from 0000 - 9999,

 maps to range from 000000 - 999900;

 mutually exclusive with all other microseond elements)

 UUU - Microsecond (3 digits ranging from 000 - 999,

 maps to range from 000000 - 999000;

 mutually exclusive with all other microseond elements)

 UU - Microsecond (2 digits ranging from 00 - 99,

 maps to range from 000000 - 990000;

 mutually exclusive with all other microseond elements)

 U - Microsecond (1 digit ranging from 0 - 9,

 maps to range from 000000 - 900000;

 mutually exclusive with all other microseond elements)

 TT - Meridian indicator (AM or PM)

A default value of 1 is assigned for unspecified YYYY, M, MM, D, DD, or DDD

elements. A default value of ’Jan’ is assigned to an unspecified MMM element. A

default value of 0 is assigned for all other unspecified elements. Following is an

example of a time stamp format:

 "YYYY/MM/DD HH:MM:SS.UUUUUU"

The valid values for the MMM element include: ’jan’, ’feb’, ’mar’, ’apr’, ’may’,

’jun’, ’jul’, ’aug’, ’sep’, ’oct’, ’nov’ and ’dec’. These values are case insensitive.

The following example illustrates how to import data containing user defined

date and time formats into a table called schedule:

 db2 import from delfile2 of del

 modified by timestampformat="yyyy.mm.dd hh:mm tt"

 insert into schedule

File type modifiers for the load utility

194 Data Movement Utilities DB2 9 BETA

Table 13. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

usegraphiccodepage If usegraphiccodepage is given, the assumption is made that data being loaded

into graphic or double-byte character large object (DBCLOB) data field(s) is in the

graphic code page. The rest of the data is assumed to be in the character code

page. The graphic codepage is associated with the character code page. LOAD

determines the character code page through either the codepage modifier, if it is

specified, or through the code page of the database if the codepage modifier is not

specified.

This modifier should be used in conjunction with the delimited data file

generated by drop table recovery only if the table being recovered has graphic

data.

Restrictions

The usegraphiccodepage modifier MUST NOT be specified with DEL files created

by the EXPORT utility, as these files contain data encoded in only one code page.

The usegraphiccodepage modifier is also ignored by the double-byte character

large objects (DBCLOBs) in files.

 Table 14. Valid file type modifiers for the load utility: ASC file formats (Non-delimited ASCII)

Modifier Description

binarynumerics Numeric (but not DECIMAL) data must be in binary form, not the character

representation. This avoids costly conversions.

This option is supported only with positional ASC, using fixed length records

specified by the reclen option.

The following rules apply:

v No conversion between data types is performed, with the exception of BIGINT,

INTEGER, and SMALLINT.

v Data lengths must match their target column definitions.

v FLOATs must be in IEEE Floating Point format.

v Binary data in the load source file is assumed to be big-endian, regardless of

the platform on which the load operation is running.

NULLs cannot be present in the data for columns affected by this modifier.

Blanks (normally interpreted as NULL) are interpreted as a binary value when

this modifier is used.

nochecklengths If nochecklengths is specified, an attempt is made to load each row, even if the

source data has a column definition that exceeds the size of the target table

column. Such rows can be successfully loaded if code page conversion causes the

source data to shrink; for example, 4-byte EUC data in the source could shrink to

2-byte DBCS data in the target, and require half the space. This option is

particularly useful if it is known that the source data will fit in all cases despite

mismatched column definitions.

nullindchar=x x is a single character. Changes the character denoting a NULL value to x. The

default value of x is Y.2

This modifier is case sensitive for EBCDIC data files, except when the character is

an English letter. For example, if the NULL indicator character is specified to be

the letter N, then n is also recognized as a NULL indicator.

File type modifiers for the load utility

Chapter 3. Load 195DB2 9 BETA

Table 14. Valid file type modifiers for the load utility: ASC file formats (Non-delimited ASCII) (continued)

Modifier Description

packeddecimal Loads packed-decimal data directly, since the binarynumerics modifier does not

include the DECIMAL field type.

This option is supported only with positional ASC, using fixed length records

specified by the reclen option.

Supported values for the sign nibble are:

 + = 0xC 0xA 0xE 0xF

 - = 0xD 0xB

NULLs cannot be present in the data for columns affected by this modifier.

Blanks (normally interpreted as NULL) are interpreted as a binary value when

this modifier is used.

Regardless of the server platform, the byte order of binary data in the load source

file is assumed to be big-endian; that is, when using this modifier on Windows

operating systems, the byte order must not be reversed.

This modifier cannot be used with the implieddecimal modifier.

reclen=x x is an integer with a maximum value of 32 767. x characters are read for each

row, and a new-line character is not used to indicate the end of the row.

striptblanks Truncates any trailing blank spaces when loading data into a variable-length field.

If this option is not specified, blank spaces are kept.

This option cannot be specified together with striptnulls. These are mutually

exclusive options. This option replaces the obsolete t option, which is supported

for back-level compatibility only.

striptnulls Truncates any trailing NULLs (0x00 characters) when loading data into a

variable-length field. If this option is not specified, NULLs are kept.

This option cannot be specified together with striptblanks. These are mutually

exclusive options. This option replaces the obsolete padwithzero option, which is

supported for back-level compatibility only.

zoneddecimal Loads zoned decimal data, since the BINARYNUMERICS modifier does not

include the DECIMAL field type. This option is supported only with positional

ASC, using fixed length records specified by the RECLEN option.

Half-byte sign values can be one of the following:

 + = 0xC 0xA 0xE 0xF

 - = 0xD 0xB

Supported values for digits are 0x0 to 0x9.

Supported values for zones are 0x3 and 0xF.

File type modifiers for the load utility

196 Data Movement Utilities DB2 9 BETA

Table 15. Valid file type modifiers for the load utility: DEL file formats (Delimited ASCII)

Modifier Description

chardelx x is a single character string delimiter. The default value is a double quotation

mark ("). The specified character is used in place of double quotation marks to

enclose a character string.23 If you wish to explicitly specify the double quotation

mark(″) as the character string delimiter, you should specify it as follows:

 modified by chardel""

The single quotation mark (') can also be specified as a character string delimiter

as follows:

 modified by chardel''

coldelx x is a single character column delimiter. The default value is a comma (,). The

specified character is used in place of a comma to signal the end of a column.23

decplusblank Plus sign character. Causes positive decimal values to be prefixed with a blank

space instead of a plus sign (+). The default action is to prefix positive decimal

values with a plus sign.

decptx x is a single character substitute for the period as a decimal point character. The

default value is a period (.). The specified character is used in place of a period as

a decimal point character.23

delprioritychar The current default priority for delimiters is: record delimiter, character delimiter,

column delimiter. This modifier protects existing applications that depend on the

older priority by reverting the delimiter priorities to: character delimiter, record

delimiter, column delimiter. Syntax:

 db2 load ... modified by delprioritychar ...

For example, given the following DEL data file:

 "Smith, Joshua",4000,34.98<row delimiter>

 "Vincent,<row delimiter>, is a manager", ...

 ... 4005,44.37<row delimiter>

With the delprioritychar modifier specified, there will be only two rows in this

data file. The second <row delimiter> will be interpreted as part of the first data

column of the second row, while the first and the third <row delimiter> are

interpreted as actual record delimiters. If this modifier is not specified, there will

be three rows in this data file, each delimited by a <row delimiter>.

keepblanks Preserves the leading and trailing blanks in each field of type CHAR, VARCHAR,

LONG VARCHAR, or CLOB. Without this option, all leading and tailing blanks

that are not inside character delimiters are removed, and a NULL is inserted into

the table for all blank fields.

The following example illustrates how to load data into a table called TABLE1,

while preserving all leading and trailing spaces in the data file:

 db2 load from delfile3 of del

 modified by keepblanks

 insert into table1

nochardel The load utility will assume all bytes found between the column delimiters to be

part of the column’s data. Character delimiters will be parsed as part of column

data. This option should not be specified if the data was exported using DB2

(unless nochardel was specified at export time). It is provided to support vendor

data files that do not have character delimiters. Improper usage might result in

data loss or corruption.

This option cannot be specified with chardelx, delprioritychar or nodoubledel.

These are mutually exclusive options.

nodoubledel Suppresses recognition of double character delimiters.

File type modifiers for the load utility

Chapter 3. Load 197DB2 9 BETA

Table 16. Valid file type modifiers for the load utility: IXF file format

Modifier Description

forcein Directs the utility to accept data despite code page mismatches, and to suppress

translation between code pages.

Fixed length target fields are checked to verify that they are large enough for the

data. If nochecklengths is specified, no checking is done, and an attempt is made

to load each row.

nochecklengths If nochecklengths is specified, an attempt is made to load each row, even if the

source data has a column definition that exceeds the size of the target table

column. Such rows can be successfully loaded if code page conversion causes the

source data to shrink; for example, 4-byte EUC data in the source could shrink to

2-byte DBCS data in the target, and require half the space. This option is

particularly useful if it is known that the source data will fit in all cases despite

mismatched column definitions.

Notes:

1. Double quotation marks around the date format string are mandatory. Field

separators cannot contain any of the following: a-z, A-Z, and 0-9. The field

separator should not be the same as the character delimiter or field delimiter in

the DEL file format. A field separator is optional if the start and end positions

of an element are unambiguous. Ambiguity can exist if (depending on the

modifier) elements such as D, H, M, or S are used, because of the variable

length of the entries.

For time stamp formats, care must be taken to avoid ambiguity between the

month and the minute descriptors, since they both use the letter M. A month

field must be adjacent to other date fields. A minute field must be adjacent to

other time fields. Following are some ambiguous time stamp formats:

 "M" (could be a month, or a minute)

 "M:M" (Which is which?)

 "M:YYYY:M" (Both are interpreted as month.)

 "S:M:YYYY" (adjacent to both a time value and a date value)

In ambiguous cases, the utility will report an error message, and the operation

will fail.

Following are some unambiguous time stamp formats:

 "M:YYYY" (Month)

 "S:M" (Minute)

 "M:YYYY:S:M" (Month....Minute)

 "M:H:YYYY:M:D" (Minute....Month)

Some characters, such as double quotation marks and back slashes, must be

preceded by an escape character (for example, \).

2. The character must be specified in the code page of the source data.

The character code point (instead of the character symbol), can be specified

using the syntax xJJ or 0xJJ, where JJ is the hexadecimal representation of the

code point. For example, to specify the # character as a column delimiter, use

one of the following:

 ... modified by coldel# ...

 ... modified by coldel0x23 ...

 ... modified by coldelX23 ...

3. Delimiter restrictions for moving data lists restrictions that apply to the

characters that can be used as delimiter overrides.

File type modifiers for the load utility

198 Data Movement Utilities DB2 9 BETA

4. The load utility does not issue a warning if an attempt is made to use

unsupported file types with the MODIFIED BY option. If this is attempted, the

load operation fails, and an error code is returned.

 Table 17. LOAD behavior when using codepage and usegraphiccodepage

codepage=N usegraphiccodepage LOAD behavior

Absent Absent All data in the file is assumed to be in the database code

page, not the application code page, even if the CLIENT

option is specified.

Present Absent All data in the file is assumed to be in code page N.

Warning: Graphic data will be corrupted when loaded

into the database if N is a single-byte code page.

Absent Present Character data in the file is assumed to be in the

database code page, even if the CLIENT option is

specified. Graphic data is assumed to be in the code

page of the database graphic data, even if the CLIENT

option is specified.

If the database code page is single-byte, then all data is

assumed to be in the database code page.

Warning: Graphic data will be corrupted when loaded

into a single-byte database.

Present Present Character data is assumed to be in code page N. Graphic

data is assumed to be in the graphic code page of N.

If N is a single-byte or double-byte code page, then all

data is assumed to be in code page N.

Warning: Graphic data will be corrupted when loaded

into the database if N is a single-byte code page.

 Related reference:

v “db2Load - Load data into a table” on page 161

v “Delimiter restrictions for moving data” on page 257

v “LOAD ” on page 132

Load exception table

 The exception table is a user-created table that reflects the definition of the table

being loaded, and includes some additional columns. It is specified by the FOR

EXCEPTION clause on the LOAD command. An exception table might not contain

an identity column or any other type of generated column. If an identity column is

present in the primary table, the corresponding column in the exception table

should only contain the column’s type, length, and nullability attributes. The

exception table cannot be partitioned, or have a unique index. The exception table

is used to store copies of rows that violate unique index rules, range constraints

and security policies.

A load exception table can be assigned to the table space where the table being

loaded resides, or to another table space. In either case, the load exception table

should be assigned to the same database partition group and have the same

distribution key as the table being loaded.

File type modifiers for the load utility

Chapter 3. Load 199DB2 9 BETA

A unique key is a key for which no two values are equal. The mechanism used to

enforce this constraint is called a unique index. A primary key is a special case of a

unique key. A table cannot have more than one primary key.

Note: Any rows rejected because of invalid data before the building of an index

are not inserted into the exception table.

Rows are appended to existing information in the exception table; this can include

invalid rows from previous load operations. If you want only the invalid rows

from the current load operation, you must remove the existing rows before

invoking the utility.

The exception table used with the load utility is identical to the exception tables

used by the SET INTEGRITY statement.

An exception table should be used when loading data which has a unique index

and the possibility of duplicate records. If an exception table is not specified, and

duplicate records are found, the load operation continues, and only a warning

message is issued about the deleted duplicate records. The records themselves are

not logged.

After the load operation completes, information in the exception table can be used

to correct data that is in error. The corrected data can then be inserted into the

table.

 Related reference:

v “Exception tables” in SQL Reference, Volume 1

Load dump file

 Specifying the dumpfile modifier tells the load utility the name and the location of

the exception file to which rejected rows are written. When running in a

partitioned database environment, rows can be rejected either by the Partitioning

Subagents or by the Loading Subagents. Because of this, the dumpfile name is

given an extension that identifies the subagent type, as well as the database

partition number where the exceptions were generated. For example, if you

specified the following dumpfile value:

 dumpfile = "/u/usrname/dumpit"

Then rows that were rejected by the Load Subagent on database partition five will

be stored in a file named /u/usrname/dumpit.load.005, rows that were rejected by

the Load Subagent on database partition two will be stored in a file named

/u/usrname/dumpit.load.002, and rows that were rejected by the Partitioning

Subagent on database partition two will be stored in a file named

/u/usrname/dumpit.part.002, and so on.

For rows rejected by the Load Subagent, if the row is less than 32 768 bytes in

length, the record is copied to the dump file in its entirety; if it is longer, a row

fragment (including the final bytes of the record) is written to the file.

For rows rejected by the Partitioning Subagent, the entire row is copied to the

dump file regardless of the record size.

 Related reference:

v “LOAD ” on page 132

200 Data Movement Utilities DB2 9 BETA

Load temporary files

 DB2 creates temporary binary files during load processing. These files are used for

load crash recovery, load terminate operations, warning and error messages, and

runtime control data. The temporary files are removed when the load operation

completes without error.

The temporary files are written to a path that can be specified through the

temp-pathname parameter of the LOAD command, or in the piTempFilesPath

parameter of the db2Load API. The default path is a subdirectory of the database

directory.

The temporary files path resides on the server machine and is accessed by the DB2

instance exclusively. Therefore, it is imperative that any path name qualification

given to the temp-pathname parameter reflects the directory structure of the server,

not the client, and that the DB2 instance owner has read and write permission on

the path.

Note: In an MPP system, the temporary files path should reside on a local disk,

not on an NFS mount. If the path is on an NFS mount, there will be

significant performance degradation during the load operation.

 Attention: The temporary files written to this path must not be tampered with

under any circumstances. Doing so will cause the load operation to malfunction,

and will place your database in jeopardy.

 Related reference:

v “LOAD ” on page 132

v “db2Load - Load data into a table” on page 161

Load utility log records

 The utility manager produces log records associated with a number of DB2

utilities, including the load utility. The following log records mark the beginning or

end of a specific activity during a load operation:

v Load Start. This log record is associated with the beginning of a load operation.

v Load Delete Start. This log record is associated with the beginning of the delete

phase in a load operation. The delete phase is started only if there are duplicate

primary key values. During the delete phase, each delete operation on a table

record, or an index key, is logged.

v Load Delete End. This log record is associated with the end of the delete phase

in a load operation. This delete phase will be repeated during the rollforward

recovery of a successful load operation.

v Load Pending List. This log record is written when a load transaction commits

and is used instead of a normal transaction commit log record.

The following list outlines the log records that the load utility will create

depending on the size of the input data:

v Two log records will be created for every table space extent allocated or deleted

by the utility in a DMS table space.

v One log record will be created for every chunk of identity values consumed.

Chapter 3. Load 201DB2 9 BETA

v Log records will be created for every data row or index key deleted during the

delete phase of a load operation.

v Log records will be created that maintain the integrity of the index tree when

performing a load operation with the ALLOW READ ACCESS and INDEXING

MODE INCREMENTAL options specified. The number of records logged is

considerably less than a fully logged insertion into the index.

 Related reference:

v “db2Load - Load data into a table” on page 161

v “LOAD ” on page 132

Table locking, table states and table space states

 In most cases, the load utility uses table level locking to restrict access to tables.

The load utility does not quiesce the table spaces involved in the load operation,

and uses table space states only for load operations with the COPY NO option

specified. The level of locking depends on whether or not the load operation

allows read access. A load operation in ALLOW NO ACCESS mode will use an

exclusive lock (Z-lock) on the table for the duration of the load. A load operation

in ALLOW READ ACCESS mode acquires and maintains an update lock (U-lock)

for the duration of the load operation, and upgrades the lock to an exclusive lock

(Z-lock) when data is being committed.

Before a load operation in ALLOW READ ACCESS mode begins, the load utility

will wait for all applications that began before the load operation to release locks

on the target table. Since locks are not persistent, they are supplemented by table

states that will remain even if a load operation is aborted. These states can be

checked by using the LOAD QUERY command. By using the LOCK WITH FORCE

option, the load utility will force applications holding conflicting locks off the table

that it is trying to load into.

Locking Behavior For Load Operations in ALLOW READ ACCESS Mode

At the beginning of a load operation, the load utility acquires an update (U) lock

on the table. It holds this lock until the data is being committed. The update lock

allows applications with compatible locks to access the table during the load

operation. For example, applications that use read only queries will be able to

access the table, while applications that try to insert data into the table will be

denied. When the load utility acquires the update lock on the table, it will wait for

all applications that hold locks on the table prior to the start of the load operation

to release them, even if they have compatible locks. This is achieved by

temporarily upgrading the update lock to a special exclusive (Z) lock which does

not conflict with new table lock requests on the target table as long as the

requested locks are compatible with the load operation’s update lock. In addition,

the load operation upgrades the update lock to an exclusive (Z) lock when the data

is being committed, hence there can be some delay in commit time while the load

utility waits for applications with conflicting locks to finish.

Note: The load operation can timeout while it waits for the applications to release

their locks on the table prior to loading. However, the load operation will

not timeout while waiting for the exclusive lock needed to commit the data.

LOCK WITH FORCE Option

202 Data Movement Utilities DB2 9 BETA

The LOCK WITH FORCE option can be used to force off applications holding

conflicting locks on the target table so that the load operation can proceed.

Applications holding conflicting locks on the system catalog tables will not be

forced off by load. If an application is forced off the system by the load utility, it

will lose its database connection and an error will be returned (SQL1224N).

For a load operation in ALLOW NO ACCESS mode, all applications holding table

locks that exist at the start of the load operation will be forced.

For a load operation in ALLOW READ ACCESS mode applications holding the

following locks will be forced:

v Table locks that conflict with a table update lock (for example, import or insert).

v All table locks that exist at the commit phase of the load operation.

When the COPY NO option is specified for a load operation on a recoverable

database, all objects in the target table space will be locked in share mode before

the table space is placed in backup pending state. This will occur regardless of the

access mode. If the LOCK WITH FORCE option is specified, all applications

holding locks on objects in the table space that conflict with a share lock will be

forced off.

Table States

In addition to locks, the load utility uses table states to control access to tables. A

table state can be checked by using the LOAD QUERY command. The states

returned by the LOAD QUERY command are as follows:

Normal

No table states affect the table.

Set Integrity Pending

The table has constraints which have not yet been verified. Use the SET

INTEGRITY statement to take the table out of Set Integrity Pending state.

The load utility places a table in the Set Integrity Pending state when it

begins a load operation on a table with constraints.

Load in Progress

There is a load operation in progress on this table.

Load Pending

A load operation has been active on this table but has been aborted before

the data could be committed. Issue a LOAD TERMINATE, LOAD

RESTART, or LOAD REPLACE command to bring the table out of this

state.

Read Access Only

The table data is available for read access queries. Load operations using

the ALLOW READ ACCESS option place the table in read access only

state.

Unavailable

The table is unavailable. The table can only be dropped or restored from a

backup. Rolling forward through a non-recoverable load operation will

place a table in the unavailable state.

Not Load Restartable

The table is in a partially loaded state that will not allow a load restart

operation. The table will also be in load pending state. Issue a LOAD

TERMINATE or a LOAD REPLACE command to bring the table out of the

Chapter 3. Load 203DB2 9 BETA

not load restartable state. A table is placed in not load restartable state

when a rollforward operation is performed after a failed load operation

that has not been successfully restarted or terminated, or when a restore

operation is performed from an online backup that was taken while the

table was in load in progress or load pending state. In either case, the

information required for a load restart operation is unreliable, and the not

load restartable state prevents a load restart operation from taking place.

Type-1 Indexes

The table currently uses type-1 indexes. The indexes can be converted to

type-2 using the CONVERT option when using the REORG utility on the

indexes.

Unknown

The LOAD QUERY command is unable determine the table state.

 A table can be in several states at the same time. For example, if data is loaded

into a table with constraints and the ALLOW READ ACCESS option is specified,

table state would be:

 Tablestate:

 Set Integrity Pending

 Load in Progress

 Read Access Only

After the load operation but before issuing the SET INTEGRITY statement, the

table state would be:

 Tablestate:

 Set Integrity Pending

 Read Access Only

After the SET INTEGRITY statement has been issued the table state would be:

 Tablestate:

 Normal

Table Space States when COPY NO is Specified

If a load operation with the COPY NO option is executed in a recoverable

database, the table spaces associated with the load operation are placed in the

backup table space state and the load in progress table space state. This takes place

at the beginning of the load operation. The load operation can be delayed at this

point while locks are acquired on the tables within the table space.

When a table space is in backup pending state, it is still available for read access.

The table space can only be taken out of backup pending state by taking a backup

of the table space. Even if the load operation is aborted, the table space will remain

in backup pending state because the table space state is changed at the beginning

of the load operation, and cannot be rolled back if it fails. The load in progress

table space state prevents online backups of a load operation with the COPY NO

option specified while data is being loaded. The load in progress state is removed

when the load operation is completed or aborts.

During a rollforward operation through a LOAD command with the COPY NO

option specified, the associated table spaces are placed in restore pending state. To

remove the table spaces from restore pending state, a restore operation must be

performed. A rollforward operation will only place a table space in the restore

pending state if the load operation completed successfully.

204 Data Movement Utilities DB2 9 BETA

Related concepts:

v “Pending states after a load operation” on page 205

Character set and national language support

 The DB2 data movement utilities offer the following National Language Support

(NLS):

v The import and the export utilities provide automatic code page conversion

from a client code page to the server code page.

v For the load utility, data can be converted from any code page to the server code

page by using the codepage modifier with DEL and ASC files.

v For all utilities, IXF data is automatically converted from its original code page

(as stored in the IXF file) to the server code page.

Unequal code page situations, involving expansion or contraction of the character

data, can sometimes occur. For example, Japanese or Traditional-Chinese Extended

UNIX Code (EUC) and double-byte character sets (DBCS) might encode different

lengths for the same character. Normally, comparison of input data length to target

column length is performed before reading in any data. If the input length is

greater than the target length, NULLs are inserted into that column if it is nullable.

Otherwise, the request is rejected. If the nochecklengths modifier is specified, no

initial comparison is performed, and an attempt is made to load the data. If the

data is too long after translation is complete, the row is rejected. Otherwise, the

data is loaded.

 Related reference:

v “LOAD ” on page 132

Pending states after a load operation

 The load utility uses table states to preserve database consistency during a load

operation. These states can be checked by using the LOAD QUERY command.

The load and build phases of the load process place the target table in the load in

progress table state. The load utility also places table spaces in the load in progress

state when the COPY NO option is specified on a recoverable database. The table

spaces remain in this state for the duration of the load operation and are returned

to normal state if the transaction is committed or rolled back.

If the NO ACCESS option has been specified, the table cannot be accessed while

the load is in progress. If the ALLOW READ ACCESS option has been specified,

the data in the table that existed prior to the invocation of the load command will

be available in read only mode during the load operation. If the ALLOW READ

ACCESS option is specified and the load operation fails, the data that existed in

the table prior to the load operation will continue to be available in read only

mode after the failure.

To remove the load in progress table state (if the load operation has failed, or was

interrupted), do one of the following:

v Restart the load operation. First, address the cause of the failure; for example, if

the load utility ran out of disk space, add containers to the table space before

attempting a load restart operation.

v Terminate the load operation.

Chapter 3. Load 205DB2 9 BETA

v Invoke a LOAD REPLACE operation against the same table on which a load

operation has failed.

v Recover table spaces for the loading table by using the RESTORE DATABASE

command with the most recent table space or database backup, and then carry

out further recovery actions.

During a load operation, table spaces are placed in backup pending after the first

commit, and:

v The database is recoverable (database configuration parameter logarchmeth1 or

logarchmeth2 is not set to OFF) and

v The load option COPY YES is not specified, and

v The load option NONRECOVERABLE is not specified.

The fourth possible state associated with the load process (Set Integrity Pending

state) pertains to referential and check constraints, generated column constraints,

materialized query computation, or staging table propagation. For example, if an

existing table is a parent table containing a primary key referenced by a foreign

key in a dependent table, replacing data in the parent table places both tables (not

the table space) in Set Integrity Pending state. To validate a table for referential

integrity and check constraints, issue the SET INTEGRITY statement after the load

process completes, if the table has been left in Set Integrity Pending state.

 Related concepts:

v “Checking for integrity violations following a load operation” on page 121

v “Table locking, table states and table space states” on page 202

 Related reference:

v “LIST TABLESPACES command” in Command Reference

Optimizing load performance

 The performance of the load utility depends on the nature and the quantity of the

data, the number of indexes, and the load options specified.

Unique indexes reduce load performance if duplicates are encountered. In most

cases, it is still more efficient to create indexes during the load operation than to

invoke the CREATE INDEX statement for each index after the load operation

completes (see Figure 5 on page 207).

206 Data Movement Utilities DB2 9 BETA

When tuning index creation performance, the amount of memory dedicated to the

sorting of index keys during a load operation is controlled by the sortheap database

configuration parameter. For example, to direct the load utility to use 4000 pages of

main memory per index for key sorting, set the sortheap database configuration

parameter to be 4000 pages, disconnect all applications from the database, and

then issue the LOAD command. If an index is so large that it cannot be sorted in

memory, a sort spill occurs. That is, the data is divided among several ″sort runs″

and stored in a temporary table space that is merged later. If there is no way to

avoid a sort spill by increasing the size of the sortheap parameter, it is important

that the buffer pool for temporary table spaces be large enough to minimize the

amount of disk I/O that spilling causes. Furthermore, to achieve I/O parallelism

during the merging of sort runs, it is recommended that temporary table spaces be

declared with multiple containers, each residing on a different disk device. If there

is more than one index defined on a table, memory consumption increases

proportionally because the load operation keeps all keys in memory.

Sorting during index rebuild uses up to SORTHEAP pages. If more is required,

TEMP bufferpool is used and (eventually) spilled to disk. If load spills, and thus

decreases performance, it might be advisable to run LOAD with INDEXING

MODE DEFERRED and recreate the index later. CREATE INDEX creates one index

at a time, reducing memory usage while scanning the table multiple times to

collect keys.

Load operations with the ALLOW READ ACCESS and INDEXING MODE

REBUILD options allow you to specify the USE <tablespace> option for storing a

shadow index. While the index still has to be copied to the target table space

before becoming visible, this option minimizes use of the target table space while a

load operation is in progress.

For Index Rebuild, load uses a single table scanner, which also does the sorting, to

pick up existing keys and create indexes. Multiple table scanners are used with

Index Manager code (IXM), which builds the indexes outside of the load operation.

The advantage of building the indexes with a CREATE INDEX statement instead of

a load operation is that the CREATE INDEX statement can use multiple processes

(also known as threads) to sort keys if INTRA PARALLEL is on. The actual

building of the index is not parallelized.

Use of the SET INTEGRITY statement might lengthen the total time needed for a

table to become usable again. If all the load operations are performed in INSERT

mode, the SET INTEGRITY statement checks the table for integrity violations

create
table

load
table

create
index A

create
index B

collect
stats

table available
for queries

Time

create
table

create
index A
(empty)

create
index B
(empty)

load, with
indexing

and statistics

table available
for queries

Time

Figure 5. Increasing load performance through concurrent indexing and statistics collection.

Tables are normally built in three steps: data loading, index building, and statistics collection.

This causes multiple data I/O during the load operation, during index creation (there can be

several indexes for each table), and during statistics collection (which causes I/O on the table

data and on all of the indexes). A much faster alternative is to let the load utility complete all

of these tasks in one pass through the data.

Chapter 3. Load 207DB2 9 BETA

incrementally (by checking only the appended portion of the table). If a table

cannot be checked for integrity violations incrementally, the entire table is checked,

and it might be some time before the table is usable again.

Similarly, if a load operation is performed on the underlying tables of a

materialized query table, use of the REFRESH TABLE statement might lengthen

the time needed to make both the underlying tables and the materialized query

table fully usable again. If several sequential load operations are performed in

INSERT mode into the underlying tables of a REFRESH IMMEDIATE materialized

query table, the SET INTEGRITY statement incrementally refreshes the

materialized query table in most cases. If the system determines that a full refresh

is required, the materialized query table definition query is recomputed, and it

might be some time before the table is usable again.

The load utility performs equally well in INSERT mode and in REPLACE mode.

However, if indexing mode is REBUILD, REPLACE mode will perform better than

INSERT mode because there is no need to scan existing data.

The utility attempts to deliver the best performance possible by determining

optimal values for DISK_PARALLELISM, CPU_PARALLELISM, and DATA

BUFFER, if these parameters have not be specified by the user. Optimization is

done based on the size and the free space available in the utility heap. Consider

using the autonomic DISK_PARALLELISM and CPU_PARALLELISM settings

before attempting to tune these parameters for your particular needs.

Following is information about the performance implications of various options

available through the load utility:

ANYORDER

Specify this file type modifier to suspend the preservation of order in the

data being loaded, and improve performance. If the data to be loaded is

presorted, anyorder might corrupt the presorted order, and the benefits of

presorting is lost for subsequent queries.

BINARY NUMERICS and PACKED DECIMAL

Use these file type modifiers to improve performance when loading

positional numeric ASC data into fixed-length records.

COPY YES or NO

Use this parameter to specify whether a copy of the input data is to be

made during a load operation. COPY YES reduces load performance,

because all of the loading data is copied during the load operation

(forward recovery must be enabled); the increased I/O activity might

increase the load time on an I/O-bound system. Specifying multiple

devices or directories (on different disks) can offset some of the

performance penalty resulting from this operation. COPY NO might reduce

overall performance, because if forward recovery is enabled, the table

space is placed in backup pending state, and the database, or selected table

spaces, must be backed up before the table can be accessed.

CPU_PARALLELISM

Use this parameter to exploit intra-partition parallelism (if this is part of

your machine’s capability), and significantly improve load performance.

The parameter specifies the number of processes or threads used by the

load utility to parse, convert, and format data records. The maximum

number allowed is 30. If there is insufficient memory to support the

208 Data Movement Utilities DB2 9 BETA

specified value, the utility adjusts the value. If this parameter is not

specified, the load utility selects a default value that is based on the

number of CPUs on the system.

 Record order in the source data is preserved (see Figure 6) regardless of the

value of this parameter.

 If tables include either LOB or LONG VARCHAR data,

CPU_PARALLELISM is set to one. Parallelism is not supported in this

case.

 Although use of this parameter is not restricted to symmetric

multiprocessor (SMP) hardware, you might not obtain any discernible

performance benefit from using it in non-SMP environments.

DATA BUFFER

The DATA BUFFER parameter specifies the total amount of memory

allocated to the load utility as a buffer. It is recommended that this buffer

be several extents in size. An extent is the unit of movement for data within

DB2, and the extent size can be one or more 4KB pages. The DATA

BUFFER parameter is useful when working with large objects (LOBs); it

reduces I/O waiting time. The data buffer is allocated from the utility

heap. Depending on the amount of storage available on your system, you

should consider allocating more memory for use by the DB2 utilities. The

database configuration parameter util_heap_sz can be modified accordingly.

The default value for the Utility Heap Size configuration parameter is 5 000

4KB pages. Because load is only one of several utilities that use memory

from the utility heap, it is recommended that no more than fifty percent of

the pages defined by this parameter be available for the load utility, and

that the utility heap be defined large enough.

DISK_PARALLELISM

The DISK_PARALLELISM parameter specifies the number of processes or

threads used by the load utility to write data records to disk. Use this

parameter to exploit available containers when loading data, and

significantly improve load performance. The maximum number allowed is

the greater of four times the CPU_PARALLELISM value (actually used by

the load utility), or 50. By default, DISK_PARALLELISM is equal to the

sum of the table space containers on all table spaces containing objects for

the table being loaded, except where this value exceeds the maximum

number allowed.

FASTPARSE

Use the fastparse file type modifier to reduce the data checking that is

performed on user-supplied column values, and enhance performance.

This option should only be used when the data being loaded is known to

be valid. It can improve performance by about 10 or 20 percent.

NONRECOVERABLE

Use this parameter if you do not need to be able to recover load

transactions against a table. Load performance is enhanced, because no

User
records:
A,B,C,D

DB2 LOAD
(with SMP exploitation)

Table
records:
A,B,C,D

Figure 6. Record Order in the Source Data is Preserved When Intra-partition Parallelism is

Exploited During a Load Operation

Chapter 3. Load 209DB2 9 BETA

additional activity beyond the movement of data into the table is required,

and the load operation completes without leaving the table spaces in

backup pending state.

Note: When these load transactions are encountered during subsequent

restore and rollforward recovery operations, the table is not

updated, and is marked ″invalid″. Further actions against this table

are ignored. After the rollforward operation is complete, the table

can either be dropped or a LOAD TERMINATE command can be

issued to bring it back online.

NOROWWARNINGS

Use the norowwarnings file type modifier to suppress the recording of

warnings about rejected rows, and enhance performance, if you anticipate

a large number of warnings.

ALLOW READ ACCESS

This option allows you to query a table while a load operation is in

progress. You can only view data that existed in the table prior to the load

operation. If the INDEXING MODE INCREMENTAL option is also

specified, and the load operation fails, the subsequent load terminate

operation might have to correct inconsistencies in the index. This requires

an index scan which involves considerable I/O. If the ALLOW READ

ACCESS option is also specified for the load terminate operation, the

buffer pool is used for I/O.

SAVECOUNT

Use this parameter to set an interval for the establishment of consistency

points during a load operation. The synchronization of activities performed

to establish a consistency point takes time. If done too frequently, there is a

noticeable reduction in load performance. If a very large number of rows is

to be loaded, it is recommended that a large SAVECOUNT value be

specified (for example, a value of ten million in the case of a load

operation involving 100 million records).

 A LOAD RESTART operation automatically continues from the last

consistency point.

STATISTICS USE PROFILE

Collect statistics specified in table statistics profile. Use this parameter to

collect data distribution and index statistics more efficiently than through

invocation of the runstats utility following completion of the load

operation, even though performance of the load operation itself decreases

(particularly when DETAILED INDEXES ALL is specified).

 For optimal performance, applications require the best data distribution

and index statistics possible. Once the statistics are updated, applications

can use new access paths to the table data based on the latest statistics.

New access paths to a table can be created by rebinding the application

packages using the DB2 BIND command. The table statistics profile is

created by running the RUNSTATS command with the SET PROFILE

options.

 When loading data into large tables, it is recommended that a larger value

for the stat_heap_sz (Statistics Heap Size) database configuration parameter

be specified.

USE <tablespaceName>

This parameter allows an index to be rebuilt in a system temporary table

space and copied back to the index table space during the index copy

210 Data Movement Utilities DB2 9 BETA

phase of a load operation. When a load operation in ALLOW READ

ACCESS mode fully rebuilds the indexes, the new indexes are built as a

shadow. The original indexes are replaced by the new indexes at the end of

the load operation.

 By default, the shadow index is built in the same table space as the original

index. This might cause resource problems as both the original and the

shadow index reside in the same table space simultaneously. If the shadow

index is built in the same table space as the original index, the original

index is instantaneously replaced by the shadow. However, if the shadow

index is built in a system temporary table space, the load operation

requires an index copy phase which copies the index from a system

temporary table space to the index table space. There is considerable I/O

involved in the copy. If either of the table spaces is a DMS table space, the

I/O on the system temporary table space might not be sequential. The

values specified by the DISK_PARALLELISM option are respected during

the index copy phase.

WARNINGCOUNT

Use this parameter to specify the number of warnings that can be returned

by the utility before a load operation is forced to terminate. If you are

expecting only a few warnings or no warnings, set the WARNINGCOUNT

parameter to approximately the number you are expecting, or to twenty if

you are expecting no warnings. The load operation stops after the

WARNINGCOUNT number is reached. This gives you the opportunity to

correct data (or to drop and then recreate the table being loaded) before

attempting to complete the load operation. Although not having a direct

effect on the performance of the load operation, the establishment of a

WARNINGCOUNT threshold prevents you from having to wait until the

entire load operation completes before determining that there is a problem.

 Related concepts:

v “DB2 registry and environment variables” in Performance Guide

v “Multidimensional clustering considerations ” on page 125

 Related reference:

v “SET INTEGRITY statement” in SQL Reference, Volume 2

v “BIND command” in Command Reference

v “UPDATE DATABASE CONFIGURATION command” in Command Reference

v “stat_heap_sz - Statistics heap size configuration parameter” in Performance Guide

v “util_heap_sz - Utility heap size configuration parameter” in Performance Guide

Load - CLP examples

 Example 1

TABLE1 has 5 columns:

v COL1 VARCHAR 20 NOT NULL WITH DEFAULT

v COL2 SMALLINT

v COL3 CHAR 4

v COL4 CHAR 2 NOT NULL WITH DEFAULT

v COL5 CHAR 2 NOT NULL

Chapter 3. Load 211DB2 9 BETA

ASCFILE1 has 6 elements:

v ELE1 positions 01 to 20

v ELE2 positions 21 to 22

v ELE3 positions 23 to 23

v ELE4 positions 24 to 27

v ELE5 positions 28 to 31

v ELE6 positions 32 to 32

v ELE7 positions 33 to 40

Data Records:

 1...5...10...15...20...25...30...35...40

 Test data 1 XXN 123abcdN

 Test data 2 and 3 QQY XXN

 Test data 4,5 and 6 WWN6789 Y

The following command loads the table from the file:

 db2 load from ascfile1 of asc modified by striptblanks reclen=40

 method L (1 20, 21 22, 24 27, 28 31)

 null indicators (0,0,23,32)

 insert into table1 (col1, col5, col2, col3)

Notes:

1. The specification of striptblanks in the MODIFIED BY parameter forces the

truncation of blanks in VARCHAR columns (COL1, for example, which is 11, 17

and 19 bytes long, in rows 1, 2 and 3, respectively).

2. The specification of reclen=40 in the MODIFIED BY parameter indicates that

there is no new-line character at the end of each input record, and that each

record is 40 bytes long. The last 8 bytes are not used to load the table.

3. Since COL4 is not provided in the input file, it will be inserted into TABLE1

with its default value (it is defined NOT NULL WITH DEFAULT).

4. Positions 23 and 32 are used to indicate whether COL2 and COL3 of TABLE1

will be loaded NULL for a given row. If there is a Y in the column’s null

indicator position for a given record, the column will be NULL. If there is an N,

the data values in the column’s data positions of the input record (as defined in

L(........)) are used as the source of column data for the row. In this example,

neither column in row 1 is NULL; COL2 in row 2 is NULL; and COL3 in row 3

is NULL.

5. In this example, the NULL INDICATORS for COL1 and COL5 are specified as

0 (zero), indicating that the data is not nullable.

6. The NULL INDICATOR for a given column can be anywhere in the input

record, but the position must be specified, and the Y or N values must be

supplied.

Example 2 (Using Dump Files)

Table FRIENDS is defined as:

 table friends "(c1 INT NOT NULL, c2 INT, c3 CHAR(8))"

If an attempt is made to load the following data records into this table,

 23, 24, bobby

 , 45, john

 4,, mary

212 Data Movement Utilities DB2 9 BETA

the second row is rejected because the first INT is NULL, and the column

definition specifies NOT NULL. Columns which contain initial characters that are

not consistent with the DEL format will generate an error, and the record will be

rejected. Such records can be written to a dump file.

DEL data appearing in a column outside of character delimiters is ignored, but

does generate a warning. For example:

 22,34,"bob"

 24,55,"sam" sdf

The utility will load ″sam″ in the third column of the table, and the characters

″sdf″ will be flagged in a warning. The record is not rejected. Another example:

 22 3, 34,"bob"

The utility will load 22,34,"bob", and generate a warning that some data in

column one following the 22 was ignored. The record is not rejected.

Example 3 (Loading a Table with an Identity Column)

TABLE1 has 4 columns:

v C1 VARCHAR(30)

v C2 INT GENERATED BY DEFAULT AS IDENTITY

v C3 DECIMAL(7,2)

v C4 CHAR(1)

TABLE2 is the same as TABLE1, except that C2 is a GENERATED ALWAYS

identity column.

Data records in DATAFILE1 (DEL format):

 "Liszt"

 "Hummel",,187.43, H

 "Grieg",100, 66.34, G

 "Satie",101, 818.23, I

Data records in DATAFILE2 (DEL format):

 "Liszt", 74.49, A

 "Hummel", 0.01, H

 "Grieg", 66.34, G

 "Satie", 818.23, I

Notes:

1. The following command generates identity values for rows 1 and 2, since no

identity values are supplied in DATAFILE1 for those rows. Rows 3 and 4,

however, are assigned the user-supplied identity values of 100 and 101,

respectively.

 db2 load from datafile1.del of del replace into table1

2. To load DATAFILE1 into TABLE1 so that identity values are generated for all

rows, issue one of the following commands:

 db2 load from datafile1.del of del method P(1, 3, 4)

 replace into table1 (c1, c3, c4)

 db2load from datafile1.del of del modified by identityignore

 replace into table1

3. To load DATAFILE2 into TABLE1 so that identity values are generated for each

row, issue one of the following commands:

Chapter 3. Load 213DB2 9 BETA

db2 load from datafile2.del of del replace into table1 (c1, c3, c4)

 db2 load from datafile2.del of del modified by identitymissing

 replace into table1

4. To load DATAFILE1 into TABLE2 so that the identity values of 100 and 101 are

assigned to rows 3 and 4, issue the following command:

 db2 load from datafile1.del of del modified by identityoverride

 replace into table2

In this case, rows 1 and 2 will be rejected, because the utility has been

instructed to override system-generated identity values in favor of

user-supplied values. If user-supplied values are not present, however, the row

must be rejected, because identity columns are implicitly not NULL.

5. If DATAFILE1 is loaded into TABLE2 without using any of the identity-related

file type modifiers, rows 1 and 2 will be loaded, but rows 3 and 4 will be

rejected, because they supply their own non-NULL values, and the identity

column is GENERATED ALWAYS.

Example 4 (Loading from CURSOR)

MY.TABLE1 has 3 columns:

v ONE INT

v TWO CHAR(10)

v THREE DATE

MY.TABLE2 has 3 columns:

v ONE INT

v TWO CHAR(10)

v THREE DATE

Cursor MYCURSOR is defined as follows:

 declare mycursor cursor for select * from my.table1

The following command loads all the data from MY.TABLE1 into MY.TABLE2:

 load from mycursor of cursor method P(1,2,3) insert into

 my.table2(one,two,three)

Notes:

1. Only one cursor name can be specified in a single LOAD command. That is,

load from mycurs1, mycurs2 of cursor... is not allowed.

2. P and N are the only valid METHOD values for loading from a cursor.

3. In this example, METHOD P and the insert column list (one,two,three) could

have been omitted since they represent default values.

4. MY.TABLE1 can be a table, view, alias, or nickname.

 Related concepts:

v “Load overview” on page 102

 Related reference:

v “Examples of loading data in a partitioned database environment” on page 232

v “LOAD ” on page 132

v “LOAD QUERY ” on page 158

214 Data Movement Utilities DB2 9 BETA

Chapter 4. Loading data in a partitioned database

environment

This chapter describes loading data in a partitioned database environment.

The following topics are covered:

v “Load in a partitioned database environment - overview”

v “Loading data in a partitioned database environment” on page 217

v “Monitoring a load operation in a partitioned database environment using the

LOAD QUERY command” on page 223

v “Restarting or terminating a load operation in a partitioned database

environment” on page 225

v “Load configuration options for partitioned database environments” on page 227

v “Examples of loading data in a partitioned database environment” on page 232

v “Migration and version compatibility” on page 235

v “Loading data in a partitioned database environment - hints and tips” on page

235

Load in a partitioned database environment - overview

 In a multi-partition database, large amounts of data are located across many

database partitions. Distribution keys are used to determine on which database

partition each portion of the data resides. The data must be distributed before it can

be loaded at the correct database partition. When loading tables in a

multi-partition database, the load utility can:

v Distribute input data in parallel.

v Load data simultaneously on corresponding database partitions.

v Transfer data from one system to another system.

Loading data into a multi-partition database takes place in two phases: A setup

phase, where database partition resources such as table locks are acquired, and a

load phase where the data is loaded into the database partitions. You can use the

ISOLATE_PART_ERRS option of the LOAD command to select how errors will be

handled during either of these phases, and how errors on one or more of the

database partitions will affect the load operation on the database partitions that are

not experiencing errors.

When loading data into a a multi-partition database you can use one of the

following modes:

v PARTITION_AND_LOAD. Data is distributed (perhaps in parallel) and loaded

simultaneously on the corresponding database partitions.

v PARTITION_ONLY. Data is distributed (perhaps in parallel) and the output is

written to files in a specified location on each loading database partition. Each

file includes a partition header that specifies how the data was distributed across

the database partitions, and that the file can be loaded into the database using

the LOAD_ONLY mode.

© Copyright IBM Corp. 1993, 2006 215DB2 9 BETA

v LOAD_ONLY. Data is assumed to be already distributed across the database

partitions; the distribution process is skipped, and the data is loaded

simultaneously on the corresponding database partitions.

v LOAD_ONLY_VERIFY_PART. Data is assumed to be already distributed across

the database partitions, but the data file does not contain a partition header. The

distribution process is skipped, and the data is loaded simultaneously on the

corresponding database partitions. During the load operation, each row is

checked to verify that it is on the correct database partition. Rows containing

database partition violations are placed in a dumpfile if the dumpfile file type

modifier is specified. Otherwise, the rows are discarded. If database partition

violations exist on a particular loading database partition, a single warning will

be written to the load message file for that database partition.

v ANALYZE. An optimal distribution map with even distribution across all

database partitions is generated.

Concepts and Terminology

The following terminology will be used when discussing the behavior and

operation of the load utility in a partitioned database environment with multiple

database partitions:

v The coordinator partition is the database partition to which the user connects to

perform the load operation. In the PARTITION_AND_LOAD,

PARTITION_ONLY, and ANALYZE modes, it is assumed that the data file

resides on this database partition unless the CLIENT option of the LOAD

command is specified. Specifying the CLIENT option of the LOAD command

indicates that the data to be loaded resides on a remotely connected client.

v In the PARTITION_AND_LOAD, PARTITION_ONLY, and ANALYZE modes, the

pre-partitioning agent reads the user data and distributes it in round-robin fashion

to the partitioning agents which will distribute the data. This process is always

performed on the coordinator partition. A maximum of one partitioning agent is

allowed per database partition for any load operation.

v In the PARTITION_AND_LOAD, LOAD_ONLY and

LOAD_ONLY_VERIFY_PART modes, load agents run on each output database

partition and coordinate the loading of data to that database partition.

v Load to file agents run on each output database partition during a

PARTITION_ONLY load operation. They receive data from partitioning agents

and write it to a file on their database partition.

v The SOURCEUSEREXIT option provides a facility through which the load utility

can execute a customized script or executable, referred to herein as the user exit.

216 Data Movement Utilities DB2 9 BETA

Related concepts:

v “Data organization schemes” in Administration Guide: Planning

v “Load overview” on page 102

v “Loading data in a partitioned database environment - hints and tips” on page

235

v “Monitoring a load operation in a partitioned database environment using the

LOAD QUERY command” on page 223

v “Restarting or terminating a load operation in a partitioned database

environment” on page 225

 Related tasks:

v “Loading data in a partitioned database environment” on page 217

v “Loading data” on page 110

 Related reference:

v “Load configuration options for partitioned database environments” on page 227

Loading data in a partitioned database environment

 Prerequisites:

 Before loading a table in a multi-partition database:

1. Ensure that the svcename database manager configuration parameter and the

DB2COMM profile registry variable are set correctly. This is important because

the load utility uses TCP/IP to transfer data from the pre-partitioning agent to

the partitioning agents, and from the partitioning agents to the loading

database partitions.

2. Before invoking the load utility, you must be connected to (or be able to

implicitly connect to) the database into which the data will be loaded. Since the

load utility will issue a COMMIT statement, you should complete all

transactions and release any locks by issuing either a COMMIT or a

ROLLBACK statement before beginning the load operation. If the

Partitioning
agent

Partitioning
agent

Pre-partitioning
agent

Load agent

Load agent

Load agent

Figure 7. Partitioned Database Load Overview. The source data is read by the

pre-partitioning agent, approximately half of the data is sent to each of two partitioning agents

which distribute the data and send it to one of three database partitions. The load agent at

each database partition loads the data.

Chapter 4. Loading data in a partitioned database environment 217DB2 9 BETA

PARTITION_AND_LOAD, PARTITION_ONLY, or ANALYZE mode is being

used, the data file that is being loaded must reside on this database partition

unless:

a. the CLIENT option has been specified, in which case the data must reside

on the client machine;

b. the input source type is CURSOR, in which case there is no input file.
3. Run the Design Advisor to determine the best database partition for each table.

For more information, see The Design Advisor.

 Restrictions:

 The following restrictions apply when using the load utility to load data in a

multi-partition database:

v The location of the input files to the load operation cannot be a tape device.

v The ROWCOUNT option is not supported unless the ANALYZE mode is being

used.

v If the target table has an identity column that is needed for distributing and the

identityoverride modifier is not specified, or if you are using multiple database

partitions to distribute and then load the data, the use of a SAVECOUNT greater

than zero on the LOAD command is not supported.

v If an identity column forms part of the distribution key, only

PARTITION_AND_LOAD mode is supported.

v The LOAD_ONLY and LOAD_ONLY_VERIFY_PART modes cannot be used with

the CLIENT option of the LOAD command.

v The LOAD_ONLY_VERIFY_PART mode cannot be used with the CURSOR input

source type.

v The distribution error isolation modes LOAD_ERRS_ONLY and

SETUP_AND_LOAD_ERRS cannot be used with the ALLOW READ ACCESS

and COPY YES options of the LOAD command.

v Multiple load operations can load data into the same table concurrently if the

database partitions specified by the OUTPUT_DBPARTNUMS and

PARTITIONING_DBPARTNUMS options do not overlap. For example, if a table

is defined on database partitions 0 through 3, one load operation can load data

into database partitions 0 and 1 while a second load operation can load data into

database partitions 2 and 3.

v Only Non-delimited ASCII (ASC) and Delimited ASCII (DEL) files can be

distributed across tables spanning multiple database partitions. PC/IXF files

cannot be distributed. To load a PC/IXF file into a table spanning multiple

database partitions, you can first load it into a table residing on a single

database partition by setting the environment variable

DB2_PARTITIONEDLOAD_DEFAULT=NO and using the

LOAD_ONLY_VERIFY_PART mode. Then you can perform a load operation

using the CURSOR file type to move the data into a table that is distributed

over multiple database partitions. You can also load a PC/IXF file into a table

that is distributed over multiple database partitions using the load operation in

the LOAD_ONLY_VERIFY_PART mode.

 Procedure:

 The following examples illustrate how to use the LOAD command to initiate

various types of load operations. The database used in the following examples has

five database partitions: 0, 1, 2, 3 and 4. Each database partition has a local

directory /db2/data/. Two tables, TABLE1 and TABLE2, are defined on database

218 Data Movement Utilities DB2 9 BETA

partitions 0, 1, 3 and 4. When loading from a client, the user has access to a remote

client that is not one of the database partitions.

Loading from a server partition

Distribute and load example

In this scenario you are connected to a database partition that might or might not

be a database partition where TABLE1 is defined. The data file load.del resides in

the current working directory of this database partition. To load the data from

load.del into all of the database partitions where TABLE1 is defined, issue the

following command: LOAD FROM LOAD.DEL of DEL REPLACE INTO TABLE1

Note: In this example, default values are used for all of the configuration

parameters for partitioned database environments: The MODE parameter

default to PARTITION_AND_LOAD, the OUTPUT_DBPARTNUMS options

default to all database partitions on which TABLE1 is defined, and the

PARTITIONING_DBPARTNUMS defaults to the set of database partitions

selected according to the LOAD command rules for choosing database

partitions when none are specified.

To perform a load operation where data is distributed over database partitions 3

and 4, issue the following command:

 LOAD FROM LOAD.DEL of DEL REPLACE INTO TABLE1

 PARTITIONED DB CONFIG PARTITIONING_DBPARTNUMS (3,4)

Chapter 4. Loading data in a partitioned database environment 219DB2 9 BETA

Distribute only example

In this scenario you are connected to a database partition that might or might not

be a database partition where TABLE1 is defined. The data file load.del resides in

the current working directory of this database partition. To distribute (but not load)

load.del to all the database partitions on which TABLE1 is defined, using database

partitions 3 and 4 issue the following command:

 LOAD FROM LOAD.DEL of DEL REPLACE INTO TABLE1

 PARTITIONED DB CONFIG MODE PARTITION_ONLY

 PART_FILE_LOCATION /db2/data

 PARTITIONING_DBPARTNUMS (3,4)

This results in a file load.del.xxx being stored in the /db2/data directory on each

database partition, where xxx is a three-digit representation of the database

partition number.

To distribute the load.del file to database partitions 1 and 3, using only 1

partitioning agent running on database partition 0 (which is the default for

PARTITIONING_DBPARTNUMS), issue the following command:

 LOAD FROM LOAD.DEL OF DEL REPLACE INTO TABLE1

 PARTITIONED DB CONFIG MODE PARTITION_ONLY

 PART_FILE_LOCATION /db2/data

 OUTPUT_DBPARTNUMS (1,3)

Figure 8. . This diagram illustrates the behavior resulting when the previous command is

issued. Data is loaded into database partitions 3 and 4.

220 Data Movement Utilities DB2 9 BETA

Load only example

If you have already performed a load operation in the PARTITION_ONLY mode

and want to load the partitioned files in the /db2/data directory of each loading

database partition to all the database partitions on which TABLE1 is defined, issue

the following command:

 LOAD FROM LOAD.DEL OF DEL REPLACE INTO TABLE1

 PARTITIONED DB CONFIG MODE LOAD_ONLY

 PART_FILE_LOCATION /db2/data

Figure 9. . This diagram illustrates the behavior that results when the previous command is

issued. Data is loaded into database partitions 1 and 3, using 1 partitioning agent running on

database partition 0.

Chapter 4. Loading data in a partitioned database environment 221DB2 9 BETA

To load into database partition 4 only, issue the following command:

 LOAD FROM LOAD.DEL OF DEL REPLACE INTO TABLE1

 PARTITIONED DB CONFIG MODE LOAD_ONLY

 PART_FILE_LOCATION /db2/data

 OUTPUT_DBPARTNUMS (4)

Loading pre-distributed files without distribution map headers

The LOAD command can be used to load data files without distribution headers

directly into several database partitions. If the data files exist in the /db2/data

directory on each database partition where TABLE1 is defined and have the name

load.del.xxx, where xxx is the database partition number, the files can be loaded

by issuing the following command:

 LOAD FROM LOAD.DEL OF DEL modified by dumpfile=rejected.rows

 REPLACE INTO TABLE1

 PARTITIONED DB CONFIG MODE LOAD_ONLY_VERIFY_PART

 PART_FILE_LOCATION /db2/data

To load the data into database partition 1 only, issue the following command:

 LOAD FROM LOAD.DEL OF DEL modified by dumpfile=rejected.rows

 REPLACE INTO TABLE1

 PARTITIONED DB CONFIG MODE LOAD_ONLY_VERIFY_PART

 PART_FILE_LOCATION /db2/data

 OUTPUT_DBPARTNUMS (1)

Note: Rows that do not belong on the database partition from which they were

loaded are rejected and put into the dumpfile, if one has been specified.

Loading from a remote client to a multi-partition database

Figure 10. . This diagram illustrates the behavior resulting when the previous command is

issued. Distributed data is loaded to all database partitions where TABLE1 is defined.

222 Data Movement Utilities DB2 9 BETA

To load data into a multi-partition database from a file that is on a remote client,

you must specify the CLIENT option of the LOAD command to indicate that the

data file is not on a server partition. For example:

 LOAD CLIENT FROM LOAD.DEL OF DEL REPLACE INTO TABLE1

Note: You cannot use the LOAD_ONLY or LOAD_ONLY_VERIFY_PART modes

with the CLIENT option.

Loading from a cursor

As in a single-partition database, you can load from a cursor into a multi-partition

database. In this example, for the PARTITION_ONLY and LOAD_ONLY modes,

the PART_FILE_LOCATION option must specify a fully qualified file name. This

name is the fully qualified base file name of the distributed files that are created or

loaded on each output database partition. Multiple files can be created with the

specified base name if there are LOB columns in the target table.

To distribute all the rows in the answer set of the statement SELECT * FROM TABLE1

to a file on each database partition named /db2/data/select.out.xxx (where xxx is

the database partition number), for future loading into TABLE2, issue the following

commands:

 DECLARE C1 CURSOR FOR SELECT * FROM TABLE1

 LOAD FROM C1 OF CURSOR REPLACE INTO TABLE2

 PARTITIONED DB CONFIG MODE PARTITION_ONLY

 PART_FILE_LOCATION /db2/data/select.out

The data files produced by the above operation can then be loaded by issuing the

following LOAD command:

 LOAD FROM C1 OF CURSOR REPLACE INTO TABLE2

 PARTITIONED CB CONFIG MODE LOAD_ONLY

 PART_FILE_LOCATION /db2/data/select.out

 Related concepts:

v “The Design Advisor” in Performance Guide

v “Moving data using the CURSOR file type” on page 265

 Related reference:

v “db2Load - Load data into a table” on page 161

Monitoring a load operation in a partitioned database environment

using the LOAD QUERY command

 Message files produced during a multi-partition database load operation

During a load operation, message files are created by some of the load processes

on the database partitions where they are being executed. These files store all

information, warning and error messages produced during the execution of the

load operation. The load processes that produce message files that can be viewed

by the user are the load agent, pre-partitioning agent and partitioning agent.

You can connect to individual database partitions during a load operation and

issue the LOAD QUERY command against the target table. When issued from the

Chapter 4. Loading data in a partitioned database environment 223DB2 9 BETA

CLP, this command displays the contents of all the message files that currently

reside on that database partition for the table that is specified in the LOAD

QUERY command.

For example, table TABLE1 is defined on database partitions 0 through 3 in

database WSDB. You are connected to database partition 0 and issue the following

LOAD command:

 load from load.del of del replace into table1 partitioned db config

 partitioning_dbpartnums (1)

This command initiates a load operation that includes load agents running on

database partitions 0, 1, 2 and 3; a partitioning agent running on database partition

1; and a pre-partitioning agent running on database partition 0.

Database partition 0 contains one message file for the pre-partitioning agent and

one for the load agent on that database partition. To view the contents of these

files at the same time, start a new session and issue the following commands from

the CLP:

 set client connect_node 0

 connect to wsdb

 load query table table1

Database partition 1 contains one file for the load agent and one for the

partitioning agent. To view the contents of these files, start a new session and issue

the following commands from the CLP:

 set client connect_node 1

 connect to wsdb

 load query table table1

Note: The messages generated by the STATUS_INTERVAL load configuration

option appear in the pre-partitioning agent message file. To view these

message during a load operation, you must connect to the coordinator

partition and issue the LOAD QUERY command.

Saving the contents of message files

If a load operation is initiated through the db2Load API, the messages option

(piLocalMsgFileName) must be specified and the message files are brought from

the server to the client and stored for you to view.

For multi-partition database load operations initiated from the CLP, the message

files are not displayed to the console or retained. To save or view the contents of

these files after a multi-partition database load is complete, the MESSAGES option

of the LOAD command must be specified. If this option is used, once the load

operation is complete the message files on each database partition are transferred

to the client machine and stored in files using the base name indicated by the

MESSAGES option. For multi-partition database load operations, the name of the

file corresponding to the load process that produced it is listed below:

 Process Type File Name

Load Agent <message-file-name>.LOAD.<dbpartition-
number>

Partitioning Agent <message-file-name>.PART.<dbpartition-
number>

224 Data Movement Utilities DB2 9 BETA

Process Type File Name

Pre-partitioning Agent <message-file-name>.PREP.<dbpartition-
number>

For example, if the MESSAGES option specifies /wsdb/messages/load, the load

agent message file for database partition 2 is /wsdb/messages/load.LOAD.002.

Note: It is strongly recommended that the MESSAGES option be used for

multi-partition database load operations initiated from the CLP.

 Related reference:

v “db2LoadQuery - Get the status of a load operation” on page 181

Restarting or terminating a load operation in a partitioned database

environment

 The load process in a multi-partition database consists of two stages: the setup

stage where database partition-level resources such as table locks on output

database partitions are acquired, and the load stage where data is formatted and

loaded into tables on the database partitions. The four database partition error

isolation modes (LOAD_ERRS_ONLY, SETUP_ERRS_ONLY,

SETUP_AND_LOAD_ERRS, and NO_ISOLATION) affect the behavior of load

restart and terminate operations when there are errors during one or both of these

stages. In general, if a failure occurs during the setup stage, restart and terminate

operations are not necessary. However, a failure during the load stage requires a

LOAD RESTART or a LOAD TERMINATE on all database partitions involved in

the load operation.

Failures During the Setup Stage

When a load operation fails on at least one database partition during the setup

stage and the setup stage errors are not being isolated (that is, the error isolation

mode is either LOAD_ERRS_ONLY or NO_ISOLATION), the entire load operation

is aborted and the state of the table on each database partition is rolled back to the

state it was in prior to the load operation. In this case, there is no need to issue a

LOAD RESTART or LOAD TERMINATE command.

When a load operation fails on at least one database partition during the initial

setup stage and setup stage errors are being isolated (that is, the error isolation

mode is either SETUP_ERRS_ONLY or SETUP_AND_LOAD_ERRS), the load

operation continues on the database partitions where the setup stage was

successful, but the table on each of the failing database partitions is rolled back to

the state it was in prior to the load operation. In this case, there is no need to

perform a load restart or terminate operation, unless there is also a failure during

the load stage.

To complete the load process on the database partitions where the load operation

failed during the setup stage, issue a LOAD REPLACE or LOAD INSERT

command and use the OUTPUT_DBPARTNUMS option to specify only the

database partition numbers of the database partitions that failed during the

original load operation.

Chapter 4. Loading data in a partitioned database environment 225DB2 9 BETA

For example, table TABLE1 is defined on database partitions 0 through 3 in

database WSDB. The following command is issued:

 load from load.del of del replace into table1 partitioned db config

 isolate_part_errs setup_and_load_errs

During the set up stage of the load operation there is a failure on database

partitions 1 and 3. Since setup stage errors are isolated, the load operation

completes successfully and data is loaded on database partitions 0 and 2. To

complete the load operation by loading data on database partitions 1 and 3, issue

the following command:

 load from load.del of del replace into table1 partitioned db config

 output_dbpartnums (1, 3)

Failures during the load stage

If a load operation fails on at least one database partition during the load stage of

a multi-partition database load operation, a LOAD RESTART or LOAD

TERMINATE command must be issued on all database partitions involved in the

load operation whether or not they encountered an error while loading data. This

is necessary because loading data in a multi-partition database is done through a

single transaction. If a load restart operation is initiated, the load operation

continues where it left off on all database partitions.

For example, table TABLE1 is defined on database partitions 0 through 3 in

database WSDB. The following command is issued:

 load from load1.del of del replace into table1 partitioned db config

 isolate_part_errs no_isolation

During the load stage of the load operation there is a failure on database partitions

1 and 3. To resume the load operation, the LOAD RESTART command must

specify the same set of output database partitions as the original command since

the load operation must be restarted on all database partitions:

 load from load.del of del restart into table1 partitioned db config

 isolate_part_errs no_isolation

Note: For load restart operations, the options specified in the LOAD RESTART

command will be honored, so it is important that they are identical to the

ones specified in the original LOAD command.

If a LOAD TERMINATE command is used when a multi-partition database load

operation fails during the load stage, all work done in the previous load operation

is lost and the table on each database partition is returned to the state it was in

prior to the initial load operation.

For example, table TABLE1 is defined on database partitions 0 through 3 in

database WSDB. The following command is issued:

 load from load.del of del replace into table1 partitioned db config

 isolate_part_errs no_isolation

If a failure occurs during the load stage, the load operation can be terminated by

issuing a LOAD TERMINATE command that specifies the same output parameters

as the original command:

 load from load.del of del terminate into table1 partitioned db config

 isolate_part_errs no_isolation

 Related concepts:

226 Data Movement Utilities DB2 9 BETA

v “Load in a partitioned database environment - overview” on page 215

v “Restarting an interrupted load operation” on page 129

Load configuration options for partitioned database environments

PART_FILE_LOCATION X

In the PARTITION_ONLY, LOAD_ONLY, and

LOAD_ONLY_VERIFY_PART modes, this parameter can be used to specify

the location of the distributed files. This location must exist on each

database partition specified by the OUTPUT_DBPARTNUMS option. If the

location specified is a relative path name, the path is appended to the

current directory to create the location for the distributed files.

 For the CURSOR file type, this option must be specified, and the location

must refer to a fully qualified file name. This name is the fully qualified

base file name of the distributed files that are created on each output

database partition in the PARTITION_ONLY mode, or the location of the

files to be read from for each database partition in the LOAD_ONLY mode.

When using the PARTITION_ONLY mode, multiple files can be created

with the specified base name if the target table contains LOB columns.

 For file types other than CURSOR, if this option is not specified, the

current directory is used for the distributed files.

OUTPUT_DBPARTNUMS X

X represents a list of database partition numbers. The database partition

numbers represent the database partitions on which the load operation is

to be performed. The database partition numbers must be a subset of the

database partitions on which the table is defined. All database partitions

are selected by default. The list must be enclosed in parentheses and the

items in the list must be separated by commas. Ranges are permitted (for

example, (0, 2 to 10, 15)).

PARTITIONING_DBPARTNUMS X

X represents a list of database partition numbers that are used in the

distribution process. The list must be enclosed in parentheses and the items

in the list must be separated by commas. Ranges are permitted (for

example, (0, 2 to 10, 15)). The database partitions specified for the

distribution process can be different from the database partitions being

loaded. If not specified, the LOAD command determines how many

database partitions are needed and which database partitions to use in

order to achieve optimal performance.

 If the ANYORDER modifier is not specified in the LOAD command, only

one partitioning agent is used in the load session. Further, if there is only

one database partition specified for the OUTPUT_DBPARTNUMS option,

or the coordinator partition of the load operation is not an element of

OUTPUT:DBPARTNUMS, the coordinator partition of the load operation is

used in the distribution process. Otherwise, the first database partition (not

the coordinator partition) in OUTPUT_DBPARTNUMS is used in the

distribution process.

 If the ANYORDER modifier is specified, the number of database partitions

used in the distribution process is determined as follows: (number of

partitions in OUTPUT_DBPARTNUMS)/4 + 1. Then, the number of

database partitions used in the distribution process is chosen from the

OUTPUT_DBPARTNUMS, excluding the database partition being used to

load the data.

Chapter 4. Loading data in a partitioned database environment 227DB2 9 BETA

MODE X

Specifies the mode in which the load operation occurs when loading a

multi-partition database. PARTITION_AND_LOAD is the default. Valid

values are:

v PARTITION_AND_LOAD. Data is distributed (perhaps in parallel) and

loaded simultaneously on the corresponding database partitions.

v PARTITION_ONLY. Data is distributed (perhaps in parallel) and the

output is written to files in a specified location on each loading database

partition. For file types other than CURSOR, the format of the output file

name on each database partition is filename.xxx, where filename is the

input file name specified in the LOAD command and xxx is the 3-digit

database partition number. For the CURSOR file type, the name of the

output file on each database partition is determined by the

PART_FILE_LOCATION option. See the PART_FILE_LOCATION option

for details on how to specify the location of the distribution file for each

database partition.

Notes:

1. This mode cannot be used for a CLI load operation.

2. If the table contains an identity column that is needed for

distribution, then this mode is not supported, unless the

identityoverride modifier is specified.

3. Distribution files generated for file type CURSOR are not compatible

between DB2 releases. This means that distribution files of file type

CURSOR that were generated in a previous release cannot be loaded

using the LOAD_ONLY mode. Similarly, distribution files of file type

CURSOR that were generated in the current release cannot be loaded

in a future release using the LOAD_ONLY mode.
v LOAD_ONLY. Data is assumed to be already distributed; the

distribution process is skipped, and the data is loaded simultaneously on

the corresponding database partitions. For file types other than

CURSOR, the format of the input file name for each database partition

should be filename.xxx, where filename is the name of the file specified

in the LOAD command and xxx is the 3-digit database partition number.

For the CURSOR file type, the name of the input file on each database

partition is determined by the PART_FILE_LOCATION option. See the

PART_FILE_LOCATION option for details on how to specify the location

of the distribution file for each database partition.

Notes:

1. This mode cannot be used for a CLI load operation, or when the

CLIENT option of LOAD command is specified.

2. If the table contains an identity column that is needed for

distribution, then this mode is not supported, unless the

identityoverride modifier is specified.
v LOAD_ONLY_VERIFY_PART. Data is assumed to be already distributed,

but the data file does not contain a partition header. The distributing

process is skipped, and the data is loaded simultaneously on the

corresponding database partitions. During the load operation, each row

is checked to verify that it is on the correct database partition. Rows

containing database partition violations are placed in a dumpfile if the

dumpfile file type modifier is specified. Otherwise, the rows are

discarded. If database partition violations exist on a particular loading

database partition, a single warning is written to the load message file

for that database partition. The format of the input file name for each

228 Data Movement Utilities DB2 9 BETA

database partition should be filename.xxx, where filename is the name

of the file specified in the LOAD command and xxx is the 3-digit

database partition number. See the PART_FILE_LOCATION option for

details on how to specify the location of the distribution file for each

database partition.

Notes:

1. This mode cannot be used for a CLI load operation, or when the

CLIENT option of LOAD command is specified.

2. If the table contains an identity column that is needed for

distribution, then this mode is not supported, unless the

identityoverride modifier is specified.
v ANALYZE. An optimal distribution map with even distribution across

all database partitions is generated.

MAX_NUM_PART_AGENTS X

Specifies the maximum numbers of partitioning agents to be used in a load

session. The default 25.

ISOLATE_PART_ERRS X

Indicates how the load operation reacts to errors that occur on individual

database partitions. The default is LOAD_ERRS_ONLY, unless both the

ALLOW READ ACCESS and COPY YES options of the LOAD command

are specified, in which case the default is NO_ISOLATION. Valid values

are:

v SETUP_ERRS_ONLY. Errors that occur on a database partition during

setup, such as problems accessing a database partition, or problems

accessing a table space or table on a database partition, cause the load

operation to stop on the failing database partitions but to continue on

the remaining database partitions. Errors that occur on a database

partition while data is being loaded cause the entire operation to fail and

roll back to the last point of consistency on each database partition.

v LOAD_ERRS_ONLY. Errors that occur on a database partition during

setup cause the entire load operation to fail. When an error occurs while

data is being loaded the database partitions with errors is rolled back to

their last point of consistency. The load operation continues on the

remaining database partitions until a failure occurs or until all the data

is loaded. On the database partitions where all of the data was loaded,

the data is not visible following the load operation. Because of the errors

in the other database partitions the transaction are aborted. Data on all

of the database partitions remains invisible until a load restart operation

is performed. This makes the newly loaded data visible on the database

partitions where the load operation completes and resumes the load

operation on database partitions that experienced an error.

Note: This mode cannot be used when both the ALLOW READ

ACCESS and the COPY YES options of the LOAD command are

specified.

v SETUP_AND_LOAD_ERRS. In this mode, database partition-level errors

during setup or loading data cause processing to stop only on the

affected database partitions. As with the LOAD_ERRS_ONLY mode,

when partition errors do occur while data is loaded, the data on all

database partitions remains invisible until a load restart operation is

performed.

Chapter 4. Loading data in a partitioned database environment 229DB2 9 BETA

Note: This mode cannot be used when both the ALLOW READ

ACCESS and the COPY YES options of the LOAD command are

specified.

v NO_ISOLATION. Any error during the load operation causes the

transaction to fail.

STATUS_INTERVAL X

X represents how often you are notified of the volume of data that has

been read. The unit of measurement is megabytes (MB). The default is 100

MB. Valid values are whole numbers from 1 to 4000.

PORT_RANGE X

X represents the range of TCP ports used to create sockets for internal

communications. The default range is from 6000 to 6063. If defined at the

time of invocation, the value of the DB2ATLD_PORTS DB2 registry

variable replaces the value of the PORT_RANGE load configuration option.

For the DB2ATLD_PORTS registry variable, the range should be provided

in the following format:

 <lower-port-number>:<higher-port-number>

From the CLP, the format is:

 (lower-port-number, higher-port-number)

CHECK_TRUNCATION

Specifies that the program should check for truncation of data records at

input/output. The default behavior is that data is not checked for

truncation at input/output.

MAP_FILE_INPUT X

X specifies the input file name for the distribution map. This parameter

must be specified if the distribution map is customized, as it points to the

file containing the customized distribution map. A customized distribution

map can be created by using the db2gpmap program to extract the map

from the database system catalog table, or by using the ANALYZE mode of

the LOAD command to generate an optimal map. The map generated by

using the ANALYZE mode must be moved to each database partition in

your database before the load operation can proceed.

MAP_FILE_OUTPUT X

X represents the output filename for the distribution map. The output file

is created on the database partition issuing the LOAD command assuming

that database partition is participating in the database partition group

where partitioning is performed. If the LOAD command is invoked on a

database partition that is not participating in partitioning (as defined by

PARTITIONING_DBPARTNUMS()), the output file is created at the first

database partition defined with the PARTITIONING_DBPARTNUMS

parameter. Consider the following partitioned database environment

set-up:

 1 serv1 0

 2 serv1 1

 3 serv2 0

 4 serv2 1

 5 serv3 0

Running the following LOAD command on serv3, creates the distribution

map on serv1.

LOAD FROM file OF ASC METHOD L (...) INSERT INTO table CONFIG

MODE ANALYZE PARTITIONING_DBPARTNUMS(1,2,3,4)

MAP_FILE_OUTPUT ’/home/db2user/distribution.map’

230 Data Movement Utilities DB2 9 BETA

This parameter should be used when the ANALYZE mode is specified. An

optimal distribution map with even distribution across all database

partitions is generated. If this modifier is not specified and the ANALYZE

mode is specified, the program exits with an error.

TRACE X

Specifies the number of records to trace when you require a review of a

dump of the data conversion process and the output of the hashing values.

The default is 0.

NEWLINE

Used when the input data file is an ASC file with each record delimited by

a new line character and the RecLen parameter of the LOAD command is

specified. When this option is specified, each record is checked for a new

line character. The record length, as specified in the RecLen parameter, is

also checked.

DISTFILE X

If this option is specified, the LOAD utility generates a database partition

distribution file with the given name. The database partition distribution

file contains 4096 integers: one for each entry in the target table’s

distribution map. Each integer in the file represents the number of rows in

the input files being loaded that hashed to the corresponding distribution

map entry. This information can help you identify skew in your data and

also help you decide whether a new distribution map should be generated

for the table using the ANALYZE mode of the utility. If this option is not

specified, the default behaviour of the Load utility is to not generate the

distribution file.

Note: When this option is specified, a maximum of one distribution agent

is used for the load operation. If you explicitly request multiple

distribution agents, only one is used.

OMIT_HEADER

Specifies that a distribution map header should not be included in the

distribution file. If not specified, a header is generated.

RUN_STAT_DBPARTNUM X

If the STATISTICS YES parameter is specified in the LOAD command,

statistics are collected only on one database partition. This parameter

specifies on which database partition to collect statistics. If the value is -1

or not specified at all, statistics are collected on the first database partition

in the output database partition list.

 Related concepts:

v “Moving data using a customized application (user exit)” on page 268

 Related tasks:

v “Loading data in a partitioned database environment” on page 217

 Related reference:

v “REDISTRIBUTE DATABASE PARTITION GROUP command” in Command

Reference

Chapter 4. Loading data in a partitioned database environment 231DB2 9 BETA

Examples of loading data in a partitioned database environment

 The following examples demonstrate loading data in a multi-partition database.

The database has four database partitions numbered 0 through 3. Database WSDB

is defined on all of the database partitions, and table TABLE1 resides in the default

database partition group which is also defined on all of the database partitions.

Example 1

To load data into TABLE1 from the user data file load.del which resides on

database partition 0, connect to database partition 0 and then issue the following

command:

 load from load.del of del replace into table1

If the load operation is successful, the output will be as follows:

 Agent Type Node SQL Code Result

 LOAD 000 +00000000 Success.

 LOAD 001 +00000000 Success.

 LOAD 002 +00000000 Success.

 LOAD 003 +00000000 Success.

 PARTITION 001 +00000000 Success.

 PRE_PARTITION 000 +00000000 Success.

 RESULTS: 4 of 4 LOADs completed successfully.

 Summary of Partitioning Agents:

 Rows Read = 100000

 Rows Rejected = 0

 Rows Partitioned = 100000

 Summary of LOAD Agents:

 Number of rows read = 100000

 Number of rows skipped = 0

 Number of rows loaded = 100000

 Number of rows rejected = 0

 Number of rows deleted = 0

 Number of rows committed = 100000

The output indicates that there was one load agent on each database partition and

each ran successfully. It also shows that there was one pre-partitioning agent

running on the coordinator partition and one partitioning agent running on

database partition 1. These processes completed successfully with a normal SQL

return code of 0. The statistical summary shows that the pre-partitioning agent

read 100,000 rows, the partitioning agent distributed 100,000 rows, and the sum of

all rows loaded by the load agents is 100,000.

Example 2

In the following example, data is loaded into TABLE1 in the PARTITION_ONLY

mode. The distributed output files is stored on each of the output database

partitions in the directory /db/data:

 load from load.del of del replace into table1 partitioned db config mode

 partition_only part_file_location /db/data

232 Data Movement Utilities DB2 9 BETA

The output from the load command is as follows:

 Agent Type Node SQL Code Result

 LOAD_TO_FILE 000 +00000000 Success.

 LOAD_TO_FILE 001 +00000000 Success.

 LOAD_TO_FILE 002 +00000000 Success.

 LOAD_TO_FILE 003 +00000000 Success.

 PARTITION 001 +00000000 Success.

 PRE_PARTITION 000 +00000000 Success.

 Summary of Partitioning Agents:

 Rows Read = 100000

 Rows Rejected = 0

 Rows Partitioned = 100000

The output indicates that there was a load-to-file agent running on each output

database partition, and these agents ran successfully. There was a pre-partitioning

agent on the coordinator partition, and a partitioning agent running on database

partition 1. The statistical summary indicates that 100,000 rows were successfully

read by the pre-partitioning agent and 100,000 rows were successfully distributed

by the partitioning agent. Since no rows were loaded into the table, no summary of

the number of rows loaded appears.

Example 3

To load the files that were generated during the PARTITION_ONLY load operation

above, issue the following command:

 load from load.del of del replace into table1 partitioned db config mode

 load_only part_file_location /db/data

The output from the load command will be as follows::

 Agent Type Node SQL Code Result

 LOAD 000 +00000000 Success.

 LOAD 001 +00000000 Success.

 LOAD 002 +00000000 Success.

 LOAD 003 +00000000 Success.

 RESULTS: 4 of 4 LOADs completed successfully.

 Summary of LOAD Agents:

 Number of rows read = 100000

 Number of rows skipped = 0

 Number of rows loaded = 100000

 Number of rows rejected = 0

 Number of rows deleted = 0

 Number of rows committed = 100000

Chapter 4. Loading data in a partitioned database environment 233DB2 9 BETA

The output indicates that the load agents on each output database partition ran

successfully and that the sum of the number of rows loaded by all load agents is

100,000. No summary of rows distributed is indicated since distribution was not

performed.

Example 4 - Failed Load Operation

If the following LOAD command is issued:

 load from load.del of del replace into table1

and one of the loading database partitions runs out of space in the table space

during the load operation, the following output is returned:

 SQL0289N Unable to allocate new pages in table space "DMS4KT".

 SQLSTATE=57011

 Agent Type Node SQL Code Result

 __

 LOAD 000 +00000000 Success.

 __

 LOAD 001 -00000289 Error. May require RESTART.

 __

 LOAD 002 +00000000 Success.

 __

 LOAD 003 +00000000 Success.

 __

 PARTITION 001 +00000000 Success.

 __

 PRE_PARTITION 000 +00000000 Success.

 __

 RESULTS: 3 of 4 LOADs completed successfully.

 __

 Summary of Partitioning Agents:

 Rows Read = 0

 Rows Rejected = 0

 Rows Partitioned = 0

 Summary of LOAD Agents:

 Number of rows read = 0

 Number of rows skipped = 0

 Number of rows loaded = 0

 Number of rows rejected = 0

 Number of rows deleted = 0

 Number of rows committed = 0

The output indicates that the load operation returned error SQL0289. The database

partition summary indicates that database partition 1 ran out of space. Since the

default error isolation mode is NO_ISOLATION. the load operation is aborted on

all database partitions and a load restart or load terminate operation must be

invoked. If additional space is added to the containers of the table space on

database partition 1, the load operation can be restarted as follows:

 load from load.del of del restart into table1

 Related concepts:

v “Load considerations for partitioned tables” on page 126

v “Load overview” on page 102

v “Loading data in a partitioned database environment - hints and tips” on page

235

 Related tasks:

234 Data Movement Utilities DB2 9 BETA

v “Loading data” on page 110

v “Loading data in a partitioned database environment” on page 217

Migration and version compatibility

 Loading data in a multi-partition database

You can use the load utility to load data in a multi-partition database.

Reverting to pre-DB2 Universal Database V8 load behavior using the

DB2_PARTITIONEDLOAD_DEFAULT registry variable

It is possible to maintain the pre DB2 Universal Database V8 behavior of the

LOAD command in a multi-partition database. This allows you to load a file with

a valid distribution header into a single database partition without specifying any

extra partitioned database configuration options. You can do this by setting the

value of the DB2_PARTITIONEDLOAD_DEFAULT registry variable to NO. You

may choose to use this option if you want to avoid modifying existing scripts that

issue the LOAD command against single database partitions. For example, to load

a distribution file into database partition 3 of a table that resides in a database

partition group with four database partitions, issue the following command:

 db2set DB2_PARTITIONEDLOAD_DEFAULT=NO

Then issue the following commands from the DB2 Command Line Processor:

 CONNECT RESET

 SET CLIENT CONNECT_NODE 3

 CONNECT TO DB MYDB

 LOAD FROM LOAD.DEL OF DEL REPLACE INTO TABLE1

In a multi-partition database, when no multi-partition database load configuration

options are specified, the load operation takes place on all the database partitions

on which the table is defined. The input file does not require a distribution header,

and the MODE option defaults to PARTITION_AND_LOAD. To load a single

database partition, the OUTPUT_DBPARTNUMS option must be specified.

 Related reference:

v “LOAD ” on page 132

Loading data in a partitioned database environment - hints and tips

 The following is some information to consider before loading a table in a

multi-partition database:

v Familiarize yourself with the load configuration options by using the utility with

small amounts of data.

v If the input data is already sorted, or in some chosen order, and you want to

maintain that order during the loading process, only one database partition

should be used for distributing. Parallel distribution cannot guarantee that the

data is loaded in the same order it was received. The load utility chooses a

single partitioning agent by default if the anyorder modifier is not specified on

the LOAD command.

Chapter 4. Loading data in a partitioned database environment 235DB2 9 BETA

v If large objects (LOBs) are being loaded from separate files (that is, if you are

using the lobsinfile modifier through the load utility), all directories containing

the LOB files must be read-accessible to all the database partitions where

loading is taking place. The LOAD lob-path parameter must be fully qualified

when working with LOBs.

v You can force a job running in a multi-partition database to continue even if the

load operation detects(at startup time) that some loading database partitions or

associated table spaces or tables are offline, by setting the ISOLATE_PART_ERRS

option to SETUP_ERRS_ONLY or SETUP_AND_LOAD_ERRS.

v Use the STATUS_INTERVAL load configuration option to monitor the progress

of a job running in a multi-partition database. The load operation produces

messages at specified intervals indicating how many megabytes of data have

been read by the pre-partitioning agent. These messages are dumped to the

pre-partitioning agent message file. To view the contents of this file during the

load operation, connect to the coordinator partition and issue a LOAD QUERY

command against the target table.

v Better performance can be expected if the database partitions participating in the

distribution process (as defined by the PARTITIONING_DBPARTNUMS option)

are different from the loading database partitions (as defined by the

OUTPUT_DBPARTNUMS option), since there is less contention for CPU cycles.

When loading data into a multi-partition database, the load utility itself should

be invoked on a database partition that is not participating in either the

distributing or the loading operation.

v Specifying the MESSAGES parameter in the LOAD command saves the

messages files from the pre-partitioning, partitioning, and load agents for

reference at the end of the load operation. To view the contents of these files

during a load operation, connect to the desired database partition and issue a

LOAD QUERY command against the target table.

v The load utility chooses only one output database partition on which to collect

statistics. The RUN_STAT_DBPARTNUM database configuration option can be

used to specify the database partition.

v Before loading data in a multi-partition database, run the Design Advisor to

determine the best partition for each table. For more information, see The Design

Advisor.

Troubleshooting

If the load utility is hanging, you can:

v Use the STATUS_INTERVAL parameter to monitor the progress of a

multi-partition database load operation. The status interval information is

dumped to the pre-partitioning agent message file on the coordinator partition.

v Check the partitioning agent messages file to see the status of the partitioning

agent processes on each database partition. If the load is proceeding with no

errors, and the TRACE option has been set, there should be trace messages for a

number of records in these message files.

v Check the load messages file to see if there are any load error messages.

Note: You must specify the MESSAGES option of the LOAD command in order

for these files to exist.

v Interrupt the current load operation if you find errors suggesting that one of the

load processes encountered errors.

 Related concepts:

236 Data Movement Utilities DB2 9 BETA

v “Load considerations for partitioned tables” on page 126

v “Load overview” on page 102

v “Monitoring a load operation in a partitioned database environment using the

LOAD QUERY command” on page 223

 Related tasks:

v “Loading data” on page 110

v “Loading data in a partitioned database environment” on page 217

 Related reference:

v “Load configuration options for partitioned database environments” on page 227

Chapter 4. Loading data in a partitioned database environment 237DB2 9 BETA

238 Data Movement Utilities DB2 9 BETA

Chapter 5. Moving Data Between Systems

This chapter describes how to use the DB2 export, import, and load utilities to

transfer data across platforms, and to and from iSeries host databases. The IBM

replication tools, used for moving data between databases in an enterprise, are also

described.

The following topics are covered:

v “Moving data across platforms - file format considerations”

v “XML data movement overview” on page 240

v “Moving data with DB2 Connect” on page 243

v “db2move - Database movement tool ” on page 246

v “db2relocatedb - Relocate database ” on page 253

v “Delimiter restrictions for moving data” on page 257

v “Moving data between typed tables” on page 258

v “Using replication to move data” on page 263

v “Moving data using the CURSOR file type” on page 265

Moving data across platforms - file format considerations

 Compatibility is important when exporting, importing, or loading data across

platforms. The following sections describe PC/IXF, delimited ASCII (DEL), and

WSF file format considerations when moving data between different operating

systems.

PC/IXF File Format

PC/IXF is the recommended file format for transferring data across platforms.

PC/IXF files allow the load utility or the import utility to process (normally

machine dependent) numeric data in a machine-independent fashion. For example,

numeric data is stored and handled differently by Intel® and other hardware

architectures.

To provide compatibility of PC/IXF files among all products in the DB2 family, the

export utility creates files with numeric data in Intel format, and the import utility

expects it in this format.

Depending on the hardware platform, DB2 products convert numeric values

between Intel and non-Intel formats (using byte reversal) during both export and

import operations.

UNIX based implementations of DB2 database do not create multiple-part PC/IXF

files during export. However, they will allow you to import a multiple-part

PC/IXF file that was created by DB2. When importing this type of file, all parts

should be in the same directory, otherwise an error is returned.

Single-part PC/IXF files created by UNIX based implementations of the DB2

export utility can be imported by DB2 database for Windows.

© Copyright IBM Corp. 1993, 2006 239DB2 9 BETA

Delimited ASCII (DEL) File Format

DEL files have differences based on the operating system on which they were

created. The differences are:

v Row separator characters

– UNIX based text files use a line feed (LF) character.

– Non-UNIX based text files use a carriage return/line feed (CRLF) sequence.
v End-of-file character

– UNIX based text files do not have an end-of-file character.

– Non-UNIX based text files have an end-of-file character (X’1A’).

Since DEL export files are text files, they can be transferred from one operating

system to another. File transfer programs can handle operating system-dependant

differences if you transfer the files in text mode; the conversion of row separator

and end-of-file characters is not performed in binary mode.

Note: If character data fields contain row separator characters, these will also be

converted during file transfer. This conversion causes unexpected changes to

the data and, for this reason, it is recommended that you do not use DEL

export files to move data across platforms. Use the PC/IXF file format

instead.

WSF File Format

Numeric data in WSF format files is stored using Intel machine format. This format

allows Lotus® WSF files to be transferred and used in different Lotus operating

environments (for example, in Intel based and UNIX based systems).

As a result of this consistency in internal formats, exported WSF files from DB2

products can be used by Lotus 1-2-3® or Symphony running on a different

platform. DB2 products can also import WSF files that were created on different

platforms.

Transfer WSF files between operating systems in binary (not text) mode.

Note: Do not use the WSF file format to transfer data between DB2 databases on

different platforms, because a loss of data can occur. Use the PC/IXF file

format instead.

 Related reference:

v “Export/Import/Load Utility File Formats” on page 291

Moving XML data

XML data movement overview

 With the introduction of an XML column type, support for XML data has been

added to the import and export utilities.

 Importing XML data:

 The import utility can be used to insert XML documents into a regular relational

table. Only well-formed XML documents can be imported.

240 Data Movement Utilities DB2 9 BETA

Use the XML FROM option of the IMPORT command to specify the location of the

XML documents to import. The XMLVALIDATE option specifies how imported

documents should be validated. You can select to have the imported XML data

validated against a schema specified with the IMPORT command, against a

schema identified by a schema location hint inside of the source XML document,

or by the schema identified by the XML Data Specifier in the main data file. You

can also use the XMLPARSE option to specify how whitespace should be handled

when the XML document is imported. The xmlchar and xmlgraphic file type

modifiers allow you to specify the encoding characteristics for the imported XML

data.

 Exporting XML data:

 Data may be exported from tables that include one or more columns with an XML

data type. Exported XML data is stored in files separate from the main data file

containing the exported relational data. Information about each exported XML

document is represented in the main exported data file by an XML data specifier

(XDS). The XDS is a string that specifies the name of the system file in which the

XML document is stored, the exact location and length of the XML document

inside of this file, and the XML schema used to validate the XML document.

You can use the XMLFILE, XML TO, and XMLSAVESCHEMA parameters of the

EXPORT command to specify details about how exported XML documents are

stored. The xmlinsepfiles, xmlnodeclaration, xmlchar, and xmlgraphic file type

modifiers allow you to specify further details about the storage location and the

encoding of the exported XML data.

 Related concepts:

v “Exporting XML data” on page 5

v “Importing XML data” on page 40

v “Native XML data store overview” in XML Guide

 Related reference:

v “EXPORT ” on page 11

v “IMPORT ” on page 49

Important considerations for XML data movement

 Following are a number of factors to keep in mind when importing or exporting

XML data:

v Exported XML data is always stored separately from the main data file

containing exported relational data.

v By default, the export utility writes XML data in Unicode. You can use the

XMLCHAR file type modifier to have XML data written in the character code page.

The XMLGRAPHIC file type modifier specifies that XML data is written in the

graphic code page, which is UTF-16 regardless of the application code page.

v For the import utility, unless the XML document to import contains a declaration

tag that includes an encoding attribute, this document is assumed to be in

Unicode. You can use the XMLCHAR file type modifier to indicate that XML

documents to import are encoded in the character code page, while the

XMLGRAPHIC file type modifier indicates that XML documents to import are

encoded in UTF-16.

Chapter 5. Moving Data Between Systems 241DB2 9 BETA

v For the import utility, rows which contain documents that are not well-formed

will be rejected.

v If the XMLVALIDATE option is specified for the import utility, documents which

successfully validate against their matching schema will be annotated with the

schema information as they are inserted into a table. Rows containing

documents that fail to validate against their matching schema will be rejected.

v You can use the export utility with an XQuery specification to export XQuery

Data Model (QDM) instances that are not well-formed XML documents.

However, exported XML documents that are not well-formed cannot be

imported directly into an XML column, since columns defined with the XML

data type can contain only complete XML documents.

 Related concepts:

v “Exporting XML data” on page 5

v “Importing XML data” on page 40

v “XML data movement overview” on page 240

XML data specifier

 XML data involved in the export and import utilities must be stored in files

separate from the main data file. The XML data, however, is represented in the

main data file with an XML data specifier (XDS). The XDS is a string represented

as an XML tag named ″XDS″, which has attributes that describe information about

the actual XML data in the column; such information includes the name of the file

that contains the actual XML data, and the offset and length of the XML data

within that file. The attributes of the XDS are described below.

FIL The name of the file that contains the XML data.

OFF The byte offset of the XML data in the file named by the FIL attribute,

where the offset begins from 0.

LEN The length in bytes of the XML data in the file named by the FIL attribute.

SCH The fully qualified SQL identifier of the XML schema that is used to

validate this XML document. The schema and name components of the

SQL identifier are stored as the ″OBJECTSCHEMA″ and ″OBJECTNAME″

values, respectively, of the row in the SYSCAT.XSROBJECTS catalog table

that corresponds to this XML schema.

The XDS is interpreted as a character field in the data file and is subject to the file

format’s parsing behavior for character columns. For the delimited ASCII file

format (DEL), for example, if the character delimiter is present in the XDS, it must

be doubled. The special characters (<, >, &, ’, ") within the attribute values must

always be escaped. Consider a FIL attribute with the value: abc&"def".del. To

include this in a delimited ASCII file, where the character delimiter is the ″

character, this XDS would be included as follows: <XDS FIL=""abc&"def
".del"" /> where the ″ characters are doubled and special characters are

escaped.

 Example:

 The following is an example of an XDS as it would appear in a delimited ASCII

data file.

"<XDS FIL = ""xmldocs.xml.001"" OFF=""100"" LEN=""300"" />"

242 Data Movement Utilities DB2 9 BETA

This entry indicates that the XML data is stored in the file xmldocs.xml.001

beginning at byte offset 100 with a length of 300 bytes. (Because this XDS is within

an ASCII file delimited with double quotation marks, the double quotation marks

within the XDS tag itself must be doubled.)

 Related concepts:

v “Export Overview” on page 1

v “Exporting XML data” on page 5

v “Import Overview” on page 35

v “Importing XML data” on page 40

 Related tasks:

v “Exporting data” on page 4

v “Importing data” on page 38

XQuery data model

 XML data can be inserted into and accessed from a database table either by use of

the XQuery functions available in SQL, or by invoking XQuery directly. The result

of either type of query is an instance of the XQuery Data Model (QDM). This can

be either a well-formed XML document or a sequence of document nodes.

Individual QDM instances can be written to one or more XML files by means of

the EXPORT command.

 Related concepts:

v “XML data movement overview” on page 240

v “XML data type” in XML Guide

Moving data with DB2 Connect

 If you are working in a complex environment in which you need to move data

between a host database system and a workstation, you can use DB2 Connect, the

gateway for data transfer between the host and the workstation (see Figure 11 on

page 244).

Chapter 5. Moving Data Between Systems 243DB2 9 BETA

The DB2 export and import utilities allow you to move data from a host or iSeries

server database to a file on the DB2 Connect workstation, and the reverse. You can

then use the data with any other application or relational database management

system that supports this export or import format. For example, you can export

data from a host or iSeries server database into a PC/IXF file, and then import it

into a DB2 for Windows database.

You can perform export and import operations from a database client or from the

DB2 Connect workstation.

Notes:

1. The data to be exported or imported must comply with the size and data type

restrictions that are applicable to both databases.

2. To improve import performance, you can use compound queries. Specify the

compound file type modifier in the import utility to group a specified number of

query statements into a block. This can reduce network overhead and improve

response time.

 Restrictions:

 With DB2 Connect, export and import operations must meet the following

conditions:

v The file type must be PC/IXF.

v A target table with attributes that are compatible with the data must be created

on the target server before you can import to it. The db2look utility can be used

to get the attributes of the source table. Import through DB2 Connect cannot

create a table, because INSERT is the only supported option.

If any of these conditions is not met, the operation fails, and an error message is

returned.

Note: Index definitions are not stored on export or used on import.

If you export or import mixed data (columns containing both single-byte and

double-byte data), consider the following:

Figure 11. Import/Export through DB2 Connect

244 Data Movement Utilities DB2 9 BETA

v On systems that store data in EBCDIC (MVS™, OS/390®, OS/400®, VM, and

VSE), shift-out and shift-in characters mark the start and the end of double-byte

data. When you define column lengths for your database tables, be sure to allow

enough room for these characters.

v Variable-length character columns are recommended, unless the column data has

a consistent pattern.

 Moving Data from a workstation to a host server:

 To move data to a host or AS/400® and iSeries server database:

1. Export the data from a DB2 table to a PC/IXF file.

2. Using the INSERT option, import the PC/IXF file into a compatible table in the

host server database.

To move data from a host server database to a workstation:

1. Export the data from the host server database table to a PC/IXF file.

2. Import the PC/IXF file into a DB2 table.

Example

The following example illustrates how to move data from a workstation to a host

or AS/400 and iSeries server database.

1. Export the data into an external IXF format by issuing the following command:

 db2 export to staff.ixf of ixf select * from userid.staff

2. Issue the following command to establish a DRDA® connection to the target

DB2 database:

 db2 connect to cbc664 user admin using xxx

3. If it doesn’t already exit, create the target table on the target DB2 database

instance_

 CREATE TABLE mydb.staff (ID SMALLINT NOT NULL, NAME VARCHAR(9),

 DEPT SMALLINT, JOB CHAR(5), YEARS SMALLINT, SALARY DECIMAL(7,2),

 COMM DECIMAL(7,2))

4. To import the data issue the following command:

 db2 import from staff.ixf of ixf insert into mydb.staff

Each row of data will be read from the file in IXF format, and an SQL INSERT

statement will be issued to insert the row into table mydb.staff. Single rows

will continue to be inserted until all of the data has been moved to the target

table.

Detailed information is available in the following IBM® Redbook: Moving Data

Across the DB2 Family. This Redbook can be found at the following URL:

http://www.redbooks.ibm.com/redbooks/SG246905.html.

 Related concepts:

v “Moving data across platforms - file format considerations” on page 239

 Related reference:

v “EXPORT ” on page 11

v “IMPORT ” on page 49

Chapter 5. Moving Data Between Systems 245DB2 9 BETA

db2move - Database movement tool

This tool, when used in the EXPORT/IMPORT/LOAD mode, facilitates the

movement of large numbers of tables between DB2 databases located on

workstations. The tool queries the system catalog tables for a particular database

and compiles a list of all user tables. It then exports these tables in PC/IXF format.

The PC/IXF files can be imported or loaded to another local DB2 database on the

same system, or can be transferred to another workstation platform and imported

or loaded to a DB2 database on that platform. Tables with structured type columns

are not moved when this tool is used. When used in the COPY mode, this tool

facilitates the duplication of a schema.

 Authorization:

 This tool calls the DB2 export, import, and load APIs, depending on the action

requested by the user. Therefore, the requesting user ID must have the correct

authorization required by those APIs, or the request will fail.

 Command syntax:

��

db2move

dbname

action

�

-tc

table-definers

-tn

table-names

-sn

schema-names

-ts

tablespace-names

-tf

filename

-io

import-option

-lo

load-option

-co

copy-option

-l

lobpaths

-u

userid

-p

password

-aw

��

 Command parameters:

dbname

Name of the database.

action Must be one of:

EXPORT

Exports all tables that meet the filtering criteria in options. If no

options are specified, exports all the tables. Internal staging

information is stored in the db2move.lst file.

IMPORT

Imports all tables listed in the internal staging file db2move.lst.

Use the -io option for IMPORT specific actions.

LOAD

Loads all tables listed in the internal staging file db2move.lst. Use

the -lo option for LOAD specific actions.

COPY Duplicates a schema(s) into a target database. Use the -sn option to

db2move - Database Movement Tool

246 Data Movement Utilities DB2 9 BETA

specify one or more schemas. See the -co option for COPY specific

options. Use the -tn or -tf option to filter tables in LOAD_ONLY

mode.

See below for a list of files that are generated during each action.

-tc table-definers. The default is all definers.

 This is an EXPORT action only. If specified, only those tables created by

the definers listed with this option are exported. If not specified, the

default is to use all definers. When specifying multiple definers, they must

be separated by commas; no blanks are allowed between definer IDs. This

option can be used with the “-tn” table-names option to select the tables

for export.

 An asterisk (*) can be used as a wildcard character that can be placed

anywhere in the string.

-tn table-names. The default is all user tables.

 This is an EXPORT or COPY action only. If specified, only those tables

whose names match exactly those in the specified string are exported or

copied. If not specified, the default is to use all user tables. When

specifying multiple table names, they must be separated by commas; no

blanks are allowed between table names. When using the COPY action, the

table names should be listed with their schema qualifier in the format

“schema”.“table”. When using the EXPORT action, the table names should

be listed unqualified. This option can be used with the “-tc” table-definers

option to select the tables for export. db2move will only act on those tables

whose names match the specified table names and whose definers match

the specified table definers.

 For export, an asterisk (*) can be used as a wildcard character that can be

placed anywhere in the string.

-sn schema-names. The default for EXPORT is all schemas (not for COPY).

 If specified, only those tables whose schema names match exactly will be

exported or copied. If multiple schema names are specified, they must be

separated by commas; no blanks are allowed between schema names.

Schema names of less than 8 character are padded to 8 characters in

length.

 In the case of export:

If the asterisk wildcard character (*) is used in the schema names, it will be

changed to a percent sign (%) and the table name (with percent sign) will

be used in the LIKE predicate of the WHERE clause. If not specified, the

default is to use all schemas. If used with the -tn or -tc option, db2move

will only act on those tables whose schemas match the specified schema

names and whose definers match the specified definers. A schema name

’fred’ has to be specified ″-sn fr*d*″ instead of ″-sn fr*d″ when using an

asterisk.

-ts tablespace-names. The default is all table spaces.

 This is an EXPORT action only. If this option is specified, only those tables

that reside in the specified table space will be exported. If the asterisk

wildcard character (*) is used in the table space name, it will be changed to

a percent sign (%) and the table name (with percent sign) will be used in

the LIKE predicate in the WHERE clause. If the -ts option is not specified,

db2move - Database Movement Tool

Chapter 5. Moving Data Between Systems 247DB2 9 BETA

the default is to use all table spaces. If multiple table space names are

specified, they must be separated by commas; no blanks are allowed

between table space names. Table space names less than 8 characters are

padded to 8 characters in length. For example, a table space name ’mytb’

has to be specified ″-ts my*b*″ instead of ″-sn my*b″ when using the

asterisk.

-tf filename

 This is an EXPORT or COPY action only. If specified, only the tables listed

in the given file will be exported or copied. The tables should be listed one

per line, and each table should be fully qualified. Here is an example of

the contents of a file:

 "SCHEMA1"."TABLE NAME1"

 "SCHEMA NAME77"."TABLE155"

-io import-option. The default is REPLACE_CREATE.

 Valid options are: INSERT, INSERT_UPDATE, REPLACE, CREATE, and

REPLACE_CREATE.

-lo load-option. The default is INSERT.

 Valid options are: INSERT and REPLACE.

-co When the db2move action is COPY, the following -co follow-on options

will be available:

“TARGET_DB <db name> [USER <userid> USING <password>]”

Allows the user to specify the name of the target database and the

user/password. (The source database user/password can be

specified using the existing -p and -u options). The USER/USING

clause is optional. If USER specifies a userid, then the password

must either be supplied following the USING clause, or if it’s not

specified, then db2move will prompt for the password information.

The reason for prompting is for security reasons discussed below.

TARGET_DB is a mandatory option for the COPY action. The

TARGET_DB cannot be the same as the source database. The

ADMIN_COPY_SCHEMA procedure can be used for copying schemas

within the same database. The COPY action requires inputting at

least one schema (-sn) or one table (-tn or -tf).

 Running multiple db2move commands to copy schemas from one

database to another will result in deadlocks. Only one db2move

command should be issued at a time. Changes to tables in the

source schema during copy processing may mean that the data in

the target schema is not identical following a copy.

“MODE”

DDL_AND_LOAD

Creates all supported objects from the source schema, and

populates the tables with the source table data. This is the

default option.

DDL_ONLY

Creates all supported objects from the source schema, but

does not repopulate the tables.

LOAD_ONLY

Loads all specified tables from the source database to the

target database. The tables must already exist on the target.

db2move - Database Movement Tool

248 Data Movement Utilities DB2 9 BETA

This is an optional option that is only used with the COPY action.

“SCHEMA_MAP”

Allows user to rename schema when copying to target. Provides a

list of the source-target schema mapping, separated by commas,

surrounded by brackets. e.g schema_map ((s1, t1), (s2, t2)). This

would mean objects from schema s1 will be copied to schema t1 on

the target; objects from schema s2 will be copied to schema t2 on

the target. The default, and recommended, target schema name is

the source schema name. The reason for this is db2move will not

attempt to modify the schema for any qualified objects within

object bodies. Therefore, using a different target schema name may

lead to problems if there are qualified objects within the object

body.

 For example: create view FOO.v1 as ‘select c1 from FOO.t1’

 In this case, copy of schema FOO to BAR, v1 will be regenerated

as: create view BAR.v1 as ‘select c1 from FOO.t1’

 This will either fail since schema FOO does not exist on the target

database, or have an unexpected result due to FOO being different

than BAR. Maintaining the same schema name as the source will

avoid these issues. If there are cross dependencies between

schemas, all inter-dependant schemas must be copied or there may

be errors copying the objects with the cross dependencies.

 For example: create view FOO.v1 as ‘select c1 from BAR.t1’

 In this case, the copy of v1 will either fail if BAR is not copied as

well, or have an unexpected result if BAR on the target is different

than BAR from the source. db2move will not attempt to detect

cross schema dependencies.

 This is an optional option that is only used with the COPY action.

“NONRECOVERABLE”

This option allows the user to override the default behaviour of the

load to be done with COPY-NO. With the default behaviour, the

user will be forced to take backups of each tablespace that was

loaded into. When specifying this NONRECOVERABLE keyword,

the user will not be forced to take backups of the tablespaces

immediately. It is, however, highly recommended that the backups

be taken as soon as possible to ensure the newly created tables will

be properly recoverable. This is an optional option available to the

COPY action.

“OWNER”

Allows the user to change the owner of each new object created in

the target schema after a successful COPY. The default owner of

the target objects will be the connect user; if this option is

specified, ownership will be transfered to the new owner. This

option is pending due to containability Q1/2006 delivery but this

parameter will be in the first design. This is an optional option

available to the COPY action.

“TABLESPACE_MAP”

The user may specify tablespace name mappings to be used

instead of the tablespaces from the source system during a copy.

This will be an array of tablespace mappings surrounded by

brackets. For example, tablespace_map ((TS1,

db2move - Database Movement Tool

Chapter 5. Moving Data Between Systems 249DB2 9 BETA

TS2),(TS3, TS4)). This would mean that all objects from

tablespace TS1 will be copied into tablespace TS2 on the target

database and objects from tablespace TS3 will be copied into

tablespace TS4 on the target. In the case of ((T1, T2),(T2, T3)),

all objects found in T1 on the source database will be recreated in

T2 on the target database and any objects found in T2 on the

source database will be recreated in T3 on the target database. The

default is to use the same tablespace name as from the source, in

which case, the input mapping for this tablespace is not necassary.

If the specified tablespace does not exist, the copy of the objects

using that tablespace will fail and be logged in the error file.

 The user also has the option of using the SYS_ANY keyword to

indicate that the target tablespace should be chosen using the

default tablespace selection algorithm. In this case, db2move will

be able to chose any available tablespace to be used as the target.

The SYS_ANY keyword can be used for all tablespaces, example:

tablespace_map SYS_ANY. In addition, the user can specify specific

mappings for some tablespaces, and the default tablespace

selection algorithm for the remaining. For example, tablespace_map

((TS1, TS2),(TS3, TS4), SYS_ANY). This indicates that tablespace

TS1 is mapped to TS2, TS3 is mapped to TS4, but the remaining

tablespaces will be using a default tablespace target. The SYS_ANY

keyword is being used since it’s not possible to have a tablespace

starting with ″SYS″.

 This is an optional option available to the COPY action.

-l lobpaths. For IMPORT and EXPORT, if this option is specified, it will be

also used for XML paths. The default is the current directory.

 This option specifies the absolute path names where LOB or XML files are

created (as part of EXPORT) or searched for (as part of IMPORT or

LOAD). When specifying multiple paths, each must be separated by

commas; no blanks are allowed between paths. If multiple paths are

specified, EXPORT will use them in round-robin fashion. It will write one

LOB document to the first path, one to the second path, and so on up to

the last, then back to the first path. The same is true for XML documents.

If files are not found in the first path (during IMPORT or LOAD), the

second path will be used, and so on.

-u userid. The default is the logged on user ID.

 Both user ID and password are optional. However, if one is specified, the

other must be specified. If the command is run on a client connecting to a

remote server, user ID and password should be specified.

-p Password. The default is the logged on password. Both user ID and

password are optional. However, if one is specified, the other must be

specified. When the -p option is specified, but the password not supplied,

db2move will prompt for the password. This is done for security reasons.

Inputting the password through command line creates security issues. For

example, a ps -ef command would display the password. If, however,

db2move is invoked through a script, then the passwords will have to be

supplied. If the command is issued on a client connecting to a remote

server, user ID and password should be specified.

-aw Allow Warnings. When ’-aw’ is not specified, tables that experience

warnings during export are not included in the db2move.lst file (although

that table’s .ixf file and .msg file are still generated). In some scenarios

db2move - Database Movement Tool

250 Data Movement Utilities DB2 9 BETA

(such as data truncation) the user might wish to allow such tables to be

included in the db2move.lst file. Specifing this option allows tables which

receive warnings during export to be included in the .lst file.

 Examples:

v To export all tables in the SAMPLE database (using default values for all

options), issue:

 db2move sample export

v To export all tables created by userid1 or user IDs LIKE us%rid2, and with the

name tbname1 or table names LIKE %tbname2, issue:

 db2move sample export -tc userid1,us*rid2 -tn tbname1,*tbname2

v To import all tables in the SAMPLE database (LOB paths D:\LOBPATH1 and

C:\LOBPATH2 are to be searched for LOB files; this example is applicable to

Windows operating systems only), issue:

 db2move sample import -l D:\LOBPATH1,C:\LOBPATH2

v To load all tables in the SAMPLE database (/home/userid/lobpath subdirectory

and the tmp subdirectory are to be searched for LOB files; this example is

applicable to Linux and UNIX-based systems only), issue:

 db2move sample load -l /home/userid/lobpath,/tmp

v To import all tables in the SAMPLE database in REPLACE mode using the

specified user ID and password, issue:

 db2move sample import -io replace -u userid -p password

v To duplicate schema schema1 from source database dbsrc to target database

dbtgt, issue:

 db2move dbsrc COPY -sn schema1 -co TARGET_DB dbtgt USER myuser1 USING mypass1

v To duplicate schema schema1 from source database dbsrc to target database

dbtgt, rename the schema to newschema1 on the target, and map source

tablespace ts1 to ts2 on the target, issue:

 db2move dbsrc COPY -sn schema1 -co TARGET_DB dbtgt USER myuser1 USING mypass1

 SCHEMA_MAP ((schema1,newschema1)) TABLESPACE_MAP ((ts1,ts2), SYS_ANY))

 Usage notes:

v Loading data into tables containing XML columns is not supported. The

workaround is to manually issue the IMPORT or EXPORT commands, or use

the db2move -Export and db2move -Import behaviour. If these tables also

contain generated always identity columns, data cannot be imported into the

tables.

v This tool exports, imports, or loads user-created tables. If a database is to be

duplicated from one operating system to another operating system, db2move

facilitates the movement of the tables. It is also necessary to move all other

objects associated with the tables, such as aliases, views, triggers, user-defined

functions, and so on. If the import utility with the REPLACE_CREATE option is

used to create the tables on the target database, then the limitations outlined in

Using import to recreate an exported table are imposed. If unexpected errors are

encountered during the db2move import phase when the REPLACE_CREATE

option is used, examine the appropriate tabnnn.msg message file and consider

that the errors might be the result of the limitations on table creation.

v When export, import, or load APIs are called by db2move, the FileTypeMod

parameter is set to lobsinfile. That is, LOB data is kept in file separate from the

PC/IXF file, for every table.

v The LOAD command must be run locally on the machine where the database

and the data file reside. When the load API is called by db2move, the

db2move - Database Movement Tool

Chapter 5. Moving Data Between Systems 251DB2 9 BETA

NONRECOVERABLE option is used. If logretain is on, and the -lo option is INSERT,

the load operation marks the table as inaccessible and it must be dropped. The

table space where the loaded tables reside is placed in backup pending state,

and is not accessible. A full database backup, or a table space backup, is

required to take the table space out of backup pending state. Performance for

the DB2MOVE command with the IMPORT action can be improved by altering

the default buffer pool, IBMDEFAULTBP; and by updating the configuration

parameters sortheap, util_heap_sz, logfilsz, and logprimary.

v For more information on the NONRECOVERABLE recoverability option see the

Data Movement Utilities Guide and Reference.

Files Required/Generated When Using EXPORT:

v Input: None.

v Output:

EXPORT.out The summarized result of the EXPORT action.

db2move.lst The list of original table names, their corresponding PC/IXF file

names (tabnnn.ixf), and message file names (tabnnn.msg). This

list, the exported PC/IXF files, and LOB files (tabnnnc.yyy) are

used as input to the db2move IMPORT or LOAD action.

tabnnn.ixf The exported PC/IXF file of a specific table.

tabnnn.msg The export message file of the corresponding table.

tabnnnc.yyy The exported LOB files of a specific table.

 “nnn” is the table number. “c” is a letter of the alphabet. “yyy”

is a number ranging from 001 to 999.

 These files are created only if the table being exported contains

LOB data. If created, these LOB files are placed in the “lobpath”

directories. There are a total of 26 000 possible names for the

LOB files.

system.msg The message file containing system messages for creating or

deleting file or directory commands. This is only used if the

action is EXPORT, and a LOB path is specified.

Files Required/Generated When Using IMPORT:

v Input:

db2move.lst An output file from the EXPORT action.

tabnnn.ixf An output file from the EXPORT action.

tabnnnc.yyy An output file from the EXPORT action.
v Output:

IMPORT.out The summarized result of the IMPORT action.

tabnnn.msg The import message file of the corresponding table.

Files Required/Generated When Using LOAD:

v Input:

db2move.lst An output file from the EXPORT action.

tabnnn.ixf An output file from the EXPORT action.

tabnnnc.yyy An output file from the EXPORT action.

db2move - Database Movement Tool

252 Data Movement Utilities DB2 9 BETA

v Output:

LOAD.out The summarized result of the LOAD action.

tabnnn.msg The LOAD message file of the corresponding table.

Files Required/Generated When Using COPY:

v Input: None

v Output:

COPYSCHEMA.msg

An output file from the COPY action.

COPYSCHEMA.err

An output file from the COPY action.

LOADTABLE.err

An output file from the COPY action.

LOADTABLE.msg

An output file from the COPY action.
These files are timestamped and all files that are generated from one run will

have the same timestamp.

 Related reference:

v “db2look - DB2 statistics and DDL extraction tool command” in Command

Reference

db2relocatedb - Relocate database

This command renames a database, or relocates a database or part of a database

(for example, the container and the log directory) as specified in the configuration

file provided by the user. This tool makes the necessary changes to the DB2

instance and database support files.

 Authorization:

 None

 Command syntax:

�� db2relocatedb -f configFilename ��

 Command parameters:

-f configFilename

Specifies the name of the file containing the configuration information

necessary for relocating the database. This can be a relative or absolute file

name. The format of the configuration file is:

 DB_NAME=oldName,newName

 DB_PATH=oldPath,newPath

 INSTANCE=oldInst,newInst

 NODENUM=nodeNumber

 LOG_DIR=oldDirPath,newDirPath

 CONT_PATH=oldContPath1,newContPath1

 CONT_PATH=oldContPath2,newContPath2

db2move - Database Movement Tool

Chapter 5. Moving Data Between Systems 253DB2 9 BETA

...

 STORAGE_PATH=oldStoragePath1,newStoragePath1

 STORAGE_PATH=oldStoragePath2,newStoragePath2

 ...

Where:

DB_NAME

Specifies the name of the database being relocated. If the database

name is being changed, both the old name and the new name must

be specified. This is a required field.

DB_PATH

Specifies the original path of the database being relocated. If the

database path is changing, both the old path and new path must

be specified. This is a required field.

INSTANCE

Specifies the instance where the database exists. If the database is

being moved to a new instance, both the old instance and new

instance must be specified. This is a required field.

NODENUM

Specifies the node number for the database node being changed.

The default is 0.

LOG_DIR

Specifies a change in the location of the log path. If the log path is

being changed, both the old path and new path must be specified.

This specification is optional if the log path resides under the

database path, in which case the path is updated automatically.

CONT_PATH

Specifies a change in the location of table space containers. Both

the old and new container path must be specified. Multiple

CONT_PATH lines can be provided if there are multiple container

path changes to be made. This specification is optional if the

container paths reside under the database path, in which case the

paths are updated automatically. If you are making changes to

more than one container where the same old path is being replaced

by a common new path, a single CONT_PATH entry can be used. In

such a case, an asterisk (*) could be used both in the old and new

paths as a wildcard.

STORAGE_PATH

This is only applicable to databases with automatic storage

enabled. It specifies a change in the location of one of the storage

paths for the database. Both the old storage path and the new

storage path must be specified. Multiple STORAGE_PATH lines

can be given if there are several storage path changes to be made.

Blank lines or lines beginning with a comment character (#) are ignored.

 Usage notes:

 If the instance that a database belongs to is changing, the following must be done

before running this command to ensure that changes to the instance and database

support files are made:

v If a database is being moved to another instance, create the new instance.

db2relocatedb - Relocate Database

254 Data Movement Utilities DB2 9 BETA

v Copy the files and devices belonging to the databases being copied onto the

system where the new instance resides. The path names must be changed as

necessary. However, if there are already databases in the directory where the

database files are moved to, you can mistakenly overwrite the existing sqldbdir

file, thereby removing the references to the existing databases. In this scenario,

the db2relocatedb utility cannot be used. Instead of db2relocatedb, an

alternative is a redirected restore operation.

v Change the permission of the files/devices that were copied so that they are

owned by the instance owner.

If the instance is changing, the tool must be run by the new instance owner.

In a partitioned database environment, this tool must be run against every

database partition that requires changes. A separate configuration file must be

supplied for each database partition, that includes the NODENUM value of the

database partition being changed. For example, if the name of a database is being

changed, every database partition will be affected and the db2relocatedb

command must be run with a separate configuration file on each database

partition. If containers belonging to a single database partition are being moved,

the db2relocatedb command only needs to be run once on that database partition.

 Examples:

 Example 1

To change the name of the database TESTDB to PRODDB in the instance db2inst1

that resides on the path /home/db2inst1, create the following configuration file:

 DB_NAME=TESTDB,PRODDB

 DB_PATH=/home/db2inst1

 INSTANCE=db2inst1

 NODENUM=0

Save the configuration file as relocate.cfg and use the following command to

make the changes to the database files:

 db2relocatedb -f relocate.cfg

Example 2

To move the database DATAB1 from the instance jsmith on the path /dbpath to the

instance prodinst do the following:

1. Move the files in the directory /dbpath/jsmith to /dbpath/prodinst.

2. Use the following configuration file with the db2relocatedb command to make

the changes to the database files:

 DB_NAME=DATAB1

 DB_PATH=/dbpath

 INSTANCE=jsmith,prodinst

 NODENUM=0

Example 3

The database PRODDB exists in the instance inst1 on the path /databases/PRODDB.

The location of two table space containers needs to be changed as follows:

v SMS container /data/SMS1 needs to be moved to /DATA/NewSMS1.

v DMS container /data/DMS1 needs to be moved to /DATA/DMS1.

db2relocatedb - Relocate Database

Chapter 5. Moving Data Between Systems 255DB2 9 BETA

After the physical directories and files have been moved to the new locations, the

following configuration file can be used with the db2relocatedb command to make

changes to the database files so that they recognize the new locations:

 DB_NAME=PRODDB

 DB_PATH=/databases/PRODDB

 INSTANCE=inst1

 NODENUM=0

 CONT_PATH=/data/SMS1,/DATA/NewSMS1

 CONT_PATH=/data/DMS1,/DATA/DMS1

Example 4

The database TESTDB exists in the instance db2inst1 and was created on the path

/databases/TESTDB. Table spaces were then created with the following containers:

 TS1

 TS2_Cont0

 TS2_Cont1

 /databases/TESTDB/TS3_Cont0

 /databases/TESTDB/TS4/Cont0

 /Data/TS5_Cont0

 /dev/rTS5_Cont1

TESTDB is to be moved to a new system. The instance on the new system will be

newinst and the location of the database will be /DB2.

When moving the database, all of the files that exist in the /databases/TESTDB/
db2inst1 directory must be moved to the /DB2/newinst directory. This means that

the first 5 containers will be relocated as part of this move. (The first 3 are relative

to the database directory and the next 2 are relative to the database path.) Since

these containers are located within the database directory or database path, they

do not need to be listed in the configuration file. If the 2 remaining containers are

to be moved to different locations on the new system, they must be listed in the

configuration file.

After the physical directories and files have been moved to their new locations, the

following configuration file can be used with db2relocatedb to make changes to

the database files so that they recognize the new locations:

 DB_NAME=TESTDB

 DB_PATH=/databases/TESTDB,/DB2

 INSTANCE=db2inst1,newinst

 NODENUM=0

 CONT_PATH=/Data/TS5_Cont0,/DB2/TESTDB/TS5_Cont0

 CONT_PATH=/dev/rTS5_Cont1,/dev/rTESTDB_TS5_Cont1

Example 5

The database TESTDB has two database partitions on database partition servers 10

and 20. The instance is servinst and the database path is /home/servinst on both

database partition servers. The name of the database is being changed to SERVDB

and the database path is being changed to /databases on both database partition

servers. In addition, the log directory is being changed on database partition server

20 from /testdb_logdir to /servdb_logdir.

Since changes are being made to both database partitions, a configuration file must

be created for each database partition and db2relocatedb must be run on each

database partition server with the corresponding configuration file.

On database partition server 10, the following configuration file will be used:

db2relocatedb - Relocate Database

256 Data Movement Utilities DB2 9 BETA

DB_NAME=TESTDB,SERVDB

 DB_PATH=/home/servinst,/databases

 INSTANCE=servinst

 NODE_NUM=10

On database partition server 20, the following configuration file will be used:

 DB_NAME=TESTDB,SERVDB

 DB_PATH=/home/servinst,/databases

 INSTANCE=servinst

 NODE_NUM=20

 LOG_DIR=/testdb_logdir,/servdb_logdir

Example 6

The database MAINDB exists in the instance maininst on the path /home/maininst.

The location of four table space containers needs to be changed as follows:

 /maininst_files/allconts/C0 needs to be moved to /MAINDB/C0

 /maininst_files/allconts/C1 needs to be moved to /MAINDB/C1

 /maininst_files/allconts/C2 needs to be moved to /MAINDB/C2

 /maininst_files/allconts/C3 needs to be moved to /MAINDB/C3

After the physical directories and files are moved to the new locations, the

following configuration file can be used with the db2relocatedb command to make

changes to the database files so that they recognize the new locations.

A similar change is being made to all of the containters; that is,

/maininst_files/allconts/ is being replaced by /MAINDB/ so that a single entry

with the wildcard character can be used:

 DB_NAME=MAINDB

 DB_PATH=/home/maininst

 INSTANCE=maininst

 NODE_NUM=0

 CONT_PATH=/maininst_files/allconts/*, /MAINDB/*

 Related reference:

v “db2inidb - Initialize a mirrored database command” in Command Reference

Delimiter restrictions for moving data

 Delimiter restrictions:

 It is the user’s responsibility to ensure that the chosen delimiter character is not

part of the data to be moved. If it is, unexpected errors might occur. The following

restrictions apply to column, string, DATALINK, and decimal point delimiters

when moving data:

v Delimiters are mutually exclusive.

v A delimiter cannot be binary zero, a line-feed character, a carriage-return, or a

blank space.

v The default decimal point (.) cannot be a string delimiter.

v The following characters are specified differently by an ASCII-family code page

and an EBCDIC-family code page:

– The Shift-In (0x0F) and the Shift-Out (0x0E) character cannot be delimiters for

an EBCDIC MBCS data file.

– Delimiters for MBCS, EUC, or DBCS code pages cannot be greater than 0x40,

except the default decimal point for EBCDIC MBCS data, which is 0x4b.

db2relocatedb - Relocate Database

Chapter 5. Moving Data Between Systems 257DB2 9 BETA

– Default delimiters for data files in ASCII code pages or EBCDIC MBCS code

pages are:

 " (0x22, double quotation mark; string delimiter)

 , (0x2c, comma; column delimiter)

– Default delimiters for data files in EBCDIC SBCS code pages are:

 " (0x7F, double quotation mark; string delimiter)

 , (0x6B, comma; column delimiter)

– The default decimal point for ASCII data files is 0x2e (period).

– The default decimal point for EBCDIC data files is 0x4B (period).

– If the code page of the server is different from the code page of the client, it is

recommended that the hex representation of non-default delimiters be

specified. For example,

 db2 load from ... modified by chardel0x0C coldelX1e ...

The following information about support for double character delimiter recognition

in DEL files applies to the export, import, and load utilities:

v Character delimiters are permitted within the character-based fields of a DEL

file. This applies to fields of type CHAR, VARCHAR, LONG VARCHAR, or

CLOB (except when lobsinfile is specified). Any pair of character delimiters

found between the enclosing character delimiters is imported or loaded into the

database. For example,

 "What a ""nice"" day!"

will be imported as:

 What a "nice" day!

In the case of export, the rule applies in reverse. For example,

 I am 6" tall.

will be exported to a DEL file as:

 "I am 6"" tall."

v In a DBCS environment, the pipe (|) character delimiter is not supported.

 Related reference:

v “File type modifiers for the export utility” on page 27

v “File type modifiers for the import utility” on page 87

v “File type modifiers for the load utility” on page 188

Moving data between typed tables

 The DB2 export and import utilities can be used to move data out of, and into,

typed tables. Typed tables can be in a hierarchy. Data movement across hierarchies

can include:

v Movement from one hierarchy to an identical hierarchy.

v Movement from one hierarchy to a sub-section of a larger hierarchy.

v Movement from a sub-section of a large hierarchy to a separate hierarchy.

The IMPORT CREATE option allows you to create both the table hierarchy and the

type hierarchy.

Identification of types in a hierarchy is database dependent. This means that in

different databases, the same type has a different identifier. Therefore, when

moving data between these databases, a mapping of the same types must be done

to ensure that the data is moved correctly.

Delimiter restrictions for moving data

258 Data Movement Utilities DB2 9 BETA

Before each typed row is written out during an export operation, an identifier is

translated into an index value. This index value can be any number from one to

the number of relevant types in the hierarchy. Index values are generated by

numbering each type when moving through the hierarchy in a specific order. This

order is called the traverse order. It is the order of proceeding top-to-bottom,

left-to-right through all of the supertables and subtables in the hierarchy. The

traverse order is important when moving data between table hierarchies, because it

determines where the data is moved in relation to other data.

One method is to proceed from the top of the hierarchy (or the root table), down

the hierarchy (subtables) to the bottom subtable, then back up to its supertable,

down to the next “right-most” subtable(s), then back up to next higher supertable,

down to its subtables, and so on.

The following figure shows a hierarchy with four valid traverse orders:

v Person, Employee, Manager, Architect, Student.

v Person, Student, Employee, Manager, Architect (this traverse order is marked

with the dotted line).

v Person, Employee, Architect, Manager, Student.

v Person, Student, Employee, Architect, Manager.

 Related concepts:

v “Export Overview” on page 1

v “Import Overview” on page 35

Moving Data Between Typed Tables - Details

Traverse Order

 There is a default traverse order, in which all relevant types refer to all reachable

types in the hierarchy from a given starting point in the hierarchy. The default

order includes all tables in the hierarchy, and each table is ordered by the scheme

used in the OUTER order predicate. There is also a user-specified traverse order, in

Person

Person_t

(Oid, Name, Age)

Employee

Employee_t

(SerialNum, Salary, REF

(Department_t))

Manager

Manager_t

(Bonus)

Student

Student_t

(SerialNum, Marks)

Architect

Architect_t

(StockOption)

8

5

4 7

6

3 2

1

Figure 12.

Chapter 5. Moving Data Between Systems 259DB2 9 BETA

which the user defines (in a traverse order list) the relevant types to be used. The

same traverse order must be used when invoking the export utility and the import

utility.

If you are specifying the traverse order, remember that the subtables must be

traversed in PRE-ORDER fashion (that is, each branch in the hierarchy must be

traversed to the bottom before a new branch is started).

Default Traverse Order

The default traverse order behaves differently when used with different file

formats. Assume identical table hierarchy and type relationships in the following:

Exporting data to the PC/IXF file format creates a record of all relevant types, their

definitions, and relevant tables. Export also completes the mapping of an index

value to each table. During import, this mapping is used to ensure accurate

movement of the data to the target database. When working with the PC/IXF file

format, you should use the default traverse order.

With the ASC, DEL, or WSF file format, the order in which the typed rows and the

typed tables were created could be different, even though the source and target

hierarchies might be structurally identical. This results in time differences that the

default traverse order will identify when proceeding through the hierarchies. The

creation time of each type determines the order taken through the hierarchy at

both the source and the target when using the default traverse order. Ensure that

the creation order of each type in both the source and the target hierarchies is

identical, and that there is structural identity between the source and the target. If

these conditions cannot be met, select a user-specified traverse order.

User-Specified Traverse Order

If you want to control the traverse order through the hierarchies, ensure that the

same traverse order is used for both the export and the import utilities. Given:

v An identical definition of subtables in both the source and the target databases

v An identical hierarchical relationship among the subtables in both the source

and target databases

v An identical traverse order

the import utility guarantees the accurate movement of data to the target database.

Although you determine the starting point and the path down the hierarchy when

defining the traverse order, each branch must be traversed to the end before the

next branch in the hierarchy can be started. The export and import utilities look for

violations of this condition within the specified traverse order.

 Related reference:

v “Delimited ASCII (DEL) File Format” on page 292

v “Non-delimited ASCII (ASC) file format” on page 297

v “PC Version of IXF File Format” on page 300

v “Worksheet File Format (WSF)” on page 337

Selection During Data Movement

 The movement of data from one hierarchical structure of typed tables to another is

done through a specific traverse order and the creation of an intermediate flat file.

The export utility (in conjunction with the traverse order) controls what is placed

260 Data Movement Utilities DB2 9 BETA

in that file. You only need to specify the target table name and the WHERE clause.

The export utility uses these selection criteria to create an appropriate intermediate

file.

The import utility controls what is placed in the target database. You can specify

an attributes list at the end of each subtable name to restrict the attributes that are

moved to the target database. If no attributes list is used, all of the columns in

each subtable are moved.

The import utility controls the size and the placement of the hierarchy being

moved through the CREATE, INTO table-name, UNDER, and AS ROOT TABLE

parameters.

 Related reference:

v “IMPORT ” on page 49

Examples of Moving Data Between Typed Tables

 Examples in this section are based on the following hierarchical structure:

 Example 1

To export an entire hierarchy and then recreate it through an import operation:

 DB2 CONNECT TO Source_db

 DB2 EXPORT TO entire_hierarchy.ixf OF IXF HIERARCHY STARTING Person

 DB2 CONNECT TO Target_db

 DB2 IMPORT FROM entire_hierarchy.ixf OF IXF CREATE INTO

 HIERARCHY STARTING Person AS ROOT TABLE

Each type in the hierarchy is created if it does not exist. If these types already

exist, they must have the same definition in the target database as in the source

database. An SQL error (SQL20013N) is returned if they are not the same. Since

new hierarchy is being created, none of the subtables defined in the data file being

moved to the target database (Target_db) can exist. Each of the tables in the source

database hierarchy is created. Data from the source database is imported into the

correct subtables of the target database.

Example 2

Person

Person_t

(Oid, Name, Age)

Department

Department_t

(Oid, Name, Headcount)

Employee

Employee_t

(SerialNum, Salary, REF (Department_t))

Manager

Manager_t

(Bonus)

Student

Student_t

(SerialNum, Marks)

Architect

Architect_t

(StockOption)

Figure 13.

Chapter 5. Moving Data Between Systems 261DB2 9 BETA

A more complex example shows how to export the entire hierarchy of the source

database and import it to the target database. Although all of the data for those

people over the age of 20 will be exported, only selected data will be imported to

the target database:

 DB2 CONNECT TO Source_db

 DB2 EXPORT TO entire_hierarchy.del OF DEL HIERARCHY (Person,

 Employee, Manager, Architect, Student) WHERE Age>=20

 DB2 CONNECT TO Target_db

 DB2 IMPORT FROM entire_hierarchy.del OF DEL INSERT INTO (Person,

 Employee(Salary), Architect) IN HIERARCHY (Person, Employee,

 Manager, Architect, Student)

The target tables Person, Employee, and Architect must all exist. Data is imported

into the Person, Employee, and Architect subtables. That is, the following will be

imported:

v All columns in Person into Person.

v All columns in Person plus Salary in Employee into Employee.

v All columns in Person plus Salary in Employee, plus all columns in Architect

into Architect.

Columns SerialNum and REF(Employee_t) will not be imported into Employee or its

subtables (that is, Architect, which is the only subtable having data imported into

it).

Note: Because Architect is a subtable of Employee, and the only import column

specified for Employee is Salary, Salary will also be the only

Employee-specific column imported into Architect. That is, neither

SerialNum nor REF(Employee_t) columns are imported into either Employee

or Architect rows.

Data for the Manager and the Student tables is not imported.

Example 3

This example shows how to export from a regular table, and import as a single

subtable in a hierarchy. The EXPORT command operates on regular (non-typed)

tables, so there is no Type_id column in the data file. The modifier no_type_id is

used to indicate this, so that the import utility does not expect the first column to

be the Type_id column.

 DB2 CONNECT TO Source_db

 DB2 EXPORT TO Student_sub_table.del OF DEL SELECT * FROM

 Regular_Student

 DB2 CONNECT TO Target_db

 DB2 IMPORT FROM Student_sub_table.del OF DEL METHOD P(1,2,3,5,4)

 MODIFIED BY NO_TYPE_ID INSERT INTO HIERARCHY (Student)

In this example, the target table Student must exist. Since Student is a subtable, the

modifier no_type_id is used to indicate that there is no Type_id in the first column.

However, you must ensure that there is an existing Object_id column, in addition

to all of the other attributes that exist in the Student table. Object-id is expected to

be the first column in each row imported into the Student table. The METHOD

clause reverses the order of the last two attributes.

 Related concepts:

v “Moving data between typed tables” on page 258

262 Data Movement Utilities DB2 9 BETA

Using replication to move data

 Replication allows you to copy data on a regular basis to multiple remote

databases. If you need to have updates to a master database automatically copied

to other databases, you can use the replication features to specify what data should

be copied, which database tables the data should be copied to, and how often the

updates should be copied. The replication features are part of a larger IBM solution

for replicating data in small and large enterprises.

The IBM replication tools are a set of programs and DB2 database tools that copy

data between distributed relational database management systems:

v Between DB2 database platforms.

v Between DB2 database platforms and host databases supporting Distributed

Relational Database Architecture™ (DRDA) connectivity.

v Between host databases that support DRDA connectivity.

Data can also be replicated to non-IBM relational database management systems by

way of Websphere Federation Server.

You can use the IBM replication tools to define, synchronize, automate, and

manage copy operations from a single control point for data across your enterprise.

The replication tools in IBM DB2 V9.1 offer replication between relational

databases. They also work in conjunction with IMS™ DataPropagator™ (formerly

DPropNR) to replicate IMS and VSAM data, and with Lotus NotesPump to

replicate to and from Lotus Notes® databases.

Replication allows you to give end users and applications access to production

data without putting extra load on the production database. You can copy the data

to a database that is local to a user or an application, rather than have them access

the data remotely. A typical replication scenario involves a source table with copies

in one or more remote databases; for example, a central bank and its local

branches. At predetermined times, automatic updates of the databases takes place,

and all changes to the source database are copied to the target database tables.

The replication tools allow you to customize the copy table structure. You can use

SQL when copying to the target database to enhance the data being copied. You

can produce read-only copies that duplicate the source table, capture data at a

specified point in time, provide a history of changes, or stage data to be copied to

additional target tables. Moreover, you can create read-write copies that can be

updated by end users or applications, and then have the changes replicated back

to the master table, or to peer tables at multiple servers. You can replicate views of

source tables, or views of copies. Event-driven replication is also possible.

You can replicate data between DB2 databases on the following platforms: AIX®,

iSeries, HP-UX, Linux, Windows, OS/390, SCO UnixWare, Solaris operating

system, Sequent®, VM, and VSE. You can also replicate data between DB2 and the

following non-DB2 databases: Informix®, Microsoft® Jet, Microsoft SQL Server,

Oracle, Sybase, and Sybase SQLAnywhere. In conjunction with other IBM

products, you can replicate DB2 data to and from IMS, VSAM, or Lotus Notes.

Finally, you can also replicate data to DB2 Everywhere on Windows CE, or Palm

OS devices.

 Related concepts:

v “The IBM Replication Tools by Component” on page 264

Chapter 5. Moving Data Between Systems 263DB2 9 BETA

IBM Replication Tools

The IBM Replication Tools by Component

 IBM offers two primary replication solutions: Q replication and SQL replication.

The primary components of Q replication are the Q Capture program and the Q

Apply program. The primary components of SQL replication are the Capture

program and Apply program. Both types of replication share the Replication Alert

Monitor tool. You can set up and administer these replication components using

the Replication Center and the ASNCLP command-line program.

The following list briefly summarizes these replication components:

 Q Capture program:

 Reads the DB2 recovery log looking for changes to DB2 source tables and

translates committed source data into WebSphere MQ messages that can be

published in XML format to a subscribing application, or replicated in a compact

format to the Q Apply program.

 Q Apply program:

 Takes WebSphere MQ messages from a queue, transforms the messages into SQL

statements, and updates a target table or stored procedure. Supported targets

include DB2 databases or subsystems and Oracle, Sybase, Informix and Microsoft

SQL Server databases that are accessed through federated server nicknames.

 Capture program:

 Reads the DB2 recovery log for changes made to registered source tables or views

and then stages committed transactional data in relational tables called change-data

(CD) tables, where they are stored until the target system is ready to copy them.

SQL replication also provides Capture triggers that populate a staging table called

a consistent-change-data (CCD) table with records of changes to non-DB2 source

tables.

 Apply program:

 Reads data from staging tables and makes the appropriate changes to targets. For

non-DB2 data sources, the Apply program reads the CCD table through that table's

nickname on the federated database and makes the appropriate changes to the

target table.

 Replication Alert Monitor:

 A utility that checks the health of the Q Capture, Q Apply, Capture, and Apply

programs. It checks for situations in which a program terminates, issues a warning

or error message, reaches a threshold for a specified value, or performs a certain

action, and then issues notifications to an email server, pager, or the z/OS console.

 Use the Replication Center to:

v Define registrations, subscriptions, publications, queue maps, alert conditions,

and other objects.

264 Data Movement Utilities DB2 9 BETA

v Start, stop, suspend, resume, and reinitialize the replication programs.

v Specify the timing of automated copying.

v Specify SQL enhancements to the data.

v Define relationships between the source and the target tables.

 Related concepts:

v “Using replication to move data” on page 263

Moving data using the CURSOR file type

 By specifying the CURSOR file type when using the LOAD command, you can

load the results of an SQL query directly into a target table without creating an

intermediate exported file. Additionally, you can load data from another database

by referencing a nickname within the SQL query, by using the DATABASE option

within the DECLARE CURSOR statement, or by using the sqlu_remotefetch_entry

media entry when using the API interface.

There are three approaches for moving data using the CURSOR file type. The first

approach uses the Command Line Processor (CLP), the second the API and the

third uses the ADMIN_CMD procedure. The key difference between the CLP and

the ADMIN_CMD procedure are outlined in the following table.

 Table 18. . Differences between the CLP and ADMIN_CMD procedure.

Differences CLP ADMIN_CMD_procedure

Syntax The query statement as well

as the source database used

by the cursor are defined

outside of the LOAD

command using a DECLARE

CURSOR statement.

The query statement as well

as the source database used

by the cursor is defined

within the LOAD command

using the LOAD from (

DATABASE database-alias

query-statement)

User authorization for

accessing a different database

If the data is in a different

database than the one you

currently connect to, the

DATABASE keyword must

be used in the DECLARE

CURSOR statement. You can

specify the user id and

password in the same

statement as well. If the user

id and password are not

specified in the DECLARE

CURSOR statement, the user

id and password explicitly

specified for the source

database connection are used

to access the target database.

If the data is in a different

database than the one you

are currently connected to,

the DATABASE keyword

must be used in the LOAD

command before the query

statement. The user id and

password explicitly specified

for the source database

connection are required to

access the target database.

You cannot specify a userid

or password for the source

database. Therefore, if no

userid and password were

specified when the

connection to the target

database was made, or the

userid and password

specified cannot be used to

authenticate against the

source database, the

ADMIN_CMD procedure

cannot be used to perform

the load.

Chapter 5. Moving Data Between Systems 265DB2 9 BETA

To execute a LOAD FROM CURSOR operation from the CLP, a cursor must first be

declared against an SQL query. Once this is declared, you can issue the LOAD

command using the declared cursor’s name as the cursorname and CURSOR as the

file type.

For example:

1. Suppose a source and target table both reside in the same database with the

following definitions:

Table ABC.TABLE1 has 3 columns:

v ONE INT

v TWO CHAR(10)

v THREE DATE
Table ABC.TABLE2 has 3 columns:

v ONE VARCHAR

v TWO INT

v THREE DATE
Executing the following CLP commands will load all the data from

ABC.TABLE1 into ABC.TABLE2:

DECLARE mycurs CURSOR FOR SELECT TWO, ONE, THREE FROM abc.table1

 LOAD FROM mycurs OF cursor INSERT INTO abc.table2

Note: The above example shows how to load from an SQL query through the

CLP. However, loading from an SQL query can also be accomplished

through the db2Load API. Define the piSourceList of the sqlu_media_list

structure to use the sqlu_statement_entry structure and SQLU_SQL_STMT

media type and define the piFileType value as SQL_CURSOR.

2. Suppose the source and target tables reside in different databases with the

following definitions:

Table ABC.TABLE1 in database ’dbsource’ has 3 columns:

v ONE INT

v TWO CHAR(10)

v THREE DATE

Table ABC.TABLE2 in database ’dbtarget’ has 3 columns:

v ONE VARCHAR

v TWO INT

v THREE DATE

You can declare a nickname against the source database, and then declare a cursor

against this nickname, and invoke the LOAD command with the FROM CURSOR

option, as demonstrated in the following example:

 <enable federation and define datasource>

 CREATE NICKNAME myschema1.table1 FOR dsdbsource.abc.table1

 DECLARE mycurs CURSOR FOR SELECT TWO,ONE,THREE FROM myschema1.table1

 LOAD FROM mycurs OF cursor INSERT INTO abc.table2

Or, you can use the DATABASE option of the DECLARE CURSOR statement, as

demonstrated in the following example:

266 Data Movement Utilities DB2 9 BETA

DECLARE mycurs CURSOR DATABASE dbsource FOR SELECT TWO,ONE,THREE FROM abc.table1

 LOAD FROM mycurs OF cursor INSERT INTO abc.table2

Using the DATABASE option of the DECLARE CURSOR statement (also known as

the remotefetch media type when using the Load API) has some benefits over the

nickname approach:

Performance

Fetching of data using the remotefetch media type is tightly integrated within a

load operation. There are fewer layers of transition to fetch a record compared to

the nickname approach. Additionally, when source and target tables are distributed

identically in a multi-partition database, the load utility can parallelize the fetching

of data, which can further improve performance.

Ease of use

There is no need to enable federation, define a remote datasource, or declare a

nickname. Specifying the DATABASE option (and the USER and USING options if

necessary) is all that is required.

While this method can be used with cataloged databases, the use of nicknames

provides a robust facility for fetching from various data sources which cannot

simply be cataloged.

To support this remotefetch functionality, the load utility makes use of

infrastructure which supports the SOURCEUSEREXIT facility. The load utility

spawns a process which executes as an application to manage the connection to the

source database and perform the fetch. This application is associated with its own

transaction and is not associated with the transaction under which the load utility

is running.

Notes:

1. The previous example shows how to load from an SQL query against a

cataloged database through the CLP using the DATABASE option of the

DECLARE CURSOR statement. However, loading from an SQL query against a

cataloged database can also be done through the db2Load API, by defining the

piSourceList and piFileTypevalues of the db2LoadStruct structure to use the

sqlu_remotefetch_entry media entry and SQLU_REMOTEFETCH media type

respectively.

2. As demonstrated in the previous example, the source column types of the SQL

query do not need to be identical to their target column types, although they

do have to be compatible.

 Restrictions:

 When loading from a cursor defined using the DATABASE option (or equivalently

when using the sqlu_remotefetch_entry media entry with the db2Load API), the

following restrictions apply:

1. The SOURCEUSEREXIT options cannot be specified concurrently.

2. The METHOD N option is not supported.

3. The USEDEFAULTS option is not supported.

 Related tasks:

v “Copying a schema” in Administration Guide: Implementation

Chapter 5. Moving Data Between Systems 267DB2 9 BETA

Related reference:

v “Assignments and comparisons” in SQL Reference, Volume 1

v “db2Load - Load data into a table” on page 161

v “ADMIN_CMD procedure – Run administrative commands” in Administrative

SQL Routines and Views

v “LOAD command using the ADMIN_CMD procedure” on page 145

v “DECLARE CURSOR statement” in SQL Reference, Volume 2

v “LOAD ” on page 132

Moving data using a customized application (user exit)

 The Load SOURCEUSEREXIT option provides a facility through which the load

utility can execute a customized script or executable, referred to herein as the user

exit. The purpose of the user exit is to populate one or more named pipes with

data that is simultaneously read from by the load utility. In a multi-partition

databases, multiple instances of the user exit can be invoked concurrently to

achieve parallelism of the input data.

As Figure 14 shows, the load utility creates a one or more named pipes and

spawns a process to execute your customized executable. Your user exit feeds data

into the named pipe(s) while the load utility simultaneously reads.

 The data fed into the pipe must reflect the load options specified, including the file

type and any file type modifiers. The load utility does not directly read the data

files specified. Instead, the data files specified are passed as arguments to your

user exit when it is executed.

Figure 14. The Load utility reads from the pipe and processes the incoming data.

268 Data Movement Utilities DB2 9 BETA

Invoking your user exit:

 The user exit must reside in the bin subdirectory of the DB2 installation directory

(often known as sqllib). The load utility invokes the user exit executable with the

following command line arguments:

<base pipename> <number of source media>

<source media 1> <source media 2> ... <userexit ID>

<number of userexits> <dbpartition number>

Where:

< base pipename >

Is the base name for named-pipes that the Load utility creates and reads

data from. The utility creates one pipe for every source file provided to the

LOAD command, and each of these pipes is appended with .xxx, where

xxx is the index of the source file provided. For example, if there are 2

source files provided to the LOAD command, and the <base pipename>

argument passed to the user exit is pipe123, then the two named pipes that

your user exit should feed with data are pipe123.000 and pipe123.001. In

a partitioned database environment, the load utility appends the database

partition (DBPARTITION) number .yyy to the base pipename, resulting in

the pipename pipe123.xxx.yyy..

<number of source media>

Is the number of media arguments which follow.

<source media 1> <source media 2> ...

Is the list of one or more source files specified in the LOAD command.

Each source file is placed inside double quotation marks.

<userexit ID>

Is a special value useful when the PARALLELIZE option is enabled. This

integer value (from 1 to N, where N is the total number of user exits being

spawned) identifies a particular instance of a running user exit. When the

PARALLELIZE option is not enabled, this value defaults to 1.

<number of userexits>

Is a special value useful when the PARALLELIZE option is enabled. This

value represents the total number of concurrently running user exits. When

the PARALLELIZE option is not enabled, this value defaults to 1.

<dbpartition number>

Is a special value useful when the PARALLELIZE option is enabled. This is

the database partition (DBPARTITION) number on which the user exit is

executing. When the PARALLELIZE option is not enabled, this value

defaults to 0.

 Additional options and features:

 The following section describes additional SOURCEUSEREXIT facility options:

REDIRECT

This option allows you to pass data into the STDIN handle or capture data

from the STDOUT and STDERR handles of the user exit process.

INPUT FROM BUFFER <buffer>

Allows you to pass information directly into the STDIN input stream of

your user exit. After spawning the process which executes the user exit, the

load utility acquires the file-descriptor to the STDIN of this new process

and passes in the <buffer> provided. The user exit reads from STDIN to

Chapter 5. Moving Data Between Systems 269DB2 9 BETA

acquire the information. The load utility simply sends the contents of

<buffer> to the user exit using STDIN and does not interpret or modify its

contents. For example, if your user exit is designed to read two values

from STDIN, an 8 byte user-id and an 8 byte password, your user exit

executable written in C might contain the following lines:

rc = read (stdin, pUserID, 8);

rc = read (stdin, pPasswd, 8);

A user could pass this information using the INPUT FROM BUFFER

option as shown in the following LOAD command:

LOAD FROM myfile1 OF DEL INSERT INTO table1

SOURCEUSEREXIT myuserexit1 REDIRECT INPUT FROM BUFFER myuseridmypasswd

Note: The load utility limits the size of the <buffer> to the maximum size

of a LOB value. However, from within the command line processor

(CLP), the size of the <buffer> is restricted to the maximum size of a

CLP statement. From within CLP, it is also recommended that the

<buffer> contain only traditional ASCII characters. These issues can

be avoided if the load utility is invoked using the db2Load API, or if

the INPUT FROM FILE option is used instead.

INPUT FROM FILE <filename>

Allows you to pass the contents of a client side file directly into the STDIN

input stream of your user exit. This option is almost identical to the

INPUT FROM BUFFER option, however this option avoids the potential

CLP limitation. The filename must be a fully qualified client side file and

must not be larger than the maximum size of a LOB value.

OUTPUT TO FILE < filename>

Allows you to capture the STDOUT and STDERR streams from your user

exit process into a server side file. After spawning the process which

executes the user exit executable, the load utility redirects the STDOUT

and STDERR handles from this new process into the filename specified.

This option is useful for debugging and logging errors and activity within

your user exit. The filename must be a fully qualified server side file. The

filename must be a fully qualified server side file. When the

PARALLELIZE option is enabled, one file exists per user exit and each file

appends a 3 digit numeric identifier, such as filename.000.

PARALLELIZE

This option can increase the throughput of data coming into the load

utility by invoking multiple user exit processes simultaneously. This option

is only applicable to a multi-partition database. The number of user exit

instances invoked is equal to the number of distribution agents if data is to

be distributed across multiple database partitions during the load

operation, otherwise it is equal to the number of loading agents.

 The <userexit ID> and <number of userexits> and <dbpartition

number>arguments passed into each user exit reflect the unique identifier (1 to N),

the total number of user exits (N), and the database partition (DBPARTITION)

number on which the user exit instance is running, respectively. You should ensure

that any data written to the named pipe by each user exit process is not duplicated

by the other concurrent processes. While there are many ways your user exit

application might accomplish this, these values could be helpful to ensure data is

not duplicated. For example, if each record of data contains a unique integer

column value, your user exit application could use the <userexit ID> and <number

270 Data Movement Utilities DB2 9 BETA

of userexits> values to ensure that each user exit instance returns a unique result

set into its named pipe. Your user exit application might use the MODULUS

property in the following way:

i = <userexit ID>

N = <number of userexits>

foreach record

{

 if ((unique-integer MOD N) == i)

 {

 write this record to my named-pipe

 }

}

The number of user exit processes spawned depends on the distribution mode

specified for database partitioning:

1. As Figure 15 shows, one user exit process is spawned for every

distribution-agent when PARTITION_AND_LOAD (default) or

PARTITION_ONLY is specified.

Figure 15. Demonstrates the distrubution mode when PARTITION_AND_LOAD (default) or

PARTITION_ONLY is specified.

Chapter 5. Moving Data Between Systems 271DB2 9 BETA

2. As Figure 16 shows, one user exit process is spawned for every load-agent

when LOAD_ONLY or LOAD_ONLY_VERIFY_PART is specified.

 Restrictions:

v The LOAD_ONLY and LOAD_ONLY_VERIFY_PART partitioned-db-cfg mode

options are not supported when the SOURCEUSEREXIT PARALLELIZE option

is not specified.

 Related concepts:

v “Load overview” on page 102

v “Loading data in a partitioned database environment - hints and tips” on page

235

v “Moving data using the CURSOR file type” on page 265

v “Schemas” in SQL Reference, Volume 1

 Related tasks:

v “Copying a schema” in Administration Guide: Implementation

v “Restarting a failed copy schema operation” in Administration Guide:

Implementation

 Related reference:

v “LOAD ” on page 132

Figure 16. Demonstrates the distrubution mode when LOAD_ONLY or

LOAD_ONLY_VERIFY_PART is specified.

272 Data Movement Utilities DB2 9 BETA

v “Load configuration options for partitioned database environments” on page 227

v “db2Load - Load data into a table” on page 161

v “sqlu_media_list data structure” in Administrative API Reference

Chapter 5. Moving Data Between Systems 273DB2 9 BETA

274 Data Movement Utilities DB2 9 BETA

Appendix A. How to read the syntax diagrams

 Throughout this book, syntax is described using the structure defined as follows:

Read the syntax diagrams from left to right and top to bottom, following the path

of the line.

The ��─── symbol indicates the beginning of a syntax diagram.

The ───� symbol indicates that the syntax is continued on the next line.

The �─── symbol indicates that the syntax is continued from the previous line.

The ──�� symbol indicates the end of a syntax diagram.

Syntax fragments start with the ├─── symbol and end with the ───┤ symbol.

Required items appear on the horizontal line (the main path).

�� required_item ��

Optional items appear below the main path.

�� required_item

optional_item
 ��

If an optional item appears above the main path, that item has no effect on

execution, and is used only for readability.

��

required_item
 optional_item

��

If you can choose from two or more items, they appear in a stack.

If you must choose one of the items, one item of the stack appears on the main

path.

�� required_item required_choice1

required_choice2
 ��

If choosing one of the items is optional, the entire stack appears below the main

path.

�� required_item

optional_choice1

optional_choice2

 ��

© Copyright IBM Corp. 1993, 2006 275DB2 9 BETA

If one of the items is the default, it will appear above the main path, and the

remaining choices will be shown below.

��

required_item
 default_choice

optional_choice

optional_choice

��

An arrow returning to the left, above the main line, indicates an item that can be

repeated. In this case, repeated items must be separated by one or more blanks.

��

required_item

�

repeatable_item

��

If the repeat arrow contains a comma, you must separate repeated items with a

comma.

��

required_item

�

 ,

repeatable_item

��

A repeat arrow above a stack indicates that you can make more than one choice

from the stacked items or repeat a single choice.

Keywords appear in uppercase (for example, FROM). They must be spelled exactly

as shown. Variables appear in lowercase (for example, column-name). They

represent user-supplied names or values in the syntax.

If punctuation marks, parentheses, arithmetic operators, or other such symbols are

shown, you must enter them as part of the syntax.

Sometimes a single variable represents a larger fragment of the syntax. For

example, in the following diagram, the variable parameter-block represents the

whole syntax fragment that is labeled parameter-block:

�� required_item parameter-block ��

parameter-block:

 parameter1

parameter2

parameter3

parameter4

Adjacent segments occurring between “large bullets” (*) may be specified in any

sequence.

�� required_item item1 * item2 * item3 * item4 ��

How to read the syntax diagrams

276 Data Movement Utilities DB2 9 BETA

The above diagram shows that item2 and item3 may be specified in either order.

Both of the following are valid:

 required_item item1 item2 item3 item4

 required_item item1 item3 item2 item4

How to read the syntax diagrams

Appendix A. How to read the syntax diagrams 277DB2 9 BETA

How to read the syntax diagrams

278 Data Movement Utilities DB2 9 BETA

Appendix B. Differences between the import and load utility

 The following table summarizes the important differences between the DB2 load

and import utilities.

 Import Utility Load Utility

Slow when moving large amounts of data. Faster than the import utility when moving

large amounts of data, because the load

utility writes formatted pages directly into

the database.

Limited exploitation of intra-partition

parallelism.

Exploitation of intra-partition parallelism.

Typically, this requires symmetric

multiprocessor (SMP) machines.

No FASTPARSE support. FASTPARSE support, providing reduced

data checking of user-supplied data.

Supports hierarchical data. Does not support hierarchical data.

Creation of tables, hierarchies, and indexes

supported with PC/IXF format.

Tables and indexes must exist.

No support for importing into materialized

query tables.

Support for loading into materialized query

tables.

WSF format is supported. WSF format is not supported.

No BINARYNUMERICS support. BINARYNUMERICS support.

No PACKEDDECIMAL support. PACKEDDECIMAL support.

No ZONEDDECIMAL support. ZONEDDECIMAL support.

Cannot override columns defined as

GENERATED ALWAYS.

Can override GENERATED ALWAYS

columns, by using the

GENERATEDOVERRIDE and

IDENTITYOVERRIDE file type modifiers.

Supports import into tables, views and

nicknames.

Supports loading into tables only.

All rows are logged. Minimal logging is performed.

Trigger support. No trigger support.

If an import operation is interrupted, and a

commitcount was specified, the table is usable

and will contain the rows that were loaded

up to the last COMMIT. The user can restart

the import operation, or accept the table as

is.

If a load operation is interrupted, and a

savecount was specified, the table remains in

load pending state and cannot be used until

the load operation is restarted, a load

terminate operation is invoked, or until the

table space is restored from a backup image

created some time before the attempted load

operation.

Space required is approximately equivalent

to the size of the largest index plus 10%.

This space is obtained from the temporary

table spaces within the database.

Space required is approximately equivalent

to the sum of the size of all indexes defined

on the table, and can be as much as twice

this size. This space is obtained from

temporary space within the database.

All constraints are validated during an

import operation.

The load utility checks for uniqueness and

computes generated column values, but all

other constraints must be checked using SET

INTEGRITY.

© Copyright IBM Corp. 1993, 2006 279DB2 9 BETA

Import Utility Load Utility

The key values are inserted into the index

one at a time during an import operation.

The key values are sorted and the index is

built after the data has been loaded.

If updated statistics are required, the

runstats utility must be run after an import

operation.

Statistics can be gathered during the load

operation if all the data in the table is being

replaced.

You can import into a host database through

DB2 Connect.

You cannot load into a host database.

Import files must exist on the client from

which the import utility is invoked.

Depending on the options specified, load

files or pipes can reside either on the

database partition(s) that contain the

database, or on the remotely connected

client from which the load utility is invoked.

A backup image is not required. Because the

import utility uses SQL inserts, the activity

is logged, and no backups are required to

recover these operations in case of failure.

A backup image can be created during the

load operation.

 Related concepts:

v “Import Overview” on page 35

v “Load overview” on page 102

 Related reference:

v “IMPORT ” on page 49

v “LOAD ” on page 132

280 Data Movement Utilities DB2 9 BETA

Appendix C. Export/Import/Load Sessions - API Sample

Program

The following sample program shows how to:

v Export data to a file

v Import data to a table

v Load data into a table

v Check the status of a load operation

The source file for this sample program (tbmove.sqc) can be found in the

\sqllib\samples\c directory. It contains both DB2 APIs and embedded SQL calls.

The script file bldapp.cmd, located in the same directory, contains the commands to

build this and other sample programs.

To run the sample program (executable file), enter tbmove. You might find it useful

to examine some of the generated files, such as the message file, and the delimited

ASCII data file.

/**

** Licensed Materials - Property of IBM

**

** Governed under the terms of the International

** License Agreement for Non-Warranted Sample Code.

**

** (C) COPYRIGHT International Business Machines Corp. 1996 - 2002

** All Rights Reserved.

**

** US Government Users Restricted Rights - Use, duplication or

** disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

**

** SOURCE FILE NAME: tbmove.sqc

**

** SAMPLE: How to move table data

**

** DB2 APIs USED:

** db2Export -- Export

** db2Import -- Import

** sqluvqdp -- Quiesce Table Spaces for Table

** db2Load -- Load

** db2LoadQuery -- Load Query

**

** SQL STATEMENTS USED:

** PREPARE

** DECLARE CURSOR

** OPEN

** FETCH

** CLOSE

** CREATE TABLE

** DROP

**

** OUTPUT FILE: tbmove.out (available in the online documentation)

**

** For more information on the sample programs, see the README file.

**

** For information on developing C applications, see the Application

** Development Guide.

© Copyright IBM Corp. 1993, 2006 281DB2 9 BETA

**

** For information on using SQL statements, see the SQL Reference.

**

** For information on DB2 APIs, see the Administrative API Reference.

**

** For the latest information on programming, building, and running DB2

** applications, visit the DB2 application development website:

** http://www.software.ibm.com/data/db2/udb/ad

**/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sqlenv.h>

#include <sqlutil.h>

#include <db2ApiDf.h>

#include "utilemb.h"

int DataExport(char *);

int TbImport(char *);

int TbLoad(char *);

int TbLoadQuery(void);

/* support function */

int ExportedDataDisplay(char *);

int NewTableDisplay(void);

EXEC SQL BEGIN DECLARE SECTION;

 char strStmt[256];

 short deptnumb;

 char deptname[15];

EXEC SQL END DECLARE SECTION;

int main(int argc, char *argv[])

{

 int rc = 0;

 char dbAlias[SQL_ALIAS_SZ + 1];

 char user[USERID_SZ + 1];

 char pswd[PSWD_SZ + 1];

 char dataFileName[256];

 /* check the command line arguments */

 rc = CmdLineArgsCheck1(argc, argv, dbAlias, user, pswd);

 if (rc != 0)

 {

 return rc;

 }

 printf("\nTHIS SAMPLE SHOWS HOW TO MOVE TABLE DATA.\n");

 /* connect to database */

 rc = DbConn(dbAlias, user, pswd);

 if (rc != 0)

 {

 return rc;

 }

#if(defined(DB2NT))

 sprintf(dataFileName, "%s%stbmove.DEL", getenv("DB2PATH"), PATH_SEP);

#else /* UNIX */

 sprintf(dataFileName, "%s%stbmove.DEL", getenv("HOME"), PATH_SEP);

#endif

 rc = DataExport(dataFileName);

 rc = TbImport(dataFileName);

 rc = TbLoad(dataFileName);

 rc = TbLoadQuery();

282 Data Movement Utilities DB2 9 BETA

/* disconnect from the database */

 rc = DbDisconn(dbAlias);

 if (rc != 0)

 {

 return rc;

 }

 return 0;

} /* main */

int ExportedDataDisplay(char *dataFileName)

{

 struct sqlca sqlca;

 FILE *fp;

 char buffer[100];

 int maxChars = 100;

 int numChars;

 int charNb;

 fp = fopen(dataFileName, "r");

 if (fp == NULL)

 {

 return 1;

 }

 printf("\n The content of the file ’%s’ is:\n", dataFileName);

 printf(" ");

 numChars = fread(buffer, 1, maxChars, fp);

 while (numChars > 0)

 {

 for (charNb = 0; charNb < numChars; charNb++)

 {

 if (buffer[charNb] == ’\n’)

 {

 printf("\n");

 if (charNb < numChars - 1)

 {

 printf(" ");

 }

 }

 else

 {

 printf("%c", buffer[charNb]);

 }

 }

 numChars = fread(buffer, 1, maxChars, fp);

 }

 if (ferror(fp))

 {

 fclose(fp);

 return 1;

 }

 else

 {

 fclose(fp);

 }

 return 0;

} /* ExportedDataDisplay */

int NewTableDisplay(void)

{

 struct sqlca sqlca;

 printf("\n SELECT * FROM newtable\n");

Appendix C. Export/Import/Load Sessions - API Sample Program 283DB2 9 BETA

printf(" DEPTNUMB DEPTNAME \n");

 printf(" -------- --------------\n");

 strcpy(strStmt, "SELECT * FROM newtable");

 EXEC SQL PREPARE stmt FROM :strStmt;

 EMB_SQL_CHECK("statement -- prepare");

 EXEC SQL DECLARE c0 CURSOR FOR stmt;

 EXEC SQL OPEN c0;

 EMB_SQL_CHECK("cursor -- open");

 EXEC SQL FETCH c0 INTO :deptnumb, :deptname;

 EMB_SQL_CHECK("cursor -- fetch");

 while (sqlca.sqlcode != 100)

 {

 printf(" %8d %-s\n", deptnumb, deptname);

 EXEC SQL FETCH c0 INTO :deptnumb, :deptname;

 EMB_SQL_CHECK("cursor -- fetch");

 }

 EXEC SQL CLOSE c0;

 return 0;

} /* NewTableDisplay */

int DataExport(char *dataFileName)

{

 int rc = 0;

 struct sqlca sqlca;

 struct sqldcol dataDescriptor;

 char actionString[256];

 struct sqllob *pAction;

 char msgFileName[128];

 struct db2ExportOut outputInfo;

 struct db2ExportStruct exportParmStruct;

 printf("\n---");

 printf("\nUSE THE DB2 API:\n");

 printf(" db2Export -- Export\n");

 printf("TO EXPORT DATA TO A FILE.\n");

 printf("\n Be sure to complete all table operations and release\n");

 printf(" all locks before starting an export operation. This\n");

 printf(" can be done by issuing a COMMIT after closing all\n");

 printf(" cursors opened WITH HOLD, or by issuing a ROLLBACK.\n");

 printf(" Please refer to the ’Administrative API Reference’\n");

 printf(" for the details.\n");

 /* export data */

 dataDescriptor.dcolmeth = SQL_METH_D;

 strcpy(actionString, "SELECT deptnumb, deptname FROM org");

 pAction = (struct sqllob *)malloc(sizeof(sqluint32) +

 sizeof(actionString) + 1);

 pAction->length = strlen(actionString);

 strcpy(pAction->data, actionString);

 strcpy(msgFileName, "tbexport.MSG");

 exportParmStruct.piDataFileName = dataFileName;

 exportParmStruct.piLobPathList = NULL;

 exportParmStruct.piLobFileList = NULL;

 exportParmStruct.piDataDescriptor = &dataDescriptor;

 exportParmStruct.piActionString = pAction;

 exportParmStruct.piFileType = SQL_DEL;

284 Data Movement Utilities DB2 9 BETA

exportParmStruct.piFileTypeMod = NULL;

 exportParmStruct.piMsgFileName = msgFileName;

 exportParmStruct.iCallerAction = SQLU_INITIAL;

 exportParmStruct.poExportInfoOut = &outputInfo;

 printf("\n Export data.\n");

 printf(" client destination file name: %s\n", dataFileName);

 printf(" action : %s\n", actionString);

 printf(" client message file name : %s\n", msgFileName);

 /* export data */

 db2Export(db2Version820,

 &exportParmStruct,

 &sqlca);

 DB2_API_CHECK("data -- export");

 /* free memory allocated */

 free(pAction);

 /* display exported data */

 rc = ExportedDataDisplay(dataFileName);

 return 0;

} /* DataExport */

int TbImport(char *dataFileName)

{

 int rc = 0;

 struct sqlca sqlca;

 struct sqldcol dataDescriptor;

 char actionString[256];

 struct sqlchar *pAction;

 char msgFileName[128];

 struct db2ImportIn inputInfo;

 struct db2ImportOut outputInfo;

 struct db2ImportStruct importParmStruct;

 long commitcount = 10;

 printf("\n---");

 printf("\nUSE THE DB2 API:\n");

 printf(" db2Import -- Import\n");

 printf("TO IMPORT DATA TO A TABLE.\n");

 /* create new table */

 printf("\n CREATE TABLE newtable(deptnumb SMALLINT NOT NULL,");

 printf("\n deptname VARCHAR(14))\n");

 EXEC SQL CREATE TABLE newtable(deptnumb SMALLINT NOT NULL,

 deptname VARCHAR(14));

 EMB_SQL_CHECK("new table -- create");

 /* import table */

 dataDescriptor.dcolmeth = SQL_METH_D;

 strcpy(actionString, "INSERT INTO newtable");

 pAction = (struct sqlchar *)malloc(sizeof(short) +

 sizeof(actionString) + 1);

 pAction->length = strlen(actionString);

 strcpy(pAction->data, actionString);

 strcpy(msgFileName, "tbimport.MSG");

 /* Setup db2ImportIn structure */

 inputInfo.iRowcount = inputInfo.iRestartcount = 0;

 inputInfo.iSkipcount = inputInfo.iWarningcount = 0;

 inputInfo.iNoTimeout = 0;

 inputInfo.iAccessLevel = SQLU_ALLOW_NO_ACCESS;

 inputInfo.piCommitcount = &commitcount;

Appendix C. Export/Import/Load Sessions - API Sample Program 285DB2 9 BETA

printf("\n Import table.\n");

 printf(" client source file name : %s\n", dataFileName);

 printf(" action : %s\n", actionString);

 printf(" client message file name: %s\n", msgFileName);

 ImportparmStruct.piDataFileName = dataFileName;

 importParmStruct.piLobPathList = NULL;

 importParmStruct.piDataDescriptor = &dataDescriptor;

 importParmStruct.piActionString = pAction;

 importParmStruct.piFileType = SQL_DEL;

 importParmStruct.piFileTypeMod = NULL;

 importParmStruct.piMsgFileName = msgFileName;

 importParmStruct.piImportInfoIn = &inputInfo;

 importParmStruct.poImportInfoOut = &outputInfo;

 importParmStruct.piNullIndicators = NULL;

 importParmStruct.iCallerAction = SQLU_INITIAL;

 /* import table */

 db2Import(db2Version820,

 &importParmStruct,

 &sqlca);

 DB2_API_CHECK("table -- import");

 /* free memory allocated */

 free(pAction);

 /* display import info */

 printf("\n Import info.\n");

 printf(" rows read : %ld\n", (int)outputInfo.oRowsRead);

 printf(" rows skipped : %ld\n", (int)outputInfo.oRowsSkipped);

 printf(" rows inserted : %ld\n", (int)outputInfo.oRowsInserted);

 printf(" rows updated : %ld\n", (int)outputInfo.oRowsUpdated);

 printf(" rows rejected : %ld\n", (int)outputInfo.oRowsRejected);

 printf(" rows committed: %ld\n", (int)outputInfo.oRowsCommitted);

 /* display content of the new table */

 rc = NewTableDisplay();

 /* drop new table */

 printf("\n DROP TABLE newtable\n");

 EXEC SQL DROP TABLE newtable;

 EMB_SQL_CHECK("new table -- drop");

 return 0;

} /* TbImport */

int TbLoad(char *dataFileName)

{

 int rc = 0;

 struct sqlca sqlca;

 struct db2LoadStruct paramStruct;

 struct db2LoadIn inputInfoStruct;

 struct db2LoadOut outputInfoStruct;

 struct sqlu_media_list mediaList;

 struct sqldcol dataDescriptor;

 char actionString[256];

 struct sqlchar *pAction;

 char localMsgFileName[128];

 printf("\n---");

 printf("\nUSE THE DB2 API:\n");

 printf(" sqluvqdp -- Quiesce Table Spaces for Table\n");

286 Data Movement Utilities DB2 9 BETA

printf(" db2Load -- Load\n");

 printf("TO LOAD DATA INTO A TABLE.\n");

 /* create new table */

 printf("\n CREATE TABLE newtable(deptnumb SMALLINT NOT NULL,");

 printf("\n deptname VARCHAR(14))\n");

 EXEC SQL CREATE TABLE newtable(deptnumb SMALLINT NOT NULL,

 deptname VARCHAR(14));

 EMB_SQL_CHECK("new table -- create");

 /* quiesce table spaces for table */

 printf("\n Quiesce the table spaces for ’newtable’.\n");

 EXEC SQL COMMIT;

 EMB_SQL_CHECK("transaction -- commit");

 /* quiesce table spaces for table */

 sqluvqdp("newtable", SQLU_QUIESCEMODE_RESET_OWNED, NULL, &sqlca);

 DB2_API_CHECK("tablespaces for table -- quiesce");

 /* load table */

 mediaList.media_type = SQLU_CLIENT_LOCATION;

 mediaList.sessions = 1;

 mediaList.target.location =

 (struct sqlu_location_entry *)malloc(sizeof(struct sqlu_location_entry) *

 mediaList.sessions);

 strcpy(mediaList.target.location->location_entry, dataFileName);

 dataDescriptor.dcolmeth = SQL_METH_D;

 strcpy(actionString, "INSERT INTO newtable");

 pAction = (struct sqlchar *)malloc(sizeof(short) +

 sizeof(actionString) + 1);

 pAction->length = strlen(actionString);

 strcpy(pAction->data, actionString);

 strcpy(localMsgFileName, "tbload.MSG");

 /* Setup the input information structure */

 inputInfoStruct.piUseTablespace = NULL;

 inputInfoStruct.iSavecount = 0; /* consistency points */

 /* as infrequently as possible */

 inputInfoStruct.iRestartcount = 0; /* start at row 1 */

 inputInfoStruct.iRowcount = 0; /* load all rows */

 inputInfoStruct.iWarningcount = 0; /* don’t stop for warnings */

 inputInfoStruct.iDataBufferSize = 0; /* default data buffer size */

 inputInfoStruct.iSortBufferSize = 0; /* def. warning buffer size */

 inputInfoStruct.iHoldQuiesce = 0; /* don’t hold the quiesce */

 inputInfoStruct.iRestartphase = ’ ’; /* ignored anyway */

 inputInfoStruct.iStatsOpt = SQLU_STATS_NONE; /* don’t bother with them */

 inputInfoStruct.iIndexingMode = SQLU_INX_AUTOSELECT;/* let load choose */

 /* indexing mode */

 inputInfoStruct.iCpuParallelism = 0;

 inputInfoStruct.iNonrecoverable = SQLU_NON_RECOVERABLE_LOAD;

 inputInfoStruct.iAccessLevel = SQLU_ALLOW_NO_ACCESS;

 inputInfoStruct.iLockWithForce = SQLU_NO_FORCE;

 inputInfoStruct.iCheckPending = SQLU_CHECK_PENDING_CASCADE_DEFERRED;

 /* Setup the parameter structure */

 paramStruct.piSourceList = &mediaList;

 paramStruct.piLobPathList = NULL;

 paramStruct.piDataDescriptor = &dataDescriptor;

 paramStruct.piActionString = pAction;

 paramStruct.piFileType = SQL_DEL;

 paramStruct.piFileTypeMod = NULL;

 paramStruct.piLocalMsgFileName = localMsgFileName;

Appendix C. Export/Import/Load Sessions - API Sample Program 287DB2 9 BETA

paramStruct.piTempFilesPath = NULL;

 paramStruct.piVendorSortWorkPaths = NULL;

 paramStruct.piCopyTargetList = NULL;

 paramStruct.piNullIndicators = NULL;

 paramStruct.piLoadInfoIn = &inputInfoStruct;

 paramStruct.poLoadInfoOut = &outputInfoStruct;

 paramStruct.piPartLoadInfoIn = NULL;

 paramStruct.poPartLoadInfoOut = NULL;

 paramStruct.iCallerAction = SQLU_INITIAL;

 printf("\n Load table.\n");

 printf(" client source file name : %s\n", dataFileName);

 printf(" action : %s\n", actionString);

 printf(" client message file name: %s\n", localMsgFileName);

 /* load table */

 db2Load (db2Version810, /* Database version number */

 ¶mStruct, /* In/out parameters */

 &sqlca); /* SQLCA */

 DB2_API_CHECK("table -- load");

 /* free memory allocated */

 free(pAction);

 /* display load info */

 printf("\n Load info.\n");

 printf(" rows read : %d\n", (int)outputInfoStruct.oRowsRead);

 printf(" rows skipped : %d\n", (int)outputInfoStruct.oRowsSkipped);

 printf(" rows loaded : %d\n", (int)outputInfoStruct.oRowsLoaded);

 printf(" rows deleted : %d\n", (int)outputInfoStruct.oRowsDeleted);

 printf(" rows rejected : %d\n", (int)outputInfoStruct.oRowsRejected);

 printf(" rows committed: %d\n", (int)outputInfoStruct.oRowsCommitted);

 /* display content of the new table */

 rc = NewTableDisplay();

 /* drop new table */

 printf("\n DROP TABLE newtable\n");

 EXEC SQL DROP TABLE newtable;

 EMB_SQL_CHECK("new table -- drop");

 return 0;

} /* TbLoad */

int TbLoadQuery(void)

{

 int rc = 0;

 struct sqlca sqlca;

 char tableName[128];

 char loadMsgFileName[128];

 db2LoadQueryStruct loadQueryParameters;

 db2LoadQueryOutputStruct loadQueryOutputStructure;

 printf("\n---");

 printf("\nUSE THE DB2 API:\n");

 printf(" db2LoadQuery -- Load Query\n");

 printf("TO CHECK THE STATUS OF A LOAD OPERATION.\n");

 /* Initialize structures */

 memset(&loadQueryParameters, 0, sizeof(db2LoadQueryStruct));

 memset(&loadQueryOutputStructure, 0, sizeof(db2LoadQueryOutputStruct));

 /* Set up the tablename to query. */

 loadQueryParameters.iStringType = DB2LOADQUERY_TABLENAME;

 loadQueryParameters.piString = tableName;

288 Data Movement Utilities DB2 9 BETA

/* Specify that we want all LOAD messages to be reported. */

 loadQueryParameters.iShowLoadMessages = DB2LOADQUERY_SHOW_ALL_MSGS;

 /* LOAD summary information goes here. */

 loadQueryParameters.poOutputStruct = &loadQueryOutputStructure;

 /* Set up the local message file. */

 loadQueryParameters.piLocalMessageFile = loadMsgFileName;

 /* call the DB2 API */

 strcpy(tableName, "ORG");

 strcpy(loadMsgFileName, "tbldqry.MSG");

 /* load query */

 db2LoadQuery(db2Version810, &loadQueryParameters, &sqlca);

 printf("\n Note: the table load for ’%s’ is NOT in progress.\n", tableName);

 printf(" So an empty message file ’%s’ will be created,\n", loadMsgFileName);

 printf(" and the following values will be zero.\n");

 DB2_API_CHECK("status of load operation -- check");

 printf("\n Load status has been written to local file %s.\n",

 loadMsgFileName);

 printf(" Number of rows read = %d\n",

 loadQueryOutputStructure.oRowsRead);

 printf(" Number of rows skipped = %d\n",

 loadQueryOutputStructure.oRowsSkipped);

 printf(" Number of rows loaded = %d\n",

 loadQueryOutputStructure.oRowsLoaded);

 printf(" Number of rows rejected = %d\n",

 loadQueryOutputStructure.oRowsRejected);

 printf(" Number of rows deleted = %d\n",

 loadQueryOutputStructure.oRowsDeleted);

 printf(" Number of rows committed = %d\n",

 loadQueryOutputStructure.oRowsCommitted);

 printf(" Number of warnings = %d\n",

 loadQueryOutputStructure.oWarningCount);

 return 0;

} /* TbLoadQuery */

Appendix C. Export/Import/Load Sessions - API Sample Program 289DB2 9 BETA

290 Data Movement Utilities DB2 9 BETA

Appendix D. File Formats

Export/Import/Load Utility File Formats

 Five operating system file formats supported by the DB2 export, import, and load

utilities are described:

DEL Delimited ASCII, for data exchange among a wide variety of database

managers and file managers. This common approach to storing data uses

special character delimiters to separate column values.

ASC Non-delimited ASCII, for importing or loading data from other

applications that create flat text files with aligned column data.

PC/IXF

PC version of the Integrated Exchange Format (IXF), the preferred method

for data exchange within the database manager. PC/IXF is a structured

description of a database table that contains an external representation of

the internal table.

WSF Work-sheet format, for data exchange with products such as Lotus 1-2-3

and Symphony. The load utility does not support this file format.

CURSOR

A cursor declared against an SQL query. This file type is only supported by

the load utility.

When using DEL, WSF, or ASC data file formats, define the table, including its

column names and data types, before importing the file. The data types in the

operating system file fields are converted into the corresponding type of data in

the database table. The import utility accepts data with minor incompatibility

problems, including character data imported with possible padding or truncation,

and numeric data imported into different types of numeric fields.

When using the PC/IXF data file format, the table does not need to exist before

beginning the import operation. User-defined distinct types (UDTs) are not made

part of the new table column types; instead, the base type is used. Similarly, when

exporting to the PC/IXF data file format, UDTs are stored as base data types in the

PC/IXF file.

When using the CURSOR file type, the table, including its column names and data

types, must be defined before beginning the load operation. The column types of

the SQL query must be compatible with the corresponding column types in the

target table. It is not necessary for the specified cursor to be open before starting

the load operation. The load utility will process the entire result of the query

associated with the specified cursor whether or not the cursor has been used to

fetch rows.

 Related concepts:

v “Queries and table expressions” in SQL Reference, Volume 1

 Related reference:

v “Delimited ASCII (DEL) File Format” on page 292

v “Non-delimited ASCII (ASC) file format” on page 297

© Copyright IBM Corp. 1993, 2006 291DB2 9 BETA

v “PC Version of IXF File Format” on page 300

v “Assignments and comparisons” in SQL Reference, Volume 1

v “Casting between data types” in SQL Reference, Volume 1

Delimited ASCII (DEL) File Format

 A Delimited ASCII (DEL) file is a sequential ASCII file with row and column

delimiters. Each DEL file is a stream of ASCII characters consisting of cell values

ordered by row, and then by column. Rows in the data stream are separated by

row delimiters; within each row, individual cell values are separated by column

delimiters.

The following table describes the format of DEL files that can be imported, or that

can be generated as the result of an export action.

DEL file ::= Row 1 data || Row delimiter ||

 Row 2 data || Row delimiter ||

 .

 .

 .

 Row n data || Optional row delimiter

Row i data ::= Cell value(i,1) || Column delimiter ||

 Cell value(i,2) || Column delimiter ||

 .

 .

 .

 Cell value(i,m)

Row delimiter ::= ASCII line feed sequencea

Column delimiter ::= Default value ASCII comma (,)b

Cell value(i,j) ::= Leading spaces

 || ASCII representation of a numeric value

 (integer, decimal, or float)

 || Delimited character string

 || Non-delimited character string

 || Trailing spaces

Non-delimited character string ::= A set of any characters except a

 row delimiter or a column delimiter

Delimited character string ::= A character string delimiter ||

 An extended character string ||

 A character string delimiter ||

 Trailing garbage

Trailing garbage ::= A set of any characters except a row delimiter

 or a column delimiter

Character string delimiter ::= Default value ASCII double quotation

 marks (")c

extended character string ::= || A set of any characters except a

 row delimiter or a character string

 delimiter if the NODOUBLEDEL

 modifier is specified

 || A set of any characters except a

 row delimiter or a character string

 delimiter if the character string

 is not part of two consecutive

 character string delimiters

 || A set of any characters except a

292 Data Movement Utilities DB2 9 BETA

character string delimiter if the

 character string delimiter is not

 part of two consecutive character

 string delimiters, and the DELPRIORITYCHAR

 modifier is specified

End-of-file character ::= Hex ’1A’ (Windows operating system only)

ASCII representation of a numeric valued ::= Optional sign ’+’ or ’−’

 || 1 to 31 decimal digits with an optional decimal point before,

 after, or between two digits

 || Optional exponent

Exponent ::= Character ’E’ or ’e’

 || Optional sign ’+’ or ’−’

 || 1 to 3 decimal digits with no decimal point

Decimal digit ::= Any one of the characters ’0’, ’1’, ... ’9’

Decimal point ::= Default value ASCII period (.)e

v

a The record delimiter is assumed to be a new line character, ASCII x0A. Data

generated on the Windows operating system can use the carriage return/line

feed 2-byte standard of 0x0D0A. Data in EBCDIC code pages should use the

EBCDIC LF character (0x25) as the record delimiter (EBCDIC data can be loaded

using the CODEPAGE option on the LOAD command).

v

b The column delimiter can be specified with the COLDEL option.

v

c The character string delimiter can be specified with the CHARDEL option.

Note: The default priority of delimiters is:

1. Record delimiter

2. Character delimiter

3. Column delimiter
v

d If the ASCII representation of a numeric value contains an exponent, it is a

FLOAT constant. If it has a decimal point but no exponent, it is a DECIMAL

constant. If it has no decimal point and no exponent, it is an INTEGER constant.

v

e The decimal point character can be specified with the DECPT option.

 Related reference:

v “DEL Data Type Descriptions” on page 294

Example and Data Type Descriptions

Example DEL File

 Following is an example of a DEL file. Each line ends with a line feed sequence

(on the Windows operating system, each line ends with a carriage return/line feed

sequence).

 The following example illustrates the use of non-delimited character strings. The

column delimiter has been changed to a semicolon, because the character data

contains a comma.

 "Smith, Bob",4973,15.46

 "Jones, Bill",12345,16.34

 "Williams, Sam",452,193.78

Appendix D. File Formats 293DB2 9 BETA

Notes:

1. A space (X'20') is never a valid delimiter.

2. Spaces that precede the first character, or that follow the last character of a cell

value, are discarded during import. Spaces that are embedded in a cell value

are not discarded.

3. A period (.) is not a valid character string delimiter, because it conflicts with

periods in time stamp values.

4. For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted to

the range of x00 to x3F, inclusive.

5. For DEL data specified in an EBCDIC code page, the delimiters might not

coincide with the shift-in and shift-out DBCS characters.

6. On the Windows operating system, the first occurrence of an end-of-file

character (X'1A') that is not within character delimiters indicates the end-of-file.

Any subsequent data is not imported.

7. A null value is indicated by the absence of a cell value where one would

normally occur, or by a string of spaces.

8. Since some products restrict character fields to 254 or 255 bytes, the export

utility generates a warning message whenever a character column of maximum

length greater than 254 bytes is selected for export. The import utility

accommodates fields that are as long as the longest LONG VARCHAR and

LONG VARGRAPHIC columns.

 Related reference:

v “Delimited ASCII (DEL) File Format” on page 292

v “DEL Data Type Descriptions” on page 294

DEL Data Type Descriptions

 Table 19. Acceptable Data Type Forms for the DEL File Format

Data Type

Form in Files Created by the

Export Utility

Form Acceptable to the

Import Utility

BIGINT An INTEGER constant in the

range

-9 223 372 036 854 775 808 to

9 223 372 036 854 775 807.

ASCII representation of a

numeric value in the range

-9 223 372 036 854 775 808 to

9 223 372 036 854 775 807.

Decimal and float numbers

are truncated to integer

values.

BLOB, CLOB Character data enclosed by

character delimiters (for

example, double quotation

marks).

A delimited or non-delimited

character string. The

character string is used as

the database column value.

BLOB_FILE, CLOB_FILE The character data for each

BLOB/CLOB column is

stored in individual files, and

the file name is enclosed by

character delimiters.

The delimited or

non-delimited name of the

file that holds the data.

 Smith, Bob;4973;15.46

 Jones, Bill;12345;16.34

 Williams, Sam;452;193.78

294 Data Movement Utilities DB2 9 BETA

Table 19. Acceptable Data Type Forms for the DEL File Format (continued)

Data Type

Form in Files Created by the

Export Utility

Form Acceptable to the

Import Utility

CHAR Character data enclosed by

character delimiters (for

example, double quotation

marks).

A delimited or non-delimited

character string. The

character string is truncated

or padded with spaces

(X'20'), if necessary, to match

the width of the database

column.

DATE yyyymmdd (year month day)

with no character delimiters.

For example: 19931029

Alternatively, the DATESISO

option can be used to specify

that all date values are to be

exported in ISO format.

A delimited or non-delimited

character string containing a

date value in an ISO format

consistent with the territory

code of the target database,

or a non-delimited character

string of the form yyyymmdd.

DBCLOB (DBCS only) Graphic data is exported as a

delimited character string.

A delimited or non-delimited

character string, an even

number of bytes in length.

The character string is used

as the database column

value.

DBCLOB_FILE (DBCS only) The character data for each

DBCLOB column is stored in

individual files, and the file

name is enclosed by

character delimiters.

The delimited or

non-delimited name of the

file that holds the data.

DECIMAL A DECIMAL constant with

the precision and scale of the

field being exported. The

DECPLUSBLANK option can

be used to specify that

positive decimal values are

to be prefixed with a blank

space instead of a plus sign

(+).

ASCII representation of a

numeric value that does not

overflow the range of the

database column into which

the field is being imported. If

the input value has more

digits after the decimal point

than can be accommodated

by the database column, the

excess digits are truncated.

FLOAT(long) A FLOAT constant in the

range -10E307 to 10E307.

ASCII representation of a

numeric value in the range

-10E307 to 10E307.

GRAPHIC (DBCS only) Graphic data is exported as a

delimited character string.

A delimited or non-delimited

character string, an even

number of bytes in length.

The character string is

truncated or padded with

double-byte spaces (for

example, X'8140'), if

necessary, to match the

width of the database

column.

Appendix D. File Formats 295DB2 9 BETA

Table 19. Acceptable Data Type Forms for the DEL File Format (continued)

Data Type

Form in Files Created by the

Export Utility

Form Acceptable to the

Import Utility

INTEGER An INTEGER constant in the

range -2 147 483 648 to

2 147 483 647.

ASCII representation of a

numeric value in the range

-2 147 483 648 to

2 147 483 647. Decimal and

float numbers are truncated

to integer values.

LONG VARCHAR Character data enclosed by

character delimiters (for

example, double quotation

marks).

A delimited or non-delimited

character string. The

character string is used as

the database column value.

LONG VARGRAPHIC (DBCS

only)

Graphic data is exported as a

delimited character string.

A delimited or non-delimited

character string, an even

number of bytes in length.

The character string is used

as the database column

value.

SMALLINT An INTEGER constant in the

range -32 768 to 32 767.

ASCII representation of a

numeric value in the range

-32 768 to 32 767. Decimal

and float numbers are

truncated to integer values.

TIME hh.mm.ss (hour minutes

seconds). A time value in

ISO format enclosed by

character delimiters. For

example: “09.39.43”

A delimited or non-delimited

character string containing a

time value in a format

consistent with the territory

code of the target database.

TIMESTAMP yyyy-mm-dd-hh.mm.ss.nnnnnn

(year month day hour

minutes seconds

microseconds). A character

string representing a date

and time enclosed by

character delimiters.

A delimited or non-delimited

character string containing a

time stamp value acceptable

for storage in a database.

VARCHAR Character data enclosed by

character delimiters (for

example, double quotation

marks).

A delimited or non-delimited

character string. The

character string is truncated,

if necessary, to match the

maximum width of the

database column.

VARGRAPHIC (DBCS only) Graphic data is exported as a

delimited character string.

A delimited or non-delimited

character string, an even

number of bytes in length.

The character string is

truncated, if necessary, to

match the maximum width

of the database column.

 Related reference:

v “Delimited ASCII (DEL) File Format” on page 292

v “Example DEL File” on page 293

v “Data types” in SQL Reference, Volume 1

296 Data Movement Utilities DB2 9 BETA

Non-delimited ASCII (ASC) file format

 The non-delimited ASCII format, known as ASC to the import and load utilities,

comes in two varieties; fixed length and flexible length. For fixed length ASC, all

records are of a fixed length. For flexible length ASC, records are delimited by a

row delimiter (always a newline). The term non-delimited in non-delimited ASCII

means that column values are not separated by delimiters.

When importing or loading ASC data, specifying the RECLEN file type modifier

will indicate that the datafile is fixed length ASC. Not specifying it means that the

datafile is flexible length ASC.

The non-delimited ASCII format, can be used for data exchange with any ASCII

product that has a columnar format for data, including word processors. Each ASC

file is a stream of ASCII characters consisting of data values ordered by row and

column. Rows in the data stream are separated by row delimiters. Each column

within a row is defined by a beginning-ending location pair (specified by IMPORT

parameters). Each pair represents locations within a row specified as byte

positions. The first position within a row is byte position 1. The first element of

each location pair is the byte on which the column begins, and the second element

of each location pair is the byte on which the column ends. The columns might

overlap. Every row in an ASC file has the same column definition.

An ASC file is defined by:

ASC file ::= Row 1 data || Row delimiter ||

 Row 2 data || Row delimiter ||

 .

 .

 .

 Row n data

Row i data ::= ASCII characters || Row delimiter

Row Delimiter ::= ASCII line feed sequencea

v

a The record delimiter is assumed to be a new line character, ASCII x0A. Data

generated on the Windows operating system can use the carriage return/line

feed 2-byte standard of 0x0D0A. Data in EBCDIC code pages should use the

EBCDIC LF character (0x25) as the record delimiter (EBCDIC data can be loaded

using the CODEPAGE option on the LOAD command). The record delimiter is

never interpreted to be part of a field of data.

 Related reference:

v “ASC Data Type Descriptions” on page 298

Example and Data Type Descriptions

Example ASC File

 Following is an example of an ASC file. Each line ends with a line feed sequence

(on the Windows operating system, each line ends with a carriage return/line feed

sequence).

 Smith, Bob 4973 15.46

 Jones, Suzanne 12345 16.34

 Williams, Sam 452123 193.78

Appendix D. File Formats 297DB2 9 BETA

Notes:

1. ASC files are assumed not to contain column names.

2. Character strings are not enclosed by delimiters. The data type of a column in

the ASC file is determined by the data type of the target column in the

database table.

3. A NULL is imported into a nullable database column if:

v A field of blanks is targeted for a numeric, DATE, TIME, or TIMESTAMP

database column

v A field with no beginning and ending location pairs is specified

v A location pair with beginning and ending locations equal to zero is

specified

v A row of data is too short to contain a valid value for the target column

v The NULL INDICATORS load option is used, and an N (or other value

specified by the user) is found in the null indicator column.
4. If the target column is not nullable, an attempt to import a field of blanks into

a numeric, DATE, TIME, or TIMESTAMP column causes the row to be rejected.

5. If the input data is not compatible with the target column, and that column is

nullable, a null is imported or the row is rejected, depending on where the

error is detected. If the column is not nullable, the row is rejected. Messages are

written to the message file, specifying incompatibilities that are found.

 Related reference:

v “ASC Data Type Descriptions” on page 298

ASC Data Type Descriptions

 Table 20. Acceptable Data Type Forms for the ASC File Format

Data Type Form Acceptable to the Import Utility

BIGINT A constant in any numeric type (SMALLINT, INTEGER,

BIGINT, DECIMAL, or FLOAT) is accepted. Individual values

are rejected if they are not in the range

-9 223 372 036 854 775 808 to 9 223 372 036 854 775 807. Decimal

numbers are truncated to integer values. A comma, period, or

colon is considered to be a decimal point. Thousands separators

are not allowed.

The beginning and ending locations should specify a field

whose width does not exceed 50 bytes. Integers, decimal

numbers, and the mantissas of floating point numbers can have

no more than 31 digits. Exponents of floating point numbers

can have no more than 3 digits.

BLOB/CLOB A string of characters. The character string is truncated on the

right, if necessary, to match the maximum length of the target

column. If the ASC truncate blanks option is in effect, trailing

blanks are stripped from the original or the truncated string.

BLOB_FILE, CLOB_FILE,

DBCLOB_FILE (DBCS

only)

A delimited or non-delimited name of the file that holds the

data.

CHAR A string of characters. The character string is truncated or

padded with spaces on the right, if necessary, to match the

width of the target column.

298 Data Movement Utilities DB2 9 BETA

Table 20. Acceptable Data Type Forms for the ASC File Format (continued)

Data Type Form Acceptable to the Import Utility

DATE A character string representing a date value in a format

consistent with the territory code of the target database.

The beginning and ending locations should specify a field

width that is within the range for the external representation of

a date.

DBCLOB (DBCS only) A string of an even number of bytes. A string of an odd number

of bytes is invalid and is not accepted. A valid string is

truncated on the right, if necessary, to match the maximum

length of the target column.

DECIMAL A constant in any numeric type (SMALLINT, INTEGER,

BIGINT, DECIMAL, or FLOAT) is accepted. Individual values

are rejected if they are not in the range of the database column

into which they are being imported. If the input value has more

digits after the decimal point than the scale of the database

column, the excess digits are truncated. A comma, period, or

colon is considered to be a decimal point. Thousands separators

are not allowed.

The beginning and ending locations should specify a field

whose width does not exceed 50 bytes. Integers, decimal

numbers, and the mantissas of floating point numbers can have

no more than 31 digits. Exponents of floating point numbers

can have no more than 3 digits.

FLOAT(long) A constant in any numeric type (SMALLINT, INTEGER,

BIGINT, DECIMAL, or FLOAT) is accepted. All values are valid.

A comma, period, or colon is considered to be a decimal point.

An uppercase or lowercase E is accepted as the beginning of the

exponent of a FLOAT constant.

The beginning and ending locations should specify a field

whose width does not exceed 50 bytes. Integers, decimal

numbers, and the mantissas of floating point numbers can have

no more than 31 digits. Exponents of floating point numbers

can have no more than 3 digits.

GRAPHIC (DBCS only) A string of an even number of bytes. A string of an odd number

of bytes is invalid and is not accepted. A valid string is

truncated or padded with double-byte spaces (0x8140) on the

right, if necessary, to match the maximum length of the target

column.

INTEGER A constant in any numeric type (SMALLINT, INTEGER,

BIGINT, DECIMAL, or FLOAT) is accepted. Individual values

are rejected if they are not in the range -2 147 483 648 to

2 147 483 647. Decimal numbers are truncated to integer values.

A comma, period, or colon is considered to be a decimal point.

Thousands separators are not allowed.

The beginning and ending locations should specify a field

whose width does not exceed 50 bytes. Integers, decimal

numbers, and the mantissas of floating point numbers can have

no more than 31 digits. Exponents of floating point numbers

can have no more than 3 digits.

LONG VARCHAR A string of characters. The character string is truncated on the

right, if necessary, to match the maximum length of the target

column. If the ASC truncate blanks option is in effect, trailing

blanks are stripped from the original or the truncated string.

Appendix D. File Formats 299DB2 9 BETA

Table 20. Acceptable Data Type Forms for the ASC File Format (continued)

Data Type Form Acceptable to the Import Utility

LONG VARGRAPHIC

(DBCS only)

A string of an even number of bytes. A string of an odd number

of bytes is invalid and is not accepted. A valid string is

truncated on the right, if necessary, to match the maximum

length of the target column.

SMALLINT A constant in any numeric type (SMALLINT, INTEGER,

BIGINT, DECIMAL, or FLOAT) is accepted. Individual values

are rejected if they are not in the range -32 768 to 32 767.

Decimal numbers are truncated to integer values. A comma,

period, or colon is considered to be a decimal point. Thousands

separators are not allowed.

The beginning and ending locations should specify a field

whose width does not exceed 50 bytes. Integers, decimal

numbers, and the mantissas of floating point numbers can have

no more than 31 digits. Exponents of floating point numbers

can have no more than 3 digits.

TIME A character string representing a time value in a format

consistent with the territory code of the target database.

The beginning and ending locations should specify a field

width that is within the range for the external representation of

a time.

TIMESTAMP A character string representing a time stamp value acceptable

for storage in a database.

The beginning and ending locations should specify a field

width that is within the range for the external representation of

a time stamp.

VARCHAR A string of characters. The character string is truncated on the

right, if necessary, to match the maximum length of the target

column. If the ASC truncate blanks option is in effect, trailing

blanks are stripped from the original or the truncated string.

VARGRAPHIC (DBCS

only)

A string of an even number of bytes. A string of an odd number

of bytes is invalid and is not accepted. A valid string is

truncated on the right, if necessary, to match the maximum

length of the target column.

 Related reference:

v “Example ASC File” on page 297

v “Data types” in SQL Reference, Volume 1

PC Version of IXF File Format

 The PC version of IXF (PC/IXF) file format is a database manager adaptation of

the Integration Exchange Format (IXF) data interchange architecture. The IXF

architecture was specifically designed to enable the exchange of relational database

structures and data. The PC/IXF architecture allows the database manager to

export a database without having to anticipate the requirements and idiosyncrasies

of a receiving product. Similarly, a product importing a PC/IXF file need only

understand the PC/IXF architecture; the characteristics of the product which

exported the file are not relevant. The PC/IXF file architecture maintains the

independence of both the exporting and the importing database systems.

300 Data Movement Utilities DB2 9 BETA

The IXF architecture is a generic relational database exchange format that supports

a rich set of relational data types, including some types that might not be

supported by specific relational database products. The PC/IXF file format

preserves this flexibility; for example, the PC/IXF architecture supports both

single-byte character string (SBCS) and double-byte character string (DBCS) data

types. Not all implementations support all PC/IXF data types; however, even

restricted implementations provide for the detection and disposition of

unsupported data types during import.

In general, a PC/IXF file consists of an unbroken sequence of variable-length

records. The file contains the following record types in the order shown:

v One header record of record type H

v One table record of record type T

v Multiple column descriptor records of record type C (one record for each

column in the table)

v Multiple data records of record type D (each row in the table is represented by

one or more D records).

A PC/IXF file might also contain application records of record type A, anywhere

after the H record. These records are permitted in PC/IXF files to enable an

application to include additional data, not defined by the PC/IXF format, in a

PC/IXF file. A records are ignored by any program reading a PC/IXF file that does

not have particular knowledge about the data format and content implied by the

application identifier in the A record.

Every record in a PC/IXF file begins with a record length indicator. This is a 6-byte

right justified character representation of an integer value specifying the length, in

bytes, of the portion of the PC/IXF record that follows the record length indicator;

that is, the total record size minus 6 bytes. Programs reading PC/IXF files should

use these record lengths to locate the end of the current record and the beginning

of the next record. H, T, and C records must be sufficiently large to include all of

their defined fields, and, of course, their record length fields must agree with their

actual lengths. However, if extra data (for example, a new field), is added to the

end of one of these records, pre-existing programs reading PC/IXF files should

ignore the extra data, and generate no more than a warning message. Programs

writing PC/IXF files, however, should write H, T and C records that are the

precise length needed to contain all of the defined fields.

If a PC/IXF file contains LOB Location Specifier (LLS) columns, each LLS column

must have its own D record. D records are automatically created by the export

utility, but you will need to create them manually if you are using a third party

tool to generate the PC/IXF files. Further, an LLS is required for each LOB column

in a table, including those with a null value. If a LOB column is null, you will

need to create an LLS representing a null LOB.

The D record entry for each XML column will contain two bytes little endian

indicating the XML data specifier (XDS) length, followed by the XDS itself.

For example, the following XDS:

 <XDS FIL="a.xml" OFF="1000" LEN="100" SCH="RENATA.SCHEMA" />

will be represented by the following bytes in a D record:

 0x3D 0x00 <XDS FIL="a.xml" OFF="1000" LEN="100" SCH="RENATA.SCHEMA" />

Appendix D. File Formats 301DB2 9 BETA

PC/IXF file records are composed of fields which contain character data. The

import and export utilities interpret this character data using the CPGID of the

target database, with two exceptions:

v The IXFADATA field of A records.

The code page environment of character data contained in an IXFADATA field is

established by the application which creates and processes a particular A record;

that is, the environment varies by implementation.

v The IXFDCOLS field of D records.

The code page environment of character data contained in an IXFDCOLS field is

a function of information contained in the C record which defines a particular

column and its data.

Numeric fields in H, T, and C records, and in the prefix portion of D and A records

should be right justified single-byte character representations of integer values,

filled with leading zeros or blanks. A value of zero should be indicated with at

least one (right justified) zero character, not blanks. Whenever one of these numeric

fields is not used, for example IXFCLENG, where the length is implied by the data

type, it should be filled with blanks. These numeric fields are:

Note: The database manager PC/IXF file format is not identical to the System/370.

 Related reference:

v “Data Type-Specific Rules Governing PC/IXF File Import into Databases” on

page 328

v “Differences Between PC/IXF and Version 0 System/370 IXF” on page 336

v “FORCEIN Option” on page 330

v “General Rules Governing PC/IXF File Import into Databases” on page 326

v “PC/IXF Data Type Descriptions” on page 323

v “PC/IXF data types” on page 318

v “PC/IXF Record Types” on page 302

PC Version of IXF File Format - Details

PC/IXF Record Types

 There are five basic PC/IXF record types:

v header

v table

v column descriptor

v data

v application

and six application subtypes that IBM DB2 V9.1 uses:

v index

v hierarchy

v subtable

 IXFHRECL, IXFTRECL, IXFCRECL, IXFDRECL, IXFARECL,

 IXFHHCNT, IXFHSBCP, IXFHDBCP, IXFTCCNT, IXFTNAML,

 IXFCLENG, IXFCDRID, IXFCPOSN, IXFCNAML, IXFCTYPE,

 IXFCSBCP, IXFCDBCP, IXFCNDIM, IXFCDSIZ, IXFDRID

302 Data Movement Utilities DB2 9 BETA

v continuation

v terminate

v identity

Each PC/IXF record type is defined as a sequence of fields; these fields are

required, and must appear in the order shown.

HEADER RECORD

 FIELD NAME LENGTH TYPE COMMENTS

 ---------- ------- --------- -------------

 IXFHRECL 06-BYTE CHARACTER record length

 IXFHRECT 01-BYTE CHARACTER record type = ’H’

 IXFHID 03-BYTE CHARACTER IXF identifier

 IXFHVERS 04-BYTE CHARACTER IXF version

 IXFHPROD 12-BYTE CHARACTER product

 IXFHDATE 08-BYTE CHARACTER date written

 IXFHTIME 06-BYTE CHARACTER time written

 IXFHHCNT 05-BYTE CHARACTER heading record count

 IXFHSBCP 05-BYTE CHARACTER single byte code page

 IXFHDBCP 05-BYTE CHARACTER double byte code page

 IXFHFIL1 02-BYTE CHARACTER reserved

The following fields are contained in the header record:

IXFHRECL

The record length indicator. A 6-byte character representation of an integer

value specifying the length, in bytes, of the portion of the PC/IXF record

that follows the record length indicator; that is, the total record size minus

6 bytes. The H record must be sufficiently long to include all of its defined

fields.

IXFHRECT

The IXF record type, which is set to H for this record.

IXFHID

The file format identifier, which is set to IXF for this file.

IXFHVERS

The PC/IXF format level used when the file was created, which is set to

’0002’.

IXFHPROD

A field that can be used by the program creating the file to identify itself.

If this field is filled in, the first six bytes are used to identify the product

creating the file, and the last six bytes are used to indicate the version or

release of the creating product. The database manager uses this field to

signal the existence of database manager-specific data.

IXFHDATE

The date on which the file was written, in the form yyyymmdd.

IXFHTIME

The time at which the file was written, in the form hhmmss. This field is

optional and can be left blank.

IXFHHCNT

The number of H, T, and C records in this file that precede the first data

record. A records are not included in this count.

IXFHSBCP

Single-byte code page field, containing a single-byte character

representation of a SBCS CPGID or ’00000’.

Appendix D. File Formats 303DB2 9 BETA

The export utility sets this field equal to the SBCS CPGID of the exported

database table. For example, if the table SBCS CPGID is 850, this field

contains ’00850’.

IXFHDBCP

Double-byte code page field, containing a single-byte character

representation of a DBCS CPGID or ’00000’.

 The export utility sets this field equal to the DBCS CPGID of the exported

database table. For example, if the table DBCS CPGID is 301, this field

contains ’00301’.

IXFHFIL1

Spare field set to two blanks to match a reserved field in host IXF files.
TABLE RECORD

 FIELD NAME LENGTH TYPE COMMENTS

 ---------- ------- --------- -------------

 IXFTRECL 006-BYTE CHARACTER record length

 IXFTRECT 001-BYTE CHARACTER record type = ’T’

 IXFTNAML 003-BYTE CHARACTER name length

 IXFTNAME 256-BYTE CHARACTER name of data

 IXFTQULL 003-BYTE CHARACTER qualifier length

 IXFTQUAL 256-BYTE CHARACTER qualifier

 IXFTSRC 012-BYTE CHARACTER data source

 IXFTDATA 001-BYTE CHARACTER data convention = ’C’

 IXFTFORM 001-BYTE CHARACTER data format = ’M’

 IXFTMFRM 005-BYTE CHARACTER machine format = ’PC’

 IXFTLOC 001-BYTE CHARACTER data location = ’I’

 IXFTCCNT 005-BYTE CHARACTER ’C’ record count

 IXFTFIL1 002-BYTE CHARACTER reserved

 IXFTDESC 030-BYTE CHARACTER data description

 IXFTPKNM 257-BYTE CHARACTER primary key name

 IXFTDSPC 257-BYTE CHARACTER reserved

 IXFTISPC 257-BYTE CHARACTER reserved

 IXFTLSPC 257-BYTE CHARACTER reserved

The following fields are contained in the table record:

IXFTRECL

The record length indicator. A 6-byte character representation of an integer

value specifying the length, in bytes, of the portion of the PC/IXF record

that follows the record length indicator; that is, the total record size minus

6 bytes. The T record must be sufficiently long to include all of its defined

fields.

IXFTRECT

The IXF record type, which is set to T for this record.

IXFTNAML

The length, in bytes, of the table name in the IXFTNAME field.

IXFTNAME

The name of the table. If each file has only one table, this is an

informational field only. The database manager does not use this field

when importing data. When writing a PC/IXF file, the database manager

writes the DOS file name (and possibly path information) to this field.

IXFTQULL

The length, in bytes, of the table name qualifier in the IXFTQUAL field.

IXFTQUAL

Table name qualifier, which identifies the creator of a table in a relational

304 Data Movement Utilities DB2 9 BETA

system. This is an informational field only. If a program writing a file has

no data to write to this field, the preferred fill value is blanks. Programs

reading a file might print or display this field, or store it in an

informational field, but no computations should depend on the content of

this field.

IXFTSRC

Used to indicate the original source of the data. This is an informational

field only. If a program writing a file has no data to write to this field, the

preferred fill value is blanks. Programs reading a file might print or

display this field, or store it in an informational field, but no computations

should depend on the content of this field.

IXFTDATA

Convention used to describe the data. This field must be set to C for

import and export, indicating that individual column attributes are

described in the following column descriptor (C) records, and that data

follows PC/IXF conventions.

IXFTFORM

Convention used to store numeric data. This field must be set to M,

indicating that numeric data in the data (D) records is stored in the

machine (internal) format specified by the IXFTMFRM field.

IXFTMFRM

The format of any machine data in the PC/IXF file. The database manager

will only read or write files if this field is set to PCbbb, where b represents a

blank, and PC specifies that data in the PC/IXF file is in IBM PC machine

format.

IXFTLOC

The location of the data. The database manager only supports a value of I,

meaning the data is internal to this file.

IXFTCCNT

The number of C records in this table. It is a right-justified character

representation of an integer value.

IXFTFIL1

Spare field set to two blanks to match a reserved field in host IXF files.

IXFTDESC

Descriptive data about the table. This is an informational field only. If a

program writing a file has no data to write to this field, the preferred fill

value is blanks. Programs reading a file might print or display this field, or

store it in an informational field, but no computations should depend on

the content of this field. This field contains NOT NULL WITH DEFAULT if the

column was not null with default, and the table name came from a

workstation database.

IXFTPKNM

The name of the primary key defined on the table (if any). The name is

stored as a null-terminated string.

IXFTDSPC

This field is reserved for future use.

IXFTISPC

This field is reserved for future use.

IXFTLSPC

This field is reserved for future use.

Appendix D. File Formats 305DB2 9 BETA

COLUMN DESCRIPTOR RECORD

 FIELD NAME LENGTH TYPE COMMENTS

 ---------- ------- --------- -------------

 IXFCRECL 006-BYTE CHARACTER record length

 IXFCRECT 001-BYTE CHARACTER record type = ’C’

 IXFCNAML 003-BYTE CHARACTER column name length

 IXFCNAME 256-BYTE CHARACTER column name

 IXFCNULL 001-BYTE CHARACTER column allows nulls

 IXFCDEF 001-BYTE CHARACTER column has defaults

 IXFCSLCT 001-BYTE CHARACTER column selected flag

 IXFCKPOS 002-BYTE CHARACTER position in primary key

 IXFCCLAS 001-BYTE CHARACTER data class

 IXFCTYPE 003-BYTE CHARACTER data type

 IXFCSBCP 005-BYTE CHARACTER single byte code page

 IXFCDBCP 005-BYTE CHARACTER double byte code page

 IXFCLENG 005-BYTE CHARACTER column data length

 IXFCDRID 003-BYTE CHARACTER ’D’ record identifier

 IXFCPOSN 006-BYTE CHARACTER column position

 IXFCDESC 030-BYTE CHARACTER column description

 IXFCLOBL 020-BYTE CHARACTER lob column length

 IXFCUDTL 003-BYTE CHARACTER UDT name length

 IXFCUDTN 256-BYTE CHARACTER UDT name

 IXFCDEFL 003-BYTE CHARACTER default value length

 IXFCDEFV 254-BYTE CHARACTER default value

 IXFCDLPR 010-BYTE CHARACTER datalink properties

 IXFCREF 001-BYTE CHARACTER reference type

 IXFCNDIM 002-BYTE CHARACTER number of dimensions

 IXFCDSIZ varying CHARACTER size of each dimension

The following fields are contained in column descriptor records:

IXFCRECL

The record length indicator. A 6-byte character representation of an integer

value specifying the length, in bytes, of the portion of the PC/IXF record

that follows the record length indicator; that is, the total record size minus

6 bytes. The C record must be sufficiently long to include all of its defined

fields.

IXFCRECT

The IXF record type, which is set to C for this record.

IXFCNAML

The length, in bytes, of the column name in the IXFCNAME field.

IXFCNAME

The name of the column.

IXFCNULL

Specifies if nulls are permitted in this column. Valid settings are Y or N.

IXFCDEF

Specifies if a default value is defined for this field. Valid settings are Y or N.

IXFCSLCT

An obsolete field whose intended purpose was to allow selection of a

subset of columns in the data. Programs writing PC/IXF files should

always store a Y in this field. Programs reading PC/IXF files should ignore

the field.

IXFCKPOS

The position of the column as part of the primary key. Valid values range

from 01 to 16, or N if the column is not part of the primary key.

306 Data Movement Utilities DB2 9 BETA

IXFCCLAS

The class of data types to be used in the IXFCTYPE field. The database

manager only supports relational types (R).

IXFCTYPE

The data type for the column.

IXFCSBCP

Contains a single-byte character representation of a SBCS CPGID. This field

specifies the CPGID for single-byte character data, which occurs with the

IXFDCOLS field of the D records for this column.

 The semantics of this field vary with the data type for the column

(specified in the IXFCTYPE field).

v For a character string column, this field should normally contain a

non-zero value equal to that of the IXFHSBCP field in the H record;

however, other values are permitted. If this value is zero, the column is

interpreted to contain bit string data.

v For a numeric column, this field is not meaningful. It is set to zero by

the export utility, and ignored by the import utility.

v For a date or time column, this field is not meaningful. It is set to the

value of the IXFHSBCP field by the export utility, and ignored by the

import utility.

v For a graphic column, this field must be zero.

IXFCDBCP

Contains a single-byte character representation of a DBCS CPGID. This

field specifies the CPGID for double-byte character data, which occurs with

the IXFDCOLS field of the D records for this column.

 The semantics of this field vary with the data type for the column

(specified in the IXFCTYPE field).

v For a character string column, this field should either be zero, or contain

a value equal to that of the IXFHDBCP field in the H record; however,

other values are permitted. If the value in the IXFCSBCP field is zero,

the value in this field must be zero.

v For a numeric column, this field is not meaningful. It is set to zero by

the export utility, and ignored by the import utility.

v For a date or time column, this field is not meaningful. It is set to zero

by the export utility, and ignored by the import utility.

v For a graphic column, this field must have a value equal to the value of

the IXFHDBCP field.

IXFCLENG

Provides information about the size of the column being described. For

some data types, this field is unused, and should contain blanks. For other

data types, this field contains the right-justified character representation of

an integer specifying the column length. For yet other data types, this field

is divided into two subfields: 3 bytes for precision, and 2 bytes for scale;

both of these subfields are right-justified character representations of

integers.

IXFCDRID

The D record identifier. This field contains the right-justified character

representation of an integer value. Several D records can be used to contain

each row of data in the PC/IXF file. This field specifies which D record (of

the several D records contributing to a row of data) contains the data for

Appendix D. File Formats 307DB2 9 BETA

the column. A value of one (for example, 001) indicates that the data for a

column is in the first D record in a row of data. The first C record must

have an IXFCDRID value of one. All subsequent C records must have an

IXFCDRID value equal to the value in the preceding C record, or one

higher.

IXFCPOSN

The value in this field is used to locate the data for the column within one

of the D records representing a row of table data. It is the starting position

of the data for this column within the IXFDCOLS field of the D record. If

the column is nullable, IXFCPOSN points to the null indicator; otherwise,

it points to the data itself. If a column contains varying length data, the

data itself begins with the current length indicator. The IXFCPOSN value

for the first byte in the IXFDCOLS field of the D record is one (not zero). If

a column is in a new D record, the value of IXFCPOSN should be one;

otherwise, IXFCPOSN values should increase from column to column to

such a degree that the data values do not overlap.

IXFCDESC

Descriptive information about the column. This is an informational field

only. If a program writing to a file has no data to write to this field, the

preferred fill value is blanks. Programs reading a file might print or

display this field, or store it in an informational field, but no computations

should depend on the content of this field.

IXFCLOBL

The length, in bytes, of the long or the LOB defined in this column. If this

column is not a long or a LOB, the value in this field is 000.

IXFCUDTL

The length, in bytes, of the user defined type (UDT) name in the

IXFCUDTN field. If the type of this column is not a UDT, the value in this

field is 000.

IXFCUDTN

The name of the user defined type that is used as the data type for this

column.

IXFCDEFL

The length, in bytes, of the default value in the IXFCDEFV field. If this

column does not have a default value, the value in this field is 000.

IXFCDEFV

Specifies the default value for this column, if one has been defined.

IXFCDLPR

If the column is a DATALINK column, this field describes the following

properties:

v The first character represents the link type, and has a value of U.

v The second character represents the link control type. Valid values are N

for no control, and F for file control.

v The third character represents the level of integrity, and has a value of A

(for database manager controlling all DATALINK values).

v The fourth character represents read permission. Valid values are D for

database determined permissions, and F for file system determined

permissions.

v The fifth character represents write permission. Valid values are B for

blocked access, and F for file system determined permissions.

308 Data Movement Utilities DB2 9 BETA

v The sixth character represents recovery options. Valid values are Y (DB2

will support point-in-time recovery of files referenced in this column),

and N (no support).

v The seventh character represents the action that is to be taken when the

data file is unlinked. Valid values are R for restore, and D for delete the

file.

IXFCREF

If the column is part of a hierarchy, this field specifies whether the column

is a data column (D), or a reference column (R).

IXFCNDIM

The number of dimensions in the column. Arrays are not supported in this

version of PC/IXF. This field must therefore contain a character

representation of a zero integer value.

IXFCDSIZ

The size or range of each dimension. The length of this field is five bytes

per dimension. Since arrays are not supported (that is, the number of

dimensions must be zero), this field has zero length, and does not actually

exist.
DATA RECORD

 FIELD NAME LENGTH TYPE COMMENTS

 ---------- ------- --------- -------------

 IXFDRECL 06-BYTE CHARACTER record length

 IXFDRECT 01-BYTE CHARACTER record type = ’D’

 IXFDRID 03-BYTE CHARACTER ’D’ record identifier

 IXFDFIL1 04-BYTE CHARACTER reserved

 IXFDCOLS varying variable columnar data

The following fields are contained in the data records:

IXFDRECL

The record length indicator. A 6-byte character representation of an integer

value specifying the length, in bytes, of the portion of the PC/IXF record

that follows the record length indicator; that is, the total record size minus

6 bytes. Each D record must be sufficiently long to include all significant

data for the current occurrence of the last data column stored in the record.

IXFDRECT

The IXF record type, which is set to D for this record, indicating that it

contains data values for the table.

IXFDRID

The record identifier, which identifies a particular D record within the

sequence of several D records contributing to a row of data. For the first D

record in a row of data, this field has a value of one; for the second D

record in a row of data, this field has a value of two, and so on. In each

row of data, all the D record identifiers called out in the C records must

actually exist.

IXFDFIL1

Spare field set to four blanks to match reserved fields, and hold a place for

a possible shift-out character, in host IXF files.

IXFDCOLS

The area for columnar data. The data area of a data record (D record) is

composed of one or more column entries. There is one column entry for

each column descriptor record, which has the same D record identifier as

Appendix D. File Formats 309DB2 9 BETA

the D record. In the D record, the starting position of the column entries is

indicated by the IXFCPOSN value in the C records.

 The format of the column entry data depends on whether or not the

column is nullable:

v If the column is nullable (the IXFCNULL field is set to Y), the column

entry data includes a null indicator. If the column is not null, the

indicator is followed by data type-specific information, including the

actual database value. The null indicator is a two-byte value set to

x’0000’ for not null, and x’FFFF’ for null.

v If the column is not nullable, the column entry data includes only data

type-specific information, including the actual database value.

 For varying-length data types, the data type-specific information includes a

current length indicator. The current length indicators are 2-byte integers in

a form specified by the IXFTMFRM field.

 The length of the data area of a D record cannot exceed 32 771 bytes.
APPLICATION RECORD

 FIELD NAME LENGTH TYPE COMMENTS

 ---------- ------- --------- -------------

 IXFARECL 06-BYTE CHARACTER record length

 IXFARECT 01-BYTE CHARACTER record type = ’A’

 IXFAPPID 12-BYTE CHARACTER application identifier

 IXFADATA varying variable application-specific data

The following fields are contained in application records:

IXFARECL

The record length indicator. A 6-byte character representation of an integer

value specifying the length, in bytes, of the portion of the PC/IXF record

that follows the record length indicator; that is, the total record size minus

6 bytes. Each A record must be sufficiently long to include at least the

entire IXFAPPID field.

IXFARECT

The IXF record type, which is set to A for this record, indicating that this is

an application record. These records are ignored by programs which do not

have particular knowledge about the content and the format of the data

implied by the application identifier.

IXFAPPID

The application identifier, which identifies the application creating the A

record. PC/IXF files created by the database manager can have A records

with the first 6 characters of this field set to a constant identifying the

database manager, and the last 6 characters identifying the release or

version of the database manager or another application writing the A

record.

IXFADATA

This field contains application dependent supplemental data, whose form

and content are known only to the program creating the A record, and to

other applications which are likely to process the A record.
DB2 INDEX RECORD

 FIELD NAME LENGTH TYPE COMMENTS

 ---------- -------- --------- -------------

 IXFARECL 006-BYTE CHARACTER record length

 IXFARECT 001-BYTE CHARACTER record type = ’A’

310 Data Movement Utilities DB2 9 BETA

IXFAPPID 012-BYTE CHARACTER application identifier =

 ’DB2 02.00’

 IXFAITYP 001-BYTE CHARACTER application specific data type =

 ’I’

 IXFADATE 008-BYTE CHARACTER date written from the ’H’ record

 IXFATIME 006-BYTE CHARACTER time written from the ’H’ record

 IXFANDXL 002-BYTE SHORT INT length of name of the index

 IXFANDXN 256-BYTE CHARACTER name of the index

 IXFANCL 002-BYTE SHORT INT length of name of the index creator

 IXFANCN 256-BYTE CHARACTER name of the index creator

 IXFATABL 002-BYTE SHORT INT length of name of the table

 IXFATABN 256-BYTE CHARACTER name of the table

 IXFATCL 002-BYTE SHORT INT length of name of the table creator

 IXFATCN 256-BYTE CHARACTER name of the table creator

 IXFAUNIQ 001-BYTE CHARACTER unique rule

 IXFACCNT 002-BYTE CHARACTER column count

 IXFAREVS 001-BYTE CHARACTER allow reverse scan flag

 IXFAPCTF 002-BYTE CHARACTER amount of pct free

 IXFAPCTU 002-BYTE CHARACTER amount of minpctused

 IXFAEXTI 001-BYTE CHARACTER reserved

 IXFACNML 002-BYTE SHORT INT length of name of the columns

 IXFACOLN varying CHARACTER name of the columns in the index

One record of this type is specified for each user defined index. This record is

located after all of the C records for the table. The following fields are contained in

DB2 index records:

IXFARECL

The record length indicator. A 6-byte character representation of an integer

value specifying the length, in bytes, of the portion of the PC/IXF record

that follows the record length indicator; that is, the total record size minus

6 bytes. Each A record must be sufficiently long to include at least the

entire IXFAPPID field.

IXFARECT

The IXF record type, which is set to A for this record, indicating that this is

an application record. These records are ignored by programs which do not

have particular knowledge about the content and the format of the data

implied by the application identifier.

IXFAPPID

The application identifier, which identifies DB2 as the application creating

this A record.

IXFAITYP

Specifies that this is subtype ″I″ of DB2 application records.

IXFADATE

The date on which the file was written, in the form yyyymmdd. This field

must have the same value as IXFHDATE.

IXFATIME

The time at which the file was written, in the form hhmmss. This field must

have the same value as IXFHTIME.

IXFANDXL

The length, in bytes, of the index name in the IXFANDXN field.

IXFANDXN

The name of the index.

IXFANCL

The length, in bytes, of the index creator name in the IXFANCN field.

Appendix D. File Formats 311DB2 9 BETA

IXFANCN

The name of the index creator.

IXFATABL

The length, in bytes, of the table name in the IXFATABN field.

IXFATABN

The name of the table.

IXFATCL

The length, in bytes, of the table creator name in the IXFATCN field.

IXFATCN

The name of the table creator.

IXFAUNIQ

Specifies the type of index. Valid values are P for a primary key, U for a

unique index, and D for a non unique index.

IXFACCNT

Specifies the number of columns in the index definition.

IXFAREVS

Specifies whether reverse scan is allowed on this index. Valid values are Y

for reverse scan, and N for no reverse scan.

IXFAPCTF

Specifies the percentage of index pages to leave as free. Valid values range

from -1 to 99. If a value of -1 or zero is specified, the system default value

is used.

IXFAPCTU

Specifies the minimum percentage of index pages that must be free before

two index pages can be merged. Valid values range from 00 to 99.

IXFAEXTI

Reserved for future use.

IXFACNML

The length, in bytes, of the column names in the IXFACOLN field.

IXFACOLN

The names of the columns that are part of this index. Valid values are in

the form +name−name..., where + specifies an ascending sort on the

column, and − specifies a descending sort on the column.
DB2 HIERARCHY RECORD

 FIELD NAME LENGTH TYPE COMMENTS

 ---------- -------- --------- -------------

 IXFARECL 006-BYTE CHARACTER record length

 IXFARECT 001-BYTE CHARACTER record type = ’A’

 IXFAPPID 012-BYTE CHARACTER application identifier =

 ’DB2 02.00’

 IXFAXTYP 001-BYTE CHARACTER application specific data type =

 ’X’

 IXFADATE 008-BYTE CHARACTER date written from the ’H’ record

 IXFATIME 006-BYTE CHARACTER time written from the ’H’ record

 IXFAYCNT 010-BYTE CHARACTER ’Y’ record count for this hierarchy

 IXFAYSTR 010-BYTE CHARACTER starting column of this hierarchy

One record of this type is used to describe a hierarchy. All subtable records (see

below) must be located immediately after the hierarchy record, and hierarchy

records are located after all of the C records for the table. The following fields are

contained in DB2 hierarchy records:

312 Data Movement Utilities DB2 9 BETA

IXFARECL

The record length indicator. A 6-byte character representation of an integer

value specifying the length, in bytes, of the portion of the PC/IXF record

that follows the record length indicator; that is, the total record size minus

6 bytes. Each A record must be sufficiently long to include at least the

entire IXFAPPID field.

IXFARECT

The IXF record type, which is set to A for this record, indicating that this is

an application record. These records are ignored by programs which do not

have particular knowledge about the content and the format of the data

implied by the application identifier.

IXFAPPID

The application identifier, which identifies DB2 as the application creating

this A record.

IXFAXTYP

Specifies that this is subtype ″X″ of DB2 application records.

IXFADATE

The date on which the file was written, in the form yyyymmdd. This field

must have the same value as IXFHDATE.

IXFATIME

The time at which the file was written, in the form hhmmss. This field must

have the same value as IXFHTIME.

IXFAYCNT

Specifies the number of subtable records that are expected after this

hierarchy record.

IXFAYSTR

Specifies the index of the subtable records at the beginning of the exported

data. If export of a hierarchy was started from a non-root subtable, all

parent tables of this subtable are exported. The position of this subtable

inside of the IXF file is also stored in this field. The first X record

represents the column with an index of zero.
DB2 SUBTABLE RECORD

 FIELD NAME LENGTH TYPE COMMENTS

 ---------- -------- --------- -------------

 IXFARECL 006-BYTE CHARACTER record length

 IXFARECT 001-BYTE CHARACTER record type = ’A’

 IXFAPPID 012-BYTE CHARACTER application identifier =

 ’DB2 02.00’

 IXFAYTYP 001-BYTE CHARACTER application specific data type =

 ’Y’

 IXFADATE 008-BYTE CHARACTER date written from the ’H’ record

 IXFATIME 006-BYTE CHARACTER time written from the ’H’ record

 IXFASCHL 003-BYTE CHARACTER type schema name length

 IXFASCHN 256-BYTE CHARACTER type schema name

 IXFATYPL 003-BYTE CHARACTER type name length

 IXFATYPN 256-BYTE CHARACTER type name

 IXFATABL 003-BYTE CHARACTER table name length

 IXFATABN 256-BYTE CHARACTER table name

 IXFAPNDX 010-BYTE CHARACTER subtable index of parent table

 IXFASNDX 005-BYTE CHARACTER starting column index of current

 table

 IXFAENDX 005-BYTE CHARACTER ending column index of current

 table

Appendix D. File Formats 313DB2 9 BETA

One record of this type is used to describe a subtable as part of a hierarchy. All

subtable records belonging to a hierarchy must be stored together, and

immediately after the corresponding hierarchy record. A subtable is composed of

one or more columns, and each column is described in a column record. Each

column in a subtable must be described in a consecutive set of C records. The

following fields are contained in DB2 subtable records:

IXFARECL

The record length indicator. A 6-byte character representation of an integer

value specifying the length, in bytes, of the portion of the PC/IXF record

that follows the record length indicator; that is, the total record size minus

6 bytes. Each A record must be sufficiently long to include at least the

entire IXFAPPID field.

IXFARECT

The IXF record type, which is set to A for this record, indicating that this is

an application record. These records are ignored by programs which do not

have particular knowledge about the content and the format of the data

implied by the application identifier.

IXFAPPID

The application identifier, which identifies DB2 as the application creating

this A record.

IXFAYTYP

Specifies that this is subtype ″Y″ of DB2 application records.

IXFADATE

The date on which the file was written, in the form yyyymmdd. This field

must have the same value as IXFHDATE.

IXFATIME

The time at which the file was written, in the form hhmmss. This field must

have the same value as IXFHTIME.

IXFASCHL

The length, in bytes, of the subtable schema name in the IXFASCHN field.

IXFASCHN

The name of the subtable schema.

IXFATYPL

The length, in bytes, of the subtable name in the IXFATYPN field.

IXFATYPN

The name of the subtable.

IXFATABL

The length, in bytes, of the table name in the IXFATABN field.

IXFATABN

The name of the table.

IXFAPNDX

Subtable record index of the parent subtable. If this subtable is the root of

a hierarchy, this field contains the value -1.

IXFASNDX

Starting index of the column records that made up this subtable.

IXFAENDX

Ending index of the column records that made up this subtable.

314 Data Movement Utilities DB2 9 BETA

DB2 CONTINUATION RECORD

 FIELD NAME LENGTH TYPE COMMENTS

 ---------- -------- --------- -------------

 IXFARECL 006-BYTE CHARACTER record length

 IXFARECT 001-BYTE CHARACTER record type = ’A’

 IXFAPPID 012-BYTE CHARACTER application identifier =

 ’DB2 02.00’

 IXFACTYP 001-BYTE CHARACTER application specific data type = ’C’

 IXFADATE 008-BYTE CHARACTER date written from the ’H’ record

 IXFATIME 006-BYTE CHARACTER time written from the ’H’ record

 IXFALAST 002-BYTE SHORT INT last diskette volume number

 IXFATHIS 002-BYTE SHORT INT this diskette volume number

 IXFANEXT 002-BYTE SHORT INT next diskette volume number

This record is found at the end of each file that is part of a multi-volume IXF file,

unless that file is the final volume; it can also be found at the beginning of each

file that is part of a multi-volume IXF file, unless that file is the first volume. The

purpose of this record is to keep track of file order. The following fields are

contained in DB2 continuation records:

IXFARECL

The record length indicator. A 6-byte character representation of an integer

value specifying the length, in bytes, of the portion of the PC/IXF record

that follows the record length indicator; that is, the total record size minus

6 bytes. Each A record must be sufficiently long to include at least the

entire IXFAPPID field.

IXFARECT

The IXF record type, which is set to A for this record, indicating that this is

an application record. These records are ignored by programs which do not

have particular knowledge about the content and the format of the data

implied by the application identifier.

IXFAPPID

The application identifier, which identifies DB2 as the application creating

this A record.

IXFACTYP

Specifies that this is subtype ″C″ of DB2 application records.

IXFADATE

The date on which the file was written, in the form yyyymmdd. This field

must have the same value as IXFHDATE.

IXFATIME

The time at which the file was written, in the form hhmmss. This field must

have the same value as IXFHTIME.

IXFALAST

This field is a binary field, in little-endian format. The value should be one

less than the value in IXFATHIS.

IXFATHIS

This field is a binary field, in little-endian format. The value in this field on

consecutive volumes should also be consecutive. The first volume has a

value of 1.

IXFANEXT

This field is a binary field, in little-endian format. The value should be one

more than the value in IXFATHIS, unless the record is at the beginning of

the file, in which case the value should be zero.

Appendix D. File Formats 315DB2 9 BETA

DB2 TERMINATE RECORD

 FIELD NAME LENGTH TYPE COMMENTS

 ---------- -------- --------- -------------

 IXFARECL 006-BYTE CHARACTER record length

 IXFARECT 001-BYTE CHARACTER record type = ’A’

 IXFAPPID 012-BYTE CHARACTER application identifier =

 ’DB2 02.00’

 IXFAETYP 001-BYTE CHARACTER application specific data type =

 ’E’

 IXFADATE 008-BYTE CHARACTER date written from the ’H’ record

 IXFATIME 006-BYTE CHARACTER time written from the ’H’ record

This record is the end-of-file marker found at the end of an IXF file. The following

fields are contained in DB2 terminate records:

IXFARECL

The record length indicator. A 6-byte character representation of an integer

value specifying the length, in bytes, of the portion of the PC/IXF record

that follows the record length indicator; that is, the total record size minus

6 bytes. Each A record must be sufficiently long to include at least the

entire IXFAPPID field.

IXFARECT

The IXF record type, which is set to A for this record, indicating that this is

an application record. These records are ignored by programs which do not

have particular knowledge about the content and the format of the data

implied by the application identifier.

IXFAPPID

The application identifier, which identifies DB2 as the application creating

this A record.

IXFAETYP

Specifies that this is subtype ″E″ of DB2 application records.

IXFADATE

The date on which the file was written, in the form yyyymmdd. This field

must have the same value as IXFHDATE.

IXFATIME

The time at which the file was written, in the form hhmmss. This field must

have the same value as IXFHTIME.
DB2 IDENTITY RECORD

 FIELD NAME LENGTH TYPE COMMENTS

 ---------- ------- --------- -------------

 IXFARECL 06-BYTE CHARACTER record length

 IXFARECT 01-BYTE CHARACTER record type = ’A’

 IXFAPPID 12-BYTE CHARACTER application identifier

 IXFATYPE 01-BYTE CHARACTER application specific record type = ’S’

 IXFADATE 08-BYTE CHARACTER application record creation date

 IXFATIME 06-BYTE CHARACTER application record creation time

 IXFACOLN 06-BYTE CHARACTER column number of the identity column

 IXFAITYP 01-BYTE CHARACTER generated always (’Y’ or ’N’)

 IXFASTRT 33-BYTE CHARACTER identity START AT value

 IXFAINCR 33-BYTE CHARACTER identity INCREMENT BY value

 IXFACACH 10-BYTE CHARACTER identity CACHE value

 IXFAMINV 33-BYTE CHARACTER identity MINVALUE

 IXFAMAXV 33-BYTE CHARACTER identity MAXVALUE

 IXFACYCL 01-BYTE CHARACTER identity CYCLE (’Y’ or ’N’)

 IXFAORDR 01-BYTE CHARACTER identity ORDER (’Y’ or ’N’)

 IXFARMRL 03-BYTE CHARACTER identity Remark length

 IXFARMRK 254-BYTE CHARACTER identity Remark value

316 Data Movement Utilities DB2 9 BETA

The following fields are contained in DB2 identity records:

IXFARECL

The record length indicator. A 6-byte character representation of an integer

value specifying the length, in bytes, of the portion of the PC/IXF record

that follows the record length indicator; that is, the total record size minus

6 bytes. Each A record must be sufficiently long to include at least the

entire IXFAPPID field.

IXFARECT

The IXF record type, which is set to A for this record, indicating that this is

an application record. These records are ignored by programs which do not

have particular knowledge about the content and the format of the data

implied by the application identifier.

IXFAPPID

The application identifier, which identifies DB2 as the application creating

this A record.

IXFATYPE

Application specific record type. This field should always have a value of

″S″.

IXFADATE

The date on which the file was written, in the form yyyymmdd. This field

must have the same value as IXFHDATE.

IXFATIME

The time at which the file was written, in the form hhmmss. This field must

have the same value as IXFHTIME.

IXFACOLN

Column number of the identity column in the table.

IXFAITYP

The type of the identity column. A value of ″Y″ indicates that the identity

column is always GENERATED. All other values are interpreted to mean

that the column is of type GENERATED BY DEFAULT.

IXFASTRT

The START AT value for the identity column that was supplied to the

CREATE TABLE statement at the time of table creation.

IXFAINCR

The INCREMENT BY value for the identity column that was supplied to

the CREATE TABLE statement at the time of table creation.

IXFACACH

The CACHE value for the identity column that was supplied to the

CREATE TABLE statement at the time of table creation. A value of ″1″

corresponds to the NO CACHE option.

IXFAMINV

The MINVALUE for the identity column that was supplied to the CREATE

TABLE statement at the time of table creation.

IXFAMAXV

The MAXVALUE for the identity column that was supplied to the CREATE

TABLE statement at the time of table creation.

IXFACYCL

The CYCLE value for the identity column that was supplied to the

Appendix D. File Formats 317DB2 9 BETA

CREATE TABLE statement at the time of table creation. A value of ″Y″

corresponds to the CYCLE option, any other value corresponds to NO

CYCLE.

IXFAORDR

The ORDER value for the identity column that was supplied to the

CREATE TABLE statement at the time of table creation. A value of ″Y″

corresponds to the ORDER option, any other value corresponds to NO

ORDER.

IXFARMRL

The length, in bytes, of the remark in IXFARMRK field.

IXFARMRK

This is the user-entered remark associated with the identity column. This is

an informational field only. The database manager does not use this field

when importing data.

 Related reference:

v “PC/IXF Data Type Descriptions” on page 323

v “PC/IXF data types” on page 318

PC/IXF data types

 Table 21. PC/IXF Data Types

Name IXFCTYPE Value Description

BIGINT 492 An 8-byte integer in the form specified by

IXFTMFRM. It represents a whole number

between -9 223 372 036 854 775 808 and

9 223 372 036 854 775 807. IXFCSBCP and

IXFCDBCP are not significant , and should

be zero. IXFCLENG is not used, and should

contain blanks.

BLOB, CLOB 404, 408 A variable-length character string. The

maximum length of the string is contained

in the IXFCLENG field of the column

descriptor record, and cannot exceed 32 767

bytes. The string itself is preceded by a

current length indicator, which is a 4-byte

integer specifying the length of the string,

in bytes. The string is in the code page

indicated by IXFCSBCP.

The following applies to BLOBs only: If

IXFCSBCP is zero, the string is bit data, and

should not be translated by any

transformation program.

The following applies to CLOBs only: If

IXFCDBCP is non-zero, the string can also

contain double-byte characters in the code

page indicated by IXFCDBCP.

318 Data Movement Utilities DB2 9 BETA

Table 21. PC/IXF Data Types (continued)

Name IXFCTYPE Value Description

BLOB_LOCATION_

SPECIFIER and

DBCLOB_

LOCATION_

SPECIFIER

960, 964, 968 A fixed-length field, which cannot exceed

255 bytes. The LOB Location Specifier

(LLS)is located in the code page indicated

by IXFCSBCP. If IXFCSBCP is zero, the LLS

is bit data and should not be translated by

any transformation program. If IXFCDBCP

is non-zero, the string can also contain

double-byte characters in the code page

indicated by IXFCDBCP.

Since the length of the LLS is stored in

IXFCLENG, the actual length of the original

LOB is lost. PC/IXF files with columns of

this type should not be used to recreate the

LOB field since the LOB will be created

with the length of the LLS.

BLOB_FILE,

CLOB_FILE,

DBCLOB_FILE

916, 920, 924 A fixed-length field containing an SQLFILE

structure with the name_length and the name

fields filled in. The length of the structure is

contained in the IXFCLENG field of the

column descriptor record, and cannot

exceed 255 bytes. The file name is in the

code page indicated by IXFCSBCP. If

IXFCDBCP is non-zero, the file name can

also contain double-byte characters in the

code page indicated by IXFCDBCP. If

IXFCSBCP is zero, the file name is bit data

and should not be translated by any

transformation program.

Since the length of the structure is stored in

IXFCLENG, the actual length of the original

LOB is lost. IXF files with columns of type

BLOB_FILE, CLOB_FILE, or DBCLOB_FILE

should not be used to recreate the LOB

field, since the LOB will be created with a

length of sql_lobfile_len.

CHAR 452 A fixed-length character string. The string

length is contained in the IXFCLENG field

of the column descriptor record, and cannot

exceed 254 bytes. The string is in the code

page indicated by IXFCSBCP. If IXFCDBCP

is non-zero, the string can also contain

double-byte characters in the code page

indicated by IXFCDBCP. If IXFCSBCP is

zero, the string is bit data and should not

be translated by any transformation

program.

Appendix D. File Formats 319DB2 9 BETA

Table 21. PC/IXF Data Types (continued)

Name IXFCTYPE Value Description

DATE 384 A point in time in accordance with the

Gregorian calendar. Each date is a 10-byte

character string in International Standards

Organization (ISO) format: yyyy-mm-dd. The

range of the year part is 0001 to 9999. The

range of the month part is 01 to 12. The

range of the day part is 01 to n, where n

depends on the month, using the usual

rules for days of the month and leap year.

Leading zeros cannot be omitted from any

part. IXFCLENG is not used, and should

contain blanks. Valid characters within

DATE are invariant in all PC ASCII code

pages; therefore, IXFCSBCP and IXFCDBCP

are not significant, and should be zero.

DBCLOB 412 A variable-length string of double-byte

characters. The IXFCLENG field in the

column descriptor record specifies the

maximum number of double-byte

characters in the string, and cannot exceed

16 383. The string itself is preceded by a

current length indicator, which is a 4-byte

integer specifying the length of the string in

double-byte characters (that is, the value of

this integer is one half the length of the

string, in bytes). The string is in the DBCS

code page, as specified by IXFCDBCP in the

C record. Since the string consists of

double-byte character data only, IXFCSBCP

should be zero. There are no surrounding

shift-in or shift-out characters.

DECIMAL 484 A packed decimal number with precision P

(as specified by the first three bytes of

IXFCLENG in the column descriptor record)

and scale S (as specified by the last two

bytes of IXFCLENG). The length, in bytes,

of a packed decimal number is (P+2)/2. The

precision must be an odd number between

1 and 31, inclusive. The packed decimal

number is in the internal format specified

by IXFTMFRM, where packed decimal for

the PC is defined to be the same as packed

decimal for the System/370. IXFCSBCP and

IXFCDBCP are not significant, and should

be zero.

FLOATING POINT 480 Either a long (8-byte) or short (4-byte)

floating point number, depending on

whether IXFCLENG is set to eight or to

four. The data is in the internal machine

form, as specified by IXFTMFRM.

IXFCSBCP and IXFCDBCP are not

significant, and should be zero. Four-byte

floating point is not supported by the

database manager.

320 Data Movement Utilities DB2 9 BETA

Table 21. PC/IXF Data Types (continued)

Name IXFCTYPE Value Description

GRAPHIC 468 A fixed-length string of double-byte

characters. The IXFCLENG field in the

column descriptor record specifies the

number of double-byte characters in the

string, and cannot exceed 127. The actual

length of the string is twice the value of the

IXFCLENG field, in bytes. The string is in

the DBCS code page, as specified by

IXFCDBCP in the C record. Since the string

consists of double-byte character data only,

IXFCSBCP should be zero. There are no

surrounding shift-in or shift-out characters.

INTEGER 496 A 4-byte integer in the form specified by

IXFTMFRM. It represents a whole number

between -2 147 483 648 and +2 147 483 647.

IXFCSBCP and IXFCDBCP are not

significant, and should be zero. IXFCLENG

is not used, and should contain blanks.

LONGVARCHAR 456 A variable-length character string. The

maximum length of the string is contained

in the IXFCLENG field of the column

descriptor record, and cannot exceed 32 767

bytes. The string itself is preceded by a

current length indicator, which is a 2-byte

integer specifying the length of the string,

in bytes. The string is in the code page

indicated by IXFCSBCP. If IXFCDBCP is

non-zero, the string can also contain

double-byte characters in the code page

indicated by IXFCDBCP. If IXFCSBCP is

zero, the string is bit data and should not

be translated by any transformation

program.

LONG

VARGRAPHIC

472 A variable-length string of double-byte

characters. The IXFCLENG field in the

column descriptor record specifies the

maximum number of double-byte

characters for the string, and cannot exceed

16 383. The string itself is preceded by a

current length indicator, which is a 2-byte

integer specifying the length of the string in

double-byte characters (that is, the value of

this integer is one half the length of the

string, in bytes). The string is in the DBCS

code page, as specified by IXFCDBCP in the

C record. Since the string consists of

double-byte character data only, IXFCSBCP

should be zero. There are no surrounding

shift-in or shift-out characters.

SMALLINT 500 A 2-byte integer in the form specified by

IXFTMFRM. It represents a whole number

between −32 768 and +32 767. IXFCSBCP

and IXFCDBCP are not significant, and

should be zero. IXFCLENG is not used, and

should contain blanks.

Appendix D. File Formats 321DB2 9 BETA

Table 21. PC/IXF Data Types (continued)

Name IXFCTYPE Value Description

TIME 388 A point in time in accordance with the

24-hour clock. Each time is an 8-byte

character string in ISO format: hh.mm.ss.

The range of the hour part is 00 to 24, and

the range of the other parts is 00 to 59. If

the hour is 24, the other parts are 00. The

smallest time is 00.00.00, and the largest is

24.00.00. Leading zeros cannot be omitted

from any part. IXFCLENG is not used, and

should contain blanks. Valid characters

within TIME are invariant in all PC ASCII

code pages; therefore, IXFCSBCP and

IXFCDBCP are not significant, and should

be zero.

TIMESTAMP 392 The date and time with microsecond

precision. Each time stamp is a character

string of the form yyyy-mm-dd-
hh.mm.ss.nnnnnn (year month day hour

minutes seconds microseconds). IXFCLENG

is not used, and should contain blanks.

Valid characters within TIMESTAMP are

invariant in all PC ASCII code pages;

therefore, IXFCSBCP and IXFCDBCP are not

significant, and should be zero.

VARCHAR 448 A variable-length character string. The

maximum length of the string, in bytes, is

contained in the IXFCLENG field of the

column descriptor record, and cannot

exceed 254 bytes. The string itself is

preceded by a current length indicator,

which is a two-byte integer specifying the

length of the string, in bytes. The string is

in the code page indicated by IXFCSBCP. If

IXFCDBCP is non-zero, the string can also

contain double-byte characters in the code

page indicated by IXFCDBCP. If IXFCSBCP

is zero, the string is bit data and should not

be translated by any transformation

program.

VARGRAPHIC 464 A variable-length string of double-byte

characters. The IXFCLENG field in the

column descriptor record specifies the

maximum number of double-byte

characters in the string, and cannot exceed

127. The string itself is preceded by a

current length indicator, which is a 2-byte

integer specifying the length of the string in

double-byte characters (that is, the value of

this integer is one half the length of the

string, in bytes). The string is in the DBCS

code page, as specified by IXFCDBCP in the

C record. Since the string consists of

double-byte character data only, IXFCSBCP

should be zero. There are no surrounding

shift-in or shift-out characters.

322 Data Movement Utilities DB2 9 BETA

Not all combinations of IXFCSBCP and IXFCDBCP values for PC/IXF character or

graphic columns are valid. A PC/IXF character or graphic column with an invalid

(IXFCSBCP,IXFCDBCP) combination is an invalid data type.

 Table 22. Valid PC/IXF Data Types

PC/IXF Data Type

Valid

(IXFCSBCP,IXFCDBCP)

Pairs

Invalid

(IXFCSBCP,IXFCDBCP)

Pairs

CHAR, VARCHAR, or

LONG VARCHAR

(0,0), (x,0), or (x,y) (0,y)

BLOB (0,0) (x,0), (0,y), or (x,y)

CLOB (x,0), (x,y) (0,0), (0,y)

GRAPHIC, VARGRAPHIC,

LONG VARGRAPHIC, or

DBCLOB

(0,y) (0,0), (x,0), or (x,y)

Note: x and y are not 0.

 Related reference:

v “FORCEIN Option” on page 330

v “PC/IXF Data Type Descriptions” on page 323

v “PC/IXF Record Types” on page 302

PC/IXF Data Type Descriptions

 Table 23. Acceptable Data Type Forms for the PC/IXF File Format

Data Type

Form in Files Created

by the Export Utility Form Acceptable to the Import Utility

BIGINT A BIGINT column,

identical to the database

column, is created.

A column in any numeric type (SMALLINT,

INTEGER, BIGINT, DECIMAL, or FLOAT) is

accepted. Individual values are rejected if they

are not in the range -9 223 372 036 854 775 808 to

9 223 372 036 854 775 807.

BLOB A PC/IXF BLOB column

is created. The

maximum length of the

database column, the

SBCS CPGID value, and

the DBCS CPGID value

are copied to the column

descriptor record.

A PC/IXF CHAR, VARCHAR, LONG

VARCHAR, BLOB, BLOB_FILE, or

BLOB_LOCATION_SPECIFIER column is

acceptable if:

v The database column is marked FOR BIT

DATA

v The PC/IXF column single-byte code page

value equals the SBCS CPGID of the database

column, and the PC/IXF column double-byte

code page value equals zero, or the DBCS

CPGID of the database column. A PC/IXF

GRAPHIC, VARGRAPHIC, or LONG

VARGRAPHIC BLOB column is also

acceptable. If the PC/IXF column is of fixed

length, its length must be compatible with the

maximum length of the database column.

Appendix D. File Formats 323DB2 9 BETA

Table 23. Acceptable Data Type Forms for the PC/IXF File Format (continued)

Data Type

Form in Files Created

by the Export Utility Form Acceptable to the Import Utility

CHAR A PC/IXF CHAR

column is created. The

database column length,

the SBCS CPGID value,

and the DBCS CPGID

value are copied to the

PC/IXF column

descriptor record.

A PC/IXF CHAR, VARCHAR, or LONG

VARCHAR column is acceptable if:

v The database column is marked FOR BIT

DATA

v The PC/IXF column single-byte code page

value equals the SBCS CPGID of the database

column, and the PC/IXF column double-byte

code page value equals zero, or the DBCS

CPGID of the database column.

A PC/IXF GRAPHIC, VARGRAPHIC, or LONG

VARGRAPHIC column is also acceptable if the

database column is marked FOR BIT DATA. In

any case, if the PC/IXF column is of fixed length,

its length must be compatible with the length of

the database column. The data is padded on the

right with single-byte spaces (x’20’), if necessary.

CLOB A PC/IXF CLOB column

is created. The

maximum length of the

database column, the

SBCS CPGID value, and

the DBCS CPGID value

are copied to the column

descriptor record.

A PC/IXF CHAR, VARCHAR, LONG

VARCHAR, CLOB, CLOB_FILE, or

CLOB_LOCATION_SPECIFIER column is

acceptable if the PC/IXF column single-byte code

page value equals the SBCS CPGID of the

database column, and the PC/IXF column

double-byte code page value equals zero, or the

DBCS CPGID of the database column. If the

PC/IXF column is of fixed length, its length must

be compatible with the maximum length of the

database column.

DATE A DATE column,

identical to the database

column, is created.

A PC/IXF column of type DATE is the usual

input. The import utility also attempts to accept

columns in any of the character types, except

those with incompatible lengths. The character

column in the PC/IXF file must contain dates in

a format consistent with the territory code of the

target database.

DBCLOB A PC/IXF DBCLOB

column is created. The

maximum length of the

database column, the

SBCS CPGID value, and

the DBCS CPGID value

are copied to the column

descriptor record.

A PC/IXF GRAPHIC, VARGRAPHIC, LONG

VARGRAPHIC, DBCLOB, DBCLOB_FILE, or

DBCLOB_LOCATION_SPECIFIER column is

acceptable if the PC/IXF column double-byte

code page value equals that of the database

column. If the PC/IXF column is of fixed length,

its length must be compatible with the maximum

length of the database column.

DECIMAL A DECIMAL column,

identical to the database

column, is created. The

precision and scale of

the column is stored in

the column descriptor

record.

A column in any numeric type (SMALLINT,

INTEGER, BIGINT, DECIMAL, or FLOAT) is

accepted. Individual values are rejected if they

are not in the range of the DECIMAL column

into which they are being imported.

FLOAT A FLOAT column,

identical to the database

column, is created.

A column in any numeric type (SMALLINT,

INTEGER, BIGINT, DECIMAL, or FLOAT) is

accepted. All values are within range.

324 Data Movement Utilities DB2 9 BETA

Table 23. Acceptable Data Type Forms for the PC/IXF File Format (continued)

Data Type

Form in Files Created

by the Export Utility Form Acceptable to the Import Utility

GRAPHIC (DBCS only) A PC/IXF GRAPHIC

column is created. The

database column length,

the SBCS CPGID value,

and the DBCS CPGID

value are copied to the

column descriptor

record.

A PC/IXF GRAPHIC, VARGRAPHIC, or LONG

VARGRAPHIC column is acceptable if the

PC/IXF column double-byte code page value

equals that of the database column. If the PC/IXF

column is of fixed length, its length must be

compatible with the database column length. The

data is padded on the right with double-byte

spaces (x’8140’), if necessary.

INTEGER An INTEGER column,

identical to the database

column, is created.

A column in any numeric type (SMALLINT,

INTEGER, BIGINT, DECIMAL, or FLOAT) is

accepted. Individual values are rejected if they

are not in the range -2 147 483 648 to

2 147 483 647.

LONG VARCHAR A PC/IXF LONG

VARCHAR column is

created. The maximum

length of the database

column, the SBCS

CPGID value, and the

DBCS CPGID value are

copied to the column

descriptor record.

A PC/IXF CHAR, VARCHAR, or LONG

VARCHAR column is acceptable if:

v The database column is marked FOR BIT

DATA

v The PC/IXF column single-byte code page

value equals the SBCS CPGID of the database

column, and the PC/IXF column double-byte

code page value equals zero, or the DBCS

CPGID of the database column.

A PC/IXF GRAPHIC, VARGRAPHIC, or LONG

VARGRAPHIC column is also acceptable if the

database column is marked FOR BIT DATA. In

any case, if the PC/IXF column is of fixed length,

its length must be compatible with the maximum

length of the database column.

LONG VARGRAPHIC

(DBCS only)

A PC/IXF LONG

VARGRAPHIC column

is created. The

maximum length of the

database column, the

SBCS CPGID value, and

the DBCS CPGID value

are copied to the column

descriptor record.

A PC/IXF GRAPHIC, VARGRAPHIC, or LONG

VARGRAPHIC column is acceptable if the

PC/IXF column double-byte code page value

equals that of the database column. If the PC/IXF

column is of fixed length, its length must be

compatible with the maximum length of the

database column.

SMALLINT A SMALLINT column,

identical to the database

column, is created.

A column in any numeric type (SMALLINT,

INTEGER, BIGINT, DECIMAL, or FLOAT) is

accepted. Individual values are rejected if they

are not in the range -32 768 to 32 767.

TIME A TIME column,

identical to the database

column, is created.

A PC/IXF column of type TIME is the usual

input. The import utility also attempts to accept

columns in any of the character types, except

those with incompatible lengths. The character

column in the PC/IXF file must contain time data

in a format consistent with the territory code of

the target database.

TIMESTAMP A TIMESTAMP column,

identical to the database

column, is created.

A PC/IXF column of type TIMESTAMP is the

usual input. The import utility also attempts to

accept columns in any of the character types,

except those with incompatible lengths. The

character column in the PC/IXF file must contain

data in the input format for time stamps.

Appendix D. File Formats 325DB2 9 BETA

Table 23. Acceptable Data Type Forms for the PC/IXF File Format (continued)

Data Type

Form in Files Created

by the Export Utility Form Acceptable to the Import Utility

VARCHAR If the maximum length

of the database column

is <= 254, a PC/IXF

VARCHAR column is

created. If the maximum

length of the database

column is > 254, a

PC/IXF LONG

VARCHAR column is

created. The maximum

length of the database

column, the SBCS

CPGID value, and the

DBCS CPGID value are

copied to the column

descriptor record.

A PC/IXF CHAR, VARCHAR, or LONG

VARCHAR column is acceptable if:

v The database column is marked FOR BIT

DATA

v The PC/IXF column single-byte code page

value equals the SBCS CPGID of the database

column, and the PC/IXF column double-byte

code page value equals zero, or the DBCS

CPGID of the database column.

A PC/IXF GRAPHIC, VARGRAPHIC, or LONG

VARGRAPHIC column is also acceptable if the

database column is marked FOR BIT DATA. In

any case, if the PC/IXF column is of fixed length,

its length must be compatible with the maximum

length of the database column.

VARGRAPHIC (DBCS

only)

If the maximum length

of the database column

is <= 127, a PC/IXF

VARGRAPHIC column

is created. If the

maximum length of the

database column is >

127, a PC/IXF LONG

VARGRAPHIC column

is created. The

maximum length of the

database column, the

SBCS CPGID value, and

the DBCS CPGID value

are copied to the column

descriptor record.

A PC/IXF GRAPHIC, VARGRAPHIC, or LONG

VARGRAPHIC column is acceptable if the

PC/IXF column double-byte code page value

equals that of the database column. If the PC/IXF

column is of fixed length, its length must be

compatible with the maximum length of the

database column.

 Related reference:

v “PC/IXF data types” on page 318

v “PC/IXF Record Types” on page 302

General Rules Governing PC/IXF File Import into Databases

 The database manager import utility applies the following general rules when

importing a PC/IXF file in either an SBCS or a DBCS environment:

v The import utility accepts PC/IXF format files only (IXFHID = ’IXF’). IXF files of

other formats cannot be imported.

v The import utility rejects a PC/IXF file with more than 1024 columns.

v The value of IXFHSBCP in the PC/IXF H record must equal the SBCS CPGID, or

there must be a conversion table between the IXFHSBCP/IXFHDBCP and the

SBCS/DBCS CPGID of the target database. The value of IXFHDBCP must equal

either ’00000’, or the DBCS CPGID of the target database. If either of these

conditions is not satisfied, the import utility rejects the PC/IXF file, unless the

FORCEIN option is specified.

v Invalid Data Types — New Table

Import of a PC/IXF file into a new table is specified by the CREATE or the

REPLACE_CREATE keywords in the IMPORT command. If a PC/IXF column of

326 Data Movement Utilities DB2 9 BETA

an invalid data type is selected for import into a new table, the import utility

terminates. The entire PC/IXF file is rejected, no table is created, and no data is

imported.

v Invalid Data Types — Existing Table

Import of a PC/IXF file into an existing table is specified by the INSERT, the

INSERT_UPDATE, the REPLACE or the REPLACE_CREATE keywords in the

IMPORT command. If a PC/IXF column of an invalid data type is selected for

import into an existing table, one of two actions is possible:

– If the target table column is nullable, all values for the invalid PC/IXF

column are ignored, and the table column values are set to NULL

– If the target table column is not nullable, the import utility terminates. The

entire PC/IXF file is rejected, and no data is imported. The existing table

remains unaltered.
v When importing into a new table, nullable PC/IXF columns generate nullable

database columns, and not nullable PC/IXF columns generate not nullable

database columns.

v A not nullable PC/IXF column can be imported into a nullable database column.

v A nullable PC/IXF column can be imported into a not nullable database column.

If a NULL value is encountered in the PC/IXF column, the import utility rejects

the values of all columns in the PC/IXF row that contains the NULL value (the

entire row is rejected), and processing continues with the next PC/IXF row. That

is, no data is imported from a PC/IXF row that contains a NULL value if a

target table column (for the NULL) is not nullable.

v Incompatible Columns — New Table

If, during import to a new database table, a PC/IXF column is selected that is

incompatible with the target database column, the import utility terminates. The

entire PC/IXF file is rejected, no table is created, and no data is imported.

Note: The IMPORT FORCEIN option extends the scope of compatible columns.

v Incompatible Columns — Existing Table

If, during import to an existing database table, a PC/IXF column is selected that

is incompatible with the target database column, one of two actions is possible:

– If the target table column is nullable, all values for the PC/IXF column are

ignored, and the table column values are set to NULL

– If the target table column is not nullable, the import utility terminates. The

entire PC/IXF file is rejected, and no data is imported. The existing table

remains unaltered.

Note: The IMPORT FORCEIN option extends the scope of compatible columns.

v Invalid Values

If, during import, a PC/IXF column value is encountered that is not valid for the

target database column, the import utility rejects the values of all columns in the

PC/IXF row that contains the invalid value (the entire row is rejected), and

processing continues with the next PC/IXF row.

 Related reference:

v “PC/IXF data types” on page 318

v “FORCEIN Option” on page 330

Appendix D. File Formats 327DB2 9 BETA

Data Type-Specific Rules Governing PC/IXF File Import into

Databases

v A valid PC/IXF numeric column can be imported into any compatible numeric

database column. PC/IXF columns containing 4-byte floating point data are not

imported, because this is an invalid data type.

v Database date/time columns can accept values from matching PC/IXF

date/time columns (DATE, TIME, and TIMESTAMP), as well as from PC/IXF

character columns (CHAR, VARCHAR, and LONG VARCHAR), subject to

column length and value compatibility restrictions.

v A valid PC/IXF character column (CHAR, VARCHAR, or LONG VARCHAR)

can always be imported into an existing database character column marked FOR

BIT DATA; otherwise:

– IXFCSBCP and the SBCS CPGID must agree

– There must be a conversion table for the IXFCSBCP/IXFCDBCP and the

SBCS/DBCS

– One set must be all zeros (FOR BIT DATA).
If IXFCSBCP is not zero, the value of IXFCDBCP must equal either zero or the

DBCS CPGID of the target database column.

If either of these conditions is not satisfied, the PC/IXF and database columns

are incompatible.

When importing a valid PC/IXF character column into a new database table, the

value of IXFCSBCP must equal either zero or the SBCS CPGID of the database,

or there must be a conversion table. If IXFCSBCP is zero, IXFCDBCP must also

be zero (otherwise the PC/IXF column is an invalid data type); IMPORT creates

a character column marked FOR BIT DATA in the new table. If IXFCSBCP is not

zero, and equals the SBCS CPGID of the database, the value of IXFCDBCP must

equal either zero or the DBCS CPGID of the database; in this case, the utility

creates a character column in the new table with SBCS and DBCS CPGID values

equal to those of the database. If these conditions are not satisfied, the PC/IXF

and database columns are incompatible.

The FORCEIN option can be used to override code page equality checks.

However, a PC/IXF character column with IXFCSBCP equal to zero and

IXFCDBCP not equal to zero is an invalid data type, and cannot be imported,

even if FORCEIN is specified.

v A valid PC/IXF graphic column (GRAPHIC, VARGRAPHIC, or LONG

VARGRAPHIC) can always be imported into an existing database character

column marked FOR BIT DATA, but is incompatible with all other database

columns. The FORCEIN option can be used to relax this restriction. However, a

PC/IXF graphic column with IXFCSBCP not equal to zero, or IXFCDBCP equal

to zero, is an invalid data type, and cannot be imported, even if FORCEIN is

specified.

When importing a valid PC/IXF graphic column into a database graphic

column, the value of IXFCDBCP must equal the DBCS CPGID of the target

database column (that is, the double-byte code pages of the two columns must

agree).

v If, during import of a PC/IXF file into an existing database table, a fixed-length

string column (CHAR or GRAPHIC) is selected whose length is greater than the

maximum length of the target column, the columns are incompatible.

v If, during import of a PC/IXF file into an existing database table, a

variable-length string column (VARCHAR, LONG VARCHAR, VARGRAPHIC,

or LONG VARGRAPHIC) is selected whose length is greater than the maximum

length of the target column, the columns are compatible. Individual values are

328 Data Movement Utilities DB2 9 BETA

processed according to the compatibility rules governing the database manager

INSERT statement, and PC/IXF values which are too long for the target

database column are invalid.

v PC/IXF values imported into a fixed-length database character column (that is, a

CHAR column) are padded on the right with single-byte spaces (0x20), if

necessary, to obtain values whose length equals that of the database column.

PC/IXF values imported into a fixed-length database graphic column (that is, a

GRAPHIC column) are padded on the right with double-byte spaces (0x8140), if

necessary, to obtain values whose length equals that of the database column.

v Since PC/IXF VARCHAR columns have a maximum length of 254 bytes, a

database VARCHAR column of maximum length n, with 254 < n < 4001, must

be exported into a PC/IXF LONG VARCHAR column of maximum length n.

v Although PC/IXF LONG VARCHAR columns have a maximum length of 32 767

bytes, and database LONG VARCHAR columns have a maximum length

restriction of 32 700 bytes, PC/IXF LONG VARCHAR columns of length greater

than 32 700 bytes (but less than 32 768 bytes) are still valid, and can be imported

into database LONG VARCHAR columns, but data might be lost.

v Since PC/IXF VARGRAPHIC columns have a maximum length of 127 bytes, a

database VARGRAPHIC column of maximum length n, with 127 < n < 2001,

must be exported into a PC/IXF LONG VARGRAPHIC column of maximum

length n.

v Although PC/IXF LONG VARGRAPHIC columns have a maximum length of

16 383 bytes, and database LONG VARGRAPHIC columns have a maximum

length restriction of 16 350, PC/IXF LONG VARGRAPHIC columns of length

greater than 16 350 bytes (but less than 16 384 bytes) are still valid, and can be

imported into database LONG VARGRAPHIC columns, but data might be lost.

Table 24 summarizes PC/IXF file import into new or existing database tables

without the FORCEIN option.

 Table 24. Summary of PC/IXF File Import without FORCEIN Option

DATABASE COLUMN DATA TYPE

PC/IXF

COLUMN

DATA TYPE

SMALL

INT INT BIGINT DEC FLT (0,0)

(SBCS,

0)d

(SBCS,

DBCS)b GRAPHb DATE TIME

TIME

STAMP

-SMALLINT N

E E E Ea E

-INTEGER N

Ea E E Ea E

-BIGINT N

Ea Ea E Ea E

-DECIMAL N

Ea Ea Ea Ea E

-FLOAT N

Ea Ea Ea Ea E

-(0,0) N

E Ec Ec Ec

-(SBCS,0) N N

E E E Ec Ec Ec

-(SBCS, DBCS) N Ec Ec Ec

E E

-GRAPHIC N

Appendix D. File Formats 329DB2 9 BETA

Table 24. Summary of PC/IXF File Import without FORCEIN Option (continued)

DATABASE COLUMN DATA TYPE

PC/IXF

COLUMN

DATA TYPE

SMALL

INT INT BIGINT DEC FLT (0,0)

(SBCS,

0)d

(SBCS,

DBCS)b GRAPHb DATE TIME

TIME

STAMP

E E

-DATE N

E

-TIME N

E

-TIME STAMP N

E

Notes:

1. The table is a matrix of all valid PC/IXF and database manager data types. If a PC/IXF column can be imported into a database column, a letter

is displayed in the matrix cell at the intersection of the PC/IXF data type matrix row and the database manager data type matrix column. An ’N’

indicates that the utility is creating a new database table (a database column of the indicated data type is created). An ’E’ indicates that the utility

is importing data to an existing database table (a database column of the indicated data type is a valid target).

2. Character string data types are distinguished by code page attributes. These attributes are shown as an ordered pair (SBCS,DBCS), where:

v SBCS is either zero or denotes a non-zero value of the single-byte code page attribute of the character data type

v DBCS is either zero or denotes a non-zero value of the double-byte code page attribute of the character data type.

3. If the table indicates that a PC/IXF character column can be imported into a database character column, the values of their respective code page

attribute pairs satisfy the rules governing code page equality.

a Individual values are rejected if they are out of range for the target numeric data type.

b Data type is available only in DBCS environments.

c Individual values are rejected if they are not valid date or time values.

d Data type is not available in DBCS environments.

 Related reference:

v “PC/IXF data types” on page 318

v “PC/IXF Data Type Descriptions” on page 323

v “General Rules Governing PC/IXF File Import into Databases” on page 326

v “PC Version of IXF File Format” on page 300

v “PC/IXF Record Types” on page 302

FORCEIN Option

 The FORCEIN option permits import of a PC/IXF file despite code page

differences between data in the PC/IXF file and the target database. It offers

additional flexibility in the definition of compatible columns.

FORCEIN General Semantics

The following general semantics apply when using the FORCEIN option in either

an SBCS or a DBCS environment:

v The FORCEIN option should be used with caution. It is usually advisable to

attempt an import without this option enabled. However, because of the generic

nature of the PC/IXF data interchange architecture, some PC/IXF files might

contain data types or values that cannot be imported without intervention.

v Import with FORCEIN to a new table might yield a different result than import

to an existing table. An existing table has predefined target data types for each

PC/IXF data type.

330 Data Movement Utilities DB2 9 BETA

v When LOB data is exported with the LOBSINFILE option, and the files move to

another client with a different code page, then, unlike other data, the CLOBS

and DBCLOBS in the separate files are not converted to the client code page

when imported or loaded into a database.

FORCEIN Code Page Semantics

The following code page semantics apply when using the FORCEIN option in

either an SBCS or a DBCS environment:

v The FORCEIN option disables all import utility code page comparisons.

This rule applies to code page comparisons at the column level and at the file

level as well, when importing to a new or an existing database table. At the

column (for example, data type) level, this rule applies only to the following

database manager and PC/IXF data types: character (CHAR, VARCHAR, and

LONG VARCHAR), and graphic (GRAPHIC, VARGRAPHIC, and LONG

VARGRAPHIC). The restriction follows from the fact that code page attributes of

other data types are not relevant to the interpretation of data type values.

v The FORCEIN option does not disable inspection of code page attributes to

determine data types.

For example, the database manager allows a CHAR column to be declared with

the FOR BIT DATA attribute. Such a declaration sets both the SBCS CPGID and

the DBCS CPGID of the column to zero; it is the zero value of these CPGIDs

that identifies the column values as bit strings (rather than character strings).

v The FORCEIN option does not imply code page translation.

Values of data types that are sensitive to the FORCEIN option are copied "as is".

No code point mappings are employed to account for a change of code page

environments. Padding of the imported value with spaces might be necessary in

the case of fixed length target columns.

v When data is imported to an existing table using the FORCEIN option:

– The code page value of the target database table and columns always

prevails.

– The code page value of the PC/IXF file and columns is ignored.
This rule applies whether or not the FORCEIN option is used. The database

manager does not permit changes to a database or a column code page value

once a database is created.

v When importing to a new table using the FORCEIN option:

– The code page value of the target database prevails.

– PC/IXF character columns with IXFCSBCP = IXFCDBCP = 0 generate table

columns marked FOR BIT DATA.

– All other PC/IXF character columns generate table character columns with

SBCS and DBCS CPGID values equal to those of the database.

– PC/IXF graphic columns generate table graphic columns with an SBCS

CPGID of "undefined", and a DBCS CPGID equal to that of the database

(DBCS environment only).

FORCEIN Example

Consider a PC/IXF CHAR column with IXFCSBCP = ’00897’ and IXFCDBCP =

’00301’. This column is to be imported into a database CHAR column whose SBCS

CPGID = ’00850’ and DBCS CPGID = ’00000’. Without FORCEIN, the utility

terminates, and no data is imported, or the PC/IXF column values are ignored,

and the database column contains NULLs (if the database column is nullable).

With FORCEIN, the utility proceeds, ignoring code page incompatibilities. If there

Appendix D. File Formats 331DB2 9 BETA

are no other data type incompatibilities (such as length, for example), the values of

the PC/IXF column are imported "as is", and become available for interpretation

under the database column code page environment.

The following two tables show:

v The code page attributes of a column created in a new database table when a

PC/IXF file data type with specified code page attributes is imported.

v That the import utility rejects PC/IXF data types if they are invalid or

incompatible.

 Table 25. Summary of Import Utility Code Page Semantics (New Table) for SBCS. This

table assumes there is no conversion table between a and x. If there were, items 3 and 4

would work successfully without the FORCEIN option.

CODE PAGE ATTRIBUTES

of PC/IXF DATA TYPE

CODE PAGE ATTRIBUTES OF DATABASE TABLE

COLUMN

Without FORCEIN With FORCEIN

(0,0) (0,0) (0,0)

(a,0) (a,0) (a,0)

(x,0) reject (a,0)

(x,y) reject (a,0)

(a,y) reject (a,0)

(0,y) reject (0,0)

Notes:

1. See the notes for Table 26.

 Table 26. Summary of Import Utility Code Page Semantics (New Table) for DBCS. This

table assumes there is no conversion table between a and x.

CODE PAGE ATTRIBUTES

of PC/IXF DATA TYPE

CODE PAGE ATTRIBUTES OF DATABASE TABLE

COLUMN

Without FORCEIN With FORCEIN

(0,0) (0,0) (0,0)

(a,0) (a,b) (a,b)

(x,0) reject (a,b)

(a,b) (a,b) (a,b)

(x,y) reject (a,b)

(a,y) reject (a,b)

(x,b) reject (a,b)

(0,b) (-,b) (-,b)

(0,y) reject (-,b)

332 Data Movement Utilities DB2 9 BETA

Table 26. Summary of Import Utility Code Page Semantics (New Table) for

DBCS (continued). This table assumes there is no conversion table between a and x.

CODE PAGE ATTRIBUTES

of PC/IXF DATA TYPE

CODE PAGE ATTRIBUTES OF DATABASE TABLE

COLUMN

Without FORCEIN With FORCEIN

Notes:

1. Code page attributes of a PC/IXF data type are shown as an ordered pair, where x

represents a non-zero single-byte code page value, and y represents a non-zero

double-byte code page value. A ’-’ represents an undefined code page value.

2. The use of different letters in various code page attribute pairs is deliberate. Different

letters imply different values. For example, if a PC/IXF data type is shown as (x,y), and

the database column as (a,y), x does not equal a, but the PC/IXF file and the database

have the same double-byte code page value y.

3. Only character and graphic data types are affected by the FORCEIN code page

semantics.

4. It is assumed that the database containing the new table has code page attributes of

(a,0); therefore, all character columns in the new table must have code page attributes

of either (0,0) or (a,0).

In a DBCS environment, it is assumed that the database containing the new table has

code page attributes of (a,b); therefore, all graphic columns in the new table must have

code page attributes of (-,b), and all character columns must have code page attributes

of (a,b). The SBCS CPGID is shown as ’-', because it is undefined for graphic data

types.

5. The data type of the result is determined by the rules described in “FORCEIN Data

Type Semantics” on page 335.

6. The reject result is a reflection of the rules for invalid or incompatible data types.

The following two tables show:

v That the import utility accepts PC/IXF data types with various code page

attributes into an existing table column (the target column) having the specified

code page attributes.

v That the import utility does not permit a PC/IXF data type with certain code

page attributes to be imported into an existing table column having the code

page attributes shown. The utility rejects PC/IXF data types if they are invalid

or incompatible.

 Table 27. Summary of Import Utility Code Page Semantics (Existing Table) for SBCS. This

table assumes there is no conversion table between a and x.

CODE PAGE

ATTRIBUTES OF

PC/IXF DATA TYPE

CODE PAGE

ATTRIBUTES OF

TARGET

DATABASE

COLUMN

RESULTS OF IMPORT

Without FORCEIN With FORCEIN

(0,0) (0,0) accept accept

(a,0) (0,0) accept accept

(x,0) (0,0) accept accept

(x,y) (0,0) accept accept

(a,y) (0,0) accept accept

(0,y) (0,0) accept accept

Appendix D. File Formats 333DB2 9 BETA

Table 27. Summary of Import Utility Code Page Semantics (Existing Table) for

SBCS (continued). This table assumes there is no conversion table between a and x.

CODE PAGE

ATTRIBUTES OF

PC/IXF DATA TYPE

CODE PAGE

ATTRIBUTES OF

TARGET

DATABASE

COLUMN

RESULTS OF IMPORT

Without FORCEIN With FORCEIN

(0,0) (a,0) null or reject accept

(a,0) (a,0) accept accept

(x,0) (a,0) null or reject accept

(x,y) (a,0) null or reject accept

(a,y) (a,0) null or reject accept

(0,y) (a,0) null or reject null or reject

Notes:

1. See the notes for Table 25 on page 332.

2. The null or reject result is a reflection of the rules for invalid or incompatible data

types.

 Table 28. Summary of Import Utility Code Page Semantics (Existing Table) for DBCS. This

table assumes there is no conversion table between a and x.

CODE PAGE

ATTRIBUTES OF

PC/IXF DATA TYPE

CODE PAGE

ATTRIBUTES OF

TARGET

DATABASE

COLUMN

RESULTS OF IMPORT

Without FORCEIN With FORCEIN

(0,0) (0,0) accept accept

(a,0) (0,0) accept accept

(x,0) (0,0) accept accept

(a,b) (0,0) accept accept

(x,y) (0,0) accept accept

(a,y) (0,0) accept accept

(x,b) (0,0) accept accept

(0,b) (0,0) accept accept

(0,y) (0,0) accept accept

(0,0) (a,b) null or reject accept

(a,0) (a,b) accept accept

(x,0) (a,b) null or reject accept

(a,b) (a,b) accept accept

(x,y) (a,b) null or reject accept

(a,y) (a,b) null or reject accept

(x,b) (a,b) null or reject accept

(0,b) (a,b) null or reject null or reject

(0,y) (a,b) null or reject null or reject

334 Data Movement Utilities DB2 9 BETA

Table 28. Summary of Import Utility Code Page Semantics (Existing Table) for

DBCS (continued). This table assumes there is no conversion table between a and x.

CODE PAGE

ATTRIBUTES OF

PC/IXF DATA TYPE

CODE PAGE

ATTRIBUTES OF

TARGET

DATABASE

COLUMN

RESULTS OF IMPORT

Without FORCEIN With FORCEIN

(0,0) (-,b) null or reject accept

(a,0) (-,b) null or reject null or reject

(x,0) (-,b) null or reject null or reject

(a,b) (-,b) null or reject null or reject

(x,y) (-,b) null or reject null or reject

(a,y) (-,b) null or reject null or reject

(x,b) (-,b) null or reject null or reject

(0,b) (-,b) accept accept

(0,y) (-,b) null or reject accept

Notes:

1. See the notes for Table 25 on page 332.

2. The null or reject result is a reflection of the rules for invalid or incompatible data

types.

FORCEIN Data Type Semantics

The FORCEIN option permits import of certain PC/IXF columns into target

database columns of unequal and otherwise incompatible data types. The

following data type semantics apply when using the FORCEIN option in either an

SBCS or a DBCS environment (except where noted):

v In SBCS environments, the FORCEIN option permits import of:

– A PC/IXF BIT data type (IXFCSBCP = 0 = IXFCDBCP for a PC/IXF character

column) into a database character column (non-zero SBCS CPGID, and DBCS

CPGID = 0); existing tables only

– A PC/IXF MIXED data type (non-zero IXFCSBCP and IXFCDBCP) into a

database character column; both new and existing tables

– A PC/IXF GRAPHIC data type into a database FOR BIT DATA column (SBCS

CPGID = 0 = DBCS CPGID); new tables only (this is always permitted for

existing tables).
v The FORCEIN option does not extend the scope of valid PC/IXF data types.

PC/IXF columns with data types not defined as valid PC/IXF data types are

invalid for import with or without the FORCEIN option.

v In DBCS environments, the FORCEIN option permits import of:

– A PC/IXF BIT data type into a database character column

– A PC/IXF BIT data type into a database graphic column; however, if the

PC/IXF BIT column is of fixed length, that length must be even. A fixed

length PC/IXF BIT column of odd length is not compatible with a database

graphic column. A varying-length PC/IXF BIT column is compatible whether

its length is odd or even, although an odd-length value from a varying-length

column is an invalid value for import into a database graphic column

– A PC/IXF MIXED data type into a database character column.

Appendix D. File Formats 335DB2 9 BETA

Table 29 summarizes PC/IXF file import into new or existing database tables with

the FORCEIN option.

 Table 29. Summary of PC/IXF File Import with FORCEIN Option

DATABASE COLUMN DATA TYPE

PC/IXF

COLUMN

DATA TYPE

SMALL

INT INT BIGINT DEC FLT (0,0)

(SBCS,

0)e

(SBCS,

DBCS)b GRAPHb DATE TIME

TIME

STAMP

-SMALLINT N

E E E Ea E

-INTEGER N

Ea E E Ea E

-BIGINT N

Ea Ea E Ea E

-DECIMAL N

Ea Ea Ea Ea E

-FLOAT N

Ea Ea Ea Ea E

-(0,0) N

E E w/F E w/F E w/F Ec Ec Ec

-(SBCS,0) N N

E E E Ec Ec Ec

-(SBCS, DBCS) N w/Fd N Ec Ec Ec

E E w/F E

-GRAPHIC N w/Fd N

E E

-DATE N

E

-TIME N

E

-TIME STAMP N

E

Note: If a PC/IXF column can be imported into a database column only with the FORCEIN option, the string ’w/F’ is displayed together with an

’N’ or an ’E’. An ’N’ indicates that the utility is creating a new database table; an ’E’ indicates that the utility is importing data to an existing

database table. The FORCEIN option affects compatibility of character and graphic data types only.

a Individual values are rejected if they are out of range for the target numeric data type.

b Data type is available only in DBCS environments.

c Individual values are rejected if they are not valid date or time values.

d Applies only if the source PC/IXF data type is not supported by the target database.

e Data type is not available in DBCS environments.

 Related reference:

v “PC/IXF data types” on page 318

v “General Rules Governing PC/IXF File Import into Databases” on page 326

Differences Between PC/IXF and Version 0 System/370 IXF

 The following describes differences between PC/IXF, used by the database

manager, and Version 0 System/370 IXF, used by several host database products:

336 Data Movement Utilities DB2 9 BETA

v PC/IXF files are ASCII, rather than EBCDIC oriented. PC/IXF files have

significantly expanded code page identification, including new code page

identifiers in the H record, and the use of actual code page values in the column

descriptor records. There is also a mechanism for marking columns of character

data as FOR BIT DATA. FOR BIT DATA columns are of special significance,

because transforms which convert a PC/IXF file format to or from any other IXF

or database file format cannot perform any code page translation on the values

contained in FOR BIT DATA columns.

v Only the machine data form is permitted; that is, the IXFTFORM field must

always contain the value M. Furthermore, the machine data must be in PC forms;

that is, the IXFTMFRM field must contain the value PC. This means that integers,

floating point numbers, and decimal numbers in data portions of PC/IXF data

records must be in PC forms.

v Application (A) records are permitted anywhere after the H record in a PC/IXF

file. They are not counted when the value of the IXFHHCNT field is computed.

v Every PC/IXF record begins with a record length indicator. This is a 6-byte

character representation of an integer value containing the length, in bytes, of

the PC/IXF record not including the record length indicator itself; that is, the

total record length minus 6 bytes. The purpose of the record length field is to

enable PC programs to identify record boundaries.

v To facilitate the compact storage of variable-length data, and to avoid complex

processing when a field is split into multiple records, PC/IXF does not support

Version 0 IXF X records, but does support D record identifiers. Whenever a

variable-length field or a nullable field is the last field in a data D record, it is

not necessary to write the entire maximum length of the field to the PC/IXF file.

 Related reference:

v “Data Type-Specific Rules Governing PC/IXF File Import into Databases” on

page 328

v “General Rules Governing PC/IXF File Import into Databases” on page 326

v “PC/IXF data types” on page 318

v “PC/IXF Data Type Descriptions” on page 323

Worksheet File Format (WSF)

 Lotus 1-2-3 and Symphony products use the same basic format, with additional

functions added at each new release. The database manager supports the subset of

the worksheet records that are the same for all the Lotus products. That is, for the

releases of Lotus 1-2-3 and Symphony products supported by the database

manager, all file names with any three-character extension are accepted; for

example: WKS, WK1, WRK, WR1, WJ2.

Each WSF file represents one worksheet. The database manager uses the following

conventions to interpret worksheets and to provide consistency in worksheets

generated by its export operations:

v Cells in the first row (ROW value 0) are reserved for descriptive information

about the entire worksheet. All data within this row is optional. It is ignored

during import.

v Cells in the second row (ROW value 1) are used for column labels.

v The remaining rows are data rows (records, or rows of data from the table).

v Cell values under any column heading are values for that particular column or

field.

Appendix D. File Formats 337DB2 9 BETA

v A NULL value is indicated by the absence of a real cell content record (for

example, no integer, number, label, or formula record) for a particular column

within a row of cell content records.

Note: A row of NULLs will be neither imported nor exported.

To create a file that is compliant with the WSF format during an export operation,

some loss of data might occur.

WSF files use a Lotus code point mapping that is not necessarily the same as

existing code pages supported by DB2 database. As a result, when importing or

exporting a WSF file, data is converted from the Lotus code points to or from the

code points used by the application code page. DB2 supports conversion between

the Lotus code points and code points defined by code pages 437, 819, 850, 860,

863, and 865.

Note: For multi-byte character set users, no conversions are performed.

 Related concepts:

v “Moving data across platforms - file format considerations” on page 239

338 Data Movement Utilities DB2 9 BETA

Appendix E. Export/Import/Load utility unicode considerations

 The export, import, and load utilities are not supported when they are used with a

Unicode client connected to a non-Unicode database. Unicode client files are only

supported when the Unicode client is connected to a Unicode database.

The DEL, ASC, and PC/IXF file formats are supported for a UCS-2 database, as

described in this section. The WSF format is not supported.

When exporting from a UCS-2 database to an ASCII delimited (DEL) file, all

character data is converted to the application code page. Both character string and

graphic string data are converted to the same SBCS or MBCS code page of the

client. This is expected behavior for the export of any database, and cannot be

changed, because the entire delimited ASCII file can have only one code page.

Therefore, if you export to a delimited ASCII file, only those UCS-2 characters that

exist in your application code page will be saved. Other characters are replaced

with the default substitution character for the application code page. For UTF-8

clients (code page 1208), there is no data loss, because all UCS-2 characters are

supported by UTF-8 clients.

When importing from an ASCII file (DEL or ASC) to a UCS-2 database, character

string data is converted from the application code page to UTF-8, and graphic

string data is converted from the application code page to UCS-2. There is no data

loss. If you want to import ASCII data that has been saved under a different code

page, you should change the data file code page before issuing the IMPORT

command. One way to accomplish this is to set DB2CODEPAGE to the code page

of the ASCII data file.

The range of valid ASCII delimiters for SBCS and MBCS clients is identical to what

is currently supported by IBM DB2 V9.1 for those clients. The range of valid

delimiters for UTF-8 clients is X’01’ to X’7F’, with the usual restrictions.

When exporting from a UCS-2 database to a PC/IXF file, character string data is

converted to the SBCS/MBCS code page of the client. Graphic string data is not

converted, and is stored in UCS-2 (code page 1200). There is no data loss.

When importing from a PC/IXF file to a UCS-2 database, character string data is

assumed to be in the SBCS/MBCS code page stored in the PC/IXF header, and

graphic string data is assumed to be in the DBCS code page stored in the PC/IXF

header. Character string data is converted by the import utility from the code page

specified in the PC/IXF header to the code page of the client, and then from the

client code page to UTF-8 (by the INSERT statement). graphic string data is

converted by the import utility from the DBCS code page specified in the PC/IXF

header directly to UCS-2 (code page 1200).

The load utility places the data directly into the database and, by default, assumes

data in ASC or DEL files to be in the code page of the database. Therefore, by

default, no code page conversion takes place for ASCII files. When the code page

for the data file has been explicitly specified (using the codepage modifier), the

load utility uses this information to convert from the specified code page to the

database code page before loading the data. For PC/IXF files, the load utility

always converts from the code pages specified in the IXF header to the database

code page (1208 for CHAR, and 1200 for GRAPHIC).

© Copyright IBM Corp. 1993, 2006 339DB2 9 BETA

The code page for DBCLOB files is always 1200 for UCS-2. The code page for

CLOB files is the same as the code page for the data files being imported, loaded

or exported. For example, when loading or importing data using the PC/IXF

format, the CLOB file is assumed to be in the code page specified by the PC/IXF

header. If the DBCLOB file is in ASC or DEL format, the load utility assumes that

CLOB data is in the code page of the database (unless explicitly specified

otherwise using the codepage modifier), while the import utility assumes it to be in

the code page of the client application.

The nochecklengths modifier is always specified for a UCS-2 database, because:

v Any SBCS can be connected to a database for which there is no DBCS code page

v Character strings in UTF-8 format usually have different lengths than those in

client code pages.

Restrictions for Code Pages 1394, 1392 and 5488

The import, export and load utilities can now be used to transfer data from the

new Chinese code page GB 18030 (code page identifier 1392 and 5488) and the

new Japanese code page ShiftJISX 0213 (code page identifier 1394) to DB2 Unicode

databases. In addition, the export utility can be used to transfer data from DB2

Unicode databases to GB 18030 or ShiftJIS X0213 code page data.

For example, the following command will load the Shift_JISX0213 data file

u/jp/user/x0213/data.del residing on a remotely connected client into MYTABLE:

 db2 load client from /u/jp/user/x0213/data.del

 of del modified by codepage=1394 insert into mytable

where MYTABLE is located on a DB2 Unicode database.

Since only connections between a Unicode client and a Unicode server are

supported, so you need to use either a Unicode client or set the DB2 registry

variable DB2CODEPAGE to 1208 prior to using the load, import, or export utilities.

Conversion from code page 1394, 1392, or 5488 to Unicode can result in expansion.

For example, a 2-byte character can be stored as two 16-bit Unicode characters in

the GRAPHIC columns. You need to ensure the target columns in the Unicode

database are wide enough to contain any expanded Unicode byte.

Restrictions for XML data movement

Native XML functionality is available for Unicode databases only. Use the USING

CODESET option of the CREATE DATABASE command to specify a UTF-8

encoding for a new database.

Loading data into tables containing XML columns using the load utility is not

supported. Data movement of XML data should be performed using the import

and export utilities.

Incompatibilities

For applications connected to a UCS-2 database, graphic string data is always in

UCS-2 (code page 1200). For applications connected to non-UCS-2 databases, the

graphic string data is in the DBCS code page of the application, or not allowed if

the application code page is SBCS. For example, when a 932 client is connected to

340 Data Movement Utilities DB2 9 BETA

a Japanese non-UCS-2 database, the graphic string data is in code page 301. For the

932 client applications connected to a UCS-2 database, the graphic string data is in

UCS-2.

 Related reference:

v “CREATE DATABASE command” in Command Reference

v “DEL Data Type Descriptions” on page 294

v “Non-delimited ASCII (ASC) file format” on page 297

v “PC Version of IXF File Format” on page 300

v “Restrictions on native XML data store” in XML Guide

Appendix E. Export/Import/Load utility unicode considerations 341DB2 9 BETA

342 Data Movement Utilities DB2 9 BETA

Appendix F. Bind files used by the export, import and load

utilities

 The following table lists bind files with their default isolation levels, as well as

which utilities use them and for what purpose.

 Bind File (Default Isolation Level) Utility/Purpose

db2ueiwi.bnd (CS) Import/Export. Used to query information

about table columns and indexes.

db2uexpm.bnd (CS) Export. Used to fetch from the query

specified for the export operation.

db2uimpm.bnd (RS) Import. Used to insert data from the source

data file into the target table when INSERT,

REPLACE or REPLACE_CREATE option is

used.

db2uipkg.bnd (CS) Import. Used to check bind options.

db2uiici.bnd (RR) Import. Used to create indexes when the IXF

CREATE option is specified.

db2ucktb.bnd (CS) Load. Used to perform general initialization

processes for a load operation.

db2ulxld.bnd (CS) Load. Used to process the query provided

during a load from cursor operation.

db2uigsi.bnd (RS on UNIX based systems,

RR on all other platforms)

Import/Export. Used to drop indexes and

check for referential constraints for an

import replace operation. Also used to

retrieve identity column information for

exporting IXF files.

db2uiict.bnd (RR) Import. Used to create tables when the IXF

CREATE option is specified.

db2uqtpd.bnd (RR) Import/Export. Used to perform processing

for hierarchical tables.

db2uqtnm.bnd (RR) Import. Used to perform processing for

hierarchical tables when the IXF CREATE

option is specified.

db2uimtb.bnd (RS) Import. Used to perform general

initialization processes for an import

operation.

db2ImpInsUpdate.bnd (RS) Import. Used to insert data from the source

data file into the target table when

INSERT_UPDATE option is used. Cannot be

bound with the INSERT BUF option.

 Related concepts:

v “About isolation levels” in Administration Guide: Planning

v “Binding” in Administration Guide: Planning

 Related tasks:

v “Binding utilities to the database” in Administration Guide: Implementation

© Copyright IBM Corp. 1993, 2006 343DB2 9 BETA

344 Data Movement Utilities DB2 9 BETA

Appendix G. Warning, error and completion messages

 Messages generated by the various utilities are included among the SQL messages.

These messages are generated by the database manager when a warning or error

condition has been detected. Each message has a message identifier that consists of

a prefix (SQL) and a four- or five-digit message number. There are three message

types: notification, warning, and critical. Message identifiers ending with an N are

error messages. Those ending with a W indicate warning or informational messages.

Message identifiers ending with a C indicate critical system errors.

The message number is also referred to as the SQLCODE. The SQLCODE is passed

to the application as a positive or negative number, depending on its message type

(N, W, or C). N and C yield negative values, whereas W yields a positive value.

DB2 returns the SQLCODE to the application, and the application can get the

message associated with the SQLCODE. DB2 also returns an SQLSTATE value for

conditions that could be the result of an SQL or XQuery statement. Some

SQLCODE values have associated SQLSTATE values.

You can use the information contained in this topic to identify an error or problem,

and to resolve the problem by using the appropriate recovery action. This

information can also be used to understand where messages are generated and

logged.

SQL messages, and the message text associated with SQLSTATE values, are also

accessible from the operating system command line. To access help for these error

messages, enter the following at the operating system command prompt:

 db2 ? SQLnnnnn

where nnnnn represents the message number. On UNIX based systems, the use of

double quotation mark delimiters is recommended; this will avoid problems if

there are single character file names in the directory:

 db2 "? SQLnnnnn"

The message identifier accepted as a parameter for the db2 command is not case

sensitive, and the terminating letter is not required. Therefore, the following

commands will produce the same result:

 db2 ? SQL0000N

 db2 ? sql0000

 db2 ? SQL0000n

If the message text is too long for your screen, use the following command (on

UNIX based operating systems and others that support the ″more″ pipe):

 db2 ? SQLnnnnn | more

You can also redirect the output to a file which can then be browsed.

Help can also be invoked from interactive input mode. To access this mode, enter

the following at the operating system command prompt:

 db2

To get DB2 message help in this mode, type the following at the command prompt

(db2 =>):

© Copyright IBM Corp. 1993, 2006 345DB2 9 BETA

? SQLnnnnn

The message text associated with SQLSTATEs can be retrieved by issuing:

 db2 ? nnnnn

 or

 db2 ? nn

where nnnnn is a five-character SQLSTATE value (alphanumeric), and nn is a

two-digit SQLSTATE class code (the first two digits of the SQLSTATE value).

 Related concepts:

v “Introduction to Messages” in Message Reference Volume 1

346 Data Movement Utilities DB2 9 BETA

Appendix H. DB2 Database technical information

DB2 documentation and help

 DB2 technical information is available through the following tools and methods:

v DB2 Information Center

v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF CD)

– printed books
v Command line help

v Sample programs

IBM periodically makes documentation updates available. If you access the online

version on the DB2 Information Center at ibm.com®, you do not need to install

documentation updates because this version is kept up-to-date by IBM. If you have

installed the DB2 Information Center, it is recommended that you install the

documentation updates. Documentation updates allow you to update the

information that you installed from the DB2 Information Center CD as new

information becomes available.

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hard-copy books. To get the most current information, install

the documentation updates as they become available, or refer to the DB2

Information Center at ibm.com.

You can access additional DB2 technical information such as technotes, white

papers, and Redbooks™ online at ibm.com. Access the DB2 Information

Management software library site at http://www.ibm.com/software/data/sw-
library/.

Documentation feedback

We value your feedback on the DB2 documentation. For specific issues regarding

the DB2 documentation, send an e-mail to db2docs@ca.ibm.com. The DB2

documentation team reads all of your feedback, but cannot respond to you directly.

Provide specific examples wherever possible so that we can better understand your

concerns. If you are providing feedback on a specific topic or help file, include the

title.

Do not use this e-mail address to contact DB2 Customer Support. If you discover

an error or other problem in the DB2 documentation, contact your local IBM

service center for assistance.

 Related concepts:

v “CLI sample programs” in Samples Topics

v “Java sample programs” in Samples Topics

v “Features of the DB2 Information Center” in Online DB2 Information Center

 Related tasks:

© Copyright IBM Corp. 1993, 2006 347DB2 9 BETA

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/

v “Invoking command help from the command line processor” in Command

Reference

v “Invoking message help from the command line processor” in Command

Reference

v “Updating the DB2 Information Center installed on your computer or intranet

server” on page 348

 Related reference:

v “Overview of DB2 technical information” on page 351

Updating the DB2 Information Center installed on your computer or

intranet server

 If you have a locally-installed DB2 Information Center, updated topics are available

for download. The 'Last updated' value found at the bottom of most topics

indicates the current level for that topic.

To determine if there is an update available for the entire DB2 Information Center,

look for the 'Last updated' value on the Information Center home page. Compare

the value in your locally installed home page to the latest value which is available

on the IBM hosted Information Center home page. If they are the same, you have

the latest documentation level and no update is required. If the are not the same,

you should update your locally-installed Information Center.

Updating your locally-installed DB2 Information Center requires that you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to download and apply updates.

2. Use the Update feature to determine if update packages are available from

IBM. If update packages are available, use the Update feature to download the

packages. (The Update feature is only available in stand-alone mode.)

3. Stop the stand-alone Information Center, and restart the DB2 Information

Center service on your computer.

 Procedure:

 To update the DB2 Information Center installed on your computer or intranet

server:

1. Stop the DB2 Information Center service.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Stop.

v On Linux, enter the following command:

/etc/init.d/db2icdv9 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the C:\Program

Files\IBM\DB2 Information Center\Version 9 directory.

348 Data Movement Utilities DB2 9 BETA

http://publib.boulder.ibm.com/infocenter/db2help/

c. Run the help_start.bat file using the fully qualified path for the DB2

Information Center:

<DB2 Information Center dir>\bin\help_start.bat

v On Linux:

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the /opt/ibm/db2ic/V9

directory.

b. Run the help_start.sh file using the fully qualified path for the DB2

Information Center:

<DB2 Information Center dir>\bin\help_start.sh

The systems default Web browser launches to display the stand-alone

Information Center.

3. Click the Update button (

). On the right hand panel of the Information

Center, click Find Updates. A list of updates for existing documentation

displays.

4. To initiate the download process, check the selections you want to download,

then click Install Updates.

5. After the download and installation process has completed, click Finish.

6. Stop the stand-alone Information Center.

v On Windows, run the help_end.bat file using the fully qualified path for the

DB2 Information Center:

<DB2 Information Center dir>\bin\help_end.bat

v On Linux, run the help_end.sh file using the fully qualified path for the DB2

Information Center:

<DB2 Information Center dir>\bin\help_end.sh

7. Restart the DB2 Information Center service.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv9 start

The updated DB2 Information Center displays the new and updated topics.

 Related concepts:

v “DB2 Information Center installation options” in Quick Beginnings for DB2 Servers

 Related tasks:

v “Installing the DB2 Information Center using the DB2 Setup wizard (Linux)” in

Quick Beginnings for DB2 Servers

v “Installing the DB2 Information Center using the DB2 Setup wizard (Windows)”

in Quick Beginnings for DB2 Servers

Accessing different versions of the DB2 Information Center

 For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/.

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/.

Appendix H. DB2 Database technical information 349DB2 9 BETA

http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

In addition, URL http://publib.boulder.ibm.com/infocenter/db2help/ will always

take you to the DB2 Information Center for the most recently-released version.

 Related tasks:

v “Updating the DB2 Information Center installed on your computer or intranet

server” on page 348

Displaying topics in your preferred language in the DB2 Information

Center

 The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

 Procedure:

 To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

v To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the fonts

required to display the topics in the preferred language.

v To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

To display topics in your preferred language in the Firefox browser:

1. In Firefox, select the Tools —> Options —> Languages button. The Languages

panel is displayed in the Preferences window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

v To add a new language to the list, click the Add... button to select a language

from the Add Languages window.

v To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you might have to also

change the regional settings of your operating system to the locale and language of

your choice.

 Related concepts:

v “DB2 documentation and help” on page 347

350 Data Movement Utilities DB2 9 BETA

http://publib.boulder.ibm.com/infocenter/db2help/

Overview of DB2 technical information

 DB2 technical information is delivered in several different methods:

v DB2 Information Center

– Topics

– Help for DB2 tools

– Sample programs

– Tutorials
v Printed books and downloadable PDF files

– Guides

– Reference manuals
v Command line help

– Command help

– Message help
v Installed source code

– Sample programs

Note: You can also access additional DB2 technical information online at ibm.com,

such as technotes, white papers, and Redbooks. Access the DB2 Information

Management Library site at http://www.ibm.com/software/data/sw-
library/.

DB2 technical information

The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order.

Although the tables identify books available in print, the books might not be

available in your country or region.

DB2 technical information

The information in these books is fundamental to all DB2 users; you will find this

information useful whether you are a programmer, a database administrator, or

someone who works with DB2 Connect or other DB2 products.

 Table 30. DB2 technical information

Name Form Number Available in print

Administration Guide:

Implementation

SC10-4221 Yes

Administration Guide: Planning SC10-4223 Yes

Administrative API Reference SC10-4231 Yes

Administrative SQL Routines and

Views

SC10-4293 No

Call Level Interface Guide and

Reference, Volume 1

SC10-4224 Yes

Call Level Interface Guide and

Reference, Volume 2

SC10-4225 Yes

Command Reference SC10-4226 No

Data Movement Utilities Guide

and Reference

SC10-4227 Yes

Appendix H. DB2 Database technical information 351DB2 9 BETA

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/shop/publications/order

Table 30. DB2 technical information (continued)

Name Form Number Available in print

Data Recovery and High

Availability Guide and Reference

SC10-4228 Yes

Developing ADO.NET and OLE

DB Applications

SC10-4230 Yes

Developing Embedded SQL

Applications

SC10-4232 Yes

Developing Java™ Applications SC10-4233 Yes

Developing Perl and PHP

Applications

SC10-4234 No

Getting Started with Database

Application Development

SC10-4252 Yes

Getting started with DB2

installation and administration on

Linux and Windows

GC10-4247 Yes

Message Reference Volume 1 SC10-4238 No

Message Reference Volume 2 SC10-4239 No

Migration Guide GC10-4237 Yes

Net Search Extender

Administration and User’s Guide

Note: HTML for this

document is not installed from

the HTML documentation CD.

SH12-6842 Yes

Performance Guide SC10-4222 Yes

Query Patroller Administration

and User’s Guide

GC10-4241 Yes

Quick Beginnings for DB2

Clients

GC10-4242 No

Quick Beginnings for DB2

Servers

GC10-4246 Yes

Spatial Extender and Geodetic

Data Management Feature User’s

Guide and Reference

SC18-9749 Yes

SQL Guide SC10-4248 Yes

SQL Reference, Volume 1 SC10-4249 Yes

SQL Reference, Volume 2 SC10-4250 Yes

System Monitor Guide and

Reference

SC10-4251 Yes

Troubleshooting Guide GC10-4240 No

Visual Explain Tutorial SC10-4319 No

What’s New SC10-4253 Yes

XML Extender Administration

and Programming

SC18-9750 Yes

XML Guide SC10-4254 Yes

XQuery Reference SC18-9796 Yes

352 Data Movement Utilities DB2 9 BETA

Table 31. DB2 Connect technical information

Name Form Number Available in print

DB2 Connect User’s Guide SC10-4229 Yes

Quick Beginnings for DB2

Connect Personal Edition

GC10-4244 Yes

Quick Beginnings for DB2

Connect Servers

GC10-4243 Yes

 Table 32. WebSphere Information Integration technical information

Name Form Number Available in print

WebSphere® Information

Integration: Administration Guide

for Federated Systems

SC19-1001 Yes

WebSphere Information

Integration: ASNCLP Program

Reference for Replication and

Event Publishing

SC19-1000 Yes

WebSphere Information

Integration: Configuration Guide

for Federated Data Sources

No form number No

WebSphere Information

Integration: SQL Replication

Guide and Reference

SC19-1002 Yes

Note: The DB2 Release Notes provide additional information specific to your

product’s release and fix pack level. For more information, see the related

links.

 Related concepts:

v “DB2 documentation and help” on page 347

v “About the Release Notes” in Release notes

 Related tasks:

v “Ordering printed DB2 books” on page 353

Ordering printed DB2 books

 If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation CD are unavailable in print. For example, neither volume of the DB2

Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation CD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation CD are available in print.

Appendix H. DB2 Database technical information 353DB2 9 BETA

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/
db2help/.

 Procedure:

 To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

– Locate the contact information for your local representative from one of the

following Web sites:

- The IBM directory of world wide contacts at www.ibm.com/planetwide

- The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
– When you call, specify that you want to order a DB2 publication.

– Provide your representative with the titles and form numbers of the books

that you want to order .

 Related concepts:

v “DB2 documentation and help” on page 347

 Related reference:

v “Overview of DB2 technical information” on page 351

v “Overview of DB2 technical information” on page 351

Displaying SQL state help from the command line processor

 DB2 returns an SQLSTATE value for conditions that could be the result of an SQL

statement. SQLSTATE help explains the meanings of SQL states and SQL state class

codes.

 Procedure:

 To invoke SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

 Related tasks:

v “Invoking command help from the command line processor” in Command

Reference

354 Data Movement Utilities DB2 9 BETA

http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

v “Invoking message help from the command line processor” in Command

Reference

DB2 Visual Explain tutorial

 The DB2 Visual Explain tutorial helps you learn about analyzing, optimizing, and

tuning SQL statements for better performance. Lessons provide step-by-step

instructions.

 Before you begin:

 You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

 DB2 Visual Explain tutorial:

 To view the tutorial, click on the title.

Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

 Related concepts:

v “Visual Explain overview” in Administration Guide: Implementation

DB2 troubleshooting information

 A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting

Guide or the Support and Troubleshooting section of the DB2 Information

Center. Here you will find information on how to isolate and identify

problems using DB2 diagnostic tools and utilities, solutions to some of the

most common problems, and other advice on how to solve problems you

might encounter with your DB2 products.

 DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/udb/support.html

 Related concepts:

v “Introduction to problem determination” in Troubleshooting Guide

v “DB2 documentation and help” on page 347

Appendix H. DB2 Database technical information 355DB2 9 BETA

http://publib.boulder.ibm.com/infocenter/db2help/
http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/db2/udb/support.html

Terms and Conditions

 Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

356 Data Movement Utilities DB2 9 BETA

Appendix I. Notices

 IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country/region or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product, and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1993, 2006 357DB2 9 BETA

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

Office of the Lab Director

8200 Warden Avenue

Markham, Ontario

L6G 1C7

CANADA

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs, in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment

to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

358 Data Movement Utilities DB2 9 BETA

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

Company, product, or service names identified in the documents of the DB2

Version 9 documentation library may be trademarks or service marks of

International Business Machines Corporation or other companies. Information on

the trademarks of IBM Corporation in the United States, other countries, or both is

located at http://www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

and have been used in at least one of the documents in the DB2 documentation

library:

Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel, Itanium®, Pentium®, and Xeon™ are trademarks of Intel Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix I. Notices 359DB2 9 BETA

http://www.ibm.com/legal/copytrade.shtml

360 Data Movement Utilities DB2 9 BETA

Index

A
ADMIN_CMD procedure

supported commands
EXPORT 15

IMPORT 61

LOAD 145

anyorder file type modifier 132, 161

APIs
db2Load 161

db2LoadQuery 181

sqluexpr 19

sqluimpr 73

application record
PC/IXF 302

ASC data type descriptions 298

ASC file
format 297

sample 297

ASC import file type 49

auxiliary storage objects
XML data specifier 242

B
binarynumerics file type modifier 132,

161

bind files
used by export, import, load 343

buffered inserts
import utility 41

building indexes 115

C
character strings

delimiter 293

chardel file type modifier
export 11, 19

import 49, 73

load 132, 161

code page file type modifier 132, 161

code pages
conversion

files 326

when importing or loading

PC/IXF data 326

Export API 19

EXPORT command 11

Import API 73

IMPORT command 49

import utility considerations 97

load utility considerations 205

coldel file type modifier
export 11, 19

import 49, 73

load 132, 161

column descriptor record
PC/IXF 302

columns
exporting from LBAC protected 4

columns (continued)
importing into LBAC protected 38

incompatible 326

loading into LBAC protected 109,

110

specifying for import 73

values, invalid 326

commands
db2move 246

db2relocatedb 253

EXPORT 11, 15

IMPORT 49, 61

LOAD 132, 145

LOAD QUERY 158

completion messages 345

compound file type modifier 49, 73

constraints
checking

after load operations 121

contacting IBM 363

continuation record type
PC/IXF 302

CURSOR file type
data movement 265

D
data

distributing 268

effect of LBAC on exporting 4

effect of LBAC on importing 38

effect of LBAC on loading 109, 110

moving across platforms 239

data record
PC/IXF 302

data transfer
across platforms 239

between host and workstation 243

data type descriptions
ASC 298

DEL file formats 294

PC/IXF 323

data types
PC/IXF 318

database movement tool command 246

databases
exporting table to a file 11, 19

importing file to table 49, 73

loading file to table 132

nonrecoverable load options 102

recoverable load options 102

dateformat file type modifier 49, 73, 132,

161

datesiso file type modifier 11, 19, 49, 73,

132, 161

DB2 Information Center
updating 348

versions 349

viewing in different languages 350

db2Load API 161

db2LoadQuery API 181

DB2LOADREC registry variable 131

db2move command 246

db2relocatedb command 253

decplusblank file type modifier 11, 19,

49, 73, 132, 161

decpt file type modifier 11, 19, 49, 73,

132, 161

DEL data type descriptions 294

DEL file
format 292

sample 293

delimited ASCII (DEL) file format 292

moving data across platforms 239

delimiter character string 293

delimiter restrictions
moving data 257

delprioritychar file type modifier 49, 73,

132, 161

displaying SQL statement help 354

distributing data
loading data 215

distribution keys
loading data 215

dldel file type modifier 11, 19, 49, 73,

132, 161

documentation 347, 351

terms and conditions of use 356

dump files
load utility 200

dumpfile file type modifier 132, 161

E
error messages

overview 345

exception tables
load utility 199

export
example 33

Export API 19

EXPORT command 11

using ADMIN_CMD 15

export message files 1, 35, 102

export utility
authorities and privileges required to

use 3

file type modifiers 27, 188

identity columns 9

transferring data between host and

workstation 243

EXPORT utility
file formats 291

large objects (LOBS) 10

overview 1

recreating an exported table 9

restrictions 4

exported tables
recreating using EXPORT utility 9

recreating using import utility 45

recreating when table attributes not

stored in an IXF file 45

© Copyright IBM Corp. 1993, 2006 361DB2 9 BETA

exported tables (continued)
recreating when table attributes stored

in an IXF file 45

exporting
database tables files 11, 19

DB2 Data Links Manager

considerations 11

file type modifiers for 11, 19

specifying column names 19

XML data 5

exporting data
examples 33

F
fastparse file type modifier 132, 161

file formats
delimited ASCII (DEL) 292

exporting table to file 11

importing file to table 49

nondelimited ASCII (ASC) 297

PC version of IXF (PC/IXF) 300

worksheet (WSF) 337

file type modifiers
Export API 19

EXPORT utility 11, 27, 188

Import API 73

IMPORT command 49, 87

Load API 161

LOAD command 132

forcein file type modifier 49, 73, 132,

161, 330

G
generated columns

using import utility 43

using load utility 118

generatedignore file type modifier 49,

73, 132, 161

generatedmissing file type modifier 49,

73, 132, 161

generatedoverride file type

modifier 132, 161

H
header record

PC/IXF 302

help
displaying 350

for SQL statements 354

hierarchy record
PC/IXF 302

I
IBM Relational Data Replication Tools

components 264

overview 263

identity columns 9

using import utility 42

using load utility 117

identity record
PC/IXF 302

identityignore 49

identityignore file type modifier 73, 132,

161

identitymissing file type modifier 49, 73,

132, 161

identityoverride file type modifier 132,

161

implieddecimal file type modifier 49, 73,

132, 161

import
examples 97

Import API 73

IMPORT command 49

using ADMIN_CMD 61

import message files 1, 35, 102

import utility
client/server 40

file type modifiers 87

remote database 40

transferring data between host and

workstation 243

IMPORT utility
authorities 38

buffered inserts 41

code page considerations 97

compared to load utility 279

file formats 291

generated columns 43

identity columns 42

large objects (LOBS) 46

limitations 38

optimizing performance 35

overview 35

performance 35

privileges 38

recreating an exported table 45

restrictions 38

table locking 47

user-defined distinct types (UDTs) 47

importing
code page considerations 73

data 49

database access through DB2

Connect 73

DB2 Data Links Manager

considerations 73

effect of LBAC protection 38

file to database table 73

file type modifiers for 73

of PC/IXF files, with forcein 330

PC/IXF files, data type-specific

rules 328

PC/IXF files, general rules 326

PC/IXF, multiple-part files 73

restrictions 73

to a remote database 73

to a table or hierarchy that does not

exist 73

to typed tables 73

XML data 40

importing data
examples 97

incompatible columns 326

index record
PC/IXF 302

indexes
building 115

indexfreespace file type modifier 132,

161

indexixf file type modifier 49, 73

indexschema file type modifier 49, 73

indicator, record length 300

Information Center
updating 348

versions 349

viewing in different languages 350

Integration Exchange Format (IXF) 300

integrity checking 121

K
keepblanks file type modifier 49, 73,

132, 161

L
label-based access control (LBAC)

effect on exporting data 4

effect on loading 110

effect on loading data 109

large object (LOB) data types
exporting 10

importing 46

LBAC (label-based access control)
effect on exporting data 4

effect on loading 110

effect on loading data 109

LBAC protected data
exporting 4

loading 109, 110

load
configuring 227

examples 211

table access options 113

Load API 161

LOAD command 132

in a partitioned database

environment 217, 235

using ADMIN_CMD 145

load copy location file 131

load delete start compensation log

record 201

load message files 1, 35, 102

load pending list log record 201

Load Query API 181

LOAD QUERY command 158

in a partitioned database

environment 223

load start log record 201

load utility
authorities and privileges required to

use 109

build phase 102

changed syntax and behavior 102

code page considerations 205

compared to import utility 279

database recovery 102

delete phase 102

dump file 200

exception table 199

file formats 291

file type modifiers for 161

generated columns 118

362 Data Movement Utilities DB2 9 BETA

load utility (continued)
identity columns 117

index copy phase 102

limitations 110

load phase 102

log records 201

optimizing performance 206

overview 102

parallelism 108

process overview 102

recovery from failure 129

restrictions 110

table locking 202

table states 202

temporary files 132, 201

loading
data

database partitions 215

file to database table 132

file type modifiers for 132

multidimensional clustered

tables 125

partitioned tables 126

loading data
access options 113

configuration options 227

examples 211, 232

partitioned database

environments 227

partitions 235

loading data in a partitioned database

environment
examples 232

LOB (large object) data types
exporting 10

importing 46

importing and exporting 7

LOB Location Specifier (LLS) 300

lobsinfile
Export API 19

lobsinfile file type modifier 11, 49, 73,

132, 161

locking
import utility 47

table level 202

log records
load utility 201

M
materialized query tables (MQTs)

check pending state 123

dependent immediate 123

refreshing data 123

message files
export, import, and load 1, 35, 102

messages
overview 345

modifiers
file type

EXPORT command 11

IMPORT command 49

LOAD command 132

modifiers file type
export utility 19

for import utility 73

Load API 161

moving data
between databases 49, 73

considerations for moving XML

data 241

delimiter restrictions 257

MQTs (materialized query tables)
check pending state 123

dependent immediate 123

refreshing data 123

multidimensional clustering (MDC)
considerations 125

N
nochecklengths file type modifier 49, 73,

132, 161

nodefaults file type modifier 49, 73

nodoubledel file type modifier 11, 19,

49, 73, 132, 161

noeofchar file type modifier 49, 73, 132,

161

noheader file type modifier 132, 161

nondelimited ASCII (ASC) file

format 297

nonidentity generated columns 43, 118

nonrecoverable databases
load options 102

norowwarnings file type modifier 132,

161

notices 357

notypeid file type modifier 49, 73

nullindchar file type modifier 49, 73,

132, 161

O
options

forcein 330

ordering DB2 books 353

overview
XML data movement 240

P
packeddecimal file type modifier 132,

161

pagefreespace file type modifier 132,

161

parallelism
load utility 108

partitioned database environments
loading data 235

monitoring load operations 223

partitioned databases
load restrictions 217

partitioned tables
load 126

PC version of IXF (PC/IXF) file

format 300

PC/IXF
code page conversion files 326

column values, invalid 326

contrasted with System370 IXF 336

data types 323

valid 318

PC/IXF (continued)
invalid

column values 326

data types 318, 326

record types 302

PC/IXF file format
description 300

moving data across platforms 239

PC/IXF file import
data type-specific rules 328

rules 326, 328

with forcein 330

pending states 205

performance
importing 35

load utility 206

printed books
ordering 353

privileges
export 3

import 38

LOAD 109

problem determination
online information 355

tutorials 355

protected data (LBAC)
exporting 4

loading 109, 110

R
reclen file type modifier 49

importing 73

Load API 161

loading 132

record length indicator 300

record types
PC/IXF 302

recoverable databases
load options 102

registry variables
DB2LOADREC 131

Relocate Database command 253

REMOTEFETCH media type
data movement 265

replication tools 264

Restarting a load operation
allow read access mode 129

multi-partition database load

operations 225

rollforward utility
load copy location file 131

rows
exporting LBAC protected 4

importing into LBAC protected 38

loading into LBAC protected 109,

110

S
samples

files
ASC 297

DEL 293

SELECT statement
in EXPORT command 11

Index 363DB2 9 BETA

semantics
forcein, code page 330

forcein, data type 330

forcein, general 330

SOURCEUSEREXIT option
data movement 268

SQL messages 345

SQL statements
displaying help 354

SQLCODE
overview 345

SQLSTATE
overview 345

sqluexpr API 19

sqluimpr API 73

staging tables
dependent immediate 124

propagating 124

states
backup pending 205

check pending 205

delete pending 205

load pending 205

set integrity pending 205

storage
XML data specifier 242

striptblanks file type modifier 49, 73,

132, 161

striptnulls file type modifier 49, 73, 132,

161

structure
delimited ASCII (DEL) files 292

non-delimited ASCII (ASC) files 297

subtable record
PC/IXF 302

subtableconvert file type modifier 132

summary tables
import restriction 38

syntax
changes, LOAD utility 102

description 275

System370 IXF
contrasted with PC/IXF 336

contrasted with System370 336

T
table load delete start log record 201

table record
PC/IXF 302

table spaces
states 202

tables
exported, recreating 45

exporting to files 11, 19

importing files 49, 73

loading files to 132

locking 202

states 202

temporary files
LOAD command 132

load utility 201

terminate record
PC/IXF 302

termination
load operations

allow read access mode 129

termination (continued)
load operations (continued)

in multi-partition databases 225

terms and conditions
use of publications 356

timeformat file type modifier 49, 73,

132, 161

timestampformat file type modifier 49,

73, 132, 161

totalfreespace file type modifier 132, 161

traverse order
default 259

typed tables 35, 259

user-specified 259

troubleshooting
online information 355

tutorials 355

tutorials
troubleshooting and problem

determination 355

Visual Explain 355

typed tables
data movement examples 261

exporting 258

importing 258

moving data between 258

selecting during data movement 260

traverse order 35, 259

U
Unicode (UCS-2)

data movement considerations 339

updates
DB2 Information Center 348

Information Center 348

usedefaults file type modifier 49, 73,

132, 161

user-defined types (UDTs)
distinct types

importing 47

userexit
customize 268

data movement 268

utilities
file formats 291

V
valid PC/IXF data type 318

Visual Explain
tutorial 355

W
warning messages

overview 345

worksheets
file format (WSF) 337

WSF (worksheet) file format
description 337

moving data across platforms 239

X
XML data

considerations for moving 241

exporting 5

importing 40

XQuery data model 243

XML data movement
overview 240

XML data type
importing and exporting 7

XQuery
XQuery data model 243

Z
zoned decimal file type modifier 132,

161

364 Data Movement Utilities DB2 9 BETA

Contacting IBM

 To contact IBM in your country or region, check the IBM Directory of Worldwide

Contacts at http://www.ibm.com/planetwide

To learn more about DB2 products, go to

http://www.ibm.com/software/data/db2/.

© Copyright IBM Corp. 1993, 2006 365DB2 9 BETA

http://www.ibm.com/planetwide
http://www.ibm.com/software/data/db2/udb/

366 Data Movement Utilities DB2 9 BETA

DB2 9 BETA

����

Printed in USA

SC10-4227-00

DB2 9 BETA

	Contents
	About This Book
	Who Should Use this Book
	How this Book is Structured

	Chapter 1. Export
	Export Overview
	Changes to previous export behavior introduced in DB2 Version 9.1

	Privileges, authorities and authorization required to use export
	Exporting data
	Exporting XML data
	LOB and XML file behavior with regard to import and export
	Using export with identity columns
	Recreating an exported table
	Exporting large objects (LOBS)
	EXPORT
	EXPORT command using the ADMIN_CMD procedure
	db2Export - Export data from a database
	File type modifiers for the export utility
	Export Sessions - CLP Examples

	Chapter 2. Import
	Import Overview
	Changes to previous import behavior introduced in DB2 Version 9.1

	Privileges, authorities, and authorization required to use import
	Importing data
	Importing XML data
	Using import in a client/server environment
	Using import with buffered inserts
	Using import with identity columns
	Using import with generated columns
	Using import to recreate an exported table
	Importing large objects (LOBS)
	Importing user-defined distinct types (UDTs)
	Table locking during import
	IMPORT
	IMPORT command using the ADMIN_CMD procedure
	db2Import - Import data into a table, hierarchy, nickname or view
	File type modifiers for the import utility
	Character set and NLS considerations
	Import sessions - CLP examples

	Chapter 3. Load
	Load overview
	Changes to Previous Load Behavior Introduced in DB2 V9.1
	Changes to previous load behavior introduced in DB2 UDB Version 8

	Parallelism and loading
	Privileges, authorities, and authorizations required to use Load
	Loading data
	Read access load operations
	Building indexes
	Using load with identity columns
	Using load with generated columns
	Checking for integrity violations following a load operation
	Refreshing dependent immediate materialized query tables
	Propagating dependent immediate staging tables
	Multidimensional clustering considerations
	Load considerations for partitioned tables
	Restarting an interrupted load operation
	Restarting or Terminating an Allow Read Access Load Operation

	Recovering data with the load copy location file
	LOAD
	LOAD command using the ADMIN_CMD procedure
	LOAD QUERY
	db2Load - Load data into a table
	db2LoadQuery - Get the status of a load operation
	File type modifiers for the load utility
	Load exception table
	Load dump file
	Load temporary files
	Load utility log records
	Table locking, table states and table space states
	Character set and national language support
	Pending states after a load operation
	Optimizing load performance
	Load - CLP examples

	Chapter 4. Loading data in a partitioned database environment
	Load in a partitioned database environment - overview
	Loading data in a partitioned database environment
	Monitoring a load operation in a partitioned database environment using the LOAD QUERY command
	Restarting or terminating a load operation in a partitioned database environment
	Load configuration options for partitioned database environments
	Examples of loading data in a partitioned database environment
	Migration and version compatibility
	Loading data in a partitioned database environment - hints and tips

	Chapter 5. Moving Data Between Systems
	Moving data across platforms - file format considerations
	PC/IXF File Format
	Delimited ASCII (DEL) File Format
	WSF File Format

	Moving XML data
	XML data movement overview
	Important considerations for XML data movement
	XML data specifier
	XQuery data model

	Moving data with DB2 Connect
	db2move - Database movement tool
	db2relocatedb - Relocate database
	Delimiter restrictions for moving data
	Moving data between typed tables
	Moving Data Between Typed Tables - Details
	Traverse Order
	Default Traverse Order
	User-Specified Traverse Order

	Selection During Data Movement
	Examples of Moving Data Between Typed Tables

	Using replication to move data
	IBM Replication Tools
	The IBM Replication Tools by Component

	Moving data using the CURSOR file type
	Moving data using a customized application (user exit)

	Appendix A. How to read the syntax diagrams
	Appendix B. Differences between the import and load utility
	Appendix C. Export/Import/Load Sessions - API Sample Program
	Appendix D. File Formats
	Export/Import/Load Utility File Formats
	Delimited ASCII (DEL) File Format
	Example and Data Type Descriptions
	Example DEL File
	DEL Data Type Descriptions

	Non-delimited ASCII (ASC) file format
	Example and Data Type Descriptions
	Example ASC File
	ASC Data Type Descriptions

	PC Version of IXF File Format
	PC Version of IXF File Format - Details
	PC/IXF Record Types
	PC/IXF data types
	PC/IXF Data Type Descriptions
	General Rules Governing PC/IXF File Import into Databases
	Data Type-Specific Rules Governing PC/IXF File Import into Databases
	FORCEIN Option
	FORCEIN General Semantics
	FORCEIN Code Page Semantics
	FORCEIN Data Type Semantics

	Differences Between PC/IXF and Version 0 System/370 IXF

	Worksheet File Format (WSF)

	Appendix E. Export/Import/Load utility unicode considerations
	Restrictions for Code Pages 1394, 1392 and 5488
	Restrictions for XML data movement
	Incompatibilities

	Appendix F. Bind files used by the export, import and load utilities
	Appendix G. Warning, error and completion messages
	Appendix H. DB2 Database technical information
	DB2 documentation and help
	Documentation feedback

	Updating the DB2 Information Center installed on your computer or intranet server
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Overview of DB2 technical information
	DB2 technical information
	DB2 technical information

	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	DB2 Visual Explain tutorial
	DB2 troubleshooting information
	Terms and Conditions

	Appendix I. Notices
	Trademarks

	Index
	Contacting IBM

