
DB2®

Administration Guide: Implementation

DB2 Version 9

for Linux, UNIX, and Windows

SC10-4221-00

���

DB2®

Administration Guide: Implementation

DB2 Version 9

for Linux, UNIX, and Windows

SC10-4221-00

���

Before using this information and the product it supports, be sure to read the general information under Notices.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

Contents

About this book ix

Who should use this book x

How this book is structured x

Part 1. Implementing Your Design . . 1

Chapter 1. Before creating a database . . 3

Working with instances 4

Starting a DB2 instance (Linux, UNIX) 4

Starting a DB2 instance (Windows) 4

Attaching to and detaching from a non-default

instance of the database manager 5

Grouping objects by schema 6

Enabling inter-partition query parallelism 7

Enabling intra-partition parallelism for queries . . 7

Enabling intra-partition parallelism for utilities . . 8

Enabling large page support in a 64-bit

environment (AIX) 12

Stopping an instance (Linux, UNIX) 13

Stopping an instance (Windows) 14

Working with multiple DB2 copies 15

Multiple DB2 copies roadmap 15

Multiple instances of the database manager . . 16

Multiple DB2 copies on the same computer

(Windows) 17

Changing the Default DB2 copy after installation

(Windows) 21

Client connectivity using multiple DB2 copies

(Windows) 22

Setting the DAS when running multiple DB2

copies (Windows) 24

Setting the default instance when using multiple

DB2 copies (Windows) 25

Managing DB2 copies (Windows) 26

Running multiple instances concurrently

(Windows) 27

Removing DB2 copies (Linux, UNIX, and

Windows) 28

Working with partitioned databases 29

Management of database server capacity . . . 29

Multiple logical partitions 30

Fast communications manager (FCM)

communications 32

Preparing to create a database 33

Designing logical and physical database

characteristics 34

Instance creation 34

Instance management 36

Setting the DB2 environment automatically on

UNIX 43

Setting the DB2 environment manually on UNIX 44

Automatic client rerouting 44

Automatic storage 54

License management 64

Registry and environment variables 65

Configuration files and parameters 80

Database history file 87

Chapter 2. Creating and using the DB2

Administration Server (DAS) 91

DB2 Administration Server 91

Creating a DB2 administration server (DAS) . . . 93

Starting and stopping the DB2 administration server

(DAS) 94

Listing the DB2 administration server (DAS) . . . 95

Configuring the DB2 administration server (DAS) 95

Tools catalog database and DB2 administration

server (DAS) scheduler setup and configuration . . 96

Notification and contact list setup and

configuration 100

DB2 administration server (DAS) Java virtual

computer setup 101

Security considerations for the DB2 administration

server (DAS) on Windows 102

Updating the DB2 administration server (DAS) on

UNIX 102

Removing the DB2 administration server (DAS) 103

Setting up DB2 administration server (DAS) with

Enterprise Server Edition (ESE) systems 104

DB2 administration server (DAS) configuration on

Enterprise Server Edition (ESE) systems 106

Discovery of administration servers, instances, and

databases 107

Discovering and hiding server instances and

databases 108

Setting discovery parameters 109

Setting up the DB2 administration server (DAS) to

use the Configuration Assistant and the Control

Center 110

Updating a DB2 administration server (DAS)

configuration for discovery 110

DB2 administration server (DAS) first failure data

capture (FFDC) 111

Chapter 3. Creating a database 113

Creating a database 113

Initial database partition groups 115

Creating and managing database partitions and

database partition groups 115

Creating database partition groups 115

Managing database partitions 116

Adding and dropping database partitions . . . 119

Redistributing data in a database partition

group 128

Error recovery when adding database partitions 128

Issuing commands to multiple database

partitions 130

Using Windows database partition servers . . 143

Creating table spaces 147

Table spaces 148

© Copyright IBM Corp. 1993, 2006 iii

Defining initial table spaces 148

Creating a table space 149

Automatic resizing of table spaces 154

Creating a system temporary table space . . . 158

Creating a user temporary table space 159

Creating table spaces without file system

caching 159

Table spaces in database partition groups . . . 163

Attaching a direct disk access device 163

Setting up a direct disk access device on Linux 164

Creating a buffer pool 166

Creating buffer pools for partitioned databases . . 167

Creating schemas 168

Creating a schema 168

Setting a schema 169

Copying a schema 170

Restarting a failed copy schema operation . . . 173

System catalog tables 175

Cataloging a database 176

Cataloging database systems 177

Database directories, directory services, and logs 178

Local database directory 178

System database directory 178

Viewing the local or system database directory

files 179

Node directory 179

Changing database directory information . . . 180

Updating the directories with information about

remote database server computers 180

Lightweight Directory Access Protocol (LDAP)

directory service 181

Database recovery log 182

Administration notification log 182

Binding utilities to the database 183

Generating DDL statements for database objects 183

Quiescing and unquiescing databases 186

Chapter 4. Creating tables and other

related table objects 187

Space compression for tables 187

Space value compression for new tables 187

Data row compression 188

Table creation 189

Creating a table using the Create Table wizard . . 190

Creating a table in multiple table spaces 190

Creating a table in a partitioned database

environment 191

Creating partitioned tables 193

Details of partitioned tables 194

Approaches to defining ranges on partitioned

tables 195

Approaches to migrating existing tables and

views to partitioned tables 198

Creating materialized query tables 201

Creating a materialized query table 201

Creating a user-maintained materialized query

table 204

Populating a user-maintained materialized

query table 205

Partitioned materialized query table behavior 206

Creating a new source table using db2look . . . 210

Creating a staging table 211

Creating a user-defined temporary table 212

Creating range-clustered tables 213

Examples of range-clustered tables 213

How the query compiler works with

range-clustered tables 215

Guidelines for using range-clustered tables . . 216

Creating typed tables 216

Creating a hierarchy table or a typed table . . 216

Populating a typed table 217

Creating and populating a table 217

Details on creating and populating a table 219

Defining columns 219

Defining keys and constraints 223

Defining dimensions on a table 235

Loading data into a table using the Load wizard 237

Making a table in no data movement mode

fully accessible 238

Quiescing tables 239

Defining triggers 240

Creating triggers 240

Trigger dependencies 242

Defining UDFs and UDTs 243

User-defined functions (UDFs) or methods . . 243

Details on creating a user-defined function

(UDF) or method 244

User-defined types (UDTs) 246

Details on creating a user-defined type (UDT) 247

Source data types 249

Length limits for source data types 250

Creating a view 251

Creating an alias 254

Creating indexes 255

Creating an index 256

Index, index extension, or index specification 258

Using an index 260

Options on the CREATE INDEX statement . . 261

User-defined extended index types 265

Creating user-defined extended index types . . 266

Showing related objects 270

Validating related objects 271

Estimating space requirements for tables and

indexes 272

Chapter 5. Altering a database 275

Altering an instance 275

Changing instances (UNIX only) 275

Details on changing instances 276

Changing node and database configuration files 279

Changing the database configuration across

multiple database partitions 281

Altering a database 281

Altering a database partition group 281

Managing database partitions from the Control

Center 282

Altering a buffer pool 283

Altering a table space 284

Details on altering a table space 285

Dropping a database 293

Dropping a schema 294

iv Administration Guide: Implementation

Chapter 6. Altering tables and other

related table objects 295

Modifying tables 295

Space value compression for existing tables . . 295

Copying tables 296

Altering a table 297

Changing table attributes 298

Changing table properties 299

Altering columns and rows 300

Altering keys and constraints 309

Changing distribution keys 318

Altering an identity column 318

Altering a sequence 319

Dropping a sequence 320

Dropping or removing columns 320

Defining a generated column on an existing

table 321

Declaring a table volatile 323

Using a stored procedure to alter a table 324

Modifying indexes 326

Renaming an existing table or index 326

Dropping an index, index extension, or an index

specification 327

Modifying triggers 328

Updating view contents using triggers 328

Dropping a trigger 329

Modifying aliases and views 330

Altering or dropping a view 330

Recovering inoperative views 331

Dropping aliases 332

Modifying UDFs and UDTs 333

Altering a user-defined structured type 333

Dropping a user-defined function (UDF),

function mapping, or method 333

Dropping a user-defined type (UDT) or type

mapping 334

Modifying materialized query tables 335

Altering materialized query table properties . . 335

Refreshing the data in a materialized query

table 336

Modifying partitioned tables 336

Altering partitioned tables 336

Guidelines and restrictions on altering

partitioned tables with attached or detached

data partitions 338

Rotating data in a partitioned table 339

Examples of rolling in and rolling out

partitioned table data 342

Attaching a data partition 346

Resolving a mismatch when trying to attach a

data partition to a partitioned table 348

Detaching a data partition 352

Attributes of detached data partitions 354

Adding data partitions to partitioned tables . . 356

Dropping a data partition 358

Updating table and view contents using the

MERGE statement 360

Recovering inoperative summary tables 361

Dropping or deleting tables 362

Deleting and updating rows of a typed table 362

Deleting the contents of staging tables 362

Dropping a table 363

Dropping a user-defined temporary table . . . 364

Dropping a materialized query or staging table 365

Statement dependencies when changing objects 366

Chapter 7. Using the DB2

administration tools 369

Starting the server DB2 administration tools . . . 369

Shutting down server DB2 administration tools . . 369

Finding service level information about the DB2

administration tools environment 370

Using the DB2 database help 370

Environment-specific information 371

Menus and toolbars 371

DB2 toolbar 371

DB2 secondary toolbar 373

DB2 Tools menu 374

DB2 Help menu 375

Control Center 376

Control Center overview 376

Control Center Legend 380

Opening new Control Centers 382

Creating database objects 382

Changing system names displayed in the

Control Center 383

Getting help in the Control Center 385

Using advisors, wizards, and launchpads to

perform tasks quickly and easily 385

Wizard overviews 387

Control Center object tree and details view . . 388

Extending the Control Center 394

License Center 411

License Center overview 411

Adding licenses 412

Changing licenses and policies 413

Viewing licensing information 413

Viewing license policy information 414

Viewing authorized user infraction information 415

Viewing and resetting compliance details . . . 415

Removing licenses 416

Task Center and Journal 416

Task Center overview 416

Journal overview 418

Enabling scheduling settings in the Task Center 419

Scheduler 420

Success code sets 420

Running tasks immediately 421

Scheduling a task 422

Changing the default notification message . . . 423

Creating a database for the DB2 tools catalog 424

Creating or editing a task 425

Selecting users and groups for new tasks . . . 427

Managing contacts 428

Managing saved schedules 429

Managing success code sets 430

Managing task categories 431

Tools Settings 432

Tools Settings overview 432

Setting the server administration tools startup

property 434

Contents v

Setting a command statement termination

character 434

Setting up access to DB2 contextual help and

documentation 435

Setting startup and default options for the DB2

administration tools 436

Changing the fonts for menus and text 437

Setting DB2 UDB OS/390 and z/OS utility

execution options 437

DB2 for z/OS health monitor 441

Enabling or disabling notification using the

Health Center Status Beacon 448

Setting the default scheduling scheme 449

Setting Command Editor options 449

Setting IMS options 450

Visual Explain 451

Visual Explain overview 451

Visual Explain concepts 452

Dynamically explaining an SQL or an XQuery

statement 464

Creating an access plan using the Command

Editor 465

Explain tables 466

Guidelines for creating indexes 467

Out-of-date access plans 467

Retrieving the access plan when using

LONGDATACOMPAT 468

Using RUNSTATS 468

Viewing SQL or XQuery statement details and

statistics 469

Viewing a graphical representation of an access

plan 473

Viewing explainable statements for a package 474

Viewing the history of previously explained

query statements 476

Visual Explain support for earlier and later

releases 478

Part 2. Database Security 479

Chapter 8. Controlling database

access 481

Security issues when installing the DB2 database

manager 481

Acquiring Windows users’ group information

using an access token 483

Details on security based on operating system . . 485

Windows platform security considerations for

users 485

Windows local system account support 485

Extended Windows security using DB2ADMNS

and DB2USERS groups 486

UNIX platform security considerations for users 489

Location of the instance directory 489

Security plug-ins 490

Authentication methods for your server 490

Authentication considerations for remote clients 495

Partitioned database authentication considerations 496

Kerberos authentication details 496

Authorization, privileges, and object ownership 501

Details on privileges, authorities, and authorization 506

System administration authority (SYSADM) . . 506

System control authority (SYSCTRL) 507

System maintenance authority (SYSMAINT) . . 508

Security administration authority (SECADM) 508

Database administration authority (DBADM) 509

System monitor authority (SYSMON) 510

LOAD authority 511

Database authorities 511

Authorization ID privileges 513

Implicit schema authority (IMPLICIT_SCHEMA)

considerations 513

Schema privileges 514

Table space privileges 515

Table and view privileges 515

Package privileges 517

Index privileges 518

Sequence privileges 518

Routine privileges 518

Controlling access to database objects 519

Details on controlling access to database objects 519

Granting privileges 519

Revoking privileges 521

Managing implicit authorizations by creating

and dropping objects 522

Establishing ownership of a package 523

Indirect privileges through a package 523

Indirect privileges through a package containing

nicknames 524

Controlling access to data with views 525

Monitoring access to data using the audit

facility 527

Data encryption 527

Granting database authorities to new groups 529

Granting database authorities to new users . . 529

Granting privileges to new groups 530

Granting privileges to new users 534

Label-based access control (LBAC) 538

Label-based access control (LBAC) overview 538

LBAC security policies 540

LBAC security label components 541

LBAC security labels 547

Format for security label values 549

How LBAC security labels are compared . . . 550

LBAC rule sets 551

LBAC rule exemptions 556

Built-in functions for dealing with LBAC

security labels 557

Protection of data using LBAC 558

Reading of LBAC protected data 560

Inserting of LBAC protected data 563

Updating of LBAC protected data 565

Deleting or dropping of LBAC protected data 569

Removal of LBAC protection from data . . . 572

Lightweight directory access protocol (LDAP)

directory services 573

Lightweight Directory Access Protocol (LDAP)

overview 573

Supported LDAP client and server

configurations 575

Support for Active Directory 575

vi Administration Guide: Implementation

Configuring DB2 to use Active Directory . . . 576

Configuring DB2 in the IBM LDAP environment 576

Creating an LDAP user 577

Configuring the LDAP user for DB2

applications 578

Registration of DB2 servers after installation . . 578

Update the protocol information for the DB2

server 580

Rerouting LDAP clients to another server . . . 580

Catalog a node alias for ATTACH 581

Deregistering the DB2 server 582

Registration of databases in the LDAP directory 582

Attaching to a remote server in the LDAP

environment 583

Deregistering the database from the LDAP

directory 584

Refreshing LDAP entries in local database and

node directories 584

Searching the LDAP servers 585

Registering host databases in LDAP 586

Setting DB2 registry variables at the user level

in the LDAP environment 587

Enabling LDAP support after installation is

complete 588

Disabling LDAP support 589

LDAP support and DB2 Connect 589

Security considerations in an LDAP

environment 589

Security considerations for Active Directory . . 590

Extending the LDAP directory schema with DB2

object classes and attributes 591

Extending the directory schema for Active

Directory 591

DB2 objects in the Active Directory 593

Netscape LDAP directory support and attribute

definitions 593

Extending the directory schema for IBM Tivoli

Directory Server 595

Extending the directory schema for Sun One

Directory Server 596

LDAP object classes and attributes used by DB2 598

Tasks and required authorizations 608

Using the system catalog for security issues . . . 609

Details on using the system catalog for security

issues 610

Retrieving authorization names with granted

privileges 610

Retrieving all names with DBADM authority 611

Retrieving names authorized to access a table 612

Retrieving all privileges granted to users . . . 613

Securing the system catalog view 613

Security considerations 616

Introduction to firewall support 619

Screening router firewalls 619

Application proxy firewalls 620

Circuit level firewalls 620

Stateful multi-layer inspection (SMLI) firewalls . . 620

Chapter 9. Auditing DB2 database

activities 621

Introduction to the DB2 database audit facility . . 621

Audit facility behavior 623

Audit facility usage 624

Working with DB2 audit data in DB2 tables . . . 628

Working with DB2 audit data in DB2 tables . . 628

Creating tables to hold the DB2 audit data . . 628

Creating DB2 audit data files 631

Loading DB2 audit data into tables 632

Selecting DB2 audit data from tables 635

Audit facility messages 636

Audit facility record layouts (introduction) . . . 636

Details on audit facility record layouts 637

Audit record layout for AUDIT events 637

Audit record layout for CHECKING events . . 638

Audit record object types 639

List of possible CHECKING access approval

reasons 640

List of possible CHECKING access attempted

types 641

Audit record layout for OBJMAINT events . . 643

Audit record layout for SECMAINT events . . 645

List of possible SECMAINT privileges or

authorities 647

Audit record layout for SYSADMIN events . . 650

List of possible SYSADMIN audit events . . . 650

Audit record layout for VALIDATE events . . 651

Audit record layout for CONTEXT events . . . 652

List of possible CONTEXT audit events . . . 653

Audit facility tips and techniques 654

Controlling DB2 database audit facility activities 655

Part 3. Appendixes 661

Appendix A. Conforming to the

naming rules 663

General naming rules 663

DB2 database object naming rules 663

Delimited identifiers and object names 665

User, user ID and group naming rules 666

Federated database object naming rules 666

Additional restrictions and recommendations

regarding the use of schema names 667

Maintaining passwords on servers 667

Workstation naming rules 667

Naming rules in an NLS environment 668

Naming rules in a Unicode environment 669

Appendix B. Using Windows

Management Instrumentation (WMI)

support 671

Introduction to Windows Management

Instrumentation (WMI) 671

DB2 database system integration with Windows

Management Instrumentation 672

Appendix C. Using Windows security 675

DB2 and Windows security introduction 675

A scenario with server authentication (Windows) 676

A scenario with client authentication and a

Windows client machine 677

Contents vii

Support for global groups (on Windows) 677

Using a backup domain controller with DB2

database systems 677

User authentication with DB2 for Windows . . . 678

User name and group name restrictions

(Windows) 678

Groups and user authentication on Windows 679

Trust relationships between domains on

Windows 679

DB2 database system and Windows security

service 680

Installing DB2 on a backup domain controller 680

Authentication with groups and domain

security (Windows) 681

Authentication using an ordered domain list 682

Domain security support (Windows) 683

Appendix D. Using the Windows

Performance Monitor 685

Windows performance monitor introduction . . . 685

Registering DB2 with the Windows performance

monitor 685

Enabling remote access to DB2 performance

information 686

Displaying DB2 database and DB2 Connect

performance values 687

Windows performance objects 687

Accessing remote DB2 database performance

information 688

Resetting DB2 performance values 688

Appendix E. DB2 Database technical

information 691

Overview of the DB2 technical information . . . 691

Documentation feedback 691

DB2 technical library in PDF format 692

Ordering printed DB2 books 694

Displaying SQL state help from the command line

processor 695

Accessing different versions of the DB2

Information Center 695

Displaying topics in your preferred language in the

DB2 Information Center 696

Updating the DB2 Information Center installed on

your computer or intranet server 697

DB2 Visual Explain tutorial 698

DB2 troubleshooting information 699

Terms and Conditions 699

Appendix F. Notices 701

Trademarks 703

Index 705

Contacting IBM 719

viii Administration Guide: Implementation

About this book

The Administration Guide in its two volumes provides information necessary to

use and administer the DB2® relational database management system (RDBMS)

products, and includes:

v Information about database planning and design (found in Administration Guide:

Planning)

v Information about implementing and managing databases (found in

Administration Guide: Implementation)

In Version 9, the information about configuring and tuning your database

environment to improve performance can be found in the Performance Guide.

Many of the tasks described in this book can be performed using different

interfaces:

v The command line processor, which allows you to access and manipulate

databases from a command-line interface. From this interface, you can also

execute SQL and XQuery statements and DB2 utility functions. Most examples

in this book illustrate the use of this interface. For more information about using

the command line processor, see the Command Reference.

v The application programming interface, which allows you to execute DB2

utility functions within an application program. For more information about

using the application programming interface, see the Administrative API

Reference.

v The Control Center, which allows you to use a graphical user interface to

manage and administer your data and database components. You can invoke the

Control Center using the db2cc command on a Linux® or Windows® command

line, or using the Start menu on Windows platforms. The Control Center

presents your database components as a hierarchy of objects in an object tree,

which includes your systems, instances, databases, tables, views, triggers, and

indexes. From the tree you can perform actions on your database objects, such as

creating new tables, reorganizing data, configuring and tuning databases, and

backing up and restoring databases, database partitions, and table spaces. In

many cases, wizards and launchpads are available to help you perform these

tasks more quickly and easily.

The Control Center is available in three views:

– Basic. This view provides you with the core DB2 functions. From this view

you can work with all the databases to which you have been granted access,

including their related objects such as tables and stored procedures. It

provides you with the essentials for working with your data.

– Advanced. This view provides you with all of the objects and actions available

in the Control Center. Use this view if you are working in an enterprise

environment and you want to connect to DB2 UDB Version 8 for z/OS or

DB2 Version 9 for z/OS (DB2 for z/OS®) or IMS™.

– Custom. This view provides you with the ability to tailor the Control Center

to your needs. You select the objects and actions that you want to appear in

your view.
For help on using the Control Center, select Getting started from the Help

pull-down on the Control Center window.

© Copyright IBM Corp. 1993, 2006 ix

There are other graphical tools that you can use to perform administration tasks.

They include:

– The Activity Monitor helps you monitor application performance and

concurrency, resource consumption, and SQL statement usage of a database or

database partition.

– The Command Editor is used to generate, edit, run, and manipulate SQL and

XQuery statements; IMS and DB2 commands; work with the resulting output;

and to view a graphical representation of the access plan for explained SQL

and XQuery statements.

– The Configuration Assistant is used to configure and maintain the database

objects that your applications will be using.

– The Health Center helps you resolve performance and resource allocation

problems.

– The Indoubt Transaction Manager is used to display indoubt transactions,

that is, the transactions that are waiting to be committed, rolled back, or

forgotten for a selected database and one or more selected partitions.

– The License Center is used to display license status and usage information

for DB2 products installed on your system. You can also use the License

Center to configure your system for license monitoring.

– The Task Center is used to schedule jobs that are to run unattended. The

Journal can be used to view historical information about tasks, database

actions and operations, messages, and notifications.

– The Memory Visualizer helps you monitor the memory-related performance

of an instance and all of its databases organized in a hierarchical tree.

– Tools Settings is used to change the settings for the Control Center, Health

Center, and the Information Center.

– Visual Explain is used to display access plan graphs for explained SQL or

XQuery statements. You can use the information in the graph to tune your

queries.
For more information about the Control Center and the administration tools

listed above, refer to Chapter 7, or search for them in the DB2 Information

Center.

Who should use this book

This book is intended primarily for database administrators, system administrators,

security administrators, and system operators who need to design, implement and

maintain a database to be accessed by local or remote clients. It can also be used

by programmers and other users who require an understanding of the

administration and operation of the DB2 relational database management system.

How this book is structured

This book contains information about the following major topics:

Implementing Your Design

v Chapter 1, Chapter 1, “Before creating a database,” describes the prerequisites

needed before creating a database and the objects within a database.

v Chapter 2, Chapter 2, “Creating and using the DB2 Administration Server

(DAS),” discusses what a DAS is, how to create it, and how to use it.

v Chapter 3, Chapter 3, “Creating a database,” describes the tasks associated with

creating a database and the objects within a database.

x Administration Guide: Implementation

v Chapter 4, Chapter 4, “Creating tables and other related table objects,” describes

how to create tables with specific characteristics when implementing your

database design.

v Chapter 5, Chapter 5, “Altering a database,” describes the prerequisites and the

tasks associated with altering or dropping a database and the objects within a

database.

v Chapter 6, Chapter 6, “Altering tables and other related table objects,” describes

how to drop tables or how to modify specific characteristics associated with

those tables. Dropping and modifying related table objects is also presented

here.

v Chapter 7, Chapter 7, “Using the DB2 administration tools,” describes the

graphical user interface tools and includes some tasks that can only be

performed using the graphical user interface. This chapter also discusses how

you can extend the Control Center by adding new tool bar buttons including

new actions, adding new object definitions, and adding new action definitions.

Database Security

v Chapter 8, Chapter 8, “Controlling database access,” describes how you can

control access to your database’s resources.

v Chapter 9, Chapter 9, “Auditing DB2 database activities,” describes how you can

detect and monitor unwanted or unanticipated access to data.

Appendixes

v Appendix A, “Conforming to the naming rules,” presents the rules to follow

when naming databases and objects.

v Appendix B, “Using Windows Management Instrumentation (WMI) support,”

provides information about how DB2 can be managed using Windows

Management Instrumentation (WMI).

v Appendix C, “Using Windows security,” describes how DB2 works with

Windows security.

v Appendix D, “Using the Windows Performance Monitor,” describes how to use

the Windows Performance Monitor to collect DB2 performance data.

About this book xi

xii Administration Guide: Implementation

Part 1. Implementing Your Design

© Copyright IBM Corp. 1993, 2006 1

2 Administration Guide: Implementation

Chapter 1. Before creating a database

After determining the design of your database, you must create the database and

the objects within it. These objects include schemas, database partition groups,

table spaces, tables, views, wrappers, servers, nicknames, type mappings, function

mappings, aliases, user-defined types (UDTs), user-defined functions (UDFs),

automatic summary tables (ASTs), triggers, constraints, indexes, and packages. You

can create these objects:

v Using SQL and XQuery statements in the command line processor.

v Through SQL and XQuery statements in applications using application

programming interfaces (APIs).

v Through the Control Center.

In this and other chapters, the Control Center method for completing tasks is

highlighted by placing it within a box. This is followed immediately by a

comparable method using the command line, and if applicable, using an API. In

some cases, there may be tasks showing only one method. When working with the

Control Center, recall that you can use the help to obtain more detail than the

overview information found in this manual.

For information on SQL and XQuery statements, refer to the SQL Reference manual.

For information on command line processor commands, refer to the Command

Reference manual. For information on APIs, refer to the Administrative API Reference

manual. For information on the Control Center and other administration tools,

refer to Chapter 7.

This chapter focuses on the information you should know before you create a

database with all of its objects. There are several prerequisite concepts and topics

as well as several tasks you must perform before creating a database.

The chapter following this one contains brief discussions of the various objects that

may be part of the implementation of your database design.Chapter 6 presents

topics you must consider before you alter a database and then explains how to

alter or drop database objects.

For those areas where DB2 Database interacts with the operating system, some of

the topics in this and the following chapters may present operating system-specific

differences. You may be able to take advantage of native operating system

capabilities or differences beyond those offered by DB2 Database. Refer to the

Quick Beginnings manual and operating system documentation for precise

differences.

As an example, Windows supports an application type known as a “service”. DB2

for Windows will have each DB2 instance defined as a service. A service can be

started automatically at system boot, by a user through the Services control panel

applet, or by a Windows 32-bit application that uses the service functions included

in the Microsoft® Windows 32-bit application programming interface (API).

Services can execute even when no user is logged on to the system.

References to Windows will mean all supported Windows operating systems.

© Copyright IBM Corp. 1993, 2006 3

Working with instances

Before you implement a database, you should understand the prerequisite concepts

and tasks described in this section.

Starting a DB2 instance (Linux, UNIX)

 You might need to start or stop the DB2 database during normal business

operations; for example, you must start an instance before you can perform the

following tasks:

v Connecting to a database on the instance

v Precompiling an application

v Binding a package to a database

v Accessing host databases.

 Prerequisites:

 Before you start a DB2 instance on your system:

1. Log in with a user ID or name that has SYSADM, SYSCTRL, or SYSMAINT

authority on the instance; or log in as the instance owner.

2. Run the startup script as follows:

 . INSTHOME/sqllib/db2profile (for Bourne or Korn shell)

 source INSTHOME/sqllib/db2cshrc (for C shell)

where INSTHOME is the home directory of the instance you want to use.

 Procedure:

 To start the instance using the Control Center:

1. Expand the object tree until you see the Instances folder.

2. Right-click the instance that you want to start, and select start from the pop-up menu.

To start the instance using the command line, enter:

 db2start

Note: When you run commands to start or stop an instance’s database manager,

the DB2 database manager applies the command to the current instance. For

more information, see Setting the current instance environment variables.

 Related tasks:

v “Setting the current instance environment variables” on page 67

v “Starting a DB2 instance (Windows)” on page 4

v “Stopping an instance (Linux, UNIX)” on page 13

Starting a DB2 instance (Windows)

 You might need to start or stop a DB2 instance during normal business operations;

for example, you must start an instance before you can perform the following

tasks:

v Connecting to a database on the instance

4 Administration Guide: Implementation

v Precompiling an application

v Binding a package to a database

v Accessing host databases.

 Prerequisites:

 In order to successfully launch the DB2 database instance as a service from

db2start, the user account must have the correct privilege as defined by the

Windows operating system to start a Windows service. The user account can be a

member of the Administrators, Server Operators, or Power Users group. When

extended security is enabled, only members of the DB2ADMNS and

Administrators groups can start the database by default.

 Procedure:

 To start the instance using the Control Center:

1. Expand the object tree until you see the Instances folder.

2. Right-click the instance that you want to start, and select start from the pop-up menu.

To start the instance using the command line, enter:

 db2start

Note: When you run commands to start or stop an instance’s database manager,

the DB2 database manager applies the command to the current instance. For

more information, see Setting the current instance environment variables.

The db2start command will launch the DB2 database instance as a Windows

service. The DB2 database instance on Windows can still be run as a process by

specifying the ″/D″ switch when invoking db2start. The DB2 database instance can

also be started as a service using the Control Panel or ″NET START″ command.

When running in a partitioned database environment, each database partition

server is started as a Windows service. You can not use the ″/D″ switch to start a

DB2 instance as a process in a partitioned database environment.

 Related tasks:

v “Setting the current instance environment variables” on page 67

v “Starting a DB2 instance (Linux, UNIX)” on page 4

v “Stopping an instance (Windows)” on page 14

v “Stopping an instance (Linux, UNIX)” on page 13

Attaching to and detaching from a non-default instance of the

database manager

 To attach to another instance of the database manager, which might be remote, use

the ATTACH command.

 Prerequisites:

 More than one instance must already exist.

 Procedure:

Chapter 1. Before creating a database 5

To attach to another instance of the database manager using the Control Center:

1. Expand the object tree until you see the Instances folder.

2. Click on the instance you want to attach.

3. Right-click the selected instance name.

4. In the Attach-DB2 window, type your user ID and password, and click OK.

To attach to an instance using the command line, enter:

 db2 attach to <instance name>

For example, to attach to an instance called testdb2 that was previously cataloged

in the node directory:

 db2 attach to testdb2

To attach to an instance from a client application, call the sqleatin API.

After performing maintenance activities for the testdb2 instance, you can then

DETACH from that instance by running the following command:

 db2 detach

To detach from an instance from a client application, call the sqledtin API.

 Related reference:

v “ATTACH command” in Command Reference

v “DETACH command” in Command Reference

Grouping objects by schema

 Database object names might be made up of a single identifier or they might be

schema-qualified objects made up of two identifiers. The schema, or high-order part,

of a schema-qualified object provides a means to classify or group objects in the

database. When an object such as a table, view, alias, distinct type, function, index,

package or trigger is created, it is assigned to a schema. This assignment is done

either explicitly or implicitly.

Explicit use of the schema occurs when you use the high-order part of a two-part

object name when referring to that object in a statement. For example, USER A

issues a CREATE TABLE statement in schema C as follows:

 CREATE TABLE C.X (COL1 INT)

Implicit use of the schema occurs when you do not use the high-order part of a

two-part object name. When this happens, the CURRENT SCHEMA special register

is used to identify the schema name used to complete the high-order part of the

object name. The initial value of CURRENT SCHEMA is the authorization ID of

the current session user. If you want to change this during the current session, you

can use the SET SCHEMA statement to set the special register to another schema

name.

Some objects are created within certain schemas and stored in the system catalog

tables when the database is created.

In dynamic SQL and XQuery statements, a schema qualified object name implicitly

uses the CURRENT SCHEMA special register value as the qualifier for unqualified

6 Administration Guide: Implementation

object name references. In static SQL and XQuery statements, the QUALIFIER

precompile/bind option implicitly specifies the qualifier for unqualified database

object names.

Before creating your own objects, you need to consider whether you want to create

them in your own schema or by using a different schema that logically groups the

objects. If you are creating objects that will be shared, using a different schema

name can be very beneficial.

 Related concepts:

v “System catalog tables” on page 175

 Related tasks:

v “Creating a schema” on page 168

 Related reference:

v “CURRENT SCHEMA special register” in SQL Reference, Volume 1

v “SET SCHEMA statement” in SQL Reference, Volume 2

Enabling inter-partition query parallelism

 Inter-partition parallelism occurs automatically based on the number of database

partitions and the distribution of data across these database partitions.

Note: You must modify configuration parameters to take advantage of parallelism

within a database partition or within a non-partitioned database. For

example, intra-partition parallelism can be used to take advantage of the

multiple processors on a symmetric multi-processor (SMP) machine.

 Related concepts:

v “Partitioned database environments” in Administration Guide: Planning

v “Database partition group design” in Administration Guide: Planning

v “Database partition and processor environments” in Administration Guide:

Planning

v “Adding database partitions in a partitioned database environment” on page 123

 Related tasks:

v “Redistributing data across database partitions” in Performance Guide

v “Enabling database partitioning in a database” on page 9

v “Enabling intra-partition parallelism for queries” on page 7

Enabling intra-partition parallelism for queries

 The Control Center can be used to find out, or modify, the values of individual

entries in a specific database, or in the database manager configuration file.

You could also use the GET DATABASE CONFIGURATION and the GET

DATABASE MANAGER CONFIGURATION commands to find out the values of

individual entries in a specific database, or in the database manager configuration

file. To modify individual entries for a specific database or in the database

manager configuration file, use the UPDATE DATABASE CONFIGURATION and

the UPDATE DATABASE MANAGER CONFIGURATION commands

respectively.

Chapter 1. Before creating a database 7

Configuration parameters that affect intra-partition parallelism include the

max_querydegree and intra_parallel database manager parameters, and the dft_degree

database parameter.

In order for intra-partition query parallelism to occur, you must modify one or

more database configuration parameters, database manager configuration

parameters, precompile or bind options, or a special register.

intra_parallel

Database manager configuration parameter that specifies whether the

database manager can use intra-partition parallelism. The default is not to

use intra-partition parallelism.

max_querydegree

Database manager configuration parameter that specifies the maximum

degree of intra-partition parallelism that is used for any SQL statement

running on this instance. An SQL statement will not use more than the

number given by this parameter when running parallel operations within a

database partition. The intra_parallel configuration parameter must also be

set to “YES” for the value in max_querydegree is used. The default value for

this configuration parameter is -1. This value means that the system uses

the degree of parallelism determined by the optimizer; otherwise, the

user-specified value is used.

dft_degree

Database configuration parameter that provides the default for the

DEGREE bind option and the CURRENT DEGREE special register. The

default value is 1. A value of ANY means the system uses the degree of

parallelism determined by the optimizer.

DEGREE

Precompile or bind option for static SQL.

CURRENT DEGREE

Special register for dynamic SQL.

 Related concepts:

v “Parallel processing for applications” in Performance Guide

v “Parallel processing information” in Performance Guide

 Related tasks:

v “Configuring DB2 with configuration parameters” in Performance Guide

 Related reference:

v “dft_degree - Default degree configuration parameter” in Performance Guide

v “intra_parallel - Enable intra-partition parallelism configuration parameter” in

Performance Guide

v “max_querydegree - Maximum query degree of parallelism configuration

parameter” in Performance Guide

v “BIND command” in Command Reference

v “PRECOMPILE command” in Command Reference

v “CURRENT DEGREE special register” in SQL Reference, Volume 1

Enabling intra-partition parallelism for utilities

This section provides an overview of how to enable intra-partition parallelism for

the following utilities:

8 Administration Guide: Implementation

v Load

v Create index

v Backup database or table space

v Restore database or table space

Inter-partition parallelism for utilities occurs automatically based on the number of

database partitions.

Enabling database partitioning in a database

 The decision to create a multi-partition database must be made before you create

your database. As part of the database design decisions you make, you will have

to determine if you should take advantage of the performance improvements

database partitioning can offer.

Some of the considerations surrounding your decision to create a database in a

partitioned database environment are made here.

When running in a partitioned database environment, you can create a database

from any database partition that exists in the db2nodes.cfg file using the CREATE

DATABASE command or the sqlecrea() application programming interface (API).

Before creating a multi-partition database, you must select which database partition

will be the catalog partition for the database. You can then create the database

directly from that database partition, or from a remote client that is attached to

that database partition. The database partition to which you attach and execute the

CREATE DATABASE command becomes the catalog partition for that particular

database.

The catalog partition is the database partition on which all system catalog tables

are stored. All access to system tables must go through this database partition. All

federated database objects (for example, wrappers, servers, and nicknames) are

stored in the system catalog tables at this database partition.

If possible, you should create each database in a separate instance. If this is not

possible (that is, you must create more than one database per instance), you should

spread the catalog partitions among the available database partitions. Doing this

reduces contention for catalog information at a single database partition.

Note: You should regularly do a backup of the catalog partition and avoid putting

user data on it (whenever possible), because other data increases the time

required for the backup.

When you create a database, it is automatically created across all the database

partitions defined in the db2nodes.cfg file.

When the first database in the system is created, a system database directory is

formed. It is appended with information about any other databases that you create.

When working on UNIX®, the system database directory is sqldbdir and is located

in the sqllib directory under your home directory, or under the directory where

DB2 database was installed. When working on UNIX, this directory must reside on

a shared file system, (for example, NFS on UNIX platforms) because there is only

one system database directory for all the database partitions that make up the

partitioned database environment. When working on Windows, the system

database directory is located in the instance directory.

Chapter 1. Before creating a database 9

Also resident in the sqldbdir directory is the system intention file. It is called

sqldbins, and ensures that the database partitions remain synchronized. The file

must also reside on a shared file system since there is only one directory across all

database partitions. The file is shared by all the database partitions making up the

database.

Configuration parameters have to be modified to take advantage of database

partitioning. Use the GET DATABASE CONFIGURATION and the GET

DATABASE MANAGER CONFIGURATION commands to find out the values of

individual entries in a specific database, or in the database manager configuration

file. To modify individual entries in a specific database, or in the database manager

configuration file, use the UPDATE DATABASE CONFIGURATION and the

UPDATE DATABASE MANAGER CONFIGURATION commands respectively.

The database manager configuration parameters affecting a partitioned database

environment include conn_elapse, fcm_num_buffers, fcm_num_channels,

max_connretries, max_coordagents, max_time_diff, num_poolagents, and stop_start_time.

 Related tasks:

v “Configuring DB2 with configuration parameters” in Performance Guide

 Related reference:

v “CREATE DATABASE command” in Command Reference

v “sqlecrea API - Create database” in Administrative API Reference

Enabling parallelism for loading data

 The load utility automatically makes use of parallelism, or you can use the

following parameters on the LOAD command:

v CPU_PARALLELISM

v DISK_PARALLELISM

In a partitioned database environment, inter-partition parallelism for data loading

occurs automatically when the target table is defined on multiple database

partitions. Inter-partition parallelism for data loading can be overridden by

specifying OUTPUT_DBPARTNUMBS. The load utility also intelligently enables

database partitioning parallelism depending on the size of the target database

partitions. MAX_NUM_PART_AGENTS can be used to control the maximum

degree of parallelism selected by the load utility. Database partitioning parallelism

can be overridden by specifying PARTITIONING_DBPARTNUMS when

ANYORDER is also specified.

 Related concepts:

v “Load overview” in Data Movement Utilities Guide and Reference

v “Load in a partitioned database environment - overview” in Data Movement

Utilities Guide and Reference

Enabling parallelism when creating indexes

 To enable parallelism when creating an index:

v The intra_parallel database manager configuration parameter must be ON

v The table must be large enough to benefit from parallelism

v Multiple processors must be enabled on an SMP computer.

10 Administration Guide: Implementation

Related reference:

v “CREATE INDEX statement” in SQL Reference, Volume 2

v “intra_parallel - Enable intra-partition parallelism configuration parameter” in

Performance Guide

Enabling I/O parallelism when backing up a database or table

space

 To enable I/O parallelism when backing up a database or table space:

v Use more than one target media.

v Configure table spaces for parallel I/O by defining multiple containers, or use a

single container with multiple disks, and the appropriate use of the

DB2_PARALLEL_IO registry variable. If you want to take advantage of parallel

I/O, you must consider the implications of what must be done before you

define any containers. This cannot be done whenever you see a need; it must be

planned for before you reach the point where you need to backup your database

or table space.

v Use the PARALLELISM parameter on the BACKUP command to specify the

degree of parallelism.

v Use the WITH num-buffers BUFFERS parameter on the BACKUP command to

ensure enough buffers are available to accommodate the degree of parallelism.

The number of buffers should equal the number of target media you have plus

the degree of parallelism selected plus a few extra.

Also, use a backup buffer size that is:

– As large as feasible. 4 MB or 8 MB (1024 or 2048 pages) is a good rule of

thumb.

– At least as large as the largest (extentsize * number of containers) product of

the table spaces being backed up.

 Related reference:

v “BACKUP DATABASE command” in Command Reference

Enabling I/O parallelism when restoring a database or table

space

 To enable I/O parallelism when restoring a database or table space:

v Use more than one source media.

v Configure table spaces for parallel I/O. You must make the decision to use this

option before you define your containers. This cannot be done whenever you see

a need; it must be planned for before you reach the point where you need to

restore your database or table space.

v Use the PARALLELISM parameter on the RESTORE command to specify the

degree of parallelism.

v Use the WITH num-buffers BUFFERS parameter on the RESTORE command to

ensure enough buffers are available to accommodate the degree of parallelism.

The number of buffers should equal the number of target media you have plus

the degree of parallelism selected plus a few extra.

Also, use a restore buffer size that is:

– As large as feasible. 4 MB or 8 MB (1024 or 2048 pages) is a good rule of

thumb.

– At least as large as the largest (extentsize * number of containers) product of

the table spaces being restored.

Chapter 1. Before creating a database 11

– The same as, or an even multiple of, the backup buffer size.

 Related reference:

v “RESTORE DATABASE command” in Command Reference

Enabling large page support in a 64-bit environment (AIX)

 In addition to the traditional page size of 4 KB, the POWER4™ processor in the

IBM® eServer™ pSeries® systems also supports a new 16 MB page size. AIX 5L™

for POWER™ Version 5.1 with the 5100-02 Recommended Maintenance package, or

Version 5.2, contain support for pages with a 16 MB size. When running under this

environment, IBM DB2 Version 9.1 for AIX® 64-bit Edition can be enabled to use

these large pages.

Large page usage is primarily intended to provide performance improvements to

high performance computing applications. Applications that require intensive

memory access and that use large amounts of virtual memory may obtain

performance improvements by using large pages.

Notes:

1. For detail instructions on how to run the vmtune or the vmo command, refer

to your AIX manuals.

2. You should be extremely cautious when configuring your system for pinning

memory and supporting large pages. Pinning too much memory results in

heavy paging activities for the memory pages that are not pinned. Allocating

too much physical memory to large pages will degrade system performance if

there is insufficient memory to support the 4 KB pages.

3. Setting the DB2_LGPAGE_BP registry variable also implies that the memory is

pinned.

 Prerequisites:

 You are working in an AIX 5.x or later 64-bit environment. You must have root

authority to work with the AIX operating system commands.

 Procedure:

 To enable large page support, you must:

1. Configure your AIX server for large page support:

 For AIX 5.1 operating systems: Issue the vmtune command with the

following flags:

 vmtune -g <LargePageSize> -L <LargePages>

 For AIX 5.2 operating systems: Issue the vmo command with the following

flags:

 vmo -r -o lgpg_size=<LargePageSize> lgpg_regions=<LargePages>

where

 <LargePageSize>

Specifies the size in bytes of the hardware-supported large pages.

 <LargePages>

Specifies the number of large pages to reserve.
For example, if you need to allocate 25 GB for large page support, run the

command as follows:

12 Administration Guide: Implementation

For AIX 5.1 operating systems:

 vmtune -g 16777216 -L 1600

 On AIX 5.2 operating systems:

 vmo -r -o lgpg_size=16777216 lgpg_regions=1600

2. Run the bosboot command so that the previously run vmtune command or

vmo command will take effect following the next system boot.

3. After the server comes up, enable it for pinned memory:

 For AIX 5.1 operating systems: Issue the vmtune command with the

following flags:

 vmtune -S 1

 For AIX 5.2 operating systems: Issue the vmo command with the following

flags:

 vmo -o v_pinshm=1

4. Use the db2set command to set the DB2_LGPAGE_BP registry variable to

“YES”, then start DB2:

 db2set DB2_LGPAGE_BP=YES

 db2start

 Related concepts:

v “Database managed space” in Administration Guide: Planning

v “System managed space” in Administration Guide: Planning

v “Table space design” in Administration Guide: Planning

Stopping an instance (Linux, UNIX)

 You might need to stop the current instance of the database manager.

 Prerequisites:

 To stop an instance on your system, you must do the following:

1. Log in or attach to an instance with a user ID or name that has SYSADM,

SYSCTRL, or SYSMAINT authority on the instance; or, log in as the instance

owner.

2. Display all applications and users that are connected to the specific database

that you want to stop. To ensure that no vital or critical applications are

running, list applications. You need SYSADM, SYSCTRL, or SYSMAINT

authority for this.

3. Force all applications and users off the database. You require SYSADM or

SYSCTRL authority to force users.

 Restrictions:

 The db2stop command can only be run at the server. No database connections are

allowed when running this command; however, if there are any instance

attachments, they are forced off before the instance is stopped.

Note: If command line processor sessions are attached to an instance, you must

run the terminate command to end each session before running the db2stop

command. The db2stop command stops the instance defined by the

DB2INSTANCE environment variable.

 Procedure:

Chapter 1. Before creating a database 13

To stop the instance using the Control Center:

1. Expand the object tree until you find the Instances folder.

2. Click each instance you want to stop.

3. Right-click any of the selected instances, and select stop from the pop-up menu.

4. On the Confirm stop window, click OK.

To stop the instance using the command line, enter:

 db2stop

You can use the db2stop command to stop, or drop, individual database partitions

within a partitioned database environment. When working in a partitioned

database environment and you are attempting to drop a logical partition using

 db2stop drop nodenum <0>

you must ensure that no users are attempting to access the database. If they are,

you will receive an error message SQL6030N.

Note: When you run commands to start or stop an instance’s database manager,

the DB2 database manager applies the command to the current instance. For

more information, see Setting the current instance environment variables.

 Related tasks:

v “Setting the current instance environment variables” on page 67

 Related reference:

v “db2stop - Stop DB2 command” in Command Reference

v “TERMINATE command” in Command Reference

Stopping an instance (Windows)

 You might need to stop the current instance of the database manager.

 Prerequisites:

 To stop an instance on your system, you must do the following:

1. The user account stopping the DB2 database service must have the correct

privilege as defined by the Windows operating system. The user account can be

a member of the Administrators, Server Operators, or Power Users group.

2. Display all applications and users that are connected to the specific database

that you want to stop. To ensure that no vital or critical applications are

running, list applications. You need SYSADM, SYSCTRL, or SYSMAINT

authority for this.

3. Force all applications and users off the database. You require SYSADM or

SYSCTRL authority to force users.

 Restrictions:

 The db2stop command can only be run at the server. No database connections are

allowed when running this command; however, if there are any instance

attachments, they are forced off before the DB2 database service is stopped.

14 Administration Guide: Implementation

Note: If command line processor sessions are attached to an instance, you must

run the terminate command to end each session before running the db2stop

command. The db2stop command stops the instance defined by the

DB2INSTANCE environment variable.

 Procedure:

 To stop an instance on your system, use one of the following methods:

v db2stop

v Stop the service using the Control Center

1. Expand the object tree until you find the Instances folder.

2. Click each instance you want to stop.

3. Right-click any of the selected instances, and select Stop from the pop-up menu.

4. On the Confirm Stop window, click OK.

v Stop using the “NET STOP” command.

v Stop the instance from within an application.

Recall that when you are using the DB2 database manager in a partitioned

database environment, each database partition server is started as a service. Each

service must be stopped.

Note: When you run commands to start or stop an instance’s database manager,

the DB2 database manager applies the command to the current instance. For

more information, see Setting the current instance environment variables.

 Related tasks:

v “Setting the current instance environment variables” on page 67

 Related reference:

v “db2stop - Stop DB2 command” in Command Reference

Working with multiple DB2 copies

This section describes how to run and administer multiple DB2 copies on the same

computer, including migration, installation, and configuring information. A DB2

Copy refers to one or more installations of DB2 database products in a particular

location on the same computer. Each DB2 copy can be at the same or different

code levels.

Multiple DB2 copies roadmap

 With DB2 Version 9, you can install and run multiple DB2 copies on the same

computer. A DB2 Copy refers to one or more installations of DB2 database

products in a particular location on the same computer. Each DB2 copy can be at

the same or different code levels. The benefits of doing this include:

v The ability to run applications that require different DB2 versions on the same

computer at the same time.

v The ability to run independent copies of DB2 products for different functions.

v The ability to test on the same computer before moving the production database

to the latter version of the DB2 product.

Chapter 1. Before creating a database 15

v For independent software vendors, the ability to embed a DB2 server product

into your product and hide the DB2 database from your users. For COM+

applications, we recommend that you use and distribute the IBM DB2 Driver for

ODBC and CLI with your application instead of the DB2 Runtime Client as only

one DB2 Runtime Client can be used for COM+ applications at a time. The IBM

DB2 Driver for ODBC and CLI does not have this restriction.

Table 1 lists the relevant topics in each category.

 Table 1. Roadmap to multiple DB2 copies information

Category Related topics

General information

and restrictions

v Multiple DB2 copies on the same computer (Linux and UNIX)

v Multiple DB2 copies on the same computer (Windows)

Migration v Migrating from a system with multiple DB2 copies (Linux and

UNIX)

v Migrating a DB2 server (Windows)

v Migrating DB2 32-bit servers to 64-bit systems (Windows)

Installation v Installing DB2 servers (Linux and UNIX)

v Installing DB2 servers (Windows)

Configuration v Changing the Default DB2 copy after installation (Windows)

v Client connectivity using multiple DB2 copies (Windows)

v Selecting a different DB2 copy for your Windows CLI application

v Setting the DAS when running multiple DB2 copies (Windows)

v Setting the default instance when using multiple DB2 copies

(Windows)

Administration v Listing DB2 products installed on your system (Linux and UNIX)

v Managing DB2 copies (Windows)

v Running multiple instances concurrently (Windows)

Uninstalling v Removing DB2 copies (Linux, UNIX, and Windows)

v Removing DB2 products using the db2_deinstall or doce_deinstall

command (Linux and UNIX)

Multiple instances of the database manager

 Multiple instances of the database manager might be created on a single server.

This means that you can create several instances of the same product on a physical

computer, and have them running concurrently. This provides flexibility in setting

up environments.

You might want to have multiple instances to create the following environments:

v Separate your development environment from your production environment.

v Separately tune each environment for the specific applications it will service.

v Protect sensitive information from administrators. For example, you might want

to have your payroll database protected on its own instance so that owners of

other instances will not be able to see payroll data.

16 Administration Guide: Implementation

Note: (On UNIX operating systems only:) To prevent environmental conflicts

between two or more instances, you should ensure that each instance has its

own home file system. Errors will be returned when the home file system is

shared.

DB2 database program files are physically stored in one location on a particular

computer. Each instance that is created points back to this location so that the

program files are not duplicated for each instance created. Several related

databases can be located within a single instance.

Instances are cataloged as either local or remote in the node directory. Your default

instance is defined by the DB2INSTANCE environment variable. You can ATTACH

to other instances to perform maintenance and utility tasks that can only be done

at an instance level, such as creating a database, forcing off applications,

monitoring a database, or updating the database manager configuration. When you

attempt to attach to an instance that is not in your default instance, the node

directory is used to determine how to communicate with that instance.

 Related concepts:

v “Multiple instances on a Linux or UNIX operating system” on page 36

v “Multiple instances on a Windows operating system” on page 37

 Related tasks:

v “Creating additional instances” on page 38

 Related reference:

v “ATTACH command” in Command Reference

v “Multiple DB2 copies roadmap” on page 15

Multiple DB2 copies on the same computer (Windows)

 With DB2 Version 9, you can use multiple DB2 copies on the same computer. Each

DB2 copy can be at the same or different code levels. The benefits of doing this

include:

v The ability to run applications that require different DB2 versions on the same

machine at the same time.

v The ability to run independent copies of DB2 products for different functions.

v The ability to test on the same computer before moving the production database

to the latter version of the DB2 product.

v For independent software vendors, the ability to embed a DB2 server product

into your product and hide the DB2 database from your users.

A DB2 copy can contain one or more different DB2 products. This refers to the

group of DB2 products that are installed at the same location.

 Differences when only one DB2 copy is installed:

v During installation, a unique Default DB2 copy name is generated, which you

can later change.

v Applications use the Default DB2 copy in an environment similar to the DB2

Version 8 environment.

 Differences when multiple DB2 copies are installed on the same computer:

v DB2 Version 8 can coexist with DB2 Version 9, with restrictions described below.

Chapter 1. Before creating a database 17

v Optional: You can configure each DB2 copy to use a different Information

Center.

Note: You can have only one copy of the DB2 Information Center installed on

the same system at the same Release level. Specifically, you can have a

Version 8 Information Center and a V9 Information Center, but you

cannot have one Information Center at Version 9 FixPak1 and another at

Version 9 fix pack 2 on the same machine. You can however configure the

DB2 database server to access these Information Centers remotely.

v Only the IBM DB2 .NET Data Provider from the Default copy is registered in the

Global Assembly Cache. If Version 8 is installed with Version 9, the IBM DB2

.NET 2.0 Provider from Version 9 is also registered in the Global Assembly

Cache. Version 8 does not have a 2.0 .NET provider.

v Each DB2 copy must have unique instance names. For a silent install with

NO_CONFIG=YES, the default instance will not be created. However, when you

create the instance after the installation, it must be unique. The name of the

default instance will be the <DB2 copy Name>, if it is less than 8 characters. If it

is more than 8 characters, or if an instance of the same name already exists, a

unique name for the instance is generated to ensure uniqueness. This is done by

replacing any characters that are not valid for the instance name with

underscores and generating the last 2 characters. For performance reasons, the

DB2 Control Center should only be used from one DB2 Copy at a single time on

a machine.

 Restrictions:

 For Microsoft COM+ applications, it is recommended that you use and distribute

the IBM DB2 Driver for ODBC and CLI with your application instead of the DB2

Runtime Client as only one DB2 Runtime Client can be used for COM+ applications

at a time. The IBM DB2 Driver for ODBC and CLI does not have this restriction.

Microsoft COM+ applications accessing DB2 data sources are only supported with

the default DB2 copy. Concurrent support of COM+ applications accessing

different DB2 copies is not supported. If you have DB2 UDB Version 8 installed,

you can only use DB2 UDB Version 8 to run these applications. If you have DB2

Version 9 or higher installed, you can change the default DB2 copy using the

Default DB2 Copy Selection Wizard, but you can’t use them concurrently.

Version 8 coexistence

DB2 Version 8 and DB2 Version 9 can coexist with the restriction that DB2

Version 8 is set as the Default DB2 copy. This cannot be changed unless

you uninstall Version 8.

 On the server, there can be only one DAS version and it administers

instances as follows:

v If the DAS is on Version 9, then it can administer Version 8 and Version

9 instances.

v If the DAS is on Version 8, then it can administer only Version 8

instances. You can migrate your Version 8 DAS, or drop it and create a

new Version 9 DAS to administer the Version 8 and Version 9 instances.

This is required only if you want to use the Control Center to administer

the instances.

Version 8 and Version 9 coexistence and the DB2 .NET Data Provider

In DB2 Version 9, the DB2 .NET Data Provider has System.Transaction

support however, this support is only available for the default DB2 copy.

18 Administration Guide: Implementation

You cannot use the DB2 Version 8 .NET Data Provider if the DB2 Version 9

.NET Data Provider is installed. If Version 8 is installed, the 1.1 .NET Data

Provider that is registered in the Global Assembly Cache will be from V8.

The 2.0 provider that is registered will be from Version 9.

3rd party applications that run as a service

By default, 3rd party applications that dynamically bind DB2 DLLs, for

example, that are linked with db2api.lib, will find the DB2 DLLs in the

current PATH. This means that existing applications that are not enabled

for multi-version support will use the Default DB2 copy. To work around

this, the application can use use the db2SelectDB2Copy API prior to

loading any DB2 libraries. For more information, see the Call Level Interface

Guide and Reference, Volume 1.

32- and 64-bit versions on Win x64

DB2 does not support multiple DB2 32- and 64-bit versions installed on

Windows. If you install the DB2 64-bit version, the 32-bit version will be

removed from the system. This is because the DB2 32- and 64-bit registries

reside in different locations.

LDAP and CLI configuration

With DB2 Version 8, if an application needs different LDAP settings, it

needs to use a different LDAP user. Otherwise, the CLI configuration will

affect all DB2 copies that the LDAP user might potentially use.

Performance counters

Performance counters can be registered for only one DB2 copy at a time

and they can monitor only the instances in the DB2 copy in which they are

registered. When you switch the Default DB2 copy, the DB2 Selection

Wizard de-registers and reregisters the performance counters so that they

are active for the Default DB2 copy.

Windows Management Instrumentation (WMI)

Only one version of the WMI provider can be registered at any given time.

Client Connectivity

You can use only one DB2 copy in the same process. For more information,

see Client connectivity using multiple DB2 copies (Windows).

Applications that dynamically link DB2 DLLs

Applications that link to DB2 DLLs directly or that use LoadLibrary

instead of LoadLibraryEx with the

LOAD_WITH_ALTERED_SEARCH_PATH parameter will need to ensure

that the initial dependent library is loaded properly. You can use your own

coding technique to do this, or you can call the db2envar.bat file to setup

the environment before running the application, or you can call the

db2SelectDB2Copy API, which can be statically linked into the

application.

 Visual Studio 2003 plugins:

 There can be only one version of the plugins registered on the same computer at

the same time. The version of the plugins that is active will be the version that is

shipped with the Default DB2 copy.

 Licensing:

Chapter 1. Before creating a database 19

Licenses need to be registered for each DB2 copy. They are not system-wide. This

allows different licenses for different paths and provides the ability for both

restricted versions of DB2 copies of the product and full versions of DB2 copies on

the same machine.

 NT Services:

 DB2 NT services will use the <servicename_installationname>. For example,

DB2NETSECSERVER_MYCOPY1. The display name also contains the Copy Name

appended to it in brackets, for example, DB2 Security Server (MYCOPY1).

Instances also include the DB2–<DB2 Copy Name>–<Instance Name>–<Node

Number> in the display name, which is shown in the services control panel applet.

The actual service name remains as is.

 API to select the DB2 copy to use:

 You can use the db2SelectDB2Copy API to select the DB2 copy that you want

your application to use. This API does not require any DLLs. It is statically linked

into your application. You can delay the loading of DB2 libraries and call this API

first before calling any other DB2 APIs. Note that the function cannot be called

more than once for any given process; that is, you cannot switch a process from

one DB2 copy to another.

The db2SelectDB2Copy API sets the environment required by your application to

use the DB2 copy name or the location specified. If your environment is already set

up for the copy of DB2 that you want to use, then you do not need to call this API.

If, however, you need to use a different DB2 copy, you must call this API before

loading any DB2 DLLs within your process. This call can be made only once per

process.

 Database Partitioning with multiple physical nodes:

 Each physical partition must use the same DB2 copy name on all computers.

 Using MSCS and Multiple DB2 Copies:

 Each DB2 resource must be configured to run in a separate resource monitor.

 Related concepts:

v “DB2 .NET Data Provider” in Developing ADO.NET and OLE DB Applications

v “What's new for V9.1: Client and connectivity enhancements summary” in

What’s New

v “Introduction to Windows Management Instrumentation (WMI)” on page 671

 Related tasks:

v “Creating a DB2 administration server (DAS)” on page 93

v “Changing the Default DB2 copy after installation (Windows)” on page 21

v “Configuring the DB2 administration server (DAS)” on page 95

v “Setting the DAS when running multiple DB2 copies (Windows)” on page 24

v “Migrating the DB2 Administration Server (DAS)” in Migration Guide

 Related reference:

v “dasupdt - Update DAS command” in Command Reference

20 Administration Guide: Implementation

v “db2perfi - Performance counters registration utility command” in Command

Reference

v “Multiple DB2 copies roadmap” on page 15

v “db2SelectDB2Copy API - Select the DB2 copy to be used by your application”

in Administrative API Reference

Changing the Default DB2 copy after installation (Windows)

 After you have installed DB2 Version 9.1 in several locations on the same

computer, you might want to make a different DB2 copy the default copy. The

Default DB2 copy is the DB2 copy that is used by applications that access DB2

database products through the default interface. This environment is similar to

previous versions of DB2. If you have DB2 Version 8 installed, you need to

uninstall or migrate it to Version 9.1 before you can change the Default DB2 copy

(on Version 9.1).

 Prerequisites:

 Multiple DB2 copies (Version 9 or later) are installed on the same computer.

 Restrictions:

 All DB2 copies are Version 9 or later.

Version 8 and Version 9 DB2 copies can coexist on the same machine, however

Version 8 must be the default copy. You cannot change the Version 8 default copy,

nor can you run the Default Copy Switcher command, db2swtch, unless you

uninstall Version 8. If you run the db2swtch command when Version 8 exists on

the system, you will get a message indicating that you cannot change the default

DB2 copy because Version 8 is found on the system.

However, you can work with the Version 9 copy by either running the

db2envar.bat command or by opening the command window from the Start menu

for the copy that you want to work with.

 Procedure:

 To change the Default DB2 copy using the Default DB2 Selection wizard:

1. Open the Default DB2 Selection wizard: From the Start Menu, select Programs–>IBM

DB2–><DB2 copy name>–>Default Copy Switcher. The Default DB2 Selection wizard

opens.

2. On the Default DB2 Copy page, select the copy that you want to make the default so

that it is highlighted and and click Next to make it the default copy.

3. On the summary page, the wizard indicates the result of the operation.

4. Invoke the dasupdt - Update DAS command to move the DB2 Administration Server

(DAS) to the new default copy.

This procedure switches the current Default DB2 copy to the selected DB2 copy and makes

the necessary changes to the registry. To access and use the new Default DB2 copy, after

you have moved the DAS to the new default copy, open a new command window. You can

still access the original Default DB2 copy by using the shortcuts in the Start menu for the

original Default DB2 copy.

Chapter 1. Before creating a database 21

To change the Default DB2 copy using the command line, invoke the db2swtch -d

<new default copy name> command.

This procedure unregisters the current Default DB2 copy and registers the specified

DB2 copy as the default copy. It also makes the necessary changes to the registry,

to the environment variables, to the ODBC and OLE DB drivers, to the WMI

registration, and to various other objects, and moves the DAS to specified Default

DB2 copy. To access and use the new Default DB2 copy, open a new command

window.

The db2swtch command can be run from any DB2 copy, Version 9 or greater. For

more information on this command, see db2swtch - Switch default DB2 copy

command.

 Related concepts:

v “Multiple DB2 copies on the same computer (Windows)” on page 17

 Related tasks:

v “Setting the DAS when running multiple DB2 copies (Windows)” on page 24

v “Removing DB2 copies (Linux, UNIX, and Windows)” on page 28

v “Migrating a DB2 server (Windows)” in Migration Guide

 Related reference:

v “Multiple DB2 copies roadmap” on page 15

v “dasmigr - Migrate the DB2 administration server command” in Command

Reference

v “dasupdt - Update DAS command” in Command Reference

v “db2envar.bat command” in Command Reference

v “db2swtch - Switch default DB2 copy command” in Command Reference

Client connectivity using multiple DB2 copies (Windows)

 Applications access DB2 databases in several ways. When using multiple DB2

copies, various options are available. Existing applications will continue to function

properly.

Note: Only one copy of DB2 can be used within the same process for each of the

following modes of connecting to databases.

 Restrictions:

 See Multiple DB2 copies on the same computer (Windows).

 Procedure:

OLE DB

To use a DB2 copy other than the default, in the connection string, specify

the IBMDADB driver name for this DB2 copy, which will be of the format:

IBMDADB2.$DB2_COPY_NAME. Some applications might not have the ability to

change the connection strings without recompiling, therefore these

applications will only work with the Default DB2 copy. If an application

uses the default program id, ibmdadb2, or the default clsid, it will always

use the Default DB2 copy.

22 Administration Guide: Implementation

Specifically, you will need to change the value of ″provider=IBMDADB2″

in the connection string. For example, if the DB2 copy that you want to use

is called MY_COPY, you would specify ″provider=IBMDADB2.MY_COPY″

in the connection string. In case you need to explicitly specify a GUID

during installation, a response file keyword, OLEDB_GUID, is used to do

this and allows you to enter your own GUID. Otherwise, the generated ID

is used, as listed in the DB2 installation log.

Note: If you continue to use the IBMDADB2 provider name, then you will

only be able to access data sources from the default DB2 copy.

ODBC

The ODBC driver contains the DB2 copy Name as part of the driver name.

The default ODBC driver, IBM DB2 ODBC DRIVER, is set to the Default

DB2 copy. The name of the driver for each installation is ″IBM DB2 ODBC

DRIVER - <DB2 Copy Name>″.

Note:

v Only one DB2 copy can be used by the same ODBC application.

v Even when you set up a Data source with the default ODBC

driver, it will be configured to access the DB2 copy that was the

default at the time the Data source was cataloged.

v If you move or migrate instances from one DB2 copy to another,

you will need to reconfigure the associated Data sources.

DB2 .NET Data Provider

The DB2 .NET Data Provider is not accessed by the DB2 copy Name.

Instead, depending on the version of the provider that the application

requires, it finds that version and uses it using the standard methods.

 JDBC/SQLJ

JDBC uses the current version of the driver in the classpath. The Type 2

JDBC driver uses the native DLL. By default, the classpath is configured

to point to the default DB2 copy. Running db2envar.bat from the DB2 copy

you want to use will update your PATH and CLASSPATH settings for this

copy.

 MMC Snap-in

The MMC Snap-in launches the DB2 Control Center for the Default DB2

copy.

 WMI WMI does not support multiple DB2 copies. You can register only one

copy of WMI at a time. To register WMI, follow this process:

v Unregister the WMI Schema extensions.

v Unregister the COM object.

v Register the new COM object.

v Use MOFCOMP to extend the WMI schema.

WMI is not registered during DB2 installation. You still need to complete

the two registration steps. WMI is a selectable feature in DB2 products, in

PE and above. It is not be selected by default, nor is it in the typical install.

CLI applications

CLI applications that dynamically load the DB2 client libraries should use

the LoadLibraryEx API with the LOAD_WITH_ALTERED_SEARCH_PATH

option, instead of the LoadLibrary option. If you do not use the

LoadLibrary option, you will need to specify db2app.dll in the Path by

running db2envar.bat from the bin directory of the DB2 copy that you

Chapter 1. Before creating a database 23

want to use. For applications that link using db2apie.lib, to use a different

DB2 copy, you can use the /delayload option in your link command to

delay load db2app.dll and call the db2SelectDB2Copy API prior to any

DB2 calls.

 DB2 System Tray

To reduce the number of system tray exectuables running on the system,

by default any system tray’s that are running in the previous Default DB2

copy when the default copy is changed are disabled.

 Related concepts:

v “Multiple DB2 copies on the same computer (Windows)” on page 17

 Related tasks:

v “Changing the Default DB2 copy after installation (Windows)” on page 21

v “Setting the DAS when running multiple DB2 copies (Windows)” on page 24

 Related reference:

v “Multiple DB2 copies roadmap” on page 15

Setting the DAS when running multiple DB2 copies (Windows)

 In DB2 Version 9, you can have multiple DB2 copies running on the same

computer. This affects how the DB2 Administration Server (DAS) operates. The

DAS is a unique component within DB2 that is limited to having only one version

active, despite how many DB2 copies are installed on the same computer. For this

reason the following restrictions and functional requirements apply.

On the server, there can be only one DAS version and it administers instances as

follows:

v If the DAS is on Version 9, then it can administrator Version 8 and Version 9

instances.

v If the DAS is on Version 8, then it can administer only Version 8 instances. You

can migrate your Version 8 DAS, or drop it and create a new Version 9 DAS to

administer the Version 8 and Version 9 instances. This is required only if you

want to use the Control Center to administer the instances.

 Restrictions:

 Only one DAS can be created on a given computer at any given time despite the

number of DB2 copies that are installed on the same computer. This DAS will be

used by all the DB2 copies that are on the same computer. In Version 9 or later, the

DAS can belong to any DB2 copy that is currently installed.

 Procedure:

 To move the DAS from one DB2 Version 9 copy to another DB2 Version 9 copy, use

the dasupdt - Update DAS command.

You can also use this command when you need to move the DB2 Administration

Server (DAS) to a new Default DB2 copy in the same version.

Note:

24 Administration Guide: Implementation

v The dasupdt command can only be used to move the DAS between

various DB2 copies of the same DB2 release (that is, between different Fix

Packs). It cannot be used to setup DAS.

v For migration from Version 8 to Version 9 DAS, use the dasmigr

command.

v If DAS is not set up, then a regular DAS setup procedure should be

followed to set it up on one of the DB2 copies.

 Related concepts:

v “DB2 administration server (DAS) configuration on Enterprise Server Edition

(ESE) systems” on page 106

v “Multiple DB2 copies on the same computer (Windows)” on page 17

v “Security considerations for the DB2 administration server (DAS) on Windows”

on page 102

 Related tasks:

v “Changing the Default DB2 copy after installation (Windows)” on page 21

v “Configuring the DB2 administration server (DAS)” on page 95

v “Creating a DB2 administration server (DAS)” on page 93

v “Listing the DB2 administration server (DAS)” on page 95

v “Removing the DB2 administration server (DAS)” on page 103

v “Setting up DB2 administration server (DAS) with Enterprise Server Edition

(ESE) systems” on page 104

v “Starting and stopping the DB2 administration server (DAS)” on page 94

v “Tools catalog database and DB2 administration server (DAS) scheduler setup

and configuration” on page 96

 Related reference:

v “dasmigr - Migrate the DB2 administration server command” in Command

Reference

v “dasupdt - Update DAS command” in Command Reference

v “Multiple DB2 copies roadmap” on page 15

Setting the default instance when using multiple DB2 copies

(Windows)

 In Version 9.1, the DB2INSTANCE environment is set according to the DB2 copy

that your environment is currently set up to use. If you do not set it explicitly to

another instance in the current copy, it defaults to the default instance that is

specified with the DB2INSTDEF profile registry variable.

Note: DB2INSTDEF is the default instance variable that is specific to the current

DB2 copy in use (that is, every DB2 copy has its own DB2INSTDEF).

DB2INSTANCE is set to the current instance you are using.

v If DB2INSTANCE is not set for a particular DB2 copy, then the value of

DB2INSTDEF is used for that DB2 copy.

v DB2INSTANCE is only valid for instances under the DB2 copy that you

are using. However, if you switch copies by running the db2envar.bat

command, DB2INSTANCE will be updated to the value of DB2INSTDEF

for the DB2 copy that you switched to initially.

Chapter 1. Before creating a database 25

All global profile registry variables are specific to a DB2 copy, unless you

specify them using SET VARIABLE=<variable_name>.

 Procedure:

 To set the default instance, you can set the DB2INSTDEF profile registry variable

using the db2set command. When you access a different DB2 copy, you do not

have to change the value of DB2INSTANCE.

 Related concepts:

v “Environment variables and the profile registry” on page 65

v “Multiple DB2 copies on the same computer (Windows)” on page 17

 Related tasks:

v “Client connectivity using multiple DB2 copies (Windows)” on page 22

v “Setting environment variables on Windows” on page 77

v “Setting the current instance environment variables” on page 67

v “Setting the DAS when running multiple DB2 copies (Windows)” on page 24

 Related reference:

v “General registry variables” on page 70

v “Multiple DB2 copies roadmap” on page 15

v “db2set - DB2 profile registry command” in Command Reference

Managing DB2 copies (Windows)

 When updating your DB2 product, you will be required to specify whether you

want to update an existing DB2 copy, or whether to install a new one. You must

select the option work with existing to update a DB2 copy. You will not be able to

update more than one DB2 copy at the same time. In order to update other DB2

copies that may be installed on the same computer, you need to rerun the

installation.

The installation provides the option to migrate DB2 Version 8 (in the same path) or

to install a new DB2 Version 9 Copy without modifying the DB2 Version 8

installation. If you select to migrate, your Version 8 installation will be removed. If

you select to install a new DB2 copy, you can later choose to migrate your

instances using the db2ckmig and db2imigr commands.

You can use the db2iupdt command to move a DB2 instance between different

Version 9 DB2 copies, and the db2imigr command to move a Version 8 instance to

Version 9. See Migrating a DB2 server (Windows) for complete details on how to

migrate to DB2 Version 9.

Note:

v Coexistance of DB2 Version 7 and DB2 Version 9 is not supported.

v Coexistence of a 32-bit DB2 and a 64-bit DB2 on the same Windows X64

computer is not supported.

It is not possible to migrate from a 32-bit X64 DB2 installation at Version 8

to a 64-bit installation at Version 9. Instead, you need to migrate to

Version 9 32-bit to use the X64 DB2 installation to move to 64-bit. The

32-bit version will be removed. If you have more than one 32-bit DB2

copy installed, you will need to move all of your instances to one DB2

26 Administration Guide: Implementation

copy and remove these copies from the computer. For more information,

see Migrating DB2 32-bit servers to 64-bit systems (Windows).

v To move an instance from one DB2 Version 9 copy to another, you can use

the db2iupdt command.

v If you use the db2imigr command to migrate your instances from Version

8, you will need to reconfigure any ODBC data sources.

In summary, on Windows:

v If you have multiple DB2 Version 9 copies, the installation options are install a

new copy or work with an existing DB2 copy, which you can upgrade or add

new features. The migrate option will only show if you also have a DB2 UDB

Version 8 copy in addition to the DB2 Version 9 copies.

v If DB2 UDB Version 8 is installed, the installation options are migrate the

existing Version 8 copy or install a new DB2 copy.

v If DB2 Version 7 or earlier is installed , the installation displays a message to

indicate that migration to DB2 Version 9 is not supported. You can only install a

new DB2 copy after uninstalling Version 7. In other words, Version 7 and

Version 9 cannot coexist.

 Related concepts:

v “Multiple DB2 copies on the same computer (Windows)” on page 17

 Related tasks:

v “Migrating a DB2 server (Linux and UNIX)” in Migration Guide

v “Migrating a DB2 server (Windows)” in Migration Guide

v “Migrating DB2 32-bit servers to 64-bit systems (Windows)” in Migration Guide

v “Running multiple instances concurrently (Windows)” on page 27

 Related reference:

v “db2ckmig - Database pre-migration tool command” in Command Reference

v “db2imigr - Migrate instance command” in Command Reference

v “db2iupdt - Update instances command” in Command Reference

v “Multiple DB2 copies roadmap” on page 15

Running multiple instances concurrently (Windows)

 You can run multiple instances concurrently in the same DB2 copy, or in different

DB2 copies.

 Procedure:

 To run multiple instances concurrently in the same DB2 copy, use either of the

following methods:

v Using the Control Center:

1. Expand the object tree until you find the Databases folder.

2. Right-click an instance, and select Start from the pop-up menu.

3. Repeat Step 2 until you have started all the instances that you want to run concurrently.

v (On Windows only:) using the command line:

Chapter 1. Before creating a database 27

1. Set the DB2INSTANCE variable to the name of the other instance that you

want to start by entering:

 set db2instance=<another_instName>

2. Start the instance by entering the db2start command.

To run multiple instances concurrently in different DB2 copies, use either of the

following methods:

v Using the DB2 command window from the Start → Programs → IBM DB2 → <DB2

Copy Name> → Command Line Tools → DB2 Command Window: the command

window is already set up with the correct environment variables for the

particular DB2 copy chosen.

v Using db2envar.bat from a command window:

1. Open a command window.

2. Run the db2envar.bat file using the fully qualified path for the DB2 copy

that you want the application to use:

<DB2 Copy install dir>\bin\db2envar.bat

After you switch to a particular DB2 copy, use the method specified in the section

above, ″To run multiple instances concurrently in the same DB2 copy″, to start the

instances.

 Related concepts:

v “Multiple instances of the database manager” on page 16

 Related tasks:

v “Creating additional instances” on page 38

v “Managing DB2 copies (Windows)” on page 26

v “UNIX details when creating instances” on page 39

v “Windows details when creating instances” on page 40

 Related reference:

v “Multiple DB2 copies roadmap” on page 15

v “db2envar.bat command” in Command Reference

v “db2start - Start DB2 command” in Command Reference

Removing DB2 copies (Linux, UNIX, and Windows)

 Procedure:

 To uninstall DB2 copies on Linux and UNIX, use the db2_deinstall command from

the DB2 copy that you are using. This command uninstalls installed DB2 products

or features that are in the same install path as the db2_deinstall tool. Use the

db2ls command to see the list of installed DB2 products and features. If one or

more instances are currently associated with a DB2 copy, that DB2 copy cannot be

uninstalled.

To uninstall DB2 copies on Windows operating systems, use one of the following

methods:

v You can uninstall any DB2 copy by using the Windows Add/Remove Control

Panel Applet. The Default DB2 copy will have a the word (default) appended to

it.

v Run the db2unins command from the installed DB2 copy directory

28 Administration Guide: Implementation

Note: On Windows:

v You can uninstall DB2 even when there are instances associated with DB2

copies. If you do this, the instance information will be removed with the

DB2 uninstall. Therefore, take extra care when managing, recovering, and

uninstalling instances.

v If multiple Version 9 copies are installed, you cannot remove the default

DB2 copy. If you want to remove the default DB2 copy, you will need to

switch the default DB2 copy to one of the other DB2 copies prior to

uninstalling. For more information on switching the default DB2 copy, see

the db2swtch command.

 Related concepts:

v “Multiple DB2 copies on the same computer (Windows)” on page 17

v “Multiple DB2 copies on the same computer (Linux and UNIX)” in Installation

and Configuration Supplement

 Related reference:

v “Multiple DB2 copies roadmap” on page 15

v “db2_deinstall - Uninstall DB2 products or features command” in Command

Reference

v “db2ls - List installed DB2 products and features command” in Command

Reference

v “db2swtch - Switch default DB2 copy command” in Command Reference

v “db2unins - Uninstall DB2 database product command” in Command Reference

Working with partitioned databases

This section describes various aspects of partitioned databases that you need to be

aware of before creating a database.

Management of database server capacity

 If database manager capacity does not meet your present or future needs, you can

expand its capacity in the following ways:

v Add disk space and create additional containers.

v Add memory.

If these simple strategies do not add the capacity you need, consider the following

methods:

v Add processors.

If a single-partition database configuration with a single processor is used to its

maximum capacity, you might either add processors or add database partitions.

The advantage of adding processors is greater processing power. In an SMP

system, processors share memory and storage system resources. All of the

processors are in one system, so there are no additional overhead considerations

such as communication between systems and coordination of tasks between

systems. Utilities in DB2 such as load, backup, and restore can take advantage of

the additional processors. DB2 database supports this environment.

Note: Some operating systems, such as the Solaris operating system, can

dynamically turn processors on- and off-line.

Chapter 1. Before creating a database 29

If you add processors, review and modify some database configuration

parameters that determine the number of processors used. The following

database configuration parameters determine the number of processors used and

might need to be updated:

– Default degree (dft_degree)

– Maximum degree of parallelism (max_querydegree)

– Enable intra-partition parallelism (intra_parallel)

You should also evaluate parameters that determine how applications perform

parallel processing.

In an environment where TCP/IP is used for communication, review the value

for the DB2TCPCONNMGRS registry variable.

v Add physical partitions.

If your database manager is currently in a partitioned database environment,

you can increase both data-storage space and processing power by adding

separate single-processor or multiple-processor physical partitions. The memory

and storage system resources on each database partition are not shared with the

other database partitions. Although adding database partitions might result in

communication and task-coordination issues, this choice provides the advantage

of balancing data and user access across more than one system. DB2 database

supports this environment.

You can add database partitions either while the database manager system is

running or while it is stopped. If you add database partitions while the system

is running, however, you must stop and restart the system before databases

migrate to the new database partition.

When you scale your system by changing the environment, you should be aware

of the impact that such a change can have on your database procedures such as

loading data, backing up the database, and restoring the database.

When you add a new database partition, you cannot drop or create a database that

takes advantage of the new database partition until the procedure is complete, and

the new server is successfully integrated into the system.

 Related concepts:

v “Adding database partitions in a partitioned database environment” on page 123

Multiple logical partitions

When several database partition servers are running on the same computer, the

computer is said to be running multiple logical partitions. This section describes

when to use and how to configure multiple logical partitions.

When to use multiple logical partitions

 Typically, you configure DB2 Enterprise Server Edition to have one database

partition server assigned to each computer. There are several situations, however,

in which it would be advantageous to have several database partition servers

running on the same computer. This means that the configuration can contain

more database partitions than computers. In these cases, the computer is said to be

running multiple logical partitions or multiple logical nodes if they participate in the

same instance. If they participate in different instances, this computer is not hosting

multiple logical partitions.

30 Administration Guide: Implementation

With multiple logical partition support, you can choose from three types of

configurations:

v A standard configuration, where each computer has only one database partition

server.

v A multiple logical partition configuration, where a computer has more than one

database partition server.

v A configuration where several logical partitions run on each of several

computers.

Configurations that use multiple logical partitions are useful when the system runs

queries on a computer that has symmetric multiprocessor (SMP) architecture. The

ability to configure multiple logical partitions on a computer is also useful if a

computer fails. If a computer fails (causing the database partition server or servers

on it to fail), you can restart the database partition server (or servers) on another

computer using the DB2START NODENUM command. This ensures that user data

remains available.

Another benefit is that multiple logical partitions can exploit SMP hardware

configurations. In addition, because database partitions are smaller, you can obtain

better performance when performing such tasks as backing up and restoring

database partitions and table spaces, and creating indexes.

 Related tasks:

v “Configuring multiple logical partitions” on page 31

 Related reference:

v “db2start - Start DB2 command” in Command Reference

Configuring multiple logical partitions

 Procedure:

 You can configure multiple logical partitions in one of two ways:

v Configure the logical partitions (database partitions) in the db2nodes.cfg file.

You can then start all the logical and remote partitions with the DB2START

command or its associated API.

Note: For Windows, you must use db2ncrt to add a database partition if there is

no database in the system; or, DB2START ADDNODE command if there is

one or more databases. Within Windows, the db2nodes.cfg file should never

be manually edited.

v Restart a logical partition on another processor on which other logical partitions

(nodes) are already running. This allows you to override the hostname and port

number specified for the logical partition in db2nodes.cfg.

To configure a logical partition (node) in db2nodes.cfg, you must make an entry in

the file to allocate a logical port number for the database partition. Following is the

syntax you should use:

 nodenumber hostname logical-port netname

Note: For Windows, you must use db2ncrt to add a database partition if there is no

database in the system; or, DB2START ADDNODE command if there is one

or more databases. Within Windows, the db2nodes.cfg file should never be

manually edited.

Chapter 1. Before creating a database 31

The format for the db2nodes.cfg file on Windows is different when compared

to the same file on Unix. On Windows, the column format is:

 nodenumber hostname computername logical_port netname

Use the fully-qualified name for the hostname. The /etc/hosts file also

should use the fully-qualified name. If the fully-qualified name is not used

in the db2nodes.cfg file and in the /etc/hosts file, you might receive error

message SQL30082N RC=3.

You must ensure that you define enough ports in the services file of the

etc directory for FCM communications.

 Related concepts:

v “When to use multiple logical partitions” on page 30

 Related tasks:

v “Changing node and database configuration files” on page 279

v “Creating a node configuration file” on page 81

 Related reference:

v “db2ncrt - Add database partition server to an instance command” in Command

Reference

v “db2start - Start DB2 command” in Command Reference

Fast communications manager (FCM) communications

 In a partitioned database environment, most communication between database

partitions is handled by the fast communications manager (FCM). To enable the

FCM at a database partition and allow communication with other database

partitions, you must create a service entry in the database partition’s services file

of the etc directory as shown below. The FCM uses the specified port to

communicate. If you have defined multiple database partitions on the same host,

you must define a range of ports as shown below.

Before attempting to manually configure memory for the fast communications

manager (FCM), it is recommented that you start with the automatic setting, which

is also the default setting, for the number of FCM Buffers (fcm_num_buffers) and for

the number of FCM Channels (fcm_num_channels). Use the system monitor data for

FCM activity to determine if this setting is appropriate.

Windows Considerations

If you are using DB2 Enterprise Server Edition in the Windows

environment, the TCP/IP port range is automatically added to the services

file by:

v The install program when it creates the instance or adds a new database

partition

v The db2icrt utility when it creates a new instance

v The db2ncrt utility when it adds the first database partition on the

computer

 The syntax of a service entry is as follows:

 DB2_instance port/tcp #comment

DB2_instance

The value for instance is the name of the database manager instance. All

32 Administration Guide: Implementation

characters in the name must be lowercase. Assuming an instancev name of

db2puser, you would specify DB2_db2puser

port/tcp

The TCP/IP port that you want to reserve for the database partition.

#comment

Any comment that you want to associate with the entry. The comment

must be preceded by a pound sign (#).

 If the services file of the etc directory is shared, you must ensure that the number

of ports allocated in the file is either greater than or equal to the largest number of

multiple database partitions in the instance. When allocating ports, also ensure that

you account for any processor that can be used as a backup.

If the services file of the etc directory is not shared, the same considerations

apply, with one additional consideration: you must ensure that the entries defined

for the DB2 database instance are the same in all services files of the etc directory

(though other entries that do not apply to your partitioned database environment

do not have to be the same).

If you have multiple database partitions on the same host in an instance, you must

define more than one port for the FCM to use. To do this, include two lines in the

services file of the etc directory to indicate the range of ports you are allocating.

The first line specifies the first port, while the second line indicates the end of the

block of ports. In the following example, five ports are allocated for the instance

sales. This means no processor in the instance has more than five database

partitions. For example,

 DB2_sales 9000/tcp

 DB2_sales_END 9004/tcp

Note: You must specify END in uppercase only. Also you must ensure that you

include both underscore (_) characters.

Due to the way the FCM infrastructure utilizes TCP sockets and directs network

traffic, FCM users on AIX 5.x should set the kernel parameter ″tcp_nodelayack″ to

1.

 Related concepts:

v “Database partition and processor environments” in Administration Guide:

Planning

v “Aggregate registry variables” on page 75

v “The FCM buffer pool and memory requirements” in Performance Guide

 Related reference:

v “MPP configuration variables” in Performance Guide

Preparing to create a database

Based on your business needs and environment, there are many concepts and tasks

that you should consider as part of the work to be done before you actually create

a database. These concepts and tasks include designing your database and

establishing the instance, the directories, and the other support files needed to

work with a database.

Chapter 1. Before creating a database 33

Designing logical and physical database characteristics

You must make logical and physical database design decisions before you create a

database. To find out more about logical and physical database design, refer to

Administration Guide: Planning.

Instance creation

 An instance is a logical database manager environment where you catalog

databases and set configuration parameters. Depending on your needs, you can

create more than one instance on the same physical server providing a unique

database server environment for each instance. You can use multiple instances to

do the following:

v Use one instance for a development environment and another instance for a

production environment.

v Tune an instance for a particular environment.

v Restrict access to sensitive information.

v Control the assignment of SYSADM, SYSCTRL, and SYSMAINT authority for

each instance.

v Optimize the database manager configuration for each instance.

v Limit the impact of an instance failure. In the event of an instance failure, only

one instance is affected. Other instances can continue to function normally.

Multiple instances will require:

v Additional system resources (virtual memory and disk space) for each instance.

v More administration because of the additional instances to manage.

The instance directory stores all information that pertains to a database instance.

You cannot change the location of the instance directory once it is created. The

directory contains:

v The database manager configuration file

v The system database directory

v The node directory

v The node configuration file (db2nodes.cfg)

v Any other files that contain debugging information, such as the exception or

register dump or the call stack for the DB2 database processes.

 Terminology:

Bit-width

The number of bits used to address virtual memory: 32-bit and 64-bit are

the most common. This term might be used to refer to the bit-width of an

instance, application code, external routine code. 32-bit application means

the same things as 32-bit width application.

32-bit DB2 instance

A DB2 instance that contains all 32-bit binaries including 32-bit shared

libraries and executables.

64-bit DB2 instance

A DB2 instance that contains 64-bit shared libraries and executables, and

also all 32-bit client application libraries (included for both client and

server), and 32-bit external routine support (included only on a server

instance).

34 Administration Guide: Implementation

You can:

v Create an instance.

v Drop an instance.

v Start an instance.

v Stop an instance.

v Attach to an instance.

On UNIX operating systems, the instance directory is located in the

INSTHOME/sqllib directory, where INSTHOME is the home directory of the instance

owner.

On Windows operating systems, the instance directory is located in the /sqllib

sub-directory, in the directory where the DB2 database product was installed.

In a partitioned database environment, the instance directory is shared between all

database partition servers belonging to the instance. Therefore, the instance

directory must be created on a network share drive that all computers in the

instance can access.

As part of your installation procedure, you create an initial instance of DB2 called

“DB2”. On UNIX, the initial instance can be called anything you want within the

naming rules guidelines. The instance name is used to set up the directory

structure.

To support the immediate use of this instance, the following are set during

installation:

v The environment variable DB2INSTANCE is set to “DB2”.

v The DB2 registry variable DB2INSTDEF is set to “DB2”.

On UNIX, the default can be called anything you want within the naming rules

guidelines.

On Windows, the instance name is the same as the name of the service, so it

should not conflict. No instance name should be the same as another service name.

You must have the correct authorization to create a service.

These settings establish “DB2” as the default instance. You can change the instance

that is used by default, but first you have to create an additional instance.

Before using DB2, the database environment for each user must be updated so that

it can access an instance and run the DB2 database programs. This applies to all

users (including administrative users).

On UNIX operating systems, sample script files are provided to help you set the

database environment. The files are: db2profile for Bourne or Korn shell, and

db2cshrc for C shell. These scripts are located in the sqllib subdirectory under the

home directory of the instance owner. The instance owner or any user belonging to

the instance’s SYSADM group can customize the script for all users of an instance.

Use sqllib/userprofile and sqllib/usercshrc to customize a script for each user.

The blank files sqllib/userprofile and sqllib/usercshrc are created during

instance creation to allow you to add your own instance environment settings. The

db2profile and db2cshrc files are overwritten during an instance update in a DB2

FixPak installation. If you do not want the new environment settings in the

Chapter 1. Before creating a database 35

db2profile or db2cshrc scripts, you can override them using the corresponding

user script, which is called at the end of the db2profile or db2cshrc script. During

an instance migration (using the db2imigr command), the user scripts are copied

over so that your environment modifications will still be in use.

The sample script contains statements to:

v Update a user’s PATH by adding the following directories to the existing search

path: the bin, adm, and misc subdirectories under the sqllib subdirectory of the

instance owner’s home directory.

v Set the DB2INSTANCE environment variable to the instance name.

 Related concepts:

v “Multiple instances on a Linux or UNIX operating system” on page 36

v “Multiple instances on a Windows operating system” on page 37

v “About authorities” in Administration Guide: Planning

v “About configuration parameters” in Administration Guide: Planning

v “About databases” in Administration Guide: Planning

v “About the database manager” in Administration Guide: Planning

 Related tasks:

v “Adding instances” on page 41

v “Auto-starting instances” on page 42

v “Creating additional instances” on page 38

v “Listing instances” on page 41

v “Running multiple instances concurrently (Windows)” on page 27

v “Setting the current instance environment variables” on page 67

v “UNIX details when creating instances” on page 39

v “Windows details when creating instances” on page 40

Instance management

This section contains additional concepts and tasks related to instance

management.

Multiple instances on a Linux or UNIX operating system

 It is possible to have more than one instance on a UNIX operating system.

However, you can only work within one instance of the DB2 database manager at

a time.

Note: To prevent environmental conflicts between two or more instances, you

should ensure that each instance has its own home filesystem. Errors will be

returned when the home filesystem is shared.

The instance owner and the group that is the System Administration (SYSADM)

group are associated with every instance. The instance owner and the SYSADM

group are assigned during the process of creating the instance. One user ID or

username can be used for only one instance. That user ID or username is also

referred to as the instance owner.

Each instance owner must have a unique home directory. All of the files necessary

to run the instance are created in the home directory of the instance owner’s user

ID or username.

36 Administration Guide: Implementation

If it becomes necessary to remove the instance owner’s user ID or username from

the system, you could potentially lose files associated with the instance and lose

access to data stored in this instance. For this reason, it is recommended that you

dedicate an instance owner user ID or username to be used exclusively to run the

DB2 database manager.

The primary group of the instance owner is also important. This primary group

automatically becomes the system administration group for the instance and gains

SYSADM authority over the instance. Other user IDs or usernames that are

members of the primary group of the instance owner also gain this level of

authority. For this reason, you might want to assign the instance owner’s user ID

or username to a primary group that is reserved for the administration of

instances. (Also, ensure that you assign a primary group to the instance owner

user ID or username; otherwise, the system-default primary group is used.)

If you already have a group that you want to make the system administration

group for the instance, you can simply assign this group as the primary group

when you create the instance owner user ID or username. To give other users

administration authority on the instance, add them to the group that is assigned as

the system administration group.

To separate SYSADM authority between instances, ensure that each instance owner

user ID or username uses a different primary group. However, if you choose to

have a common SYSADM authority over multiple instances, you can use the same

primary group for multiple instances.

 Related tasks:

v “UNIX details when creating instances” on page 39

Multiple instances on a Windows operating system

 It is possible to run multiple instances of the DB2 database manager on the same

computer. Each instance of the DB2 database manager maintains its own databases

and has its own database manager configuration parameters.

An instance of the DB2 database manager consists of the following:

v A Windows service that represents the instance. The name of the service is same

as the instance name. The display name of the service (from the Services panel)

is the instance name, prefixed with the “DB2 - ” string. For example, for an

instance named DB2, there exists a Windows service called “DB2” with a display

name of “DB2 - DB2”.

Note: A Windows service is not created for client instances.

v An instance directory. This directory contains the database manager

configuration files, the system database directory, the node directory, the DCS

database directory, all the diagnostic log and dump files that are associated with

the instance. The instance directory is by default a sub-directory inside the

SQLLIB directory and has the same name as the instance name. For example, the

instance directory for instance “DB2” is C:\SQLLIB\DB2, where C:\SQLLIB is

where the DB2 database manager is installed. You can use the registry variable

DB2INSTPROF to change the default location of the instance directory. If the

DB2INSTPROF registry variable is set to another location, then the instance

directory is created under the directory pointed to by DB2INSTPROF. For

example, if DB2INSTPROF=D:\DB2PROFS, then the instance directory will be

D:\DB2PROFS\DB2.

Chapter 1. Before creating a database 37

v A registry key under HKEY_LOCAL_computer\SOFTWARE\

IBM\DB2\PROFILES\<instance_name>. All the instance level registry variables

are created here.

You can run multiple DB2 database instances concurrently, in the same DB2 copy

or in different DB2 copies.

v To work with an instance in the same DB2 copy, you need to set the

DB2INSTANCE environment variable to the name of the instance before issuing

commands against that instance.

To prevent one instance from accessing the database of another instance, the

database files for an instance are created under a directory that has the same

name as the instance name. For example, when creating a database on drive C:

for instance DB2, the database files are created inside a directory called C:\DB2.

Similarly, when creating a database on drive C: for instance TEST, the database

files are created inside a directory called C:\TEST.

v To work with an instance in different DB2 copies, use either of the following

methods:

– Using the DB2 command window from the Start → Programs → IBM DB2 →

<DB2 Copy Name> → Command Line Tools → DB2 Command Window: the

command window is already set up with the correct environment variables

for the particular DB2 copy chosen.

– Using db2envar.bat from a command window:

1. Open a command window.

2. Run the db2envar.bat file using the fully qualified path for the DB2 copy

that you want the application to use:

<DB2 Copy install dir>\bin\db2envar.bat

 Related concepts:

v “High availability” in Data Recovery and High Availability Guide and Reference

 Related tasks:

v “Windows details when creating instances” on page 40

Creating additional instances

 Although an instance is created as part of the installation of the DB2 database

manager, your business needs might require you to create additional instances.

 Prerequisites:

 If you belong to the Administrative group on Windows, or you have root authority

on UNIX platforms, you can add additional DB2 database instances. The computer

where you add the instance becomes the instance-owning computer (node zero).

Ensure that you add instances on a computer where a DB2 administration server

resides.

 Procedure:

 To add an instance using the command line, enter:

 db2icrt <instance_name>

When using the db2icrt command to add another DB2 instance, you should

provide the login name of the instance owner and optionally specify the

38 Administration Guide: Implementation

authentication type of the instance. The authentication type applies to all databases

created under that instance. The authentication type is a statement of where the

authenticating of users will take place.

You can change the location of the instance directory from DB2PATH using the

DB2INSTPROF environment variable. You require write-access for the instance

directory. If you want the directories created in a path other than DB2PATH, you

have to set DB2INSTPROF before entering the db2icrt command.

For DB2 Enterprise Server Edition, you also need to declare that you are adding a

new instance that is a partitioned database system. In addition, when working

with a ESE instance having more than one database partition, and working with

Fast Communication Manager (FCM), you can have multiple connections between

database partitions by defining more TCP/IP ports when creating the instance. For

example, for Windows operating systems, use the db2icrt command with the -r

<port range> parameter. The port range is shown as follows:

 -r:<base_port,end_port>

where the base_port is the first port that can be used by FCM, and the end_port is

the last port in a range of port numbers that can be used by FCM.

 Related concepts:

v “Authentication considerations for remote clients” on page 495

v “Authentication methods for your server” on page 490

 Related reference:

v “db2icrt - Create instance command” in Command Reference

UNIX details when creating instances

 When working with UNIX operating systems, the db2icrt command has the

following optional parameters:

v –h or –?

This parameter is used to display a help menu for the command.

v –d

This parameter sets the debug mode for use during problem determination.

v –a AuthType

This parameter specifies the authentication type for the instance. Valid

authentication types are SERVER, SERVER_ENCRYPT, or CLIENT. If not

specified, the default is SERVER, if a DB2 server is installed. Otherwise, it is set

to CLIENT.

Notes:

1. The authentication type of the instance applies to all databases owned by the

instance.

2. On UNIX operating systems, the authentication type DCE is not a valid

choice.
v –u FencedID

This parameter is the user under which the fenced user-defined functions

(UDFs) and stored procedures will execute. This is not required if you install a

DB2 client. For other DB2 products, this is a required parameter.

Note: FencedID might not be “root” or “bin”.

Chapter 1. Before creating a database 39

v –p PortName

This parameter specifies the TCP/IP service name or port number to be used.

This value will then be set in the instance’s database configuration file for every

database in the instance.

v –s InstType

Allows different types of instances to be created. Valid instance types are: ese,

wse, client, and standalone.

Examples:

v To add an instance for a DB2 server, you can use the following command:

 db2icrt -u db2fenc1 db2inst1

v If you installed the DB2 Connect™ Enterprise Server Edition only, you can use

the instance name as the Fenced ID also:

 db2icrt -u db2inst1 db2inst1

v To add an instance for a DB2 client, you can use the following command:

 db2icrt db2inst1 –s client –u fencedID

DB2 client instances are created when you want a workstation to connect to other

database servers and you have no need for a local database on that workstation.

 Related reference:

v “db2icrt - Create instance command” in Command Reference

Windows details when creating instances

 When working with the Windows operating systems, the db2icrt command has the

following optional parameters:

v –s InstType

Allows different types of instances to be created. Valid instance types are: ese,

wse, client, and standalone.

v –p:InstProf_Path

This is an optional parameter to specify a different instance profile path. If you

do not specify the path, the instance directory is created under the SQLLIB

directory, and given the shared name DB2 concatenated to the instance name.

Read and write permissions are automatically granted to everyone in the

domain. Permissions can be changed to restrict access to the directory.

If you do specify a different instance profile path, you must create a shared

drive or directory. This will allow the opportunity for everyone in the domain to

access the instance directory unless permissions have been changed.

v –u:username,password

When creating a partitioned database environment, you must declare the

domain/user account name and password of the DB2 service.

v –r:base_port,end_port

This is an optional parameter to specify the TCP/IP port range for the fast

communications manager (FCM). If you specify the TCP/IP port range, you

must ensure that the port range is available on all computers in the partition

database system.

The following example could be used, on DB2 Enterprise Server Edition for

Windows:

40 Administration Guide: Implementation

db2icrt inst1 –s ese

 –p:\\computerA\db2mpp

 –u:<user account name>,<password> –r:9010,9015

Note: If you change the service account; that is, if you no longer use the default

service created when the first instance was created during product

installation, then you must grant the domain/user account name used to

create the instance the following advanced rights:

v Act as a part of the operating system

v Create a token object

v Increase quota

v Log on as a service

v Replace a process level token

v Lock page in memory

The instance requires these user rights to access the shared drive,

authenticate the user account, and run DB2 as a Windows service. The

“Lock page in memory” right is needed for Address Windowing Extensions

(AWE) support.

 Related reference:

v “db2icrt - Create instance command” in Command Reference

Adding instances

 Once you have created an additional instance, you will need to add a record of

that instance within the Control Center to be able to work with that instance from

the Control Center.

 Procedure:

 To add another instance, perform the following steps:

1. Log on under a user ID or name that has Administrative authority or belongs

to the local Administrators group.

2. From the Control Center:

1. Expand the object tree until you find the Instances folder of the system that you want.

2. Right-click the instance folder, and select Add from the pop-up menu.

3. Complete the information, and click Apply.

 Related concepts:

v “Instance creation” on page 34

 Related tasks:

v “Listing instances” on page 41

Listing instances

 Use the Control Center or the db2ilist command to get a list of instances, as

follows:

v On Version 8 or earlier, all the instances on the system are listed.

v On Version 9 or later, only the instances from the DB2 copy where the db2ilist

command is invoked from are listed.

Chapter 1. Before creating a database 41

Procedure:

 To get a list of instances using the Control Center:

1. Expand the object tree until you see the Instances folder.

2. Right-click the Instances folder, and select Add from the pop-up menu.

3. On the Add Instance window, click Refresh.

4. Click the drop-down arrow to see a list of database instances.

To get a list of instances using the command line, enter:

 db2ilist

To determine which instance applies to the current session (on supported Windows

platforms) use:

 set db2instance

 Related reference:

v “db2ilist - List instances command” in Command Reference

Auto-starting instances

 Procedure:

 On Windows operating systems, the DB2 database instance that is created during

install is set as auto-started by default. An instance created using db2icrt is set as a

manual start. To change the start type, you need to go to the Services panel and

change the property of the DB2 service there.

On UNIX operating systems, to enable an instance to auto-start after each system

restart, enter the following command:

 db2iauto -on <instance name>

where <instance name> is the login name of the instance.

On UNIX operating systems, to prevent an instance from auto-starting after each

system restart, enter the following command:

 db2iauto -off <instance name>

where <instance name> is the login name of the instance.

 Related concepts:

v “Instance creation” on page 34

 Related reference:

v “db2iauto - Auto-start instance command” in Command Reference

Quiescing and unquiescing instances

 You can use the Quiesce window to force users off an instance, except the user or

group that you specify. You can use the Unquiesce menu option to return an

instance to an active state so that all users can access the instance.

 Prerequisites:

42 Administration Guide: Implementation

To quiesce or unquiesce an instance, you must have either SYSADM, SYSCTRL, or

SYSMAINT authority.

 Procedure:

 To quiesce an instance using the Control Center:

1. Open the Quiesce window: Expand the object tree until you find the instance that you

want to quiesce. Right-click the instance and select Quiesce from the pop-up menu. The

Quiesce window opens.

2. Specify whether you want to allow a user or a group to access the instance. If you are

allowing a user to attach to the instance, use the User controls to specify a specific user.

If you are allowing a group to attach to the instance, use the Group controls to specify

a specific group.

When you click OK, the Quiesce window closes and the instance is quiesced. Only the

specified user or group will be able to attach to the quiesced instance until either the

instance is unquiesced or stopped.

To unquiesce an instance using the Control Center:

1. Expand the object tree until you find the instance that you want to unquiesce.

2. Right-click the instance and select Unquiesce from the pop-up menu. The instance will

be unquiesced immediately.

 Related reference:

v “QUIESCE command” in Command Reference

v “UNQUIESCE command” in Command Reference

Setting the DB2 environment automatically on UNIX

 By default, the scripts that set up the database environment when you create an

instance affect the user environment for the duration of the current session only.

You can change the .profile file to enable it to run the db2profile script

automatically when the user logs on using the Bourne or Korn shell. For users of

the C shell, you can change the .login file to enable it to run the db2shrc script

file.

 Procedure:

 Add one of the following statements to the .profile or .login script files:

v For users who share one version of the script, add:

 . INSTHOME/sqllib/db2profile (for Bourne or Korn shell)

 source INSTHOME/sqllib/db2cshrc (for C shell)

where INSTHOME is the home directory of the instance that you want to use.

v For users who have a customized version of the script in their home directory,

add:

 . USERHOME/db2profile (for Bourne or Korn shell)

 source USERHOME/db2cshrc (in C shell)

where USERHOME is the home directory of the user.

 Related tasks:

Chapter 1. Before creating a database 43

v “Setting the DB2 environment manually on UNIX” on page 44

Setting the DB2 environment manually on UNIX

 Procedure:

 To choose which instance you want to use, enter one of the following statements at

a command prompt. The period (.) and the space are required.

v For users who share one version of the script, add:

 . INSTHOME/sqllib/db2profile (for Bourne or Korn shell)

 source INSTHOME/sqllib/db2cshrc (for C shell)

where INSTHOME is the home directory of the instance that you want to use.

v For users who have a customized version of the script in their home directory,

add:

 . USERHOME/db2profile (for Bourne or Korn shell)

 source USERHOME/db2cshrc (in C shell)

where USERHOME is the home directory of the user.

If you want to work with more than one instance at the same time, run the script

for each instance that you want to use in separate windows. For example, assume

that you have two instances called test and prod, and their home directories are

/u/test and /u/prod.

In window 1:

v In Bourne or Korn shell, enter:

 . /u/test/sqllib/db2profile

v In C shell, enter:

 source /u/test/sqllib/db2cshrc

In window 2:

v In Bourne or Korn shell, enter:

 . /u/prod/sqllib/db2profile

v In C shell, enter:

 source /u/prod/sqllib/db2cshrc

Use window 1 to work with the test instance and window 2 to work with the

prod instance.

Note: Enter the which db2 command to ensure that your search path has been set

up correctly. This command returns the absolute path of the CLP executable.

Verify that it is located under the instance’s sqllib directory.

 Related tasks:

v “Setting the DB2 environment automatically on UNIX” on page 43

Automatic client rerouting

This section describes the configuration and maintenance of automatic client

rerouting, and also includes troubleshooting information.

44 Administration Guide: Implementation

Automatic client reroute roadmap

 Automatic client reroute is a DB2 Database for Linux, UNIX, and Windows feature

that allows client applications to recover from a loss of communication with the

server so that the application can continue its work with minimal interruption.

Automatic client reroute can be accomplished only if an alternate server has been

specified prior to the loss of communication.

Table 2 lists the relevant topics in each category.

 Table 2. Roadmap to automatic client reroute information

Category Related topics

General information v Automatic client reroute

v Automatic client reroute limitations

v Automatic client reroute description and setup

Configuration v Specifying a server for automatic client reroute

v Automatic client reroute configuration

(DB2_MAX_CLIENT_CONNRETRIES and

DB2_CONNRETRIES_INTERVAL)

v Client reroute setup when using JCC Type 4 drivers

Examples v Automatic client reroute examples

Interaction with other

DB2 features

v Automatic client reroute and high availability disaster recovery

(HADR)

v Interaction between client connection timeout and client reroute

v IBM DB2 Driver for JDBC and SQLJ client reroute support

Troubleshooting v Distributor considerations

Automatic client reroute description and setup

 The main goal of the automatic client reroute feature is to enable a DB2 database

client application to recover from a loss of communications so that the application

can continue its work with minimal interruption. As the name applies, rerouting is

central to the support of continuous operations. But rerouting is only possible

when there is an alternate location that is identified to the client connection.

The automatic client reroute feature could be used within the following

configurable environments:

1. Enterprise Server Edition (ESE) with the database partitioning feature (DPF)

2. DataPropagator™ (DPROPR)-style replication

3. High availability cluster multiprocessor (HACMP™)

4. High availability disaster recovery (HADR).

Automatic client reroute works in conjunction with HADR to allow a client

application to continue its work with minimal interruption after a failover of

the database being accessed.

In the case of the DB2 Connect server, because there is no requirement for the

synchronization of local databases, you only need to ensure that both the original

and alternate DB2 Connect servers have the target host or iSeries™ database

catalogued in such a way that it is accessible using an identical database alias.

Chapter 1. Before creating a database 45

In order for the DB2 database system to have the ability to recover from a loss of

communications, an alternative server location must be specified before the loss of

communication occurs. The UPDATE ALTERNATE SERVER FOR DATABASE

command is used to define the alternate server location on a particular database.

The alternate hostname and port number is given as part of the command. The

location is stored in the system database directory file at the server. In order to

ensure the alternate server location specified applies to all clients, the alternate

server location has to be specified at the server side. The alternate server is ignored

if it is set at the client instance.

For example, assume a database is located at the database partition called “N1”

(with a hostname of XXX and a port number YYY). The database administrator

would like to set the alternate server location to be at the hostname = AAA with a

port number of 123. Here is the command the database administrator would run at

database partition N1 (on the server instance):

 db2 update alternate server for database db2 using hostname AAA port 123

After you have specified the alternate server location on a particular database at

the server instance, the alternate server location information is returned to the

client as part of the connection process. If communication between the client and

the server is lost for any reason, the DB2 client coded will attempt to re-establish

the connection by using the alternate server information. The DB2 client will

attempt to re-connect with the original server and the alternate server, alternating

the attempts between the two servers. The timing of these attempts varies from

very rapid attempts to begin with gradual lengthening of the intervals between the

attempts.

Once a connection is successful, the SQLCODE -30108 is returned to indicate that a

database connection has been re-established following the communication failure.

The hostname/IP address and service name/port number are returned. The client

code only returns the error for the original communications failure to the

application if the re-establishment of the client communications is not possible to

either the original or alternative server.

Consider the following two items involving alternate server connectivity with DB2

Connect server:

v The first consideration involves using DB2 Connect server for providing access

to a host or iSeries database on behalf of both remote and local clients. In such

situations, confusion can arise regarding alternate server connectivity

information in a system database directory entry. To minimize this confusion,

consider cataloging two entries in the system database directory to represent the

same host or iSeries database. Catalog one entry for remote clients and catalog

another for local clients.

v Secondly, the alternate server information that is returned from a target server is

kept only in cache. If the DB2 process is terminated, the cache information,

therefore the alternate server information, is lost.

In general, if an alternate server is specified, automatic client reroute will be

enabled when a communication error (sqlcode -30081) or a sqlcode -1224 is

detected. However, in a high availability disaster recovery (HADR) environment, it

will also be enabled if sqlcode -1776 is returned back from the HADR standby

server.

 Related concepts:

v “Automatic client reroute limitations” on page 47

46 Administration Guide: Implementation

v “Client reroute setup when using JCC Type 4 drivers” on page 54

 Related reference:

v “Automatic client reroute examples” on page 49

v “Automatic client reroute roadmap” on page 45

Automatic client reroute limitations

 There are some limitations with use of the automatic client reroute feature:

v Automatic client reroute is only supported when the communications protocol

used for connecting to the DB2 database server, or to the DB2 Connect server, is

TCP/IP. This means that if the connection is using a different protocol other than

TCP/IP, the automatic client reroute feature will not be enabled. Even if DB2

database is set up for a loopback, TCP/IP communications protocol must be

used in order accommodate the automatic client reroute feature.

v When cataloging on a DB2 Connect server and you have an environment where

you want automatic client rerouting to be done, you will have situations which

have implications:

– When using DB2 Connect server for providing access to a host or iSeries

database on behalf of both remote and local clients. Confusion can arise

regarding alternate server connectivity information in a system database

directory entry. To minimize this confusion, consider cataloging two entries in

the system database directory to represent the same host or iSeries database.

Catalog one entry for remote clients and catalog another for local clients.

– When the alternate server information that is returned from a target server is

kept only in cache memory. If the DB2 database process is terminated, the

cache information, and therefore the alternate server information, is lost.
v If the connection is reestablished to the alternate server location, any new

connection to the same database alias will be connected to the alternate server

location. If you want any new connection to be established, to the original

location in case the problem on the original location is fixed, there are a couple

of options from which to choose:

– You need to take the alternate server offline and allow the connections to fail

back over to the original server. (This assumes that the original server has

been cataloged using the UPDATE ALTERNATE SERVER command such that

it is set to be the alternate location for the alternate server.)

– You could catalog a new database alias to be used by the new connections.

– You could uncatalog the database entry and re-catalog it again.
v DB2 Database for Linux, UNIX, and Windows supports the automatic client

reroute feature for both the client and the server if both the client and server

support this feature. Other DB2 database product families do not currently

support this feature.

v The behavior of the automatic client reroute feature and the behavior of

rerouting in a DB2 Universal Database (DB2 UDB) for z/OS sysplex

environment are somewhat different. Specifically:

– The automatic client reroute feature requires the primary server to designate a

single alternative server. This is done using the UPDATE ALTERNATE

SERVER FOR DATABASE or UPDATE ALTERNATE SERVER FOR LDAP

DATABASEcommand issued at the primary server. This command updates

the local database directory with the alternate server information so that other

applications at the same client have access this information. By contrast, a

data-sharing sysplex used for DB2 UDB for z/OS maintains, in memory, a list

Chapter 1. Before creating a database 47

of one or more servers to which the client can connect. If a communication

failure happens, the client uses that list of servers to determine the location of

the appropriate alternative server.

– In the case of the automatic client reroute feature, the server informs the

client of the most current special register settings whenever a special register

setting is changed. This allows the client, to the best of its ability, to

re-establish the runtime environment after a reroute has occurred. By contrast,

a sysplex used for DB2 UDB for z/OS does not provide the special register

settings to the client and therefore, the client must reinstate the runtime

environment after the reroute is complete.
As of FixPak 7, full automatic client reroute support is available only between a

Linux, UNIX, or Windows client and a Linux, UNIX, or Windows server. It is

not available between a Linux, UNIX, or Windows client and a DB2 UDB for

z/OS sysplex server (any supported version); only the reroute capability is

supported.

v The DB2 database server installed in the alternate host server must be the same

version (but could have a higher FixPak) when compared to the DB2 database

instance installed on the original host server.

v Regardless of whether you have authority to update the database directory at

the client machine, the alternate server information is always kept in memory. In

other words, if you did not have authority to update the database directory (or

because it is a read-only database directory), other applications will not be able

to determine and use the alternate server, because the memory is not shared

among applications.

v The same authentication is applied to all alternate locations. This means that the

client will be unable to reestablish the database connection if the alternate

location has a different authentication type than the original location.

v When there is a communication failure, all session resources such as global

temporary tables, identity, sequences, cursors, server options (SET SERVER

OPTION) for federated processing and special registers are all lost. The

application is responsible to re-establish the session resources in order to

continue processing the work. You do not have to run any of the special register

statements after the connection is re-established, because the DB2 database will

re-play the special register statements that were issued before the

communication error. However, some of the special registers will not be

replayed. They are:

– SET ENCRYPTPW

– SET EVENT MONITOR STATE

– SET SESSION AUTHORIZATION

– SET TRANSFORM GROUP

Note: If the client is using CLI, JCC Type 2 or Type 4 drivers, after the

connection is re-established, then for those SQL and XQuery statements

that have been prepared against the original server, they are implicitly

re-prepared with the new server. However, for embedded SQL routines

(for example, SQC or SQX applications), they will not be re-prepared.
v Do not run high availability disaster recovery (HADR) commands on client

reroute-enabled database aliases. HADR commands are implemented to identify

the target database using database aliases. Consequently, if the target database

has an alternative database defined, it is difficult for HADR commands to

determine the database on which the command is actually operating. While a

client might need to connect using a client reroute-enabled alias, HADR

48 Administration Guide: Implementation

commands must be applied on a specific database. To accommodate this, you

can define aliases specific to the primary and standby databases and only run

HADR commands on those aliases.

An alternate way to implement automatic client rerouting is to use the DNS entry

to specify an alternate IP address for a DNS entry. The idea is to specify a second

IP address (an alternate server location) in the DNS entry; the client would not

know about an alternate server, but at connect time DB2 database system would

alternate between the IP addresses for the DNS entry.

 Related tasks:

v “Specifying a server for automatic client reroute” on page 49

 Related reference:

v “Automatic client reroute roadmap” on page 45

v “UPDATE ALTERNATE SERVER FOR DATABASE command” in Command

Reference

v “UPDATE ALTERNATE SERVER FOR LDAP DATABASE command” in

Command Reference

Specifying a server for automatic client reroute

 Whenever a DB2 server or DB2 Connect server crashes, each client that is

connected to that server receives a communications error which terminates the

connection resulting in an application error. In cases where availability is

important, you should have implemented either a redundant set up or the ability

to fail the server over to a standby node. In either case, the DB2 client code

attempts to re-establish the connection to the original server which might be

running on a failover node (the IP address fails over as well), or to a new server.

 Procedure:

 To define a new or alternate server, use the UPDATE ALTERNATE SERVER FOR

DATABASE or UPDATE ALTERNATE SERVER FOR LDAP

DATABASEcommand. These commands update the alternate server information

for a database alias in the system database directory.

 Related concepts:

v “Automatic client reroute description and setup” on page 45

 Related reference:

v “UPDATE ALTERNATE SERVER FOR DATABASE command” in Command

Reference

v “UPDATE ALTERNATE SERVER FOR LDAP DATABASE command” in

Command Reference

v “Automatic client reroute roadmap” on page 45

Automatic client reroute examples

 Here is an automatic client reroute example for a client application (shown using

pseudo-code only):

 int checkpoint = 0;

 check_sqlca(unsigned char *str, struct sqlca *sqlca)

 {

Chapter 1. Before creating a database 49

if (sqlca–>sqlcode == -30081)

 {

 // as communication is lost, terminate the application right away

 exit(1);

 }

 else

 {

 // print out the error

 printf(...);

 if (sqlca–>sqlcode == -30108)

 {

 // connection is re-established, re-execute the failed transaction

 if (checkpoint == 0)

 {

 goto checkpt0;

 }

 else if (checkpoint == 1)

 {

 goto checkpt1;

 }

 else if (checkpoint == 2)

 {

 goto checkpt2;

 }

 exit;

 }

 }

 }

 main()

 {

 connect to mydb;

 check_sqlca("connect failed", &sqlca);

 checkpt0:

 EXEC SQL set current schema XXX;

 check_sqlca("set current schema XXX failed", &sqlca);

 EXEC SQL create table t1...;

 check_sqlca("create table t1 failed", &sqlca);

 EXEC SQL commit;

 check_sqlca("commit failed", &sqlca);

 if (sqlca.sqlcode == 0)

 {

 checkpoint = 1;

 }

 checkpt1:

 EXEC SQL set current schema YYY;

 check_sqlca("set current schema YYY failed", &sqlca);

 EXEC SQL create table t2...;

 check_sqlca("create table t2 failed", &sqlca);

 EXEC SQL commit;

 check_sqlca("commit failed", &sqlca);

 if (sqlca.sqlcode == 0)

 {

 checkpoint = 2;

 }

 ...

 }

50 Administration Guide: Implementation

At the client machine, the database called “mydb” is cataloged which references a

node “hornet” where “hornet” is also cataloged in the node directory (hostname

“hornet” with port number 456).

Example 1 (involving a non-HADR database)

At the server “hornet” (hostname equals hornet with a port number), a database

“mydb” is created. Furthermore, the database “mydb” is also created at the

alternate server (hostname “montero” with port number 456). You will also need to

update the alternate server for database “mydb” at server “hornet” as follows:

 db2 update alternate server for database mydb using hostname montero port 456

In the sample application above, and without having the automatic client reroute

feature set up, if there is a communication error in the create table t1 statement,

the application will be terminated. With the automatic client reroute feature set up,

the DB2 database system will try to establish the connection to host “hornet” (with

port 456) again. If it is still not working, the DB2 database system will try the

alternate server location (host “montero” with port 456). Assuming there is no

communication error on the connection to the alternate server location, the

application can then continue to run subsequent statements (and to re-run the

failed transaction).

Example 2 (involving an HADR database)

At the server “hornet” (hostname equals hornet with a port number), primary

database “mydb” is created. A standby database is also created at host “montero”

with port 456. Information on how to setup HADR for both a primary and standby

database is found in Data Recovery and High Availability Guide and Reference. You

will also need to update the alternate server for database “mydb” as follows:

 db2 update alternate server for database mydb using hostname montero port 456

In the sample application above, and without having the automatic client reroute

feature set up, if there is a communication error in the create table t1 statement,

the application will be terminated. With the automatic client reroute feature set up,

the DB2 database system will try to establish the connection to host “hornet” (with

port 456) again. If it is still not working, the DB2 database system will try the

alternate server location (host “montero” with port 456). Assuming there is no

communication error on the connection to the alternate server location, the

application can then continue to run subsequent statements (and to re-run the

failed transaction).

 Related concepts:

v “Automatic client reroute description and setup” on page 45

 Related tasks:

v “Specifying a server for automatic client reroute” on page 49

 Related reference:

v “Automatic client reroute roadmap” on page 45

Chapter 1. Before creating a database 51

Automatic client reroute configuration

(DB2_MAX_CLIENT_CONNRETRIES and

DB2_CONNRETRIES_INTERVAL)

 By default, the automatic client reroute feature retries the connection to a database

repeatedly for up to 10 minutes. It is, however, possible to configure the exact retry

behavior using one or both of the following two registry variables:

v DB2_MAX_CLIENT_CONNRETRIES: The maximum number of connection

retries attempted by automatic client reroute.

v DB2_CONNRETRIES_INTERVAL: The sleep time between consecutive

connection retries, in number of seconds.

If DB2_MAX_CLIENT_CONNRETRIES is set, but DB2_CONNRETRIES_INTERVAL

is not, DB2_CONNRETRIES_INTERVAL defaults to 30.

If DB2_MAX_CLIENT_CONNRETRIES is not set, but

DB2_CONNRETRIES_INTERVAL is set, DB2_MAX_CLIENT_CONNRETRIES

defaults to 10.

If neither DB2_MAX_CLIENT_CONNRETRIES nor

DB2_CONNRETRIES_INTERVAL is set, the automatic client reroute feature reverts

to its default behavior described previously.

Note:

Users of Type 4 connectivity with the DB2 Universal JDBC Driver should

use the following two datasource properties to configure automatic client

rerouting:

v maxRetriesForClientReroute: Use this property to limit the number of

retries if the primary connection to the server fails. This property is only

used if the retryIntervalClientReroute property is also set.

v retryIntervalForClientReroute: Use this property to specify the amount of

time (in seconds) to sleep before retrying again. This property is only

used if the maxRetriesForClientReroute property is also set.

 Related reference:

v “Automatic client reroute roadmap” on page 45

Interaction between client connection timeout and client reroute

 For CLI/ODBC, OLE DB, and ADO.NET applications, you can set a connection

timeout value to specify the number of seconds that the client application waits for

a reply when trying to establish a connection to a server before terminating the

connection attempt and generating a communication timeout.

If client reroute is enabled, you need to set the connection timeout value to a value

that is equal to or greater than the maximum time it takes to connect to the server.

Otherwise, the connection might timeout and be rerouted to the alternate server by

client reroute. For example, if on a normal day it takes about 10 seconds to connect

to the server, and on a busy day it takes about 20 seconds, the connection timeout

value should be set to at least 20 seconds.

 Related concepts:

v “Client reroute” in Administration Guide: Planning

52 Administration Guide: Implementation

Related reference:

v “ConnectTimeout CLI/ODBC configuration keyword” in Call Level Interface

Guide and Reference, Volume 1

v “Automatic client reroute roadmap” on page 45

Distributor considerations

 When a client to server connection fails, the client’s requests for reconnection are

distributed to a defined set of systems by a distributor or dispatcher, such as

WebSphere® EdgeServer.

You might be using distributor technology in an environment similar to the

following:

Client —> distributor technology —> (DB2 Connect Server 1 or DB2 Connect

Server 2) —> DB2 z/OS

where:

v The distributor technology component has a TCP/IP host name of DThostname

v The DB2 Connect Server 1 has a TCP/IP host name of GWYhostname1

v The DB2 Connect Server 2 has a TCP/IP host name of GWYhostname2

v The DB2 z/OS server has a TCP/IP host name of zOShostname

The client is catalogued using DThostname in order to utilize the distributor

technology to access either of the DB2 Connect Servers. The intervening distributor

technology makes the decision to use GWYhostname1 or GWYhostname2. Once

the decision is made, the client has a direct socket connection to one of these two

DB2 Connect gateways. Once the socket connectivity is established to the chosen

DB2 Connect server, you have a typical client to DB2 Connect server to DB2 z/OS

connectivity.

For example, assume the distributor chooses GWYhostname2. This produces the

following environment:

Client —> DB2 Connect Server 2 —> DB2 z/OS

The distributor does not retry any of the connections if there is any communication

failure. If you want to enable the automatic client reroute feature for a database in

such an environment, the alternative server for the associated database or

databases in the DB2 Connect server (DB2 Connect Server 1 or DB2 Connect Server

2) should be set up to be the distributor (DThostname). Then, if DB2 Connect

Server 1 locks up for any reason, automatic client rerouting is triggered and a

client connection is retried with the distributor as both the primary and the

alternate server. This option allows you to combine and maintain the distributor

capabilities with the DB2 automatic client reroute feature. Setting the alternate

server to a host other than the distributor host name still provides the clients with

the automatic client reroute feature. However, the clients will establish direct

connections to the defined alternate server and bypass the distributor technology,

which eliminates the distributor and the value that it brings.

The automatic client reroute feature intercepts the following SQL codes:

v sqlcode -20157

v sqlcode -1768 (reason code = 7)

Chapter 1. Before creating a database 53

Note: Client reroute might not be informed of socket failures in a timely fashion if

the setting of the ″TCP Keepalive″ operating system configurations

parameter is too high. (Note that the name of this configuration parameter

varies by platform.)

 Related reference:

v “Automatic client reroute roadmap” on page 45

Client reroute setup when using JCC Type 4 drivers

 Implementing client reroute while using JCC Type 4 drivers requires a different

setup. JCC Type 4 clients do not require a DB2 installation on the client side server.

Instead of allowing a client application to pick up connection information from the

local database directory, the server name and port are explicitly included in the

JCC connection attempt. If, however, at the time of connection, the server function

has been taken over by an alternate server, the client will not only be unable to

connect, but will not know where to find the alternate server information.

The best way to avoid this is to set up an application to retrieve the alternate

server information. By using the javax.sql.DataSource interface, alternate server

parameters can be picked up by the JCC application and kept in non-volatile

storage on the client machine. The storage can be done using the JNDI API. If, for

instance, a local file system is specified as the non-volatile storage, JNDI will create

a .bindings file which will contain the required alternate server information. After

the current JVM is shut down, the information will then persist in that file until a

new JVM is created. The new JVM will attempt to connect to the server. If the

alternate server information has been updated, this will be updated on the client

machine without requiring your intervention. If the server is missing however, the

.binding file will be read and a new connection attempt will be made at the

location of the alternate server. LDAP can also be used to provide non-volatile

storage for the alternate server information. Using volatile storage is not

recommended, as a client machine failure could result in the loss of alternate

server data stored in memory.

 Related concepts:

v “Automatic client reroute description and setup” on page 45

v “Automatic client reroute limitations” on page 47

 Related reference:

v “Automatic client reroute roadmap” on page 45

Automatic storage

This section contains information about automatic storage databases and table

spaces.

Automatic storage databases

 An automatic storage database is one in which table spaces can be created and

whose container and space management characteristics are completely determined

by the DB2 database manager. At the most basic level, databases that are enabled

for automatic storage have a set of one or more storage paths associated with

them. A table space can be defined as “managed by automatic storage” and its

containers assigned and allocated by DB2 based on those storage paths.

54 Administration Guide: Implementation

A database can only be enabled for automatic storage when it is first created. You

cannot enable automatic storage for a database that was not originally defined to

use it; Similarly, you cannot disable automatic storage for a database that was

originally designed to use it.

DB2 creates an automatic storage database by default. The command line processor

(CLP) provides a way to disable automatic storage during database creation by

explicitly using the AUTOMATIC STORAGE NO clause.

The following are some examples of automatic storage being disabled explicitly:

 CREATE DATABASE ASNODB1 AUTOMATIC STORAGE NO

 CREATE DATABASE ASNODB2 AUTOMATIC STORAGE NO ON X:

The following are some examples of automatic storage being enabled either

explicitly or implicitly:

 CREATE DATABASE DB1

 CREATE DATABASE DB2 AUTOMATIC STORAGE YES ON X:

 CREATE DATABASE DB3 ON /data/path1, /data/path2

 CREATE DATABASE DB4 ON D:\StoragePath DBPATH ON C:

Based on the syntax used, the DB2 database manager extracts the following two

pieces of information that pertain to storage locations:

v The database path (which is where DB2 stores various control files for the

database)

– If the DBPATH ON clause is specified, this clause indicates the database path.

– If the DBPATH ON clause is not specified, the first path listed in the ON

clause indicates the database path (in addition to it being a storage path).

– If neither the DBPATH ON nor the ON clauses are specified, the dftdbpath

database manager configuration parameter is used to determine the database

path.
v The storage paths (where DB2 creates automatic storage table space containers)

– If the ON clause is specified, all of the listed paths are storage paths.

– If the ON clause is not specified, there will be a single storage path that is set

to the value of the dftdbpath database manager configuration parameter.

For the examples shown previously, the following table summarizes the storage

paths used:

 Table 3. Automatic storage database and storage paths.

CREATE DATABASE Command Database Path Storage Paths

CREATE DATABASE DB1 AUTOMATIC STORAGE YES <dftdbpath> <dftdbpath>

CREATE DATABASE DB2 AUTOMATIC STORAGE YES ON X: X: X:

CREATE DATABASE DB3 ON /data/path1, /data/path2 /data/path1 /data/path1,

/data/path2

CREATE DATABASE DB4 ON D:\StoragePath DBPATH ON C: C: D:\StoragePath

The storage paths provided must exist and be accessible. In a partitioned database

environment, the same storage paths will be used on each database partition and

they must exist and be accessible on each of those database partitions. There is no

way to specify a unique set of storage paths for a particular database partition

unless database partition expressions are used as part of the storage path name.

Chapter 1. Before creating a database 55

Doing this allows the database partition number to be reflected in the storage path

such that the resulting path name is different on each database partition.

You use the argument

" $N" ([blank]$N)

to indicate a database partition expression. A database partition expression can be

used anywhere in the storage path, and multiple database partition expressions can

be specified. Terminate the database partition expression with a space character;

whatever follows the space is appended to the storage path after the database

partition expression is evaluated. If there is no space character in the storage path

after the database partition expression, it is assumed that the rest of the string is

part of the expression. The argument can only be used in one of the following

forms:

 Table 4. Automatic storage database syntax, examples and values.

Syntax Example Value

Operators are evaluated from left to right. % represents the modulus operator.

The database partition number in the examples is assumed to be 10.

[blank]$N ″ $N″ 10

[blank]$N+[number] ″ $N+100″ 110

[blank]$N%[number] ″ $N%5″ 0

[blank]$N+[number]%[number] ″ $N+1%5″ 1

[blank]$N%[number]+[number] ″ $N%4+2″ 4

For example:

 CREATE DATABASE TESTDB ON "/path1ForNode $N", "/path2ForNode $N"

When free space is calculated for a storage path for a given database partition, the

database manager will check for the existence of the following directories or mount

points within the storage path and will use the first one that is found:

 <storage path>/<instance name>NODE####/<database name>

 <storage path>/<instance name>NODE####

 <storage path>/<instance name>

 <storage path>

Where:

<storage path> is a storage path associated with the database.

<instance name> is the instance under which the database resides.

NODE#### corresponds to the database partition number,

for example:

NODE0000 or NODE0001).

<database name> is the name of the database.

In doing this, file systems can be mounted at a point beneath the storage path and

the database manager will recognize that the actual amount of free space available

for table space containers might not be the same amount that is associated with the

storage path directory itself.

Consider the example where two logical database partitions exist on one physical

computer and there is a single storage path: /db2data

56 Administration Guide: Implementation

Each database partition will use this storage path but the user might want to

isolate the data from each database partition within its own file system. In this

case, a separate file system can be created for each database partition and be

mounted at /db2data/<instance>/NODE####

When creating containers on the storage path and determining free space, the

database manager will know not to retrieve free space information for /db2data,

but instead retrieve it for the corresponding /db2data/<instance>/NODE####

directory.

There are three default table spaces created whenever a database is created. If there

are no explicit table space definitions provided as part of the CREATE DATABASE

command, the table spaces are created as automatic storage table spaces.

After the database has been created, new storage paths can be added to the

database using the ADD STORAGE clause of the ALTER DATABASE statement.

For example:

 ALTER DATABASE ADD STORAGE /data/path3, /data/path4

 Related concepts:

v “Automatic storage table spaces” on page 58

v “How containers are added and extended in DMS table spaces” in Administration

Guide: Planning

v “Table space maps” in Administration Guide: Planning

 Related tasks:

v “Adding an automatic storage path” on page 64

 Related reference:

v “Restore database implications” on page 59

v “Restrictions when using automatic storage” on page 62

v “ALTER DATABASE PARTITION GROUP statement” in SQL Reference, Volume 2

v “Monitoring storage paths” on page 62

v “ADD DBPARTITIONNUM command” in Command Reference

v “CREATE DATABASE command” in Command Reference

v “RESTORE DATABASE command” in Command Reference

Temporary automatic storage table spaces

 This type of table space is created as SMS and all of the rules and behaviors

associated with SMS table spaces still apply. However, there are differences with

respect to how storage is managed shown in the following table:

 Table 5. Differences managing non-automatic storage and automatic storage

Non-automatic storage Automatic storage

Containers must be explicitly provided when the table

space is created.

Containers cannot be provided when the table space is

created, they are assigned and allocated automatically by

the DB2 database manager.

A redirected restore operation can be used to redefine the

containers associated with the table space.

A redirected restore operation cannot be used to redefine

the containers associated with the table space because the

DB2 database manager is in control of space

management.

Chapter 1. Before creating a database 57

When a temporary automatic storage table space is created, the DB2 database

manager examines all of the storage paths associated with the database and

chooses the paths on which to create directory containers. Not all paths might be

chosen because some might not have any free space or they are close to running

out. Because the characteristics of the storage paths change over time, DB2

automatically redefines the containers whenever the database is started.

 Related concepts:

v “Automatic storage databases” on page 54

Automatic storage table spaces

When creating a table space in a database that is not enabled for automatic storage,

the MANAGED BY SYSTEM or MANAGED BY DATABASE clause must be

specified. Using these clauses results in the creation of a system managed space

(SMS) table space or database managed space (DMS) table space respectively. An

explicit list of containers must be provided in both cases.

If a database is enabled for automatic storage, another choice exists. The

MANAGED BY AUTOMATIC STORAGE clause might be specified, or the

MANAGED BY clause might be left out completely (which implies automatic

storage). No container definitions are provided in this case because the DB2

database manager assigns the containers automatically.

Here are some example statements that create automatic storage table spaces:

 CREATE TABLESPACE TS1

 CREATE TABLESPACE TS2 MANAGED BY AUTOMATIC STORAGE

 CREATE TEMPORARY TABLESPACE TEMPTS

 CREATE USER TEMPORARY TABLESPACE USRTMP MANAGED BY AUTOMATIC STORAGE

 CREATE LONG TABLESPACE LONGTS

Although automatic storage table spaces appear to be a different table space type,

it is really just an extension of the existing SMS and DMS types. If the table space

being created is a REGULAR or LARGE table space, it is created as a DMS with

file containers. If the table space being created is a USER or SYSTEM TEMPORARY

table space, it is created as a SMS with directory containers.

Note: This behavior might change in future versions of the DB2 database manager.

The names associated with these containers have the following format:

<storage path>/<instance>/NODE####

/T#######

/C#######.<EXT>

where:

<storage path> A storage path associated with the database

<instance> The instance under which the database was created

NODE#### The database partition number (NODE0000 for

example)

T####### The table space ID (for example, T0000003)

C####### The container ID (for example, C0000012)

<EXT> An extension based on the type of data being

stored:

58 Administration Guide: Implementation

CAT System catalog table space

TMP System temporary table space

UTM User temporary table space

USR User or regular table space

LRG Large table space

 Related concepts:

v “Automatic storage databases” on page 54

v “Temporary automatic storage table spaces” on page 57

 Related tasks:

v “Viewing health alert objects” on page 447

 Related reference:

v “Regular and large automatic storage table spaces” on page 63

v “Restrictions when using automatic storage” on page 62

Restore database implications

 The RESTORE DATABASE command is used to restore a database from a backup

image. During a restore it is possible to choose the location of the database path

and its also possible to redefine the storage paths that are associated with the

database. The database path and the storage paths are set using a combination of

the TO, ON, and DBPATH ON clauses. For example, here are some valid

RESTORE commands for databases enabled for automatic storage follow:

 RESTORE DATABASE TEST1

 RESTORE DATABASE TEST2 TO X:

 RESTORE DATABASE TEST3 DBPATH ON D:

 RESTORE DATABASE TEST3 ON /path1, /path2, /path3

 RESTORE DATABASE TEST4 ON E:\newpath1, F:\newpath2 DBPATH ON D:

Like the CREATE DATABASE command, the DB2 database manager extracts the

following two pieces of information that pertain to storage locations:

v The database path (which is where the DB2 database manager stores various

control files for the database)

– If the TO clause or the DBPATH ON clause is specified, the clause indicates

the database path.

– If the ON clause is used but the DBPATH ON clause is not specified with it,

the first path listed in the ON clause is used as the database path (in addition

to it being a storage path).

– If none of the TO, ON, or DBPATH ON clauses are specified, the dftdbpath

database manager configuration parameter determines the database path.

Note: If a database with the same name exists on disk, the database path is

ignored, and the database is placed into the same location as the existing

database.

v The storage paths (where DB2 creates automatic storage table space containers)

– If the ON clause is specified, all of the paths listed are considered storage

paths, and these paths are used instead of the ones stored within the backup

image.

– If the ON clause is not specified, no change is made to the storage paths (the

storage paths stored within the backup image are maintained).

Chapter 1. Before creating a database 59

To make this concept clearer, the same five RESTORE command examples

presented above are shown in the following table with their corresponding storage

paths:

 Table 6. Restore implications regarding database and storage paths

RESTORE DATABASE Command

No database on disk exists with

same name

Database exists on disk with same

name

Database path Storage paths Database path Storage paths

RESTORE DATABASE TEST1 <dftdbpath> Uses storage

paths defined in

the backup image

Uses database

path of existing

database

Uses storage

paths defined in

the backup image

RESTORE DATABASE TEST2 TO X: X: Uses storage

paths defined in

the backup image

Uses database

path of existing

database

Uses storage

paths defined in

the backup image

RESTORE DATABASE TEST3

DBPATH ON /db2/databases

/db2/databases Uses storage

paths defined in

the backup image

Uses database

path of existing

database

Uses storage

paths defined in

the backup image

RESTORE DATABASE TEST4

ON /path1, /path2, /path3

/path1 /path1, /path2,

/path3

Uses database

path of existing

database

/path1, /path2,

/path3

RESTORE DATABASE TEST5

ON E:\newpath1, F:\newpath2

DBPATH ON D:

D: E:\newpath1,

F:\newpath2

Uses database

path of existing

database

E:\newpath1,

F:\newpath2

For those cases where storage paths have been redefined as part of the restore

operation, the table spaces that are defined to use automatic storage are

automatically redirected to the new paths. However, you cannot explicitly redirect

containers associated with automatic storage table spaces using the SET

TABLESPACE CONTAINERS command; this action is not permitted.

Use the -s option of the db2ckbkp command to show whether or not automatic

storage is enabled for a database within a backup image. The storage paths

associated with the database are displayed if automatic storage is enabled.

For multi-partition automatic storage enabled databases, the RESTORE

DATABASE command has a few extra implications:

1. The database must use the same set of storage paths on all database partitions.

2. Issuing a restore command with new storage paths can only be done on the

catalog database partition, which will set the state of the database to

RESTORE_PENDING on all non-catalog database partitions.

60 Administration Guide: Implementation

Table 7. Restore implications for multi-partition databases

RESTORE DATABASE

Command

Issued on

database

partition #

No database on disk exists

with same name

Database exists on disk with

same name (includes skeleton

databases)

Result on

other database

partitions Storage paths

Result on

other database

partitions Storage paths

RESTORE DATABASE TEST1 Catalog

database

partition

A skeleton

database is

created using

the storage

paths from the

backup image

on the catalog

database

partition. All

other database

partitions are

placed in a

RESTORE_

PENDING

state.

Uses storage

paths defined

in the backup

image

Nothing.

Storage paths

have not

changed so

nothing

happens to

other database

partitions

Uses storage

paths defined

in the backup

image

Non-catalog

database

partition

SQL#### is

returned. If no

database exists,

the catalog

database

partition must

be restored

first.

N/A Nothing.

Storage paths

have not

changed so

nothing

happens to

other database

partitions

Uses storage

paths defined

in the backup

image

RESTORE DATABASE TEST2 ON

/path1, /path2, /path3

Catalog

database

partition

A skeleton

database is

created using

the storage

paths specified

in the restore

command. All

other database

partitions are

place in a

RESTORE_

PENDING

state.

/path1,

/path2, /path3

 /path1,

/path2, /path3

Non-catalog

database

partition

SQL#### is

returned. If no

database exists,

the catalog

database

partition must

be restored

first. Storage

paths cannot

be specified on

the RESTORE

of a

non-catalog

database

partition.

N/A SQL#### is

returned. New

storage paths

cannot be

specified on

the RESTORE

of a

non-catalog

database

partition.

N/A

Chapter 1. Before creating a database 61

Related concepts:

v “Automatic storage databases” on page 54

v “Automatic storage table spaces” on page 58

 Related tasks:

v “Adding an automatic storage path” on page 64

 Related reference:

v “Regular and large automatic storage table spaces” on page 63

v “Restrictions when using automatic storage” on page 62

Monitoring storage paths

 A database snapshot includes the list of storage paths associated with the database.

If the number of automatic storage paths is 0, automatic storage is not enabled for

the database.

 Number of automatic storage paths = ##

 Automatic storage path = <1st path>

 Automatic storage path = <2nd path>

 ...

If the bufferpool monitor switch is on, the following elements are also set:

 File system ID = 12345

 File system free space (bytes) = 20000000000

 File system used space (bytes) = 40000000000000

 File system total space (bytes) = 40020000000000

This data is displayed on a per path basis: on a single database partition system

per path, and per each database partition on a multi-database partitioned

environment.

In addition, the following information is displayed within a table space snapshot.

The information indicates whether or not the table space was created as an

automatic storage table space.

 Using automatic storage = Yes or No

 Related concepts:

v “Automatic storage table spaces” on page 58

v “Automatic storage databases” on page 54

v “Temporary automatic storage table spaces” on page 57

 Related reference:

v “Restore database implications” on page 59

v “Regular and large automatic storage table spaces” on page 63

v “Restrictions when using automatic storage” on page 62

Restrictions when using automatic storage

 When deciding whether or not to create a database using automatic storage, the

following restrictions are very important:

v There is no way to disable or enable automatic storage for a database after it has

been created.

62 Administration Guide: Implementation

v Storage paths must be absolute path names. They can be paths or drive letters

on Windows, but the database path must be a drive letter. The maximum path

length is 175 characters.

v For partitioned databases, the same set of storage paths must be used on each

database partition (unless database partition expressions are used).

 Related concepts:

v “Automatic storage table spaces” on page 58

v “Automatic storage databases” on page 54

v “Temporary automatic storage table spaces” on page 57

 Related reference:

v “Regular and large automatic storage table spaces” on page 63

Regular and large automatic storage table spaces

 This type of table space is actually created as a DMS and all of the rules and

behaviors associated with DMS table spaces still apply. However, there are

differences with respect to how storage is managed shown in the following table:

 Table 8. Differences managing non-automatic storage and automatic storage

Non-automatic storage Automatic storage

Containers must be explicitly provided when the table

space is created.

Containers cannot be provided when the table space is

created, they will be assigned and allocated

automatically by the DB2 database manager.

Automatic resizing of table spaces is off (AUTORESIZE

NO) by default.

Automatic resizing of table spaces is on (AUTORESIZE

YES) by default.

The initial size for the table space cannot be specified

using the INITIALSIZE clause.

The initial size for the table space can be specified using

the INITIALSIZE clause.

Container operations can be performed using the ALTER

TABLESPACE statement (ADD, DROP, BEGIN NEW

STRIPE SET, and so on).

Container operations cannot be performed because the

DB2 database manager is in control of space

management.

A redirected restore operation can be used to redefine the

containers associated with the table space.

A redirected restore operation cannot be used to redefine

the containers associated with the table space because the

DB2 database manager is in control of space

management.

When a regular or large automatic storage table space is created, an initial size can

be specified as part of the CREATE TABLESPACE statement. For example:

 CREATE TABLESPACE TS1 INITIALSIZE 100 M

If the initial size isn’t specified then DB2 will use a default value of 32 megabytes.

To create a table space with a given size, the DB2 database manager creates file

containers within the storage paths. If there is an uneven distribution of space

among the paths, containers might be created with different sizes. As a result, it is

important that all of the storage paths have a similar amount of free space on

them.

If automatic resizing is enabled for the table space, as space is used within it, the

DB2 database manager automatically extends existing containers and adds new

ones (using stripe sets). Whether containers are extended or added, no rebalance

ever takes place.

Chapter 1. Before creating a database 63

Related concepts:

v “Automatic storage databases” on page 54

v “Temporary automatic storage table spaces” on page 57

v “Automatic storage table spaces” on page 58

 Related tasks:

v “Viewing health alert objects” on page 447

 Related reference:

v “Monitoring storage paths” on page 62

v “Restore database implications” on page 59

v “Restrictions when using automatic storage” on page 62

Adding an automatic storage path

 You can add a storage path to a database that is enabled for automatic storage.

When you add a storage path for a multiple-partition database environment, the

exact storage path must be replicated on each database partition. A path and its

associated folders must be created on each database partition. For this reason, the

new folder icon is unavailable when adding a storage path. If a specified path does

not exist on every database partition, the statement is rolled back.

 Restrictions:

 A database is enabled for automatic storage when it is created. You cannot enable

automatic storage for a database that was not originally defined as an automatic

storage database.

 Procedure:

 To add a storage path to an existing database using the Control Center:

1. Expand the object tree until you see the Table Spaces folder of the database to which

you want to add a storage path. Right-click the Table Spaces folder and select Manage

Storage–>Add Automatic Storage from the pop-up menu. The Add Storage window

opens.

2. Click Add. The Add Storage Path window opens.

3. Specify the storage path.

To add a storage path to an existing database using the command line, use the

ALTER DATABASE statement.

 Related concepts:

v “Automatic storage databases” on page 54

 Related reference:

v “ALTER DATABASE statement” in SQL Reference, Volume 2

License management

 The management of licenses for your DB2 products is done primarily through the

License Center within the Control Center of the online interface to the product.

64 Administration Guide: Implementation

From the License Center you can check the license information, statistics,

authorized users, and current users for each of the installed products.

When the Control Center cannot be used, the db2licm Licensed Management Tool

command performs basic license functions. With this command, you are able to

add, remove, list, and modify licenses and policies installed on your local system.

 Related concepts:

v “Control Center overview” on page 376

v “License Center overview” on page 411

 Related reference:

v “db2licm - License management tool command” in Command Reference

Registry and environment variables

This section introduces registry and environment variables. More detailed

information is provided in Part 2 of this manual.

Environment variables and the profile registry

 Environment and registry variables control your database environment.

You can use the Configuration Assistant (db2ca) to configure configuration

parameters and registry variables.

Prior to the introduction of the DB2 database profile registry, changing your

environment variables on Windows workstations (for example) required you to

change an environment variable and restart. Now, your environment is controlled,

with a few exceptions, by registry variables stored in the DB2 profile registries.

Users on UNIX operating systems with system administration (SYSADM) authority

for a given instance can update registry values for that instance. Windows users do

not need SYSADM authority to update registry variables. Use the db2set command

to update registry variables without restarting; this information is stored

immediately in the profile registries. The DB2 registry applies the updated

information to DB2 server instances and DB2 applications started after the changes

are made.

When updating the registry, changes do not affect the currently running DB2

applications or users. Applications started following the update use the new

values.

Note: There are DB2 environment variables DB2INSTANCE, and DB2NODE which might

not be stored in the DB2 profile registries. On some operating systems the

set command must be used in order to update these environment variables.

These changes are in effect until the next time the system is restarted. On

UNIX platforms, the export command might be used instead of the set

command.

Using the profile registry allows for centralized control of the environment

variables. Different levels of support are now provided through the different

profiles. Remote administration of the environment variables is also available when

using the DB2 Administration Server.

There are four profile registries:

Chapter 1. Before creating a database 65

v The DB2 Instance Level Profile Registry. The majority of the DB2 environment

variables are placed within this registry. The environment variable settings for a

particular instance are kept in this registry. Values defined in this level override

their settings in the global level.

v The DB2 Global Level Profile Registry. If an environment variable is not set for a

particular instance, this registry is used. This registry is visible to all instances

pertaining to a particular copy of DB2 ESE, one global-level profile exists in the

installation path.

v The DB2 Instance Node Level Profile Registry. This registry level contains

variable settings that are specific to a database partition in a partitioned database

environment. Values defined in this level override their settings at the instance

and global levels.

v The DB2 Instance Profile Registry. This registry contains a list of all instance

names associated with the current copy. Each installation has its own list. You

can see the complete list of all the instances available on the system by running

db2ilist.

DB2 configures the operating environment by checking for registry values and

environment variables and resolving them in the following order:

1. Environment variables set with the set command. (Or the export command on

UNIX platforms.)

2. Registry values set with the instance node level profile (using the db2set -i

<instance name> <nodenum> command).

3. Registry values set with the instance level profile (using the db2set -i

command).

4. Registry values set with the global level profile (using the db2set -g command).

Instance Level Profile Registry

There are a couple of UNIX and Windows differences when working with a

partitioned database environment. These differences are shown in the following

example.

Assume that there is a partitioned database environment with three physical

database partitions that are identified as “red”, “white”, and “blue”. On UNIX

platforms, if the instance owner runs the following from any of the database

partitions:

 db2set -i FOO=BAR

or

 db2set FOO=BAR (’-i’ is implied)

the value of FOO will be visible to all nodes of the current instance (that is, “red”,

“white”, and “blue”).

On UNIX platforms, the instance level profile registry is stored in a text file inside

the sqllib directory. In partitioned database environments, the sqllib directory is

located on the filesystem shared by all physical database partitions.

On Windows platforms, if the user performs the same command from “red”, the

value of FOO will only be visible on “red” of the current instance. The DB2

database manager stores the instance level profile registry inside the Windows

registry. There is no sharing across physical database partitions. To set the registry

variables on all the physical computers, use the “rah” command as follows:

 rah db2set -i FOO=BAR

66 Administration Guide: Implementation

rah will remotely run the db2set command on “red”, “white”, and “blue”.

It is possible to use DB2REMOTEPREG so that the registry variables on

non-instance-owning computers are configured to refer to those on the instance

owning computer. This effectively creates an environment where the registry

variables on the instance-owning computer are shared amongst all computers in

the instance.

Using the example shown above, and assuming that “red” is the owning computer,

then one would set DB2REMOTEPREG on “white” and “blue” computers to share

the registry variables on “red” by doing the following:

 (on red) do nothing

 (on white and blue) db2set DB2REMOTEPREG=\\red

The setting for DB2REMOTEPREG must not be changed after it is set.

Here is how REMOTEPREG works:

When the DB2 database manager reads the registry variables on Windows, it first

reads the DB2REMOTEPREG value. If DB2REMOTEPREG is set, it then opens the

registry on the remote computer whose computer name is specified in the

DB2REMOTEPREG variable. Subsequent reading and updating of the registry

variables will be redirected to the specified remote computer.

Accessing the remote registry requires that the Remote Registry Service is running

on the target computer. Also, the user logon account and all DB2 service logon

accounts have sufficient access to the remote registry. Therefore, to use

DB2REMOTEPREG, you should operate in a Windows domain environment so

that the required registry access can be granted to the domain account.

There are Microsoft Cluster Server (MSCS) considerations. You should not use

DB2REMOTEPREG in an MSCS environment. When running in an MSCS

configuration where all computers belong to the same MSCS cluster, the registry

variables are maintained in the cluster registry. Therefore, they are already shared

between all computers in the same MSCS cluster and there is no need to use

DB2REMOTEPREG in this case.

When running in a multi-partitioned failover environment where database

partitions span across multiple MSCS clusters, you cannot use DB2REMOTEPREG

to point to the instance-owning computer because the registry variables of the

instance-owning computer reside in the cluster registry.

 Related concepts:

v “DB2 registry and environment variables” in Performance Guide

 Related tasks:

v “Declaring, showing, changing, resetting, and deleting registry and environment

variables” on page 68

Setting the current instance environment variables

 Procedure:

 When you run commands to start or stop an instance’s database manager, DB2

applies the command to the current instance. DB2 determines the current instance

as follows:

Chapter 1. Before creating a database 67

v If the DB2INSTANCE environment variable is set for the current session, its

value is the current instance. To set the DB2INSTANCE environment variable,

enter:

 set db2instance=<new_instance_name>

v If the DB2INSTANCE environment variable is not set for the current session, the

DB2 database manager uses the setting for the DB2INSTANCE environment

variable from the system environment variables. On Windows, system

environment variables are set in the System Environment registry.

v If the DB2INSTANCE environment variable is not set at all, the DB2 database

manager uses the registry variable, DB2INSTDEF.

To set the DB2INSTDEF registry variable at the global level of the registry, enter:

 db2set db2instdef=<new_instance_name> -g

To determine which instance applies to the current session, enter:

 db2 get instance

 Related tasks:

v “Declaring, showing, changing, resetting, and deleting registry and environment

variables” on page 68

Declaring, showing, changing, resetting, and deleting registry

and environment variables

 It is strongly recommended that all specific registry variables be defined in the

DB2 database profile registry. If DB2 variables are set outside of the registry,

remote administration of those variables is not possible, and the workstation must

be restarted in order for the variable values to take effect.

The db2set command supports the local declaration of the registry and

environment variables.

 Procedure:

 To display help information for the command, use:

 db2set -?

To list the complete set of all supported registry variables, use:

 db2set -lr

To list all defined registry variables for the current or default instance, use:

 db2set

To list all defined registry variables in the profile registry, use:

 db2set -all

To show the value of a registry variable in the current or default instance, use:

 db2set registry_variable_name

To show the value of a registry variable at all levels, use:

 db2set registry_variable_name -all

To change a registry variable for in the current or default instance, use:

 db2set registry_variable_name=new_value

68 Administration Guide: Implementation

To change a registry variable default for all databases in the instance, use:

 db2set registry_variable_name=new_value

 -i instance_name

To change a registry variable default for a particular database partition in an

instance, use:

 db2set registry_variable_name=new_value

 -i instance_name database_partition_number

To change a registry variable default for all instances pertaining to a particular

installation in the system, use:

 db2set registry_variable_name=new_value -g

If you use an aggregate registry variable such as DB2_WORKLOAD to define your

environment, you can set that variable using:

 db2set DB2_WORKLOAD=SAP

If you use the Lightweight Directory Access Protocol (LDAP), you can set registry

variables in LDAP using:

v To set registry variables at the user level within LDAP, use:

 db2set -ul

v To set registry variables at the global level within LDAP, use:

 db2set -gl user_name

When running in an LDAP environment, you can set a DB2 registry variable value

so that its scope is global to all servers and all users that belong to a directory

partition or to a Windows domain. Currently, there are only two DB2 registry

variables that can be set at the LDAP global level:

DB2LDAP_KEEP_CONNECTION and DB2LDAP_SEARCH_SCOPE.

For example, to set the search scope value at the global level in LDAP, use:

 db2set -gl db2ldap_search_scope = value

where the value can be “local”, “domain”, or “global”.

Notes:

1. When the DB2 profile.env file is updated by two or more users with the db2set

command at the same time, or very close to the same time, the size of the

profile.env file is reduced to zero. Also, the output from db2set -all displays

inconsistent values.

2. There is a difference between the -g option, which is used to set DB2 registry

variables at the computer global level, and the -gl option which is specifically

used at the LDAP global level.

3. The user level registry variable is only supported on Windows when running in

an LDAP environment.

4. Variable settings at the user level contains user specific variable settings. Any

changes to the user level are written to the LDAP directory.

5. The parameters “-i”, “-g”, “-gl”, and “-ul” cannot be used at the same time in

the same command.

6. Some variables will always default to the global level profile (global does not

mean the variables will be shared between copies of DB2). They cannot be set

at the instance or database partition level profiles; for example, DB2SYSTEM

and DB2INSTDEF.

Chapter 1. Before creating a database 69

7. On UNIX, you must have system administration (SYSADM) authority to

change registry values for an instance. Only users with root authority can

change parameters in global-level registries.

To reset a registry variable for an instance back to the default found in the Global

Profile Registry, use:

 db2set -r registry_variable_name

To reset a registry variable for a database partition in an instance back to the

default found in the Global Profile Registry, use:

 db2set -r registry_variable_name database_partition_number

To delete a variable’s value at a specified level, you can use the same command

syntax to set the variable but specify nothing for the variable value. For example,

to delete the variable’s setting at the database partition level, enter:

 db2set registry_variable_name= -i instance_name

 database_partition_number

To delete a variable’s value and to restrict its use, if it is defined at a higher profile

level, enter:

 db2set registry_variable_name= -null instance_name

This command deletes the setting for the parameter you specify and restricts high

level profiles from changing this variable’s value (in this case, DB2 global-level

profile). However, the variable you specify could still be set by a lower level

profile (in this case, the DB2 database partition-level profile).

 Related concepts:

v “DB2 registry and environment variables” in Performance Guide

 Related tasks:

v “Searching the LDAP servers” on page 585

v “Setting DB2 registry variables at the user level in the LDAP environment” on

page 587

v “Setting environment variables on UNIX systems” on page 79

v “Setting environment variables on Windows” on page 77

General registry variables

DB2ACCOUNT

v Operating system: All

v Default=null

v This variable defines the accounting string that is sent to the remote

host. Refer to the DB2 Connect User’s Guide for details.

DB2BIDI

v Operating system: All

v Default=NO, Values: YES or NO

v This variable enables bidirectional support and the DB2CODEPAGE

variable is used to declare the code page to be used.

DB2CODEPAGE

v Operating system: All

70 Administration Guide: Implementation

v Default: derived from the language ID, as specified by the operating

system.

v This variable specifies the code page of the data presented to DB2 for

database client application. The user should not set DB2CODEPAGE

unless explicitly stated in DB2 documents, or asked to do so by DB2

service. Setting DB2CODEPAGE to a value not supported by the

operating system can produce unexpected results. Normally, you do not

need to set DB2CODEPAGE because DB2 automatically derives the code

page information from the operating system.

Note: Because Windows does not report a Unicode code page (in the

Windows regional settings) instead of the ANSII code page, a

Windows application will not behave as a Unicode client. To

override this behavior, set the DB2CODEPAGE registry variable to

1208 (for the Unicode code page) to cause the application to

behave as a Unicode application.

DB2_COLLECT_TS_REC_INFO

v Operating system: All

v Default=ON, Values: ON or OFF

v This variable specifies whether DB2 will process all log files when

rolling forward a table space, regardless of whether the log files contain

log records that affect the table space. To skip the log files known not to

contain any log records affecting the table space, set this variable to

″ON″. DB2_COLLECT_TS_REC_INFO must be set before the log files are

created and used so that the information required for skipping log files

is collected.

DB2_CONNRETRIES_INTERVAL

v Operating system: All

v Default= not set, Values: an integer number of seconds

v This variable specifies the sleep time between consecutive connection

retries, in seconds, for the automatic client reroute feature. You can use

this variable in conjunction with DB2_MAX_CLIENT CONNRETRIES to

configure the retry behavior for automatic client reroute.

If DB2_MAX_CLIENT_CONNRETRIES is set, but

DB2_CONNRETRIES_INTERVAL is not,

DB2_CONNRETRIES_INTERVAL defaults to 30. If

DB2_MAX_CLIENT_CONNRETRIES is not set, but

DB2_CONNRETRIES_INTERVAL is set,

DB2_MAX_CLIENT_CONNRETRIES defaults to 10. If neither

DB2_MAX_CLIENT_CONNRETRIES nor

DB2_CONNRETRIES_INTERVAL is set, the automatic client reroute

feature reverts to it’s default behavior of retrying the connection to a

database repeatedly for up to 10 minutes.

DB2CONSOLECP

v Operating system: Windows

v Default= null, Values: all valid code page values

v Specifies the codepage for displaying DB2 message text. When specified,

this value overrides the operating system codepage setting.

DB2COUNTRY

v Operating system: Windows

v Default=null, Values: all valid numeric country, territory, or region codes

Chapter 1. Before creating a database 71

v This variable specifies the country, territory, or region code of the client

application. When specified, this value overrides the operating system

setting.

DB2DBDFT

v Operating system: All

v Default=null

v This variable specifies the database alias name of the database to be

used for implicit connects. If an application has no database connection

but SQL or XQuery statements are issued, an implicit connect will be

made if the DB2DBDFT environment variable has been defined with a

default database.

DB2DBMSADDR

v Operating system: Windows 32-bit

v Default= 0x20000000, Values: 0x20000000 to 0xB0000000 in increments of

0x10000

v This variable specifies the default database manager shared memory

address in hexadecimal format. If db2start fails due to a shared memory

address collision, this registry variable can be modified to force the

database manager instance to allocate its shared memory at a different

address.

DB2DISCOVERYTIME

v Operating system: Windows

v Default=40 seconds, Minimum=20 seconds

v This variable specifies the amount of time that SEARCH discovery will

search for DB2 systems.

DB2FFDC

v Operating system: All

v Default: ON, Values: ON, CORE:OFF

v Provides the ability to deactivate core file generation. By default, this

registry variable is set to ON. If this registry variable is not set, or is set to

a value other than CORE:OFF, core files may be generated if the DB2

server abends. (Core files are used for problem determination, and are

created in the DIAGPATH.)

Note: On Linux platforms, the default core file size limit is set to to 0

(that is, ulimit -c). With this setting, core files are not generated.

To allow core files to be created on Linux platforms, set the value

to unlimited.

Core files contain the entire process image of the terminating DB2

process. Consideration should be given to the available file system space

as core files can be quite large. The size is dependent on the DB2

configuration and the state of the process at the time the problem occurs.

DB2_FORCE_APP_ON_MAX_LOG

v Operating system: All

v Default: TRUE, Values: TRUE, FALSE

v Specifies what happens when the MAX_LOG configuration parameter

value is exceeded. If set to TRUE, the application is forced off the

database and the unit of work is rolled back.

72 Administration Guide: Implementation

If FALSE, the current statement fails. The application can still commit

the work completed by previous statements in the unit of work, or it can

roll back the work completed to undo the unit of work.

DB2GRAPHICUNICODESERVER

v Operating system: All

v Default=OFF, Values: ON or OFF

v This registry variable is used to accommodate existing applications

written to insert graphic data into a Unicode database. Its use is only

needed for applications that specifically send sqldbchar (graphic) data in

Unicode instead of the code page of the client. (sqldbchar is a supported

SQL data type in C and C++ that can hold a single double-byte

character.) When set to “ON”, you are telling the database that graphic

data is coming in Unicode, and the application expects to receive

graphic data in Unicode.

DB2INCLUDE

v Operating system: All

v Default=current directory

v Specifies a path to be used during the processing of the SQL INCLUDE

text-file statement during DB2 PREP processing. It provides a list of

directories where the INCLUDE file might be found. Refer to Developing

Embedded SQL Applications for descriptions of how DB2INCLUDE is used

in the different precompiled languages.

DB2INSTDEF

v Operating system: Windows

v Default=DB2

v This variable sets the value to be used if DB2INSTANCE is not defined.

DB2INSTOWNER

v Operating system: Windows

v Default=null

v The registry variable created in the DB2 profile registry when the

instance is first created. This variable is set to the name of the

instance-owning machine.

DB2_LIC_STAT_SIZE

v Operating system: All

v Default=null, Range: 0 to 32 767

v This variable determines the maximum size (in MBs) of the file

containing the license statistics for the system. A value of zero turns the

license statistic gathering off. If the variable is not recognized or not

defined, the variable defaults to unlimited. The statistics are displayed

using the License Center.

DB2LOCALE

v Operating system: All

v Default= NO, Values: YES or NO

v This variable specifies whether the default ″C″ locale of a process is

restored to the default ″C″ locale after calling DB2 and whether to

restore the process locale back to the original ’C’ after calling a DB2

function. If the original locale was not ’C’, then this registry variable is

ignored.

Chapter 1. Before creating a database 73

DB2_MAX_CLIENT_CONNRETRIES

v Operating system: All

v Default=not set, Values: an integer number of maximum times to retry

the connection

v This variable specifies the maximum number of connection retries that

the automatic client reroute feature will attempt. You can use this

variable in conjunction with DB2_CONNRETRIES_INTERVAL to

configure the retry behavior for automatic client reroute.

If DB2_MAX_CLIENT_CONNRETRIES is set, but

DB2_CONNRETRIES_INTERVAL is not,

DB2_CONNRETRIES_INTERVAL defaults to 30. If

DB2_MAX_CLIENT_CONNRETRIES is not set, but

DB2_CONNRETRIES_INTERVAL is set,

DB2_MAX_CLIENT_CONNRETRIES defaults to 10. If neither

DB2_MAX_CLIENT_CONNRETRIES nor

DB2_CONNRETRIES_INTERVAL is set, the automatic client reroute

feature reverts to it’s default behavior of retrying the connection to a

database repeatedly for up to 10 minutes.

DB2NBDISCOVERRCVBUFS

v Operating system: All

v Default=16 buffers, Minimum=16 buffers

v This variable is used for NetBIOS search discovery. The variable specifies

the number of concurrent discovery responses that can be received by a

client. If the client receives more concurrent responses than are specified

by this variable, then the excess responses are discarded by the NetBIOS

layer. The default is sixteen (16) NetBIOS receive buffers. If a number

less than the default value is chosen, then the default is used.

DB2_OBJECT_TABLE_ENTRIES

v Operating system: All

v Default=0, Values: 0–65532

The actual maximum value possible on your system depends on the

page size and extent size, but it cannot exceed 65532.

v This variable specifies the expected number of objects in a table space. If

you know that a large number of objects (for example, 1000 or more)

will be created in a DMS table space, you should set this registry

variable to the approximate number before creating the table space. This

will reserve contiguous storage for object metadata during table space

creation. Reserving contiguous storage reduces the chance that an online

backup will block operations which update entries in the metadata (for

example, CREATE INDEX, IMPORT REPLACE). It will also make

resizing the table space easier because the metadata will be stored at the

start of the table space.

If the initial size of the table space is not large enough to reserve the

contiguous storage, the table space creation will continue without the

additional space reserved.

DB2TERRITORY

v Operating system: All

v Default: derived from the language ID, as specified by the operating

system.

v This variable specifies the region, or territory code of the client

application, which influences date and time formats.

74 Administration Guide: Implementation

DB2_VIEW_REOPT_VALUES

v Operating system: All

v Default=NO, Values: YES, NO

v This variable enables all users to store the cached values of a

reoptimized SQL or XQuery statement in the EXPLAIN_PREDICATE

table when the statement is explained. When this variable is set to NO,

only DBADM is allowed to save these values in the

EXPLAIN_PREDICATE table.

 Related concepts:

v “DB2 registry and environment variables” in Performance Guide

Aggregate registry variables

 An aggregate registry variable allows several registry variables to be grouped as a

configuration that is identified by another registry variable name. Each registry

variable that is part of the group has a predefined setting. The aggregate registry

variable is given a value that is interpreted as declaring several registry variables.

The intention of an aggregate registry variable is to ease registry configuration for

broad operational objectives.

The only valid aggregate registry variable is DB2_WORKLOAD.

The only valid value for this variable is SAP.

When you have set DB2_WORKLOAD=SAP, the user table space SYSTOOLSPACE

and the user temporary table space SYSTOOLSTMPSPACE are not automatically

created. These table spaces are used for tables created automatically by the

following wizards, utilities, or functions:

v Automatic maintenance

v Design advisor

v Control Center database information panel

v SYSINSTALLOBJECTS stored procedure, if the table space input parameter is

not specified

v GET_DBSIZE_INFO stored procedure

Without the SYSTOOLSPACE and SYSTOOLSTMPSPACE table spaces, you cannot

use these wizards, utilities, or functions.

To be able to use these wizards, utilities, or functions, do either of the following:

v Manually create SYSTOOLSPACE (on the catalog node only, if using the

Database Partition Feature (DPF). For example:

 CREATE REGULAR TABLESPACE SYSTOOLSPACE

 IN IBMCATGROUP

 MANAGED BY SYSTEM

 USING (’SYSTOOLSPACE’)

v Call SYSINSTALLOBJECTS to create these objects, specifying a valid table space,

for each of the following tool names: “DB2AC”, “POLICY”, and

“STMG_DBSIZE_INFO”

After completing at least one of these choices, create a user temporary table space

(also on the catalog node only, if using the Database Partition Feature (DPF). For

example:

Chapter 1. Before creating a database 75

CREATE USER TEMPORARY TABLESPACE SYSTOOLSTMPSPACE

 IN IBMCATGROUP

 MANAGED BY SYSTEM

 USING (’SYSTOOLSTMPSPACE’)

Once the table space SYSTOOLSPACE and the temporary table space

SYSTOOLSTMPSPACE are created, you can use the wizards, utilities, or functions

mentioned earlier.

Any registry variable that is implicitly configured through an aggregate registry

variable might also be explicitly defined. Explicitly setting a registry variable that

was previously given a value through the use of an aggregate registry variable is

useful when doing performance or diagnostic testing. Explicitly setting a variable

implicitly that is configured by an aggregate is referred to as “overriding” the

variable.

When you explicitly set a registry variable which is then overridden by using an

aggregate registry variable, a warning is issued. This warning tells you that the

explicit value is maintained. If the aggregate registry variable is used first and then

you specify an explicit registry variable, a warning is not given.

None of the registry variables that are configured through setting an aggregate

registry variable are shown unless you explicitly make that request for each

variable. When you query the aggregate registry variable, only the value assigned

to that variable is shown. Most of your users should not care about the values for

each individual variable.

The following example shows the interaction between using the aggregate registry

variable and explicitly setting a registry variable. For example, you might have set

the DB2_WORKLOAD aggregate registry variable to SAP and have overridden the

DB2_SKIPDELETED registry variable to NO. By entering db2set, you would

receive the following results:

 DB2_WORKLOAD=SAP

 DB2_SKIPDELETED=NO

In another situation, you might have set DB2ENVLIST, set the DB2_WORKLOAD

aggregate registry variable to SAP, and overridden the DB2_SKIPDELETED

registry variable to NO. (This assumes that the DB2_SKIPDELETED registry

variable is part of the group making up the SAP environment.) In addition, those

registry variables that were configured automatically through setting the aggregate

registry variable will show the name of the aggregate displayed within square

brackets, adjacent to its value. The DB2_SKIPDELETED registry variable will show

a “NO” value and will show “[O]” displayed adjacent to its value.

When you no longer require the configuration associated with DB2_WORKLOAD,

you can disable the implicit values of each registry variable in the group by

deleting the aggregate registry variable’s value. After deleting the

DB2_WORKLOAD aggregate registry variable’s value and restarting DB2, DB2

behaves as if none of the registry variables implicitly configured as part of the SAP

environment are in effect. The method used to delete an aggregate registry

variable’s value is the same as deleting an individual registry variable.

To disable SAP environment support, use:

 db2set DB2_WORKLOAD=

76 Administration Guide: Implementation

Deleting an aggregate registry variable’s value does not delete a registry variable’s

value that has been explicitly set. It does not matter that the registry variable is a

member of the group definition being disabled. The explicit setting for the registry

variable is maintained.

You might need to see the values for each registry variable that is a member of the

DB2_WORKLOAD aggregate registry variable. Before setting the

DB2_WORKLOAD aggregate registry variable to SAP, and assuming that no

registry variables that are included in the group are explicitly defined, you might

want to see the values that would be used if you configured the

DB2_WORKLOAD aggregate registry variable to SAP. To find the values that

would be used if DB2_WORKLOAD=SAP, run db2set -gd DB2_WORKLOAD=SAP. This

returns a list of registry variables and their values.

 Related concepts:

v “Environment variables and the profile registry” on page 65

v “DB2 registry and environment variables” in Performance Guide

 Related tasks:

v “Declaring, showing, changing, resetting, and deleting registry and environment

variables” on page 68

v “Setting DB2 registry variables at the user level in the LDAP environment” on

page 587

 Related reference:

v “General registry variables” on page 70

Setting environment variables on Windows

 Windows operating systems have one system environment variable,

DB2INSTANCE, that can only be set outside the profile registry; however, you are

not required to set DB2INSTANCE. The DB2 profile registry variable DB2INSTDEF

might be set in the global level profile to specify the instance name to use if

DB2INSTANCE is not defined.

DB2 Enterprise Server Edition servers on Windows have two system environment

variables, DB2INSTANCE and DB2NODE, that can only be set outside the profile

registry. You are not required to set DB2INSTANCE. The DB2 profile registry

variable DB2INSTDEF might be set in the global level profile to specify the

instance name to use if DB2INSTANCE is not defined.

The DB2NODE environment variable is used to route requests to a target logical

node within a computer. This environment variable must be set in the session in

which the application or command is issued and not in the DB2 profile registry. If

this variable is not set, the target logical node defaults to the logical node which is

defined as zero (0) on the computer.

 Procedure:

 To determine the settings of an environment variable, use the echo command. For

example, to check the value of the DB2PATH environment variable, enter:

 echo %db2path%

You can set the DB2 environment variables DB2INSTANCE and DB2NODE as

follows (using DB2INSTANCE in this description):

Chapter 1. Before creating a database 77

v Select Start–>Control Panel.

v Depending on the Windows theme and the currently selected view type, you

might have to select Performance and Maintenance before you can select the

System icon.

v From the System Properties window, select the Advanced tab; click

Environment Variables and do the following:

1. If the DB2INSTANCE variable does not exist:

a. Click New.

b. Fill in the Variable Name field with DB2INSTANCE.

c. Fill in the Variable Value field with the instance name, for example

db2inst.
2. If the DB2INSTANCE variable already exists, append a new value:

a. Select the DB2INSTANCE environment variable.

b. Change the Value field to the instance name, for example db2inst.
3. Restart your system for these changes to take effect.

Note: The environment variable DB2INSTANCE can also be set at the session

(process) level. For example, if you want to start a second DB2 instance

called TEST, issue the following commands in a command window:

 set DB2INSTANCE=TEST

 db2start

When working in C Shell, issue the following commands in a command

window:

 setenv DB2INSTANCE TEST

The profile registries are located as follows:

v The DB2 Instance Level Profile Registry in the Windows operating system

registry, with the path:

 \HKEY_LOCAL_computer\SOFTWARE\IBM\DB2\PROFILES\instance_name

Note: The instance_name is the name of the DB2 instance.

v The DB2 Global Level Profile Registry in the Windows registry, with the path:

 \HKEY_LOCAL_computer\SOFTWARE\IBM\DB2\GLOBAL_PROFILE

v The DB2 Instance Node Level Profile Registry in the Windows registry, with the

path:

 ...\SOFTWARE\IBM\DB2\PROFILES\instance_name\NODES\node_number

Note: The instance_name and the node_number are specific to the database

partition you are working with.

v There is no DB2 Instance Profile Registry required. For each of the DB2 instances

in the system, a key is created in the path:

 \HKEY_LOCAL_computer\SOFTWARE\IBM\DB2\PROFILES\instance_name

The list of instances can be obtained by counting the keys under the PROFILES

key.

 Related concepts:

v “DB2 Administration Server” on page 91

 Related tasks:

v “Setting environment variables on UNIX systems” on page 79

78 Administration Guide: Implementation

Setting environment variables on UNIX systems

 On UNIX operating systems, you must set the system environment variable

DB2INSTANCE.

The scripts db2profile (for Korn shell) and db2cshrc (for Bourne shell or C shell)

are provided as examples to help you set up the database environment. You can

find these files in insthome/sqllib, where insthome is the home directory of the

instance owner.

These scripts include statements to:

v Update a user’s path with the following directories:

– insthome/sqllib/bin

– insthome/sqllib/adm

– insthome/sqllib/misc

v Set DB2INSTANCE to the default local instance_name for execution.

Note: Except for PATH and DB2INSTANCE, all other supported variables must be

set in the DB2 profile registry. To set variables that are not supported by the

DB2 database manager, define them in your script files, userprofile and

usercshrc.

An instance owner or SYSADM user might customize these scripts for all users of

an instance. Alternatively, users can copy and customize a script, then invoke a

script directly or add it to their .profile or .login files.

 Procedure:

 To change the environment variable for the current session, issue commands

similar to the following:

v For Korn shell:

 DB2INSTANCE=inst1

 export DB2INSTANCE

v For Bourne shell:

 export DB2INSTANCE=<inst1>

v For C shell:

 setenv DB2INSTANCE <inst1>

In order for the DB2 profile registry to be administered properly, the following file

ownership rules must be followed on UNIX operating systems.

v The DB2 Instance Level Profile Registry file is located under:

 INSTHOME/sqllib/profile.env

The access permissions and ownership of this file should be:

 -rw-rw-r-- <db2inst1> <db2iadm1> profile.env

where <db2inst1> is the instance owner, and <db2iadm1> is the instance owner’s

group.

The INSTHOME is the home path of the instance owner.

v The DB2 Global Level Profile Registry is located under:

– <installation path>/default.env for all UNIX and LINUX platforms.
The access permissions and ownership of this file should be:

 -rw-rw-r-- root <group> default.env

Chapter 1. Before creating a database 79

where <group> is the group name for group ID 0; for example, on AIX, it is

″system″.

In order to modify a global registry variable, a user must be logged on as: root.

v The DB2 Instance Node Level Profile Registry is located under:

 INSTHOME/sqllib/nodes/<node_number>.env

The access permissions and ownership of the directory and this file should be:

 drwxrwsr-w <Instance_Owner> <Instance_Owner_Group> nodes

 -rw-rw-r-- <Instance_Owner> <Instance_Owner_Group> <node_number>.env

The INSTHOME is the home path of the instance owner.

v The DB2 Instance Profile Registry is located under:

– <installation path>/profiles.reg for all UNIX and LINUX platforms
The access permissions and ownership of this file should be:

 -rw-r--r-- root system profiles.reg

 Related concepts:

v “DB2 Administration Server” on page 91

 Related tasks:

v “Setting environment variables on Windows” on page 77

Configuration files and parameters

This section describes configuration files and parameters.

Database configuration file

 A database configuration file is created for each database. The creation of this file is

done for you. This file contains values for various configuration parameters that

affect the use of the database, such as:

v Parameters specified or used when creating the database (for example, database

code page, collating sequence, DB2 database release level)

v Parameters indicating the current state of the database (for example, backup

pending flag, database consistency flag, roll-forward pending flag)

v Parameters defining the amount of system resources that the operation of the

database might use (for example, buffer pool size, database logging, sort

memory size).

You should not manually change the parameters in the configuration file. You

should only use the supported interface.

Performance Tip: Many of the configuration parameters come with default values,

but might need to be updated to achieve optimal performance for your database.

For multi-partition databases: When you have a database that is distributed across

more than one database partition, the configuration file should be the same on all

database partitions. Consistency is required since the query compiler compiles

distributed SQL statements based on information in the local node configuration

file and creates an access plan to satisfy the needs of the SQL statement.

Maintaining different configuration files on database partitions could lead to

different access plans, depending on which database partition the statement is

prepared. Use db2_all to keep the configuration files synchronized across all

database partitions.

80 Administration Guide: Implementation

Related concepts:

v “Issuing commands in a partitioned database environment” on page 130

 Related tasks:

v “Configuring DB2 with configuration parameters” in Performance Guide

Creating a node configuration file

 Procedure:

 If your database is to operate in a partitioned database environment, you must

create a node configuration file called db2nodes.cfg. This file must be located in

the sqllib subdirectory of the home directory for the instance before you can start

the database manager with parallel capabilities across multiple database partitions.

The file contains configuration information for all database partitions in an

instance, and is shared by all database partitions for that instance.

Windows Considerations

If you are using DB2 Enterprise Server Edition on Windows, the node

configuration file is created for you when you create the instance. You

should not attempt to create or modify the node configuration file

manually. You can use the db2ncrt command to add a database partition

server to an instance. You can use the db2ndrop command to drop a

database partition server from an instance. You can use the db2nchg

command to modify a database partition server configuration including

moving the database partition server from one computer to another;

changing the TCP/IP host name; or, selecting a different logical port or

network name.

Note: You should not create files or directories under the sqllib subdirectory

other than those created by the DB2 database manager to prevent the loss of

data if an instance is deleted. There are two exceptions. If your system

supports stored procedures, put the stored procedure applications in the

function subdirectory under the sqllib subdirectory. The other exception is

when user-defined functions (UDFs) have been created. UDF executables are

allowed in the same directory.

The file contains one line for each database partition that belongs to an instance.

Each line has the following format:

 dbpartitionnum hostname [logical-port [netname]]

Tokens are delimited by blanks. The variables are:

dbpartitionnum

The database partition number, which can be from 0 to 999, uniquely

defines a database partition. Database partition numbers must be in

ascending sequence. You can have gaps in the sequence.

 Once a database partition number is assigned, it cannot be changed.

(Otherwise the information in the distribution map, which specifies how

data is distributed, would be compromised.)

 If you drop a database partition, its database partition number can be used

again for any new database partition that you add.

 The database partition number is used to generate a database partition

name in the database directory. It has the format:

 NODEnnnn

Chapter 1. Before creating a database 81

The nnnn is the database partition number, which is left-padded with

zeros. This database partition number is also used by the CREATE

DATABASE and DROP DATABASE commands.

hostname

The hostname of the IP address for inter-partition communications. Use the

fully-qualified name for the hostname. The /etc/hosts file also should use

the fully-qualified name. If the fully-qualified name is not used in the

db2nodes.cfg file and in the /etc/hosts file, you might receive error

message SQL30082N RC=3.

 (There is an exception when netname is specified. In this situation, netname

is used for most communications, with hostname only being used for

db2start, db2stop, and db2_all.)

logical-port

This parameter is optional, and specifies the logical port number for the

database partition. This number is used with the database manager

instance name to identify a TCP/IP service name entry in the etc/services

file.

 The combination of the IP address and the logical port is used as a

well-known address, and must be unique among all applications to

support communications connections between database partitions.

 For each hostname, one logical-port must be either 0 (zero) or blank

(which defaults to 0). The database partition associated with this

logical-port is the default node on the host to which clients connect. You

can override this with the DB2NODE environment variable in db2profile

script, or with the sqlesetc() API.

netname

This parameter is optional, and is used to support a host that has more

than one active TCP/IP interface, each with its own hostname.

The following example shows a possible node configuration file for an RS/6000®

SP™ system on which SP2EN1 has multiple TCP/IP interfaces, two logical

partitions, and uses SP2SW1 as the DB2 database interface. It also shows the

database partition numbers starting at 1 (rather than at 0), and a gap in the

dbpartitionnum sequence:

 Table 9. Database partition number example table.

dbpartitionnum hostname logical-port netname

1 SP2EN1.mach1.xxx.com 0 SP2SW1

2 SP2EN1.mach1.xxx.com 1 SP2SW1

4 SP2EN2.mach1.xxx.com 0

5 SP2EN3.mach1.xxx.com

You can update the db2nodes.cfg file using an editor of your choice. (The

exception is: an editor should not be used on Windows.) You must be careful,

however, to protect the integrity of the information in the file, as database

partitioning requires that the node configuration file is locked when you issue

db2start and unlocked after db2stop ends the database manager. The db2start

command can update the file, if necessary, when the file is locked. For example,

you can issue db2start with the RESTART option or the ADDNODE option.

82 Administration Guide: Implementation

Note: If the db2stop command is not successful and does not unlock the node

configuration file, issue db2stop FORCE to unlock it.

 Related concepts:

v “Guidelines for stored procedures” in SQL Guide

 Related reference:

v “CREATE DATABASE command” in Command Reference

v “db2nchg - Change database partition server configuration command” in

Command Reference

v “db2ncrt - Add database partition server to an instance command” in Command

Reference

v “db2ndrop - Drop database partition server from an instance command” in

Command Reference

v “db2start - Start DB2 command” in Command Reference

v “db2stop - Stop DB2 command” in Command Reference

v “DROP DATABASE command” in Command Reference

Defining the scope of configuration parameters using the

Configuration Advisor

 The Configuration Advisor helps you to tune performance and to balance memory

requirements for a single database per instance by suggesting which configuration

parameters to modify and providing suggested values for them. In Version 9.1, the

Configuration Advisor is automatically invoked when you create a database. To

disable this feature, or to explicitly enable it, use the db2set command before

creating the database. Examples:

 db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=NO

 db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=YES

See Automatic features enabled by default for other DB2 features that are enabled

by default.

 Prerequisites:

 The database is already created.

 Procedure:

 You can use available options for AUTOCONFIGURE to define values for several

configuration parameters and to determine the scope of the application of those

parameters. The scope can be NONE, meaning none of the values are applied; DB

ONLY, meaning only database configuration and buffer pool values are applied; or,

DB AND DBM, meaning all parameters and their values are applied.

Note: Even if the Configuration Advisor was automatically enabled for the

CREATE DATABASE request, if desired, you can still specify

AUTOCONFIGURE <options>, in particular for APPLY DB and APPLY

DBM, in order to apply the database manager configuration

recommendation values. If the Configuration Advisor was disabled for the

CREATE DATABASE request, then you can run it manually afterwards with

the given options.

 Related concepts:

Chapter 1. Before creating a database 83

v “Automatic features enabled by default” in Administration Guide: Planning

v “Configuration parameters” in Performance Guide

 Related tasks:

v “Creating a database” on page 113

 Related reference:

v “AUTOCONFIGURE command” in Command Reference

v “AUTOCONFIGURE command using the ADMIN_CMD procedure” in

Administrative SQL Routines and Views

Generating recommendations for database configuration

 The Configuration Advisor is used to make recommendations for the initial values

of the buffer pool size, database configuration parameters, and database manager

configuration parameters. The recommended values can be displayed or applied

by using the APPLY option. The recommendations are based on input that you

provide and system information that the advisor gathers.

The values suggested by the Configuration Advisor are relevant for only one

database per instance. If you want to use this advisor on more than one database,

each database should belong to a separate instance.

In Version 9.1, the Configuration Advisor is automatically invoked when you

create a database. To disable this feature for a given database, or to explicitly

enable it, use the db2set command. Examples:

 db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=NO

 db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=YES

 Prerequisites:

 You can use the AUTOCONFIGURE option on an existing database or as an option

to the CREATE DATABASE command.

To configure your database you must have either SYSADM, SYSCTRL, or

SYSMAINT authority.

 Procedure:

 The Configuration Advisor can be run through the AUTOCONFIGURE command

on the command line processor (CLP), through the Configuration Advisor GUI in

the Control Center, or by calling the db2AutoConfig API.

To open the Configuration Advisor from the Control Center:

1. Expand the object tree until you find the database object for which you would like DB2

to provide configuration recommendations.

2. Right-click the database and select Configure Advisor from the pop-up menu. The

Configuration Advisor opens.

Detailed information is provided through the online help facility within the Control Center.

To request configuration recommendations using the command line, enter:

84 Administration Guide: Implementation

AUTOCONFIGURE

 USING <input_keyword> <param_value>

 APPLY <value>

The following is an example of an AUTOCONFIGURE command that requests

configuration recommendations based on input about how the database is used,

but specifies that the recommendations should not be applied:

 DB2 AUTOCONFIGURE USING

 MEM_PERCENT 60

 WORKLOAD_TYPE MIXED

 NUM_STMTS 500

 ADMIN_PRIORITY BOTH

 IS_POPULATED YES

 NUM_LOCAL_APPS 0

 NUM_REMOTE_APPS 20

 ISOLATION RR

 BP_RESIZEABLE YES

 APPLY NONE

 Related concepts:

v “Automatic features enabled by default” in Administration Guide: Planning

 Related tasks:

v “Creating a database” on page 113

 Related reference:

v “Configuration Advisor sample output” on page 85

v “AUTOCONFIGURE command” in Command Reference

v “db2AutoConfig API - Access the Configuration Advisor” in Administrative API

Reference

Configuration Advisor sample output

 To demonstrate how the Configuration Advisor works, here is an example of the

command used to request configuration recommendations using the CLP, along

with its corresponding output:

1. Connect to the database:

DB2 CONNECT TO PERSONL

2. Issue the AUTOCONFIGURE command, specifying input that indicates how

the database is used. If you want to view the configuration recommendations,

but not apply them, you can set a value of NONE for the APPLY option, as in the

following example:

 DB2 AUTOCONFIGURE USING

 MEM_PERCENT 60

 WORKLOAD_TYPE MIXED

 NUM_STMTS 500

 ADMIN_PRIORITY BOTH

 IS_POPULATED YES

 NUM_LOCAL_APPS 0

 NUM_REMOTE_APPS 20

 ISOLATION RR

 BP_RESIZEABLE YES

 APPLY NONE

If you are unsure about a hint value, that is, the parameters passed to the

command, you can omit it and the default will be used. When using the

Advisor, you can pass up to 10 hints: MEM_PERCENT, WORKLOAD_TYPE,

Chapter 1. Before creating a database 85

and so on, as shown above. Each hint has a range of acceptable values; for

example, 1-100 is valid for MEM_PERCENT. If the value for this parameter is

ommited, its default 25 is used.

After the AUTOCONFIGURE command is issued from the CLP, the

recommendations are displayed to the screen in table format.

 Table 10. Configuration Advisor sample output: Part 1

 Former and Applied Values for Database Manager Configuration

Description Parameter Current Value Recommended Value

Application support layer heap size (4KB) (ASLHEAPSZ) = 15 15

No. of int. communication buffers(4KB)(FCM_NUM_BUFFERS) = AUTOMATIC AUTOMATIC

Enable intra-partition parallelism (INTRA_PARALLEL) = NO NO

Maximum query degree of parallelism (MAX_QUERYDEGREE) = ANY 1

Max number of existing agents (MAXAGENTS) = 200 200

Agent pool size (NUM_POOLAGENTS) = 100(calculated) 200

Initial number of agents in pool (NUM_INITAGENTS) = 0 0

Max requester I/O block size (bytes) (RQRIOBLK) = 32767 32767

Sort heap threshold (4KB) (SHEAPTHRES) = 0 0

 Table 11. Configuration Advisor sample output: Part 2

 Former and Applied Values for Database Configuration

Description Parameter Current Value Recommended Value

Max appl. control heap size (4KB) (APP_CTL_HEAP_SZ) = 128 128

Max size of appl. group mem set (4KB) (APPGROUP_MEM_SZ) = 20000 20000

Default application heap (4KB) (APPLHEAPSZ) = 256 256

Catalog cache size (4KB) (CATALOGCACHE_SZ) = (MAXAPPLS*4) 260

Changed pages threshold (CHNGPGS_THRESH) = 60 80

Database heap (4KB) (DBHEAP) = 1200 2791

Degree of parallelism (DFT_DEGREE) = 1 1

Default tablespace extentsize (pages) (DFT_EXTENT_SZ) = 32 32

Default prefetch size (pages) (DFT_PREFETCH_SZ) = AUTOMATIC AUTOMATIC

Default query optimization class (DFT_QUERYOPT) = 5 5

Max storage for lock list (4KB) (LOCKLIST) = 100 AUTOMATIC

Log buffer size (4KB) (LOGBUFSZ) = 8 99

Log file size (4KB) (LOGFILSIZ) = 1000 1024

Number of primary log files (LOGPRIMARY) = 3 8

Number of secondary log files (LOGSECOND) = 2 3

Max number of active applications (MAXAPPLS) = AUTOMATIC AUTOMATIC

Percent. of lock lists per application (MAXLOCKS) = 10 AUTOMATIC

Group commit count (MINCOMMIT) = 1 1

Number of asynchronous page cleaners (NUM_IOCLEANERS) = 1 1

Number of I/O servers (NUM_IOSERVERS) = 3 4

Package cache size (4KB) (PCKCACHESZ) = (MAXAPPLS*8) 1533

Percent log file reclaimed before soft chckpt (SOFTMAX) = 100 320

Sort list heap (4KB) (SORTHEAP) = 256 AUTOMATIC

SQL statement heap (4KB) (STMTHEAP) = 4096 4096

Statistics heap size (4KB) (STAT_HEAP_SZ) = 4384 4384

Utilities heap size (4KB) (UTIL_HEAP_SZ) = 5000 113661

Self tuning memory (SELF_TUNING_MEM) = ON ON

 Automatic runstats (AUTO_RUNSTATS) = ON ON

Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR) = 5000 AUTOMATIC

86 Administration Guide: Implementation

Table 12. Configuration Advisor sample output: Part 3

 Former and Applied Values for Bufferpool(s)

Description Parameter Current Value Recommended Value

IBMDEFAULTBP Bufferpool size = -2 340985

DB210203I AUTOCONFIGURE completed successfully. Database manager or database

configuration values may have been changed. The instance must be restarted before

any changes come into effect. You may also want to rebind your packages after the

new configuration parameters take effect so that the new values will be used.

If you agree with all of the recommendations, you can reissue the

AUTOCONFIGURE command, but specify that you want the recommended

values to be applied. Otherwise, you can update individual configuration

parameters using the UPDATE DATABASE MANAGER CONFIGURATION

command and the UPDATE DATABASE CONFIGURATION command.

Note: Self tuning memory is enabled by default on database creation for

single-partition databases only. For newly created multi-partitioned

databases, this feature disabled by default.

 Related tasks:

v “Generating recommendations for database configuration” on page 84

 Related reference:

v “AUTOCONFIGURE command” in Command Reference

v “UPDATE DATABASE CONFIGURATION command” in Command Reference

v “UPDATE DATABASE MANAGER CONFIGURATION command” in Command

Reference

v “db2AutoConfig API - Access the Configuration Advisor” in Administrative API

Reference

Database history file

A recovery history file is created with each database and is automatically updated

whenever a database or table space is created, altered, renamed, loaded, backed

up, restored, rolled-back, quiesced, or dropped. The DB_HISTORY administrative

view returns information from the history files from all database partitions.

Accessing the history file using the DB_HISTORY administrative

view

 You can use the DB_HISTORY() administrative view to access the contents of the

database history file. This method is an alternative to using the LIST HISTORY

CLP command or the C history APIs.

Deletes and updates to the database history file can only be done through the

PRUNE or UPDATE HISTORY commands.

 Prerequisites:

 A database connection is required to use this function.

 Restrictions:

Chapter 1. Before creating a database 87

This administrative view is not available for databases created using DB2 Universal

Database™ Version 8.2 and earlier.

 Procedure:

 To access the history file:

1. Ensure you are connected to a database.

2. Use the DB_HISTORY() administrative view within an SQL SELECT statement

to access the database history file for the database you are connected to, or on

the database partition specified by the DB2NODE environment. For example, to

see the contents of the history file use:

 SELECT * FROM TABLE(DB_HISTORY()) AS LIST_HISTORY

To hide the syntax of the administrative view, you can create a view as follows:

 CREATE VIEW LIST_HISTORY AS

 SELECT * FROM TABLE(DB_HISTORY()) AS LIST_HISTORY

After creating this view, you can run queries against the view. For example:

 SELECT * FROM LIST_HISTORY

or

 SELECT dbpartitionnum FROM LIST_HISTORY

or

 SELECT dbpartitionnum, start_time, seqnum, tabname, sqlstate

 FROM LIST_HISTORY

The Table 13 table lists the columns and the column data types returned by the

LIST_HISTORY table function.

 Table 13. Contents of the history table

Column name Data type

dbpartitionnum smallint

EID bigint

start_time char(14)

seqnum smallint

end_time varchar(14)

firstlog varchar(254)

lastlog varchar(254)

backup_id varchar(24)

tabschema varchar(128)

tabname varchar(128)

comment varchar(254)

cmd_text clob(2M)

num_tbsps integer

tbspnames clob(5M)

operation char(1)

operationtype char(1)

objecttype char(1)

88 Administration Guide: Implementation

Table 13. Contents of the history table (continued)

Column name Data type

location varchar(255)

devicetype char(1)

entry_status char(1)

sqlcaid varchar(8)

sqlcabc integer

sqlcode integer

sqlerrml smallint

sqlerrmc varchar(70)

sqlerrp varchar(8)

sqlerrd1 integer

sqlerrd2 integer

sqlerrd3 integer

sqlerrd4 integer

sqlerrd5 integer

sqlerrd6 integer

sqlwarn varchar(11)

sqlstate varchar(5)

 Related reference:

v “DB_HISTORY administrative view – Retrieve history file information” in

Administrative SQL Routines and Views

Chapter 1. Before creating a database 89

90 Administration Guide: Implementation

Chapter 2. Creating and using the DB2 Administration Server

(DAS)

The DB2 administration server (DAS) is used to assist with DB2 server tasks.

DB2 Administration Server

 The DB2 Administration Server (DAS) is a control point used only to assist with

tasks on DB2 database instances. You must have a running DAS if you want to use

available tools like the Configuration Assistant, the Control Center, or the

Development Center.

 DAS assists the Control Center and Configuration Assistant when working on the

following administration tasks:

v Enabling remote administration of DB2 database instances.

v Providing the facility for job management, including the ability to schedule the

running of both DB2 database manager and operating system command scripts.

These command scripts are user-defined.

v Defining the scheduling of jobs, viewing the results of completed jobs, and

performing other administrative tasks against jobs located either remotely or

locally to the DAS using the Task Center.

v Providing a means for discovering information about the configuration of DB2

instances, databases, and other DB2 administration servers in conjunction with

OS/390 and z/OS iSeries

DB2
administration
server

DB2
administration
server

Unix system
services (USS)

DB2
administration
server

Scheduler

DB2
Instances

DB2
subsystems

TCP/IP TCP/IP TCP/IP

Tool set

Systems
(with Windows and Unix)

tools catalog database

Figure 1. Where DAS is used

© Copyright IBM Corp. 1993, 2006 91

the DB2 Discovery utility. This information is used by the Configuration

Assistant and the Control Center to simplify and automate the configuration of

client connections to DB2 databases.

You can only have one DAS in a database server. If one is already created, you

need to drop it by issuing db2admin drop. DAS is configured during installation to

start when the operating system is booted.

DAS is used to perform remote tasks on the server system and the host system on

behalf of a client request from the Control Center, the Configuration Assistant, or

any of the other available tools.

The DAS is available on all supported Windows and UNIX platforms as well as

the zSeries® (OS/390® and z/OS only) platforms. The DAS on zSeries is used to

support the Control Center, Development Center, and Replication Center in

administrative tasks.

The DB2 administration server on zSeries (OS/390 and z/OS only), will be

packaged and delivered as part of the DB2 Management clients feature of the DB2

system. Products that need DAS, like the Control Center, Replication Center, and

Development Center, require the installation of the DAS function. For information

on the availablility of DAS on your operating system, contact your IBM

representative.

The DAS on Windows and UNIX includes a scheduler to run tasks (such as DB2

database and operating system command scripts) defined using the Task Center.

Task information such as the commands to be run; schedule, notification, and

completion actions associated with the task, and run results are stored in a set of

tables and views in a DB2 database called the Tools Catalog. The Tools Catalog is

created as part of the setup. It can also be created and activated through the

Control Center, or through the CLP using the CREATE TOOLS CATALOG

command.

Although a scheduler is not provided on zSeries (OS/390 and z/OS only), you can

use the Build JCL and Create JCL functions provided in the Control Center to

generate JCL that is saved in partitioned datasets to be run using your system

scheduler.

 Related concepts:

v “DB2 administration server (DAS) configuration on Enterprise Server Edition

(ESE) systems” on page 106

v “DB2 administration server (DAS) first failure data capture (FFDC)” on page 111

v “Discovery of administration servers, instances, and databases” on page 107

v “Security considerations for the DB2 administration server (DAS) on Windows”

on page 102

 Related tasks:

v “Configuring the DB2 administration server (DAS)” on page 95

v “Creating a DB2 administration server (DAS)” on page 93

v “DB2 administration server (DAS) Java virtual computer setup” on page 101

v “Discovering and hiding server instances and databases” on page 108

v “Listing the DB2 administration server (DAS)” on page 95

v “Notification and contact list setup and configuration” on page 100

92 Administration Guide: Implementation

v “Removing the DB2 administration server (DAS)” on page 103

v “Setting discovery parameters” on page 109

v “Setting up DB2 administration server (DAS) with Enterprise Server Edition

(ESE) systems” on page 104

v “Setting up the DB2 administration server (DAS) to use the Configuration

Assistant and the Control Center” on page 110

v “Starting and stopping the DB2 administration server (DAS)” on page 94

v “Tools catalog database and DB2 administration server (DAS) scheduler setup

and configuration” on page 96

v “Updating a DB2 administration server (DAS) configuration for discovery” on

page 110

v “Updating the DB2 administration server (DAS) on UNIX” on page 102

Creating a DB2 administration server (DAS)

 The DB2 administration server (DAS) provides support services for DB2 tools such

as the Control Center and the Configuration Assistant.

 Prerequisites:

 To create a DAS, you must have root authority on UNIX platforms or using an

account that has the correct authorization to create a service.

On Windows, if a specific user is to be identified, create a user with local

Administrator authority. Enter db2admin create. If a specific user account is

desired, you must use “/USER:” and “/PASSWORD:” when issuing db2admin

create.

 Restrictions:

 You can only have one DAS in a database server. If one is already created, you

need to drop it by issuing db2admin drop.

 Procedure:

 Typically, the setup program creates a DAS on the instance-owning computer

during DB2 installation. If, however, the setup program failed to create it, you can

manually create a DAS.

As an overview of what occurs during the installation process as it relates to DAS,

consider the following:

v On Windows platforms:

Log on to the computer you want to create the DAS on using an account that

has the correct authorization to create a service.

When creating the DAS, you can optionally provide a user account name and a

user password. If valid, the user account name and password will identify the

owner of the DAS. Do not use the user ID or account name created for the DAS

as a User Account. Set the password for the account name to “Password Never

Expires”. After you create the DAS, you can establish or modify its ownership

by providing a user account name and user password with the db2admin setid

command.

v On UNIX platforms:

Chapter 2. Creating and using the DB2 Administration Server (DAS) 93

1. Ensure that you have root authority.

2. At a command prompt, issue the following command from the instance

subdirectory in the DB2 install path:

 dascrt -u <DASUser>

<DASUser> is the user name of the DAS user you created when you were

creating users and groups for the DB2 database.

– On AIX:

 /usr/opt/db2_09_01/instance/

 dascrt -u <DASUser>

– On HP-UX, Solaris operating system, or Linux:

 /opt/IBM/db2/V9.1/instance/

 dascrt -u <DASUser>

 Related tasks:

v “Removing the DB2 administration server (DAS)” on page 103

 Related reference:

v “db2admin - DB2 administration server command” in Command Reference

Starting and stopping the DB2 administration server (DAS)

 Prerequisites:

 To manually start or stop the DAS, on Windows you must first log on to the

computer using an account or user ID that belongs to either Administrators, Server

Operators, or Power Users groups. To manually start or stop the DAS, on Unix the

account or user ID must be made part of the dasadm_group. The dasadm_group is

specified in the DAS configuration parameters.

 Procedure:

 To start or stop the DAS on Windows use the db2admin start or db2admin stop

commands.

When working with the DB2 database manager for any of the UNIX operating

systems, you must do the following:

v To start the DAS:

1. Log in as the DAS owner.

2. Run the start up script using one of the following:

 . DASHOME/das/dasprofile (for Bourne or Korn shell)

 source DASHOME/das/dascshrc (for C shell)

where DASHOME is the home directory of the DB2 administration server.

3. To start the DAS use the db2admin command:

 db2admin start

Note: The DAS is automatically started after each system restart. The default

startup behavior of the DAS can be altered using the dasauto command.

v To stop the DAS:

1. Log in as an account or user ID that is part of the dasadm_group.

2. Stop the DAS using the db2admin command as follows:

 db2admin stop

94 Administration Guide: Implementation

Note: For both cases under UNIX, the person using these commands must have

logged on with the authorization ID of the DAS owner. The user needs to

belong to the dasadm_group to issue a db2admin start or db2admin stop

command.

 Related reference:

v “db2admin - DB2 administration server command” in Command Reference

v “dasadm_group - DAS administration authority group name configuration

parameter” in Performance Guide

Listing the DB2 administration server (DAS)

 Procedure:

 To obtain the name of the DAS on your computer, enter:

 db2admin

This command is also used to start or stop the DAS, create a new user and

password, drop a DAS, and establish or modify the user account associated with

the DAS.

 Related reference:

v “db2admin - DB2 administration server command” in Command Reference

Configuring the DB2 administration server (DAS)

 Procedure:

 To see the current values for the DB2 administration server configuration

parameters relevant to the DAS, enter:

 db2 get admin cfg

This will show you the current values that were given as defaults during the

installation of the product or those that were given during previous updates to the

configuration parameters.

In order to update the DAS configuration file using the Command Line Processor

(CLP) and the UPDATE ADMIN CONFIG command, you must use the CLP from

an instance that is at the same installed level as the DAS. To update individual

entries in the DAS configuration file, enter:

 db2 update admin cfg using ...

To reset the configuration parameters to the recommended defaults, enter:

 db2 reset admin cfg

In some cases, changes to the DAS configuration file become effective only after

they are loaded into memory (that is, when a db2admin stop is followed by a

db2admin start; or, in the case of a Windows platform, stopping and starting the

service). In other cases, the configuration parameters are configurable online (that

is, you do not have to restart the DAS for these to take affect).

 Related tasks:

v “Configuring DB2 with configuration parameters” in Performance Guide

Chapter 2. Creating and using the DB2 Administration Server (DAS) 95

Related reference:

v “UPDATE ADMIN CONFIGURATION command” in Command Reference

Tools catalog database and DB2 administration server (DAS) scheduler

setup and configuration

 The tools catalog database contains task information created by the Task Center

and Control Center. These tasks are run by the DB2 administration server’s

scheduler. The scheduler and the tools catalog database always work together;

neither can function without the other. The scheduler is a specific piece of the DB2

administration server that acts as an agent to read the tools catalog database and

runs the tasks at their respective times.

 Prerequisites:

 The DB2 administration server must be installed.

 Procedure:

 The goal is to set up and configure the tools catalog database and the DAS

scheduler.

The DB2 administration server Configuration process tells the Scheduler the

location of the tools catalog database, and whether or not the Scheduler should be

enabled. By default, when a tools catalog database is created, its corresponding

DAS configuration is updated. That is, the Scheduler is configured and ready to

use the new tools catalog; there is no need to restart the DAS.

The tools catalog database can be created on a server that is local or remote from

the Scheduler system. If the tools catalog is created on a remote server, it must be

cataloged at the scheduler tools catalog database instance (TOOLSCAT_INST). In

addition, the scheduler user ID must be set by using the command db2admin

setschedid, so that the scheduler can connect and authenticate with the remote

catalog. The full syntax for the db2admin command is found in the Command

Reference.

The DAS scheduler requires a Java™ virtual computer (JVM) to access the tools

catalog information. The JVM information is specified using the jdk_path DB2

administration server configuration parameter of the DAS.

The jdk_64_path configuration parameter is required if you are creating a tools

catalog against a 64-bit instance on one of the platforms that supports both 32- and

64-bit instances (AIX, Sun, and HP-UX).

96 Administration Guide: Implementation

The Control Center and Task Center access the tools catalog database directly from

the client. The tools catalog database therefore needs to be cataloged at the client

before the Control Center can make use of it. The Control Center provides the

means to automatically retrieve information about the tools catalog database and

create the necessary directory entries in the local node directory and database

directory. The only communication protocol supported for this automatic

cataloging is TCP/IP.

One of the DAS configuration parameters is called exec_exp_task. This parameter

specifies whether or not the scheduler executes the tasks that have been scheduled

in the past, but have not yet been run. The scheduler only detects expired tasks

when it starts up.

For example, if you have a job scheduled to run every Saturday, and the scheduler

is turned off on Friday and then restarted on Monday, the job scheduled for

Saturday is now a job that is scheduled in the past. If exec_exp_task is set to “Yes”,

your Saturday job runs when the scheduler is restarted.

The other DAS configuration parameters required by the scheduler consist of

identifying the tools catalog database and the Simple Mail Transfer Protocol

(SMTP) server to be used for notification.

Figure 2. How DAS relates to other parts of DB2 database system

Chapter 2. Creating and using the DB2 Administration Server (DAS) 97

The following examples explain how these parameters are used:

v An example Windows server setup.

1. The tools catalog database can be any name you want. In this example, the

tools catalog database is called “CCMD” and is created under the DB2

database instance on server computer Host1 (tcp/ip hostname Host1). A

schema name is used to uniquely identify a tools catalog within a given

database. For the purposes of this example, assume the schema name is

“CCADMIN”.

2. The instance called “DB2” is setup for TCP/IP communications using port

number 50000 by using:

 db2set -i DB2 DB2COMM=TCPIP

 db2 update dbm cfg using svcename db2cDB2

 db2stop

 db2start

3. The db2cDB2 service name is defined in %SystemRoot%\system32\drivers\etc\
services. That is, in services you will find a line:

 db2cDB2 50000/tcp #connection port for the DB2 instance DB2

4. The tools catalog is created using the CREATE TOOLS CATALOG command.

This will create the tools catalog tables and views with a schema name

corresponding to the catalog name in the specified database. The DB2

administration server configuration parameters are automatically updated

and the scheduler is enabled and started.

5. Assume that the SMTP server used for e–mail notifications is on computer

Host2 (tcp/ip hostname Host2). This information is then specified to the DB2

administration server using:

 db2 update admin cfg using smtp_server Host2

This might be done during the installation process. If it is done later, it needs

to be manually specified to the DAS using a DB2 Version 8 CLP command as

shown above.

6. The IBM Software Development Kit (SDK) for Java on Windows is installed

under %DB2PATH%\java\jdk. This should be already specified to the DAS. It

can be verified, and set if necessary, using:

 db2 update admin cfg using jdk_path c:\SQLLIB\java\jdk

This assumes that the DB2 database manager is installed under C:\SQLLIB.

Note: If the DAS is going to be created by db2admin create, make sure you use

the /USER and /PASSWORD options. The USER account is used by the

scheduler process. Without it, the scheduler will not be started properly.

The USER account should have SYSADM authority on the tools catalog

instance.

If the DAS is going to be created by db2admin create, and no /USER and

/PASSWORD options are to be specified at that time, then you can

update the USER information at a later time. This update is done on DAS

by running the following commands:

 db2admin stop

 db2admin setid <user account ID> <password>

 db2admin start

v An example Windows client setup.

1. Assume that the Control Center is running on client computer C1 (tcp/ip

hostname C1).

98 Administration Guide: Implementation

2. The DAS is cataloged as an administration server node in the local node

directory using either the Configuration Assistant or the Control Center, or

by using the command:

 db2 catalog admin tcpip node Host1 remote Host1 system Host1 ostype NT

3. If the Task Center is started and the system Host1 is selected, the Task Center

attempts to find the tools catalog database in the local directory. (The Control

Center could be used in place of the Task Center.) If not found, it attempts to

catalog the node and database using:

 db2 catalog tcpip node <unique-node name>

 remote Host1 server 50000

 remote_instance DB2 system Host1 ostype NT

 db2 catalog db CCMD as <unique-db alias> at node <unique-node name>

If the automatic cataloging is unsuccessful, the database can be cataloged

using the Configuration Assistant or the Control Center. The database will

then be recognized and used by the Task Center.
v An example AIX server setup.

1. The tools catalog database can be any name you want. In this example, the

tools catalog database is called “CCMD” and is created under the db2inst1

instance on server computer Host1 (tcp/ip hostname Host1). A schema name

is used to uniquely identify a tools catalog within a given database. For the

purposes of this example, assume the schema name is “CCADMIN”.

2. The instance db2inst1 is setup for TCP/IP communications using port

number 50000 by using:

 db2set -i DB2 DB2COMM=TCPIP

 db2 update dbm cfg using svcename xdb2inst

 db2stop

 db2start

3. The xdb2inst service name is defined in /etc/services. That is, in services

you will find a line:

 xdb2inst1 50000/tcp #connection port for the DB2 instance db2inst1

4. The tools catalog is created using the CREATE TOOLS CATALOG command.

This will create the tools catalog tables and views with a schema name

corresponding to the catalog name in the specified database. The DB2

administration server configuration parameters are automatically updated

and the scheduler is enabled and started.

5. Assume that the SMTP server used for e–mail notifications is on computer

Host2 (tcp/ip hostname Host2). This information is then specified to the DB2

administration server using:

 db2 update admin cfg using smtp_server Host2

This might be done during the installation process. If it is done later, it needs

to be manually specified to the DAS using a DB2 Version 8 CLP command as

shown above.

6. The IBM Software Developer’s Kit for Java (SDK) Version 1.3.1 on AIX is

installed under /sqllib/java/jdk. This should be already specified to the

DAS. It can be verified, and set if necessary, using:

 db2 update admin cfg using jdk_path /sqllib/java/jdk

v An example AIX client setup.

1. Assume that the Control Center is running on client computer C1 (tcp/ip

hostname C1).

2. The DAS is cataloged as an administration server node in the local node

directory using either the Configuration Assistant or the Control Center by

using:

Chapter 2. Creating and using the DB2 Administration Server (DAS) 99

db2 catalog admin tcpip node Host1 remote Host1 system Host1

 ostype AIX

3. If the Task Center is started and the system Host1 is selected, the Task Center

attempts to find the tools catalog database in the local directory. (The Control

Center could be used in place of the Task Center.) If not found, it attempts to

catalog the node and database using:

 db2 catalog tcpip node <unique-node name>

 remote Host1 server 50000

 remote_instance DB2 system Host1 ostype AIX

 db2 catalog db CCMD as <unique-db alias> at node <unique-node name>

If the automatic cataloging is unsuccessful, the database can be cataloged

using the Configuration Assistant or the Control Center. The database will

then be recognized and used by the Task Center.

 Related reference:

v “exec_exp_task - Execute expired tasks configuration parameter” in Performance

Guide

v “jdk_path - Software Developer's Kit for Java installation path DAS

configuration parameter” in Performance Guide

v “sched_enable - Scheduler mode configuration parameter” in Performance Guide

v “smtp_server - SMTP server configuration parameter” in Performance Guide

v “svcename - TCP/IP service name configuration parameter” in Performance Guide

v “toolscat_db - Tools catalog database configuration parameter” in Performance

Guide

v “toolscat_inst - Tools catalog database instance configuration parameter” in

Performance Guide

v “toolscat_schema - Tools catalog database schema configuration parameter” in

Performance Guide

Notification and contact list setup and configuration

 E–mail and pager notifications from the DB2 administration server (DAS) can be

local or remote. A contact list is required to ensure that notifications are sent to the

correct hostname.

 Procedure:

 There are two DAS configuration parameters used to enable notifications by the

scheduler or the health monitor.

The DAS configuration parameter smtp_server is used to identify the Simple Mail

Transfer Protocol (SMTP) server used by the scheduler to send e–mail and pager

notifications as part of task execution completion actions as defined through the

Task Center, or by the health monitor to send alert notifications using e–mail or

pager.

The DAS configuration parameter contact_host specifies the location where the

contact information used by the scheduler and health monitor for notification is

stored. The location is defined to be a DB2 administration server’s TCP/IP

hostname. Allowing contact_host to be located on a remote DAS provides support

for sharing a contact list across multiple DB2 administration servers. This should

be set for partitioned database environments to ensure a common contact list is

100 Administration Guide: Implementation

used for all database partitions. The contact list is stored in a flat file under the

DAS directory. If contact_host is not specified, the DAS assumes the contact

information is local.

 Related reference:

v “contact_host - Location of contact list configuration parameter” in Performance

Guide

v “smtp_server - SMTP server configuration parameter” in Performance Guide

DB2 administration server (DAS) Java virtual computer setup

 Procedure:

 The jdk_path configuration parameter specifies the directory under which the IBM

Software Developer’s Kit (SDK) for Java to be used for running DB2 administration

server functions is installed. The environment variables used by the Java

interpreter are computed from the value of this parameter.

The scheduler requires a Java virtual computer (JVM) in order to use the tools

catalog database. It is necessary to have this setup before the scheduler can be

successfully started.

There is no default value for this parameter when working with UNIX platforms.

You should specify a value for this parameter when you install the IBM Software

Developer’s Kit (SDK) for Java.

The IBM Software Developer’s Kit (SDK) for Java on Windows is installed under

%DB2PATH%\java\jdk (which is the default value for this parameter on Windows

platforms). This should already be specified to the DAS. You can verify the value

for jdk_path using:

 db2 get admin cfg

This command displays the values of the DB2 administration server configuration

file where jdk_path is one of the configuration parameters. The parameter can be

set, if necessary, using:

 db2 update admin cfg using jdk_path ’C:\Program Files\IBM\SQLLIB’

This assumes that the DB2 database manager is installed under ’C:\Program

Files\IBM\SQLLIB’.

The IBM Software Developer’s Kit (SDK) for Java on AIX is installed under

/usr/java130. The parameter can be set, if necessary, using:

 db2 update admin cfg using jdk_path /usr/java130

Note: If you are creating or using a tools catalog against a 64-bit instance on one

of the platforms that supports both 32- and 64-bit instances (AIX, Sun, or

HP-UX) use the jdk_64_path configuration parameter instead of the

jdk_path parameter. This configuration parameter specifies the directory

under which the 64-bit version of the IBM Software Develop’s Kit (SDK) for

Java is installed.

 Related reference:

v “jdk_path - Software Developer's Kit for Java installation path DAS

configuration parameter” in Performance Guide

Chapter 2. Creating and using the DB2 Administration Server (DAS) 101

v “GET ADMIN CONFIGURATION command” in Command Reference

v “UPDATE ADMIN CONFIGURATION command” in Command Reference

Security considerations for the DB2 administration server (DAS) on

Windows

 You might need to change the user ID under which the DAS service runs on

Windows.

After creating the DAS, you can set or change the logon account using the

db2admin command as follows:

 db2admin setid <username> <password>

where <username> and <password> are the username and password of an account

that has local Administrator authority. Before running this command, you must log

on to a computer using an account or user ID that has local Administrator

authority.

Note:

v Recall that passwords are case-sensitive. A mixture of upper and

lowercase is allowed which means that the case of the password becomes

very important.

v On Windows, you should not use the Services utility in the Control Panel

to change the logon account for the DAS since some of the required access

rights will not be set for the logon account. Always use the db2admin

command to set or change the logon account for the DB2 administration

server (DAS).

 Related reference:

v “db2admin - DB2 administration server command” in Command Reference

Updating the DB2 administration server (DAS) on UNIX

 Procedure:

 On UNIX operating systems, if DB2 is updated by installing a Program Temporary

Fix (PTF) or a code patch, each DB2 administration server (DAS) and instance

should be updated. To update the DAS, use the dasupdt command available in the

instance subdirectory under the subdirectory specific to the installed DB2 version

and release.

You must first log on to the computer with superuser authority, usually as “root”.

The command is used as follows:

 dasupdt

There are also optional parameters for this command:

v –h or –?

Displays a help menu for this command.

v –d

Sets the debug mode, which is used for problem analysis.

v –D

102 Administration Guide: Implementation

Moves the DAS from a higher code level on one path to a lower code level

installed on another path.

Note: On Windows, updating the DAS is part of the installation process. There are

no user actions required.

 Examples:

 The DAS is running Version 8.1.2 code in the Version 8 install path. If FixPak 3 is

installed in the Version 8 install path, the following command, invoked from the

Version 8 install path, will update the DAS to FixPak 3:

 dasupdt

The DAS is running Version 8.1.2 code in an alternate install path. If FixPak 1 is

installed in another alternate install path, the following command, invoked from

the FixPak 1 alternate install path, will update the DAS to FixPak 1, running from

the FixPak 1 alternate install path:

 dasupdt -D

 Related concepts:

v “DB2 Administration Server” on page 91

v “Security considerations for the DB2 administration server (DAS) on Windows”

on page 102

Removing the DB2 administration server (DAS)

 Procedure:

 To remove the DAS:

v On Windows operating systems:

1. Log on to the computer using an account or user ID that has the correct

authorization to remove a service.

2. Stop the DAS, using db2admin stop.

3. Backup (if needed) all the files in the db2das00 subdirectory under the sqllib

subdirectory.

Note: This example assumes db2das00 is the name of the DAS to be

removed. It is possible to have a DAS with a name other than

DB2DAS00 if a user has created a DB2 database instance that has the

name DB2DAS00. In this case, the DAS will be named DB2DAS01 (or,

if that is taken, DB2DAS02 and so forth). You should look for the

service with the “DB2DAS” prefix to identify the specific DAS from

the list of several DAS that might exist. You can use the db2admin

command without any options to list all DAS.

4. Drop the DAS, using db2admin drop.
v On UNIX operating systems:

1. Login as a user with DASADM authority.

2. Run the startup script using one of the following:

 . DASHOME/das/dasprofile (for Bourne or Korn shell)

 source DASHOME/das/dascshrc (for C shell)

where DASHOME is the home directory of the DAS owner.

Chapter 2. Creating and using the DB2 Administration Server (DAS) 103

3. Stop the DAS using the db2admin command as follows:

 db2admin stop

4. Back up (if needed) all the files in the das subdirectory under the home

directory of the DAS.

5. Log off.

6. Log in as root and remove the DAS using the dasdrop command as follows:

 dasdrop

The dasdrop command is found in the instance subdirectory under the

subdirectory specific to the installed DB2 database manager version and

release.

Note: The dasdrop command removes the das subdirectory under the home

directory of the DB2 administration server (DAS).

 Related reference:

v “dasdrop - Remove a DB2 administration server command” in Command

Reference

v “db2admin - DB2 administration server command” in Command Reference

Setting up DB2 administration server (DAS) with Enterprise Server

Edition (ESE) systems

 The following information shows the steps necessary to configure DB2 Enterprise

Server Edition (Linux, Solaris, Windows, HP-UX, and AIX) for remote

administration using the Control Center.

During installation, the setup program creates a single DAS on the

instance-owning computer. You must create additional DAS on other computers to

allow the Control Center or the Configuration Assistant access to other coordinator

partitions. The overhead of working as an administrative coordinator partition can

then be spread to more than one database partition in an instance. Only if you do

not use db2setup will you need to do this manually.

The directions given here are only applicable for a multi-partition database in an

ESE environment. If you are only running a single-partition database on an ESE

system, then the directions given are not applicable to your environment.

 Procedure:

 To distribute the coordinator function:

1. Create a new DAS on the selected additional computers in the partitioned

database environment.

2. Catalog each DAS as a separate system in the Control Center or Configuration

Assistant.

3. Catalog the same instance under each new system, and each time specify the

same computer name used to catalog the DAS.

There are two aspects to configuration: That which is required for the DB2

administration server (DAS), and that which is recommended for the target,

administered DB2 database instance.

Example Environment

104 Administration Guide: Implementation

product/version:

DB2 UDB ESE V8.1

install path:

install_path

TCP services file:

services

 DB2 Instance:

name: db2inst

owner ID:

db2inst

instance path:

instance_path

nodes: 3 nodes, db2nodes.cfg:

v 0 hostA 0 hostAswitch

v 1 hostA 1 hostAswitch

v 2 hostB 0 hostBswitch

DB name:

db2instDB

 DAS:

name: db2as00

owner/user ID:

db2as

instance path:

das_path

install/run host:

hostA

internode communications port:

16000 (unused port for hostA and hostB)

Note: Substitute site-specific values for the fields shown above. For example, the

following table contains example pathnames for some sample supported

ESE platforms:

 Table 14. Example Pathnames for Supported ESE Platforms

Paths DB2 ESE for AIX DB2 ESE for Solaris DB2 ESE for Windows

install_path /usr/opt/<v_r_ID> /opt/IBM/db2/<v_r_ID> C:\sqllib

instance_path /home/db2inst/sqllib /home/db2inst/sqllib C:\profiles\db2inst

das_path /home/db2as/das /home/db2as/das C:\profiles\db2as

tcp_services_file /etc/services /etc/services C:\winnt\system32

\drivers\etc\services

In the table, <v_r_ID> is the platform-specific version and release identifier. For

example in DB2 UDB ESE for AIX in Version 8, the <v_r_ID> is db2_08_01.

Chapter 2. Creating and using the DB2 Administration Server (DAS) 105

When installing DB2 Enterprise Server Edition, the setup program creates a DAS

on the instance-owning computer. The database partition server resides on the

same computer as the DAS and is the connection point for the instance. That is,

this database partition server is the coordinator partition for requests issued to the

instance from the Control Center or the Configuration Assistant.

If DAS is installed on each physical computer, then each computer can act as a

coordinator partition. Each physical computer appears as a separate DB2SYSTEM

in the Control Center or Configuration Assistant. If different clients use different

systems to connect to a partitioned database server, then this will distribute the

coordinator partition functionality and help to balance incoming connections.

 Related concepts:

v “DB2 administration server (DAS) configuration on Enterprise Server Edition

(ESE) systems” on page 106

v “DB2 Administration Server” on page 91

DB2 administration server (DAS) configuration on Enterprise Server

Edition (ESE) systems

 The DAS is an administrative control point that performs certain tasks on behalf of

the tools. There can be at most one DAS per physical computer. In the case of an

ESE instance that consists of several computers, all of the computers must be

running a DAS so that the Control Center can administer the ESE instance. This

DAS (db2as) is represented by the system that is present in the Control Center

navigator tree as the parent of the target DB2 database instance (db2inst).

For example, db2inst consists of three nodes distributed across two physical

computers or hosts. The minimum requirement can be fulfilled by running db2as

on hostA and hostB.

Notes:

1. The number of database partitions present on hostA does not have any bearing

on the number of DASes that can be run on that host. You can run only one

copy of the DAS on hostA regardless of the multiple logical nodes (MLN)

configuration for that host.

2. There is one DAS required on each computer, or physical node, which must be

created individually using the dascrt command. The DAS on each computer or

physical node must be running so that the Task Center and the Control Center

can work correctly. The ID db2as must exist on hostA and hostB. The home

directory of the db2as ID must not be cross-mounted between the two systems.

Alternatively, different user IDs can be used to create the DAS on hostA and

hostB.

On DB2 Enterprise Server Edition for Windows, if you are using the Configuration

Assistant or the Control Center to automate connection configuration to a DB2

server, the database partition server that is on the same computer as the DAS will

be the coordinator node. This means that all physical connections from the client to

the database will be directed to the coordinator node before being routed to other

database partition servers.

106 Administration Guide: Implementation

On DB2 Enterprise Server Edition for Windows, creating additional DB2

administration servers on other computers allows the Configuration Assistant or

Control Center to configure other systems as coordinator nodes using DB2

Discovery.

When working on DB2 Enterprise Server Edition for Windows, the DB2 Remote

Command Service (db2rcmd.exe) automatically handles internode administrative

communications.

The Control Center communicates with the DAS using the TCP service port 523.

This port is reserved for exclusive use by the DB2 database manager. Therefore, it

is not necessary to insert new entries into TCP services file.

 Related tasks:

v “Creating a DB2 administration server (DAS)” on page 93

 Related reference:

v “db2admin - DB2 administration server command” in Command Reference

Discovery of administration servers, instances, and databases

 To configure connections to a remote computer, there are two methods: using the

discovery service that is built in to the Configuration Assistant; or, using an

existing directory service such as Lightweight Directory Access Protocol (LDAP).

The discovery service is integrated with the Configuration Assistant and the DB2

administration server. To configure a connection to a remote computer, the user

would logon to the client computer and run the Configuration Assistant (CA). The

CA sends a broadcast signal to all the computers on the network. Any computer

that has a DAS installed and configured for discovery will respond to the

broadcast signal from the CA by sending back a package that contains all the

instance and database information on that computer. The CA then uses the

information in this package to configure the client connectivity. Using the

discovery method, catalog information for a remote server can be automatically

generated in the local database and node directory.

The discovery method requires that you logon to every client computer and run

the CA. If you have an environment where there are a large number of clients, this

can be very difficult and time-consuming. An alternative, in this case, is to use a

directory service like LDAP.

Known Discovery allows you to discover instances and databases on systems that

are known to your client, and add new systems so that their instances and

databases can be discovered. Search Discovery provides all of the facilities of

Known Discovery and adds the option to allow your local network to be searched

for other DB2 database servers.

To have a system support Known Discovery, set the discover parameter in the DAS

configuration file to KNOWN. To have the system support both Known and Search

Discovery, set the discover parameter in the DAS configuration file to SEARCH (this is

the default). To prevent discovery of a system, and all of its instances and

databases, set this parameter to DISABLE. Setting the discover parameter to DISABLE

in the DAS configuration file, prevents discovery of the system.

Chapter 2. Creating and using the DB2 Administration Server (DAS) 107

Note: The TCP/IP host name returned to a client by Search Discovery is the same

host name that is returned by your DB2 server system when you enter the

hostname command. On the client, the IP address that this host name maps

to is determined by either the TCP/IP domain name server (DNS)

configured on your client computer or, if no DNS is configured, a mapping

entry in the client’s hosts file. If you have multiple adapter cards configured

on your DB2 server system, you must ensure that TCP/IP is configured on

the server to return the correct hostname, and that the DNS or local client’s

hosts file, maps the hostname to the IP address desired.

On the client, enabling Discovery is also done using the discover parameter;

however, in this case, the discover parameter is set in the client instance (or server

acting as a client) as follows:

v KNOWN

KNOWN discovery is used by the Configuration Assistant and Control Center to

retrieve instance and database information associated with systems that are

already known to your local system. New systems can be added using the Add

Systems functionality provided in the tools. When the discover parameter is set

to KNOWN, you will not be able to search the network.

v SEARCH

Enables all of the facilities of Known Discovery, and enables local network

searching. This means that any searching is limited to the local network.

The “Other Systems (Search the network)” icon only appears if this choice is

made. This is the default setting.

v DISABLE

Disables Discovery. In this case, the Search the network option is not available

in the “Add Database Wizard”.

Note: The discover parameter defaults to SEARCH on all client and server instances.

The discover parameter defaults to SEARCH on all DB2 administration servers

(DAS).

 Related concepts:

v “Lightweight Directory Access Protocol (LDAP) directory service” on page 181

 Related tasks:

v “Discovering and hiding server instances and databases” on page 108

v “Setting discovery parameters” on page 109

Discovering and hiding server instances and databases

 You might have multiple instances, and multiple databases within these instances,

on a server system. You might want to hide some of these from the Discovery

process.

 Procedure:

 To allow clients to discover server instances on a system, set the discover_inst

database manager configuration parameter in each server instance on the system to

ENABLE (this is the default value). Set this parameter to DISABLE to hide this

instance and its databases from Discovery.

108 Administration Guide: Implementation

To allow a database to be discovered from a client, set the discover_db database

configuration parameter to ENABLE (this is the default value). Set this parameter to

DISABLE to hide the database from Discovery.

Note: If you want an instance to be discovered, discover must also be set to KNOWN

or SEARCH in the DAS configuration file. If you want a database to be

discovered, the discover_inst parameter must also be enabled in the server

instance.

 Related reference:

v “discover_db - Discover database configuration parameter” in Performance Guide

v “discover_inst - Discover server instance configuration parameter” in Performance

Guide

Setting discovery parameters

 The discover parameter is set in the DAS configuration file on the server system,

and in the database manager configuration file on the client. Use the Configuration

Assistant or Control Center to set the database manager configuration parameters:

discover, discover_inst, discover_db.

 Procedure:

 Set the parameters as follows:

v On the DAS:

Update the discover parameter (as an example) in the DAS configuration file

using the command process:

 update admin cfg using discover [DISABLE | KNOWN |

 SEARCH]

The DAS discover configuration parameter is configurable online which means

that it is not necessary for you to stop and restart the DAS for the change to

take effect.

Note: Search Discovery will only operate on TCP/IP.

v By working with the Configuration Assistant:

Start the Configuration Assistant by entering db2ca from the command line (on

all platforms) or from the Start menu (on Windows): Click Start —> Programs

—> IBM DB2 —> <DB2 copy name> —> Set-up Tools —> Configuration

Assistant.

To use the Configuration Assistant to set the database manager configuration

parameters:

1. Click Configure —> DBM Configuration.

2. Click the keyword that you want to modify.

3. In the value column, click a value for the keyword that you want to modify, and click

OK.

4. Click OK again, a message displays. Click Close.

Use the Control Center to set the discover_inst and discover_db parameters.

You can also use the Configuration Assistant to update configuration parameters.

Chapter 2. Creating and using the DB2 Administration Server (DAS) 109

Related reference:

v “UPDATE ADMIN CONFIGURATION command” in Command Reference

v “discover - DAS discovery mode configuration parameter” in Performance Guide

v “discover_db - Discover database configuration parameter” in Performance Guide

v “discover_inst - Discover server instance configuration parameter” in Performance

Guide

Setting up the DB2 administration server (DAS) to use the

Configuration Assistant and the Control Center

 Prerequisites:

 You must configure discover to retrieve information about systems on your

network.

 Restrictions:

 A DAS must reside on each physical database partition. When a DAS is created on

the database partition, the DB2SYSTEM name is configured to the TCP/IP

hostname and the discover setting is defaulted to SEARCH.

 Procedure:

 DB2 Discovery is a feature that is used by the Configuration Assistant and Control

Center. Configuring for this feature might require that you update the DB2

administration server (DAS) configuration and an instance’s database manager

configuration to ensure that DB2 Discovery retrieves the correct information.

When a client issues a discovery request from the Configuration Assistant, or

Control Center, each DAS with discovery enabled will respond. In a partitioned

database environment, each physical database partition will respond as a separate

DB2SYSTEM name. The actual instances that can be administered depend on the

instances known by that physical database partition. Since instances can span

multiple database partitions, the same instance can potentially be administered

through different system names. You can use this capability to help you balance

the load on the server instance. For example, if an instance “A” is available

through system “S1” and system “S2”, then some users could catalog a database

using “S1” and some could catalog the same database using “S2”. Each user could

connect to the server using a different coordinator partition.

 Related reference:

v “discover - DAS discovery mode configuration parameter” in Performance Guide

v “db2ilist - List instances command” in Command Reference

v “db2ncrt - Add database partition server to an instance command” in Command

Reference

Updating a DB2 administration server (DAS) configuration for

discovery

 Restrictions:

110 Administration Guide: Implementation

A DB2 administration server (DAS) must reside on each physical database partition

in a partitioned database environment. When a DAS is created on the database

partition server, the DB2SYSTEM name is configured to the TCP/IP hostname and

the discover setting is defaulted to SEARCH.

 Procedure:

 The system names that are retrieved by Discovery are the systems on which a DB2

administration server (DAS) resides. Discovery uses these systems as coordinator

partitions when connections are established.

When updating a DAS configuration, and you want to be able to select a

coordinator partition from a list of DB2 database systems, set discover=SEARCH

(which is the default) in each DB2 administration server’s configuration file.

When there is more than one DAS present in a partitioned database environment,

the same instance might appear in more than one system on the Configuration

Assistant or Control Center’s interface; however, each system will have a different

communications access path to instances. Users can select different DB2 database

systems as coordinator partitions for communications and thereby redistribute the

workload.

 Related reference:

v “Miscellaneous variables” in Performance Guide

DB2 administration server (DAS) first failure data capture (FFDC)

 First failure data capture (FFDC) is a general term applied to the set of diagnostic

information the DB2 administration server captures automatically when errors

occur. This information reduces the need to reproduce errors to get diagnostic

information. The diagnostic information is contained in a single location.

The information captured by the DB2 administration server FFDC includes:

v Administration notification logs.

When an event occurs, the DB2 administration server writes information to the

DB2 administration server log file, db2dasdiag.log.

v Dump files.

For some error conditions, extra information is logged in external binary dump

files named after the failing process ID. These files are intended for use by DB2

product Customer Support.

v Trap files.

The DB2 administration server generates a trap file if it cannot continue

processing because of a trap, segmentation violation, or exception. Trap files

contain a function flow of the last steps that were run before a problem

occurred.

DB2 administration server first failure data capture information location.

By default, the DB2 administration server FFDC information is placed in the

following locations:

v On Windows systems:

If the DB2INSTPROF environment variable is not set:

 db2path\DB2DAS00\dump

Chapter 2. Creating and using the DB2 Administration Server (DAS) 111

where db2path is the path referenced in the DB2PATH environment variable, and

DB2DAS00 is the name of the DAS service. The DAS name can be obtained by

typing the db2admin command without any arguments.

If the DB2INSTPROF environment variable is set:

 x:\db2instprof\DB2DAS00\dump

where x: is the drive referenced in the DB2PATH environment variable,

db2instprof is the instance profile directory, and DB2DAS00 is the name of the

DAS service.

v On Linux and UNIX systems:

 $DASHOME/das/dump

where $DASHOME is the home directory of the DAS user.

Note: You should clean out the dump directory periodically to keep it from

becoming too large.

Interpreting the DB2 administration server log.

The format of the DB2 administration server log file (db2dasdiag.log) is similar to

the format of the DB2 FFDC log file db2diag.log. Refer to the section on

interpreting the administration logs in the troubleshooting topics for information

about how to interpret the db2dasdiag.log file.

 Related concepts:

v “DB2 Administration Server” on page 91

112 Administration Guide: Implementation

Chapter 3. Creating a database

This chapter provides a brief look at each of the various objects that may be part of

the implementation of your database design.

The previous chapter focused on the information you need to know before creating

a database. That chapter also covered several topics and tasks you must perform

before creating a database.

The second last chapter in this part presents what you must consider before

altering a database. In addition, the chapter explains how to alter or drop database

objects.

Creating a database

 You can create a database using the CREATE DATABASE command.

When you create a database, each of the following tasks are done for you:

v Setting up of all the system catalog tables that are needed by the database

v Allocation of the database recovery log

v Creation of the database configuration file and the default values are set

v Binding of the database utilities to the database

The Configuration Advisor helps you to tune performance and to balance memory

requirements for a single database per instance by suggesting which configuration

parameters to modify and providing suggested values for them. In Version 9.1, the

Configuration Advisor is automatically invoked when you create a database. To

disable this feature, or to explicitly enable it, use the db2set command before

creating the database. Examples:

 db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=NO

 db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=YES

See Automatic features enabled by default for other DB2 features that are enabled

by default.

 Prerequisites:

 You should have spent sufficient time designing the contents, layout, potential

growth, and use of your database before you create it.

The following database privileges are automatically granted to PUBLIC:

CREATETAB, BINDADD, CONNECT, IMPLICIT_SCHEMA, and SELECT on the

system catalog views. However, if the RESTRICTIVE option is present, no

privileges are automatically granted to PUBLIC. For more information on the

RESTRICTIVE option, see the documentation on the CREATE DATABASE

command.

 Procedure:

© Copyright IBM Corp. 1993, 2006 113

To create a database using the Control Center:

1. Expand the object tree until you find the Databases folder.

2. Right-click the Databases folder, and select Create —> Standard or Create —> With

Automatic Maintenance from the pop-up menu.

3. Follow the steps to complete this task.

To create a database from a client application, call the sqlecrea API.

To create a database using the command line processor, enter: CREATE

DATABASE <database name>. For example, the following command line

processor command creates a database called personl, in the default location, with

the associated comment ″Personnel DB for BSchiefer Co″.

 CREATE DATABASE personl

 WITH "Personnel DB for BSchiefer Co"

At the same time a database is created, a detailed deadlocks event monitor is also

created. As with any monitor, there is some overhead associated with this event

monitor. If you do not want the detailed deadlocks event monitor, then the event

monitor can be dropped using the command:

 DROP EVENT MONITOR db2detaildeadlock

To limit the amount of disk space that this event monitor consumes, the event

monitor deactivates, and a message is written to the administration notification

log, once it has reached its maximum number of output files. Removing output

files that are no longer needed allows the event monitor to activate again on the

next database activation.

You have the ability to create a database in a different, possibly remote, database

manager instance. In this type of environment you have the ability to perform

instance-level administration against an instance other than your default instance,

including remote instances.

By default, databases are created in the code page of the application creating them.

Therefore, if you create your database from a Unicode (UTF-8) client, your

database will be created as a Unicode database. Similarly, if you create your

database from an en_US (code page 819) client, your database will be created as a

single byte US English database.

To override the default code page for the database, it is necessary to specify the

desired code set and territory when creating the database. See the CREATE

DATABASE CLP command or the sqlecrea API for information on setting the code

set and territory.

In a future release of the DB2 database manager, the default code set will be

changed to UTF-8 when creating a database, regardless of the application code

page. If a particular code set and territory is needed for a database, then the code

set and territory should be specified when the database is created.

 Related concepts:

v “Additional database design considerations” in Administration Guide: Planning

v “Applications connected to Unicode databases” in SQL Guide

v “Automatic features enabled by default” in Administration Guide: Planning

v “What to record in a database” in Administration Guide: Planning

114 Administration Guide: Implementation

v “Database authorities” on page 511

v “Multiple instances of the database manager” on page 16

 Related tasks:

v “Converting non-Unicode databases to Unicode” in Administration Guide:

Planning

v “Creating a Unicode database” in Administration Guide: Planning

v “Changing node and database configuration files” on page 279

v “Generating recommendations for database configuration” on page 84

 Related reference:

v “sqlecrea API - Create database” in Administrative API Reference

v “CREATE DATABASE command” in Command Reference

Initial database partition groups

 When a database is initially created, database partitions are created for all database

partitions specified in the db2nodes.cfg file. Other database partitions can be added

or removed with the ADD DBPARTITIONNUM and DROP

DBPARTITIONNUM VERIFY commands.

Three database partition groups are defined:

v IBMCATGROUP for the SYSCATSPACE table space, holding system catalog

tables

v IBMTEMPGROUP for the TEMPSPACE1 table space, holding temporary tables

created during database processing

v IBMDEFAULTGROUP for the USERSPACE1 table space, by default holding user

tables and indexes.

 Related concepts:

v “Database partition groups” in Administration Guide: Planning

 Related reference:

v “ADD DBPARTITIONNUM command” in Command Reference

v “DROP DBPARTITIONNUM VERIFY command” in Command Reference

Creating and managing database partitions and database partition

groups

This section describes how to create and manage database partitions and database

partition groups.

Creating database partition groups

 You create a database partition group with the CREATE DATABASE PARTITION

GROUP statement. This statement specifies the set of database partitions on which

the table space containers and table data are to reside. This statement also:

v Creates a distribution map for the database partition group.

v Generates a distribution map ID.

v Inserts records into the following catalog tables:

Chapter 3. Creating a database 115

– SYSCAT.DBPARTITIONGROUPS

– SYSCAT.PARTITIONMAPS

– SYSCAT.DBPARTITIONGROUPDEF

 Prerequisites:

 The computers and systems must be available and capable of handling a

partitioned database environment. You have purchased and installed DB2

Enterprise Server Edition. The database must exist.

 Procedure:

 To create a database partition group using the Control Center:

1. Expand the object tree until you see the Database partition groups folder.

2. Right-click the Database partition groups folder, and select Create from the pop-up

menu.

3. On the Create Database partition groups window, complete the information, use the

arrows to move nodes from the Available nodes box to the Selected database

partitions box, and click OK.

To create a database partition group using the command line, enter:

 CREATE DATABASE PARTITION GROUP <name> ON PARTITIONS (<value>,<value>)

For example, assume that you want to load some tables on a subset of the database

partitions in your database. You would use the following command to create a

database partition group of two database partitions (1 and 2) in a database

consisting of at least three (0 to 2) database partitions:

 CREATE DATABASE PARTITION GROUP mixng12 ON PARTITIONS (1,2)

The CREATE DATABASE command or sqlecrea() API also create the default

system database partition groups, IBMDEFAULTGROUP, IBMCATGROUP, and

IBMTEMPGROUP.

 Related concepts:

v “Database partition groups” in Administration Guide: Planning

v “Distribution maps” in Administration Guide: Planning

 Related reference:

v “CREATE DATABASE command” in Command Reference

v “CREATE DATABASE PARTITION GROUP statement” in SQL Reference, Volume

2

v “sqlecrea API - Create database” in Administrative API Reference

Managing database partitions

You can use the Partitions view in the Control Center to perform the following

tasks:

v Start partitions

v Stop partitions

v Drop partitions

116 Administration Guide: Implementation

v Trace partitions

v Display the diagnostics log

If requested to do so from IBM Support, run the trace utility using the options that

they recommend. The trace utility records information about DB2 operations and

formats this information into readable form. For more information, see db2trc -

Trace: DB2 topic.

Attention: Only use the trace facility when directed by DB2 Customer Service or

by a technical support representative to do so.

Use the Diagnostic Log window to view text information logged by the DB2 trace

utility.

The Partitions view displays the following information:

Node Number

This column contains icons and node numbers. The node numbers are

unique numbers, and can be from 0 to 999. The numbers are stored in the

db2nodes.cfg file. Node numbers are displayed in ascending sequence,

though there might be gaps in the sequence.

 Node numbers, once assigned, cannot be changed. This safeguard ensures

that the information in the distribution map (which details how data is

partitioned) is not compromised.

Host Name

The host name is the IP address used by fast communication manager

(FCM) for internal communications. (However, if a switch name is

specified, FCM uses the switch name. In this situation, the host name is

used only for DB2START, DB2STOP, and db2_all.) The host name is stored

in the db2nodes.cfg file.

Port Number

The port number is the logical port number for the node. This number is

used with the database manager instance name to identify a TCP/IP

service name entry in the etc/services file. This number is stored in the

db2nodes.cfg file.

 The combination of the IP address (host name) and the logical port is used

as a well-known address, and must be unique among all applications to

support communication connections between nodes.

 For each displayed host name, one port number will be 0. Port number 0

indicates the default node on the host to which clients connect. (To

override this behavior, use the DB2NODE environment variable in

db2profile script.)

Switch Name

The switch name is used to support a host that has more than one active

TCP/IP interface, each with its own host name. The switch name is stored

in the db2nodes.cfg file.

 The switch name is only used for RS/6000 SP machines that have a

primary host name that is either an Ethernet or a token-ring name, and

DB2 Universal Database Enterprise Server Edition is using the alternative

switch name. If the switch name was not specified in the db2nodes.cfg file,

it is the same as the host name.

 Prerequisites:

Chapter 3. Creating a database 117

To work with database partitions, you will need authority to attach to an instance.

Anyone with SYSADM or DBADM authority can grant you with the authority to

access a specific instance.

To view the DB2 logs, you will need authority to attach to an instance. Anyone

with SYSADM or DBADM authority can grant you with the authority to access a

specific instance.

 Procedure:

v Open the Partitions view: From the Control Center, expand the object tree until

you find the instance for which you want to view the partitions. Right-click on

the instance you want and select Open–>Partitions from the pop-up menu. The

Partitions view opens.

v To start partitions: Highlight one or more partitions and select Partitions–>Start.

The selected partitions are started.

v To stop partitions: Highlight one or more partitions and select Partitions–>Stop.

The selected partitions are stopped.

v To run the trace utility on a partition:

1. Open the DB2 Trace window: Highlight a partition, and select

Partitions–>Service–>Trace. The DB2 Trace window opens.

2. Specify the trace options.

3. Click Start to start recording information and Stop to stop recording

information.

4. Optional: View the trace output and the DB2 logs.

5. Send the trace output to IBM Support, if requested to do so.

 Related concepts:

v “Adding database partitions in a partitioned database environment” on page 123

v “Attributes of detached data partitions” on page 354

v “Partitioned database environments” in Administration Guide: Planning

v “Partitioned database authentication considerations” on page 496

v “Partitioned databases” in Administration Guide: Planning

 Related tasks:

v “Adding a database partition to a running database system” on page 119

v “Adding a database partition to a stopped database system on Windows” on

page 122

v “Adding a database partition to a stopped database system on UNIX” on page

120

v “Adding database partitions to an instance using the Add Partitions wizard” on

page 124

v “Adding data partitions to partitioned tables” on page 356

v “Adding database partitions using the Add Partitions launchpad” on page 125

v “Attaching a data partition” on page 346

v “Changing the database configuration across multiple database partitions” on

page 281

v “Creating a table in a partitioned database environment” on page 191

118 Administration Guide: Implementation

Adding and dropping database partitions

This section describes how to add or drop database partitions on UNIX and

Windows platforms.

Adding a database partition to a running database system

 You can add new database partitions to a partitioned database environment while

it is running and while applications are connected to databases. However, a newly

added server does not become available to all databases until the database

manager is shut down and restarted.

 Procedure:

 To add a database partition to a running database manager using the Control

Center:

1. Open the Add Partitions wizard:

a. From the Control Center, expand the object tree until you find the instance object

that you want to work with. Right-click the object, and click Add Partitions from

the pop-up menu. The Add Partitions launchpad opens.

b. Click the Add Partitions button. The Add Partitions wizard opens.

2. Complete each of the applicable wizard pages. Click the wizard overview link on the

first page for more information. The Finish push button is available when you

complete enough information for the wizard to add the partition.

To add a database partition to a running database manager using the command

line:

1. On any existing database partition, run the DB2START command.

On all platforms, specify the new database partition values for

DBPARTITIONNUM, ADD DBPARTITIONNUM, HOSTNAME, PORT, and

NETNAME parameters. On the Windows platform, you also specify the

COMPUTER, USER, and PASSWORD parameters.

You can also specify the source for any temporary table space container

definitions that need to be created with the databases. If you do not provide

table space information, temporary table space container definitions are

retrieved from the catalog partition for each database.

When the DB2START command is complete, the new server is stopped.

2. Stop the database manager on all database partitions by running the DB2STOP

command.

When you stop all the database partitions in the system, the node configuration

file is updated to include the new database partition. The node configuration

file is not updated with the new server information until DB2STOP is executed.

This ensures that the ADD DBPARTITIONNUM command, which is called

when you specify the ADDNODE parameter to the DB2START command, runs

on the correct database partition. When the utility ends, the new server

partition is stopped.

3. Start the database manager by running the DB2START command.

The newly added database partition is now started along with the rest of the

system.

When all the database partitions in the system are running, you can run

system-wide activities, such as creating or dropping a database.

Chapter 3. Creating a database 119

Note: You might have to issue the DB2START command twice for all database

partition servers to access the new db2nodes.cfg file.

4. Back up all databases on the new database partition. (Optional)

5. Redistribute data to the new database partition. (Optional)

 Related concepts:

v “Adding database partitions in a partitioned database environment” on page 123

 Related tasks:

v “Adding a database partition to a stopped database system on UNIX” on page

120

v “Adding a database partition to a stopped database system on Windows” on

page 122

Adding a database partition to a stopped database system on

UNIX

 You can add new database partitions to a partitioned database system while it is

stopped. The newly added database partition becomes available to all databases

when the database manager is started up again.

 Prerequisites:

 You must install the new server if it does not exist, including the following tasks:

v Making executables accessible (using shared file-system mounts or local copies)

v Synchronizing operating system files with those on existing processors

v Ensuring that the sqllib directory is accessible as a shared file system

v Ensuring that the relevant operating system parameters (such as the maximum

number of processes) are set to the appropriate values

You must also register the host name with the name server or in the hosts file in

the etc directory on all database partitions.

 Procedure:

 To add a database partition to a stopped partitioned database server using the

Control Center:

1. Open the Add Partitions wizard:

a. From the Control Center, expand the object tree until you find the instance object

that you want to work with. Right-click the object, and click Add Partitions from

the pop-up menu. The Add Partitions launchpad opens.

b. Click the Add Partitions button. The Add Partitions wizard opens.

2. Complete each of the applicable wizard pages. Click the wizard overview link on the

first page for more information. The Finish push button is available when you

complete enough information for the wizard to add the partition.

To add a database partition to a stopped partitioned database server using the

command line:

1. Issue DB2STOP to stop all the database partitions.

2. Run the ADD DBPARTITIONNUM command on the new server.

120 Administration Guide: Implementation

A database partition is created locally for every database that already exists in

the system. The database parameters for the new database partitions are set to

the default value, and each database partition remains empty until you move

data to it. Update the database configuration parameter values to match those

on the other database partitions.

3. Run the DB2START command to start the database system. Note that the node

configuration file (cfg) has already been updated to include the new server

during the installation of the new server.

4. Update the configuration file on the new database partition as follows:

a. On any existing database partition, run the DB2START command.

Specify the new database partition values for DBPARTITIONNUM,

ADDDBPARTITIONNUM, HOSTNAME, PORT, and NETNAME parameters

as well as the COMPUTER, USER, and PASSWORD parameters.

You can also specify the source for any temporary table space container

definitions that need to be created with the databases. If you do not provide

table space information, temporary table space container definitions are

retrieved from the catalog partition for each database.

When the DB2START command is complete, the new server is stopped.

b. Stop the entire database manager by running the DB2STOP command.

When you stop all the database partitions in the system, the node

configuration file is updated to include the new database partition. The

node configuration file is not updated with the new server information until

DB2STOP is executed. This ensures that the ADD DBPARTITIONNUM

command, which is called when you specify the ADDDBPARTITIONNUM

parameter to the DB2START command, runs on the correct database

partition. When the utility ends, the new server partition is stopped.
5. Start the database manager by running the DB2START command.

The newly added database partition is now started with the rest of the system.

When all the database partitions in the system are running, you can run

system-wide activities, such as creating or dropping a database.

Note: You might have to issue the DB2START command twice for all database

partition servers to access the new db2nodes.cfg file.

6. Back up all databases on the new database partition. (Optional)

7. Redistribute data to the new database partition. (Optional)

You can also update the configuration file manually, as follows:

1. Edit the db2nodes.cfg file and add the new database partition to it.

2. Issue the following command to start the new database partition: DB2START

DBPARTITIONNUM partitionnum

Specify the number you are assigning to the new database partition as the

value of nodenum.

3. If the new server is to be a logical partition (that is, it is not database partition

0), use db2set command to update the DBPARTITIONNUM registry variable.

Specify the number of the database partition you are adding.

4. Run the ADD NODE command on the new database partition.

This command creates a database partition locally for every database that

already exists in the system. The database parameters for the new database

partitions are set to the default value, and each database partition remains

empty until you move data to it. Update the database configuration parameter

values to match those on the other database partitions.

Chapter 3. Creating a database 121

5. When the ADD DBPARTITIONNUM command completes, issue the DB2START

command to start the other database partitions in the system.

Do not perform any system-wide activities, such as creating or dropping a

database, until all database partitions are successfully started.

 Related concepts:

v “Error recovery when adding database partitions” on page 128

 Related tasks:

v “Adding a database partition to a running database system” on page 119

v “Adding a database partition to a stopped database system on Windows” on

page 122

v “Dropping a database partition” on page 125

Adding a database partition to a stopped database system on

Windows

 You can add new database partitions to a partitioned database system while it is

stopped. The newly added database partition becomes available to all databases

when the database manager is started up again.

 Prerequisites:

 You must install the new server before you can create a database partition on it.

 Procedure:

 To add a database partition to a stopped partitioned database server using the

Control Center:

1. Open the Add Partitions wizard:

a. From the Control Center, expand the object tree until you find the instance object

that you want to work with. Right-click the object, and click Add Partitions from

the pop-up menu. The Add Partitions launchpad opens.

b. Click the Add Partitions button. The Add Partitions wizard opens.

2. Complete each of the applicable wizard pages. Click the wizard overview link on the

first page for more information. The Finish push button is available when you

complete enough information for the wizard to add the partition.

To add a database partition to a stopped partitioned database server using the

command line:

1. Issue DB2STOP to stop all the database partitions.

2. Run the ADD DBPARTITIONNUM command on the new server.

A database partition is created locally for every database that already exists in

the system. The database parameters for the new database partitions are set to

the default value, and each database partition remains empty until you move

data to it. Update the database configuration parameter values to match those

on the other database partitions.

3. Run the DB2START command to start the database system. Note that the node

configuration file (cfg) has already been updated to include the new server

during the installation of the new server.

4. Update the configuration file on the new database partition as follows:

122 Administration Guide: Implementation

a. On any existing database partitions, run the DB2START command.

Specify the new database partition values for DBPARTITIONNUM,

ADDDBPARTITIONNUM, HOSTNAME, PORT, and NETNAME parameters

as well as the COMPUTER, USER, and PASSWORD parameters.

You can also specify the source for any temporary table space container

definitions that need to be created with the databases. If you do not provide

table space information, temporary table space container definitions are

retrieved from the catalog partition for each database.

When the DB2START command is complete, the new server is stopped.

b. Stop the entire database manager by running the DB2STOP command.

When you stop all the database partitions in the system, the node

configuration file is updated to include the new database partition. The

node configuration file is not updated with the new server information until

DB2STOP is executed. This ensures that the ADD DBPARTITIONNUM

command, which is called when you specify the ADDDBPARTITIONNUM

parameter to the DB2START command, runs on the correct database

partition. When the utility ends, the new server partition is stopped.
5. Start the database manager by running the DB2START command.

The newly added database partition is now started with the rest of the system.

When all the database partitions in the system are running, you can run

system-wide activities, such as creating or dropping a database.

Note: You might have to issue the DB2START command twice for all database

partition servers to access the new db2nodes.cfg file.

6. Back up all databases on the new database partition. (Optional)

7. Redistribute data to the new database partition. (Optional)

 Related concepts:

v “Error recovery when adding database partitions” on page 128

v “Adding database partitions in a partitioned database environment” on page 123

 Related tasks:

v “Adding a database partition to a running database system” on page 119

v “Adding a database partition to a stopped database system on UNIX” on page

120

Adding database partitions in a partitioned database

environment

 You can add database partitions to the partitioned database system either when it

is running, or when it is stopped. Because adding a new server can be time

consuming, you may want to do it when the database manager is already running.

Use the ADD DBPARTITIONNUM command to add a database partition to a

system. This command can be invoked in the following ways:

v As an option on db2start

v With the command-line processor ADD DBPARTITIONNUM command

v With the API function sqleaddn

v With the API function sqlepstart

If your system is stopped, you use db2start. If it is running, you can use any of

the other choices.

Chapter 3. Creating a database 123

When you use the ADD DBPARTITIONNUM command to add a new database

partition to the system, all existing databases in the instance are expanded to the

new database partition. You can also specify which containers to use for temporary

table spaces for the databases. The containers can be:

v The same as those defined for the catalog partition for each database. (This is

the default.)

v The same as those defined for another database partition.

v Not created at all. You must use the ALTER TABLESPACE statement to add

temporary table space containers to each database before the database can be

used.

You cannot use a database on the new database partition to contain data until one

or more database partition groups are altered to include the new database

partition.

You cannot change from a single-partition database to a multi-partition database

by simply adding a database partition to your system. This is because the

redistribution of data across database partitions requires a distribution key on each

affected table. The distribution keys are automatically generated when a table is

created in a multi-partition database. In a single-partition database, distribution

keys can be explicitly created with the CREATE TABLE or ALTER TABLE SQL

statements.

Note: If no databases are defined in the system and you are running Enterprise

Server Edition on a UNIX operating system, edit the db2nodes.cfg file to

add a new database partition definition; do not use any of the procedures

described, as they apply only when a database exists.

Windows Considerations: If you are using Enterprise Server Edition on Windows

and have no databases in the instance, use the DB2NCRT command to scale the

database system. If, however, you already have databases, use the DB2START

ADDNODE command to ensure that a database partition is created for each

existing database when you scale the system. On Windows, you should never

manually edit the node configuration file (db2nodes.cfg), as this can introduce

inconsistencies into the file.

 Related tasks:

v “Adding a database partition to a running database system” on page 119

v “Adding a database partition to a stopped database system on Windows” on

page 122

v “Dropping a database partition” on page 125

Adding database partitions to an instance using the Add

Partitions wizard

 Use the Add Partitions wizard to create a partition and add it to one or more

database partition groups. First you add a new partition to your instance and

assign the partition to one or more database partition groups, then you make more

advanced choices.

 Prerequisites:

 To work with database partition groups, you must have SYSADM or DBADM

authority.

124 Administration Guide: Implementation

Procedure:

 To add partitions to an instance:

1. Open the Add Partitions wizard:

a. From the Control Center, expand the object tree until you find the instance

object that you want to work with. Right-click the object, and click Add

Partitions in the pop-up menu. The Add Partitions launchpad opens.

b. Click the Add Partitions button. The Add Partitions wizard opens.
2. Complete each of the applicable wizard pages. Click the wizard overview link

on the first page for more information. The Finish push button is available

when you complete enough information for the wizard to add the partition.

 Related concepts:

v “Partitioned databases” in Administration Guide: Planning

Adding database partitions using the Add Partitions launchpad

 Use the Add Partitions launchpad to guide you through the tasks necessary to add

partitions to an instance. The launchpad also helps you assign the newly added

partitions to database partition groups in the databases that are in the instance,

and then redistribute data in the database partition groups.

It is recommended that you backup all databases in the instance before and after

redistributing data in database partition groups. If you do not back up your

databases, you might corrupt the databases and you might not be able to recover

them.

 Procedure:

 To add partitions:

1. Optional: Back up the database.

2. Open the Add Partitions launchpad: From the Control Center, expand the

object tree until you find the instance object that you want to work with.

Right-click the object, and click Add Partitions in the pop-up menu. The Add

Partitions launchpad opens.

3. Add partitions.

4. Redistribute data.

5. Optional: Back up the database.

 Related tasks:

v “Backing up data using the Backup wizard” on page 387

v “Redistributing data in a database partition group” on page 128

v “Adding database partitions to an instance using the Add Partitions wizard” on

page 124

Dropping a database partition

 You can drop a database partition that is not being used by any database and free

the computer for other uses.

 Prerequisites:

Chapter 3. Creating a database 125

Verify that the database partition is not in use by issuing the DROP DBPARTITION

VERIFY command or the sqledrpn API.

v If you receive message SQL6034W (Database partition not used in any database),

you can drop the database partition.

v If you receive message SQL6035W (Database partition in use by database), use

the REDISTRIBUTE NODEGROUP command to redistribute the data from the

database partition that you are dropping to other database partitions from the

database alias.

Also ensure that all transactions for which this database partition was the

coordinator have all committed or rolled back successfully. This might require

doing crash recovery on other servers. For example, if you drop the coordinator

partition, and another database partition participating in a transaction crashed

before the coordinator partition was dropped, the crashed database partition will

not be able to query the coordinator partition for the outcome of any in-doubt

transactions.

 Procedure:

 To drop a database partition using the Control Center:

1. Optional: Back up the database.

2. Open the Drop Database Partitions launchpad. To open the Drop Database Partitions

launchpad:

a. Open the Database Partitions view. To open the Database Partitions wiew: From the

Control Center, expand the object tree until you find the instance for which you

want to view the database partitions. Right-click on the instance you want and

select Open–>Database Partitions from the pop-up menu. The Database Partitions

wiew opens for the selected instance.

b. Select the database partitions you want to drop.

c. Right-click the selected database partitions and click Drop in the pop-up menu. The

Drop Database Partitions launchpad opens.

3. Drop the database partitions from database partition groups.

Note: This operation does not drop the database partitions immediately. Instead, it

flags the database partitions that you want to drop so that data can be move off them

when you redistribute the data in the database partition group.

To drop a database partition using the command line processor:

1. Issue the DB2STOP command with the DROP NODENUM parameter to drop

the database partition. After the command completes successfully, the system is

stopped.

2. Start the database manager with the DB2START command.

 Related concepts:

v “Management of database server capacity” on page 29

v “Adding database partitions in a partitioned database environment” on page 123

 Related reference:

v “DROP DBPARTITIONNUM VERIFY command” in Command Reference

v “sqledrpn API - Check whether a database partition server can be dropped” in

Administrative API Reference

126 Administration Guide: Implementation

Dropping database partitions from the instance using the Drop

Partitions launchpad

 Use the Drop Partitions launchpad to guide you through the tasks necessary to

drop database partitions from database partition groups, redistribute data in

database partition groups, and drop partitions from an instance.

Note: When you drop database partitions from database partition groups the

database partitions are not immediately dropped. Instead, the database

partitions that you want to drop are flagged so that data can be move off

them when you redistribute the data in the database partition groups.

It is recommended that you backup all databases in the instance before and after

redistributing data in database partition groups. If you do not back up your

databases, you might corrupt the databases and you might not be able to recover

them.

 Procedure:

 To drop partitions using the Drop Partitions launchpad:

1. Optional: Back up the database.

2. Open the Drop Partitions launchpad:

a. Open the Partitions window: From the Control Center, expand the object

tree until you find the instance for which you want to view the partitions.

Right-click on the instance you want and select Open–>Partitions from the

pop-up menu. The Partitions window opens for the selected instance.

b. Select the partitions you want to drop.

c. Right-click the selected partitions and click Drop in the pop-up menu. The

Drop Partitions launchpad opens.
3. Drop the database partitions from database partition groups:

a. Confirm the database partitions you want to drop from the database

partition groups.

Note:

v You must drop the database partitions from database partition

groups before you drop partitions from the instance.

v This operation does not drop the database partitions immediately.

Instead, it flags the database partitions that you want to drop so

that data can be move off them when you redistribute the data in

the database partition group.
4. Redistribute data.

5. Drop partitions from the instance:

a. Open the Drop Partitions from Instance Confirmation window:

v Open the Partitions window as described above.

v Select the partitions you want to drop.

v Right-click the selected partitions and click Drop in the pop-up menu.

The Drop Partitions launchpad opens.

v Click the Drop Partitions from Instance push button. The Drop Partitions

from Instance Confirmation window opens.
b. In the Drop column, verify that you want to drop the partitions for the

selected instance.

Chapter 3. Creating a database 127

c. Click OK to open a window where you can schedule when you want to

drop the partition.
6. Optional: Back up the database.

 Related concepts:

v “Partitioned databases” in Administration Guide: Planning

 Related tasks:

v “Backing up data using the Backup wizard” on page 387

v “Redistributing data in a database partition group” on page 128

Redistributing data in a database partition group

 Use the Redistribute Data wizard to create an effective redistribution plan for your

database partition group and redistribute your data. First you select your

redistribution method and strategy, then you make more advanced choices.

 Prerequisites:

 To work with database partition groups, you must have SYSADM or DBADM

authority.

 Procedure:

 To redistribute data in your database partition group:

1. Open the Redistribute Data wizard: From the Control Center, expand the object

tree until you find the Database Partition Groups folder. Any existing database

partition groups are displayed in the contents pane on the right side of the

window. Right-click on the database partition group that you want to work

with and select Redistribute from the pop-up menu. The Redistribute Data

wizard opens.

You can also open the Redistribute Data wizard from the Add Partitions

launchpad or the Drop Partitions launchpad.

2. Complete each of the applicable wizard pages. Click the wizard overview link

on the first page for more information. The Finish push button is enabled

when you specify enough information for the wizard to redistribute your data.

 Related concepts:

v “Logs” in Administration Guide: Planning

v “Partitioned databases” in Administration Guide: Planning

 Related tasks:

v “Adding database partitions using the Add Partitions launchpad” on page 125

v “Dropping database partitions from the instance using the Drop Partitions

launchpad” on page 127

Error recovery when adding database partitions

 In version 8.1 and later, adding database partitions does not fail as a result of of

non-existent buffer pools because DB2 creates system buffer pools to provide

default automatic support for all buffer-pool page sizes. However, if one of these

system buffer pools is used, performance might be seriously affected because the

128 Administration Guide: Implementation

system buffer pools are very small. If a system buffer pool is used, a message is

written to the administration notification log.

System buffer pools are used in database partition addition scenarios in the

following circumstances:

v You add database partitions to a partitioned database environment that has one

or more system temporary table spaces with a page size that is different from

the default of 4 KB. When a database partition is created, only the

IBMDEFAULTDP buffer pool exists, and this buffer pool has a page size of 4 KB.

Consider the following examples:

1. You use the db2start command to add a database partition to the current

multi-partition database:

 DB2START DBPARTITIONNUM 2 ADD DBPARTITIONNUM HOSTNAME newhost PORT 2

2. You use the ADD DBPARTITIONNUM command after you manually update

the db2nodes.cfg file with the new database partition description.

One way to prevent these problems is to specify the WITHOUT TABLESPACES

clause on the ADD NODE or the db2start command. After doing this, you need

to use the CREATE BUFFERPOOL statement to create the buffer pools using ,

and associate the system temporary table spaces to the buffer pool using the

ALTER TABLESPACE statement.

v You add database partitions to an existing database partition group that has one

or more table spaces with a page size that is different from the default page size,

which is 4 KB. This occurs because the non-default page-size buffer pools

created on the new database partition have not been activated for the table

spaces.

Note: In previous versions of DB2, this command used the NODEGROUP

keyword instead of the DATABASE PARTITION GROUP keywords.

Consider the following example:

– You use the ALTER DATABASE PARTITION GROUP statement to add a

database partition to a database partition group, as follows:

 DB2START

 CONNECT TO mpp1

 ALTER DATABASE PARTITION GROUP ng1 ADD NODE (2)

One way to prevent this problem is to create buffer pools for each page size

and then to reconnect to the database before issuing the following ALTER

DATABASE PARTITION GROUP statement:

 DB2START

 CONNECT TO mpp1

 CREATE BUFFERPOOL bp1 SIZE 1000 PAGESIZE 8192

 CONNECT RESET

 CONNECT TO mpp1

 ALTER DATABASE PARTITION GROUP ng1 ADD NODE (2)

Note: If the database partition group has table spaces with the default page size,

message SQL1759W is returned:

 Related tasks:

v “Adding a database partition to a running database system” on page 119

v “Adding a database partition to a stopped database system on Windows” on

page 122

Chapter 3. Creating a database 129

Issuing commands to multiple database partitions

This section describes how to issue commands to multiple database partitions,

including problem resolution.

Issuing commands in a partitioned database environment

 In a partitioned database environment, you might want to issue commands to be

run on computers in the instance, or on database partition servers (nodes). You can

do so using the rah command or the db2_all command. The rah command allows

you to issue commands that you want to run at computers in the instance. If you

want the commands to run at database partition servers in the instance, you run

the db2_all command. This section provides an overview of these commands. The

information that follows applies to partitioned database environments only.

Notes:

1. On Linux and UNIX platforms, your login shell can be a Korn shell or any

other shell; however, there are differences in the way the different shells handle

commands containing special characters.

2. Also, on Linux and UNIX platforms, rah uses the remote shell program

specified by the DB2RSHCMD registry variable. You can select between the two

remote shell programs: ssh (for additional security), or rsh (or remsh for

HP-UX). The ssh remote shell program is used to prevent the transmission of

passwords in clear text in UNIX operating system environments. If this registry

variable is not set, rsh (or remsh for HP-UX) is used.

3. On Windows, to run the rah command or the db2_all command, you must be

logged on with a user account that is a member of the Administrators group.

To determine the scope of a command, refer to the Command Reference, which

indicates whether a command runs on a single database partition server, or on all

of them. If the command runs on one database partition server and you want it to

run on all of them, use db2_all. The exception is the db2trc command, which runs

on all the logical nodes (database partition servers) on a computer. If you want to

run db2trc on all logical nodes on all computers, use rah.

 Related concepts:

v “rah and db2_all commands overview” on page 130

v “Specifying the rah and db2_all commands” on page 132

 Related reference:

v “rah and db2_all command descriptions” on page 131

rah and db2_all commands overview

 You can run the commands sequentially at one database partition server after

another, or you can run the commands in parallel. On Linux and UNIX platforms,

if you run the commands in parallel, you can either choose to have the output sent

to a buffer and collected for display (the default behavior) or the output can be

displayed at the computer where the command is issued. On Windows, if you run

the commands in parallel, the output is displayed at the computer where the

command is issued.

To use the rah command, type:

 rah command

To use the db2_all command, type:

130 Administration Guide: Implementation

db2_all command

To obtain help about rah syntax, type

 rah "?"

The command can be almost anything which you could type at an interactive

prompt, including, for example, multiple commands to be run in sequence. On

Linux and UNIX platforms, you separate multiple commands using a semicolon (;).

On Windows, you separate multiple commands using an ampersand (&). Do not

use the separator character following the last command.

The following example shows how to use the db2_all command to change the

database configuration on all database partitions that are specified in the node

configuration file. Because the ; character is placed inside double quotation marks,

the request will run concurrently:

 db2_all ";DB2 UPDATE DB CFG FOR sample USING LOGFILSIZ 100"

 Related concepts:

v “Issuing commands in a partitioned database environment” on page 130

v “Specifying the rah and db2_all commands” on page 132

 Related reference:

v “rah and db2_all command descriptions” on page 131

rah and db2_all command descriptions

 You can use the following commands:

Command Description

rah Runs the command on all computers.

db2_all Runs the command on all database partition servers that you

specify.

db2_kill Abruptly stops all processes being run on multiple database

partition servers and cleans up all resources on all database

partition servers. This command renders your databases

inconsistent. Do not issue this command except under direction

from IBM service.

db2_call_stack

On Linux and UNIX platforms, causes all processes running on all

database partition servers to write call traceback to the syslog.

 On Windows, causes all processes running on all database partition

servers to write call traceback to the Pxxxx.nnn file in the instance

directory, where Pxxxx is the process ID and nnn is the database

partition number.

On Linux and UNIX platforms, these commands execute rah with certain implicit

settings such as:

v Run in parallel at all computers

v Buffer command output in /tmp/$USER/db2_kill, /tmp/$USER/db2_call_stack

respectively.

On Windows, these commands execute rah to run in parallel at all computers.

Chapter 3. Creating a database 131

Related concepts:

v “rah and db2_all commands overview” on page 130

v “Running commands in parallel on Linux and UNIX platforms” on page 133

v “Specifying the rah and db2_all commands” on page 132

Specifying the rah and db2_all commands

 You can specify the command:

v From the command line as the parameter

v In response to the prompt if you don’t specify any parameter.

You should use the prompt method if the command contains the following special

characters:

 | & ; < > () { } [] unsubstituted $

If you specify the command as the parameter on the command line, you must

enclose it in double quotation marks if it contains any of the special characters just

listed.

Note: On Linux and UNIX platforms, the command will be added to your

command history just as if you typed it at the prompt.

All special characters in the command can be entered normally (without being

enclosed in quotation marks, except for \). If you need to include a \ in your

command, you must type two backslashes (\\).

Note: On Linux and UNIX platforms, if you are not using a Korn shell, all special

characters in the command can be entered normally (without being enclosed

in quotation marks, except for ", \, unsubstituted $, and the single quotation

mark (')). If you need to include one of these characters in your command,

you must precede them by three backslashes (\\\). For example, if you

need to include a \ in your command, you must type four backslashes

(\\\\).

If you need to include a double quotation mark (") in your command, you must

precede it by three backslashes, for example, \\\".

Notes:

1. On Linux and UNIX platforms, you cannot include a single quotation mark (')

in your command unless your command shell provides some way of entering a

single quotation mark inside a singly quoted string.

2. On Windows, you cannot include a single quotation mark (') in your command

unless your command window provides some way of entering a single

quotation mark inside a singly quoted string.

When you run any korn-shell shell-script which contains logic to read from stdin

in the background, you should explicitly redirect stdin to a source where the

process can read without getting stopped on the terminal (SIGTTIN message). To

redirect stdin, you can run a script with the following form:

 shell_script </dev/null &

if there is no input to be supplied.

In a similar way, you should always specify </dev/null when running db2_all in

the background. For example:

132 Administration Guide: Implementation

db2_all ";run_this_command" </dev/null &

By doing this you can redirect stdin and avoid getting stopped on the terminal.

An alternative to this method, when you are not concerned about output from the

remote command, is to use the “daemonize” option in the db2_all prefix:

 db2_all ";daemonize_this_command" &

 Related concepts:

v “Additional rah information (Solaris and AIX only)” on page 135

v “Running commands in parallel on Linux and UNIX platforms” on page 133

 Related tasks:

v “Setting the default environment profile for rah on Windows” on page 141

 Related reference:

v “Controlling the rah command” on page 139

v “rah and db2_all command descriptions” on page 131

v “rah command prefix sequences” on page 135

Running commands in parallel on Linux and UNIX platforms

Note: The information in this section applies to Linux and UNIX platforms only.

By default, the command is run sequentially at each computer, but you can specify

to run the commands in parallel using background rshells by prefixing the

command with certain prefix sequences. If the rshell is run in the background, then

each command puts the output in a buffer file at its remote computer. This process

retrieves the output in two pieces:

1. After the remote command completes.

2. After the rshell terminates, which might be later if some processes are still

running.

The name of the buffer file is /tmp/$USER/rahout by default, but it can be specified

by the environment variables $RAHBUFDIR/$RAHBUFNAME.

When you specify that you want the commands to be run concurrently, by default,

this script prefixes an additional command to the command sent to all hosts to

check that $RAHBUFDIR and $RAHBUFNAME are usable for the buffer file. It

creates $RAHBUFDIR. To suppress this, export an environment variable

RAHCHECKBUF=no. You can do this to save time if you know the directory exists and

is usable.

Before using rah to run a command concurrently at multiple computers:

v Ensure that a directory /tmp/$USER exists for your user ID at each computer. To

create a directory if one does not already exist, run:

 rah ")mkdir /tmp/$USER"

v Add the following line to your .kshrc (for Korn shell syntax) or .profile, and

also type it into your current session:

 export RAHCHECKBUF=no

Chapter 3. Creating a database 133

v Ensure that each computer ID at which you run the remote command has an

entry in its .rhosts file for the ID which runs rah; and the ID which runs rah

has an entry in its .rhosts file for each computer ID at which you run the

remote command.

 Related concepts:

v “Additional rah information (Solaris and AIX only)” on page 135

 Related tasks:

v “Monitoring rah processes on Linux and UNIX platforms” on page 134

 Related reference:

v “Determining problems with rah on Linux and UNIX platforms” on page 141

v “rah command prefix sequences” on page 135

Monitoring rah processes on Linux and UNIX platforms

 Procedure:

 Note: The information in this section applies to Linux and UNIX platforms only.
While any remote commands are still running or buffered output is still being

accumulated, processes started by rah monitor activity to:

v Write messages to the terminal indicating which commands have not been run

v Retrieve buffered output.

The informative messages are written at an interval controlled by the environment

variable RAHWAITTIME. Refer to the help information for details on how specify

this. All informative messages can be completely suppressed by exporting

RAHWAITTIME=0.

The primary monitoring process is a command whose command name (as shown

by the ps command) is rahwaitfor. The first informative message tells you the pid

(process id) of this process. All other monitoring processes will appear as ksh

commands running the rah script (or the name of the symbolic link). If you want,

you can stop all monitoring processes by the command:

 kill <pid>

where <pid> is the process ID of the primary monitoring process. Do not specify a

signal number. Leave the default of 15. This will not affect the remote commands

at all, but will prevent the automatic display of buffered output. Note that there

might be two or more different sets of monitoring processes executing at different

times during the life of a single execution of rah. However, if at any time you stop

the current set, then no more will be started.

If your regular login shell is not a Korn shell (for example /bin/ksh), you can use

rah, but there are some slightly different rules on how to enter commands

containing the following special characters:

 " unsubstituted $ '

For more information, type rah "?". Also, in a Linux and UNIX environment, if

the login shell at the ID which executes the remote commands is not a Korn shell,

then the login shell at the ID which executes rah must also not be a Korn shell.

(rah makes the decision as to whether the remote ID’s shell is a Korn shell based

134 Administration Guide: Implementation

on the local ID). The shell must not perform any substitution or special processing

on a string enclosed in single quotation marks. It must leave it exactly as is.

 Related concepts:

v “Additional rah information (Solaris and AIX only)” on page 135

v “Running commands in parallel on Linux and UNIX platforms” on page 133

Additional rah information (Solaris and AIX only)

 To enhance performance, rah has been extended to use tree_logic on large systems.

That is, rah will check how many nodes the list contains, and if that number

exceeds a threshold value, it constructs a subset of the list and sends a recursive

invocation of itself to those nodes. At those nodes, the recursively invoked rah

follows the same logic until the list is small enough to follow the standard logic

(now the ″leaf-of-tree″ logic) of sending the command to all nodes on the list. The

threshold can be specified by environment variable RAHTREETHRESH, or defaults

to 15.

In the case of a multiple-logical-node-per-physical-node system, db2_all will favor

sending the recursive invocation to distinct physical nodes, which will then rsh to

other logical nodes on the same physical node, thus also reducing

inter-physical-node traffic. (This point applies only to db2_all, not rah, since rah

always sends only to distinct physical nodes.)

 Related concepts:

v “Running commands in parallel on Linux and UNIX platforms” on page 133

 Related tasks:

v “Monitoring rah processes on Linux and UNIX platforms” on page 134

rah command prefix sequences

 A prefix sequence is one or more special characters. Type one or more prefix

sequences immediately preceding the characters of the command without any

intervening blanks. If you want to specify more than one sequence, you can type

them in any order, but characters within any multicharacter sequence must be

typed in order. If you type any prefix sequences, you must enclose the entire

command, including the prefix sequences in double quotation marks, as in the

following examples:

v On Linux and UNIX platforms:

 rah "};ps -F pid,ppid,etime,args -u $USER"

v On Windows:

 rah "||db2 get db cfg for sample"

The prefix sequences are:

Sequence Purpose

| Runs the commands in sequence in the background.

|& Runs the commands in sequence in the background and terminates

the command after all remote commands have completed, even if

some processes are still running. This might be later if, for

example, child processes (on Linux and UNIX platforms) or

background processes (on Windows) are still running. In this case,

Chapter 3. Creating a database 135

the command starts a separate background process to retrieve any

remote output generated after command termination and writes it

back to the originating computer.

Note: On Linux and UNIX platforms, specifying & degrades

performance, because more rsh commands are required.

|| Runs the commands in parallel in the background.

||& Runs the commands in parallel in the background and terminates

the command after all remote commands have completed as

described for the |& case above.

Note: On Linux and UNIX platforms, specifying & degrades

performance, because more rsh commands are required.

; Same as ||& above. This is an alternative shorter form.

Note: On Linux and UNIX platforms, specifying ; degrades

performance relative to ||, because more rsh commands are

required.

] Prepends dot-execution of user’s profile before executing

command.

Note: Available on Linux and UNIX platforms only.

} Prepends dot-execution of file named in $RAHENV (probably

.kshrc) before executing command.

Note: Available on Linux and UNIX platforms only.

]} Prepends dot-execution of user’s profile followed by execution of

file named in $RAHENV (probably .kshrc) before executing

command.

Note: Available on Linux and UNIX platforms only.

) Suppresses execution of user’s profile and of file named in

$RAHENV.

Note: Available on Linux and UNIX platforms only.

' Echoes the command invocation to the computer.

< Sends to all the computers except this one.

<<−nnn< Sends to all-but-database partition server nnn (all database

partition servers in db2nodes.cfg except for node number nnn, see

the first paragraph following the last prefix sequence in this table).

<<+nnn< Sends to only database partition server nnn (the database partition

server in db2nodes.cfg whose database partition number is nnn,

see the first paragraph following the last prefix sequence in this

table).

 (blank character)

Runs the remote command in the background with stdin, stdout,

and stderr all closed. This option is valid only when running the

command in the background, that is, only in a prefix sequence

which also includes \ or ;. It allows the command to complete

much sooner (as soon as the remote command has been initiated).

136 Administration Guide: Implementation

If you specify this prefix sequence on the rah command line, then

either enclose the command in single quotation marks, or enclose

the command in double quotation marks, and precede the prefix

character by \ . For example,

 rah '; mydaemon'

or

 rah ";\ mydaemon"

When run as a background process, the rah command will never

wait for any output to be returned.

> Substitutes occurrences of <> with the computer name.

" Substitutes occurrences of () by the computer index, and

substitutes occurrences of ## by the database partition number.

Notes:

1. The computer index is a number that associated with a

computer in the database system. If you are not running

multiple logical partitions, the computer index for a computer

corresponds to the database partition number for that computer

in the node configuration file. To obtain the computer index for

a computer in a multiple logical partition database

environment, do not count duplicate entries for those

computers that run multiple logical partitions. For example, if

MACH1 is running two logical partitions and MACH2 is also

running two logical partitions, the database partition number

for MACH3 is 5 in the node configuration file. The computer

index for MACH3, however, would be 3.

On Windows, do not edit the node configuration file. To obtain

the computer index, use the db2nlist command.

2. When " is specified, duplicates are not eliminated from the list

of computers.

When using the <<−nnn< and <<+nnn< prefix sequences, nnn is any 1-, 2- or 3-digit

database partition number which must match the nodenum value in the

db2nodes.cfg file.

Note: Prefix sequences are considered to be part of the command. If you specify a

prefix sequence as part of a command, you must enclose the entire

command, including the prefix sequences, in double quotation marks.

 Related concepts:

v “Running commands in parallel on Linux and UNIX platforms” on page 133

v “Specifying the rah and db2_all commands” on page 132

 Related reference:

v “rah and db2_all command descriptions” on page 131

Specifying the list of computers in a partitioned database

environment

 Procedure:

Chapter 3. Creating a database 137

By default, the list of computers is taken from the node configuration file,

db2nodes.cfg. You can override this by:

v Specifying a pathname to the file that contains the list of computers by exporting

(on Linux and UNIX platforms) or setting (on Windows) the environment

variable RAHOSTFILE.

v Specifying the list explicitly, as a string of names separated by spaces, by

exporting (on Linux and UNIX platforms) or setting (on Windows) the

environment variable RAHOSTLIST.

Note: If both of these environment variables are specified, RAHOSTLIST takes

precedence.

Note: On Windows, to avoid introducing inconsistencies into the node

configuration file, do not edit it manually. To obtain the list of computers in

the instance, use the db2nlist command.

 Related tasks:

v “Eliminating duplicate entries from a list of computers in a partitioned database

environment” on page 138

Eliminating duplicate entries from a list of computers in a

partitioned database environment

 Procedure:

 If you are running DB2 Enterprise Server Edition with multiple logical database

partition servers on one computer, your db2nodes.cfg file will contain multiple

entries for that computer. In this situation, the rah command needs to know

whether you want the command to be executed once only on each computer or

once for each logical database partition listed in the db2nodes.cfg file. Use the rah

command to specify computers. Use the db2_all command to specify logical

database partitions.

Note: On Linux and UNIX platforms, if you specify computers, rah will normally

eliminate duplicates from the computer list, with the following exception: if

you specify logical database partitions, db2_all prepends the following

assignment to your command:

 export DB2NODE=nnn (for Korn shell syntax)

where nnn is the database partition number taken from the corresponding

line in the db2nodes.cfg file, so that the command will be routed to the

desired database partition server.

When specifying logical database partitions, you can restrict the list to include all

logical database partitions except one, or only specify one database partition server

using the <<−nnn< and <<+nnn< prefix sequences. You might want to do this if you

want to run a command to catalog the database partition first, and when that has

completed, run the same command at all other database partition servers, possibly

in parallel. This is usually required when running the db2 restart database

command. You will need to know the database partition number of the catalog

partition to do this.

If you execute db2 restart database using the rah command, duplicate entries are

eliminated from the list of computers. However if you specify the ” prefix, then

138 Administration Guide: Implementation

duplicates are not eliminated, because it is assumed that use of the ” prefix implies

sending to each database partition server, rather than to each computer.

 Related tasks:

v “Specifying the list of computers in a partitioned database environment” on

page 137

 Related reference:

v “RESTART DATABASE command” in Command Reference

v “rah command prefix sequences” on page 135

Controlling the rah command

 You can use the following environment variables to control the rah command.

 Table 15.

Name Meaning Default

$RAHBUFDIR

Note: Available on

Linux and UNIX

platforms only.

Directory for buffer /tmp/$USER

$RAHBUFNAME

Note: Available on

Linux and UNIX

platforms only.

Filename for buffer rahout

$RAHOSTFILE (on

Linux and UNIX

platforms);

RAHOSTFILE (on

Windows)

File containing list of hosts db2nodes.cfg

$RAHOSTLIST (on

Linux and UNIX

platforms);

RAHOSTLIST (on

Windows)

List of hosts as a string extracted from $RAHOSTFILE

$RAHCHECKBUF

Note: Available on

Linux and UNIX

platforms only.

If set to ″no″, bypass checks not set

$RAHSLEEPTIME (on

Linux and UNIX

platforms);

RAHSLEEPTIME (on

Windows)

Time in seconds this script will wait for

initial output from commands run in parallel

86400 seconds for db2_kill, 200 seconds for

all other

Chapter 3. Creating a database 139

Table 15. (continued)

Name Meaning Default

$RAHWAITTIME (on

Linux and UNIX

platforms);

RAHWAITTIME (on

Windows)

On Windows, interval in seconds between

successive checks that remote jobs are still

running.

On Linux and UNIX platforms, interval in

seconds between successive checks that

remote jobs are still running and rah:

waiting for <pid> ... messages.

On all platforms, specify any positive integer.

Prefix value with a leading zero to suppress

messages, for example, export

RAHWAITTIME=045.

It is not necessary to specify a low value as

rah does not rely on these checks to detect

job completion.

45 seconds

$RAHENV

Note: Available on

Linux and UNIX

platforms only.

Specifies filename to be executed if

$RAHDOTFILES=E or K or PE or B

$ENV

$RAHUSER (on Linux

and UNIX platforms);

RAHUSER (on

Windows)

On Linux and UNIX platforms, user ID

under which the remote command is to be

run.

On Windows, the logon account associated

with the DB2 Remote Command Service

$USER

Note: On Linux and UNIX platforms, the value of $RAHENV where rah is run is

used, not the value (if any) set by the remote shell.

 Related reference:

v “Using $RAHDOTFILES on Linux and UNIX platforms” on page 140

Using $RAHDOTFILES on Linux and UNIX platforms

Note: The information in this section applies to Linux and UNIX platforms only.

Following are the .files that are run if no prefix sequence is specified:

P .profile

E File named in $RAHENV (probably .kshrc)

K Same as E

PE .profile followed by file named in $RAHENV (probably .kshrc)

B Same as PE

N None (or Neither)

Note: If your login shell is not a Korn shell, any dot files you specify to be

executed will be executed in a Korn shell process, and so must conform to

Korn shell syntax. So, for example, if your login shell is a C shell, to have

140 Administration Guide: Implementation

your .cshrc environment set up for commands executed by rah, you should

either create a Korn shell INSTHOME/.profile equivalent to your .cshrc and

specify in your INSTHOME/.cshrc:

 setenv RAHDOTFILES P

or you should create a Korn shell INSTHOME/.kshrc equivalent to your

.cshrc and specify in your INSTHOME/.cshrc:

 setenv RAHDOTFILES E

 setenv RAHENV INSTHOME/.kshrc

Also, it is essential that your .cshrc does not write to stdout if there is no

tty (as when invoked by rsh). You can ensure this by enclosing any lines

which write to stdout by, for example,

 if { tty -s } then echo "executed .cshrc";

 endif

 Related reference:

v “Controlling the rah command” on page 139

Setting the default environment profile for rah on Windows

 Procedure:

 Note: The information in this section applies to Windows® only.
To set the default environment profile for the rah command, use a file called

db2rah.env, which should be created in the instance directory. The file should have

the following format:

 ; This is a comment line

 DB2INSTANCE=instancename

 DB2DBDFT=database

 ; End of file

You can specify all the environment variables that you need to initialize the

environment for rah.

 Related concepts:

v “Specifying the rah and db2_all commands” on page 132

Determining problems with rah on Linux and UNIX platforms

 Note: The information in this section applies to Linux and UNIX platforms only.
Here are suggestions on how to handle some problems that you might encounter

when you are running rah:

1. rah hangs (or takes a very long time)

This problem might be caused because:

v rah has determined that it needs to buffer output, and you did not export

RAHCHECKBUF=no. Therefore, before running your command, rah sends a

command to all computers to check the existence of the buffer directory, and

to create it if it does not exist.

v One or more of the computers where you are sending your command is not

responding. The rsh command will eventually time out but the time-out

interval is quite long, usually about 60 seconds.
2. You have received messages such as:

v Login incorrect

Chapter 3. Creating a database 141

v Permission denied
Either one of the computers does not have the ID running rah correctly defined

in its .hosts file, or the ID running rah does not have one of the computers

correctly defined in its .rhosts file. If the DB2RSHCMD registry variable has

been configured to use ssh, then the ssh clients and servers on each computer

might not be configured correctly.

Note: You might have a need to have greater security regarding the

transmission of passwords in clear text between database partitions. This

will depend on the remote shell program you are using. rah uses the

remote shell program specified by the DB2RSHCMD registry variable.

You can select between the two remote shell programs: ssh (for

additional security), or rsh (or remsh for HP-UX). If this registry variable

is not set, rsh (or remsh for HP-UX) is used.

3. When running commands in parallel using background remote shells, although

the commands run and complete within the expected elapsed time at the

computers, rah takes a long time to detect this and put up the shell prompt.

The ID running rah does not have one of the computers correctly defined in its

.rhosts file, or if the DB2RSHCMD registry variable has been configured to use

ssh, then the ssh clients and servers on each computer might not be configured

correctly.

4. Although rah runs fine when run from the shell command line, if you run rah

remotely using rsh, for example,

 rsh somewher -l $USER db2_kill

rah never completes.

This is normal. rah starts background monitoring processes, which continue to

run after it has exited. Those processes will normally persist until all processes

associated with the command you ran have themselves terminated. In the case

of db2_kill, this means termination of all database managers. You can

terminate the monitoring processes by finding the process whose command is

rahwaitfor and kill <process_id>. Do not specify a signal number. Instead, use

the default (15).

5. The output from rah is not displayed correctly, or rah incorrectly reports that

$RAHBUFNAME does not exist, when multiple commands of rah were issued

under the same $RAHUSER.

This is because multiple concurrent executions of rah are trying to use the same

buffer file (for example, $RAHBUFDIR/$RAHBUFNAME) for buffering the

outputs. To prevent this problem, use a different $RAHBUFNAME for each

concurrent rah command, for example in the following ksh:

 export RAHBUFNAME=rahout

 rah ";$command_1" &

 export RAHBUFNAME=rah2out

 rah ";$command_2" &

or use a method that makes the shell choose a unique name automatically such

as:

 RAHBUFNAME=rahout.$$ db2_all "....."

Whatever method you use, you must ensure you clean up the buffer files at

some point if disk space is limited. rah does not erase a buffer file at the end of

execution, although it will erase and then re-use an existing file the next time

you specify the same buffer file.

6. You entered

 rah ’"print from ()’

142 Administration Guide: Implementation

and received the message:

 ksh: syntax error at line 1 : (' unexpected

Prerequisites for the substitution of () and ## are:

v Use db2_all, not rah.

v Ensure a RAHOSTFILE is used either by exporting RAHOSTFILE or by

defaulting to your /sqllib/db2nodes.cfg file. Without these prerequisites,

rah will leave the () and ## as is. You receive an error because the command

print from () is not valid.
For a performance tip when running commands in parallel, use | rather than

|&, and use || rather than ||& or ; unless you truly need the function

provided by &. Specifying & requires more remote shell commands and

therefore degrades performance.

 Related reference:

v “Controlling the rah command” on page 139

Using Windows database partition servers

When working to change the characteristics of your configuration in a Windows

environment, the tasks involved are carried out using specific utilities.

The utilities presented here are:

v “Listing database partition servers in an instance”

v “Adding a database partition server to an instance (Windows)” on page 144

v “Changing the database partition (Windows)” on page 145

v “Dropping a database partition from an instance (Windows)” on page 147

Listing database partition servers in an instance

 Procedure:

 On Windows, use the db2nlist command to obtain a list of database partition

servers that participate in an instance.

The command is used as follows:

 db2nlist

When using this command as shown, the default instance is the current instance

(set by the DB2INSTANCE environment variable). To specify a particular instance,

you can specify the instance using:

 db2nlist /i:instName

where instName is the particular instance name you want.

You can also optionally request the status of each database partition server by

using:

 db2nlist /s

The status of each database partition server might be one of: starting, running,

stopping, or stopped.

 Related tasks:

v “Adding a database partition server to an instance (Windows)” on page 144

Chapter 3. Creating a database 143

v “Changing the database partition (Windows)” on page 145

v “Dropping a database partition from an instance (Windows)” on page 147

Adding a database partition server to an instance (Windows)

 Procedure:

 On Windows, use the db2ncrt command to add a database partition server to an

instance.

Note: Do not use the db2ncrt command if the instance already contains databases.

Instead, use the db2start addnode command. This ensures that the database

is correctly added to the new database partition server. DO NOT EDIT the

db2nodes.cfg file, since changing the file might cause inconsistencies in the

partitioned database environment.

The command has the following required parameters:

 db2ncrt /n:node_number

 /u:username,password

 /p:logical_port

v /n:

The unique database partition number to identify the database partition server.

The number can be from 1 to 999 in ascending sequence.

v /u:

The logon account name and password of the DB2 service.

v /p:logical_port

The logical port number used for the database partition server if the logical port

is not zero (0). If not specified, the logical port number assigned is 0.

The logical port parameter is only optional when you create the first database

partition on a computer. If you create a logical database partition, you must specify

this parameter and select a logical port number that is not in use. There are several

restrictions:

v On every computer there must be a database partition server with a logical port

0.

v The port number cannot exceed the port range reserved for FCM

communications in the services file in %SystemRoot%\system32\drivers\etc

directory. For example, if you reserve a range of four ports for the current

instance, then the maximum port number would be 3 (ports 1, 2, and 3; port 0 is

for the default logical database partition). The port range is defined when

db2icrt is used with the /r:base_port, end_port parameter.

There are also several optional parameters:

v /g:network_name

Specifies the network name for the database partition server. If you do not

specify this parameter, DB2 uses the first IP address it detects on your system.

Use this parameter if you have multiple IP addresses on a computer and you

want to specify a specific IP address for the database partition server. You can

enter the network_name parameter using the network name or IP address.

v /h:host_name

The TCP/IP host name that is used by FCM for internal communications if the

host name is not the local host name. This parameter is required if you add the

database partition server on a remote computer.

144 Administration Guide: Implementation

v /i:instance_name

The instance name; the default is the current instance.

v /m:computer_name

The computer name of the Windows workstation on which the database

partition resides; the default name is the computer name of the local computer.

v /o:instance_owning_computer

The computer name of the computer that is the instance-owning computer; the

default is the local computer. This parameter is required when the db2ncrt

command is invoked on any computer that is not the instance-owning computer.

For example, if you want to add a new database partition server to the instance

TESTMPP (so that you are running multiple logical database partitions) on the

instance-owning computer MYMACHIN, and you want this new database

partition to be known as database partition 2 using logical port 1, enter:

 db2ncrt /n:2 /p:1 /u:my_id,my_pword /i:TESTMPP

 /M:TEST /o:MYMACHIN

 Related reference:

v “db2icrt - Create instance command” in Command Reference

v “db2ncrt - Add database partition server to an instance command” in Command

Reference

v “db2start - Start DB2 command” in Command Reference

Changing the database partition (Windows)

 Procedure:

 On Windows, use the db2nchg command to do the following:

v Move the database partition from one computer to another.

v Change the TCP/IP host name of the computer.

If you are planning to use multiple network adapters, you must use this

command to specify the TCP/IP address for the “netname” field in the

db2nodes.cfg file.

v Use a different logical port number.

v Use a different name for the database partition server.

The command has the following required parameter:

 db2nchg /n:node_number

The parameter /n: is the number of the database partition server’s configuration

you want to change. This parameter is required.

Optional parameters include:

v /i:instance_name

Specifies the instance that this database partition server participates in. If you do

not specify this parameter, the default is the current instance.

v /u:username,password

Changes the logon account name and password for the DB2 database service. If

you do not specify this parameter, the logon account and password remain the

same.

v /p:logical_port

Chapter 3. Creating a database 145

Changes the logical port for the database partition server. This parameter must

be specified if you move the database partition server to a different computer. If

you do not specify this parameter, the logical port number remains unchanged.

v /h:host_name

Changes the TCP/IP hostname used by FCM for internal communications. If

you do not specify this parameter, the hostname is unchanged.

v /m:computer_name

Moves the database partition server to another computer. The database partition

server can only be moved if there are no existing databases in the instance.

v /g:network_name

Changes the network name for the database partition server.

Use this parameter if you have multiple IP addresses on a computer and you

want to use a specific IP address for the database partition server. You can enter

the network_name using the network name or the IP address.

For example, to change the logical port assigned to database partition 2, which

participates in the instance TESTMPP, to use the logical port 3, enter the following

command:

 db2nchg /n:2 /i:TESTMPP /p:3

The DB2 database manager provides the capability of accessing DB2 database

system registry variables at the instance level on a remote computer. Currently,

DB2 database system registry variables are stored in three different levels:

computer or global level, instance level, and database partition level. The registry

variables stored at the instance level (including the database partition level) can be

redirected to another computer by using DB2REMOTEPREG. When

DB2REMOTEPREG is set, the DB2 database manager will access the DB2 database

system registry variables from the computer pointed to by DB2REMOTEPREG. The

db2set command would appear as:

 db2set DB2REMOTEPREG=<remote workstation>

where <remote workstation> is the remote workstation name.

Note:

v Care should be taken in setting this option since all DB2 database instance

profiles and instance listings will be located on the specified remote

computer name.

v If your environment includes users from domains, ensure that the logon

account associated with the DB2 instance service is a domain account.

This ensures that the DB2 instance has the appropriate privileges to

enumerate groups at the domain level.

This feature might be used in combination with setting DBINSTPROF to point to a

remote LAN drive on the same computer that contains the registry.

 Related concepts:

v “DB2 registry and environment variables” in Performance Guide

 Related reference:

v “db2nchg - Change database partition server configuration command” in

Command Reference

146 Administration Guide: Implementation

Dropping a database partition from an instance (Windows)

 Procedure:

 On Windows, use the db2ndrop command to drop a database partition server

from an instance that has no databases. If you drop a database partition server, its

database partition number can be reused for a new database partition server.

Exercise caution when you drop database partition servers from an instance. If you

drop the instance-owning database partition server zero (0) from the instance, the

instance will become unusable. If you want to drop the instance, use the db2idrop

command.

Note: Do not use the db2ndrop command if the instance contains databases.

Instead, use the db2stop drop nodenum command. This ensures that the

database is correctly removed from the database partition. DO NOT EDIT

the db2nodes.cfg file, since changing the file might cause inconsistencies in

the partitioned database environment.

If you want to drop a database partition that is assigned the logical port 0 from a

computer that is running multiple logical database partitions, you must drop all

the other database partitions assigned to the other logical ports before you can

drop the database partition assigned to logical port 0. Each database partition

server must have a database partition assigned to logical port 0.

The command has the following parameters:

 db2ndrop /n:node_number /i:instance_name

v /n:

The unique database partition number to identify the database partition server.

This is a required parameter. The number can be from zero (0) to 999 in

ascending sequence. Recall that database partition zero (0) represents the

instance-owning computer.

v /i:instance_name

The instance name. This is an optional parameter. If not given, the default is the

current instance (set by the DB2INSTANCE registry variable).

 Related concepts:

v “DB2 registry and environment variables” in Performance Guide

 Related reference:

v “db2idrop - Remove instance command” in Command Reference

v “db2ndrop - Drop database partition server from an instance command” in

Command Reference

v “db2stop - Stop DB2 command” in Command Reference

Creating table spaces

There are different types of tables spaces that are used by the database manager

and for use by applications and users.

Chapter 3. Creating a database 147

Table spaces

It is easier to manage very large databases if you partition them into separately

managed parts called table spaces.

A table space lets you assign the location of data to particular logical devices or

portions thereof. For example, when creating a table you can specify that its

indexes or its long columns with long or large object (LOB) data be kept away

from the rest of the table data.

A table space can be spread over one or more physical storage devices (containers)

for increased performance. However, it is recommended that all the devices or

containers within a table space have similar performance characteristics.

A table space can be managed in two different ways: as a system-managed space

(SMS) or as a database-managed space (DMS).

 Related concepts:

v “Container” on page 455

Defining initial table spaces

 When a database is created, three table spaces are defined:

v SYSCATSPACE for the system catalog tables

v TEMPSPACE1 for system temporary tables created during database processing

v USERSPACE1 for user-defined tables and indexes

Note: When you first create a database no user temporary table space is created.

If you do not specify any table space parameters with the CREATE DATABASE

command, the database manager creates these table spaces using system managed

storage (SMS) directory containers. These directory containers are created in the

subdirectory created for the database. The extent size for these table spaces is set to

the default.

If you do use the CREATE DATABASE command, you can specify the page size

for the default buffer pool and the intial table spaces. This default also represents

the default page size for all future CREATE BUFFERPOOL and CREATE

TABLESPACE statements. If you do not specify the page size when creating the

database, the default page size is 4 KB.

 Prerequisites:

 The database must be created and you must have the authority to create table

spaces.

 Procedure:

 To define initial table spaces using the Control Center:

1. Expand the object tree until you see the Databases folder.

2. Right-click the Databases folder, and select Create —> Standard or Create —> With

Automatic Maintenance from the pop-up menu.

3. Follow the steps to complete this task.

148 Administration Guide: Implementation

To define initial table spaces using the command line, enter:

 CREATE DATABASE <name>

 CATALOG TABLESPACE

 MANAGED BY SYSTEM USING (’<path>’)

 EXTENTSIZE <value> PREFETCHSIZE <value>

 USER TABLESPACE

 MANAGED BY DATABASE USING (FILE’<path>’ 5000,

 FILE’<path>’ 5000)

 EXTENTSIZE <value> PREFETCHSIZE <value>

 TEMPORARY TABLESPACE

 MANAGED BY SYSTEM USING (’<path>’)

 WITH "<comment>"

If you do not want to use the default definition for these table spaces, you might

specify their characteristics on the CREATE DATABASE command. For example,

the following command could be used to create your database on Windows:

 CREATE DATABASE PERSONL

 CATALOG TABLESPACE

 MANAGED BY SYSTEM USING (’d:\pcatalog’,’e:\pcatalog’)

 EXTENTSIZE 16 PREFETCHSIZE 32

 USER TABLESPACE

 MANAGED BY DATABASE USING (FILE’d:\db2data\personl’ 5000,

 FILE’d:\db2data\personl’ 5000)

 EXTENTSIZE 32 PREFETCHSIZE 64

 TEMPORARY TABLESPACE

 MANAGED BY SYSTEM USING (’f:\db2temp\personl’)

 WITH "Personnel DB for BSchiefer Co"

In this example, the definition for each of the initial table spaces is explicitly

provided. You only need to specify the table space definitions for those table

spaces for which you do not want to use the default definition.

Note: When working in a partitioned database environment, you cannot create or

assign containers to specific database partitions. First, you must create the

database with default user and temporary table spaces. Then you should use

the CREATE TABLESPACE statement to create the required table spaces.

Finally, you can drop the default table spaces.

The coding of the MANAGED BY phrase on the CREATE DATABASE command

follows the same format as the MANAGED BY phrase on the CREATE

TABLESPACE statement.

 Related concepts:

v “System catalog tables” on page 175

v “Table space design” in Administration Guide: Planning

 Related tasks:

v “Creating a table space” on page 149

 Related reference:

v “CREATE DATABASE command” in Command Reference

Creating a table space

 Table spaces establish the relationship between the physical storage devices used

by your database system and the logical containers or tables used to store data.

Chapter 3. Creating a database 149

Creating a table space within a database assigns containers to the table space and

records its definitions and attributes in the database system catalog. You can then

create tables within this table space.

When you create a database, three initial table spaces are created. The page size for

the three initial table spaces is based on the default that is established or accepted

when you use the CREATE DATABASE command. This default also represents the

default page size for all future CREATE BUFFERPOOL and CREATE TABLESPACE

statements. If you do not specify the page size when creating the database, the

default page size is 4 KB. If you do not specify the page size when creating a table

space, the default page size is the one set when you created the database.

 Prerequisites:

 You must know the device or file names of the containers that you will reference

when creating your table spaces. In addition, you must know the space associated

with each device or file name that you will allocate to the table space.

 Procedure:

 To create a table space using the Control Center:

1. Expand the object tree until you see the Table spaces folder.

2. Right-click the Table spaces folder, and select Create —> Table Space Using Wizard

from the pop-up menu.

3. Follow the steps in the wizard to complete your task.

To create an SMS table space using the command line, enter:

 CREATE TABLESPACE <NAME>

 MANAGED BY SYSTEM

 USING (’<path>’)

To create a DMS table space using the command line, enter:

 CREATE TABLESPACE <NAME>

 MANAGED BY DATABASE

 USING (FILE’<path>’ <size>)

The following SQL statement creates an SMS table space on Windows using three

directories on three separate drives:

 CREATE TABLESPACE RESOURCE

 MANAGED BY SYSTEM

 USING (’d:\acc_tbsp’, ’e:\acc_tbsp’, ’f:\acc_tbsp’)

The following SQL statement creates a DMS table space using two file containers,

each with 5,000 pages:

 CREATE TABLESPACE RESOURCE

 MANAGED BY DATABASE

 USING (FILE’d:\db2data\acc_tbsp’ 5000,

 FILE’e:\db2data\acc_tbsp’ 5000)

In the previous two examples, explicit names are provided for the containers.

However, if you specify relative container names, the container is created in the

subdirectory created for the database.

When creating table space containers, the database manager creates any directory

levels that do not exist. For example, if a container is specified as

150 Administration Guide: Implementation

/project/user_data/container1, and the directory /project does not exist, then

the database manager creates the directories /project and /project/user_data.

Starting with DB2 Universal Database Version 8.2, FixPak 4, any directories created

by the database manager are created with PERMISSION 700. This means that only

the owner has read, write, and execute access.

When creating multiple instances, note the following scenario:

1. Using the same directory structure as above, suppose that directory levels

/project/user_data do not exist.

2. user1 creates an instance, named user1 by default, then creates a database, and

then creates a table space with /project/user_data/container1 as one of its

containers.

3. user2 creates an instance, named user2 by default, then creates a database, and

then attempts to create a table space with /project/user_data/container2 as

one of its containers.

Because the database manager created directory levels /project/user_data with

PERMISSION 700 from the first request, user2 does not have access to these

directory levels and cannot create container2 in those directories. In this case, the

CREATE TABLESPACE operation fails.

There are two methods to resolve this conflict:

1. Create the directory /project/user_data before creating the table spaces and

set the permission to whatever access is needed for both user1 and user2 to

create the table spaces. If all levels of table space directory exist, the database

manager does not modify the access.

2. After user1 creates /project/user_data/container1, set the permission of

/project/user_data to whatever access is needed for user2 to create the table

space.

If a subdirectory is created by the database manager, it might also be deleted by

the database manager when the table space is dropped.

The assumption in the previous examples is that the table spaces are not associated

with a specific database partition group. The default database partition group

IBMDEFAULTGROUP is used when the following parameter is not specified in the

statement:

 IN database_partition_group_name

The following SQL statement creates a DMS table space on a Linux and UNIX

system using three logical volumes of 10 000 pages each, and specifies their I/O

characteristics:

 CREATE TABLESPACE RESOURCE

 MANAGED BY DATABASE

 USING (DEVICE ’/dev/rdblv6’ 10000,

 DEVICE ’/dev/rdblv7’ 10000,

 DEVICE ’/dev/rdblv8’ 10000)

 OVERHEAD 7.5

 TRANSFERRATE 0.06

The UNIX devices mentioned in this SQL statement must already exist, and the

instance owner and the SYSADM group must be able to write to them.

Chapter 3. Creating a database 151

The following example creates a DMS table space on a database partition group

called ODDGROUP in a UNIX multi-partition database. ODDGROUP must be

previously created with a CREATE DATABASE PARTITION GROUP statement. In

this case, the ODDGROUP database partition group is assumed to be made up of

database partitions numbered 1, 3, and 5. On all database partitions, use the device

/dev/hdisk0 for 10 000 4 KB pages. In addition, declare a device for each database

partition of 40 000 4 KB pages.

 CREATE TABLESPACE PLANS IN ODDGROUP

 MANAGED BY DATABASE

 USING (DEVICE ’/dev/HDISK0’ 10000, DEVICE ’/dev/n1hd01’ 40000)

 ON DBPARTITIONNUM 1

 (DEVICE ’/dev/HDISK0’ 10000, DEVICE ’/dev/n3hd03’ 40000)

 ON DBPARTITIONNUM 3

 (DEVICE ’/dev/HDISK0’ 10000, DEVICE ’/dev/n5hd05’ 40000)

 ON DBPARTITIONNUM 5

UNIX devices are classified into two categories: character serial devices and

block-structured devices. For all file-system devices, it is normal to have a

corresponding character serial device (or raw device) for each block device (or

cooked device). The block-structured devices are typically designated by names

similar to “hd0” or “fd0”. The character serial devices are typically designated by

names similar to “rhd0”, “rfd0”, or “rmt0”. These character serial devices have

faster access than block devices. The character serial device names should be used

on the CREATE TABLESPACE command and not block device names.

The overhead and transfer rate help to determine the best access path to use when

the SQL statement is compiled. The current defaults for new table spaces in

databases created in DB2 Version 9.1 or later are:

v OVERHEAD 7.5 ms

v TRANSFERRATE 0.06 ms

New table spaces in databases created in earlier versions of DB2 use the following

defaults:

v OVERHEAD 12.67 ms

v TRANSFERRATE 0.18 ms

DB2 can greatly improve the performance of sequential I/O using the sequential

prefetch facility, which uses parallel I/O.

You can also create a table space that uses a page size larger than the default 4 KB

size. The following SQL statement creates an SMS table space on a Linux and

UNIX system with an 8 KB page size.

 CREATE TABLESPACE SMS8K

 PAGESIZE 8192

 MANAGED BY SYSTEM

 USING (’FSMS_8K_1’)

 BUFFERPOOL BUFFPOOL8K

Notice that the associated buffer pool must also have the same 8 KB page size.

The created table space cannot be used until the buffer pool it references is

activated.

You can use the ALTER TABLESPACE SQL statement to add, drop, or resize

containers to a DMS table space and modify the PREFETCHSIZE, OVERHEAD,

and TRANSFERRATE settings for a table space. You should commit the transaction

152 Administration Guide: Implementation

issuing the table space statement as soon as possible following the ALTER

TABLESPACE SQL statement to prevent system catalog contention.

Note: The PREFETCHSIZE value should be a multiple of the EXTENTSIZE value.

For example if the EXTENTSIZE is 10, the PREFETCHSIZE should be 20 or

30. You should use the following equation to set your prefetch size manually

when creating a table space:

 prefetch size = (number of containers) X (number of physical spindles per

 container) X extent size

You should also consider letting the DB2 database system automatically

determine the prefetch size.

Direct I/O (DIO) improves memory performance because it bypasses caching at

the file system level. This process reduces CPU overhead and makes more memory

available to the database instance.

Concurrent I/O (CIO) includes the advantages of DIO and also relieves the

serialization of write accesses.

DIO and CIO are supported on AIX; DIO is supported on HP-UX, Solaris

Operating Environment, Linux, and Windows operating systems.

The keywords NO FILE SYSTEM CACHING and FILE SYSTEM CACHING are

part of the CREATE and ALTER TABLESPACE SQL statements to allow you to

specify whether DIO or CIO is to be used with each table space. When NO FILE

SYSTEM CACHING is in effect, the database manager attempts to use Concurrent

I/O (CIO) wherever possible. In cases where CIO is not supported (for example, if

JFS is used), DIO is used instead.

When you issue the CREATE TABLESPACE statement, the dropped table recovery

feature is turned on by default. This feature lets you recover dropped table data

using table space-level restore and rollforward operations. This is useful because it

is faster than database-level recovery, and your database can remain available to

users.

However, the dropped table recovery feature can have some performance impact

on forward recovery when there are many drop table operations to recover or

when the history file is very large.You might want to disable this feature if you

plan to run numerous drop table operations, and you either uses circular logging

or you do not think you will want to recover any of the dropped tables. To disable

this feature, you can explicitly set the DROPPED TABLE RECOVERY option to

OFF when you issue the CREATE TABLESPACE statement. Alternatively, you can

turn off the dropped table recovery feature for an existing table space using the

ALTER TABLESPACE statement.

 Related concepts:

v “Table space design” in Administration Guide: Planning

v “Table spaces in database partition groups” on page 163

v “Database managed space” in Administration Guide: Planning

v “System managed space” in Administration Guide: Planning

v “Sequential prefetching” in Performance Guide

 Related tasks:

Chapter 3. Creating a database 153

v “Recovering a dropped table” in Data Recovery and High Availability Guide and

Reference

v “Enabling large page support in a 64-bit environment (AIX)” on page 12

 Related reference:

v “ALTER TABLESPACE statement” in SQL Reference, Volume 2

v “CREATE TABLESPACE statement” in SQL Reference, Volume 2

Automatic resizing of table spaces

Two base table space types exist within the DB2 database system: system-managed

space (SMS) and database-managed space (DMS).

The containers associated with SMS table spaces are file system directories and the

files within these directories grow as the objects in the table space grow. The files

grow until a file system limit has been reached on one of the containers or until

the database’s table space size limit is reached (see SQL and XQuery limits).

DMS table spaces are made up of file containers or raw device containers, and

their sizes are set when the containers are assigned to the table space. The table

space is considered full when all of the space within the containers has been used.

However, unlike SMS, you can add or extend containers using the ALTER

TABLESPACE statement, allowing more storage space to be given to the table

space. DMS table spaces also have a feature called “auto-resize”. As space is

consumed in a DMS table space that can be automatically resized, the DB2

database system might extend one or more file containers. SMS table spaces have

similar capabilities for growing automatically but the term “auto-resize” is used

exclusively for DMS.

 Enabling and Disabling Auto-Resize (AUTORESIZE):

 By default, the auto-resize feature is not enabled for a DMS table space. The

following statement creates a DMS table space that does not have auto-resize

enabled:

 CREATE TABLESPACE DMS1 MANAGED BY DATABASE

 USING (FILE ’/db2files/DMS1’ 10 M)

To enable the auto-resize feature specify the AUTORESIZE YES clause as part of

the CREATE TABLESPACE statement:

 CREATE TABLESPACE DMS1 MANAGED BY DATABASE

 USING (FILE ’/db2files/DMS1’ 10 M) AUTORESIZE YES

You can also enable or disable the auto-resize feature after a DMS table space has

been created by using the AUTORESIZE clause on the ALTER TABLESPACE

statement:

 ALTER TABLESPACE DMS1 AUTORESIZE YES

 ALTER TABLESPACE DMS1 AUTORESIZE NO

Two other attributes, MAXSIZE and INCREASESIZE, are associated with

auto-resize table spaces.

 Maximum size (MAXSIZE):

154 Administration Guide: Implementation

The MAXSIZE clause on the CREATE TABLESPACE statement defines the

maximum size for the table space. For example, the following statement creates a

table space that can grow to 100 megabytes (per database partition if the database

has multiple database partitions):

 CREATE TABLESPACE DMS1 MANAGED BY DATABASE

 USING (FILE ’/db2files/DMS1’ 10 M)

 AUTORESIZE YES MAXSIZE 100 M

The MAXSIZE NONE clause specifies that there is no maximum limit for the table

space. The table space can grow until a file system limit or until the DB2 table

space limit has been reached (see the SQL Limits section in the SQL Reference). No

maximum limit is the default if the MAXSIZE clause is not specified when the

auto-resize feature is enabled.

The ALTER TABLESPACE statement changes the value of MAXSIZE for a table

space that has auto-resize already enabled. For example:

 ALTER TABLESPACE DMS1 MAXSIZE 1 G

 ALTER TABLESPACE DMS1 MAXSIZE NONE

If a maximum size is specified, the actual value that DB2 enforces might be slightly

smaller than the value provided because DB2 attempts to keep container growth

consistent. It might not be possible to extend the containers by equal amounts and

reach the maximum size exactly.

 Increase size (INCREASESIZE):

 The INCREASESIZE clause on the CREATE TABLESPACE statement defines the

amount of space used to increase the table space when there are no free extents

within the table space, and a request for one or more extents has been made. The

value can be specified as an explicit size or as a percentage. For example:

 CREATE TABLESPACE DMS1 MANAGED BY DATABASE

 USING (FILE ’/db2files/DMS1’ 10 M)

 AUTORESIZE YES INCREASESIZE 5 M

 CREATE TABLESPACE DMS1 MANAGED BY DATABASE

 USING (FILE ’/db2files/DMS1’ 10 M)

 AUTORESIZE YES INCREASESIZE 50 PERCENT

A percentage value means that the increase size is calculated every time that the

table space needs to grow, and growth is based on a percentage of the table space

size at that time. For example, if the table space is 20 megabytes in size and the

increase size is 50 percent, the table space grows by 10 megabytes the first time (to

a size of 30 megabytes) and by 15 megabytes the next time.

If the INCREASESIZE clause is not specified when the auto-resize feature is

enabled, DB2 determines an appropriate value to use, which might change over

the life of the table space. Like AUTORESIZE and MAXSIZE, you can change the

value of INCREASESIZE using the ALTER TABLESPACE statement.

If a size increase is specified, the actual value used by DB2 might be slightly

different than the value provided. This adjustment in the value used is done to

keep growth consistent across the containers in the table space.

 How table spaces are extended:

 For table spaces that can be automatically resized, DB2 attempts to increase the

size of the table space when all of the existing space has been used and a request

Chapter 3. Creating a database 155

for more space is made. DB2 determines which of the containers can be extended

in the table space so that a rebalance does not occur. DB2 extends only those

containers that exist within the last range of the table space map (the map

describes the storage layout for the table space), and they are all extended by an

equal amount.

For example, consider the following statement:

 CREATE TABLESPACE TS1 MANAGED BY DATABASE

 USING (FILE ’C:\TS1CONT’ 1000, FILE ’D:\TS1CONT’ 1000,

 FILE ’E:\TS1CONT’ 2000, FILE ’F:\TS1CONT’ 2000)

 EXTENTSIZE 4

 AUTORESIZE YES

Keeping in mind that DB2 uses a small portion (one extent) of each container for

meta-data, here is the table space map that is created for the table space based on

the CREATE TABLESPACE statement. (The table space map is part of the output

from a table space snapshot).

 Table space map:

 Range Stripe Stripe Max Max Start End Adj. Containers

 Number Set Offset Extent Page Stripe Stripe

 [0] [0] 0 995 3983 0 248 0 4 (0,1,2,3)

 [1] [0] 0 1495 5983 249 498 0 2 (2,3)

The table space map shows that the containers with an identifier of 2 and 3

(E:\TS1CONT and F:\TS1CONT) are the only containers in the last range of the map.

Therefore, when DB2 automatically extends the containers in this table space, it

will extend only those two containers.

Note: If a table space is created with all of the containers having the same size,

there is only one range in the map. In such a case, DB2 extends each of the

containers. To prevent restricting extensions to only a subset of the

containers, create a table space with containers of equal size.

As discussed in the MAXSIZE section, a limit on the maximum size of the table

space can be specified, or a value of NONE can be provided, which allows for no

limit on the growth. (When NONE or no limit is used, the upper limit is actually

defined by the file system limit or by the DB2 table space limit.) DB2 does not

attempt to increase the table space past the upper limit. However, before that limit

is reached, an attempt to increase a container might fail due to a full file system. In

this case, DB2 does not increase the table space any further and an “out of space”

condition will be returned to the application.

There are two ways to resolve this situation:

v Increase the amount of space available on the file system that is full.

v Perform container operations against the table space such that the container in

question is no longer in the last range of the table space map. The easiest way to

make the container in question no longer the last in the range of the table space

map is to add a new stripe set to the table space with a new set of containers.

And the best practice is to ensure that the containers are all the same size. New

stripe sets can be added using the BEGIN NEW STRIPE SET clause of the

ALTER TABLESPACE statement. By adding new stripe sets, new ranges are

added to the table space map. With new ranges, the containers that DB2

automatically attempts to extend are within this new stripe set and the older

containers remain unchanged.

156 Administration Guide: Implementation

Note: When a user-initiated container operation is pending or a subsequent

rebalance is in progress, the automatic resizing feature is disabled until

the operation is committed or the rebalance is complete.

For example, a table space has three containers that are the same size and each

resides on its own file system. As work is done against the table space, DB2

automatically extends these three containers. Eventually, one of the file systems

becomes full, and the corresponding container can no longer grow. If more free

space cannot be made available on the file system you must perform container

operations against the table space such that the container in question is no longer

in the last range of the table space map. In this case, you could add a new stripe

set specifying two containers (one on each of the file systems that still has space),

or you could specify more or fewer containers (again, making sure that each

container being added is the same size and that there is sufficient room for growth

on each of the file systems being used). When DB2 attempts to increase the size of

the table space, it will now attempt to extend the containers in this new stripe set

instead of the older containers.

The situation described above only applies to automatic storage table spaces that

are not enabled for automatic resizing. If an automatic storage table space is

enabled for automatic resizing, DB2 handles the full file system condition

automatically by adding a new stripe set of containers.

 Monitoring:

 Automatic resizing for DMS table spaces is displayed as part of the table space

monitor snapshot output. The increase size and maximum size values are also

displayed:

 Auto-resize enabled = Yes or No

 Current tablespace size (bytes) = ###

 Maximum tablespace size (bytes) = ### or NONE

 Increase size (bytes) = ###

 Increase size (percent) = ###

 Time of last successful resize = DD/MM/YYYY HH:MM:SS.SSSSSS

 Last resize attempt failed = Yes or No

 Usage notes:

 Automatic resizing with table spaces has the following implications:

v Table spaces that are enabled for automatic resizing have meta-data associated

with them that is not recognized by DB2 Universal Database Version 8.2.1 or

earlier. Any attempt to use a database with table spaces enabled for automatic

resizing on these versions results in a failure (most likely returning an SQL0980C

or SQL0902C error). An error might be sent for trying to connect to a database

or trying to restore a database. If table spaces are enabled for automatic resizing,

disabling the “auto-resize” feature for these table spaces removes the meta-data,

allowing the database to be used on DB2 Version 8.2.1 or earlier.

v When disabling the “auto-resize” feature, the values that are associated with

INCREASESIZE and MAXSIZE are lost if this feature is subsequently enabled.

v This feature cannot be enabled for table spaces that use raw device containers.

Also, raw device containers cannot be added to a table space that can be

automatically resized. These operations result in errors (SQL0109N). If you need

to add raw device containers, you must disable the feature first.

v A redirected restore operation cannot change the container definitions to include

a raw device container (SQL0109N).

Chapter 3. Creating a database 157

v Because the maximum size limits how DB2 automatically increases a table space,

the maximum size also limits how users can increase a table space. In other

words, when performing an operation that adds space to a table space, the

resulting size must be less than or equal to the maximum size. Space can be

added using the ADD, EXTEND, RESIZE, or BEGIN NEW STRIPE SET clauses

of the ALTER TABLESPACE statement.

 Related concepts:

v “How containers are added and extended in DMS table spaces” in Administration

Guide: Planning

v “Table space maps” in Administration Guide: Planning

v “Automatic storage databases” on page 54

 Related reference:

v “ALTER TABLESPACE statement” in SQL Reference, Volume 2

v “CREATE TABLESPACE statement” in SQL Reference, Volume 2

Creating a system temporary table space

 Although a system temporary table space is created by default when you create a

database, you might want to allocate a separate table space to work on system sort

tasks.

A system temporary table space is used to store system temporary tables. When a

database is created, one of the three default table spaces defined is a system

temporary table space called “TEMPSPACE1”.

 Prerequisites:

 The containers to be associated with the system temporary table space must exist.

A database must always have at least one system temporary table space since

system temporary tables can only be stored in such a table space.

 Procedure:

 To create another system temporary table space, use the CREATE TABLESPACE

statement. For example,

 CREATE SYSTEM TEMPORARY TABLESPACE tmp_tbsp

 MANAGED BY SYSTEM

 USING (’d:\tmp_tbsp’,’e:\tmp_tbsp’)

You should have at least one table space of each pagesize.

The only database partition group that can be specified when creating a system

temporary table space is IBMTEMPGROUP.

 Related tasks:

v “Creating a user temporary table space” on page 159

 Related reference:

v “CREATE TABLESPACE statement” in SQL Reference, Volume 2

158 Administration Guide: Implementation

Creating a user temporary table space

 User temporary table spaces are not created by default when a database is created.

If your application programs need to use temporary tables, you need to create a

user temporary table space where the temporary tables will reside.

Like regular table spaces, user temporary table spaces can be created in any

database partition group other than IBMTEMPGROUP. IBMDEFAULTGROUP is

the default database partition group that is used when creating a user temporary

table.

The DECLARE GLOBAL TEMPORARY TABLE statement defines declared

temporary tables for use within a user temporary table space.

 Procedure:

 To create a user temporary table space, use the CREATE TABLESPACE statement:

 CREATE USER TEMPORARY TABLESPACE usr_tbsp

 MANAGED BY DATABASE

 USING (FILE ’d:\db2data\user_tbsp’ 5000,

 FILE ’e:\db2data\user_tbsp’ 5000)

 Related tasks:

v “Creating a user-defined temporary table” on page 212

 Related reference:

v “CREATE TABLESPACE statement” in SQL Reference, Volume 2

v “DECLARE GLOBAL TEMPORARY TABLE statement” in SQL Reference, Volume

2

Creating table spaces without file system caching

 The operating system, by default, caches file data that is read from and written to

disk. A typical read operation involves physical disk access to read the data from

disk into the file system cache, and then to copy the data from the cache to the

application buffer. Similarly, a write operation involves physical disk access to copy

the data from the application buffer into the file system cache, and then to copy it

from the cache to the physical disk. This default behavior of caching data at the

file system level is reflected in the DB2 table space clause: FILE SYSTEM

CACHING with the default value of ″Yes″. Since the DB2 database manager

manages its own data caching using buffer pools, the caching at the file system

level is not needed if the size of the buffer pool is tuned appropriately. In some

cases, caching at the file system level and in the DB2 buffer pools causes

performance degradation because of the extra CPU cycles required to do the

double caching.

To avoid this double caching, most file systems have a feature that disables caching

at the file system level. This is generically referred to as non-buffered I/O. On UNIX,

this feature is commonly known as Direct I/O (or DIO). On Windows, this is

equivalent to opening the file with the FILE_FLAG_NO_BUFFERING flag. In

addition, some file systems such as IBM JFS2 or VERITAS VxFS also support

enhanced Direct I/O, that is, the higher-performing Concurrent I/O (CIO) feature.

The DB2 database manager automatically takes advantage of CIO on file systems

Chapter 3. Creating a database 159

where this feature exists. These features might help to reduce the memory

requirements of the file system cache, thus making more memory available for

other uses.

As stated above, the DB2 database manager automatically enables file system

caching when performing I/O. To disable it, you can use the CREATE

TABLESPACE or ALTER TABLESPACE statements. Use the NO FILE SYSTEM

CACHING clause to enable non-buffered I/O, thus disabling file caching for a

particular table space. Once enabled, the DB2 database manager automatically

determines which of the DIO or CIO is to be used on all platforms. Given the

performance improvement in CIO, the DB2 database manager uses it whenever it

is supported; there is no user-interface to specify which one is to be used.

In order to obtain the maximum benefits of non-buffered I/O, it might be

necessary to increase the size of DB2 buffer pools to mitigate any loss of benefit

from file caching.

 Prerequisites:

 Table 16 shows the supported configuration for using table spaces without file

system caching. It also indicates whether DIO or enhance DIO will be used in each

case.

 Table 16. Supported configuration for table spaces without file system caching.

Platforms File system type and minimum level

required

DIO or CIO requests submitted by

the DB2 database manager

AIX 5.2+ Journal File System (JFS) DIO

AIX 5.2+ Concurrent Journal File System (JFS2) CIO

AIX 5.2+ VERITAS Storage Foundation for DB2

4.0 (VxFS)

CIO

HP-UX 11i (PA-RISC) VERITAS Storage Foundation for DB2

3.5 (VxFS)

DIO

HP-UX Version 11i v2 (Itanium) VERITAS Storage Foundation for DB2

3.5 (VxFS)

DIO

Solaris 9 UNIX File System (UFS) DIO

Solaris 10 UNIX File System (UFS) CIO

Solaris 9, 10 VERITAS Storage Foundation for DB2

4.1 (VxFS)

CIO

Linux distributions SLES 9 and RHEL

4

(on these architectures) x86, x86_64,

IA64. POWER

ext2, ext3, reiserfs DIO

Linux distributions SLES 9 and RHEL

4

(on these architectures) x86, x86_64,

IA64, POWER

VERITAS Storage Foundation 4.1

(VxFS)

CIO

160 Administration Guide: Implementation

Table 16. Supported configuration for table spaces without file system caching. (continued)

Platforms File system type and minimum level

required

DIO or CIO requests submitted by

the DB2 database manager

Linux distributions SLES 9 and RHEL

4

(on this architecture) zSeries

ext2, ext3 or reiserfs on a Small

Computer System Interface (SCSI)

disks using Fibre Channel Protocol

(FCP)

DIO

Windows No specific requirement, works on all

DB2 supported file systems

DIO

Note: The VERITAS Storage Foundation for the DB2 database manager might have

different operating system prerequisites. The platforms listed above is the

prerequisite for the current DB2 release. Consult the VERITAS Storage

Foundation for DB2 support information for the prerequisite information.

 Procedure:

 The recommended method of enabling non-buffered I/O is at the table space level,

using the DB2 implementation method. This method allows you to apply

non-buffered I/O on specific table spaces while avoiding any dependency on the

physical layout of the database. It also allows the DB2 database manager to

determine which I/O is best used for each file, buffered or non-buffered.

The clauses NO FILE SYSTEM CACHING and FILE SYSTEM CACHING can be

specified in the CREATE and ALTER TABLESPACE statements to disable or

enable file system caching, respectively. The default is FILE SYSTEM CACHING. In

the case of ALTER TABLESPACE, existing connections to the database must be

terminated before the new caching policy takes effect.

Example 1: CREATE TABLESPACE <table space name>...

By default, this new table space will be created using buffered I/O; the FILE

SYSTEM CACHING clause is implied.

Example 2: CREATE TABLESPACE <table space name> ... NO FILE SYSTEM CACHING

The new NO FILE SYSTEM CACHING clause indicates that file system level

caching will be OFF for this particular table space.

Example 3: ALTER TABLESPACE <table space name> ... NO FILE SYSTEM CACHING

This statement disables file system level caching for an existing table space.

Example 4: ALTER TABLESPACE <table space name> ... FILE SYSTEM CACHING

This statement enables file system level caching for an existing table space.

This method of disabling file system caching provides control of the I/O mode,

buffered or non-buffered, at the table space level. Note that I/O access to Long

Field (LF) and Large Objects (LOBs) will be buffered for both SMS and DMS

containers.

Chapter 3. Creating a database 161

The GET SNAPSHOT FOR TABLESPACES command can be used to query the

current setting of the file system caching clause. For example, the following is a

snippet from the DB2 GET SNAPSHOT FOR TABLEPSACES ON db1 output:

 Tablespace name = USERSPACE1

 Tablespace ID = 2

 Tablespace Type = Database managed space

 Tablespace Content Type = All permanent data. Large table space.

 Tablespace Page size (bytes) = 4096

 Tablespace Extent size (pages) = 32

 Automatic Prefetch size enabled = Yes

 Buffer pool ID currently in use = 1

 Buffer pool ID next startup = 1

 Using automatic storage = Yes

 Auto-resize enabled = Yes

 File system caching = Yes

 Tablespace State = 0x’00000000’

 Detailed explanation:

 Normal

 Tablespace Prefetch size (pages) = 32

 Total number of pages = 256

 Alternate methods to enable non-buffered I/O on UNIX:

 Some UNIX platforms support the disabling of file system caching at a file system

level by using the MOUNT option. Consult your operating system documentation

for more information. However, it is important to understand the difference

between disabling file system caching at the table space level and at the file system

level. At the table space level, the DB2 database manager controls which files are to

be opened with and without file system caching. At the file system level, every file

residing on that particular file system will be opened without file system caching.

Some platforms such as AIX have certain requirements before you can use this

feature, such as serialization of read and write access. While the DB2 database

manager adheres to these requirements, if the target file system contains non-DB2

files, before enabling this feature, consult your operating system documentation for

any requirements.

In DB2 Version 8.1 FixPak 4, the registry variable DB2_DIRECT_IO disables file

system caching for all SMS containers except for Long Field (LF), Large Objects

(LOBs), and temporary table spaces on AIX JFS2. With the ability to enable this

feature at the table space level, starting in DB2 Version 8.2, this registry variable

has been deprecated. Setting this registry variable in DB2 Version 9.1 is equivalent

to altering all table spaces, SMS and DMS, with the NO FILE SYSTEM CACHING

clause.

 Alternate methods to enable non-buffered I/O on Windows:

 In previous DB2 releases, the performance registry variable DB2NTNOCACHE

could be used to disable file system caching for all DB2 files. This option remains

available. The difference between DB2NTNOCACHE and using the NO FILE

SYSTEM CACHING clause is the ability to disable caching for selective table

spaces.

 Related concepts:

v “Buffer pool management” in Performance Guide

 Related reference:

v “ALTER TABLESPACE statement” in SQL Reference, Volume 2

v “CREATE TABLESPACE statement” in SQL Reference, Volume 2

162 Administration Guide: Implementation

v “fs_caching - File System Caching monitor element” in System Monitor Guide and

Reference

Table spaces in database partition groups

 By placing a table space in a multiple-partition database partition group, all of the

tables within the table space are divided or partitioned across each database

partition in the database partition group. The table space is created into a database

partition group. Once in a database partition group, the table space must remain

there; it cannot be changed to another database partition group. The CREATE

TABLESPACE statement is used to associate a table space with a database partition

group.

 Related reference:

v “CREATE TABLESPACE statement” in SQL Reference, Volume 2

Attaching a direct disk access device

 When working with containers to store data, the DB2 database manager supports

direct disk access (raw I/O). This type of support allows you to attach a direct disk

access (raw) device to any DB2 database system.

 Prerequisites:

 You must know the device or file names of the containers you are going to

reference when creating your table spaces. You must know the amount of space

associated with each device or file name that is to be allocated to the table space.

You will need the correct permissions to read and write to the container.

 Procedure:

 The physical and logical methods for identifying direct disk access differs based on

operating system:

v On the Windows operating systems::

To specify a physical hard drive, use the following syntax:

 \\.\PhysicalDriveN

where N represents one of the physical drives in the system. In this case, N

could be replaced by 0, 1, 2, or any other positive integer:

 \\.\PhysicalDrive5

To specify a logical drive, that is, an unformatted database partition, use the

following syntax:

 \\.\N:

where N: represents a logical drive letter in the system. For example, N: could

be replaced by E: or any other drive letter. To overcome the limitation imposed

by using a letter to identify the drive, you can use a globally unique identifier

(GUID) with the logical drive.

For Windows, there is a new method for specifying DMS raw table space

containers. Volumes (that is, basic disk database partitions or dynamic volumes)

Chapter 3. Creating a database 163

are assigned a globally unique identifier (GUID) when they are created. The

GUID can be used as a device identifier when specifying the containers in a

table space definiton. The GUIDs are unique across systems which means that in

a multi-partition database, GUIDs are different for each database partition even

if the disk partition definitions are the same.

A tool called db2listvolumes.exe is available (only on Windows operating systems)

to make it easy to display the GUIDs for all the disk volumes defined on a

Windows system. This tool creates two files in the current directory where the

tool is run. One file, called volumes.xml, contains information about each disk

volume encoded in XML for easy viewing on any XML-enabled browser. The

second file, called tablespace.ddl, contains the required syntax for specifying

table space containers. This file must be updated to fill in the remaining

information needed for a table space definition. The db2listvolumes tool does not

require any command line arguments.

v On Linux and UNIX platforms, a logical volume can appear to users and

applications as a single, contiguous, and extensible disk volume. Although it

appears this way, it can reside on noncontiguous physical database partitions or

even on more than one physical volume. The logical volume must also be

contained within a single volume group. There is a limit of 256 logical volumes

per volume group. There is a limit of 32 physical volumes per volume group.

You can create additional logical volumes using the mklv command. This

command allows you to specify the name of the logical volume and to define its

characteristics, including the number and location of logical partitions to allocate

for it.

After you create a logical volume, you can change its name and characteristics

with the chlv command, and you can increase the number of logical partitions

allocated to it with the extendlv command. The default maximum size for a

logical volume at creation is 512 logical partitions, unless specified to be larger.

The chlv command is used to override this limitation.

Within AIX, the set of operating system commands, library subroutines, and

other tools that allow you to establish and control logical volume storage is

called the Logical Volume Manager (LVM). The LVM controls disk resources by

mapping data between a simpler and flexible logical view of storage space and

the actual physical disks.

For more information on the mklv and other logical volume commands, and the

LVM, refer to AIX 5L Version 5.2 System Management Concepts: Operating System

and Devices.

 Related tasks:

v “Setting up a direct disk access device on Linux” on page 164

Setting up a direct disk access device on Linux

 When working with containers to store data, DB2 supports direct disk (raw) access

using the block device interface (that is, raw I/O). The following information

should be used when working in a Linux environment.

 Prerequisites:

 Before setting up raw I/O on Linux, one or more free IDE or SCSI disk database

partitions are required.

164 Administration Guide: Implementation

In order to reference the disk partition when creating the table space, you must

know the name of the disk partition and the amount of space associated with the

disk partition that is to be allocated to the table space.

 Restrictions:

 Raw devices are not supported by DB2 on Linux/390.

 Procedure:

 To configure raw I/O on Linux:

In this example, the raw database partition to be used is /dev/sda5. It should not

contain any valuable data.

1. Calculate the number of 4 096-byte pages in this database partition, rounding

down if necessary. For example:

 # fdisk /dev/sda

 Command (m for help): p

 Disk /dev/sda: 255 heads, 63 sectors, 1106 cylinders

 Units = cylinders of 16065 * 512 bytes

 Table 17. Linux raw I/O calculations.

Device boot Start End Blocks Id System

/dev/sda1 1 523 4200997 83 Linux

/dev/sda2 524 1106 4682947+ 5 Extended

/dev/sda5 524 1106 4682947 83 Linux

 Command (m for help): q

 #

The number of pages in /dev/sda5 is:

 num_pages = floor((4682947 * 1024)/4096)

 num_pages = 1170736

2. Create the table space in DB2 by specifying the disk partition name. For

example:

 CREATE TABLESPACE dms1

 MANAGED BY DATABASE

 USING (DEVICE ’/dev/sda5’ 1170736)

3. To specify logical partitions by using junction points (or volume mount points),

mount the RAW partition to another NTFS-formatted volume as a junction

point, then specify the path to the junction point on the NTFS volume as the

container path. For example:

 CREATE TABLESPACE TS4

 MANAGED BY DATABASE USING (DEVICE ’C:\JUNCTION\DISK_1’ 10000,

 DEVICE ’C:\JUNCTION\DISK_2’ 10000)

DB2 first queries the partition to see whether there is a file system on it; if yes,

the partition is not treated as a RAW device, and DB2 performs normal file

system I/O operations on the partition.

Table spaces on raw devices are also supported for all other page sizes supported

by the DB2 database manager.

Prior to Version 9, direct disk access using a raw controller utility on Linux was

used. This method has been deprecated by the operating system, and it’s use is

Chapter 3. Creating a database 165

discouraged. DB2 will still allow you to use this method if the Linux operating

system still supports it, however, there will be a message in the db2diag.log that

will indicate that its use is deprecated.

The prior method would have required you to ″bind″ a disk partition to a raw

controller, then specify that raw controller to DB2 using the CREATE

TABLESPACE command:

 CREATE TABLESPACE dms1

 MANAGED BY DATABASE

 USING (DEVICE ’/dev/raw/raw1’ 1170736)

 Related tasks:

v “Attaching a direct disk access device” on page 163

Creating a buffer pool

 When you create a database, a default buffer pool is created. The page size for the

default buffer pool is set when you use the CREATE DATABASE command. This

default represents the default page size for all future CREATE BUFFERPOOL and

CREATE TABLESPACE statements. If you do not specify the page size when

creating the database, the default page size is 4 KB. If you do not specify the page

size when creating a buffer pool, the default page size is the one set when you

created the database.

However, you might need a buffer pool that has different characteristics than the

default buffer pool. You can create new buffer pools for the database manager to

use. Buffer pools improve database system performance immediately.

The page sizes that you specify for your table spaces should determine the page

sizes that you choose for your buffer pools. The choice of page size used for a

buffer pool is important because you cannot alter the page size after you create a

buffer pool.

 Prerequisites:

 The authorization ID of the statement must have SYSCTRL or SYSADM authority.

Before you create a new buffer pool, resolve the following questions:

v What buffer pool name do you want to use?

v Will the buffer pool is to be created immediately or following the next time that

the database is deactivated and reactivated?

v Do you want to associate the buffer pool with a subset of all database partitions

that make up the database?

v What page size do you want to specify for the buffer pool?

v Will you specify a fixed size for the buffer pool, or will you allow DB2 to adjust

the size of the buffer pool in response to the requirements of your workload? It

is recommended that you allow DB2 to tune your buffer pool automatically by

leaving the size parameter unspecified during buffer pool creation

 Procedure:

166 Administration Guide: Implementation

To create a buffer pool using the Control Center:

1. Open the Create Buffer Pool window: From the Control Center, expand the object tree

until you find the Buffer Pools folder. Right-click the Buffer Pools folder and select

Create from the pop-up menu. The Create Buffer Pool window opens.

2. Type a new name for the buffer pool.

3. Specify the size of the pages to be used for the buffer pool. The valid values are 4 KB, 8

KB, 16 KB, and 32 KB.

4. Type the size of the buffer pool in pages.

5. Specify whether to use the default buffer pool size.

6. Specify whether to create the buffer pool immediately (this is the default setting), or

whether to create it the next time that the database is restarted.

To create a buffer pool using the command line:

1. SELECT BPNAME FROM SYSCAT.BUFFERPOOLS to get the list of buffer pool names

that already exist in the database.

2. Choose a buffer pool name that is not currently found in the result list. The

name must not begin with the characters “SYS” or “IBM.”

3. Determine the characteristics of the buffer pool you are going to create.

4. Ensure that you have the correct authorization ID to run the CREATE

BUFFERPOOL statement.

5. Run the CREATE BUFFERPOOL statement.

 Related concepts:

v “Self tuning memory” in Performance Guide

 Related tasks:

v “Altering a buffer pool” on page 283

 Related reference:

v “CREATE BUFFERPOOL statement” in SQL Reference, Volume 2

Creating buffer pools for partitioned databases

 From the Control Center, use the Create Buffer Pool window to create new buffer

pools for partitioned databases. If you choose to create the buffer pool when you

restart the database, any new tables or table spaces will use the default buffer pool.

Any changes to a table space that specifies this buffer pool will continue to use its

existing buffer pool.

 Prerequisites:

 To create or alter a buffer pool, you must have either SYSADM or SYSCTRL

authority.

 Procedure:

1. Open the Create Buffer Pool window: From the Control Center, expand the

object tree until you find the Buffer Pools folder. Right-click the Buffer Pools

folder and select Create from the pop-up menu. The Create Buffer Pool

window opens.

2. Type a new name for the buffer pool.

Chapter 3. Creating a database 167

3. Specify the size of the pages to be used for the buffer pool. The valid values are

4 KB, 8 KB, 16 KB, and 32 KB.

4. Specify when to create the buffer pool: immediately or the next time that the

database is restarted.

5. Specify on which database partitions you want the buffer pool created.

6. Optional: Modify the default size of the buffer pool on selected database

partitions.

7. Define the size of the buffer pool by the number of pages.

 Related tasks:

v “Altering a buffer pool” on page 283

v “Creating a buffer pool” on page 166

Creating schemas

Schemas are used to organize object ownership within the database.

Creating a schema

 While organizing your data into tables, it might also be beneficial to group tables

and other related objects together. This is done by defining a schema through the

use of the CREATE SCHEMA statement. Information about the schema is kept in

the system catalog tables of the database to which you are connected. As other

objects are created, they can be placed within this schema.

Schemas might also be implicitly created when a user has IMPLICIT_SCHEMA

authority. With this authority, users implicitly create a schema whenever they

create an object with a schema name that does not already exist.

Unqualified access to objects within a schema is not allowed since the schema is

used to enforce uniqueness in the database. This becomes clear when considering

the possibility that two users could create two tables (or other objects) with the

same name. Without a schema to enforce uniqueness, ambiguity would exist if a

third user attempted to query the table. It is not possible to determine which table

to use without some further qualification.

The definer of any objects created as part of the CREATE SCHEMA statement is

the schema owner. This owner can GRANT and REVOKE schema privileges to

other users.

To allow another user to access a table without entering a schema name as part of

the qualification on the table name requires that a view be established for that user.

The definition of the view would define the fully-qualified table name including

the user’s schema; the user would simply need to query using the view name. The

view would be fully-qualified by the user’s schema as part of the view definition.

 Prerequisites:

 The database tables and other related objects that are to be grouped together must

exist.

To issue the CREATE SCHEMA statement, you must have DBADM authority.

To create a schema with any valid name, you need SYSADM or DBADM authority.

168 Administration Guide: Implementation

Restrictions:

 If users do not have IMPLICIT_SCHEMA or DBADM authority, the only schema

they can create is one that has the same name as their own authorization ID.

The new schema name cannot already exist in the system catalogs and it cannot

begin with ″SYS″.

 Procedure:

 If a user has SYSADM or DBADM authority, then the user can create a schema

with any valid name. When a database is created, IMPLICIT_SCHEMA authority is

granted to PUBLIC (that is, to all users).

To create a schema using the Control Center:

1. Expand the object tree until you see the Schema folder within a database.

2. Right-click the Schema folder, and click Create.

3. Complete the information for the new schema, and click OK.

To create a schema using the command line, enter:

 CREATE SCHEMA <name> AUTHORIZATION <name>

The following is an example of a CREATE SCHEMA statement that creates a

schema for an individual user with the authorization ID ″joe″:

 CREATE SCHEMA joeschma AUTHORIZATION joe

 Related concepts:

v “Implicit schema authority (IMPLICIT_SCHEMA) considerations” on page 513

v “Grouping objects by schema” on page 6

v “Schema privileges” on page 514

 Related tasks:

v “Setting a schema” on page 169

 Related reference:

v “CREATE SCHEMA statement” in SQL Reference, Volume 2

Setting a schema

 Once you have several schemas in existence, you might want to designate one as

the default schema for use by unqualified object references in dynamic SQL and

XQuery statements issued from within a specific DB2 connection.

 Procedure:

 To establish a default schema: Set the special register CURRENT SCHEMA to the

schema you want to use as the default. For example:

 SET CURRENT SCHEMA = ’SCHEMA01’

This statement can be used from within an application program or issued

interactively. Once set, the value of the CURRENT SCHEMA special register is

used as the qualifier (schema) for unqualified object references in dynamic SQL

Chapter 3. Creating a database 169

and XQuery statements, with the exception of the CREATE SCHEMA statement

where an unqualified reference to a database object exists.

The initial value of the CURRENT SCHEMA special register is equal to the

authorization ID of the current session user.

 Related concepts:

v “Schemas” in SQL Reference, Volume 1

 Related reference:

v “CURRENT SCHEMA special register” in SQL Reference, Volume 1

v “Reserved schema names and reserved words” in SQL Reference, Volume 1

v “SET SCHEMA statement” in SQL Reference, Volume 2

Copying a schema

 Use the ADMIN_COPY_SCHEMA procedure to copy a single schema within the

same database or use the db2move utility with the -co COPY action to copy a

single schema or multiple schemas from a source database to a target database.

Most database objects from the source schema are copied to the target database

under the new schema. The db2move utility and the ADMIN_COPY_SCHEMA

procedure allow you to quickly make copies of a database schema. Once a model

schema is established, you can use it as a template for creating new versions.

For more information on ADMIN_COPY_SCHEMA, see the

ADMIN_COPY_SCHEMA reference information.

 Restrictions:

v The db2move utility attempts to successfully copy all allowable schema objects

with the exception of the following types:

– table hierarchy

– staging tables (not supported by the load utility in multiple partition database

environments)

– jars (Java routine archives)

– nicknames

– packages

– view hierarchies

– object privileges (All new objects are created with default authorizations)

– statistics (New objects do not contain statistics information)

– index extensions (user-defined structured type related)

– user-defined structured types and their transform functions
v If an object of one of the unsupported types is detected in the source schema, an

entry is logged to an error file, indicating that a unsupported object type is

detected. The COPY operation will still succeed; this logged entry is meant to

inform users of objects not copied by this operation.

v Objects that are not coupled with a schema such as table spaces, and event

monitors, are not operated on during a copy schema operation.

v When copying a replicated table, the new copy of the table is not enabled for

replication. The table is re-created as a regular table.

v The source database must be cataloged if it does not reside in the same instance

as the target database.

170 Administration Guide: Implementation

v Using the ADMIN_COPY_SCHEMA procedure with the COPYNO option, places

the table spaces wherein the target database object resides into backup pending

state. The ADMIN_COPY_SCHEMA procedure issues a SET INTEGRITY

statement to get the table out of the Set Integrity Pending state after the load

operation completes. In situations where a table has referential constraints

defined, the table is placed in the Set Integrity Pending state. Because the table

spaces are already in backup pending state, the ADMIN_COPY_SCHEMA

procedure’s attempt to issue a SET INTEGRITY statement will fail.

To resolve this situation, issue a backup to get the affected table spaces out of

backup pending state. Next, look at the statement_text column of the error table

generated by the ADMIN_COPY_SCHEMA procedure to find a list of tables in

the Set Integrity Pending state. This is demonstrated in the following example.

Example 1:

db2 "select substr(OBJECT_SCHEMA,1, 8)

 as OBJECT_SCHEMA, substr(OBJECT_NAME,1, 15)

 as OBJECT_NAME, SQLCODE, SQLSTATE, ERROR_TIMESTAMP, substr(DIAGTEXT,1, 80)

 as DIAGTEXT, substr(STATEMENT,1, 80)

 as STATEMENT from COPYERRSCH.COPYERRTAB"

OBJECT_SCHEMA OBJECT_NAME SQLCODE SQLSTATE ERROR_TIMESTAMP

------------- --------------- ----------- -------- --------------------------

SALES EXPLAIN_STREAM -290 55039 2006-03-18-03.22.34.810346

DIAGTEXT

--

[IBM][CLI Driver][DB2/LINUXX8664] SQL0290N Table space access is not allowed.

STATEMENT

--

set integrity for "SALES "."ADVISE_INDEX" , "SALES"."ADVISE_MQT" , "SALES"."

1 record(s) selected.

Finally, issue the SET INTEGRITY statement for each of the tables listed to take

each table out of the Set Integrity Pending state.

 Procedure:

 This utility must be invoked on the target system if source and target schemas

reside on different systems. For copying schemas from one database to another,

this action requires a list of schema names to be copied from a source database,

separated by commas, and a target database name.

To copy a schema using the command line processor (CLP), use the following

syntax:

 db2move <dbname> COPY -co <COPY-options>

 -u <userid> -p <password>

Example 2:

The following is an example of a db2move -co COPY operation that copies schema

BAR into FOO from the sample database to the target database:

 db2move sample COPY -sn BAR -co target_db target schema_map

 "((BAR,FOO))" -u userid -p password

The new (target) schema objects are created using the same object names as the

objects in the source schema, but with the target schema qualifier. It is possible to

Chapter 3. Creating a database 171

create copies of tables with or without the data from the source table. The source

and target databases can be on different systems.

Example 3:

The following example shows you to specify specific table space name mappings

to be used instead of the table spaces from the source system during a COPY

operation. You can specify the SYS_ANY keyword to indicate that the target table

space should be chosen using the default table space selection algorithm. In this

case, the db2move tool chooses any available table space to be used as the target.

For example:

 db2move sample COPY -sn BAR -co target_db target schema_map

 "((BAR,FOO))" tablespace_map "(SYS_ANY)" -u userid -p password

The SYS_ANY keyword can be used for all table spaces, or you can specify specific

mappings for some table spaces, and the default table space selection algorithm for

the remaining. For example:

 db2move sample COPY -sn BAR -co target_db target schema_map "

 ((BAR,FOO))" tablespace_map "((TS1, TS2),(TS3, TS4), SYS_ANY)"

 -u userid -p password

This indicates that table space TS1 is mapped to TS2, TS3 is mapped to TS4, but

the remaining table spaces use a default table space selection algorithm.

Example 4:

You can also change the owner of each new object created in the target schema

after a successful COPY. The default owner of the target objects is the connect user;

if this option is specified, ownership is transferred to a new owner as

demonstrated in the following example:

 db2move sample COPY -sn BAR -co target_db target schema_map

 "((BAR,FOO))" tablespace_map "(SYS_ANY)" owner jrichards

 -u userid -p password

The new owner of the target objects is jrichards.

 Related concepts:

v “Schemas” in SQL Reference, Volume 1

 Related tasks:

v “Dropping a schema” on page 294

v “Restarting a failed copy schema operation” on page 173

v “Setting a schema” on page 169

 Related reference:

v “ADMIN_COPY_SCHEMA procedure – Copy a specific schema and its objects”

in Administrative SQL Routines and Views

v “ADMIN_DROP_SCHEMA procedure – Drop a specific schema and its objects”

in Administrative SQL Routines and Views

v “db2move - Database movement tool command” in Command Reference

172 Administration Guide: Implementation

Restarting a failed copy schema operation

 Errors occurring during a db2move COPY operation can be handled in various

ways depending on the type of object being copied, or the phase the COPY

operation failure.

The db2move utility reports errors and messages to the user using message and

error files. Copy schema operations use the COPYSCHEMA_<timestamp>.MSG

message file, and the COPYSCHEMA_<timestamp>.err error file. These files are

created in the current working directory. The current time is appended to the

filename to ensure uniqueness of the files. It is up to the user to delete these

message and error files when they are no longer required.

Note: It is possible to have multiple db2move instances running simultaneously.

The COPY option does not return any SQLCODES. This is consistent with

db2move behavior.

 Object types:

 The type of object being copied can be categorized as one of two types : physical

objects and business objects.

A physical object refers to an object that physically reside in a container, such as

tables, indexes and user-defined structured types. A business object refers to

cataloged objects that do not reside in containers, such as views, user-defined

structured types (UDTs), and aliases.

 Copy schema errors relating to physical objects:

 Failures which occur during the recreate of physical objects on the target database,

are logged in the error file COPYSCHEMA_<timestamp>.err. For each failing

object, the error file contains information such as object name, object type, DDL

text, time stamp, and a string formatted sqlca (sqlca field names, followed by their

data values).

Example 1:

Sample output for the COPYSCHEMA_<timestamp>.err error file:

 1. schema: FOO.T1

 Type: TABLE

 Error Msg: SQL0104N An unexpected token ’FOO.T1’...

 Timestamp: 2005-05-18-14.08.35.65

 DDL: create view FOO.v1

 2.schema: FOO.T3

 Type: TABLE

 Error Msg: SQL0204N FOO.V1 is an undefined name.

 Timestamp: 2005-05-18-14.08.35.68

 DDL: create table FOO.T3

If any errors creating physical objects are logged at the end of the recreate phase

and before attempting the load phase, the db2move utility fails and an error is

returned. All object creation on the target database is rolled back, and all internally

created tables are cleaned up on the source database. The rollback occurs at the

end of the recreate phase after attempting to recreate each object, rather than after

the first failure, in order to gather all possible errors into the error file. This allows

Chapter 3. Creating a database 173

you the opportunity to fix any problems before restarting the db2move operation.

If there are no failures, the error file is deleted.

 Copy schema errors relating to business objects:

 Failures that occur during the recreation of business objects on the target database,

do not cause the db2move utility to fail. Instead, these failures are logged in the

COPYSCHEMA_<timestamp>.err error file. Upon completion of the db2move

utility, you can examine the failures, address any issues, and manually recreate

each failed object (the DDL is provided in the error file for convenience).

If an error occurs while db2move is attempting to repopulate table data using the

load utility, the db2move utility will not fail. Rather, generic failure information is

logged to the COPYSCHEMA_<timestamp>.err file (object name, object type, DDL

text, time stamp, sqlca, and so on), and the fully qualified name of the table is

logged into another file, ″LOADTABLE_<timestamp>.err″. Each table is listed per

line to satisfy the db2move -tf option format, similar to the following:

 "FOO"."TABLE1"

 "FOO 1"."TAB 444"

 Restarting the copy schema operation:

 After addressing the issues causing the loads operations to fail (described in the

error file), you can reissue the db2move -COPY command using the ’-tf’ option

(passing in the LOADTABLE.err filename) as shown in the following syntax:

Example 2:

db2move sourcedb COPY -tf LOADTABLE.err -co TARGETDB mytargetdb

 -mode load_only

You can also input the table names manually using the -tn option, as shown in the

following syntax:

Example 3:

 db2move sourcedb COPY -tn "FOO"."TABLE1","FOO 1"."TAB 444",

 -co TARGETDB mytargetdb -mode load_only

 Other types of failures:

 Internal operations such as memory errors, or file system errors can cause the

db2move utility to fail.

Should the internal operation failure occur during the ddl recreate phase, all

successfully created objects are rolled back from the target schema, and all

internally created tables such as the DMT table and the db2look table, are cleaned

up on the source database.

Should the internal operation failure occur during the load phase, all successfully

created objects remain on the target schema. All tables that experience a failure

during a load operation, and all tables which have not yet been loaded are logged

in the LOADTABLE.err error file. You can then issue the db2move COPY

command using the LOADTABLE.err as discussed in Example 2. If the db2move

utility abends (for example a system crash, the utility traps, the utility is killed,

and so on), then the information regarding which tables still need to be loaded is

174 Administration Guide: Implementation

lost. In this case, you can drop the target schema using the

ADMIN_DROP_SCHEMA procedure and reissue the db2move COPY command.

Regardless of what error you might encounter during an attempted copy schema

operation, you always have the option of dropping the target schema using the

ADMIN_DROP_SCHEMA procedure and reissuing the db2move COPY command.

 Related reference:

v “ADMIN_COPY_SCHEMA procedure – Copy a specific schema and its objects”

in Administrative SQL Routines and Views

v “ADMIN_DROP_SCHEMA procedure – Drop a specific schema and its objects”

in Administrative SQL Routines and Views

System catalog tables

 A set of system catalog tables is created and maintained for each database. These

tables contain information about the definitions of the database objects (for

example, tables, views, indexes, and packages), and security information about the

type of access that users have to these objects. These tables are stored in the

SYSCATSPACE table space.

These tables are updated during the operation of a database; for example, when a

table is created. You cannot explicitly create or drop these tables, but you can

query and view their content. When the database is created, in addition to the

system catalog table objects, the following database objects are defined in the

system catalog:

v A set of routines (functions and procedures) in the schemas SYSIBM, SYSFUN,

and SYSPROC.

v A set of read-only views for the system catalog tables is created in the SYSCAT

schema.

v A set of updatable catalog views is created in the SYSSTAT schema. These

updatable views allow you to update certain statistical information to investigate

the performance of a hypothetical database, or to update statistics without using

the RUNSTATS utility.

After your database has been created, you might want to limit the access to the

system catalog views.

 Related concepts:

v “Catalog views” in SQL Reference, Volume 1

v “Functions overview” in SQL Reference, Volume 1

v “User-defined functions” in SQL Reference, Volume 1

 Related tasks:

v “Securing the system catalog view” on page 613

 Related reference:

v “Functions” in SQL Reference, Volume 1

Chapter 3. Creating a database 175

Cataloging a database

 When you create a new database, it is automatically cataloged in the system

database directory file. You might also use the CATALOG DATABASE command

to explicitly catalog a database in the system database directory file. The

CATALOG DATABASE command allows you to catalog a database with a

different alias name, or to catalog a database entry that was previously deleted

using the UNCATALOG DATABASE command.

Note: By default directory files, including the database directory, are cached in

memory using the “Directory Cache Support (dir_cache)” configuration

parameter. When directory caching is enabled, a change made to a directory

(for example, using a CATALOG DATABASE or UNCATALOG

DATABASE command) by another application might not become effective

until your application is restarted. To refresh the directory cache used by a

command line processor session, issue a db2 terminate command.

In a partitioned database, a cache for directory files is created on each database

partition.

In addition to the application level cache, a database manager level cache is also

used for internal, database manager look-up. To refresh this “shared” cache, issue

the db2stop and db2start commands.

 Prerequisites:

 Although databases are cataloged automatically when a database is created, you

still might have a need to catalog the database. When you do so, the database

must exist.

 Procedure:

 To catalog a database with a different alias name using the command line

processor, use the CATALOG DATABASE command. For example, the following

command line processor command catalogs the personl database as humanres:

 CATALOG DATABASE personl AS humanres

 WITH "Human Resources Database"

Here, the system database directory entry will have humanres as the database alias,

which is different from the database name (personl).

To catalog a database in the system database directory from a client application,

call the sqlecadb API.

To catalog a database on an instance other than the default using the command

line processor, use the CATALOG DATABASE command. In the following

example, connections to database B are to INSTNC_C. The instance instnc_c must

already be cataloged as a local node before attempting this command.

 CATALOG DATABASE b as b_on_ic AT NODE instnc_c

Note: The CATALOG DATABASE command is also used on client nodes to

catalog databases that reside on database server computers.

 Related tasks:

176 Administration Guide: Implementation

v “Updating the directories with information about remote database server

computers” on page 180

 Related reference:

v “CATALOG DATABASE command” in Command Reference

v “TERMINATE command” in Command Reference

v “dir_cache - Directory cache support configuration parameter” in Performance

Guide

v “UNCATALOG DATABASE command” in Command Reference

Cataloging database systems

 In order to access DB2 instances and databases on other servers, DB2 needs to

catalog that system in the admin node directory of the client. Adding a system

adds an entry to the admin node directory giving DB2 the information it needs to

communicate with the remote system. All systems that you access will have an

entry in the admin node directory.

 Prerequisites:

 To add or change a system, you must have SYSADM or SYSCTRL authority.

 Procedure:

1. Open the Add System window: From the Control Center, right-click the All

Systems folder and select Add from the pop-up menu. The Add System

window opens.

2. To add a DB2 system, click the DB2 radio button. Then do the following:

a. Specify the physical machine, server system, or workstation where the

target database is located. The system name on the server system is defined

by the DB2SYSTEM DAS configuration parameter. This is the value that you

should use. If your network supports TCP/IP, then you can use discovery

to help complete the remaining fields on this window.

b. Type the host name or IP (Internet Protocol) address where the target

database resides. Issuing the TCP/IP hostname command on the server

system retrieves the server’s host name. Issuing a ping hostname command

will return the IP address of the host.

c. Specify a local nickname for the remote node where the database is located.

The node name you choose must not already exist in the node directory or

the admin node directory.

d. Specify the operating system where the target database is located.

e. Optional: Select LDAP, if the Lightweight Directory Access Protocol (LDAP)

is enabled and you want to catalog the system in the LDAP directory.
3. To add an IMSplex, click the IMS radio button. Then do the following:

a. Specify the IMSplex name that you want to add. The name must match the

identifier you have specified in the CSLSIxxx, CSLRIxxx, DFSCGxxx, and

CSLOIxxx proclib members for the IMSPLEX= parameter.

b. Type the TCP/IP address of the IMSplex host and the port number that

binds to the socket that IMS Connect manages. Valid port numbers are

defined in the PORTID parameter of the HWSCFGxxx proclib member.

c. Select OS/390 or z/OS as the operating system. This is the only option, if

you are working with an IMSplex.

Chapter 3. Creating a database 177

Related concepts:

v “About systems” in Administration Guide: Planning

 Related reference:

v “CATALOG DATABASE command” in Command Reference

Database directories, directory services, and logs

Three directories are used when establishing or setting up a new database.

v Local database directory

v System database directory

v Node directory

Local database directory

 A local database directory file exists in each path (or “drive” for Windows operating

systems) in which a database has been defined. This directory contains one entry

for each database accessible from that location. Each entry contains:

v The database name provided with the CREATE DATABASE command

v The database alias name (which is the same as the database name, if an alias

name is not specified)

v A comment describing the database, as provided with the CREATE DATABASE

command

v The name of the root directory for the database

v Other system information.

 Related reference:

v “CREATE DATABASE command” in Command Reference

System database directory

 A system database directory file exists for each instance of the database manager, and

contains one entry for each database that has been cataloged for this instance.

Databases are implicitly cataloged when the CREATE DATABASE command is

issued and can also be explicitly cataloged with the CATALOG DATABASE

command.

For each database created, an entry is added to the directory containing the

following information:

v The database name provided with the CREATE DATABASE command

v The database alias name (which is the same as the database name, if an alias

name is not specified)

v The database comment provided with the CREATE DATABASE command

v The location of the local database directory

v An indicator that the database is indirect, which means that it resides on the

current database manager instance

v Other system information.

On UNIX platforms and in a partitioned database environment, you must ensure

that all database partitions always access the same system database directory file,

sqldbdir, in the sqldbdir subdirectory of the home directory for the instance.

178 Administration Guide: Implementation

Unpredictable errors can occur if either the system database directory or the

system intention file sqldbins in the same sqldbdir subdirectory are symbolic links

to another file that is on a shared file system.

 Related tasks:

v “Cataloging a database” on page 176

v “Enabling database partitioning in a database” on page 9

 Related reference:

v “CREATE DATABASE command” in Command Reference

Viewing the local or system database directory files

 You would like to see some of the information associated with the databases that

you have on your system.

 Prerequisites:

 Before viewing either the local or system database directory files, you must have

previously created an instance and a database.

 Procedure:

 To see the contents of the local database directory file, issue the following

command, where <location> specifies the location of the database:

 LIST DATABASE DIRECTORY ON <location>

To see the contents of the system database directory file, issue the LIST

DATABASE DIRECTORY command without specifying the location of the

database directory file.

 Related reference:

v “LIST DATABASE DIRECTORY command” in Command Reference

Node directory

 The database manager creates the node directory when the first database partition is

cataloged. To catalog a database partition, use the CATALOG NODE command. To

list the contents of the local node directory, use the LIST NODE DIRECTORY

command. The node directory is created and maintained on each database client.

The directory contains an entry for each remote workstation having one or more

databases that the client can access. The DB2 client uses the communication end

point information in the node directory whenever a database connection or

instance attachment is requested.

The entries in the directory also contain information on the type of communication

protocol to be used to communicate from the client to the remote database

partition. Cataloging a local database partition creates an alias for an instance that

resides on the same computer.

 Related reference:

v “CATALOG LOCAL NODE command” in Command Reference

v “CATALOG NAMED PIPE NODE command” in Command Reference

Chapter 3. Creating a database 179

v “CATALOG TCPIP/TCPIP4/TCPIP6 NODE command” in Command Reference

v “LIST NODE DIRECTORY command” in Command Reference

Changing database directory information

 You can use the Configuration Assistant to change the database directory

information associated with a database.

 Procedure:

 To change database directory information using the Configuration Assistant:

1. Open the Change Database window or notebook: In the Configuration Assistant

advanced view, click the Databases tab and select the database that you want to work

with. From the Selected menu, click Change Database. The Change Database window

opens, or if LDAP is enabled, the Change Database notebook opens.

Note: You cannot open the Change Database window or notebook unless you are in

the Advanced view. If you are not in the Advanced view, you can use the Change

Database wizard to change databases. To switch to the Advanced view, from the View

menu select Advanced View.

2. Change fields as required. Clicking OK commits the changes for the selected database.

 Related concepts:

v “Local database directory” on page 178

v “System database directory” on page 178

 Related tasks:

v “Searching the LDAP servers” on page 585

v “Viewing the local or system database directory files” on page 179

 Related reference:

v “LIST DATABASE DIRECTORY command” in Command Reference

Updating the directories with information about remote

database server computers

 You can use the Add Database Wizard of the Configuration Assistant (CA)

interpreter to create catalog entries. If you have the DB2 client, you can also create

an application program to catalog entries.

 Prerequisites:

 To catalog a database, you must have SYSADM or SYSCTRL authority; or, you

must have the catalog_noauth configuration parameter set to YES.

 Procedure:

 To update the directories using the command line processor, do the following:

1. Use one of the following commands to update the node directory:

v For a node having an APPC connection:

 db2 CATALOG APPC NODE <nodename>

 REMOTE <symbolic_destination_name> SECURITY <security_type>

180 Administration Guide: Implementation

For example:

 db2 CATALOG APPC NODE DB2NODE REMOTE DB2CPIC SECURITY PROGRAM

v For a DB2 Universal Database for z/OS and OS/390 Version 7.1 (or later), or

a DB2 UDB for z/OS Version 8 (or later), or a DB2 Universal Database for

AS/400 Version 5.2 (or later) database having a TCP/IP connection:

 db2 CATALOG TCPIP NODE <nodename>

 REMOTE <hostname> or <IP address>

 SERVER <service_name> or <port_number>

 SECURITY <security_type>

For example:

 db2 CATALOG TCPIP NODE MVSIPNOD REMOTE MVSHOST SERVER DB2INSTC

The default port used for TCP/IP connections on DB2 for OS/390 and z/OS

is 446.
2. If you work with DB2 Connect, you will have to consider updating the DCS

directory using the CATALOG DCS DATABASE command.

If you have remote clients, you must also update directories on each remote client.

 Related concepts:

v “DCS directory values” in DB2 Connect User’s Guide

v “System database directory values” in DB2 Connect User’s Guide

 Related reference:

v “CATALOG DATABASE command” in Command Reference

v “CATALOG DCS DATABASE command” in Command Reference

v “CATALOG TCPIP/TCPIP4/TCPIP6 NODE command” in Command Reference

Lightweight Directory Access Protocol (LDAP) directory

service

 A directory service is a repository of resource information about multiple systems

and services within a distributed environment; and it provides client and server

access to these resources. Clients and servers would use the directory service to

find out how to access other resources. Information about these other resources in

the distributed environment must be entered into the directory service repository.

Lightweight Directory Access Protocol (LDAP) is an industry standard access

method to directory services. Each database server instance will publish its

existence to an LDAP server and provide database information to the LDAP

directory when the databases are created. When a client connects to a database, the

catalog information for the server can be retrieved from the LDAP directory. Each

client is no longer required to store catalog information locally on each computer.

Client applications search the LDAP directory for information required to connect

to the database.

As an administrator of a DB2 system, you can establish and maintain a directory

service. The Configuration Assistant or Control Center can assist in the

maintenance of this directory service. The directory service is made available to

DB2 through Lightweight Directory Access Protocol (LDAP) directory services. To

use LDAP directory services, there must first exist an LDAP server that is

supported by DB2 so that directory information can be stored there.

Chapter 3. Creating a database 181

Note: When running in a Windows domain environment, an LDAP server is

already available because it is integrated with the Windows Active Directory.

As a result, every computer running Windows can use LDAP.

An LDAP directory is helpful in an enterprise environment where it is difficult to

update local directory catalogs on each client computer because of the large

number of clients. When this is your situation, it is recommended you store

directory entries in an LDAP server so that maintaining catalog entries is done in

one place: on the LDAP server. The cost of purchasing and maintaining an LDAP

server can be significant and so should only be considered when there are

sufficient numbers of clients to offset the cost.

 Related concepts:

v “Discovery of administration servers, instances, and databases” on page 107

v “Lightweight Directory Access Protocol (LDAP) overview” on page 573

Database recovery log

 A database recovery log keeps a record of all changes made to a database, including

the addition of new tables or updates to existing ones. This log is made up of a

number of log extents, each contained in a separate file called a log file.

The database recovery log can be used to ensure that a failure (for example, a

system power outage or application error) does not leave the database in an

inconsistent state. In case of a failure, the changes already made but not committed

are rolled back, and all committed transactions, which might not have been

physically written to disk, are redone. These actions ensure the integrity of the

database.

 Related concepts:

v “Understanding recovery logs” in Data Recovery and High Availability Guide and

Reference

Administration notification log

 When significant events occur, the DB2 database manager writes information to the

administration notification log. For example, it records the status of DB2 utilities

(REORG, BACKUP, RECOVERY, ROLL-FORWARD), high-level application issues,

licensing activity, log file paths and storage problems, monitoring and indexing

activities, table space problems, and so on. This information is intended for use by

database and system administrators.

Notification messages provide additional information to supplement the SQLCODE

that is provided. The type of event and the level of detail of the information

gathered are determined by the NOTIFYLEVEL configuration parameter. This

detailed diagnostic information is recorded in the db2diag.log text log file, not in

the administration log. Diagnostic information is used for problem determination

and is intended for DB2 customer support. The level of detail is determined by the

DIAGLEVEL configuration parameter.

 Related concepts:

v “Interpreting administration notification log file entries” in Troubleshooting Guide

v “Interpreting diagnostic log file entries” in Troubleshooting Guide

v “Interpreting the db2diag.log file informational record” in Troubleshooting Guide

182 Administration Guide: Implementation

Related tasks:

v “Setting the diagnostic log file error capture level” in Troubleshooting Guide

v “Setting the error capture level for the administration notification log file” in

Troubleshooting Guide

 Related reference:

v “notifylevel - Notify level configuration parameter” in Performance Guide

v “diaglevel - Diagnostic error capture level configuration parameter” in

Performance Guide

Binding utilities to the database

 When a database is created, the database manager attempts to bind the utilities in

db2ubind.lst to the database. This file is stored in the bnd subdirectory of your

sqllib directory.

Binding a utility creates a package, which is an object that includes all the

information needed to process specific SQL and XQuery statements from a single

source file.

Note: If you want to use these utilities from a client, you must bind them

explicitly.

 Procedure:

 To bind or rebind the utilities to a database, issue the following commands using

the command line processor:

 connect to sample

 bind @db2ubind.lst

Note: You must be in the directory where these files reside to create the packages

in the sample database. The bind files are found in the bnd subdirectory of

the sqllib directory. In this example, sample is the name of the database.

 Related tasks:

v “Creating a database” on page 113

 Related reference:

v “BIND command” in Command Reference

Generating DDL statements for database objects

 Use the Generate DDL notebook to generate DDL (Data Definition Language)

statements, SQL, and statistics in a script file to recreate database objects and their

statistics in another database.

For information on generating DDL statements in DB2 for OS/390, see the DB2 for

z/OS and OS/390 help.

To generate DDL for database objects, you need SELECT privilege on the system

catalogs.

 Opening the Generate DDL notebook:

Chapter 3. Creating a database 183

v To open the Generate DDL notebook from a database, from the Control Center,

expand the object tree until you find the database that contains the objects for

which you want to create DDL. Right-click the database and click Generate

DDL in the pop-up menu.

v To open the Generate DDL notebook from selected tables, from the Control

Center, expand the object tree until you find the Tables folder of the database

with which you are working. Click the Tables folder. Any existing tables are

displayed in the pane on the right side of the window (the contents pane). Select

the tables with which you want to work. Even if you are not going to generate

DDL to recreate the tables, select the tables that relate to the objects for which

you want to generate DDL. Right-click the selected tables, and click Generate

DDL in the pop-up menu.

v To open the Generate DDL notebook from a selected schema, from the Control

Center, expand the object tree until you find the Schema folder of the database

with which you are working. Click the Schema folder. Any existing schemas are

displayed in the pane on the right side of the window (the contents pane). Select

the schema with which you want to work. Right click the schema and click

Generate DDL in the pop-up menu.

From the Objects page, specify which statements you want to generate.

 Specifying statement types:

 On the Statement page and select the appropriate check boxes, as follows:

v Database objects: Generates DDL statements for the database objects, such as

tables, indexes, views, triggers, aliases, UDFs, data types, and sequences,

excluding any table spaces, database partition groups, and buffer pools that are

user-defined.

v Table spaces, database partition groups, and buffer pools: Generates the DDL

statements for these objects, excluding any of these objects that are user-defined.

v Authorization statements: Generates SQL authorization (GRANT) statements for

the database objects.

v Database statistics: Generates SQL update statements for updating the statistics

tables in the database.

v Update statistics: Only available if you have selected Database statistics.

Generates the RUNSTATS command, which updates the statistics on the

database that is generated.

Note: Choosing not to update the statistics allows you to create an empty

database that the optimizer will treat as containing data.

v Include COMMIT statements after every table: Generates a COMMIT statement

after the update statements for each table. The COMMIT statements are

generated only when you select Database statistics.

v Gather configuration parameters: Gathers any configuration parameters and

registry variables that are used by the SQL optimizer.

v XML Schema Repository (XSR) objects: XML schemas, DTDs, external entities:

Generates statements to re-create XSR objects. If you select this check box, you

must also specify the directory into which the generated XSR objects will be

recreated.

Select the objects on which you want to base the generated DDL:

184 Administration Guide: Implementation

v If you accessed this notebook by selecting a table or multiple tables in the

contents pane, then the object page displays all selected tables in a confirmation

list. Clear the check boxes of any incorrect tables.

v If you accessed this notebook by selecting a database in the object tree, then the

default is to generate DDL statements for all objects under the current user ID

and schema within the database.

v If you accessed this notebook by selecting a schema in the contents pane, then

the Schema field is prefilled with the name of the schema.

 Limiting generation scope:

 To limit the scope of the generation, and use the following options on the Object

page:

v To limit DDL generation to objects created by a particular user, specify that

user’s ID in the User field.

v To limit the DDL generation to objects in a particular schema, specify that

schema in the Schema field.

v To limit the DDL generation to objects related to specific tables, select the

Generate DDL for selected tables only check box. Then, select the tables you

want in the Available tables list box and move them to the Selected tables list

box.

 Run, save, and schedule options:

 On the Schedule page, do one of the following:

v To run the task now, without creating a task in the Task Center or saving the

task history to the Journal, select Run now without saving task history.

v To create a task for generating the DDL script and saving it in the Task Center,

select Create this as a task in the Task Center. Then, specify the task

information and options:

– Specify the name of the system on which you want to run the task, in the

Run system box. This system must be online at the time the task is scheduled

to run.

– Select the system where you want to store the task and the schedule

information, in the Scheduler system drop-down box.

This system will store the task and notify the run system when it is time to

run the task. The drop-down list contains any system that is cataloged and

has the scheduler enabled. The scheduler system must be online so that it can

notify the run system.

If the DB2 tools catalog is on a remote system, you will be asked for a user ID

and password in order to connect to the database

– Optional: If you want to select a different scheduling scheme, click Advanced.

The Advanced Schedule Settings window opens where you can select

between server scheduling or centralized scheduling.

– To save the task in the Task Center, but not actually run the task, select Save

task only.

– To save the task in the Task Center and run the task now, select Save and run

task now.

– To save the task to the Task Center, and schedule a date and time to run the

task later, specify Schedule task execution. The Change button is enabled.

Select a task in the table, and click Change. A window opens where you can

enter the date and time that you want to run the task.

Chapter 3. Creating a database 185

The task table displays the task name suffix and the schedule information.

– To run a task in the Task Center you must supply a user ID and password.

Type the user ID and password that you want to use to run the task.

You can use the Scheduler Settings page of the Tools Settings notebook to set the

default scheduling scheme. Note that if you set a default scheduling scheme, you

can still override it at the task level.

Optional: If you want to view the db2look command that is used to generate the

DDL script, click Show Command.

Click Generate to generate DDL script. From the window that opens, you can do

the following:

v Copy the script to the Command Editor

v Save the script to the file-system

v Run the script, and optionally save it to the Task Center.

 Related concepts:

v “DDL Data definition language” in SQL Guide

v “Savepoints and Data Definition Language (DDL)” in SQL Guide

Quiescing and unquiescing databases

 You can use the Quiesce menu option to immediately force all users off a database.

Similarly, you can use the Unquiesce menu option to return the database to an

active state so that all users can access the database.

 Prerequisites:

 To quiesce or unquiesce a database, you must have SYSADM or DBADM authority.

 Procedure:

 To quiesce or unquiesce databases using the Control Center:

1. Expand the object tree until you find the database that you want to quiesce or

unquiesce.

2. Right-click on the desired database and select Quiesce or Unquiesce from the pop-up

menu. The database will be quiesced or unquiesced immediately.

 Related reference:

v “QUIESCE command” in Command Reference

v “UNQUIESCE command” in Command Reference

186 Administration Guide: Implementation

Chapter 4. Creating tables and other related table objects

This chapter describes how to create tables with specific characteristics when

implementing your database design.

Space compression for tables

 It might be possible for tables to occupy less space when stored on disk by

utilizing such features as compression for data rows, NULL values, and system

default values. Through data compression, you might be able to save disk storage

space by using fewer database pages to store data. Since more logical data can be

stored per page, fewer pages will need to be read in order to access the same

amount of logical data. This means that compression can also result in disk I/O

savings. I/O speed might also increase because more logical data can be cached in

the buffer pool.

To implement data compression in a database system, there are two methods you

can employ:

Value compression

This method optimizes space usage for the representation of data, and the

storage structures used internally by the database management system

(DBMS) to store data. Value compression involves removing duplicate

entries for a value, and only storing one copy. The stored copy keeps track

of the location of any references to the stored value.

Row compression

This method compresses data rows by replacing repeating patterns that

span multiple column values within a row with shorter symbol strings.

 Related concepts:

v “Space requirements for database objects” in Administration Guide: Planning

v “Data row compression” on page 188

v “Space value compression for existing tables” on page 295

v “Space value compression for new tables” on page 187

Space value compression for new tables

 When creating a table, you can use the optional VALUE COMPRESSION clause to

specify that the table is using the space saving row format at the table level and

possibly at the column level.

When VALUE COMPRESSION is used, NULLs and zero-length data that has been

assigned to defined variable-length data types (VARCHAR, VARGRAPHICS,

LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, and DBCLOB) will not be

stored on disk. Only overhead values associated with these data types will take up

disk space.

If VALUE COMPRESSION is used then the optional COMPRESS SYSTEM

DEFAULT option can also be used to further reduce disk space usage. Minimal

disk space is used if the inserted or updated value is equal to the system default

© Copyright IBM Corp. 1993, 2006 187

value for the data type of the column. The default value will not be stored on disk.

Data types that support COMPRESS SYSTEM DEFAULT include all numerical type

columns, fixed-length character, and fixed-length graphic string data types. This

means that zeros and blanks can be compressed.

 Related concepts:

v “Data row compression” on page 188

v “Space compression for tables” on page 187

v “Space value compression for existing tables” on page 295

 Related reference:

v “CREATE TABLE statement” in SQL Reference, Volume 2

Data row compression

 The goal of data row compression is to achieve disk storage space savings.

Compression can also lead to disk I/O savings. Also, more data can be cached in

the buffer pool, thereby leading to increased bufferpool hit-ratios. There is an

associated cost in the form of extra CPU cycles needed to compress and

decompress data. The storage savings and performance impact of data row

compression are intimately tied to the characteristics of the data within the

database, the configuration of the database (layout and tuning) as well as

application workload. Only the data on a data page is compressed, as is data in

log records. Depending upon UPDATE activity and the positioning of update

changes within a data row, there could be an increase in log consumption.

Data row compression is not applicable to Index, Long, LOB and XML data. Row

compression and table data replication support are not compatible.

Data row compression uses a static dictionary-based compression algorithm to

compress data by row. Compressing data at the row level is advantageous because

it allows repeating patterns that span multiple column values within a row to be

replaced with shorter symbol strings. In order to compress table data, the table

COMPRESS attribute must be set to YES and a compression dictionary must exist

for the table. A classic (offline) table reorganization can build a compression

dictionary and subsequently compress a table. All the data rows that exist in a

table will participate in the building of the compression dictionary. The dictionary

will be stored along with the table data rows in the data object portion(s) of the

table.

Row compression statistics can be generated using the RUNSTATS command and

are stored in the system catalog table SYSCAT.TABLES. A compression estimation

option is available with the INSPECT utility.

 Related concepts:

v “Space compression for tables” on page 187

v “Space value compression for existing tables” on page 295

v “Space value compression for new tables” on page 187

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “CREATE TABLE statement” in SQL Reference, Volume 2

v “INSPECT command” in Command Reference

188 Administration Guide: Implementation

v “REORG INDEXES/TABLE command” in Command Reference

Table creation

 The CREATE TABLE statement gives the table a name, which is a qualified or

unqualified identifier, and a definition for each of its columns. You can store each

table in a separate table space, so that a table space contains only one table. If a

table will be dropped and created often, it is more efficient to store it in a separate

table space and then drop the table space instead of the table. You can also store

many tables within a single table space. In a partitioned database environment, the

table space chosen also defines the database partition group and the database

partitions on which table data is stored.

The table does not contain any data at first. To add rows of data to it, use one of

the following:

v The INSERT statement

v The LOAD or IMPORT commands

Adding data to a table can be done without logging the change. The NOT

LOGGED INITIALLY clause on the CREATE TABLE statement prevents logging

the change to the table. Any changes made to the table by an INSERT, DELETE,

UPDATE, CREATE INDEX, DROP INDEX, or ALTER TABLE operation in the same

unit of work in which the table is created are not logged. Logging begins in

subsequent units of work.

A table consists of one or more column definitions. A maximum of 500 columns

can be defined for a table. Columns represent the attributes of an entity. The values

in any column are all the same type of information.

Note: The maximum of 500 columns is true when using a 4 KB page size. The

maximum is 1012 columns when using an 8 KB, 16 KB, or 32 KB page size.

A column definition includes a column name, data type, and any necessary null

attribute, or default value (optionally chosen by the user).

The column name describes the information contained in the column and should

be something that will be easily recognizable. It must be unique within the table;

however, the same name can be used in other tables.

The data type of a column indicates the length of the values in it and the kind of

data that is valid for it. The database manager uses character string, numeric, date,

time and large object data types. Graphic string data types are only available for

database environments using multi-byte character sets. In addition, columns can be

defined with user-defined distinct types.

The default attribute specification indicates what value is to be used if no value is

provided. The default value can be specified, or a system-defined default value

used. Default values might be specified for columns with, and without, the null

attribute specification.

The null attribute specification indicates whether or not a column can contain null

values.

 Related concepts:

v “Import Overview” in Data Movement Utilities Guide and Reference

Chapter 4. Creating tables and other related table objects 189

Related tasks:

v “Creating and populating a table” on page 217

v “Loading data” in Data Movement Utilities Guide and Reference

 Related reference:

v “CREATE TABLE statement” in SQL Reference, Volume 2

Creating a table using the Create Table wizard

 Use the Create Table wizard to create new tables in a database. Name the table,

determine the columns that you want, and specify the space needed for storing the

table data. You can continue by making selections about keys, dimensions, and

constraints.

 Prerequisites:

 To create a table, you must have at least one of the following privileges:

v CREATETAB privilege on the database and USE privilege on the table space,

and either:

– IMPLICIT_SCHEMA authority on the database if the implicit or explicit

schema name of the table does not exist

– CREATEIN privilege on the schema if the schema name of the table exists
v SYSADM or DBADM authority

 Procedure:

 To create a table:

1. Open the Create Table wizard: From the Control Center, expand the object tree

until you find the Tables folder. Right-click the Tables folder and select Create

from the pop-up menu. The Create Table wizard opens.

2. Complete each of the applicable wizard pages. Click the wizard overview link

on the first page for more information. The Finish push button is enabled

when you specify enough information for the wizard to create a table.

 Related tasks:

v “Creating a table in a partitioned database environment” on page 191

v “Creating a table in multiple table spaces” on page 190

Creating a table in multiple table spaces

 Table data can be stored in the same table space as the index for the table, and any

long column data associated with the table. You can also place the index in a

separate table space, and place any long column data in a separate table space,

apart from the table space for the rest of the table data.

 Prerequisites:

 All table spaces must exist before the CREATE TABLE statement is run.

 Restrictions:

 The separation of the parts of the table can only be done using DMS table spaces.

190 Administration Guide: Implementation

Procedure:

 To create a table in multiple table spaces using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click the Tables folder, and select Create from the pop-up menu.

3. Type the table name and click Next.

4. Select columns for your table.

5. On the Table space page, click Use separate index space and Use separate long space,

specify the information, and click Finish.

To create a table in multiple table spaces using the command line, enter:

 CREATE TABLE <name>

 (<column_name> <data_type> <null_attribute>)

 IN <table_space_name>

 INDEX IN <index_space_name>

 LONG IN <long_space_name>

The following example shows how the EMP_PHOTO table could be created to

store the different parts of the table in different table spaces:

 CREATE TABLE EMP_PHOTO

 (EMPNO CHAR(6) NOT NULL,

 PHOTO_FORMAT VARCHAR(10) NOT NULL,

 PICTURE BLOB(100K))

 IN RESOURCE

 INDEX IN RESOURCE_INDEXES

 LONG IN RESOURCE_PHOTO

This example will cause the EMP_PHOTO data to be stored as follows:

v Indexes created for the EMP_PHOTO table will be stored in the

RESOURCES_INDEXES table space

v Data for the PICTURE column will be stored in the RESOURCE_PHOTO table

space

v Data for the EMPNO and PHOTO_FORMAT columns will be stored in the

RESOURCE table space.

 Related reference:

v “CREATE TABLE statement” in SQL Reference, Volume 2

Creating a table in a partitioned database environment

 There are performance advantages to creating a table across several database

partitions in a partitioned database environment. The work associated with the

retrieval of data can be divided among the database partitions.

Creating a table that will be a part of several database partitions is specified when

you are creating the table. There is an additional option when creating a table in a

partitioned database environment: the distribution key. A distribution key is a key

that is part of the definition of a table. It determines the database partition on

which each row of data is stored.

If you do not specify the distribution key explicitly, the following defaults are

used. Ensure that the default distribution key is appropriate.

Chapter 4. Creating tables and other related table objects 191

v If a primary key is specified in the CREATE TABLE statement, the first column

of the primary key is used as the distribution key.

v If there is no primary key, the first column that is not a long field is used.

v If no columns satisfy the requirements for a default distribution key, the table is

created without one (this is allowed only in single-partition database partition

groups).

 Prerequisites:

 Before creating a table that will be physically divided or distributed, you need to

consider the following:

v Table spaces can span more than one database partition. The number of database

partitions they span depends on the number of database partitions in a database

partition group.

v Tables can be collocated by being placed in the same table space or by being

placed in another table space that, together with the first table space, is

associated with the same database partition group.

 Restrictions:

 You must be careful to select an appropriate distribution key because it cannot be

changed later. Furthermore, any unique indexes (and therefore unique or primary

keys) must be defined as a superset of the distribution key. That is, if a distribution

key is defined, unique keys and primary keys must include all of the same

columns as the distribution key (they might have more columns).

The size limit for one database partition of a table is 64 GB, or the available disk

space, whichever is smaller. (This assumes a 4 KB page size for the table space.)

The size of the table can be as large as 64 GB (or the available disk space) times

the number of database partitions. If the page size for the table space is 8 KB, the

size of the table can be as large as 128 GB (or the available disk space) times the

number of database partitions. If the page size for the table space is 16 KB, the size

of the table can be as large as 256 GB (or the available disk space) times the

number of database partitions. If the page size for the table space is 32 KB, the size

of the table can be as large as 512 GB (or the available disk space) times the

number of database partitions.

 Procedure:

 To create a table in a partitioned database environment using the command line,

enter:

 CREATE TABLE <name>

 (<column_name> <data_type> <null_attribute>)

 IN <tagle_space_name>

 INDEX IN <index_space_name>

 LONG IN <long_space_name>

 DISTRIBUTE BY HASH (<column_name>)

Following is an example:

 CREATE TABLE MIXREC (MIX_CNTL INTEGER NOT NULL,

 MIX_DESC CHAR(20) NOT NULL,

 MIX_CHR CHAR(9) NOT NULL,

 MIX_INT INTEGER NOT NULL,

 MIX_INTS SMALLINT NOT NULL,

 MIX_DEC DECIMAL NOT NULL,

 MIX_FLT FLOAT NOT NULL,

 MIX_DATE DATE NOT NULL,

192 Administration Guide: Implementation

MIX_TIME TIME NOT NULL,

 MIX_TMSTMP TIMESTAMP NOT NULL)

 IN MIXTS12

 DISTRIBUTE BY HASH (MIX_INT)

In the preceding example, the table space is MIXTS12 and the distribution key is

MIX_INT. If the distribution key is not specified explicitly, it is MIX_CNTL. (If no

primary key is specified and no distribution key is defined, the distribution key is

the first non-long column in the list.)

A row of a table, and all information about that row, always resides on the same

database partition.

 Related concepts:

v “Database partition group design” in Administration Guide: Planning

v “Database partition groups” in Administration Guide: Planning

v “Table collocation” in Administration Guide: Planning

 Related reference:

v “CREATE TABLE statement” in SQL Reference, Volume 2

Creating partitioned tables

 Partitioned tables use a data organization scheme in which table data is divided

across multiple storage objects, called data partitions or ranges, according to values

in one or more table partitioning key columns of the table. Data from a given table

is partitioned into multiple storage objects based on the specifications provided in

the PARTITION BY clause of the CREATE TABLE statement. These storage objects

can be in different table spaces, in the same table space, or a combination of both.

You can create a partitioned table by using the Create Table wizard in the DB2

Control Center or by using the CREATE TABLE statement.

 Prerequisites:

 To create a table, the privileges held by the authorization ID of the statement must

include at least one of the following authorities or privileges:

v CREATETAB authority on the database and USE privilege on all the table spaces

used by the table, as well as one of:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist

– CREATEIN privilege on the schema, if the schema name of the table refers to

an existing schema
v SYSADM or DBADM authority

 Procedure:

 You can create a partitioned table from the DB2 Control Center or from the DB2

command line processor (CLP).

To use the Create Table wizard in the DB2 Control Center to create a partitioned

table:

1. Expand the object tree until you see the Tables folder.

Chapter 4. Creating tables and other related table objects 193

2. Right-click the Tables folder, and click Create.

3. Follow the steps in the wizard to complete your task.

To use the CLP to create a partitioned table, issue the CREATE TABLE statement:

CREATE TABLE <NAME> (<column_name> <data_type> <null_attribute>) IN

 <table space list> PARTITION BY RANGE (<column expression>)

 STARTING FROM <constant> ENDING <constant> EVERY <constant>

For example, the following statement creates a table where rows with a ≥ 1 and a ≤

20 are in PART0 (the first data partition), rows with 21 ≤ a ≤ 40 are in PART1 (the

second data partition), up to 81 ≤ a ≤ 100 are in PART4 (the last data partition).

CREATE TABLE foo(a INT)

 PARTITION BY RANGE (a) (STARTING FROM (1)

 ENDING AT (100) EVERY (20))

 Related concepts:

v “Large object behavior in partitioned tables” in SQL Reference, Volume 1

v “Table partitioning” in Administration Guide: Planning

v “Table partitioning keys” in Administration Guide: Planning

v “Understanding clustering index behavior on partitioned tables” in Performance

Guide

v “Data organization schemes in DB2 and Informix databases” in Administration

Guide: Planning

v “Understanding index behavior on partitioned tables” in Performance Guide

v “Optimization strategies for partitioned tables” in Performance Guide

v “Partitioned tables” in Administration Guide: Planning

v “Partitioned materialized query table behavior” on page 206

 Related tasks:

v “Rotating data in a partitioned table” on page 339

v “Approaches to defining ranges on partitioned tables” on page 195

v “Adding data partitions to partitioned tables” on page 356

v “Altering partitioned tables” on page 336

v “Creating and populating a table” on page 217

v “Approaches to migrating existing tables and views to partitioned tables” on

page 198

v “Attaching a data partition” on page 346

v “Detaching a data partition” on page 352

 Related reference:

v “CREATE TABLE statement” in SQL Reference, Volume 2

v “Examples of rolling in and rolling out partitioned table data” on page 342

v “Guidelines and restrictions on altering partitioned tables with attached or

detached data partitions” on page 338

Details of partitioned tables

This section discusses various approaches to creating partitioned tables.

194 Administration Guide: Implementation

Approaches to defining ranges on partitioned tables

 You can specify a range for each data partition when you create a partitioned table.

A partitioned table uses a data organization scheme in which table data is divided

across multiple data partitions according to the values of the table partitioning key

columns of the table. Data from a given table is partitioned into multiple storage

objects based on the specifications provided in the PARTITION BY clause of the

CREATE TABLE statement. A range is specified by the STARTING FROM and

ENDING AT values of the PARTITION BY clause.

To completely define the range for each data partition, you must specify sufficient

boundaries. The following is a list of guidelines to consider when defining ranges

on a partitioned table:

v The STARTING clause specifies a low boundary for the data partition range.

This clause is mandatory for the lowest data partition range (although you can

define the boundary as MINVALUE). The lowest data partition range is the data

partition with the lowest specified bound.

v The ENDING (or VALUES) clause specifies a high boundary for the data

partition range. This clause is mandatory for the highest data partition range

(although you can define the boundary as MAXVALUE). The highest data

partition range is the data partition with the highest specified bound.

v If you do not specify an ENDING clause for a data partition, then the next

greater data partition must specify a STARTING clause. Likewise, if you do not

specify a STARTING clause, then the previous data partition must specify an

ENDING clause.

v MINVALUE specifies a value that is smaller than any possible value for the

column type being used. MINVALUE and INCLUSIVE or EXCLUSIVE cannot be

specified together.

v MAXVALUE specifies a value that is larger than any possible value for the

column type being used. MAXVALUE and INCLUSIVE or EXCLUSIVE cannot

be specified together.

v INCLUSIVE indicates that all values equal to the specified value are to be

included in the data partition containing this boundary.

v EXCLUSIVE indicates that all values equal to the specified value are NOT to be

included in the data partition containing this boundary.

v The NULL clause specifies whether null values are to be sorted high or low

when considering data partition placement. By default, null values are sorted

high. Null values in the table partitioning key columns are treated as positive

infinity, and are placed in a range ending at MAXVALUE. If no such data

partition is defined, null values are considered to be out-of-range values. Use the

NOT NULL constraint if you want to exclude null values from table partitioning

key columns. LAST specifies that null values are to appear last in a sorted list of

values. FIRST specifies that null values are to appear first in a sorted list of

values.

v When using the long form of the syntax, each data partition must have at least

one bound specified.

Tip: Before you begin defining data partitions on a table it is important to

understand how tables benefit from table partitioning and what factors influence

the columns you choose as partitioning columns.

The ranges specified for each data partition can be generated automatically or

manually.

Chapter 4. Creating tables and other related table objects 195

Automatically generated:

 Automatic generation is a simple method of creating many data partitions quickly

and easily. This method is appropriate for equal sized ranges based on dates or

numbers.

Examples 1 and 2 demonstrate how to use the CREATE TABLE statement to define

and generate automatically the ranges specified for each data partition.

Example 1: Issue a create table statement with the following ranges defined:

CREATE TABLE lineitem (

 l_orderkey DECIMAL(10,0) NOT NULL,

 l_quantity DECIMAL(12,2),

 l_shipdate DATE,

 l_year_month INT GENERATED ALWAYS AS (YEAR(l_shipdate)*100 + MONTH(l_shipdate)))

 PARTITION BY RANGE(l_shipdate)

 (STARTING (’1/1/1992’) ENDING (’12/31/1992’) EVERY 1 MONTH);

This statement results in 12 data partitions each with 1 key value (l_shipdate)

>=(’1/1/1992’), (l_shipdate) < (’3/1/1992’), (l_shipdate) < (’4/1/1992’), (l_shipdate)

< (’5/1/1992’), ..., (l_shipdate) < (’12/1/1992’)(l_shipdate) <= (’12/31/1992’).

The starting value of the first data partition is inclusive because the overall starting

bound (’1/1/1992’) is inclusive (default). Similarly, the ending bound of the last

data partition is inclusive because the overall ending bound (’12/31/1992’) is

inclusive (default). The remaining STARTING values are inclusive and the

remaining ENDING values are all exclusive. Each data partition holds n key values

where n is given by the EVERY clause. Use the formula (start + every) to find

the end of the range for each data partition. The last data partition might have

fewer key values if the EVERY value does not divide evenly into the START and

END range.

Example 2:

Issue a create table statement with the following ranges defined:

CREATE TABLE t(a INT, b INT)

 PARTITION BY RANGE(b) (STARTING FROM (1) EXCLUSIVE ENDING AT (1000) EVERY (100))

This statement results in 10 data partitions each with 100 key values (1 < b <= 101,

101 < b <= 201, ..., 901 < b <= 1000).

The starting value of the first data partition (b > 1 and b <= 101) is exclusive

because the overall starting bound (1) is exclusive. Similarly the ending bound of

the last data partition (b > 901 b <= 1000) is inclusive because the overall ending

bound (1000) is inclusive. The remaining STARTING values are all exclusive and

the remaining ENDING values are all inclusive. Each data partition holds n key

values where n is given by the EVERY clause. Finally, if both the starting and

ending bound of the overall clause are exclusive, the starting value of the first data

partition is exclusive because the overall starting bound (1) is exclusive. Similarly

the ending bound of the last data partition is exclusive because the overall ending

bound (1000) is exclusive. The remaining STARTING values are all exclusive and

the ENDING values are all inclusive. Each data partition (except the last) holds n

key values where n is given by the EVERY clause.

 Manually generated:

196 Administration Guide: Implementation

Manual generation creates a new data partition for each range listed in the

PARTITION BY clause. This form of the syntax allows for greater flexibility when

defining ranges thereby increasing your data and LOB placement options.

Examples 3 and 4 demonstrate how to use the CREATE TABLE statement to define

and generate manually the ranges specified for a data partition.

Example 3:

This statement partitions on two date columns both of which are generated. Notice

the use of the automatically generated form of the CREATE TABLE syntax and that

only one end of each range is specified. The other end is implied from the adjacent

data partition and the use of the INCLUSIVE option:

CREATE TABLE sales(invoice_date date, inv_month int NOT NULL

GENERATED ALWAYS AS (month(invoice_date)), inv_year INT NOT

NULL GENERATED ALWAYS AS (year(invoice_date)), item_id int NOT NULL,

cust_id int NOT NULL) PARTITION BY RANGE (inv_year, inv_month)

(PART Q1_02 STARTING (2002,1) ENDING (2002, 3) INCLUSIVE,

PART Q2_02 ENDING (2002, 6) INCLUSIVE,

PART Q3_02 ENDING (2002, 9) INCLUSIVE,

PART Q4_02 ENDING (2002,12) INCLUSIVE,

PART CURRENT ENDING (MAXVALUE, MAXVALUE));

Gaps in the ranges are permitted. The CREATE TABLE syntax supports gaps by

allowing you to specify a STARTING value for a range that does not line up

against the ENDING value of the previous data partition.

Example 4:

Creates a table with a gap between values 101 and 200.

CREATE TABLE foo(a INT)

 PARTITION BY RANGE(a)

 (STARTING FROM (1) ENDING AT (100),

 STARTING FROM (201) ENDING AT (300))

Use of the ALTER TABLE statement, which allows data partitions to be added or

removed, can also cause gaps in the ranges.

When you insert a row into a partitioned table, it is automatically placed into the

proper data partition based on its key value and the range it falls within. If it falls

outside of any ranges defined for the table, the insert fails and the following error

is returned to the application:

SQL0327N The row cannot be inserted into table <tablename>

 because it is outside the bounds of the defined data partition ranges.

 SQLSTATE=22525

 Restrictions:

v Table level restrictions:

– Tables created using the automatically generated form of the syntax

(containing the EVERY clause) are constrained to use a numeric or date time

type in the table partitioning key.
v Statement level restrictions:

– MINVALUE and MAXVALUE are not supported in the automatically

generated form of the syntax.

– Ranges are ascending.

– Only one column can be specified in the automatically generated form of the

syntax.

Chapter 4. Creating tables and other related table objects 197

– The increment in the EVERY clause must be greater than zero.

– The ENDING value must be greater than or equal to the STARTING value.

 Related concepts:

v “Attributes of detached data partitions” on page 354

v “Data partitions” in Administration Guide: Planning

v “Partitioned tables” in Administration Guide: Planning

 Related tasks:

v “Adding data partitions to partitioned tables” on page 356

v “Altering partitioned tables” on page 336

v “Creating partitioned tables” on page 193

v “Dropping a data partition” on page 358

v “Approaches to migrating existing tables and views to partitioned tables” on

page 198

v “Attaching a data partition” on page 346

v “Detaching a data partition” on page 352

v “Rotating data in a partitioned table” on page 339

 Related reference:

v “Examples of rolling in and rolling out partitioned table data” on page 342

v “CREATE TABLE statement” in SQL Reference, Volume 2

Approaches to migrating existing tables and views to

partitioned tables

 There are three approaches you can use to migrate an existing table or view to a

partitioned table:

v When migrating regular tables create a new, empty partitioned table and use the

LOAD from CURSOR to move the data from the old table directly into the

partitioned table without any intermediate steps.

v When migrating regular tables unload the source table using the export utility or

high performance unload, create a new, empty partitioned table and use the

LOAD command to populate an empty partitioned table.

v When migrating Union All views create a partitioned table with a single dummy

data partition, then attach all of the tables.

 Converting regular tables:

 To migrate data from a DB2 9.1 table into a partitioned table, use the LOAD

command to populate an empty partitioned table.

Example 1:

Suppose you have a regular table t1:

CREATE TABLE t1 (c1 int, c2 int);

Create a new, empty partitioned table:

CREATE TABLE sales_dp (c1 int, c2 int)

 PARTITION BY RANGE (c1)

 (STARTING FROM 0 ENDING AT 10 EVERY 2);

198 Administration Guide: Implementation

Populate table t1:

INSERT INTO t1 VALUES (0,1), (4, 2), (6, 3);

To avoid creating a third copy of the data in a flat file, issue the LOAD command

to pull the data from an SQL query directly into the new partitioned table.

SELECT * FROM t1;

DECLARE c1 CURSOR FOR SELECT * FROM t1;

LOAD FROM c1 of CURSOR INSERT INTO sales_dp;

SELECT * FROM sales_dp;

Drop the old table:

DROP TABLE t1;

 Converting UNION ALL views:

 You can convert DB2 9.1 data in a UNION ALL view into a partitioned table.

UNION ALL views are used to manage large tables, and achieve easy roll-in and

roll-out of table data while providing the performance advantages of branch

elimination. Table partitioning accomplishes all of these and is easier to administer.

Using the ALTER TABLE ...ATTACH operation, you can achieve conversion with

no movement of data in the base table. Indexes and dependent views or

materialized query tables (MQT’s) must be re-created after the conversion.

The recommended strategy is to create a partitioned table with a single dummy

data partition, then attach all of the tables of the union all view. Be sure to drop

the dummy data partition early in the process to avoid problems with overlapping

ranges.

Example 2:

Create table syntax for first table in the UNION:

 CREATE TABLE sales_0198(

 sales_date DATE NOT NULL,

 prod_id INTEGER,

 city_id INTEGER,

 channel_id INTEGER,

 revenue DECIMAL(20,2),

 CONSTRAINT ck_date

 CHECK

 (sales_date BETWEEN ’01-01-1998’ AND ’01-31-1998’));

Create view syntax for a union all view:

 CREATE VIEW all_sales AS

 (

 SELECT * FROM sales_0198

 WHERE sales_date BETWEEN ’01-01-1998’ AND ’01-31-1998’

 UNION ALL

 SELECT * FROM sales_0298

 WHERE sales_date BETWEEN ’02-01-1998’ AND ’02-28-1998’

 UNION ALL

 ...

 UNION ALL

 SELECT * FROM sales_1200

 WHERE sales_date BETWEEN ’12-01-2000’ AND ’12-31-2000’

);

Create a partitioned table with a single dummy partition. The range should be

chosen so that it does not overlap with the first data partition to be attached:

Chapter 4. Creating tables and other related table objects 199

CREATE TABLE sales_dp (

 sales_date DATE NOT NULL,

 prod_id INTEGER,

 city_id INTEGER,

 channel_id INTEGER,

 revenue DECIMAL(20,2))

 PARTITION BY RANGE (sales_date)

 (PART dummy STARTING FROM ’01-01-1900’ ENDING AT ’01-01-1900’);

Attach the first table:

ALTER TABLE sales_dp ATTACH PARTITION

STARTING FROM ’01-01-1998’ ENDING AT ’01-31-1998’

FROM sales_0198;

Drop the dummy partition:

 ALTER TABLE sales_dp DETACH PARTITION dummy

 INTO dummy;

 DROP TABLE dummy;

Attach the remaining partitions:

ALTER TABLE sales_dp ATTACH PARTITION STARTING

FROM ’02-01-1998’ ENDING AT ’02-28-1998’ FROM sales_0298;

...

ALTER TABLE sales_dp ATTACH PARTITION STARTING

FROM ’12-01-2000’ ENDING AT ’12-31-2000’ FROM sales_1200;

Issue the SET INTEGRITY statement to bring the attached data partitions online.

SET INTEGRITY FOR sales_dp IMMEDIATE CHECKED

FOR EXCEPTION IN sales_dp USE sales_ex;

Create indexes, as appropriate.

 Conversion considerations:

 Attaching a data partition is allowed unless the value of the SYSCAT.COLUMNS

IMPLICITVALUE field in a specific column is a non-null value for both the source

column and the target column, and the values do not match. In this case, you must

drop the source table and then recreate it.

A column can have a non-null value in the SYSCAT.COLUMNS IMPLICITVALUE

field if one of the following conditions are met:

v the column is created as the result of an ALTER TABLE ...ADD COLUMN

statement

v the IMPLICITVALUE field is propagated from a source table during attach

v the IMPLICITVALUE field is inherited from a source table during detach

v the IMPLICITVALUE field is set during migration from V8 to V9, where it is

determined to be an added column, or might be an added column. If the

database is not certain whether the column is added or not, it is treated as

added. An added column is a column created as the result of an ALTER TABLE

...ADD COLUMN statement.

To avoid these inconsistencies, it is recommended that you always create the

source and target tables involved in an attach operation with the same columns

defined. In particular, never use the ALTER TABLE statement to add columns to a

target table of an attach operation.

200 Administration Guide: Implementation

For best practices in avoiding a mismatch when working with partitioned tables,

see Resolving a mismatch when trying to attach a data partition to a partitioned

table.

 Related concepts:

v “Resolving a mismatch when trying to attach a data partition to a partitioned

table” on page 348

v “Partitioned tables” in Administration Guide: Planning

 Related tasks:

v “Altering a table” on page 297

v “Altering or dropping a view” on page 330

 Related reference:

v “Guidelines and restrictions on altering partitioned tables with attached or

detached data partitions” on page 338

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “CREATE TABLE statement” in SQL Reference, Volume 2

v “LOAD command” in Command Reference

v “SYSCAT.COLUMNS catalog view” in SQL Reference, Volume 1

Creating materialized query tables

This section describes various aspects of creating and populating materialized

query tables.

Creating a materialized query table

 A materialized query table is a table whose definition is based on the result of a

query. As such, the materialized query table typically contains pre-computed

results based on the data existing in the table or tables that its definition is based

on. If the query compiler determines that a query will run more efficiently against

a materialized query table than the base table or tables, the query executes against

the materialized query table, and you obtain the result faster than you otherwise

would.

 Restrictions:

 Materialized query tables defined with REFRESH DEFERRED are not used to

optimize static queries.

Setting the CURRENT REFRESH AGE special register to a value other than zero

should be done with caution. By allowing a materialized query table that might

not represent the values of the underlying base table to be used to optimize the

processing of the query, the result of the query might not accurately represent the

data in the underlying table. This might be reasonable when you know the

underlying data has not changed, or you are willing to accept the degree of error

in the results based on your knowledge of the data.

If you want to create a new base table that is based on any valid fullselect, specify

the DEFINITION ONLY keyword when you create the table. When the create table

Chapter 4. Creating tables and other related table objects 201

operation completes, the new table is not treated as a materialized query table, but

rather as a base table. For example, you can create the exception tables used in

LOAD and SET INTEGRITY as follows:

 CREATE TABLE XT AS

 (SELECT T.*, CURRENT TIMESTAMP AS TIMESTAMP,CLOB(",32K)

 AS MSG FROM T) DEFINITION ONLY

Here are some of the key restrictions regarding materialized query tables:

1. You cannot alter a materialized query table.

2. You cannot alter the length of a column for a base table if that table has a

materialized query table.

3. You cannot import data into a materialized query table.

4. You cannot create a unique index on a materialized query table.

5. You cannot create a materialized query table based on the result of a query that

references one or more nicknames.

 Procedure:

 The creation of a materialized query table with the replication option can be used

to replicate tables across all nodes in a partitioned database environment. These are

known as “replicated materialized query tables”.

In general a materialized query table, or a replicated materialized query table, is

used for optimization of a query if the isolation level of the materialized query

table, or the replicated materialized query table, is higher than or equal to the

isolation level of the query. For example, if a query is running under the cursor

stability (CS) isolation level, only materialized query tables, and replicated

materialized query tables, that are defined under CS or higher isolation levels are

used for optimization.

To create a materialized query table, you use the CREATE TABLE statement with

the AS fullselect clause and the IMMEDIATE or REFRESH DEFERRED options.

You have the option of uniquely identifying the names of the columns of the

materialized query table. The list of column names must contain as many names as

there are columns in the result table of the full select. A list of column names must

be given if the result table of the full select has duplicate column names or has an

unnamed column. An unnamed column is derived from a constant, function,

expression, or set operation that is not named using the AS clause of the select list.

If a list of column names is not specified, the columns of the table inherit the

names of the columns of the result set of the full select.

When creating a materialized query table, you have the option of specifying

whether the system will maintain the materialized query table or the user will

maintain the materialized query table. The default is system-maintained, which can

be explicitly specified using the MAINTAINED BY SYSTEM clause.

User-maintained materialized query tables are specified using the MAINTAINED

BY USER clause.

If you create a system-maintained materialized query table, you have a further

option of specifying whether the materialized query table is refreshed

automatically when the base table is changed, or whether it is refreshed by using

the REFRESH TABLE statement. To have the materialized query table refreshed

automatically when changes are made to the base table or tables, specify the

REFRESH IMMEDIATE keyword. An immediate refresh is useful when:

202 Administration Guide: Implementation

v Your queries need to ensure the data they access is the most current

v The base table or tables are infrequently changed

v The refresh is not expensive.

The materialized query table, in this situation, can provide pre-computed results. If

you want the refresh of the materialized query table to be deferred, specify the

REFRESH DEFERRED keyword. Materialized query tables specified with

REFRESH DEFERRED will not reflect changes to the underlying base tables. You

should use materialized query tables where this is not a requirement. For example,

if you run DSS queries, you would use the materialized query table to contain

existing data.

A materialized query table defined with REFRESH DEFERRED might be used in

place of a query when it:

v Conforms to the restrictions for a fullselect of a refresh immediate summary

table, except:

– The SELECT list is not required to include COUNT(*) or COUNT_BIG(*)

– The SELECT list can include MAX and MIN column functions

– A HAVING clause is allowed.

You use the CURRENT REFRESH AGE special register to specify the amount of

time that the materialized query table defined with REFRESH DEFERRED can be

used for a dynamic query before it must be refreshed. To set the value of the

CURRENT REFRESH AGE special register, you can use the SET CURRENT

REFRESH AGE statement.

The CURRENT REFRESH AGE special register can be set to ANY, or a value of

99999999999999, to allow deferred materialized queries to be used in a dynamic

query. The collection of nines is the maximum value allowed in this special register

which is a timestamp duration value with a data type of DECIMAL(20,6). A value

of zero (0) indicates that only materialized query tables defined with REFRESH

IMMEDIATE might be used to optimize the processing of a query. In such a case,

materialized query tables defined with REFRESH DEFERRED are not used for

optimization.

Materialized query tables defined with REFRESH IMMEDIATE are applicable to

both static and dynamic queries and do not need to use the CURRENT REFRESH

AGE special register.

Materialized query tables have queries routed to them when the table has been

defined using the ENABLE QUERY OPTIMIZATION clause, and, if a deferred

materialized query table, the CURRENT REFRESH AGE special register has been

set to ANY. However, with user-maintained materialized query tables, the use of

the CURRENT REFRESH AGE special register is not the best method to control the

rerouting of queries. The CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION special register will indicate which kind of cached data will be

available for routing.

With activity affecting the source data, a materialized query table over time will no

longer contain accurate data. You will need to use the REFRESH TABLE statement.

 Related concepts:

v “Isolation levels” in SQL Reference, Volume 1

Chapter 4. Creating tables and other related table objects 203

Related tasks:

v “Refreshing the data in a materialized query table” on page 336

v “Altering materialized query table properties” on page 335

v “Dropping a materialized query or staging table” on page 365

 Related reference:

v “CREATE TABLE statement” in SQL Reference, Volume 2

v “CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special

register” in SQL Reference, Volume 1

v “CURRENT REFRESH AGE special register” in SQL Reference, Volume 1

v “REFRESH TABLE statement” in SQL Reference, Volume 2

v “SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

statement” in SQL Reference, Volume 2

v “SET CURRENT REFRESH AGE statement” in SQL Reference, Volume 2

v “Restrictions on native XML data store” in XML Guide

Creating a user-maintained materialized query table

 User-maintained materialized query tables (MQTs) are useful for database systems

in which tables of summary data already exist. Custom applications that maintain

such summary tables are common. Identifying existing summary tables as

user-maintained MQTs causes the query optimizer to use the existing summary

table to compute result sets for queries against the base tables.

Note: The query optimizer does not use user-maintained MQTs when selecting an

access plan for static queries.

 Restrictions:

 If you create a user-maintained materialized query table, the restrictions associated

with a system-maintained materialized query table still apply but with the

following exceptions:

v INSERT, UPDATE, and DELETE operations are allowed on the materialized

query table. However, no validity checking is done against the underlying base

tables. You are responsible for the correctness of the data.

v LOAD, EXPORT, IMPORT, and data replication will work with this type of

materialized query table except there is no validity checking.

v You are not allowed to use the REFRESH TABLE statement on this type of

materialized query table.

v You are not allowed to use the SET INTEGRITY ... IMMEDIATE CHECKED

statement on this type of materialized query table.

v User-maintained materialized query tables must be defined as REFRESH

DEFERRED.

See the “Creating a materialized query table” topic for additional restrictions.

 Procedure:

 To create a materialized query table, you use the CREATE TABLE statement with

the AS fullselect clause and the IMMEDIATE or REFRESH DEFERRED options.

204 Administration Guide: Implementation

When creating a materialized query table, you have the option of specifying

whether the system will maintain the materialized query table or the user will

maintain the materialized query table. The default is system-maintained, which can

be explicitly specified using the MAINTAINED BY SYSTEM clause.

User-maintained materialized query tables are specified using the MAINTAINED

BY USER clause.

In large database environments, or data warehouse environments, there are often

custom applications that maintain and load user-maintained materialized query

tables.

Note: For the optimizer to consider a user-maintained MQT, the query

optimization level must be set at Level 2, or at a level greater than or equal

to 5.

 Related tasks:

v “Populating a user-maintained materialized query table” on page 205

 Related reference:

v “CREATE TABLE statement” in SQL Reference, Volume 2

Populating a user-maintained materialized query table

 Once you have created the table to hold the summary information, you will want

to populate the materialized query table (MQT) with the summary data you want

the optimizer to use when determining result sets.

 Prerequisites:

 Ensure that the table to hold the summary information exists.

 Procedure:

 You can populate user-maintained MQTs using triggers, insert operations, or the

LOAD, IMPORT, and DB2 DataPropagator utilities. When performing the initial

population of a user-maintained MQT, you can avoid logging overhead by using

the LOAD or IMPORT utilities.

The following steps represent a typical approach for populating a user-maintained

MQT:

v Make the base tables read-only to avoid the creation of new records or the

modification of existing records.

v Extract the required data from the base tables and write it to an external file.

v Import or load the data from the external file into the MQT. You can use the

LOAD or IMPORT utilities on a table in the Set Integrity Pending state.

Note: If you want to populate the MQT with SQL insert operations, you need to

bring the MQT out of the Set Integrity Pending state. However, the

optimizer must first be disabled by using the DISABLE QUERY

OPTIMIZATION option in the SET MATERIALIZED QUERY clause of the

ALTER TABLE statement to ensure that a dynamic SQL query does not

accidentally optimize to this MQT while the data in it is still being

established. Once the MQT has been populated, optimization needs to be

Chapter 4. Creating tables and other related table objects 205

enabled using the ENABLE QUERY OPTIMIZATION option in the SET

MATERIALIZED QUERY clause of the ALTER TABLE statement.

v To issue SQL queries against a new MQT, you will need to bring the MQT out of

the Set Integrity Pending state. By doing this, you indicate that you have

assumed responsibility for data integrity of the materialized view. The statement

to do this is:

 DB2 SET INTEGRITY FOR example ALL IMMEDIATE UNCHECKED

v Make the base tables read/write.

Note: For the optimizer to consider a user-maintained MQT, the query

optimization level must be set at Level 2, or at a level greater than or equal

to 5.

 Related reference:

v “IMPORT Command” in Command Reference

v “LOAD command” in Command Reference

Partitioned materialized query table behavior

 All types of materialized query tables(MQTs) are supported with partitioned tables.

When working with partitioned MQTs, there are a number of guidelines that can

help you to administer attached and detached data partitions most effectively.

The following guidelines and restrictions apply when working with partitioned

MQTs or partitioned tables with detached dependents:

v If you issue a DETACH PARTITION operation and there are any dependent

tables that need to be incrementally maintained with respect to the detached

data partition (these dependents table are referred to as detached dependent

tables), then the newly detached table is initially inaccessible. The table will be

marked L in the TYPE column of the SYSCAT.TABLES catalog view. This is

referred to as a detached table. This prevents the table from being read,

modified or dropped until the SET INTEGRITY statement is run to incrementally

maintain the detached dependent tables. After the SET INTEGRITY statement is

run on all detached dependent tables, the detached table is transitioned to a

regular table where it becomes fully accessible.

v To detect that a detached table is not yet accessible, query the

SYSCAT.TABDETACHEDDEP catalog view. If any inaccessible detached tables

are detected, run the SET INTEGRITY statement with the IMMEDIATE

CHECKED option on all the detached dependents to transition the detached

table to a regular accessible table. If you try to access a detached table before all

its detached dependents are maintained, error code SQL20285N is returned.

v The DATAPARTITIONNUM function cannot be used in an materialized query

table (MQT) definition. Attempting to create an MQT using this function returns

an error (SQLCODE SQL20058N, SQLSTATE 428EC).

v When creating an index on a table with detached data partitions, the index does

not include the data in the detached data partitions unless the detached data

partition has a dependent materialized query table (MQT) that needs to be

incrementally refreshed with respect to it. In this case, the index includes the

data for this detached data partition.

v Altering a table with attached data partitions to an MQT is not allowed.

v Partitioned staging tables are not supported.

v Attaching to an MQT is not directly supported. See Example 1 for details.

206 Administration Guide: Implementation

v The REFRESH TABLE statement and the SET INTEGRITY statement with the

IMMEDIATE CHECKED option is allowed on a partitioned MQT. If an out of

range error occur during the refresh, add the missing data partition

appropriately and re-execute the REFRESH TABLE statement.

 Example 1:

 Although the ATTACH operation is not directly supported on partitioned MQTs,

you can achieve the same effect by converting a partitioned MQT to an ordinary

table, performing the desired roll-in and roll-out of table data, and then converting

the table back into an MQT. The following CREATE TABLE and ALTER TABLE

statements demonstrate the effect:

CREATE TABLE lineitem (

 l_orderkey DECIMAL(10,0) NOT NULL,

 l_quantity DECIMAL(12,2),

 l_shipdate DATE,

 l_year_month INT GENERATED ALWAYS AS (YEAR(l_shipdate)*100 + MONTH(l_shipdate)))

 PARTITION BY RANGE(l_shipdate)

 (STARTING (’1/1/1992’) ENDING (’12/31/1993’) EVERY 1 MONTH);

CREATE TABLE lineitem_ex (

 l_orderkey DECIMAL(10,0) NOT NULL,

 l_quantity DECIMAL(12,2),

 l_shipdate DATE,

 l_year_month INT,

 ts TIMESTAMP,

 msg CLOB(32K));

CREATE TABLE quan_by_month (

 q_year_month, q_count) AS

 (SELECT l_year_month AS q_year_month, COUNT(*) AS q_count

 FROM lineitem

 GROUP BY l_year_month)

 DATA INITIALLY DEFERRED REFRESH IMMEDIATE

 PARTITION BY RANGE(q_year_month)

 (STARTING (199201) ENDING (199212) EVERY (1),

 STARTING (199301) ENDING (199312) EVERY (1));

CREATE TABLE quan_by_month_ex(

 q_year_month INT,

 q_count INT NOT NULL,

 ts TIMESTAMP,

 msg CLOB(32K));

SET INTEGRITY FOR quan_by_month IMMEDIATE CHECKED;

CREATE INDEX qbmx ON quan_by_month(q_year_month);

ALTER TABLE quan_by_month DROP MATERIALIZED QUERY;

ALTER TABLE lineitem DETACH PARTITION part0 INTO li_reuse;

ALTER TABLE quan_by_month DETACH PARTITION part0 INTO qm_reuse;

SET INTEGRITY FOR li_reuse OFF;

ALTER TABLE li_reuse ALTER l_year_month SET GENERATED ALWAYS

AS (YEAR(l_shipdate)*100 + MONTH(l_shipdate));

LOAD FROM part_mqt_rotate.del OF DEL MODIFIED BY GENERATEDIGNORE

MESSAGES load.msg REPLACE INTO li_reuse;

DECLARE load_cursor CURSOR FOR

 SELECT l_year_month, COUNT(*)

 FROM li_reuse

 GROUP BY l_year_month;

LOAD FROM load_cursor OF CURSOR MESSAGES load.msg

 REPLACE INTO qm_reuse;

ALTER TABLE lineitem ATTACH PARTITION STARTING ’1/1/1994’

Chapter 4. Creating tables and other related table objects 207

ENDING ’1/31/1994’ FROM li_reuse;

SET INTEGRITY FOR lineitem ALLOW WRITE ACCESS IMMEDIATE CHECKED

FOR EXCEPTION IN lineitem USE lineitem_ex;

ALTER TABLE quan_by_month ATTACH PARTITION STARTING 199401

 ENDING 199401 FROM qm_reuse;

SET INTEGRITY FOR quan_by_month IMMEDIATE CHECKED

 FOR EXCEPTION IN quan_by_month USE quan_by_month_ex;

ALTER TABLE quan_by_month ADD MATERIALIZED QUERY

 (SELECT l_year_month AS q_year_month, COUNT(*) AS q_count

 FROM lineitem

 GROUP BY l_year_month)

 DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

SET INTEGRITY FOR QUAN_BY_MONTH ALL IMMEDIATE UNCHECKED;

Use the SET INTEGRITY statement with the IMMEDIATE CHECKED option to

check the attached data partition for integrity violations. This step is required

before changing the table back to an MQT. The SET INTEGRITY statement with

the IMMEDIATE UNCHECKED option is used to bypass the required full refresh

of the MQT. The index on the MQT is necessary to achieve optimal performance.

The use of exception tables with the SET INTEGRITY statement is recommended,

where appropriate.

Typically, you create a partitioned MQT on a large fact table that is also

partitioned. If you do roll out or roll in table data on the large fact table, you must

adjust the partitioned MQT manually, as demonstrated in Example 2.

 Example 2:

 Alter the MQT (quan_by_month) to convert it to an ordinary partitioned table:

ALTER TABLE quan_by_month DROP MATERIALIZED QUERY;

Detach the data to be rolled out from the fact table (lineitem) and the MQT and

re-load the staging table li_reuse with the new data to be rolled in:

ALTER TABLE lineitem DETACH PARTITION part0 INTO li_reuse;

LOAD FROM part_mqt_rotate.del OF DEL MESSAGES load.msg REPLACE INTO li_reuse;

ALTER TABLE quan_by_month DETACH PARTITION part0 INTO qm_reuse;

Prune qm_reuse before doing the insert. This deletes the detached data before

inserting the subselect data. This is accomplished with a load replace into the MQT

where the data file of the load is the content of the subselect.

db2 load from datafile.del of del replace into qm_reuse

You can refresh the table manually using INSERT INTO ... (SELECT ...) This is only

necessary on the new data, so the statement should be issued before attaching:

INSERT INTO qm_reuse

 (SELECT COUNT(*) AS q_count, l_year_month AS q_year_month

 FROM li_reuse

 GROUP BY l_year_month);

Now you can roll in the new data for the fact table:

ALTER TABLE lineitem ATTACH PARTITION STARTING ’1/1/1994’

ENDING ’1/31/1994’ FROM TABLE li_reuse;

SET INTEGRITY FOR lineitem ALLOW WRITE ACCESS IMMEDIATE CHECKED FOR

EXCEPTION IN li_reuse USE li_reuse_ex;

208 Administration Guide: Implementation

Next, roll in the data for the MQT:

ALTER TABLE quan_by_month ATTACH PARTITION STARTING 199401

ENDING 199401 FROM TABLE qm_reuse;

SET INTEGRITY FOR quan_by_month IMMEDIATE CHECKED;

After attaching the data partition, the new data must be verified to ensure that it is

in range.

ALTER TABLE quan_by_month ADD MATERIALIZED QUERY

 (SELECT COUNT(*) AS q_count, l_year_month AS q_year_month

 FROM lineitem

 GROUP BY l_year_month)

 DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

SET INTEGRITY FOR QUAN_BY_MONTH ALL IMMEDIATE UNCHECKED;

The data is not accessible until it has been validated by the SET INTEGRITY

statement. Although the REFRESH TABLE operation is supported, this scenario

demonstrates the manual maintenance of a partitioned MQT through the ATTACH

PARTITION and DETACH PARTITION operations. The data is marked as

validated by the user through the IMMEDIATE UNCHECKED clause of the SET

INTEGRITY statement.

 Related concepts:

v “Partitioned tables” in Administration Guide: Planning

v “Asynchronous index cleanup” in Performance Guide

v “Understanding clustering index behavior on partitioned tables” in Performance

Guide

v “Understanding index behavior on partitioned tables” in Performance Guide

v “Optimization strategies for partitioned tables” in Performance Guide

 Related tasks:

v “Creating a materialized query table” on page 201

v “Creating partitioned tables” on page 193

v “Dropping a materialized query or staging table” on page 365

v “Attaching a data partition” on page 346

v “Detaching a data partition” on page 352

v “Rotating data in a partitioned table” on page 339

v “Adding data partitions to partitioned tables” on page 356

v “Altering partitioned tables” on page 336

v “Altering a table” on page 297

v “Altering materialized query table properties” on page 335

 Related reference:

v “Guidelines and restrictions on altering partitioned tables with attached or

detached data partitions” on page 338

v “SET INTEGRITY statement” in SQL Reference, Volume 2

v “ALTER TABLE statement” in SQL Reference, Volume 2

Chapter 4. Creating tables and other related table objects 209

Creating a new source table using db2look

 Creating a new source table might be necessary when the characteristics of the

target table do not sufficiently match the characteristics of the source when issuing

the ALTER TABLE statement with the ATTACH PARTITION clause. Before creating

a new source table, you can attempt to correct the mismatch between the existing

source table and the target table.

If attempts to correct the mismatch fail, error SQL20408N or SQL20307N is

returned.

 Prerequisites:

 To create a table, the privileges held by the authorization ID of the statement must

include at least one of the following authorities and privileges:

v CREATETAB authority on the database and USE privilege on the table space, as

well as one of:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist

– CREATEIN privilege on the schema, if the schema name of the table refers to

an existing schema
v SYSADM or DBADM authority

 Procedure:

 To create a new source table:

1. Use the db2look command to produce the CREATE TABLE statement to create

a table identical to the target table:

db2look -d <source database name> -t <target database name> -e -p

2. Remove the partitioning clause from the db2look output and change the name

of the table created to a new name (in this example, refered to here as sourceC).

3. Next, load all of the data from the original source table to the newly created

source table, sourceC using a LOAD FROM CURSOR command:

DECLARE mycurs CURSOR FOR SELECT * FROM source

LOAD FROM mycurs OF CURSOR REPLACE INTO sourceC

If this command fails because the original data is incompatible with the

definition of table sourceC, you must transform the data in the original table as

it is being transferred to sourceC.

4. After the data has been successfully copied to sourceC, submit the ALTER

TABLE target ...ATTACH sourceC statement.

 Related concepts:

v “Resolving a mismatch when trying to attach a data partition to a partitioned

table” on page 348

v “Partitioned tables” in Administration Guide: Planning

v “Tables” in SQL Reference, Volume 1

v “Mimicking databases using db2look” in Troubleshooting Guide

 Related tasks:

v “Altering a table” on page 297

210 Administration Guide: Implementation

v “Altering partitioned tables” on page 336

v “Attaching a data partition” on page 346

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “db2look - DB2 statistics and DDL extraction tool command” in Command

Reference

Creating a staging table

 A staging table allows incremental maintenance support for deferred materialized

query table. The staging table collects changes that need to be applied to the

materialized query table to synchronize it with the contents of underlying tables.

The use of staging tables eliminates the high lock contention caused by immediate

maintenance content when an immediate refresh of the materialized query table is

requested. Also, the materialized query tables no longer need to be entirely

regenerated whenever a REFRESH TABLE is performed.

Materialized query tables are a powerful way to improve response time for

complex queries, especially queries that might require some of the following

operations:

v Aggregated data over one or more dimensions

v Joins and aggregates data over a group of tables

v Data from a commonly accessed subset of data

v Repartitioned data from a table, or part of a table, in a partitioned database

environment

 Restrictions:

 Here are some of the key restrictions regarding staging tables:

1. The query used to define the materialized query table, for which the staging

table is created, must be incrementally maintainable; that is, it must adhere to

the same rules as a materialized query table with an immediate refresh option.

2. Only a deferred refresh can have a supporting staging table. The query also

defines the materialized query table associated with the staging table. The

materialized query table must be defined with REFRESH DEFERRED.

3. When refreshing using the staging tables, only a refresh to the current point in

time is supported.

4. Partitioned hierarchy tables and partitioned typed tables are not supported.

(Partitioned tables are tables where data is partitioned into multiple storage

objects based on the specifications provided in the PARTITION BY clause of the

CREATE TABLE statement.)

 Procedure:

 An inconsistent, incomplete, or pending state staging table cannot be used to

incrementally refresh the associated materialized query table unless some other

operations occur. These operations will make the content of the staging table

consistent with its associated materialized query table and its underlying tables,

and to bring the staging table out of pending. Following a refresh of a materialized

query table, the content of its staging table is cleared and the staging table is set to

a normal state. A staging table might also be pruned intentionally by using the SET

INTEGRITY statement with the appropriate options. Pruning will change the

Chapter 4. Creating tables and other related table objects 211

staging table to an inconsistent state. For example, the following statement forces

the pruning of a staging table called STAGTAB1:

 SET INTEGRITY FOR STAGTAB1 PRUNE;

When a staging table is created, it is put in a pending state and has an indicator

that shows that the table is inconsistent or incomplete with regard to the content of

underlying tables and the associated materialized query table. The staging table

needs to be brought out of the pending and inconsistent state in order to start

collecting the changes from its underlying tables. While in a pending state, any

attempts to make modifications to any of the staging table’s underlying tables will

fail, as will any attempts to refresh the associated materialized query table.

There are several ways a staging table might be brought out of a pending state; for

example:

v SET INTEGRITY FOR <staging table name> STAGING IMMEDIATE

UNCHECKED

v SET INTEGRITY FOR <staging table name> IMMEDIATE CHECKED

 Related tasks:

v “Altering materialized query table properties” on page 335

v “Creating a materialized query table” on page 201

v “Dropping a materialized query or staging table” on page 365

v “Refreshing the data in a materialized query table” on page 336

 Related reference:

v “SET INTEGRITY statement” in SQL Reference, Volume 2

Creating a user-defined temporary table

 A user-defined temporary table is needed by applications you are writing to work

with data in the database. Results from manipulation of the data need to be stored

temporarily in a table.

The description of this table does not appear in the system catalog making it not

persistent for, and not able to be shared with, other applications.

When the application using this table terminates or disconnects from the database,

any data in the table is deleted and the table is implicitly dropped.

 Prerequisites:

 A user temporary table space must exist before creating a user-defined temporary

table.

 Restrictions:

 A user-defined temporary table does not support:

v LOB-type columns (or a distinct-type column based on a LOB)

v User-defined type columns

v LONG VARCHAR columns

v DATALINK columns

212 Administration Guide: Implementation

Procedure:

 To create a user-defined temporary table, use the DECLARE GLOBAL

TEMPORARY TABLE statement. The statement is used from within an application.

Example of how to define a temporary table:

 DECLARE GLOBAL TEMPORARY TABLE gbl_temp

 LIKE empltabl

 ON COMMIT DELETE ROWS

 NOT LOGGED

 IN usr_tbsp

This statement creates a user temporary table called gbl_temp. The user temporary

table is defined with columns that have exactly the same name and description as

the columns of the empltabl. The implicit definition only includes the column

name, data type, nullability characteristic, and column default value attributes. All

other column attributes including unique constraints, foreign key constraints,

triggers, and indexes are not defined. When a COMMIT operation is performed, all

data in the table is deleted if no WITH HOLD cursor is open on the table. Changes

made to the user temporary table are not logged. The user temporary table is

placed in the specified user temporary table space. This table space must exist or

the declaration of this table will fail.

If a ROLLBACK or ROLLBACK TO SAVEPOINT is specified when creating this

table, either you can specify to delete all the rows in the table (DELETE ROWS,

which is the default), or you can specify that the rows of the table are to be

preserved (PRESERVE ROWS).

 Related tasks:

v “Creating a user temporary table space” on page 159

 Related reference:

v “DECLARE GLOBAL TEMPORARY TABLE statement” in SQL Reference, Volume

2

v “ROLLBACK statement” in SQL Reference, Volume 2

v “SAVEPOINT statement” in SQL Reference, Volume 2

Creating range-clustered tables

This section provides examples and guidelines for range-clustered tables, including

how the compiler works with these types of tables.

Examples of range-clustered tables

 The two examples that follow are simple and demonstrate the ways to create a

range-clustered table. The examples show how you can use either a single column,

or multiple columns, as the key to the table. In addition, they show how to create

a table that allows data to overflow and a table that does not allow data to

overflow.

The first example shows a range-clustered table that is used to locate a student

using a STUDENT_ID. For each student record, the following information is

included:

v School ID

v Program ID

Chapter 4. Creating tables and other related table objects 213

v Student number

v Student ID

v Student first name

v Student last name

v Student grade point average (GPA)

In this case, the student records are based solely on the STUDENT_ID. The

STUDENT_ID will be used to add, update, and delete student records.

Note: Other indexes can be added separately at another time. However, for the

purpose of this example, the organization of the table and how to access the

table’s data are defined when the table is created.

Here is the syntax needed for this table:

 CREATE TABLE STUDENTS

 (SCHOOL_ID INT NOT NULL,

 PROGRAM_ID INT NOT NULL,

 STUDENT_NUM INT NOT NULL,

 STUDENT_ID INT NOT NULL,

 FIRST_NAME CHAR(30),

 LAST_NAME CHAR(30),

 GPA FLOAT)

 ORGANIZE BY KEY SEQUENCE

 (STUDENT_ID STARTING FROM 1 ENDING AT 1000000)

 ALLOW OVERFLOW

 ;

The size of each record is the sum of the columns. In this case, there is a 10 byte

header + 4 + 4 + 4 + 4 + 30 + 30 + 8 + 3 (for nullable columns) equaling 97 bytes.

With a 4 KB page size (or 4096 bytes), after accounting for the overhead there is

4038 bytes, or enough room for 42 records per page. If 1 million student records

are allowed, there will be a need for 1 million divided by 42 records per page, or

23809.5 pages. This rounds up to 23810 pages that are needed. Four pages are

added for table overhead and three pages for extent mapping. The result is a

required preallocation of 23817 pages of 4 KB size. (The extent mapping assumes a

single container to hold this table. There should be three pages for each container.)

In the second example, which is a variation on the first, consider the idea of a

school board. In the school board there are 200 schools, each having 20 classrooms

with a capacity of 35 students. This school board can accommodate a maximum of

140,000 students.

In this case, the student records are based on three factors: the SCHOOL_ID, the

CLASS_ID, and the STUDENT_NUM values. Each of these three columns will

have unique values and will be used together to add, update, and delete student

records.

Note: As with the previous example, other indexes might be added separately and

at some other time.

Here is the syntax needed for this table:

 CREATE TABLE STUDENTS

 (SCHOOL_ID INT NOT NULL,

 CLASS_ID INT NOT NULL,

 STUDENT_NUM INT NOT NULL,

 STUDENT_ID INT NOT NULL,

 FIRST_NAME CHAR(30),

214 Administration Guide: Implementation

LAST_NAME CHAR(30),

 GPA FLOAT)

 ORGANIZE BY KEY SEQUENCE

 (SCHOOL_ID STARTING FROM 1 ENDING AT 200,

 CLASS_ID STARTING FROM 1 ENDING AT 20,

 STUDENT_NUM STARTING FROM 1 ENDING AT 35)

 DISALLOW OVERFLOW

 ;

In this case, an overflow is not allowed. This makes sense because there is likely a

school board policy that restricts the number of students allowed in each class. In

this example, the largest possible class size is 35. When you couple this factor with

the physical limitations imposed by the number of classrooms and schools, it is

clear that there is no reason to allow an overflow in the number of students in the

school board.

It is possible that schools have varying numbers of classrooms. If this is the case,

when defining the range for the number of classrooms (using CLASS_ID), the

upper boundary should be the largest number of classrooms when considering all

of the schools. This might mean that some smaller schools (schools with fewer

classrooms than the largest school) will have space for student records that might

never be used (unless, for example, portable classrooms are added to the school).

By using the same 4 KB page size and the same student record size as in the

previous example, there can be 42 records per page. With 140,000 student records,

there will be a need for 3333.3 pages, or 3334 pages once rounding up is done.

There are two pages for table information, and three pages for extent mapping.

The result is a required preallocation of 3339 pages of 4 KB size.

 Related reference:

v “CREATE TABLE statement” in SQL Reference, Volume 2

How the query compiler works with range-clustered tables

 The SQL compiler handles the range-clustered table (RCT) in a similar way to a

regular table that has a secondary B+ tree index. Rather than working through a

B+ tree index to determine the record’s location or Record Identifier (RID), RCT

uses a functional lookup involving the record key values and the algorithm from

the range definition. This is similar to having an index because a key value is used

to obtain the RID quickly.

When working to determine the best access path to required data, the SQL

compiler uses statistical information kept about the tables. Index statistics are

collected during a table scan when a RUNSTATS command is issued. For an RCT,

the table is modeled as a regular table, and the index is modeled as a

function-based index.

Order of records in the table is not guaranteed when creating a range-clustered

table allowing overflow.

 Related concepts:

v “Guidelines for using range-clustered tables” on page 216

v “Range-clustered tables” in Administration Guide: Planning

Chapter 4. Creating tables and other related table objects 215

Guidelines for using range-clustered tables

 When working with the DB2 database manager and range-clustered tables (RCT),

note the following guidelines:

v When defining the range of key values, the minimum value is optional; if it is

not specified, then the default is one (1). Negative values are allowed for

minimum and maximum values. When working with negative values, the

minimum value must be stated explicitly. For example, ORGANIZE BY KEY

SEQUENCE (F1 STARTING FROM -100 ENDING AT -10)

v Creating a regular index on the same key values used to define the

range-clustered table is not allowed.

v Some ALTER TABLE options are unavailable for use on range-clustered tables.

Where the option does not affect the physical structure of the table, the option is

allowed.

v Because the process of creating a range-clustered table preallocates the required

disk space, that space must be available or the table creation will fail.

 Related concepts:

v “Range-clustered tables” in Administration Guide: Planning

v “Examples of range-clustered tables” on page 213

Creating typed tables

This section describes how to create and populate typed tables.

Creating a hierarchy table or a typed table

 A hierarchy table is a table that is associated with the implementation of a typed

table hierarchy. It is created at the same time as the root table of the hierarchy.

As part of creating a structured type hierarchy, you will create typed tables. You

can use typed tables to store instances of objects whose characteristics are defined

with the CREATE TYPE statement.

 Prerequisites:

 The type on which the hierarchy table or typed table will be created must exist.

 Restrictions:

 Partitioned hierarchy tables and partitioned typed tables are not supported.

(Partitioned tables are tables where data is partitioned into multiple storage objects

based on the specifications provided in the PARTITION BY clause of the CREATE

TABLE statement.)

 Procedure:

 You can create a hierarchy table or typed table using a variant of the CREATE

TABLE statement.

 Related concepts:

v “Typed tables” in SQL Guide

216 Administration Guide: Implementation

Related tasks:

v “Populating a typed table” on page 217

v “Creating a structured type hierarchy” in SQL Guide

v “Creating typed tables” in SQL Guide

v “Creating typed views” in SQL Guide

v “Dropping typed tables” in SQL Guide

 Related reference:

v “CREATE TABLE statement” in SQL Reference, Volume 2

v “CREATE TYPE (Structured) statement” in SQL Reference, Volume 2

Populating a typed table

 As part of establishing a structured type hierarchy, you will create typed tables.

Typed tables are used to store instances of objects whose characteristics are defined

with the CREATE TYPE statement. Once created, you will need to place data into

the typed table.

 Prerequisites:

 The typed table must exist.

 Procedure:

 You can populate a typed table after creating the structured types and then

creating the corresponding tables and subtables.

 Related concepts:

v “Substitutability in typed tables” in SQL Guide

v “Typed tables” in SQL Guide

 Related tasks:

v “Creating a hierarchy table or a typed table” on page 216

v “Creating typed tables” in SQL Guide

v “Dropping typed tables” in SQL Guide

v “Storing objects in typed table rows” in SQL Guide

 Related reference:

v “CREATE TYPE (Structured) statement” in SQL Reference, Volume 2

Creating and populating a table

 Tables are the main repository of data within databases. Creating the tables and

entering data to fill the tables will occur when you are creating an new database.

 Prerequisites:

 You must take the time to design and organize the tables that will hold your data.

 Procedure:

Chapter 4. Creating tables and other related table objects 217

After you determine how to organize your data into tables, the next step is to

create those tables, by using the CREATE TABLE statement. The table descriptions

are stored in the system catalog of the database to which you are connected.

To create a table using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click the Tables folder, and click Create.

3. Follow the steps in the wizard to complete your tasks.

To create a table using the command line, enter:

 CREATE TABLE <NAME>

 (<column_name> <data_type> <null_attribute>)

 IN <TABLE_SPACE_NAME)

The following is an example of a CREATE TABLE statement that creates the

EMPLOYEE table in the RESOURCE table space. This table is defined in the

sample database:

 CREATE TABLE EMPLOYEE

 (EMPNO CHAR(6) NOT NULL PRIMARY KEY,

 FIRSTNME VARCHAR(12) NOT NULL,

 MIDINIT CHAR(1) NOT NULL WITH DEFAULT,

 LASTNAME VARCHAR(15) NOT NULL,

 WORKDEPT CHAR(3),

 PHONENO CHAR(4),

 PHOTO BLOB(10M) NOT NULL)

 IN RESOURCE

When creating a table, you can choose to have the columns of the table based on

the attributes of a structured type. Such a table is called a “typed table”.

A typed table can be defined to inherit some of its columns from another typed

table. Such a table is called a “subtable”, and the table from which it inherits is

called its “supertable”. The combination of a typed table and all its subtables is

called a “table hierarchy”. The topmost table in the table hierarchy (the one with

no supertable) is called the “root table” of the hierarchy.

To declare a global temporary table, use the DECLARE GLOBAL TEMPORARY

TABLE statement.

You can also create a table that is defined based on the result of a query. This type

of table is called a materialized query table.

Refer to the topics in the related information sections for other options that you

should consider when creating and populating a table.

 Related concepts:

v “Import Overview” in Data Movement Utilities Guide and Reference

v “Load overview” in Data Movement Utilities Guide and Reference

v “Moving data across platforms - file format considerations” in Data Movement

Utilities Guide and Reference

v “Comparing IDENTITY columns and sequences” on page 235

v “Large object (LOB) column considerations” on page 221

v “Table creation” on page 189

218 Administration Guide: Implementation

v “User-defined types (UDTs)” on page 246

 Related tasks:

v “Creating a hierarchy table or a typed table” on page 216

v “Creating a materialized query table” on page 201

v “Creating a sequence” on page 234

v “Creating a table in a partitioned database environment” on page 191

v “Creating a table in multiple table spaces” on page 190

v “Creating a user-defined temporary table” on page 212

v “Defining a generated column on a new table” on page 219

v “Defining an identity column on a new table” on page 220

v “Defining dimensions on a table” on page 235

v “Defining a unique constraint on a table” on page 223

 Related reference:

v “CREATE TABLE statement” in SQL Reference, Volume 2

v “DECLARE GLOBAL TEMPORARY TABLE statement” in SQL Reference, Volume

2

v “INSERT statement” in SQL Reference, Volume 2

v “IMPORT Command” in Command Reference

v “LOAD command” in Command Reference

Details on creating and populating a table

Tables contain all of your data. There are many things you should consider when

creating the tables and placing data within them.

Defining columns

This section discusses how to define generated and identify columns on a new

table.

Defining a generated column on a new table

 A generated column is defined in a base table where the stored value is computed

using an expression, rather than being specified through an insert or update

operation.

 Procedure:

 When creating a table where it is known that certain expressions or predicates will

be used all the time, you can add one or more generated columns to that table. By

using a generated column there is opportunity for performance improvements

when querying the table data.

For example, there are two ways in which the evaluation of expressions can be

costly when performance is important:

1. The evaluation of the expression must be done many times during a query.

2. The computation is complex.

To improve the performance of the query, you can define an additional column

that would contain the results of the expression. Then, when issuing a query that

Chapter 4. Creating tables and other related table objects 219

includes the same expression, the generated column can be used directly; or, the

query rewrite component of the optimizer can replace the expression with the

generated column.

It is also possible to create a non-unique index on a generated column.

Where queries involve the joining of data from two or more tables, the addition of

a generated column can allow the optimizer a choice of possibly better join

strategies.

The following is an example of defining a generated column on the CREATE

TABLE statement:

 CREATE TABLE t1 (c1 INT,

 c2 DOUBLE,

 c3 DOUBLE GENERATED ALWAYS AS (c1 + c2)

 c4 GENERATED ALWAYS AS

 (CASE WHEN c1 > c2 THEN 1 ELSE NULL END))

After creating this table, indexes can be created using the generated columns. For

example,

 CREATE INDEX i1 ON t1(c4)

Queries can take advantage of the generated columns. For example,

 SELECT COUNT(*) FROM t1 WHERE c1 > c2

can be written as

 SELECT COUNT(*) FROM t1 WHERE c4 IS NOT NULL

Another example:

 SELECT c1 + c2 FROM t1 WHERE (c1 + c2) * c1 > 100

can be written as

 SELECT c3 FROM t1 WHERE c3 * c1 > 100

Generated columns will be used to improve performance of queries. As a result,

generated columns will likely be added after the table has been created and

populated.

 Related tasks:

v “Defining a generated column on an existing table” on page 321

 Related reference:

v “CREATE INDEX statement” in SQL Reference, Volume 2

v “CREATE TABLE statement” in SQL Reference, Volume 2

v “SELECT statement” in SQL Reference, Volume 2

v “Restrictions on native XML data store” in XML Guide

Defining an identity column on a new table

 An identity column provides a way for DB2 to automatically generate a unique

numeric value for each row that is added to the table. When creating a table in

which you need to uniquely identify each row that will be added to the table, you

can add an identity column to the table. To guarantee a unique numeric value for

each row that is added to a table, you should define a unique index on the identity

column or declare it a primary key.

220 Administration Guide: Implementation

Other uses of an identity column are an order number, an employee number, a

stock number, or an incident number. The values for an identity column can be

generated by the DB2 database manager: ALWAYS or BY DEFAULT.

An identity column defined as GENERATED ALWAYS is given values that are

always generated by the DB2 database manager. Applications are not allowed to

provide an explicit value. An identity column defined as GENERATED BY

DEFAULT gives applications a way to explicitly provide a value for the identity

column. If the application does not provide a value, then DB2 will generate one.

Since the application controls the value, DB2 cannot guarantee the uniqueness of

the value. The GENERATED BY DEFAULT clause is meant for use for data

propagation where the intent is to copy the contents of an existing table; or, for the

unload and reloading of a table.

 Restrictions:

 Once created, you cannot alter the table description to include an identity column.

If rows are inserted into a table with explicit identity column values specified, the

next internally generated value is not updated, and might conflict with existing

values in the table. Duplicate values will generate an error message if the

uniqueness of the values in the identity column is being enforced by a primary-key

or a unique index that has been defined on the identity column.

 Procedure:

 To define an identity column on a new table, use the AS IDENTITY clause on the

CREATE TABLE statement.

The following is an example of defining an identity column on the CREATE

TABLE statement:

 CREATE TABLE table (col1 INT,

 col2 DOUBLE,

 col3 INT NOT NULL GENERATED ALWAYS AS IDENTITY

 (START WITH 100, INCREMENT BY 5))

In this example the third column is the identity column. You can also specify the

value used in the column to uniquely identify each row when added. Here the first

row entered has the value of “100” placed in the column; every subsequent row

added to the table has the associated value increased by five.

 Related concepts:

v “Comparing IDENTITY columns and sequences” on page 235

 Related reference:

v “CREATE TABLE statement” in SQL Reference, Volume 2

Large object (LOB) column considerations

 Before creating a table that contains large object columns, you need to answer the

following questions:

1. Do you want to log changes to LOB columns?

If you do not want to log these changes, you must turn logging off by

specifying the NOT LOGGED clause when you create the table. For example:

Chapter 4. Creating tables and other related table objects 221

CREATE TABLE EMPLOYEE

 (EMPNO CHAR(6) NOT NULL PRIMARY KEY,

 FIRSTNME VARCHAR(12) NOT NULL,

 MIDINIT CHAR(1) NOT NULL WITH DEFAULT,

 LASTNAME VARCHAR(15) NOT NULL,

 WORKDEPT CHAR(3),

 PHONENO CHAR(4),

 PHOTO BLOB(10M) NOT NULL NOT LOGGED)

 IN RESOURCE

If the LOB column is larger than 1 GB, logging must be turned off. (As a rule

of thumb, you might not want to log LOB columns larger than 10 MB.) As with

other options specified on a column definition, the only way to change the

logging option is to re-create the table.

Even if you choose not to log changes, LOB columns are shadowed to allow

changes to be rolled back, whether the roll back is the result of a system

generated error, or an application request. Shadowing is a recovery technique

in which current storage page contents are never overwritten. That is, old,

unmodified pages are kept as “shadow” copies. These copies are discarded

when they are no longer needed to support a transaction rollback.

Note: When recovering a database using the RESTORE and ROLLFORWARD

commands, LOB data that was “NOT LOGGED”and was written since the

last backup will be replaced by binary zeros.

2. Do you want to minimize the space required for the LOB column?

You can make the LOB column as small as possible using the COMPACT

clause on the CREATE TABLE statement. For example:

 CREATE TABLE EMPLOYEE

 (EMPNO CHAR(6) NOT NULL PRIMARY KEY,

 FIRSTNME VARCHAR(12) NOT NULL,

 MIDINIT CHAR(1) NOT NULL WITH DEFAULT,

 LASTNAME VARCHAR(15) NOT NULL,

 WORKDEPT CHAR(3),

 PHONENO CHAR(4),

 PHOTO BLOB(10M) NOT NULL NOT LOGGED COMPACT)

 IN RESOURCE

There is a performance cost when appending to a table with a compact LOB

column, particularly if the size of LOB values are increased (because of storage

adjustments that must be made).

Note: When moving LOBs, small LOBs are stored in the applications heap and

large LOBs are stored in temporary tables within a 4 KB page size

temporary table space.

On platforms where sparse file allocation is not supported and where LOBs are

placed in SMS table spaces, consider using the COMPACT clause. Sparse file

allocation has to do with how physical disk space is used by an operating

system. An operating system that supports sparse file allocation does not use as

much physical disk space to store LOBs as compared to an operating system

not supporting sparse file allocation. The COMPACT option allows for even

greater physical disk space “savings” regardless of the support of sparse file

allocation. Because you can get some physical disk space savings when using

COMPACT, you should consider using COMPACT if your operating system

does not support sparse file allocation.

Note: DB2 Version 8 and later: System catalogs that use LOB columns and

might take up more space than in previous versions.

3. Do you want better performance for LOB columns, including those LOB

columns in the system catalogs?

222 Administration Guide: Implementation

There are large object (LOB) columns in the catalog tables. LOB data is not kept

in the buffer pool with other data but is read from disk each time it is needed.

Reading from disk slows down the performance of DB2 where the LOB

columns of the catalogs are involved. Since a file system usually has its own

place for storing (or caching) data, using a SMS table space, or a DMS table

space built on file containers, make avoidance of I/O possible when the LOB

has previously been referenced.

 Related concepts:

v “Space requirements for large object data” in Administration Guide: Planning

 Related reference:

v “Large objects (LOBs)” in SQL Reference, Volume 1

v “CREATE TABLE statement” in SQL Reference, Volume 2

Defining keys and constraints

This section discusses how to define constraints and sequences on tables. For more

information on constraints, refer to the section on planning for constraint

enforcement in the Administration Guide: Planning; and to the SQL Reference.

Defining a unique constraint on a table

 Unique constraints ensure that every value in the specified key is unique. A table

can have any number of unique constraints, with one unique constraint defined as

a primary key.

 Restrictions:

 A unique constraint might not be defined on a subtable.

There can be only one primary key per table.

 Procedure:

 You define a unique constraint with the UNIQUE clause in the CREATE TABLE or

ALTER TABLE statements. The unique key can consist of more than one column.

More than one unique constraint is allowed on a table.

Once established, the unique constraint is enforced automatically by the database

manager when an INSERT or UPDATE statement modifies the data in the table.

The unique constraint is enforced through a unique index.

When a unique constraint is defined in an ALTER TABLE statement and an index

exists on the same set of columns of that unique key, that index becomes the

unique index and is used by the constraint.

You can take any one unique constraint and use it as the primary key. The primary

key can be used as the parent key in a referential constraint (along with other

unique constraints). You define a primary key with the PRIMARY KEY clause in

the CREATE TABLE or ALTER TABLE statement. The primary key can consist of

more than one column.

A primary index forces the value of the primary key to be unique. When a table is

created with a primary key, the database manager creates a primary index on that

key.

Chapter 4. Creating tables and other related table objects 223

Some performance tips for indexes used as unique constraints include:

v When performing an initial load of an empty table with indexes, LOAD gives

better performance than IMPORT. This is true no matter whether you are using

the INSERT or REPLACE modes of LOAD.

v When appending a substantial amount of data to an existing table with indexes

(using IMPORT INSERT, or LOAD INSERT), LOAD gives slightly better

performance than IMPORT.

v If you are using the IMPORT command for an initial large load of data, create

the unique key after the data has been imported or loaded. This avoids the

overhead of maintaining the index while the table is being loaded. It also results

in the index using the least amount of storage.

v If you are using the load utility in REPLACE mode, create the unique key before

loading the data. In this case, creation of the index during the load is more

efficient than using the CREATE INDEX statement after the load.

 Related concepts:

v “Constraints” in SQL Reference, Volume 1

v “Keys” in SQL Reference, Volume 1

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “CREATE TABLE statement” in SQL Reference, Volume 2

Defining referential constraints on tables

 Referential integrity is imposed by adding referential constraints to table and

column definitions. Once referential constraints are defined to the database

manager, changes to the data within the tables and columns is checked against the

defined constraint. Completion of the requested action depends on the result of the

constraint checking.

 Procedure:

 Referential constraints are established with the FOREIGN KEY clause, and the

REFERENCES clause in the CREATE TABLE or ALTER TABLE statements. There

are effects from a referential constraint on a typed table or to a parent table that is

a typed table that you should consider before creating a referential constraint.

The identification of foreign keys enforces constraints on the values within the

rows of a table or between the rows of two tables. The database manager checks

the constraints specified in a table definition and maintains the relationships

accordingly. The goal is to maintain integrity whenever one database object

references another.

For example, primary and foreign keys each have a department number column.

For the EMPLOYEE table, the column name is WORKDEPT, and for the

DEPARTMENT table, the name is DEPTNO. The relationship between these two

tables is defined by the following constraints:

v There is only one department number for each employee in the EMPLOYEE

table, and that number exists in the DEPARTMENT table.

v Each row in the EMPLOYEE table is related to no more than one row in the

DEPARTMENT table. There is a unique relationship between the tables.

224 Administration Guide: Implementation

v Each row in the EMPLOYEE table that has a non-null value for WORKDEPT is

related to a row in the DEPTNO column of the DEPARTMENT table.

v The DEPARTMENT table is the parent table, and the EMPLOYEE table is the

dependent table.

The SQL statement defining the parent table, DEPARTMENT, is:

 CREATE TABLE DEPARTMENT

 (DEPTNO CHAR(3) NOT NULL,

 DEPTNAME VARCHAR(29) NOT NULL,

 MGRNO CHAR(6),

 ADMRDEPT CHAR(3) NOT NULL,

 LOCATION CHAR(16),

 PRIMARY KEY (DEPTNO))

 IN RESOURCE

The SQL statement defining the dependent table, EMPLOYEE, is:

 CREATE TABLE EMPLOYEE

 (EMPNO CHAR(6) NOT NULL PRIMARY KEY,

 FIRSTNME VARCHAR(12) NOT NULL,

 LASTNAME VARCHAR(15) NOT NULL,

 WORKDEPT CHAR(3),

 PHONENO CHAR(4),

 PHOTO BLOB(10m) NOT NULL,

 FOREIGN KEY DEPT (WORKDEPT)

 REFERENCES DEPARTMENT ON DELETE NO ACTION)

 IN RESOURCE

By specifying the DEPTNO column as the primary key of the DEPARTMENT table

and WORKDEPT as the foreign key of the EMPLOYEE table, you are defining a

referential constraint on the WORKDEPT values. This constraint enforces

referential integrity between the values of the two tables. In this case, any

employees that are added to the EMPLOYEE table must have a department

number that can be found in the DEPARTMENT table.

The delete rule for the referential constraint in the employee table is NO ACTION,

which means that a department cannot be deleted from the DEPARTMENT table if

there are any employees in that department.

Although the previous examples use the CREATE TABLE statement to add a

referential constraint, the ALTER TABLE statement can also be used.

Another example: The same table definitions are used as those in the previous

example. Also, the DEPARTMENT table is created before the EMPLOYEE table.

Each department has a manager, and that manager is listed in the EMPLOYEE

table. MGRNO of the DEPARTMENT table is actually a foreign key of the

EMPLOYEE table. Because of this referential cycle, this constraint poses a slight

problem. You could add a foreign key later. You could also use the CREATE

SCHEMA statement to create both the EMPLOYEE and DEPARTMENT tables at

the same time.

 Related concepts:

v “Foreign keys in a referential constraint” on page 226

v “REFERENCES clause in a referential constraint” on page 227

 Related tasks:

v “Adding foreign keys” on page 310

Chapter 4. Creating tables and other related table objects 225

Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “CREATE SCHEMA statement” in SQL Reference, Volume 2

v “CREATE TABLE statement” in SQL Reference, Volume 2

Foreign keys in a referential constraint

 A foreign key references a primary key or a unique key in the same or another

table. A foreign key assignment indicates that referential integrity is to be

maintained according to the specified referential constraints. You define a foreign

key with the FOREIGN KEY clause in the CREATE TABLE or ALTER TABLE

statement. A foreign key makes its table dependent on another table called a parent

table. The values in the column or set of columns that make up the foreign key in

one table must match the unique key or primary key values of the other table.

The number of columns in the foreign key must be equal to the number of

columns in the corresponding primary or unique constraint (called a parent key) of

the parent table. In addition, corresponding parts of the key column definitions

must have the same data types and lengths. The foreign key can be assigned a

constraint name. If you do not assign a name, one is automatically assigned. For

ease of use, it is recommended that you assign a constraint name and do not use the

system-generated name.

The value of a composite foreign key matches the value of a parent key if the

value of each column of the foreign key is equal to the value of the corresponding

column of the parent key. A foreign key containing null values cannot match the

values of a parent key, since a parent key by definition can have no null values.

However, a null foreign key value is always valid, regardless of the value of any of

its non-null parts.

The following rules apply to foreign key definitions:

v A table can have many foreign keys

v A foreign key is nullable if any part is nullable

v A foreign key value is null if any part is null.

When working with foreign keys you can:

v Create a table with zero or more foreign keys.

v Define foreign keys when a table is created or altered.

v Drop foreign keys when a table is altered.

 Related tasks:

v “Defining a unique constraint on a table” on page 223

v “Defining referential constraints on tables” on page 224

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “CREATE TABLE statement” in SQL Reference, Volume 2

226 Administration Guide: Implementation

REFERENCES clause in a referential constraint

 The REFERENCES clause identifies the parent table in a relationship, and defines

the necessary constraints. You can include it in a column definition or as a separate

clause accompanying the FOREIGN KEY clause, in either the CREATE TABLE or

ALTER TABLE statements.

If you specify the REFERENCES clause as a column constraint, an implicit column

list is composed of the column name or names that are listed. Remember that

multiple columns can have separate REFERENCES clauses, and that a single

column can have more than one.

Included in the REFERENCES clause is the delete rule. In this example, the ON

DELETE NO ACTION rule is used, which states that no department can be deleted

if there are employees assigned to it. Other delete rules include ON DELETE

CASCADE, ON DELETE SET NULL, and ON DELETE RESTRICT.

 Related concepts:

v “Foreign keys in a referential constraint” on page 226

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “CREATE TABLE statement” in SQL Reference, Volume 2

Table constraint implications for utility operations

 If the table being loaded into has referential integrity constraints, the load utility

places the table into the Set Integrity Pending state to inform you that the SET

INTEGRITY statement is required to be run on the table, in order to verify the

referential integrity of the loaded rows. After the load utility has completed, you

will need to issue the SET INTEGRITY statement to carry out the referential

integrity checking on the loaded rows and to bring the table out of the Set

Integrity Pending state. For example, if the DEPARTMENT and EMPLOYEE tables

are the only tables that have been placed in Set Integrity Pending state, you can

execute the following statement:

 SET INTEGRITY FOR DEPARTMENT ALLOW WRITE ACCESS, EMPLOYEE ALLOW WRITE ACCESS

 IMMEDIATE CHECKED FOR EXCEPTION IN DEPARTMENT USE DEPARTMENT_EX,

 IN EMPLOYEE USE EMPLOYEE_EX

The import utility is affected by referential constraints in the following ways:

v The REPLACE and REPLACE CREATE functions are not allowed if the object

table has any dependents other than itself.

To use these functions, first drop all foreign keys in which the table is a parent.

When the import is complete, re-create the foreign keys with the ALTER TABLE

statement.

v The success of importing into a table with self-referencing constraints depends

on the order in which the rows are imported.

 Related concepts:

v “Checking for integrity violations following a load operation” in Data Movement

Utilities Guide and Reference

v “Import Overview” in Data Movement Utilities Guide and Reference

v “Load overview” in Data Movement Utilities Guide and Reference

Chapter 4. Creating tables and other related table objects 227

Related reference:

v “SET INTEGRITY statement” in SQL Reference, Volume 2

Defining a table check constraint

 A table check constraint specifies a search condition that is enforced for each row

of the table on which the table check constraint is defined. Once table check

constraints are defined to the database manager, an insert or update to the data

within the tables is checked against the defined constraint. Completion of the

requested action depends on the result of the constraint checking.

 Procedure:

 You create a table check constraint on a table by associating a check-constraint

definition with the table when the table is created or altered. This constraint is

automatically activated when an INSERT or UPDATE statement modifies the data

in the table. A table check constraint has no effect on a DELETE or SELECT

statement. A check constraint can be associated with a typed table.

A constraint name cannot be the same as any other constraint specified within the

same CREATE TABLE statement. If you do not specify a constraint name, the

system generates an 18-character unique identifier for the constraint.

A table check constraint is used to enforce data integrity rules not covered by key

uniqueness or a referential integrity constraint. In some cases, a table check

constraint can be used to implement domain checking. The following constraint

issued on the CREATE TABLE statement ensures that the start date for every

activity is not after the end date for the same activity:

 CREATE TABLE EMP_ACT

 (EMPNO CHAR(6) NOT NULL,

 PROJNO CHAR(6) NOT NULL,

 ACTNO SMALLINT NOT NULL,

 EMPTIME DECIMAL(5,2),

 EMSTDATE DATE,

 EMENDATE DATE,

 CONSTRAINT ACTDATES CHECK(EMSTDATE <= EMENDATE))

 IN RESOURCE

Although the previous example uses the CREATE TABLE statement to add a table

check constraint, the ALTER TABLE statement can also be used.

 Related concepts:

v “Constraints” in SQL Reference, Volume 1

 Related tasks:

v “Adding a table check constraint” on page 314

v “Checking for constraint violations using SET INTEGRITY” on page 230

v “Making a table in no data movement mode fully accessible” on page 238

 Related reference:

v “ALTER SERVER statement” in SQL Reference, Volume 2

v “CREATE TABLE statement” in SQL Reference, Volume 2

228 Administration Guide: Implementation

Defining distribution keys

During table alteration, distribution keys can only be defined if the table

resides in a single-partition database partition group.

 Procedure:

 To define distribution keys using the Control Center:

1. Open the Alter Table notebook: From the Control Center, expand the object tree until

you find the Tables folder. Click the Tables folder. Any existing tables are displayed in

the pane on the right side of the window. Right-click the table you want and select

Alter from the pop-up menu. The Alter Table notebook opens.

2. On the Keys page, click Add Partitioning. The Define Partitioning Key window opens.

3. Select the columns that you want to add as distribution key columns and move them to

the Selected columns box.

 Related concepts:

v “Table partitioning keys” in Administration Guide: Planning

Adding check constraints

 You can add check constraints to your table or nickname. A check constraint sets

restrictions on data added to the table or nickname. Check constraints are enforced

when rows in the table or nickname are inserted or updated. You can define a

check constraint that references a single column.

 Prerequisites:

 To add check constraints, you must have at least one of the following privileges on

the table to be altered:

v ALTER privilege

v CONTROL privilege

v SYSADM or DBADM authority

v ALTERIN privilege on the schema of the table

 Procedure:

 To add check constraints using the Control Center:

1. Open the Alter Table notebook if you are adding a unique key to a table: From the

Control Center, expand the object tree until you find the Tables folder. Click the Tables

folder. Any existing tables are displayed in the pane on the right side of the window.

Right-click the table you want in the contents pane and select Alter from the pop-up

menu. The Alter Table notebook opens.

If you are adding check constraints on a nickname, open the Alter Nickname notebook.

2. On the Check Constraints page, click Add. The Add Check Constraint window opens.

3. For as many check constraints as you are adding: Specify the check condition for the

constraint that you are defining, type a name for the check constraint, and optionally

type a comment to document the new check constraint.

To add a check constraint using the command line, use the ALTER TABLE

statement.

Chapter 4. Creating tables and other related table objects 229

Related tasks:

v “Adding a table check constraint” on page 314

v “Changing check constraints” on page 314

v “Defining a table check constraint” on page 228

v “Dropping a table check constraint” on page 317

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

Checking for constraint violations using SET INTEGRITY

 Typically, you need to manually perform integrity processing for a table in three

situations:

v After loading data into a table

v When altering a table by adding constraints on the table

v When altering a table to add a generated column

The load operation causes a table to be put into Set Integrity Pending state

automatically if the table has constraints defined on it or if it has dependent

foreign key tables, dependent materialized query tables, or dependent staging

tables. When the load operation is completed, you can verify the integrity of the

loaded data and you can turn on constraint checking for the table. If the table has

dependent foreign key tables, dependent materialized query tables, or dependent

staging tables, they will be automatically put into Set Integrity Pending state. You

will need to use the Set Integrity window to perform separate integrity processing

on each of these tables.

If you are altering a table by adding a foreign key, a check constraint or a

generated column, you need to turn off constraint checking before you alter the

table. After you add the constraint, you need to check the existing data for

violations to the newly added constraint and you need to turn constraint checking

back on. In addition, if you are loading data into the table, you cannot activate

constraint checking on the table until you complete loading data into it. If you are

importing data into the table, you should activate constraint checking on the table

before you import data into it.

Constraints checking refers to checking for constraints violations, foreign key

violations, and generated columns violations. Integrity processing refers to

populating identity and generated columns, refreshing materialized query tables,

and propagating to staging tables, in addition to performing constraints checking.

Normally, referential integrity and check constraints on a table are automatically

enforced, materialized query tables are automatically refreshed immediately, and

staging tables are automatically propagated. In some situations, you might need to

manually change this behavior.

 Prerequisites:

v To turn on constraint checking for a table and performing integrity processing

on the table, you need one of the following:

– SYSADM or DBADM authority

– CONTROL privileges on the tables being checked, and if exceptions are being

posted to one or more tables, INSERT privilege on the exception tables

230 Administration Guide: Implementation

– CONTROL privilege on all descendent foreign key tables, descendent

immediate materialized query tables, and descendent immediate staging

tables that will implicitly be placed in the Set Integrity Pending state by the

statement

– LOAD authority, and if exceptions are being posted to one or more tables:

- SELECT and DELETE privilege on each table being checked

- INSERT privilege on the exception tables
v To turn on constraint checking for a table without performing integrity

processing on the table, you need one of the following:

– SYSADM or DBADM authority

– CONTROL privileges on the tables being checked

– CONTROL privilege on each descendent foreign key table, descendent

immediate materialized query table, and descendent immediate staging table

that will implicitly be placed in the Set Integrity Pending state by the

statement
v To turn off constraint checking, immediate refreshing, or immediate propagation

for tables, you need one of the following:

– SYSADM or DBADM authority

– CONTROL privilege on the table, and on all descendent foreign key tables,

descendent immediate materialized query tables, and descendent immediate

staging tables that will have their integrity checking turned off by the

statement

– LOAD authority

 Procedure:

Chapter 4. Creating tables and other related table objects 231

To check for constraint violations using the Control Center:

1. Open the Set Integrity window: From the Control Center, expand the object tree until

you find the Tables folder. Click on the Tables folder. Any existing tables are displayed

in the pane on the right side of the window. Right-click the table you want and select

Set Integrity from the pop-up menu. The Set Integrity window opens.

2. Review the Current Integrity Status of the table you are working with.

3. To turn on constraint checking for a table and not check the table data:

a. Select the Immediate and unchecked radio button.

b. Specify the type of integrity processing that you are turning on.

c. Select the Full Access radio button to immediately perform data movement

operations against the table (such as reorganize or redistribute). However, note that

subsequent refreshes of dependent materialized query tables will take longer. If the

table has an associated materialized query table, it is recommended that you do not

select this radio button in order to reduce the time needed to refresh the

materialized query table.

4. To turn on constraint checking for a table and check the existing table data:

a. Select the Immediate and checked radio button.

b. Select which type of integrity processing that you want to perform. If the Current

integrity status shows that the constraints checked value for the materialized query

table is incomplete, you cannot incrementally refresh the materialized query table.

c. Optional: If you want identity or generated columns to be populated during

integrity processing, select the Force generated check box.

d. If the table is not a staging table, make sure that the Prune check box is unchecked.

e. Select the Full Access radio button to immediately perform data movement

operations against the table.

f. Optional: Specify an exception table. Any row that is in violation of a referential or

check constraint will be deleted from your table and copied to the exception table. If

you do not specify an exception table, when a constraint is violated, only the first

violation detected is returned to you and the table is left in the Set Integrity Pending

state.

5. To turn off constraint checking, immediate refreshing, or immediate propagation for a

table:

a. Select the Off radio button. The table will be put in Set Integrity Pending state.

b. Use the Cascade option to specify whether you want to cascade immediately or

defer cascading. If you are cascading immediately, use the Materialized Query

Tables, Foreign Key Tables, and Staging Tables check boxes to indicate the tables

to which you want to cascade.

Note: If you turn off constraint checking for a parent table and specify that you

want to cascade the changes to foreign key tables, the foreign key constraints of all

of its descendent foreign key tables are also turned off. If you turn off constraint

checking for a underlying table and specify that you want to cascade the check

pending state to materialized query tables, the refresh immediate properties of all its

dependent materialized query tables are also turned off. If you turn off constraint

checking for a underlying table and specify that you want to cascade the Set

Integrity Pending state to staging tables the propagate immediate properties of all

its dependent staging tables are also turned off.

To check for constraint violations using the command line, use the SET

INTEGRITY statement.

 Troubleshooting tip:

232 Administration Guide: Implementation

Symptom

You receive the following error message when you try to turn on

constraints checking, immediate refresh, or immediate propagation for a

table:

DB2 Message

Cannot check a dependent table TABLE1 using the SET

INTEGRITY statement while the parent table or underlying table

TABLE2 is in the Set Integrity Pending state or if it will be put into

the Set Integrity Pending state by the SET INTEGRITY statement.

 Where TABLE1 is the table for which you are trying to turn on

constraints checking, immediate refresh, or immediate propagation

and it is dependent on TABLE2.

Possible cause

Constraint checking, immediate refresh, or immediate propagation cannot

be turned on for a table that has a parent or underlying table in Set

Integrity Pending.

Action

Bring the parent or underlying table out of Set Integrity Pending by

turning on constraint checking for the table. Begin with the table identified

as the parent or underlying table in the DB2 message. If that table is

dependent on another table, you need to turn on constraint checking in a

top-down approach from the table at the top of the dependency chain.

Attention: If the selected table has a cyclical referential constraint

relationship with one or more tables, you cannot use the Set

Integrity window to turn on constraint checking. In this case,

you must use the Command Editor to issue the SQL SET

INTEGRITY command.

 Related tasks:

v “Adding check constraints” on page 229

v “Changing check constraints” on page 314

 Related reference:

v “C samples” in Samples Topics

v “Command Line Processor (CLP) samples” in Samples Topics

v “JDBC samples” in Samples Topics

v “SET INTEGRITY statement” in SQL Reference, Volume 2

v “SQLJ samples” in Samples Topics

Defining an informational constraint

 An informational constraint is a rule that can be used by the SQL and XQuery

compiler but is not enforced by the database manager. The query compiler

includes a rewrite query stage which transforms SQL and XQuery statements into

forms that can be optimized and improve the access path to the required data. The

purpose of the constraint is not to have additional verification of data by the

database manager, rather it is to improve query performance.

 Procedure:

Chapter 4. Creating tables and other related table objects 233

You define informational constraints using the CREATE TABLE or ALTER TABLE

statements. Within those statements you add referential integrity or check

constraints. You then associate constraint attributes to them specifying whether you

want the database manager to enforce the constraint or not; and, whether you

want the constraint to be used for query optimization or not.

 Related concepts:

v “Constraints” in SQL Reference, Volume 1

v “Query rewriting methods and examples” in Performance Guide

v “The SQL and XQuery compiler process” in Performance Guide

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “CREATE TABLE statement” in SQL Reference, Volume 2

Creating a sequence

 A sequence is a database object that allows the automatic generation of values.

Sequences are ideally suited to the task of generating unique key values.

Applications can use sequences to avoid possible concurrency and performance

problems resulting from the generation of a unique counter outside the database.

 Restrictions:

 Unlike an identity column attribute, a sequence is not tied to a particular table

column nor is it bound to a unique table column and only accessible through that

table column.

If a database that contains one or more sequences is recovered to a point in time

before the database failure, then this could cause the generation of duplicate values

for some sequences. To avoid possible duplicate values, a database with sequences

should not be recovered to a prior point in time.

There are several restrictions on where NEXTVAL or PREVVAL expressions can be

used.

 Procedure:

 A sequence can be created, or altered, so that it generates values in one of these

ways:

v Increment or decrement monotonically without bound

v Increment or decrement monotonically to a user-defined limit and stop

v Increment or decrement monotonically to a user-defined limit and cycle back to

the beginning and start again

The following is an example of creating a sequence object:

 CREATE SEQUENCE order_seq

 START WITH 1

 INCREMENT BY 1

 NOMAXVALUE

 NOCYCLE

 CACHE 24

In this example, the sequence is called order_seq. It will start at 1 and increase by

1 with no upper limit. There is no reason to cycle back to the beginning and restart

234 Administration Guide: Implementation

from 1 because there is no assigned upper limit. The number associated with the

CACHE parameter specifies the maximum number of sequence values that the

database manager preallocates and keeps in memory.

 Related concepts:

v “Comparing IDENTITY columns and sequences” on page 235

v “Sequences” on page 461

 Related reference:

v “CREATE SEQUENCE statement” in SQL Reference, Volume 2

Comparing IDENTITY columns and sequences

 While there are similarities between IDENTITY columns and sequences, there are

also differences. The characteristics of each can be used when designing your

database and applications.

An identity column has the following characteristics:

v An identity column can be defined as part of a table only when the table is

created. Once a table is created, you cannot alter it to add an identity column.

(However, existing identity column characteristics might be altered.)

v An identity column automatically generates values for a single table.

v When an identity column is defined as GENERATED ALWAYS, the values used

are always generated by the database manager. Applications are not allowed to

provide their own values during the modification of the contents of the table.

A sequence object has the following characteristics:

v A sequence object is a database object that is not tied to any one table.

v A sequence object generates sequential values that can be used in any SQL or

XQuery statement.

v Since a sequence object can be used by any application, there are two

expressions used to control the retrieval of the next value in the specified

sequence and the value generated previous to the statement being executed. The

PREVVAL expression returns the most recently generated value for the specified

sequence for a previous statement within the current session. The NEXTVAL

expression returns the next value for the specified sequence. The use of these

expressions allows the same value to be used across several SQL and XQuery

statements within several tables.

While these are not all of the characteristics of these two items, these characteristics

will assist you in determining which to use depending on your database design

and the applications using the database.

 Related tasks:

v “Creating a sequence” on page 234

v “Defining a generated column on a new table” on page 219

v “Defining a generated column on an existing table” on page 321

Defining dimensions on a table

 A dimension is a clustering key for a table. One or more dimensions can be selected

for a table. When you have more than one dimension on a table, it is considered to

Chapter 4. Creating tables and other related table objects 235

be a multidimensional clustered table. Such a table is created using the CREATE

TABLE statement with the ORGANIZE BY DIMENSIONS clause.

 Restrictions:

 The set of columns used in the ORGANIZE BY [DIMENSIONS] clause must follow

the rules for the CREATE INDEX statement. The columns are treated as keys used

to maintain the physical order of data in storage.

 Procedure:

 To define dimensions using the Control Center:

1. Open the Create Table wizard: From the Control Center, expand the object tree until

you see the Tables folder. Right-click the Tables folder and select Create from the

pop-up menu. The Create Table wizard opens.

2. On the Dimensions page, click Add. The Dimension window opens.

3. In the Available columns box, select the columns that you want in the column group

of the dimension and click the > push button to move the column or columns to the

Selected columns box.

4. Click Apply to add a dimension to the Dimensions list on the Dimension page.

To define dimensions using the command line, specify each dimension in the

CREATE TABLE statement using the ORGANIZE BY [DIMENSIONS] clause and

one or more columns. Parentheses are used within the dimension list to group

columns to be associated with a single dimension.

Data is physically clustered on one or more dimensions, for as many dimensions as

are specified, simultaneously. Data is organized by extent or “block” along

dimension lines. When querying data using dimension predicates, the scan can be

limited to only those extents of the table containing the dimension values involved.

Further, since extents are sets of sequential pages on disk, very efficient prefetching

can be performed for these scans.

Although a table with a single clustering index can become unclustered over time

as space in the table is filled in, a table with multiple dimensions is able to

maintain its clustering over all dimensions automatically and continuously. As a

result, there is no need to reorganize the table in order to restore sequential order

to the data.

A dimension block index is automatically created for each dimension specified. The

dimension block index is used to access data along a dimension. The dimension

block index points to extents instead of individual rows, and so are much smaller

than regular indexes. These dimension block indexes can be used to very quickly

access only those extents of the table that contain particular dimension values.

A composite block index is automatically created containing all dimension key

columns. The composite block index is used to maintain the clustering of data

during insert and update activity. The composite block index is used in query

processing to access data in the table having particular dimension values.

Note: The order of key parts in the composite block index might affect its use or

applicability for query processing. The order of its key parts is determined

236 Administration Guide: Implementation

by the order of columns found in the entire ORGANIZE BY [DIMENSIONS]

clause used when creating the MDC table. For example, if a table is created

using:

 CREATE TABLE t1 (c1 int, c2 int, c3 int, c4 int)

 ORGANIZE BY DIMENSIONS (c1, c4, (c3,c1), c2)

then the composite block index will be created on columns (c1,c4,c3,c2).

Although c1 is specified twice in the dimensions clause, it is used only once

as a key part for the composite block index, and in the order in which it is

first found. The order of key parts in the composite block index makes no

difference for insert processing, but might do so for query processing. If it is

more desirable, therefore, to have the composite block index with a column

order (c1,c2,c3,c4), then the table should be created using:

 CREATE TABLE t1 (c1 int, c2 int, c3 int, c4 int)

 ORGANIZE BY DIMENSIONS (c1, c2, (c3,c1), c4)

A composite block index is not created in the case where a specified dimension

already contains all the columns that the composite block index would have. For

example, a composite block index would not be created for the following table:

 CREATE TABLE t1 (c1 int, c2 int)

 ORGANIZE BY DIMENSIONS (c1,(c2,c1))

 Related concepts:

v “Multidimensional clustering tables” in Administration Guide: Planning

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “CREATE TABLE statement” in SQL Reference, Volume 2

Loading data into a table using the Load wizard

 Use the Load wizard to load data into a selected table. The Load wizard guides

you through load configuration and the selection of options. The Load wizard also

lets you copy an existing load task and use the setting values of the existing load

task for your new load task.

If you want to use exception tables with the load, you must create the exception

tables before running the load task.

Note: If the table you are working with is a replication source, the changes made

will not be captured in replication.

 Prerequisites:

 To load data into a table, you must have one of the following authorities:

v SYSADM authority

v DBADM authority

v LOAD authority on the database and:

– INSERT privilege on the table if you load data in INSERT mode,

TERMINATE mode (to terminate a previous load operation), or RESTART

mode (to restart a previous load insert operation)

– INSERT and DELETE privilege on the table if you load data in REPLACE

mode, TERMINATE mode (to terminate a previous load replace operation), or

RESTART mode (to restart a previous load replace operation)

Chapter 4. Creating tables and other related table objects 237

– INSERT privilege on the exception table, if one is used during the load

operation

Note: Because all load processes (and all DB2 server processes in general) are

owned by the instance owner, and all these processes use the

identification of the instance owner to access the required files, the

instance owner must have read access to input data files. The input

data files must be readable by the instance owner, regardless of who

performs the load operation.

 Procedure:

 To load data into a table:

1. Open the Load wizard: From the Control Center, expand the object tree until

you find the Tables folder. Click on the Tables folder. Any existing tables are

displayed in the pane on the right side of the window (the contents pane).

Right-click the table you want in the contents pane and select Load from the

pop-up menu. The Load wizard opens.

2. Complete each of the applicable wizard pages. Click the wizard overview link

on the first page for more information. The Finish push button is enabled

when you specify enough information for the wizard to create the load task.

 Related concepts:

v “LOAD authority” on page 511

v “Load considerations for MDC tables” in Administration Guide: Planning

 Related tasks:

v “Enabling parallelism for loading data” on page 10

 Related reference:

v “LOAD command” in Command Reference

Making a table in no data movement mode fully accessible

 Use the Set Integrity window to make a table in no data movement mode fully

accessible.

Note: Use these steps only if the table you are working with is in no data

movement mode. If the table you are working with is in Set Integrity

Pending state, you must turn on constraint checking. See Checking for

constraint violations using SET INTEGRITY.

 Prerequisites:

 To bring a table from no data movement mode to full access mode, you need the

following authorities:

v SYSADM or DBADM authority

v CONTROL privilege on the tables that are moving from no data movement to

full access

 Procedure:

 To make a table in no data movement mode fully accessible using the Control

Center:

238 Administration Guide: Implementation

1. Open the Set Integrity window: From the Control Center, expand the object tree until

you find the Tables folder. Click on the Tables folder. Any existing tables are displayed

in the pane on the right side of the window. Right-click the table you want and select

Set Integrity from the pop-up menu. The Set Integrity window opens.

2. Review the Current integrity status of the table you are working with.

3. Select the Full Access radio button.

To make a table in no data movement mode fully accessible using the command

line, use the SET INTEGRITY statement.

 Related concepts:

v “Constraints” in SQL Reference, Volume 1

 Related tasks:

v “Adding a table check constraint” on page 314

v “Checking for constraint violations using SET INTEGRITY” on page 230

v “Defining a table check constraint” on page 228

 Related reference:

v “SET INTEGRITY statement” in SQL Reference, Volume 2

Quiescing tables

 You can change the quiesce mode of a table and its table spaces. When you quiesce

a table and its table spaces, locks are placed on the table and table spaces. The type

of lock depends on the quiesce mode.

 Prerequisites:

 To change the quiesce mode of a table, you must have one of the following

authorities: SYSADM, SYSCTRL, SYSMAINT, DBADM, or LOAD.

 Procedure:

Chapter 4. Creating tables and other related table objects 239

To change the quiesce mode for a table using the Control Center:

1. Open the Quiesce window: From the Control Center, expand the object tree until you

find the Tables folder. Click on the Tables folder. Any existing tables are displayed in

the pane on the right side of the window. Right-click the table you want and select

Quiesce from the pop-up menu. The Quiesce window opens.

2. If you are turning on the quiesce mode or updating the quiesce mode to a higher

mode:

a. Make sure that the Quiesce radio button is selected.

b. Select one of the following three modes:

Shared Puts the table in shared mode. In this mode, all users (yourself included)

can read but not change the table data.

Intent to update

Puts the table in update mode. In this mode, only you can update the table

data. Other users can read, but not update the data.

Exclusive

Puts the table in exclusive mode. In this mode, only you can read or

update the table data.

 If the table is already in one quiesce mode, you can change it to a higher

(more exclusive) mode. For example, if the table is already in shared mode,

you can change it to intent to update, or to exclusive mode.

 However, you cannot change a higher mode to a lower mode. Exclusive is

higher than intent to update, which is higher than shared.

3. If you are resetting a table’s quiesce mode, select the Quiesce reset radio button.

To change the quiesce mode for a table using the command line, use the QUIESCE

command.

 Related reference:

v “QUIESCE command” in Command Reference

v “QUIESCE TABLESPACES FOR TABLE command” in Command Reference

Defining triggers

This section discusses trigger creation and dependencies.

Creating triggers

 A trigger defines a set of actions that are executed in conjunction with, or triggered

by, an INSERT, UPDATE, or DELETE clause on a specified base table or a typed

table. Some uses of triggers are to:

v Validate input data

v Generate a value for a newly-inserted row

v Read from other tables for cross-referencing purposes

v Write to other tables for audit-trail purposes

You can use triggers to support general forms of integrity or business rules. For

example, a trigger can check a customer’s credit limit before an order is accepted

or update a summary data table.

The benefits of using a trigger are:

240 Administration Guide: Implementation

v Faster application development: Because a trigger is stored in the database, you

do not have to code the actions it does in every application.

v Easier maintenance: Once a trigger is defined, it is automatically invoked when

the table that it is created on is accessed.

v Global enforcement of business rules: If a business policy changes, you only

need to change the trigger and not each application program.

 Restrictions:

 You cannot use triggers with nicknames.

If the trigger is a BEFORE trigger, the column name specified by the triggered

action might not be a generated column other than an identity column. That is, the

generated identity value is visible to BEFORE triggers.

When creating an atomic trigger, care must be taken with the end-of-statement

character. The database manager, by default, considers a “;” the end-of-statement

marker. You should manually edit the end-of-statement character in your script to

create the atomic trigger so that you are using a character other than “;”. For

example, the “;” could be replaced by another special character like “#”.

Then you must either:

v Change the delimiter from the tools—>tools settings menu with script tab

selected in the Command Editor (which replaces the Command Center) and then

run the script; Or,

v From the command line, use:

 db2 -td <delimiter> -vf <script>

where the delimiter is the alternative end-of-statement character and the

<script> is the modified script with the new delimiter in it.

 Procedure:

 To create a trigger using the Control Center:

1. Expand the object tree until you see the Triggers folder.

2. Right-click the Triggers folder, and select Create from the pop-up menu.

3. Specify information for the trigger.

4. Specify the action that you want the trigger to invoke, and click OK.

To create a trigger using the command line, enter:

 CREATE TRIGGER <name>

 <action> ON <table_name>

 <operation>

 <triggered_action>

The following SQL statement creates a trigger that increases the number of

employees each time a new person is hired, by adding 1 to the number of

employees (NBEMP) column in the COMPANY_STATS table each time a row is

added to the EMPLOYEE table.

 CREATE TRIGGER NEW_HIRED

 AFTER INSERT ON EMPLOYEE

 FOR EACH ROW

 UPDATE COMPANY_STATS SET NBEMP = NBEMP+1;

Chapter 4. Creating tables and other related table objects 241

A trigger body can include one or more of the following SQL statements: INSERT,

searched UPDATE, searched DELETE, full-selects, SET transition-variable, and

SIGNAL SQLSTATE. The trigger can be activated before or after the INSERT,

UPDATE, or DELETE statement to which it refers.

 Related concepts:

v “Trigger dependencies” on page 242

v “Updating view contents using triggers” on page 328

v “INSERT, UPDATE, and DELETE triggers” in SQL Guide

v “Trigger creation guidelines” in SQL Guide

v “Triggers in application development” in SQL Guide

 Related tasks:

v “Dropping a trigger” on page 329

v “Defining actions using triggers” in SQL Guide

v “Defining business rules using triggers” in SQL Guide

 Related reference:

v “CREATE TRIGGER statement” in SQL Reference, Volume 2

v “Restrictions on native XML data store” in XML Guide

Trigger dependencies

 All dependencies of a trigger on some other object are recorded in the

SYSCAT.TRIGDEP catalog. A trigger can depend on many objects. These objects

and the dependent trigger are presented in detail in the DROP statement.

If one of these objects is dropped, the trigger becomes inoperative but its definition

is retained in the catalog. To revalidate this trigger, you must retrieve its definition

from the catalog and submit a new CREATE TRIGGER statement.

If a trigger is dropped, its description is deleted from the SYSCAT.TRIGGERS

catalog view and all of its dependencies are deleted from the SYSCAT.TRIGDEP

catalog view. All packages having UPDATE, INSERT, or DELETE dependencies on

the trigger are invalidated.

If the dependent object is a view and it is made inoperative, the trigger is also

marked inoperative. Any packages dependent on triggers that have been marked

inoperative are invalidated.

 Related concepts:

v “Updating view contents using triggers” on page 328

 Related tasks:

v “Creating triggers” on page 240

v “Dropping a trigger” on page 329

 Related reference:

v “CREATE TRIGGER statement” in SQL Reference, Volume 2

v “DROP statement” in SQL Reference, Volume 2

242 Administration Guide: Implementation

Defining UDFs and UDTs

This section discusses user-defined functions (UDFs) or methods.

User-defined functions (UDFs) or methods

 User-defined functions (UDFs) extend and add to the support provided by built-in

functions of SQL, and can be used wherever a built-in function can be used. You

can create UDFs as either:

v An external function, which is written in a programming language

v A sourced function, whose implementation is inherited from some other existing

function

There are three types of UDFs:

Scalar Returns a single-valued answer each time it is called. For example, the

built-in function SUBSTR() is a scalar function. Scalar UDFs can be either

external or sourced.

Column

Returns a single-valued answer from a set of like values (a column). It is

also sometimes called an aggregating function in the DB2 database

manager. An example of a column function is the built-in function AVG().

An external column UDF cannot be defined to the DB2 database manager,

but a column UDF which is sourced upon one of the built-in column

functions can be defined. This is useful for distinct types.

 For example, if there is a distinct type SHOESIZE defined with base type

INTEGER, a UDF AVG(SHOESIZE) which is sourced on the built-in

function AVG(INTEGER) could be defined, and it would be a column

function.

Table Returns a table to the SQL statement which references it. Table functions

might only be referenced in the FROM clause of a SELECT statement. Such

a function can be used to apply SQL language processing power to data

which is not DB2 data, or to convert such data into a DB2 table.

 For example, table functions can take a file and convert it to a table,

tabularize sample data from the World Wide Web, or access a Lotus®

Notes® database and return information such as the date, sender, and text

of mail messages. This information can be joined with other tables in the

database.

 A table function can only be an external function. It cannot be a sourced

function.

Information about existing UDFs is recorded in the SYSCAT.FUNCTIONS and

SYSCAT.FUNCPARMS catalog views. The system catalog does not contain the

executable code for the UDF. (Therefore, when creating your backup and recovery

plans you should consider how you will manage your UDF executables.)

Statistics about the performance of UDFs are important when compiling SQL

statements.

 Related concepts:

v “General rules for updating catalog statistics manually” in Performance Guide

v “Statistics for user-defined functions” in Performance Guide

Chapter 4. Creating tables and other related table objects 243

v “Scalar functions” in SQL Reference, Volume 1

v “Table functions” in SQL Reference, Volume 1

v “User-defined functions” in SQL Reference, Volume 1

v “DB2 user-defined functions and methods” in SQL Guide

 Related tasks:

v “Creating a function mapping in a federated database” on page 244

v “Creating a function template in a federated system” on page 245

 Related reference:

v “Functions” in SQL Reference, Volume 1

v “CREATE FUNCTION statement” in SQL Reference, Volume 2

Details on creating a user-defined function (UDF) or method

This sections gives information on federated considerations when creating

user-defined functions or methods.

Creating a function mapping in a federated database

 In a federated database, create a function mapping when you need to map a local

function or a local function template with a function at one or more data sources.

Default function mappings are provided for many data source functions.

Function mappings are useful when:

v New, built-in functions become available at a data source.

v You need to map a user-defined function at a data source to a local function.

v An application requires different default behavior than that provided by the

default mapping.

Function mappings defined with CREATE FUNCTION MAPPING statements are

stored in the federated database.

Functions (or function templates) must have the same number of input parameters

as the data source function. Additionally, the data types of the input parameters on

the federated side should be compatible with the data types of the input

parameters on the data source side. These requirements apply to returned values

as well.

 Prerequisites:

 You must hold one of the SYSADM or DBADM authorities at the federated

database to use this statement. Function mapping attributes are stored in

SYSCAT.FUNCMAPPINGS.

 Restrictions:

 The federated server will not bind input host variables or retrieve results of LOB,

LONG VARCHAR/VARGRAPHIC, DATALINK, distinct and structured types. No

function mapping can be created when an input parameter or the returned value

includes one of these types.

 Procedure:

244 Administration Guide: Implementation

Use the CREATE FUNCTION MAPPING statement to create a function mapping.

For example, to create a function mapping between an Oracle AVGNEW function

and a DB2 equivalent at server ORACLE1:

 CREATE FUNCTION MAPPING ORAVGNEW FOR SYSIBM.AVG(INT) SERVER ORACLE1

 OPTIONS (REMOTE_NAME ’AVGNEW’)

 Related concepts:

v “Host language program mappings with transform functions” in SQL Guide

 Related tasks:

v “Creating a function template in a federated system” on page 245

 Related reference:

v “CREATE FUNCTION MAPPING statement” in SQL Reference, Volume 2

Creating a function template in a federated system

 In a federated system, function templates provide “anchors” for function

mappings. They are used to enable the mapping of a data source function when a

corresponding DB2 function does not exist at the federated server. A function

mapping requires the presence of a function template or an existing similar

function within the DB2 database manager.

The template is just a function shell: name, input parameters, and the return value.

There is no local executable for the function.

 Restrictions:

 There is no local executable for the function, therefore it is possible that a call to

the function template will fail even though the function is available at the data

source. For example, consider the query:

 SELECT myfunc(C1)

 FROM nick1

 WHERE C2 < ’A’

If DB2 and the data source containing the object referenced by nick1 do not have

the same collating sequence, the query will fail because the comparison must be

done at DB2 while the function is at the data source. If the collating sequences

were the same, the comparison operation could be done at the data source that has

the underlying function referenced by myfunc.

Functions (or function templates) must have the same number of input parameters

as the data source function. The data types of the input parameters on the

federated side should be compatible with the data types of the input parameters

on the data source side. These requirements apply to returned values as well.

 Procedure:

 You create function templates using the CREATE FUNCTION statement with the

AS TEMPLATE keyword. After the template is created, you map the template to

the data source using the CREATE FUNCTION MAPPING statement.

For example, to create a function template and a function mapping for function

MYS1FUNC on server S1:

Chapter 4. Creating tables and other related table objects 245

CREATE FUNCTION MYFUNC(INT) RETURNS INT AS TEMPLATE

 CREATE FUNCTION MAPPING S1_MYFUNC FOR MYFUNC(INT) SERVER S1 OPTIONS

 (REMOTE_NAME ’MYS1FUNC’)

 Related tasks:

v “Creating a function mapping in a federated database” on page 244

 Related reference:

v “CREATE FUNCTION (Sourced or Template) statement” in SQL Reference,

Volume 2

User-defined types (UDTs)

 A user-defined type (UDT) is a named data type that is created in the database by

the user. A UDT can be a distinct type which shares a common representation with

a built-in data type or a structured type which has a sequence of named attributes

that each have a type. A structured type can be a subtype of another structured

type (called a supertype), defining a type hierarchy.

UDTs support strong typing, which means that even though they share the same

representation as other types, values of a given UDT are considered to be

compatible only with values of the same UDT or UDTs in the same type hierarchy.

The SYSCAT.DATATYPES catalog view allows you to see the UDTs that have been

defined for your database. This catalog view also shows you the data types

defined by the database manager when the database was created.

A UDT cannot be used as an argument for most of the system-provided, or

built-in, functions. User-defined functions must be provided to enable these and

other operations.

You can drop a UDT only if:

v It is not used in a column definition for an existing table.

v It is not used as the type of an existing typed table or typed view.

v It is not used in a UDF function that cannot be dropped. A UDF cannot be

dropped if a view, trigger, table check constraint, or another UDF is dependent

on it.

When a UDT is dropped, any functions that are dependent on it are also dropped.

 Related concepts:

v “User-defined structured types” on page 248

 Related tasks:

v “Creating a user-defined distinct type” on page 247

 Related reference:

v “Data types” in SQL Reference, Volume 1

v “User-defined types” in SQL Reference, Volume 1

246 Administration Guide: Implementation

Details on creating a user-defined type (UDT)

Distinct types and structured type definitions are discussed here as are federated

type mappings.

Creating a user-defined distinct type

 A user-defined distinct type is a data type derived from an existing type, such as

an integer, decimal, or character type. You can create a distinct type by using the

CREATE DISTINCT TYPE statement.

 Restrictions:

 Instances of the same distinct type can be compared to each other, if the WITH

COMPARISONS clause is specified on the CREATE DISTINCT TYPE statement (as

in the example). The WITH COMPARISONS clause cannot be specified if the

source data type is a large object, a DATALINK, LONG VARCHAR, or LONG

VARGRAPHIC type.

Instances of distinct types cannot be used as arguments of functions or operands of

operations that were defined on the source type. Similarly, the source type cannot

be used in arguments or operands that were defined to use a distinct type.

 Procedure:

 Use the CREATE DISTINCT TYPE statement to create a distince type:

 CREATE DISTINCT TYPE <distince_type_name> AS <value> WITH COMPARISONS

For example, the following SQL statement creates the distinct type t_educ as a

smallint:

 CREATE DISTINCT TYPE T_EDUC AS SMALLINT WITH COMPARISONS

After you have created a distinct type, you can use it to define columns in a

CREATE TABLE statement:

 CREATE TABLE EMPLOYEE

 (EMPNO CHAR(6) NOT NULL,

 FIRSTNME VARCHAR(12) NOT NULL,

 LASTNAME VARCHAR(15) NOT NULL,

 WORKDEPT CHAR(3),

 PHONENO CHAR(4),

 PHOTO BLOB(10M) NOT NULL,

 EDLEVEL T_EDUC)

 IN RESOURCE

Creating the distinct type also generates support to cast between the distinct type

and the source type. Hence, a value of type T_EDUC can be cast to a SMALLINT

value and the SMALLINT value can be cast to a T_EDUC value.

 Related concepts:

v “User-defined types (UDTs)” on page 246

 Related reference:

v “CREATE DISTINCT TYPE statement” in SQL Reference, Volume 2

v “CREATE FUNCTION (Sourced or Template) statement” in SQL Reference,

Volume 2

v “Data types” in SQL Reference, Volume 1

Chapter 4. Creating tables and other related table objects 247

v “User-defined types” in SQL Reference, Volume 1

User-defined structured types

 A structured type is a user-defined data type that contains one or more named

attributes. Each attribute has a name and a data type of its own. Attributes are

properties that describe an instance of a type. A structured type can serve as the

type of a table, in which each column of the table derives its name and data type

from one of the attributes of the structured type.

 Related concepts:

v “Structured type hierarchies” in SQL Guide

v “User-defined structured types” in SQL Guide

 Related tasks:

v “Creating a structured type hierarchy” in SQL Guide

v “Creating structured types” in SQL Guide

 Related reference:

v “User-defined types” in SQL Reference, Volume 1

v “CREATE TYPE (Structured) statement” in SQL Reference, Volume 2

Creating a type mapping in a federated system

 In a federated system, a type mapping lets you map specific data types in data

source tables and views to DB2 distinct data types. A type mapping can apply to

one data source or a range (type, version) of data sources.

Default data type mappings are provided for built-in data source types and built-in

DB2 types. New data type mappings (that you create) will be listed in the

SYSCAT.TYPEMAPPINGS view.

 Restrictions:

 You cannot create a type mapping for a LOB, LONG VARCHAR/VARGRAPHIC,

DATALINK, structured or distinct type.

 Procedure:

 You create type mappings with the CREATE TYPE MAPPING statement. You must

hold one of the SYSADM or DBADM authorities at the federated database to use

this statement.

An example of a type mapping statement is:

 CREATE TYPE MAPPING MY_ORACLE_DEC FROM SYSIBM.DECIMAL(10,2)

 TO SERVER ORACLE1 TYPE NUMBER([10..38],2)

 Related reference:

v “CREATE TYPE MAPPING statement” in SQL Reference, Volume 2

v “Data type mappings between DB2 and OLE DB” in Developing ADO.NET and

OLE DB Applications

248 Administration Guide: Implementation

Source data types

The following data types are available as sources for a distinct type. Each one

appears with a short description of how they are defined.

Integer

Holds an integer value between —2 147 483 648 and 2 147 482 647 and

uses four bytes of database storage. Integers have a precision of 10 digits.

Smallint

Hold an integer value between —32768 and 32767 and uses two bytes of

database storage. Smallints have a precision of 5 digits.

Bigint

Holds an integer value between —9 223 372 036 854 775 808 and 9 223 372

036 854 775 807 and uses 8 bytes of storage space. Large number

processing is often more efficient with bigint than with decimal types.

Real A floating-point number. Real uses 4 bytes of storage space. Single

Precision and Float (where float has a length between 1 and 24) are

synonyms for Real.

Double

A floating-point number. Double uses 8 bytes of storage space. Double

Precision and Float (where float has a length between 25 and 53) are

synonyms for Double.

Decimal

A number in decimal form. The precision of a decimal type is the total

number of digits. The scale of a decimal is the number of digits in the

fractional part. Decimal data is stored in packed format. If a decimal data

type is to be used in a C program, the host variable must be declared as a

double.

Character

A character string of fixed length. It can be between 1 and 254 characters.

Every entry will take up the same amount of space in the database,

regardless of whether or not the entered string is as long as the set length.

Varchar

A variable length character string with a maximum length that can be set

to no more than 4000 characters. The database will use only the necessary

amount of storage space to store the value. Changing the values at a later

time can eventually result in performance degradation.

Long Varchar

A variable length character string with a maximum length that can be set

to no more than 32 700 characters.

BLOB

A binary large object string.

CLOB

A character large object string.

DBCLOB

A variable-length graphic string with a maximum length of 1 073 741 823

double-byte characters.

Graphic

A fixed-length graphic string of double-byte characters.

Chapter 4. Creating tables and other related table objects 249

Vargraphic

A variable-length graphic string with a maximum length of 2000

double-byte characters.

Long Vargraphic

A variable-length graphic string with a maximum length of 16 350

double-byte characters.

Date Stores a date value. It is stored internally as a packed string of 4 bytes, and

appears externally as a string with a length of 10 bytes.

Time Stores a time value. It is stored internally as a packed strong of 3 bytes,

and appears externally as a string with length of 8 bytes.

Timestamp

Stores a timestamp value. It is stored internally as a packed string of 10

bytes and appears externally as a string with a length of 26 bytes.

 Related tasks:

v “Creating a user-defined distinct type” on page 247

 Related reference:

v “Length limits for source data types” on page 250

Length limits for source data types

Certain source data types require a value to be entered in the Length field. For

each data type, the length has different limits, and different meanings as explained

here:

Character

Length of the fixed-length character string, which can range from 1 to 254.

Varchar

Maximum length of the varying-length character string, which can range

from 1 to 4000.

BLOB

Maximum length of the BLOB string, which can range from 1 to

2147483647. If a LOB unit of Kbytes, Mbytes, or Gbytes is specified in the

LOB unit box, the maximum value of Length is limited as follows:

Kbytes

The maximum value for this field is 2097152. Each Kbyte is

equivalent to 1024 bytes, so the maximum length in bytes is 1024

times the integer value you specify in this field.

Mbytes

The maximum value for this field is 2048. Each Mbyte is equivalent

to 1048576 bytes, so the maximum length in bytes is 1048576 times

the integer value you specify in this field.

Gbytes

The maximum value for this field is 2. Each GByte is equivalent to

1073741824 bytes, so the maximum length in bytes is 1073741824

times the integer value you specify in this field.

CLOB

Maximum length of the CLOB string, which can range from 1 to

2147483647. If a LOB unit of Kbytes, Mbytes, or Gbytes is specified in the

LOB unit box, the maximum value of Length is limited as follows:

250 Administration Guide: Implementation

Kbytes

The maximum value for this field is 2097152. Each Kbyte is

equivalent to 1024 bytes, so the maximum length in bytes is 1024

times the integer value you specify in this field.

Mbytes

The maximum value for this field is 2048. Each Mbyte is equivalent

to 1048576 bytes, so the maximum length in bytes is 1048576 times

the integer value you specify in this field.

Gbytes

The maximum value for this field is 2. Each Gbyte is equivalent to

1073741824 bytes, so the maximum length in bytes is 1073741824

times the integer value you specify in this field.

DCLOB

Maximum length of the DCLOB string, which can range from 1 to

1073741823 double-byte characters. If a LOB unit of Kbytes, Mbytes, or

Gbytes is specified in the LOB unit box, the maximum value of Length is

limited as follows:

Kbytes

The maximum value for this field is 1048576. Each Kbyte is

equivalent to 1024 bytes, so the maximum length in double bytes is

1024 times the integer value you specify in this field.

Empties

The maximum value for this field is 1024. Each Mbyte is equivalent

to 1048576 bytes, so the maximum length in double bytes is

1048576 times the integer value you specify in this field.

Gbytes

The maximum value for this field is 1. Each Gbyte is equivalent to

1073741824 bytes, so the maximum length in double bytes is

1073741824 times the integer value you specify in this field.

Graphic

Length of the fixed-length graphic string, which can range from 1 to 127. If

the length is not specified, a length of 1 is assumed.

Vargraphic

Maximum length of the varying-length graphic string, which can range

from 1 to 2000.

 Related tasks:

v “Creating a user-defined distinct type” on page 247

 Related reference:

v “CREATE DISTINCT TYPE statement” in SQL Reference, Volume 2

v “Source data types” on page 249

Creating a view

 Views are derived from one or more base tables, nicknames, or views, and can be

used interchangeably with base tables when retrieving data. When changes are

made to the data shown in a view, the data is changed in the table itself.

A view can be created to limit access to sensitive data, while allowing more

general access to other data.

Chapter 4. Creating tables and other related table objects 251

When inserting into a view where the SELECT-list of the view definition directly

or indirectly includes the name of an identity column of a base table, the same

rules apply as if the INSERT statement directly referenced the identity column of

the base table.

In addition to using views as described above, a view can also be used to:

v Alter a table without affecting application programs. This can happen by

creating a view based on an underlying table. Applications that use the

underlying table are not affected by the creation of the new view. New

applications can use the created view for different purposes than those

applications that use the underlying table.

v Sum the values in a column, select the maximum values, or average the values.

v Provide access to information in one or more data sources. You can reference

nicknames within the CREATE VIEW statement and create multi-location/global

views (the view could join information in multiple data sources located on

different systems).

When you create a view that references nicknames using standard CREATE

VIEW syntax, you will see a warning alerting you to the fact that the

authentication ID of view users will be used to access the underlying object or

objects at data sources instead of the view creator authentication ID. Use the

FEDERATED keyword to suppress this warning.

A typed view is based on a predefined structured type. You can create a typed

view using the CREATE VIEW statement.

An alternative to creating a view is to use a nested or common table expression to

reduce catalog lookup and improve performance.

 Prerequisites:

 The base table, nickname, or view on which the view is to be based must already

exist before the view can be created.

 Restrictions:

 You can create a view that uses a UDF in its definition. However, to update this

view so that it contains the latest functions, you must drop it and then re-create it.

If a view is dependent on a UDF, that function cannot be dropped.

The following SQL statement creates a view with a function in its definition:

 CREATE VIEW EMPLOYEE_PENSION (NAME, PENSION)

 AS SELECT NAME, PENSION(HIREDATE,BIRTHDATE,SALARY,BONUS)

 FROM EMPLOYEE

The UDF function PENSION calculates the current pension an employee is eligible

to receive, based on a formula involving their HIREDATE, BIRTHDATE, SALARY,

and BONUS.

 Procedure:

252 Administration Guide: Implementation

To create a view using the Control Center:

1. Expand the object tree until you see the Views folder.

2. Right-click the Views folder, and select Create from the pop-up menu.

3. Complete the information, and click OK.

To create a view using the command line, enter:

 CREATE VIEW <name> (<column>, <column>, <column>)

 SELECT <column_names> FROM <table_name>

 WITH CHECK OPTION

For example, the EMPLOYEE table might have salary information in it, which

should not be made available to everyone. The employee’s phone number,

however, should be generally accessible. In this case, a view could be created from

the LASTNAME and PHONENO columns only. Access to the view could be

granted to PUBLIC, while access to the entire EMPLOYEE table could be restricted

to those who have the authorization to see salary information.

With a view, you can make a subset of table data available to an application

program and validate data that is to be inserted or updated. A view can have

column names that are different from the names of corresponding columns in the

original tables.

The use of views provides flexibility in the way your programs and end-user

queries can look at the table data.

The following SQL statement creates a view on the EMPLOYEE table that lists all

employees in Department A00 with their employee and telephone numbers:

 CREATE VIEW EMP_VIEW (DA00NAME, DA00NUM, PHONENO)

 AS SELECT LASTNAME, EMPNO, PHONENO FROM EMPLOYEE

 WHERE WORKDEPT = ’A00’

 WITH CHECK OPTION

The first line of this statement names the view and defines its columns. The name

EMP_VIEW must be unique within its schema in SYSCAT.TABLES. The view name

appears as a table name although it contains no data. The view will have three

columns called DA00NAME, DA00NUM, and PHONENO, which correspond to

the columns LASTNAME, EMPNO, and PHONENO from the EMPLOYEE table.

The column names listed apply one-to-one to the select list of the SELECT

statement. If column names are not specified, the view uses the same names as the

columns of the result table of the SELECT statement.

The second line is a SELECT statement that describes which values are to be

selected from the database. It might include the clauses ALL, DISTINCT, FROM,

WHERE, GROUP BY, and HAVING. The name or names of the data objects from

which to select columns for the view must follow the FROM clause.

The WITH CHECK OPTION clause indicates that any updated or inserted row to

the view must be checked against the view definition, and rejected if it does not

conform. This enhances data integrity but requires additional processing. If this

clause is omitted, inserts and updates are not checked against the view definition.

The following SQL statement creates the same view on the EMPLOYEE table using

the SELECT AS clause:

Chapter 4. Creating tables and other related table objects 253

CREATE VIEW EMP_VIEW

 SELECT LASTNAME AS DA00NAME,

 EMPNO AS DA00NUM,

 PHONENO

 FROM EMPLOYEE

 WHERE WORKDEPT = ’A00’

 WITH CHECK OPTION

 Related concepts:

v “Views” in SQL Reference, Volume 1

v “Controlling access to data with views” on page 525

v “Table and view privileges” on page 515

v “Updating view contents using triggers” on page 328

 Related tasks:

v “Altering or dropping a view” on page 330

v “Recovering inoperative views” on page 331

v “Removing rows from a table or view” on page 307

v “Creating typed views” in SQL Guide

 Related reference:

v “CREATE VIEW statement” in SQL Reference, Volume 2

v “INSERT statement” in SQL Reference, Volume 2

Creating an alias

 An alias is an indirect method of referencing a table, nickname, or view, so that an

SQL or XQuery statement can be independent of the qualified name of that table

or view. Only the alias definition must be changed if the table or view name

changes. An alias can be created on another alias. An alias can be used in a view

or trigger definition and in any SQL or XQuery statement, except for table

check-constraint definitions, in which an existing table or view name can be

referenced.

 Prerequisites:

 An alias can be defined for a table, view, or alias that does not exist at the time of

definition. However, it must exist when the SQL or XQuery statement containing

the alias is compiled.

 Restrictions:

 An alias name can be used wherever an existing table name can be used, and can

refer to another alias if no circular or repetitive references are made along the

chain of aliases.

The alias name cannot be the same as an existing table, view, or alias, and can only

refer to a table within the same database. The name of a table or view used in a

CREATE TABLE or CREATE VIEW statement cannot be the same as an alias name

in the same schema.

You do not require special authority to create an alias, unless the alias is in a

schema other than the one owned by your current authorization ID, in which case

DBADM authority is required.

254 Administration Guide: Implementation

When an alias, or the object to which an alias refers, is dropped, all packages

dependent on the alias are marked invalid and all views and triggers dependent

on the alias are marked inoperative.

 Procedure:

 To create an alias using the Control Center:

1. Expand the object tree until you see the Aliases folder.

2. Right-click the Aliases folder, and select Create from the pop-up menu.

3. Complete the information, and click Ok.

To create an alias using the command line, enter:

 CREATE ALIAS <alias_name> FOR <table_name>

The alias is replaced at statement compilation time by the table or view name. If

the alias or alias chain cannot be resolved to a table or view name, an error results.

For example, if WORKERS is an alias for EMPLOYEE, then at compilation time:

 SELECT * FROM WORKERS

becomes in effect

 SELECT * FROM EMPLOYEE

The following SQL statement creates an alias WORKERS for the EMPLOYEE table:

 CREATE ALIAS WORKERS FOR EMPLOYEE

Note: DB2 for OS/390 or z/Series employs two distinct concepts of aliases: ALIAS

and SYNONYM. These two concepts differ from DB2 database as follows:

v ALIASes in DB2 for OS/390 or z/Series:

– Require their creator to have special authority or privilege

– Cannot reference other aliases.
v SYNONYMs in DB2 for OS/390 or z/Series:

– Can only be used by their creator

– Are always unqualified

– Are dropped when a referenced table is dropped

– Do not share namespace with tables or views.

 Related concepts:

v “Aliases” in SQL Reference, Volume 1

 Related reference:

v “CREATE ALIAS statement” in SQL Reference, Volume 2

Creating indexes

You can work with the indexes maintained by the database manager, or you can

specify your own index.

Chapter 4. Creating tables and other related table objects 255

Creating an index

 An index is a set of one or more keys, each pointing to rows in a table. An index

allows more efficient access to rows in a table by creating a direct path to the data

through pointers.

 Procedure:

 Performance Tip: If you are going to carry out the following series of tasks:

1. Create Table

2. Load Table

3. Create Index (without the COLLECT STATISTICS option)

4. Perform RUNSTATS

Or, if you are going to carry out the following series of tasks:

1. Create Table

2. Load Table

3. Create Index (with the COLLECT STATISTICS option)

then you should consider ordering the execution of tasks in the following way:

1. Create the table

2. Create the index

3. Load the table with the statistics yes option requested.

Indexes are maintained after they are created. Subsequently, when application

programs use a key value to randomly access and process rows in a table, the

index based on that key value can be used to access rows directly. This is

important, because the physical storage of rows in a base table is not ordered.

When creating a multi-dimensional clustering (MDC) table, block indexes are

created. Regular indexes point to individual rows; block indexes point to blocks or

extents of data, and are much smaller than regular indexes. For a partitioned MDC

table, the MDC block indexes are stored in the default table space or the table

space defined in the INDEXES IN clause of CREATE TABLE statement.

In partitioned database environments, where table data is distributed across

database partitions, the index object is distributed across the database partitions in

the same manner as the table. For regular tables this would mean one index object

per database partition. When creating partitioned tables, non-partitioned indexes

are created. Each index is an independent object shared among all the data

partitions of the table and stored in a single table space.

 Table 18. Index types and locations.

Table type Index description Index storage location

MDC Block By default, the index is stored in same table space as the

table data, however, you can specify different table

space using the INDEX IN clause on the CREATE TABLE

statement.

Distributed Independent (not shared) The index is distributed across the database partitions.

Partitioned Non-partitioned (shared) The index is stored in a single table space.

256 Administration Guide: Implementation

Table 18. Index types and locations. (continued)

Table type Index description Index storage location

Partitioned Partitioned (shared) The index is stored in a single table space in a separate

index object. You can also specify a different table space

for each index on the table.

When a row is inserted, unless there is a clustering index defined, the row is

placed in the most convenient storage location that can accommodate it. When

searching for rows of a table that meet a particular selection condition and the

table has no indexes, the entire table is scanned. An index optimizes data retrieval

without performing a lengthy sequential search.

The data for your indexes can be stored in the same table space as your table data,

or in a separate table space containing index data. The table space used to store the

index data is determined when the table is created, or for partitioned tables, the

index location can be overridden using the IN clause of the CREATE INDEX

statement. This allows different table spaces to be specified for different indexes, as

required.

For example, to create an index on a partitioned table, assume there is already a

partitioned table foo (a int, b int, c int). To create a unique index, a_idx in

the table space my_tbsp, use this command:

 CREATE UNIQUE INDEX a_idx ON foo (a) IN my_tbsp

To create an index using the Control Center:

1. Expand the object tree until you see the Indexes folder.

2. Right-click the Indexes folder, and select Create —> Index Using Wizard from the

pop-up menu.

3. Follow the steps in the wizard to complete your task.

To create an index using the command line, enter:

 CREATE INDEX <name> ON <table_name> (<column_name>)

 Related concepts:

v “Optimizing load performance” in Data Movement Utilities Guide and Reference

v “Understanding index behavior on partitioned tables” in Performance Guide

v “Index cleanup and maintenance” in Performance Guide

v “Relational index performance tips” in Performance Guide

v “Relational index planning tips” in Performance Guide

v “Index privileges” on page 518

v “Options on the CREATE INDEX statement” on page 261

v “Using an index” on page 260

 Related tasks:

v “Dropping an index, index extension, or an index specification” on page 327

v “Renaming an existing table or index” on page 326

 Related reference:

v “CREATE INDEX statement” in SQL Reference, Volume 2

Chapter 4. Creating tables and other related table objects 257

v “Restrictions on native XML data store” in XML Guide

Index, index extension, or index specification

 An index is a list of the locations of rows, sorted by the contents of one or more

specified columns. Indexes are typically used to speed up access to a table.

However, they can also serve a logical data design purpose. For example, a unique

index does not allow entry of duplicate values in the columns, thereby

guaranteeing that no two rows of a table are the same. Indexes can also be created

to specify ascending or descending order of the values in a column.

An index extension is an index object for use with indexes that have structured

type or distinct type columns.

An index specification is a metadata construct. It tells the optimizer that an index

exists for a data source object (table or view) referenced by a nickname. An index

specification does not contain lists of row locations–it is just a description of an

index. The optimizer uses the index specification to improve access to the object

indicated by the nickname. When a nickname is first created, an index specification

is generated if an index exists for the underlying table at the data source in a

format DB2 can recognize.

Note: If needed, create index specifications on table nicknames or view nicknames

where the view is over one table.

Manually create an index or an index specification when:

v It would improve performance. For example, if you want to encourage the

optimizer to use a particular table or nickname as the inner table of a nested

loop join, create an index specification on the joining column if no index exists.

v An index for a base table was added after the nickname for that table was

created.

Index specifications can be created when no index exists on the base table (DB2

will not check for the remote index when you issue the CREATE INDEX

statement). An index specification does not enforce uniqueness of rows even when

the UNIQUE keyword is specified.

The DB2 Index Advisor is a wizard that assists you in choosing an optimal set of

indexes. You can access this wizard through the Control Center. The comparable

utility is called db2advis.

An index is defined by columns in the base table. It can be defined by the creator

of a table, or by a user who knows that certain columns require direct access. A

primary index key is automatically created on the primary key, unless a

user-defined index already exists.

Any number of indexes can be defined on a particular base table, and they can

have a beneficial effect on the performance of queries. However, the more indexes

there are, the more the database manager must modify statistics during update,

delete, and insert operations. Creating a large number of indexes for a table that

receives many updates can slow down processing of requests. Similarly, large

index keys can also slow down processing of requests. Therefore, use indexes only

where a clear advantage for frequent access exists.

The maximum number of columns in an index is 64. If you are indexing a typed

table, the maximum number of columns is 63. The maximum length of an index

258 Administration Guide: Implementation

key must not be greater than the index key length limit for the page size. For

column stored lengths, see ″Byte Counts″ in ″CREATE TABLE″ section in the SQL

Reference. For the key length limits, see the ″Database Manager Limits″ table in the

SQL Reference.

An index key is a column or collection of columns on which an index is defined,

and determines the usefulness of an index. Although the order of the columns

making up an index key does not make a difference to index key creation, it might

make a difference to the optimizer when it is deciding whether or not to use an

index.

If the table being indexed is empty, an index is still created, but no index entries

are made until the table is loaded or rows are inserted. If the table is not empty,

the database manager makes the index entries while processing the CREATE

INDEX statement.

For a clustering index, new rows are inserted physically close to existing rows with

similar key values. This yields a performance benefit during queries because it

results in a more linear access pattern to data pages and more effective

pre-fetching.

If you want a primary key index to be a clustering index, a primary key should

not be specified at CREATE TABLE. Once a primary key is created, the associated

index cannot be modified. Instead, perform a CREATE TABLE without a primary

key clause. Then issue a CREATE INDEX statement, specifying clustering

attributes. Finally, use the ALTER TABLE statement to add a primary key that

corresponds to the index just created. This index will be used as the primary key

index.

Generally, clustering is more effectively maintained if the clustering index is

unique.

Column data which is not part of the unique index key but which is to be

stored/maintained in the index is called an include column. Include columns can be

specified for unique indexes only. When creating an index with include columns,

only the unique key columns are sorted and considered for uniqueness. Use of

include columns improves the performance of data retrieval when index access is

involved.

The database manager uses a B+ tree structure for storing indexes where the

bottom level consists of leaf nodes. The leaf nodes or pages are where the actual

index key values are stored. When creating an index, you can enable those index

leaf pages to be merged online. Online index defragmentation is used to prevent

the situation where, after much delete and update activity, many leaf pages of an

index have only a few index keys left on them. In such a situation, and without

online index defragmentation, space could only be reclaimed by a reorganization of

the data with or without including the index. When deciding whether to create an

index with the ability to defragment index pages online, you should consider this

question: Is the added performance cost of checking for space to merge each time a

key is physically removed from a leaf page and the actual cost to complete the

merge, if there is enough space, greater than the benefit of better space utilization

for the index and less than a reduced need to perform a reorganization to reclaim

space?

Chapter 4. Creating tables and other related table objects 259

Notes:

1. Pages freed after an online index defragmentation are available for re-use only

for other indexes in the same table. With a full reorganization, those pages that

are freed are available to other objects (when working with Database Managed

Storage) or to disk space (when working with System Managed Storage). In

addition, an online index defragmentation might not free up any non-leaf pages

of the index, whereas a full reorganization will make the index as small as

possible by reducing the non-leaf and leaf pages as well as the number of

levels of the index.

2. In indexes created prior to Version 8, a key is physically removed from a leaf

page as part of the deletion or update of a table row. For type 2 indexes, keys

are just marked as deleted when a row is deleted or updated. It is not

physically removed from a page until clean up is done some time after the

deletion or update has commited. Such a clean up might be done by a

subsequent transaction which is changing the page where the key is marked

deleted. Clean up can be explicitly triggered using the CLEANUP ONLY [ALL

| PAGES] option of the REORG INDEXES utility.

Indexes for tables in a partitioned database environment are built using the same

CREATE INDEX statement. Data in the indexes is distributed based on the

distribution key of the table. When this is done, a B+ tree is created on each

database partition in the database partition group. Each B+ tree indexes the part of

the table belonging to that database partition. Columns in a unique index defined

on a multi-partition database must be a superset of the columns in the distribution

key.

 Related concepts:

v “User-defined extended index types” on page 265

v “Index privileges” on page 518

v “Using an index” on page 260

v “Options on the CREATE INDEX statement” on page 261

v “Indexes” in SQL Reference, Volume 1

 Related tasks:

v “Enabling parallelism when creating indexes” on page 10

v “Creating an index” on page 256

v “Dropping an index, index extension, or an index specification” on page 327

v “Renaming an existing table or index” on page 326

 Related reference:

v “CREATE TABLE statement” in SQL Reference, Volume 2

v “SQL and XQuery limits” in SQL Reference, Volume 1

v “CREATE INDEX EXTENSION statement” in SQL Reference, Volume 2

v “CREATE INDEX statement” in SQL Reference, Volume 2

Using an index

 An index is never directly used by an application program. The decision on

whether to use an index and which of the potentially available indexes to use is

the responsibility of the optimizer.

The best index on a table is one that:

260 Administration Guide: Implementation

v Uses high-speed disks

v Is highly-clustered

v Is made up of only a few narrow columns

v Uses columns with high cardinality

 Related concepts:

v “Data access through index scans” in Performance Guide

v “Relational index planning tips” in Performance Guide

v “Relational index performance tips” in Performance Guide

v “Table and index management for MDC tables” in Performance Guide

v “Table and index management for standard tables” in Performance Guide

Options on the CREATE INDEX statement

 You can create an index that will allow duplicates (a non-unique index) to enable

efficient retrieval by columns other than the primary key, and allow duplicate

values to exist in the indexed column or columns.

The following SQL statement creates a non-unique index called LNAME from the

LASTNAME column on the EMPLOYEE table, sorted in ascending order:

 CREATE INDEX LNAME ON EMPLOYEE (LASTNAME ASC)

The following SQL statement creates a unique index on the phone number column:

 CREATE UNIQUE INDEX PH ON EMPLOYEE (PHONENO DESC)

A unique index ensures that no duplicate values exist in the indexed column or

columns. The constraint is enforced at the end of the SQL statement that updates

rows or inserts new rows. This type of index cannot be created if the set of one or

more columns already has duplicate values.

The keyword ASC puts the index entries in ascending order by column, while

DESC puts them in descending order by column. The default is ascending order.

You can create a unique index on two columns, one of which is an include column.

The primary key is defined on the column that is not the include column. Both of

them are shown in the catalog as primary keys on the same table. Normally there

is only one primary key per table.

The INCLUDE clause specifies additional columns to be appended to the set of

index key columns. Any columns included with this clause are not used to enforce

uniqueness. The included columns might improve the performance of some

queries through index-only access. The columns must be distinct from the columns

used to enforce uniqueness (otherwise you will receive error message SQLSTATE

42711). The limits for the number of columns and sum of the length attributes

apply to all of the columns in the unique key and in the index.

A check is performed to determine if an existing index matches the primary key

definition (ignoring any INCLUDE columns in the index). An index definition

matches if it identifies the same set of columns without regard to the order of the

columns or the direction (either ascending or descending) specifications. If a

matching index definition is found, the description of the index is changed to

indicate that it is the primary index, as required by the system, and it is changed

to unique (after ensuring uniqueness) if it was a non-unique index.

Chapter 4. Creating tables and other related table objects 261

This is why it is possible to have more than one primary key on the same table as

indicated in the catalog.

When working with a structured type, it might be necessary to create user-defined

index types. This requires a means of defining index maintenance, index search,

and index exploitation functions.

The following SQL statement creates a clustering index called INDEX1 on the

LASTNAME column of the EMPLOYEE table:

CREATE INDEX INDEX1 ON EMPLOYEE (LASTNAME) CLUSTER

To use the internal storage of the database effectively, use clustering indexes with

the PCTFREE parameter associated with the ALTER TABLE statement so that new

data can be inserted on the correct pages. When data is inserted on the correct

pages, clustering order is maintained. Typically, the greater the INSERT activity on

the table, the larger the PCTFREE value (on the table) that will be needed in order

to maintain clustering. Since this index determines the order by which the data is

laid out on physical pages, only one clustering index can be defined for any

particular table.

If the index key values of these new rows are always new high key values for

example, then the clustering attribute of the table will try to place them at the end

of the table. Having free space in other pages will do little to preserve clustering.

In this case, placing the table in append mode might be a better choice than a

clustering index and altering the table to have a large PCTFREE value. You can

place the table in append mode by issuing: ALTER TABLE APPEND ON.

The above discussion also applies to new ″overflow″ rows that result from

UPDATEs that increase the size of a row.

A single index created using the ALLOW REVERSE SCANS parameter on the

CREATE INDEX statement can be scanned in a forward or a backward direction.

That is, such indexes support scans in the direction defined when the index was

created and scans in the opposite or reverse direction. The statement could look

something like:

 CREATE INDEX iname ON tname (cname DESC) ALLOW REVERSE SCANS

In this case, the index (iname) is formed based on descending values (DESC) in the

given column (cname). By allowing reverse scans, although the index on the

column is defined for scans in descending order, a scan can be done in ascending

order (reverse order). The actual use of the index in both directions is not

controlled by you but by the optimizer when creating and considering access

plans.

The MINPCTUSED clause of the CREATE INDEX statement specifies the threshold

for the minimum amount of used space on an index leaf page. If this clause is

used, online index defragmentation is enabled for this index. Once enabled, the

following considerations are used to determine if an online index defragmentation

takes place: After a key is physically removed from a leaf page of this index and a

percentage of used space on the page is less than the specified threshold value, the

neighboring index leaf pages are checked to determine if the keys on the two leaf

pages can be merged into a single index leaf page.

For example, the following SQL statement creates an index with online index

defragmentation enabled:

262 Administration Guide: Implementation

CREATE INDEX LASTN ON EMPLOYEE (LASTNAME) MINPCTUSED 20

When a key is physically removed from an index page of this index, if the

remaining keys on the index page take up twenty percent or less space on the

index page, then an attempt is made to delete an index page by merging the keys

of this index page with those of a neighboring index page. If the combined keys

can all fit on a single page, this merge is performed and one of the index pages is

deleted.

The CREATE INDEX statement allows you to create the index while, at the same

time, allowing read and write access to the underlying table and any previously

existing indexes. To restrict access to the table while creating the index, use the

LOCK TABLE statement to lock the table before creating the index. The new index

is created by scanning the underlying table. Any changes made to the table while

the index is being created are logged. Once the new index is created, the changes

are applied to the index. To apply the logged changes more quickly during the

index creation, a separate copy of the changes is maintained in memory buffer

space, which is allocated on demand from the utility heap. This allows the index

creation to process the changes by directly reading from memory first, and reading

through the logs, if necessary, at a much later time. Once all the changes have been

applied to the index, the table is quiesced while the new index is made visible.

When creating a unique index, ensure that there are no duplicate keys in the table

and that the concurrent inserts during index creation are not going to introduce

duplicate keys. Index creation uses a deferred unique scheme to detect duplicate

keys, and therefore no duplicate keys will be detected until the very end of index

creation, at which point the index creation will fail because of the duplicate keys.

The PCTFREE clause of the CREATE INDEX statement specifies the percentage of

each index page to leave as free space when the index is built. Leaving more free

space on the index pages will result in fewer page splits. This will reduce the need

to reorganize the table in order to regain sequential index pages which increases

prefetching. And prefetching is one important component that might improve

performance. Again, if there are always high key values, then you will want to

consider lowering the value of the PCTFREE clause of the CREATE INDEX

statement. In this way there will be limited wasted space reserved on each index

page.

The LEVEL2 PCTFREE clause directs the system to preserve a specified percentage

of free space on each page in the second level of an index. You specify a

percentage of free space when the index is created to accommodate future

insertions and updates. The second level is the level immediately above the leaf

level. The default is to preserve a minimum of 10 and the PCTFREE value in all

non-leaf pages. The LEVEL2 PCTFREE parameter allows the default to be

overwritten; if you use the LEVEL2 PCTFREE integer option in the CREATE

INDEX statement, the integer percent of free space is left on level 2 intermediate

pages. A minimum of 10 and the integer percent of free space is left on level 3 and

higher intermediate pages. By leaving more free space on the second level, the

number of page splits that occur at the second level of the index is reduced.

The PAGE SPLIT SYMMETRIC, PAGE SPLIT HIGH, and PAGE SPLIT LOW

clauses allow a choice in the page split behavior when inserting into an index.

The PAGE SPLIT SYMMETRIC clause is a default page split behavior that splits

roughly in the middle of an index page. Using this default behavior is best when

Chapter 4. Creating tables and other related table objects 263

the insertion into an index is random or does not follow one of the patterns that

are addressed by the PAGE SPLIT HIGH and PAGE SPLIT LOW clauses.

The PAGE SPLIT HIGH behavior is useful when there are ever increasing ranges

in the index. Increasing ranges in the index might occur when:

v There is an index with multiple key parts and there are many values (multiple

index pages worth) where all except the last key part have the same value

v All inserts into the table would consist of a new value which has the same value

as existing keys for all but the last key part

v The last key part of the inserted value is larger than that of the existing keys

For example, if an index has the following key values:

 (1,1),(1,2),(1,3), ... (1,n),

 (2,1),(2,2),(2,3), ... (2,n),

 ...

 (m,1),(m,2),(m,3), ...(m,n)

then the next key to be inserted would have the value (x,y) where 1 <= x <= m

and y > n. If the insertions follow such a pattern, the PAGE SPLIT HIGH clause

can be used so that page splits do not result in many pages that are fifty percent

empty.

Similarly, PAGE SPLIT LOW can be used when there are ever-decreasing ranges in

the index, to avoid leaving pages 50 percent empty.

Note: If you want to add a primary or unique key, and you want the underlying

index to use SPLIT HIGH, SPLIT LOW, PCTFREE, LEVEL2 PCTFREE,

MINPCTUSED, CLUSTER, or ALLOW REVERSE SCANS you must first

create an index specifying the desired keys and parameters. Then use an

ALTER TABLE statement to add the primary or unique key. The ALTER

TABLE statement will pick up and reuse the index that you have already

created.

You can collect index statistics as part of the creation of the index. At the time

when you use the CREATE INDEX statement, the key value statistics and the

physical statistics are available for use. By collecting the index statistics as part of

the CREATE INDEX statement, you will not need to run the RUNSTATS utility

immediately following the completion of the CREATE INDEX statement.

For example, the following SQL statement will collect basic index statistics as part

of the creation of an index:

 CREATE INDEX IDX1 ON TABL1 (COL1) COLLECT STATISTICS

If you have a replicated summary table, its base table (or tables) must have a

unique index, and the index key columns must be used in the query that defines

the replicated summary table.

For intra-partition parallelism, create index performance is improved by using

multiple processors for the scanning and sorting of data that is performed during

index creation. The use of multiple processors is enabled by setting intra_parallel to

YES(1) or SYSTEM(-1). The number of processors used during index creation is

determined by the system and is not affected by the configuration parameters

dft_degree or max_querydegree, by the application runtime degree, or by the query

compilation degree.

264 Administration Guide: Implementation

In multiple partition databases, unique indexes must be defined as supersets of the

distribution key.

 Related concepts:

v “Index reorganization” in Performance Guide

v “Online index defragmentation” in Performance Guide

v “Relational index performance tips” in Performance Guide

v “Table and index management for MDC tables” in Performance Guide

v “Table and index management for standard tables” in Performance Guide

 Related tasks:

v “Changing table attributes” on page 298

 Related reference:

v “CREATE INDEX statement” in SQL Reference, Volume 2

v “dft_degree - Default degree configuration parameter” in Performance Guide

v “intra_parallel - Enable intra-partition parallelism configuration parameter” in

Performance Guide

v “max_querydegree - Maximum query degree of parallelism configuration

parameter” in Performance Guide

User-defined extended index types

 To support user-defined index types, the DB2 database manager allows you to

create and apply your own logic for the primary components that make up how an

index works. Those components that can be substituted are:

v Index maintenance. This allows the ability to map index column content to an

index key. Such a mapping is done through a user-defined mapping function.

Exactly one structured type column can participate in an extended index. Unlike

an ordinary index, an extended index might have more than one index entry per

row. Multiple index entries per row could enable a text document to be stored as

an object with a separate index entry for each keyword in the document.

v Index exploitation. This enables the application designer to associate filtering

conditions (range predicates) with a user-defined function (UDF) that would

otherwise be opaque to the optimizer. This enables DB2 to avoid making a

separate UDF call for each row, and thereby avoids context switching between

client and server, greatly improving performance.

Note: The user-defined function definition must be deterministic and must not

allow external actions in order to be exploitable by the optimizer.

An optional data filter function can also be specified. The optimizer uses the filter

against the fetched tuple before the user-defined function is evaluated.

Only a structured type or distinct type column can use the index extension to

create a user-defined extended index type on these objects. The user-defined

extended index type must not:

v Be defined with clustering indexes

v Have INCLUDE columns.

 Related concepts:

v “Defining an index extension - example” on page 268

Chapter 4. Creating tables and other related table objects 265

v “Index exploitation” on page 267

v “Index maintenance” on page 266

v “Relational index searching” on page 266

Creating user-defined extended index types

This section discusses the various aspects required when creating your own

extended index type.

Index maintenance

 Index maintenance is the process of transforming the index column content (or

source key) to a target index key. The transformation process is defined using a

table function that has previously been defined in the database.

You define two of the components that make up the operations of an index

through the CREATE INDEX EXTENSION statement.

The FROM SOURCE KEY clause specifies a structured data type or distinct type

for the source key column supported by this index extension. A single parameter

name and data type are given and associated with the source key column.

The GENERATE KEY USING clause specifies the user-defined table function used

to generate the index key. The output from this function must be specified in the

TARGET KEY clause specification. The output from this function can also be used

as input for the index filtering function specified on the FILTER USING clause.

 Related concepts:

v “User-defined extended index types” on page 265

 Related reference:

v “CREATE INDEX EXTENSION statement” in SQL Reference, Volume 2

Relational index searching

 Relational index searching maps search arguments to search ranges.

The WITH TARGET KEY clause of the CREATE INDEX EXTENSION statement

specifies the target key parameters that are the output of the user-defined table

function specified on the GENERATE KEY USING clause. A single parameter name

and data type are given and associated with the target key column. This parameter

corresponds to the columns of the RETURNS table of the user-defined table

function of the GENERATE KEY USING clause.

The SEARCH METHODS clause introduces one or more search methods defined

for the relational index. Each search method consists of a method name, search

arguments, a range producing function, and an optional index filter function. Each

search method defines how index search ranges for the underlying user-defined

index are produced by a user-defined table function. Further, each search method

defines how the index entries in a particular search range can be further qualified

by a user-defined scalar function to return a single value.

v The WHEN clause associates a label with a search method. The label is an SQL

identifier that relates to the method name specified in the relational index

exploitation rule (found in the PREDICATES clause of a user-defined function).

One or more parameter names and data types are given for use as arguments in

the range function with or without including the index filtering function. The

266 Administration Guide: Implementation

WHEN clause specifies the action that can be taken by the optimizer when the

PREDICATES clause of the CREATE FUNCTION statement matches an

incoming query.

v The RANGE THROUGH clause specifies the user-defined external table function

that produces index key ranges. This enables the optimizer to avoid calling the

associated UDF when the index keys fall outside the key ranges.

v The FILTER USING clause is an optional way of specifying a user-defined

external table function or a case expression used to filter relational index entries

returned from the range-producing function. If the value returned by the index

filter function or case expression is 1, the row corresponding to the index entry

is retrieved from the table. If the value returned is something other than 1, the

index entry is discarded. This feature is valuable when the cost of the secondary

filter is low compared to the cost of evaluating the original method, and the

selectivity of the secondary filter is relatively low.

 Related concepts:

v “User-defined extended index types” on page 265

v “Index exploitation” on page 267

v “Index maintenance” on page 266

 Related reference:

v “CREATE INDEX EXTENSION statement” in SQL Reference, Volume 2

Index exploitation

 Index exploitation occurs in the evaluation of the search method.

The CREATE FUNCTION (External Scalar) statement creates a user-defined

predicate used with the search methods defined for the index extension.

The PREDICATES clause identifies those predicates using this function that can

possibly exploit the index extensions (and that can possibly use the optional

SELECTIVITY clause for the predicate’s search condition). If the PREDICATES

clause is specified, the function must be defined as DETERMINISTIC with NO

EXTERNAL ACTION.

v The WHEN clause introduces a specific use of the function being defined in a

predicate with a comparison operator (=, >, <, and others) and a constant or

expression (using the EXPRESSION AS clause). When a predicate uses this

function with the same comparison operator and the given constant or

expression, filtering and index exploitation might be used. The use of a constant

is provided mainly to cover Boolean expressions where the result type is either a

1 or a 0. For all other cases, the EXPRESSION AS clause is the better choice.

v The FILTER USING clause identifies a filter function that can be used to perform

additional filtering of the result table. It is an alternative and faster version of

the defined function (used in the predicate) that reduces the number of rows on

which the user-defined predicate must be executed to determine if rows qualify.

Should the results produced by the index be close to the results expected by the

user-defined predicate, then the application of this filter function might be

redundant.

v You can optionally define a set of rules for each search method of an index

extension to exploit the index. You can also define a search method in the index

extension to describe the search targets, the search arguments, and how these

can be used to perform the index search.

– The SEARCH BY INDEX EXTENSION clause identifies the index extension.

Chapter 4. Creating tables and other related table objects 267

– The optional EXACT clause indicates that the index lookup is exact in its

predicate evaluation. This clause tells the database not to apply the original

user-provided predicate function or the filter function after the index lookup.

If the index lookup is not used, then the original predicate and the filter

functions have to be applied. If the EXACT clause is not used, then the

original user-provided predicate is applied after the index lookup. The

EXACT predicate is useful when the index lookup returns the same results as

the predicate. This prevents the query execution from applying the

user-defined predicate on the results obtained from the index lookup. If the

index is expected to provide only an approximation of the predicate, do not

specify the EXACT clause.

– The WHEN KEY clause defines the search target. Only one search target is

specified for a key. The value given following the WHEN KEY clause

identifies a parameter name of the function being defined. This clause is

evaluated as true when the values of the named parameter are columns that

are covered by an index based on the index extension specified.

– The USE clause defines the search argument. The search argument identifies

which method defined in the index extension will be used. The method name

given here must match a method defined in the index extension. The one or

more parameter values identify parameter names of the function being

defined and which must be different from any of the parameter names

specified in the search target. The number of parameter values and the data

type of each must match the parameters defined for the method in the index

extension. The match must be exact for built-in and distinct data types, and

be within the same structure types.

 Related concepts:

v “Defining an index extension - example” on page 268

v “User-defined extended index types” on page 265

v “Index maintenance” on page 266

v “Relational index searching” on page 266

 Related reference:

v “CREATE FUNCTION (External Scalar) statement” in SQL Reference, Volume 2

Defining an index extension - example

 An example of defining an index extension:

1. Define the structured types (for shapes). Use the CREATE TYPE statement to

define a type hierarchy where shape is a supertype and nullshape, point, line,

and polygon are subtypes. These structured types model spatial entities. For

example, the location of a store is a point; the path of a river is a line; and, the

boundary of a business zone is a polygon. A minimum bounded rectangle

(mbr) is an attribute. The gtype attribute identifies whether the associated

entity is a point, a line, or a polygon. Geographical boundaries are modeled by

numpart, numpoint, and geometry attributes. All other attributes are ignored

because they are of no interest to this scenario.

2. Create the index extension.

v Use the CREATE FUNCTION statement to create functions that are used for

key transformation (gridentry), range-producing (gridrange), and index filter

(checkduplicate and mbroverlap).

v Use the CREATE INDEX EXTENSION statement to create the remaining

needed components of the index.

268 Administration Guide: Implementation

3. Create the key transformation which corresponds to the index maintenance

component of an index.

 CREATE INDEX EXTENSION iename (parm_name data type, ...)

 FROM SOURCE KEY (parm_name data type)

 GENERATE KEY USING table_function_invocation

 ...

The FROM SOURCE KEY clause identifies the parameter and data type of the

key transformation. The GENERATE KEY USING clause identifies the function

used to map the source key with the value generated from the function.

4. Define the range-producing and index-filter functions which correspond to the

index search component of an index.

 CREATE INDEX EXTENSION iename (parm_name data type, ...)

 ...

 WITH TARGET KEY

 WHEN method_name (parm_name data type, ...)

 RANGE THROUGH range_producing_function_invocation

 FILTER USING index_filtering_function_invocation

The WITH TARGET KEY clause identifies the search method definition. The

WHEN clause identifies the method name. The RANGE THROUGH clause

identifies the function used to limit the scope of the index to be used. The

FILTER USING clause identifies the function used to eliminate unnecessary

items from the resulting index values.

Note: The FILTER USING clause could identify a case expression instead of an

index filtering function.

5. Define the predicates to exploit the index extension.

 CREATE FUNCTION within (x shape, y shape)

 RETURNS INTEGER

 ...

 PREDICATES

 WHEN = 1

 FILTER USING mbrWithin (x..mbr..xmin, ...)

 SEARCH BY INDEX EXTENSION grid_extension

 WHEN KEY (parm_name) USE method_name(parm_name)

The PREDICATES clause introduces one or more predicates that are started

with each WHEN clause. The WHEN clause begins the specification for the

predicate with a comparison operator followed by either a constant or an

EXPRESSION AS clause. The FILTER USING clause identifies a filter function

that can be used to perform additional filtering of the result table. This is a

cheaper version of the defined function (used in the predicate) that reduces the

number of rows on which the user-defined predicate must be executed to

determine the rows that qualify. The SEARCH BY INDEX EXTENSION clause

specifies where the index exploitation takes place. Index exploitation defines

the set of rules using the search method of an index extension that can be used

to exploit the index. The WHEN KEY clause specifies the exploitation rule. The

exploitation rule describes the search targets and search arguments as well as

how they can be used to perform the index search through a search method.

6. Define a filter function.

 CREATE FUNCTION mbrWithin (...)

The function defined here is created for use in the predicate of the index

extension.

In order for the query optimizer to successfully exploit indexes created to improve

query performance, a SELECTIVITY option is available on function invocation. In

cases where you have some idea of the percentage of rows that the predicate might

Chapter 4. Creating tables and other related table objects 269

return, you can use the SELECTIVITY option on function invocation to help the

DB2 optimizer choose a more efficient access path.

In the following example, the within user-defined function computes the center

and radius (based on the first and second parameters, respectively), and builds a

statement string with an appropriate selectivity:

 SELECT * FROM customer

 WHERE within(loc, circle(100, 100, 10)) = 1 SELECTIVITY .05

In this example, the indicated predicate (SELECTIVITY .05) filters out 95 percent of

the rows in the customer table.

 Related concepts:

v “User-defined extended index types” on page 265

v “Index exploitation” on page 267

v “Index maintenance” on page 266

v “Relational index searching” on page 266

 Related reference:

v “CREATE FUNCTION (External Scalar) statement” in SQL Reference, Volume 2

v “CREATE INDEX EXTENSION statement” in SQL Reference, Volume 2

Showing related objects

 Use the Show Related notebook to show the relationships between tables, indexes,

views, aliases, triggers, table spaces, UDFs, and UDTs.

Only first-level dependencies are shown in the table in the Show Related notebook.

For example, if you select a table as the target object and the table has a

dependency on a view which also has a dependency on another view, only the

table dependency is shown. To see the dependency on the view, right-click the

view-related object and click Show Related in the pop-up menu.

If you want to compare the relationships between several target objects and their

related objects, you can open several Show Related notebooks from the Control

Center object tree.

There are several reasons to show related objects, including:

v To see the structure of the database.

v To drop or recreate an object, which requires identifying all of the dependency

relationships on the object to be dropped or created. Dropping or recreating an

object that has one or more dependencies might present problems. For example,

if you drop a table with dependent views, the views will be marked inoperative.

To see the SQL query that defines the relationships between objects, click Show

SQL.

 To open the Show Related notebook::

1. From the Control Center, expand the object tree until you find the object you

want to work with such as a table, index, view, alias, trigger, tablespace, UDF,

or UDT.

2. Right click the object, and click Show Related from the pop-up menu. The

Show Related window opens.

270 Administration Guide: Implementation

3. Optional. Repeat the above steps to open another Show Related notebook. You

can open multiple Show Related notebooks to show related objects.

 To open another view in the Show Related notebook::

 From each page of the Show Related notebook, right click the object for which you

want to view related objects, and click Show Related in the pop-up menu. The

Target object changes to the object you just selected. The Show Related notebook

page changes to show the objects related to your latest selection. Your previous

target object is added to the list.

Note: You can perform other actions in the Show Related notebook by

right-clicking the object in the Show Related notebook and clicking an action

in the pop-up menu.

 Related concepts:

v “Control Center overview” on page 376

Validating related objects

 You can customize the SQL statements associated with a selected object. The

Related Objects window in the Control Center allows you to identify SQL

statements that need to be corrected before the specified table changes are actually

applied.

Validation testing checks that all relationships for the selected object are valid, that

the necessary user privileges are held, and that data transformations can occur

without errors. If invalid statements are found, you can correct the statements.

 Prerequisites:

 To validate related objects when changing table columns, you must have DBADM

authority.

 Procedure:

 To validate objects:

1. Open the Alter Table notebook: From the Control Center, expand the object tree

until you find the Tables folder. Click the Tables folder. Any existing tables are

displayed in the pane on the right side of the window. Right-click the table you

want and select Alter from the pop-up menu. The Alter Table notebook opens.

2. On the Columns page, perform one of the following actions to enable the

Related objects button:

v Rename a column

v Drop a column

v Change the data type of a column

v Change the length, scope, or precision values for a column

v Change whether a column is nullable
3. Click Related objects. The Related Objects window opens.

4. Click Test All to test the validity of the SQL statements for all of the objects

listed in the Impacted objects table. The Validity column of the table is

updated to indicate if each object is valid or invalid.

Chapter 4. Creating tables and other related table objects 271

v If no objects are invalid, then changes are not needed. Click Close to return

to the Alter Table notebook.

v If any of the objects is shown to be invalid, select the object in the in the

Impacted objects table. The SQL statement for the object will appear in the

SQL statement used for selected object field.

– Use the error message box near the bottom of the window to identify the

source of any errors for the selected object. Make any needed changes to

the associated SQL statement. Click Apply to update the statement in the

Impacted objects table.

– Click Test SQL to check the validity of the corrected SQL statements for

the selected object. In the Validity column of the Impacted objects table,

the cell for the selected object is updated to indicate if the object is valid

or invalid. If the object is valid, no further changes are needed. If the

object is invalid, repeat the previous step to make further changes.

Sometimes an SQL statement cannot be tested individually, as it might

rely on other objects to be dropped or created. In this case, click Test All

to test the validity of the SQL statements for all of the objects listed in the

Impacted objects table.
5. Once any necessary changes have been made and all objects in the Impacted

objects table are valid, click Close to return to the Alter Table notebook.

 Related tasks:

v “Showing related objects” on page 270

Estimating space requirements for tables and indexes

 Use the Estimate Size window to estimate the amount of storage space required for

a new or existing table or index. The estimated storage space is determined from

the definition of a particular table and its dependent indexes. Minimum and

maximum storage values are estimated for these objects.

Reasons to estimate space requirements for tables and indexes include:

v To create a new table and determine the size of the table space required.

v To create a new table based on the size estimate of an existing table.

v To rearrange a table space. For example, you want to move a table from table

space A to table space B, and you want to know how much space the table uses

in table space A.

v To identify the amount of space occupied by different objects in the table space

because the system is running out of storage space.

Note: For DB2 Enterprise Server Edition databases, size estimates are based on the

logical size of the data in the table instead of by database partition.

To open the Estimate Size window, from the Control Center, expand the object tree

until you find the Tables folder or Indexes folder. Click the Tables folder or

Indexes folder. Any existing tables or indexes are displayed in the pane on the

right side of the window (contents pane).

v For an existing table or index, right-click the table or index you want in the

contents pane, and click Estimate Size in the pop-up menu.

v When you are creating a table or index, right-click the table or index folder and

click Create Table or Create Index in the pop-up menu. The Create Table wizard

272 Administration Guide: Implementation

or Create Index window opens. Complete the information required to create a

table or index. Select Estimate Size from the Create Table wizard or Create

Index window.

Since every row added to the table affects the storage used by the indexes as well

as tables, the table and all its related indexes are displayed in the Estimate Size

window.

If recent statistics are not available for the table or index, click Run statistics before

updating the New total number of rows and New average row length fields and

running a size estimate. The calculation of the size estimate can then be based on

more accurate information. In the Run Statistics window that opens, either accept

the default or select a different value for New total number of rows.

 Related concepts:

v “Space requirements for temporary tables” in Administration Guide: Planning

v “Space requirements for database objects” in Administration Guide: Planning

v “Space requirements for indexes” in Administration Guide: Planning

v “Space requirements for system catalog tables” in Administration Guide: Planning

v “Space requirements for user table data” in Administration Guide: Planning

Chapter 4. Creating tables and other related table objects 273

274 Administration Guide: Implementation

Chapter 5. Altering a database

This chapter focuses on what you must consider before altering a database; and,

how to alter or drop database objects.

Altering an instance

Some time after a database design has been implemented, a change to the database

design may be required. You should reconsider the major design issues that you

had with the previous design.

Before you make changes affecting the entire database, you should review all the

logical and physical design decisions. For example, when altering a table space,

you should review your design decision regarding the use of SMS or DMS storage

types.

As part of the management of licenses for your DB2 Universal Database™ (DB2

UDB) products, you may find that you have a need to increase the number of

licenses. You can use the License Center within the Control Center to check usage

of the installed products and increase the number of licenses based on that usage.

You should pay particular attention to the following:

v “Changing instances (UNIX only)”

v “Changing node and database configuration files” on page 279

Changing instances (UNIX only)

 Instances are designed to be as independent as possible from the effects of

subsequent installation and removal of products.

In most cases, existing instances automatically inherit or lose access to the function

of the product being installed or removed. However, if certain executables or

components are installed or removed, existing instances do not automatically

inherit the new system configuration parameters or gain access to all the additional

function. The instance must be updated.

If the DB2 database manager is updated by installing a Program Temporary Fix

(PTF) or a patch, all the existing DB2 database instances should be updated using

the db2iupdt command.

You should ensure you understand the instances and database partition servers

you have in an instance before attempting to change or delete an instance.

 Related concepts:

v “Instance creation” on page 34

 Related tasks:

v “Removing instances” on page 278

v “Updating instance configuration on UNIX” on page 276

 Related reference:

© Copyright IBM Corp. 1993, 2006 275

v “db2iupdt - Update instances command” in Command Reference

Details on changing instances

Before changing an instance, you should list all of the existing instances.

Updating instance configuration on UNIX

 Running the db2iupdt command updates the specified instance by performing the

following:

v Replaces the files in the sqllib subdirectory under the instance owner’s home

directory.

v If the node type is changed, then a new database manager configuration file is

created. This is done by merging relevant values from the existing database

manager configuration file with the default database manager configuration file

for the new node type. If a new database manager configuration file is created,

the old file is backed up to the backup subdirectory of the sqllib subdirectory

under the instance owner’s home directory.

 Procedure:

 The db2iupdt command is found in /usr/opt/db2_09_01/instance/ directory on

AIX. The db2iupdt command is found in /opt/IBM/db2/V9.1/instance/ directory

on HP-UX, Solaris, or Linux.

The command is used as shown:

 db2iupdt InstName

The InstName is the log in name of the instance owner.

There are other optional parameters associated with this command:

v –h or –?

Displays a help menu for this command.

v –d

Sets the debug mode for use during problem determination.

v –a AuthType

Specifies the authentication type for the instance. Valid authentication types are

SERVER, SERVER_ENCRYPT, or CLIENT. If not specified, the default is

SERVER, if a DB2 server is installed. Otherwise, it is set to CLIENT. The

authentication type of the instance applies to all databases owned by the

instance.

v –e

Allows you to update each instance that exists. Those that exist can be shown

using db2ilist.

v –u Fenced ID

Names the user under which the fenced user-defined functions (UDFs) and

stored procedures will execute. This is not required if you install the DB2 client

or the DB2 Software Developer’s Kit. For other DB2 products, this is a required

parameter.

Note: Fenced ID might not be “root” or “bin”.

v –k

276 Administration Guide: Implementation

This parameter preserves the current instance type. If you do not specify this

parameter, the current instance is upgraded to the highest instance type

available in the following order:

– Partitioned database server with local and remote clients (DB2 Enterprise

Extended Server Edition default instance type)

– Database Server with local and remote clients (DB2 Enterprise Server Edition

default instance type)

– Client (DB2 client default instance type)

Examples:

v If you installed DB2 Workgroup Server Edition or DB2 Enterprise Server Edition

after the instance was created, enter the following command to update that

instance:

 db2iupdt -u db2fenc1 db2inst1

v If you installed the DB2 Connect Enterprise Server Edition after creating the

instance, you can use the instance name as the Fenced ID also:

 db2iupdt -u db2inst1 db2inst1

v To update client instances, you can use the following command:

 db2iupdt db2inst1

 Related tasks:

v “Removing instances” on page 278

 Related reference:

v “db2ilist - List instances command” in Command Reference

v “db2iupdt - Update instances command” in Command Reference

Updating instance configuration on Windows

 Running the db2iupdt command updates the specified instance by performing the

following:

v Replaces the files in the sqllib subdirectory under the instance owner’s home

directory.

v If the node type is changed, then a new database manager configuration file is

created. This is done by merging relevant values from the existing database

manager configuration file with the default database manager configuration file

for the new node type. If a new database manager configuration file is created,

the old file is backed up to the backup subdirectory of the sqllib subdirectory

under the instance owner’s home directory.

 Procedure:

 The db2iupdt command is found in \sqllib\bin directory.

The command is used as shown:

 db2iupdt InstName

The InstName is the log in name of the instance owner.

There are other optional parameters associated with this command:

v /h: hostname

Chapter 5. Altering a database 277

Overrides the default TCP/IP host name if there are one or more TCP/IP host

names for the current computer.

v /p: instance profile path

Specifies the new instance profile path for the updated instance.

v /r: baseport,endport

Specifies the range of TCP/IP ports used by the partitioned database instance

when running with multiple database partitions.

v /u: username,password

Specifies the account name and password for the DB2 service.

 Related tasks:

v “Listing instances” on page 41

v “Removing instances” on page 278

v “Updating instance configuration on UNIX” on page 276

Removing instances

 Procedure:

 To remove an instance using the Control Center:

1. Expand the object tree until you see the instance you want to remove.

2. Right-click the instance name, and select Remove from the pop-up menu.

3. Check the Confirmation box, and click OK.

To remove an instance using the command line, enter:

 db2idrop <instance_name>

The preparation and details to removing an instance using the command line are:

1. Stop all applications that are currently using the instance.

2. Stop the Command Line Processor by running db2 terminate commands in

each DB2 command window.

3. Stop the instance by running the db2stop command.

4. Back up the instance directory indicated by the DB2INSTPROF registry

variable.

On UNIX operating systems, consider backing up the files in the

INSTHOME/sqllib directory (where INSTHOME is the home directory of the

instance owner). For example, you might want to save the database manager

configuration file, db2systm, the db2nodes.cfg file, user-defined functions

(UDFs), or fenced stored procedure applications.

5. (On UNIX operating systems only) Log off as the instance owner.

6. (On UNIX operating systems only) Log in as a user with root authority.

7. Issue the db2idrop command:

 db2idrop InstName

where InstName is the name of the instance being dropped.

This command removes the instance entry from the list of instances and

removes the instance directory.

278 Administration Guide: Implementation

8. (On UNIX operating systems only) Optionally, as a user with root authority,

remove the instance owner’s user ID and group (if used only for that instance).

Do not remove these if you are planning to re-create the instance.

This step is optional since the instance owner and the instance owner group

might be used for other purposes.

The db2idrop command removes the instance entry from the list of instances and

removes the sqllib subdirectory under the instance owner’s home directory.

Note: On UNIX operating systems, when attempting to drop an instance using the

db2idrop command, a message is generated saying that the sqllib

subdirectory cannot be removed, and in the adm subdirectory several files

with the .nfs extension are being generated. The adm subdirectory is an

NFS-mounted system and the files are controlled on the server. You must

delete the *.nfs files from the fileserver from where the directory is being

mounted. Then you can remove the sqllib subdirectory.

 Related reference:

v “db2idrop - Remove instance command” in Command Reference

v “db2ilist - List instances command” in Command Reference

v “db2stop - Stop DB2 command” in Command Reference

v “STOP DATABASE MANAGER command” in Command Reference

v “TERMINATE command” in Command Reference

Changing node and database configuration files

 To update the database configuration file, use the Configuration Advisor in the

Control Center or run db2 autoconfigure with the appropriate options. The

Configuration Advisor helps you to tune performance and to balance memory

requirements for a single database per instance by suggesting which configuration

parameters to modify and providing suggested values for them.

Note: If you modify any parameters, the values are not updated until:

v For database parameters, the first new connection to the database after all

applications are disconnected

v For database manager parameters, the next time that you stop and start

the instance

In most cases, the values recommended by the Configuration Advisor will provide

better performance than the default values because they are based on information

about your workload and your own particular server. However, the values are

designed to improve the performance of, though not necessarily optimize, your

database system. Think of the values as a starting point on which you can make

further adjustments to obtain optimized performance.

In Version 9.1, the Configuration Advisor is automatically invoked when you

create a database. To disable this feature, or to explicitly enable it, use the db2set

command before creating the database. Examples:

 db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=NO

 db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=YES

See Automatic features enabled by default for other DB2 features that are enabled

by default.

Chapter 5. Altering a database 279

Prerequisites:

 If you plan to change any database partition groups (adding or deleting database

partitions, or moving existing database partitions), the node configuration file must

be updated.

If you plan to change the database, you should review the values for the

configuration parameters. You can adjust some values periodically as part of the

ongoing changes made to the database that are based on how it is used.

 Procedure:

 To update the database configuration using the Control Center:

1. Expand the object tree until you see the Databases folder.

2. Right-click the instance or database that you want to change, and click Configuration

Advisor.

3. Click each page, and change information as required.

4. Click the Results page to review any suggested changes to the configuration

parameters.

5. When you are ready to apply or save the updates, click Finish.

To use the Configuration Advisor from the command line, use the

AUTOCONFIGURE command.

To update individual parameters in the database manager configuration using the

command line, enter:

 UPDATE DBM CFG FOR <database_alias>

 USING <config_keyword>=<value>

You can update one or more <config_keyword>=<value> combinations in a single

command. Most changes to the database manager configuration file become

effective only after they are loaded into memory. For a server configuration

parameter, this occurs during the running of the START DATABASE MANAGER

command. For a client configuration parameter, this occurs when the application is

restarted.

To view or print the current database manager configuration parameters, use the

GET DATABASE MANAGER CONFIGURATION command.

To access the Configuration Advisor from a client application, call the

db2AutoConfig API. To update individual parameters in the database manager

configuration or database configuration file from a client application, call the

db2CfgSet API.

 Related concepts:

v “Benchmark testing” in Performance Guide

v “Automatic features enabled by default” in Administration Guide: Planning

 Related tasks:

v “Configuring DB2 with configuration parameters” in Performance Guide

v “Changing the database configuration across multiple database partitions” on

page 281

280 Administration Guide: Implementation

Related reference:

v “GET DATABASE MANAGER CONFIGURATION command” in Command

Reference

v “UPDATE DATABASE MANAGER CONFIGURATION command” in Command

Reference

Changing the database configuration across multiple

database partitions

 Procedure:

 When you have a database that is distributed across more than one database

partition, the database configuration file should be the same on all database

partitions. Consistency is required since the SQL compiler compiles distributed

SQL statements based on information in the node configuration file and creates an

access plan to satisfy the needs of the SQL statement. Maintaining different

configuration files on database partitions could lead to different access plans,

depending on which database partition the statement is prepared. Use db2_all to

maintain the configuration files across all database partitions.

 Related concepts:

v “Issuing commands in a partitioned database environment” on page 130

 Related tasks:

v “Changing node and database configuration files” on page 279

Altering a database

There are nearly as many tasks when altering databases as there are in the creation

of databases. These tasks update or drop aspects of the database previously

created.

Altering a database partition group

 Procedure:

 To alter a database partition group using the Control Center:

1. Open the Alter Database Partition Group wizard. To open the Alter Database Partition

Group wizard: From the Control Center, expand the object tree until you find the

Database Partition Groups folder. Click the Database Partition Groups folder. Any

existing database partition groups are displayed in the contents pane on the right.

Right-click the database partition group you want to change and select Alter from the

pop-up menu. The Alter Database Partition Group wizard opens.

You can also open the Alter Database Partition Group window from the Storage

Management view. To open the Storage Management view: From the Control Center

window, expand the object tree until you find the database, database partition group, or

table space you want to examine in the Storage Management view. Right-click the

desired database and select Manage Storage from the pop-up menu. The Storage

Management view opens.

Note: The first time you launch the Storage Management view from an object you will

need to specify your settings in the Storage Management Setup launchpad.

2. Complete each of the applicable wizard pages. The Finish push button is enabled when

you complete enough information for the wizard to alter the database partition group.

Chapter 5. Altering a database 281

To alter a database partition group using the command line processor: use the

REDISTRIBUTE DATABASE PARTITION GROUP command.

Once you add or drop database partitions, you must redistribute the current data

across the new set of database partitions in the database partition group.

 Related concepts:

v “Data redistribution” in Performance Guide

v “Management of database server capacity” on page 29

 Related tasks:

v “Redistributing data across database partitions” in Performance Guide

 Related reference:

v “REDISTRIBUTE DATABASE PARTITION GROUP command” in Command

Reference

Managing database partitions from the Control Center

 You can work with database partitions using the Database Partitions view of the

Control Center.

Using the Database Partitions view you can restart a database partition, take a

database partition out of the rollforward pending state, backup a database

partition, restore a database partition, or configure a database partition using the

Configuration Advisor.

 Authorities:

 To work with database partitions you will need authority to attach to an instance.

Anyone with SYSADM or DBADM authority can grant you with the authority to

access a specific instance.

To configure a database partition or take a database partition out of the rollforward

pending state you must have SYSADM, SYSCTRL, or SYSMAINT authority.

 Procedure:

 To open the Database Partitions view from the Control Center:

1. From the Control Center, expand the object tree until you find the partitioned

database for which you want to view the database partitions.

2. Right-click on the partitioned database you want and select Open Database

Partitions from menu list.

3. The Database Partitions view opens for the selected partitioned database.

To configure a database partition:

1. Select the database partitions that you want from the Database Partitions view.

2. Select Database Partitions, then Configuration Advisor from the list.

3. The Configuration Advisor opens. Use the Configuration Advisor to specify

values for the database configuration parameters.

 Related concepts:

v “Adding database partitions in a partitioned database environment” on page 123

282 Administration Guide: Implementation

v “Database partition and processor environments” in Administration Guide:

Planning

 Related tasks:

v “Adding a database partition server to an instance (Windows)” on page 144

v “Adding a database partition to a running database system” on page 119

v “Changing the database configuration across multiple database partitions” on

page 281

Altering a buffer pool

 You might need to complete one of the following tasks when working with an

existing buffer pool:

v Modify the size of the buffer pool on all database partitions or on a single

database partition.

v Enable self tuning for a buffer pool, allowing DB2 to adjust the size of the buffer

pool in response to your workload.

v Add this buffer pool definition to a new database partition group.

v Modify the block area of the buffer pool for block-based I/O.

 Prerequisites:

 The authorization ID of the statement must have SYSCTRL or SYSADM authority.

 Procedure:

 To alter a buffer pool using the Control Center:

1. Open the Alter Buffer Pool window: From the Control Center, expand the object tree

until you find the Buffer Pools folder. Click on the Buffer Pools folder. Any existing

buffer pools are displayed in the pane on the right side of the window. Right-click the

buffer pool you want and select Alter from the pop-up menu. The Alter Buffer Pool

window opens.

2. To change the size of a buffer pool, type a new value.

3. Optional: Specify whether to use the default buffer pool size.

4. Optional: Specify whether to alter the buffer pool immediately (this is the default

setting), or whether to alter it the next time that the database is restarted.

To alter a buffer pool using the command line:

1. SELECT BPNAME FROM SYSCAT.BUFFERPOOLS to get the list of the buffer pool

names that already exist in the database.

2. Choose the buffer pool name from the result list.

3. Determine what changes need to be made.

4. Ensure that you have the correct authorization ID to run the ALTER

BUFFERPOOL statement.

Note: Two key parameters are IMMEDIATE and DEFERRED. With IMMEDIATE, the

buffer pool size is changed without delay. If there is insufficient reserved

space in the database shared memory to allocate new space, the

statement is run as deferred.

Chapter 5. Altering a database 283

With DEFERRED, the buffer pool is cached when the database is

reactivated following the disconnection of those applications. Reserved

memory space is not needed; the DB2 database system allocates the

required memory from the system at activation time.

5. Use the ALTER BUFFERPOOL statement to alter a single quality of the buffer

pool object.

 Related concepts:

v “Self tuning memory” in Performance Guide

 Related tasks:

v “Creating a buffer pool” on page 166

 Related reference:

v “ALTER BUFFERPOOL statement” in SQL Reference, Volume 2

Altering a table space

 Procedure:

 When you create a database, you create at least three table spaces: one catalog

table space (SYSCATSPACE); one user table space (with a default name of

USERSPACE1); and one system temporary table space (with a default name of

TEMPSPACE1). You must keep at least one of each of these table spaces. You can

add additional user and temporary table spaces if you want.

Note: You cannot drop the catalog table space SYSCATSPACE, nor create another

one; and there must always be at least one system temporary table space

with a page size of 4 KB. You can create other system temporary table

spaces. You also cannot change the page size or the extent size of a table

space after it has been created.

 Procedure:

 To alter a table space using the Control Center:

1. open the Alter Table Space notebook: From the Control Center, expand the object tree

until you find the Table Spaces folder. Click on the Table Spaces folder. Any existing

table spaces are displayed in the pane on the right side of the window. Right-click on

the table space you want in the contents pane and select Alter from the pop-up menu.

The Alter Table Space notebook opens.

2. Optional: Change the comment.

3. Optional: Specify the name of the buffer pool in which this table space should reside.

The page size of the buffer pool you select must be equal to the page size of the table

space.

To alter a table space using the command line, use the ALTER TABLESPACE

statement.

 Related tasks:

v “Adding a container to a DMS table space” on page 285

v “Adding a container to an SMS table space on a database partition” on page 289

v “Dropping a system temporary table space” on page 292

284 Administration Guide: Implementation

v “Dropping a user table space” on page 291

v “Dropping a user temporary table space” on page 293

v “Modifying containers in a DMS table space” on page 286

v “Renaming a table space” on page 290

 Related reference:

v “ALTER TABLESPACE statement” in SQL Reference, Volume 2

Details on altering a table space

This section reviews those tasks associated with altering table spaces.

Adding a container to a DMS table space

 You can increase the size of a DMS table space (that is, one created with the

MANAGED BY DATABASE clause) by adding one or more containers to the table

space.

When new containers are added to a table space, or existing containers are

extended, a rebalance of the table space might occur. The process of rebalancing

involves moving table space extents from one location to another. During this

process, the attempt is made to keep data striped within the table space.

Rebalancing does not necessarily occur across all containers but depends on many

factors such as on the existing container configuration, the size of the new

containers, and how full is the table space.

When containers are added to an existing table space, they might be added such

that they do not start in stripe 0. Where they start in the map is determined by the

database manager and is based on the size of the containers being added. If the

container being added is not large enough, it is positioned such that it ends in the

last stripe of the map. If it is large enough, it is positioned to start in stripe 0.

No rebalancing occurs if you are adding new containers and creating a new stripe

set. A new stripe set is created using the BEGIN NEW STRIPE SET clause on the

ALTER TABLESPACE statement. You can also add containers to existing stripe sets

using the ADD TO STRIPE SET clause on the ALTER TABLESPACE statement.

Access to the table space is not restricted during the rebalancing. If you need to

add more than one container, you should add them at the same time.

 Procedure:

 To add a container to a DMS table space using the Control Center:

1. Expand the object tree until you see the Table Spaces folder.

2. Right-click the table space where you want to add the container, and select Alter from

the pop-up menu.

3. Click Add, complete the information, and click Ok.

To add a container to a DMS table space using the command line, enter:

 ALTER TABLESPACE <name>

 ADD (DEVICE ’<path>’ <size>, FILE ’<filename>’ <size>)

The following example illustrates how to add two new device containers (each

with 10 000 pages) to a table space on a Linux and UNIX system:

Chapter 5. Altering a database 285

ALTER TABLESPACE RESOURCE

 ADD (DEVICE ’/dev/rhd9’ 10000,

 DEVICE ’/dev/rhd10’ 10000)

Note that the ALTER TABLESPACE statement allows you to change other

properties of the table space that can affect performance.

 Related concepts:

v “How containers are added and extended in DMS table spaces” in Administration

Guide: Planning

v “Table space impact on query optimization” in Performance Guide

 Related tasks:

v “Adding a container to an SMS table space on a database partition” on page 289

 Related reference:

v “ALTER TABLESPACE statement” in SQL Reference, Volume 2

Modifying containers in a DMS table space

 You can resize the containers in a DMS table space (that is, one created with the

MANAGED BY DATABASE clause).

 Restrictions:

 Each raw device can only be used as one container. The raw device size is fixed

after its creation. When you are considering to use the resize or extend options to

increase a raw device container, you should check the raw device size first to

ensure that you do not attempt to increase the device container size larger than the

raw device size.

 Procedure:

 To increase the size of one or more containers in a DMS table space using the

Control Center:

1. Expand the object tree until you see the Table Spaces folder.

2. Right-click the table space where you want to add the container, and select Alter from

the pop-up menu.

3. Click Resize, complete the information, and click OK.

You can also drop existing containers from a DMS table space, reduce the size of

existing containers in a DMS table space, and add new containers to a DMS table

space without requiring a rebalance of the data across all of the containers.

The dropping of existing table space containers as well as the reduction in size of

existing containers is only allowed if the number of extents being dropped or

reduced in size is less than or equal to the number of free extents above the

high-water mark in the table space. The high-water mark is the page number of

the highest allocated page in the table space. This mark is not the same as the

number of used pages in the table space because some of the extents below the

high-water mark might have been made available for reuse.

286 Administration Guide: Implementation

The number of free extents above the high-water mark in the table space is

important because all extents up to and including the high-water mark must sit in

the same logical position within the table space. The resulting table space must

have enough space to hold all of the data. If there is not enough free space, an

error message (SQL20170N, SQLSTATE 57059) will result.

To drop containers, the DROP option is used on the ALTER TABLESPACE

statement. For example:

 ALTER TABLESPACE TS1 DROP (FILE ’file1’, DEVICE ’/dev/rdisk1’)

To reduce the size of existing containers, you can use either the RESIZE option or

the REDUCE option. When using the RESIZE option, all of the containers listed as

part of the statement must either be increased in size, or decreased in size. You

cannot increase some containers and decrease other containers in the same

statement. You should consider the resizing method if you know the new lower

limit for the size of the container. You should consider the reduction method if you

do not know (or care about) the current size of the container.

To decrease the size of one or more containers in a DMS table space using the

command line, enter:

 ALTER TABLESPACE <name>

 REDUCE (FILE ’<filename>’ <size>)

The following example illustrates how to reduce a file container (which already

exists with 1 000 pages) in a table space on a Windows-based system:

 ALTER TABLESPACE PAYROLL

 REDUCE (FILE ’d:\hldr\finance’ 200)

Following this action, the file is decreased from 1 000 pages in size to 800 pages.

To increase the size of one or more containers in a DMS table space using the

command line, enter:

 ALTER TABLESPACE <name>

 RESIZE (DEVICE ’<path>’ <size>)

The following example illustrates how to increase two device containers (each

already existing with 1 000 pages) in a table space on a Linux and UNIX system:

 ALTER TABLESPACE HISTORY

 RESIZE (DEVICE ’/dev/rhd7’ 2000,

 DEVICE ’/dev/rhd8’ 2000)

Following this action, the two devices have increased from 1 000 pages in size to

2 000 pages. The contents of the table space might be rebalanced across the

containers. Access to the table space is not restricted during the rebalancing.

To extend one or more containers in a DMS table space using the command line,

enter:

 ALTER TABLESPACE <name>

 EXTEND (FILE ’<filename>’ <size>)

The following example illustrates how to increase file containers (each already

existing with 1 000 pages) in a table space on a Windows-based system:

 ALTER TABLESPACE PERSNEL

 EXTEND (FILE ’e:\wrkhist1’ 200

 FILE ’f:\wrkhist2’ 200)

Chapter 5. Altering a database 287

Following this action, the two files have increased from 1 000 pages in size to 1 200

pages. The contents of the table space might be rebalanced across the containers.

Access to the table space is not restricted during the re-balancing.

DMS containers (both file and raw device containers) which are added during or

after table space creation, or are extended after table space creation, are performed

in parallel through prefetchers. To achieve an increase in parallelism of these create

or resize container operations, you can increase the number of prefetchers running

in the system. The only process which is not done in parallel is the logging of

these actions and, in the case of creating containers, the tagging of the containers.

Note: To maximize the parallelism of the CREATE TABLESPACE or ALTER

TABLESPACE statements (with respect to adding new containers to an

existing table space) ensure the number of prefetchers is greater than or

equal to the number of containers being added. The number of prefetchers

is controlled by the num_ioservers database configuration parameter. The

database has to be stopped for the new parameter value to take effect. In

other words, all applications and users must disconnect from the database

for the change to take affect.

Note that the ALTER TABLESPACE statement allows you to change other

properties of the table space that can affect performance.

 Related reference:

v “ALTER TABLESPACE statement” in SQL Reference, Volume 2

Automatic prefetchsize adjustment after adding or dropping

containers

 If there is the possibility that you might forget to update the prefetch size of a

table space after either adding or dropping containers, you should consider

allowing the prefetch size to be determined by the database manager automatically.

If you forget to update the prefetch size, then there might be a noticeable

degradation in the performance of the database.

The DB2 database manager is set up so that the automatic prefetch size is the

default for any table spaces created using Version 8.2 (and later). The DB2 database

manager uses the following formula to calculate the prefetch size for the table

space:

 prefetch size = (number of containers) X (number of physical spindles per

 container) X extent size

There are three ways not to have the prefetch size of the table space set at

AUTOMATIC:

v Create the table space with a specific prefetch size. Manually choosing a value

for the prefetch size indicates that you will remember to adjust, if necessary, the

prefetch size whenever there is an adjustment in the number of containers

associated with the table space.

v Do not use prefetch size when creating the table space, and have the

dft_prefetch_sz database configuration parameter set to a non-AUTOMATIC

value. The DB2 database manager checks this parameter when there is no

explicit mention of the prefetch size when creating the table space. If a value

other than AUTOMATIC is found, then that value is what is used as the default

288 Administration Guide: Implementation

prefetch size. And you will need to remember to adjust, if necessary, the prefetch

size whenever there is an adjustment in the number of containers associated

with the table space.

v Alter the prefetch size manually by using the ALTER TABLESPACE statement.

Use of DB2_PARALLEL_IO

Prefetch requests are broken down into several smaller prefetch requests based on

the parallelism of a table space, and before the requests are submitted to the

prefetch queues. The DB2_PARALLEL_IO registry variable is used to define the

number of physical spindles per container as well as influencing the parallel I/O

on the table space. With parallel I/O off, the parallelism of a table space is equal to

the number of containers. With parallel I/O on, the parallelism of a table space is

equal to the number of container multiplied by the value given in the

DB2_PARALLEL_IO registry variable. (Another way of saying this is, the

parallelism of the table space is equal to the prefetch size divided by the extent

size of the table space.)

Here are several examples of how the DB2_PARALLEL_IO registry variable

influences the prefetch size. (Assume all of the following table spaces have been

defined with an AUTOMATIC prefetch size.)

v DB2_PARALLEL_IO=*

– All table spaces will use the default where the number of spindles equals 6

for each container. The prefetch size will be 6 times larger with parallel I/O

on.

– All table spaces will have parallel I/O on. The prefetch request is broken

down to several smaller requests, each equal to the prefetch size divided by

the extent size (or equal to the number of containers times the number of

spindles).
v DB2_PARALLEL_IO=*:3

– All table spaces will use 3 as the number of spindles per container.

– All table spaces will have parallel I/O on.
v DB2_PARALLEL_IO=*:3,1:1

– All table spaces will use 3 as the number of spindles per container except for

table space 1 which will use 1.

– All table spaces will have parallel I/O on.

 Related tasks:

v “Adding a container to a DMS table space” on page 285

v “Altering a table space” on page 284

v “Modifying containers in a DMS table space” on page 286

Adding a container to an SMS table space on a database

partition

 Restrictions:

 You can only add a container to a SMS table space on a database partition that

currently has no containers.

 Procedure:

Chapter 5. Altering a database 289

To add a container to an SMS table space using the command line, enter the

following:

 ALTER TABLESPACE <name>

 ADD (’<path>’)

 ON DBPARTITIONNUM (<database partition_number>)

The database partition specified by number, and every partition in the range of

database partitions, must exist in the database partition group on which the table

space is defined. A database partition_number might only appear explicitly or

within a range in exactly one db-partitions-clause for the statement.

The following example shows how to add a new container to database partition

number 3 of the database partition group used by table space “plans” on a UNIX

based operating system:

 ALTER TABLESPACE plans

 ADD (’/dev/rhdisk0’)

 ON DBPARTITIONNUM (3)

 Related tasks:

v “Adding a container to a DMS table space” on page 285

v “Modifying containers in a DMS table space” on page 286

 Related reference:

v “ALTER TABLESPACE statement” in SQL Reference, Volume 2

Renaming a table space

 Restrictions:

 You cannot rename the SYSCATSPACE table space.

You cannot rename a table space that is in a “roll-forward pending” or

“roll-forward in progress” state.

When restoring a table space that has been renamed since it was backed up, you

must use the new table space name in the RESTORE DATABASE command. If you

use the previous table space name, it will not be found. Similarly, if you are rolling

forward the table space with the ROLLFORWARD DATABASE command, ensure

that you use the new name. If the previous table space name is used, it will not be

found.

 Procedure:

 You can give an existing table space a new name without being concerned with the

individual objects within the table space. When renaming a table space, all the

catalog records referencing that table space are changed.

To rename a table space using the Control Center:

1. Open the Rename Table Space window: From the Control Center, expand the object tree

until you find the Table Spaces folder. Click on the Table Spaces folder. Any existing

table spaces are displayed in the pane on the right side of the window. Right-click on

the table space you want and select Rename from the pop-up menu. The Rename Table

Space window opens.

2. Type a new name for the table space.

290 Administration Guide: Implementation

To rename a table using the command line, use the RENAME TABLESPACE

statement.

 Related reference:

v “RENAME TABLESPACE statement” in SQL Reference, Volume 2

Switching the state of a table space

 Procedure:

 The SWITCH ONLINE clause of the ALTER TABLESPACE statement can be used

to remove the OFFLINE state from a table space if the containers associated with

that table space have become accessible. The table space has the OFFLINE state

removed while the rest of the database is still up and being used.

An alternative to the use of this clause is to disconnect all applications from the

database and then to have the applications connect to the database again. This

removes the OFFLINE state from the table space.

To remove the OFFLINE state from a table space using the command line, enter:

 db2 ALTER TABLESPACE <name>

 SWITCH ONLINE

 Related reference:

v “ALTER TABLESPACE statement” in SQL Reference, Volume 2

Dropping a user table space

 When you drop a user table space, you delete all the data in that table space, free

the containers, remove the catalog entries, and cause all objects defined in the table

space to be either dropped or marked as invalid.

You can reuse the containers in an empty table space by dropping the table space,

but you must COMMIT the DROP TABLESPACE command before attempting to

reuse the containers.

You can drop a user table space that contains all of the table data including index

and LOB data within that single user table space. You can also drop a user table

space that might have tables spanned across several table spaces. That is, you

might have table data in one table space, indexes in another, and any LOBs in a

third table space. You must drop all three table spaces at the same time in a single

statement. All of the table spaces that contain tables that are spanned must be part

of this single statement or the drop request will fail.

 Procedure:

 To drop a user table space using the Control Center:

1. Expand the object tree until you see the Table Spaces folder.

2. Right-click on the table space you want to drop, and select Drop from the pop-up

menu.

3. Check the Confirmation box, and click Ok.

To drop a user table space using the command line, enter:

 DROP TABLESPACE <name>

Chapter 5. Altering a database 291

The following SQL statement drops the table space ACCOUNTING:

 DROP TABLESPACE ACCOUNTING

 Related tasks:

v “Dropping a system temporary table space” on page 292

v “Dropping a user temporary table space” on page 293

 Related reference:

v “COMMIT statement” in SQL Reference, Volume 2

v “DROP statement” in SQL Reference, Volume 2

Dropping a system temporary table space

 Restrictions:

 You cannot drop a system temporary table space that has a page size of 4 KB

without first creating another system temporary table space. The new system

temporary table space must have a page size of 4 KB because the database must

always have at least one system temporary table space that has a page size of 4

KB. For example, if you have a single system temporary table space with a page

size of 4 KB, and you want to add a container to it, and it is an SMS table space,

you must first add a new 4 KB page size system temporary table space with the

proper number of containers, and then drop the old system temporary table space.

(If you were using DMS, you could add a container without having to drop and

recreate the table space.)

The default table space page size is 4 KB.

 Procedure:

 To drop a system table space using the Control Center:

1. Expand the object tree until you see the Table Spaces folder.

2. If there is only one other system temporary table space, right-click the Table Spaces

folder, and select Create —> Table Space Using Wizard from the pop-up menu.

Otherwise, skip to step four.

3. Follow the steps in the wizard to create the new system temporary table space if

needed.

4. Click again on the Table Spaces folder to display a list of table spaces in the right side

of the window (the Contents pane).

5. Right-click on the system temporary table space you want to drop, and click Drop from

the pop-up menu.

6. Check the Confirmation box, and click OK.

This is the statement to create a system temporary table space:

 CREATE SYSTEM TEMPORARY TABLESPACE <name>

 MANAGED BY SYSTEM USING (’<directories>’)

Then, to drop a system table space using the command line, enter:

 DROP TABLESPACE <name>

The following SQL statement creates a new system temporary table space called

TEMPSPACE2:

292 Administration Guide: Implementation

CREATE SYSTEM TEMPORARY TABLESPACE TEMPSPACE2

 MANAGED BY SYSTEM USING (’d:\systemp2’)

Once TEMPSPACE2 is created, you can then drop the original system temporary

table space TEMPSPACE1 with the command:

 DROP TABLESPACE TEMPSPACE1

You can reuse the containers in an empty table space by dropping the table space,

but you must COMMIT the DROP TABLESPACE command before attempting to

reuse the containers.

 Related tasks:

v “Dropping a user table space” on page 291

v “Dropping a user temporary table space” on page 293

 Related reference:

v “CREATE TABLESPACE statement” in SQL Reference, Volume 2

v “DROP statement” in SQL Reference, Volume 2

Dropping a user temporary table space

 Procedure:

 You can only drop a user temporary table space if there are no declared temporary

tables currently defined in that table space. When you drop the table space, no

attempt is made to drop all of the declared temporary tables in the table space.

Note: A declared temporary table is implicitly dropped when the application that

declared it disconnects from the database.

 Related tasks:

v “Dropping a system temporary table space” on page 292

v “Dropping a user table space” on page 291

 Related reference:

v “DROP statement” in SQL Reference, Volume 2

Dropping a database

 Procedure:

 Although some of the objects in a database can be altered, the database itself

cannot be altered: it must be dropped and re-created. Dropping a database can

have far-reaching effects, because this action deletes all its objects, containers, and

associated files. The dropped database is removed (uncataloged) from the database

directories.

To drop a database using the Control Center:

1. Expand the object tree until you see the Databases folder.

2. Right-click the database you want to drop, and select Drop from the pop-up menu.

3. Click on the Confirmation box, and click Ok.

Chapter 5. Altering a database 293

To drop a database using the command line, enter:

 DROP DATABASE <name>

The following command deletes the database SAMPLE:

 DROP DATABASE SAMPLE

Note: If you intend to continue experimenting with the SAMPLE database, you

should not drop it. If you have dropped the SAMPLE database, and find

that you need it again, you can re-create it.

To drop a database from a client application, call the sqledrpd API. To drop a

database at a specified database partition server, call the sqledpan API.

 Related reference:

v “DROP DATABASE command” in Command Reference

v “GET SNAPSHOT command” in Command Reference

v “LIST ACTIVE DATABASES command” in Command Reference

Dropping a schema

 Before dropping a schema, all objects that were in that schema must be dropped

themselves or moved to another schema. The schema name must be in the catalog

when attempting the DROP statement; otherwise an error is returned.

 Procedure:

 To drop a schema using the Control Center:

1. Expand the object tree until you see the Schemas folder.

2. Right-click on the schema you want to drop, and select Drop from the pop-up menu.

3. Check the Confirmation box, and click Ok.

To drop a schema using the command line, enter:

 DROP SCHEMA <name> RESTRICT

In the following example, the schema ″joeschma″ is dropped:

 DROP SCHEMA joeschma RESTRICT

The RESTRICT keyword enforces the rule that no objects can be defined in the

specified schema for the schema to be deleted from the database, and it must be

specified.

 Related reference:

v “DROP statement” in SQL Reference, Volume 2

v “ADMIN_DROP_SCHEMA procedure – Drop a specific schema and its objects”

in Administrative SQL Routines and Views

294 Administration Guide: Implementation

Chapter 6. Altering tables and other related table objects

This section describes tasks that are required for modifying the structure and

content of the table and related table objects.

Note that you cannot alter triggers for tables; you must drop any trigger that is no

longer appropriate (see “Dropping a trigger” on page 329), and add its

replacement (see “Creating triggers” on page 240).

Modifying tables

This section discusses various aspects of modifying tables, including space value

compression. It covers how to change table attributes and properties, columns and

rows, and keys and constraints.

Space value compression for existing tables

 An existing table can be changed to the record format that allows space

compression. The sum of the byte counts of the columns in the record format

allowing space compression might exceed the sum of the byte counts of the

columns in the original record format (that does not allow space compression) as

long as the sum of the byte counts does not exceed allowable row length of the

table in the table space. For example, the allowable row length is 4005 bytes in a

table space with 4 KB page size. If the allowable row length is exceeded, the error

message SQL0670N is returned. The byte count formula is documented as part of

the CREATE TABLE statement.

Similarly, an existing table can be changed from a record format that allows space

compression to a record format that does not. The same condition regarding the

sum of the byte counts of the columns applies; and the error message SQL0670N is

returned as necessary.

To determine if you should consider space compression for your table, you should

know that a table with the majority of values equal to the system default values, or

NULL, would benefit from the new row format. For example, where there is an

INTEGER column and 90% of the column has values of 0 (the default value for the

data type INTEGER), or NULL, compressing this table plus this column would

benefit from the new row format and save a lot of disk space.

When altering a table, you can use the VALUE COMPRESSION clause to specify

that the table is using the space row format at the table level and possibly at the

column level. You would use ACTIVATE VALUE COMPRESSION to specify that

the table will use the space saving techniques or you would use DEACTIVATE

VALUE COMPRESSION to specify that the table will no longer use space saving

techniques for data in the table.

If you use DEACTIVATE VALUE COMPRESSION, this will implicitly disable any

COMPRESS SYSTEM DEFAULT options associated with columns in that table.

After modifying the table to a new row format, all subsequent rows inserted,

loaded, or updated will have the new row format. To have every row modified to

© Copyright IBM Corp. 1993, 2006 295

the new row format, you should run a reorganization of the table or perform an

update operation on existing rows before changing the row format.

 Related concepts:

v “Data row compression” on page 188

v “Space compression for tables” on page 187

v “Space value compression for new tables” on page 187

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “CREATE TABLE statement” in SQL Reference, Volume 2

Copying tables

 A basic COPY performs a simple copy of one table to another. This action is a

one-time copy only. A new table is defined based on the definition of the selected

table, and the contents are copied to the new table. Options that are not copied

include:

v Check constraints

v Column default values

v Column comments

v Foreign keys

v Logged and compact option on BLOB columns

v Distinct types

A new table is defined based on the definition of the selected table, and the

contents are copied to the new table. You can copy a table into the same database

or a different database.

 Prerequisites:

 To copy a table, you need both:

v One of the following authorities on the source table:

– SELECT privilege

– SYSADM or DBADM authority
v One of the following authorities on the target database:

– CREATETAB and CONNECT privileges, and either:

- IMPLICIT_SCHEMA authority on the database if the implicit or explicit

schema name of the table does not exist

- CREATEIN privilege on the schema if the schema name of the table exists
– SYSADM or DBADM authority

 Procedure:

296 Administration Guide: Implementation

To copy a table using the Control Center:

1. Open the Copy Table window: From the Control Center, expand the object tree until

you find the Tables folder. Click on the Tables folder. Any existing tables are displayed

in the pane on the right side of the window. Right-click the table you want to copy and

select Copy from the pop-up menu. The Copy Table window opens.

2. Specify the name of an existing host or server for the target table and the instance that

contains the database that will contain the target table.

3. Specify the database that will contain the target table, the schema for the target table,

and a unique name for the target table. If a table with the same name already exists in

the schema, the copy will fail.

4. Optional: Select a table space for the target table. Select a REGULAR DMS table space

other than the default table space if you want to specify an index table space or long

data table space.

5. Optional: Select a table space in which to create any indexes on the target table.

6. Optional: Select a table space in which to store the values of any long columns in the

target table.

When you click OK, the table that you selected is copied to the target table.

 To copy a table using the command line, use the EXPORT and IMPORT

commands.

 Related concepts:

v “About databases” in Administration Guide: Planning

v “About systems” in Administration Guide: Planning

v “Instance creation” on page 34

v “Replicated materialized query tables” in Administration Guide: Planning

 Related reference:

v “EXPORT command” in Command Reference

v “IMPORT Command” in Command Reference

Altering a table

 Use the Alter Table notebook or the ALTER TABLE statement to alter the row

format of table data.

 Prerequisites:

 To alter a table, you must have one of the following authorities or privileges:

v ALTER privilege

v CONTROL privilege

v SYSADM authority

v DBADM authority

v ALTERIN privilege on the table schema

 Procedure:

Chapter 6. Altering tables and other related table objects 297

To alter a table using the Control Center:

1. Open the Alter Table notebook: From the Control Center, expand the object tree until

you find the Tables folder. Click the Tables folder. Any existing tables are displayed in

the pane on the right side of the window. Right-click the table that you want and select

Alter from the pop-up menu. The Alter Table notebook opens.

2. Specify the required information to do the following:

v Change table properties

v Add new columns or change existing columns

v Define new primary keys or change existing primary keys

v Add new foreign keys or change existing foreign keys

v Add new check constraints or change existing check constraints

v Add new partitioning keys or change existing partitioning keys

v Manage table partitions

For more information, refer to the online help.

To alter a table using the command line, use the ALTER TABLE statement.

To alter a table using a stored procedure, use the ALTOBJ procedure.

 Related concepts:

v “Using a stored procedure to alter a table” on page 324

v “Using the ALTER TABLE statement to alter columns of a table” on page 300

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “ALTOBJ procedure” in Administrative SQL Routines and Views

Changing table attributes

 You might have reason to change table attributes such as the data capture option,

the percentage of free space on each page (PCTFREE), the lock size, or the append

mode.

The amount of free space to be left on each page of a table is specified through

PCTFREE, and is an important consideration for the effective use of clustering

indexes. The amount to specify depends on the nature of the existing data and

expected future data. PCTFREE is respected by LOAD and REORG but is ignored

by insert, update and import activities.

Setting PCTFREE to a larger value will maintain clustering for a longer period, but

will also require more disk space.

You can specify the size (granularity) of locks used when the table is accessed by

using the LOCKSIZE parameter. By default, when the table is created, row level

locks are defined. For partitioned tables, this lock strategy is applied to both the

table lock and the data partition locks for any data partitions accessed. Use of table

level locks might improve the performance of queries by limiting the number of

locks that need to be acquired and released.

For multidimensional clustering (MDC) tables, using the BLOCKINSERT value for

LOCKSIZE causes block-level locking to occur during INSERT operations and

298 Administration Guide: Implementation

row-level locking during other operations. Block-level locking is useful for

transactions that do large insert operations into cells where different transactions

make insertions into distinct cells.

For example, after an ALTER TABLE ... LOCKSIZE BLOCKINSERT operation, insertions

into MDC tables usually cause block locking and not row locking. The only

row-level locking that occurs is the next-key locking. This locking is required when

the insertion of a record’s key into a RID index must wait for a repeatable-read

(RR) scan to commit or roll-back before proceeding. This process maintains RR

semantics. This option should not be used when there might be multiple

transactions inserting data into the same cell concurrently. Exceptions can occur

when each transaction has sufficient data to insert per cell and you are not

concerned that separate blocks are used for each transaction. In this case, there will

be some partially-filled blocks for the cell. This situation causes the cell to be larger

than it would otherwise be.

By specifying APPEND ON, you can improve the overall performance of the table.

Using this option allows for faster insertions, while eliminating the maintenance of

information about the free space.

A table with a clustering index cannot be altered to have append mode turned on.

Similarly, a clustering index cannot be created on a table with append mode.

 Related concepts:

v “Factors that affect locking” in Performance Guide

v “Preventing lock-related performance issues” in Performance Guide

v “Lock attributes” in Performance Guide

v “Locks and concurrency control” in Performance Guide

v “Lock granularity” in Performance Guide

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

Changing table properties

 After you have created a table, you can change the comment, select a lock size,

determine the percentage of free space on each page, select data capture for

propagation, extend the data capture to include long variable length columns, and

indicate whether data is to be appended to the end of the table data.

 Prerequisites:

 To alter a table, you must have at least one of the following privileges on the table

to be altered:

v ALTER privilege

v CONTROL privilege

v SYSADM or DBADM authority

v ALTERIN privilege on the schema of the table

Note: To change the definition of a existing column (in a database that is Version

8.2 or greater), you must have DBADM authority.

 Procedure:

Chapter 6. Altering tables and other related table objects 299

To alter table properties using the Control Center:

1. Expand the object tree until you find the Tables folder. Click the Tables folder. Any

existing tables are displayed in the pane on the right side of the window. Right-click

the table you want and select Alter from the pop-up menu. The Alter Table notebook

opens.

2. On the Table tab:

v Type a new comment or edit the existing comment.

v Select a lock size to specify the use of row locks or table locks when accessing the

table. Use of the Lock size does not prevent normal lock escalation.

Attention: Your new lock size selection is saved in the system but will not be

displayed the next time you view this field.

v Select a value to change the percentage of each page to be left as free space during

load or reorganization.

v Indicate whether extra information regarding changes to this table will be written to

the log if this table is replicated.

v Indicate whether to extend the data capture for propagation function to include long

varchar and long vargraphic columns in the log.

Attention: You must first select the Data capture for propagation check box to

enable the Include long variable length columns check box.

v Indicate whether data is to be appended to the end of the table data.

v Indicate to the optimizer that the cardinality of your table can vary significantly at

run time.

v Specify how index build logging should be performed:

– No change specifies that no change will be made to the LOG INDEX BUILD table

attribute

– NULL specifies that the amount of index build information logged for this table

will depend on the value of the LOGINDEXBUILD database configuration

parameter.

– ON specifies that enough index build data will be logged for this table to

reconstruct indexes during DB2 rollforward or HADR log replay.

– OFF specifies that minimal index build data will be logged.

To alter table properties using the command line, use the ALTER TABLE

statement.

 Related concepts:

v “Primary keys” in Administration Guide: Planning

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

Altering columns and rows

This section describes how to alter columns and rows on tables and views.

Using the ALTER TABLE statement to alter columns of a table

 Before creating your database, you need to consider the type and organization of

the data that you want to store in it. You need to plan what kind of data your

business might need to use and how your business will use that data. However,

things change. Despite good planning, there might be new requirements that

necessitate changes to the tables in the database. You can use the ALTER TABLE

300 Administration Guide: Implementation

statement to alter the row format of table data: dropping columns, changing the

types of columns, and certain other column attributes.

 Restrictions on table access after ALTER TABLE statements containing

REORG-recommended operations:

 It is important that you plan the implementation of the table alterations well.

Perhaps the most important thing to realize when running an ALTER TABLE

statement containing a REORG-recommended operation is that once the ALTER

TABLE statement has executed, the table will be placed in the Reorg Pending state.

This means that the table is inaccessible for almost all operations until you perform

a REORG. See the ALTER TABLE statement in the SQL Reference for the complete

list of ALTER TABLE operations, some of which are also called

REORG-recommended operations.

After an ALTER TABLE statement containing REORG-recommended operations,

you can execute only the following statements on a table:

 REORG TABLE

 DROP TABLE

 ALTER TABLE

 RENAME TABLE

 TRUNCATE TABLE

To allow data recovery in case of a REORG failure, table data might be read using

scan-based read only statements, that is, using TABLE SCAN statements. In addition,

index-based table access is not allowed. If a table scan-based access is used instead

of index-based access, you can also issue a SELECT statement from the table.

The following ALTER TABLE statements require row data validation, and are not

allowed following a REORG-recommended ALTER. However, you can execute

most of the other ALTER TABLE statements. The ALTER TABLE statements that

you cannot use are those that require scanning of column data to verify the validity

of the alteration operations. Specifically, this means that you cannot execute the

following statements on a table:

 ADD UNIQUE CONSTRAINT

 ADD CHECK CONSTRAINT

 ADD REFERENTIAL CONSTRAINT

 ALTER COLUMN SET NOT NULL

 ALTER TABLE ADD REFERENTIAL CONSTRAINT

 ALTER TABLE ADD CONSTRAINT

 ALTER TABLE ADD UNIQUE CONSTRAINT

 Examples of ALTER TABLE statements containing REORG-recommended

operations:

 In addition to placing restrictions on table access after an ALTER TABLE statement

containing REORG-recommended operations, the DB2 database manager allows

you to specify only three REORG-recommended operations before you perform a

classic REORG and before additional REORG-recommended operations will

succeed. For this reason, you should code each ALTER TABLE statement

containing REORG-recommended operations to change the attributes of as many

columns as possible. For example, if you specify the following sequence of ALTER

TABLE statements containing only one REORG-recommended operation in each,

you will be unable to specify any subsequent ALTER TABLE statements that would

require a new row format until you perform a classic REORG:

Chapter 6. Altering tables and other related table objects 301

ALTER TABLE foo DROP COLUMN C1

 ALTER TABLE foo DROP COLUMN C2

 ALTER TABLE foo DROP COLUMN C3

You could, however, replace the three ALTER TABLE statements with a single one:

 ALTER TABLE foo DROP COLUMN C1 DROP COLUMN C2 DROP COLUMN C3

Since you can alter only one attribute per column in a single SQL statement--for

example, type or nullability—it is possible that changing a column to a new format

could require the use of more than one ALTER TABLE statement containing

REORG-recommended operations. In such a case, it is important that the order of

alterations not allow one alteration to preclude another due to the Reorg Pending

state. This means that you should perform operations requiring table data access

using the first ALTER TABLE statement containing REORG-recommended

operations. For example, if column C1 is an integer and is NULLABLE and you

want to change this column to be a NOT NULLABLE BIGINT, the following

sequence will fail:

 ALTER TABLE bar ALTER COLUMN C1 SET DATA TYPE BIGINT

 ALTER TABLE bar ALTER COLUMN C1 SET NOT NULL

The reason for the failure is that the second ALTER TABLE statement requires a

scan of the column C1 to see whether any rows contain the value NULL. Since the

table is placed in Reorg Pending state after the first statement, the scan for the

second statement cannot be performed.

However, the following sequence will succeed because the first statement does not

access the data and does not put the table in Reorg Pending state:

 ALTER TABLE bar ALTER COLUMN C1 SET NOT NULL

 ALTER TABLE bar ALTER COLUMN C1 SET DATA TYPE BIGINT

You can perform many operations that alter a table that do not constitute

REORG-recommended operations regardless of the number of

REORG-recommended operations that you have specified. These include:

 ADD COLUMN

 ALTER COLUMN DEFAULT VALUE

 RENAME TABLE

 ALTER COLUMN SET DATA TYPE VARCHAR/VARGRAPHIC/CLOB/BLOB/DBCLOB

 Concurrency during ALTER TABLE execution:

 Any ALTER TABLE statement requires exclusive access to a table, as it modifies

in-memory structures. For certain statement options in particular, ALTER TYPE

and DROP COLUMN—rows in table catalogs will be locked exclusively for

UPDATE or DELETE. For this reason, once the ALTER TABLE statement

completes, it is important that the unit of work containing the statement be

committed or rolled back as soon as possible.

 ALTER TABLE authority considerations:

 After using an ALTER TABLE statement containing REORG-recommended

operations, you must use the classic REORG TABLE statement to make the table

accessible again. Having ALTER authority on the table does not necessarily mean

that you have the authority to use the REORG TABLE statement; you must have

REORG authority.

 CASCADE versus RESTRICT semantics when dropping columns:

302 Administration Guide: Implementation

When dropping a column, DB2 must ensure that any database objects that are

dependent on that column—for example, views, triggers, and indexes—are also

updated. Two options are available when you specify an ALTER TABLE DROP

COLUMN statement: CASCADE and RESTRICT. These options affect how

dependent database objects are updated.

CASCADE

CASCADE, the default, automatically handles the dropping of database

objects that are dependent on the column being dropped. You should use

CASCADE only when you feel confident that you understand the full

impact of such an operation. If you do not understand the database object

dependencies well, using the CASCADE option might result in

performance degradation as a result of implicitly dropping an index. Other

side effects could include DML failures on views that were marked

inoperative or data integrity issues stemming from inoperative triggers.

The following objects are implicitly dropped when you use CASCADE:

v Identity attributes

v SQL routines

v Indexes

v Unique constraints

v Triggers

v Foreign key constraints

v Primary key constraints (this will also cause the implicit deletion of any

dependent foreign key constraints)

v Check constraints

v Generated column data

v Views

v Packages

RESTRICT

RESTRICT causes the ALTER TABLE statement to fail if any database

object other than a package is found to have a dependency on the column

being dropped. Often, it is difficult to generate the complete list of

dependent objects for a particular column, but it might be desirable to

evaluate each object to decide whether a replacement index should be

created following a DROP COLUMN operation. In cases such as this, you

might want to specify the RESTRICT option and remove or plan for the

re-creation of each affected object. The object type and name first detected

with a column-level dependency are returned as part of the error message

if the ALTER TABLE statement fails.

 Related concepts:

v “Using a stored procedure to alter a table” on page 324

v “Table reorganization” in Performance Guide

 Related tasks:

v “Altering a table” on page 297

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “DROP statement” in SQL Reference, Volume 2

v “REORG INDEXES/TABLE command” in Command Reference

Chapter 6. Altering tables and other related table objects 303

Adding columns to an existing table

 Procedure:

 A column definition includes a column name, data type, and any necessary

constraints.

When columns are added to a table, the columns are logically placed to the right

of the right-most existing column definition. When a new column is added to an

existing table, only the table description in the system catalog is modified, so

access time to the table is not affected immediately. Existing records are not

physically altered until they are modified using an UPDATE statement. When

retrieving an existing row from the table, a null or default value is provided for

the new column, depending on how the new column was defined. Columns that

are added after a table is created cannot be defined as NOT NULL: they must be

defined as either NOT NULL WITH DEFAULT or as nullable.

To add columns to an existing table using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click on the table you want to add columns to, and select Alter from the pop-up

menu.

3. Check the Columns page, complete the information for the column, and click Ok.

To add columns to an existing table using the command line, enter:

 ALTER TABLE <table_name>

 ADD <column_name> <data_type> <null_attribute>

Columns can be added with an SQL statement. The following statement uses the

ALTER TABLE statement to add three columns to the EMPLOYEE table:

 ALTER TABLE EMPLOYEE

 ADD MIDINIT CHAR(1) NOT NULL WITH DEFAULT

 ADD HIREDATE DATE

 ADD WORKDEPT CHAR(3)

 Related tasks:

v “Modifying a column definition” on page 305

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

Changing columns (properties)

 From the Alter Table notebook, you can use the Change Column window to

change the properties for new or existing columns in a table. This window is

accessed from the Columns page of the Alter Table notebook. You can also change

the column definitions by directly editing the column information on the Columns

page of the Alter Table notebook.

If you are altering a pre-version 8.2 database, you can use the Column Properties

window to change the comment for existing columns in a table or change the

length of an existing VARCHAR column. You can also change the formula that

DB2 uses to determine values for a generated column.

 Prerequisites:

304 Administration Guide: Implementation

To alter a table, you must have at least one of the following privileges on the table

to be altered:

v ALTER privilege

v CONTROL privilege

v SYSADM or DBADM authority

v ALTERIN privilege on the schema of the table

To change the definition of a existing column, to edit and test SQL when changing

table columns, or to validate related objects when changing table columns, you

must have DBADM authority.

 Procedure:

 To change column properties using the Control Center:

1. Open the Alter Table notebook: From the Control Center, expand the object tree until

you find the Tables folder. Click the Tables folder. Any existing tables are displayed in

the pane on the right side of the window. Right-click the table you want to change and

select Alter from the pop-up menu. The Alter Table notebook opens.

2. On the Columns page, select a column and click Change. The Change Columns or

Change Properties window opens.

3. Make the necessary changes. For more information, refer to the online help for this

window.

To change column properties using the command line, use the ALTER TABLE

statement. For example:

 ALTER TABLE EMPLOYEE

 ALTER COLUMN WORKDEPT

 SET DEFAULT ’123’

 Related concepts:

v “Using the ALTER TABLE statement to alter columns of a table” on page 300

 Related tasks:

v “Adding columns to an existing table” on page 304

v “Defining a generated column on a new table” on page 219

v “Defining a generated column on an existing table” on page 321

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

Modifying a column definition

 You can use the ALTER TABLE statement to:

v Drop a column, using the new DROP COLUMN clause

v Change a column type, using the ALTER COLUMN SET DATA TYPE clause

v Change the nullability attribute of a column, using the SET NOT NULL or the

DROP NOT NULL clause

For example, you can increase the length of an existing VARCHAR or

VARGRAPHIC column. The number of characters might increase up to a value

dependent on the page size used.

Chapter 6. Altering tables and other related table objects 305

You can also modify the default value associated with a column. Once you have

defined the new default value, the new value is used for the column in any

subsequent SQL operations where the use of the default is indicated. The new

value must follow the rules for assignment and have the same restrictions as

documented under the CREATE TABLE statement.

Note: Generate columns cannot have their default value altered by this statement.

When changing these table attributes using SQL, it is no longer necessary to drop

the table and then recreate it, a time consuming process that can be complex when

object dependencies exist.

 Procedure:

 To modify the length of a column of an existing table using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. In the list of tables in the right pane, right-click on the table for which you want to

modify a column, and select Alter from the pop-up menu.

3. Check the Columns page, select the column, and click Change.

4. Type the new byte count for the column in Length, and click Ok.

To modify the length and type of a column of an existing table using the command

line, enter:

 ALTER TABLE <table_name>

 ALTER COLUMN <column_name>

 <modification_type>

For example, to increase a column up to 4000 characters, use something similar to

the following:

 ALTER TABLE t1

 ALTER COLUMN colnam1

 SET DATA TYPE VARCHAR(4000)

In another example, to allow a column to have a new VARGRAPHIC value, use an

SQL statement similar to the following:

 ALTER TABLE t1

 ALTER COLUMN colnam2

 SET DATA TYPE VARGRAPHIC(2000)

You cannot alter the column of a typed table. However, you can add a scope to an

existing reference type column that does not already have a scope defined. For

example:

 ALTER TABLE t1

 ALTER COLUMN colnamt1

 ADD SCOPE typtab1

To modify the default value of a column of an existing table using the command

line, enter:

 ALTER TABLE <table_name>

 ALTER COLUMN <column_name>

 SET DEFAULT 'new_default_value'

For example, to change the default value for a column, use something similar to

the following:

306 Administration Guide: Implementation

ALTER TABLE t1

 ALTER COLUMN colnam1

 SET DEFAULT ’123’

 Related tasks:

v “Modifying an identity column definition” on page 308

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

Removing rows from a table or view

 You can change the contents of a table or view by deleting rows. Deleting a row

from a view deletes the rows from the table on which the view is based. The

DELETE statement is used to:

v Delete one or more rows that have been optionally determined by a search

condition. This is known as a searched DELETE.

v Delete exactly one row that has been determined by the current position of a

cursor. This is known as a positioned DELETE.

The DELETE statement can be embedded in an application program or issued as a

dynamic SQL statement.

 Procedure:

 If the table being modified is involved with other tables through referential

constraints then there are considerations with carrying out the deletion of rows. If

the identified table or the base table of the identified view is a parent, the rows

selected for delete must not have any dependents in a relationship with a delete

rule of RESTRICT. Further, the DELETE must not cascade to descendent rows that

have dependents in a relationship with a delete rule of RESTRICT.

If the delete operation is not prevented by a RESTRICT delete rule, the selected

rows are deleted.

For example, to delete the department (DEPTNO) “D11” from the table

(DEPARTMENT), use:

 DELETE FROM department WHERE deptno=’D11’

If an error occurs during the running of a multiple row DELETE, no changes are

made to the table. If an error occurs that prevents deleting all rows matching the

search condition and all operations required by existing referential constraints, no

changes are made to the tables.

Unless appropriate locks already exist, one or more exclusive locks are acquired

during the running of a successful DELETE statement. Locks are released following

a COMMIT or ROLLBACK statement. Locks can prevent other applications from

performing operations on the table.

 Related concepts:

v “Factors that affect locking” in Performance Guide

v “Preventing lock-related performance issues” in Performance Guide

v “Locks and concurrency control” in Performance Guide

v “Lock granularity” in Performance Guide

Chapter 6. Altering tables and other related table objects 307

Related reference:

v “DELETE statement” in SQL Reference, Volume 2

Modifying the generated or identity property of a column

 You can add and drop the generated or identity property of a column in a table

using the ALTER COLUMN clause in the ALTER TABLE statement.

You can do one of the following actions:

v When working with an existing non-generated column, you can add a generated

expression attribute. The modified column then becomes a generated column.

v When working with an existing generated column, you can drop a generated

expression attribute. The modified column then becomes a normal,

non-generated column.

v When working with an existing non-identity column, you can add a identity

attribute. The modified column then becomes an identity column.

v When working with an existing identity column, you can drop the identity

attribute. The modified column then becomes a normal, non-generated,

non-identity column.

v When working with an existing generated column, you can alter a generated

column from being GENERATED ALWAYS to GENERATED BY DEFAULT. The

reverse is also true; that is, you can alter a generated column from being

GENERATED BY DEFAULT to GENERATED ALWAYS. This is only possible

when working with a generated column.

v You can drop the default attribute from the user-defined default column. When

you do this, the new default value is null.

v You can drop the default, identity, or generation attribute and then set a new

default, identity, or generation attribute in the same ALTER COLUMN

statement.

v For both the CREATE TABLE and ALTER TABLE statements, the “ALWAYS” is

an optional word in the GENERATED clause. This means that GENERATED

ALWAYS is equivalent to GENERATED when used in the ALTER TABLE

statement.

 Related tasks:

v “Defining a generated column on a new table” on page 219

v “Defining an identity column on a new table” on page 220

Modifying an identity column definition

 Procedure:

 If you are recreating a table followed by an import or load operation, and if you

have an IDENTITY column in the table then it will be reset to start generating the

IDENTITY value from 1 following the recreation of the contents of the table. When

inserting new rows into this recreated table, you do not want the IDENTITY

column to begin from 1 again. You do not want duplicate values in the IDENTITY

column. To prevent this from occuring, you should:

1. Recreate the table.

2. Load data into the table using the MODIFIED BY IDENTITYOVERRIDE clause.

The data is loaded into the table but no identity values are generated for the

rows.

3. Run a query to get the last counter value for the IDENTITY column:

308 Administration Guide: Implementation

SELECT MAX(<IDENTITY column>)

This will return with the equivalent value of what would have been the

IDENTITY column value of the table.

4. Use the RESTART clause of the ALTER TABLE statement:

 ALTER TABLE <table name> ALTER COLUMN <IDENTITY column>

 RESTART WITH <last counter value + 1>

5. Insert a new row into the table. The IDENTITY column value will be generated

based on the value specified in the RESTART WITH clause.

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “MAX aggregate function” in SQL Reference, Volume 1

v “LOAD command” in Command Reference

Altering keys and constraints

This section describes how to alter table keys and constraints. You can only alter

constraints by dropping them and then adding new ones to take their place.

Adding primary keys

 Procedure:

 To add primary keys using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click the table you want to modify, and select Alter from the pop-up menu.

3. On the Keys page, select one or more columns as primary keys.

4. Optional: Enter the constraint name of the primary key.

To add primary keys using the command line, enter:

 ALTER TABLE <name>

 ADD CONSTRAINT <column_name>

 PRIMARY KEY <column_name>

 Related tasks:

v “Adding foreign keys” on page 310

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “SET INTEGRITY statement” in SQL Reference, Volume 2

Changing primary keys

 You can change the primary key for the table that you are creating. A primary key

is a column or set of columns that can be used to identify or access a particular

row or rows. A primary key is a unique key, that is, it is a key that is constrained

so that no two of its values are equal. A table cannot have more than one primary

key, and the columns of a primary key cannot contain null values.

 Prerequisites:

 To alter a table with a primary key, you must have at least one of the following

privileges on the table to be altered:

Chapter 6. Altering tables and other related table objects 309

v ALTER privilege

v CONTROL privilege

v SYSADM or DBADM authority

v ALTERIN privilege on the schema of the table

 Procedure:

 To change primary keys using the Control Center:

1. Open Change Primary Key window: From the Control Center, expand the object tree

until you find the Tables folder. Right-click the Tables folder and select Create from the

pop-up menu. The Create Table wizard opens. On the Keys page, select a primary key

in the table and click Change. The Change Primary Key window opens.

2. Select the column or columns that you want to define as primary key columns. You can

define up to 16 columns to be primary key columns.

3. Optional: Type the constraint name of the primary key.

To change primary keys using the command line, use the ALTER TABLE

statement.

 Related tasks:

v “Adding primary keys” on page 309

v “Dropping primary keys” on page 316

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

Adding foreign keys

 When a foreign key is added to a table, packages and cached dynamic SQL

containing the following statements might be marked as invalid:

v Statements that insert or update the table containing the foreign key

v Statements that update or delete the parent table.

 Procedure:

 To add foreign keys using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click on the table you want to modify, and select Alter from the pop-up menu.

3. On the Keys page, click Add.

4. On the Add Foreign Keys window, specify the parent table information.

5. Select one or more columns to be foreign keys.

6. Specify what action is to take place on the dependent table when a row of the parent

table is deleted or updated. You can also add a constraint name for he foreign key.

To add foreign keys using the command line, enter:

 ALTER TABLE <name>

 ADD CONSTRAINT <column_name>

 FOREIGN KEY <column_name>

 ON DELETE <action_type>

 ON UPDATE <action_type>

310 Administration Guide: Implementation

The following examples show the ALTER TABLE statement to add primary keys

and foreign keys to a table:

 ALTER TABLE PROJECT

 ADD CONSTRAINT PROJECT_KEY

 PRIMARY KEY (PROJNO)

 ALTER TABLE EMP_ACT

 ADD CONSTRAINT ACTIVITY_KEY

 PRIMARY KEY (EMPNO, PROJNO, ACTNO)

 ADD CONSTRAINT ACT_EMP_REF

 FOREIGN KEY (EMPNO)

 REFERENCES EMPLOYEE

 ON DELETE RESTRICT

 ADD CONSTRAINT ACT_PROJ_REF

 FOREIGN KEY (PROJNO)

 REFERENCES PROJECT

 ON DELETE CASCADE

 Related concepts:

v “Statement dependencies when changing objects” on page 366

 Related tasks:

v “Adding primary keys” on page 309

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

Changing foreign keys

 You can change foreign keys for your table or nickname. A foreign key is a column

or set of columns in a table or nickname whose values are required to match at

least one primary key value of a row of its parent table or nickname. A referential

constraint is the rule that the values of the foreign key are valid only if either:

v They appear as values of a parent key (primary key).

v Some component of the foreign key is null.

 Prerequisites:

 To alter a table with a foreign key, you must have at least one of the following

privileges on the table to be altered:

v ALTER privilege

v CONTROL privilege

v SYSADM or DBADM authority

v ALTERIN privilege on the schema of the table

 Procedure:

Chapter 6. Altering tables and other related table objects 311

To change foreign keys using the Control Center:

1. Open the Alter Table notebook if you are adding a unique key to a table: From the

Control Center, expand the object tree until you find the Tables folder. Click the Tables

folder. Any existing tables are displayed in the pane on the right side of the window.

Right-click the table you want in the contents pane and select Alter from the pop-up

menu. The Alter Table notebook opens.

If you are altering a foreign key on a nickname, open the Alter Nickname notebook.

2. On the Keys page, select a foreign key and click Change. The Change Foreign Key

window opens.

3. Optional: Select a different parent table or nickname.

4. Specify the schema and name of the new parent table or nickname.

5. Optional: Select a new foreign key.

6. Optional: Change the action specified for ″on delete″ and ″on update″.

7. Optional: Change the name of the constraint

To change foreign keys using the command line, use the ALTER TABLE statement.

 Related concepts:

v “Foreign keys in a referential constraint” on page 226

 Related tasks:

v “Adding foreign keys” on page 310

v “Dropping foreign keys” on page 316

Adding unique keys

 Use the Add Unique Key window to define a unique key for your table or

nickname. You can define more than one unique key for the same table or

nickname. For tables, these windows are accessed from the Keys page of the Alter

Table notebook. For nicknames, these windows are accessed from the Keys page of

Alter Nickname notebook.

 Procedure:

 To add unique keys using the Control Center:

1. Open the Add Unique Key window: From the Control Center, expand the object tree

until you find the Tables folder. Click the Tables folder. Any existing tables are

displayed in the pane on the right side of the window (the contents pane). Right-click

the table you want in the contents pane and select Alter from the pop-up menu. The

Alter Table notebook opens. If you are adding a unique key to a nickname, open the

Alter Nickname notebook. On the Keys page, click Add. The Add Unique Key window

opens.

2. Select the column or columns that you want to define or change as unique key

columns.

3. Optional: Type the constraint name of the unique key.

To add unique keys using the command line, use the ALTER TABLE statement.

 Related tasks:

v “Changing unique keys” on page 313

312 Administration Guide: Implementation

Changing unique keys

 You can change a unique key for the table or nickname that you are altering. You

can define more than one unique key for the same table or nickname.

 Procedure:

 To change unique keys using the Control Center:

1. Open the Alter Table notebook if you are adding a unique key to a table: From the

Control Center, expand the object tree until you find the Tables folder. Click the Tables

folder. Any existing tables are displayed in the pane on the right side of the window.

Right-click the table you want in the contents pane and select Alter from the pop-up

menu. The Alter Table notebook opens.

If you are adding a unique key to a nickname, open the Alter Nickname notebook.

2. On the Keys page, select a unique key from the table and click Change. The Change

Unique Key window opens.

3. Select the column or columns that you want to define as unique key columns.

4. Optional: Type the constraint name of the unique key.

To change unique keys using the command line, use the ALTER TABLE statement.

 Related tasks:

v “Adding unique keys” on page 312

Adding unique constraints

 Unique constraints can be added to an existing table. The constraint name cannot

be the same as any other constraint specified within the ALTER TABLE statement,

and must be unique within the table (this includes the names of any referential

integrity constraints that are defined). Existing data is checked against the new

condition before the statement succeeds.

 Procedure:

 To add unique constraints using the Control Center:

1. Open the Alter Table notebook: From the Control Center, expand the object tree until

you find the Tables folder. Click the Tables folder. Any existing tables are displayed in

the pane on the right side of the window. Right-click the table you want and select

Alter from the pop-up menu. The Alter Table notebook opens.

2. On the Check Constraints page, click Add.

3. On the Add Check Constraint window, complete the necessary information.

To define dimensions using the command line, use the ADD CONSTRAINT option

of the ALTER TABLE statement. For example, the following SQL statement adds a

unique constraint to the EMPLOYEE table that represents a new way to uniquely

identify employees in the table:

 ALTER TABLE EMPLOYEE

 ADD CONSTRAINT NEWID UNIQUE(EMPNO,HIREDATE)

 Related tasks:

v “Defining a unique constraint on a table” on page 223

Chapter 6. Altering tables and other related table objects 313

v “Dropping a unique constraint” on page 315

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

Adding a table check constraint

 Check constraints can be added to an existing table with the ALTER TABLE

statement. The constraint name cannot be the same as any other constraint

specified within an ALTER TABLE statement, and must be unique within the table

(this includes the names of any referential integrity constraints that are defined).

Existing data is checked against the new condition before the statement succeeds.

When a table check constraint is added, packages and cached dynamic SQL that

insert or update the table might be marked as invalid.

 Procedure:

 To add a table check constraint using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click on the table you want to modify, and select Alter from the pop-up menu.

3. On the Constraints page, click Add.

4. On the Add Check Constraint window, complete the information.

To add a table check constraint using the command line, enter:

 ALTER TABLE <name>

 ADD CONSTRAINT <name> (<constraint>)

The following SQL statement adds a constraint to the EMPLOYEE table that the

salary plus commission of each employee must be more than $25,000:

 ALTER TABLE EMPLOYEE

 ADD CONSTRAINT REVENUE CHECK (SALARY + COMM > 25000)

 Related concepts:

v “Statement dependencies when changing objects” on page 366

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “SET INTEGRITY statement” in SQL Reference, Volume 2

Changing check constraints

 You can change check constraints to the table that you are creating. A check

constraint sets restrictions on data added to the table. Check constraints are

enforced whenever rows in the table are inserted or updated.

 Prerequisites:

 To change check constraints, you must have at least one of the following privileges

on the table to be altered:

v ALTER privilege

v CONTROL privilege

314 Administration Guide: Implementation

v SYSADM or DBADM authority

v ALTERIN privilege on the schema of the table

Note: To change the definition of a existing column (in a database that is Version

8.2 or greater), you must have DBADM authority.

 Procedure:

 To change check constraints using the Control Center:

1. Open the Change Check Constraint window: From the Control Center, expand the

object tree until you find the Tables folder. Right-click the Tables folder and select

Create from the pop-up menu. The Create Table wizard opens. On the Constraints

page, select a constraint in the table and click Change. The Change Check Constraint

window opens.

2. Specify the check condition for the constraint that you are changing.

3. Optional: Type a name for the check constraint.

4. Optional: Type a comment to document the check constraint.

To change check constraints using the command line, use the ALTER TABLE

statement.

 Related tasks:

v “Adding check constraints” on page 229

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

Dropping a unique constraint

 You can explicitly drop a unique constraint using the ALTER TABLE statement.

The name of all unique constraints on a table can be found in the

SYSCAT.INDEXES system catalog view.

Dropping this unique constraint invalidates any packages or cached dynamic SQL

that used the constraint.

 Procedure:

 To drop a unique constraint using the Control Center:

1. Open the Alter Table notebook: From the Control Center, expand the object tree until

you find the Tables folder. Click the Tables folder. Any existing tables are displayed in

the pane on the right side of the window. Right-click the table you want and select

Alter from the pop-up menu. The Alter Table notebook opens.

2. On the Check Constraints page, select the unique constraints that you want to drop,

and select Drop.

To drop a unique constraint using the command line, use the ALTER TABLE

statement. The following SQL statement drops the unique constraint NEWID from

the EMPLOYEE table:

 ALTER TABLE EMPLOYEE

 DROP UNIQUE NEWID

Chapter 6. Altering tables and other related table objects 315

Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

Dropping primary keys

 Procedure:

 To drop primary keys using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click on the table you want to modify, and select Alter from the pop-up menu.

3. On the Keys page, select the primary keys to drop.

To drop a primary key using the command line, enter:

 ALTER TABLE <name>

 DROP PRIMARY KEY

When a foreign key constraint is dropped, packages or cached dynamic SQL

statements containing the following might be marked as invalid:

v Statements that insert or update the table containing the foreign key

v Statements that update or delete the parent table.

 Related concepts:

v “Statement dependencies when changing objects” on page 366

 Related tasks:

v “Dropping foreign keys” on page 316

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

Dropping foreign keys

 Procedure:

 To drop foreign keys using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click on the table you want to modify, and select Alter from the pop-up menu.

3. On the Keys page, click Add.

4. Select the foreign keys at right to drop.

To drop foreign keys using the command line, enter:

 ALTER TABLE <name>

 DROP FOREIGN KEY <foreign_key_name>

The following examples use the DROP PRIMARY KEY and DROP FOREIGN KEY

clauses in the ALTER TABLE statement to drop primary keys and foreign keys on

a table:

316 Administration Guide: Implementation

ALTER TABLE EMP_ACT

 DROP PRIMARY KEY

 DROP FOREIGN KEY ACT_EMP_REF

 DROP FOREIGN KEY ACT_PROJ_REF

 ALTER TABLE PROJECT

 DROP PRIMARY KEY

 Related concepts:

v “Statement dependencies when changing objects” on page 366

 Related tasks:

v “Dropping primary keys” on page 316

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

Dropping a table check constraint

 Procedure:

 You can explicitly drop or change a table check constraint using the ALTER TABLE

statement, or implicitly drop it as the result of a DROP TABLE statement.

When you drop a table check constraint, all packages and cached dynamic SQL

statements with INSERT or UPDATE dependencies on the table are invalidated.

The name of all check constraints on a table can be found in the SYSCAT.CHECKS

catalog view. Before attempting to drop a table check constraint having a

system-generated name, look for the name in the SYSCAT.CHECKS catalog view.

To drop a table check constraint using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click on the table you want to modify, and select Alter from the pop-up menu.

3. On the Constraints page, select the check constraint to drop, click Remove.

To drop a table check constraint using the command line:

 ALTER TABLE <table_name>

 DROP CHECK <check_constraint_name>

The following SQL statement drops the table check constraint REVENUE from the

EMPLOYEE table:

 ALTER TABLE EMPLOYEE

 DROP CHECK REVENUE

 Related concepts:

v “Statement dependencies when changing objects” on page 366

 Related tasks:

v “Adding a table check constraint” on page 314

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

Chapter 6. Altering tables and other related table objects 317

Changing distribution keys

You can only change a distribution key on tables in a single database partition.

First drop the existing distribution key, and then create another.

 Procedure:

 To change distribution keys using the Control Center:

1. Open the Alter Table notebook: From the Control Center, expand the object tree until

you find the Tables folder. Click the Tables folder. Any existing tables are displayed in

the pane on the right side of the window. Right-click the table you want and select

Alter from the pop-up menu. The Alter Table notebook opens.

2. On the Keys page, select a distribution key in the table and click Change. The Change

Distribution Key window opens.

3. Select the columns that you want to add as distribution key columns and move them to

the Selected columns box.

To change distribution keys using the command line, use the DROP

DISTRIBUTION option of the ALTER TABLE statement. For example, the

following SQL statement drops the distribution key MIX_INT from the MIXREC

table:

 ALTER TABLE MIXREC

 DROP DISTRIBUTION

You cannot change the distribution key of a table spanning multiple database

partitions. If you try to drop it, an error is returned.

To change the distribution key of multiple database partitions, either:

v Export all of the data to a single database partition and then follow the above

instructions.

v Export all of the data, drop the table, recreate the table redefining the

distribution key, and then import all of the data.

Neither of these methods are practical for large databases; it is therefore essential

that you define the appropriate distribution key before implementing the design of

large databases.

 Related concepts:

v “Distribution keys” in Administration Guide: Planning

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

Altering an identity column

 Procedure:

 Modify the attributes of an existing identity column with the ALTER TABLE

statement.

There are several ways to modify an identity column so that it has some of the

characteristics of sequences.

318 Administration Guide: Implementation

There are some tasks that are unique to the ALTER TABLE statement and the

identity column:

v RESTART resets the sequence associated with the identity column to the value

specified implicitly or explicitly as the starting value when the identity column

was originally created.

v RESTART WITH <numeric-constant> resets the sequence associated with the

identity column to the exact numeric constant value. The numeric constant could

be any positive or negative value with no non-zero digits to the right of any

decimal point that could be assigned to the identity column.

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

Altering a sequence

 Procedure:

 Modify the attributes of an existing sequence with the ALTER SEQUENCE

statement.

The attributes of the sequence that can be modified include:

v Changing the increment between future values

v Establishing new minimum or maximum values

v Changing the number of cached sequence numbers

v Changing whether the sequence will cycle or not

v Changing whether sequence numbers must be generated in order of request

v Restarting the sequence

There are two tasks that are not found as part of the creation of the sequence. They

are:

v RESTART. Resets the sequence to the value specified implicitly or explicitly as

the starting value when the sequence was created.

v RESTART WITH <numeric-constant>. Resets the sequence to the exact numeric

constant value. The numeric constant can be any positive or negative value with

no non-zero digits to the right of any decimal point.

After restarting a sequence or changing to CYCLE, it is possible to generate

duplicate sequence numbers. Only future sequence numbers are affected by the

ALTER SEQUENCE statement.

The data type of a sequence cannot be changed. Instead, you must drop the

current sequence and then create a new sequence specifying the new data type.

All cached sequence values not used by DB2 are lost when a sequence is altered.

 Related tasks:

v “Dropping a sequence” on page 320

 Related reference:

v “ALTER SEQUENCE statement” in SQL Reference, Volume 2

Chapter 6. Altering tables and other related table objects 319

Dropping a sequence

 Procedure:

 To delete a sequence, use the DROP statement.

A specific sequence can be dropped by using:

 DROP SEQUENCE sequence_name

where the sequence_name is the name of the sequence to be dropped and includes

the implicit or explicit schema name to exactly identify an existing sequence.

Sequences that are system-created for IDENTITY columns cannot be dropped using

the DROP SEQUENCE statement.

Once a sequence is dropped, all privileges on the sequence are also dropped.

 Related tasks:

v “Altering a sequence” on page 319

 Related reference:

v “DROP statement” in SQL Reference, Volume 2

Dropping or removing columns

 Prerequisites:

 Procedure:

 To drop or remove columns using the Control Center:

1. Open the Alter Table notebook: From the Control Center, expand the object tree until

you find the Tables folder. Click the Tables folder. Any existing tables are displayed in

the pane on the right side of the window. Right-click the table you want and select

Alter from the pop-up menu. The Alter Table notebook opens.

2. On the columns page, select the columns that you want to drop and click Remove. If

you change you mind before clicking OK, you can click Undo remove.

To define dimensions using the command line, use the ADD CONSTRAINT option

of the ALTER TABLE statement. For example, the following SQL statement adds a

unique constraint to the EMPLOYEE table that represents a new way to uniquely

identify employees in the table:

 ALTER TABLE EMPLOYEE

 ADD CONSTRAINT NEWID UNIQUE(EMPNO,HIREDATE)

 Related tasks:

v “Adding columns to an existing table” on page 304

320 Administration Guide: Implementation

Defining a generated column on an existing table

 A generated column is defined on a base table where the stored value is computed

using an expression, rather than being specified through an insert or update

operation. A generated column can be created when a table is created or as a

modification to an existing table.

 Prerequisites:

 Generated columns might only be defined on data types for which an equal

comparison is defined. The excluded data types for the generated columns include:

Structured types, LOBs, CLOBs, DBCLOBs, LONG VARCHAR, LONG

VARGRAPHIC, and user-defined types defined using the same excluded data

types.

Generated columns cannot be used in constraints, referential constraints, primary

keys, and global temporary tables. A table created with LIKE and materialized

views does not inherit generated column properties.

 Restrictions:

 Generated columns cannot be inserted or updated without the keyword DEFAULT.

When inserting, the use of DEFAULT avoids the need to enumerate the columns in

the column list. Instead, generated columns can be set to DEFAULT in the values

list. When updating, DEFAULT enables the recomputation of generated columns

that have been placed online by SET INTEGRITY without being checked.

The order of processing of triggers requires that BEFORE-triggers might not

reference generated columns in their header (before update) or in their bodies. In

the order of processing, generated columns are processed after BEFORE-triggers.

The db2look utility will not see the check constraints generated by a generated

column.

When using replication, the target table must not use generated columns in its

mapping. There are two choices when replicating:

v The target table must define the generated column as a normal column; that is,

not a generated column

v The target table must omit the generated column in the mapping

There are several restrictions when working with generated columns:

v Generated columns must not have dependencies on each other.

v The expressions used to create the generated columns must not contain

subqueries. This includes expressions with functions that READS SQL DATA.

v No check constraints are allowed on generated columns.

 Procedure:

 Perform the following steps to define a generated column:

1. Place the table in a set integrity pending state.

 SET INTEGRITY FOR t1 OFF CASCADE DEFERRED

2. Alter the table to add one or more generated columns.

Chapter 6. Altering tables and other related table objects 321

ALTER TABLE t1 ADD COLUMN c3 DOUBLE GENERATED ALWAYS AS (c1 + c2),

 ADD COLUMN c4 GENERATED ALWAYS AS

 (CASE WHEN c1 > c2 THEN 1 ELSE NULL END))

3. Assign the correct values to the generated columns. This can be accomplished

using the following methods:

v Recompute and reassign the values for the generated columns using:

 SET INTEGRITY FOR t1 IMMEDIATE CHECKED FORCE GENERATED

If this SET INTEGRITY statement fails because of a lack of log space, then

increase the available active log space and reissue the SET INTEGRITY

statement.

Note: Exception tables can be used at this point.

v If it is not possible to increase the available active log space, then use

searched update statements to assign the generated columns to their default

values.

a. Get an exclusive lock on the table. This prevents all but uncommitted

read transactions from accessing the table. Note that the table lock will be

released upon the first intermittent commit and other transactions will be

able to see rows with generated columns that has not yet been assigned

to their default values.

 LOCK TABLE t1

b. Bypass checking of the generated columns

 SET INTEGRITY FOR t1 GENERATED COLUMN IMMEDIATE UNCHECKED

c. Check the table for other integrity violations (if applicable) and bring it

out of set integrity pending

 SET INTEGRITY FOR t1 IMMEDIATE CHECKED

d. Update the generated columns using intermittent commits and predicates

to avoid the logs filling up.

 UPDATE t1 SET (c3, c4) = (DEFAULT, DEFAULT) WHERE <predicate>

e. Unlock the table by completing the transaction using a commit statement.

 COMMIT

v A cursor based approach might also be used if it is not possible to increase

the available active log space:

a. Declare a FOR UPDATE cursor for table. The WITH HOLD option should

be used if locks should be retained after the intermittent commits.

 DECLARE C1 CURSOR WITH HOLD FOR S1

Where S1 is defined as:

 SELECT ’0’ FROM t1 FOR UPDATE OF C3, C4

b. Open the cursor.

 OPEN C1

c. Bypass checking of the generated columns

 SET INTEGRITY FOR t1 GENERATED COLUMN IMMEDIATE UNCHECKED

d. Check the table for other integrity violations (if applicable) and bring it

out of set integrity pending

 SET INTEGRITY FOR t1 IMMEDIATE CHECKED

e. Have a loop to fetch all rows in the table and for each row fetched,

execute the following to assign the generated columns to their default

322 Administration Guide: Implementation

tables. It is important to make sure that the first fetch is done right after

the table is brought out of set integrity pending to ensure that the table is

locked for the duration of the cursor.

 UPDATE t1 SET (C3, C4) = (DEFAULT, DEFAULT) WHERE CURRENT OF C1

Do intermittent commits to avoid the logs filling up.

f. Close the cursor and commit to unlock the table.

 CLOSE C1

 COMMIT

v You know that the table was created with the not logged initially option. In

this way, logging for the table is turned off with the usual implications and

risks while working with the generated column values.

a. Activate the not logged initially option.

 ALTER TABLE t1 ACTIVATE NOT LOGGED INITIALLY

b. Generate the values.

 SET INTEGRITY FOR t1 IMMEDIATE CHECKED FORCE GENERATED

c. Turn the not logged initially off again by committing the transaction.

 COMMIT

The values for generated columns can also simply be checked by applying the

expression as if it is an equality check constraint:

 SET INTEGRITY FOR t1 IMMEDIATE CHECKED

If values have been placed in a generated column using LOAD for example, and

you know that the values match the generated expression, then the table can be

taken out of the set integrity pending state without checking or assigning the

values:

 SET INTEGRITY FOR t1 GENERATED COLUMN IMMEDIATE UNCHECKED

 Related tasks:

v “Defining a generated column on a new table” on page 219

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “COMMIT statement” in SQL Reference, Volume 2

v “LOCK TABLE statement” in SQL Reference, Volume 2

v “SET INTEGRITY statement” in SQL Reference, Volume 2

v “UPDATE statement” in SQL Reference, Volume 2

v “db2look - DB2 statistics and DDL extraction tool command” in Command

Reference

v “Restrictions on native XML data store” in XML Guide

Declaring a table volatile

 A volatile table is defined as a table whose contents can vary from empty to very

large at run time. The volatility or extreme changeability of this type of table

makes reliance on the statistics collected by RUNSTATS inaccurate. Statistics are

gathered at, and only reflect, a point in time. To generate an access plan that uses a

volatile table can result in an incorrect or poorly performing plan. For example, if

statistics are gathered when the volatile table is empty, the optimizer tends to favor

accessing the volatile table using a table scan rather than an index scan.

Chapter 6. Altering tables and other related table objects 323

To prevent this, you should consider declaring the table as volatile using the

ALTER TABLE statement. By declaring the table volatile, the optimizer will

consider using index scan rather than table scan. The access plans that use

declared volatile tables will not depend on the existing statistics for that table.

 Procedure:

 To declare a table volatile using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click on the table you want to modify, and select Alter from the pop-up menu.

3. On the Table page, select the Cardinality varies significantly at run time check box,

and click Ok.

To declare a table as “volatile” using the command line, enter:

 ALTER TABLE <table_name>

 VOLATILE CARDINALITY

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

Using a stored procedure to alter a table

 Tables are where all of the data for your business is stored. Before you create your

database, you have to consider the type and organization of the data that you want

to keep in the database. A lot of planning is required to ensure that you have

thought to use and manipulate all of the relevant data that you and your business

might need. However, things change. In spite of good planning, there might be

new requirements or business changes that necessitate changes being made to the

tables in the database.

You might find that you need to change in one or more of the following ways

within your table:

v Rename columns

v Remove columns

v Alter column type and transform existing data using SQL scalar functions

v Increase or decrease column size

v Change column default value

v Change column from NOT NULL to NULLABLE

v Change precision and scale for decimal

When making these types of changes, you need to minimize the risk of losing the

original table data. The DB2 database manager provides a user interface, and a

stored procedure, that will allow you to alter a table. The original table and its

associated data are not dropped until you explicitly indicate that all of the alter

table work has been completed.

Each stored procedure call that is invoked from the user interface carries out a

sequence of actions such as dropping, recreating, and loading data to accomplish

the actions listed above.

There are limitations on what can be altered in the table. These limitations include:

324 Administration Guide: Implementation

v No support for altering materialized query tables (MQTs).

However, there is support for altering a table which has a MQT. Also, MQTs

defined on a base table which is altered is not refreshed (populated) during the

ALTER TABLE process. In an MQT, while its base table is being altered by the

ALTOBJ() stored procedure, all of the columns which are not part of the select

result from the base table are lost because the MQT content is completely rebuilt

from the new base table.

v No support for altering type tables, or a table that is the scope of any existing

reference column-type table.

v No support for altering a remote table using a nickname.

v Column sequence within the table cannot be reordered.

v Add and rename are exclusive to drop column actions.

That is, these column actions cannot coexist in one single alter table call.

v The DATALINK data type is not supported.

v The definition of the objects might change between ALTOBJ() calls because there

are no object locks that persist.

v Table profiles, such as a runstats profile, that are associated with the table pack

descriptor are lost after going through the ALTER TABLE process.

v Only one sequence of ALTER TABLE stored procedure calls is supported per

table at any given time. That is, once the ALTOBJ() stored procedure is called, it

should be finished or rolled back before another ALTER TABLE can be started

on the same table. Altering multiple tables at the same time using the ALTOBJ()

stored procedure is supported as long as the table dependencies do not collide.

There are several component pieces that make up the available options when using

the stored procedure that carry out the ALTER TABLE actions. These pieces

include:

v ALTER_OBJ(’GENERATE’,’<sql statement>, 0, ?)

This procedure generates all of the SQL statements and places them into a

metadata table.

Note: In generate mode, the SQL statement parameter cannot be null; and, if an

alter ID is provided, it is ignored.

v ALTER_OBJ(’VALIDATE’,NULL,123,?)

This procedure verifies the SQL generated but does not include the movement of

data. The running of the scripts to test validity takes place under the given user

ID “123”. The results of the verification are placed in the Meta table (which also

holds the other information from the table being altered).

v ALTER_OBJ(’APPLY_CONTINUE_ON_ERROR’,NULL,123,?)

This procedure runs all of the SQL statements under the given ID, and writes

the results into the Meta table. The SQL statements would include how to build

the new table, the building of any dependent objects, and the populating of the

new table.

You can get the old definitions back using the UNDO mode (see below).

A warning SQLCODE is set for the stored procedure in the SQLCA; and the

transactions in the stored procedure are finished.

v ALTER_OBJ(’APPLY_STOP_ON_ERROR’,NULL,123,?)

This procedure runs each of the SQL statements one-by-one under the given ID,

and stops when any errors are encountered.

An error SQLCODE is set for the stored procedure in the SQLCA; and the

transactions in the stored procedure are automatically rolled back.

Chapter 6. Altering tables and other related table objects 325

v ALTER_OBJ(’UNDO’,NULL,123,?)

Run the script that contains all of the changes made by the alter table actions

under the given user ID. All of those changes are undone.

Note: When working with the ALTOBJ_UNDO, the ID parameter cannot be

null.

v ALTER_OBJ(’FINISH’,NULL,123,?)

This procedure deletes the original table, and cleans up all of the entries found

in the Meta table under the given user ID.

Note: This mode can only be called separately from all other modes.

 Related concepts:

v “Using the ALTER TABLE statement to alter columns of a table” on page 300

 Related tasks:

v “Altering a table” on page 297

 Related reference:

v “Supported functions and administrative SQL routines and views” in SQL

Reference, Volume 1

v “ALTOBJ procedure” in Administrative SQL Routines and Views

Modifying indexes

This section describes how to modify indexes.

Renaming an existing table or index

 You can give an existing table or index a new name within a schema and maintain

the authorizations and indexes that were created on the original table.

 Prerequisites:

 The existing table or index to be renamed can be an alias identifying a table or

index.

 Restrictions:

 The existing table or index to be renamed must not be the name of a catalog table

or index, a summary table or index, a typed table, a declared global temporary

table, a nickname, or an object other than a table, a view, or an alias.

The existing table or index cannot be referenced in any of the following:

v Views

v Triggers

v Referential constraints

v Summary table

v The scope of an existing reference column

Also, there must be no check constraints within the table nor any generated

columns other than the identity column. Any packages or cached dynamic SQL or

326 Administration Guide: Implementation

XQuery statements dependent on the original table are invalidated. Finally, any

aliases referring to the original table are not modified.

You should consider checking the appropriate system catalog tables to ensure that

the table or index being renamed is not affected by any of these restrictions.

 Procedure:

 To rename an existing table or index using the Control Center:

1. Expand the object tree until you see the Tables or Views folder.

2. Right-click on the table or view you want to rename, and select Rename from the

pop-up menu.

3. Type the new table or view name, and click Ok.

To rename an existing table using the command line, enter:

 RENAME TABLE <schema_name>.<table_name> TO <new_name>

The SQL statement below renames the EMPLOYEE table within the COMPANY

schema to EMPL:

 RENAME TABLE COMPANY.EMPLOYEE TO EMPL

To rename an existing index using the command line, enter:

 RENAME INDEX <schema_name>.<index_name> TO <new_name>

The SQL statement below renames the EMPIND index within the COMPANY

schema to MSTRIND:

 RENAME INDEX COMPANY.EMPIND TO MSTRIND

Packages are invalidated and must be rebound if they refer to a table or index that

has just been renamed. The packages are implicitly rebound regardless of whether

another index exists with the same name. Unless a better choice exists, the package

will use the same index it had before, under its new name.

 Related reference:

v “RENAME statement” in SQL Reference, Volume 2

Dropping an index, index extension, or an index specification

 Restrictions:

 You cannot change any clause of an index definition, index extension, or index

specification; you must drop the index or index extension and create it again.

(Dropping an index or an index specification does not cause any other objects to be

dropped but might cause some packages to be invalidated.)

The name of the index extension must identify an index extension described in the

catalog. The RESTRICT clause enforces the rule that no index can be defined that

depends on the index extension definition. If an underlying index depends on this

index extension, then the drop fails.

A primary key or unique key index (unless it is an index specification) cannot be

explicitly dropped. You must use one of the following methods to drop it:

Chapter 6. Altering tables and other related table objects 327

v If the primary index or unique constraint was created automatically for the

primary key or unique key, dropping the primary key or unique key will cause

the index to be dropped. Dropping is done through the ALTER TABLE

statement.

v If the primary index or the unique constraint was user-defined, the primary key

or unique key must be dropped first, through the ALTER TABLE statement.

After the primary key or unique key is dropped, the index is no longer

considered the primary index or unique index, and it can be explicitly dropped.

 Procedure:

 To drop an index, index extension, or an index specification using the Control

Center:

1. Expand the object tree until you see the Indexes folder.

2. Right-click on the index you want to drop, and select Drop from the pop-up menu.

3. Check the Confirmation box, and click Ok.

To drop an index, index extension, or an index specification using the command

line, enter:

 DROP INDEX <index_name>

The following SQL statement drops the index called PH:

 DROP INDEX PH

The following SQL statement drops the index extension called IX_MAP:

 DROP INDEX EXTENSION ix_map RESTRICT

Any packages and cached dynamic SQL and XQuery statements that depend on

the dropped indexes are marked invalid. The application program is not affected

by changes resulting from adding or dropping indexes.

 Related concepts:

v “Statement dependencies when changing objects” on page 366

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “DROP statement” in SQL Reference, Volume 2

Modifying triggers

This section describes how to modify triggers.

Updating view contents using triggers

 INSTEAD OF triggers can be used to perform a delete, insert, or update request on

behalf of a view which is not inherently updateable. Applications taking advantage

of this type of trigger are able to write update operations against views just as if

the view were a table.

For example, you could use the following SQL statements to create a view:

328 Administration Guide: Implementation

CREATE VIEW EMPV(EMPNO, FIRSTNME, MIDINIT, LASTNAME, PHONENO, HIREDATE,

 DEPTNAME)

 AS SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, PHONENO, HIREDATE, DEPTNAME

 FROM EMPLOYEE, DEPARTMENT WHERE EMPLOYEE.WORKDEPT = DEPARTMENT.DEPTNO

Due to the join in EMPV view’s body, the view to update data in the underlying

tables cannot be used until the following statements are added:

 CREATE TRIGGER EMPV_INSERT INSTEAD OF INSERT ON EMPV

 REFERENCING NEW AS NEWEMP DEFAULTS NULL FOR EACH ROW

 INSERT INTO EMPLOYEE (EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT,

 PHONENO, HIREDATE)

 VALUES(EMPNO, FIRSTNME, MIDINIT, LASTNAME,

 COALESCE((SELECT DEPTNO FROM DEPARTMENT AS D

 WHERE D.DEPTNAME = NEWEMP.DEPTNAME),

 RAISE_ERROR(’70001’, ’Unknown department name’)),

 PHONENO, HIREDATE)

This CREATE TRIGGER statement will allow INSERT requests against EMPV view

to be carried out.

 CREATE TRIGGER EMPV_DELETE INSTEAD OF DELETE ON EMPV

 REFERENCING OLD AS OLDEMP FOR EACH ROW

 DELETE FROM EMPLOYEE AS E WHERE E.EMPNO = OLDEMP.EMPNO

This CREATE TRIGGER statement will allow DELETE requests against EMPV

view to be carried out.

 CREATE TRIGGER EMPV_UPDATE INSTEAD OF UPDATE ON EMPV

 REFERENCING NEW AS NEWEMP

 OLD AS OLDEMP

 DEFAULTS NULL FOR EACH ROW

 BEGIN ATOMIC

 VALUES(CASE WHEN NEWEMP.EMPNO = OLDEMP.EMPNO THEN 0

 ELSE RAISE_ERROR(’70002’, ’Must not change EMPNO’) END);

 UPDATE EMPLOYEE AS E

 SET (FIRSTNME, MIDINIT, LASTNAME, WORKDEPT, PHONENO, HIREDATE) =

 (NEWEMP.FIRSTNME, NEWEMP.MIDINIT, NEWEMP.LASTNAME,

 COALESCE((SELECT DEPTNO FROM DEPARTMENT AS D

 WHERE D.DEPTNAME = NEWEMP.DEPTNAME),

 RAISE_ERROR(’70001’, ’Unknown department name’)),

 NEWEMP.PHONENO, NEWEMP.HIREDATE)

 WHERE NEWEMP.EMPNO = E.EMPNO;

 END

This CREATE TRIGGER statement will allow UPDATE requests against EMPV

view to be carried out.

 Related tasks:

v “Creating triggers” on page 240

 Related reference:

v “CREATE TRIGGER statement” in SQL Reference, Volume 2

Dropping a trigger

 A trigger object can be dropped using the DROP statement, but this procedure will

cause dependent packages to be marked invalid, as follows:

v If an update trigger without an explicit column list is dropped, then packages

with an update usage on the target table are invalidated.

Chapter 6. Altering tables and other related table objects 329

v If an update trigger with a column list is dropped, then packages with update

usage on the target table are only invalidated if the package also had an update

usage on at least one column in the column-name list of the CREATE TRIGGER

statement.

v If an insert trigger is dropped, packages that have an insert usage on the target

table are invalidated.

v If a delete trigger is dropped, packages that have a delete usage on the target

table are invalidated.

A package remains invalid until the application program is explicitly bound or

rebound, or it is run and the database manager automatically rebinds it.

 Related tasks:

v “Creating triggers” on page 240

 Related reference:

v “DROP statement” in SQL Reference, Volume 2

Modifying aliases and views

This section describes how to modify aliases and views.

Altering or dropping a view

 The ALTER VIEW statement modifies an existing view definition by altering a

reference type column to add a scope. The DROP statement deletes a view.

 Prerequisites:

 When altering the view, the scope must be added to an existing reference type

column that does not already have a scope defined. Further, the column must not

be inherited from a superview.

 Restrictions:

 Changes you make to the underlying content of a view require that you use

triggers. Other changes to a view require that you drop and then re-create the

view.

 Procedure:

 The data type of the column-name in the ALTER VIEW statement must be REF

(type of the typed table name or typed view name). You can also modify the

contents of a view through INSTEAD OF triggers.

Other database objects such as tables and indexes are not affected although

packages and cached dynamic statements are marked invalid.

To alter the definition for a view using the Control Center:

1. Expand the object tree until you see the Views folder.

2. Right-click on the view you want to modify, and select Alter from the pop-up menu.

3. In the Alter view window, enter or modify a comment, and click Ok.

330 Administration Guide: Implementation

To alter a view using the command line, enter:

 ALTER VIEW <view_name> ALTER <column name>

 ADD SCOPE <typed table or view name>

To drop a view using the Control Center:

1. Expand the object tree until you see the Views folder.

2. Right-click on the view you want to drop, and select Drop from the pop-up menu.

3. Check the Confirmation box, and click Ok.

To drop a view using the command line, enter:

 DROP VIEW <view_name>

The following example shows how to drop the EMP_VIEW:

 DROP VIEW EMP_VIEW

Any views that are dependent on the view being dropped will be made

inoperative.

As in the case of a table hierarchy, it is possible to drop an entire view hierarchy in

one statement by naming the root view of the hierarchy, as in the following

example:

 DROP VIEW HIERARCHY VPerson

 Related concepts:

v “Statement dependencies when changing objects” on page 366

 Related tasks:

v “Creating triggers” on page 240

v “Creating a view” on page 251

v “Recovering inoperative views” on page 331

 Related reference:

v “ALTER VIEW statement” in SQL Reference, Volume 2

v “DROP statement” in SQL Reference, Volume 2

Recovering inoperative views

 Procedure:

 Views can become inoperative:

v As a result of a revoked privilege on an underlying table.

v If a table, alias, or function is dropped.

v If the superview becomes inoperative. (A superview is a typed view upon which

another typed view, a subview, is based.)

v When the views they are dependent on are dropped.

The following steps can help you recover an inoperative view:

1. Determine the SQL statement that was initially used to create the view. You can

obtain this information from the TEXT column of the SYSCAT.VIEW catalog

view.

Chapter 6. Altering tables and other related table objects 331

2. Re-create the view by using the CREATE VIEW statement with the same view

name and same definition.

3. Use the GRANT statement to re-grant all privileges that were previously

granted on the view. (Note that all privileges granted on the inoperative view

are revoked.)

If you do not want to recover an inoperative view, you can explicitly drop it with

the DROP VIEW statement, or you can create a new view with the same name but

a different definition.

An inoperative view only has entries in the SYSCAT.TABLES and SYSCAT.VIEWS

catalog views; all entries in the SYSCAT.VIEWDEP, SYSCAT.TABAUTH,

SYSCAT.COLUMNS and SYSCAT.COLAUTH catalog views are removed.

 Related tasks:

v “Altering or dropping a view” on page 330

 Related reference:

v “CREATE VIEW statement” in SQL Reference, Volume 2

v “DROP statement” in SQL Reference, Volume 2

v “GRANT (Table, View, or Nickname Privileges) statement” in SQL Reference,

Volume 2

v “SYSCAT.VIEWS catalog view” in SQL Reference, Volume 1

Dropping aliases

 When you drop an alias, its description is deleted from the catalog, any packages

and cached dynamic queries that reference the alias are invalidated, and all views

and triggers dependent on the alias are marked inoperative.

 Prerequisites:

 To drop an alias, you must be defined to DB2 as the creator of the alias, or you

must have one of the following authorizations:

v SYSADM authority

v DBADM authority on the database in which the alias is stored

v The DROPIN privilege on the alias’s schema

 Procedure:

 To drop an alias using the Control Center:

1. Expand the object tree until you find the Alias folder below the database that contains

the alias that you want to drop. Click on the Alias folder. Any existing aliases are

displayed in the pane on the right side of the window. Right-click the alias that you

want to drop and select Drop from the pop-up menu. The Confirmation window

opens.

2. Confirm the drop request.

To drop aliases using the command line, use the DROP statement.

 Related reference:

332 Administration Guide: Implementation

v “DROP statement” in SQL Reference, Volume 2

Modifying UDFs and UDTs

This section describes how to modify user-defined functions and user-defined

types.

Altering a user-defined structured type

 Procedure:

 After creating a structured type, you might find that you need to add or drop

attributes associated with that structured type. This is done using the ALTER TYPE

(Structured) statement.

 Related concepts:

v “Structured type hierarchies” in SQL Guide

v “User-defined structured types” in SQL Guide

 Related tasks:

v “Creating structured types” in SQL Guide

 Related reference:

v “ALTER TYPE (Structured) statement” in SQL Reference, Volume 2

Dropping a user-defined function (UDF), function mapping, or

method

 A user-defined function (UDF), function template, or function mapping can be

dropped using the DROP statement.

 Prerequisites:

 Other objects can be dependent on a function or function template. All such

dependencies, including function mappings, must be removed before the function

can be dropped, with the exception of packages which are marked inoperative.

 Restrictions:

 A UDF cannot be dropped if a view, trigger, table check constraint, or another UDF

is dependent on it. Functions implicitly generated by the CREATE DISTINCT TYPE

statement cannot be dropped. It is not possible to drop a function that is in either

the SYSIBM schema or the SYSFUN schema.

 Procedure:

 You can disable a function mapping with the mapping option DISABLE.

Packages which are marked inoperative are not implicitly rebound. The package

must either be rebound using the BIND or REBIND commands or it must be

prepared by use of the PREP command. Dropping a UDF invalidates any packages

or cached dynamic SQL statements that used it.

Chapter 6. Altering tables and other related table objects 333

Dropping a function mapping marks a package as invalid. Automatic rebind will

take place and the optimizer will attempt to use the local function. In the case

where the local function is a template, the implicit rebind will fail.

 Related reference:

v “DROP statement” in SQL Reference, Volume 2

v “BIND command” in Command Reference

v “PRECOMPILE command” in Command Reference

v “REBIND command” in Command Reference

Dropping a user-defined type (UDT) or type mapping

 You can drop a user-defined type (UDT) or type mapping using the DROP

statement.

 Restrictions:

 You cannot drop a UDT if it is used:

v In a column definition for an existing table or view (distinct types)

v As the type of an existing typed table or typed view (structured type)

v As the supertype of another structured type

You cannot drop a default type mapping; you can only override it by creating

another type mapping.

The database manager attempts to drop all functions that are dependent on this

distinct type. If the UDF cannot be dropped, the UDT cannot be dropped. A UDF

cannot be dropped if a view, trigger, table check constraint, or another UDF is

dependent on it. Dropping a UDT invalidates any packages or cached dynamic

SQL statements that used it.

Note that only transforms defined by you or other application developers can be

dropped; built-in transforms and their associated group definitions cannot be

dropped.

 Procedure:

 The DROP statement is used to drop your user-defined type.

If you have created a transform for a UDT, and you are planning to drop the UDT,

you should consider if it is necessary to drop the transform. This is done through

the DROP TRANSFORM statement.

 Related concepts:

v “User-defined types (UDTs)” on page 246

 Related tasks:

v “Creating a type mapping in a federated system” on page 248

v “Creating a user-defined distinct type” on page 247

 Related reference:

v “DROP statement” in SQL Reference, Volume 2

334 Administration Guide: Implementation

Modifying materialized query tables

This section describes how to modify materialized query tables.

Altering materialized query table properties

 With some restrictions, you can change a materialized query table to a regular

table or a regular table to a materialized query table. You cannot change other

table types; only regular and materialized query tables can be changed. For

example, you cannot change a replicated materialized query table to a regular

table, nor the reverse.

Once a regular table has been altered to a materialized query table, the table is

placed in a set integrity pending state. When altering in this way, the fullselect

in the materialized query table definition must match the original table definition,

that is:

v The number of columns must be the same.

v The column names and positions must match.

v The data types must be identical.

If the materialized query table is defined on an original table, then the original

table cannot itself be altered into a materialized query table. If the original table

has triggers, check constraints, referential constraints, or a defined unique index,

then it cannot be altered into a materialized query table. If altering the table

properties to define a materialized query table, you are not allowed to alter the

table in any other way in the same ALTER TABLE statement.

When altering a regular table into a materialized query table, the fullselect of the

materialized query table definition cannot reference the original table directly or

indirectly through views, aliases, or materialized query tables.

 Procedure:

 To change a materialized query table to a regular table, use the following:

 ALTER TABLE sumtable

 SET SUMMARY AS DEFINITION ONLY

To change a regular table to a materialized query table, use the following:

 ALTER TABLE regtable

 SET SUMMARY AS <fullselect>

The restrictions on the fullselect when altering the regular table to a materialized

query table are very much like the restrictions when creating a summary table

using the CREATE SUMMARY TABLE statement.

 Related tasks:

v “Creating a materialized query table” on page 201

v “Dropping a materialized query or staging table” on page 365

v “Refreshing the data in a materialized query table” on page 336

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “CREATE TABLE statement” in SQL Reference, Volume 2

Chapter 6. Altering tables and other related table objects 335

Refreshing the data in a materialized query table

 Procedure:

 You can refresh the data in one or more materialized query tables by using the

REFRESH TABLE statement. The statement can be embedded in an application

program, or issued dynamically. To use this statement, you must have either

SYSADM or DBADM authority, or CONTROL privilege on the table to be

refreshed.

The following example shows how to refresh the data in a materialized query

table:

 REFRESH TABLE SUMTAB1

 Related tasks:

v “Altering materialized query table properties” on page 335

v “Creating a materialized query table” on page 201

 Related reference:

v “REFRESH TABLE statement” in SQL Reference, Volume 2

Modifying partitioned tables

This section describes how to modify partitioned tables.

Altering partitioned tables

 All relevant clauses of the ALTER TABLE statement are supported for a partitioned

table. In addition, the ALTER TABLE statement allows you to ADD new data

partitions, roll-in (ATTACH) new data partitions, and roll-out (DETACH) existing

data partitions.

 Prerequisites:

 To alter a partitioned table to detach a data partition the user must have the

following authorities or privileges:

v The user performing the DETACH operation must have the authority needed to

ALTER, to SELECT from, and to DELETE from the source table.

v The user must also have the authority needed to create the target table.

Therefore, to alter a table to detach a data partition, the privilege held by the

authorization ID of the statement must include at least one of the following

authorities or privileges on the target table:

– SYSADM or DBADM authority

– CREATETAB authority on the database and USE privilege on the table spaces

used by the table as well as one of:

- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist

- CREATEIN privilege on the schema, if the schema name of the table refers

to an existing schema.

To alter a partitioned table to attach a data partition, the privileges held by the

authorization ID of the statement must include at least one of the following

authorities or privileges on the source table:

336 Administration Guide: Implementation

v SELECT privilege on the source table and DROPIN privilege on the schema of

the source table

v CONTROL privilege on the source table

v SYSADM or DBADM authority.

To alter a partitioned table to add a data partition, the privileges held by the

authorization ID of the statement must have privileges to use the table space

where the new partition is added, and include at least one of the following

authorities or privileges on the source table:

v ALTER privilege

v CONTROL privilege

v SYSADM

v DBADM

v ALTERIN privilege on the table schema

 Usage guidelines:

v Each ALTER TABLE statement issued with the PARTITION clause must be in a

separate SQL statement.

v No other ALTER operations are permitted in an SQL statement containing an

ALTER TABLE...PARTITION operation. For example, you cannot attach a data

partition and add a column to the table in a single SQL statement.

v Multiple ALTER statements can be executed, followed by a single SET

INTEGRITY statement.

 Procedure:

 You can alter a table from the DB2 Control Center or from the DB2 command line

processor (CLP).

To use the DB2 Control Center to alter a partitioned table :

1. Expand the Table folder. The table objects are displayed in the contents pane of the DB2

Control Center window.

2. Right-click the table that you want to alter and select Open Data Partitions from the list

of actions.

3. In the Open Data Partitions window select the button associated with your task. If you

are adding, the Add Data Partition window opens. If you are attaching, the Attach Data

Partition window opens. If you are detaching the Detach Data Partition window opens.

4. Specify the required fields.

To use the DB2 command line to alter a partitioned table, issue the ALTER TABLE

statement.

 Related concepts:

v “Attributes of detached data partitions” on page 354

v “Data partitions” in Administration Guide: Planning

 Related tasks:

v “Adding data partitions to partitioned tables” on page 356

v “Altering a table” on page 297

v “Dropping a data partition” on page 358

Chapter 6. Altering tables and other related table objects 337

v “Attaching a data partition” on page 346

v “Detaching a data partition” on page 352

v “Rotating data in a partitioned table” on page 339

 Related reference:

v “Examples of rolling in and rolling out partitioned table data” on page 342

v “Guidelines and restrictions on altering partitioned tables with attached or

detached data partitions” on page 338

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “Command Line Processor (CLP) samples” in Samples Topics

Guidelines and restrictions on altering partitioned tables with

attached or detached data partitions

 The following section identifies the most common alter table actions and special

considerations in the presence of attached and detached data partitions.

 Adding or altering a check or foreign key constraint:

 Adding a check on a foreign key constraint is supported with attached and

detached data partitions.

 Adding a column:

 When adding a column to a table with attached data partitions, the column is also

added to the attached data partitions. When adding a column to a table with

detached data partitions, the column is not added to the detached data partitions,

because the detached data partitions are no longer physically associated to the

table.

 Altering a column:

 When altering a column in a table with attached data partitions, the column will

also be altered on the attached data partitions. When altering a column in a table

with detached data partitions, the column is not altered on the detached data

partitions, because the detached data partitions are no longer physically associated

to the table.

 Adding a generated column:

 When adding a generated column to a partitioned table with attached or detached

data partitions, it must respect the rules for adding any other types of columns.

 Adding or modifying an index:

 When creating, recreating or reorganizing an index on a table with attached data

partitions, the index does not include the data in the attached data partitions

because the SET INTEGRITY statement maintains all indexes for all attached data

partitions. When creating, recreating or reorganizing an index on a table with

detached data partitions, the index does not include the data in the detached data

partitions, unless the detached data partition has a detached dependents or staging

tables that need to be incrementally refreshed with respect to the data partition. In

this case, the index includes the data for this detached data partition.

338 Administration Guide: Implementation

WITH EMPTY TABLE:

 You cannot empty a table with attached data partitions.

 ADD MATERIALIZED QUERY AS:

 Altering a table with attached data partitions to an MQT is not allowed.

 Altering additional table attributes that are stored in a data partition:

 The following table attributes are also stored in a data partition. Changes to these

attributes are reflected on the attached data partitions, but not on the detached

data partitions.

v DATA CAPTURE

v VALUE COMPRESSION

v APPEND

v COMPACT/LOGGED FOR LOB COLUMNS

v ACTIVATE NOT LOGGED INITIALLY (WITH EMPTY TABLE)

 Related concepts:

v “Attributes of detached data partitions” on page 354

v “Understanding clustering index behavior on partitioned tables” in Performance

Guide

v “Data partitions” in Administration Guide: Planning

v “Understanding index behavior on partitioned tables” in Performance Guide

v “Large object behavior in partitioned tables” in SQL Reference, Volume 1

v “Partitioned materialized query table behavior” on page 206

v “Partitioned tables” in Administration Guide: Planning

 Related tasks:

v “Adding data partitions to partitioned tables” on page 356

v “Altering partitioned tables” on page 336

v “Altering a table” on page 297

v “Dropping a data partition” on page 358

v “Attaching a data partition” on page 346

v “Detaching a data partition” on page 352

v “Rotating data in a partitioned table” on page 339

 Related reference:

v “Examples of rolling in and rolling out partitioned table data” on page 342

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “SET INTEGRITY statement” in SQL Reference, Volume 2

Rotating data in a partitioned table

 Rotating data in a DB2 Database for Linux, UNIX, and Windows refers to a

method of reusing space in a data partition by removing obsolete data from the

table then adding new data. Table partitioning functionality allows you to detach

the data partition with the obsolete data then attach a new data partition with the

latest data.

Chapter 6. Altering tables and other related table objects 339

Prerequisites:

 To detach a data partition from a partitioned table the user must have the

following authorities or privileges:

v The user performing the DETACH operation must have the authority needed to

ALTER, to SELECT from, and to DELETE from the source table.

v The user must also have the authority needed to CREATE the target table.

Therefore, to alter a table to detach a data partition, the privilege held by the

authorization ID of the statement must include at least one of the following

authorities or privileges on the target table:

– SYSADM or DBADM authority

– CREATETAB authority on the database and USE privilege on the table spaces

used by the table as well as one of:

- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist

- CREATEIN privilege on the schema, if the schema name of the table refers

to an existing schema.

To alter a table to attach a data partition, the user must have the following

authorities or privileges:

v The user performing the attach must have the authority needed to ALTER and

to INSERT into the target table

v The user must also be able to SELECT from and to DROP the source table.

Therefore, to alter a table to attach a data partition, the privileges held by the

authorization ID of the statement must include at least one of the following on

the source table:

– SELECT privilege on the source table and DROPIN privilege on the schema

of the source table

– CONTROL privilege on the source table

– SYSADM or DBADM authority.

 Procedure:

 You can rotate data in a partitioned table from the DB2 Control Center or from the

DB2 command line processor (CLP).

To use the DB2 Control Center to rotate data in a partitioned table:

1. Expand the Table folder. The table objects are displayed in the contents pane of the DB2

Control Center window.

2. Right-click the table that you want to alter, and select Open Data Partitions from the list

of actions.

3. In the Open Data Partitions window, click the button associated with your task. If you

are attaching, the Attach Data Partition window opens. If you are detaching, the Detach

Data Partition window opens.

4. Specify the required fields.

To use the DB2 command line to rotate data in a partitioned table, issue the

ALTER TABLE statement.

 Example:

340 Administration Guide: Implementation

This example demonstrates how to update the stock table by removing the data

from December 2001 and replacing it with the latest data from December 2003.

1. Remove the old data from table stock.

 ALTER TABLE stock DETACH PARTITION

 dec01 INTO newtable;

2. Load the new data. Using LOAD with the REPLACE option overwrites existing

data.

LOAD FROM data_file OF DEL REPLACE INTO newtable

Note:If there are detached dependents, then you must run the SET INTEGRITY

statement on the detached dependents before you can load the detached table.

3. If desired, perform data cleansing. Data cleansing activities include:

v Filling in missing values

v Deleting inconsistent and incomplete data

v Removing redundant data arriving from multiple sources

v Transforming data

– Normalization (Data from different sources that represents the same value

in different ways must be reconciled as part of rolling the data into the

warehouse.)

– Aggregation (Raw data that is too detailed to store in the warehouse must

be pre-aggregated during roll-in.)
4. Attach the new data as a new range.

ALTER TABLE stock ATTACH PARTITION dec03

STARTING ’12/01/2003’ ENDING ’12/31/2003’

 FROM newtable;

Attaching a data partition drains queries and invalidates packages.

5. Use the SET INTEGRITY statement to update indexes and other dependent

objects. Read and write access is permitted during the execution of the SET

INTEGRITY statement.

SET INTEGRITY FOR stock ALLOW WRITE ACCESS

IMMEDIATE CHECKED FOR EXCEPTION IN stock USE stock_ex;

 Related concepts:

v “Attributes of detached data partitions” on page 354

v “Data partitions” in Administration Guide: Planning

v “Partitioned materialized query table behavior” on page 206

v “Optimization strategies for partitioned tables” in Performance Guide

v “Partitioned tables” in Administration Guide: Planning

 Related tasks:

v “Adding data partitions to partitioned tables” on page 356

v “Altering partitioned tables” on page 336

v “Altering a table” on page 297

v “Dropping a data partition” on page 358

v “Attaching a data partition” on page 346

v “Detaching a data partition” on page 352

 Related reference:

v “Examples of rolling in and rolling out partitioned table data” on page 342

v “ALTER TABLE statement” in SQL Reference, Volume 2

Chapter 6. Altering tables and other related table objects 341

v “Guidelines and restrictions on altering partitioned tables with attached or

detached data partitions” on page 338

v “SET INTEGRITY statement” in SQL Reference, Volume 2

v “Command Line Processor (CLP) samples” in Samples Topics

Examples of rolling in and rolling out partitioned table data

 The following examples address a common administration operation in data

warehouses where new data is rolled in at the start of each month and old data is

potentially rolled out based on a particular date. Example 1 covers the DETACH

operation (roll-out) by removing obsolete data from the table. Variations include:

1. deleting the data

2. moving the data to another table

Examples 2 and 3 cover both an ADD operation and an ATTACH operation

(roll-in) by loading new data into the table. Variations include:

1. transforming the data, loading it into the non-partitioned table, then attaching

the data partition (traditional extract, transform and load (ETL))

2. loading the data into the non-partitioned table, transforming the data, then

attaching the data partition

Example 1: Using partitioned tables, the roll-out operation is simply a DETACH

operation on the appropriate data partition:

ALTER TABLE stock DETACH PART dec01 INTO stock_drop;

DROP TABLE stock_drop;

To accelerate the DETACH operation, index cleanup on the source table is done

automatically through a background asynchronous index cleanup process. If there

are no detached dependents defined on the source table, there is no need to issue

the SET INTEGRITY statement to complete the DETACH operation.

Instead of dropping the table as described in the previous example, it also possible

to attach the table to another table, or truncate it and use it as a table to load new

data into before reattaching it. You can perform these operations immediately, even

before the asynchronous index cleanup has completed, except where the stock table

has detached dependents.

To detect that a detached table is not yet accessible, query the

SYSCAT.TABDETACHEDDEP catalog view. If any inaccessible detached tables are

detected, run the SET INTEGRITY statement with the IMMEDIATE CHECKED

option on all the detached dependents to transition the detached table to a regular

accessible table. If you try to access a detached table before all its detached

dependents are maintained, error code SQL20285N is returned.

342 Administration Guide: Implementation

Rolling in data:

 The following example illustrates the steps to load data into a non-partitioned

table and then add that data partition to the rest of the table.

Example 2: Create a new, empty range:

 ALTER TABLE stock ADD PARTITION dec03

 STARTING FROM ’12/01/2003’ ENDING AT ’12/31/2003’;

This ALTER TABLE ...ADD operation drains queries running against the stock

table and invalidate packages. That is, existing queries complete normally before

the ADD operation continues. Once the ADD operation is issued, any new queries

accessing the stock table block on a lock.

Load data into the table:

 LOAD FROM data_file OF DEL INSERT

 INTO stock ALLOW READ ACCESS;

Use the SET INTEGRITY statement to validate constraints and refresh dependent

materialized query tables (MQTs):

SET INTEGRITY FOR stock ALLOW READ

ACCESS IMMEDIATE CHECKED FOR EXCEPTION IN stock USE stock_ex;

COMMIT WORK;

Tip:One advantage for using ALTER TABLE ...ADD PARTITION followed by a

LOAD operation versus a LOAD operation followed by ALTER TABLE ...ATTACH

is if the table has no constraints or MQTs defined, the SET INTEGRITY statement

is not required to make the new data available. There are disadvantages to adding

a new data partition and loading data directly into the table. The principal

disadvantage of using the ALTER TABLE ...ADD PARTITION statement is that it

prevents updates to the table both during the Load operation itself, and during

any subsequent SET INTEGRITY statement. While both the ALTER TABLE ...ADD

PARTITION statement and the ALTER TABLE ...ATTACH PARTITION statement

cause package invalidation, the LOAD command followed by the ALTER

...ATTACH PARTITION operation yields better data availability. However, the

Figure 3. This figure demonstrates the stages of data availability during a DETACH operation.

Asynchronous index cleanup commences immediately after the DETACH operation is

committed if there are no detached dependents. Otherwise, asynchronous index cleanup

commences after the maintenance of the detached dependents is committed.

Chapter 6. Altering tables and other related table objects 343

ALTER TABLE ...ADD PARTITION statement followed by the IMPORT command

or a regular INSERT statement makes good sense for situations in which the data

is not rolled-in in large blocks, but instead trickles in. Adding a data partition also

makes sense in cases where the data being rolled in does not match the data

partition boundaries.

 Rolling in data into a new table:

 Example 3: In this example, ATTACH is used to facilitate loading a new range of

data into an existing partitioned table. Typically, data is loaded into a new, empty

table to perform any necessary cleaning and checking of the data without

impacting the target table. After the data is prepared, the newly loaded data

partition is attached.

CREATE TABLE dec03(.....);

LOAD FROM data_file OF DEL REPLACE INTO dec03;

Before rolling in your table data, data cleansing might be required before the data

is attached. Data cleansing activities include:

v Filling in missing values

v Deleting inconsistent and incomplete data

v Removing redundant data arriving from multiple sources

v Transforming data

– Normalization (Data from different sources that represents the same values in

different ways must be reconciled as part of rolling the data into the

warehouse.)

– Aggregation (Raw data that is too detailed to store in the warehouse, must be

preaggregated during roll-in.

Next, roll in the data:

ALTER TABLE stock ATTACH PARTITION dec03

STARTING FROM ’12/01/2003’ ENDING AT ’12/31/2003’

FROM dec03;

During an ATTACH operation, one or both of the STARTING and ENDING clauses

must be supplied and the lower bound (STARTING) must be less than or equal to

the upper bound (ENDING). In addition, the newly attached data partition must

not overlap with an existing data partition range in the target table. If the highest

range has been defined as MAXVALUE, then any attempt to attach a new high

range fails because it overlaps the existing high range. This restriction also applies

to MINVALUE. You cannot add or attach a new data partition in the middle unless

it falls in an existing gap in the ranges. Boundaries not specified by the user are

determined when the table is created.

The ALTER TABLE ...ATTACH operation drains all queries and invalidate

packages dependent on the stock table. That is, existing queries complete normally

before the ATTACH operation continues. Once the ATTACH operation is issued,

any new queries accessing the stock table block on a lock. The stock table is

z-locked (completely inaccessible) during this transition. The data in the attached

data partition is not yet visible, because it has not yet been validated by the SET

INTEGRITY statement. Tip:Issue a COMMIT WORK statement immediately after

the ATTACH operation to make the table available for use.

COMMIT WORK;

The SET INTEGRITY statement is necessary to verify that the newly attached data

is in range. It also does any necessary maintenance of indexes and other dependent

344 Administration Guide: Implementation

objects such as MQTs. Until the SET INTEGRITY statement is committed, the new

data is not visible. The existing data in the stock table is fully accessible for both

reading and writing if online SET INTEGRITY is used. The default while SET

INTEGRITY is running is ALLOW NO ACCESS mode.

Note: While SET INTEGRITY is running, you cannot execute DDL or utility type

operations on the table. The operations include but are not restricted to

LOAD, REORG, REDISTRIBUTE, ALTER TABLE (for example, add columns,

ADD, ATTACH, DETACH, TRUNCATE using ALTER to ″not logged

initially″), and INDEX CREATE.
SET INTEGRITY FOR stock ALLOW WRITE ACCESS

IMMEDIATE CHECKED FOR EXCEPTION IN stock USE stock_ex;

Set integrity validates the data in the newly attached data partition.

Next, commit the transaction to make the table available for use.

COMMIT WORK;

Any rows that are out of range, or violate other constraints, are moved to the

exception table stock_ex. You can query stock_ex to inspect the violating rows, and

possibly to clean them up and re-insert them into the table.

 Related concepts:

v “Data partitions” in Administration Guide: Planning

v “Asynchronous index cleanup” in Performance Guide

v “Attributes of detached data partitions” on page 354

v “Optimization strategies for partitioned tables” in Performance Guide

v “Partitioned materialized query table behavior” on page 206

v “Partitioned tables” in Administration Guide: Planning

 Related tasks:

v “Adding data partitions to partitioned tables” on page 356

v “Altering a table” on page 297

v “Altering partitioned tables” on page 336

v “Approaches to defining ranges on partitioned tables” on page 195

Alter... Attach Commit Set Integrity Commit

Read/write

Table Z-lock requested by alter
Lock granted
Alter completes
Lock released

Partition Z-lock and catalog locks requested by SI
Locks granted
SI completes
Locks released

Read/write
all data
partitions

New compilation allowed

Read/write existing data partitions

Figure 4. This figure demonstrates the stages of data availability during an ATTACH

operation.

Chapter 6. Altering tables and other related table objects 345

v “Attaching a data partition” on page 346

v “Detaching a data partition” on page 352

v “Dropping a data partition” on page 358

v “Rotating data in a partitioned table” on page 339

 Related reference:

v “Guidelines and restrictions on altering partitioned tables with attached or

detached data partitions” on page 338

v “LOAD command” in Command Reference

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “SET INTEGRITY statement” in SQL Reference, Volume 2

v “Command Line Processor (CLP) samples” in Samples Topics

Attaching a data partition

 Table partitioning allows for the efficient roll-in and roll-out of table data. This

efficiency is achieved by using the ATTACH PARTITION and DETACH

PARTITION clauses of the ALTER TABLE statement. Rolling in partitioned table

data allows you to easily incorporate a new range into a partitioned table as an

additional data partition.

The ATTACH PARTITION clause takes an existing table (source table) and attaches

it as a new data partition to the target table. The newly attached data partition is

initially inaccessible to queries. The remainder of the table remains online. A call to

the SET INTEGRITY statement is required to bring the attached data partition

online.

 Prerequisites:

 To alter a table to attach a data partition, the privileges held by the authorization

ID of the statement must include at least one of the following authorities and

privileges on the source table:

v SELECT privilege on the source table and DROPIN privilege on the schema of

the source table

v CONTROL privilege on the source table

v SYSADM or DBADM authority.

 Restrictions and usage guidelines:

 The following conditions must be met before you can attach a data partition:

v The table to which you want to attach the new data partition (that is, the target

table) must be an existing partitioned table.

v The source table must be an existing non-partitioned table or a partitioned table

with only a single data partition, and with no ATTACHED or DETACHED data

partitions. To attach multiple data partitions, it is necessary to issue multiple

ATTACH statements.

v The source table cannot be hierarchical (typed table).

v The source table cannot be a range-clustered table (RCT).

v The table definition for a source table must match the target table.

v The number, type, and ordering of columns must match for the source and

target tables.

346 Administration Guide: Implementation

v For both tables, columns must match in terms of whether they contain default

values. If the source column is created by using the ALTER TABLE ADD

COLUMN, that is, SYSCOLUMNS.ADD_DEFAULT = ’Y’, the existDefault value

(SYSCOLUMNS.ADDED_DEFAULT) must match that of the target column.

v For both tables, columns must match in terms of whether they allow NULL or

not.

v The Compression clause, including both VALUE COMPRESSION and SYSTEM

COMPRESSION DEFAULT values must match for the source and target tables.

v Use of the APPEND clause with data capture option, and the not logged initially

option must match.

v Attaching a data partition is allowed even when the target column is a

generated column and the source column is not a generated column. This

statement SET INTEGRITY FOR T ALLOW WRITE ACCESS IMMEDIATE

CHECKED FORCE GENERATED generates the values for the generated column

of the attached rows. The column matching a generated column must match in

type and nullability. There are no required default values for this column. The

recommended approach is to guarantee that the source table of the ATTACH has

the correct generated value in the generated column. Then, you are not required

to use the FORCE GENERATED option. The following statement can be used:

SET INTEGRITY FOR T GENERATED COLUMN IMMEDIATE UNCHECKED

(indicates to the system to bypass checking of generated column)

SET INTEGRITY FOR T ALLOW WRITE ACCESS IMMEDIATE CHECKED FOR EXCEPTION

IN T USE T_EX (performs integrity checking of the attached partition but

will not check for generated column correctness)

v Attaching a data partition is allowed even when the target column is identity

and the source column is non-identity. The statement SET INTEGRITY

IMMEDIATE CHECKED does not generate identity values for the attached rows.

The statement SET INTEGRITY FOR T GENERATE IDENTITY ALLOW WRITE

ACCESS IMMEDIATE CHECKED fills in the identity values for the attached

rows. The column matching an identity column must match in type and

nullability. There is no requirement on the default values of this column. The

recommended approach is for you to fill in the correct identity values at the

staging table. Then after the ATTACH, there is no requirement to use the

GENERATE IDENTITY option because the identity values are already

guaranteed in the source table.

v For tables whose data is distributed across database partitions, the source table

must also be distributed, in the same database partition group using the same

distribution key and the same distribution map.

v The source table must be droppable (that is, it cannot have RESTRICT DROP

set).

v If a DATAPARTITIONNAME is specified, it must not already exist in the target

table.

v If the target table is an multidimensional clustering (MDC) table, the source

table must also be an MDC table.

v The data table space for the source table must match the data table spaces for

the target table in type (that is, DMS or SMS), pageSize, extentSize and database

partition group. A warning is returned to the user if the prefetchSize do not

match. The long table space for the source table must match the long table

spaces for the target table in type, database partition group and pageSize.

 Procedure:

 You can alter a table from the DB2 Control Center or the DB2 command line

processor (CLP).

Chapter 6. Altering tables and other related table objects 347

To use the DB2 Control Center to alter a partitioned table and to attach a data

partition to the table:

1. Expand the Table folder. The table objects are displayed in the contents pane of the DB2

Control Center window.

2. Right-click on the table that you want to modify and select Open Data Partitions from

the list of options.

3. In the Open Data Partitions window click the Attach button.

4. In the Attach Data Partition window specify the name, and boundary specifications of

the data partition to attach.

5. In the Open Data Partitions window click OK to modify the table.

To use the DB2 command line to alter a partitioned table and to attach a data

partition to the table, issue the ALTER TABLE statement

 Related concepts:

v “Data partitions” in Administration Guide: Planning

v “Partitioned tables” in Administration Guide: Planning

v “Attributes of detached data partitions” on page 354

v “Resolving a mismatch when trying to attach a data partition to a partitioned

table” on page 348

 Related tasks:

v “Adding data partitions to partitioned tables” on page 356

v “Altering a table” on page 297

v “Altering partitioned tables” on page 336

v “Creating a new source table using db2look” on page 210

v “Detaching a data partition” on page 352

v “Dropping a data partition” on page 358

v “Rotating data in a partitioned table” on page 339

 Related reference:

v “Examples of rolling in and rolling out partitioned table data” on page 342

v “Guidelines and restrictions on altering partitioned tables with attached or

detached data partitions” on page 338

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “SYSCAT.COLUMNS catalog view” in SQL Reference, Volume 1

Resolving a mismatch when trying to attach a data partition to

a partitioned table

 The following section provides guidelines for correcting various types of

mismatches that can occur when attempting to attach a data partition to a

partitioned table when issuing the ALTER TABLE ...ATTACH PARTITION

statement. You can achieve agreement between tables by modifying the source

table to match the characteristics of the target table, or by modifying the target

table to match the characteristics of the source table. The source table is the

existing table you want to attach to a target table. The target table is the table to

which you want to attach the new data partition.

348 Administration Guide: Implementation

One suggested approach to performing a successful attach is to use the exact

CREATE TABLE statement for the source table as you did for the target table, but

without the PARTITION BY clause. In cases where it is difficult to modify the

characteristics of either the source or target tables for compatibility, you can create

a new source table that is compatible with the target table. For details on creating a

new source see, Creating a new source table using db2lookCreating a new source

table using db2look.

To help you prevent a mismatch from occuring, refer to the Restrictions and usage

guidelines section of Attaching a data partition. The section outlines conditions

that must be met before you can successfully attach a data partition. Failure to

meet the listed conditions returns error SQL20408N or SQL20307N.

The following sections describe the various types of mismatches that can occur and

provides the suggested steps to achieve agreement between tables:

 The (value) compression clause (the COMPRESSION column of

SYSCAT.TABLES) does not match. (SQL20307N reason code 2):

 To achieve value compression agreement, use one of the following statements:

ALTER TABLE... ACTIVATE VALUE COMPRESSION

or

ALTER TABLE... DEACTIVATE VALUE COMPRESSION

To achieve row compression agreement use one of the following statements:

ALTER TABLE... COMPRESS YES

or

ALTER TABLE... COMPRESS NO

 The APPEND mode of the tables does not match. (SQL20307N reason code 3):

 To achieve append mode agreement use one of the following statements:

ALTER TABLE ... APPEND ON

or

ALTER TABLE ... APPEND OFF

 The code pages of the source and target table do not match. (SQL20307N reason

code 4):

 Create a new source

 The source table is a partitioned table with more than one data partition or with

attached or detached data partitions. (SQL20307N reason code 5):

 Detach data partitions from the source table until there is a single visible data

partition using the statement:

ALTER TABLE ... DETACH PARTITION

Include any necessary SET INTEGRITY statements. If the source table has indexes,

you might not be able to attach the source table immediately. Detached data

partitions remain detached until all indexes are cleaned-up of detached keys. If

you want to perform an attach immediately, drop the index on the source table.

Otherwise, create a new source.

Chapter 6. Altering tables and other related table objects 349

The source table is a system table, a view, a typed table, a table ORGANIZED

BY KEY SEQUENCE or a declared global temporary table. (SQL20307N reason

code 6):

 Create a new source.

 The target and source table are the same. (SQL20307N reason code 7):

 You cannot attach a table to itself. Determine the correct table to use as the source

or target table.

 The NOT LOGGED INITIALLY clause was specified for either the source table

or the target table, but not for both. (SQL20307N reason code 8):

 Either make the table that is not logged initially be logged by issuing the COMMIT

statement, or make the table that is logged be not logged initially by entering the

statement:

ALTER TABLE ACTIVATE NOT LOGGED INITIALLY

 The DATA CAPTURE CHANGES clause was specified for either the source

table or the target table, but not both. (SQL20307N reason code 9):

 To enable data capture changes on the table that does not have data capture

changes turned on, run the following statement:

ALTER TABLE ... DATA CAPTURE CHANGES

To disable data capture changes on the table that does have data capture changes

turned on, run the statement:

ALTER TABLE ... DATA CAPTURE NONE

 The distribution clauses of the tables do not match. The distribution key must

be the same for the source table and the target table. (SQL20307N reason code

10):

 It is recommended that you create a new source table. You cannot change the

distribution key of a table spanning multiple database partitions. To change a

distribution key on tables in single-partition database, run the following

statements:

ALTER TABLE ... DROP DISTRIBUTION;

 ALTER TABLE ... ADD DISTRIBUTION(key-specification)

 Only one of the tables has an ORGANIZE BY DIMENSIONS clause specified or

the organizing dimensions are different. (SQL20307N reason code 11):

 Create a new source.

 The data type of the columns (TYPENAME) does not match. (SQL20408N reason

code 1):

 To correct a mismatch in data type, issue the statement:

ALTER TABLE ... ALTER COLUMN ... SET DATA TYPE...

 The nullability of the columns (NULLS) does not match. (SQL20408N reason

code 2):

350 Administration Guide: Implementation

To alter the nullability of the column that does not match for one of the tables

issue one of the following statements:

ALTER TABLE... ALTER COLUMN... DROP NOT NULL

or

ALTER TABLE... ALTER COLUMN... SET NOT NULL

 The implicit default value (SYSCAT.COLUMNS IMPLICITVALUE) of the

columns are incompatible. (SQL20408N reason code 3):

 Create a new source table. Implicit defaults must match exactly if both the target

table column and source table column have implicit defaults (if IMPLICITVALUE

is not NULL).

If IMPLICITVALUE is not NULL for a column in the target table and

IMPLICITVALUE is not NULL for the corresponding column in the source table,

each column was added after the original CREATE TABLE statement for the table.

In this case, the value stored in IMPLICITVALUE must match for this column.

There is a situation, where through migration from a pre-V9.1 table or through

attach of a data partition from a pre-V9.1 table, that IMPLICITVALUE is not NULL

because the system did not know whether or not the column was added after the

original CREATE TABLE statement. If the database is not certain whether the

column is added or not, it is treated as added. An added column is a column

created as the result of an ALTER TABLE ...ADD COLUMN statement. In this case,

the statement is not allowed because the value of the column could become

corrupted if the attach were allowed to proceed. You must copy the data from the

source table to a new table (with IMPLICITVALUE for this column NULL) and use

the new table as the source table for the attach operation.

 The code page (COMPOSITE_CODEPAGE) of the columns does not match.

(SQL20408N reason code 4):

 Create a new source table.

 The system compression default clause (COMPRESS) does not match.

(SQL20408N reason code 5):

 To alter the system compression of the column issue one of the following

statements to correct the mismatch:

ALTER TABLE ... ALTER COLUMN ... COMPRESS SYSTEM DEFAULT

or

ALTER TABLE ... ALTER COLUMN ... COMPRESS OFF

 Related concepts:

v “Data partitions” in Administration Guide: Planning

v “Partitioned tables” in Administration Guide: Planning

 Related tasks:

v “Adding data partitions to partitioned tables” on page 356

v “Altering partitioned tables” on page 336

v “Creating partitioned tables” on page 193

v “Approaches to migrating existing tables and views to partitioned tables” on

page 198

v “Attaching a data partition” on page 346

Chapter 6. Altering tables and other related table objects 351

v “Detaching a data partition” on page 352

v “Rotating data in a partitioned table” on page 339

 Related reference:

v “Examples of rolling in and rolling out partitioned table data” on page 342

v “Guidelines and restrictions on altering partitioned tables with attached or

detached data partitions” on page 338

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “SYSCAT.COLUMNS catalog view” in SQL Reference, Volume 1

Detaching a data partition

 Table partitioning allows for the efficient roll-in and roll-out of table data. This

efficiency is achieved by using the ATTACH PARTITION and DETACH

PARTITION clauses of the ALTER TABLE statement.

Rolling-out partitioned table data allows you to easily separate ranges of data from

a partitioned table. Once a data partition is detached into a separate table, the table

can be handled in several ways. You can drop the seperate table (whereby, the data

from the data partition is destroyed); archive it or otherwise use it as a seperate

table; attach it to another partitoned table such as a history table; or you can

manipulate, cleanse, transform and reattach to the original or some other

partitioned table.

If the source table is a multidimensional clustered table (MDC), access to the newly

detached table is not allowed in the same unit of work as the ALTER TABLE

...DETACH operation. Block indexes are created upon first access to the table after

the ALTER TABLE ...DETACH operation is committed. Access time is reduced

while the block indexes are created.

 Prerequisites:

 To detach a data partition from a partitioned table you must have the following

authorities or privileges:

v The user performing the DETACH operation must have the authority needed to

ALTER, to SELECT from and to DELETE from the source table.

v The user must also have the authority needed to create the target table.

Therefore, to alter a table to detach a data partition, the privilege held by the

authorization ID of the statement must include at least one of the following

authorities or privileges on the target table:

– SYSADM or DBADM authority

– CREATETAB authority on the database and USE privilege on the table spaces

used by the table as well as one of:

- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist

- CREATEIN privilege on the schema, if the schema name of the table refers

to an existing schema.

Note: When detaching a data partition, the authorization ID of the statement is

going to effectively perform a CREATE TABLE statement and therefore must

have the necessary privileges to perform that operation. The authorization

ID of the ALTER TABLE statement becomes the definer of the new table

with CONTROL authority, as if the user had issued the CREATE TABLE

352 Administration Guide: Implementation

statement. No privileges from the table being altered are transferred to the

new table. Only the authorization ID of the ALTER TABLE statement and

DBADM or SYSADM have access to the data immediately after the ALTER

TABLE ...DETACH PARTITION statement.

 Restrictions:

 You must meet the following conditions before you can perform a DETACH

operation:

v The table to be detached from (source table) must exist and be a partitioned

table.

v The data partition to be detached must exist in the source table.

v The source table must have more than one data partition. A partitioned table

must have at least one data partition. Only visible and attached data partitions

pertain in this context. An attached data partition is a data partition that is

attached but not yet validated by the SET INTEGRITY statement.

v The name of the table to be created by the DETACH operation (target table)

must not exist.

v DETACH is not allowed on a table that is the parent of an enforced referential

integrity (RI) relationship.

v If there are any dependent tables that need to be incrementally maintained with

respect to the detached data partition (these dependents table are referred to as

detached dependent tables), then the newly detached table is initially

inaccessible. The table will be marked with an L in the TYPE column of the

SYSCAT.TABLES catalog view. This is referred to as a detached table. This

prevents the table from being read, modified or dropped until the SET

INTEGRITY statement is run to incrementally maintain the detached dependent

tables. After the SET INTEGRITY statement is run on all detached dependent

tables, the detached table is transitioned to a regular table where it becomes

fully accessible.

 Procedure:

 You can alter a table from the DB2 Control Center or the DB2 command line

processor.

To use the DB2 Control Center to alter a partitioned table and to detach a data

partition from the table:

1. Expand the Table folder. The table objects are displayed in the contents pane of the

DB2 Control Center window.

2. Right-click the table that you want to modify and select Open Data Partitions from the

list of options.

3. In the Open Data Partitions window, select a data partition to detach.

4. Click the Detach button.

5. In the Detach Data Partition window, specify the table (schema and name) to create

upon detach.

6. In the Open Data Partitions window, click OK to modify the table.

To use the DB2 command line to alter a partitioned table and to detach a data

partition from the table, issue the ALTER TABLE statement with the DETACH

PARTITION clause.

Chapter 6. Altering tables and other related table objects 353

Related concepts:

v “Attributes of detached data partitions” on page 354

v “Data partitions” in Administration Guide: Planning

 Related tasks:

v “Adding data partitions to partitioned tables” on page 356

v “Altering partitioned tables” on page 336

v “Altering a table” on page 297

v “Dropping a data partition” on page 358

v “Attaching a data partition” on page 346

v “Rotating data in a partitioned table” on page 339

 Related reference:

v “Examples of rolling in and rolling out partitioned table data” on page 342

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “Guidelines and restrictions on altering partitioned tables with attached or

detached data partitions” on page 338

Attributes of detached data partitions

 When you detach a data partition from a partitioned table using the DETACH

PARTITION clause of the ALTER TABLE statement, it becomes a stand-alone target

table. Many attributes of the new target table are inherited from the source table.

Any attributes not inherited from the source table are set as if the user executing

the DETACH operation is creating the target table.

Note: If there are detached dependents then the detached data partition does not

become a stand-alone table at detach time. In this case, the SET INTEGRITY

statement must be issued to complete the detach and make the table

accessible.

 Attributes inherited by the target table:

 Attributes inherited by the target table include:

v The following column definitions:

– Column name

– Data type (includes length and precision for types that have length and

precision, such as CHAR and DECIMAL)

– NULLability

– Column default values

– Code page (CODEPAGE column of SYSCAT.COLUMNS catalog view)

– Logging for LOBs (LOGGED column of SYSCAT.COLUMNS catalog view)

– Compaction for LOBs (COMPACT column of SYSCAT.COLUMNS catalog

view)

– Compression (COMPRESS column of SYSCAT.COLUMNS catalog view)

– Type of hidden column (HIDDEN column of SYSCAT.COLUMNS catalog

view)

– Column order

354 Administration Guide: Implementation

v If the source table is a multidimensional clustering table (MDC), the target table

is also an MDC table, defined with the same dimension columns. Access to the

newly detached table is not allowed in the same unit of work as the detach

when the source table is MDC.

v Block index definitions. The indexes are rebuilt on first access to the newly

detached independent table after the DETACH operation is committed.

v The table space id and table object id are inherited from the data partition, not

from the source table. This is because no table data is moved during a DETACH

operation. In catalog terms, the TBSPACEID column of the

SYSCAT.DATAPARTITIONS catalog view from the source data partition becomes

the TBSPACEID column of the SYSCAT.TABLES catalog view. When translated

into a table space name, it is the TBSPACE column of SYSCAT.TABLES catalog

view in the target table. The PARTITIONOBJECTID column of the

SYSCAT.DATAPARTITIONS catalog view from the source data partition becomes

the TABLEID column of the SYSCAT.TABLES catalog view in the target table.

v The LONG_TBSPACEID column of the SYSCAT.DATAPARTITIONS catalog view

from the source data partition is translated into a table space name and becomes

the LONG_TBSPACE column of SYSCAT.TABLES of the target table.

v Table space location

v ID of distribution map for a multi-partition database (PMAP_ID column of

SYSCAT.TABLES catalog view)

v Percent free (PCTFREE column of SYSCAT.TABLES catalog view)

v Append mode (APPEND_MODE column of SYSCAT.TABLES catalog view)

v Preferred lock granularity (LOCKSIZE column of SYSCAT.TABLES catalog view)

v Data Capture (DATA_CAPTURE column of SYSCAT.TABLES catalog view)

v VOLATILE (VOLATILE column of SYSCAT.TABLES catalog view)

v DROPRULE (DROPRULE column of SYSCAT.TABLES catalog view)

v Compression (COMPRESSION column of SYSCAT.TABLES catalog view)

v Maximum free space search (MAXFREESPACESEARCH column of

SYSCAT.TABLES catalog view)

Note: Partitioned hierarchical or temporary tables, range-clustered tables, and

partitioned views are not supported.

 Attributes not inherited from the source table:

 Attributes not inherited from the source table include:

v The target table type is not inherited. The target table is always a regular table.

v Privileges and Authorities

v Schema

v Generated columns, identity columns, check constraints, referential constraints.

In the case where a source column is a generated column or an identity column,

the corresponding target column has no explicit default value, meaning it has a

default value of NULL.

v Index table space (INDEX_TBSPACE column of the SYSCAT.TABLES catalog

view). The value is set to NULL. Indexes for the table resulting from the

DETACH will be in the same table space as the table.

v Triggers

v Primary key

v Statistics

Chapter 6. Altering tables and other related table objects 355

v All other attributes not mentioned in the list of attributes explicitly inherited

from the source table.

 Related concepts:

v “Data partitions” in Administration Guide: Planning

v “Partitioned tables” in Administration Guide: Planning

 Related tasks:

v “Altering partitioned tables” on page 336

v “Altering a table” on page 297

v “Dropping a data partition” on page 358

v “Attaching a data partition” on page 346

v “Detaching a data partition” on page 352

v “Rotating data in a partitioned table” on page 339

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “Guidelines and restrictions on altering partitioned tables with attached or

detached data partitions” on page 338

v “Examples of rolling in and rolling out partitioned table data” on page 342

Adding data partitions to partitioned tables

 You can use the ALTER TABLE statement to modify a partitioned table after the

table is created. Specifically, you can use the ADD PARTITION clause to add a new

data partition to an existing partitioned table. Adding a data partition to a

partitioned table is more appropriate than attaching a data partition in situations

where data is added to the data partition over time, when data is trickling in

rather than rolling in from an external source, or when you are inserting or loading

data directly into a partitioned table. Specific examples include daily loads of data

into a data partition for January data, or ongoing inserts of individual rows.

 Restrictions and usage guidelines:

 v You cannot add a data partition to a non-partitioned table. For details on

migrating an existing table to a partitioned table, see Approaches to migrating

existing tables and views to partitioned tables

v The range of values for each new data partition, are determined by the

STARTING and ENDING clauses.

v One or both of the STARTING and ENDING clauses must be supplied.

v The new range must not overlap with the range of an existing data partition.

v When adding a new data partition before the first existing data partition, the

STARTING clause must be specified. Use MINVALUE to make this range open

ended.

v Likewise, the ENDING clause must be specified if you want to add a new data

partition after the last existing data partition. Use MAXVALUE to make this

range open ended.

v If the STARTING clause is omitted, then the database manufactures a starting

bound just after the ending bound of the previous data partition. Likewise, if the

ENDING clause is omitted, the database manufactures an ending bound just

before the starting bound of the next data partition.

356 Administration Guide: Implementation

v The start-clause and end-clause syntax is the same as specified in the CREATE

TABLE statement.

v If no IN or LONG IN clause is specified for ADD PARTITION, the table space in

which to place the data partition is chosen using the same method as is used by

the CREATE TABLE statement.

v Packages are invalidated during the ALTER TABLE ...ADD PARTITION

operation.

v The newly added data partition is available once the ALTER TABLE statement is

committed.

Omitting the STARTING or ENDING bound for an ADD or ATTACH operation is

also used to fill a gap in range values. Here is an example of filling in a gap using

the ADD operation where only the starting bound is specified:

CREATE TABLE hole (c1 int) PARTITION BY RANGE (c1)

(STARTING FROM 1 ENDING AT 10, STARTING FROM 20 ENDING AT 30);

DB20000I The SQL command completed successfully.

ALTER TABLE hole ADD PARTITION STARTING 15;

DB20000I The SQL command completed successfully.

SELECT SUBSTR(tabname, 1,12) tabname,

SUBSTR(datapartitionname, 1, 12) datapartitionname,

seqno, SUBSTR(lowvalue, 1, 4) lowvalue, SUBSTR(highvalue, 1, 4) highvalue

FROM SYSCAT.DATAPARTITIONS WHERE TABNAME=’HOLE’ ORDER BY seqno;

TABNAME DATAPARTITIONNAME SEQNO LOWVALUE HIGHVALUE

------------ ----------------- ----------- -------- ---------

HOLE PART0 0 1 10

HOLE PART2 1 15 20

HOLE PART1 2 20 30

3 record(s) selected.

 Procedure:

 You can alter a table from the DB2 Control Center or the DB2 command line

processor (CLP).

To use the DB2 Control Center to alter a partitioned table and to add a new data

partition to the table:

1. Expand the Table folder. The table objects are displayed in the contents pane of the DB2

Control Center window.

2. Right-click the table that you want to modify and select Open Data Partitions from the

list of options.

3. In the Open Data Partitions window, select a data partition to add.

4. Click the Add button.

5. In the Add Data Partition window, specify the name, boundary specifications and

source table of the data partition.

6. In the Open Data Partitions window, click OK to modify the table.

To use the DB2 command line to alter a partitioned table and to add a new data

partition to the table, issue the ALTER TABLE statement with the ADD

PARTITION clause.

 Example 1: Add a data partition to an existing partitioned table holding a range of

values 901 to 1000 inclusive. Assume table sales holds nine ranges 0-100, 101-200,

Chapter 6. Altering tables and other related table objects 357

and so on, up to the value of 900. The example adds an additional range at the

end of the table, indicated by the exclusion of the STARTING clause:

 ALTER TABLE sales ADD PARTITION dp10

(ENDING AT 1000 INCLUSIVE)

 Related concepts:

v “Attributes of detached data partitions” on page 354

v “Data partitions” in Administration Guide: Planning

v “Partitioned tables” in Administration Guide: Planning

 Related tasks:

v “Approaches to migrating existing tables and views to partitioned tables” on

page 198

v “Rotating data in a partitioned table” on page 339

v “Altering partitioned tables” on page 336

v “Dropping a data partition” on page 358

v “Attaching a data partition” on page 346

v “Detaching a data partition” on page 352

 Related reference:

v “Examples of rolling in and rolling out partitioned table data” on page 342

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “CREATE TABLE statement” in SQL Reference, Volume 2

v “Guidelines and restrictions on altering partitioned tables with attached or

detached data partitions” on page 338

Dropping a data partition

 You can drop a data partition using the ALTER TABLE statement with the

DETACH PARTITION clause followed by the DROP TABLE statement to drop the

seperate table.

 Prerequisites:

 To detach a data partition from a partitioned table the user must have the

following authorities or privileges:

v The user performing the DETACH must have the authority needed to ALTER, to

SELECT from and to DELETE from the source table.

v The user must also have the authority needed to CREATE the target table.

Therefore, in order to alter a table to detach a data partition, the privilege held

by the authorization ID of the statement must include at least one of the

following on the target able:

– SYSADM or DBADM authority

– CREATETAB authority on the database and USE privilege on the table spaces

used by the table as well as one of:

- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist

- CREATEIN privilege on the schema, if the schema name of the table refers

to an existing schema.

To drop a table the user must have the following authorities or privileges:

358 Administration Guide: Implementation

v You must either be the definer as recorded in the DEFINER column of

SYSCAT.TABLES, or have at least one of the following privileges:

– SYSADM or DBADM authority

– DROPIN privilege on the schema for the table

– CONTROL privilege on the table

Note: The implication of the detach data partition case is that the authorization ID

of the statement is going to effectively issue a CREATE TABLE statement

and therefore must have the necessary privileges to perform that operation.

The table space is the one where the data partition that is being detached

already resides. The authorization ID of the ALTER TABLE statement

becomes the definer of the new table with CONTROL authority, as if the

user had issued the CREATE TABLE statement. No privileges from the table

being altered are transferred to the new table. Only the authorization ID of

the ALTER TABLE statement and DBADM or SYSADM have access to the

data immediately after the ALTER TABLE ... DETACH PARTITION

operation.

 Procedure:

 You can detach a data partition of a partitioned table from the DB2 Control Center

or from the DB2 command line processor (CLP).

To use the DB2 Control Center to detach a data partition of a partitioned table:

1. Expand the Tables folder. The table objects are displayed in the contents pane of the

DB2 Control Center window.

2. Right-click the table that contains the data partition you want to detach, and select

Open Data Partitions from the list of actions.

3. In the Open Data Partitions window, click the Detach button.

4. Specify the required fields.

To use the DB2 command line to detach a data partition of a partitioned table,

issue the ALTER TABLE statement with the DETACH PARTITION clause.

You can drop a table from the DB2 Control Center or from the DB2 command line

processor (CLP).

To use the DB2 Control Center to drop a table:

1. Expand the Tables folder. The table objects are displayed in the contents pane of the

DB2 Control Center window.

2. Right-click on the table you want to drop, and select Drop from the pop-up menu.

3. Verify your change in the Confirmation window.

To use the DB2 command line to drop a table, issue the DROP TABLE statement.

 Example:

 In this example, the dec01 data partition is detached from table stock and placed in

table junk. You can then drop table junk, effectively dropping the associated data

partition.

Chapter 6. Altering tables and other related table objects 359

ALTER TABLE stock DETACH PART dec01 INTO junk;

 DROP TABLE junk;

Note: To make the DETACH operation as fast as possible, index cleanup on the

source table is done automatically using a background asynchronous index

cleanup process. If there are detached dependents then the detached data

partition does not become a stand-alone table at detach time. In this case,

the SET INTEGRITY statement must be issued to complete the detach and

make the table accessible.

 Related concepts:

v “Attributes of detached data partitions” on page 354

v “Data partitions” in Administration Guide: Planning

v “Partitioned tables” in Administration Guide: Planning

 Related tasks:

v “Adding data partitions to partitioned tables” on page 356

v “Altering partitioned tables” on page 336

v “Attaching a data partition” on page 346

v “Detaching a data partition” on page 352

v “Rotating data in a partitioned table” on page 339

 Related reference:

v “Examples of rolling in and rolling out partitioned table data” on page 342

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “Guidelines and restrictions on altering partitioned tables with attached or

detached data partitions” on page 338

Updating table and view contents using the MERGE statement

 The DB2 database manager provides the ability to update a table or a view using

data from another source, typically the result of a table reference. This type of

update is performed using the MERGE statement.

Rows in the target table that match the source can be deleted or updated based on

specified directions from within the MERGE statement. Rows that do not exist in

the target table can be inserted.

Updating, deleting, or inserting rows in a view cause corresponding row updates,

deletions, or insertions in the table on which the view is based.

 Restrictions:

 The authorization ID associated with the MERGE statement must have the

appropriate privileges to carry out any of the three possible actions: update, delete,

or insert on the table or underlying table of the view. The authorization ID should

also have the appropriate privileges on the table or underlying table of the view in

the subquery.

If an error occurs in the MERGE statement, the entire set of operations associated

with the MERGE is rolled back.

360 Administration Guide: Implementation

It is not possible to update a row in the target table or underlying table of the view

that did not exist before the MERGE statement was run. That is, updating a row

that was inserted as part of the MERGE statement is not allowed.

If a view is specified as the target of the MERGE statement, either no INSTEAD

OF triggers should be defined for the view; or, an INSTEAD OF trigger should be

defined for each of the update, delete, and insert operations.

 Procedure:

 To update, delete, insert, or perform any combination of these actions on a target

table, enter the following at the command prompt:

 MERGE INTO <table or view name>

 USING <table reference> ON <search condition>

 WHEN <match condition> THEN <modification operation or signal statement>

The modification operations and signal statements can be specified more than once

per MERGE statement. Each row in the target table or view can be operated on

only once within a single MERGE statement. This means that a row in the target

table or view can be identified as MATCHED only with one row in the result table

of the table reference.

Consider a situation where there are two tables: shipment and inventory. Using the

shipment table, merge rows into the inventory table. For rows that match, increase

the quantity in the inventory table by the quantity in the shipment table.

Otherwise, insert the new part number into the inventory table.

 MERGE INTO inventory AS in

 USING (SELECT partno, description, count FROM shipment

 WHERE shipment. partno IS NOT NULL) AS sh

 ON (in.partno = sh.partno)

 WHEN MATCHED THEN

 UPDATE SET

 description = sh.description

 quantity = in.quantity + sh.count

 WHEN NOT MATCHED THEN

 INSERT

 (partno, description, quantity)

 VALUES (sh.partno, sh.description, sh.count)

There is no DELETE option in this example. A more complex matching condition

can allow for the addition of a DELETE option. There are several other options,

such as the use of the signal statement and the ELSE clause, that are not

documented here but can be found in the SQL Reference.

 Related reference:

v “MERGE statement” in SQL Reference, Volume 2

Recovering inoperative summary tables

 Summary tables can become inoperative as a result of a revoked SELECT privilege

on an underlying table.

 Procedure:

 The following steps can help you recover an inoperative summary table:

Chapter 6. Altering tables and other related table objects 361

v Determine the SQL statement that was initially used to create the summary

table. You can obtain this information from the TEXT column of the

SYSCAT.VIEW catalog view.

v Re-create the summary table by using the CREATE SUMMARY TABLE

statement with the same summary table name and same definition.

v Use the GRANT statement to re-grant all privileges that were previously granted

on the summary table. (Note that all privileges granted on the inoperative

summary table are revoked.)

If you do not want to recover an inoperative summary table, you can explicitly

drop it with the DROP TABLE statement, or you can create a new summary table

with the same name but a different definition.

An inoperative summary table only has entries in the SYSCAT.TABLES and

SYSCAT.VIEWS catalog views; all entries in the SYSCAT.VIEWDEP,

SYSCAT.TABAUTH, SYSCAT.COLUMNS and SYSCAT.COLAUTH catalog views

are removed.

 Related reference:

v “GRANT (Table, View, or Nickname Privileges) statement” in SQL Reference,

Volume 2

v “SYSCAT.VIEWS catalog view” in SQL Reference, Volume 1

v “CREATE TABLE statement” in SQL Reference, Volume 2

v “DROP statement” in SQL Reference, Volume 2

Dropping or deleting tables

This section describes how to drop or delete tables.

Deleting and updating rows of a typed table

Rows can be deleted from typed tables using either searched or positioned

DELETE statements. Rows can be updated in typed tables using either searched or

positioned UPDATE statements.

 Related concepts:

v “Typed tables” in SQL Guide

 Related reference:

v “DELETE statement” in SQL Reference, Volume 2

v “UPDATE statement” in SQL Reference, Volume 2

Deleting the contents of staging tables

 You can delete the contents of a staging table.

 Prerequisites:

 To delete the contents of a staging table, you need the following authorities:

v SYSADM or DBADM authority

v CONTROL privileges on the staging table being pruned

362 Administration Guide: Implementation

Procedure:

 To delete the contents of a staging table using the Control Center:

1. Open the Set Integrity window: From the Control Center, expand the object tree until

you find the Tables folder. Click on the Tables folder. Any existing tables are displayed

in the pane on the right side of the window. Right-click the table you want and select

Set Integrity from the pop-up menu. The Set Integrity window opens.

2. Review the Current integrity status of the table you are working with.

3. If the table is in Set Integrity Pending state, select the Immediate and checked and the

Prune check box in the Options group box to delete the contents of the staging table

and to propagate to the staging table.

4. If the table is not in Set Integrity Pending state, select the Prune radio button to delete

the contents of the staging table without propagating to the staging table.

Note: If you select the Immediate and checked radio button, the table will be brought

out of Set Integrity Pending state.

To delete the contents of a staging table using the command line, use the SET

INTEGRITY statement.

 Related tasks:

v “Checking for constraint violations using SET INTEGRITY” on page 230

 Related reference:

v “SET INTEGRITY statement” in SQL Reference, Volume 2

Dropping a table

 A table can be dropped with a DROP TABLE SQL statement.

When a table is dropped, the row in the SYSCAT.TABLES catalog that contains

information about that table is dropped, and any other objects that depend on the

table are affected. For example:

v All column names are dropped.

v Indexes created on any columns of the table are dropped.

v All views based on the table are marked inoperative.

v All privileges on the dropped table and dependent views are implicitly revoked.

v All referential constraints in which the table is a parent or dependent are

dropped.

v All packages and cached dynamic SQL and XQuery statements dependent on

the dropped table are marked invalid, and remain so until the dependent objects

are re-created. This includes packages dependent on any supertable above the

subtable in the hierarchy that is being dropped.

v Any reference columns for which the dropped table is defined as the scope of

the reference become “unscoped”.

v An alias definition on the table is not affected, because an alias can be undefined

v All triggers dependent on the dropped table are marked inoperative.

v All files that are linked through any DATALINK columns are unlinked. The

unlink operation is performed asynchronously which means the files might not

be immediately available for other operations.

 Procedure:

Chapter 6. Altering tables and other related table objects 363

To drop a table using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click on the table you want to drop, and select Drop from the pop-up menu.

3. Check the Confirmation box, and click OK.

To drop a table using the command line, enter:

 DROP TABLE <table_name>

The following statement drops the table called DEPARTMENT:

 DROP TABLE DEPARTMENT

An individual table cannot be dropped if it has a subtable. However, all the tables

in a table hierarchy can be dropped by a single DROP TABLE HIERARCHY

statement, as in the following example:

 DROP TABLE HIERARCHY person

The DROP TABLE HIERARCHY statement must name the root table of the

hierarchy to be dropped.

There are differences when dropping a table hierarchy compared to dropping a

specific table:

v DROP TABLE HIERARCHY does not activate deletion-triggers that would be

activated by individual DROP table statements. For example, dropping an

individual subtable would activate deletion-triggers on its supertables.

v DROP TABLE HIERARCHY does not make log entries for the individual rows of

the dropped tables. Instead, the dropping of the hierarchy is logged as a single

event.

 Related concepts:

v “Statement dependencies when changing objects” on page 366

 Related tasks:

v “Dropping a user-defined temporary table” on page 364

v “Recovering inoperative views” on page 331

 Related reference:

v “DROP statement” in SQL Reference, Volume 2

Dropping a user-defined temporary table

 A user-defined temporary table is created using the DECLARE GLOBAL

TEMPORARY TABLE statement.

 Prerequisites:

 When dropping such a table, the table name must be qualified by the schema

name SESSION and must exist in the application that created the table.

 Restrictions:

364 Administration Guide: Implementation

Packages cannot be dependent on this type of table and therefore they are not

invalidated when such a table is dropped.

 Procedure:

 When a user-defined temporary table is dropped, and its creation preceded the

active unit of work or savepoint, then the table is functionally dropped and the

application is not able to access the table. However, the table still has some space

reserved in its table space and this prevents the user temporary table space from

being dropped until the unit of work is committed or the savepoint is ended.

 Related tasks:

v “Creating a user-defined temporary table” on page 212

 Related reference:

v “DROP statement” in SQL Reference, Volume 2

v “SET SCHEMA statement” in SQL Reference, Volume 2

Dropping a materialized query or staging table

 You cannot alter a materialized query or staging table, but you can drop it.

All indexes, primary keys, foreign keys, and check constraints referencing the table

are dropped. All views and triggers that reference the table are made inoperative.

All packages depending on any object dropped or marked inoperative will be

invalidated.

 Procedure:

 To drop a materialized query table using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click on the materialized query or staging table you want to drop, and select

Drop from the pop-up menu.

3. Check the Confirmation box, and click Ok.

To drop a materialized query or staging table using the command line, enter:

 DROP TABLE <table_name>

The following SQL statement drops the materialized query table XT:

 DROP TABLE XT

A materialized query table might be explicitly dropped with the DROP TABLE

statement, or it might be dropped implicitly if any of the underlying tables are

dropped.

A staging table might be explicitly dropped with the DROP TABLE statement, or it

might be dropped implicitly when its associated materialized query table is

dropped.

 Related concepts:

v “Statement dependencies when changing objects” on page 366

Chapter 6. Altering tables and other related table objects 365

Related tasks:

v “Creating a materialized query table” on page 201

v “Creating a staging table” on page 211

 Related reference:

v “DROP statement” in SQL Reference, Volume 2

Statement dependencies when changing objects

 Statement dependencies include package and cached dynamic SQL and XQuery

statements. A package is a database object that contains the information needed by

the database manager to access data in the most efficient way for a particular

application program. Binding is the process that creates the package the database

manager needs in order to access the database when the application is executed.

Packages and cached dynamic SQL and XQuery statements can be dependent on

many types of objects.

These objects could be explicitly referenced, for example, a table or user-defined

function that is involved in an SQL SELECT statement. The objects could also be

implicitly referenced, for example, a dependent table that needs to be checked to

ensure that referential constraints are not violated when a row in a parent table is

deleted. Packages are also dependent on the privileges which have been granted to

the package creator.

If a package or cached dynamic query statement depends on an object and that

object is dropped, the package or cached dynamic query statement is placed in an

“invalid” state. If a package depends on a user-defined function and that function

is dropped, the package is placed in an “inoperative” state.

A cached dynamic SQL or XQuery statement that is in an invalid state is

automatically re-optimized on its next use. If an object required by the statement

has been dropped, execution of the dynamic SQL or XQuery statement might fail

with an error message.

A package that is in an invalid state is implicitly rebound on its next use. Such a

package can also be explicitly rebound. If a package was marked invalid because a

trigger was dropped, the rebound package no longer invokes the trigger.

A package that is in an inoperative state must be explicitly rebound before it can

be used.

Federated database objects have similar dependencies. For example, dropping a

server invalidates any packages or cached dynamic SQL referencing nicknames

associated with that server.

In some cases, it is not possible to rebind the package. For example, if a table has

been dropped and not re-created, the package cannot be rebound. In this case, you

need to either re-create the object or change the application so it does not use the

dropped object.

In many other cases, for example if one of the constraints was dropped, it is

possible to rebind the package.

366 Administration Guide: Implementation

The following system catalog views help you to determine the state of a package

and the package’s dependencies:

v SYSCAT.PACKAGEAUTH

v SYSCAT.PACKAGEDEP

v SYSCAT.PACKAGES

 Related concepts:

v “Package recreation using the BIND command and an existing bind file” in

Developing Embedded SQL Applications

v “Rebinding existing packages with the REBIND command” in Developing

Embedded SQL Applications

 Related reference:

v “SYSCAT.PACKAGEAUTH catalog view” in SQL Reference, Volume 1

v “SYSCAT.PACKAGEDEP catalog view” in SQL Reference, Volume 1

v “SYSCAT.PACKAGES catalog view” in SQL Reference, Volume 1

v “BIND command” in Command Reference

v “REBIND command” in Command Reference

v “DROP statement” in SQL Reference, Volume 2

Chapter 6. Altering tables and other related table objects 367

368 Administration Guide: Implementation

Chapter 7. Using the DB2 administration tools

This section describes how to use the DB2 graphical user interface tools and

includes some tasks that can only be performed using the graphical user interface.

This section also discusses how you can extend the Control Center by adding new

tool bar buttons including new actions, adding new object definitions, and adding

new action definitions.

Starting the server DB2 administration tools

 Use the Control Center to perform administrative tasks on systems, databases, and

database objects. Objects are displayed in the Control Center on the object tree and

in the contents pane .

To open the Control Center:

v In Windows, click Start -> Programs -> IBM DB2 -> General Administration

Tools -> Control Center.

v In Linux, open the IBM DB2 folder on the desktop and click Control Center.

Display the object in the Control Center.

Note: Some administration tasks are invoked from folders on the object tree, while

others are invoked from individual object icons. For example, the task of

creating a database is invoked from the Databases folder, while configuring

a database is invoked on the database itself.

Right-click the object. A pop-up menu of all of the available administration actions

for that object opens. Click the task in the pop-up menu. A window or notebook

opens to guide you through the steps required to complete the action for the

selected object.

For more information, see the Administration Guide , the Command Reference , and

the SQL Reference.

 Related concepts:

v “Control Center overview” on page 376

Shutting down server DB2 administration tools

 Use the Shut Down DB2 Tools menu choice to shut down all of the server DB2

administration tools.

When you shut down the server DB2 administration tools, all connections are

dropped and the windows for all open centers close.

 Related tasks:

v “Setting startup and default options for the DB2 administration tools” on page

436

v “Setting the server administration tools startup property” on page 434

© Copyright IBM Corp. 1993, 2006 369

Finding service level information about the DB2 administration tools

environment

 Use the About DB2 Administration Tools Environment window, About System

window, or About Instance window to gather service level information about the

DB2 administration tools. This information is used by the DB2 database service

analyst to determine the exact service level of the DB2 administration tools

running on your system.

To open the About DB2 Administration Tools Environment, click Help–>About. To

open the About System window or the About Instance window, select a system or

instance and click About from the pop-up menu.

These windows contain the following information about the DB2 administration

tools:

v Product identifier : identifies the product in the format pppvvrrm , where ppp is

the product, vv is the version, rr is the release, and m is the modification level.

v Level identifier , Level , Build level , and PTF : identifies the level of service

applied to the DB2 administration tools. This information changes as FixPaks

and other service items are applied.

v Level of the Java code base : only on the About DB2 Administration Tools

Environment window.

v Operating system : only on the About System window.

To copy the information in the window to the clipboard, click Copy to Clipboard.

You can then paste the information into a file, e-mail, or other application.

 Related concepts:

v “Control Center overview” on page 376

Using the DB2 database help

 Use the DB2 database help to find information about operating the centers and

components of DB2 database system.

 To find a topic when you are not sure where to start, use one or more of the

following methods:

v Select a topic from the DB2 Information Center.

v Type the relevant keywords in the Search field of the DB2 Information Center,

and click GO .

v Select a topic from the table of contents in the left pane of the help window.

v Look up a term in the glossary by clicking the Glossary link in the left pane

help window.

v Look up a keyword in the online index by clicking the Index link in the left

pane help window.

 To get help for the current window, notebook, or wizard:

v Click the Help push button, if available.

v Windows, notebooks, and wizards have control-specific help known as infopops.

You can display the help for a field or control by selecting it and pressing F1. If

370 Administration Guide: Implementation

the Automatically display infopops check box on the Help System page of the

Tool Settings notebook is selected, you can also see the infopop by holding the

mouse pointer over the field or control.

v Click on the hypertext links (underlined text), if any, that appear in the

descriptions on the windows, notebooks, or wizard pages.

Help prefixed with the version icon,

, indicates that it applies to a specific

version of the product.

 Printing a help topic:

 To print a help topic, click the File–>Print , or right-click anywhere in the topic

text and click Print .

 Help that indicates partitioned or single-partition database environments:

 In the DB2 database help, graphics are used to indicate when information applies

to a subset of situations:

v

Information that pertains only to partitioned database environments is

prefixed with the icon shown at the beginning of this sentence.

v

Information that pertains only to single-partition database environments is

prefixed with the icon shown at the beginning of this sentence.

 Related tasks:

v “Setting up access to DB2 contextual help and documentation” on page 435

 Related reference:

v “DB2 Help menu” on page 375

Environment-specific information

Information marked with this icon pertains only to single-partition

database environments.

Information marked with this icon pertains only to partitioned database

environments.

 Related concepts:

v “Control Center overview” on page 376

Menus and toolbars

This section describes the menus and toolbars found in the DB2 administration

tools.

DB2 toolbar

Chapter 7. Using the DB2 administration tools 371

Use the toolbar icons to open DB2 tools, view the legend for DB2 objects, and view

DB2 information. To get help on the toolbar icons, hold your cursor over each icon

to display the hover help. Note that the number of icons on the toolbar varies

depending on what centers are installed.

The toolbar icons are:

Control Center

 Opens the Control Center to enable you to display all of your systems,

databases, and database objects and perform administration tasks on them.

Replication Center

 Opens the Replication Center to enable you to design your replication

environment and set up your replication environment.

Satellite Administration Center

 Opens the Satellite Administration Center to enable you to set up and

administer satellites and the information that is maintained in the satellite

control tables.

Command Editor

 Opens the Command Editor to enable you to work with database

commands, their results, and access plans for queries.

Task Center

 Opens the Task Center to enable you to create, schedule, and execute tasks.

Health Center

 Opens the Health Center to enable you to work with alerts generated

while using the DB2 database manager.

Journal

 Opens the Journal to enable you to schedule jobs that are to run

unattended and view notification log entries.

License Center

 Opens the License Center to enable you to display license status and usage

information for the DB2 products installed on your system and use the

License Center to configure your system for license monitoring.

Configuration Assistant

 Opens the Configuration Assistant to enable you to configure your

workstation to access your DB2 subsystem.

Tools Settings

 Opens the Tools Settings notebook to enable you to customize settings and

properties for the administration tools and for replication tasks.

Legend

372 Administration Guide: Implementation

Opens the Legend window that displays all of the object icons available in

the Control Center by icon and name.

Help

 Displays information about how to use help for this product.

 Related tasks:

v “Changing the fonts for menus and text” on page 437

 Related reference:

v “DB2 Help menu” on page 375

v “DB2 secondary toolbar” on page 373

v “DB2 Tools menu” on page 374

DB2 secondary toolbar

Use the toolbar below the contents pane to tailor the view of objects and

information in the contents pane to suit your needs.

Sort

 Opens the Sort window so that you can select the order in which objects

are displayed in the contents pane. You can sort on any column, or on

multiple columns, in the contents pane (ascending or descending).

Filter

 Opens the Filter window so that you can filter the objects that appear in

the contents pane.

Customize columns

 Opens the Customize Columns window so that you can select the order of

the informational columns in the contents pane and reorder, include, or

exclude them.

Find

 Opens the Find window so that you can search for a string in the columns

of the contents pane.

Select all

 Selects all of the objects in the contents pane.

Deselect all

 Deselects all selected objects in the contents pane.

Expand all

 Expands all of the objects in the contents pane.

Collapse all

Chapter 7. Using the DB2 administration tools 373

Collapses all objects in the contents pane.

Default View

Click to display the default or named views. If you are using the default

view, the button name is Default View. If you are using one of the named

views, the button name reflects the name of the view that you are using.

View Click to display some of the View menu options.

 Related tasks:

v “Changing the fonts for menus and text” on page 437

 Related reference:

v “DB2 Help menu” on page 375

v “DB2 toolbar” on page 371

v “DB2 Tools menu” on page 374

DB2 Tools menu

Use the Tools menu to open any of the DB2 Administration tools. Some of the

functions in this menu are also available by clicking the icons in the DB2 toolbar.

From this menu, you can select the following menu items. Depending on which

tool you are using, some of these menu options will not display.

Wizards

Opens the Wizards window so that you have quick access to the more

common DB2 wizards.

Control Center

Opens the Control Center to enable you to manage systems, DB2 database

instances, DB2 Universal Database for OS/390 and z/OS subsystems,

databases, and database objects such as tables and views. In the Control

Center, you can display all of your systems, databases, and database

objects and perform administration tasks on them.

Replication Center

Opens the Replication Center to enable you to administer relational data

between DB2 servers or databases.

Satellite Administration Center

Opens the Satellite Administration Center so that you can set up and

administer both satellites, and the information that is maintained in the

satellite control tables at a central DB2 control server.

Command Editor

Opens the Command Editor to enable you to execute DB2 CLP commands

and query statements, z/OS or OS/390 operating system commands, or

command scripts. This editor also lets you view a graphical representation

of the access plan for explained SQL and XQuery statements.

Task Center

Opens the Task Center to enable you to create, schedule, and run tasks

such as DB2 or operating system command scripts, MVS™ shell scripts,

JCL scripts.

Health Center

Opens the Health Center to enable you to monitor instances using the

Health Center. This center also alerts you to potential problems and

374 Administration Guide: Implementation

provides recommendations to resolve those problems. You can also use

specific monitoring tools, such as the Memory Visualizer to drill-down into

specific performance areas.

Journal

Opens the Journal to enable you to view historical information generated

within the Control Center and its components.

License Center

Opens the License Center to enable you to display license status and usage

information for the DB2 products installed on your system and use the

License Center to configure your system for license monitoring.

Customize Control Center

Opens the Control Center View window where you can specify the Control

Center view that you want to display: Basic, Advanced, or Custom.

Tools Settings

Opens the Tools Settings notebook so that you can customize settings and

set properties for the administration tools, for replication tasks, for Health

Center notification, and for default scheduling schemes.

 Related tasks:

v “Changing the fonts for menus and text” on page 437

 Related reference:

v “DB2 Help menu” on page 375

v “DB2 secondary toolbar” on page 373

v “DB2 toolbar” on page 371

DB2 Help menu

Use the Help menu on DB2 Administration tools to display online help and

information about the DB2 tool you are using.

Help index

Opens the DB2 master index.

General Help

Displays getting started help for the center or component you are working

with.

Keyboard help

Displays information about how to use accelerator keys for this product.

Using help

Displays information about how to use online help for this product.

DB2 Tutorials

Opens a Web page that lists the tutorials available with this version of the

DB2 product. The tutorials are available both in HTML and PDF format.

Product information

Displays information about the product.

About

Displays service information about the DB2 Administration tools.

 Related concepts:

v “Control Center overview” on page 376

Chapter 7. Using the DB2 administration tools 375

Related tasks:

v “Changing the fonts for menus and text” on page 437

 Related reference:

v “DB2 secondary toolbar” on page 373

v “DB2 toolbar” on page 371

v “DB2 Tools menu” on page 374

Control Center

This section describes how to use the Control Center, including how it can be

extended.

Control Center overview

 Use the Control Center to manage and administer systems, DB2 database instances,

DB2 Universal Database for z/OS subsystems, databases, and database objects

such as tables and views. From the Control Center, you can also open other centers

and tools to help you optimize queries, jobs, and scripts, perform data

warehousing tasks, create stored procedures, and work with DB2 and IMS

commands.

The Control Center supports the native XML data type for many of its functions.

This allows database administrators to work with XML documents stored in XML

columns alongside relational data.

Note: As you work with the Control Center, you might encounter information

prefixed with the

icon. This means that the associated information

applies only if you are working in a partitioned database environment.

To open the Control Center:

v In Windows, click Start -> Programs -> IBM DB2 -> General Administration

Tools -> Control Center.

v In Linux, open the IBM DB2 folder on the desktop and click Control Center.

Tasks from the Control Center

The following are some of the key tasks that you can perform with the Control

Center:

v Add DB2 database systems, federated systems, DB2 UDB for z/OS and OS/390

systems, IMSysplexes, instances, databases, and database objects to the object

tree.

v Manage database objects. You can create, alter, and drop databases, table spaces,

tables, views, indexes, triggers, and schemas. You can also manage users.

v Manage data. You can load, import, export, and reorganize data. You can also

gather statistics.

v Perform preventive maintenance by backing up and restoring databases or table

spaces.

v Configure and tune instances and databases.

v Manage database connections, such as DB2 Connect servers and subsystems.

v Manage IMS systems.

v Manage DB2 UDB for z/OS and OS/390 subsystems.

376 Administration Guide: Implementation

v Manage applications.

v Analyze queries using Visual Explain to look at access plans.

v Launch other tools such as the Command Editor and the Health Center.

In many cases, advisors, launchpads, and wizards are available to help you

perform these tasks quickly and easily.

The Control Center interface

The Control Center interface is available in three different views:

v Basic. This view provides core DB2 database functionality, which includes the

essential objects, such as databases, tables, and stored procedures.

v Advanced. This view displays all objects and actions available in the Control

Center. This is the view that you should select if you are working in an

enterprise environment and want to connect to DB2 for z/OS or IMS.

v Custom. This view gives you the ability to tailor the object tree and the object

actions to your specific needs.

You can select or change your view by choosing Tools from the menu bar and

selecting Customize the Control Center. You can then use your Control Center

view to work with the various folders and the objects that they contain (the objects

within a folder are called folder objects).

Working in the Control Center

The Control Center has six action areas that you can use to define, manage, and

work with DB2 objects.

Chapter 7. Using the DB2 administration tools 377

Menu bar

Use the menu bar to work with folders and folder objects in the Control

Center, open other DB2 centers and tools, access advisors, wizards and

launchpads, and display online help.

Control Center toolbar

Use the toolbar icons below the menu bar to access other DB2 centers and

tools and display online help. Note that the icons on this toolbar reflect the

set of administration tools installed and might be different than those

shown in the graphic above.

Object tree

Use the object tree to display and work with folders and folder objects.

Selecting an item displays related objects, actions, and information in the

contents pane and the object details pane. Right-clicking an item displays a

pop-up menu listing all the actions that you can perform on that item.

Contents pane

Use the contents pane to display and work with folder objects. The

contents pane displays those objects that make up the contents of the

folder that is selected in the object tree. Selecting an object displays its

associated actions and information in the object details pane.

Contents pane toolbar

Use the toolbar below the contents pane to tailor the view of objects and

information in the contents pane to suit your needs. These functions are

also available from Edit and View in the menu bar.

378 Administration Guide: Implementation

Object Details pane

 Use the object details pane to display information on and work with the

folder or folder object that you have selected in the object tree or contents

pane. If the object details pane is not displayed, select View from the menu

bar and select Show Object Details pane.

 The object details pane is only available for Windows, Linux, and UNIX

operating systems, and only when database objects are selected from the

object tree.

 Accessing custom controls with the keyboard:

v You can use the keyboard to access controls found on the graphical user

interface. For more information, see Keyboard shortcuts and accelerators .

 Accessing other types of help:

v Infopops: An infopop is pop-up information that is displayed when your mouse

pointer is over a field or control in a window or notebook, or when field or

control has focus and you press F1.

v Hover help: Hover help is pop-up information that is displayed when your

mouse pointer is over an element of the interface (for example, an icon).

 Accessing help for icons in the product:

v See Control Center icons to familiarize yourself with the various graphical

images used in the Control Center.

 Setting DB2 administration tools preferences:

v See Tool Settings overview to tailor the appearance of the Control Center (for

example, the text font) to your own personal preferences.

 Related concepts:

v “Command Editor overview” in Online DB2 Information Center

v “Configuration Assistant overview” in Online DB2 Information Center

v “Guidelines for Control Center plugin developers” on page 395

v “Introducing the plug-in architecture for the Control Center” on page 395

v “Journal overview” on page 418

v “Task Center overview” on page 416

v “Visual Explain overview” on page 451

v “Writing plugins as Control Center extensions” on page 397

 Related tasks:

v “Displaying objects in the Control Center” on page 392

v “Expanding and collapsing the Control Center object tree” on page 389

v “Getting help in the Control Center” on page 385

v “Managing database partitions from the Control Center” on page 282

v “Obtaining Control Center diagnostic information” on page 393

Chapter 7. Using the DB2 administration tools 379

v “Opening new Control Centers” on page 382

v “Setting Command Editor options” on page 449

v “Setting up the DB2 administration server (DAS) to use the Configuration

Assistant and the Control Center” on page 110

 Related reference:

v “Control Center Legend” on page 380

Control Center Legend

 Use the Legend window to see the object icons used in the Control Center and

what they represent.

To open the Legend window, click

on the toolbar.

 Objects:

System

A computer system defined to the DB2 system DB2 administration tools.

Instance

A database manager environment that is an image of the actual database

manager environment. You can have several instances of a database

manager on the same system.

Database

A DB2 relational database. A relational database presents data as a

collection of tables.

Table

A named data object consisting of a specific number of columns and some

unordered rows.

View

A logical table that consists of data that is generated by a query.

380 Administration Guide: Implementation

Alias

An alternative name used to identify a table, view, or database.

Schema

A collection of database objects such as tables, views, indexes, and triggers.

It provides a logical classification of database objects.

Index

A set of pointers that are logically ordered by the values of a key. Indexes

provide quick access to data and can enforce uniqueness on the rows in

the table.

Trigger

An object in a database that is invoked indirectly by the database manager

when a particular SQL statement is run.

Table Space

An abstraction of a collection of containers into which database objects are

stored.

Buffer Pool

An area of storage in which all buffers of a program are kept.

User-Defined Distinct Datatype

A data type that is not native to the DB2 database manager and that was

created by a user.

User-Defined Function

A function that is defined to the database management system and can be

referenced in SQL queries.

Package

A control structure produced during program preparation that is used to

execute SQL statements.

Stored Procedures

A block of procedural constructs and embedded SQL statements that is

stored in a database and can be called by name.

DB User

A user that has specific database privileges.

DB Group

A group of users that has specific database privileges.

Partition

In a partitioned database environment, one part of either a database

partition, a table space partition, or a portion of a table.

Database Partition

In a partitioned database environment, a part of the database that consists

of its own user data, indexes, configuration files, and transaction logs.

Chapter 7. Using the DB2 administration tools 381

Table Space Partition

In a partitioned database environment, table spaces that reside in database

partition groups.

Table Parition

A table in a database partition group consisting of multiple partitions,

some of its rows are stored in one partition, and other rows are stored in

other partitions.

Database Partition Group

In a partitioned database environment, a named set of one or more

database partitions.

 A set of a particular object type is represented by a folder that has the icon for that

type displayed on top of it. For example, a set of systems is represented by the

following icon:

 Related concepts:

v “Control Center overview” on page 376

Opening new Control Centers

 To open a new Control Center, click the

icon on the toolbar, or right-click a

system, subsystem, instance, database folder, or another object, and click Open

new Control Center in the pop-up menu. The new Control Center opens in a

separate window. If this action is performed in another center, the last Control

Center opened is brought to the front.

The object tree in the new Control Center will start with the object you selected to

open the new Control Center.

With a second Control Center, you can work with two or more objects that are not

easily displayed in a single object tree or contents pane. This feature is especially

useful when you want to look at the contents of two folders at the same time.

 Related concepts:

v “Control Center overview” on page 376

Creating database objects

 Use the Control Center to create database objects such as databases, tables, views,

indexes, and triggers.

To create databases in the Control Center, you need either SYSADM or SYSCTRL

authority. For information on the authorities needed to create other database

objects, such as tables and table spaces, see the authorities and privileges

information for creating the specific object.

To create a new database object, Open the Control Center:

382 Administration Guide: Implementation

v In Windows, click Start -> Programs -> IBM DB2 -> General Administration

Tools -> Control Center.

v In Linux, open the IBM DB2 folder on the desktop and click Control Center.

Expand the object tree to display a folder for the type of object that you want to

create. Right-click the folder. A pop-up menu of all of the available actions for the

object opens. Click the Create or Create from Import menu item, if it is available.

A window or notebook opens to guide you through the process for creating the

object.

 Related concepts:

v “About databases” in Administration Guide: Planning

v “Control Center overview” on page 376

Changing system names displayed in the Control Center

 Systems are displayed in the Control Center object tree, and each system represents

a physical server. The system name that is displayed for each system is stored in

the corresponding admin node directory entry for the system.

Note:

For remote systems, it is recommended that you use the remote hostname as

the system name. This will ensure that the system names are unique in the

Control Center object tree.

v When you change a system name displayed in the Control Center using

the Change System window, the system name of the nodes under the

same system are also updated.

v When you change a system name using the CLP, you will have to update

each child node individually.

 Prerequisites:

 To change system names, you must have SYSADM or SYSCTRL authority.

 Procedure:

 To change a system name using either the Control Center or the Configuration

Assistant:

1. Open the Change System window using one of the following methods:

v From the Control Center, expand the object tree until you find the system that you

want to change. Right-click the All Systems folder and select Change from the

pop-up menu. The Change System window opens.

v From the Configuration Assistant Advanced view, click the Systems tab. Select the

system that you want to change and click Selected–>Change System. The Change

System window opens.

Note: You cannot open the Change System window from the Selected menu unless

you are in the Advanced view. To switch to the Advanced view, select

View–>Advanced View.

2. Change the system name and other fields as required. If you are changing protocol

information, you may require the assistance of your network or database administrator.

Chapter 7. Using the DB2 administration tools 383

To change a system name using the CLP, use the CATALOG ADMIN NODE and

CATALOG NODE commands.

For example, suppose that you have the following entries in the node directory

and in the admin node directory:

DB2 LIST ADMIN NODE DIRECTORY SHOW DETAIL

 Node Directory

 Number of entries in the directory = 1

 Node 1 entry:

 Node name = HONCHO

 Comment =

 Directory entry type = LOCAL

 Protocol = TCPIP

 Hostname = honcho

 Service name = 523

 Remote instance name =

 System = HONCHO

 Operating system type = WIN

DB2 LIST NODE DIRECTORY SHOW DETAIL

 Node Directory

 Number of entries in the directory = 1

 Node 1 entry:

 Node name = NODE1

 Comment =

 Directory entry type = LOCAL

 Protocol = TCPIP

 Hostname = honcho

 Service name = 78787

 Remote instance name = db2inst1

 System = HONCHO

 Operating system type = WIN

To change the system name from HONCHO to PLATO, you would issue the

following commands to recatalog the above nodes with a new system name:

 DB2 UNCATALOG NODE HONCHO

 DB2 CATALOG ADMIN TCPIP NODE HONCHO REMOTE HONCHO SYSTEM PLATO OSTYPE WIN

 DB2 UNCATALOG NODE NODE1

 DB2 CATALOG TCPIP NODE NODE1 REMOTE HONCHO SERVER 78787

 REMOTE_INSTANCE db2inst1 SYSTEM PLATO OSTYPE WIN

On restarting the Control Center, the system name is now displayed as PLATO.

The system will still have a single instance (db2inst1) located under it in the object

tree.

 Related concepts:

v “About systems” in Administration Guide: Planning

 Related tasks:

v “Cataloging database systems” on page 177

 Related reference:

v “CATALOG TCPIP/TCPIP4/TCPIP6 NODE command” in Command Reference

v “LIST NODE DIRECTORY command” in Command Reference

v “UNCATALOG NODE command” in Command Reference

384 Administration Guide: Implementation

Getting help in the Control Center

 Use the

toolbar icon or the Help menu to get help or additional information.

These are the types of help and information that you can get:

Opens the DB2 Information Center to enable you to search for help on

tasks, commands, and other information on DB2 and IMS.

 Help menu

Displays menu items for displaying the master index, general information

about the Control Center, and keyboard help . This menu also provides

links to:

v Tutorials available with DB2

v How to use the help

v The DB2 Information Center

v Product information.

 Related concepts:

v “Features of the DB2 Information Center” in Online DB2 Information Center

v “Control Center overview” on page 376

 Related tasks:

v “Keyboard shortcuts and accelerators (all centers)” in Online DB2 Information

Center

Using advisors, wizards, and launchpads to perform tasks

quickly and easily

 The DB2 advisors, wizards, and launchpads are integrated into the DB2

administration tools. They assist you in completing administrative tasks by

stepping you through the tasks.

You can open the following advisors, wizards, and launchpads from the Wizards

window accessed from the Control Center Tools–>Wizards menu:

v

Add Partitions launchpad

v Backup wizard

v Create Database wizard . See also the Create Your Own Database wizard,

accessed from the Control Center or from First Steps.

v Create Table Space wizard

v Create Table wizard

v Design advisor

v Load wizard

v

Configuration advisor

v Restore wizard

v Configure Database Logging wizard

v Set Up Activity Monitor wizard

v

Set Up High Availability Disaster Recovery (HADR) Databases wizard

Chapter 7. Using the DB2 administration tools 385

Depending on your selection, you will be prompted to select an instance, database,

or table. Follow the instructions in the advisor, wizard, or launchpad to complete

your task. Click the hyperlinks (underlined text), if any, to link to additional

information.

The following wizards and launchpads are available from other parts of the DB2

product.

Also from the Control Center:

v

Add Partitions launchpad

v

Alter Database Partition Group wizard

v Configure Automatic Maintenance wizard

v Configure Multisite Update wizard

v Create Cache Table wizard

v

Drop Partition launchpad

v

Redistribute Data wizard

v

Storage Management Setup launchpad

For federated systems:

v Create Federated Objects wizard(this is also called the Create Nicknames

wizard)

v Create XML Configuration File wizard (This wizard is part of in the WebSphere

Federation Server SDK).

For OS/390 and z/OS systems:

v Create Cloning Session or Edit Cloning Session wizard

v Create Object Maintenance Policy wizard

For IMS:

v Query Database wizard

v Query Transaction wizard

v Update Database wizard

v Update Data Group wizard

v Update Transaction wizard

From the Health Center:

v Health Indicator Configuration launchpad

v Recommendation advisor

v Health Alert Notification Troubleshooting wizard

From the Replication Center:

v Replication Center launchpad

v Add Capture Control Server wizard

v Add Apply Control Server wizard

v Add Monitor Control Server wizard

v Add Q Capture Server wizard

v Add Q Apply Server wizard

v Add Server Information wizard

386 Administration Guide: Implementation

v Create Monitor wizard

v Create Q Capture Control Tables wizard

v Create Q Apply Control Tables wizard

v Create Q Subscriptions wizard

v Create XML publications wizard

 Related concepts:

v “Control Center overview” on page 376

Wizard overviews

This section contains two examples of wizard overviews, accessed from the first

page of the wizard.

Backing up data using the Backup wizard

 Use the Backup wizard to back up the objects in a database or database partition.

First you specify if you want to back up the entire database or database partition,

or if you want to back up only selected table spaces or table space partitions, then

you make more advanced choices.

 Prerequisites:

 To back up a database or a database partition, you must have SYSADM, SYSCTRL,

or SYSMAINT authority.

Before you create a backup plan: If you change a database configuration file to

enable rollforward recovery (using either LOGRETAIN or USEREXIT), you must

take an offline backup of the database before it is usable.

 Procedure:

 To back up the objects in your database:

1. Open the Backup wizard: From the Control Center, expand the object tree until

you find the database or table space object that you want to back up.

Note: You can select one or more table space objects to back up.

Right-click on the object and select Backup from the pop-up

Note: The Backup wizard opens. To back up a database partition, open the

Backup wizard from the database object. To back up a table space

partition, open the Backup wizard from the table space object.

2. Complete each of the applicable wizard pages. Click the wizard overview link

on the first page for more information. The Finish push button is available

when you complete enough information for the wizard to back up the objects

in your database.

 Related concepts:

v “Backup overview” in Data Recovery and High Availability Guide and Reference

 Related reference:

v “BACKUP DATABASE command” in Command Reference

Chapter 7. Using the DB2 administration tools 387

Restoring data using the Restore wizard

 Use the Restore wizard to perform any of the following tasks:

v Restore a database or database partition

v Roll forward a database or database partition

v Restore a database backup image to a new database

v Restore the history file for a database

v Restore a table space or table space partition

v Roll forward a table space or table space partition

First you specify the objects you want to restore and select the image that you

want to use, then you make more advanced choices.

 Prerequisites:

v To restore a database or a database partition, you must have SYSADM,

SYSCTRL, or SYSMAINT authority.

v To restore to a new database, you must have SYSADM or SYSCTRL authority.

v To restore a table space or table space partition, you must have SYSADM,

SYSCTRL, or SYSMAINT authority.

Before you can restore a database you must have an exclusive connection; that is,

no applications can be running against the database when the task is started. Once

it starts, it prevents other applications from accessing the database until the restore

is completed.

 Procedure:

 To restore the objects in your database:

1. Open the Restore wizard: From the Control Center, expand the object tree until

you find the database or table space object that you want to restore. Right-click

on the object and select Restore from the pop-up menu. The Restore wizard

opens.

Note: To restore a database partition, open the Restore wizard from the

database object. To restore a table space partition, open the Restore

wizard from the table space object.

2. Complete each of the applicable wizard pages. Click the wizard overview link

on the first page for more information. The Finish push button is available

when you complete enough information for the wizard to restore the objects in

your database.

 Related concepts:

v “Restore overview” in Data Recovery and High Availability Guide and Reference

 Related reference:

v “RESTORE DATABASE command” in Command Reference

Control Center object tree and details view

This section describes the Control Center’s object tree and details view, including

how to add, display, and filter objects.

388 Administration Guide: Implementation

Expanding and collapsing the Control Center object tree

 To expand and collapse the object tree, click the plus signs (+) and minus signs (-)

next to objects in the object tree.

For example, look at the All Systems or the All Databases folder displayed on the

object tree. If you click the plus sign (+) next to the All Systems folder, icons

representing your local workstation and any remote systems connected to your

local system are displayed. If you click the plus sign (+) next to a particular system

icon, the Instances folder and any instances residing on that system are displayed.

Similarly, if you click the plus sign (+) beside the All Databases folder, you will

see the list of catalogued databases.

To collapse the object tree to the All Systems folder, click the minus sign (-) next to

the All Systems folder. All of the objects under the All Systems folder are no

longer displayed.

 Related concepts:

v “Control Center overview” on page 376

Adding DB2 UDB for z/OS subsystems to the object tree

 This topic refers collectively to the following products as DB2 UDB for z/OS:

v DB2 UDB for z/OS Version 8

v DB2 UDB for OS/390 and z/OS Version 7

To use the Control Center to manage DB2 UDB for z/OS subsystems, you must

first add the subsystems to the object tree.

To open the Control Center:

v In Windows, click Start -> Programs -> IBM DB2 -> General Administration

Tools -> Control Center.

v In Linux, open the IBM DB2 folder on the desktop and click Control Center.

To add the subsystem to the object tree, configure a connection to the subsystem to

enable you to access the objects in that subsystem. You will have to know the host

system and subsystem names, the communication protocol, and the

communication protocol parameters to use for connecting to the subsystem.

If you have installed the Configuration Assistant on the workstation where you are

running the Control Center, you can use the Configuration Assistant to configure

your workstation to access your DB2 subsystem. Otherwise, you must use the

command line processor to add the subsystem.

 Related concepts:

v “Control Center overview” on page 376

Adding DB2 federated system objects to the object tree

 If you want to use the Control Center to manage your DB2 federated systemDB2

federated system objects (such as wrappers, server definitions, nicknames, and

cache tables) you must:

v Set the DB2 database parameter FEDERATED to YES.

Chapter 7. Using the DB2 administration tools 389

v To access all data sources except the DB2 family of products and Informix®, you

must install WebSphere Federation Server on the server that will act as the

federated server.

v Add the federated system objects to the object tree that are required for the data

sources that you want to access.

To open the Control Center:

v In Windows, click Start -> Programs -> IBM DB2 -> General Administration

Tools -> Control Center.

v In Linux, open the IBM DB2 folder on the desktop and click Control Center.

To set the DB2 database parameter FEDERATED to YES, right-click the DB2

instance that you want to use as your federated database instance and select

Configure Parameters. The DBM Configuration window appears. In the list of

Environment parameters, change the FEDERATED parameter to YES and click OK.

To install WebSphere Federation Server, follow the steps that come with the

WebSphere Federation Server software.

To add the federated system objects required for the data sources that you want to

access, select the database that you want to use as your federated database and

right-click the Federated Database Objects folder. Click Create Federated Objects

to launch a wizard that guides you through the steps to create all of the necessary

federated objects and adds the federated objects to the tree.

 Related tasks:

v “Expanding and collapsing the Control Center object tree” on page 389

Adding DB2 systems and IMSplexes, instances, and databases

to the object tree

 Use the Control Center to add systems, instances, and databases to the object tree.

If you install a new computer system or create a new instance and you want to use

the Control Center to perform tasks on it, you must add it to the object tree.

If you remove a database, or uncatalog it outside of the Control Center, and you

want to use the Control Center to perform tasks on it, you must add it to the

object tree.

To add systems, instances, or databases to the object tree, you need SYSADM or

SYSCTRL authority.

To open the Control Center:

v In Windows, click Start -> Programs -> IBM DB2 -> General Administration

Tools -> Control Center.

v In Linux, open the IBM DB2 folder on the desktop and click Control Center.

Expand the object tree to display the folder for the type of object (system, instance,

or database) that you want to add. Right-click the folder. A pop-up menu of all of

the available actions for the object opens. Click Add. The Add window opens.

For adding DB2 systems, instances, or databases in the Add window, you can

access a list of existing remote systems, instances, or databases by clicking the

Discover push button. This is not an option for adding IMS systems.

390 Administration Guide: Implementation

Related tasks:

v “Expanding and collapsing the Control Center object tree” on page 389

Refreshing objects in the objects tree and details view

 To refresh the entire object tree, click Refresh in the View menu from the menu

bar.

To update the view of the objects displayed in the contents pane, use one of the

following methods:

v Click View –> Refresh.

v Right-click a folder or object and click Refresh in the pop-up menu.

The contents pane displays the contents of the object selected on the object tree.

 Related concepts:

v “Control Center overview” on page 376

Deleting custom folders or objects in custom folders

To delete a custom folder from the Control Center’s object tree, right-click the

custom folder that you want to delete and click Delete in the pop-up menu.

To delete an object within a custom folder, select it and click Alter in the pop-up

menu. A system or database removed from a custom folder can still be found

under the All Systems or All Databases folders, and any other custom folders

where it has been placed.

Note: Either of the All Systems or All Databases folders might themselves be

completely hidden by using the Control Center View window .

 Related concepts:

v “Control Center overview” on page 376

Database unavailable status in the database details pane of the

Control

 You can use the Control Center’s details pane to view information about your

databases. Selecting a database in the object tree or contents pane displays a

summary of its state. In certain situations database information might be

unavailable. Some reasons for this unavailability are described in the following

table.

 Table 19. Reasons for a database status of unavailable

Database status element Possible reasons for unavailable status

Last backup v No backups have been performed for the database.

v User does not have the required authority to access this

information.

Size v Database is pre-Version 8.2.

v User does not have the required authority to access this

information.

Chapter 7. Using the DB2 administration tools 391

Table 19. Reasons for a database status of unavailable (continued)

Database status element Possible reasons for unavailable status

Capacity v Database is pre-Version 8.2.

v Database has multiple partitions.

v User does not have the required authority to access this

information.

Health v Health monitor is not turned on.

v Timing delay. There is approximately a 5 minute delay from

the time a database is activated until its health status is

available.

Maintenance v Database is pre-Version 8.2.

 Related concepts:

v “Control Center overview” on page 376

Displaying objects in the Control Center

 Use the Control Center to display objects to enable you to work with them. Objects

are displayed in the object tree and the contents pane .

To open the Control Center:

v In Windows, click Start -> Programs -> IBM DB2 -> General Administration

Tools -> Control Center.

v In Linux, open the IBM DB2 folder on the desktop and click Control Center.

To display objects in the object tree and contents pane, expand the object tree by

clicking on the plus signs (+) next to objects. As you expand the object tree down

from a particular object, the objects that reside in, or are contained in, that object

are displayed underneath. At the lowest level of the tree, folders of objects (such as

tables) that do not contain other objects are displayed.

Click an object (folder or icon) in the object tree. The objects that reside in, or are

contained in, the selected object are displayed in the contents pane. Systems,

subsystems, instances, and databases are displayed in both the object tree and the

contents pane. Objects that do not contain other objects are displayed only in the

contents pane. For example, when you click a Tables folder, all of the tables in the

database are displayed in the contents pane.

 Related concepts:

v “Control Center overview” on page 376

Displaying table information in the contents pane

 Use the contents pane of the Control Center, to display table information. The view

uses rollups to help you to quickly access the information and also allows greater

flexibility in representing large amounts of complex data in table form. The view

groups the key elements and allows you to name and save them for future use. It

also allows you to group rows of a display together when they all share the same

value in a specific column.

Use the Overview by categories rollup menu on the contents pane toolbar and the

View menu to perform functions on the table data in the contents pane.

392 Administration Guide: Implementation

v The Overview by categories rollup menu allows you to switch between views.

v The View menu allows you to perform functions on the table data such as

naming and saving the views; filtering, sorting, and customizing the columns;

and printing and exporting.

v The filter, sort, and customize columns functions are also available by

right-clicking any column heading.

 Tasks:

v Naming or saving the contents of the details view

v Filtering the list of displayed columns or table data

v Sorting the list of displayed table data

v Customizing the list of displayed columns

 Related concepts:

v “Control Center overview” on page 376

Obtaining Control Center diagnostic information

 For Windows platforms, use the db2cc -tf <file-name> command to request

Control Center diagnostic information as directed by DB2 Customer Service. The

<file-name> file is created in the sqllib\tools directory. If an absolute path is

specified, the trace is created in the specified path.

On AIX and Linux platforms, use the db2cc -t command. The output is displayed

on the console. You might direct the output to a file.

For Windows platforms only, there is also a db2cctrc command for getting a

Control Center trace. Use it as follows:

db2cctrc file1 [cc-options]

v ″file1″ is the file where Control Center trace output is written. If no path name is

specified, this file is created in the tools directory under the sqllib directory.

v ″[cc-options]″ (optional) see the documentation for the db2cc command for a list

of available options

Note that standard out and standard error information are written to the console.

To see diagnostic information, use the DB2 Trace facility .

 Attention::

 For performance reasons, only use these commands when directed to do so by DB2

Customer Service or by a technical support representative.

 Related concepts:

v “Basic trace diagnostics” in Troubleshooting Guide

v “Diagnostic tools (Linux and UNIX)” in Troubleshooting Guide

v “Interpreting diagnostic log file entries” in Troubleshooting Guide

 Related tasks:

v “Setting the diagnostic log file error capture level” in Troubleshooting Guide

Chapter 7. Using the DB2 administration tools 393

Related reference:

v “db2trc - Trace command” in Command Reference

v “Diagnostic tools (Windows)” in Troubleshooting Guide

Finding objects in the contents pane

 Use

in the contents pane toolbar, or click Edit–>Find to find objects in the

contents pane . Click a folder in the object tree to display the objects with which

you want to work.

In the Find string field, type the character string that you want to find. The first

object in the contents pane that meets the find search criteria is selected. If you

want to find the next object meeting the find criteria, click Edit–>Find.

Select the Case sensitive check box when searching for case sensitive strings.

 Related concepts:

v “Control Center overview” on page 376

Filtering or pre-filtering objects

 Use the Filter notebook to pre-filter, or the Filter window to filter, the list of

displayed objects in the details view.

v The Filter notebook opens when you right-click any folder object in the object

tree and click Filter. The pre-filter action alters the query used to retrieve objects

from the database.

v The Filter window opens when you click View→Filter or when you click the

from the contents pane toolbar. The filter action filters the objects after they are

retrieved from the database.

In the details view, the pre-filter and filter effects are cumulative. The same object

is selected in the object tree so that its pre-filtered children appear in the filtered

details view. That is, the number of filtered pre-filtered objects are less than or the

same as those that are only pre-filtered.

To change the default for filtering when number of rows exceed the default value,

see Setting startup and default options for the DB2 administration tools

 Related concepts:

v “Control Center overview” on page 376

 Related tasks:

v “Setting startup and default options for the DB2 administration tools” on page

436

Extending the Control Center

This section describes how you can extend the Control Center by adding new tool

bar buttons including new actions, adding new object definitions, and adding new

action definitions.

394 Administration Guide: Implementation

Introducing the plug-in architecture for the Control Center

 You can extend the DB2 database Control Center by using the new plug-in

architecture to provide additional function.

The concept of the plug-in architecture is to provide the ability to add items for a

given object in the Control Center popup menu, add objects to the Control Center

tree, and add new buttons to the tool bar. A set of Java interfaces, which you must

implement, is shipped along with the tools. These interfaces are used to

communicate to the Control Center what additional actions to include.

The plug-in extensions (db2plug.zip) are loaded at the startup time of the Control

Center tools. This might increase the startup time of the tools, depending on the

size of the ZIP file. However, for most users, the plug-in ZIP file, will be small and

the impact should be minimal.

 Related concepts:

v “Compiling and running the example plugins” on page 396

v “Guidelines for Control Center plugin developers” on page 395

v “Writing plugins as Control Center extensions” on page 397

Guidelines for Control Center plugin developers

 Since multiple plugins can be contained in the db2plug.zip file, plugin developers

should follow these guidelines when creating a plugin for the Control Center:

v Use Java packages to ensure your plugin classes have unique names. Follow the

Java package naming convention. Prefix your package names with the inverted

name of your Internet domain (for example, com.companyname). All package

names, or at least their unique prefixes, should be lowercase letters.

v db2plug.zip should be installed in the tools directory under the sqllib directory.

Before V8, the db2plug.zip needed to be installed in the cc directory under the

sqllib directory.

v When you create a plugin for the Control Center and a db2plug.zip file already

exists, you should add your plugin classes to the existing db2plug.zip. You

should not overwrite the existing db2plug.zip file with your own db2plug.zip

file. To add your plugin to an existing db2plug.zip, the following zip command

should be used:

 zip -r0 db2plug.zip com\companyname\myplugin*.class

where your plugin package name is com.companyname.myplugin

v All the classes in the db2plug.zip get loaded when the Control Center is started.

The db2plug.zip file should contain all your CCExtension class files and classes

which extend or implement classes in the com.ibm.db2.tools.cc.navigator

package. Other classes not used directly by these classes do not need to be

included in the db2plug.zip. They can be stored in a separate jar file to minimize

performance impacts when the Control Center is started. This is a good idea if

there are a large number of extra classes. You should put your jar file in the

tools directory under the sqllib directory. Your jar file will automatically be

included in the classpath when the db2cc command is used to start the Control

Center.

v Plugin classes which implement CCObject should provide a no-argument default

constructor to allow calls to Class.newInstance() by the Control Center.

Chapter 7. Using the DB2 administration tools 395

v Where possible avoid using inner classes. In general, Plugin classes which

implement CCTreeObject to create new plugin objects in the Control Center

should not be declared as inner classes. This will prevent the Control Center

from instantiating these classes.

v Test that your plugin is loaded correctly by using db2cc -tf filename. This will

put Control Center trace information in the specified filename. If you do not

provide a full pathname, the trace file will be written to the tools directory in

sqllib. Plugin related trace statements will contain the word “Plugin”. You can

see if your classes were loaded by looking for lines containing the text

“PluginLoader”.

 Related concepts:

v “Compiling and running the example plugins” on page 396

v “Writing plugins as Control Center extensions” on page 397

 Related reference:

v “db2cc - Start control center command” in Command Reference

Compiling and running the example plugins

 The Control Center Plugin function is demonstrated in the sections that follow and

their corresponding plugin sample programs: Example1.java, Example2.java,

Example3.java, Example3Folder.java, and Example3Child.java. These example java

files are installed with the DB2 client. On Windows platforms, these sample

programs are in DRIVE:\sqllib\samples\java\plugin where DRIVE: represents the

drive on which DB2 is installed. On UNIX platforms, these samples are in

/u/db2inst1/sqllib/samples/java/plugin where /u/db2inst1 represents the

directory in which DB2 is installed.

Note: The plugin sample programs might contain updates which are not yet

reflected here. The example code and java documentation should be

considered the most current information when there are differences with

what is shown here.

To run the example plugins, you must ZIP the extension class files according to the

rules of a Java archive file. The ZIP file (db2plug.zip) must be in the classpath. On

Windows operating systems, put db2plug.zip in the DRIVE:\sqllib\tools directory

where DRIVE: represents the drive on which DB2 is installed. On UNIX platforms,

put db2plug.zip in the /u/db2inst1/sqllib/tools directory where /u/db2inst1

represents the directory on which DB2 is installed.

Note: The db2cc command sets the classpath to point to db2plug.zip in the tools

directory.

The examples (except Example3, Example3Folder, and Example3Child which go

together) should not be zipped into the same db2plug.zip since they might conflict

with one another.

To compile any of these example java files, the following must be included in your

classpath:

v On Windows platforms use:

– DRIVE: \sqllib\java\Common.jar

– DRIVE: \sqllib\tools\db2navplug.jar

where DRIVE represents the drive on which DB2 is installed.

396 Administration Guide: Implementation

v On UNIX platforms use:

– /u/db2inst1/sqllib/java/Common.jar

– /u/db2inst1/sqllib/tools/db2navplug.jar

where /u/db2inst1 represents the directory in which DB2 is installed.

Create the db2plug.zip to include all the classes generated from compiling the

example java file. The file should not be compressed. For example, issue the

following:

 zip -r0 db2plug.zip *.class

This command places all the class files into the db2plug.zip file and preserves the

relative path information.

 Related concepts:

v “Guidelines for Control Center plugin developers” on page 395

v “Writing plugins as Control Center extensions” on page 397

 Related reference:

v “db2cc - Start control center command” in Command Reference

Writing plugins as Control Center extensions

 The first step to writing a plugin is to define a class that implements the

CCExtension interface. This class will contain the list of plugin classes to be loaded

by the Control Center. If you want to add menu items to the standard Control

Center objects such as Databases and Tables, or want to create your own objects for

display in the tree, you create classes that implement the CCObject interface and

return and array of these CCObjects in the getObjects method. If you want to add

a toolbar button, you implement CCToolbarAction and return an array of

CCToolbarActions in the getToolbarActions method.

Each of these interfaces is documented in:

v On Windows platforms, in DRIVE:\sqllib\samples\java\plugin\doc where

DRIVE: represents the drive on which DB2 is installed.

v On UNIX platforms, in /u/db2inst1/sqllib/samples/java/plugin/doc where

/u/db2inst1 represents the directory in which DB2 is installed.

 Related tasks:

v “Adding a menu item only to an object with a particular name” on page 402

v “Adding an example object under the folder” on page 405

v “Adding the alter action” on page 410

v “Adding the create action” on page 407

v “Adding the folder to hold multiple objects in the tree” on page 403

v “Adding the remove action with multiple selection support” on page 409

v “Creating a basic menu action” on page 399

v “Creating a basic menu action separator” on page 401

v “Creating a plugin that adds a toolbar button” on page 398

v “Creating sub menus” on page 401

v “Positioning the menu item” on page 400

v “Setting attributes for a plugin tree object” on page 406

Chapter 7. Using the DB2 administration tools 397

Plug-in task descriptions

The following plug-in tasks are discussed:

1. Creating a plug-in that adds a toolbar button

2. Creating a plug-in that adds new menu items to the Database object

3. Creating a plug-in that adds plug-in objects under Database in the tree

4. Disabling configuration features with isConfigurable()

5. Disabling the ability to alter objects using isEditable()

6. Disabling the default buttons in configuration dialogs using

hasConfigurationDefaults()

Creating a plugin that adds a toolbar button: Procedure:

 For this example, a toolbar button is added, so getObjects should return a null

array, as follows:

import com.ibm.db2.tools.cc.navigator.*;

import java.awt.event.*;

import javax.swing.*;

public class Example1 implements CCExtension {

 public CCObject[] getObjects () {

 return null;

 }

}

Notice that the com.ibm.db2.tools.cc.navigator package is imported. This class will

implement the CCToolbarAction interface which requires implementing three

methods: getHoverHelpText, getIcon, and actionPerformed. The Control Center

uses getHoverHelpText to display the small box of text that appears when a user

leaves a mouse hovering over your toolbar button. You specify the icon for your

button using getIcon. The Control Center calls actionPerformed when a user clicks

on your button. Here is an example that adds a button named X that writes a

message to the console when you click it. It uses the Refresh icon from the Control

Center’s image repository class.

class Example1ToolbarAction implements CCToolbarAction {

 public String getHoverHelpText() { return "X"; }

 public ImageIcon getIcon() {

 return CommonImageRepository.getCommonIcon(CommonImageRepository.WC_NV_

REFRESH);

 }

 public void actionPerformed(ActionEvent e) {

 System.out.println("I’ve been clicked");

 }

}

The final step is to implement the getToolbarActions method in Example1 to return

an instance of your new class, as follows:

 public CCToolbarAction[] getToolbarActions () {

 return new CCToolbarAction[] { new Example1ToolbarAction() };

 }

 Related concepts:

v “Compiling and running the example plugins” on page 396

398 Administration Guide: Implementation

Creating a plug-in that adds new menu items to the Database object: The

following procedure outlines how to create a plug-in that adds new menu items to

the Database object:

1. Creating the basic menu action

2. Positioning the menu item

3. Creating a basic menu action separator

4. Creating submenus

5. Adding a menu item only to an object with a particular name

Creating a basic menu action: Procedure:

 In this slightly more advanced topic, new commands will be added to the popup

menu of the Database object.

As in Example 1, the first step is to write a class that extends CCExtension.

import com.ibm.db2.tools.cc.navigator.*;

import java.awt.event.*;

import javax.swing.*;

public class Example2 implements CCExtension {

 public CCToolbarAction[] getToolbarActions () {

 return null;

 }

}

The second step is to create a CCObject for the Database object in the tree, as

follows:

 class CCDatabase implements CCObject {

 public String getName () { return null; }

 public boolean isEditable () { return true; }

 public boolean isConfigurable () { return true; }

 public int getType () { return UDB_DATABASE; }

 }

Because no other features other than the ability to add menu items to Control

Center built-in objects are used (for example, the Database object in this example),

most functions will return null or true. To specify that this object represents the

DB2 database object, its type is specified as UDB_DATABASE, a constant in

CCObject. The class is named CCDatabase in this example, however class names

should be as unique as possible, since there might be other vendor’s plugins in the

same zip file as your plugin. Java packages should be used to help ensure unique

class names.

The getObjects method of your CCExtension should return an array containing an

instance of CCDatabase as follows:

 public CCObject[] getObjects () {

 return new CCObject[] { new CCDatabase() };

 }

You can create multiple CCObject subclasses whose type is UDB_DATABASE, but

if the values returned from their isEditable or isConfigurable methods conflict, the

objects that return false override those that return true.

Chapter 7. Using the DB2 administration tools 399

The only remaining method to implement is getMenuActions. This returns an

array of CCMenuActions, so first a class that implements this interface is written.

There are two methods to implement: getMenuText and actionPerformed. The text

displayed in the menu is obtained using getMenuText. When a user clicks your

menu item, the event that is triggered results in a call to actionPerformed.

The following example class displays a menu item called ″Example2a Action″

when a single database object is selected. When the user clicks this menu item, the

message ″Example2a menu item actionPerformed″ is written to the console.

 class Example2AAction implements CCMenuAction {

 public String getMenuText () { return "Example2a Action"; }

 public void actionPerformed (ActionEvent e) {

 System.out.println("Example2a menu item actionPerformed");

 }

 }

Finally, attach this menu item to your DB2 database CCObject by adding the

following to your CCObject.

 public CCMenuAction[] getMenuActions () {

 return new CCMenuAction[] { new Example2AAction() };

 }

 Related concepts:

v “Compiling and running the example plugins” on page 396

 Related tasks:

v “Adding a menu item only to an object with a particular name” on page 402

v “Creating a basic menu action separator” on page 401

v “Creating sub menus” on page 401

v “Positioning the menu item” on page 400

Positioning the menu item: Procedure:

 When creating the basic menu item, the position of the menu item within the

menu is not specified. The default behavior when adding plugin menu items to a

menu is to add them on the end, but before any Refresh and Filter menu items.

You can override this behavior to specify any position number from zero up to the

number of items in the menu, not counting the Refresh and Filter menu items.

Change your CCMenuAction subclass to implement Positionable and then

implement the getPosition method, as follows:

 class Example2BAction implements CCMenuAction, Positionable {

 public String getMenuText () { return "Example2B Action"; }

 public void actionPerformed (ActionEvent e) {

 System.out.println("Example2B menu item actionPerformed");

 }

 public int getPosition() {

 return 0;

 }

 }

400 Administration Guide: Implementation

Specifying a position number of zero places your menu item as the first in the list

and specifying a position number equal to the number of items in the menu not

counting your plugin menu item puts it at the bottom, but before any Refresh and

Filter menu items. You can also return a value of Positionable.POSITION_BOTTOM

to get the default behavior, that is, have your menu item placed at the bottom

before any Refresh and Filter menu items. If there is more than one CCObject of

type UDB_DATABASE with menu items positioned at POSITION_BOTTOM, the

menu items are ordered based on the order in which the CCObjects of type

UDB_DATABASE are returned from the getObjects method in the CCExtension.

Change CCDatabase to add Example2BAction to the menu as follows:

 public CCMenuAction[] getMenuActions () {

 return new CCMenuAction[] { new Example2AAction(),

 new Example2BAction() };

 }

 Related tasks:

v “Adding a menu item only to an object with a particular name” on page 402

v “Creating a basic menu action” on page 399

v “Creating a basic menu action separator” on page 401

v “Creating sub menus” on page 401

Creating a basic menu action separator: Procedure:

 To add a separator, create a CCMenuAction that implements the Separator

interface. All other methods (except getPosition if you implement Positionable) will

be ignored.

 class Example2CSeparator implements CCMenuAction, Separator, Positionable {

 public String getMenuText () { return null; }

 public void actionPerformed (ActionEvent e) {}

 public int getPosition() {

 return 1;

 }

 }

 public CCMenuAction[] getMenuActions () {

 return new CCMenuAction[] { new Example2AAction(),

 new Example2BAction(),

 new Example2CSeparator() };

 }

 Related tasks:

v “Adding a menu item only to an object with a particular name” on page 402

v “Creating a basic menu action” on page 399

v “Creating sub menus” on page 401

v “Positioning the menu item” on page 400

Creating sub menus: Procedure:

 A sub-menu is just an array of CCMenuActions. To have a menu item contain

sub-menus, it must implement the SubMenuParent interface. Then create an

implementation of CCMenuAction for each submenu item and return them in an

array from the getSubMenuActions method of the SubMenuParent interface.

Chapter 7. Using the DB2 administration tools 401

Adding menu items to non-plugin submenus is not supported. Also, note that

SubMenuParents do not receive ActionEvents from the Control Center. Here is an

example:

 class Example2DAction implements CCMenuAction, SubMenuParent {

 public String getMenuText () { return "Example2D Action"; }

 public void actionPerformed (ActionEvent e) {}

 public CCMenuAction[] getSubMenuActions() {

 return new CCMenuAction[] { new Example2DSubMenuAction() };

 }

 }

 class Example2DSubMenuAction implements CCMenuAction {

 public String getMenuText () { return "Example2D Sub-Menu Action"; }

 public void actionPerformed (ActionEvent e) {

 System.out.println("Example2D sub-menu menu item actionPerformed");

 }

 }

Once again, add this new menu item to CCDatabase.

 public CCMenuAction[] getMenuActions () }

 return new CCMenuAction[] { new Example2AAction(),

 new Example2BAction(),

 new Example2CSeparator(),

 new Example2DAction() };

 }

 Related tasks:

v “Adding a menu item only to an object with a particular name” on page 402

v “Creating a basic menu action” on page 399

v “Creating a basic menu action separator” on page 401

v “Positioning the menu item” on page 400

Adding a menu item only to an object with a particular name: Procedure:

 Currently, any database you display in the Control Center will show the plugin

menu items you’ve written. You can restrict these menu items to a database of a

particular name by returning that name in the getName method of CCDatabase.

This must be a fully qualified name. In this case, since it refers to a database, the

system, instance and database names must be included in what is returned in the

getName method. These names are separated by ″ – ″. Here is an example for a

system named MYSYSTEM, an instance named DB2, and a database named

SAMPLE.

 class CCDatabase implements CCObject {

 ...

 public String getName () { return "MYSYSTEM – DB2 – SAMPLE"; }

 ...

 }

 Related tasks:

v “Creating a basic menu action” on page 399

v “Creating a basic menu action separator” on page 401

v “Creating sub menus” on page 401

402 Administration Guide: Implementation

v “Positioning the menu item” on page 400

Creating a plug-in that adds plug-in objects under Database in the tree: The

following procedure outlines how to create a plug-in that adds plug-in objects

under Database in the tree:

1. Adding the folder to hold multiple objects in the tree

2. Adding an example object under the folder

3. Setting attributes for a plug-in tree object

4. Adding the create action

5. Adding the remove action

6. Adding the alter action

Adding the folder to hold multiple objects in the tree: Procedure:

 In this example, the CCTreeObject is implemented instead of CCObject so that

plugin objects show up under Database in the Control Center tree. First create a

CCTreeObject implementation for this object. It is customary to create a folder if

you have multiple objects to place in the tree, rather than placing them all directly

under Database. Here is an initial version of a folder:

 public class Example3Folder implements CCTreeObject {

 private String parentName = null;

 public boolean isEditable () { return false; }

 public boolean isConfigurable () { return false; }

 public CCTableObject getChildren () { return null; }

 public void setParentName(String name)

 {

 parentName = name;

 }

 public CCColumn[] getColumns () { return null; }

 public boolean isLeaf () { return false; }

 public CCMenuAction[] getMenuActions () { return null; }

 public String getName () { return "Example3 Folder"; }

 public void getData (Object[] data) {

 data[0] = this;

 }

 public int getType () { return CCTypeFactory.getTypeNumber

(this.getClass().getName()); }

 public Icon getIcon (int iconState) {

 switch (iconState) {

 case CLOSED_FOLDER:

 return CommonImageRepository.getScaledIcon(CommonImageRepository.NV_CLOSED_

FOLDER);

 case OPEN_FOLDER:

 return CommonImageRepository.getScaledIcon(CommonImageRepository.NV_OPEN_

FOLDER);

 default:

 return CommonImageRepository.getScaledIcon(CommonImageRepository.NV_CLOSED_

FOLDER);

 }

 }

 }

Notice that getType now makes use of a class CCTypeFactory. The purpose of

CCTypeFactory is to prevent two objects from using the same type number so that

Chapter 7. Using the DB2 administration tools 403

the plugins can be identified as having unique types by the Control Center. Your

new folder is not one of the built-in CC object types but is a new type and needs

to have a new type number that must not conflict with those of any other new

types you might create and must not conflict with those of the built-in types.

The getIcon method takes a parameter for iconState that lets you know if you are

an open or closed folder. You can then make your icon correspond to your state, as

above.

In order to show the folder in the details view when the database is selected and

not just in the tree, getData needs to return a single column whose value is the

plugin object itself. The getData method assigns the this reference to the first

element of the data array. This allows both the icon and the name to appear in the

same column of the details view. The Control Center, when it sees that you are

returning a CCTableObject subclass, knows that it can call getIcon and getName on

your Example3Folder.

The next step is to create a CCDatabase class to implement CCTreeObject and

return from its getChildren method a CCTableObject array containing an instance

of Example3Folder as follows:

import java.util.*;

 class CCDatabase implements CCTreeObject {

 private String parentName = null;

 private Vector childVector;

 public CCDatabase() {

 childVector = new Vector();

 childVector.addElement(new Example3Folder());

 }

 public CCTableObject[] getChildren() {

 CCTableObject[] children = new CCTableObject[childVector.size()];

 childVector.copyInto(children);

 return children;

 }

 public void setParentName(String name)

 {

 parentName = name;

 }

 public String getName () { return null; }

 public boolean isEditable () { return false; }

 public boolean isConfigurable () { return false; }

 public void getData (Object[] data) { }

 public CCColumn[] getColumns () { return null; }

 public boolean isLeaf () { return false; }

 public int getType () { return UDB_DATABASE; }

 public Icon getIcon (int iconState) { return null; }

 public CCMenuAction[] getMenuActions () { return null; }

 }

 Related concepts:

v “Compiling and running the example plugins” on page 396

 Related tasks:

v “Adding an example object under the folder” on page 405

v “Adding the alter action” on page 410

v “Adding the create action” on page 407

404 Administration Guide: Implementation

v “Adding the remove action with multiple selection support” on page 409

v “Setting attributes for a plugin tree object” on page 406

Adding an example object under the folder: Procedure:

 The first step is to create a CCObject implementation for the child object as

follows:

 class Example3Child implements CCTableObject {

 private String parentName = null;

 public String getName () { return null; }

 public boolean isEditable () { return false; }

 public boolean isConfigurable () { return false; }

 public void getData (Object[] data) { }

 public CCColumn[] getColumns () { return null; }

 public Icon getIcon (int iconState) { return null; }

 public CCMenuAction[] getMenuActions () { return null; }

 public void setParentName(String name)

 {

 parentName = name;

 }

 public int getType () { return CCTypeFactory.getTypeNumber

(this.getClass().getName()); }

 }

Next, modify Example3Folder to keep a Vector of these Exercise3Child objects as

follows:

 public class Example3Folder implements CCObject {

 private String parentName = null;

 private Vector childVector;

 ...

 public Example3Folder() {

 childVector = new Vector();

 }

 ...

 public CCTableObject[] getChildren () {

 CCTableObject[] children = new CCTableObject[childVector.size()];

 childVector.copyInto(children);

 return children;

 }

 public void setParentName(String name)

 {

 parentName = name;

 }

 ...

 }

For simplicity, in this example getChildren returns a array of children which are

stored in the vector called childVector.

A real plugin should reconstruct the children when getChildren is called. This will

refresh the list which might include new or changed child objects which might

have been created or changed outside the Control Center since the last time the list

was displayed. The children should be stored in and read from persistent storage

so that they are not lost.

Also in a real plugin, the list of children returned by getChildren is dependent on

what objects are the parents of this object in Control Center tree. The parent

information is in the parentName string which is provided by the Control Center

call to the setParentName method.

Chapter 7. Using the DB2 administration tools 405

Note: In this example, when a refresh is done in the Control Center from the

Database object or higher in the tree, the list of children under the

Example3Folder will be lost. This is because a new Example3Folder is

constructed by the Control Center when the refresh is done. If this example

code read the children in from persistent storage, the children would not be

lost. To keep the example simple, this was not done.

 Related concepts:

v “Compiling and running the example plugins” on page 396

 Related tasks:

v “Adding the alter action” on page 410

v “Adding the create action” on page 407

v “Adding the folder to hold multiple objects in the tree” on page 403

v “Adding the remove action with multiple selection support” on page 409

v “Setting attributes for a plugin tree object” on page 406

Setting attributes for a plugin tree object: Procedure:

 If you expand the tree to your plugin folder and select it, you will see that there

are no columns in the details pane. This is because the Example3Child

implementation of getColumns is returning null. To change this, first create some

CCColumn implementations. We will create two columns because a future example

will demonstrate how to change the value of one of these columns at run time and

every object should have one column that should never change. We will call the

unchanging column “Name” and the changing column “State”.

 class NameColumn implements CCColumn {

 getName() { return "Name"; }

 getColumnClass { return CCTableObject.class; }

 }

 class StateColumn implements CCColumn {

 getName() { return "State"; }

 getColumnClass { return String.class; }

 }

The class types supported include the class equivalents of the Java primitives (such

as java.lang.Intger), the java.util.Date class, and the CCTableObject class.

Change the getColumns method of Example3Child to include these two columns.

 class Example3Child implements CCTableObject {

 ...

 public CCColumn[] getColumns () {

 return new CCColumn[] { new NameColumn(),

 new StateColumn() };

 }

 ...

 }

You must also change the parent to include the same columns.

 class Example3Folder implements CCTableObject {

 ...

 public CCColumn[] getColumns () {

 return new CCColumn[] { new NameColumn(),

 new StateColumn() };

 }

 ...

 }

406 Administration Guide: Implementation

Now you must set the values that will be displayed for each row in the details

view. You do this by setting the elements of the Object array passed into getData.

The class of each column’s data must match the class returned by getColumnClass

for the corresponding column.

 class Example3Child implements CCTableObject {

 ...

 private String name;

 private String state;

 public Exampe3Child(String name, String state) {

 this.name = name;

 this.state = state;

 }

 ...

 public void getData (Object[] data) {

 data[0] = this;

 data[1] = state;

 }

 ...

 }

In this case, the first column, which was of class CCTableObject will have a value

of this. This allows the Control Center to render both the text returned by getName

and the icon returned by getIcon. So the next step is to implement these. We will

just use the same refresh icon used in Example 1 for the tool bar button.

 class Example3Child implements CCTableObject {

 ...

 public String getName () {

 return name;

 }

 public Icon getIcon () {

 return CommonImageRepository.getScaledIcon(CommonImageRepository.WC_NV_

REFRESH);

 }

 ...

 }

To see the results of your work so far, you can create an example child object that

you will remove in the next exercise. Add an instance of Example3Child to the

Example3Folder when the childVector is constructed.

 public class Example3Folder implements CCTreeObject {

 ...

 public Example3Folder() {

 childVector = new Vector();

 childVector.addElement(new Example3Child("Plugin1", "State1"));

 }

 ...

 }

 Related concepts:

v “Compiling and running the example plugins” on page 396

 Related tasks:

v “Adding an example object under the folder” on page 405

v “Adding the alter action” on page 410

v “Adding the create action” on page 407

v “Adding the folder to hold multiple objects in the tree” on page 403

Adding the create action: Procedure:

Chapter 7. Using the DB2 administration tools 407

To allow your users to create objects under your folder at run time, you simply

have to update the Vector, make your class an Observable, and call notifyObservers

when the user triggers an event. The Control Center automatically registers itself

as an Observer of any CCTableObjects that are Observables.

First, add a method to Example3Folder to add a child object to its vector of

children.

 public class Example3Folder implements CCTreeObject, Observable {

 ...

 public void addChild(Example3Child child) {

 childVector.addElement(child);

 setChanged();

 notifyObservers(new CCObjectCollectionEvent(this,

 CCObjectCollectionEvent.OBJECT_ADDED,

 child));

 }

 ...

 }

In the code shown above, a new class called CCObjectCollectionEvent is used as

an argument to notifyObservers. A CCObjectCollectionEvent is an event that

represents a change in a collection of CCObjects, such as a folder in the Control

Center tree. The Control Center observes all CCObjects that extend Observable and

responds to CCObjectCollectionEvents by updating the tree and details view. There

are three types of events: add, remove, and alter.

A CCObjectCollectionEvent takes three arguments. The first is the object that

triggered the event. The second is the type of event, which can be

OBJECT_ADDED, OBJECT_ALTERED, or OBJECT_REMOVED. The last argument

is the new object being created.

Next, add a menu item to the folder to allow the user to trigger a call to your new

addChild method.

 class CreateAction implements CCMenuAction {

 private int pluginNumber = 0;

 public String getMenuText () { return "Create"; }

 public void actionPerformed (ActionEvent e) {

 Example3Folder folder = (Example3Folder)((Vector)e.getSource()).elementAt(0);

 folder.addChild(new Example3Child("Plugin " + ++pluginNumber, "State1"));

 }

 }

The ActionEvent will always contain a Vector of all of the objects on which the

action was invoked. Since this action will only be invoked on an Example3Folder

and there can be only one folder, only the first object is cast in the Vector and

addChild is called on it.

The last step is to add the menu action to your folder and you can now remove

the sample object that was added earlier.

 public class Example3Folder extends Observable implements CCTreeObject {

 private CCMenuAction[] menuActions =

 new CCMenuAction[] { new CreateChildAction(); }

 ...

 public Example3Folder() {

 childVector = new Vector();

 }

 ...

 public CCMenuAction[] getMenuActions () {

408 Administration Guide: Implementation

retun menuActions;

 }

 ...

 }

 Related concepts:

v “Compiling and running the example plugins” on page 396

 Related tasks:

v “Adding an example object under the folder” on page 405

v “Adding the alter action” on page 410

v “Adding the folder to hold multiple objects in the tree” on page 403

v “Adding the remove action with multiple selection support” on page 409

v “Setting attributes for a plugin tree object” on page 406

Adding the remove action with multiple selection support: Procedure:

 Now that your users can create as many instances of your plugin as they want,

you might want to give them the ability to delete as well. First, add a method to

Example3Folder to remove the child and notify the Control Center.

 public class Example3Folder extends Observable implements CCTreeObject {

 public void removeChild(Example3Child child) {

 childVector.removeElement(child);

 setChanged();

 notifyObservers(new CCObjectCollectionEvent(this,

 CCObjectCollectionEvent.OBJECT_REMOVED,

 child));

 }

 }

The next step is to add a menu action to the Example3Child. We will make this

CCMenuAction implement MultiSelectable so that your users can remove multiple

objects at the same time. Since the source of this action will be a Vector of

Example3Child objects rather than an Example3Folder, the Example3Folder should

be passed in to the menu action some other way, such as in the constructor.

 class RemoveAction implements CCMenuAction, MultiSelectable {

 private Example3Folder folder;

 public RemoveAction(Example3Folder folder) {

 this.folder = folder;

 }

 public String getMenuText () { return "Remove"; }

 public int getSelectionMode () { return MultiSelectable.MULTI_HANDLE_ONE; }

 public void actionPerformed (ActionEvent e) {

 Vector childrenVector = (Vector)e.getSource();

 for (int i = 0; i < childrenVector.size(); i++) {

 folder.removeChild((Example3Child)childrenVector.elementAt(i));

 }

 }

 }

Implementing MultiSelectable requires you to implement getSelectionMode. In this

case, it is made to return MULTI_HANDLE_ONE, which means that this menu

item will appear on the menu even when multiple objects are selected and there

will be a single call to your actionPerformed method for all of the selected objects.

Chapter 7. Using the DB2 administration tools 409

Now add the new menu action to the Example3Child. This will involve adding a

new parameter to the Example3Child constructor to pass in the folder.

 class Example3Child implements CCTableObject {

 ...

 private CCMenuAction[] menuActions;

 public Example3Child(Example3Folder folder, String name, String state) {

 ...

 menuActions = new CCMenuAction[] { new RemoveAction(folder) };

 }

 ...

 public CCMenuAction[] getMenuActions () {

 return menuActions;

 }

 }

Remember to change CreateAction to use the new constructor.

 class CreateAction implements CCMenuAction {

 ...

 public void actionPerformed (ActionEvent e) {

 ...

 folder.addChild(new Example3Child(folder, "Plugin " + ++pluginNumber,

"State 1"));

 }

 }

 Related concepts:

v “Compiling and running the example plugins” on page 396

 Related tasks:

v “Adding an example object under the folder” on page 405

v “Adding the alter action” on page 410

v “Adding the create action” on page 407

v “Adding the folder to hold multiple objects in the tree” on page 403

v “Setting attributes for a plugin tree object” on page 406

Adding the alter action: Procedure:

 The final type of event the Control Center listens to with respect to plugins is the

OBJECT_ALTERED event. We created a “State” column in a previous example so

that this feature could be demonstrated in this example. We will increment the

state value when the Alter action is invoked.

The first step is to write a method to change the state, but this time it will be on

the Example3Child rather than the folder. In this case, both the first and third

arguments are the Example3Child. Remember to extend Observable.

 class Example3Child extends Observable implements CCTableObject {

 ...

 public void setState(String state) {

 this.state = state;

 setChanged();

 notifyObservers(new CCObjectCollectionEvent(this,

 CCObjectCollectionEvent.OBJECT_ALTERED, this));

 }

 ...

 }

Next, create a menu action for Alter and add it to the CCMenuAction array in

Example3Child. The AlterAction class also implements the CCDefaultMenuAction

410 Administration Guide: Implementation

interface to define Alter as the default action which gets invoked when the user

double clicks on an Example3Child object in the Control Center.

 class AlterAction implements CCMenuAction, CCDefaultMenuAction {

 private int stateNumber = 1;

 public String getMenuText () { return "Alter"; }

 public void actionPerformed (ActionEvent e) {

 ((Example3Child)((Vector)e.getSource()).elementAt(0)).setState("State "

 + ++stateNumber);

 }

 }

 class Example3Child implements CCTableObject {

 ...

 public Example3Child(Example3Folder folder, String name, String state) {

 ...

 menuActions = new CCMenuAction[] { new AlterAction(),

 new RemoveAction(folder) };

 }

 ...

 }

 Related concepts:

v “Compiling and running the example plugins” on page 396

 Related tasks:

v “Adding an example object under the folder” on page 405

v “Adding the create action” on page 407

v “Adding the folder to hold multiple objects in the tree” on page 403

v “Adding the remove action with multiple selection support” on page 409

v “Setting attributes for a plugin tree object” on page 406

License Center

This section describes how to use the License Center, including how to add,

change and remove licenses. It also describes how to view license information.

License Center overview

Use the License Center to display license status and usage information for DB2

products installed on your system. You can also use the License Center to

configure your system for license monitoring.

 To open the License Center:

 Click

in the Control Center. The License Center opens.

 Tasks:

v Adding licenses

v Changing licenses and policies

v Viewing licensing information

v Viewing license policy information

v Viewing authorized user infraction information

v Viewing and resetting compliance details

v Removing licenses

Chapter 7. Using the DB2 administration tools 411

Accessibility:

v Using the keyboard

 The License Center interface:

 The License Center interface has two elements that help you add and manage

licenses.

Menu bar

The License Center menu bar contains the following menus:

License

Use this menu to add, change or remove licenses, to generate the

compliance report, and to reset the compliance information. You

can also use this menu to refresh all products, shut down all of the

DB2 server administration tools, and exit from the License Center.

Tools Use this menu to open any of the DB2 tools. Some of the functions

in this menu are also available by clicking the icons on the toolbar.

For more information, see Tools menu.

Help Use this menu to display online help and product information, and

to open the Information Center and the Tutorial. For more

information, see Help menu.

Toolbar

Use the toolbar icons below the menu items to access other DB2

administration tools. For more information, see DB2 toolbar.

 Related concepts:

v “Control Center overview” on page 376

v “License management” on page 64

 Related tasks:

v “Adding licenses” on page 412

v “Changing licenses and policies” on page 413

v “Viewing license policy information” on page 414

v “Viewing licensing information” on page 413

v “Removing licenses” on page 416

v “Viewing and resetting compliance details” on page 415

v “Viewing authorized user infraction information” on page 415

Adding licenses

 From the License Center, use the Add License window to add new licenses.

 Procedure:

412 Administration Guide: Implementation

1. Open the Add License window: Click

in the Control Center to open the

License Center. Select the system for which you want to add a new license.

Select License–>Add. The Add License dialog opens.

2. Select the license file (*.lic) that you want to add.

 Related concepts:

v “License Center overview” on page 411

Changing licenses and policies

 Use the Change License window to change the enforcement or license type

policies.

 Prerequisites:

 To modify license policies in the License Center, you need SYSADM authority on

the DB2 instance that contains the installed license.

Note: If you do not have SYSADM authority, the Select Instance window

automatically displays, from which you can select an instance where you

have SYSADM authority.

 Procedure:

1. Open the License Center: Click

in the Control Center.

2. Select the system and the installed product for which you want to change

enforcement or license type policies, as follows:

v To change the enforcement policy, in the Enforcement policy pane, select

″Hard stop″ or ″Soft stop″.

v To change the license type policy, change the number of users for one or both

of the following license types:

– Concurrent users policy (available only for DB2 Connect Enterprise Server

Edition): Controls and monitors the number of users that can connect

simultaneously to a single DB2 server.

– Authorized users policy: Controls and monitors users, by user ID, that are

allowed to connect to a server. An authorized users policy is typically

used in an environment with more than one DB2 server.
v For DB2 Connect Enterprise Server Edition only, to change the number of

concurrent users, activate the concurrent users policy and type the number of

purchased licenses.

 Related concepts:

v “License Center overview” on page 411

Viewing licensing information

 Use the License Center to view details about any of your DB2 licenses.

 Procedure:

1. Open the License Center: Click

in the Control Center.

2. Select a system name and an installed product for which you want to view

licensing information.

Chapter 7. Using the DB2 administration tools 413

License page

 You must have a system selected for the License page to be enabled.

The information displayed varies depending on the type of license and

product you have installed.

Statistics page

 This page is available only when a concurrent policy is enabled and the

selected system and selected product have been used for DB2 activities.

 Select the Summary radio button to view the statistical information in a

text format. Or, select the Graph radio button to view the statistical

information in a bar graph format.

 Select the date on which the summary information begins and use the

calendar control to select a start date. If you do not specify a date, all

available data will be displayed.

 Select the date on which the summary information ends and use the

calendar control to select an end date.

 You can refresh the statistical information currently displayed, retrieve

statistical information, or view information regarding authorized user

infractions.

 Related concepts:

v “License Center overview” on page 411

 Related tasks:

v “Viewing and resetting compliance details” on page 415

v “Viewing license policy information” on page 414

v “Viewing authorized user infraction information” on page 415

Viewing license policy information

 Use the License Center to view details about your license policy. The license policy

controls and monitors the number of users that can connect simultaneously to a

single DB2 server.

 Procedure:

 1. Open the License Center: Click

in the Control Center.

2. Select the system name and the installed product for which you want to view

details about your license policy.

3. On the License page, enabled only if a system is selected and if you have DB2

Connect Enterprise Server Edition installed, click the Concurrent users policy

arrow to reveal the information in the other fields.

 Related concepts:

v “License Center overview” on page 411

 Related tasks:

v “Viewing licensing information” on page 413

v “Viewing and resetting compliance details” on page 415

v “Viewing authorized user infraction information” on page 415

414 Administration Guide: Implementation

Viewing authorized user infraction information

Use the License Center Details window to view information regarding authorized

user infractions.

The Statistics page is available only when a User-based policy is enabled and the

selected system and selected product have been used for DB2 activities. Statistics

are generated during connects and disconnects after the database manager has

been restarted.

 Procedure:

1. Open the License Center: Click the

icon in the Control Center.

2. On the Statistics page, if enabled, view information about licensed and

non-licensed users.

 Related concepts:

v “License Center overview” on page 411

 Related tasks:

v “Viewing and resetting compliance details” on page 415

v “Viewing license policy information” on page 414

v “Viewing licensing information” on page 413

Viewing and resetting compliance details

 From the License Center, you can generate a compliance report that lists any

features of the DB2 server that you may be using out of compliance with your

current terms and conditions. Some functions are only available under license

when purchased as part of a DB2 feature. You can remove the license violation

warnings in the compliance report by purchasing the feature and installing the

license file (.lic) shipped on the feature media.

 Procedure:

1. Open the Generate Compliance Report window: Click

in the Control

Center to open the License Center. Select License–>Generate Compliance

Report. The Generate Compliance Report window opens.

2. View the compliance details.

3. Optional: To reset the license usage information, select License–>Reset

Compliance Report.

Note: The reset option resets all license usage information for all products and

instances installed within the selected install path. You cannot reset

usage information selectively for a product or for a particular feature.

 Related concepts:

v “License Center overview” on page 411

 Related tasks:

v “Viewing authorized user infraction information” on page 415

v “Viewing license policy information” on page 414

v “Viewing licensing information” on page 413

Chapter 7. Using the DB2 administration tools 415

Removing licenses

 Use the License Center to remove a license.

Note: If you do not have SYSADM authority, the Select Instance window

automatically displays, from which you can select an instance where you

have SYSADM authority .

To remove DB2 licenses, you need SYSADM authority on the DB2 instance on

which the license is installed.

 To remove a license:

1. Open the License Center: Click

in the Control Center.

2. Select the system and the product from which the license is to be removed.

3. Select License–>Remove and confirm your request.

 Related concepts:

v “License Center overview” on page 411

Task Center and Journal

This section describes how to use the Task Center and Journal for scheduling,

running, and viewing task information. It also describes how to manage contacts,

saved schedules, success code sets, and task categories.

Task Center overview

Use the Task Center to schedule tasks, to run tasks, and to notify people about the

status of completed tasks. Tasks are actions performed by the following types of

scripts:

v DB2 command scripts, if the scripts contain DB2 commands

v OS command scripts, if the scripts contain operating system commands

v MVS shell scripts, if the scripts contain MVS commands to be run in a host

environment, such as z/OS

You can also create grouping tasks to define actions based on the results of

multiple tasks. Grouping tasks are unlike other tasks in the Task Center, because

no command script is directly associated with a grouping task. Instead, a grouping

task contains tasks that are already defined to the Task Center. The advantage of

creating a grouping task is to create task actions that depend on the results of more

than one task.

Task schedules are managed by a scheduler. The tasks are run on one or more

systems, known as run systems. You define the conditions for a task to fail or

succeed with a success code set. Based on the success or failure of a task, or group

of tasks, you can run additional tasks, disable scheduled tasks, and perform related

actions. You can also define notifications to send after a task completes. You can

send an e-mail notification to people in your contacts list, or you can send a

notification to the Journal.

From the Task Center, you can also open other centers and tools to help you with

other administrative tasks.

416 Administration Guide: Implementation

To open the Task Center, click

on the Control Center toolbar.

 Prerequisites:

 To use the Task Center, you must select a scheduler system that will work with the

Task Center. The Task Center uses the system clock of the scheduler to determine

when to start tasks. To select a scheduler system, from the Task Center, select a

system in the Scheduler System field.

When you log on to the Task Center, you are logging on to the scheduler that you

select. You must log on every time you start the Task Center.

To grant or revoke privileges for a task, you must be the creator of the task. To

create, alter, or delete a task, you must have write authority for the task. To run a

task, you must have run authority for the task.

 Tasks:

 You can perform the following tasks from the Task Center:

v Create or edit tasks

v Run tasks immediately

v Manage contacts

v Manage task categories

v Manage saved schedules

v Manage success code sets

v Change the default notification message

 The Task Center interface:

 The Task Center interface consists of three elements that help you to customize

your view of the list of tasks and to navigate the Task Center efficiently.

Menu bar

 Use the menu bar to work with objects in the Task Center, open other

administration centers and tools, and access online help.

Contents pane

 Click

to open the Task Center. Use the contents pane to display and

work with system and database objects. The contents pane displays the

tasks that are in the current view.

Contents pane toolbar

 Use the toolbar below the contents pane to tailor the view of tasks in the

contents pane to suit your needs. You can also select these toolbar

functions in the Edit menu and the View menu.

Accessing custom controls with the keyboard

You can use the keyboard to access controls found on the graphical user

Chapter 7. Using the DB2 administration tools 417

interface (GUI) interface. The following two controls are unique to the DB2

family of products. To access these controls using the keyboard:

v For the ellipsis

, press Tab until the button is selected; then press

Enter.

v For the Date field, press Tab until the field is selected; then type the date

in the field.

 Related concepts:

v “Control Center overview” on page 376

v “Journal overview” on page 418

 Related tasks:

v “Changing the default notification message” on page 423

v “Creating or editing a task” on page 425

v “Managing contacts” on page 428

v “Managing saved schedules” on page 429

v “Managing success code sets” on page 430

v “Managing task categories” on page 431

v “Running tasks immediately” on page 421

Journal overview

 Use the Journal notebook to view historical information about tasks, database

actions and operations, messages, and notifications. The Journal is the focal point

for viewing all available historical information generated within the Control

Center, as compared to the Show Result option from the Task Center, which shows

only the latest execution results of a task.

To sort the records shown in each of the notebook pages, click the column

headings.

To open the Journal, click

on the Control Center toolbar.

 Prerequisites:

 To access the Journal, you must have access to the DB2 tools catalog database.

 Task History page:

 Use this page to view the task history records for each of the available scheduler

systems and to analyze the execution results. For example:

v You might want to examine the status of weekly backup tasks.

v You might want to get the execution results of a specific execution of a task,

such as a task that runs periodically to capture a snapshot of a database system.

The results for each execution of this task can be viewed in the Journal.

From the Refresh options field, select the amount of time between automatic page

refreshes. The default option is No automatic refresh.

To delete records, highlight the records that you want to delete, right-click and

select Delete from the pop-up menu.

418 Administration Guide: Implementation

Database History page:

 Use this page to view historical records of database recovery for each of the

databases in the drop-down list. Click

to select a system, instance, and

database. For partitioned environments, you must also select a database partition.

 Messages page:

 Use this page to view the message records issued by the DB2 administration tools

on the local system. To delete the message records, highlight the records that you

want to delete, right-click and select Delete from the pop-up menu. Alternatively,

you can use the Selected menu to remove only the selected records or all records.

 Notification Log page:

 Use this page to view the notification log records for the selected instance. You can

customize the filtering options and criteria. The default is to display the last 50

records of all notification types. If you select either Read from specified record to

end of the file or Read records from specified range, and if the settings are set to

overwrite old records, the log record numbers are not reused. Therefore, selecting

Start record 1 and End record 100 does not guarantee seeing anything in the

notification log if the log has been looping. Note that the columns and column

headings change depending on your selection.

 Related concepts:

v “Task Center overview” on page 416

v “Health Center overview” in System Monitor Guide and Reference

v “Control Center overview” on page 376

 Related tasks:

v “Creating a database for the DB2 tools catalog” on page 424

v “Tools catalog database and DB2 administration server (DAS) scheduler setup

and configuration” on page 96

Enabling scheduling settings in the Task Center

 Use the Advanced Scheduling Settings window to enable scheduling settings in the

Task Center. Scheduling information is stored in the DB2 tools Catalog database .

Click

on the Control Center toolbar to open the Task Center to view the

current settings.

 Procedure:

 To enable schedule settings in the Task Center:

1. From the Enabling Scheduling Function group box of your current window or

notebook, select the system where you want to create the DB2 tools catalog

database, and click Create New.

2. On the window that opens, follow the instructions in Scheduling a task.

You can use the Scheduler Settings page of the Tools Settings notebook to set the

default scheduling scheme. Note that if you set a default scheduling scheme, you

can still override it at the task level.

Chapter 7. Using the DB2 administration tools 419

Related concepts:

v “Scheduler” on page 420

v “Task Center overview” on page 416

 Related tasks:

v “Creating a database for the DB2 tools catalog” on page 424

v “Scheduling a task” on page 422

v “Setting the default scheduling scheme” on page 449

v “Tools catalog database and DB2 administration server (DAS) scheduler setup

and configuration” on page 96

Scheduler

The scheduler is a DB2 system that manages tasks. This component of the DB2

Administration Server (DAS) includes the tools catalog database, which contains

information that the Task Center uses. When you schedule a task, the Task Center

uses the system clock of the scheduler to track when the tasks on the scheduler

need to run.

The Task Center displays the list of cataloged systems or databases that have active

schedulers. You must select a scheduler system to work with the Task Center.

When you log on to the Task Center, you are logging on to the scheduler system

that you select. You must log on every time you start the Task Center.

 Related concepts:

v “Task Center overview” on page 416

 Related tasks:

v “Scheduling a task” on page 422

v “Enabling scheduling settings in the Task Center” on page 419

v “Setting the default scheduling scheme” on page 449

Success code sets

The Task Center uses success code sets to evaluate the success or failure of a task.

Success code sets let you specify the return codes or range of return codes that you

will accept to consider the task a success. Return codes outside the range that you

specify indicate a failed task.

The Task Center evaluates the success of every statement of a DB2 script. If any

statement fails, the entire task fails.

If you do not specify a success code set, a return code of 0 is considered a success;

all others are failures. The following rules apply when you specify a success code

set:

v The success code set can only have one greater than (>) condition, where the

associated code must be greater than or equal to (>=) any less than (<) condition

that is specified. For example, if you specify (> 5) or (< 0), the error codes 0, 1, 2,

3, 4, and 5 mean the task failed. You cannot specify (> 5) or (< 6), as this

includes all numbers.

v The success code set can only have one less than (<) condition, where the

associated code must be less than or equal to (<=) any greater than (>) condition

420 Administration Guide: Implementation

that is specified. For example, if you specify (< 0) or (> 5), the error codes 0, 1, 2,

3, 4, and 5 mean the task failed. You cannot specify (< 5) or (4 >), because this

includes all numbers.

v There can be zero or more unique equality (=) conditions. Tasks with return

codes that match an equality are considered a success.

The following example shows how to create a success code set:

Assume that you want to run a DB2 script. Also assume that this DB2 script

consists of more than one SQL or XQuery statement (that is, the script contains

multiple lines), and you know that each statement in the script returns an

SQLCODE. Because some SQL or XQuery statements can return non-zero

SQLCODES that do not represent error states, you must determine the set of

non-error SQLCODES that any of the SQL statements in the script can return. For

example, assume that the following return codes all indicate successful execution

of the SQL or XQuery statements in the script. That is, if any of the following

conditions are met, execution of the script continues:

 RC > 0 OR RC = -1230 OR RC = -2000

You would define the success code set as shown in Table 20:

 Table 20. Example of a success code set

Condition SQLCODE

> 0

= 0

= -1230

= -2000

 Related tasks:

v “Managing success code sets” on page 430

Running tasks immediately

In the Task Center, you can run one or more tasks immediately or schedule them

to run at a later time. Even if you run a scheduled task immediately, it continues to

run on existing schedules that might be associated with it, if they are enabled.

 Prerequisites:

 To run a task, you must have run authority for the task.

 Procedure:

1. Open the Run Now window:Click

on the Control Center toolbar to open

the Task Center. In the Task Center, select one or more tasks and click

Selected–>Run Now. The Run Now window opens.

2. Click Use notifications to use the notifications for the task.

3. Click Use task actions to use the task actions for the task.

4. If you are running an OS script task:

a. Include the parameters specified on the Run properties page of the Task

Properties notebook.

b. Specify parameters to send.

Chapter 7. Using the DB2 administration tools 421

c. Include the name of the run system.

d. Specify additional parameters. If you checked Override default parameters,

the parameters to send are shown in the Parameter list preview field.
5. Type a user ID with authority to run the task, and the password associated

with the user ID.

 Related concepts:

v “Task Center overview” on page 416

v “Tasks and required authorizations” on page 608

 Related tasks:

v “Enabling scheduling settings in the Task Center” on page 419

v “Selecting users and groups for new tasks” on page 427

Scheduling a task

 Whenever you create a task, you have the option of running it immediately or

scheduling it to run later. For the latter, the script is saved in the Task Center, and

all execution information is automatically saved in the Journal.

 Procedure:

 Use the Schedule page of various wizards and notebooks to indicate whether you

want to run a selected task immediately, or schedule it to run later:

v To run the task immediately, without creating a task in the Task Center or saving

the task history to the Journal, select Run now without saving task history.

v To create a task for generating the DDL script and saving it in the Task Center,

select Create this as a task in the Task Center. Then, specify the task

information and options:

– Specify the name of the system on which you want to run the task. This

system must be online at the time the task is scheduled to run.

– Select the system where you want to store the task and the schedule

information, in the Scheduler system drop-down box.

This system will store the task and notify the run system when it is time to

run the task. The drop-down list contains any system that is cataloged and

has the scheduler enabled. The scheduler system must be online so that it can

notify the run system.

If the DB2 tools catalog is on a remote system, you will be asked for a user ID

and password in order to connect to the database.

– Optional: If you want to select a different scheduling scheme, click Advanced.

The Advanced Schedule Settings window opens where you can select

between server scheduling or centralized scheduling.

– To save the task in the Task Center, but not actually run the task, select Save

task only.

– To save the task in the Task Center and run the task now, select Save and run

task now.

– To save the task to the Task Center, and schedule a date and time to run the

task later, specify Schedule task execution. The Change button is enabled.

Click Change. A window opens where you can enter the date and time at

which to run the task.

The Details group box displays the schedule information you selected.

422 Administration Guide: Implementation

– To run a task in the Task Center you must supply a user ID and password.

Type the user ID and password that you want to use to run the task.
You can use the Scheduler Settings page of the Tools Settings notebook to set the

default scheduling scheme. Note that if you set a default scheduling scheme,

you can still override it at the task level.

 Related concepts:

v “Scheduler” on page 420

v “Task Center overview” on page 416

 Related tasks:

v “Setting the default scheduling scheme” on page 449

v “Tools catalog database and DB2 administration server (DAS) scheduler setup

and configuration” on page 96

Changing the default notification message

Use the Edit Message window from the Task Center to change the default

notification message that is sent to selected contacts to notify them of actions that

they need to take.

 Procedure:

1. Open Edit Message window. To open the Edit Message window, click

in

the Control Center. The Task Center opens. In the Task Center, click Task–>Set

Default Notification Text. The Edit Message window opens.

2. Type the name or ID to identify the sender of the message. DB2 appends the @

hostname to the specified name or ID. The sender is the name that the e-mail

message reports as the person who sent the message.

3. Type the subject line and text of the e-mail message. You can use the tokens in

Table 21, which the Task Center recognizes and replaces with actual values in

the e-mail message.

 Table 21. Tokens for subject lines and e-mail messages

Token Description

&Categories The categories associated with the task.

&Completionstatus The completion status of the task. This value depends on the

success code set associated with the task.

&Description The description of the task.

&Duration The length of time that the run system took to complete the

task from start to finish.

&End The date and time when the task completed.

&Howinvoked The method used to invoke the task.

&Name The name of the task.

&Owner The name of the owner of the task.

&Returncode The final return code of the task.

&Runpartitions The partitions on which the task ran.

&Runsystem The name of the system on which the task ran.

&Schedulersystem The name of the system on which the task is scheduled.

&Start The date and time when the task began running.

Chapter 7. Using the DB2 administration tools 423

Table 21. Tokens for subject lines and e-mail messages (continued)

Token Description

&Type The task type: DB2 script, OS script, MVS shell script, or

grouping task.

&Userid The user ID for the task.

4. Select the system parameters to include in the e-mail message.

5. Select to send the same e-mail message to pagers that is sent to all contacts, or

select to send a different e-mail message to pagers. For the second option, the

contact must be identified as having a pager e-mail address. For this option:

a. Type the subject line and text of the e-mail message that is sent to pagers.

You can use the tokens in Table 21 on page 423, which the Task Center

recognizes and replaces with actual values in the e-mail message.

b. Select the system parameters to include in the e-mail message that is sent to

pagers.

 Related concepts:

v “Task Center overview” on page 416

Creating a database for the DB2 tools catalog

 Use the Create New Tools Catalog window to create the DB2 tools catalog on a

cataloged system that currently has no metadata storage. The tools catalog is a set of

tables in a database that is used by the Task Center to store task definitions,

schedules, and task history information. You can choose to use an existing database

or create a new one. Creating this database also enables Task Center, which

provides support for a more complex scheduling scheme for managing different

tasks and scripts.

 Procedure:

v Open the Create New Tools Catalog window: Click Create New from the

Enabling Scheduling Function group box of your current window, wizard, or

notebook. For instance, click Create New from the Schedule page of the Tools

Settings notebook.

v Select the instance where the tools catalog is to be created, and type the tools

catalog schema name.

v Specify whether to create a new database or use an existing one.

v Select whether to force all applications for instance restart and whether to

activate the tools catalog when it is created.

 Troubleshooting tips:

 If you receive a -567 return code when trying to create a new tools catalog, try

running the db2admin setid command and stop and start the DAS. This error

indicates that an invalid user ID or password has been submitted.

For more information on how to stop and start the DAS, see:

v dasdrop - Remove a DB2 Administration Server Command

v dasauto - Autostart DB2 Administration Server Command

 Related concepts:

v “Tools catalog” in Administration Guide: Planning

424 Administration Guide: Implementation

Related reference:

v “dasdrop - Remove a DB2 administration server command” in Command

Reference

v “dasauto - Autostart DB2 administration server command” in Command Reference

v “CREATE TOOLS CATALOG command” in Command Reference

v “DROP TOOLS CATALOG command” in Command Reference

Creating or editing a task

From the Task Center you can create a tasks for each DB2 script, OS script, or MVS

shell script that you want to run. You can also create or edit grouping tasks that

contain more than one task. Tasks that you include in grouping tasks continue to

run on enabled schedules.

Grouping tasks are unlike other tasks in the Task Center, because no command

script is directly associated with a grouping task. Instead, a grouping task contains

tasks that are already defined to the Task Center. The advantage of creating a

grouping task is to create task actions that depend on the results of more than one

task. For example, you can place three backup tasks in a grouping task, then run a

reorganization task only if all three backup tasks are successful. If any of the tasks

in the grouping task fails, the grouping task is considered a failure.

 Prerequisites:

 Before creating a task, ensure that you have specified a scheduler system. The Task

Center uses the system clock of the scheduler to determine when to start tasks.

When you log on to the Task Center, you are logging on to the scheduler that you

select. You must log on every time you start the Task Center.

To create or edit a task, you must have write authority for the task.

 Procedure:

 To create or edit a task::

 1. Open the New Task notebook: Click

on the Control Center toolbar to

open the Task Center. In the Task Center, select Task–>New, or right-click

anywhere in the task details view, and click New. The New Task notebook

opens.

 2. Select the type of task to create:

v DB2 command script if the script contains DB2 commands

v OS command script if the script contains operating system commands

v MVS shell script if the script contains MVS commands to be run in a host

environment, such as z/OS

v Grouping task to place multiple tasks into the grouping task.
 3. Optional: Select a task category. Categorizing tasks helps keep your list of

tasks organized.

 4. Select the system on which the task will run.

 5. Specify the DB2 instance where the script will run. If the task will run on

multiple DB2 partitions, select the partitions on which the task will run.

 6. Refer to the appropriate path in this step for the type of task that you are

creating, based on your selection in the Type field:

Chapter 7. Using the DB2 administration tools 425

v Specify run properties for a DB2 command script:

a. On the Run properties page, select or create a success code set. Indicate

if the task should stop immediately after receiving a failing return code.

Indicate if any of the generated return codes is a failure. If you do not

specify this, only the final return code is considered.

b. On the Command Script page, type the DB2 script or import an existing

script from a file. Indicate the termination character; DB2 scripts that

contain multiple statements must use this character to separate the

statements. Type the name of the directory from which the script will

run. Specify the full path name. Do not specify a mapped network

drive.
v Specify run properties for an OS command script:

a. On the Run properties page, specify a script interpreter and indicate the

parameters that you want to pass to the script interpreter. Optional:

Select or create a success code set. Success code sets specify the

conditions required for the task to be successful. If you do not specify a

success code set, only a return code of 0 is considered successful.

b. On the Command page, type the script or import an existing script and

select the name of the directory on the run system where the script will

run. Specify the full path name. Do not specify a mapped network

drive.
v Specify run properties for an MVS shell script:

a. On the Run properties page, select or create a success code set. Success

code sets specify the conditions required for the task to be successful. If

you do not specify a success code set, only a return code of 0 is

considered successful.

b. On the Command page, type the script.
v Select tasks for a grouping task:

a. On the Group page, determine which tasks to include in the grouping

task.

b. Use the arrows to move tasks from the list of available tasks to the list

of selected tasks. The selected tasks are members of the group.
 7. Optional: Create a schedule. You can create a task without creating a schedule

or specifying an existing schedule. However, to run the task, you must

schedule the task as follows:

a. Specify a date and time for tasks on this schedule to begin running,

including a repeating schedule, if applicable. Add the schedule to the list

of schedules.You can continue adding to this list.

b. Optional: Save the schedule for reuse with other tasks. When you use a

saved schedule with multiple tasks, you can update the schedule in the

Saved Schedules window. To start the process in which the task runs, you

must type the user ID and password, and enable the task before the first

start time.

c. Optional: Enable the task. The task only runs when it is enabled. You must

enable the task before the first start time. For non-recurring schedules, if

you enable the task after its first start time, the task will not run. For

recurring schedules, you can enable the task after the specified (first) start

time as long as it is not past the end date, if specified.
 8. Optional: Create notifications. You can create a task without creating

notifications. However, a notification is needed to inform people about the

status of completed tasks. On the Notification page, specify the condition

upon which to send the notification and the kind of notification to send when

426 Administration Guide: Implementation

the condition is met. You can add multiple notifications. For example, specify

one notification to be sent if the task succeeds and another if the task fails.

The notification is sent only when the notifications are enabled.

 9. Optional: Create task actions. A task action determines which action to take

after a task completes. You can specify different actions depending on the

success or failure of the task. If you do not create a task action, no action is

taken after the task completes. On the Task Actions page, specify the condition

upon which to run the task action and select the kind of action to take when

the condition is met. You can add multiple task actions. For example, you can

run multiple tasks if the task succeeds or run a backup task if the task fails.

This example requires only two task actions: one that names the tasks to run if

the preceding task is successful, and one that names the tasks to run if the

preceding task fails. The task actions are run only when the task actions are

enabled. Specify the amount of time to wait between each retry of the task.

10. Authorize the users who need to access this task with the appropriate access

level.

 To select tasks to include in a grouping task::

1. Open the New Task notebook: Click

on the Control Center toolbar to open

the Task Center. In the Task Center, select Task–>New, or right-click anywhere

in the task details view, and click New. The New Task notebook opens.

2. On the Group page, select the tasks to include in the grouping task. Use the

arrow buttons to move them to the selected tasks. The selected tasks are

members of the group.

 To view statistics and the status of completed tasks::

1. Open the Task Center: Click

on the Control Center toolbar. The Task

Center opens.

2. Click Task–>Show Progress. The Show Progress window opens, in which you

can view statistics and the status of completed tasks.

 Related concepts:

v “Scheduler” on page 420

 Related tasks:

v “Running tasks immediately” on page 421

Selecting users and groups for new tasks

 Use the Select Users and Groups window to select available users or groups that

will have authority to execute the new task being created.

 To select users and groups for new tasks::

1. Open the Select Users and Groups window. To open the Select Users and

Groups window:

a. Open the Task Center and select Task→New or right-click anywhere in the

task details view and click New. The New Task notebook opens.

b. Click the Security tab.

c. Click Change. The Select Users and Groups window opens.

The Available users and groups table shows all available users and groups

defined to the Task Center.

Chapter 7. Using the DB2 administration tools 427

The Selected users and groups table shows any users and groups already

selected.
2. Select one or more users or groups from the Available users and groups list,

and click > to move them to the Selected users and groups list.

3. Click OK to save the specified information and return to the Security page of

the New Task notebook.

 Related concepts:

v “Control Center overview” on page 376

 Related tasks:

v “Granting database authorities to new groups” on page 529

v “Granting database authorities to new users” on page 529

Managing contacts

Contacts are records of names and e-mail addresses that are stored in the Task

Center. You use and manage the list of contacts like an address book. You can also

create groups of contacts, which makes it easier to manage notification lists

because you only need to update the group definition once to change the

notification list for all tasks. When a notice is sent to the group, each member of

the group receives the notice. Contact groups can include other contact groups.

Other DB2 tools, such as the Health Center, can also use this contacts list. You can

select one or more contacts from the list to receive e-mail notifications about a task

after it completes.

The following tasks are part of managing contacts:

v Adding a contact

v Adding a contact group

v Changing a contact or contact group

v Viewing related contacts and contact groups

v Removing a contact or contact group

 Restrictions:

 To send notifications to contacts in the Task Center, DAS must be configured to

send e-mail messages.

 Procedure:

 1. To specify a valid SMTP server for sending e-mail messages:

a. On the windows specified in following steps, click the SMTP server push

button, and specify a valid SMTP server on the window that opens.
2. To add a contact:

a. Open the Add Contact window: Click

on the toolbar.

b. Click Add Contact.

c. Type the name of the contact. The name identifies the person who receives

the e-mail notification message.

d. Type the full e-mail address of the contact (for example,

userid@domain.com).

e. Optional: Specify if the e-mail message will be displayed on a pager that

receives e-mail. You must click this check-box to use pager messages.

428 Administration Guide: Implementation

f. Optional: Type a description of this contact.
3. To add a contact group:

a. Open the Contact Group window: From the Tools menu, click Contacts. The

Contact Group window opens.

b. Click Add Group.

c. Type the name of the contact group.

d. Optional: Type a description for the contact group.

e. Move the available contacts to the Selected Contacts list.
4. To change a contact or contact group:

a. Open the Change Contact or Change Contact Group window: In the Task

Center, click Task–>Contacts. Select a contact or contact group to change.

Click Change. Depending on your selection, either the Change Contact or

Change Contact Group window opens.

b. Make your changes.
5. To view contact groups that contain a contact, or to remove a contact or contact

group:

a. Open the Contacts window: In the Task Center, click Task–>Contacts.

b. To see a list of the groups in which the contact is a member: Select a contact

and click Show Related.

c. To remove a contact or contact group: Select it, right-click and select

Remove from the pop-up menu. When prompted, confirm your selection.

 Related concepts:

v “Task Center overview” on page 416

Managing saved schedules

In the Task Center, schedules can be saved and used to run one or more tasks.

These are called saved schedules. The following tasks are part of managing saved

schedules:

v Adding saved schedules

v Changing saved schedules

v Removing saved schedules

v Viewing saved schedules

 Prerequisites:

 To create, alter, or delete a saved schedule, you must have write authority for the

saved schedule.

 Procedure:

 1. Click

on the Control Center toolbar to open the Task Center.

2. To see the current list of saved scheduled, select Task–>Saved Schedules. The

Saved Schedules window opens.

3. To add new schedules that can be reused for other tasks, click Add. The Add

Saved Schedules notebook opens. (You can also open this notebook from the

Schedule page of the New Task notebook by clicking the Save List of

Schedules.) When you use a saved schedule with multiple tasks, you make

updates to the schedule in one place, that is, from the Add Saved Schedules

notebook, as follows:

Chapter 7. Using the DB2 administration tools 429

v On the Saved Schedule page, type a name for the schedule and optionally a

description.

v On the Schedule page, specify a date and time for this schedule, including a

repeating schedule, if applicable. Add the schedule to the list of schedules.

You can continue adding to the list.

v On the Security page, authorize the users who need to access this schedule

with the appropriate access level.
4. To make a change to a saved scheduled, select it and click Change. The Change

Saved Schedules notebook opens where you can make your changes.

5. To delete any of the saved schedules, select them and click Remove. Then

Confirm your request.

6. To view the list of tasks for the selected saved schedule, click Show Related.

The Show Related notebook opens, showing all related tasks and schedules.

 Related tasks:

v “Creating or editing a task” on page 425

Managing success code sets

The Task Center uses success code sets to evaluate the success or failure of a task.

Success code sets let you specify the return codes or range of return codes that you

will accept to consider the task a success. Return codes outside the range that you

specify indicate a failed task. For more information, see Success code sets.

The following tasks are part of managing success code sets:

v Adding success code sets

v Changing success code sets

v Selecting success code sets

v Viewing tasks that use the same success code set

v Removing success code sets

All Task Center users can create, alter, or delete success code sets.

 Procedure:

 1. Click

on the Control Center toolbar to open the Task Center.

2. To add a success code set:

a. Open the Add Success Code Set window: From the Task Center, click

Task–>Success Code Sets. From the Success Code Sets window, click Add.

The Add Success Code Set window opens.

b. Type the name of the success code set and, optionally, a description.

c. Specify an operator: =, >, or <.

d. Type an integer representing a return code to go with the condition

operator. The condition and code together make up the success code. If any

of the expressions are met when the task completes, the task is successful.

e. Click Add to add the success code to the list of success codes.

f. Optional: Define additional success codes to add to the set.
3. To change a success code set:

a. Open the Change Success Code Set window: In the Task Center, click

Task–>Success Code Sets. The Success Code Set window opens. Select a

success code set to change. Click Change. The Change Success Code Set

window opens.

430 Administration Guide: Implementation

b. Make your changes. You can change the name and description of the

success code set. You can also add, change or remove success codes from

the List of Success Codes.
4. To select a success code set, to view tasks that use the same success code set, or

to remove a success code set:

a. Open the Select Success Code Set window: In the Task Center window,

select a task. Click Selected–>Edit Task Properties. Click the Run properties

tab. In the Success Code Set field, click

. The Select Success Code Set

window opens.

b. To select a success code set: Select it from the list of available success code

sets.

c. To view tasks that use the same success code set: Click Show Related.

d. To remove one or more success code sets: Select them, right-click and select

Remove from the pop-up menu. When prompted, confirm your selection.

 Related concepts:

v “Success code sets” on page 420

v “Task Center overview” on page 416

Managing task categories

Categorizing tasks lets you group them into relationships to help you manage

them more efficiently. A task can belong to multiple categories. For example a

payroll task that is run at the end of each month might be in the Monthly category

and the Payroll category. You specify the category names and tasks that belong to

the category in the Add Task Category window.

The following tasks are part of managing task categories:

v Adding a new category

v Changing a task category

v Selecting a task category

v Viewing tasks in the same category

v Removing a category

 Procedure:

 1. Open the Task Categories window: Click

on the Control Center toolbar to

open the Task Center. In the Task Center, click Task–>Task Categories. The

Task Categories window opens.

2. To add a task category:

a. Open the Add Task Category window: In the Task Categories window, click

Add. The Add Task Category window opens.

b. Type the name of the category, and optionally, a description of this category.
3. To change a task category:

a. In the Task Categories window, select a task category to change. Click

Change. The Change Task Category window opens.

b. Make your changes to the name or description of the task category.
4. To select a task category:

Chapter 7. Using the DB2 administration tools 431

a. Open the Select Task Categories window: In the Task Center window, select

a task and click Selected–>Edit Task Properties. The Edit Task Properties

notebook opens. On the Task page, click

. The Select Task Categories

window opens.

b. In the Available task categories list, select one or more categories to

associate with the task.

c. Click the arrow to move the selected tasks to the Selected Task Categories

list.

d. If the category name does not exist: Type the name in the New task

category field. Click the arrow to move the task to the Selected Task

Categories list.
5. To view tasks that are in the same category: In the Task Categories window,

select a category, and click Show Related.

6. To remove one or more categories: In the Task Categories window, select the

categories to be removed, right-click and select Remove from the pop-up menu.

When prompted, confirm your selection.

 Related concepts:

v “Task Center overview” on page 416

Tools Settings

This section describes how to use the Tools Settings notebook to set up various

properties and options. It also describes how to set up the startup and default

options for the DB2 administration tools.

Tools Settings overview

 Use the Tools Settings notebook to customize settings and set properties for DB2

administration tools, including documentation settings, font, and color. Some of the

pages display only after you install the centers for which they apply.

 General page:

 Use this page specify whether the local DB2 instance should be automatically

started when the DB2 tools are started, whether to use a statement termination

character, and whether to set filtering when the maximum number of rows is

exceeded from a display sample contents request.

For more information, see Setting the server administration tools startup property.

 Documentation page:

 Use this page to specify whether hover help and infopop help features in the DB2

administration tools should display automatically, and also to specify the location

from which the contextual help is accessed at the instance level.

For more information, see Setting up access to DB2 contextual help and

documentation.

 Fonts page:

432 Administration Guide: Implementation

Use this page to change the font in which text and menus appear in the DB2

administration tools. From the fields available, select the font size and color in

which you want the menus in the DB2 administration tools to appear.

Note: Some changes will not take effect until the Control Center is restarted. If you

have chosen a font color that will not show up on the background color on

your system, DB2 will temporarily override the font color that you have

chosen and select a font color that will show up. This system override will

not be saved as part of your user profile.

For more information, see Changing the fonts for menus and text.

 OS/390 and z/OS page:

 Use this page to set column headings and define the online and batch utility

execution options for OS/390 and z/OS objects. Defaults are provided for some of

the options. For more information, see ″Estimating column sizes″ in Setting DB2

UDB OS/390 and z/OS utility execution options.

For the Optimize grouping of objects for parallel utility execution option, see

Example 1 for online and Example 2 for batch. If this option is not selected, objects

are grouped according to the order in which they were selected, with the

maximum number of objects in each group. See Example 1 and Example 2.

For the Specify the Maximum number of objects to process in parallel for online

execution option, see Example 1. For the Maximum number of jobs to run in

parallel for batch execution and Maximum number of objects per batch job

options, see Example 2.

For more information, see Setting DB2 UDB OS/390 and z/OS utility execution

options.

 Health Center Status Beacon page:

 Use this page to specify the type of notification you will receive when an alert is

generated in the Health Monitor. You can be notified through a pop-up message or

with the graphical beacon that displays on the lower-right portion of the status line

for each DB2 center, or using both methods of notification.

For more information, see Enabling or disabling notification using the Health

Center Status Beacon.

 Scheduler Settings page:

 Use this page to set the default scheduling scheme. Select Server Scheduling if

you want task scheduling to be handled by the scheduler that is local to the

database server, if the scheduler is enabled on that system. Select Centralized

Scheduling if you want the storage and scheduling of tasks to be handled by a

centralized system, in which case you need to select the centralized system from

the Centralized Scheduler list. To enable another scheduler, select a system and

click Create New to open a window in which you can create a database for the

DB2 Tools Catalog on a cataloged system. If the system you want is not cataloged,

you must catalog it first.

For more information, see Setting the default scheduling scheme.

Chapter 7. Using the DB2 administration tools 433

Command Editor page:

 Use this page to specify how you will generate, edit, execute, and manipulate SQL

and XQuery statements, IMS commands, and DB2 commands and work with the

resulting output. These settings affect commands, SQL statements and XQuery

statements on DB2 databases, z/OS and OS/390 systems and subsystems, and

IMSysplexes.

For more information, see Setting Command Editor options.

 IMS page:

 Use this page to set your preferences when working with IMS. You can set

preferences for using wizards, syntax support, results, and the length of your

command history.

For more information, see Setting IMS options.

 Related concepts:

v “Features of the DB2 Information Center” in Online DB2 Information Center

Setting the server administration tools startup property

 Use the General page of the Tools Settings notebook to specify that the local DB2

instance should be automatically started when the DB2 tools are started. You can

also use this page to specify whether to automatically expand the All Databases

folder at start up.

To open the Tools Settings notebook, click

on the DB2 toolbar.

On the General page, select the Automatically start local DB2 on tools startup

check box.

 Related tasks:

v “Setting startup and default options for the DB2 administration tools” on page

436

v “Starting and stopping the DB2 administration server (DAS)” on page 94

v “Starting the server DB2 administration tools” on page 369

Setting a command statement termination character

 Use the General page of the Tools Settings notebook to specify that a character will

be used to terminate statements in command scripts. Command scripts are used in

the Command Editor and Task Center.

Note: If you specify a statement termination character, you cannot use the

backslash (\) character to continue statements in command scripts.

To open the Tools Settings notebook, click

on the DB2 toolbar.

On the General page, select the Use statement termination character check box.

Optional: Type a character that will be used as the statement termination character

in the entry field. The default character is a semicolon (;).

434 Administration Guide: Implementation

Command scripts are used in the Command Editor and Task Center. If you specify

a statement termination character, you cannot use the backslash (\) character to

continue statements in command scripts.

 Related concepts:

v “Command Editor overview” in Online DB2 Information Center

 Related tasks:

v “Executing commands and SQL statements using the Command Editor” in

Online DB2 Information Center

v “Setting Command Editor options” on page 449

Setting up access to DB2 contextual help and documentation

Use the Documentation page of the Tools Settings notebook to specify:

v Whether to automatically display hover help and infopop help features in the

DB2 administration tools

v Where you want to access the DB2 Information Center from so that you can

view DB2 contextual help and documentation.

To open the Tools Settings notebook, click

on the DB2 toolbar. Click the

Documentation tab.

To indicate whether hover help will be automatically displayed, select or clear the

Automatically display hover help check box. The default setting is for the hover

help to be automatically displayed.

To indicate whether infopops will be automatically displayed, select or clear the

Automatically display infopops check box. The default setting is for the infopops

to be automatically displayed. If you clear this check box so that infopops are not

automatically displayed, you can still press F1 to see the infopop for a particular

field or control.

In the Documentation location fields, specify for this instance where to access the

DB2 Information Center from:

v To access the DB2 Information Center on the IBM Web site, use the default

values.

v To access the DB2 Information Center installed on an intranet server, or on your

own computer, specify the host name and port number of the server or

computer.

Important:

The documentation location values that you specify on this page update

the DB2 DB2_DOCHOST and DB2_DOCPORT profile registry variables

that control how requests for DB2 documentation are handled for this

instance only. If you want to change the settings for all instances on this

computer, or if you want to change them for a single user session,

follow the instructions in Setting the location for accessing the DB2

Information Center.

 To have the Documentation location values take effect, including

resetting the default values, click Set and restart the center in which you

are working.

 Related concepts:

Chapter 7. Using the DB2 administration tools 435

v “Features of the DB2 Information Center” in Online DB2 Information Center

v “DB2 Information Center installation options” in Quick Beginnings for DB2 Servers

v “Environment variables and the profile registry” on page 65

 Related tasks:

v “Setting the location for accessing the DB2 Information Center” in Troubleshooting

Guide

v “Declaring, showing, changing, resetting, and deleting registry and environment

variables” on page 68

v “Troubleshooting problems with the DB2 Information Center running on local

computer” in Troubleshooting Guide

 Related reference:

v “Miscellaneous variables” in Performance Guide

Setting startup and default options for the DB2 administration

tools

 Use the General page of the Tools Settings notebook to specify DB2 administration

tools start up properties and customize your Control Center.

To open the Tools Settings notebook, click

on the DB2 toolbar.

The following properties and defaults can be set:

Automatically start local DB2 on tools startup

Select this check box automatically start the local DB2 instance when the

DB2 tools are started.

Automatically expand the All Databases folder

Select this check box to automatically expand the All Databases folder

whenever the Control Center is launched.

Use statement termination character

Select this check box to change the default statement termination character,

and specify a new value in the field provided.

Set filtering when number of rows exceeds [value]

Select this check box to the change the default number of rows displayed

before filtering is required. The default is 500 rows. If more than the

specified number of rows is returned, a Filter window automatically opens,

allowing you to filter the data.

Limit the number of table rows fetched for editing [value]

Select this check box to change the default number of rows that you can

edit at any one time, in the field provided. The default is 100 rows. If there

are less rows than the specified value, the Fetch More Rows push button is

disabled

Click Customize the Control Center push button to switch between the basic,

advanced, or custom views .

 Related tasks:

v “Finding service level information about the DB2 administration tools

environment” on page 370

436 Administration Guide: Implementation

v “Setting the server administration tools startup property” on page 434

v “Shutting down server DB2 administration tools” on page 369

v “Starting the server DB2 administration tools” on page 369

Changing the fonts for menus and text

 Use the Fonts page of the Tools Settings notebook to change the font in which text

and menus appear in the DB2 administration tools.

To open the Tools Settings notebook, click

on the DB2 toolbar.

On the Fonts page, select the font size and color in which you want the menus and

text in the DB2 administration tools to appear.

 Troubleshooting tips:

v Some changes will not take effect until the Control Center is restarted.

v If you have chosen a font color that will not show up on the background color

on your system, DB2 will temporarily override the font color that you have

chosen and select a font color that will show up. This system override will not

be saved as part of your user profile.

 Related reference:

v “DB2 Help menu” on page 375

v “DB2 Tools menu” on page 374

Setting DB2 UDB OS/390 and z/OS utility execution options

 Use the OS/390 and z/OS page of the Tools Settings notebook to set column

headings and define utility execution options.

To open the Tools Settings notebook, click

on the DB2 toolbar.

On the OS/390 and z/OS page, select the Use system catalog column names as

column headings check box to match the column headings in the contents pane of

the Control Center, if applicable, to the column names defined in the system

catalogs of DB2 UDB for OS/390 or z/OS. For derived columns, that is, columns of

which the values are not selected directly from the system catalog, this option will

not have any effect. If you do not select this option, all the column headings in the

contents pane will be displayed in translated form in the current language

selection.

Optional: Select the Edit options each time utility runs check box to have the

opportunity to modify the utility execution options each time a utility is executed.

The Online execution utility ID template field shows the current template for

identifying DB2 for OS/390 and z/OS utilities. You can type an identifier, keep the

displayed value, or open a Change Online Execution Utility ID Template window

to select from a list of symbolic variables by clicking

. The template can consist

of literals and symbolic names. Symbolic names start with an ampersand (&) and

end in a period (.).

The resolved length of the utility identifier can be no longer than 16 characters. If

you do not create your own identifier, the Control Center generates a default

utility ID from the date and timestamp. The default format is CCMMddhhmmss,

Chapter 7. Using the DB2 administration tools 437

where: CC is the Control Center, MM is the month (01-12), dd is the day (01-31), hh

is the hour, mm is the minute, and ss is the second. When parallel execution is

being used, this name is truncated to 9 characters, and a 7-character unique

identifier is added by the system.

Optional: For online, select Continue online execution or batch job if error is

encountered if you want any of the parallel threads started by the Control Center

to start execution of a utility against an unprocessed object. This would occur if

executing a utility in any concurrently running thread, or in the same thread,

resulted in an error (a DSNUTILS return code of 8). If not selected, no more calls

will be made to DSNUTILS once an error is found in any thread.

For batch, select Continue online execution or batch job if error is encountered if

you want the next step of a job generated by the Build JCL or Create JCL function

to be executed if the step immediately before has returned an error executing an

utility (a return code of 8). Unlike with online execution, there exists no

dependency between jobs (the next job with the same jobname would also start

regardless of an error in the previous job with the same jobname). If not selected,

the job generated by the Build JCL or Create JCL function will terminate when one

of the steps executing a utility has returned an error (a return code of 8 or higher).

Optional: For online, select Optimize grouping of objects for parallel utility

execution if you want the set of objects to be grouped into a number of parallel

threads that are constrained by the setting Maximum number of objects to

process in parallel for online execution. With this setting, you can minimize the

overall execution time, use fewer parallel threads to achieve the shortest overall

processing time, and optimize usage of system resource. See Example 1 below.

For batch, select Optimize grouping of objects for parallel utility execution if you

want the set of objects to be grouped into a number of parallel threads (jobs) that

are constrained by the setting Maximum number of jobs to run in parallel for

batch execution. With this setting, you can minimize the overall execution time,

use the fewest concurrent jobs to achieve the shortest overall processing time, and

optimize usage of system resource. The maximum number of steps (executions of

the utility) per job is limited by the setting Maximum number of objects per batch

job. See Example 2 below.

If this option is not selected, objects are grouped according to the order in which

they were selected, with the maximum number of objects in each group. See

Example 1 and Example 2 below.

Specify the Maximum number of objects to process in parallel for online

execution. The default is 10, the maximum value allowed is 99. This number is

used as the maximum when using the optimizer to group objects, and applies only

to online execution. If 1 is specified, then objects are not processed in parallel, but

are processed sequentially. If optimization has not been selected, then this value

specifies exactly how many threads there will be. See Example 1 below.

Specify the Maximum number of jobs to run in parallel for batch execution. The

default is 10, the maximum value allowed is 99. This number is used as the

maximum when using the optimizer to group objects, and applies only to batch,

not to online execution. If 1 is specified, then objects are not processed in parallel,

but instead are processed sequentially. If optimization has not been selected, then

this value specifies exactly how many concurrent batch jobs there will be. See

Example 2 below.

438 Administration Guide: Implementation

Specify the Maximum number of objects per batch job. The default is 10, the

maximum value allowed is 255. This number is used as the maximum when using

the optimizer to group objects, and applies only to batch. If optimization has not

been selected, then this value specifies how many steps (one step per object) there

will be in each batch job. See Example 2 below.

 Example 1: Online execution: How objects are assigned to threads:

 RUNSTATS is requested to be run against a set of index objects (IX1, IX2, IX3

PART 1, IX3 PART2) where IX3 is a partitioned index and the Maximum number

of objects to process in parallel for online execution is set to 4.

The optimizer estimates that RUNSTATS on IX1 takes 10 times longer than on all

other objects.

When optimization is selected

If optimization is enabled, the optimizer would only come up with 2

threads:

Thread 1 would run RUNSTATS against IX1.

Thread 2 would run RUNSTATS against IX2, IX3 PART 1 and IX3 PART 2

sequentially.

 More threads would not result in a shorter overall execution, since Thread

1 will take longer than Thread 2.

When optimization is not selected

If optimization is disabled, 4 threads would be used in this example.

 Example 2: Batch execution: How objects are assigned to jobs and job steps:

 RUNSTATS is requested to be run against a set of index objects (IX1, IX2, IX3

PART 1, IX3 PART2, IX4, IX5, IX6, IX7, IX8, IX9, IX10) where IX3 is a partitioned

index and the Maximum number of jobs to run in parallel for batch execution is

set to 2 and the Maximum number of objects per batch job is set to 3.

The optimizer estimates that RUNSTATS on IX1 takes 10 times longer than on all

other objects.

When optimization is selected

The following JCL would be created for the user:

//JOB1 JOB....

//STEP1 EXEC...

//..... RUNSTATS INDEX IX1

//JOB2 JOB.... //STEP1 EXEC...

//..... RUNSTATS INDEX IX2

//STEP2 EXEC...

//..... RUNSTATS INDEX IX3 PART 1

//STEP3 EXEC...

//..... RUNSTATS INDEX IX3 PART 2

//JOB2 JOB.... //STEP1 EXEC...

//..... RUNSTATS INDEX IX4

//STEP2 EXEC...

//..... RUNSTATS INDEX IX5

//STEP3 EXEC...

//..... RUNSTATS INDEX IX6

Chapter 7. Using the DB2 administration tools 439

//JOB2 JOB....

//STEP1 EXEC...

//..... RUNSTATS INDEX IX7

//STEP2 EXEC...

//..... RUNSTATS INDEX IX8

//STEP3 EXEC...

//..... RUNSTATS INDEX IX9

//JOB2 JOB....

//STEP1 EXEC...

//..... RUNSTATS INDEX IX10

 Since the utility execution on IX1 is expected to take as long as RUNSTATS

on all the remaining 10 indexes and partitions together, RUNSTATS on IX1

is run in a separate job, while all the other RUNSTATS are run sequentially

in JOB2. Note that a higher parallelism would not reduce the overall

execution time of the workload. The optimizer chooses the least required

parallelism to complete the workload in the shortest time.

When optimization is not selected

The following JCL would be created for the user:

//JOB1 JOB....

//STEP1 EXEC...

//..... RUNSTATS INDEX IX1

//STEP2 EXEC...

//..... RUNSTATS INDEX IX3 PART 1

//STEP3 EXEC...

//..... RUNSTATS INDEX IX4

//JOB2 JOB....

//STEP1 EXEC...

//..... RUNSTATS INDEX IX2

//STEP2 EXEC...

//..... RUNSTATS INDEX IX3 PART 2

//STEP3 EXEC...

//..... RUNSTATS INDEX IX5

//JOB1 JOB....

//STEP1 EXEC...

//..... RUNSTATS INDEX IX6

//STEP2 EXEC...

//..... RUNSTATS INDEX IX8

//STEP3 EXEC...

//..... RUNSTATS INDEX IX10

//JOB2 JOB....

//STEP1 EXEC...

//..... RUNSTATS INDEX IX7

//STEP2 EXEC...

//..... RUNSTATS INDEX IX9

 Only the last set of jobs will be created with less than the maximum

number of objects allowed. The list of objects will be assigned sequentially,

alternating by jobs and steps, as shown in the example above.

 Related tasks:

v “Adding DB2 UDB for z/OS subsystems to the object tree” on page 389

440 Administration Guide: Implementation

DB2 for z/OS health monitor

This section describes how to use DB2 for z/OS health monitor, including how to

view recommended actions, health alert summaries, and health alert objects.

DB2 UDB for z/OS health monitor overview

 On the z/OS system, the DB2 UDB for z/OS health monitor is started as a task for

each DB2 subsystem to be monitored or on a dedicated member of a data sharing

group.

The DB2 UDB for z/OS health monitor triggers the evaluation of object

maintenance policies at scheduled times and intervals, as defined in the policy. The

object maintenance policies are created using the DB2 Control Center’s Create

Object Maintenance Policy wizard. During each policy evaluation, the criteria for

recommending maintenance is checked against the thresholds set in the object

maintenance policy to determine the need for object maintenance, that is, whether

COPY, REORG, RUNSTATS, STOSPACE, ALTER TABLESPACE, or ALTER INDEX

are required, and to identify restricted states, such as CHKP, on table space, index,

and storage group objects where applicable. When objects are identified to be in

alert state during policy evaluation,the policy health alert contacts are notified at

their e-mail addresses or pager numbers. The list of health alert contacts for each

DB2 subsystem is defined in and managed from the Control Center.

A snapshot of the evaluation schedule for the policies, which is used by the health

monitor to determine when to trigger policy evaluations, is initially taken by the

health monitor when it is started. This schedule snapshot is refreshed at the refresh

time specified when the health monitor was started, or when the health monitor

receives a refresh command. Any change to the evaluation schedule of a policy is

picked up by the health monitor when the schedule refresh occurs.

The health monitor is started and stopped from the console, using the MVS system

START and STOP commands, respectively.

A sample cataloged procedure (DSNHMONP) that starts a DB2 health monitor,

and a sample cataloged procedure (DSNHMONA) that starts multiple DB2 health

monitors within an MVS system or Parallel Sysplex, are placed in a procedure

library by the installation job DSNTIJHM.

Views, tables, data sets, cataloged procedures, stored procedures, user-defined

functions, and the result set table, which are used by the db2 health monitor or the

related tasks listed below, are created and installed by the installation jobs

DSNTIJCC and DSNTIJHM. DSNTIJCC and DSNTIJHM are shipped with FMIDs

JDB771D and JDB881D.

 Policy Evaluation Log:

 Policy evaluations triggered by the DB2 health monitor are logged in the table

DSNACC.HM_EVAL_LOG. An entry is logged when a policy evaluation starts and

when a policy evaluation ends. Log entries are kept for 7 days, after which they

will be deleted from the table. The DB2 view DSNACC.HM_ALERT_PO_EV, which

was created on this table by the DSNTIJCC installation job, can be used to display

all policies whose last evaluation iteration was not successful.

 Related tasks:

Chapter 7. Using the DB2 administration tools 441

v “Starting, stopping and refreshing the DB2 UDB for z/OS health monitor” on

page 442

v “Viewing health alert summaries” on page 446

v “Viewing health alert objects” on page 447

v “Viewing, submitting, and saving recommended actions” on page 443

Starting, stopping and refreshing the DB2 UDB for z/OS health

monitor

 On the z/OS system, the DB2 UDB for z/OS health monitor is started as a task for

each DB2 subsystem to be monitored or on a dedicated member of a data sharing

group.

v To start a DB2 health monitor, issue the following START MVS system

command:

 S membername,DB2SSN=ssid,JOBNAME=HMONssid,TRACE=trace,REFRESH=nn

TRACE and REFRESH parameters are optional.

membername

Specifies a procedure library member that is executed to start the DB2 health

monitor, that is, DSNHMONP. This cataloged procedure is created by the

DSNTIJHM installation job.

ssid

Specifies the name or identifier of the DB2 subsystem to be monitored.

trace

Specifies the trace flag. Possible values are:

– ON - Turn on trace. Trace records are written to SYSOUT

– OFF - Do not turn on trace

The default is OFF.

nn

Specifies the hour (using a 24-hour clock) when the health monitor refreshes the

evaluation schedule snapshot it uses to trigger policy evaluations. The default is

22.

v To start multiple DB2 health monitors, issue the following START MVS system

command:

 S membername

membername

A procedure library member that is executed to start multiple DB2 health

monitors, that is, DSNHMONA.

Note: Before starting multiple DB2 health monitors with one START command

using DSNHMONA, the HMONPARM data set specified in the

DSNHMONA proc must be populated with the list of subsystems to be

monitored. The cataloged procedure and the data set are created by the

DSNTIJHM installation job.

v To refresh the policy evaluation schedule snapshot used by the DB2 health

monitor to determine when to trigger policy evaluations, issue the following

MODIFY MVS system command:

 F HMONssid,APPL=REFRESH

ssid

442 Administration Guide: Implementation

Name or identifier of the DB2 subsystem that the DB2 health monitor you’re

refreshing is monitoring.

v To stop a DB2 health monitor, issue the following STOP MVS system command:

 STOP HMONssid or P HMONssid

ssid

Name or identifier of the DB2 subsystem that the DB2 health monitor you’re

stopping is monitoring.

 Related concepts:

v “DB2 UDB for z/OS health monitor overview” on page 441

 Related tasks:

v “Viewing health alert summaries” on page 446

v “Viewing health alert objects” on page 447

v “Viewing, submitting, and saving recommended actions” on page 443

Viewing, submitting, and saving recommended actions

 To view, submit, and save the actions recommended for alert objects identified

during policy evaluation, call the DB2 stored procedure SYSPROC.DSNACCHR,

which is created by the DSNTIJCC installation job. DSNACCHR is a stored

procedure which determines the recommended actions for alert objects identified

during policy evaluation and generates a JCL job that will execute the

recommended actions.

The following syntax diagram shows the SQL CALL statement for invoking

DSNACCHR. Because the linkage convention for DSNACCHR is GENERAL WITH

NULLS, if you pass parameters in host variables, you need to include a null

indicator with every host variable. Null indicators for input host variables must be

initialized before you execute the CALL statement.

 Syntax:

�� CALL DSNACCHR (query-type, health-ind, policy-id, work-set, �

� dataset-name, member-name, save-opt, trace-flag,

NULL

NULL

NULL
 �

� job-id, jobname, jcl-proc-time, trace-flag, last-statement, �

� return-code, error-msg) ��

 query-type

Specifies what you want to do with the actions recommended for objects identified

to be in alert state during policy evaluation. Possible values are:

v 0 - View recommended actions on alert objects as a JCL job

v 1 - Submit the JCL job that executes the recommended actions on alert objects

v 2 - Submit the JCL job that executes the recommended actions on alert objects,

and put the job on the hold queue

v 3 Save recommended actions on alert objects as a JCL job in a library member

query-type is an input parameter of type INTEGER.

Chapter 7. Using the DB2 administration tools 443

health-ind

Specifies the type of alert that DSNACCHR includes in the JCL job. Possible values

are:

v RS - Restricted State

v EX - Extents Exceeded

v RR - REORG Required

v CR - COPY Required

v RT - RUNSTATS Required

v SS - STOSPACE Required

health-ind is an input parameter of type VARCHAR(4).

policy-id

Specifies an object maintenance policy. policy-id is an input parameter of type

VARCHAR(7).

work-set

Specifies the work set of an object maintenance policy that identified the alert

objects that DSNACCHR includes in the JCL job. This work set must be identified

with the policy and type of alert specified in the parameters policy-id and health-ind.

work-set is an input parameter of type INTEGER.

dataset-name

Specifies a fully qualified partitioned data set (PDS) or partitioned data set

extended (PDSE) name. This value must be specified if query-type is 3. dataset-name

is an input parameter of type VARCHAR(44).

member-name

Specifies a member of the partitioned data set (PDS) or partitioned data set

extended (PDSE) specified in the dataset-name parameter where the object

maintenance JCL job will be saved.This value must be specified if query-type is 3.

member-name is an input parameter of type VARCHAR(8).

save-opt

Specifies how to save the object maintenance JCL job. This value must be specified

if query-type is 3. Possible values are:

v R - Replace

v A - Append

v NM - New member

save-opt is an input parameter of type VARCHAR(2).

trace-flag

Specifies whether tracing will be turned on or off. Possible values are:

v Y - Turn trace on

v N - Turn trace off

444 Administration Guide: Implementation

trace-flag is an input parameter of type CHAR(1).

job-ID

When query-type is 1 or 2, specifies the job ID of the submitted job. job-id is an

output parameter of type VARCHAR(8).

jobname

When query-type is 1 or 2, specifies the name of the submitted job. jobname is an

output parameter of type VARCHAR(8).

jcl-proc-time

Specifies the time request was processed. jcl-proc-time is an output parameter of

type TIMESTAMP.

last-statement

When DSNACCHR returns a severe error (return code 12), this field contains the

SQL statement that was executing when the error occurred. last-statement is an

output parameter of type VARCHAR(2500).

return-code

The return code from DSNACCHR execution. Possible values are:

v 0 - DSNACCHR executed successfully

v 12 - DSNACCHR terminated with severe errors. The error-msg parameter

contains a message that describes the error. The last-statement parameter contains

the SQL statement that was executing when the error occurred.

return-code is an output parameter of type INTEGER.

error-msg

When DSNACCHR returns a severe error (return code 12), this field contains error

messages, including the formatted SQLCA. error-msg is an output parameter of

type VARCHAR(1331).

DSNACCHR returns one result set when the query-type parameter is 0. The result

set contains the JCL job generated by DSNACCHR. The DSNACCHR result set

table is created by the DSNTIJCC installation job. Table 22 shows the format of the

result set.

 Table 22. DSNACCHR result set format

Column name Data type Description

JCLSEQNO INTEGER Sequence number of the table row

(1,...,n)

JCLSTMT VARCHAR(80) Specifies a JCL statement

 Related concepts:

v “DB2 UDB for z/OS health monitor overview” on page 441

 Related tasks:

Chapter 7. Using the DB2 administration tools 445

v “Viewing health alert objects” on page 447

v “Starting, stopping and refreshing the DB2 UDB for z/OS health monitor” on

page 442

v “Viewing health alert summaries” on page 446

Viewing health alert summaries

 The HEALTH_OVERVIEW function returns information from the Health Alert

Summary VSAM KSDS data set as a DB2 table. This data set is created by the

DSNTIJHM installation job. The Health Alert Summary data set contains

information about the state of the DB2 health monitor and alert summary statistics

for every DB2 subsystem previously or currently monitored by the health monitor

on that MVS system or Parallel Sysplex. These information are returned to the

client with a row for each DB2 subsystem and alert recommendation.

The result of the function is a DB2 table with the following columns:

ip-addr

The IP address of the DB2 server. This is a column of type VARCHAR(40).

db2-ssid

The subsystem identifier of the DB2 subsystem. This is a column of type

VARCHAR(4).

health-ind

The type of alert. Possible values are:

v RS - Restricted State

v EX - Extents Exceeded

v RR - REORG Required

v CR - COPY Required

v RT - RUNSTATS Required

v SS - STOSPACE Required

v PO - Failed Policy Evaluation

v HM - Health Monitor State

health-ind is a column of type VARCHAR(4).

host-name

The fully qualified domain name of the DB2 server. This is a column of type

VARCHAR(255).

summary-stats

The state of the DB2 health monitor if health-ind is ’HM’. Possible values are:

v 0 Health monitor is not started

v 1 Health monitor is started

v -1 Health monitor state is unknown

Otherwise, the total number of alert objects with the alert type specified in

health-ind. This is a column of type INTEGER.

446 Administration Guide: Implementation

alert-state

The state of the alert specified in health-ind. Possible values are:

v 5 - Alarm

v 4 - Attention

v 3 - Warning

v 0 - Normal

alert-state is always 0 when health-ind is ’HM’. This is a column of type INTEGER.

The external program name for the function is HEALTH_OVERVIEW, and the

specific name is DSNACC.DSNACCHO. This function is created by the DSNTIJCC

installation job.

Example: Find the total number of alert objects requiring COPY for the DB2

subsystem ’ABCD’:

 SELECT SUMMARYSTATS FROM TABLE (DSNACC.HEALTH_OVERVIEW()) AS T

 WHERE DB2SSID = ’ABCD’

 AND HEALTHIND = ’CR’;

 Related concepts:

v “DB2 UDB for z/OS health monitor overview” on page 441

 Related tasks:

v “Viewing health alert objects” on page 447

v “Starting, stopping and refreshing the DB2 UDB for z/OS health monitor” on

page 442

v “Viewing, submitting, and saving recommended actions” on page 443

Viewing health alert objects

 Alert objects identified during the last successful iteration of a policy evaluation

are saved in these alert object repository tables, depending on their object type:

v DSNACC.HM_MAINT_TS for table spaces

v DSNACC.HM_MAINT_IX for indexes

v DSNACC.HM_MAINT_SG for storage groups

DB2 creates a number of views on these alert object repository tables. The views

and alert object repository tables are created by the DSNTIJCC installation job.

Table 23 lists the tables on which each view is defined and the view descriptions.

All view names and table names have the qualifier DSNACC.

 Table 23. Views on health alert objects

View Name On Table View Description

HM_ALERT_TS_RS HM_MAINT_TS Displays all table spaces in restricted state

HM_ALERT_TS_EX HM_MAINT_TS Displays all table spaces whose extents have

exceeded a user-specified limit

HM_ALERT_TS_RR HM_MAINT_TS Displays all table spaces that require

REORG

HM_ALERT_TS_CR HM_MAINT_TS Displays all table spaces that require COPY

HM_ALERT_TS_RT HM_MAINT_TS Displays all table spaces that require

RUNSTATS

Chapter 7. Using the DB2 administration tools 447

Table 23. Views on health alert objects (continued)

View Name On Table View Description

HM_ALERT_IX_RS HM_MAINT_IX Displays all indexes that are in restricted

state

HM_ALERT_IX_EX HM_MAINT_IX Displays all indexes whose extents have

exceeded a user-specified limit

HM_ALERT_IX_RR HM_MAINT_IX Displays all indexes spaces that require

REORG

HM_ALERT_IX_CR HM_MAINT_IX Displays all indexes that require COPY

HM_ALERT_IX_RT HM_MAINT_IX Displays all indexes that require RUNSTATS

HM_ALERT_SG_SS HM_MAINT_SG Displays all storage groups that require

STOSPACE

 Related concepts:

v “DB2 UDB for z/OS health monitor overview” on page 441

 Related tasks:

v “Starting, stopping and refreshing the DB2 UDB for z/OS health monitor” on

page 442

v “Viewing health alert summaries” on page 446

v “Viewing, submitting, and saving recommended actions” on page 443

Enabling or disabling notification using the Health Center

Status Beacon

 Use the Health Center Status Beacon page of the Tools Settings notebook to specify

the type of notification you will receive when an alert is generated in the Health

Monitor. You can specify whether you want to be notified through a pop-up

message or with a graphical beacon that displays on the lower-right portion of the

status line for each DB2 Center, or using both methods of notification.

You can also specify that you do not want to receive notification using the Health

Center status beacon.

To open the Tools Settings notebook, click

on the DB2 toolbar.

On the Health Center Status Beacon page, the check boxes on the Health Center

Status Beacon page are enabled by default. Do the following:

v To enable notification through a pop-up message only, select the Notify through

pop-up message check box and deselect the Notify through status line check

box. When you select this method, a DB2 message window indicates that there

are outstanding alerts.

v To enable notification using a status line graphical health beacon only, select the

Notify through status line check box and deselect the Notify through pop-up

message check box. When you select this method, a text message indicating that

there are outstanding alerts and an graphical health beacon display on the Status

line in each center.

v To disable notification, deselect the Notify through pop-up message and Notify

through status line check boxes.

 Related concepts:

448 Administration Guide: Implementation

v “About health indicators” in Administration Guide: Planning

v “Health alerts” in Administration Guide: Planning

 Related reference:

v “Reading the contents of the health indicator settings fields” in Online DB2

Information Center

Setting the default scheduling scheme

 Use the Scheduler Settings page of the Tools Settings notebook to set the default

scheduling scheme. Note that if you set a default scheduling scheme, you can still

override it at the task level.

To open the Tools Settings notebook, click

on the DB2 toolbar.

On the Scheduler Settings page, select Server Scheduling if you want scheduling

to be handled by the scheduler that is local to the database server, if the scheduler

is enabled on that system. Select Centralized Scheduling if you want the storage

and scheduling of tasks to be handled by a centralized system, in which case you

need to select the centralized system from the Centralized Scheduler list.

If you select Centralized Scheduling , select the centralized system from the

Centralized Scheduler drop-down list. To enable another scheduler, select a system

and click Create New to open a window in which you can create a database for

the DB2 Tools Catalog on a cataloged system. If the system you want to use is not

cataloged, you must catalog it first.

 Related concepts:

v “Scheduler” on page 420

v “Task Center overview” on page 416

 Related tasks:

v “Enabling scheduling settings in the Task Center” on page 419

v “Tools catalog database and DB2 administration server (DAS) scheduler setup

and configuration” on page 96

Setting Command Editor options

 Use the Command Editor page of the Tool Settings notebook to set your

preferences when working with the Command Editor. There are options that affect

command and SQL statement execution and the resulting output.

To open the Tools Settings notebook, click

on the DB2 toolbar.

On the Command Editor page, set the Execution and history fields:

v Select Automatically commit SQL statements to have any changes made by

SQL statement execution to take effect immediately.

v Select Stop execution if errors occur to have processing stop when there are

errors.

v Select Limit the number of elements stored in command history to control the

amount of command and statement execution history that appears in the

Chapter 7. Using the DB2 administration tools 449

Command History window. Specify the size. If you do not select this option, all

command and statement history will appear.

v Select Log command history to file to save command and statement execution

history to a file and specify the file and location.

Set the Output options:

v Select Limit the number of lines displayed in output to control the amount of

information that appears in the output section of the Commands page of the

Command Editor notebook. Specify the number of lines. If you do not select this

option, all processing lines will appear.

v Select Enable wrapping of output text to control the display of the information

that appears in the output section of the Commands page of the Command

Editor notebook. If you do not select this option, line wrapping will not occur

and significant scrolling might be required to view the information.

v Select Log output to file to save output information to a file and specify the file

name and location.

v Select Do not display SQLCODE or SQLSTATE to suppress the appearance of

SQLCODEs and SQLSTATEs for executed statements in the output. Select

Display SQLCODE to have the SQLCODE for executed statements appear in

the output. Select Display SQLSTATE to have the SQLSTATE for executed

statements appear in the output.

 Related concepts:

v “Command Editor overview” in Online DB2 Information Center

 Related tasks:

v “Executing commands and SQL statements using the Command Editor” in

Online DB2 Information Center

Setting IMS options

 Use the IMS page of the Tool Settings notebook to set your preferences when

working with the IMS. You can set options that affect how you work with IMS

commands and view the command results.

To open the Tools Settings notebook, click

on the DB2 toolbar.

On the IMS page, check Enable IMS syntax support to assist you when entering

type-2 IMS commands in the Command Editor. When syntax support is enabled,

lists of keywords are automatically displayed as you enter a command.

Check Launch available wizards by default to have the command wizard open

initially from the Control Center. If you uncheck this option, command windows

are opened.

Check Automatically display IMS results to have your command results

automatically displayed.Check Display results in a separate window to have your

command results always displayed in a separate window.

Select how many commands you want to keep in your IMS command results

history.

 Related concepts:

450 Administration Guide: Implementation

v “Control Center overview” on page 376

 Related tasks:

v “Adding DB2 systems and IMSplexes, instances, and databases to the object

tree” on page 390

Visual Explain

This section describes how to use Visual Explain to tune your SQL and XQuery

statements.

Visual Explain overview

 Visual Explain lets you view the access plan for explained SQL or XQuery

statements as a graph. You can use the information in the graph to tune your

queries by performing the following tasks:

v Viewing the statistics that were used at the time of optimization. You can

compare these statistics to the current catalog statistics to help you determine

whether rebinding the package might improve performance.

v Determining whether or not an index was used to access a table. If an index was

not used, Visual Explain helps you to determine which columns might benefit

from being indexed.

v Viewing the effects of performing various types of tuning by comparing the

before and after versions of the access plan graph for a query.

v Obtaining information about each operation in the access plan, including the

total estimated cost and number of rows retrieved (cardinality).

The following illustration shows the interaction between the DB2 optimizer and

Visual Explain invoked from the Control Center. (Broken lines indicate actions that

are required for Visual Explain.)

To learn how to use Visual Explain, you can work through the scenarios in the

Visual Explain Tutorial.

Chapter 7. Using the DB2 administration tools 451

Prerequisites::

v To dynamically explain SQL or XQuery statements, you will need a minimum of

INSERT privilege on the explain tables. If explain tables do not exist, they will

be created when you explain the SQL or XQuery statements.

v To view the details of explained statements, including statistics, you will need a

minimum of SELECT privilege on both the explain tables and on the system

catalog tables.

v To change explained statements, you will need a minimum of UPDATE privilege

on the explain tables.

v To remove explained statements, you will need a minimum of DELETE privilege

on the explain tables.

 To start Visual Explain::

v From the Control Center, right-click a database name and select either Show

Explained Statements History or Explain Query.

v From the Command Editor, execute an explainable statement on the Interactive

page or the Script page.

v From the Query Patroller, click Show Access Plan from either the Managed

Queries Properties notebook or from the Historical Queries Properties notebook.

 Troubleshooting Tips:

v Retrieving the access plan when using LONGDATACOMPAT

v Visual Explain up-level and down-level support

 Related concepts:

v “Access plan” on page 452

v “Access plan graph” on page 453

 Related tasks:

v “Dynamically explaining an SQL or an XQuery statement” on page 464

v “Viewing a graphical representation of an access plan” on page 473

v “Viewing explainable statements for a package” on page 474

v “Viewing the history of previously explained query statements” on page 476

 Related reference:

v “Explain tables” on page 466

v “Viewing SQL or XQuery statement details and statistics” on page 469

Visual Explain concepts

This section contains conceptual information specifically related to Visual Explain

tasks.

Access plan

Certain data is necessary to resolve an explainable SQL or XQuery statement. An

access plan specifies an order of operations for accessing this data. An access plan

lets you view statistics for selected tables, indexes, or columns; properties for

operators; global information such as table space and function statistics; and

configuration parameters relevant to optimization. With Visual Explain, you can

view the access plan for an SQL or XQuery statement in graphical form.

452 Administration Guide: Implementation

The optimizer produces an access plan whenever you compile an explainable SQL

or XQuery statement. This happens at prep/bind time for static statements, and at

run time for dynamic statements.

It is important to understand that an access plan is an estimate based on the

information that is available. The optimizer bases its estimations on information

such as the following:

v Statistics in system catalog tables (if statistics are not current, update them using

the RUNSTATS command.)

v Configuration parameters

v Bind options

v The query optimization class

Cost information associated with an access plan is the optimizer’s best estimate of

the resource usage for a query. The actual elapsed time for a query might vary

depending on factors outside the scope of DB2 (for example, the number of other

applications running at the same time). Actual elapsed time can be measured while

running the query, by using performance monitoring.

 Related concepts:

v “Access plan graph” on page 453

v “Visual Explain overview” on page 451

 Related tasks:

v “Dynamically explaining an SQL or an XQuery statement” on page 464

v “Viewing a graphical representation of an access plan” on page 473

v “Viewing explainable statements for a package” on page 474

v “Viewing the history of previously explained query statements” on page 476

Access plan graph

Visual Explain uses information from a number of sources in order to produce an

access plan graph, as shown in the illustration below. Based on various inputs, the

optimizer chooses an access plan, and Visual Explain displays it in an access plan

graph. The nodes in the graph represent tables and indexes and each operation on

them. The links between the nodes represent the flow of data.

Chapter 7. Using the DB2 administration tools 453

Related concepts:

v “Access plan” on page 452

v “Visual Explain overview” on page 451

 Related tasks:

v “Viewing the history of previously explained query statements” on page 476

v “Dynamically explaining an SQL or an XQuery statement” on page 464

v “Viewing a graphical representation of an access plan” on page 473

v “Viewing explainable statements for a package” on page 474

Access plan graph node

The access plan graph consists of a tree displaying nodes. These nodes represent:

v Tables, shown as rectangles

v Indexes, shown as diamonds

v Operators, shown as octagons (8 sides). TQUEUE operators, shown as

parallelograms

v Table functions, shown as hexagons(6 sides).

 Related concepts:

v “Access plan” on page 452

v “Access plan graph” on page 453

Clustering

Over time, updates may cause rows on data pages to change location lowering the

degree of clustering that exists between an index and the data pages. Reorganizing

a table with respect to a chosen index reclusters the data. A clustered index is most

useful for columns that have range predicates because it allows better sequential

access of data in the base table. This results in fewer page fetches, since like values

are on the same data page.

In general, only one of the indexes in a table can have a high degree of clustering.

454 Administration Guide: Implementation

To check the degree of clustering for an index, double-click on its node to display

the Index Statistics window. The cluster ratio or cluster factor values are shown in

this window. If the value is low, consider reorganizing the table’s data.

 Related reference:

v “Guidelines for creating indexes” on page 467

Container

A container is a physical storage location of the data. It is associated with a table

space, and can be a file or a directory or a device.

 Related concepts:

v “Table spaces” on page 148

Cost

Cost, in the context of Visual Explain, is the estimated total resource usage

necessary to execute the access plan for a statement (or the elements of a

statement). Cost is derived from a combination of CPU cost (in number of

instructions) and I/O (in numbers of seeks and page transfers).

The unit of cost is the timeron. A timeron does not directly equate to any actual

elapsed time, but gives a rough relative estimate of the resources (cost) required by

the database manager to execute two plans for the same query.

The cost shown in each operator node of an access plan graph is the cumulative

cost, from the start of access plan execution up to and including the execution of

that particular operator. It does not reflect factors such as the workload on the

system or the cost of returning rows of data to the user.

 Related concepts:

v “Timerons” in Administration Guide: Planning

Dynamic SQL or XQuery

Dynamic SQL or XQuery statements are SQL or XQuery statements that are prepared

and executed within an application program while the program is running. In

dynamic SQL or XQuery, either:

v You issue the SQL or XQuery statement interactively, using CLI or CLP

v The SQL or XQuery source is contained in host language variables that are

embedded in an application program.

When DB2 runs a dynamic SQL or XQuery statement, it creates an access plan that

is based on current catalog statistics and configuration parameters. This access plan

might change from one execution of the statements application program to the

next.

The alternative to dynamic SQL or XQuery is static SQL or XQuery.

 Related concepts:

v “Static SQL or XQuery” on page 463

Chapter 7. Using the DB2 administration tools 455

Explain snapshot

With Visual Explain, you can examine the contents of an explain snapshot.

An explain snapshot is compressed information that is collected when an SQL

statement is explained. It is stored as a binary large object (BLOB) in the

EXPLAIN_STATEMENT table, and contains the following information:

v The internal representation of the access plan, including its operators and the

tables and indexes accessed

v The decision criteria used by the optimizer, including statistics for database

objects and the cumulative cost for each operation.

An explain snapshot is required if you want to display the graphical representation

of an SQL statement’s access plan. To ensure that an explain snapshot is created:

1. Explain tables must exist in the database manager to store the explain

snapshots. For information on how to create these tables, see Creating explain

tables in the online help.

2. For a package containing static SQL or XQuery statements, set the EXPLSNAP

option to ALL or YES when you bind or prep the package. You will get an

explain snapshot for each explainable SQL statement in the package. For more

information on the BIND and PREP commands, see the Command Reference.

3. For dynamic SQL statements, set the EXPLSNAP option to ALL when you bind

the application that issues them, or set the CURRENT EXPLAIN SNAPSHOT

special register to YES or EXPLAIN before you issue them interactively. For

more information, see the section on current explain snapshots in the SQL

Reference.

 Related tasks:

v “Using explain snapshots” in DB2 Visual Explain Tutorial

 Related reference:

v “BIND command” in Command Reference

v “PRECOMPILE command” in Command Reference

Explainable statement

An explainable statement is an SQL or XQuery statement for which an explain

operation can be performed.

Explainable SQL or XQuery statements are:

v SELECT

v INSERT

v UPDATE

v DELETE

v VALUES

 Related concepts:

v “Explained statement” on page 456

Explained statement

An explained statement is an SQL or XQuery statement for which an explain

operation has been performed. Explained statements are shown in the Explained

Statements History window.

456 Administration Guide: Implementation

Related concepts:

v “Explainable statement” on page 456

Operand

An operand is an entity on which an operation is performed. For example, a table

or an index is an operand of various operators such as TBSCAN and IXSCAN.

 Related concepts:

v “Operator” on page 457

Operator

An operator is either an action that must be performed on data, or the output from

a table or an index, when the access plan for an SQL or XQuery statement is

executed.

The following operators can appear in the access plan graph:

CMPEXP

Computes expressions. (For debug mode only.)

DELETE

Deletes rows from a table.

EISCAN

Scans a user defined index to produce a reduced stream of rows.

FETCH

Fetches columns from a table using a specific record identifier.

FILTER

Filters data by applying one or more predicates to it.

GENROW

Generates a table of rows.

GRPBY

Groups rows by common values of designated columns or functions, and

evaluates set functions.

HSJOIN

Represents a hash join, where two or more tables are hashed on the join

columns.

INSERT

Inserts rows into a table.

IXAND

ANDs together the row identifiers (RIDs) from two or more index scans.

IXSCAN

Scans an index of a table with optional start/stop conditions, producing an

ordered stream of rows.

MSJOIN

Represents a merge join, where both outer and inner tables must be in

join-predicate order.

NLJOIN

Represents a nested loop join that accesses an inner table once for each row

of the outer table.

Chapter 7. Using the DB2 administration tools 457

PIPE Transfers rows. (For debug mode only.)

RETURN

Represents the return of data from the query to the user.

RIDSCN

Scans a list of row identifiers (RIDs) obtained from one or more indexes.

RPD (Remote PushDown)

An operator for remote plans. It is very similar to the SHIP operator in

Version 8 (RQUERY operator in previous versions), except that it does not

contain an SQL or XQuery statement.

SHIP Retrieves data from a remote database source. Used in the federated

system.

SORT Sorts rows in the order of specified columns, and optionally eliminates

duplicate entries.

TBSCAN

Retrieves rows by reading all required data directly from the data pages.

TEMP Stores data in a temporary table to be read back out (possibly multiple

times).

TQUEUE

Transfers table data between database agents.

UNION

Concatenates streams of rows from multiple tables.

UNIQUE

Eliminates rows with duplicate values, for specified columns.

UPDATE

Updates rows in a table.

XISCAN

Scans an index of an XML table.

XSCAN

Navigates an XML document node subtrees.

XANDOR

Allows ANDed and ORed predicates to be applied to multiple XML

indexes.

 Related concepts:

v “Operand” on page 457

Optimizer

The optimizer is the component of the SQL compiler that chooses an access plan for

a data manipulation language (DML) SQL statement. It does this by modeling the

execution cost of many alternative access plans, and choosing the one with the

minimal estimated cost.

 Related concepts:

v “Query optimization class” on page 460

458 Administration Guide: Implementation

Package

A package is an object stored in the database that includes the information needed

to process the SQL statements associated with one source file of an application

program. It is generated by either:

v Precompiling a source file with the PREP command

v Binding a bind file that was generated by the precompiler with the BIND

command.

 Related reference:

v “BIND command” in Command Reference

v “PRECOMPILE command” in Command Reference

Predicate

A predicate is an element of a search condition that expresses or implies a

comparison operation. Predicates are included in clauses beginning with WHERE

or HAVING.

For example, in the following SQL statement:

SELECT * FROM SAMPLE

 WHERE NAME = ’SMITH’ AND

 DEPT = 895 AND YEARS > 5

The following are predicates: NAME = ’SMITH’; DEPT = 895; and YEARS > 5.

Predicates fall into one of the following categories, ordered from most efficient to

least efficient:

1. Starting and stopping conditions bracket (narrow down) an index scan. (These

conditions are also called range-delimiting predicates.)

2. Index-page (also known as index sargable) predicates can be evaluated from an

index because the columns involved in the predicate are part of the index key.

3. Data-page (also known as data sargable) predicates cannot be evaluated from

an index, but can be evaluated while rows remain in the buffer.

4. Residual predicates typically require I/O beyond the simple accessing of a base

table, and must be applied after data is copied out of the buffer page. They

include predicates that contain subqueries, or those that read LONG

VARCHAR or LOB data stored in files separate from the table.

When designing predicates, you should aim for the highest selectivity possible so

that the fewest rows are returned.

The following types of predicates are the most effective and the most commonly

used:

v A simple equality join predicate is required for a merge join. It is of the form

table1.column = table2.column, and allows columns in two different tables to be

equated so that the tables can be joined.

v A local predicate is applied to one table only.

 Related concepts:

v “Selectivity of predicates” on page 461

Chapter 7. Using the DB2 administration tools 459

Query optimization class

A query optimization class is a set of query rewrite rules and optimization techniques

for compiling queries.

The primary query optimization classes are:

1 Restricted optimization. Useful when memory and processing resources are

severely restrained. Roughly equivalent to the optimization provided by

Version 1.

2 Slight optimization. Specifies a level of optimization higher than that of

Version 1, but at significantly less optimization cost than levels 3 and

above, especially for very complex queries.

3 Moderate optimization. Comes closest to matching the query optimization

characteristics of DB2 for MVS/ESA.

5 Normal optimization. Recommended for a mixed environment using both

simple transactions and complex queries.

7 Normal optimization. The same as query optimization 5 except that it does

not reduce the amount of query optimization for complex dynamic queries.

Other query optimization classes, to be used only under special circumstances, are:

0 Minimal optimization. Use only when little or no optimization is required

(that is, for very simple queries on well-indexed tables).

9 Maximum optimization. Uses substantial memory and processing

resources. Use only if class 5 is insufficient (that is, for very complex and

long-running queries that do not perform well at class 5).

In general, use a higher optimization class for static queries and for queries that

you anticipate will take a long time to execute, and a lower optimization class for

simple queries that are submitted dynamically or that are run only a few times.

To set the query optimization for dynamic SQL or XQuery statements, enter the

following command in the command line processor:

SET CURRENT QUERY OPTIMIZATION = n;

where ’n’ is the desired query optimization class.

To set the query optimization for static SQL or XQuery statements, use the

QUERYOPT option on the BIND or PREP commands.

 Related concepts:

v “Optimizer” on page 458

 Related reference:

v “BIND command” in Command Reference

v “PRECOMPILE command” in Command Reference

Cursor blocking

Cursor blocking is a technique that reduces overhead by having the database

manager retrieve a block of rows in a single operation. These rows are stored in a

cache while they are processed. The cache is allocated when an application issues

460 Administration Guide: Implementation

an OPEN CURSOR request, and is de-allocated when the cursor is closed. When

all the rows have been processed, another block of rows is retrieved.

Use the BLOCKING option on the PREP or BIND commands along with the

following parameters to specify the type of cursor blocking:

UNAMBIG

Only unambiguous cursors are blocked (the default).

ALL Both ambiguous and unambiguous cursors are blocked.

NO Cursors are not blocked.

 Related tasks:

v “Specifying row blocking to reduce overhead” in Performance Guide

 Related reference:

v “BIND command” in Command Reference

v “PRECOMPILE command” in Command Reference

Selectivity of predicates

Selectivity refers to the probability that any row will satisfy a predicate (that is, be

true).

For example, a selectivity of 0.01 (1%) for a predicate operating on a table with

1,000,000 rows means that the predicate returns an estimated 10,000 rows (1% of

1,000,000), and discards an estimated 990,000 rows.

A highly selective predicate (one with a selectivity of 0.10 or less) is desirable. Such

predicates return fewer rows for future operators to work on, thereby requiring

less CPU and I/O to satisfy the query.

Example

Suppose that you have a table of 1,000,000 rows, and that the original query

contains an ’ORDER BY’ clause requiring an additional sorting step. With a

predicate that has a selectivity of 0.01, the sort would have to be done on an

estimated 10,000 rows. However, with a less selective predicate of 0.50, the sort

would have to be done on an estimated 500,000 rows, thus requiring more CPU

and I/O time.

 Related concepts:

v “Predicate” on page 459

Sequences

 A sequence is a database object that allows the automatic generation of values.

Sequences are ideally suited to the task of generating unique key values.

Applications can use sequences to avoid possible concurrency and performance

problems resulting from the generation of a unique counter outside the database.

The sequence numbers generated have the following properties:

v Values can be any exact numeric data type with a scale of zero. Such data types

include: SMALLINT, BIGINT, INTEGER, and DECIMAL.

Chapter 7. Using the DB2 administration tools 461

v Consecutive values can differ by any specified integer increment. The default

increment value is 1.

v Counter value is recoverable. The counter value is reconstructed from logs when

recovery is required.

v Values can be cached to improve performance. Preallocating and storing values

in the cache reduces synchronous I/O to the log when values are generated for

the sequence. In the event of a system failure, all cached values that have not

been committed are never used and considered lost. The value specified for

CACHE is the maximum number of sequence values that could be lost.

There are two expressions used with a sequence.

The PREVVAL expression returns the most recently generated value for the

specified sequence for a previous statement within the current application process.

The NEXTVAL expression returns the next value for the specified sequence. A new

sequence number is generated when a NEXTVAL expression specifies the name of

the sequence. However, if there are multiple instances of a NEXTVAL expression

specifying the same sequence name within a query, the counter for the sequence is

incremented only once for each row of the result, and all instances of NEXTVAL

return the same value for a row of the result.

The same sequence number can be used as a unique key value in two separate

tables by referencing the sequence number with a NEXTVAL expression for the

first row, and a PREVVAL expression for any additional rows.

For example:

 INSERT INTO order (orderno, custno)

 VALUES (NEXTVAL FOR order_seq, 123456);

 INSERT INTO line_item (orderno, partno, quantity)

 VALUES (PREVVAL FOR order_seq, 987654, 1)

 Related tasks:

v “Creating a sequence” on page 234

Star join

A set of joins are considered to be a star join when a fact table (large central table)

is joined to two or more dimension tables (smaller tables containing descriptions of

the column values in the fact table).

A Star join is comprised of 3 main parts:

v Semijoins

v Index ANDing of the results of the Semijoins

v Completing the semijoins.

It shows up as two or more joins feeding an IXAND operator.

A Semijoin is a special form of join in which the result of the join is only the Row

Identifier (RID) of the inner table, instead of the joining of the inner and outer

table columns.

Star joins use Semijoins to supply Row Identifiers to an Index ANDing operator.

The Index ANDing operator accumulates the filtering affect of the various joins.

The output from the Index ANDing operator is fed into an Index ORing operator,

which orders the Row Identifiers, and eliminates any duplicate rows that may have

462 Administration Guide: Implementation

resulted from the joins feeding the Index ANDing operator. The rows from the fact

table are then fetched, using a Fetch operator. Finally, the reduced fact table is

joined to all of the dimension tables, to complete the joins.

Performance suggestions:

v Create indexes on the fact table for each of the dimension table joins.

v Ensure the sort heap threshold is high enough to allow allocating the Index

ANDing operator’s bit filter. For star joins, this could require as much as 12MB,

or 3000 4K pages. For Intra-partition parallelism, the bit filter is allocated from

the same shared memory segment as the shared sort heap, and it is bounded by

the sortheap database configuration parameter and the sheapthres_shr database

configuration parameter.

v Apply filtering predicates against the dimension tables. If statistics are not

current, update them using the runstats command.

 Related reference:

v “IXAND operator” in Performance Guide

v “RUNSTATS command” in Command Reference

v “Using RUNSTATS” on page 468

Static SQL or XQuery

A static SQL or XQuery statement is embedded within an application program. All

these embedded statements must be precompiled and bound into a package before

the application can be executed. To execute XQuery expressions in static SQL, use

the XMLQUERY function.

When DB2 compiles these statements, it creates an access plan for each one that is

based on the catalog statistics and configuration parameters at the time that the

statements were precompiled and bound.

These access plans are always used when the application is run; they do not

change until the package is bound again.

The alternative to static SQL or XQuery is dynamic SQL or XQuery.

 Related tasks:

v “Executing XQuery expressions in embedded SQL applications” in Developing

Embedded SQL Applications

Visual Explain

Note: As of Version 6, Visual Explain can no longer be invoked from the command

line. It can still, however, be invoked from various database objects in the

Control Center. For this version, the documentation continues to use the

name Visual Explain.

Visual Explain lets you view the access plan for explained SQL or XQuery

statements as a graph. You can use the information available from the graph to

tune your queries for better performance.

An access plan graph shows details of:

v Tables (and their associated columns) and indexes

v Operators (such as table scans, sorts, and joins)

v Table spaces and functions.

Chapter 7. Using the DB2 administration tools 463

You can also use Visual Explain to:

v View the statistics that were used at the time of optimization. You can then

compare these statistics to the current catalog statistics to help you determine

whether rebinding the package might improve performance.

v Determine whether or not an index was used to access a table. If an index was

not used, Visual Explain can help you determine which columns might benefit

from being indexed.

v View the effects of performing various tuning techniques by comparing the

before and after versions of the access plan graph for a query.

v Obtain information about each operation in the access plan, including the total

estimated cost and number of rows retrieved (cardinality).

 To start Visual Explain::

v From the Control Center, right-click a database name and select either Show

Explained Statements History or Explain Query.

v From the Command Editor, execute an explainable statement on the Interactive

page or the Script page.

v From the Query Patroller, click Show Access Plan from either the Managed

Queries Properties notebook or from the Historical Queries Properties notebook.

 Related concepts:

v “Visual Explain overview” on page 451

Dynamically explaining an SQL or an XQuery statement

 Use the Explain Query Statement window to dynamically explain an SQL or

XQuery statement and to produce an access plan graph. If explain tables do not

exist, they will be created.

An explained statement record is added to the Explained Statements History for all

successful operations.

 Prerequisites:

 To dynamically explain query statements, you will need at least the INSERT

privilege on the explain tables.

 Procedure:

 To dynamically explain an SQL or XQuery statement:

1. Open the Explain Query Statement window: From the Control Center, expand

the object tree until you find the Databases folder, expand the Databases folder

until you find the database that you want, and then do one of the following:

v Right-click the database, and click Explain Query from the pop-up menu.

Highlight a database, and click Selected–>Explain Query. The Explain Query

Statement window opens.

v Open the Explainable Statements, the Explained Statements History, or the

Access Plan Graph window. Select Statement–>Explain Query. The Explain

Query Statement window opens.

Note:

– If you select Explain Query from the Control Center, the Query text

field will be empty.

464 Administration Guide: Implementation

– If you selected Explain Query from the Explainable Statements or

Explained Statements History windows and selected an entry in

that window, the Query text field will be populated with the SQL

or XQuery statement related to that entry. If you did not select an

entry, the Query text field will be empty.

– If you selected Explain Query from the Access Plan Graph window,

the Query text field will contain text for the SQL or XQuery

statement whose access plan was shown in the graph.
2. In the Query text field, you can:

v Type an SQL or XQuery statement that you want explained.

v Change the text of an SQL or XQuery statement that already appears in the

text field.

v Get an SQL or XQuery statement from a specified file.

v Save the SQL or XQuery statement to a specified file.
3. Optional: In the Query number or Query tag fields, type new values.

4. Optional: In the Query optimization class field, type new values.

5. Optional: Select the Populate all columns in Explain tables check box to

populate all of the columns of the explain tables from the dynamic explain;

otherwise, only the few columns needed by Visual Explain will be populated

from the dynamic explain.

 Related concepts:

v “Visual Explain overview” on page 451

 Related tasks:

v “Viewing explainable statements for a package” on page 474

v “Viewing the history of previously explained query statements” on page 476

v “Viewing a graphical representation of an access plan” on page 473

 Related reference:

v “Viewing SQL or XQuery statement details and statistics” on page 469

Creating an access plan using the Command Editor

 Use the Command Editor to generate, edit, execute, and manipulate SQL and

XQuery statements, IMS commands, and DB2 commands. You can also use the

Command Editor to work with the resulting output and to view a graphical

representation of the access plan for explained SQL statements. You can execute

commands and SQL statements on DB2 databases for Linux and Windows, for

z/OS and OS/390 systems and subsystems, and for IMSplexes.

 Procedure:

 To create an access plan using the Command Editor:

1. Open the Command Editor: To open a stand-alone Command Editor, select

Start –> Programs –> IBM DB2 –> Command Line Tools –> Command Editor.

For other methods, see the Command Editor overview.

2. Select either the Interactive or Script tab, and do the following:

a. Connect to a database. (Type the connect command in the text area and

select Execute from the Interactive or Script menu, depending on which

Chapter 7. Using the DB2 administration tools 465

page you selected in step 2., or click on the

icon, or press the

Ctrl+Enter keys to execute the command.)

b. To create an access plan without executing the statement, type an

explainable statement in the text area and select Create access plan, from

the Interactive or Script menu, or click on the

icon. The access plan

graph is displayed on the Access Plan page.

You can also select an explainable statement from an existing script.

c. To create an access plan and also execute the statement:

1) Select Options from the Interactive or Script menu. The Command

Center Options notebook opens. Click on the Access Plan tab. Select the

Automatically generate access plan check box, and click OK.

2) Type an explainable statement in the text area or select an existing

statement. Select Execute, from the Interactive or Script menu, or click

the

icon. The results are displayed on the Results page. To view

the generated access plan, click on the Access Plan tab.

 Related concepts:

v “Command Editor overview” in Online DB2 Information Center

v “Explainable statement” on page 456

v “Access plan” on page 452

v “Visual Explain overview” on page 451

 Related tasks:

v “Executing commands and SQL statements using the Command Editor” in

Online DB2 Information Center

Explain tables

 To create explain snapshots, you must ensure that the following explain tables exist

for your user ID:

v EXPLAIN_INSTANCE

v EXPLAIN_STATEMENT

To check if they exist, use the DB2 list tables command. If you would like to use

Visual Explain, and these tables do not exist, you must create them using the

following instructions:

1. If DB2 has not already been started, issue the db2start command.

2. From the DB2 CLP prompt, connect to the database that you want to use. To

connect to the SAMPLE database, issue the connect to sample command.

3. Create the explain tables, using the sample command file that is provided in

the EXPLAIN.DDL file. This file is located in the sqllib\misc directory. To run the

command file, go to this directory and issue the db2 -tf EXPLAIN.DDL

command. This command file creates explain tables that are prefixed with the

connected user ID. This user ID must have CREATETAB privilege on the

database, or SYSADM or DBADM authority.

Note: Before you run db2 -tvf EXPLAIN.DDL, ensure that explain tables for the

schema name do not exist. If you have migrated from an earlier version, you

need to run db2exmig to migrate the explain tables.

466 Administration Guide: Implementation

Related concepts:

v “Visual Explain overview” on page 451

 Related tasks:

v “Viewing the history of previously explained query statements” on page 476

v “Dynamically explaining an SQL or an XQuery statement” on page 464

v “Viewing explainable statements for a package” on page 474

Guidelines for creating indexes

 Creating appropriate indexes allows the optimizer to choose an index scan for

those cases where it would be more efficient than a table scan.

Some guidelines for creating indexes include:

v Define primary keys and unique indexes wherever they apply.

v Create an index on any column that the query uses to join tables (join

predicates).

v Create an index on any column from which you search for particular values on a

regular basis.

v Create an index on columns that are commonly used in ORDER BY clauses.

v Ensure that you have used predicates that retrieve only the data you need. For

example, ensure that the selectivity value for the predicates represents the

portion of the table that you want returned.

v When creating a multicolumn index, the first columns of the index should be the

ones that are used most often by the predicates in your query.

v Ensure that the disk and update maintenance overhead an index introduces will

not be too high.

 Related concepts:

v “Space requirements for indexes” in Administration Guide: Planning

v “Visual Explain overview” on page 451

 Related tasks:

v “Estimating space requirements for tables and indexes” on page 272

Out-of-date access plans

Symptom

The STATS_TIME row indicates that the statistics are not updated.

Possible cause

The optimizer used default values. (These default values are displayed

with the keyword ″default″.) This situation can result in an out-of-date

access plan.

Action

It is recommended that you use the runstats command to update the

statistics; then rebind the package.

 Related concepts:

v “Access plan” on page 452

v “Visual Explain overview” on page 451

Chapter 7. Using the DB2 administration tools 467

Retrieving the access plan when using LONGDATACOMPAT

 Symptom:

 No explained statement history or access plan can be displayed using Visual

Explain.

 Possible cause:

 If the value for LONGDATACOMPAT is set to 1 in the db2cli.ini file, the Visual

Explain access plan can be generated but cannot be retrieved.

 Action:

 As a work around, a database alias can be created for that database with

LONGDATACOMPAT set to 0. For example:

 DB2 UPDATE CLI CFG FOR SECTION db-alias-name USING LONGDATACOMPAT 0

To check the CLI configuration values, the following command can be used:

 GET CLI CONFIGURATION [AT GLOBAL LEVEL] [FOR SECTION section-name]

For instance, if the database name is called sample:

 GET CLI CONFIGURATION FOR SECTION sample

 Related concepts:

v “Access plan” on page 452

Using RUNSTATS

 The optimizer uses the catalog tables from a database to obtain information about

the database, the amount of data in it, and other characteristics, and uses this

information to choose the best way to access the data. If current statistics are not

available, the optimizer might choose an inefficient access plan based on inaccurate

default statistics.

It is highly recommended that you use the RUNSTATS command to collect current

statistics on tables and indexes, especially if significant update activity has

occurred or new indexes have been created since the last time the RUNSTATS

command was executed. This provides the optimizer with the most accurate

information with which to determine the best access plan.

Be sure to use RUNSTATS after making your table updates; otherwise, the table

might appear to the optimizer to be empty. This problem is evident if cardinality

on the Operator Details window equals zero. In this case, complete your table

updates, rerun the RUNSTATS command and recreate the explain snapshots for

affected tables.

Note:

v Use RUNSTATS on all tables and indexes that might be accessed by a query.

v The quantile and frequent value statistics determine when data is unevenly

distributed. To update these values, use RUNSTATS on a table with the WITH

DISTRIBUTION clause.

v In addition to statistics, other factors (such as the ordering of qualifying rows,

table size, and buffer pool size) might influence how an access plan is selected.

468 Administration Guide: Implementation

v Applications should be rebound (and their statements optionally re-explained)

after you run the RUNSTATS command or change configuration parameters.

The RUNSTATS command (which can be entered from the DB2 CLP prompt) can

provide different levels of statistics as shown in the following syntax:

Basic Statistics

Table:

RUNSTATS ON TABLE tablename

Index:

RUNSTATS ON TABLE tablename FOR INDEXES ALL

Both tables and indexes:

RUNSTATS ON TABLE tablename AND INDEXES ALL

 Enhanced Statistics

Table:

RUNSTATS ON TABLE tablename WITH DISTRIBUTION

Index:

RUNSTATS ON TABLE tablename FOR DETAILED INDEXES ALL

Both tables and indexes:

RUNSTATS ON TABLE tablename WITH DISTRIBUTION AND

DETAILED INDEXES ALL

Note: In each of the above commands, the tablename must be fully qualified with

the schema name.

 Related concepts:

v “Visual Explain overview” on page 451

 Related reference:

v “RUNSTATS command” in Command Reference

Viewing SQL or XQuery statement details and statistics

 Use Visual Explain to view details and statistics for SQL or XQuery statements.

 To start Visual Explain::

v From the Control Center, right-click a database name and select either Show

Explained Statements History or Explain Query.

v From the Command Editor, execute an explainable statement on the Interactive

page or the Script page.

v From the Query Patroller, click Show Access Plan from either the Managed

Queries Properties notebook or from the Historical Queries Properties notebook.

Chapter 7. Using the DB2 administration tools 469

For more information on the windows described below, refer to the online help.

 Table 24. Viewing SQL or XQuery statement text...

Tasks Procedure

To view the text for an

SQL or XQuery statement:

Use the Query Text window.

To open this window, open either the Explainable Statements

or the Explained Statements History window, or the Access

Plan Graph window. Select Statement–>Show Query Text.

To view the text for an

explained SQL or XQuery

statement that was

rewritten by the optimizer:

Use the Optimized Query Text window.

To open this window, open the Access Plan Graph window.

Select Statement–>Show Optimized Query Text.

To find a specific character

string in the text of the

window that you are

using:

Use the Find window.

To open this window, open either the Query Text or the

Optimized Query Text window and click the Find push

button.

 Table 25. Viewing SQL or XQuery statement details...

Tasks Procedure

To view the list of built-in

functions and user-defined

functions that are

associated with the SQL or

XQuery statement whose

access plan is shown in

the graph:

Use the Functions window.

To open this window, open the Access Plan Graph window.

Select Statement–>Show Statistics–>Functions.

To view the list of indexes

that are defined on the

table that is shown in the

Table Statistics window:

Use the Indexes window.

To open this window, open the Table Statistics window and

click the Indexes push button.

to view details for an

operator that is selected in

the Access Plan Graph

window:

Use the Operator details window.

To open this window, open the Access Plan Graph window. To

see statistics on an operator node in the graph, do one of the

following:

v Highlight the operator node and select Node–>Show

Details.

v Double-click the operator node.

v Right-click the operator node and select Show Details from

the pop-up menu.

To view the configuration

parameters and bind

options that affect the

optimization process:

Use the Optimization Parameters window. Current values are

shown, as well as values from the time of the explain.

To open this window, open the Access Plan Graph window.

Select Statement–>Show Optimization Parameters.

To view a list of the

column groups that are

associated with the SQL or

XQuery statement whose

access plan is shown in

the graph:

Use the Column Groups window. These columns belong to the

table that is shown in the Table Statistics window.

To open this window, open the Table Spaces window. Select

one or more entries, and click OK.

470 Administration Guide: Implementation

Table 25. Viewing SQL or XQuery statement details... (continued)

Tasks Procedure

To view a list of the

referenced columns that

are associated with the

SQL or XQuery statement

whose access plan is

shown in the graph:

Use the Referenced Columns window. These columns belong

to the table that is shown in the Table Statistics window.

To open this window, open the Table Statistics window and

click the Referenced Columns push button.

To view statistics for a

column group that is

referenced in a selected

table:

Use the Referenced Column Groups window.

To open this window, open the Referenced Columns window.

Select one or more entries, and click on OK.

To view the list of table

spaces that are associated

with the SQL or XQuery

statement whose access

plan is shown in the

graph:

Use the Table Spaces window.

To open this window, open the Access Plan Graph window.

Select Statement–>Show Statistics–>Table Spaces.

 Table 26. Viewing SQL or XQuery statement statistics...

Tasks Procedure

To view column

distribution values for the

column that is shown in

the Referenced Column

Statistics window:

Use the Column Distribution Statistics window.

To open this window, open the Referenced Column Statistics

window and click the Column Distribution push button.

To view statistics for a

built-in or user defined

function that is associated

with the explained SQL or

XQuery statement:

Use the Function Statistics window.

To open this window, open the Functions window. Select one

or more entries, and click OK.

To view statistics for an

index node selected in the

Access Plan Graph or an

index entry selected in the

Indexes window:

Use the Index Statistics window.

To open this window, open the Access Plan Graph window.

Do one of the following:

v To see statistics on an Index node in the graph, do one of

the following:

– Highlight the index node and select Node–>Show

Statistics.

– Double-click the index node.

– Right-click the index node and select Show Statistics

from the pop-up menu.

v To see statistics on other indexes defined for a Table node in

the graph, do one of the following:

– Highlight the table node and select Node–>Show

Statistics.

– Double-click the table node.

– Right-click the table node and select Show Statistics from

the pop-up menu.

The Table Statistics window opens. click the Indexes push

button to open the Indexes window. Select one or more entries

in the Indexes window and click OK. An Index Statistics

window opens for each entry that you select.

Chapter 7. Using the DB2 administration tools 471

Table 26. Viewing SQL or XQuery statement statistics... (continued)

Tasks Procedure

To view the estimated

number of page fetches for

each hypothetical number

of buffer pages as an

ordered set of pairs:

Use the Page Fetch Pairs window. The numbers model the

number of I/Os required to read the data pages into buffer

pools of various sizes.

To open this window, open the Index Statistics window and

click the Page Fetch Pairs push button.

To view statistics for a

column that is referenced

in a selected table:

Use the Referenced Column Statistics window.

To open this window, open the Referenced Columns window.

Select one or more entries, and click OK.

To view statistics for a

table function node

selected in the access plan

graph:

Use the Table Function Statistics window.

To open this window, open the Access Plan Graph window. To

see statistics on a Table function node in the graph, do one of

the following:

v Highlight the table function node and select Node–>Show

Statistics.

v Double-click the table function node.

v Right-click the table function node and select Show

Statistics from the pop-up menu.

Note: If the node is GENROW, only explained statistics are

displayed; otherwise, both explained and current statistics are

displayed.

To view statistics for the

table node selected in the

Access Plan Graph:

Use the Table Statistics window.

To open this window, open the Access Plan Graph window. To

see statistics on a Table node in the graph, do one of the

following:

v Highlight the table node and select Node–>Show Statistics.

v Double-click the table node.

v Right-click the table node and select Show Statistics from

the pop-up menu.

To view statistics for a

table space that is

associated with an

explained SQL or XQuery

statement:

Use the Table Space Statistics window.

To open this window, open the Table Spaces window. Select

one or more entries, and click OK.

Note on CARD row under the Statistics column: In a partitioned database

environment, the value in the

Current column is computed

based on all nodes, while the

value in the Explained column

is computed based on a

particular node.

 Related concepts:

v “Visual Explain overview” on page 451

 Related tasks:

v “Viewing a graphical representation of an access plan” on page 473

v “Viewing explainable statements for a package” on page 474

472 Administration Guide: Implementation

v “Viewing the history of previously explained query statements” on page 476

Viewing a graphical representation of an access plan

 Use the Access Plan Graph window to view a graphical representation of the

access plan of an explained SQL or XQuery statement. The nodes in the graph

represent tables and indexes and each operation on them. The links between the

nodes represent the flow of data.

 Tasks:

v Use the Statement menu to print the graph, to dynamically explain an SQL or

XQuery statement, to view the text or optimized text, or to view optimization

parameters or statistics.

v Use the Node menu to view details or statistics on the nodes, or to get

additional help on each of the operators.

v Use the View menu to change the graph settings or to see an overview of the

graph. This is particularly useful for large graphs.

From this window, you can view details about the following objects:

v Table spaces and table space statistics

v Functions and function statistics

v Operators

v

Partitioned databases

v Operands

– Column distribution statistics

– Index and index statistics

– Page fetch pairs statistics

– Column groups

– Referenced columns, referenced column groups, and referenced column

statistics

– Table function statistics and table statistics

To open the Access Plan Graph window, use one of the following methods:

1. Open either the Explainable Statements, or the Explained Statements History

window. Select Statement–>Show Access Plan. The Access Plan Graph

window opens.

2. Invoke Explain Query from either the Explainable Statements or the Explained

Statements History window. The Explain Query statement window opens as a

result of the dynamic explain.

 Reading the contents of the Access Plan Graph window:

Top area of the window

The top area of the Access Plan Graph window identifies the statement

whose access plan is displayed on the graph.

 This part of the window also shows:

v The statement’s explain date, time, package name, and version.

v If the Federated function was enabled at the time the statement was

created.

v Its total estimated cost

Chapter 7. Using the DB2 administration tools 473

v The type of parallelism of the system in which this statement is

explained. It can be one of the following types:

–

None

–

Intra-partition parallelism

–

Inter-partition parallelism

–

Full parallelism (intra-partition and inter-partition)

The graph

The nodes in the graph represent operands (tables, indexes, or table

functions), and the operators that act on them. To view detailed statistical

information for a node, double-click on it.

 To view the information shown in the graph in more detail, drag the zoom

slider up or down.

 Float values might be presented in scientific notation.

 Troubleshooting Tips:

v Retrieving the access plan when using LONGDATACOMPAT

v Visual Explain up-level and down-level support

 Related concepts:

v “Access plan” on page 452

v “Access plan graph node” on page 454

v “Operator” on page 457

v “Operand” on page 457

v “Cost” on page 455

v “Visual Explain overview” on page 451

 Related tasks:

v “Viewing explainable statements for a package” on page 474

v “Viewing the history of previously explained query statements” on page 476

 Related reference:

v “Retrieving the access plan when using LONGDATACOMPAT” on page 468

v “Visual Explain support for earlier and later releases” on page 478

v “Viewing SQL or XQuery statement details and statistics” on page 469

Viewing explainable statements for a package

 Use the Explainable Statements window to view the explainable query statements

for a selected package.

If an explain snapshot has been taken for a statement, you can use this list to view

additional information about that statement (such as its total cost and a graphical

view of its access plan).

 Tasks:

v Use the Statement menu to view the history of previously explained SQL or

XQuery statements, to view a graphical representation of the access plan, to

dynamically explain a query statement, and to view text for a query statement.

474 Administration Guide: Implementation

v Use the View menu, or the icons on the secondary toolbar to sort, filter, or

customize the explainable statements. You can also save the contents of this

window using the options in this menu.

To open the Explainable Statements window, do the following:

v From the Control Center, expand the object tree until you find the Packages

folder (under the Application Objects folder).

v click the Packages folder. Any existing package objects are displayed in the pane

on the right side of the window.

v Do one of the following:

– Right-click the package you want and select Show Explainable Statements

from the pop-up menu.

– Highlight the package and select Selected–>Show Explainable Statements.

– Double-click the package.

 Reading the contents of the Explainable Statements window:

 The columns in the window provide the following information about SQL or

XQuery statements:

Statement number

The line number of the SQL or XQuery statement in the source module of

the application program. For static queries, this number corresponds to the

STMTNO column in the SYSCAT.STATEMENTS table.

Section number

The number of the section within the package that is associated with the

SQL or XQuery statement.

Explain snapshot

States whether an explain snapshot has been taken for the SQL or XQuery

statement. (If it has not been taken, you cannot view an access plan graph

for the statement.)

Total cost

The estimated total cost (in timerons) of returning the query results for the

selected SQL or XQuery statement. (Available only if the package

containing the statement has been explained previously.)

Query text

The first 100 characters of the query statement. (Use the scroll bar at the

bottom of the window to scroll through it.) To view the complete SQL or

XQuery statement, select Statement–>Show Query Text.

 Troubleshooting Tips:

v Retrieving the access plan when using LONGDATACOMPAT

v Visual Explain up-level and down-level support

 Related concepts:

v “Package” on page 459

v “Explain snapshot” on page 456

v “Cost” on page 455

v “Access plan” on page 452

v “Visual Explain overview” on page 451

Chapter 7. Using the DB2 administration tools 475

Related tasks:

v “Viewing a graphical representation of an access plan” on page 473

v “Viewing the history of previously explained query statements” on page 476

 Related reference:

v “Retrieving the access plan when using LONGDATACOMPAT” on page 468

v “Visual Explain support for earlier and later releases” on page 478

v “Viewing SQL or XQuery statement details and statistics” on page 469

Viewing the history of previously explained query statements

 Use the Explained Statements History window to view the history of previously

explained SQL or XQuery statements for a selected database. Each entry is an

explained statement that is associated with either:

v A static SQL or XQuery statement in a package

v A dynamic SQL or XQuery statement.

 Tasks:

v Use the Statement menu to view a graphical representation of an access plan, to

dynamically explain a query statement, to view text for a query statement, or to

change or remove a query statement.

v Use the View menu, or the icons on the secondary toolbar to sort, filter, or

customize the explainable statements. You can also save the contents of this

window using the options in this menu.

To open Explained Statements History window, do one of the following:

v From the Control Center, expand the object tree until you find the Databases

folder, expand the folder until you find the database you want, and then do one

of the following:

– Right-click the database and select Show Explained Statements History from

the pop-up menu. or select Selected–>Show Explained Statements History.

– Highlight the database and select Selected–>Show Explained Statements

History.
v From the Control Center, expand the object tree until you find the Packages

folder (under the Application Objects folder). Then:

– click the Packages folder. Any existing package objects are displayed on the

right side of the window.

– Right-click the package that you want, and select Show Explained

Statements History from the pop-up menu; or highlight the package and

select Selected–>Show Explained Statements History; or simply double-click

the package.
v From the Explainable Statements window, select Statement–>Show Explained

Statements History.

If a statement is selected in the Explainable Statements window, the Explained

Statements History window shows all of the explained statements that are

related to the selected SQL statements.

If no statement is selected, the Explained Statements History window shows all

the explained statements that are related to the package that the explainable

statements are in.

476 Administration Guide: Implementation

The Explained Statements History window may or may not contain explained

statements, depending on whether the explain tables exist.

 Reading the contents of the Explained Statements History window:

 The columns in the window provide the following information about the query

statements that have been explained:

Package name

The name of the package that either:

v Contains the SQL or XQuery statement (in the case of a static query)

v Issued the SQL or XQuery statement (in the case of a dynamic query).

Package creator

The user ID of the user who created the package.

Package version

The version number of the package.

Explain snapshot

States whether an explain snapshot has been taken for the SQL or XQuery

statement. (If it has not, you cannot view an access plan graph for the

statement.)

Latest bind

If the statement is contained in a package, this field indicates whether or

not the statement is associated with the latest bound package.

Dynamic explain

States whether the explained query statement was dynamic. (If it was not,

it was a Static SQL or XQuery statement in a package.)

Explain date

The date when the statement had an explain operation performed on it.

Explain time

The time when the statement had an explain operation performed on it.

Total cost

The estimated total cost (in timerons) of the statement.

Statement number

The line number of the SQL or XQuery statement in the source module of

the application program.

Section number

The number of the section within the package that is associated with the

SQL or XQuery statement.

Query number

The query number that is associated with the statement.

Query tag

The query tag that is associated with the statement.

Query text

The first 100 characters of the original SQL or XQuery statement. (Use the

scroll bar at the bottom of the window to scroll through it.) To view the

complete SQL or XQuery statement, select Statement–>Show Query Text.

Chapter 7. Using the DB2 administration tools 477

Remarks

Any remarks associated with the statement. (For example, for a static

query statement, the remark associated with the package containing the

statement.)

 Troubleshooting Tips:

v Retrieving the access plan when using LONGDATACOMPAT

v Visual Explain up-level and down-level support

 Related concepts:

v “Explained statement” on page 456

v “Package” on page 459

v “Explain snapshot” on page 456

v “Dynamic SQL or XQuery” on page 455

v “Static SQL or XQuery” on page 463

v “Cost” on page 455

v “Visual Explain overview” on page 451

 Related tasks:

v “Viewing a graphical representation of an access plan” on page 473

v “Viewing explainable statements for a package” on page 474

 Related reference:

v “Retrieving the access plan when using LONGDATACOMPAT” on page 468

v “Visual Explain support for earlier and later releases” on page 478

v “Viewing SQL or XQuery statement details and statistics” on page 469

Visual Explain support for earlier and later releases

Earlier releases: supported

However, if you are running Visual Explain on a Version 9 client accessing

a Version 8 database, Visual Explain does handle the Version 8 snapshots.

Visual Explain supports earlier release compatibility.

Later releases: not supported

When running Visual Explain on a Version 8 client accessing a Version 9

database, Visual Explain returns an error when it tries to parse the Version

9 data. Visual Explain does not support this upward level compatibility

since the snapshots generated by Version 9 are different from those

generated by Version 8.

 Related concepts:

v “Visual Explain” on page 463

478 Administration Guide: Implementation

Part 2. Database Security

© Copyright IBM Corp. 1993, 2006 479

480 Administration Guide: Implementation

Chapter 8. Controlling database access

One of the most important responsibilities of the database administrator and the

system administrator is database security. Securing your database involves several

activities:

v Preventing accidental loss of data or data integrity through equipment or system

malfunction.

v Preventing unauthorized access to valuable data. You must ensure that sensitive

information is not accessed by those without a “need to know”.

v Preventing unauthorized persons from committing mischief through malicious

deletion or tampering with data.

v Monitoring access of data by users which is discussed in Chapter 9, “Auditing

DB2 database activities,” on page 621.

The following topics are discussed:

v “Security issues when installing the DB2 database manager”

v “Authentication methods for your server” on page 490

v “Authentication considerations for remote clients” on page 495

v “Partitioned database authentication considerations” on page 496

v “Introduction to firewall support” on page 619

v “Authorization, privileges, and object ownership” on page 501

v “Controlling access to database objects” on page 519

v “Tasks and required authorizations” on page 608

v “Using the system catalog for security issues” on page 609.

Planning for Security: Start by defining your objectives for a database access

control plan, and specifying who shall have access to what and under what

circumstances. Your plan should also describe how to meet these objectives by

using database functions, functions of other programs, and administrative

procedures.

Security issues when installing the DB2 database manager

 Security considerations are important to the DB2 administrator from the moment

the product is installed.

To complete the installation of the DB2 database manager, a user ID, a group

name, and a password are required. The GUI-based DB2 database manager install

program creates default values for different user IDs and the group. Different

defaults are created, depending on whether you are installing on UNIX or

Windows platforms:

v On UNIX and Linux platforms, if you choose to create a DB2 instance in the

instance setup window, the DB2 database install program creates, by default,

different users for the DAS (dasusr), the instance owner (db2inst), and the

fenced user (db2fenc). Optionally, you can specify different user names

The DB2 database install program appends a number from 1-99 to the default

user name, until a user ID that does not already exist can be created. For

example, if the users db2inst1 and db2inst2 already exist, the DB2 database

install program creates the user db2inst3. If a number greater than 10 is used,

© Copyright IBM Corp. 1993, 2006 481

the character portion of the name is truncated in the default user ID. For

example, if the user ID db2fenc9 already exists, the DB2 database install

program truncates the c in the user ID, then appends the 10 (db2fen10).

Truncation does not occur when the numeric value is appended to the default

DAS user (for example, dasusr24).

v On Windows platforms, the DB2 database install program creates, by default, the

user db2admin for the DAS user, the instance owner, and fenced users (you can

specify a different user name during setup, if you want). Unlike UNIX

platforms, no numeric value is appended to the user ID.

To minimize the risk of a user other than the administrator from learning of the

defaults and using them in an improper fashion within databases and instances,

change the defaults during the install to a new or existing user ID of your choice.

Note: Response file installations do not use default values for user IDs or group

names. These values must be specified in the response file.

Passwords are very important when authenticating users. If no authentication

requirements are set at the operating system level and the database is using the

operating system to authenticate users, users will be allowed to connect. For

example on UNIX operating systems, undefined passwords are treated as NULL.

In this situation, any user without a defined password will be considered to have a

NULL password. From the operating system’s perspective, this is a match and the

user is validated and able to connect to the database. Use passwords at the

operating system level if you want the operating system to do the authentication of

users for your database.

When working with DB2 Data Partitioning Feature (DPF) on UNIX operating

system environments, the DB2 database manager by default uses the rsh utility

(remsh on HP-UX) to run some commands on remote nodes. The rsh utility

transmits passwords in clear text over the network, which can be a security

exposure if the DB2 server is not on a secure network. You can use the

DB2RSHCMD registry variable to set the remote shell program to a more secure

alternative that avoids this exposure. One example of a more secure alternative is

ssh. See the DB2RSHCMD registry variable documentation for restrictions on

remote shell configurations.

After installing the DB2 database manager, also review, and change (if required),

the default privileges that have been granted to users. By default, the installation

process grants system administration (SYSADM) privileges to the following users

on each operating system:

Windows environments A valid DB2 database user name that belongs to

the Administrators group.

UNIX platforms A valid DB2 database user name that belongs to

the primary group of the instance owner.

SYSADM privileges are the most powerful set of privileges available within the

DB2 database manager. As a result, you might not want all of these users to have

SYSADM privileges by default. The DB2 database manager provides the

administrator with the ability to grant and revoke privileges to groups and

individual user IDs.

By updating the database manager configuration parameter sysadm_group, the

administrator can control which group of users possesses SYSADM privileges. You

482 Administration Guide: Implementation

must follow the guidelines below to complete the security requirements for both

the DB2 database installation and the subsequent instance and database creation.

Any group defined as the system administration group (by updating sysadm_group)

must exist. The name of this group should allow for easy identification as the

group created for instance owners. User IDs and groups that belong to this group

have system administrator authority for their respective instances.

The administrator should consider creating an instance owner user ID that is easily

recognized as being associated with a particular instance. This user ID should have

as one of its groups the name of the SYSADM group created above. Another

recommendation is to use this instance-owner user ID only as a member of the

instance owner group and not to use it in any other group. This should control the

proliferation of user IDs and groups that can modify the instance, or any object

within the instance.

The created user ID must be associated with a password to provide authentication

before being permitted entry into the data and databases within the instance. The

recommendation when creating a password is to follow your organization’s

password naming guidelines.

Note: To avoid accidentally deleting or overwriting instance configuration or other

files, administrators should consider using another user account, which does

not belong to the same primary group as the instance owner, for day-to-day

administration tasks that are performed on the server directly.

 Related concepts:

v “General naming rules” on page 663

v “User, user ID and group naming rules” on page 666

v “Authentication” in Administration Guide: Planning

v “Authorization” in Administration Guide: Planning

v “Naming rules in a Unicode environment” on page 669

v “Naming rules in an NLS environment” on page 668

v “Location of the instance directory” on page 489

v “UNIX platform security considerations for users” on page 489

v “Windows platform security considerations for users” on page 485

 Related reference:

v “Communications variables” in Performance Guide

Acquiring Windows users’ group information using an access token

 An access token is an object that describes the security context of a process or

thread. The information in an access token includes the identity and privileges of

the user account associated with the process or thread.

When you log on, the system verifies your password by comparing it with

information stored in a security database. If the password is authenticated, the

system produces an access token. Every process run on your behalf uses a copy of

this access token.

An access token can also be acquired based on cached credentials. Once you have

been authenticated to the system, your credentials are cached by the operating

Chapter 8. Controlling database access 483

system. The access token of the last logon can be referenced in the cache when it is

not possible to contact the domain controller.

The access token includes information about all of the groups you belong to: local

groups and various domain groups (global groups, domain local groups, and

universal groups).

Note: Group lookup using client authentication is not supported using a remote

connection even though access token support is enabled.

To enable access token support, you must use the db2set command to update the

DB2_GRP_LOOKUP registry variable. Your choices when updating this registry

variable include:

v TOKEN

This choice enables access token support to lookup all groups that the user

belongs to at the location where the user account is defined. This location is

typically either at the domain or local to the DB2 database server.

v TOKENLOCAL

This choice enables access token support to lookup all local groups that the user

belongs to on the DB2 database server.

v TOKENDOMAIN

This choice enables access token support to lookup all domain groups that the

user belongs to on the domain.

When enabling access token support, there are several limitations that affect your

account management infrastructure. When this support is enabled, the DB2

database system collects group information about the user who is connecting to the

database. Subsequent operations after a successful CONNECT or ATTACH request

that have dependencies on other authorization IDs will still need to use

conventional group enumeration. The access token advantages of nested global

groups, domain local groups, and cached credentials will not be available. For

example, if, after a connection, the SET SESSION_USER is used to run under

another authorization ID, only the conventional group enumeration is used to

check what rights are given to the new authorization ID for the session. You will

still need to grant and revoke explicit privileges to individual authorization IDs

known to the DB2 database system, as opposed to the granting and revoking of

privileges to groups to which the authorization IDs belongs.

If you intend to assign groups to SYSADM, SYSMAINT, or SYSCTRL, you need to

ensure that the assigned groups are not nested global groups, nor domain local

groups, and then the cached credential capability is not needed.

You should consider using the DB2_GRP_LOOKUP registry variable and specify

the group lookup location to indicate where the DB2 database system should look

up groups using the conventional group enumeration methodology. For example,

 db2set DB2_GRP_LOOKUP=LOCAL,TOKENLOCAL

This enables the access token support for enumerating local groups. Group lookup

for an authorization ID different from the connected user is performed at the DB2

database server.

 db2set DB2_GRP_LOOKUP=,TOKEN

484 Administration Guide: Implementation

This enables the access token support for enumerating groups at the location

where the user ID is defined. Group lookup for an authorization ID different from

the connected user is performed where the user ID is defined.

 db2set DB2_GRP_LOOKUP=DOMAIN,TOKENDOMAIN

This enables the access token support for enumerating domain groups. Group

lookup for an authorization ID different from the connected user is performed

where the user ID is defined.

Applications using dynamic queries in a package bound using DYNAMICRULES

RUN (which is the default) is run under the privileges of the person who runs the

application. In this case, the already mentioned limitations do not apply. This

would include applications written to use JDBC and DB2 CLI.

Access token support can be enabled with all authentications types except CLIENT

authentication.

 Related concepts:

v “Security issues when installing the DB2 database manager” on page 481

Details on security based on operating system

Each operating system provides ways to manage security. Some of the security

issues associated with the operating systems are discussed in this section.

Windows platform security considerations for users

 System Administration (SYSADM) authority is granted to any valid DB2 database

user account which belongs to the local Administrators group on the machine

where the account is defined.

By default in a Windows domain environment, only domain users that belong to

the Administrators group at the Domain Controller have SYSADM authority on an

instance. Since DB2 always performs authorization at the machine where the

account is defined, adding a domain user to the local Administrators group on the

server does not grant the domain user SYSADM authority to the group.

Note: In a domain environment such as is found in Windows, DB2 only

authenticates the first 64 groups that meet the requirements and restrictions,

and to which a user ID belongs. You may have more than 64 groups.

To avoid adding a domain user to the Administrators group at the PDC, you

should create a global group and add the users (both domain and local) that you

want to grant SYSADM authority. To do this, enter the following commands:

 DB2STOP

 DB2 UPDATE DBM CFG USING SYSADM_GROUP global_group

 DB2START

 Related concepts:

v “UNIX platform security considerations for users” on page 489

Windows local system account support

 On Windows platforms (except Windows ME), the DB2 database system supports

applications running under the context of the local system account (LSA) with

Chapter 8. Controlling database access 485

local implicit connection. Developers writing applications to be run under this

account need to be aware that DB2 database has restrictions on objects with

schema names starting with “SYS”. Therefore if your applications contain DDLs

that create DB2 database objects, they should be written such that:

v For static queries, they should be bounded with a value for the QUALIFIER

options other than the default one.

v For dynamic queries, the objects to be created should be explicitly qualified with

a schema name supported by the DB2 database, or the CURRENT SCHEMA

register must be set to a schema name supported by the DB2 database.

Group information for the LSA is gathered at the first group lookup request after

the DB2 database instance is started and will not be refreshed until the instance is

restarted.

Note: Applications running under the context of the local system account (LSA)

are supported on all Windows platforms, except Windows ME.

 Related concepts:

v “Security issues when installing the DB2 database manager” on page 481

Extended Windows security using DB2ADMNS and

DB2USERS groups

 For the server version of the DB2 database manager, extended security is implicitly

enabled by default. However, for the client version, extended security is implicitly

disabled by default; you must explicitly select extended security during installation

to have it enabled. During DB2 installation on a client, select the Enable operating

system security check box on the Enable operating system security for DB2 object

panel. the installer creates two new groups, DB2ADMNS and DB2USERS.

DB2ADMNS and DB2USERS are the default group names; optionally, you can

specify different names for these groups at installation time (if you select silent

install, you can change these names within the install response file). If you choose

to use groups that already exist on your system, be aware that the privileges of

these groups will be modified. They will be given the privileges, as required, listed

in the table, below. It is important to understand that these groups are used for

protection at the operating-system level and are in no way associated with DB2

authority levels, such as SYSADM, SYSMAINT, and SYSCTRL. However, instead of

using the default Administrator's group, your database administrator can use the

DB2ADMNS group for one or all of the DB2 authority levels, at the discretion of

the installer or administrator. It is recommended that if you are specifying a

SYSADM group, then that should be the DB2ADMNS group. This can be

established during installation or subsequently, by an administrator.

The DB2ADMNS and DB2USERS groups provide members with the following

abilities:

v DB2ADMNS

Full control over all DB2 objects (see the list of protected objects, below)

v DB2USERS

Read and Execute access for all DB2 objects located in the installation and

instance directories, but no access to objects under the database system directory

and limited access to IPC resources

486 Administration Guide: Implementation

For certain objects, there may be additional privileges available, as required (for

example, write privileges, add or update file privileges, and so on). Members of

this group have no access to objects under the database system directory.

Note: The meaning of Execute access depends on the object; for example, for a

.dll or .exe file having Execute access means you have authority to

execute the file, however, for a directory it means you have authority to

traverse the directory.

It is recommended that all DB2 administrators be members of the DB2ADMNS

group (as well as being members of the local Administrators group), but this is not

a strict requirement. Everyone else who requires access to the DB2 database system

must be a member of the DB2USERS group. To add a user to one of these groups:

1. Launch the Users and Passwords Manager tool.

2. Select the user name to add from the list.

3. Click Properties. In the Properties window, click the Group membership tab.

4. Select the Other radio button.

5. Select the appropriate group from the drop-down list.

 Adding extended security after installation (db2extsec command):

 If the DB2 database system was installed without extended security enabled, you

can enable it by executing the command db2extsec (called db2secv82 in earlier

releases). To execute the db2extsec command you must be a member of the local

Administrators group so that you have the authority to modify the ACL of the

protected objects.

You can run the db2extsec command multiple times, if necessary, however, if this

is done, you cannot disable extended security unless you issue the db2extsec –r

command immediately after each execution of db2extsec.

 Removing extended security:

CAUTION:

It is not recommend to remove extended security once it has been enabled.

You can remove extended security by running the command db2extsec -r,

however, this will only succeed if no other database operations (such as creating a

database, creating a new instance, adding table spaces, and so on) have been

performed after enabling extended security. The safest way to remove the extended

security option is to uninstall the DB2 database system, delete all the relevant DB2

directories (including the database directories) and then reinstall the DB2 database

system without extended security enabled.

 Protected objects:

 The static objects that can be protected using the DB2ADMNS and DB2USERS

groups are:

v File system

– File

– Directory
v Services

v Registry keys

Chapter 8. Controlling database access 487

The dynamic objects that can be protected using the DB2ADMNS and DB2USERS

groups are:

v IPC resources, including:

– Pipes

– Semaphores

– Events
v Shared memory

 Privileges owned by the DB2ADMNS and DB2USERS groups:

 The privileges assigned to the DB2ADMNS and DB2USERS groups are listed in the

following table:

 Table 27. Privileges for DB2ADMNS and DB2USERS groups

Privilege DB2ADMNS DB2USERS Reason

Create a token object

(SeCreateTokenPrivilege)

Y N Token manipulation (required for certain

token manipulation operations and used in

authentication and authorization)

Replace a process level token

(SeAssignPrimaryTokenPrivilege)

Y N Create process as another user

Increase quotas

(SeIncreaseQuotaPrivilege)

Y N Create process as another user

Act as part of the operating system

(SeTcbPrivilege)

Y N LogonUser (required prior to Windows XP

in order to execute the LogonUser API for

authentication purposes)

Generate security audits

(SeSecurityPrivilege)

Y N Manipulate audit and security log

Take ownership of files or other

objects (SeTakeOwnershipPrivilege)

Y N Modify object ACLs

Increase scheduling priority

(SeIncreaseBasePriorityPrivilege)

Y N Modify the process working set

Backup files and directories

(SeBackupPrivilege)

Y N Profile/Registry manipulation (required to

perform certain user profile and registry

manipulation routines: LoadUserProfile,

RegSaveKey(Ex), RegRestoreKey,

RegReplaceKey, RegLoadKey(Ex))

Restore files and directories

(SeRestorePrivilege)

Y N Profile/Registry manipulation (required to

perform certain user profile and registry

manipulation routines: LoadUserProfile,

RegSaveKey(Ex), RegRestoreKey,

RegReplaceKey, RegLoadKey(Ex))

Debug programs (SeDebugPrivilege) Y N Token manipulation (required for certain

token manipulation operations and used in

authentication and authorization)

Manage auditing and security log

(SeAuditPrivilege)

Y N Generate auditing log entries

Log on as a service

(SeServiceLogonRight)

Y N Run DB2 as a service

488 Administration Guide: Implementation

Table 27. Privileges for DB2ADMNS and DB2USERS groups (continued)

Privilege DB2ADMNS DB2USERS Reason

Access this computer from the

network (SeNetworkLogonRight)

Y Y Allow network credentials (allows the DB2

database manager to use the

LOGON32_LOGON_NETWORK option to

authenticate, which has performance

implications)

Impersonate a client after

authentication

(SeImpersonatePrivilege)

Y N Client impersonation (required for

Windowsto allow use of certain APIs to

impersonate DB2 clients:

ImpersonateLoggedOnUser, ImpersonateSelf,

RevertToSelf, and so on)

Lock pages in memory

(SeLockMemoryPrivilege)

Y N AWE/Large Page support

Create global objects

(SeCreateGlobalPrivilege)

Y Y Terminal Server support (required on

Windows)

 Related tasks:

v “Adding your user ID to the DB2ADMNS and DB2USERS user groups

(Windows)” in Quick Beginnings for DB2 Servers

 Related reference:

v “Required user accounts for installation of DB2 server products (Windows)” in

Quick Beginnings for DB2 Servers

v “db2extsec - Set permissions for DB2 objects command” in Command Reference

UNIX platform security considerations for users

 The DB2 database does not support root acting directly as a database

administrator. You should use su - <instance owner> as the database

administrator.

For security reasons, we recommend you do not use the instance name as the

Fenced ID. However, if you are not planning to use fenced UDFs or stored

procedures, you can set the Fenced ID to the instance name instead of creating

another user ID.

The recommendation is to create a user ID that will be recognized as being

associated with this group. The user for fenced UDFs and stored procedures is

specified as a parameter of the instance creation script (db2icrt ... -u <FencedID>).

This is not required if you install the DB2 Clients or the DB2 Software Developer’s

Kit.

 Related concepts:

v “Windows platform security considerations for users” on page 485

Location of the instance directory

 On UNIX, the db2icrt command creates the main SQL library (sqllib) directory

under the home directory of the instance owner.

Chapter 8. Controlling database access 489

On Windows operating systems, the instance directory is located in the /sqllib

sub-directory, in the directory where DB2 was installed.

 Related concepts:

v “Instance creation” on page 34

 Related tasks:

v “Creating additional instances” on page 38

Security plug-ins

Authentication in DB2® Universal Database (DB2 UDB) is done through security

plug-ins. For more information, see Security plug-ins in the Administrative API

Reference.

Authentication methods for your server

 Access to an instance or a database first requires that the user be authenticated. The

authentication type for each instance determines how and where a user will be

verified. The authentication type is stored in the database manager configuration

file at the server. It is initially set when the instance is created. There is one

authentication type per instance, which covers access to that database server and

all the databases under its control.

If you intend to access data sources from a federated database, you must consider

data source authentication processing and definitions for federated authentication

types.

Note: You can check the following web site for certification information on the

cryptographic routines used by the DB2 database management system to

perform encryption of the userid and password when using

SERVER_ENCRYPT authentication, and of the userid, password and user

data when using DATA_ENCRYPT authentication: http://www.ibm.com/
security/standards/st_evaluations.shtml.

The following authentication types are provided:

SERVER

Specifies that authentication occurs on the server using local operating

system security. If a user ID and password are specified during the

connection or attachment attempt, they are compared to the valid user ID

and password combinations at the server to determine if the user is

permitted to access the instance. This is the default security mechanism.

Notes:

1. The server code detects whether a connection is local or remote. For

local connections, when authentication is SERVER, a user ID and

password are not required for authentication to be successful.

2. If you are installing the DB2 database to set up a Common Criteria

certified configuation, you must specify SERVER.

SERVER_ENCRYPT

Specifies that the server accepts encrypted SERVER authentication schemes.

If the client authentication is not specified, the client is authenticated using

the method selected at the server.

490 Administration Guide: Implementation

CLIENT

Specifies that authentication occurs on the database partition where the

application is invoked using operating system security. The user ID and

password specified during a connection or attachment attempt are

compared with the valid user ID and password combinations on the client

node to determine if the user ID is permitted access to the instance. No

further authentication will take place on the database server. This is

sometimes called single signon.

 If the user performs a local or client login, the user is known only to that

local client workstation.

 If the remote instance has CLIENT authentication, two other parameters

determine the final authentication type: trust_allclnts and trust_clntauth.

 CLIENT level security for TRUSTED clients only:

 Trusted clients are clients that have a reliable, local security system.

 When the authentication type of CLIENT has been selected, an additional

option may be selected to protect against clients whose operating

environment has no inherent security.

 To protect against unsecured clients, the administrator can select Trusted

Client Authentication by setting the trust_allclnts parameter to NO. This

implies that all trusted platforms can authenticate the user on behalf of the

server. Untrusted clients are authenticated on the Server and must provide

a user ID and password. You use the trust_allclnts configuration parameter

to indicate whether you are trusting clients. The default for this parameter

is YES.

Note: It is possible to trust all clients (trust_allclnts is YES) yet have some

of those clients as those who do not have a native safe security

system for authentication.

You may also want to complete authentication at the server even for

trusted clients. To indicate where to validate trusted clients, you use the

trust_clntauth configuration parameter. The default for this parameter is

CLIENT.

Note: For trusted clients only, if no user ID or password is explicitly

provided when attempting to CONNECT or ATTACH, then

validation of the user takes place at the client. The trust_clntauth

parameter is only used to determine where to validate the

information provided on the USER or USING clauses.

To protect against all clients except DRDA® clients from DB2 for OS/390

and z/OS, DB2 for VM and VSE, and DB2 for iSeries, set the trust_allclnts

parameter to DRDAONLY. Only these clients can be trusted to perform

client-side authentication. All other clients must provide a user ID and

password to be authenticated by the server.

 The trust_clntauth parameter is used to determine where the above clients

are authenticated: if trust_clntauth is ″client″, authentication takes place at

the client. If trust_clntauth is ″server″, authentication takes place at the

client when no user ID and password are provided and at the server when

a user ID and password are provided.

Chapter 8. Controlling database access 491

Table 28. Authentication Modes using TRUST_ALLCLNTS and TRUST_CLNTAUTH Parameter Combinations.

TRUST_

ALLCLNTS

TRUST_

CLNTAUTH

Untrusted

non–

DRDA

Client

Authen-

tication (no

user ID &

password)

Untrusted

non–

DRDA

Client

Authen-

tication

(with user

ID &

password)

Trusted

non–

DRDA

Client

Authen-

tication (no

user ID &

password)

Trusted

non–

DRDA

Client

Authen-

tication

(with user

ID &

password)

DRDA

Client

Authen-

tication (no

user ID &

password)

DRDA

Client

Authen-

tication

(with user

ID &

password)

YES CLIENT CLIENT CLIENT CLIENT CLIENT CLIENT CLIENT

YES SERVER CLIENT SERVER CLIENT SERVER CLIENT SERVER

NO CLIENT SERVER SERVER CLIENT CLIENT CLIENT CLIENT

NO SERVER SERVER SERVER CLIENT SERVER CLIENT SERVER

DRDAONLY CLIENT SERVER SERVER SERVER SERVER CLIENT CLIENT

DRDAONLY SERVER SERVER SERVER SERVER SERVER CLIENT SERVER

KERBEROS

Used when both the DB2 client and server are on operating systems that

support the Kerberos security protocol. The Kerberos security protocol

performs authentication as a third party authentication service by using

conventional cryptography to create a shared secret key. This key becomes

a user’s credential and is used to verify the identity of users during all

occasions when local or network services are requested. The key eliminates

the need to pass the user name and password across the network as clear

text. Using the Kerberos security protocol enables the use of a single

sign-on to a remote DB2 database server. The KERBEROS authentication

type is supported on clients and servers running Windows, AIX, and

Solaris operating environment.

 Kerberos authentication works as follows:

1. A user logging on to the client machine using a domain account

authenticates to the Kerberos key distribution center (KDC) at the

domain controller. The key distribution center issues a ticket-granting

ticket (TGT) to the client.

2. During the first phase of the connection the server sends the target

principal name, which is the service account name for the DB2 database

server service, to the client. Using the server’s target principal name

and the target-granting ticket, the client requests a service ticket from

the ticket-granting service (TGS) which also resides at the domain

controller. If both the client’s ticket-granting ticket and the server’s

target principal name are valid, the TGS issues a service ticket to the

client. The principal name recorded in the database directory may now

be specified as name/instance@REALM. (This is in addition to the

current DOMAIN\userID and userID@xxx.xxx.xxx.com formats

accepted on Windows with DB2 UDB Version 7.1 and following.)

3. The client sends this service ticket to the server using the

communication channel (which may be, as an example, TCP/IP).

4. The server validates the client’s server ticket. If the client’s service

ticket is valid, then the authentication is completed.

It is possible to catalog the databases on the client machine and explicitly

specify the Kerberos authentication type with the server’s target principal

name. In this way, the first phase of the connection can be bypassed.

492 Administration Guide: Implementation

If a user ID and a password are specified, the client will request the

ticket-granting ticket for that user account and use it for authentication.

KRB_SERVER_ENCRYPT

Specifies that the server accepts KERBEROS authentication or encrypted

SERVER authentication schemes. If the client authentication is KERBEROS,

the client is authenticated using the Kerberos security system. If the client

authentication is SERVER_ENCRYPT, the client is authenticated using a

user ID and encryption password. If the client authentication is not

specified, then the client will use Kerberos if available, otherwise it will use

password encryption. For other client authentication types, an

authentication error is returned. The authenticaion type of the client cannot

be specified as KRB_SERVER_ENCRYPT

Note: The Kerberos authentication types are only supported on clients and

servers running Windows, and AIX operating systems, as well as

Solaris operating environment. Also, both client and server machines

must either belong to the same Windows domain or belong to

trusted domains. This authentication type should be used when the

server supports Kerberos and some, but not all, of the client

machines support Kerberos authentication.

DATA_ENCRYPT

The server accepts encrypted SERVER authentication schemes and the

encryption of user data. The authentication works exactly the same way as

that shown with SERVER_ENCRYPT. See that authentication type for more

information.

 The following user data are encrypted when using this authentication type:

v SQL and XQuery statements.

v SQL program variable data.

v Output data from the server processing of an SQL or XQuery statement

and including a description of the data.

v Some or all of the answer set data resulting from a query.

v Large object (LOB) data streaming.

v SQLDA descriptors.

DATA_ENCRYPT_CMP

The server accepts encrypted SERVER authentication schemes and the

encryption of user data. In addition, this authentication type allows

compatibility with down level products not supporting DATA_ENCRYPT

authentication type. These products are permitted to connect with the

SERVER_ENCRYPT authentication type and without encrypting user data.

Products supporting the new authentication type must use it. This

authentication type is only valid in the server’s database manager

configuration file and is not valid when used on on the CATALOG

DATABASE command.

GSSPLUGIN

Specifies that the server uses a GSS-API plug-in to perform authentication.

If the client authentication is not specified, the server returns a list of

server-supported plug-ins, including any Kerberos plug-in that is listed in

the srvcon_gssplugin_list database manager configuration parameter, to the

client. The client selects the first plug-in found in the client plug-in

directory from the list. If the client does not support any plug-in in the list,

the client is authenticated using the Kerberos authentication scheme (if it is

Chapter 8. Controlling database access 493

returned). If the client authentication is the GSSPLUGIN authentication

scheme, the client is authenticated using the first supported plug-in in the

list.

GSS_SERVER_ENCRYPT

Specifies that the server accepts plug-in authentication or encrypted server

authentication schemes. If client authentication occurs through a plug-in,

the client is authenticated using the first client-supported plug-in in the list

of server-supported plug-ins.

 If the client authentication is not specified and an implicit connect is being

performed (that is, the client does not supply a user ID and password

when making the connection), the server returns a list of server-supported

plug-ins, the Kerberos authentication scheme (if one of the plug-ins in the

list is Kerberos-based), and the encrypted server authentication scheme.

The client is authenticated using the first supported plug-in found in the

client plug-in directory. If the client does not support any of the plug-ins

that are in the list, the client is authenticated using the Kerberos

authentication scheme. If the client does not support the Kerberos

authentication scheme, the client is authenticated using the encrypted

server authentication scheme, and the connection will fail because of a

missing password. A client supports the Kerberos authentication scheme if

a DB2-supplied Kerberos plug-in exists for the operating system, or a

Kerberos-based plug-in is specified for the srvcon_gssplugin_list database

manager configuration parameter.

 If the client authentication is not specified and an explicit connection is

being performed (that is, both the user ID and password are supplied), the

authentication type is equivalent to SERVER_ENCRYPT.

Notes:

1. Do not inadvertently lock yourself out of your instance when you are changing

the authentication information, since access to the configuration file itself is

protected by information in the configuration file. The following database

manager configuration file parameters control access to the instance:

v AUTHENTICATION *

v SYSADM_GROUP *

v TRUST_ALLCLNTS

v TRUST_CLNTAUTH

v SYSCTRL_GROUP

v SYSMAINT_GROUP

* Indicates the two most important parameters, and those most likely to cause a

problem.

There are some things that can be done to ensure this does not happen: If you

do accidentally lock yourself out of the DB2 database system, you have a

fail-safe option available on all platforms that will allow you to override the

usual DB2 database security checks to update the database manager

configuration file using a highly privileged local operating system security user.

This user always has the privilege to update the database manager

configuration file and thereby correct the problem. However, this security

bypass is restricted to a local update of the database manager configuration file.

You cannot use a fail-safe user remotely or for any other DB2 database

command. This special user is identified as follows:

v UNIX platforms: the instance owner

v Windows platform: someone belonging to the local “administrators” group

494 Administration Guide: Implementation

v Other platforms: there is no local security on the other platforms, so all users

pass local security checks anyway

 Related concepts:

v “Authentication considerations for remote clients” on page 495

v “DB2 and Windows security introduction” on page 675

v “Partitioned database authentication considerations” on page 496

 Related reference:

v “authentication - Authentication type configuration parameter” in Performance

Guide

v “trust_allclnts - Trust all clients configuration parameter” in Performance Guide

v “trust_clntauth - Trusted clients authentication configuration parameter” in

Performance Guide

Authentication considerations for remote clients

 When cataloging a database for remote access, the authentication type can be

specified in the database directory entry.

The authentication type is not required. If it is not specified, the client will default

to SERVER_ENCRYPT. However, if the server does not support

SERVER_ENCRYPT, the client attempts to retry using a value supported by the

server. If the server supports multiple authentication types, the client will not

choose among them, but instead returns an error. The error is returned to ensure

that the correct authentication type is used. In this case, the client must catalog the

database using a supported authentication type. If an authentication type is

specified, authentication can begin immediately provided that value specified

matches that at the server. If a mismatch is detected, DB2 database attempts to

recover. Recovery may result in more flows to reconcile the difference, or in an

error if the DB2 database cannot recover. In the case of a mismatch, the value at

the server is assumed to be correct.

The authentication type DATA_ENCRYPT_CMP is designed to allow clients from a

previous release that does not support data encryption to a server using

SERVER_ENCRYPT authentication instead of DATA_ENCRYPT. This

authentication does not work when the following statements are true:

v The client level is Version 7.2.

v The gateway level is Version 8 FixPak7 or later.

v The server is Version 8 FixPak 7 or later.

When these are all true, the client cannot connect to the server. To allow the

connection, you must either upgrade your client to Version 8, or have your

gateway level at Version 8 FixPak 6 or earlier.

The determination of the authentication type used when connecting is made by

specifying the appropriate authentication type as a database catalog entry at the

gateway. This is true for both DB2 Connect scenarios and for clients and servers in

a partitioned database environment where the client has set the DB2NODE registry

variable. You will catalog the authentication type at the catalog partition with the

intent to “hop” to the appropriate partition. In this scenario, the authentication

type cataloged at the gateway is not used because the negotiation is solely between

the client and the server.

Chapter 8. Controlling database access 495

You may have a need to catalog multiple database aliases at the gateway using

different authentication types if they need to have clients that use differing

authentication types. When deciding which authentication type to catalog at a

gateway, you can keep the authentication type the same as that used at the client

and server; or, you can use the NOTSPEC authentication type with the

understanding that NOTSPEC defaults to SERVER.

 Related concepts:

v “Authentication methods for your server” on page 490

Partitioned database authentication considerations

 In a partitioned database, each partition of the database must have the same set of

users and groups defined. If the definitions are not the same, the user may be

authorized to do different things on different partitions. Consistency across all

partitions is recommended.

 Related concepts:

v “Authentication methods for your server” on page 490

Kerberos authentication details

 The DB2 database system provides support for the Kerberos authentication

protocol on AIX, Solaris, Linux IA32 and AMD64, and Windows operating systems.

The Kerberos support is provided as a GSS-API security plugin named “IBMkrb5”

which is used as both a server and as a client authentication plugin. The library is

placed in the sqllib/security{32|64}/plugin/IBM/{client|server} directories for

UNIX and Linux; and the sqllib/security/plugin/IBM{client|server} directories

for Windows.

Note: For 64-bit Windows, the plugin library is called IBMkrb564.dll. Furthermore,

the actual plugin source code for the UNIX and Linux plugin, IBMkrb5.C, is

available in the sqllib/samples/security/plugins directory.

A good understanding of using and configuring Kerberos is strongly recommended

before attempting to use Kerberos authentication with DB2 database system.

 Kerberos description and introduction:

 Kerberos is a third party network authentication protocol that employs a system of

shared secret keys to securely authenticate a user in an unsecured network

environment. A three-tiered system is used in which encrypted tickets (provided by

a separate server called the Kerberos Key Distribution Center, or KDC for short)

are exchanged between the application server and client rather than a text user ID

and password pair. These encrypted service tickets (called credentials) have a finite

lifetime and are only understood by the client and the server. This reduces the

security risk, even if the ticket is intercepted from the network. Each user, or

principal in Kerberos terms, possesses a private encryption key that is shared with

the KDC. Collectively, the set of principals and computers registered with a KDC

are known as a realm.

A key feature of Kerberos is that it permits a single sign-on environment whereby

a user only needs to verify his identity to the resources within the Kerberos realm

496 Administration Guide: Implementation

once. When working with DB2 database, this means that a user is able to connect

or attach to a DB2 database server without providing a user ID or password.

Another advantage is that the user ID administration is simplified because a

central repository for principals is used. Finally, Kerberos supports mutual

authentication which allows the client to validate the identity of the server.

 Kerberos set-up:

 DB2 database system and its support of Kerberos relies upon the Kerberos layer

being installed and configured properly on all machines involved prior to the

involvement of DB2 database. This includes, but is not necessarily limited to, the

following requirements:

1. The client and server machines and principals must belong to the same realm,

or else trusted realms (or trusted domains in the Windows terminology)

2. Creation of appropriate principals

3. Creation of server keytab files, where appropriate

4. All machines involved must have their system clocks synchronized (Kerberos

typically permits a 5 minute time skew, otherwise a preauthentication error

may occur when obtaining credentials).

For details on installing and configuring Kerberos please refer to the

documentation provided with the installed Kerberos product.

The sole concern of DB2 database system will be whether the Kerberos security

context is successfully created based on the credentials provided by the connecting

application (that is, authentication). Other Kerberos features, such as the signing or

encryption of messages, will not be used. Furthermore, whenever available, mutual

authentication will be supported.

The Kerberos prerequisites are as follows:

v AIX Version 5.2 with IBM Network Authentication Service (NAS) Toolkit 1.3

v Solaris operating environment Version 8 with SEAM (Sun Enterprise

Authentication Mechanism) and IBM NAS Toolkit 1.3

v Red Hat Enterprise Linux Advanced Server 2.1 with the krb5-libs and

krb5-workstation filesets

v Windows Server

 Kerberos and client principals:

 The principal may be found in either a 2-part or multi-part format, (that is,

name@REALM or name/instance@REALM). As the “name” part will be used in the

authorization ID (AUTHID) mapping, the name must adhere to the DB2 database

naming rules. This means that the name may be up to 30 characters long and it

must adhere to the existing restrictions on the choice of characters used. (AUTHID

mapping is discussed in a later topic.)

Note: Windows directly associates a Kerberos principal with a domain user. An

implication of this is that Kerberos authentication is not available to

Windows machines that are not associated with a domain or realm.

Furthermore, Windows only supports 2-part names (that is, name@domain).

Chapter 8. Controlling database access 497

The principal itself must be capable of obtaining outbound credentials with which

it may request and receive service tickets to the target database. This is normally

accomplished with the kinit command on UNIX or Linux, and is done implicitly at

logon time on Windows.

 Kerberos and authorization ID mapping:

 Unlike operating system user IDs whose scope of existence is normally restricted

to a single machine (NIS being a notable exception), Kerberos principals have the

ability to be authenticated in realms other than their own. The potential problem of

duplicated principal names is avoided by using the realm name to fully qualify the

principal. In Kerberos, a fully qualified principal takes the form

name/instance@REALM where the instance field may actually be multiple instances

separated by a “/”, that is, name/instance1/instance2@REALM, or it may be omitted

altogether. The obvious restriction is that the realm name must be unique within

all the realms defined within a network. The problem for DB2 database is that in

order to provide a simple mapping from the principal to the AUTHID, a

one-to-one mapping between the principal name, that is, the “name” in the fully

qualified principal, and the AUTHID is desirable. A simple mapping is needed as

the AUTHID is used as the default schema in DB2 database and should be easily

and logically derived. As a result, the database administrator needs to be aware of

the following potential problems:

v Principals from different realms but with the same name will be mapped to the

same AUTHID.

v Principals with the same name but different instances will be mapped to the

same AUTHID.

Giving consideration to the above, the following recommendations are made:

v Maintain an unique namespace for the name within all the trusted realms that

will access the DB2 database server

v All principals with the same name, regardless of the instance, should belong to

the same user.

 Kerberos and server principals:

 On UNIX or Linux, the server principal name for the DB2 database instance is

assumed to be <instance name>/<fully qualified hostname>@REALM. This principal

must be able to accept Kerberos security contexts and it must exist before starting

the DB2 database instance since the server name is reported to DB2 database by

the plugin at initialization time.

On Windows, the server principal is taken to be the domain account under which

the DB2 database service started. An exception to this is the instance may be

started by the local SYSTEM account, in which case, the server principal name is

reported as host/<hostname>; this is only valid if both the client and server belong

to Windows domains.

Windows does not support greater than 2-part names. This poses a problem when

a Windows client attempts to connect to a UNIX server. As a result, a Kerberos

principal to Windows account mapping may need to be set up in the Windows

domain if interoperability with UNIX Kerberos is required. (Please refer to the

appropriate Microsoft documentation for relevant instructions.)

You can override the Kerberos server principal name used by the DB2 server on

UNIX and Linux operating systems. Set the DB2_KRB5_PRINCIPAL environment

498 Administration Guide: Implementation

variable to the desired fully qualified server principal name. The instance must be

restarted because the server principal name is only recognized by the DB2 database

system after db2start is run.

 Kerberos keytab files:

 Every Kerberos service on UNIX or Linux wishing the accept security context

requests must place its credentials in a keytab file. This applies to the principals

used by DB2 database as server principals. Only the default keytab file is searched

for the server’s key. For instructions on adding a key to the keytab file, please refer

to the documentation provided with the Kerberos product.

There is no concept of a keytab file on Windows and the system automatically

handles storing and acquiring the credentials handle for a principal.

 Kerberos and groups:

 Kerberos is an authentication protocol that does not possess the concept of groups.

As a result, DB2 database relies upon the local operating system to obtain a group

list for the Kerberos principal. For UNIX or Linux, this requires that an equivalent

system account should exist for each principal. For example, for the principal

name@REALM, DB2 database collects group information by querying the local

operating system for all group names to which the operating system user name

belongs. If an operating system user does not exist, then the AUTHID will only

belong to the PUBLIC group. Windows, on the other hand, automatically associates

a domain account to a Kerberos principal and the additional step to create a

separate operating system account is not required.

 Enabling Kerberos authentication on the client:

 The clnt_krb_plugin database manager configuration parameter should be updated

to the name of the Kerberos plugin being used. On the supported platforms this

should be set to IBMkrb5. This parameter will inform DB2 database that it is

capable of using Kerberos for connections and local instance-level actions if the

AUTHENTICATION parameter is set to KERBEROS or KRB_SERVER_ENCRYPT.

Otherwise, no client-side Kerberos support is assumed.

Note: No checks are performed to validate that Kerberos support is available.

Optionally, when cataloging a database on the client, an authentication type may

be specified:

 db2 catalog db testdb at node testnode authentication kerberos target

 principal service/host@REALM

However, if the authentication information is not provided, then the server sends

the client the name of the server principal.

 Enabling Kerberos authentication on the server:

 The srvcon_gssplugin_list database manager configuration parameter should be

updated with the server Kerberos plugin name. Although this parameter may

contain a list of supported plugins, only one Kerberos plugin may be specified.

However, if this field is blank and AUTHENTICATION is set to KERBEROS or

KRB_SERVER_ENCRYPT, the default Kerberos plugin (IBMkrb5) is assumed and

used. Either the AUTHENTICATION or SVRCON_AUTH parameter should be set

Chapter 8. Controlling database access 499

to KERBEROS or KRB_SERVER_ENCRYPT if Kerberos authentication is to be used

depending upon whether it is used for everything or just for incoming connections.

 Creating a Kerberos plugin:

 There are several considerations you should consider when creating a Kerberos

plugin:

v Write a Kerberos plugin as a GSS-API plugin with the notable exception that the

plugintype in the function pointer array returned to DB2 database in the

initialization function must be set to DB2SEC_PLUGIN_TYPE_KERBEROS.

v Under certain conditions, the server principal name may be reported to the

client by the server. As such, the principal name should not be specified in the

GSS_C_NT_HOSTBASED_SERVICE format (service@host), since DRDA

stipulates that the principal name be in the GSS_C_NT_USER_NAME format

(server/host@REALM).

v In a typical situation, the default keytab file may be specified by the

KRB5_KTNAME environment variable. However, as the server plugin will run

within a DB2 database engine process, this environment variable may not be

accessible.

 Linux prerequisites:

 The provided DB2 Kerberos security plug-in is supported with Red Hat Enterprise

Linux Advanced Server 3 with the IBM Network Authentication Service (NAS) 1.4

client.

 zSeries and iSeries compatibility:

 For connections to zSeries and iSeries, the database must be cataloged with the

AUTHENTICATION KERBEROS parameter and the TARGET PRINCIPAL

parameter name must be explicitly specified.

Neither zSeries nor iSeries support mutual authentication.

 Windows issues:

 When you are using Kerberos on Windows platforms, you need to be aware of the

following issues:

v Due to the manner in which Windows detects and reports some errors, the

following conditions result in an unexpected client security plug-in error

(SQL30082N, rc=36):

– Expired account

– Invalid password

– Expired password

– Password change forced by administrator

– Disabled account

Furthermore, in all cases, the DB2 administration log or db2diag.log will

indicate "Logon failed" or "Logon denied".

v If a domain account name is also defined locally, connections explicitly

specifying the domain name and password will fail with the following error: The

Local Security Authority cannot be contacted.

500 Administration Guide: Implementation

The error is a result of Windows locating the local user first. The solution is to

fully qualify the user in the connection string. For example:

name@DOMAIN.IBM.COM

v Windows accounts cannot include the @ character in their name because the

character is assumed to be the domain separator by the DB2 Kerberos plug-in.

v When interoperating with a non-Windows platform, ensure that all Windows

domain server accounts and all Windows client accounts are configured to use

DES encryption. If the account used to start the DB2 service is not configured to

use DES encryption, the DB2 server will fail to accept Kerberos contexts. In

particular, DB2 will fail with an unexpected server plug-in error, and will log

that the AcceptSecurityContext API returned SEC_I_CONTINUE_NEEDED

(0x00090312L).

To determine if Windows accounts are configured to use DES encryption, look

under Account properties in the Active Directory. A restart might be required if

the account properties are changed.

v If the client and server are both on Windows, then the DB2 service can be

started under the local system account. However, if the client and server are in

different domains, the connection might fail with an invalid target principal

name error. The workaround is to explicitly catalog the target principal name on

the client using the fully qualified server host name and the fully qualified

domain name, in the following format: host/server hostname@server domain name

For example: host/myhost.domain.ibm.com@DOMAIN.IBM.COM

Otherwise, you must start the DB2 service under a valid domain account.

 Related concepts:

v “Authentication methods for your server” on page 490

Authorization, privileges, and object ownership

 Users (identified by an authorization ID) can successfully execute SQL or XQuery

statements only if they have the authority to perform the specified function. To

create a table, a user must be authorized to create tables; to alter a table, a user

must be authorized to alter the table; and so forth.

There are two forms of authorization, administrative authority and privileges,

discussed below.

The database manager requires that each user be specifically authorized, either

implicitly or explicitly, to use each database function needed to perform a specific

task. Explicit authorities or privileges are granted to the user (GRANTEETYPE of U

in the database catalogs). Implicit authorities or privileges are granted to a group to

which the user belongs (GRANTEETYPE of G in the database catalogs).

 Administrative authority:

 The person or persons holding administrative authority are charged with the task

of controlling the database manager and are responsible for the safety and integrity

of the data. Those with administrative authority levels of SYSADM and DBADM

implicitly have all privileges on all objects except objects pertaining to database

security and control who will have access to the database manager and the extent

of this access.

Chapter 8. Controlling database access 501

Authority levels provide a method of grouping privileges and higher-level database

manager maintenance and utility operations. Database authorities enable users to

perform activities at the database level. A user or group can have one or more of

the following authorities:

v Administrative authority level that operates at the instance level, SYSADM

(system administrator)

The SYSADM authority level provides control over all the resources created and

maintained by the database manager. The system administrator possesses all the

authorities of DBADM, SYSCTRL, SYSMAINT, and SYSMON, and the authority

to grant and revoke DBADM authority and SECADM authority.

The user who possesses SYSADM authority is responsible both for controlling

the database manager, and for ensuring the safety and integrity of the data.

SYSADM authority provides implicit DBADM authority within a database but

does not provide implicit SECADM authority within a database.

v Administrative authority levels that operate at the database level:

– DBADM (database administrator)

The DBADM authority level applies at the database level and provides

administrative authority over a single database. This database administrator

possesses the privileges required to create objects, issue database commands,

and access table data. The database administrator can also grant and revoke

CONTROL and individual privileges.

– SECADM (security administrator)

The SECADM authority level applies at the database level and is the

authority required to create and drop security label components, security

policies, and security labels, which are used to protect tables. It is also the

authority required to grant and revoke security labels and exemptions as well

as to grant and revoke the SETSESSIONUSER privilege. A user with the

SECADM authority can transfer the ownership of objects that they do not

own. The SECADM authority has no inherent privilege to access data stored

in tables and has no other additional inherent privilege. It can only be

granted by a user with SYSADM authority. The SECADM authority can be

granted to a user but cannot be granted to a group or to PUBLIC.
v System control authority levels that operate at the instance level:

– SYSCTRL (system control)

The SYSCTRL authority level provides control over operations that affect

system resources. For example, a user with SYSCTRL authority can create,

update, start, stop, or drop a database. This user can also start or stop an

instance, but cannot access table data. Users with SYSCTRL authority also

have SYSMON authority.

– SYSMAINT (system maintenance)

The SYSMAINT authority level provides the authority required to perform

maintenance operations on all databases associated with an instance. A user

with SYSMAINT authority can update the database configuration, backup a

database or table space, restore an existing database, and monitor a database.

Like SYSCTRL, SYSMAINT does not provide access to table data. Users with

SYSMAINT authority also have SYSMON authority.
v The SYSMON (system monitor) authority level

SYSMON provides the authority required to use the database system monitor. It

operates at the instance level.

v Database authorities

To perform activities such as creating a table or a routine, or for loading data

into a table, specific database authorities are required. For example, the LOAD

502 Administration Guide: Implementation

database authority is required for use of the load utility to load data into tables

(a user must also have INSERT privilege on the table).

Figure 5 illustrates the relationship between authorities and their span of control

(database, database manager).

 Privileges:

 Privileges are those activities that a user is allowed to perform. Authorized users

can create objects, have access to objects they own, and can pass on privileges on

their own objects to other users by using the GRANT statement.

Privileges may be granted to individual users, to groups, or to PUBLIC. PUBLIC is

a special group that consists of all users, including future users. Users that are

members of a group will indirectly take advantage of the privileges granted to the

group, where groups are supported.

The CONTROL privilege: Possessing the CONTROL privilege on an object allows a

user to access that database object, and to grant and revoke privileges to or from

other users on that object.

Note: The CONTROL privilege only apples to tables, views, nicknames, indexes,

and packages.

If a different user requires the CONTROL privilege to that object, a user with

SYSADM or DBADM authority could grant the CONTROL privilege to that object.

The CONTROL privilege cannot be revoked from the object owner, however, the

object owner can be changed by using the TRANSFER OWNERSHIP statement.

In some situations, the creator of an object automatically obtains the CONTROL

privilege on that object.

SYSADM

SYSCTRL

Authority levels Instance

CUSTOMER

Database
authorities

EMPLOYEE

Database
authorities

SYSMAINT

SYSMON

Figure 5. Hierarchy of Authorities

Chapter 8. Controlling database access 503

Individual privileges: Individual privileges can be granted to allow a user to carry

out specific tasks on specific objects. Users with administrative authority (SYSADM

or DBADM) or the CONTROL privilege can grant and revoke privileges to and

from users.

Individual privileges and database authorities allow a specific function, but do not

include the right to grant the same privileges or authorities to other users. The

right to grant table, view, schema, package, routine, and sequence privileges to

others can be extended to other users through the WITH GRANT OPTION on the

GRANT statement. However, the WITH GRANT OPTION does not allow the

person granting the privilege to revoke the privilege once granted. You must have

SYSADM authority, DBADM authority, or the CONTROL privilege to revoke the

privilege.

Privileges on objects in a package or routine: When a user has the privilege to execute

a package or routine, they do not necessarily require specific privileges on the

objects used in the package or routine. If the package or routine contains static

SQL or XQuery statements, the privileges of the owner of the package are used for

those statements. If the package or routine contains dynamic SQL or XQuery

statements, the authorization ID used for privilege checking depends on the setting

of the DYNAMICRULES bind option of the package issuing the dynamic query

statements, and whether those statements are issued when the package is being

used in the context of a routine.

A user or group can be authorized for any combination of individual privileges or

authorities. When a privilege is associated with an object, that object must exist.

For example, a user cannot be given the SELECT privilege on a table unless that

table has previously been created.

Note: Care must be taken when an authorization name representing a user or

group is granted authorities and privileges and there is no user or group

created with that name. At some later time, a user or group can be created

with that name and automatically receive all of the authorities and

privileges associated with that authorization name.

The REVOKE statement is used to revoke previously granted privileges. The

revoking of a privilege from an authorization name revokes the privilege granted

by all authorization names.

Revoking a privilege from an authorization name does not revoke that same

privilege from any other authorization names that were granted the privilege by

that authorization name. For example, assume that CLAIRE grants SELECT WITH

GRANT OPTION to RICK, then RICK grants SELECT to BOBBY and CHRIS. If

CLAIRE revokes the SELECT privilege from RICK, BOBBY and CHRIS still retain

the SELECT privilege.

 Object ownership:

 When an object is created, one authorization ID is assigned ownership of the object.

Ownership means the user is authorized to reference the object in any applicable

SQL or XQuery statement.

When an object is created within a schema, the authorization ID of the statement

must have the required privilege to create objects in the implicitly or explicitly

specified schema. That is, the authorization name must either be the owner of the

schema, or possess the CREATEIN privilege on the schema.

504 Administration Guide: Implementation

Note: This requirement is not applicable when creating table spaces, buffer pools

or database partition groups. These objects are not created in schemas.

When an object is created, the authorization ID of the statement is the owner of

that object.

Note: One exception exists. If the AUTHORIZATION option is specified for the

CREATE SCHEMA statement, any other object that is created as part of the

CREATE SCHEMA operation is owned by the authorization ID specified by

the AUTHORIZATION option. Any objects that are created in the schema

after the initial CREATE SCHEMA operation, however, are owned by the

authorization ID associated with the specific CREATE statement.

For example, the statement CREATE SCHEMA SCOTTSTUFF AUTHORIZATION SCOTT

CREATE TABLE T1 (C1 INT) creates the schema SCOTTSTUFF and the table

SCOTTSTUFF.T1, which are both owned by SCOTT. Assume that the user

BOBBY is granted the CREATEIN privilege on the SCOTTSTUFF schema and

creates an index on the SCOTTSTUFF.T1 table. Because the index is created

after the schema, BOBBY owns the index on SCOTTSTUFF.T1.

Privileges are assigned to the object owner based on the type of object being

created:

v The CONTROL privilege is implicitly granted on newly created tables, indexes,

and packages. This privilege allows the object creator to access the database

object, and to grant and revoke privileges to or from other users on that object.

If a different user requires the CONTROL privilege to that object, a user with

SYSADM or DBADM authority must grant the CONTROL privilege to that

object. The CONTROL privilege cannot be revoked by the object owner.

v The CONTROL privilege is implicitly granted on newly created views if the

object owner has the CONTROL privilege on all the tables, views, and

nicknames referenced by the view definition.

v Other objects like triggers, routines, sequences, table spaces, and buffer pools do

not have a CONTROL privilege associated with them. The object owner does,

however, automatically receive each of the privileges associated with the object

(and can provide these privileges to other users, where supported, by using the

WITH GRANT option of the GRANT statement). In addition, the object owner

can alter, add a comment on, or drop the object. These authorizations are

implicit for the object owner and cannot be revoked.

Certain privileges on the object, such as altering a table, can be granted by the

owner, and can be revoked from the owner by a user who has SYSADM or

DBADM authority. Certain privileges on the object, such as commenting on a table,

cannot be granted by the owner and cannot be revoked from the owner. Use the

TRANSFER OWNERSHIP statement to move these privileges to another user.

When an object is created, the authorization ID of the statement is the owner of the

object. However, when a package is created and the OWNER bind option is

specified, the owner of objects created by the static SQL statements in the package

is the value of the OWNER bind option. In addition, if the AUTHORIZATION

clause is specified on a CREATE SCHEMA statement, the authorization name

specified after the AUTHORIZATION keyword is the owner of the schema.

A security administrator (SECADM) or the object owner can use the TRANSFER

OWNERSHIP statement to change the ownership of a database object. An

administrator can therefore create an object on behalf of an authorization ID, by

creating the object using the authorization ID as the qualifier, and then using the

Chapter 8. Controlling database access 505

TRANSFER OWNERSHIP statement to transfer the ownership that the

administrator has on the object to the authorization ID.

 Related concepts:

v “Controlling access to database objects” on page 519

v “Database administration authority (DBADM)” on page 509

v “Database authorities” on page 511

v “Index privileges” on page 518

v “Indirect privileges through a package” on page 523

v “LOAD authority” on page 511

v “Package privileges” on page 517

v “Routine privileges” on page 518

v “Schema privileges” on page 514

v “Security administration authority (SECADM)” on page 508

v “Sequence privileges” on page 518

v “System administration authority (SYSADM)” on page 506

v “System control authority (SYSCTRL)” on page 507

v “System maintenance authority (SYSMAINT)” on page 508

v “System monitor authority (SYSMON)” on page 510

v “Table and view privileges” on page 515

v “Table space privileges” on page 515

 Related reference:

v “GRANT (Database Authorities) statement” in SQL Reference, Volume 2

Details on privileges, authorities, and authorization

This section discusses each of the authorities and privileges.

System administration authority (SYSADM)

 The SYSADM authority level is the highest level of administrative authority. Users

with SYSADM authority can run utilities, issue database and database manager

commands, and access any data that is not protected by LBAC in any table in any

database within the database manager instance. It provides the ability to control all

database objects in the instance, including databases, tables, views, indexes,

packages, schemas, servers, aliases, data types, functions, procedures, triggers,

table spaces, database partition groups, buffer pools, and event monitors.

SYSADM authority is assigned to the group specified by the sysadm_group

configuration parameter. Membership in that group is controlled outside the

database manager through the security facility used on your platform.

Only a user with SYSADM authority can perform the following functions:

v Migrate a database

v Change the database manager configuration file (including specifying the groups

having SYSCTRL, SYSMAINT, or SYSMON authority)

v Grant and revoke DBADM authority.

v Grant and revoke SECADM authority

506 Administration Guide: Implementation

While SYSADM authority does provide all abilities provided by most other

authorities, it does not provide any of the abilities of the SECADM authority. The

abilities provided by the SECADM authority are not provided by any other

authority. SYSADM authority also does not provide access to data that is protected

by LBAC.

Note: When a user with SYSADM authority creates a database, that user is

automatically granted explicit DBADM authority on the database. If the

database creator is removed from the SYSADM group and you want to

prevent that user from accessing that database as a DBADM, you must

explicitly revoke the user’s DBADM authority.

 Related concepts:

v “Data encryption” on page 527

v “Security administration authority (SECADM)” on page 508

v “System control authority (SYSCTRL)” on page 507

v “System maintenance authority (SYSMAINT)” on page 508

v “System monitor authority (SYSMON)” on page 510

System control authority (SYSCTRL)

 SYSCTRL authority is the highest level of system control authority. This authority

provides the ability to perform maintenance and utility operations against the

database manager instance and its databases. These operations can affect system

resources, but they do not allow direct access to data in the databases. System

control authority is designed for users administering a database manager instance

containing sensitive data.

SYSCTRL authority is assigned to the group specified by the sysctrl_group

configuration parameter. If a group is specified, membership in that group is

controlled outside the database manager through the security facility used on your

platform.

Only a user with SYSCTRL authority or higher can do the following:

v Update a database, node, or distributed connection services (DCS) directory

v Force users off the system

v Create or drop a database

v Drop, create, or alter a table space

v Restore to a new database.

In addition, a user with SYSCTRL authority can perform the functions of users

with system maintenance authority (SYSMAINT) and system monitor authority

(SYSMON).

Users with SYSCTRL authority also have the implicit privilege to connect to a

database.

Note: When users with SYSCTRL authority create databases, they are

automatically granted explicit DBADM authority on the database. If the

database creator is removed from the SYSCTRL group, and if you want to

also prevent them from accessing that database as a DBADM, you must

explicitly revoke this DBADM authority.

Chapter 8. Controlling database access 507

Related concepts:

v “Database administration authority (DBADM)” on page 509

v “System maintenance authority (SYSMAINT)” on page 508

v “System monitor authority (SYSMON)” on page 510

System maintenance authority (SYSMAINT)

 SYSMAINT authority is the second level of system control authority. This authority

provides the ability to perform maintenance and utility operations against the

database manager instance and its databases. These operations can affect system

resources, but they do not allow direct access to data in the databases. System

maintenance authority is designed for users maintaining databases within a

database manager instance that contains sensitive data.

SYSMAINT authority is assigned to the group specified by the sysmaint_group

configuration parameter. If a group is specified, membership in that group is

controlled outside the database manager through the security facility used on your

platform.

Only a user with SYSMAINT or higher system authority can do the following:

v Update database configuration files

v Back up a database or table space

v Restore to an existing database

v Perform roll forward recovery

v Start or stop an instance

v Restore a table space

v Run trace

v Take database system monitor snapshots of a database manager instance or its

databases.

A user with SYSMAINT, DBADM, or higher authority can do the following:

v Query the state of a table space

v Update log history files

v Quiesce a table space

v Reorganize a table

v Collect catalog statistics using the RUNSTATS utility.

Users with SYSMAINT authority also have the implicit privilege to connect to a

database, and can perform the functions of users with system monitor authority

(SYSMON).

 Related concepts:

v “Database administration authority (DBADM)” on page 509

v “System monitor authority (SYSMON)” on page 510

Security administration authority (SECADM)

 SECADM authority can only be granted by the SYSADM and can be granted to a

user but not to a group. It gives these and only these abilities:

v Create and drop security label components

508 Administration Guide: Implementation

v Create and drop security policies

v Create and drop security labels

v Grant and revoke security labels

v Grant and revoke LBAC rule exemptions

v Grant and revoke setsessionuser privileges

v Execute the SQL statement TRANSFER OWNERSHIP on objects that you do not

own

No other authority gives these abilities, not even SYSADM.

 Related concepts:

v “Database authorities” on page 511

v “System administration authority (SYSADM)” on page 506

v “System control authority (SYSCTRL)” on page 507

v “System maintenance authority (SYSMAINT)” on page 508

Database administration authority (DBADM)

 DBADM authority is an administrative authority for a specific database and it

allows the user to perform certain actions, and issue database commands on that

database. The DBADM authority allows access to the data in any table in the

database unless that data is protected by LBAC. To access data protected by LBAC

you must have appropriate LBAC credentials.

When DBADM authority is granted, the following database authorities are also

explicitly granted for the same database (and are not automatically revoked if the

DBADM authority is later revoked):

v BINDADD

v CONNECT

v CREATETAB

v CREATE_EXTERNAL

v ROUTINE, CREATE

v NOT_FENCED_ROUTINE

v IMPLICIT_SCHEMA

v QUIESCE_CONNECT

v LOAD

Only a user with SYSADM authority can grant or revoke DBADM authority. Users

with DBADM authority can grant privileges on the database to others and can

revoke any privilege from any user regardless of who granted it.

Holding the DBADM, or higher, authority for a database allows a user to perform

these actions on that database:

v Read log files

v Create, activate, and drop event monitors.

A user with DBADM authority for a database or with SYSMAINT authority or

higher can perform these actions on the database:

v Query the state of a table space

v Update log history files

Chapter 8. Controlling database access 509

v Quiesce a table space.

v Reorganize a table

v Collect catalog statistics using the RUNSTATS utility.

While DBADM authority does provide some of the same abilities as other

authorities, it does not provide any of the abilities of the SECADM authority. The

abilities provided by the SECADM authority are not provided by any other

authority.

 Related concepts:

v “Database authorities” on page 511

v “Implicit schema authority (IMPLICIT_SCHEMA) considerations” on page 513

v “LOAD authority” on page 511

v “Security administration authority (SECADM)” on page 508

v “System administration authority (SYSADM)” on page 506

v “System control authority (SYSCTRL)” on page 507

v “System maintenance authority (SYSMAINT)” on page 508

System monitor authority (SYSMON)

 SYSMON authority provides the ability to take database system monitor snapshots

of a database manager instance or its databases. SYSMON authority is assigned to

the group specified by the sysmon_group configuration parameter. If a group is

specified, membership in that group is controlled outside the database manager

through the security facility used on your platform.

SYSMON authority enables the user to run the following commands:

v GET DATABASE MANAGER MONITOR SWITCHES

v GET MONITOR SWITCHES

v GET SNAPSHOT

v LIST ACTIVE DATABASES

v LIST APPLICATIONS

v LIST DCS APPLICATIONS

v RESET MONITOR

v UPDATE MONITOR SWITCHES

SYSMON authority enables the user to use the following APIs:

v db2GetSnapshot - Get Snapshot

v db2GetSnapshotSize - Estimate Size Required for db2GetSnapshot() Output

Buffer

v db2MonitorSwitches - Get/Update Monitor Switches

v db2ResetMonitor - Reset Monitor

SYSMON authority enables the user use the following SQL table functions:

v All snapshot table functions without previously running

SYSPROC.SNAP_WRITE_FILE

SYSPROC.SNAP_WRITE_FILE takes a snapshot and saves its content into a file. If

any snapshot table functions are called with null input parameters, the file

content is returned instead of a real-time system snapshot.

Users with the SYSADM, SYSCTRL, or SYSMAINT authority level also possess

SYSMON authority.

510 Administration Guide: Implementation

Related reference:

v “sysmon_group - System monitor authority group name configuration

parameter” in Performance Guide

LOAD authority

 Users having LOAD authority at the database level, as well as INSERT privilege on

a table, can use the LOAD command to load data into a table.

Users having LOAD authority at the database level, as well as INSERT privilege on

a table, can LOAD RESTART or LOAD TERMINATE if the previous load

operation is a load to insert data.

Users having LOAD authority at the database level, as well as the INSERT and

DELETE privileges on a table, can use the LOAD REPLACE command.

If the previous load operation was a load replace, the DELETE privilege must also

have been granted to that user before the user can LOAD RESTART or LOAD

TERMINATE.

If the exception tables are used as part of a load operation, the user must have

INSERT privilege on the exception tables.

The user with this authority can perform QUIESCE TABLESPACES FOR TABLE,

RUNSTATS, and LIST TABLESPACES commands.

 Related concepts:

v “Table and view privileges” on page 515

v “Privileges, authorities, and authorizations required to use Load” in Data

Movement Utilities Guide and Reference

 Related reference:

v “LIST TABLESPACES command” in Command Reference

v “LOAD command” in Command Reference

v “QUIESCE TABLESPACES FOR TABLE command” in Command Reference

v “RUNSTATS command” in Command Reference

Database authorities

 Each database authority allows the authorization ID holding it to perform some

particular type of action on the database as a whole. Database authorities are

different from privileges, which allow a certain action to be taken on a particular

database object, such as a table or an index. There are ten different database

authorities.

SECADM

Gives the holder the ability to configure many things related to security of

the database, and also to transfer ownership of database objects. For

instance, all objects that are part of the label-based access control (LBAC)

feature can be created, dropped, granted, or revoked by a user that holds

SECADM authority. SECADM specific abilities cannot be exercised by any

other authority, not even SYSADM.

Chapter 8. Controlling database access 511

DBADM

Gives the holder the authority to act as the database administrator. In

particular it gives the holder all of the other database authorities except for

SECADM.

CONNECT

Allows the holder to connect to the database.

BINDADD

Allows the holder to create new packages in the database.

CREATETAB

Allows the holder to create new tables in the database.

CREATE_EXTERNAL_ROUTINE

Allows the holder to create a procedure for use by applications and other

users of the database.

CREATE_NOT_FENCED_ROUTINE

Allows the holder to create a user-defined function (UDF) or procedure

that is “not fenced”. CREATE_EXTERNAL_ROUTINE is automatically

granted to any user who is granted CREATE_NOT_FENCED_ROUTINE.

Attention:: The database manager does not protect its storage or control

blocks from UDFs or procedures that are “not fenced”. A user

with this authority must, therefore, be very careful to test their

UDF extremely well before registering it as “not fenced”.

IMPLICIT_SCHEMA

Allows any user to create a schema implicitly by creating an object using a

CREATE statement with a schema name that does not already exist.

SYSIBM becomes the owner of the implicitly created schema and PUBLIC

is given the privilege to create objects in this schema.

LOAD

Allows the holder to load data into a table

QUIESCE_CONNECT

Allows the holder to access the database while it is quiesced.

 Only authorization IDs with the SYSADM authority can grant the SECADM and

DBADM authorities. All other authorities can be granted by authorization IDs that

hold SYSADM or DBADM authorities.

When a database is created, the following database authorities are automatically

granted to PUBLIC for the new database:

v CREATETAB

v BINDADD

v CONNECT

v IMPLICIT_SCHEMA

In addition, these privileges are granted:

v USE privilege on USERSPACE1 table space

v SELECT privilege on the system catalog views.

To remove any database authority from PUBLIC, an authorization ID with

DBADM or SYSADM authority must explicitly revoke it.

 Related tasks:

512 Administration Guide: Implementation

v “Granting privileges” on page 519

v “Revoking privileges” on page 521

Authorization ID privileges

 Authorization ID privileges involve actions on authorization IDs. There is currently

only one such privilege: the SETSESSIONUSER privilege.

The SETSESSIONUSER privilege can be granted to a user or to a group and allows

the holder to switch identities to any of the authorization IDs on which the

privilege was granted. The identity switch is made by using the SQL statement

SET SESSION AUTHORIZATION. The SETSESSIONUSER privilege can only be

granted by a user holding SECADM authority.

Note: When you migrate a DB2 UDB database to DB2 Version 9.1, authorization

IDs with explicit DBADM authority on that database will automatically be

granted SETSESSIONUSER privilege on PUBLIC. This prevents breaking

applications that rely on authorization IDs with DBADM authority being

able to set the session authorization ID to any authorization ID. This does

not happen when the authorization ID has SYSADM authority but has not

been explicitly granted DBADM.

 Related concepts:

v “Authorization, privileges, and object ownership” on page 501

 Related reference:

v “SET SESSION AUTHORIZATION statement” in SQL Reference, Volume 2

Implicit schema authority (IMPLICIT_SCHEMA) considerations

 When a new database is created, PUBLIC is given IMPLICIT_SCHEMA database

authority. With this authority, any user can create a schema by creating an object

and specifying a schema name that does not already exist. SYSIBM becomes the

owner of the implicitly created schema and PUBLIC is given the privilege to create

objects in this schema.

If control of who can implicitly create schema objects is required for the database,

IMPLICIT_SCHEMA database authority should be revoked from PUBLIC. Once

this is done, there are only three (3) ways that a schema object is created:

v Any user can create a schema using their own authorization name on a CREATE

SCHEMA statement.

v Any user with DBADM authority can explicitly create any schema which does

not already exist, and can optionally specify another user as the owner of the

schema.

v Any user with DBADM authority has IMPLICIT_SCHEMA database authority

(independent of PUBLIC) so that they can implicitly create a schema with any

name at the time they are creating other database objects. SYSIBM becomes the

owner of the implicitly created schema and PUBLIC has the privilege to create

objects in the schema.

 Related tasks:

v “Granting privileges” on page 519

v “Revoking privileges” on page 521

Chapter 8. Controlling database access 513

Schema privileges

 Schema privileges are in the object privilege category. Object privileges are shown

in Figure 6.

 Schema privileges involve actions on schemas in a database. A user may be

granted any of the following privileges:

v CREATEIN allows the user to create objects within the schema.

v ALTERIN allows the user to alter objects within the schema.

v DROPIN allows the user to drop objects from within the schema.

The owner of the schema has all of these privileges and the ability to grant them to

others. The objects that are manipulated within the schema object include: tables,

views, indexes, packages, data types, functions, triggers, procedures, and aliases.

 Related tasks:

v “Granting privileges” on page 519

Database
objects

CONTROL
(Tables)

CONTROL
(Indexes)

DELETE
INSERT
SELECT
UPDATE

CONTROL
(Views)

(Table spaces)

USE

(Schema
Owners)

ALTERIN
CREATEIN
DROPIN

(Server)

PASSTHRU

(Sequences)

USAGE

ALTER

CONTROL
(Nicknames)

BIND
EXECUTE

EXECUTE

CONTROL
(Packages)

(Procedures,
functions, methods)

ALTER
DELETE
INDEX

INSERT
REFERENCES

SELECT
UPDATE

ALTER
DELETE
INDEX

INSERT
REFERENCES

SELECT
UPDATE

Figure 6. Object Privileges

514 Administration Guide: Implementation

v “Revoking privileges” on page 521

 Related reference:

v “ALTER SEQUENCE statement” in SQL Reference, Volume 2

Table space privileges

 The table space privileges involve actions on the table spaces in a database. A user

may be granted the USE privilege for a table space which then allows them to

create tables within the table space.

The owner of the table space, typically the creator who has SYSADM or SYSCTRL

authority, has the USE privilege and the ability to grant this privilege to others. By

default, at database creation time the USE privilege for table space USERSPACE1 is

granted to PUBLIC, though this privilege can be revoked.

The USE privilege cannot be used with SYSCATSPACE or any system temporary

table spaces.

 Related tasks:

v “Granting privileges” on page 519

v “Revoking privileges” on page 521

 Related reference:

v “CREATE TABLE statement” in SQL Reference, Volume 2

Table and view privileges

 Table and view privileges involve actions on tables or views in a database. A user

must have CONNECT authority on the database to use any of the following

privileges:

v CONTROL provides the user with all privileges for a table or view including the

ability to drop it, and to grant and revoke individual table privileges. You must

have SYSADM or DBADM authority to grant CONTROL. The creator of a table

automatically receives CONTROL privilege on the table. The creator of a view

automatically receives CONTROL privilege only if they have CONTROL

privilege on all tables, views, and nicknames referenced in the view definition,

or they have SYSADM or DBADM authority.

v ALTER allows the user to modify on a table, for example, to add columns or a

unique constraint to the table. A user with ALTER privilege can also COMMENT

ON a table, or on columns of the table. For information about the possible

modifications that can be performed on a table, see the ALTER TABLE and

COMMENT statements.

v DELETE allows the user to delete rows from a table or view.

v INDEX allows the user to create an index on a table. Creators of indexes

automatically have CONTROL privilege on the index.

v INSERT allows the user to insert a row into a table or view, and to run the

IMPORT utility.

v REFERENCES allows the user to create and drop a foreign key, specifying the

table as the parent in a relationship. The user might have this privilege only on

specific columns.

v SELECT allows the user to retrieve rows from a table or view, to create a view

on a table, and to run the EXPORT utility.

Chapter 8. Controlling database access 515

v UPDATE allows the user to change an entry in a table, a view, or for one or

more specific columns in a table or view. The user may have this privilege only

on specific columns.

The privilege to grant these privileges to others may also be granted using the

WITH GRANT OPTION on the GRANT statement.

Note: When a user or group is granted CONTROL privilege on a table, all other

privileges on that table are automatically granted WITH GRANT OPTION.

If you subsequently revoke the CONTROL privilege on the table from a

user, that user will still retain the other privileges that were automatically

granted. To revoke all the privileges that are granted with the CONTROL

privilege, you must either explicitly revoke each individual privilege or

specify the ALL keyword on the REVOKE statement, for example:

 REVOKE ALL

 ON EMPLOYEE FROM USER HERON

When working with typed tables, there are implications regarding table and view

privileges.

Note: Privileges may be granted independently at every level of a table hierarchy.

As a result, a user granted a privilege on a supertable within a hierarchy of

typed tables may also indirectly affect any subtables. However, a user can

only operate directly on a subtable if the necessary privilege is held on that

subtable.

The supertable/subtable relationships among the tables in a table hierarchy mean

that operations such as SELECT, UPDATE, and DELETE will affect the rows of the

operation’s target table and all its subtables (if any). This behavior can be called

substitutability. For example, suppose that you have created an Employee table of

type Employee_t with a subtable Manager of type Manager_t. A manager is a

(specialized) kind of employee, as indicated by the type/subtype relationship

between the structured types Employee_t and Manager_t and the corresponding

table/subtable relationship between the tables Employee and Manager. As a result

of this relationship, the SQL query:

 SELECT * FROM Employee

will return the object identifier and Employee_t attributes for both employees and

managers. Similarly, the update operation:

 UPDATE Employee SET Salary = Salary + 1000

will give a thousand dollar raise to managers as well as regular employees.

A user with SELECT privilege on Employee will be able to perform this SELECT

operation even if they do not have an explicit SELECT privilege on Manager.

However, such a user will not be permitted to perform a SELECT operation

directly on the Manager subtable, and will therefore not be able to access any of

the non-inherited columns of the Manager table.

Similarly, a user with UPDATE privilege on Employee will be able to perform an

UPDATE operation on Manager, thereby affecting both regular employees and

managers, even without having the explicit UPDATE privilege on the Manager

table. However, such a user will not be permitted to perform UPDATE operations

directly on the Manager subtable, and will therefore not be able to update

non-inherited columns of the Manager table.

516 Administration Guide: Implementation

Related concepts:

v “Index privileges” on page 518

 Related tasks:

v “Granting privileges” on page 519

v “Revoking privileges” on page 521

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “CREATE VIEW statement” in SQL Reference, Volume 2

v “SELECT statement” in SQL Reference, Volume 2

Package privileges

 A package is a database object that contains the information needed by the

database manager to access data in the most efficient way for a particular

application program. Package privileges enable a user to create and manipulate

packages. The user must have CONNECT authority on the database to use any of

the following privileges:

v CONTROL provides the user with the ability to rebind, drop, or execute a

package as well as the ability to extend those privileges to others. The creator of

a package automatically receives this privilege. A user with CONTROL privilege

is granted the BIND and EXECUTE privileges, and can also grant these

privileges to other users by using the GRANT statement. (If a privilege is

granted using WITH GRANT OPTION, a user who receives the BIND or

EXECUTE privilege can, in turn, grant this privilege to other users.) To grant

CONTROL privilege, the user must have SYSADM or DBADM authority.

v BIND privilege on a package allows the user to rebind or bind that package and

to add new package versions of the same package name and creator.

v EXECUTE allows the user to execute or run a package.

Note: All package privileges apply to all VERSIONs that share the same package

name and creator.

In addition to these package privileges, the BINDADD database privilege allows

users to create new packages or rebind an existing package in the database.

Objects referenced by nicknames need to pass authentication checks at the data

sources containing the objects. In addition, package users must have the

appropriate privileges or authority levels for data source objects at the data source.

It is possible that packages containing nicknames might require additional

authorization steps because DB2 database uses dynamic queries when

communicating with DB2 Family data sources. The authorization ID running the

package at the data source must have the appropriate authority to execute the

package dynamically at that data source.

 Related concepts:

v “Database authorities” on page 511

 Related tasks:

v “Granting privileges” on page 519

v “Revoking privileges” on page 521

Chapter 8. Controlling database access 517

Index privileges

 The creator of an index or an index specification automatically receives CONTROL

privilege on the index. CONTROL privilege on an index is really the ability to

drop the index. To grant CONTROL privilege on an index, a user must have

SYSADM or DBADM authority.

The table-level INDEX privilege allows a user to create an index on that table.

The nickname-level INDEX privilege allows a user to create an index specification

on that nickname.

 Related concepts:

v “Table and view privileges” on page 515

 Related tasks:

v “Granting privileges” on page 519

v “Revoking privileges” on page 521

Sequence privileges

 The creator of a sequence automatically receives the USAGE and ALTER privileges

on the sequence. The USAGE privilege is needed to use NEXT VALUE and

PREVIOUS VALUE expressions for the sequence. To allow other users to use the

NEXT VALUE and PREVIOUS VALUE expressions, sequence privileges must be

granted to PUBLIC. This allows all users to use the expressions with the specified

sequence.

ALTER privilege on the sequence allows the user to perform tasks such as

restarting the sequence or changing the increment for future sequence values. The

creator of the sequence can grant the ALTER privilege to other users, and if WITH

GRANT OPTION is used, these users can, in turn, grant these privileges to other

users.

 Related tasks:

v “Granting privileges” on page 519

v “Revoking privileges” on page 521

 Related reference:

v “ALTER SEQUENCE statement” in SQL Reference, Volume 2

Routine privileges

 Execute privileges involve actions on all types of routines such as functions,

procedures, and methods within a database. Once having EXECUTE privilege, a

user can then invoke that routine, create a function that is sourced from that

routine (applies to functions only), and reference the routine in any DDL statement

such as CREATE VIEW or CREATE TRIGGER.

The user who defines the externally stored procedure, function, or method receives

EXECUTE WITH GRANT privilege. If the EXECUTE privilege is granted to

another user via WITH GRANT OPTION, that user can, in turn, grant the

EXECUTE privilege to another user.

518 Administration Guide: Implementation

Related tasks:

v “Granting privileges” on page 519

v “Revoking privileges” on page 521

Controlling access to database objects

 Controlling data access requires an understanding of direct and indirect privileges,

administrative authorities, and packages. This section explains these topics and

provides some examples.

Directly granted privileges are stored in the system catalog.

Authorization is controlled in three ways:

v Explicit authorization is controlled through privileges controlled with the

GRANT and REVOKE statements

v Implicit authorization is controlled by creating and dropping objects

v Indirect privileges are associated with packages.

Note: A database group name must be 8 characters or less when used in a

GRANT or REVOKE statement, or in the Control Center. Even though a

database group name longer than 8 characters is accepted, the longer name

results in an error message when users belonging to the group access

database objects.

 Related concepts:

v “Using the system catalog for security issues” on page 609

 Related tasks:

v “Granting privileges” on page 519

v “Revoking privileges” on page 521

Details on controlling access to database objects

This section describes the control of access to database objects through the use of

GRANT and REVOKE statements. It also discusses implicit access and indirect

privileges.

Granting privileges

 Restrictions:

 To grant privileges on most database objects, the user must have SYSADM

authority, DBADM authority, or CONTROL privilege on that object; or, the user

must hold the privilege WITH GRANT OPTION. Privileges can be granted only on

existing objects. To grant CONTROL privilege to someone else, the user must have

SYSADM or DBADM authority. To grant DBADM authority, the user must have

SYSADM authority.

 Procedure:

 The GRANT statement allows an authorized user to grant privileges. A privilege

can be granted to one or more authorization names in one statement; or to

Chapter 8. Controlling database access 519

PUBLIC, which makes the privileges available to all users. Note that an

authorization name can be either an individual user or a group.

On operating systems where users and groups exist with the same name, you

should specify whether you are granting the privilege to the user or group. Both

the GRANT and REVOKE statements support the keywords USER and GROUP. If

these optional keywords are not used, the database manager checks the operating

system security facility to determine whether the authorization name identifies a

user or a group. If the authorization name could be both a user and a group, an

error is returned.

The following example grants SELECT privileges on the EMPLOYEE table to the

user HERON:

 GRANT SELECT

 ON EMPLOYEE TO USER HERON

The following example grants SELECT privileges on the EMPLOYEE table to the

group HERON:

 GRANT SELECT

 ON EMPLOYEE TO GROUP HERON

In the Control Center, you can use the Schema Privileges notebook, the Table Space

Privileges notebook, and the View Privileges notebook to grant and revoke

privileges for these database objects. To open one of these notebooks, follow these

steps:

1. In the Control Center, expand the object tree until you find the folder

containing the objects you want to work with, for example, the Views folder.

2. Click the folder.

Any existing database objects in this folder are displayed in the contents pane.

3. Right-click the object of interest in the contents pane and select Privileges in

the pop-up menu.

The appropriate Privileges notebook opens.

 Related concepts:

v “Controlling access to database objects” on page 519

 Related tasks:

v “Revoking privileges” on page 521

 Related reference:

v “GRANT (Database Authorities) statement” in SQL Reference, Volume 2

v “GRANT (Index Privileges) statement” in SQL Reference, Volume 2

v “GRANT (Package Privileges) statement” in SQL Reference, Volume 2

v “GRANT (Routine Privileges) statement” in SQL Reference, Volume 2

v “GRANT (Schema Privileges) statement” in SQL Reference, Volume 2

v “GRANT (Sequence Privileges) statement” in SQL Reference, Volume 2

v “GRANT (Server Privileges) statement” in SQL Reference, Volume 2

v “GRANT (Table Space Privileges) statement” in SQL Reference, Volume 2

v “GRANT (Table, View, or Nickname Privileges) statement” in SQL Reference,

Volume 2

520 Administration Guide: Implementation

Revoking privileges

 The REVOKE statement allows authorized users to revoke privileges previously

granted to other users.

 Restrictions:

 To revoke privileges on database objects, you must have DBADM authority,

SYSADM authority, or CONTROL privilege on that object. Note that holding a

privilege WITH GRANT OPTION is not sufficient to revoke that privilege. To

revoke CONTROL privilege from another user, you must have SYSADM or

DBADM authority. To revoke DBADM authority, you must have SYSADM

authority. Privileges can only be revoked on existing objects.

Note: A user without DBADM authority or CONTROL privilege is not able to

revoke a privilege that they granted through their use of the WITH GRANT

OPTION. Also, there is no cascade on the revoke to those who have received

privileges granted by the person being revoked.

If an explicitly granted table (or view) privilege is revoked from a user with

DBADM authority, privileges will not be revoked from other views defined on that

table. This is because the view privileges are available through the DBADM

authority and are not dependent on explicit privileges on the underlying tables.

 Procedure:

 If a privilege has been granted to both a user and a group with the same name,

you must specify the GROUP or USER keyword when revoking the privilege. The

following example revokes the SELECT privilege on the EMPLOYEE table from the

user HERON:

 REVOKE SELECT

 ON EMPLOYEE FROM USER HERON

The following example revokes the SELECT privilege on the EMPLOYEE table

from the group HERON:

 REVOKE SELECT

 ON EMPLOYEE FROM GROUP HERON

Note that revoking a privilege from a group may not revoke it from all members

of that group. If an individual name has been directly granted a privilege, it will

keep it until that privilege is directly revoked.

If a table privilege is revoked from a user, privileges are also revoked on any view

created by that user which depends on the revoked table privilege. However, only

the privileges implicitly granted by the system are revoked. If a privilege on the

view was granted directly by another user, the privilege is still held.

You may have a situation where you want to GRANT a privilege to a group and

then REVOKE the privilege from just one member of the group. There are only a

couple of ways to do that without receiving the error message SQL0556N:

v You can remove the member from the group; or, create a new group with fewer

members and GRANT the privilege to the new group.

v You can REVOKE the privilege from the group and then GRANT it to individual

users (authorization IDs).

Chapter 8. Controlling database access 521

Note: When CONTROL privilege is revoked from a user on a table or a view, the

user continues to have the ability to grant privileges to others. When given

CONTROL privilege, the user also receives all other privileges WITH

GRANT OPTION. Once CONTROL is revoked, all of the other privileges

remain WITH GRANT OPTION until they are explicitly revoked.

All packages that are dependent on revoked privileges are marked invalid, but can

be validated if rebound by a user with appropriate authority. Packages can also be

rebuilt if the privileges are subsequently granted again to the binder of the

application; running the application will trigger a successful implicit rebind. If

privileges are revoked from PUBLIC, all packages bound by users having only

been able to bind based on PUBLIC privileges are invalidated. If DBADM

authority is revoked from a user, all packages bound by that user are invalidated

including those associated with database utilities. Attempting to use a package that

has been marked invalid causes the system to attempt to rebind the package. If

this rebind attempt fails, an error occurs (SQLCODE -727). In this case, the

packages must be explicitly rebound by a user with:

v Authority to rebind the packages

v Appropriate authority for the objects used within the packages

These packages should be rebound at the time the privileges are revoked.

If you define a trigger or SQL function based on one or more privileges and you

lose one or more of these privileges, the trigger or SQL function cannot be used.

 Related tasks:

v “Granting privileges” on page 519

 Related reference:

v “REVOKE (Database Authorities) statement” in SQL Reference, Volume 2

v “REVOKE (Index Privileges) statement” in SQL Reference, Volume 2

v “REVOKE (Package Privileges) statement” in SQL Reference, Volume 2

v “REVOKE (Routine Privileges) statement” in SQL Reference, Volume 2

v “REVOKE (Schema Privileges) statement” in SQL Reference, Volume 2

v “REVOKE (Server Privileges) statement” in SQL Reference, Volume 2

v “REVOKE (Table Space Privileges) statement” in SQL Reference, Volume 2

v “REVOKE (Table, View, or Nickname Privileges) statement” in SQL Reference,

Volume 2

Managing implicit authorizations by creating and dropping

objects

 Procedure:

 The database manager implicitly grants certain privileges to a user creates a

database object such as a table or a package. Privileges are also granted when

objects are created by users with SYSADM or DBADM authority. Similarly,

privileges are removed when an object is dropped.

When the created object is a table, nickname, index, or package, the user receives

CONTROL privilege on the object. When the object is a view, the CONTROL

privilege for the view is granted implicitly only if the user has CONTROL

privilege for all tables, views, and nicknames referenced in the view definition.

522 Administration Guide: Implementation

When the object explicitly created is a schema, the schema owner is given

ALTERIN, CREATEIN, and DROPIN privileges WITH GRANT OPTION. An

implicitly created schema has CREATEIN granted to PUBLIC.

 Related tasks:

v “Granting privileges” on page 519

v “Revoking privileges” on page 521

Establishing ownership of a package

 Procedure:

 The BIND and PRECOMPILE commands create or change an application package.

On either one, use the OWNER option to name the owner of the resulting package.

There are simple rules for naming the owner of a package:

v Any user can name themselves as the owner. This is the default if the OWNER

option is not specified.

v An ID with SYSADM or DBADM authority can name any authorization ID as

the owner using the OWNER option.

Not all operating systems that can bind a package using DB2 database products

support the OWNER option.

 Related reference:

v “BIND command” in Command Reference

v “PRECOMPILE command” in Command Reference

Indirect privileges through a package

 Access to data within a database can be requested by application programs, as well

as by persons engaged in an interactive workstation session. A package contains

statements that allow users to perform a variety of actions on many database

objects. Each of these actions requires one or more privileges.

Privileges granted to individuals binding the package and to PUBLIC are used for

authorization checking when static SQL and XQuery statements are bound.

Privileges granted through groups are not used for authorization checking when

static SQL and XQuery statements are bound. The user with a valid authID who

binds a package must either have been explicitly granted all the privileges required

to execute the static SQL or XQuery statements in the package or have been

implicitly granted the necessary privileges through PUBLIC unless VALIDATE

RUN was specified when binding the package. If VALIDATE RUN was specified at

BIND time, all authorization failures for any static SQL or XQuery statements

within this package will not cause the BIND to fail, and those SQL or XQuery

statements are revalidated at run time. PUBLIC, group, and user privileges are all

used when checking to ensure the user has the appropriate authorization (BIND or

BINDADD privilege) to bind the package.

Packages may include both static and dynamic SQL and XQuery statements. To

process a package with static queries, a user need only have EXECUTE privilege

on the package. This user can then indirectly obtain the privileges of the package

binder for any static queries in the package but only within the restrictions

imposed by the package.

Chapter 8. Controlling database access 523

If the package includes dynamic SQL or XQuery statements, the required privileges

depend on the value that was specified for DYNAMICRULES when the package

was precompiled or bound. For more information, see the topic that describes the

effect of DYNAMICRULES on dynamic queries.

 Related concepts:

v “Indirect privileges through a package containing nicknames” on page 524

v “Effect of DYNAMICRULES bind option on dynamic SQL” in Developing

Embedded SQL Applications

 Related reference:

v “BIND command” in Command Reference

Indirect privileges through a package containing nicknames

 When a package contains references to nicknames, authorization processing for

package creators and package users is slightly more complex. When a package

creator successfully binds packages that contain nicknames, the package creator

does not have to pass authentication checking or privilege checking for the tables

and views that the nicknames reference at the data source. However, the package

executor must pass authentication and authorization checking at data sources.

For example, assume that a package creator’s .SQC file contains several SQL or

XQuery statements. One static statement references a local table. Another dynamic

statement references a nickname. When the package is bound, the package

creator’s authid is used to verify privileges for the local table and the nickname,

but no checking is done for the data source objects that the nickname identifies.

When another user executes the package, assuming they have the EXECUTE

privilege for that package, that user does not have to pass any additional privilege

checking for the statement referencing the table. However, for the statement

referencing the nickname, the user executing the package must pass authentication

checking and privilege checking at the data source.

When the .SQC file contains only dynamic SQL and XQuery statements and a

mixture of table and nickname references, DB2 database authorization checking for

local objects and nicknames is similar. Package users must pass privilege checking

for any local objects (tables, views) within the statements and also pass privilege

checking for nickname objects (package users must pass authentication and

privilege checking at the data source containing the objects that the nicknames

identify). In both cases, users of the package must have the EXECUTE privilege.

The ID and password of the package executor is used for all data source

authentication and privilege processing. This information can be changed by

creating a user mapping.

Note: Nicknames cannot be specified in static SQL and XQuery statements. Do not

use the DYNAMICRULES option (set to BIND) with packages containing

nicknames.

It is possible that packages containing nicknames might require additional

authorization steps because DB2 database uses dynamic SQL when communicating

with DB2 Family data sources. The authorization ID running the package at the

data source must have the appropriate authority to execute the package

dynamically at that data source.

524 Administration Guide: Implementation

Related concepts:

v “Indirect privileges through a package” on page 523

Controlling access to data with views

 A view provides a means of controlling access or extending privileges to a table by

allowing:

v Access only to designated columns of the table.

For users and application programs that require access only to specific columns

of a table, an authorized user can create a view to limit the columns addressed

only to those required.

v Access only to a subset of the rows of the table.

By specifying a WHERE clause in the subquery of a view definition, an

authorized user can limit the rows addressed through a view.

v Access only to a subset of the rows or columns in data source tables or views. If

you are accessing data sources through nicknames, you can create local DB2

database views that reference nicknames. These views can reference nicknames

from one or many data sources.

Note: Because you can create a view that contains nickname references for more

than one data source, your users can access data in multiple data sources

from one view. These views are called multi-location views. Such views are

useful when joining information in columns of sensitive tables across a

distributed environment or when individual users lack the privileges

needed at data sources for specific objects.

To create a view, a user must have SYSADM authority, DBADM authority, or

CONTROL or SELECT privilege for each table, view, or nickname referenced in the

view definition. The user must also be able to create an object in the schema

specified for the view. That is, CREATEIN privilege for an existing schema or

IMPLICIT_SCHEMA authority on the database if the schema does not already

exist.

If you are creating views that reference nicknames, you do not need additional

authority on the data source objects (tables and views) referenced by nicknames in

the view; however, users of the view must have SELECT authority or the

equivalent authorization level for the underlying data source objects when they

access the view.

If your users do not have the proper authority at the data source for underlying

objects (tables and views), you can:

1. Create a data source view over those columns in the data source table that are

OK for the user to access

2. Grant the SELECT privilege on this view to users

3. Create a nickname to reference the view

Users can then access the columns by issuing a SELECT statement that references

the new nickname.

The following scenario provides a more detailed example of how views can be

used to restrict access to information.

Many people might require access to information in the STAFF table, for different

reasons. For example:

Chapter 8. Controlling database access 525

v The personnel department needs to be able to update and look at the entire

table.

This requirement can be easily met by granting SELECT and UPDATE privileges

on the STAFF table to the group PERSONNL:

 GRANT SELECT,UPDATE ON TABLE STAFF TO GROUP PERSONNL

v Individual department managers need to look at the salary information for their

employees.

This requirement can be met by creating a view for each department manager.

For example, the following view can be created for the manager of department

number 51:

 CREATE VIEW EMP051 AS

 SELECT NAME,SALARY,JOB FROM STAFF

 WHERE DEPT=51

 GRANT SELECT ON TABLE EMP051 TO JANE

The manager with the authorization name JANE would query the EMP051 view

just like the STAFF table. When accessing the EMP051 view of the STAFF table,

this manager views the following information:

 NAME SALARY JOB

Fraye 45150.0 Mgr

Williams 37156.5 Sales

Smith 35654.5 Sales

Lundquist 26369.8 Clerk

Wheeler 22460.0 Clerk

v All users need to be able to locate other employees. This requirement can be met

by creating a view on the NAME column of the STAFF table and the

LOCATION column of the ORG table, and by joining the two tables on their

respective DEPT and DEPTNUMB columns:

 CREATE VIEW EMPLOCS AS

 SELECT NAME, LOCATION FROM STAFF, ORG

 WHERE STAFF.DEPT=ORG.DEPTNUMB

 GRANT SELECT ON TABLE EMPLOCS TO PUBLIC

Users who access the employee location view will see the following information:

 NAME LOCATION

Molinare New York

Lu New York

Daniels New York

Jones New York

Hanes Boston

Rothman Boston

Ngan Boston

Kermisch Boston

Sanders Washington

Pernal Washington

James Washington

Sneider Washington

Marenghi Atlanta

526 Administration Guide: Implementation

NAME LOCATION

O’Brien Atlanta

Quigley Atlanta

Naughton Atlanta

Abrahams Atlanta

Koonitz Chicago

Plotz Chicago

Yamaguchi Chicago

Scoutten Chicago

Fraye Dallas

Williams Dallas

Smith Dallas

Lundquist Dallas

Wheeler Dallas

Lea San Francisco

Wilson San Francisco

Graham San Francisco

Gonzales San Francisco

Burke San Francisco

Quill Denver

Davis Denver

Edwards Denver

Gafney Denver

 Related tasks:

v “Creating a view” on page 251

v “Granting privileges” on page 519

Monitoring access to data using the audit facility

 The DB2 database audit facility generates, and allows you to maintain, an audit

trail for a series of predefined database events. While not a facility that prevents

access to data, the audit facility can monitor and keep a record of attempts to

access or modify data objects.

SYSADM authority is required to use the audit facility administrator tool,

db2audit.

 Related concepts:

v “Introduction to the DB2 database audit facility” on page 621

Data encryption

 One part of your security plan may involve encrypting your data. To do this, you

can use encryption and decryption built-in functions: ENCRYPT, DECRYPT_BIN,

DECRYPT_CHAR, and GETHINT.

Chapter 8. Controlling database access 527

The ENCRYPT function encrypts data using a password-based encryption method.

These functions also allow you to encapsulate a password hint. The password hint

is embedded in the encrypted data. Once encrypted, the only way to decrypt the

data is by using the correct password. Developers that choose to use these

functions should plan for the management of forgotten passwords and unusable

data.

The result of the ENCRYPT functions is VARCHAR FOR BIT DATA (with a limit of

32 631).

Only CHAR, VARCHAR, and FOR BIT DATA can be encrypted.

The DECRYPT_BIN and DECRYPT_CHAR functions decrypt data using

password-based decryption.

DECRYPT_BIN always returns VARCHAR FOR BIT DATA while DECRYPT_CHAR

always returns VARCHAR. Since the first argument may be CHAR FOR BIT DATA

or VARCHAR FOR BIT DATA, there are cases where the result is not the same as

the first argument.

The length of the result depends on the bytes to the next 8 byte boundary. The

length of the result could be the length of the data argument plus 40 plus the

number of bytes to the next 8 byte boundary when the optional hint parameter is

specified. Or, the length of the result could be the length of the data argument plus

8 plus the number of bytes to the next 8 byte boundary when the optional hint

parameter is not specified.

The GETHINT function returns an encapsulated password hint. A password hint is

a phrase that will help data owners remember passwords. For example, the word

“Ocean” can be used as a hint to remember the password ″Pacific″.

The password that is used to encrypt the data is determined in one of two ways:

v Password Argument. The password is a string that is explicitly passed when the

ENCRYPT function is invoked. The data is encrypted and decrypted with the

given password.

v Encryption password special register. The SET ENCRYPTION PASSWORD

statement encrypts the password value and sends the encrypted password to the

database manager to store in a special register. ENCRYPT, DECRYPT_BIN and

DECRYPT_CHAR functions invoked without a password parameter use the

value in the ENCRYPTION PASSWORD special register. The ENCRYPTION

PASSWORD special register is only stored in encrypted form.

The initial or default value for the special register is an empty string.

Valid lengths for passwords are between 6 and 127 inclusive. Valid lengths for

hints are between 0 and 32 inclusive.

 Related reference:

v “DECRYPT_BIN and DECRYPT_CHAR scalar functions” in SQL Reference,

Volume 1

v “ENCRYPT scalar function” in SQL Reference, Volume 1

v “GETHINT scalar function” in SQL Reference, Volume 1

v “SET ENCRYPTION PASSWORD statement” in SQL Reference, Volume 2

528 Administration Guide: Implementation

Granting database authorities to new groups

 You can use the Database page of the Add Group notebook to grant authorities on

a database to a new group of users of this database.

 Prerequisites:

 To grant database authorities, you need the proper authorizations:

v To grant BINDADD, CONNECT, CREATETAB, CREATE_NOT_FENCED, and

IMPLICIT_SCHEMA authorities, you need either SYSADM or DBADM

authority.

v To grant DBADM authority, you need SYSADM authority.

 Procedure:

 To grant database authorities:

1. Under Choose the appropriate authorities to grant to the selected group,

indicate which database authority or authorities you want to grant.

2. If you didn’t specify the authorization name of the group to which you’re

granting database authorities, use the Group box to do so.

3. Click Apply. The authority or authorities are granted.

4. Optional: Grant one or more of the following types of privileges, in any order:

v Schema privileges

v Table privileges

v Index privileges

v View privileges

v Table Space privileges

v Function privileges

v Procedure privileges

v Package privileges

v Method privileges

 Related tasks:

v “Granting database authorities to new users” on page 529

v “Granting privileges to new groups” on page 530

v “Granting privileges to new users” on page 534

Granting database authorities to new users

 You can use the Database page of the Add User notebook to grant authorities on a

database to a new user of the database.

 Prerequisites:

 To grant database authorities, you need the proper authorizations:

v To grant BINDADD, CONNECT, CREATETAB, CREATE_NOT_FENCED, and

IMPLICIT_SCHEMA authorities, you need either SYSADM or DBADM

authority.

v To grant DBADM authority, you need SYSADM authority.

Chapter 8. Controlling database access 529

Procedure:

 To grant database authorities:

1. Open the Add User notebook.

2. Under Choose the appropriate authorities to grant to the selected user,

indicate which database authority or authorities you want to grant.

3. If you didn’t specify the authorization name of the user to whom you are

granting database authorities, you must use the User box to do so.

4. Click Apply. The authority or authorities are granted.

5. Optional: Grant one or more of the following types of privileges, in any order:

v Schema privileges

v Table privileges

v Index privileges

v View privileges

v Table Space privileges

v Function privileges

v Procedure privileges

v Method privileges

v Package privileges

 Related tasks:

v “Granting privileges to new users” on page 534

v “Granting database authorities to new groups” on page 529

v “Granting privileges to new groups” on page 530

Granting privileges to new groups

 Use the Add Group notebook to authorize a group of users to use a database and

the objects in it.

 Prerequisites:

 Task Authorities and privileges

To grant or revoke

database authorities

You need the proper authorizations:

v To grant BINDADD, CONNECT, CREATETAB,

CREATE_NOT_FENCED, and IMPLICIT_SCHEMA

authorities, you need either SYSADM or DBADM authority.

v To grant DBADM authority, you need SYSADM authority.

530 Administration Guide: Implementation

Task Authorities and privileges

To grant or revoke a

privilege on a schema

You need one of the following authorizations:

v SYSADM authority

v DBADM authority

v The privilege with the Grant option (the right to grant the

privilege to other groups and users)

Example

You can grant the ALTERIN privilege on a schema if you have

one of these authorizations:

v SYSADM authority

v DBADM authority on the database in which the schema

resides

v The ALTERIN privilege on the schema, along with the right

to grant the ALTERIN privilege on the schema to others

To grant or revoke

privileges on tables or

views

You need the proper authorizations:

v To grant or revoke privileges on catalog tables and views,

you need either SYSADM or DBADM authority.

v To grant or revoke privileges on user-defined tables and

views, you need to meet the following requirements:

– To grant the CONTROL privilege on a table or view, you

need SYSADM or DBADM authority.

– To grant table or view privileges other than CONTROL,

you need one of the following authorizations. To revoke

table or view privileges other than CONTROL, you need

one of the first three of these authorizations:

- SYSADM authority

- DBADM authority

- The CONTROL privilege on the tables or views that you

want to grant privileges on

- The privilege that you want to grant, with the Grant

option (the right to grant the privilege to other groups

and users)

Example

You can grant the ALTER privilege on a user-defined table

if you hold one of these authorizations:

- SYSADM authority

- DBADM authority on the database in which the table

resides

- The CONTROL privilege on the table

- The ALTER privilege, along with the right to grant the

ALTER privilege on this table to other groups and users

To grant or revoke the

CONTROL privilege on

an index

You need either SYSADM authority or DBADM authority.

Chapter 8. Controlling database access 531

Task Authorities and privileges

To authorize a group to

use a database

You need one of the following authorizations:

v Authorization to grant database authorities

v Authorization to grant schema privileges

v Authorization to grant table or view privileges

v Authorization to grant the CONTROL privilege on indexes

v Authorization to grant package privileges

v Authorization to grant routine (function, methods, and

procedures) privileges

To grant database

authorities

You need the proper authorizations:

v To grant BINDADD, CONNECT, CREATETAB,

CREATE_NOT_FENCED, and IMPLICIT_SCHEMA

authorities, you need either SYSADM or DBADM authority.

v To grant DBADM authority, you need SYSADM authority.

To grant a privilege on a

schema

You need one of the following authorizations:

v SYSADM authority

v DBADM authority

v The privilege with the Grant option (that is, with the right to

grant the privilege to other groups and users)

 Example:

 You can grant the ALTERIN privilege on a schema if you have

one of these authorities:

v SYSADM authority

v DBADM authority on the database in which the schema

resides

v The ALTERIN privilege on the schema, along with the right

to grant the ALTERIN privilege on the schema to others

532 Administration Guide: Implementation

Task Authorities and privileges

To grant privileges on

tables or views

You need the proper authorizations:

v To grant privileges on catalog tables and views, you need

either SYSADM or DBADM authority.

v To grant privileges on user-defined tables and views, you

need to meet the following requirements:

– To grant the CONTROL privilege on a table or view, you

need SYSADM or DBADM authority.

– To grant table or view privileges other than CONTROL,

you need one of these authorities:

- SYSADM authority

- DBADM authority

- The CONTROL privilege on the tables or views that you

want to grant privileges on

- The privilege you want to grant, along with the Grant

option (the right to grant this privilege to other groups

and users)

Example

You can grant the ALTER privilege on a user-defined table

if you hold one of these authorities:

- SYSADM authority

- DBADM authority on the database in which the table

resides

- The CONTROL privilege on the table

- The ALTER privilege, along with the right to grant the

ALTER privilege on this table to other people

To grant the CONTROL

privilege on an index

You need either SYSADM authority or DBADM authority.

To grant or revoke

privileges on a package

To grant or revoke the BIND and EXECUTE privilege, you must

have one of the following authorizations:

v CONTROL privilege on the referenced package

v SYSADM authority

v DBADM authority on the database

To grant or revoke the CONTROL privilege, SYSADM or

DBADM authority is required.

To grant or revoke

privileges on a routine

(function, methods, and

procedures)

You must have the following authorizations:

v SYSADM authority, DBADM authority, or a user with the

GRANT option on EXECUTE on a routine, can grant the

EXECUTE privilege on that routine. SYSADM or DBADM

authority can revoke the EXECUTE privilege on a routine.

v The EXECUTE privilege cannot be granted or revoked on

functions in the SYSIBM and SYSFUN schemas. Functions in

these schemas are considered to have the equivalent of

EXECUTE WITH GRANT OPTION granted to PUBLIC,

allowing public use of these functions in SQL routines and

sourced functions.

 Procedure:

1. Open the Add Group notebook: From the Control Center, expand the object

tree until you find the Databases folder. Open the Databases folder. Any

existing databases are displayed in the object tree. Click the database you want

and locate the User and Group Objects folder. Click the User and Group

Chapter 8. Controlling database access 533

Objects folder. The DB Groups folder appears. Right-click the DB Groups

folder and select Add from the pop-up menu. The Add Group notebook opens.

2. On the Database page, define a new group of database users to DB2. Use the

Group box to specify the group’s authorization name.

3. Grant this group one or more of the following types of authorizations, in any

order:

v Database authorities

v Schema privileges

v Table privileges

v Index privileges

v View privileges

v Table Space privileges

v Function privileges

v Procedure privileges

v Method privileges

v Package privileges

For more information, refer to the online help.

 Related concepts:

v “Authorization ID privileges” on page 513

v “Authorization, privileges, and object ownership” on page 501

v “Controlling access to database objects” on page 519

 Related tasks:

v “Revoking privileges” on page 521

v “Granting database authorities to new groups” on page 529

v “Granting privileges” on page 519

Granting privileges to new users

 Use the Add User notebook to authorize a user to use a database and the objects in

it.

 Prerequisites:

 Task Authorities and privileges

To grant or revoke

database authorities

You need the proper authorizations:

v To grant BINDADD, CONNECT, CREATETAB,

CREATE_NOT_FENCED, and IMPLICIT_SCHEMA

authorities, you need either SYSADM or DBADM authority.

v To grant DBADM authority, you need SYSADM authority.

534 Administration Guide: Implementation

Task Authorities and privileges

To grant or revoke a

privilege on a schema

You need one of the following authorizations:

v SYSADM authority

v DBADM authority

v The privilege with the Grant option (the right to grant the

privilege to other users and to groups)

Example

You can grant the ALTERIN privilege on a schema if you have

one of these authorizations:

v SYSADM authority

v DBADM authority on the database in which the schema

resides

v The ALTERIN privilege on the schema, along with the right

to grant the ALTERIN privilege on the schema to other users

and to groups

To grant or revoke

privileges on tables or

views

You need the proper authorizations:

v To grant or revoke privileges on catalog tables and views,

you need either SYSADM or DBADM authority.

v To grant or revoke privileges on user-defined tables and

views, you need to meet the following requirements:

– To grant or revoke the CONTROL privilege on a table or

view, you need SYSADM or DBADM authority.

– To grant table or view privileges other than CONTROL,

you need one of the following authorizations. To revoke

table or view privileges other than CONTROL, you need

one of the first three of these authorizations:

- SYSADM authority

- DBADM authority

- The CONTROL privilege on the tables or views that you

want to grant privileges on

- The privilege you want to grant with the Grant option

(the right to grant the privilege to other users and to

groups)

Example

You can grant the ALTER privilege on a user-defined table

if you hold one of these authorizations:

- SYSADM authority

- DBADM authority on the database in which the table

resides

- The CONTROL privilege on the table

- The ALTER privilege, along with the right to grant the

ALTER privilege on this table to other users and to

groups

To grant or revoke the

CONTROL privilege on

an index

You need either SYSADM authority or DBADM authority.

Chapter 8. Controlling database access 535

Task Authorities and privileges

To define a person to

DB2 as a user of a

database

You need one of the following authorizations:

v Authorization to grant database authorities

v Authorization to grant schema privileges

v Authorization to grant table or view privileges

v Authorization to grant the CONTROL privilege on indexes

v Authorization to grant package privileges

v Authorization to grant routine (function, methods, and

procedures) privileges

To grant database

authorities

You need the proper authorizations:

v To grant BINDADD, CONNECT, CREATETAB,

CREATE_NOT_FENCED, and IMPLICIT_SCHEMA

authorities, you need either SYSADM or DBADM authority.

v To grant DBADM authority, you need SYSADM authority.

To grant a privilege on a

schema

You need one of the following authorizations:

v SYSADM authority

v DBADM authority

v The privilege with the Grant option (that is, with the right to

grant the privilege to other users and to groups)

Example

You can grant the ALTERIN privilege on a schema if you have

one of these authorizations:

v SYSADM authority

v DBADM authority on the database in which the schema

resides

v The ALTERIN privilege on the schema, along with the right

to grant the ALTERIN privilege on the schema to other users

and to groups

536 Administration Guide: Implementation

Task Authorities and privileges

To grant privileges on

tables or views

You need the proper authorizations:

v To grant privileges on catalog tables and views, you need

either SYSADM or DBADM authority.

v To grant privileges on user-defined tables and views, you

need to meet the following requirements:

– To grant the CONTROL privilege on a table or view, you

need SYSADM or DBADM authority.

– To grant table or view privileges other than CONTROL,

you need one of these authorizations:

- SYSADM authority

- DBADM authority

- The CONTROL privilege on the tables or views that you

want to grant privileges on

- The privilege you want to grant, along with the Grant

option (the right to grant this privilege to other users

and to groups)

Example

You can grant the ALTER privilege on a user-defined table

if you hold one of these authorities:

- SYSADM authority

- DBADM authority on the database in which the table

resides

- The CONTROL privilege on the table

- The ALTER privilege, along with the right to grant the

ALTER privilege on this table to other users and to

groups

To grant the CONTROL

privilege on an index

You need either SYSADM authority or DBADM authority.

To grant or revoke

privileges on a package

To grant or revoke the BIND and EXECUTE privilege, you must

have one of the following authorizations:

v CONTROL privilege on the referenced package

v SYSADM authority

v DBADM authority on the database

To grant or revoke the CONTROL privilege, SYSADM or

DBADM authority is required.

To grant or revoke

privileges on a routine

(function, methods, and

procedures)

You must have the following authorizations:

v SYSADM authority, DBADM authority, or a user with the

GRANT option on EXECUTE on a routine, can grant the

EXECUTE privilege on that routine. SYSADM or DBADM

authority can revoke the EXECUTE privilege on a routine.

v The EXECUTE privilege cannot be granted or revoked on

functions in the SYSIBM and SYSFUN schemas. Functions in

these schemas are considered to have the equivalent of

EXECUTE WITH GRANT OPTION granted to PUBLIC,

allowing public use of these functions in SQL routines and

sourced functions.

 Procedure:

1. Open the Add User notebook: From the Control Center window, expand the

object tree until you find the User and Group Objects folder below the

database that you’re authorizing a user to use. Click on this folder. The DB

Chapter 8. Controlling database access 537

Users folder appears. Right-click the DB Users folder and select Add from the

pop-up menu. The Add User notebook opens.

2. Use the User box to specify the user’s authorization name.

3. Grant this user one or more of the following types of authorizations, in any

order:

v Database authorities

v Schema privileges

v Table privileges

v Index privileges

v View privileges

v Table Space privileges

v Function privileges

v Procedure privileges

v Method privileges

v Package privileges

For more information, refer to the online help.

 Related concepts:

v “Authorization ID privileges” on page 513

v “Authorization, privileges, and object ownership” on page 501

v “Controlling access to database objects” on page 519

 Related tasks:

v “Granting database authorities to new users” on page 529

v “Granting privileges” on page 519

v “Retrieving all privileges granted to users” on page 613

v “Revoking privileges” on page 521

Label-based access control (LBAC)

This section explains what you need to know in order to use label-based access

control (LBAC).

Label-based access control (LBAC) overview

 What LBAC does:

 Label-based access control (LBAC) greatly increases the control you have over who

can access your data. LBAC lets you decide exactly who has write access and who

has read access to individual rows and individual columns.

The LBAC capability is very configurable and can be tailored to match your

particular security environment. All LBAC configuration is performed by a security

administrator, which is a user that has been granted the SECADM authority by the

system administrator.

A security administrator configures the LBAC system by creating security policies.

A security policy describes the criteria that will be used to decide who has access to

what data. Only one security policy can be used to protect any one table but

different tables can be protected by different security policies.

538 Administration Guide: Implementation

After creating a security policy, a security administrator creates objects, called

security labels that are part of that policy. Exactly what makes up a security label is

determined by the security policy and can be configured to represent the criteria

that your organization uses to decide who should have access to particular data

items. If you decide, for instance, that you want to look at a person’s position in

the company and what projects they are part of to decide what data they should

see, then you can configure your security labels so that each label can include that

information. LBAC is flexible enough to let you set up anything from very

complicated criteria, to a very simple system where each label represents either a

"high" or a "low" level of trust.

Once created, a security label can be associated with individual columns and rows

in a table to protect the data held there. Data that is protected by a security label is

called protected data. A security administrator allows users access to protected data

by granting them security labels. When a user tries to access protected data, that

user's security label is compared to the security label protecting the data. The

protecting label will block some security labels and not block others.

A user is allowed to hold security labels for multiple security policies at once. For

any given security policy, however, a user can hold at most one label for read

access and one label for write access.

A security administrator can also grant exemptions to users. An exemption allows

you to access protected data that your security labels might otherwise prevent you

from accessing. Together your security labels and exemptions are called your LBAC

credentials.

If you try to access a protected column that your LBAC credentials do not allow

you to access then the access will fail and you will get an error message.

If you try to read protected rows that your LBAC credentials do not allow you to

read then DB2 acts as if those rows do not exist. Those rows cannot be selected as

part of any SQL statement that you run, including SELECT, UPDATE, or DELETE.

Even the aggregate functions ignore rows that your LBAC credentials do not allow

you to read. The COUNT(*) function, for example, will return a count only of the

rows that you have read access to.

 Views and LBAC:

 You can define a view on a protected table the same way you can define one on a

non-protected table. When such a view is accessed the LBAC protection on the

underlying table is enforced. The LBAC credentials used are those of the session

authorization ID. Two users accessing the same view might see different rows

depending on their LBAC credentials.

 Referential integrity constraints and LBAC:

 The following rules explain how LBAC rules are enforced in the presence of

referential integrity constraints:

v Rule 1: The LBAC read access rules are NOT applied for internally generated

scans of child tables. This is to avoid having orphan children.

v Rule 2: The LBAC read access rules are NOT applied for internally generated

scans of parent tables

v Rule 3: The LBAC write rules are applied when a CASCADE operation is

performed on child tables. For example, If a user deletes a parent, but cannot

Chapter 8. Controlling database access 539

delete any of the children because of an LBAC write rule violation, then the

delete should be rolled-back and an error raised.

 What LBAC does not do:

v LBAC will never allow access to data that is forbidden by discretionary access

control.

Example: If you do not have permission to read from a table then you will not

be allowed to read data from that table--even the rows and columns

to which LBAC would otherwise allow you access.

v Your LBAC credentials only limit your access to protected data. They have no

effect on your access to unprotected data.

v LBAC credentials are not checked when you drop a table or a database, even if

the table or database contains protected data.

v LBAC credentials are not checked when you back up your data. If you can run a

backup on a table, which rows are backed up is not limited in any way by the

LBAC protection on the data. Also, data on the backup media is not protected

by LBAC. Only data in the database is protected.

v LBAC cannot be used to protect any of the following types of tables:

– A materialized query table (MQT)

– A table that a materialized query table (MQT) depends on

– A staging table

– A table that a staging table depends on

– A typed table
v LBAC protection cannot be applied to a nickname.

 LBAC tutorial:

 A tutorial leading you through the basics of using LBAC is available online. The

tutorial is part of the IBM developerWorks website (http://www.ibm.com/
developerworks/db2) and is called DB2 Label-Based Access Control, a practical

guide.

 Related concepts:

v “Database authorities” on page 511

v “LBAC security label components overview” on page 541

v “LBAC security labels” on page 547

v “LBAC security policies” on page 540

LBAC security policies

 A security policy is a database object that is part of label-based access control

(LBAC). A security policy includes this information:

v What security label components will be used in the security labels that are part

of the policy

v What rules will be used when comparing those security label components

v Which of certain optional behaviors will be used when accessing data protected

by the policy

Every protected table must have one and only one security policy associated with

it. Rows and columns in that table can only be protected with security labels that

540 Administration Guide: Implementation

http://www.ibm.com/developerworks/db2
http://www.ibm.com/developerworks/db2
http://www-128.ibm.com/developerworks/edu/dm-dw-dm-0605wong-i.html
http://www-128.ibm.com/developerworks/edu/dm-dw-dm-0605wong-i.html

are part of that security policy and all access of protected data follows the rules of

that policy. You can have multiple security policies in a single database but you

cannot have more than one security policy protecting any given table.

 Creating a security policy:

 You must be a security administrator to create a security policy. You create a

security policy with the SQL statement CREATE SECURITY POLICY. The security

label components listed in a security policy must be created before the CREATE

SECURITY POLICY statement is executed. The order in which the components are

listed when a security policy is created does not indicate any sort of precedence or

other relationship among the components but it is important to know the order

when creating security labels with built-in functions like SECLABEL.

 Altering a security policy:

 Security policies cannot be altered. The only way to change a security policy is to

drop it and re-create it.

 Dropping a security policy:

 You must be a security administrator to drop a security policy. You drop a security

policy using the SQL statement DROP.

You cannot drop a security policy if it is associated with (added to) any table.

 Related concepts:

v “Label-based access control (LBAC) overview” on page 538

 Related reference:

v “CREATE SECURITY LABEL COMPONENT statement” in SQL Reference, Volume

2

v “CREATE SECURITY POLICY statement” in SQL Reference, Volume 2

v “DROP statement” in SQL Reference, Volume 2

LBAC security label components

This section explains what you need to know in order to use LBAC security label

components.

LBAC security label components overview

 A security label component is a database object that is part of label-based access

control (LBAC). You use security label components to model your organization’s

security structure.

A component can represent any criteria that you might use to decide if a user

should have access to a given piece of data. Typical examples of such criteria

include:

v How well trusted the user is

v What department the user is in

v Whether the user is involved in a particular project

Example: If you want the department that a user is in to affect which data they

can access, you could create a component named dept and define

Chapter 8. Controlling database access 541

elements for that component that name the various departments in your

company. You would then include the component dept in your security

policy.

An element of a security label component is one particular "setting" that is allowed

for that component.

Example: A security label component that represents a level of trust might have

the four elements: Top Secret, Secret, Classified, and Unclassified.

 Creating a security label component:

 You must be a security administrator to create a security label component. You

create security label components with the SQL statement CREATE SECURITY

LABEL COMPONENT.

When you create a security label component you must provide:

v A name for the component

v What type of component it is (ARRAY, TREE, or SET)

v A complete list of allowed elements

v For types ARRAY and TREE you must describe how each element fits into the

structure of the component

 Types of components:

 There are three types of security label components:

v TREE: Each element represents a node in a tree structure

v ARRAY: Each element represents a point on a linear scale

v SET: Each element represents one member of a set

The types are used to model the different ways in which elements can relate to

each other. For example, if you are creating a component to describe one or more

departments in a company you would probably want to use a component type of

TREE because most business structures are in the form of a tree. If you are creating

a component to represent the level of trust that a person has, you would probably

use a component of type ARRAY because for any two levels of trust, one will

always be higher than the other.

The details of each type, including detailed descriptions of the relationships that

the elements can have with each other, are described in their own section.

 Altering security label components:

 Security label components cannot be altered. The only way to change a security

label component is to drop it and re-create it.

 Dropping a security label component:

 You must be a security administrator to drop a security label component. You drop

a security label component with the SQL statement DROP.

 Related concepts:

v “LBAC security label component type: ARRAY” on page 543

v “LBAC security label component type: SET” on page 543

542 Administration Guide: Implementation

v “LBAC security label component type: TREE” on page 544

 Related reference:

v “CREATE SECURITY LABEL COMPONENT statement” in SQL Reference, Volume

2

v “DROP statement” in SQL Reference, Volume 2

LBAC security label component type: SET

 SET is one type of security label component that can be used in a label-based

access control (LBAC) security policy. Components of this type are unordered lists

of elements. The only comparison that can be made for elements of this type of

component is whether or not a given element is in the list.

 Related concepts:

v “Label-based access control (LBAC) overview” on page 538

v “LBAC security label components overview” on page 541

v “LBAC security policies” on page 540

 Related reference:

v “CREATE SECURITY LABEL COMPONENT statement” in SQL Reference, Volume

2

LBAC security label component type: ARRAY

 ARRAY is one type of security label component. In this type of component the

order in which the elements are listed when the component is created defines a

scale with the first element listed being the highest value and the last being the

lowest.

Example: If the component mycomp is defined in this way:

CREATE SECURITY LABEL COMPONENT mycomp

 ARRAY [’Top Secret’, ’Secret’, ’Employee’, ’Public’]

Then the elements are treated as if they are organized in a structure like

this:

Secret

Employee

Top Secret

Public

Highest

Lowest

Chapter 8. Controlling database access 543

In a component of type ARRAY, the elements can have these sorts of relationships

to each other:

Higher than

Element A is higher than element B if element A is listed earlier in the

ARRAY clause than element B.

Lower than

Element A is lower than element B if element A is listed later in the

ARRAY clause than element B

 Related concepts:

v “Label-based access control (LBAC) overview” on page 538

v “LBAC security label components overview” on page 541

v “LBAC security policies” on page 540

 Related reference:

v “CREATE SECURITY LABEL COMPONENT statement” in SQL Reference, Volume

2

LBAC security label component type: TREE

 Components of type TREE:

 TREE is one type of security label component that can be used in a label-based

access control (LBAC) security policy. In this type of component the elements are

treated as if they are arranged in a tree structure. When you specify an element

that is part of a component of type TREE you must also specify which other

element it is under. The one exception is the first element which must be specified

as being the ROOT of the tree. This allows you to organize the elements in a tree

structure.

Example: If the component mycomp is defined this way:

CREATE SECURITY LABEL COMPONENT mycomp

TREE (

 ’Corporate’ ROOT,

 ’Publishing’ UNDER ’Corporate’,

 ’Software’ UNDER ’Corporate’,

 ’Development’ UNDER ’Software’,

 ’Sales’ UNDER ’Software’,

 ’Support’ UNDER ’Software’

 ’Business Sales’ UNDER ’Sales’

 ’Home Sales’ UNDER ’Sales’

)

Then the elements are treated as if they are organized in a tree structure

like this:

544 Administration Guide: Implementation

In a component of type TREE, the elements can have these types of relationships to

each other:

Parent Element A is a parent of element B if element B is UNDER element A.

Example: This diagram shows the parent of the Business Sales element:

Child Element A is a child of element B if element A is UNDER element B.

Example: This diagram shows the children of the Software element:

Publishing Software

Development Support

Business
Sales

Home Sales

Sales

Corporate

Publishing Software

Development Support

Business
Sales

Home Sales

Sales

Corporate

Chapter 8. Controlling database access 545

Sibling

Two elements are siblings of each other if they have the same parent.

Example: This diagram shows the siblings of the Development element:

Ancestor

Element A is an ancestor of element B if it is the parent of B, or if it is the

parent of the parent of B, and so on. The root element is an ancestor of all

other elements in the tree.

Example: This diagram shows the ancestors of the Home Sales element:

Publishing Software

Business
Sales

Home Sales

Corporate

SalesDevelopment Support

Publishing Software

Development

Business
Sales

Home Sales

Corporate

Sales Support

546 Administration Guide: Implementation

Descendent

Element A is a descendent of element B if it is the child of B, or if it is the

child of a child of B, and so on.

Example: This diagram shows the descendents of the Software element:

 Related concepts:

v “Label-based access control (LBAC) overview” on page 538

v “LBAC security label components overview” on page 541

v “LBAC security policies” on page 540

 Related reference:

v “CREATE SECURITY LABEL COMPONENT statement” in SQL Reference, Volume

2

LBAC security labels

 In label-based access control (LBAC) a security label is a database object that

describes a certain set of security criteria. Security labels are applied to data in

Publishing

Development Support

Business
Sales

Home Sales

Sales

Software

Corporate

Publishing Software

Corporate

SalesDevelopment Support

Business
Sales

Home Sales

Chapter 8. Controlling database access 547

order to protect the data. They are granted to users to allow them to access

protected data. When a user tries to access protected data, their security label is

compared to the security label that is protecting the data. The protecting security

label will block some security labels and not block others. If a user’s security label

is blocked then the user cannot access the data.

Every security label is part of exactly one security policy and includes one value

for each component in that security policy. A value in the context of a security label

component is a list of zero or more of the elements allowed by that component.

Values for ARRAY type components can contain zero or one element, values for

other types can have zero or more elements. A value that does not include any

elements is called an empty value.

Example: If a TREE type component has the three elements Human Resources,

Sales, and Shipping then these are some of the valid values for that

component:

v Human Resources (or any of the elements by itself)

v Human Resources, Shipping (or any other combination of the

elements as long as no element is included more than once)

v An empty value

Whether a particular security label will block another is determined by the values

of each component in the labels and the LBAC rule set that is specified in the

security policy of the table. The details of how the comparison is made are given

in the section How LBAC security labels are compared.

When security labels are converted to a text string they use the format described in

the section Format for security label values.

 Creating security labels:

 You must be a security administrator to create a security label. You create a

security label with the SQL statement CREATE SECURITY LABEL. When you

create a security label you provide:

v A name for the label

v The security policy that the label is part of

v Values for one or more of the components included in the security policy

Any components for which a value is not specified is assumed to have an empty

value. A security label must have at least one non-empty value.

 Altering security labels:

 Security labels cannot be altered. The only way to change a security label is to

drop it and re-create it.

 Dropping security labels:

 You must be a security administrator to drop a security label. You drop a security

label with the SQL statement DROP. You cannot drop a security label that is being

used to protect data anywhere in the database or that is currently held by one or

more users.

 Granting security labels:

548 Administration Guide: Implementation

You must be a security administrator to grant a security label to a user. You grant a

security label to a user with the SQL statement GRANT SECURITY LABEL. When

you grant a security label you can grant it for read access, for write access, or for

both read and write access. A user cannot hold two security labels from the same

security policy for the same type of access.

 Revoking security labels:

 You must be a security administrator to revoke a security label from a user. To

revoke a security label, use the SQL statement REVOKE SECURITY LABEL.

 Data types compatible with security labels:

 Security labels have a data type of SYSPROC.DB2SECURITYLABEL. Data

conversion is supported between SYSPROC.DB2SECURITYLABEL and

VARCHAR(128) FOR BIT DATA.

 Related concepts:

v “How LBAC security labels are compared” on page 550

v “Label-based access control (LBAC) overview” on page 538

v “LBAC security label components overview” on page 541

v “Protection of data using LBAC” on page 558

 Related reference:

v “CREATE SECURITY LABEL statement” in SQL Reference, Volume 2

v “Format for security label values” on page 549

Format for security label values

 Sometimes the values in a security label are represented in the form of a character

string, for example when using the built-in function SECLABEL. When

representing the values in a security label as a string this format is used.

v The values of the components are listed from left to right in the same order that

the components are listed in the CREATE SECURITY POLICY statement for the

security policy

v An element is represented by the name of that element

v Elements for different components are separated by a colon (:)

v If more than one element are given for the same component the elements are

enclosed in parentheses (()) and are separated by a comma (,)

v Empty values are represented by a set of empty parentheses (())

Example: A security label is part of a security policy that has these three

components in this order: Level, Department, and Projects. The security

label has these values:

 Table 29.

Component Values

Level Secret

Department Empty value

Chapter 8. Controlling database access 549

Table 29. (continued)

Component Values

Projects v Epsilon 37

v Megaphone

v Cloverleaf

This security label values look like this as a string:

'Secret:():(Epsilon 37,Megaphone,Cloverleaf)'

 Related concepts:

v “How LBAC security labels are compared” on page 550

v “LBAC security label components overview” on page 541

v “LBAC security labels” on page 547

How LBAC security labels are compared

 When you try to access data protected by label-based access control (LBAC), Your

LBAC credentials are compared to one or more security labels to see if the access is

blocked. Your LBAC credentials are any security labels you hold plus any

exemptions that you hold.

There are only two types of comparison that can be made. Your LBAC credentials

can be compared to a single security label for read access or your LBAC credentials

compared to a single security label for write access. Updating and deleting are

treated as being a read followed by a write. When an operation requires multiple

comparisons to be made, each is made separately.

 Which of your security labels is used:

 Even though you might hold multiple security labels only one is compared to the

protecting security label. The label used is the one that meets these criteria:

v It is part of the security policy that is protecting the table being accessed.

v It was granted for the type of access (read or write).

If you do not have a security label that meets these criteria then a default security

label is assumed that has empty values for all components.

 How the comparison is made:

 Security labels are compared component by component. If a security label does not

have a value for one of the components then an empty value is assumed. As each

component is examined, the appropriate rules of the LBAC rule set are used to

decide if the elements in your value for that component should be blocked by the

elements in the value for the same component in the protecting label. If any of

your values are blocked then your LBAC credentials are blocked by the protecting

security label.

The LBAC rule set used in the comparison is designated in the security policy. To

find out what the rules are and when each one is used, see the description of that

rule set.

 How exemptions affect comparisons:

550 Administration Guide: Implementation

If you hold an exemption for the rule that is being used to compare two values

then that comparison is not done and the protecting value is assumed not to block

the value in your security label.

Example: The LBAC rule set is DB2LBACRULES and the security policy has two

components. One component is of type ARRAY and the other is of type

TREE. The user has been granted an exemption on the rule

DB2LBACREADTREE, which is the rule used for read access when

comparing values of components of type TREE. If the user attempts to

read protected data then whatever value the user has for the TREE

component, even if it is an empty value, will not block access because

that rule is not used. Whether the user can read the data depends

entirely on the values of the ARRAY component of the labels.

 Related concepts:

v “Label-based access control (LBAC) overview” on page 538

v “LBAC rule exemptions” on page 556

v “LBAC rule set: DB2LBACRULES” on page 552

v “LBAC rule sets overview” on page 551

v “LBAC security labels” on page 547

v “LBAC security policies” on page 540

LBAC rule sets

This section explains LBAC rule sets in general and also the details of the

DB2LBACRULES rule set.

LBAC rule sets overview

 An LBAC rule set is a predefined set of rules that are used when comparing

security labels. When the values of a two security labels are being compared, one

or more of the rules in the rule set will be used to determine if one value blocks

another.

Each LBAC rule set is identified by a unique name. When you create a security

policy you must specify the LBAC rule set that will be used with that policy. Any

comparison of security labels that are part of that policy will use that LBAC rule

set.

Each rule in a rule set is also identified by a unique name. You use the name of a

rule when you are granting an exemption on that rule.

How many rules are in a set and when each rule is used can vary from rule set to

rule set.

There is currently only one supported LBAC rule set. The name of that rule set is

DB2LBACRULES.

 Related concepts:

v “Label-based access control (LBAC) overview” on page 538

v “LBAC rule set: DB2LBACRULES” on page 552

Chapter 8. Controlling database access 551

LBAC rule set: DB2LBACRULES

 This LBAC rule set provides a traditional set of rules for comparing the values of

security label components. It protects from both write-up and write-down.

 What are write-up and write down?:

 Write-up and write-down apply only to components of type ARRAY and only to

write access. Write up occurs when the value protecting data that you are writing

to is higher than your value. Write-down is when the value protecting the data is

lower than yours. By default neither write-up nor write-down is allowed, meaning

that you can only write data that is protected by the same value that you have.

 When comparing two values for the same component, which rules are used

depends on the type of the component (ARRAY, SET, or TREE) and what type of

access is being attempted (read, or write). This table lists the rules, tells when each

is used, and describes how the rule determines if access is blocked.

 Table 30. Summary of the DB2LBACRULES rules

Rule name

Used when

comparing the

values of this

type of

component

Used when

attempting

this type of

access Access is blocked when this condition is met

DB2LBACREADARRAY ARRAY Read The user’s value is lower than the protecting value.

DB2LBACREADSET SET Read There are one or more protecting values that the user

does not hold.

DB2LBACREADTREE TREE Read None of the user’s values is equal to or an ancestor of

one of the protecting values.

DB2LBACWRITEARRAY ARRAY Write The user’s value is higher than the protecting value or

lower than the protecting value.1

DB2LBACWRITESET SET Write There are one or more protecting values that the user

does not hold.

DB2LBACWRITETREE TREE Write None of the user’s values is equal to or an ancestor of

one of the protecting values.

Notes:

1. The DB2LBACWRITEARRAY rule can be thought of as being two different

rules combined. One prevents writing to data that is higher than your level

(write-up) and the other prevents writing to data that is lower than your level

(write-down). When granting an exemption to this rule you can exempt the

user from either of these rules or from both.

 How the rules handle empty values:

 All rules treat empty values the same way. An empty value blocks no other values

and is blocked by any non-empty value.

Examples:

 DB2LBACREADSET and DB2LBACWRITESET examples:

 These examples are valid for a user trying to read or trying to write

protected data. They assume that the values are for a component of

552 Administration Guide: Implementation

type SET that has these elements: one two three four

 Table 31. Examples of applying the DB2LBACREADSET and DB2LBACWRITESET rules.

User’s value Protecting value Access blocked?

’one' ’one’ Not blocked. The values are the same.

’(one,two,three)’ ’one’ Not blocked. The user's value contains

the element 'one'.

’(one,two)’ ’(one,two,four)’ Blocked. The element ’four’ is in the

protecting value but not in the user's

value.

'()' 'one' Blocked. An empty value is blocked

by any non-empty value.

'one' '()' Not blocked. No value is blocked by

an empty value.

'()' '()' Not blocked. No value is blocked by

an empty value.

 DB2LBACREADTREE and DB2LBACWRITETREE:

 These examples are valid for both read access and write access. They

assume that the values are for a component of type TREE that was

defined in this way:

CREATE SECURITY LABEL COMPONENT mycomp

TREE (

 ’Corporate’ ROOT,

 ’Publishing’ UNDER ’Corporate’,

 ’Software’ UNDER ’Corporate’,

 ’Development’ UNDER ’Software’,

 ’Sales’ UNDER ’Software’,

 ’Support’ UNDER ’Software’

 ’Business Sales’ UNDER ’Sales’

 ’Home Sales’ UNDER ’Sales’

)

This means the elements are in this arrangement:

Publishing Software

Development Support

Business
Sales

Home Sales

Sales

Corporate

Chapter 8. Controlling database access 553

Table 32. Examples of applying the DB2LBACREADTREE and DB2LBACWRITETREE

rules.

User’s value Protecting value Access blocked?

'(Support,Sales)' 'Development' Blocked. The element

'Development' is not one of the

user’s values and neither

’Support’ nor ’Sales’ is an

ancestor of ’Development’.

'(Development,Software)' '(Business Sales,Publishing)' Not blocked. The element

’Software’ is an ancestor of

’Business Sales’.

'(Publishing,Sales)' '(Publishing,Support)' Not blocked. The element

’Publishing’ is in both sets of

values.

'Corporate' 'Development' Not blocked. The root value is

an ancestor of all other values.

'()' 'Sales' Blocked. An empty value is

blocked by any non-empty

value.

'Home Sales' '()' Not blocked. No value is

blocked by an empty value.

'()' '()' Not blocked. No value is

blocked by an empty value.

 DB2LBACREADARRAY examples:

 These examples are for read access only. They assume that the values

are for a component of type ARRAY that includes these elements in this

arrangement:

 Table 33. Examples of applying the DB2LBACREADARRAY rule.

User’s value Protecting value Read access blocked?

’Secret’ ’Employee’ Not blocked. The element ’Secret’ is higher

than the element ’Employee’.

’Secret’ ’Secret’ Not blocked. The values are the same.

Secret

Employee

Top Secret

Public

Highest

Lowest

554 Administration Guide: Implementation

Table 33. Examples of applying the DB2LBACREADARRAY rule. (continued)

User’s value Protecting value Read access blocked?

’Secret’ ’Top Secret’ Blocked. The element ’Top Secret’ is higher

than the element ’Secret’.

'()' 'Public' Blocked. An empty value is blocked by any

non-empty value.

'Public' '()' Not blocked. No value is blocked by an

empty value.

'()' '()' Not blocked. No value is blocked by an

empty value.

 DB2LBACWRITEARRAY examples:

 These examples are for write access only. They assume that the values

are for a component of type ARRAY that includes these elements in this

arrangement:

 Table 34. Examples of applying the DB2LBACWRITEARRAY rule.

User’s value Protecting value Write access blocked?

’Secret’ ’Employee’ Blocked. The element ’Employee’ is lower

than the element ’Secret’.

’Secret’ ’Secret’ Not blocked. The values are the same.

’Secret’ ’Top Secret’ Blocked. The element ’Top Secret’ is higher

than the element ’Secret’.

'()' 'Public' Blocked. An empty value is blocked by any

non-empty value.

'Public' '()' Not blocked. No value is blocked by an

empty value.

'()' '()' Not blocked. No value is blocked by an

empty value.

 Related concepts:

v “How LBAC security labels are compared” on page 550

Secret

Employee

Top Secret

Public

Highest

Lowest

Chapter 8. Controlling database access 555

v “LBAC rule sets overview” on page 551

LBAC rule exemptions

 Exemptions:

 An LBAC rule exemption is part of the label-based access control (LBAC) feature.

When you hold an exemption on a particular rule of a particular security policy

that rule is not enforced when you try to access data protected by that security

policy. An exemption has no effect when comparing security labels of any security

policy other than the one for which it was granted.

Example:

There are two tables: T1 and T2. T1 is protected by security policy P1

and T2 is protected by security policy P2. Both security policies have one

component. The component of each is of type ARRAY. T1 and T2 each

contain only one row of data. The security label that you hold for read

access under security policy P1 does not allow you access to the row in

T1. The security label that you hold for read access under security policy

P2 does not allow you read access to the row in T2.

Now you are granted an exemption on DB2LBACREADARRAY under

P1. You can now read the row from T1 but not the row from T2 because

T2 is protected by a different security policy and you do not hold an

exemption to the DB2LBACREADARRAY rule in that policy.

You can hold multiple exemptions. If you hold an exemption to every rule used by

a security policy then you will have complete access to all data protected by that

security policy.

 Granting LBAC rule exemptions:

 You must have security administrator (SECADM) authority to grant an LBAC rule

exemption. To grant an LBAC rule exemption, use the SQL statement GRANT

EXEMPTION ON RULE.

When you grant an LBAC rule exemption you provide this information:

v The rule or rules that the exemption is for

v The security policy that the exemption is for

v The user to which you are granting the exemption

Important: LBAC rule exemptions provide very powerful access. Do not grant

them without careful consideration.

 Revoking LBAC rule exemptions:

 You must have security administrator (SECADM) authority to revoke an LBAC

rule exemption. To revoke an LBAC rule exemption, use the SQL statement

REVOKE EXEMPTION ON RULE.

 Related concepts:

v “How LBAC security labels are compared” on page 550

v “LBAC rule sets overview” on page 551

556 Administration Guide: Implementation

v “LBAC security policies” on page 540

 Related reference:

v “GRANT (Exemption) statement” in SQL Reference, Volume 2

v “REVOKE (Exemption) statement” in SQL Reference, Volume 2

Built-in functions for dealing with LBAC security labels

 Three built-in functions are provided for dealing with label-based access control

(LBAC) security labels. Each is described briefly here and in detail in the SQL

Reference

 SECLABEL:

 This built-in function is used to build a security label by specifying a security

policy and values for each of the components in the label. The returned value has

a data type of DB2SECURITYLABEL and is a security label that is part of the

indicated security policy and has the indicated values for the components. It is not

necessary that a security label with the indicated values already exists.

Example: Table T1 has two columns, the first has a data type of

DB2SECURITYLABEL and the second has a data type of INTEGER. T1 is

protected by security policy P1, which has three security label

components: level, departments, and groups. If UNCLASSIFIED is an

element of the component level, ALPHA and SIGMA are both elements

of the component departments, and G2 is an element of the component

groups then a security label could be inserted like this:

INSERT INTO T1 VALUES (SECLABEL('P1', 'UNCLASSIFIED:(ALPHA,SIGMA):G2'), 22)

 SECLABEL_BY_NAME:

 This built-in function accepts the name of a security policy and the name of a

security label that is part of that security policy. It then returns the indicated

security label as a DB2SECURITYLABEL. You must use this function when

inserting an existing security label into a column that has a data type of

DB2SECURITYLABEL.

Example: Table T1 has two columns, the first has a data type of

DB2SECURITYLABEL and the second has a data type of INTEGER. The

security label named L1 is part of security policy P1. This SQL inserts

the security label:

INSERT INTO T1 VALUES (SECLABEL_BY_NAME('P1', 'L1'), 22)

This SQL does not work:

INSERT INTO T1 VALUES (P1.L1, 22) // Syntax Error!

 SECLABEL_TO_CHAR:

 This built-in function returns a string representation of the values that make up a

security label.

Example: Column C1 in table T1 has a data type of DB2SECURITYLABEL. T1 is

protected by security policy P1, which has three security label

components: level, departments, and groups. There is one row in T1 and

the value in column C1 that has these elements for each of the

Chapter 8. Controlling database access 557

components:

 Component Elements

level SECRET

departments DELTA and SIGMA

groups G3

A user that has LBAC credentials that allow reading the row executes

this SQL statement:

SELECT SECLABEL_TO_CHAR('P1', C1) AS C1 FROM T1

The output looks like this:

C1

'SECRET:(DELTA,SIGMA):G3'

 Related concepts:

v “Label-based access control (LBAC) overview” on page 538

v “LBAC security labels” on page 547

 Related reference:

v “SECLABEL_BY_NAME scalar function” in SQL Reference, Volume 1

v “SECLABEL_TO_CHAR scalar function” in SQL Reference, Volume 1

v “SECLABEL scalar function” in SQL Reference, Volume 1

v “Format for security label values” on page 549

Protection of data using LBAC

 Protecting tables:

 Label-based access control (LBAC) can be used to protect rows of data, columns of

data, or both. Data in a table can only be protected by security labels that are part

of the security policy protecting the table. Data protection, including adding a

security policy, can be done when creating the table or later by altering the table.

You can add a security policy to a table and protect data in that table as part of the

same CREATE TABLE or ALTER TABLE statement.

As a general rule you are not allowed to protect data in such a way that your

current LBAC credentials do not allow you to write to that data.

 Adding a security policy to a table:

 You can add a security policy to a table when you create the table by using the

SECURITY POLICY clause of the CREATE TABLE statement. You can add a

security policy to an existing table by using the ADD SECURITY POLICY clause of

the ALTER TABLE statement. You do not need to have SECADM authority or have

LBAC credentials to add a security policy to a table.

Security policies cannot be added to types of tables that cannot be protected by

LBAC. See the overview of LBAC for a list of table types that cannot be protected

by LBAC.

558 Administration Guide: Implementation

No more than one security policy can be added to any table.

 Protecting rows:

 You can allow protected rows in a new table by including a column with a data

type of DB2SECURITYLABEL when you create the table. The CREATE TABLE

statement must also add a security policy to the table. You do not need to have

SECADM authority or have any LBAC credentials to create such a table.

You can allow protected rows in an existing table by adding a column that has a

data type of DB2SECURITYLABEL. To add such a column, either the table must

already be protected by a security policy or the ALTER TABLE statement that adds

the column must also add a security policy to the table. When the column is

added, the security label you hold for write access is used to protect all existing

rows. If you do not hold a security label for write access that is part of the security

policy protecting the table then you cannot add a column that has a data type of

DB2SECURITYLABEL.

After a table has a column of type DB2SECURITYLABEL you protect each new

row of data by storing a security label in that column. The details of how this

works are described in the topics about inserting and updating LBAC protected

data. You must have LBAC credentials to insert rows into a table that has a column

of type DB2SECURITYLABEL.

A column that has a data type of DB2SECURITYLABEL cannot be dropped and

cannot be changed to any other data type.

 Protecting columns:

 You can protect a column when you create the table by using the SECURED WITH

column option of the CREATE TABLE statement. You can add protection to an

existing column by using the SECURED WITH option in an ALTER TABLE

statement.

To protect a column with a particular security label you must have LBAC

credentials that allow you to write to data protected by that security label. You do

not have to have SECADM authority.

Columns can only be protected by security labels that are part of the security

policy protecting the table. You cannot protect columns in a table that has no

security policy. You are allowed to protect a table with a security policy and

protect one or more columns in the same statement.

You can protect any number of the columns in a table but a column can be

protected by no more than one security label.

 Related concepts:

v “Inserting of LBAC protected data” on page 563

v “Label-based access control (LBAC) overview” on page 538

v “LBAC security labels” on page 547

v “LBAC security policies” on page 540

v “Removal of LBAC protection from data” on page 572

v “Updating of LBAC protected data” on page 565

Chapter 8. Controlling database access 559

Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “CREATE TABLE statement” in SQL Reference, Volume 2

Reading of LBAC protected data

 When you try to read data protected by label-based access control (LBAC), your

LBAC credentials for reading are compared to the security label that is protecting

the data. If the protecting label does not block your credentials you are allowed to

read the data.

In the case of a protected column the protecting security label is defined in the

schema of the table. The protecting security label for that column is the same for

every row in the table. In the case of a protected row the protecting security label

is stored in the row in a column of type DB2SECURITYLABEL. It can be different

for every row in the table.

The details of how your LBAC credentials are compared to a security label are

given in How LBAC security labels are compared.

 Reading protected columns:

 When you try to read from a protected column your LBAC credentials are

compared with the security label protecting the column. Based on this comparison

access will either be blocked or allowed. If access is blocked then an error is

returned and the statement fails. Otherwise, the statement proceeds as usual.

Trying to read a column that your LBAC credentials do not allow you to read,

causes the entire statement to fail.

Example:

Table T1 has two protected columns. The column C1 is protected by the

security label L1. The column C2 is protected by the security label L2.

Assume that user Jyoti has LBAC credentials for reading that allow

access to security label L1 but not to L2. If Jyoti issues the following SQL

statement, the statement will fail:

SELECT * FROM T1

The statement fails because column C2 is included in the SELECT clause

as part of the wildcard (*).

If Jyoti issues the following SQL statement it will succeed:

SELECT C1 FROM T1

The only protected column in the SELECT clause is C1, and Jyoti's

LBAC credentials allow her to read that column.

 Reading protected rows:

 If you do not have LBAC credentials that allow you to read a row it is as if that

row does not exist for you.

560 Administration Guide: Implementation

When you read protected rows, only those rows to which your LBAC credentials

allow read access are returned. This is true even if the column of type

DB2SECURITYLABEL is not part of the SELECT clause.

Depending on their LBAC credentials, different users might see different rows in a

table that has protected rows. For example, two users executing the statement

SELECT COUNT(*) FROM T1 may get different results if T1 has protected rows and

the users have different LBAC credentials.

Your LBAC credentials affect not only SELECT statements but also other SQL

statements like UPDATE, and DELETE. If you do not have LBAC credentials that

allow you to read a row, you cannot affect that row.

Example:

Table T1 has these rows and columns. The column

ROWSECURITYLABEL has a data type of DB2SECURITYLABEL.

 Table 35.

LASTNAME DEPTNO ROWSECURITYLABEL

Rjaibi 55 L2

Miller 77 L1

Fielding 11 L3

Bird 55 L2

Assume that user Dan has LBAC credentials that allow him to read data

that is protected by security label L1 but not data protected by L2 or L3.

Dan issues the following SQL statement:

SELECT * FROM T1

The SELECT statement returns only the row for Miller. No error

messages or warning are returned.

Dan’s view of table T1 is this:

 Table 36.

LASTNAME DEPTNO ROWSECURITYLABEL

Miller 77 L1

The rows for Rjaibi, Fielding, and Bird are not returned because read

access is blocked by their security labels. Dan cannot delete or update

these rows. They will also not be included in any aggregate functions.

For Dan it is as if those rows do not exist.

Dan issues this SQL statement:

SELECT COUNT(*) FROM T1

The statement returns a value of 1 because only the row for Miller can

be read by the user Dan.

 Reading protected rows that contain protected columns:

Chapter 8. Controlling database access 561

Column access is checked before row access. If your LBAC credentials for read

access are blocked by the security label protecting one of the columns you are

selecting then the entire statement fails. If not, the statement continues and only

the rows protected by security labels to which your LBAC credentials allow read

access are returned.

Example:

The column LASTNAME of table T1 is protected with the security label

L1. The column DEPTNO is protected with security label L2. The

column ROWSECURITYLABEL has a data type of

DB2SECURITYLABEL. T1, including the data, looks like this:

 Table 37.

LASTNAME

Protected by L1

DEPTNO

Protected by L2 ROWSECURITYLABEL

Rjaibi 55 L2

Miller 77 L1

Fielding 11 L3

Assume that user Sakari has LBAC credentials that allow reading data

protected by security label L1 but not L2 or L3.

Sakari issues this SQL statement:

SELECT * FROM T1

The statement fails because the SELECT clause uses the wildcard (*)

which includes the column DEPTNO. The column DEPTNO is protected

by security label L2, which Sakari's LBAC credentials do not allow her

to read.

Sakari next issues this SQL statement:

SELECT LASTNAME, ROWSECURITYLABEL FROM T1

The select clause does not include any columns that Sakari is not able to

read so the statement continues. Only one row is returned, however,

because each of the other rows is protected by security label L2 or L3.

 Table 38.

LASTNAME ROWSECURITYLABEL

Miller L1

 Related concepts:

v “Deleting or dropping of LBAC protected data” on page 569

v “How LBAC security labels are compared” on page 550

v “Inserting of LBAC protected data” on page 563

v “Label-based access control (LBAC) overview” on page 538

v “LBAC security labels” on page 547

v “Updating of LBAC protected data” on page 565

562 Administration Guide: Implementation

Inserting of LBAC protected data

 Inserting to protected columns:

 When you try to explicitly insert data to a protected column your LBAC

credentials for writing are compared with the security label protecting that column.

Based on this comparison access will either be blocked or allowed.

The details of how two security labels are compared are given in How LBAC

security labels are compared.

If access is allowed, the statement proceeds as usual. If access is blocked, then the

insert fails and an error is returned.

If you are inserting a row but do not provide a value for a protected column then

a default value is inserted if one is available. This happens even if your LBAC

credentials do not allow write access to that column. A default is available in the

following cases:

v The column was declared with the WITH DEFAULT option

v The column is a generated column

v The column has a default value that is given through a BEFORE trigger

v The column has a data type of DB2SECURITYLABEL, in which case security

label that you hold for write access is the default value

 Inserting protected rows:

 When you insert a new row into a table with protected rows you do not have to

provide a value for the column that is of type DB2SECURITYLABEL. If you do not

provide a value for that column the column is automatically populated with the

security label you have been granted for write access. If you have not been granted

a security label for write access an error is returned and the insert fails.

By using built-in functions like SECLABEL you can explicitly provide a security

label to be inserted in a column of type DB2SECURITYLABEL. The provided

security label is only used, however, if your LBAC credentials would allow you to

write to data that is protected with the security label you are trying to insert.

If you provide a security label that you would not be able to write to then what

happens depends on the security policy that is protecting the table. If the CREATE

SECURITY POLICY statement that created the policy included the option

RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL then the insert fails and

an error is returned. If the CREATE SECURITY POLICY statement did not include

the option or if it instead included the OVERRIDE NOT AUTHORIZED WRITE

SECURITY LABEL option then the security label you provide is ignored and the

security label you hold for write access is used instead. No error or warning is

issued in this case.

 Examples:

 Table T1 is protected by a security policy (named P1) that was created without the

RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option. Table T1 has

two columns but no rows. The columns are LASTNAME and LABEL. The column

LABEL has a data type of DB2SECURITYLABEL.

Chapter 8. Controlling database access 563

User Joe holds a security label L2 for write access. Assume that the security label

L2 allows him to write to data protected by security label L2 but not to data

protected by security labels L1 or L3.

Joe issues the following SQL statement:

INSERT INTO T1 (LASTNAME, DEPTNO) VALUES ('Rjaibi', 11)

Because no security label was included in the INSERT statement, Joe’s security

label for write access is inserted into the LABEL row.

Table T1 now looks like this:

 Table 39.

LASTNAME LABEL

Rjaibi L2

Joe issues the following SQL statement, in which he explicitly provides the security

label to be inserted into the column LABEL:

INSERT INTO T1 VALUES ('Miller', SECLABEL_BY_NAME(’P1’, ’L1’))

The SECLABEL_BY_NAME function in the statement returns a security label that

is part of security policy P1 and is named L1. Joe is not allowed to write to data

that is protected with L1 so he is not allowed to insert L1 into the column LABEL.

Because the security policy protecting T1 was created without the RESTRICT NOT

AUTHORIZED WRITE SECURITY LABEL option the security label that Joe holds

for writing is inserted instead. No error or message is returned.

The table now looks like this:

 Table 40.

LASTNAME LABEL

Rjaibi L2

Miller L2

If the security policy protecting the table had been created with the RESTRICT

NOT AUTHORIZED WRITE SECURITY LABEL option then the insert would have

failed and an error would have been returned.

Next Joe is granted an exemption to one of the LBAC rules. Assume that his new

LBAC credentials allow him to write to data that is protected with security labels

L1 and L2. The security label granted to Joe for write access does not change, it is

still L2.

Joe issues the following SQL statement:

INSERT INTO T1 VALUES ('Bird', SECLABEL_BY_NAME(’P1’, ’L1’))

Because of his new LBAC credentials Joe is able to write to data that is protected

by the security label L1. The insertion of L1 is therefore allowed. The table now

looks like this:

564 Administration Guide: Implementation

Table 41.

LASTNAME LABEL

Rjaibi L2

Miller L2

Bird L1

 Related concepts:

v “Deleting or dropping of LBAC protected data” on page 569

v “How LBAC security labels are compared” on page 550

v “Label-based access control (LBAC) overview” on page 538

v “LBAC security labels” on page 547

v “LBAC security policies” on page 540

v “Reading of LBAC protected data” on page 560

v “Updating of LBAC protected data” on page 565

Updating of LBAC protected data

 Your LBAC credentials must allow you write access to data before you can update

it. In the case of updating a protected row your LBAC credentials must also allow

read access to the row.

 Updating protected columns:

 When you try to update data in a protected column, your LBAC credentials are

compared to the security label protecting the column. The comparison made is for

write access. If write access is blocked then an error is returned and the statement

fails, otherwise the update continues.

The details of how your LBAC credentials are compared to a security label are

given in How LBAC security labels are compared.

Example:

Assume there is a table T1 in which column DEPTNO is protected by a

security label L2 and column PAYSCALE is protected by a security label

L3. T1, including its data, looks like this:

 Table 42.

EMPNO LASTNAME

DEPTNO

Protected by

L2

PAYSCALE

Protected by

L3

1 Rjaibi 11 4

2 Miller 11 7

3 Bird 11 9

User Lhakpa has no LBAC credentials. He issues this SQL statement:

UPDATE T1 SET EMPNO = 4 WHERE LASTNAME = "Bird"

This statement executes without error because it does not update any

protected columns. T1 now looks like this:

Chapter 8. Controlling database access 565

Table 43.

EMPNO LASTNAME

DEPTNO

Protected by

L2

PAYSCALE

Protected by

L3

1 Rjaibi 11 4

2 Miller 11 7

4 Bird 11 9

Lhakpa next issues this SQL statement:

UPDATE T1 SET DEPTNO = 55 WHERE LASTNAME = "Miller"

This statement fails and an error is returned because DEPTNO is

protected and Lhakpa has no LBAC credentials.

Assume Lhakpa is granted LBAC credentials and that allow the access

summarized in the following table. The details of what those credentials

are and what elements are in the security labels are not important for

this example.

 Security label protecting the data Can read? Can Write?

L2 No Yes

L3 No No

Lhakpa issues this SQL statement again:

UPDATE T1 SET DEPTNO = 55 WHERE LASTNAME = "Miller"

This time the statement executes without error because Lhakpa's LBAC

credentials allow him to write to data protected by the security label that

is protecting the column DEPTNO. It does not matter that he is not able

to read from that same column. The data in T1 now looks like this:

 Table 44.

EMPNO LASTNAME

DEPTNO

Protected by

L2

PAYSCALE

Protected by

L3

1 Rjaibi 11 4

2 Miller 55 7

4 Bird 11 9

Next Lhakpa issues this SQL statement:

UPDATE T1 SET DEPTNO = 55, PAYSCALE = 4 WHERE LASTNAME = "Bird"

The column PAYSCALE is protected by the security label L3 and

Lhakpa's LBAC credentials do not allow him to write to it. Because

Lhakpa is unable to write to the column, the update fails and no data is

changed.

 Updating protected rows:

566 Administration Guide: Implementation

If your LBAC credentials do not allow you to read a row then it is as if that row

does not exist for you so there is no way for you to update that row. For rows that

you are able to read, you must also be able to write to the row in order to update

it.

When you try to update a row your LBAC credentials for writing are compared to

the security label protecting the row. If write access is blocked the update fails and

an error is returned. If write access is not blocked then the update continues.

The update that is performed is done the same way as an update to a

non-protected row except for the treatment of the column that has a data type of

DB2SECURITYLABEL. If you do not explicitly set the value of that column it is

automatically set to the security label that you hold for write access. If you do not

have a security label for write access an error is returned and the statement fails.

If the update explicitly sets the column that has a data type of

DB2SECURITYLABEL then your LBAC credentials are checked again. If the update

you are trying to perform would create a row that your current LBAC credentials

would not allow you to write to then an error is returned and the statement fails.

Otherwise the column is set to the provided security label.

Example:

Assume that table T1 is protected by a security policy named P1 and has

a column named LABEL that has a data type of DB2SECURITYLABEL.

T1, including its data, looks like this:

 Table 45.

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 11 L1

2 Miller 11 L2

3 Bird 11 L3

Assume that user Jenni has LBAC credentials that allow her to read and

write data protected by the security labels L0 and L1 but not data

protected by any other security labels. The security label she holds for

both read and write is L0. The details of her full credentials and of what

elements are in the labels are not important for this example.

Jenni issues this SQL statement:

SELECT * FROM T1

Jenni sees only one row in the table:

 Table 46.

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 11 L1

The rows protected by labels L2 and L3 are not included in the result set

because Jenni's LBAC credentials do not allow her to read those rows.

For Jenni it is as if those rows do not exist.

Chapter 8. Controlling database access 567

Jenni issues these SQL statements:

UPDATE T1 SET DEPTNO = 44 WHERE DEPTNO = 11;

SELECT * FROM T1;

The result set returned by the query looks like this:

 Table 47.

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 44 L0

The actual data in the table looks like this:

 Table 48.

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 44 L0

2 Miller 11 L2

3 Bird 11 L3

The statement executed without error but affected only the first row. The

second and third rows are not readable by Jenni so they are not selected

for update by the statement even though they meet the condition in the

WHERE clause.

Notice that the value of the LABEL column in the updated row has

changed even though that column was not explicitly set in the UPDATE

statement. The column was set to the security label that Jenni held for

writing.

Now Jenni is granted LBAC credentials that allow her to read data

protected by any security label. Her LBAC credentials for writing do not

change. She is still only able to write to data protected by L0 and L1.

Jenni again issues this SQL statement:

UPDATE T1 SET DEPTNO = 44 WHERE DEPTNO = 11

This time the update fails because of the second and third rows. Jenni is

able to read those rows, so they are selected for update by the statement.

She is not, however, able to write to them because they are protected by

security labels L2 and L3. The update does not occur and an error is

returned.

Jenni now issues this SQL statement:

UPDATE T1

 SET DEPTNO = 55, LABEL = SECLABEL_BY_NAME('P1', 'L2')

 WHERE LASTNAME = "Rjaibi"

The SECLABEL_BY_NAME function in the statement returns the

security label named L2. Jenni is trying to explicitly set the security label

protecting the first row. Jenni's LBAC credentials allow her to read the

first row, so it is selected for update. Her LBAC credentials allow her to

write to rows protected by the security label L0 so she is allowed to

update the row. Her LBAC credentials would not, however, allow her to

write to a row protected by the security label L2, so she is not allowed

568 Administration Guide: Implementation

to set the column LABEL to that value. The statement fails and an error

is returned. No columns in the row are updated.

Jenni now issues this SQL statement:

UPDATE T1 SET LABEL = SECLABEL_BY_NAME('P1', 'L1') WHERE LASTNAME = "Rjaibi"

The statement succeeds because she would be able to write to a row

protected by the security label L1.

T1 now looks like this:

 Table 49.

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 44 L1

2 Miller 11 L2

3 Bird 11 L3

 Updating protected rows that contain protected columns:

 If you try to update protected columns in a table with protected rows then your

LBAC credentials must allow writing to of all of the protected columns affected by

the update, otherwise the update fails and an error is returned. This is as described

in preceding section Updating protected columns. If you are allowed to update all

of the protected columns affected by the update you will still only be able to

update rows that your LBAC credentials allow you to both read from and write to.

This is as described in the preceding section Updating protected rows. The

handling of a column with a data type of DB2SECURITYLABEL is the same

whether the update affects protected columns or not.

If the column that has a data type of DB2SECURITYLABEL is itself a protected

column then your LBAC credentials must allow you to write to that column or you

cannot update any of the rows in the table.

 Related concepts:

v “Deleting or dropping of LBAC protected data” on page 569

v “Inserting of LBAC protected data” on page 563

v “Reading of LBAC protected data” on page 560

Deleting or dropping of LBAC protected data

 Deleting protected rows:

 If your LBAC credentials do not allow you to read a row then it is as if that row

does not exist for you so there is no way for you to delete it.

To delete a row that you are able to read, your LBAC credentials must also allow

you to write to the row. When you try to delete a row, your LBAC credentials for

writing are compared to the security label protecting the row. If the protecting

security label blocks write access by your LBAC credentials, the DELETE statement

fails, an error is returned, and no rows are deleted.

 Example:

Chapter 8. Controlling database access 569

Protected table T1 has these rows:

 LASTNAME DEPTNO LABEL

Rjaibi 55 L2

Miller 77 L1

Bird 55 L2

Fielding 77 L3

Assume that user Pat has LBAC credentials such that her access is as summarized

in this table:

 Security label Read access? Write access?

L1 Yes Yes

L2 Yes No

L3 No No

The exact details of her LBAC credentials and of the security labels are

unimportant for this example.

Pat issues the following SQL statement:

SELECT * FROM T1 WHERE DEPTNO != 999

The statement executes and returns this result set:

 LASTNAME DEPTNO LABEL

Rjaibi 55 L2

Miller 77 L1

Bird 55 L2

The last row of T1 is not included in the results because Pat does not have read

access to that row. It is as if that row does not exist for Pat.

Pat issues this SQL statement:

DELETE FROM T1 WHERE DEPTNO != 999

Pat does not have write access to the first or third row, both of which are protected

by L2. So even though she can read the rows she cannot delete them. The DELETE

statement fails and no rows are deleted.

Pat issues this SQL statement:

DELETE FROM T1 WHERE DEPTNO = 77;

This statement succeeds because Pat is able to write to the row with Miller in the

LASTNAME column. That is the only row selected by the statement. The row with

Fielding in the LASTNAME column is not selected because Pat's LBAC credentials

do not allow her to read that row. That row is never considered for the delete so

no error occurs.

570 Administration Guide: Implementation

The actual rows of the table now look like this:

 LASTNAME DEPTNO LABEL

Rjaibi 55 L2

Bird 55 L2

Fielding 77 L3

 Deleting rows that have protected columns:

 To delete any row in a table that has protected columns you must have LBAC

credentials that allow you to write to all protected columns in the table. If there is

any row in the table that your LBAC credentials do not allow you to write to then

the delete will fail and an error will be returned.

If the table has both protected columns and protected rows then to delete a

particular row you must have LBAC credentials that allow you to write to every

protected column in the table and also to read from and write to the row that you

want to delete.

 Example:

 In protected table T1, the column DEPTNO is protected by the security label L2. T1

contains these rows:

LASTNAME

DEPTNO

Protected by L2 LABEL

Rjaibi 55 L2

Miller 77 L1

Bird 55 L2

Fielding 77 L3

Assume that user Benny has LBAC credentials that allow him the access

summarized in this table:

 Security label Read access? Write access?

L1 Yes Yes

L2 Yes No

L3 No No

The exact details of his LBAC credentials and of the security labels are

unimportant for this example.

Benny issues the following SQL statement:

DELETE FROM T1 WHERE DEPTNO = 77

The statement fails because Benny does not have write access to the column

DEPTNO.

Now Benny's LBAC credentials are changed so that he has access as summarized

in this table:

Chapter 8. Controlling database access 571

Security label Read access? Write access?

L1 Yes Yes

L2 Yes Yes

L3 Yes No

Benny issues this SQL statement again:

DELETE FROM T1 WHERE DEPTNO = 77

This time Benny has write access to the column DEPTNO so the delete continues.

The delete statement selects only the row that has a value of Miller in the

LASTNAME column. The row that has a value of Fielding in the LASTNAME

column is not selected because Benny's LBAC credentials do not allow him to read

that row. Because the row is not selected for deletion by the statement it does not

matter that Benny is unable to write to the row.

The one row selected is protected by the security label L1. Benny's LBAC

credentials allow him to write to data protected by L1 so the delete is successful.

The actual rows in table T1 now look like this:

LASTNAME

DEPTNO

Protected by L2 LABEL

Rjaibi 55 L2

Bird 55 L2

Fielding 77 L3

 Dropping protected data:

 You cannot drop a column that is protected by a security label unless your LBAC

credentials allow you to write to that column.

A column with a data type of DB2SECURITYLABEL cannot be dropped from a

table. To remove it you must first drop the security policy from the table. When

you drop the security policy the table is no longer protected with LBAC and the

data type of the column is automatically changed from DB2SECURITYLABEL to

VARCHAR(128) FOR BIT DATA. The column can then be dropped.

Your LBAC credentials do not prevent you from dropping entire tables or

databases that contain protected data. If you would normally have permission to

drop a table or a database you do not need any LBAC credentials to do so, even if

the database contains protected data.

 Related concepts:

v “Inserting of LBAC protected data” on page 563

v “Reading of LBAC protected data” on page 560

v “Updating of LBAC protected data” on page 565

Removal of LBAC protection from data

 Removing a security policy from a table:

572 Administration Guide: Implementation

You must have SECADM authority to remove the security policy from a table. To

remove the security policy from a table you use the DROP SECURITY POLICY

clause of the ALTER TABLE statement. This also automatically removes protection

from all rows and all columns of the table.

 Removing protection from rows:

 In a table that has protected rows every row must be protected by a security label.

There is no way to remove LBAC protection from individual rows.

A column of type DB2SECURITYLABEL cannot be altered or removed except by

removing the security policy from the table.

 Removing protection from columns:

 Protection of a column can be removed using the DROP COLUMN SECURITY

clause of the SQL statement ALTER TABLE. To remove the protection from a

column you must have LBAC credentials that allow you to read from and write to

that column in addition to the normal privileges and authorities needed to alter a

table.

 Related concepts:

v “Label-based access control (LBAC) overview” on page 538

v “LBAC security labels” on page 547

v “LBAC security policies” on page 540

v “Protection of data using LBAC” on page 558

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

v “CREATE TABLE statement” in SQL Reference, Volume 2

Lightweight directory access protocol (LDAP) directory services

This section provides information to assist you in using Lightweight Directory

Access Protocol (LDAP) directory services with the DB2 database management

system.

Lightweight Directory Access Protocol (LDAP) overview

 Lightweight Directory Access Protocol (LDAP) is an industry standard access

method to directory services. A directory service is a repository of resource

information about multiple systems and services within a distributed environment;

and it provides client and server access to these resources. Each database server

instance will publish its existence to an LDAP server and provide database

information to the LDAP directory when the databases are created. When a client

connects to a database, the catalog information for the server can be retrieved from

the LDAP directory. Each client is no longer required to store catalog information

locally on each machine. Client applications search the LDAP directory for

information required to connect to the database.

A caching mechanism exists so that the client only needs to search the LDAP

directory server once. Once the information is retrieved from the LDAP directory

server, it is stored or cached on the local machine based on the values of the

dir_cache database manager configuration parameter and the DB2LDAPCACHE

Chapter 8. Controlling database access 573

registry variable. The dir_cache database manager configuration parameter is used

to store database, node, and DCS directory files in a memory cache. The directory

cache is used by an application until the application closes. The DB2LDAPCACHE

registry variable is used to store database, node, and DCS directory files in a local

disk cache.

v If DB2LDAPCACHE=NO and dir_cache=NO, then always read the information

from LDAP.

v If DB2LDAPCACHE=NO and dir_cache=YES, then read the information from

LDAP once and insert it into the DB2 cache.

v If DB2LDAPCACHE=YES or is not set, then read the information from LDAP

once and cache it into the local database, node, and DCS directories.

Note: The DB2LDAPCACHE registry variable is only applicable to the database

and node directories.

 Related concepts:

v “Security considerations in an LDAP environment” on page 589

v “Extending the LDAP directory schema with DB2 object classes and attributes”

on page 591

v “LDAP support and DB2 Connect” on page 589

v “Lightweight Directory Access Protocol (LDAP) directory service” on page 181

v “Security considerations for Active Directory” on page 590

v “Support for Active Directory” on page 575

v “DB2 registry and environment variables” in Performance Guide

 Related tasks:

v “Attaching to a remote server in the LDAP environment” on page 583

v “Catalog a node alias for ATTACH” on page 581

v “Configuring DB2 in the IBM LDAP environment” on page 576

v “Configuring DB2 to use Active Directory” on page 576

v “Configuring the LDAP user for DB2 applications” on page 578

v “Creating an LDAP user” on page 577

v “Deregistering the database from the LDAP directory” on page 584

v “Deregistering the DB2 server” on page 582

v “Disabling LDAP support” on page 589

v “Enabling LDAP support after installation is complete” on page 588

v “Extending the directory schema for Active Directory” on page 591

v “Refreshing LDAP entries in local database and node directories” on page 584

v “Registering host databases in LDAP” on page 586

v “Registration of databases in the LDAP directory” on page 582

v “Registration of DB2 servers after installation” on page 578

v “Searching the LDAP servers” on page 585

v “Setting DB2 registry variables at the user level in the LDAP environment” on

page 587

v “Update the protocol information for the DB2 server” on page 580

 Related reference:

v “DB2 objects in the Active Directory” on page 593

574 Administration Guide: Implementation

v “LDAP object classes and attributes used by DB2” on page 598

v “Netscape LDAP directory support and attribute definitions” on page 593

v “Supported LDAP client and server configurations” on page 575

Supported LDAP client and server configurations

 For the most up-to-date information about supported LDAP client and server

configurations, see: http://www.ibm.com/support/docview.wss?rs=71
&uid=swg21233795.

Note: When running on Windows operating systems, DB2 supports using either

the IBM LDAP client or the Microsoft LDAP client. To explicitly select the

IBM LDAP client, use the db2set command to set the

DB2LDAP_CLIENT_PROVIDER registry variable to “IBM”. The Microsoft

LDAP Client is included with the Windows operating system.

 Related concepts:

v “Lightweight Directory Access Protocol (LDAP) overview” on page 573

v “Support for Active Directory” on page 575

Support for Active Directory

 DB2 database system exploits the Active Directory as follows:

1. The DB2 database servers are published in the Active Directory as the

ibm_db2Node objects. The ibm_db2Node object class is a subclass of the

ServiceConnectionPoint (SCP) object class. Each ibm_db2Node object contains

protocol configuration information to allow client applications to connect to the

DB2 database server. When a new database is created, the database is

published in the Active Directory as the ibm_db2Database object under the

ibm_db2Node object.

2. When connecting to a remote database, DB2 client queries the Active Directory,

through the LDAP interface, for the ibm_db2Database object. The protocol

communication to connect to the database server (binding information) is

obtained from the ibm_db2Node object which the ibm_db2Database object is

created under.

Property pages for the ibm_db2Node and ibm_db2Database objects can be viewed

or modified using the Active Directory Users and Computer Management Console

(MMC) at a domain controller. To setup the property page, run the regsrv32

command to register the property pages for the DB2 objects as follows:

 regsvr32 %DB2PATH%\bin\db2ads.dll

You can view the objects by using the Active Directory Users and Computer

Management Console (MMC) at a domain controller. To get to this administration

tool, follow Start—> Program—> Administration Tools—> Active Directory Users

and Computer.

Note: You must select Users, Groups, and Computers as containers from the View

menu to display the DB2 database objects under the computer objects.

Note: If DB2 database is not installed on the domain controller, you can still view

the property pages of DB2 database objects by copying the db2ads.dll file

from %DB2PATH%\bin and the resource DLL db2adsr.dll from

%DB2PATH%\msg\locale-name to a local directory on the domain

Chapter 8. Controlling database access 575

http://www.ibm.com/support/docview.wss?rs=71&uid=swg21233795
http://www.ibm.com/support/docview.wss?rs=71&uid=swg21233795

controller. (The directory where you place these two copied files must be

one of those found in the PATH user/system environment variable.) Then,

you run the regsvr32 command from the local directory to register the DLL.

 Related concepts:

v “Security considerations for Active Directory” on page 590

 Related tasks:

v “Configuring DB2 to use Active Directory” on page 576

v “Extending the directory schema for Active Directory” on page 591

 Related reference:

v “DB2 objects in the Active Directory” on page 593

Configuring DB2 to use Active Directory

 Procedure:

 In order to access Microsoft Active Directory, ensure that the following conditions

are met:

1. The machine that runs DB2 database must belong to a Windows 2000 or

Windows Server 2003 domain.

2. The Microsoft LDAP client is installed. The Microsoft LDAP client is part of the

Windows 2000, Windows XP, and Windows Server 2003 operating systems.

3. Enable the LDAP support. For Windows 2000, Windows XP, or Windows Server

2003, the LDAP support is enabled by the installation program.

4. Log on to a domain user account when running DB2 database to read

information from the Active Directory.

 Related concepts:

v “DB2 registry and environment variables” in Performance Guide

v “Support for Active Directory” on page 575

 Related tasks:

v “Configuring the LDAP user for DB2 applications” on page 578

Configuring DB2 in the IBM LDAP environment

 Procedure:

 Before you can use DB2 in the IBM LDAP environment, you must configure the

following on each machine:

v Enable the LDAP support. For Windows, LDAP support is enabled by the

installation program. The default LDAP client to use on all Windows operating

systems is Microsoft’s. If you want to use the IBM LDAP client, you must set the

DB2LDAP_CLIENT_PROVIDER registry variable to “IBM”, using the db2set

command.

v The LDAP server’s TCP/IP host name and port number. These values can be

entered during unattended installation using the DB2LDAPHOST response

keyword, or you can manually set them later by using the DB2SET command:

 db2set DB2LDAPHOST=<hostname[:port]>

576 Administration Guide: Implementation

where hostname is the LDAP server’s TCP/IP hostname, and [:port] is the port

number. If a port number is not specified, DB2 will use the default LDAP port

(389).

DB2 objects are located in the LDAP base distinguished name (baseDN). You can

configure the LDAP base distinguished name on each machine by using the

DB2SET command:

 db2set DB2LDAP_BASEDN=<baseDN>

where baseDN is the name of the LDAP suffix that is defined at the LDAP server.

This LDAP suffix is used to contain DB2 objects.

v The LDAP user’s distinguished name (DN) and password. These are required

only if you plan to use LDAP to store DB2 user-specific information.

 Related concepts:

v “DB2 registry and environment variables” in Performance Guide

 Related tasks:

v “Configuring DB2 to use Active Directory” on page 576

v “Creating an LDAP user” on page 577

 Related reference:

v “db2set - DB2 profile registry command” in Command Reference

Creating an LDAP user

 Procedure:

 DB2 supports setting DB2 registry variables and CLI configuration at the user

level. (This is not available on the Linux and UNIX platforms.) User level support

provides user-specific settings in a multi-user environment. An example is

Windows Terminal Server where each logged on user can customize his or her

own environment without interfering with the system environment or another

user’s environment.

When using the IBM Tivoli® directory, you must define an LDAP user before you

can store user-level information in LDAP. You can create an LDAP user by creating

an LDIF file to contain all attributes for the user object, then run the LDIF import

utility to import the object into the LDAP directory. The LDIF utility for the IBM

Tivoli Directory Server is “LDIF2DB”

A LDIF file containing the attributes for a person object appears similar to the

following:

 File name: newuser.ldif

 dn: cn=Mary Burnnet, ou=DB2 Development, ou=Toronto, o=ibm, c=ca

 objectclass: ePerson

 cn: Mary Burnnet

 sn: Burnnet

 uid: mburnnet

 userPassword: password

 telephonenumber: 1-416-123-4567

 facsimiletelephonenumber: 1-416-123-4568

 title: Software Developer

Chapter 8. Controlling database access 577

Following is an example of the LDIF command to import an LDIF file using the

IBM LDIF import utility:

 LDIF2DB -i newuser.ldif

Notes:

1. You must run the LDIF2DB command from the LDAP server machine.

2. You must grant the required access (ACL) to the LDAP user object so that the

LDAP user can add, delete, read, and write to his own object. To grant ACL for

the user object, use the LDAP Directory Server Web Administration tool.

 Related tasks:

v “Configuring DB2 in the IBM LDAP environment” on page 576

v “Configuring the LDAP user for DB2 applications” on page 578

Configuring the LDAP user for DB2 applications

 Procedure:

 When using the Microsoft LDAP client, the LDAP user is the same as the operating

system user account. However, when working with the IBM LDAP client and

before using the DB2 database manager, you must configure the LDAP user

distinguished name (DN) and password for the current logged on user. This can be

done using the db2ldcfg utility:

 db2ldcfg -u <userDN> -w <password> —> set the user’s DN and password

 -r —> clear the user’s DN and password

For example:

 db2ldcfg -u "cn=Mary Burnnet,ou=DB2 Development,ou=Toronto,o=ibm,c=ca"

 -w password

 Related tasks:

v “Creating an LDAP user” on page 577

 Related reference:

v “db2ldcfg - Configure LDAP environment command” in Command Reference

Registration of DB2 servers after installation

 Procedure:

 Each DB2 server instance must be registered in LDAP to publish the protocol

configuration information that is used by the client applications to connect to the

DB2 server instance. When registering an instance of the database server, you need

to specify a node name. The node name is used by client applications when they

connect or attach to the server. You can catalog another alias name for the LDAP

node by using the CATALOG LDAP NODE command.

Note: If you are working in a Windows domain environment, then during

installation the DB2 server instance is automatically registered in the Active

Directory with the following information:

 nodename: TCP/IP hostname

 protocol type: TCP/IP

578 Administration Guide: Implementation

If the TCP/IP hostname is longer than 8 characters, it will be truncated to 8

characters.

The REGISTER command appears as follows:

 db2 register db2 server in ldap

 as <ldap_node_name>

 protocol tcpip

The protocol clause specifies the communication protocol to use when connecting

to this database server.

When creating an instance for DB2 Enterprise Server Edition that includes multiple

physical machines, the REGISTER command must be invoked once for each

machine. Use the rah command to issue the REGISTER command on all machines.

Note: The same ldap_node_name cannot be used for each machine since the name

must be unique in LDAP. You will want to substitute the hostname of each

machine for the ldap_node_name in the REGISTER command. For example:

 rah ">DB2 REGISTER DB2 SERVER IN LDAP AS <> PROTOCOL TCPIP"

The “<>” is substituted by the hostname on each machine where the rah

command is run. In the rare occurrence where there are multiple DB2

Enterprise Server Edition instances, the combination of the instance and host

index may be used as the node name in the rah command.

The REGISTER command can be issued for a remote DB2 server. To do so, you

must specify the remote computer name, instance name, and the protocol

configuration parameters when registering a remote server. The command can be

used as follows:

 db2 register db2 server in ldap

 as <ldap_node_name>

 protocol tcpip

 hostname <host_name>

 svcename <tcpip_service_name>

 remote <remote_computer_name>

 instance <instance_name>

The following convention is used for the computer name:

v If TCP/IP is configured, the computer name must be the same as the TCP/IP

hostname.

v If APPN is configured, use the partner-LU name as the computer name.

When running in a high availability or failover environment, and using TCP/IP as

the communication protocol, the cluster IP address must be used. Using the cluster

IP address allows the client to connect to the server on either machine without

having to catalog a separate TCP/IP node for each machine. The cluster IP address

is specified using the hostname clause, shown as follows:

 db2 register db2 server in ldap

 as <ldap_node_name>

 protocol tcpip

 hostname n.nn.nn.nn

where n.nn.nn.nn is the cluster IP address.

To register the DB2 server in LDAP from a client application, call the

db2LdapRegister API.

Chapter 8. Controlling database access 579

Related concepts:

v “rah and db2_all commands overview” on page 130

 Related tasks:

v “Attaching to a remote server in the LDAP environment” on page 583

v “Catalog a node alias for ATTACH” on page 581

v “Deregistering the DB2 server” on page 582

v “Update the protocol information for the DB2 server” on page 580

 Related reference:

v “CATALOG LDAP NODE command” in Command Reference

v “REGISTER command” in Command Reference

Update the protocol information for the DB2 server

 Procedure:

 The DB2 server information in LDAP must be kept current. For example, changes

to the protocol configuration parameters or the server network address require an

update to LDAP.

To update the DB2 server in LDAP on the local machine, use the following

command:

 db2 update ldap ...

Examples of protocol configuration parameters that can be updated include:

v A TCP/IP hostname and service name or port number parameters.

v APPC protocol information like TP name, partner LU, or mode.

v A NetBIOS workstation name.

To update a remote DB2 server protocol configuration parameters use the UPDATE

LDAP command with a node clause:

 db2 update ldap

 node <node_name>

 hostname <host_name>

 svcename <tcpip_service_name>

 Related tasks:

v “Attaching to a remote server in the LDAP environment” on page 583

v “Catalog a node alias for ATTACH” on page 581

v “Registration of DB2 servers after installation” on page 578

 Related reference:

v “UPDATE LDAP NODE command” in Command Reference

Rerouting LDAP clients to another server

 Just as with the ability to reroute clients on a system failure, the same ability is

also available to you when working with LDAP.

 Prerequisites:

580 Administration Guide: Implementation

The DB2_ENABLE_LDAP registry variable is set to “Yes”.

 Procedure:

 Within an LDAP environment, all database and node directory information is

maintained at an LDAP server. The client retrieves information from the LDAP

directory. This information is updated in its local database and node directories if

the DB2LDAPCACHE registry variable is set to “Yes”.

Use the UPDATE ALTERNATE SERVER FOR LDAP DATABASE command to

define the alternate server for a database that represents the DB2 database in

LDAP. Alternatively, you can call the db2LdapUpdateAlternateServerForDB API

from a client application to update the alternate server for the database in LDAP.

Once established, this alternate server information is returned to the client upon

connection.

Note:

It is strongly recommended to keep the alternate server information stored

in the LDAP server synchronized with the alternate server information

stored at the database server instance. Issuing the UPDATE ALTERNATE

SERVER FOR DATABASE command (notice that it is not “FOR LDAP

DATABASE”) at the database server instance will help ensure

synchronization between the database server instance and the LDAP server.

When you enter UPDATE ALTERNATE SERVER FOR DATABASE command

at the server instance, and if LDAP support is enabled

(DB2_ENABLE_LDAP=Yes) on the server, and if the LDAP user ID and

password is cached (db2ldcfg was previously run), then the alternate server

for the database is automatically, or implicitly, updated on the LDAP server.

This works as if you entered UPDATE ALTERNATE SERVER FOR LDAP

DATABASE explicitly.

If the UPDATE ALTERNATE SERVER FOR LDAP DATABASE command is

issued from an instance other than the database server instance, ensure the

alternate server information is also identically configured at the database

server instance using the UPDATE ALTERNATE SERVER FOR DATABASE

command. After the client initially connects to the database server instance,

the alternate server information returned from the database server instance

will take precedence over what is configured in the LDAP server. If the

database server instance has no alternate server information configured,

client reroute will be considered disabled after the initial connect.

 Related concepts:

v “Automatic client reroute description and setup” on page 45

v “Client reroute setup when using JCC Type 4 drivers” on page 54

Catalog a node alias for ATTACH

 Procedure:

 A node name for the DB2 server must be specified when registering the server in

LDAP. Applications use the node name to attach to the database server. If a

Chapter 8. Controlling database access 581

different node name is required, such as when the node name is hard-coded in an

application, use the CATALOG LDAP NODE command to make the change. The

command would be similar to:

 db2 catalog ldap node <ldap_node_name>

 as <new_alias_name>

To uncatalog a LDAP node, use the UNCATALOG LDAP NODE COMMAND. The

command would appear similar to:

 db2 uncatalog ldap node <ldap_node_name>

 Related tasks:

v “Attaching to a remote server in the LDAP environment” on page 583

v “Registration of DB2 servers after installation” on page 578

 Related reference:

v “CATALOG LDAP NODE command” in Command Reference

v “UNCATALOG LDAP NODE command” in Command Reference

Deregistering the DB2 server

 Procedure:

 Deregistration of an instance from LDAP also removes all the node, or alias, objects

and the database objects referring to the instance.

Deregistration of the DB2 server on either a local or a remote machine requires the

LDAP node name be specified for the server:

 db2 deregister db2 server in ldap

 node <node_name>

To deregister the DB2 server from LDAP from a client application, call the

db2LdapDeregister API.

When the DB2 server is deregistered, any LDAP node entry and LDAP database

entries referring to the same instance of the DB2 server are also uncataloged.

 Related tasks:

v “Registration of DB2 servers after installation” on page 578

 Related reference:

v “DEREGISTER command” in Command Reference

Registration of databases in the LDAP directory

 Procedure:

 During the creation of a database within an instance, the database is automatically

registered in LDAP. Registration allows remote client connection to the database

without having to catalog the database and node on the client machine. When a

client attempts to connect to a database, if the database does not exist in the

database directory on the local machine then the LDAP directory is searched.

If the name already exists in the LDAP directory, the database is still created on the

local machine but a warning message is returned stating the naming conflict in the

582 Administration Guide: Implementation

LDAP directory. For this reason you can manually catalog a database in the LDAP

directory. The user can register databases on a remote server in LDAP by using the

CATALOG LDAP DATABASE command. When registering a remote database, you

specify the name of the LDAP node that represents the remote database server. You

must register the remote database server in LDAP using the REGISTER DB2

SERVER IN LDAP command before registering the database.

To register a database manually in LDAP, use the CATALOG LDAP DATABASE

command:

 db2 catalog ldap database <dbname>

 at node <node_name>

 with "My LDAP database"

To register a database in LDAP from a client application, call the

db2LdapCatalogDatabase API.

 Related tasks:

v “Deregistering the database from the LDAP directory” on page 584

v “Registration of DB2 servers after installation” on page 578

 Related reference:

v “CATALOG LDAP DATABASE command” in Command Reference

Attaching to a remote server in the LDAP environment

 Procedure:

 In the LDAP environment, you can attach to a remote database server using the

LDAP node name on the ATTACH command:

 db2 attach to <ldap_node_name>

When a client application attaches to a node or connects to a database for the first

time, since the node is not in the local node directory, the database manager

searches the LDAP directory for the target node entry. If the entry is found in the

LDAP directory, the protocol information of the remote server is retrieved. If you

connect to the database and if the entry is found in the LDAP directory, then the

database information is also retrieved. Using this information, the database

manager automatically catalogs a database entry and a node entry on the local

machine. The next time the client application attaches to the same node or

database, the information in the local database directory is used without having to

search the LDAP directory.

In more detail: A caching mechanism exists so that the client only searches the

LDAP server once. Once the information is retrieved, it is stored or cached on the

local machine based on the values of the dir_cache database manager configuration

parameter and the DB2LDAPCACHE registry variable.

v If DB2LDAPCACHE=NO and dir_cache=NO, then always read the information

from LDAP.

v If DB2LDAPCACHE=NO and dir_cache=YES, then read the information from

LDAP once and insert it into the DB2 cache.

v If DB2LDAPCACHE=YES or is not set, then read the information from LDAP

server once and cache it into the local database, node, and DCS directories.

Chapter 8. Controlling database access 583

Note: The caching of LDAP information is not applicable to user-level CLI or DB2

profile registry variables.

 Related concepts:

v “DB2 registry and environment variables” in Performance Guide

 Related tasks:

v “Catalog a node alias for ATTACH” on page 581

v “Registration of databases in the LDAP directory” on page 582

v “Registration of DB2 servers after installation” on page 578

v “Update the protocol information for the DB2 server” on page 580

 Related reference:

v “ATTACH command” in Command Reference

Deregistering the database from the LDAP directory

 Procedure:

 The database is automatically deregistered from LDAP when:

v The database is dropped.

v The owning instance is deregistered from LDAP.

The database can be manually deregistered from LDAP using:

 db2 uncatalog ldap database <dbname>

To deregister a database from LDAP from a client application, call the

db2LdapUncatalogDatabase API.

 Related tasks:

v “Registration of databases in the LDAP directory” on page 582

 Related reference:

v “UNCATALOG LDAP DATABASE command” in Command Reference

Refreshing LDAP entries in local database and node

directories

 Procedure:

 LDAP information is subject to change, so it is necessary to refresh the LDAP

entries in the local and node directories. The local database and node directories

are used to cache the entries in LDAP.

In more detail: A caching mechanism exists so that the client only searches the

LDAP server once. Once the information is retrieved, it is stored or cached on the

local machine based on the values of the dir_cache database manager configuration

parameter and the DB2LDAPCACHE registry variable.

v If DB2LDAPCACHE=NO and dir_cache=NO, then always read the information

from LDAP.

v If DB2LDAPCACHE=NO and dir_cache=YES, then read the information from

LDAP once and insert it into the DB2 cache.

584 Administration Guide: Implementation

v If DB2LDAPCACHE=YES or is not set, then read the information from LDAP

server once and cache it into the local database, node, and DCS directories.

Note: The caching of LDAP information is not applicable to user-level CLI or DB2

profile registry variables.

To refresh the database entries that refer to LDAP resources, use the following

command:

 db2 refresh ldap database directory

To refresh the node entries on the local machine that refer to LDAP resources, use

the following command:

 db2 refresh ldap node directory

As part of the refresh, all the LDAP entries that are saved in the local database and

node directories are removed. The next time that the application accesses the

database or node, it will read the information directly from LDAP and generate a

new entry in the local database or node directory.

To ensure the refresh is done in a timely way, you may want to:

v Schedule a refresh that is run periodically.

v Run the REFRESH command during system bootup.

v Use an available administration package to invoke the REFRESH command on

all client machines.

v Set DB2LDAPCACHE=“NO” to avoid LDAP information being cached in the

database, node, and DCS directories.

 Related concepts:

v “DB2 registry and environment variables” in Performance Guide

 Related reference:

v “dir_cache - Directory cache support configuration parameter” in Performance

Guide

v “REFRESH LDAP command” in Command Reference

Searching the LDAP servers

 Procedure:

 The DB2 database system searches the current LDAP server (supported LDAP

servers are: IBM Tivoli Directory Server, Microsoft Active Directory, and Sun One

Directory Server) but in an environment where there are multiple LDAP servers,

you can define the scope of the search. For example, if the information is not

found in the current LDAP server, you can specify automatic search of all other

LDAP servers, or, alternatively, you can restrict the search scope to only the current

LDAP server, or to the local DB2 database catalog.

When you set the search scope, this sets the default search scope for the entire

enterprise. The search scope is controlled through the DB2 database profile registry

variable, DB2LDAP_SEARCH_SCOPE. To set the search scope value, use the “-gl”

option, which means “global in LDAP”, on the db2set command:

 db2set -gl db2ldap_search_scope=<value>

Chapter 8. Controlling database access 585

Possible values include: “local”, “domain”, or “global”. If it is not set, the default

value is “domain” which limits the search scope to the directory on the current

LDAP server.

For example, you may want to initially set the search scope to “global” after a new

database is created. This allows any DB2 client configured to use LDAP to search

all the LDAP servers to find the database. Once the entry has been recorded on

each machine after the first connect or attach for each client, if you have caching

enabled, the search scope can be changed to “local”. Once changed to “local”, each

client will not scan any LDAP servers.

Note: The DB2 database profile registry variables

DB2LDAP_KEEP_CONNECTION and DB2LDAP_SEARCH_SCOPE are the

only registry variables that can be set at the global level in LDAP.

 Related concepts:

v “DB2 registry and environment variables” in Performance Guide

 Related tasks:

v “Declaring, showing, changing, resetting, and deleting registry and environment

variables” on page 68

Registering host databases in LDAP

 Procedure:

 When registering host databases in LDAP, there are two possible configurations:

v Direct connection to the host databases; or,

v Connection to the host database though a gateway.

In the first case, the user would register the host server in LDAP, then catalog the

host database in LDAP specifying the node name of the host server. In the second

case, the user would register the gateway server in LDAP, then catalog the host

database in LDAP specifying the node name of the gateway server.

If LDAP support is available at the DB2 Connect gateway, and the database is not

found at the gateway database directory, the DB2 database system will look up

LDAP and attempt to keep the found information.

As an example showing both cases, consider the following: Suppose there is a host

database called NIAGARA_FALLS. It can accept incoming connections using

APPN and TCP/IP. If the client can not connect directly to the host because it does

not have DB2 Connect, then it will connect using a gateway called “goto@niagara”.

The following steps need to be done:

1. Register the host database server in LDAP for APPN connectivity. The

REMOTE and INSTANCE clauses are arbitrary. The NODETYPE clause is set to

“DCS” to indicate that this is a host database server.

 db2 register ldap as nfappn appn network CAIBMOML partnerlu NFLU

 mode IBMRDB remote mvssys instance msvinst nodetype dcs

2. Register the host database server in LDAP for TCP/IP connectivity. The

TCP/IP hostname of the server is “myhost” and the port number is “446”.

Similar to step 1, the NODETYPE clause is set to “DCS” to indicate that this is

a host database server.

586 Administration Guide: Implementation

db2 register ldap as nftcpip tcpip hostname myhost svcename 446

 remote mvssys instance mvsinst nodetype dcs

3. Register a DB2 Connect gateway server in LDAP for TCP/IP connectivity. The

TCP/IP hostname for the gateway server is “niagara” and the port number is

“50000”.

 db2 register ldap as whasf tcpip hostname niagara svcename 50000

 remote niagara instance goto nodetype server

4. Catalog the host database in LDAP using TCP/IP connectivity. The host

database name is “NIAGARA_FALLS”, the database alias name is “nftcpip”.

The GWNODE clause is used to specify the nodename of the DB2 Connect

gateway server.

 db2 catalog ldap database NIAGARA_FALLS as nftcpip at node nftcpip

 gwnode whasf authentication dcs

5. Catalog the host database in LDAP using APPN connectivity.

 db2 catalog ldap database NIAGARA_FALLS as nfappn at node nfappn

 gwnode whasf authentication dcs

After completing the registration and cataloging shown above, if you want to

connect to the host using TCPIP, you connect to “nftcpip”. If you want to connect

to the host using APPN, you connect to “nfappn”. If you do not have DB2 Connect

on your client workstation, the connection will go through the gateway using

TCPIP and from there, depending on whether you use “nftcpip” or “nfappn”, it

will connect to host using TCP/IP or APPN respectively.

In general then, you can manually configure host database information in LDAP so

that each client does not need to manually catalog the database and node locally

on each machine. The process follows:

1. Register the host database server in LDAP. You must specify the remote

computer name, instance name, and the node type for the host database server

in the REGISTER command using the REMOTE, INSTANCE, and NODETYPE

clauses respectively. The REMOTE clause can be set to either the host name or

the LU name of the host server machine. The INSTANCE clause can be set to

any character string that has eight characters or less. (For example, the instance

name can be set to “DB2”.) The NODE TYPE clause must be set to “DCS” to

indicate that this is a host database server.

2. Register the host database in LDAP using the CATALOG LDAP DATABASE

command. Any additional DRDA parameters can be specified by using the

PARMS clause. The database authentication type should be set to “DCS”.

 Related reference:

v “CATALOG LDAP DATABASE command” in Command Reference

v “REGISTER command” in Command Reference

Setting DB2 registry variables at the user level in the LDAP

environment

 Procedure:

 Under the LDAP environment, the DB2 profile registry variables can be set at the

user level which allows a user to customize their own DB2 environment. To set the

DB2 profile registry variables at the user level, use the -ul option:

 db2set -ul <variable>=<value>

Note: This is not supported on AIX or Solaris operating systems.

Chapter 8. Controlling database access 587

DB2 has a caching mechanism. The DB2 profile registry variables at the user level

are cached on the local machine. If the -ul parameter is specified, DB2 always

reads from the cache for the DB2 registry variables. The cache is refreshed when:

v You update or reset a DB2 registry variable at the user level.

v The command to refresh the LDAP profile variables at the user level is:

 db2set -ur

 Related tasks:

v “Declaring, showing, changing, resetting, and deleting registry and environment

variables” on page 68

 Related reference:

v “db2set - DB2 profile registry command” in Command Reference

Enabling LDAP support after installation is complete

 Procedure:

 To enable LDAP support at some point following the completion of the installation

process, use the following procedure on each machine:

v Install the LDAP support binary files. Run the setup program and select the

LDAP Directory Exploitation support from Custom install. The setup program

installs the binary files and sets the DB2 profile registry variable

DB2_ENABLE_LDAP to “YES”.

Note: For Windows, and UNIX platforms, you must explicitly enable LDAP by

setting the DB2_ENABLE_LDAP registry variable to “YES” using the

db2set command.

v (On UNIX platforms only) Declare the LDAP server’s TCP/IP host name and

(optional) port number using the following command:

 db2set DB2LDAPHOST=<base_domain_name>[:port_number]

where base_domain_name is the LDAP server’s TCP/IP hostname, and [:port] is

the port number. If a port number is not specified, DB2 will use the default

LDAP port (389).

DB2 objects are located in the LDAP base distinguished name (baseDN). You can

configure the LDAP base distinguished name on each machine by using the

DB2SET command:

 db2set DB2LDAP_BASEDN=<baseDN>

where baseDN is the name of the LDAP suffix that is defined at the LDAP server.

This LDAP suffix is used to contain DB2 objects.

v Register the current instance of the DB2 server in LDAP by using the REGISTER

LDAP AS command. For example:

 db2 register ldap as <node-name> protocol tcpip

v Run the CATALOG LDAP DATABASE command if you have databases you

would like to register in LDAP. For example:

 db2 catalog ldap database <dbname> as <alias_dbname>

v Enter the LDAP user’s distinguished name (DN) and password. These are

required only if you plan to use LDAP to store DB2 user-specific information.

 Related concepts:

588 Administration Guide: Implementation

v “DB2 registry and environment variables” in Performance Guide

 Related tasks:

v “Disabling LDAP support” on page 589

 Related reference:

v “CATALOG LDAP DATABASE command” in Command Reference

v “db2set - DB2 profile registry command” in Command Reference

v “REGISTER command” in Command Reference

Disabling LDAP support

 Procedure:

 To disable LDAP support, use the following procedure:

v For each instance of the DB2 server, deregister the DB2 server from LDAP:

 db2 deregister db2 server in ldap node <nodename>

v Set the DB2 profile registry variable DB2_ENABLE_LDAP to “NO”.

 Related tasks:

v “Declaring, showing, changing, resetting, and deleting registry and environment

variables” on page 68

v “Enabling LDAP support after installation is complete” on page 588

 Related reference:

v “DEREGISTER command” in Command Reference

LDAP support and DB2 Connect

 If LDAP support is available at the DB2 Connect gateway, and the database is not

found at the gateway database directory, then DB2 will look up LDAP and attempt

to keep the found information.

 Related concepts:

v “Lightweight Directory Access Protocol (LDAP) overview” on page 573

v “Security considerations in an LDAP environment” on page 589

Security considerations in an LDAP environment

 Before accessing information in the LDAP directory, an application or user is

authenticated by the LDAP server. The authentication process is called binding to

the LDAP server.

It is important to apply access control on the information stored in the LDAP

directory to prevent anonymous users from adding, deleting, or modifying the

information.

Access control is inherited by default and can be applied at the container level.

When a new object is created, it inherits the same security attribute as the parent

object. An administration tool available for the LDAP server can be used to define

access control for the container object.

Chapter 8. Controlling database access 589

By default, access control is defined as follows:

v For database and node entries in LDAP, everyone (or any anonymous user) has

read access. Only the Directory Administrator and the owner or creator of the

object has read/write access.

v For user profiles, the profile owner and the Directory Administrator have

read/write access. One user cannot access the profile of another user if that user

does not have Directory Administrator authority.

Note: The authorization check is always performed by the LDAP server and not

by DB2. The LDAP authorization check is not related to DB2 authorization.

An account or auth ID that has SYSADM authority may not have access to

the LDAP directory.

When running the LDAP commands or APIs, if the bind Distinguished Name

(bindDN) and password are not specified, DB2 binds to the LDAP server using the

default credentials which may not have sufficient authority to perform the

requested commands and an error will be returned.

You can explicitly specify the user’s bindDN and password using the USER and

PASSWORD clauses for the DB2 commands or APIs.

 Related concepts:

v “Security considerations for Active Directory” on page 590

Security considerations for Active Directory

 The DB2 database and node objects are created under the computer object of the

machine where the DB2 server is installed in the Active Directory. To register a

database server or catalog a database in the Active Directory, you need to have

sufficient access to create or update the objects under the computer object.

By default, objects under the computer object are readable by any authenticated

users and updateable by administrators (users that belong to the Administrators,

Domain Administrators, and Enterprise Administrators groups). To grant access for

a specific user or a group, use the Active Directory Users and Computer Management

Console (MMC) as follows:

1. Start the Active Directory Users and Computer administration tool

(Start—> Program—> Administration Tools—> Active Directory Users and

Computer)

2. Under View, select Advanced Features

3. Select the Computers container

4. Right click on the computer object that represents the server machine where

DB2 is installed and select Properties

5. Select the Security tab, then add the required access to the specified user or

group

The DB2 registry variables and CLI settings at the user level are maintained in the

DB2 property object under the user object. To set the DB2 registry variables or CLI

settings at the user level, a user needs to have sufficient access to create objects

under the User object.

590 Administration Guide: Implementation

By default, only administrators have access to create objects under the User object.

To grant access to a user to set the DB2 registry variables or CLI settings at the

user level, use the Active Directory Users and Computer Management Console

(MMC) as follows:

1. Start the Active Directory Users and Computer administration tool

(Start—> Program—> Administration Tools—> Active Directory Users and

Computer)

2. Select the user object under the Users container

3. Right click on the user object and select Properties

4. Select the Security tab

5. Add the user name to the list by using the Add button

6. Grant “Write”, and “Create All Child Objects” access

7. Using the Advanced setting, set permissions to apply onto “This object and all

child objects”

8. Select the check box “Allow inheritable permissions from parent to propagate

to this object”

 Related concepts:

v “Security considerations in an LDAP environment” on page 589

Extending the LDAP directory schema with DB2 object

classes and attributes

 The LDAP Directory Schema defines object classes and attributes for the

information stored in the LDAP directory entries. An object class consists of a set

of mandatory and optional attributes. Every entry in the LDAP directory has an

object class associated with it.

Before DB2 can store the information into LDAP, the Directory Schema for the

LDAP server must include the object classes and attributes that DB2 uses. The

process of adding new object classes and attributes to the base schema is called

extending the Directory Schema.

Note: If you are using IBM Tivoli Directory Server, all the object classes and

attributes that are required by DB2 UDB Version 8.1 and earlier are included

in the base schema. In this case, you do not have to extend the base schema

with DB2 object classes and attributes. However, there are two new

attributes for DB2 UDB Version 8.2 that are not included in the base schema.

In this case, you have to extend the base schema with the two new DB2

database attributes.

 Related concepts:

v “Extending the directory schema for IBM Tivoli Directory Server” on page 595

 Related tasks:

v “Extending the directory schema for Active Directory” on page 591

Extending the directory schema for Active Directory

 Procedure:

Chapter 8. Controlling database access 591

Before DB2 database can store information in the Active Directory, the directory

schema needs to be extended to include the new DB2 database object classes and

attributes. The process of adding new object classes and attributes to the directory

schema is called schema extension.

You must extend the schema for Active Directory by running the DB2 Schema

Installation program, db2schex before the first installation of DB2 database on any

machine that is part of a Windows domain.

The db2schex program is included on the product CD-ROM. The location of this

program on the CD-ROM is under the db2 directory, the windows subdirectory, and

the utilities subdirectory. For example:

 x:\db2\windows\utilities\

where x: is the CD-ROM drive.

The command is used as shown:

 db2schex

There are other optional clauses associated with this command:

v –b UserDN

To specify the user Distinguished Name.

v –w Password

To specify the bind password.

v –u

To uninstall the schema.

v –k

To force uninstall to continue, ignoring errors.

Notes:

1. If no UserDN and password are specified, db2schex binds as the currently

logged user.

2. The userDN clause can be specified as a Windows username.

3. To update the schema, you must be a member of the Schema Administrators

group or have been delegated the rights to update the schema.

You need to run the db2schex.exe command that comes with the DB2 UDB Version

8.2 product to extend the directory schema.

If you have run the db2schex.exe command that came with the previous version of

the DB2 database management system, when you run this same command again

that come with DB2 UDB Version 8.2, it will add the following two optional

attributes to the ibm-db2Database class:

 ibm-db2AltGwPtr

 ibm-db2NodePtr

If you have not run the db2schex.exe command that came with the previous

version of the DB2 database management system on Windows, when you run this

same command that come with DB2 Version 8.2, it will add all the classes and

attributes for DB2 database system LDAP support.

Examples:

v To install the DB2 database schema:

592 Administration Guide: Implementation

db2schex

v To install the DB2 database schema and specify a bind DN and password:

 db2schex -b "cn=A Name,dc=toronto1,dc=ibm,dc=com"

 -w password

Or,

 db2schex -b Administrator -w password

v To uninstall the DB2 database schema:

 db2schex -u

v To uninstall the DB2 database schema and ignore errors:

 db2schex -u -k

The DB2 Schema Installation program for Active Directory carries out the

following tasks:

Notes:

1. Detects which server is the Schema Master

2. Binds to the Domain Controller that is the Schema Master

3. Ensures that the user has sufficient rights to add classes and attributes to the

schema

4. Ensures that the schema master is writable (that is, the safety interlock in the

registry is removed)

5. Creates all the new attributes

6. Creates all the new object classes

7. Detects errors, and if they occur, the program will roll back any changes to the

schema.

 Related concepts:

v “Extending the LDAP directory schema with DB2 object classes and attributes”

on page 591

DB2 objects in the Active Directory

 DB2 creates objects in the Active Directory at two locations:

1. The DB2 database and node objects are created under the computer object of

the machine where the DB2 Server is installed. For the DB2 server machine that

does not belong to the Windows domain, the DB2 database and node objects

are created under the “System” container.

2. The DB2 registry variables and CLI settings at the user level are stored in the

DB2 property objects under the User object. These objects contain information

that is specific to that user.

 Related reference:

v “LDAP object classes and attributes used by DB2” on page 598

Netscape LDAP directory support and attribute definitions

 The supported level for Netscape LDAP Server is v4.12 or later.

Within Netscape LDAP Server Version 4.12 or later, the Netscape Directory Server

allows application to extend the schema by adding attribute and object class

definitions into the following two files, slapd.user_oc.conf and

slapd.user_at.conf. These two files are located in the

Chapter 8. Controlling database access 593

<Netscape_install path>\slapd-<machine_name>\config

directory.

Note: If you are using Sun One Directory Server 5.0, please refer to the topic about

extending the directory schema for the Sun One Directory Server.

The DB2 attributes must be added to the slapd.user_at.conf as follows:

 ##

 #

 # IBM DB2 Database

 # Attribute Definitions

 #

 # bin —> binary

 # ces —> case exact string

 # cis —> case insensitive string

 # dn —> distinguished name

 #

 ##

 attribute binProperty 1.3.18.0.2.4.305 bin

 attribute binPropertyType 1.3.18.0.2.4.306 cis

 attribute cesProperty 1.3.18.0.2.4.307 ces

 attribute cesPropertyType 1.3.18.0.2.4.308 cis

 attribute cisProperty 1.3.18.0.2.4.309 cis

 attribute cisPropertyType 1.3.18.0.2.4.310 cis

 attribute propertyType 1.3.18.0.2.4.320 cis

 attribute systemName 1.3.18.0.2.4.329 cis

 attribute db2nodeName 1.3.18.0.2.4.419 cis

 attribute db2nodeAlias 1.3.18.0.2.4.420 cis

 attribute db2instanceName 1.3.18.0.2.4.428 cis

 attribute db2Type 1.3.18.0.2.4.418 cis

 attribute db2databaseName 1.3.18.0.2.4.421 cis

 attribute db2databaseAlias 1.3.18.0.2.4.422 cis

 attribute db2nodePtr 1.3.18.0.2.4.423 dn

 attribute db2gwPtr 1.3.18.0.2.4.424 dn

 attribute db2additionalParameters 1.3.18.0.2.4.426 cis

 attribute db2ARLibrary 1.3.18.0.2.4.427 cis

 attribute db2authenticationLocation 1.3.18.0.2.4.425 cis

 attribute db2databaseRelease 1.3.18.0.2.4.429 cis

 attribute DCEPrincipalName 1.3.18.0.2.4.443 cis

The DB2 object classes must be added to the slapd.user_oc.conf file as follows:

IBM DB2 Database

Object Class Definitions

objectclass eProperty

 oid 1.3.18.0.2.6.90

 requires

 objectClass

 allows

 cn,

 propertyType,

 binProperty,

 binPropertyType,

 cesProperty,

 cesPropertyType,

 cisProperty,

 cisPropertyType

objectclass eApplicationSystem

594 Administration Guide: Implementation

oid 1.3.18.0.2.6.84

 requires

 objectClass,

 systemName

objectclass DB2Node

 oid 1.3.18.0.2.6.116

 requires

 objectClass,

 db2nodeName

 allows

 db2nodeAlias,

 host,

 db2instanceName,

 db2Type,

 description,

 protocolInformation

objectclass DB2Database

 oid 1.3.18.0.2.6.117

 requires

 objectClass,

 db2databaseName,

 db2nodePtr

 allows

 db2databaseAlias,

 description,

 db2gwPtr,

 db2additionalParameters,

 db2authenticationLocation,

 DCEPrincipalName,

 db2databaseRelease,

 db2ARLibrary

After adding the DB2 schema definition, the Directory Server must be restarted for

all changes to be active.

 Related concepts:

v “Extending the directory schema for Sun One Directory Server” on page 596

 Related reference:

v “LDAP object classes and attributes used by DB2” on page 598

Extending the directory schema for IBM Tivoli Directory

Server

 If you are using IBM Tivoli Directory Server, all the object classes and attributes

that are required by the DB2 database before Version 8.2 are included in the base

schema. Run the following to extend the base schema with new DB2 database

attributes introduced in Version 8.2:

 ldapmodify -c -h <machine_name>:389 -D <dn> -w <password> -f altgwnode.ldif

The following is the content of the altgwnode.ldif file:

Chapter 8. Controlling database access 595

dn: cn=schema

 changetype: modify

 add: attributetypes

 attributetypes: (

 1.3.18.0.2.4.3092

 NAME ’db2altgwPtr’

 DESC ’DN pointer to DB2 alternate gateway (node) object’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

 -

 add: ibmattributetypes

 ibmattributetypes: (

 1.3.18.0.2.4.3092

 DBNAME (’db2altgwPtr’ ’db2altgwPtr’)

 ACCESS-CLASS NORMAL

 LENGTH 1000)

 dn: cn=schema

 changetype: modify

 add: attributetypes

 attributetypes: (

 1.3.18.0.2.4.3093

 NAME ’db2altnodePtr’

 DESC ’DN pointer to DB2 alternate node object’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

 -

 add: ibmattributetypes

 ibmattributetypes: (

 1.3.18.0.2.4.3093

 DBNAME (’db2altnodePtr’ ’db2altnodePtr’)

 ACCESS-CLASS NORMAL

 LENGTH 1000)

 dn: cn=schema

 changetype: modify

 replace: objectclasses

 objectclasses: (

 1.3.18.0.2.6.117

 NAME ’DB2Database’

 DESC ’DB2 database’

 SUP cimSetting

 MUST (db2databaseName $ db2nodePtr)

 MAY (db2additionalParameters $ db2altgwPtr $ db2altnodePtr

 $ db2ARLibrary $ db2authenticationLocation $ db2databaseAlias

 $ db2databaseRelease $ db2gwPtr $ DCEPrincipalName))

The altgwnode.ldif and altgwnode.readmefiles can be found at URL:

ftp://ftp.software.ibm.com/ps/products/db2/tools/ldap

After adding the DB2 schema definition, the Directory Server must be restarted for

all changes to be active.

 Related concepts:

v “Extending the directory schema for Sun One Directory Server” on page 596

v “Extending the LDAP directory schema with DB2 object classes and attributes”

on page 591

 Related tasks:

v “Extending the directory schema for Active Directory” on page 591

Extending the directory schema for Sun One Directory Server

 The Sun One Directory Server is also known as the Netscape or iPlanet directory

server.

To have the Sun One Directory Server work in your environment, add the

60ibmdb2.ldif file to the following directory:

596 Administration Guide: Implementation

On Windows, if you have iPlanet installed in C:\iPlanet\Servers, add the above

file to .\sldap-<machine_name>\config\schema.

On UNIX, if you have iPlanet installed in /usr/iplanet/servers, add the above

file to ./slapd-<machine_name>/config/schema.

The following is the contents of the file:

 ##

 # IBM DB2 Database

 ##

 dn: cn=schema

 ##

 # Attribute Definitions (Before V8.2)

 ##

 attributetypes: (1.3.18.0.2.4.305 NAME ’binProperty’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.5 X-ORIGIN ’IBM DB2’)

 attributetypes: (1.3.18.0.2.4.306 NAME ’binPropertyType’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)

 attributetypes: (1.3.18.0.2.4.307 NAME ’cesProperty’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)

 attributetypes: (1.3.18.0.2.4.308 NAME ’cesPropertyType’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)

 attributetypes: (1.3.18.0.2.4.309 NAME ’cisProperty’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)

 attributetypes: (1.3.18.0.2.4.310 NAME ’cisPropertyType’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)

 attributetypes: (1.3.18.0.2.4.320 NAME ’propertyType’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)

 attributetypes: (1.3.18.0.2.4.329 NAME ’systemName’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

 attributetypes: (1.3.18.0.2.4.419 NAME ’db2nodeName’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

 attributetypes: (1.3.18.0.2.4.420 NAME ’db2nodeAlias’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)

 attributetypes: (1.3.18.0.2.4.428 NAME ’db2instanceName’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

 attributetypes: (1.3.18.0.2.4.418 NAME ’db2Type’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

 attributetypes: (1.3.18.0.2.4.421 NAME ’db2databaseName’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

 attributetypes: (1.3.18.0.2.4.422 NAME ’db2databaseAlias’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)

 attributetypes: (1.3.18.0.2.4.426 NAME ’db2additionalParameters’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

 attributetypes: (1.3.18.0.2.4.427 NAME ’db2ARLibrary’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

 attributetypes: (1.3.18.0.2.4.425 NAME ’db2authenticationLocation’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

 attributetypes: (1.3.18.0.2.4.429 NAME ’db2databaseRelease’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

 attributetypes: (1.3.18.0.2.4.443 NAME ’DCEPrincipalName’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

 attributetypes: (1.3.18.0.2.4.423 NAME ’db2nodePtr’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

 attributetypes: (1.3.18.0.2.4.424 NAME ’db2gwPtr’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

 ##

 # Attribute Definitions (V8.2)

 ##

 attributetypes: (1.3.18.0.2.4.3092 NAME ’db2altgwPtr’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 X-ORIGIN ’IBM DB2’)

 attributetypes: (1.3.18.0.2.4.3093 NAME ’db2altnodePtr’ SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 X-ORIGIN ’IBM DB2’)

 ##

 # Object Class Definitions

 # DB2Database for V8.2 has the above two new optional attributes.

 ##

 objectClasses: (1.3.18.0.2.6.90 NAME ’eProperty’ SUP top STRUCTURAL

 MAY (cn $ propertyType $ binProperty $ binPropertyType $ cesProperty $ cesPropertyType $ cisProperty $ cisPropertyType)

 X-ORIGIN ’IBM DB2’)

 objectClasses: (1.3.18.0.2.6.84 NAME ’eApplicationSystem’ SUP top STRUCTURAL MUST systemName

 X-ORIGIN ’IBM DB2’)

 objectClasses: (1.3.18.0.2.6.116 NAME ’DB2Node’ SUP top STRUCTURAL MUST db2nodeName

 MAY (db2instanceName $ db2nodeAlias $ db2Type $ description $ host $ protocolInformation)

 X-ORIGIN ’IBM DB2’)

 objectClasses: (1.3.18.0.2.6.117 NAME ’DB2Database’ SUP top STRUCTURAL MUST (db2databaseName $ db2nodePtr)

 MAY (db2additionalParameters $ db2altgwPtr $ db2altnodePtr $ db2ARLibrary $ db2authenticationLocation

 $ db2databaseAlias $ db2databaseRelease $ db2gwPtr $ DCEPrincipalName $ description)

 X-ORIGIN ’IBM DB2’)

The 60ibmdb2.ldif and 60ibmdb2.readmefiles can be found at URL:

ftp://ftp.software.ibm.com/ps/products/db2/tools/ldap

After adding the DB2 schema definition, the Directory Server must be restarted for

all changes to be active.

 Related concepts:

v “Extending the directory schema for IBM Tivoli Directory Server” on page 595

v “Extending the LDAP directory schema with DB2 object classes and attributes”

on page 591

 Related tasks:

v “Extending the directory schema for Active Directory” on page 591

Chapter 8. Controlling database access 597

LDAP object classes and attributes used by DB2

 The following tables describe the object classes that are used by the DB2 database

manager:

 Table 50. cimManagedElement

Class cimManagedElement

Active Directory LDAP Display Name Not applicable

Active Directory Common Name (cn) Not applicable

Description Provides a base class of many of the system management

object classes in the IBM Schema

SubClassOf top

Required Attribute(s)

Optional Attribute(s) description

Type abstract

OID (Object Identifier) 1.3.18.0.2.6.132

GUID (Global Unique Identifier) b3afd63f-5c5b-11d3-b818-002035559151

 Table 51. cimSetting

Class cimSetting

Active Directory LDAP Display Name Not applicable

Active Directory Common Name (cn) Not applicable

Description Provides a base class for configuration and settings in the

IBM Schema

SubClassOf cimManagedElement

Required Attribute(s)

Optional Attribute(s) settingID

Type abstract

OID (object identifier) 1.3.18.0.2.6.131

GUID (Global Unique Identifier) b3afd64d-5c5b-11d3-b818-002035559151

 Table 52. eProperty

Class eProperty

Active Directory LDAP Display Name ibm-eProperty

Active Directory Common Name (cn) ibm-eProperty

Description Used to specify any application specific settings for user

preference properties

SubClassOf cimSetting

Required Attribute(s)

598 Administration Guide: Implementation

Table 52. eProperty (continued)

Class eProperty

Optional Attribute(s) propertyType

cisPropertyType

cisProperty

cesPropertyType

cesProperty

binPropertyType

binProperty

Type structural

OID (object identifier) 1.3.18.0.2.6.90

GUID (Global Unique Identifier) b3afd69c-5c5b-11d3-b818-002035559151

 Table 53. DB2Node

Class DB2Node

Active Directory LDAP Display Name ibm-db2Node

Active Directory Common Name (cn) ibm-db2Node

Description Represents a DB2 Server

SubClassOf eSap / ServiceConnectionPoint

Required Attribute(s) db2nodeName

Optional Attribute(s) db2nodeAlias

db2instanceName

db2Type

host / dNSHostName (see Note 2)

protocolInformation/ServiceBindingInformation

Type structural

OID (object identifier) 1.3.18.0.2.6.116

GUID (Global Unique Identifier) b3afd65a-5c5b-11d3-b818-002035559151

Special Notes 1. The DB2Node class is derived from eSap object class

under IBM Tivoli Directory Server and from

ServiceConnectionPoint object class under Microsoft

Active Directory.

2. The host is used under the IBM Tivoli Directory

Server environment. The dNSHostName attribute is

used under Microsoft Active Directory.

3. The protocolInformation is only used under the IBM

Tivoli Directory Server environment. For Microsoft

Active Directory, the attribute

ServiceBindingInformation, inherited from the

ServiceConnectionPoint class, is used to contain the

protocol information.

Chapter 8. Controlling database access 599

The protocolInformation (in IBM Tivoli Directory Server) or ServiceBindingInformation

(in Microsoft Active Directory) attribute in the DB2Node object contains the

communication protocol information to bind the DB2 database server. It consists of

tokens that describe the network protocol supported. Each token is separated by a

semicolon. There is no space between the tokens. An asterisk (*) may be used to

specify an optional parameter.

The tokens for TCP/IP are:

v “TCPIP”

v Server hostname or IP address

v Service name (svcename) or port number (e.g. 50000)

v (Optional) security (“NONE” or “SOCKS”)

The tokens for APPN are:

v “APPN”

v Network ID

v Partner LU

v Transaction Program (TP) Name (Support Application TP only, does not support

Service TP – TP in HEX)

v Mode

v Security (either “NONE”, “SAME”, or “PROGRAM”)

v (Optional) LAN adapter address

v (Optional) Change password LU

Note: On a DB2 client for Windows, if the APPN information is not configured on

the local SNA stack; and, if the LAN adapter address and optional change

password LU are found in LDAP, then the DB2 client tries to use this

information to configure the SNA stack if it knows how to configure the

stack.

The tokens for NetBIOS are:

v “NETBIOS”

v Server NetBIOS workstation name

The tokens for Named Pipe are:

v “NPIPE”

v Computer name of the server

v Instance name of the server

 Table 54. DB2Database

Class DB2Database

Active Directory LDAP Display Name ibm-db2Database

Active Directory Common Name (cn) ibm-db2Database

Description Represents a DB2 database

SubClassOf top

Required Attribute(s) db2databaseName

db2nodePtr

600 Administration Guide: Implementation

Table 54. DB2Database (continued)

Class DB2Database

Optional Attribute(s) db2databaseAlias

db2additionalParameter

db2ARLibrary

db2authenticationLocation

db2gwPtr

db2databaseRelease

DCEPrincipalName

db2altgwPtr

db2altnodePtr

Type structural

OID (object identifier) 1.3.18.0.2.6.117

GUID (Global Unique Identifier) b3afd659-5c5b-11d3-b818-002035559151

 Table 55. db2additionalParameters

Attribute db2additionalParameters

Active Directory LDAP Display Name ibm-db2AdditionalParameters

Active Directory Common Name (cn) ibm-db2AdditionalParameters

Description Contains any additional parameters used when

connecting to the host database server

Syntax Case Ignore String

Maximum Length 1024

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.426

GUID (Global Unique Identifier) b3afd315-5c5b-11d3-b818-002035559151

 Table 56. db2authenticationLocation

Attribute db2authenticationLocation

Active Directory LDAP Display Name ibm-db2AuthenticationLocation

Active Directory Common Name (cn) ibm-db2AuthenticationLocation

Description Specifies where authentication takes place

Syntax Case Ignore String

Maximum Length 64

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.425

GUID (Global Unique Identifier) b3afd317-5c5b-11d3-b818-002035559151

Notes Valid values are: CLIENT, SERVER, DCS, DCE,

KERBEROS, SVRENCRYPT, or DCSENCRYPT

Chapter 8. Controlling database access 601

Table 57. db2ARLibrary

Attribute db2ARLibrary

Active Directory LDAP Display Name ibm-db2ARLibrary

Active Directory Common Name (cn) ibm-db2ARLibrary

Description Name of the Application Requestor library

Syntax Case Ignore String

Maximum Length 256

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.427

GUID (Global Unique Identifier) b3afd316-5c5b-11d3-b818-002035559151

 Table 58. db2databaseAlias

Attribute db2databaseAlias

Active Directory LDAP Display Name ibm-db2DatabaseAlias

Active Directory Common Name (cn) ibm-db2DatabaseAlias

Description Database alias name(s)

Syntax Case Ignore String

Maximum Length 1024

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.422

GUID (Global Unique Identifier) b3afd318-5c5b-11d3-b818-002035559151

 Table 59. db2databaseName

Attribute db2databaseName

Active Directory LDAP Display Name ibm-db2DatabaseName

Active Directory Common Name (cn) ibm-db2DatabaseName

Description Database name

Syntax Case Ignore String

Maximum Length 1024

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.421

GUID (Global Unique Identifier) b3afd319-5c5b-11d3-b818-002035559151

 Table 60. db2databaseRelease

Attribute db2databaseRelease

Active Directory LDAP Display Name ibm-db2DatabaseRelease

Active Directory Common Name (cn) ibm-db2DatabaseRelease

Description Database release number

Syntax Case Ignore String

Maximum Length 64

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.429

602 Administration Guide: Implementation

Table 60. db2databaseRelease (continued)

Attribute db2databaseRelease

GUID (Global Unique Identifier) b3afd31a-5c5b-11d3-b818-002035559151

 Table 61. db2nodeAlias

Attribute db2nodeAlias

Active Directory LDAP Display Name ibm-db2NodeAlias

Active Directory Common Name (cn) ibm-db2NodeAlias

Description Node alias name(s)

Syntax Case Ignore String

Maximum Length 1024

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.420

GUID (Global Unique Identifier) b3afd31d-5c5b-11d3-b818-002035559151

 Table 62. db2nodeName

Attribute db2nodeName

Active Directory LDAP Display Name ibm-db2NodeName

Active Directory Common Name (cn) ibm-db2NodeName

Description Node name

Syntax Case Ignore String

Maximum Length 64

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.419

GUID (Global Unique Identifier) b3afd31e-5c5b-11d3-b818-002035559151

 Table 63. db2nodePtr

Attribute db2nodePtr

Active Directory LDAP Display Name ibm-db2NodePtr

Active Directory Common Name (cn) ibm-db2NodePtr

Description Pointer to the Node (DB2Node) object that represents the

database server which owns the database

Syntax Distinguished Name

Maximum Length 1000

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.423

GUID (Global Unique Identifier) b3afd31f-5c5b-11d3-b818-002035559151

Special Notes This relationship allows the client to retrieve protocol

communication information to connect to the database

 Table 64. db2altnodePtr

Attribute db2altnodePtr

Active Directory LDAP Display Name ibm-db2AltNodePtr

Chapter 8. Controlling database access 603

Table 64. db2altnodePtr (continued)

Attribute db2altnodePtr

Active Directory Common Name (cn) ibm-db2AltNodePtr

Description Pointer to the Node (DB2Node) object that represents the

alternate database server

Syntax Distinguished Name

Maximum Length 1000

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.3093

GUID (Global Unique Identifier) 5694e266-2059-4e32-971e-0778909e0e72

 Table 65. db2gwPtr

Attribute db2gwPtr

Active Directory LDAP Display Name ibm-db2GwPtr

Active Directory Common Name (cn) ibm-db2GwPtr

Description Pointer to the Node object that represents the gateway

server and from which the database can be accessed

Syntax Distinguished Name

Maximum Length 1000

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.424

GUID (Global Unique Identifier) b3afd31b-5c5b-11d3-b818-002035559151

 Table 66. db2altgwPtr

Attribute db2altgwPtr

Active Directory LDAP Display Name ibm-db2AltGwPtr

Active Directory Common Name (cn) ibm-db2AltGwPtr

Description Pointer to the Node object that represents the alternate

gateway server

Syntax Distinguished Name

Maximum Length 1000

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.3092

GUID (Global Unique Identifier) 70ab425d-65cc-4d7f-91d8-084888b3a6db

 Table 67. db2instanceName

Attribute db2instanceName

Active Directory LDAP Display Name ibm-db2InstanceName

Active Directory Common Name (cn) ibm-db2InstanceName

Description The name of the database server instance

Syntax Case Ignore String

Maximum Length 256

Multi-Valued Single-valued

604 Administration Guide: Implementation

Table 67. db2instanceName (continued)

Attribute db2instanceName

OID (object identifier) 1.3.18.0.2.4.428

GUID (Global Unique Identifier) b3afd31c-5c5b-11d3-b818-002035559151

 Table 68. db2Type

Attribute db2Type

Active Directory LDAP Display Name ibm-db2Type

Active Directory Common Name (cn) ibm-db2Type

Description Type of the database server

Syntax Case Ignore String

Maximum Length 64

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.418

GUID (Global Unique Identifier) b3afd320-5c5b-11d3-b818-002035559151

Notes Valid types for database server are: SERVER, MPP, and

DCS

 Table 69. DCEPrincipalName

Attribute DCEPrincipalName

Active Directory LDAP Display Name ibm-DCEPrincipalName

Active Directory Common Name (cn) ibm-DCEPrincipalName

Description DCE principal name

Syntax Case Ignore String

Maximum Length 2048

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.443

GUID (Global Unique Identifier) b3afd32d-5c5b-11d3-b818-002035559151

 Table 70. cesProperty

Attribute cesProperty

Active Directory LDAP Display Name ibm-cesProperty

Active Directory Common Name (cn) ibm-cesProperty

Description Values of this attribute may be used to provide

application-specific preference configuration parameters.

For example, a value may contain XML-formatted data.

All values of this attribute must be homogeneous in the

cesPropertyType attribute value.

Syntax Case Exact String

Maximum Length 32700

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.307

GUID (Global Unique Identifier) b3afd2d5-5c5b-11d3-b818-002035559151

Chapter 8. Controlling database access 605

Table 71. cesPropertyType

Attribute cesPropertyType

Active Directory LDAP Display Name ibm-cesPropertyType

Active Directory Common Name (cn) ibm-cesPropertyType

Description Values of this attribute may be used to describe the

syntax, semantics, or other characteristics of all of the

values of the cesProperty attribute. For example, a value

of “XML” might be used to indicate that all the values of

the cesProperty attribute are encoded as XML syntax.

Syntax Case Ignore String

Maximum Length 128

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.308

GUID (Global Unique Identifier) b3afd2d6-5c5b-11d3-b818-002035559151

 Table 72. cisProperty

Attribute cisProperty

Active Directory LDAP Display Name ibm-cisProperty

Active Directory Common Name (cn) ibm-cisProperty

Description Values of this attribute may be used to provide

application-specific preference configuration parameters.

For example, a value may contain an INI file. All values

of this attribute must be homogeneous in their

cisPropertyType attribute value.

Syntax Case Ignore String

Maximum Length 32700

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.309

GUID (Global Unique Identifier) b3afd2e0-5c5b-11d3-b818-002035559151

 Table 73. cisPropertyType

Attribute cisPropertyType

Active Directory LDAP Display Name ibm-cisPropertyType

Active Directory Common Name (cn) ibm-cisPropertyType

Description Values of this attribute may be used to describe the

syntax, semantics, or other characteristics of all of the

values of the cisProperty attribute. For example, a value

of “INI File” might be used to indicate that all the values

of the cisProperty attribute are INI files.

Syntax Case Ignore String

Maximum Length 128

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.310

GUID (Global Unique Identifier) b3afd2e1-5c5b-11d3-b818-002035559151

606 Administration Guide: Implementation

Table 74. binProperty

Attribute binProperty

Active Directory LDAP Display Name ibm-binProperty

Active Directory Common Name (cn) ibm-binProperty

Description Values of this attribute may be used to provide

application-specific preference configuration parameters.

For example, a value may contain a set of

binary-encoded Lotus 123 properties. All values of this

attribute must be homogeneous in their binPropertyType

attribute values.

Syntax binary

Maximum Length 250000

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.305

GUID (Global Unique Identifier) b3afd2ba-5c5b-11d3-b818-002035559151

 Table 75. binPropertyType

Attribute binPropertyType

Active Directory LDAP Display Name ibm-binPropertyType

Active Directory Common Name (cn) ibm-binPropertyType

Description Values of this attribute may be used to describe the

syntax, semantics, or other characteristics of all of the

values of the binProperty attribute. For example, a value

of “Lotus 123” might be used to indicate that all the

values of the binProperty attribute are binary-encoded

Lotus 123 properties.

Syntax Case Ignore String

Maximum Length 128

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.306

GUID (Global Unique Identifier) b3afd2bb-5c5b-11d3-b818-002035559151

 Table 76. PropertyType

Attribute PropertyType

Active Directory LDAP Display Name ibm-propertyType

Active Directory Common Name (cn) ibm-propertyType

Description Values of this attribute describe the semantic

characteristics of the eProperty object

Syntax Case Ignore String

Maximum Length 128

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.320

GUID (Global Unique Identifier) b3afd4ed-5c5b-11d3-b818-002035559151

Chapter 8. Controlling database access 607

Table 77. settingID

Attribute settingID

Active Directory LDAP Display Name Not applicable

Active Directory Common Name (cn) Not applicable

Description A naming attribute that may be used to identify the

cimSetting derived object entries such as eProperty

Syntax Case Ignore String

Maximum Length 256

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.325

GUID (Global Unique Identifier) b3afd596-5c5b-11d3-b818-002035559151

 Related concepts:

v “Lightweight Directory Access Protocol (LDAP) overview” on page 573

Tasks and required authorizations

 Not all organizations divide job responsibilities in the same manner. Table 78 lists

some other common job titles, the tasks that usually accompany them, and the

authorities or privileges that are needed to carry out those tasks.

 Table 78. Common Job Titles, Tasks, and Required Authorization

JOB TITLE TASKS REQUIRED AUTHORIZATION

Department Administrator Oversees the departmental system;

creates databases

SYSCTRL authority. SYSADM

authority if the department has its

own instance.

Security Administrator Authorizes other users for some or

all authorizations and privileges

SYSADM or DBADM authority.

Database Administrator Designs, develops, operates,

safeguards, and maintains one or

more databases

DBADM and SYSMAINT authority

over one or more databases.

SYSCTRL authority in some cases.

System Operator Monitors the database and carries out

backup functions

SYSMAINT authority.

Application Programmer Develops and tests the database

manager application programs; may

also create tables of test data

BINDADD, BIND on an existing

package, CONNECT and

CREATETAB on one or more

databases, some specific schema

privileges, and a list of privileges on

some tables.

CREATE_EXTERNAL_ROUTINE

may also be required.

User Analyst Defines the data requirements for an

application program by examining

the system catalog views

SELECT on the catalog views;

CONNECT on one or more

databases.

Program End User Executes an application program EXECUTE on the package;

CONNECT on one or more

databases. See the note following this

table.

608 Administration Guide: Implementation

Table 78. Common Job Titles, Tasks, and Required Authorization (continued)

JOB TITLE TASKS REQUIRED AUTHORIZATION

Information Center Consultant Defines the data requirements for a

query user; provides the data by

creating tables and views and by

granting access to database objects

DBADM authority over one or more

databases.

Query User Issues SQL statements to retrieve,

add, delete, or change data; may save

results as tables

CONNECT on one or more

databases; CREATEIN on the schema

of the tables and views being created;

and, SELECT, INSERT, UPDATE,

DELETE on some tables and views.

Note: If an application program contains dynamic SQL statements, the Program

End User may need other privileges in addition to EXECUTE and

CONNECT (such as SELECT, INSERT, DELETE, and UPDATE).

 Related concepts:

v “Database administration authority (DBADM)” on page 509

v “Database authorities” on page 511

v “LOAD authority” on page 511

v “System administration authority (SYSADM)” on page 506

v “System control authority (SYSCTRL)” on page 507

v “System maintenance authority (SYSMAINT)” on page 508

 Related tasks:

v “Granting privileges” on page 519

v “Revoking privileges” on page 521

Using the system catalog for security issues

 Information about each database is automatically maintained in a set of views

called the system catalog, which is created when the database is created. This

system catalog describes tables, columns, indexes, programs, privileges, and other

objects.

The following views and table functions list information about privileges held by

users, identities of users granting privileges, and object ownership:

SYSCAT.DBAUTH Lists the database privileges

SYSCAT.TABAUTH Lists the table and view privileges

SYSCAT.COLAUTH Lists the column privileges

SYSCAT.PACKAGEAUTH Lists the package privileges

SYSCAT.INDEXAUTH Lists the index privileges

SYSCAT.SCHEMAAUTH Lists the schema privileges

SYSCAT.PASSTHRUAUTH Lists the server privilege

SYSCAT.ROUTINEAUTH Lists the routine (functions, methods, and stored

procedures) privileges

Chapter 8. Controlling database access 609

SYSCAT.SURROGATEAUTHIDS

Lists the authorization IDs for which another

authorization ID can act as a surrogate.

 Privileges granted to users by the system will have SYSIBM as the grantor.

SYSADM, SYSMAINT SYSCTRL, and SYSMON are not listed in the system

catalog.

The CREATE and GRANT statements place privileges in the system catalog. Users

with SYSADM and DBADM authorities can grant and revoke SELECT privilege on

the system catalog views.

 Related tasks:

v “Retrieving all names with DBADM authority” on page 611

v “Retrieving all privileges granted to users” on page 613

v “Retrieving authorization names with granted privileges” on page 610

v “Retrieving names authorized to access a table” on page 612

v “Securing the system catalog view” on page 613

 Related reference:

v “SYSCAT.COLAUTH catalog view” in SQL Reference, Volume 1

v “SYSCAT.DBAUTH catalog view” in SQL Reference, Volume 1

v “SYSCAT.INDEXAUTH catalog view” in SQL Reference, Volume 1

v “SYSCAT.PACKAGEAUTH catalog view” in SQL Reference, Volume 1

v “SYSCAT.PASSTHRUAUTH catalog view” in SQL Reference, Volume 1

v “SYSCAT.ROUTINEAUTH catalog view” in SQL Reference, Volume 1

v “SYSCAT.SCHEMAAUTH catalog view” in SQL Reference, Volume 1

v “SYSCAT.TABAUTH catalog view” in SQL Reference, Volume 1

Details on using the system catalog for security issues

This section reviews some of the ways to determine who has what privileges

within the database.

Retrieving authorization names with granted privileges

 Procedure:

 Starting with version 9.1 of the DB2 database manager, you can use the

PRIVILEGES and other administrative views to retrieve information about the

authorization names that have been granted privileges in a database. For example,

the following query retrieves all explicit privileges and the authorization IDs to

which they were granted, plus other information, from the PRIVILEGES

administrative view:

SELECT AUTHID, PRIVILEGE, OBJECTNAME, OBJECTSCHEMA, OBJECTTYPE FROM SYSIBMADM.PRIVILEGES

The following query uses the AUTHORIZATIONIDS administrative view to find

all the authorization IDs that have been granted privileges or authorities, and to

show their types:

SELECT AUTHID, AUTHIDTYPE FROM SYSIBMADM.AUTHORIZATIONIDS

610 Administration Guide: Implementation

You can also use the SYSIBMADM.OBJECTOWNERS administrative view and the

SYSPROC.AUTH_LIST_GROUPS_FOR_AUTHID table function to find

security-related information.

Prior to version 9.1, no single system catalog view contained information about all

privileges. For releases earlier than version 9.1, the following statement retrieves all

authorization names with privileges:

 SELECT DISTINCT GRANTEE, GRANTEETYPE, ’DATABASE’ FROM SYSCAT.DBAUTH

 UNION

 SELECT DISTINCT GRANTEE, GRANTEETYPE, ’TABLE ’ FROM SYSCAT.TABAUTH

 UNION

 SELECT DISTINCT GRANTEE, GRANTEETYPE, ’PACKAGE ’ FROM SYSCAT.PACKAGEAUTH

 UNION

 SELECT DISTINCT GRANTEE, GRANTEETYPE, ’INDEX ’ FROM SYSCAT.INDEXAUTH

 UNION

 SELECT DISTINCT GRANTEE, GRANTEETYPE, ’COLUMN ’ FROM SYSCAT.COLAUTH

 UNION

 SELECT DISTINCT GRANTEE, GRANTEETYPE, ’SCHEMA ’ FROM SYSCAT.SCHEMAAUTH

 UNION

 SELECT DISTINCT GRANTEE, GRANTEETYPE, ’SERVER ’ FROM SYSCAT.PASSTHRUAUTH

 ORDER BY GRANTEE, GRANTEETYPE, 3

Periodically, the list retrieved by this statement should be compared with lists of

user and group names defined in the system security facility. You can then identify

those authorization names that are no longer valid.

Note: If you are supporting remote database clients, it is possible that the

authorization name is defined at the remote client only and not on your

database server machine.

 Related concepts:

v “Using the system catalog for security issues” on page 609

 Related reference:

v “AUTH_LIST_GROUPS_FOR_AUTHID table function – Retrieve group

membership list for a given authorization ID” in Administrative SQL Routines and

Views

v “AUTHORIZATIONIDS administrative view – Retrieve authorization IDs and

types” in Administrative SQL Routines and Views

v “OBJECTOWNERS administrative view – Retrieve object ownership

information” in Administrative SQL Routines and Views

v “PRIVILEGES administrative view – Retrieve privilege information” in

Administrative SQL Routines and Views

Retrieving all names with DBADM authority

 Procedure:

 The following statement retrieves all authorization names that have been directly

granted DBADM authority:

 SELECT DISTINCT GRANTEE, GRANTEETYPE FROM SYSCAT.DBAUTH

 WHERE DBADMAUTH = ’Y’

Note: This query will not return information about authorization names that

acquired DBADM authority implicitly by having SYSADM authority.

Chapter 8. Controlling database access 611

Related concepts:

v “Database administration authority (DBADM)” on page 509

v “Using the system catalog for security issues” on page 609

Retrieving names authorized to access a table

 Procedure:

 Starting with version 9.1 of the DB2 database manager, you can use the

PRIVILEGES and other administrative views to retrieve information about the

authorization names that have been granted privileges in a database. The following

statement retrieves all authorization names (and their types) that are directly

authorized to access the table EMPLOYEE with the qualifier JAMES:

SELECT DISTINCT AUTHID, AUTHIDTYPE FROM SYSIBMADM.PRIVILEGES

 WHERE OBJECTNAME = ’EMPLOYEE’ AND OBJECTSCHEMA = ’JAMES’

For releases earlier than version 9.1, the following query retrieves the same

information:

 SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.TABAUTH

 WHERE TABNAME = ’EMPLOYEE’

 AND TABSCHEMA = ’JAMES’

 UNION

 SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.COLAUTH

 WHERE TABNAME = ’EMPLOYEE’

 AND TABSCHEMA = ’JAMES’

To find out who can update the table EMPLOYEE with the qualifier JAMES, issue

the following statement:

 SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.TABAUTH

 WHERE TABNAME = ’EMPLOYEE’ AND TABSCHEMA = ’JAMES’ AND

 (CONTROLAUTH = ’Y’ OR

 UPDATEAUTH IN (’G’,’Y’))

 UNION

 SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.DBAUTH

 WHERE DBADMAUTH = ’Y’

 UNION

 SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.COLAUTH

 WHERE TABNAME = ’EMPLOYEE’ AND TABSCHEMA = ’JAMES’ AND

 PRIVTYPE = ’U’

This retrieves any authorization names with DBADM authority, as well as those

names to which CONTROL or UPDATE privileges have been directly granted.

However, it will not return the authorization names of users who only hold

SYSADM authority.

Remember that some of the authorization names may be groups, not just

individual users.

 Related concepts:

v “Table and view privileges” on page 515

v “Using the system catalog for security issues” on page 609

 Related reference:

v “PRIVILEGES administrative view – Retrieve privilege information” in

Administrative SQL Routines and Views

612 Administration Guide: Implementation

Retrieving all privileges granted to users

 Procedure:

 By making queries on the system catalog views, users can retrieve a list of the

privileges they hold and a list of the privileges they have granted to other users.

Starting with version 9.1 of the DB2 database manager, you can use the

PRIVILEGES and other administrative views to retrieve information about the

authorization names that have been granted privileges in a database. For example,

the following query retrieves all the privileges granted to the current session

authorization ID:

SELECT * FROM SYSIBMADM.PRIVILEGES

 WHERE AUTHID = SESSION_USER AND AUTHIDTYPE = ’U’

The keyword SESSION_USER in this statement is a special register that is equal to

the value of the current user’s authorization name.

For releases earlier than version 9.1, the following examples provide similar

information. For example, the following statement retrieves a list of the database

privileges that have been directly granted to the individual authorization name

JAMES:

 SELECT * FROM SYSCAT.DBAUTH

 WHERE GRANTEE = ’JAMES’ AND GRANTEETYPE = ’U’

The following statement retrieves a list of the table privileges that were directly

granted by the user JAMES:

 SELECT * FROM SYSCAT.TABAUTH

 WHERE GRANTOR = ’JAMES’

The following statement retrieves a list of the individual column privileges that

were directly granted by the user JAMES:

 SELECT * FROM SYSCAT.COLAUTH

 WHERE GRANTOR = ’JAMES’

 Related concepts:

v “Database authorities” on page 511

v “Authorization, privileges, and object ownership” on page 501

v “Using the system catalog for security issues” on page 609

 Related tasks:

v “Granting privileges” on page 519

v “Revoking privileges” on page 521

 Related reference:

v “PRIVILEGES administrative view – Retrieve privilege information” in

Administrative SQL Routines and Views

Securing the system catalog view

 As the system catalog views describe every object in the database, if you have

sensitive data, you might want to restrict their access. Starting with version 9.1 of

the DB2 database manager, you can use the CREATE DATABASE ... RESTRICTIVE

command to create a database in which no privileges are automatically granted to

PUBLIC. In this case, none of the following normal default grant actions occur:

Chapter 8. Controlling database access 613

v CREATETAB

v BINDADD

v CONNECT

v IMPLSCHEMA

v EXECUTE with GRANT on all procedures in schema SQLJ

v EXECUTE with GRANT on all functions and procedures in schema SYSPROC

v BIND on all packages created in the NULLID schema

v EXECUTE on all packages created in the NULLID schema

v CREATEIN on schema SQLJ

v CREATEIN on schema NULLID

v USE on table space USERSPACE1

v SELECT access to the SYSIBM catalog tables

v SELECT access to the SYSCAT catalog views

v SELECT access to the SYSIBMADM administrative views

v SELECT access to the SYSSTAT catalog views

v UPDATE access to the SYSSTAT catalog views

If you have created a database using the RESTRICTIVE option, and you want to

check that the permissions granted to PUBLIC are limited, you can issue the

following query to verify which schemas PUBLIC can access:

SELECT DISTINCT OBJECTSCHEMA FROM SYSIBMADM.PRIVILEGES WHERE AUTHID=’PUBLIC’

OBJECTSCHEMA

SYSFUN

SYSIBM

SYSPROC

To see what access PUBLIC still has to SYSIBM, you can issue the following query

to check what privileges are granted on SYSIBM. The results show that only

EXECUTE on certain procedures and functions is granted.

SELECT * FROM SYSIBMADM.PRIVILEGES WHERE OBJECTSCHEMA = ’SYSIBM’

AUTHID AUTHIDTYPE PRIVILEGE GRANTABLE OBJECTNAME OBJECTSCHEMA OBJECTTYPE

---------... ---------- ---------- --------- ---------------... ------------... ----------

PUBLIC G EXECUTE N SQL060207192129400 SYSPROC FUNCTION

PUBLIC G EXECUTE N SQL060207192129700 SYSPROC FUNCTION

PUBLIC G EXECUTE N SQL060207192129701 SYSPROC

...

PUBLIC G EXECUTE Y TABLES SYSIBM PROCEDURE

PUBLIC G EXECUTE Y TABLEPRIVILEGES SYSIBM PROCEDURE

PUBLIC G EXECUTE Y STATISTICS SYSIBM PROCEDURE

PUBLIC G EXECUTE Y SPECIALCOLUMNS SYSIBM PROCEDURE

PUBLIC G EXECUTE Y PROCEDURES SYSIBM PROCEDURE

PUBLIC G EXECUTE Y PROCEDURECOLS SYSIBM PROCEDURE

PUBLIC G EXECUTE Y PRIMARYKEYS SYSIBM PROCEDURE

PUBLIC G EXECUTE Y FOREIGNKEYS SYSIBM PROCEDURE

PUBLIC G EXECUTE Y COLUMNS SYSIBM PROCEDURE

PUBLIC G EXECUTE Y COLPRIVILEGES SYSIBM PROCEDURE

PUBLIC G EXECUTE Y UDTS SYSIBM PROCEDURE

PUBLIC G EXECUTE Y GETTYPEINFO SYSIBM PROCEDURE

PUBLIC G EXECUTE Y SQLCAMESSAGE SYSIBM PROCEDURE

PUBLIC G EXECUTE Y SQLCAMESSAGECCSID SYSIBM PROCEDURE

Note: The SYSIBMADM.PRIVILEGES administrative view is available starting

with version 9.1 of the DB2 database manager.

614 Administration Guide: Implementation

Procedure for releases earlier than version 9.1:

 For releases earlier than version 9.1 of the DB2 database manager, during database

creation, SELECT privilege on the system catalog views is granted to PUBLIC. In

most cases, this does not present any security problems. For very sensitive data,

however, it may be inappropriate, as these tables describe every object in the

database. If this is the case, consider revoking the SELECT privilege from PUBLIC;

then grant the SELECT privilege as required to specific users. Granting and

revoking SELECT on the system catalog views is done in the same way as for any

view, but you must have either SYSADM or DBADM authority to do this.

At a minimum, if you don’t want any user to be able to know what objects other

users have access to, you should consider restricting access to the following catalog

and administrative views:

v SYSCAT.COLAUTH

v SYSCAT.DBAUTH

v SYSCAT.INDEXAUTH

v SYSCAT.PACKAGEAUTH

v SYSCAT.PASSTHRUAUTH

v SYSCAT.ROUTINEAUTH

v SYSCAT.SCHEMAAUTH

v SYSCAT.SECURITYLABELACCESS

v SYSCAT.SECURITYPOLICYEXEMPTIONS

v SYSCAT.SEQUENCEAUTH

v SYSCAT.SURROGATEAUTHIDS

v SYSCAT.TABAUTH

v SYSCAT.TBSPACEAUTH

v SYSCAT.XSROBJECTAUTH

v SYSIBMADM.AUTHORIZATIONIDS

v SYSIBMADM.OBJECTOWNERS

v SYSIBMADM.PRIVILEGES

This would prevent information on user privileges from becoming available to

everyone with access to the database.

You should also examine the columns for which statistics are gathered. Some of the

statistics recorded in the system catalog contain data values which could be

sensitive information in your environment. If these statistics contain sensitive data,

you may wish to revoke SELECT privilege from PUBLIC for the

SYSCAT.COLUMNS and SYSCAT.COLDIST catalog views.

If you wish to limit access to the system catalog views, you could define views to

let each authorization name retrieve information about its own privileges.

For example, the following view MYSELECTS includes the owner and name of

every table on which a user’s authorization name has been directly granted

SELECT privilege:

 CREATE VIEW MYSELECTS AS

 SELECT TABSCHEMA, TABNAME FROM SYSCAT.TABAUTH

 WHERE GRANTEETYPE = ’U’

 AND GRANTEE = USER

 AND SELECTAUTH = ’Y’

Chapter 8. Controlling database access 615

The keyword USER in this statement is equal to the value of the current session

authorization name.

The following statement makes the view available to every authorization name:

 GRANT SELECT ON TABLE MYSELECTS TO PUBLIC

And finally, remember to revoke SELECT privilege on the view and base table by

issuing the following two statements:

 REVOKE SELECT ON TABLE SYSCAT.TABAUTH FROM PUBLIC

 REVOKE SELECT ON TABLE SYSIBM.SYSTABAUTH FROM PUBLIC

 Related concepts:

v “Catalog statistics” in Performance Guide

v “Database authorities” on page 511

v “Using the system catalog for security issues” on page 609

 Related tasks:

v “Granting privileges” on page 519

v “Revoking privileges” on page 521

 Related reference:

v “CREATE DATABASE command” in Command Reference

v “PRIVILEGES administrative view – Retrieve privilege information” in

Administrative SQL Routines and Views

Security considerations

1. Gaining Access to Data through Indirect Means

The following are indirect means through which users can gain access to data

they might not be authorized for:

v Catalog views: The DB2 database system catalog views store metadata and

statistics about database objects. Users with SELECT access to the catalog

views can gain some knowledge about data that they might not be qualified

for. For better security, make sure that only qualified users have access to the

catalog views.

Note: In DB2 Universal Database V8 or earlier, SELECT access on the catalog

views was granted to PUBLIC by default. In DB2 V9.1 database

systems, users can choose whether SELECT access to the catalog views

is granted to PUBLIC or not by using the new RESTRICTIVE option

on the CREATE DATABASE command.

v Visual explain: Visual explain shows the access plan chosen by the query

optimizer for a particular query. The visual explain information also includes

statistics about columns referenced in the query. These statistics can reveal

information about a table's contents.

v Explain snapshot: The explain snapshot is compressed information that is

collected when an SQL or XQuery statement is explained. It is stored as a

binary large object (BLOB) in the EXPLAIN_STATEMENT table, and contains

column statistics that can reveal information about table data. For better

security, access to the explain tables should be granted to qualified users

only.

v Log reader functions: A user authorized to run a function that reads the logs

can gain access to data they might not be authorized for if they are able to

616 Administration Guide: Implementation

understand the format of a log record. These functions read the logs:

 Function Authority needed in order to execute the function

db2ReadLog SYSADM or DBADM

db2ReadLogNoConn None.

v Replication: When you replicate data, even the protected data is reproduced

at the target location. For better security, make sure that the target location is

at least as secure as the source location.

v Exception tables: When you specify an exception table while loading data

into a table, users with access to the exception table can gain information

that they might not be authorized for. For better security, only grant access to

the exception table to authorized users and drop the exception table as soon

as you are done with it.

v Backup table space or database: Users with the authority to run the backup

command can take a backup of a database or a table space, including any

protected data, and restore the data somewhere else. The backup can include

data that the user might not otherwise have access to.

The backup command can be executed by users with SYSADM, SYSCTRL, or

SYSMAINT authority.

v Set session authorization: In DB2 Universal Database V8 or earlier a user

with DBADM authority could use the SET SESSION AUTHORIZATION SQL

statement to set the session authorization ID to any database user. In DB2

V9.1 database systems a user must be explicitly authorized through the

GRANT SETSESSIONUSER statement before they can set the session

authorization ID.

When migrating an existing database to a DB2 V9.1 database system,

however, a user with existing explicit DBADM authority (for example.

granted in SYSCAT.DBAUTH) will keep the ability to set the session

authorization to any database user. This is allowed so that existing

applications will continue to work. Being able to set the session authorization

potentially allows access to all protected data. For more restrictive security,

you can override this setting by executing the REVOKE SETSESSIONUSER

SQL statement.

v Statement and deadlock monitoring: As part of the deadlock monitoring

activity of DB2 database management systems, values associated with

parameter markers are written to the monitoring output when the WITH

VALUES clause is specified. A user with access to the monitoring output can

gain access to information for which they might not be authorized.

v Traces: A trace can contain table data. A user with access to such a trace can

gain access to information that they might not be authorized for.

v Dump files: To help in debugging certain problems, DB2 database products

might generate memory dump files in the sqllib\db2dump directory. These

memory dump files might contain table data. If they do, users with access to

the files can gain access to information that they might not be authorized for.

For better security you should limit access to the sqllib\db2dump directory.

v db2dart: The db2dart tool examines a database and reports any architectural

errors that it finds. The tool can access table data and DB2 does not enforce

access control for that access. A user with the authority to run the db2dart

tool or with access to the db2dart output can gain access to information that

they might not be authorized for.

Chapter 8. Controlling database access 617

v REOPT bind option: When the REOPT bind option is specified, explain

snapshot information for each reoptimizable incremental bind SQL statement

is placed in the explain tables at run time. The explain will also show input

data values.

v db2cat: The db2cat tool is used to dump a table’s packed descriptor. The

table’s packed descriptor contains statistics that can reveal information about

a table's contents. A user who runs the db2cat tool or has access to the

output can gain access to information that they might not be authorized for.
2. Default Privileges Granted Upon Creating a Database

The following are the default privileges to certain system tables granted when a

database is created:

1. SYSIBM.SYSDBAUTH

v The database creator is granted the following privileges:

– DBADM

– CREATETAB

– CREATEROLE

– BINDADD

– CONNECT

– NOFENCE

– IMPLSCHEMA

– LOAD

– EXTERNALROUTINE

– QUIESCECONNECT
v The special group PUBLIC is granted the following privileges:

– CREATETAB

– BINDADD

– CONNECT

– IMPLSCHEMA
2. SYSIBM.SYSTABAUTH

v The special group PUBLIC is granted the following privileges:

– SELECT on all SYSCAT and SYSIBM tables

– SELECT and UPDATE on all SYSSTAT tables
3. SYSIBM.SYSROUTINEAUTH

v The special group PUBLIC is granted the following privileges:

– EXECUTE with GRANT on all procedures in schema

– SQLJ EXECUTE with GRANT on all functions and procedures in schema

SYSFUN

– EXECUTE with GRANT on all functions and procedures in schema

SYSPROC

– EXECUTE on all table functions in schema SYSIBM

– EXECUTE on all other procedures in schema SYSIBM
4. SYSIBM.SYSPACKAGEAUTH

v The database creator is granted the following privileges:

– CONTROL on all packages created in the NULLID schema

– BIND with GRANT on all packages created in the NULLID schema

– EXECUTE with GRANT on all packages created in the NULLID schema

618 Administration Guide: Implementation

–

v The special group PUBLIC is granted the following privileges:

– BIND on all packages created in the NULLID schema

– EXECUTE on all packages created in the NULLID schema
5. SYSIBM.SCHEMAAUTH

v The special group PUBLIC is granted the following privileges:

– CREATEIN on schema SQLJ

– CREATE IN on schema NULLID
6. SYSIBM.TBSPACEAUTH

v The special group PUBLIC is granted the following privileges:

– USE on table space USERSPACE1

 Related concepts:

v “Explain snapshot” on page 456

v “Visual Explain” on page 463

Introduction to firewall support

 A firewall is a set of related programs, located at a network gateway server, that are

used to prevent unauthorized access to a system or network.

There are four types of firewalls:

1. Network level, packet-filter, or screening router firewalls

2. Classical application level proxy firewalls

3. Circuit level or transparent proxy firewalls

4. Stateful multi-layer inspection (SMLI) firewalls

There are existing firewall products that incorporate one of the firewall types listed

above. There are many other firewall products that incorporate some combination

of the above types.

 Related concepts:

v “Application proxy firewalls” on page 620

v “Circuit level firewalls” on page 620

v “Screening router firewalls” on page 619

v “Stateful multi-layer inspection (SMLI) firewalls” on page 620

Screening router firewalls

 This type of firewall is also known as a network level or packet-filter firewall. Such

a firewall works by screening incoming packets by protocol attributes. The protocol

attributes screened may include source or destination address, type of protocol,

source or destination port, or some other protocol-specific attributes.

For all firewall solutions (except SOCKS), you need to ensure that all the ports

used by DB2 database are open for incoming and outgoing packets. DB2 database

uses port 523 for the DB2 Administration Server (DAS), which is used by the DB2

database tools. Determine the ports used by all your server instances by using the

services file to map the service name in the server database manager configuration

file to its port number.

Chapter 8. Controlling database access 619

Related concepts:

v “Introduction to firewall support” on page 619

Application proxy firewalls

 A proxy or proxy server is a technique that acts as an intermediary between a Web

client and a Web server. A proxy firewall acts as a gateway for requests arriving

from clients. When client requests are received at the firewall, the final server

destination address is determined by the proxy software. The application proxy

translates the address, performs additional access control checking and logging as

necessary, and connects to the server on behalf of the client.

The DB2 Connect product on a firewall machine can act as a proxy to the

destination server. Also, a DB2 database server on the firewall, acting as a hop

server to the final destination server, acts like an application proxy.

 Related concepts:

v “Introduction to firewall support” on page 619

Circuit level firewalls

 This type of firewall is also known as a transparent proxy firewall. A transparent

proxy firewall does not modify the request or response beyond what is required

for proxy authentication and identification. An example of a transparent proxy

firewall is SOCKS.

DB2 database supports SOCKS Version 4.

 Related concepts:

v “Introduction to firewall support” on page 619

Stateful multi-layer inspection (SMLI) firewalls

 This type of firewall is a sophisticated form of packet-filtering that examines all

seven layers of the Open System Interconnection (OSI) model. Each packet is

examined and compared against known states of friendly packets. While screening

router firewalls only examine the packet header, SMLI firewalls examine the entire

packet including the data.

 Related concepts:

v “Introduction to firewall support” on page 619

620 Administration Guide: Implementation

Chapter 9. Auditing DB2 database activities

DB2 database auditing activities are shown in this section.

Introduction to the DB2 database audit facility

 Authentication, authorities, and privileges can be used to control known or

anticipated access to data, but these methods may be insufficient to prevent

unknown or unanticipated access to data. To assist in the detection of this latter

type of data access, DB2 database provides an audit facility. Successful monitoring

of unwanted data access and subsequent analysis can lead to improvements in the

control of data access and the ultimate prevention of malicious or careless

unauthorized access to the data. The monitoring of application and individual user

access, including system administration actions, can provide a historical record of

activity on your database systems.

The DB2 database audit facility generates, and allows you to maintain, an audit

trail for a series of predefined database events. The records generated from this

facility are kept in an audit log file. The analysis of these records can reveal usage

patterns which would identify system misuse. Once identified, actions can be taken

to reduce or eliminate such system misuse.

The audit facility acts at an instance level, recording all instance level activities and

database level activities.

When working in a partitioned database environment, many of the auditable

events occur at the database partition at which the user is connected (the

coordinator partition) or at the catalog partition (if they are not the same database

partition). The implication of this is that audit records can be generated by more

than one database partition. Part of each audit record contains information on the

coordinator partition and originating database partition identifiers.

The audit log (db2audit.log) and the audit configuration file (db2audit.cfg) are

located in the instance’s security subdirectory. At the time you create an instance,

read/write permissions are set on these files, where possible, by the operating

system. By default, the permissions are read/write for the instance owner only. It

is recommended that you do not change these permissions.

Users of the audit facility administrator tool, db2audit, must have SYSADM

authority.

The audit facility must be stopped and started explicitly. When starting, the audit

facility uses existing audit configuration information. Since the audit facility is

independent of the DB2 database server, it will remain active even if the instance is

stopped. In fact, when the instance is stopped, an audit record may be generated

in the audit log.

Authorized users of the audit facility can control the following actions within the

audit facility:

v Start recording auditable events within the DB2 database instance.

v Stop recording auditable events within the DB2 database instance.

© Copyright IBM Corp. 1993, 2006 621

v Configure the behavior of the audit facility, including selecting the categories of

the auditable events to be recorded.

v Request a description of the current audit configuration.

v Flush any pending audit records from the instance and write them to the audit

log.

v Extract audit records by formatting and copying them from the audit log to a

flat file or ASCII delimited files. Extraction is done for one of two reasons: in

preparation for analysis of log records or in preparation for pruning of log

records.

v Prune audit records from the current audit log.

Note: Ensure that the audit facility has been turned on by issuing the db2audit

start command before using the audit utilities.

There are different categories of audit records that may be generated. In the

description of the categories of events available for auditing (below), you should

notice that following the name of each category is a one-word keyword used to

identify the category type. The categories of events available for auditing are:

v Audit (AUDIT). Generates records when audit settings are changed or when the

audit log is accessed.

v Authorization Checking (CHECKING). Generates records during authorization

checking of attempts to access or manipulate DB2 database objects or functions.

v Object Maintenance (OBJMAINT). Generates records when creating or dropping

data objects.

v Security Maintenance (SECMAINT). Generates records when granting or

revoking: object or database privileges, or DBADM authority. Records are also

generated when the database manager security configuration parameters

SYSADM_GROUP, SYSCTRL_GROUP, or SYSMAINT_GROUP are modified.

v System Administration (SYSADMIN). Generates records when operations

requiring SYSADM, SYSMAINT, or SYSCTRL authority are performed.

v User Validation (VALIDATE). Generates records when authenticating users or

retrieving system security information.

v Operation Context (CONTEXT). Generates records to show the operation context

when a database operation is performed. This category allows for better

interpretation of the audit log file. When used with the log’s event correlator

field, a group of events can be associated back to a single database operation.

For example, a query statement for dynamic queries, a package identifier for

static queries, or an indicator of the type of operation being performed, such as

CONNECT, can provide needed context when analyzing audit results.

Note: The SQL or XQuery statement providing the operation context might be

very long and is completely shown within the CONTEXT record. This can

make the CONTEXT record very large.

v You can audit failures, successes, or both.

Any operation on the database may generate several records. The actual number of

records generated and moved to the audit log depends on the number of

categories of events to be recorded as specified by the audit facility configuration.

It also depends on whether successes, failures, or both, are audited. For this reason,

it is important to be selective of the events to audit.

 Related concepts:

v “Audit facility behavior” on page 623

622 Administration Guide: Implementation

v “Audit facility record layouts (introduction)” on page 636

v “Audit facility tips and techniques” on page 654

 Related tasks:

v “Controlling DB2 database audit facility activities” on page 655

 Related reference:

v “Audit facility messages” on page 636

v “Audit facility usage” on page 624

Audit facility behavior

 The audit facility records auditable events including those affecting database

instances. For this reason, the audit facility is an independent part of DB2 database

that can operate even if the DB2 database instance is stopped. If the audit facility is

active, then when a stopped instance is started, auditing of database events in the

instance resumes.

The timing of the writing of audit records to the audit log can have a significant

impact on the performance of databases in the instance. The writing of the audit

records can take place synchronously or asynchronously with the occurrence of the

events causing the generation of those records. The value of the audit_buf_sz

database manager configuration parameter determines when the writing of audit

records is done.

If the value of this parameter is zero (0), the writing is done synchronously. The

event generating the audit record will wait until the record is written to disk. The

wait associated with each record causes the performance of DB2 database to

decrease.

If the value of audit_buf_sz is greater than zero, the record writing is done

asynchronously. The value of the audit_buf_sz when it is greater than zero is the

number of 4 KB pages used to create an internal buffer. The internal buffer is used

to keep a number of audit records before writing a group of them out to disk. The

statement generating the audit record as a result of an audit event will not wait

until the record is written to disk, and can continue its operation.

In the asynchronous case, it could be possible for audit records to remain in an

unfilled buffer for some time. To prevent this from happening for an extended

period, the database manager will force the writing of the audit records regularly.

An authorized user of the audit facility may also flush the audit buffer with an

explicit request.

There are differences when an error occurs dependent on whether there is

synchronous or asynchronous record writing. In asynchronous mode there may be

some records lost because the audit records are buffered before being written to

disk. In synchronous mode there may be one record lost because the error could

only prevent at most one audit record from being written.

The setting of the ERRORTYPE audit facility parameter controls how errors are

managed between DB2 database and the audit facility. When the audit facility is

active, and the setting of the ERRORTYPE audit facility parameter is AUDIT, then

the audit facility is treated in the same way as any other part of DB2 database. An

audit record must be written (to disk in synchronous mode; or to the audit buffer

Chapter 9. Auditing DB2 database activities 623

in asynchronous mode) for an audit event associated with a statement to be

considered successful. Whenever an error is encountered when running in this

mode, a negative SQLCODE is returned to the application for the statement

generating an audit record. If the error type is set to NORMAL, then any error from

db2audit is ignored and the operation’s SQLCODE is returned.

Depending on the API or query statement and the audit settings for the DB2

database instance, none, one, or several audit records may be generated for a

particular event. For example, an SQL UPDATE statement with a SELECT

subquery may result in one audit record containing the results of the authorization

check for UPDATE privilege on a table and another record containing the results of

the authorization check for SELECT privilege on a table.

For dynamic data manipulation language (DML) statements, audit records are

generated for all authorization checking at the time that the statement is prepared.

Reuse of those statements by the same user will not be audited again since no

authorization checking takes place at that time. However, if a change has been

made to one of the catalog tables containing privilege information, then in the next

unit of work, the statement privileges for the cached dynamic SQL or XQuery

statements are checked again and one or more new audit records created.

For a package containing only static DML statements, the only auditable event that

could generate an audit record is the authorization check to see if a user has the

privilege to execute that package. The authorization checking and possible audit

record creation required for the static SQL or XQuery statements in the package is

carried out at the time the package is precompiled or bound. The execution of the

static SQL or XQuery statements within the package is not auditable. When a

package is bound again either explicitly by the user, or implicitly by the system,

audit records are generated for the authorization checks required by the static SQL

or XQuery statements.

For statements where authorization checking is performed at statement execution

time (for example, data definition language (DDL), GRANT, and REVOKE

statements), audit records are generated whenever these statements are used.

Note: When executing DDL, the section number recorded for all events (except the

context events) in the audit record will be zero (0) no matter what the actual

section number of the statement might have been.

 Related concepts:

v “Introduction to the DB2 database audit facility” on page 621

 Related reference:

v “audit_buf_sz - Audit buffer size configuration parameter” in Performance Guide

v “Audit facility usage” on page 624

Audit facility usage

 A review of each part of the following syntax diagrams will assist you in the

understanding of how the audit facility can be used.

624 Administration Guide: Implementation

�� db2audit configure reset

Audit Configuration

describe

extract

Audit Extraction

flush

prune

all

date

YYYYMMDDHH

pathname

Path_with_temp_space

start

stop

 ��

Audit Configuration:

�

scope

all

,

audit

checking

objmaint

secmaint

sysadmin

validate

context

status

both

success

failure

 �

�
errortype

audit

normal

Audit Extraction:

 file output-file

delasc

delimiter

load-delimiter

�

,

category

audit

checking

objmaint

secmaint

sysadmin

validate

context

 �

�
database

database-name

status

success

failure

The following is a description and the implied use of each parameter:

configure

This parameter allows the modification of the db2audit.cfg configuration

file in the instance’s security subdirectory. Updates to this file can occur

even when the instance is shut down. Updates occurring when the instance

is active dynamically affect the auditing being done by DB2 database

across all database partitions. The configure action on the configuration file

causes the creation of an audit record if the audit facility has been started

and the audit category of auditable events is being audited.

 The following are the possible actions on the configuration file:

Chapter 9. Auditing DB2 database activities 625

v RESET. This action causes the configuration file to revert to the initial

configuration (where SCOPE is all of the categories except CONTEXT,

STATUS is FAILURE, ERRORTYPE is NORMAL, and the audit facility is

OFF). This action will create a new audit configuration file if the original

has been lost or damaged.

v SCOPE. This action specifies which category or categories of events are

to be audited. This action also allows a particular focus for auditing and

reduces the growth of the log. It is recommended that the number and

type of events being logged be limited as much as possible, otherwise

the audit log will grow rapidly.

Note: Please notice that the default SCOPE is all categories except

CONTEXT and may result in records being generated rapidly. In

conjunction with the mode (synchronous or asynchronous), the

selection of the categories may result in a significant performance

reduction and significantly increased disk requirements.

v STATUS. This action specifies whether only successful or failing events,

or both successful and failing events, should be logged.

Note: Context events occur before the status of an operation is known.

Therefore, such events are logged regardless of the value

associated with this parameter.

v ERRORTYPE. This action specifies whether audit errors are returned to

the user or are ignored. The value for this parameter can be:

– AUDIT. All errors including errors occurring within the audit facility

are managed by DB2 database and all negative SQLCODEs are

reported back to the caller.

– NORMAL. Any errors generated by db2audit are ignored and only

the SQLCODEs for the errors associated with the operation being

performed are returned to the application.

describe

This parameter displays to standard output the current audit configuration

information and status.

extract This parameter allows the movement of audit records from the audit log to

an indicated destination. If no optional clauses are specified, all of the

audit records are extracted and placed in a flat report file. If output_file

already exists, an error message is returned.

 The following are the possible options that can be used when extracting:

v FILE. The extracted audit records are placed in a file (output_file). If no

file name is specified, records are written to the db2audit.out file in the

security subdirectory of sqllib. If no directory is specified, output_file is

written to the current working directory.

v DELASC. The extracted audit records are placed in a delimited ASCII

format suitable for loading into DB2 database relational tables. The

output is placed in separate files: one for each category. The filenames

are:

– audit.del

– checking.del

– objmaint.del

– secmaint.del

– sysadmin.del

– validate.del

– context.del

626 Administration Guide: Implementation

These files are always written to the security subdirectory of sqllib.

The DELASC choice also allows you to override the default audit

character string delimiter (“0xff”) when extracting from the audit log.

You would use DELASC DELIMITER followed by the new delimiter that

you wish to use in preparation for loading into a table that will hold the

audit records. The new load delimiter can be either a single character

(such as !) or a four-byte string representing a hexadecimal number

(such as 0xff).

v CATEGORY. The audit records for the specified categories of audit

events are to be extracted. If not specified, all categories are eligible for

extraction.

v DATABASE. The audit records for a specified database are to be

extracted. If not specified, all databases are eligible for extraction.

v STATUS. The audit records for the specified status are to be extracted. If

not specified, all records are eligible for extraction.

flush This parameter forces any pending audit records to be written to the audit

log. Also, the audit state is reset in the engine from “unable to log” to a

state of “ready to log” if the audit facility is in an error state.

prune This parameter allows for the deletion of audit records from the audit log.

If the audit facility is active and the “audit” category of events has been

specified for auditing, then an audit record will be logged after the audit

log is pruned.

 The following are the possible options that can be used when pruning:

v ALL. All of the audit records in the audit log are to be deleted.

v DATE yyyymmddhh. The user can specify that all audit records that

occurred on or before the date/time specified are to be deleted from the

audit log. The user may optionally supply a

pathname

which the audit facility will use as a temporary space when pruning the

audit log. This temporary space allows for the pruning of the audit log

when the disk it resides on is full and does not have enough space to

allow for a pruning operation.

start This parameter causes the audit facility to begin auditing events based on

the contents of the db2audit.cfg file. In a partitioned DB2 database

instance, auditing will begin on all database partitions when this clause is

specified. If the “audit” category of events has been specified for auditing,

then an audit record will be logged when the audit facility is started.

stop This parameter causes the audit facility to stop auditing events. In a

partitioned DB2 database instance, auditing will be stopped on all database

partitions when this clause is specified. If the “audit” category of events

has been specified for auditing, then an audit record will be logged when

the audit facility is stopped.

 Related concepts:

v “Audit facility tips and techniques” on page 654

v “Introduction to the DB2 database audit facility” on page 621

 Related reference:

v “db2audit - Audit facility administrator tool command” in Command Reference

Chapter 9. Auditing DB2 database activities 627

Working with DB2 audit data in DB2 tables

The following topics describe how to create DB2 audit data, how to create tables to

hold this data, how to populate the tables with the DB2 audit data, and how to

select the DB2 audit data from the tables.

Working with DB2 audit data in DB2 tables

 When you use the DB2 audit facility to maintain an audit trail of database

activities, by default the audit facility places the audit records in a log file. If you

want, you can write the audit records from the log file to a text file, or you can

write the audit records from the log file to delimited ASCII files, then load the

contents of the ASCII files into DB2 tables. When the audit data is in DB2 tables,

you can select the data from the tables to answer questions that you may have

about activity on your DB2 instance.

 Procedure:

 To work with audit data in DB2 tables:

1. Create tables to hold the DB2 audit data .

2. Create the DB2 audit data files .

3. Use the load utility to populate the tables with the data .

4. Select the table data Select the table data.

 Related concepts:

v “Audit facility behavior” on page 623

v “Audit facility tips and techniques” on page 654

 Related tasks:

v “Creating tables to hold the DB2 audit data” on page 628

v “Creating DB2 audit data files” on page 631

v “Loading DB2 audit data into tables” on page 632

v “Selecting DB2 audit data from tables” on page 635

 Related reference:

v “Audit facility usage” on page 624

Creating tables to hold the DB2 audit data

 Before you can work with audit data in tables, you need to create the tables to

hold the data. You should consider creating these tables in a separate schema to

isolate the data in the tables from unauthorized users.

 Prerequisites:

v See the CREATE SCHEMA statement for the authorities and privileges that you

require to create a schema.

v See the CREATE TABLE statement for the authorities and privileges that you

require to create a table.

v Decide which table space you want to use to hold the tables. (This topic does

not describe how to create table spaces.)

 Procedure:

628 Administration Guide: Implementation

The examples that follow show how to the create tables that will hold all of the

records from all of the ASCII files. If you want, you can create a separate schema

to contain these tables.

If you do not want to use all of the data that is contained in the files, you can omit

columns from the table definitions, or bypass creating tables, as required. If you

omit columns from the table definitions, you must modify the commands that you

use to load data into these tables.

 1. Issue the db2 command to open a DB2 command window.

 2. Optional. Create a schema to hold the tables. Issue the following command.

For this example, the schema is called AUDIT

 CREATE SCHEMA AUDIT

 3. Optional. If you created the AUDIT schema, switch to the schema before

creating any tables. Issue the following command:

 SET CURRENT SCHEMA = ’AUDIT’

 4. To create the table that will contain records from the audit.del file, issue the

following SQL statement:

 CREATE TABLE AUDIT (TIMESTAMP CHAR(26),

 CATEGORY CHAR(8),

 EVENT VARCHAR(32),

 CORRELATOR INTEGER,

 STATUS INTEGER,

 USERID VARCHAR(1024),

 AUTHID VARCHAR(128))

 5. To create the table that will contain records from the checking.del file, issue

the following SQL statement:

 CREATE TABLE CHECKING (TIMESTAMP CHAR(26),

 CATEGORY CHAR(8),

 EVENT VARCHAR(32),

 CORRELATOR INTEGER,

 STATUS INTEGER,

 DATABASE CHAR(8),

 USERID VARCHAR(1024),

 AUTHID VARCHAR(128),

 NODENUM SMALLINT,

 COORDNUM SMALLINT,

 APPID VARCHAR(255),

 APPNAME VARCHAR(1024),

 PKGSCHEMA VARCHAR(128),

 PKGNAME VARCHAR(128),

 PKGSECNUM SMALLINT,

 OBJSCHEMA VARCHAR(128),

 OBJNAME VARCHAR(128),

 OBJTYPE VARCHAR(32),

 ACCESSAPP CHAR(18),

 ACCESSATT CHAR(18),

 PKGVER VARCHAR(64),

 CHKAUTHID VARCHAR(128))

 6. To create the table that will contain records from the objmaint.del file, issue

the following SQL statement:

 CREATE TABLE OBJMAINT (TIMESTAMP CHAR(26),

 CATEGORY CHAR(8),

 EVENT VARCHAR(32),

 CORRELATOR INTEGER,

 STATUS INTEGER,

 DATABASE CHAR(8),

 USERID VARCHAR(1024),

 AUTHID VARCHAR(128),

 NODENUM SMALLINT,

 COORDNUM SMALLINT,

Chapter 9. Auditing DB2 database activities 629

APPID VARCHAR(255),

 APPNAME VARCHAR(1024),

 PKGSCHEMA VARCHAR(128),

 PKGNAME VARCHAR(128),

 PKGSECNUM SMALLINT,

 OBJSCHEMA VARCHAR(128),

 OBJNAME VARCHAR(128),

 OBJTYPE VARCHAR(32),

 PACKVER VARCHAR(64))

 7. To create the table that will contain records from the secmaint.del file, issue

the following SQL statement:

 CREATE TABLE SECMAINT (TIMESTAMP CHAR(26),

 CATEGORY CHAR(8),

 EVENT VARCHAR(32),

 CORRELATOR INTEGER,

 STATUS INTEGER,

 DATABASE CHAR(8),

 USERID VARCHAR(1024),

 AUTHID VARCHAR(128),

 NODENUM SMALLINT,

 COORDNUM SMALLINT,

 APPID VARCHAR(255),

 APPNAME VARCHAR(1024),

 PKGSCHEMA VARCHAR(128),

 PKGNAME VARCHAR(128),

 PKGSECNUM SMALLINT,

 OBJSCHEMA VARCHAR(128),

 OBJNAME VARCHAR(128),

 OBJTYPE VARCHAR(32),

 GRANTOR VARCHAR(128),

 GRANTEE VARCHAR(128),

 GRANTEETYPE VARCHAR(32),

 PRIVAUTH CHAR(18),

 PKGVER VARCHAR(64))

 8. To create the table that will contain records from the sysadmin.del file, issue

the following SQL statement:

 CREATE TABLE SYSADMIN (TIMESTAMP CHAR(26),

 CATEGORY CHAR(8),

 EVENT VARCHAR(32),

 CORRELATOR INTEGER,

 STATUS INTEGER,

 DATABASE CHAR(8),

 USERID VARCHAR(1024),

 AUTHID VARCHAR(128),

 NODENUM SMALLINT,

 COORDNUM SMALLINT,

 APPID VARCHAR(255),

 APPNAME VARCHAR(1024),

 PKGSCHEMA VARCHAR(128),

 PKGNAME VARCHAR(128),

 PKGSECNUM SMALLINT,

 PKGVER VARCHAR(64))

 9. To create the table that will contain records from the validate.del file, issue

the following SQL statement:

 CREATE TABLE VALIDATE (TIMESTAMP CHAR(26),

 CATEGORY CHAR(8),

 EVENT VARCHAR(32),

 CORRELATOR INTEGER,

 STATUS INTEGER,

 DATABASE CHAR(8),

 USERID VARCHAR(1024),

 AUTHID VARCHAR(128),

 EXECID VARCHAR(1024),

 NODENUM SMALLINT,

630 Administration Guide: Implementation

COORDNUM SMALLINT,

 APPID VARCHAR(255),

 APPNAME VARCHAR(1024),

 AUTHTYPE VARCHAR(32),

 PKGSCHEMA VARCHAR(128),

 PKGNAME VARCHAR(128),

 PKGSECNUM SMALLINT,

 PKGVER VARCHAR(64),

 PLUGINNAME VARCHAR(32))

10. To create the table that will contain records from the context.del file, issue

the following SQL statement:

 CREATE TABLE CONTEXT (TIMESTAMP CHAR(26),

 CATEGORY CHAR(8),

 EVENT VARCHAR(32),

 CORRELATOR INTEGER,

 DATABASE CHAR(8),

 USERID VARCHAR(1024),

 AUTHID VARCHAR(128),

 NODENUM SMALLINT,

 COORDNUM SMALLINT,

 APPID VARCHAR(255),

 APPNAME VARCHAR(1024),

 PKGSCHEMA VARCHAR(128),

 PKGNAME VARCHAR(128),

 PKGSECNUM SMALLINT,

 STMTTEXT CLOB(2M),

 PKGVER VARCHAR(64))

11. After creating the tables, issue the COMMIT statement to ensure that the table

definitions are written to disk.

12. When you have created the tables, you are ready to extract the audit records

from the db2audit.log file to delimited ASCII files.

 Related tasks:

v “Creating DB2 audit data files” on page 631

v “Setting a schema” on page 169

 Related reference:

v “CREATE SCHEMA statement” in SQL Reference, Volume 2

v “CREATE TABLE statement” in SQL Reference, Volume 2

Creating DB2 audit data files

 By default, the DB2 audit facility writes audit data to the db2audit.log file. The

records in this file cannot be loaded into tables. You must extract the audit records

to delimited ASCII files, which can you use to populate tables.

 Prerequisites:

 You require SYSADM authority to use the db2audit command.

 Procedure:

 To write the audit facility records to delimited ASCII files:

1. Review the topic on audit facility usage to determine the type of DB2 activities

that you want to audit. When you are satisfied with the configuration that you

have set up for the audit facility, issue the following command to begin

auditing:

Chapter 9. Auditing DB2 database activities 631

db2audit start

2. Issue the following command to ensure that all audit records are flushed from

memory to the db2audit.log file:

 db2audit flush

3. Issue the following command to move the audit records from the db2audit.log

to delimited ASCII files:

 db2audit extract delasc

The following files are created in the security subdirectory of sqllib. If you

are not auditing a particular type of event, the file for that event is created, but

the file is empty.

v audit.del

v checking.del

v objmaint.del

v secmaint.del

v sysadmin.del

v validate.del

v context.del

4. Issue the following command to delete the audit records from the db2audit.log

file that you just extracted:

 db2audit prune date YYYYMMDDHH

Where YYYYMMDDHH is the current year, month, day, and hour. Write down

the value that you use because you will require this information in the next

step when you populate the tables with the audit data.

The audit facility will continue to write new audit records to the db2audit.log

file, and these records will have a timestamp that is later than

YYYYMMDDHH. Pruning records from the db2audit.log file that you have

already extracted prevents you from extracting the same records a second time.

All audit records that are written after YYYYMMDDHH will be written to the

.del files the next time you extract the audit data.

5. After you create the audit data files, the next step is to use the load utility to

populate the tables with the audit data.

 Related tasks:

v “Loading DB2 audit data into tables” on page 632

 Related reference:

v “Audit record layout for SYSADMIN events” on page 650

v “Audit record layout for VALIDATE events” on page 651

v “db2audit - Audit facility administrator tool command” in Command Reference

v “Audit facility usage” on page 624

v “Audit record layout for AUDIT events” on page 637

v “Audit record layout for CHECKING events” on page 638

v “Audit record layout for CONTEXT events” on page 652

v “Audit record layout for OBJMAINT events” on page 643

v “Audit record layout for SECMAINT events” on page 645

Loading DB2 audit data into tables

 When you have created the tables to hold the audit data, you then load the data in

the ASCII files into the tables.

632 Administration Guide: Implementation

Prerequisites:

 See the topic on the privileges, authorities, and authorizations required to use the

load utility for more information.

 Procedure:

 Use the load utility to load the data into the tables. Issue a separate load command

for each table. If you omitted one or more columns from the table definitions, you

must modify the version of the LOAD command that you use to successfully load

the data. Also, if you specified a delimiter character other than the default (0xff)

when you extracted the audit data, you must also modify the version of the LOAD

command that you use (see the topic ″File type modifiers for load ″ for more

information).

 1. Issue the db2 command to open a DB2 command window.

 2. To load the AUDIT table, issue the following command:

 LOAD FROM audit.del OF del MODIFIED BY CHARDEL0xff INSERT INTO schema.AUDIT

Note: When specifying the file name, use the fully qualified path name. For

example, if you have DB2 database installed on the C: drive of a

Windows-based computer, you would specify C:\Program

Files\IBM\SQLLIB\instance\security\audit.del as the fully qualified

file name for the audit.del file.

After loading the AUDIT table, issue the following DELETE statement to

ensure that you do not load duplicate rows into the table the next time you

load it. When you extracted the audit records from the db2audit.log file, all

records in the file were written to the .del files. Likely, the .del files

contained records that were written after the hour to which the audit log was

subsequently pruned (because the db2audit prune command only prunes

records to a specified hour). The next time you extract the audit records, the

new .del files will contain records that were previously extracted, but not

deleted by the db2audit prune command (because they were written after the

hour specified for the prune operation). Deleting rows from the table to the

same hour to which the db2audit.log file was pruned ensures that the table

does not contain duplicate rows, and that no audit records are lost.

 DELETE FROM schema.AUDIT WHERE TIMESTAMP > TIMESTAMP(’YYYYMMDDHH0000’)

Where YYYYMMDDHH is the value that you specified when you pruned the

db2audit.log file. Because the DB2 audit facility continues to write audit

records to the db2audit.log file after it is pruned, you must specify 0000 for

the minutes and seconds to ensure that audit records that were written after

the db2audit.log file was pruned are not deleted from the table.

 3. To load the CHECKING table, issue the following command:

 LOAD FROM checking.del OF del MODIFIED BY CHARDEL0xff INSERT INTO

 schema.CHECKING

After loading the CHECKING table, issue the following SQL statement to

ensure that you do not load duplicate rows into the table the next time you

load it:

 DELETE FROM schema.CHECKING WHERE TIMESTAMP > TIMESTAMP(’YYYYMMDDHH0000’)

Where YYYYMMDDHH is the value that you specified when you pruned the

log file.

 4. To load the OBJMAINT table, issue the following command:

Chapter 9. Auditing DB2 database activities 633

LOAD FROM objmaint.del OF del MODIFIED BY CHARDEL0xff INSERT INTO

 schema.OBJMAINT

After loading the OBJMAINT table, issue the following SQL statement to

ensure that you do not load duplicate rows into the table the next time you

load it:

 DELETE FROM schema.OBJMAINT WHERE TIMESTAMP > TIMESTAMP(’YYYYMMDDHH0000’)

Where YYYYMMDDHH is the value that you specified when you pruned the

log file.

 5. To load the SECMAINT table, issue the following command:

 LOAD FROM secmaint.del OF del MODIFIED BY CHARDEL0xff INSERT INTO

 schema.SECMAINT

After loading the SECMAINT table, issue the following SQL statement to

ensure that you do not load duplicate rows into the table the next time you

load it:

 DELETE FROM schema.SECMAINT WHERE TIMESTAMP > TIMESTAMP(’YYYYMMDDHH0000’)

Where YYYYMMDDHH is the value that you specified when you pruned the

log file.

 6. To load the SYSADMIN table, issue the following command:

 LOAD FROM sysadmin.del OF del MODIFIED BY CHARDEL0xff INSERT INTO

 schema.SYSADMIN

After loading the SYSADMIN table, issue the following SQL statement to

ensure that you do not load duplicate rows into the table the next time you

load it:

 DELETE FROM schema.SYSADMIN WHERE TIMESTAMP > TIMESTAMP(’YYYYMMDDHH0000’)

Where YYYYMMDDHH is the value that you specified when you pruned the

log file.

 7. To load the VALIDATE table, issue the following command:

 LOAD FROM validate.del OF del MODIFIED BY CHARDEL0xff INSERT INTO

 schema.VALIDATE

After loading the VALIDATE table, issue the following SQL statement to

ensure that you do not load duplicate rows into the table the next time you

load it:

 DELETE FROM schema.VALIDATE WHERE TIMESTAMP > TIMESTAMP(’YYYYMMDDHH0000’)

Where YYYYMMDDHH is the value that you specified when you pruned the

log file.

 8. To load the CONTEXT table, issue the following command:

 LOAD FROM context.del OF del MODIFIED BY CHARDEL0xff INSERT INTO

 schema.CONTEXT

After loading the CONTEXT table, issue the following SQL statement to

ensure that you do not load duplicate rows into the table the next time you

load it:

 DELETE FROM schema.CONTEXT WHERE TIMESTAMP > TIMESTAMP(’YYYYMMDDHH0000’)

Where YYYYMMDDHH is the value that you specified when you pruned the

log file.

 9. After you finish loading the data into the tables, delete the .del files from the

security subdirectory of the sqllib directory.

10. When you have loaded the audit data into the tables, you are ready to select

data from these tablesselect data from these tables.

634 Administration Guide: Implementation

If you have already populated the tables a first time, and want to do so again, use

the INSERT option to have the new table data added to the existing table data. If

you want to have the records from the previous db2audit extract operation

removed from the tables, load the tables again using the REPLACE option. In

either situation, remember both to flush the audit records to the db2audit.log file

before extracting the records to the .del files, and to prune the db2audit.log file

after extracting the records so that you do not load the same records into the tables

more than once.

 Related concepts:

v “Privileges, authorities, and authorizations required to use Load” in Data

Movement Utilities Guide and Reference

v “Load considerations for MDC tables” in Administration Guide: Planning

v “LOAD authority” on page 511

 Related tasks:

v “Selecting DB2 audit data from tables” on page 635

v “Enabling parallelism for loading data” on page 10

v “Loading data into a table using the Load wizard” on page 237

 Related reference:

v “File type modifiers for the load utility” in Command Reference

Selecting DB2 audit data from tables

 When the audit data is successfully loaded into the tables, you can select data from

these tables for further analysis.

 Prerequisites:

 See the topic on the SELECT statement for information about the authorities and

privileges required to select data from a table.

 Procedure:

 To select all the rows in a table:

1. Issue the db2 command to open a DB2 command window.

2. Issue an SQL statement of the following form for each table from which you

want to select audit data:

 SELECT * FROM SQL schema.table

For example, to select all the data from the CHECKING table in the AUDIT schema, use

the following statement:

 SELECT * FROM AUDIT.CHECKING

The select that you perform should reflect the type of analysis that you want to do

on the data. For example, you can select records according to an authorization ID

(authid) to determine the type of activities that this authorization ID has been

performing:

 SELECT * FROM AUDIT.CHECKING WHERE AUTHID = authorization ID

Where authorization ID is the user ID for which you want to analyze the data.

Chapter 9. Auditing DB2 database activities 635

For a description of the values that can be included in audit data, see the

corresponding audit record layout topic for the table, and the list of possible

returned values for the table.

 Related reference:

v “Subselect” in SQL Reference, Volume 1

v “SELECT statement” in SQL Reference, Volume 2

v “Audit record layout for AUDIT events” on page 637

v “Audit record layout for CHECKING events” on page 638

v “Audit record layout for CONTEXT events” on page 652

v “Audit record layout for OBJMAINT events” on page 643

v “Audit record layout for SECMAINT events” on page 645

v “Audit record layout for SYSADMIN events” on page 650

v “Audit record layout for VALIDATE events” on page 651

v “List of possible CHECKING access approval reasons” on page 640

v “List of possible CHECKING access attempted types” on page 641

v “List of possible CONTEXT audit events” on page 653

v “List of possible SECMAINT privileges or authorities” on page 647

v “List of possible SYSADMIN audit events” on page 650

Audit facility messages

SQL1322N An error occurred when writing to the

audit log file.

Explanation: The DB2 database audit facility

encountered an error when invoked to record an audit

event to the audit log file. There is no space on the file

system where the audit log resides.

User response: The system administrator should free

up space on this file system or prune the audit log to

reduce its size.

 When more space is available, use db2audit to flush

out any data in memory, and to reset the auditor to a

ready state. Ensure that appropriate extracts have

occurred, or a copy of the log has been made before

pruning the log, as deleted records are not recoverable.

 sqlcode: -1322

 sqlstate: 50830

SQL1323N An error occurred when accessing the

audit configuration file.

Explanation: The audit configuration file

(db2audit.cfg) could not be opened, or was invalid.

Possible reasons for this error are that the db2audit.cfg

file either does not exist, or has been damaged.

User response: Take one of the following actions:

v Restore from a saved version of the file.

v Reset the audit facility configuration file by issuing

 db2audit reset

sqlcode: -1323

 sqlstate: 57019

 Related concepts:

v “Introduction to the DB2 database audit facility” on page 621

Audit facility record layouts (introduction)

 When an audit record is extracted from the audit log using the DELASC extract

option, each record will have one of the formats shown in the following tables.

Each table will begin by showing the contents of a sample record. The description

of each item of the record is shown one row at a time in the associated table. If the

item is important, the name of the item will be highlighted (bold). These items

contain information that are of most interest to you.

636 Administration Guide: Implementation

Notes:

1. Not all fields in the sample records will have values.

2. Some fields such as “Access Attempted” are stored in the delimited ASCII

format as bitmaps. In this flat report file, however, these fields will appear as a

set of strings representing the bitmap values.

3. A new field called “Package Version” has been added to the record layout for

the CHECKING, OBJMAINT, SECMAINT, SYSADMIN, VALIDATE, and

CONTEXT events.

 Related reference:

v “Audit record layout for AUDIT events” on page 637

v “Audit record layout for CHECKING events” on page 638

v “Audit record layout for CONTEXT events” on page 652

v “Audit record layout for OBJMAINT events” on page 643

v “Audit record layout for SECMAINT events” on page 645

v “Audit record layout for SYSADMIN events” on page 650

v “Audit record layout for VALIDATE events” on page 651

Details on audit facility record layouts

The various audit facility record layouts are shown in this section.

Audit record layout for AUDIT events

 Sample audit record:

timestamp=1998-06-24-11.54.05.151232;category=AUDIT;audit event=START;

 event correlator=0;event status=0;

 userid=boss;authid=BOSS;

 Table 79. Audit Record Layout for AUDIT Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

 AUDIT

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: CONFIGURE, DB2AUD, EXTRACT,

FLUSH, PRUNE, START, STOP, and UPDATE_ADMIN_CFG

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used

to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

 Successful event > = 0

 Failed event < 0

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

 Related concepts:

v “Audit facility record layouts (introduction)” on page 636

Chapter 9. Auditing DB2 database activities 637

Audit record layout for CHECKING events

 Sample audit record:

timestamp=1998-06-24-08.42.11.622984;category=CHECKING;audit event=CHECKING_OBJECT;

 event correlator=2;event status=0;

 database=FOO;userid=boss;authid=BOSS;

 application id=*LOCAL.newton.980624124210;application name=testapp;

 package schema=NULLID;package name=SYSSH200;

 package section=0;object schema=GSTAGER;object name=NONE;object type=REOPT_VALUES;

 access approval reason=DBADM;access attempted=STORE;

 Table 80. Audit record layout for CHECKING events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

 CHECKING

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: CHECKING_OBJECT,

CHECKING_FUNCTION, and CHECKING_TRANSFER

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used

to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

 Successful event > = 0

 Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated. Blank if

this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node Number SMALLINT Node number at which the audit event occurred.

Coordinator Node

Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR (255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR (1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR (128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR (128) Name of package in use at the time the audit event occurred.

Package Section

Number

SMALLINT Section number in package being used at the time the audit event

occurred.

Object Schema VARCHAR (128) Schema of the object for which the audit event was generated.

Object Name VARCHAR (128) Name of object for which the audit event was generated.

Object Type VARCHAR (32) Type of object for which the audit event was generated. Possible

values include: those shown in the topic titled “Audit record object

types”.

Access Approval

Reason

CHAR(18) Indicates the reason why access was approved for this audit event.

Possible values include: those shown in the topic titled “List of

possible CHECKING access approval reasons”.

Access Attempted CHAR(18) Indicates the type of access that was attempted. Possible values

include: those shown in the topic titled “List of possible

CHECKING access attempted types”.

638 Administration Guide: Implementation

Table 80. Audit record layout for CHECKING events (continued)

NAME FORMAT DESCRIPTION

Package Version VARCHAR (64) Version of the package in use at the time that the audit event

occurred.

Checked

Authorization ID

VARCHAR(128) Authorization ID is checked when it is different than the

authorization ID at the time of the audit event. For example, this

can be the target owner in a TRANSFER OWNERSHIP statement.

 Related concepts:

v “Audit facility record layouts (introduction)” on page 636

 Related reference:

v “Audit record object types” on page 639

v “List of possible CHECKING access approval reasons” on page 640

v “List of possible CHECKING access attempted types” on page 641

Audit record object types

 Table 81. Audit Record Object Types Based on Audit Events

Object type CHECKING events OBJMAINT events SECMAINT events

NONE X X X

TABLE X X X

VIEW X X X

ALIAS X X

FUNCTION X X X

INDEX X X X

INDEX EXTENSION X

PACKAGE X X X

PACKAGE CACHE X

DATA_TYPE X

NODEGROUP X X

SCHEMA X X X

STORED_PROCEDURE X X X

METHOD_BODY X X X

BUFFERPOOL X X

SEQUENCE X X

TABLESPACE X X X

EVENT_MONITOR X X

TRIGGER X

DATABASE X X

INSTANCE X

FOREIGN_KEY X

PRIMARY_KEY X

UNIQUE_CONSTRAINT X

Chapter 9. Auditing DB2 database activities 639

Table 81. Audit Record Object Types Based on Audit Events (continued)

Object type CHECKING events OBJMAINT events SECMAINT events

CHECK_CONSTRAINT X

WRAPPER X X

SERVER X X X

NICKNAME X X X

USER MAPPING X X

SERVER OPTION X X

TYPE&TRANSFORM X X

TYPE MAPPING X X

FUNCTION MAPPING X X

SUMMARY TABLES X X X

JAR_FILE X

ALL X

REOPT_VALUES X

SECURITY_LABEL X X

SECURITY_POLICY X X

SECURITY_LABEL_COMPONENT X

ACCESS_RULE X

XSR object X X X

 Related reference:

v “Audit record layout for CHECKING events” on page 638

v “Audit record layout for OBJMAINT events” on page 643

v “Audit record layout for SECMAINT events” on page 645

List of possible CHECKING access approval reasons

 The following is the list of possible CHECKING access approval reasons:

0x0000000000000001 ACCESS DENIED

Access is not approved; rather, it was denied.

0x0000000000000002 SYSADM

Access is approved; the application or user has SYSADM authority.

0x0000000000000004 SYSCTRL

Access is approved; the application or user has SYSCTRL authority.

0x0000000000000008 SYSMAINT

Access is approved; the application or user has SYSMAINT authority.

0x0000000000000010 DBADM

Access is approved; the application or user has DBADM authority.

0x0000000000000020 DATABASE PRIVILEGE

Access is approved; the application or user has an explicit privilege on the

database.

640 Administration Guide: Implementation

0x0000000000000040 OBJECT PRIVILEGE

Access is approved; the application or user has an explicit privilege on the

object or function.

0x0000000000000080 DEFINER

Access is approved; the application or user is the definer of the object or

function.

0x0000000000000100 OWNER

Access is approved; the application or user is the owner of the object or

function.

0x0000000000000200 CONTROL

Access is approved; the application or user has CONTROL privilege on the

object or function.

0x0000000000000400 BIND

Access is approved; the application or user has bind privilege on the

package.

0x0000000000000800 SYSQUIESCE

Access is approved; if the instance or database is in quiesce mode, the

application or user may connect or attach.

0x0000000000001000 SYSMON

Access is approved; the application or user has SYSMON authority.

0x0000000000002000 SECADM

Access is approved; the application or user has SECADM authority.

0x0000000000004000 SETSESSIONUSER

Access is approved; the application or user has SETSESSIONUSER

authority.

 Related reference:

v “Audit record layout for CHECKING events” on page 638

v “List of possible CHECKING access attempted types” on page 641

List of possible CHECKING access attempted types

 The following is the list of possible CHECKING access attempted types. If Audit

Event is CHECKING_TRANSFER, then the audit entry reflects that a privilege is

held or not.

0x0000000000000001 CONTROL

Attempt to verify if CONTROL privilege is held.

0x0000000000000002 ALTER

Attempt to alter an object or to verify if ALTER privilege is held if Audit

Event is CHECKING_TRANSFER.

0x0000000000000004 DELETE

Attempt to delete an object or to verify if DELETE privilege is held if

Audit Event is CHECKING_TRANSFER.

0x0000000000000008 INDEX

Attempt to use an index or to verify if INDEX privilege is held if Audit

Event is CHECKING_TRANSFER.

0x0000000000000010 INSERT

Attempt to insert into an object or to verify if INSERT privilege is held if

Audit Event is CHECKING_TRANSFER.

Chapter 9. Auditing DB2 database activities 641

0x0000000000000020 SELECT

Attempt to query a table or view or to verify if SELECT privilege is held if

Audit Event is CHECKING_TRANSFER.

0x0000000000000040 UPDATE

Attempt to update data in an object or to verify if UPDATE privilege is

held if Audit Event is CHECKING_TRANSFER.

0x0000000000000080 REFERENCE

Attempt to establish referential constraints between objects or to verify if

REFERENCE privilege is held if Audit Event is CHECKING_TRANSFER.

0x0000000000000100 CREATE

Attempt to create an object.

0x0000000000000200 DROP

Attempt to drop an object.

0x0000000000000400 CREATEIN

Attempt to create an object within another schema.

0x0000000000000800 DROPIN

Attempt to drop an object found within another schema.

0x0000000000001000 ALTERIN

Attempt to alter or modify an object found within another schema.

0x0000000000002000 EXECUTE

Attempt to execute or run an application or to invoke a routine, create a

function sourced from the routine (applies to functions only), or reference a

routine in any DDL statement or to verify if EXECUTE privilege is held if

Audit Event is CHECKING_TRANSFER.

0x0000000000004000 BIND

Attempt to bind or prepare an application.

0x0000000000008000 SET EVENT MONITOR

Attempt to set event monitor switches.

0x0000000000010000 SET CONSTRAINTS

Attempt to set constraints on an object.

0x0000000000020000 COMMENT ON

Attempt to create comments on an object.

0x0000000000040000 GRANT

Attempt to grant privileges on an object to another user ID.

0x0000000000080000 REVOKE

Attempt to revoke privileges on an object from a user ID.

0x0000000000100000 LOCK

Attempt to lock an object.

0x0000000000200000 RENAME

Attempt to rename an object.

0x0000000000400000 CONNECT

Attempt to connect to an object.

0x0000000000800000 Member of SYS Group

Attempt to access or use a member of the SYS group.

642 Administration Guide: Implementation

0x0000000001000000 Access All

Attempt to execute a statement with all required privileges on objects held

(only used for DBADM/SYSADM).

0x0000000002000000 Drop All

Attempt to drop multiple objects.

0x0000000004000000 LOAD

Attempt to load a table in a table space.

0x0000000008000000 USE

Attempt to create a table in a table space or to verify if USE privilege is

held if Audit Event is CHECKING_TRANSFER.

0x0000000010000000 SET SESSION_USER

Attempt to execute the SET SESSION_USER statement.

0x0000000020000000 FLUSH

Attempt to execute the FLUSH statement.

0x0000000040000000 STORE

Attempt to view the values of a re-optimized statement in the

EXPLAIN_PREDICATE table.

0x0000000400000000 TRANSFER

Attempt to transfer an object.

0x0000000800000000 ALTER_WITH_GRANT

Attempt to verify if ALTER with GRANT privilege is held.

0x0000001000000000 DELETE_WITH_GRANT

Attempt to verify if DELETE with GRANT privilege is held.

0x0000002000000000 INDEX_WITH_GRANT

Attempt to verify if INDEX with GRANT privilege is held

0x0000004000000000 INSERT_WITH_GRANT

Attempt to verify if INSERT with GRANT privilege is held.

0x0000008000000000 SELECT_WITH_GRANT

Attempt to verify if SELECT with GRANT privilege is held.

0x0000010000000000 UPDATE_WITH_GRANT

Attempt to verify if UPDATE with GRANT privilege is held.

0x0000020000000000 REFERENCE_WITH_GRANT

Attempt to verify if REFERENCE with GRANT privilege is held.

0x0000040000000000 USAGE

Attempt to use a sequence or an XSR object or to verify if USAGE

privilege is held if Audit Event is CHECKING_TRANSFER.

 Related reference:

v “Audit record layout for CHECKING events” on page 638

v “List of possible CHECKING access approval reasons” on page 640

Audit record layout for OBJMAINT events

 Sample audit record:

timestamp=1998-06-24-08.42.41.957524;category=OBJMAINT;audit event=CREATE_OBJECT;

 event correlator=3;event status=0;

 database=FOO;userid=boss;authid=BOSS;

Chapter 9. Auditing DB2 database activities 643

application id=*LOCAL.newton.980624124210;application name=testapp;

 package schema=NULLID;package name=SQLC28A1;

 package section=0;object schema=BOSS;object name=AUDIT;object type=TABLE;

 Table 82. Audit Record Layout for OBJMAINT Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

 OBJMAINT

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: CREATE_OBJECT, RENAME_OBJECT,

DROP_OBJECT, and ALTER_OBJECT.

ALTER_OBJECT events are generated only when altering protected

tables.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used

to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

 Successful event > = 0

 Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated. Blank if

this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node Number SMALLINT Node number at which the audit event occurred.

Coordinator Node

Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR (255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR (1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR (128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR (128) Name of package in use at the time the audit event occurred.

Package Section

Number

SMALLINT Section number in package being used at the time the audit event

occurred.

Object Schema VARCHAR (128) Schema of the object for which the audit event was generated.

Object Name VARCHAR (128) Name of object for which the audit event was generated.

Object Type VARCHAR (32) Type of object for which the audit event was generated. Possible

values include: those shown in the topic titled “Audit record object

types”.

Package Version VARCHAR (64) Version of the package in use at the time the audit event occurred.

Security Policy Name VARCHAR(128) The name of the security policy if the object type is TABLE and that

table is associated with a security policy.

644 Administration Guide: Implementation

Table 82. Audit Record Layout for OBJMAINT Events (continued)

NAME FORMAT DESCRIPTION

Alter Action VARCHAR(32) Specific Alter operation

Possible values include:

v ADD_PROTECTED_COLUMN

v ADD_COLUMN_PROTECTION

v DROP_COLUMN_PROTECTION

v ADD_ROW_PROTECTION

v ADD_SECURITY_POLICY

Protected Column

Name

VARCHAR(128) If the Alter Action is ADD_COLUMN_PROTECTION or

DROP_COLUMN_PROTECTION this is the name of the affected

column.

Column Security

Label

VARCHAR(128) The security label protecting the column specified in the field

Column Name.

Security Label

Column Name

VARCHAR(128) Name of the column containing the security label protecting the

row.

 Related concepts:

v “Introduction to the DB2 database audit facility” on page 621

 Related reference:

v “Audit record object types” on page 639

Audit record layout for SECMAINT events

 Sample audit record:

timestamp=1998-06-24-11.57.45.188101;category=SECMAINT;audit event=GRANT;

 event correlator=4;event status=0;

 database=FOO;userid=boss;authid=BOSS;

 application id=*LOCAL.boss.980624155728;application name=db2bp;

 package schema=NULLID;package name=SQLC28A1;

 package section=0;object schema=BOSS;object name=T1;object type=TABLE;

 grantor=BOSS;grantee=WORKER;grantee type=USER;privilege=SELECT;

 Table 83. Audit Record Layout for SECMAINT Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

 SECMAINT

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: GRANT, REVOKE, IMPLICIT_GRANT,

IMPLICIT_REVOKE, SET_SESSION_USER, UPDATE_DBM_CFG,

and TRANSFER_OWNERSHIP.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used

to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

 Successful event > = 0

 Failed event < 0

Chapter 9. Auditing DB2 database activities 645

Table 83. Audit Record Layout for SECMAINT Events (continued)

NAME FORMAT DESCRIPTION

Database Name CHAR(8) Name of the database for which the event was generated. Blank if

this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node Number SMALLINT Node number at which the audit event occurred.

Coordinator Node

Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR (255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR (1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR (128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR (128) Name of package in use at the time the audit event occurred.

Package Section

Number

SMALLINT Section number in package being used at the time the audit event

occurred.

Object Schema VARCHAR (128) Schema of the object for which the audit event was generated.

If the object type field is ACCESS_RULE then this field contains the

security policy name associated with the rule. The name of the rule

is stored in the field Object Name.

If the object type field is SECURITY_LABEL, then this field contains

the name of the security policy that the security label is part of. The

name of the security label is stored in the field Object Name.

Object Name VARCHAR (128) Name of object for which the audit event was generated.

If the object type field is ACCESS_RULE then this field contains the

name of the rule. The security policy name associated with the rule

is stored in the field Object Schema.

If the object type field is SECURITY_LABEL, then this field contains

the name of the security label. The name of the security policy that

it is part of is stored in the field Object Schema.

Object Type VARCHAR (32) Type of object for which the audit event was generated. Possible

values include: those shown in the topic titled “Audit record object

types”.

Grantor VARCHAR (128) Grantor ID.

Grantee VARCHAR (128) Grantee ID for which a privilege or authority was granted or

revoked.

Grantee Type VARCHAR (32) Type of the grantee that was granted to or revoked from. Possible

values include: USER, GROUP, or BOTH.

Privilege or Authority CHAR(18) Indicates the type of privilege or authority granted or revoked.

Possible values include: those shown in the topic titled “List of

possible SECMAINT privileges or authorities”.

Package Version VARCHAR (64) Version of the package in use at the time the audit event occurred.

Access Type VARCHAR(32) The access type for which a security label is granted.

Possible values:

v READ

v WRITE

v ALL

646 Administration Guide: Implementation

Table 83. Audit Record Layout for SECMAINT Events (continued)

NAME FORMAT DESCRIPTION

Assumable Authid VARCHAR(128) When the privilege granted is a SETSESSIONUSER privilege this is

the authorization ID that the grantee is allowed to set as the session

user.

 Related concepts:

v “Audit facility record layouts (introduction)” on page 636

 Related reference:

v “Audit record object types” on page 639

v “List of possible SECMAINT privileges or authorities” on page 647

List of possible SECMAINT privileges or authorities

 The following is the list of possible SECMAINT privileges or authorities:

0x0000000000000001 Control Table

Control privilege granted or revoked on a table or view.

0x0000000000000002 ALTER TABLE

Privilege granted or revoked to alter a table.

0x0000000000000004 ALTER TABLE with GRANT

Privilege granted or revoked to alter a table with granting of privileges

allowed.

0x0000000000000008 DELETE TABLE

Privilege granted or revoked to drop a table or view.

0x0000000000000010 DELETE TABLE with GRANT

Privilege granted or revoked to drop a table with granting of privileges

allowed.

0x0000000000000020 Table Index

Privilege granted or revoked on an index.

0x0000000000000040 Table Index with GRANT

Privilege granted or revoked on an index with granting of privileges

allowed.

0x0000000000000080 Table INSERT

Privilege granted or revoked on an insert on a table or view.

0x0000000000000100 Table INSERT with GRANT

Privilege granted or revoked on an insert on a table with granting of

privileges allowed.

0x0000000000000200 Table SELECT

Privilege granted or revoked on a select on a table.

0x0000000000000400 Table SELECT with GRANT

Privilege granted or revoked on a select on a table with granting of

privileges allowed.

0x0000000000000800 Table UPDATE

Privilege granted or revoked on an update on a table or view.

Chapter 9. Auditing DB2 database activities 647

0x0000000000001000 Table UPDATE with GRANT

Privilege granted or revoked on an update on a table or view with

granting of privileges allowed.

0x0000000000002000 Table REFERENCE

Privilege granted or revoked on a reference on a table.

0x0000000000004000 Table REFERENCE with GRANT

Privilege granted or revoked on a reference on a table with granting of

privileges allowed.

0x0000000000020000 CREATEIN Schema

CREATEIN privilege granted or revoked on a schema.

0x0000000000040000 CREATEIN Schema with GRANT

CREATEIN privilege granted or revoked on a schema with granting of

privileges allowed.

0x0000000000080000 DROPIN Schema

DROPIN privilege granted or revoked on a schema.

0x0000000000100000 DROPIN Schema with GRANT

DROPIN privilege granted or revoked on a schema with granting of

privileges allowed.

0x0000000000200000 ALTERIN Schema

ALTERIN privilege granted or revoked on a schema.

0x0000000000400000 ALTERIN Schema with GRANT

ALTERIN privilege granted or revoked on a schema with granting of

privileges allowed.

0x0000000000800000 DBADM Authority

DBADM authority granted or revoked.

0x0000000001000000 CREATETAB Authority

Createtab authority granted or revoked.

0x0000000002000000 BINDADD Authority

Bindadd authority granted or revoked.

0x0000000004000000 CONNECT Authority

CONNECT authority granted or revoked.

0x0000000008000000 Create not fenced Authority

Create not fenced authority granted or revoked.

0x0000000010000000 Implicit Schema Authority

Implicit schema authority granted or revoked.

0x0000000020000000 Server PASSTHRU

Privilege granted or revoked to use the pass-through facility with this

server (federated database data source).

0x0000000100000000 Table Space USE

Privilege granted or revoked to create a table in a table space.

0x0000000200000000 Table Space USE with GRANT

Privilege granted or revoked to create a table in a table space with granting

of privileges allowed.

0x0000000400000000 Column UPDATE

Privilege granted or revoked on an update on one or more specific

columns of a table.

648 Administration Guide: Implementation

0x0000000800000000 Column UPDATE with GRANT

Privilege granted or revoked on an update on one or more specific

columns of a table with granting of privileges allowed.

0x0000001000000000 Column REFERENCE

Privilege granted or revoked on a reference on one or more specific

columns of a table.

0x0000002000000000 Column REFERENCE with GRANT

Privilege granted or revoked on a reference on one or more specific

columns of a table with granting of privileges allowed.

0x0000004000000000 LOAD Authority

LOAD authority granted or revoked.

0x0000008000000000 Package BIND

BIND privilege granted or revoked on a package.

0x0000010000000000 Package BIND with GRANT

BIND privilege granted or revoked on a package with granting of

privileges allowed.

0x0000020000000000 EXECUTE

EXECUTE privilege granted or revoked on a package or a routine.

0x0000040000000000 EXECUTE with GRANT

EXECUTE privilege granted or revoked on a package or a routine with

granting of privileges allowed.

0x0000080000000000 EXECUTE IN SCHEMA

EXECUTE privilege granted or revoked for all routines in a schema.

0x0000100000000000 EXECUTE IN SCHEMA with GRANT

EXECUTE privilege granted or revoked for all routines in a schema with

granting of privileges allowed.

0x000020000000000 EXECUTE IN TYPE

EXECUTE privilege granted or revoked for all routines in a type.

0x0000400000000000 EXECUTE IN TYPE with GRANT

EXECUTE privilege granted or revoked for all routines in a type with

granting of privileges allowed.

0x000080000000000 CREATE EXTERNAL ROUTINE

CREATE EXTERNAL ROUTINE privilege granted or revoked.

0x0001000000000000 QUIESCE_CONNECT

QUIESCE_CONNECT privilege granted or revoked.

0x0004000000000000 SECADM Authority

SECADM authority granted or revoked

0x0040000000000000 SETSESSIONUSER Privilege

SETSESSIONUSER granted or revoked

0x0080000000000000 Exemption

Exemption granted or revoked

0x0100000000000000 Security label

Security label granted or revoked

 Related reference:

v “Audit record layout for SECMAINT events” on page 645

Chapter 9. Auditing DB2 database activities 649

Audit record layout for SYSADMIN events

 Sample audit record:

timestamp=1998-06-24-11.54.04.129923;category=SYSADMIN;audit event=DB2AUDIT;

 event correlator=1;event status=0;

 userid=boss;authid=BOSS;

 application id=*LOCAL.boss.980624155404;application name=db2audit;

 Table 84. Audit Record Layout for SYSADMIN Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

 SYSADMIN

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: Those shown in the list following this table.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used

to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

 Successful event > = 0

 Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated. Blank if

this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node Number SMALLINT Node number at which the audit event occurred.

Coordinator Node

Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR (255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR (1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR (128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR (128) Name of package in use at the time the audit event occurred.

Package Section

Number

SMALLINT Section number in package being used at the time the audit event

occurred.

Package Version VARCHAR (64) Version of the package in use at the time the audit event occurred.

 Related concepts:

v “Audit facility record layouts (introduction)” on page 636

 Related reference:

v “List of possible SYSADMIN audit events” on page 650

List of possible SYSADMIN audit events

 The following is the list of possible SYSADMIN audit events:

650 Administration Guide: Implementation

Table 85. SYSADMIN Audit Events

START_DB2

STOP_DB2

CREATE_DATABASE

ALTER_DATABASE

DROP_DATABASE

UPDATE_DBM_CFG

UPDATE_DB_CFG

CREATE_TABLESPACE

DROP_TABLESPACE

ALTER_TABLESPACE

RENAME_TABLESPACE

CREATE_NODEGROUP

DROP_NODEGROUP

ALTER_NODEGROUP

CREATE_BUFFERPOOL

DROP_BUFFERPOOL

ALTER_BUFFERPOOL

CREATE_EVENT_MONITOR

DROP_EVENT_MONITOR

ENABLE_MULTIPAGE

MIGRATE_DB_DIR

DB2TRC

DB2SET

ACTIVATE_DB

ADD_NODE

BACKUP_DB

CATALOG_NODE

CATALOG_DB

CATALOG_DCS_DB

CHANGE_DB_COMMENT

DEACTIVATE_DB

DROP_NODE_VERIFY

FORCE_APPLICATION

GET_SNAPSHOT

LIST_DRDA_INDOUBT_TRANSACTIONS

MIGRATE_DB

RESET_ADMIN_CFG

RESET_DB_CFG

RESET_DBM_CFG

RESET_MONITOR

RESTORE_DB

ROLLFORWARD_DB

SET_RUNTIME_DEGREE

SET_TABLESPACE_CONTAINERS

UNCATALOG_DB

UNCATALOG_DCS_DB

UNCATALOG_NODE

UPDATE_ADMIN_CFG

UPDATE_MON_SWITCHES

LOAD_TABLE

DB2AUDIT

SET_APPL_PRIORITY

CREATE_DB_AT_NODE

KILLDBM

MIGRATE_SYSTEM_DIRECTORY

DB2REMOT

DB2AUD

MERGE_DBM_CONFIG_FILE

UPDATE_CLI_CONFIGURATION

OPEN_TABLESPACE_QUERY

SINGLE_TABLESPACE_QUERY

CLOSE_TABLESPACE_QUERY

FETCH_TABLESPACE

OPEN_CONTAINER_QUERY

FETCH_CONTAINER_QUERY

CLOSE_CONTAINER_QUERY

GET_TABLESPACE_STATISTICS

DESCRIBE_DATABASE

ESTIMATE_SNAPSHOT_SIZE

READ_ASYNC_LOG_RECORD

PRUNE_RECOVERY_HISTORY

UPDATE_RECOVERY_HISTORY

QUIESCE_TABLESPACE

UNLOAD_TABLE

UPDATE_DATABASE_VERSION

CREATE_INSTANCE

DELETE_INSTANCE

SET_EVENT_MONITOR

GRANT_DBADM

REVOKE_DBADM

GRANT_DB_AUTHORITIES

REVOKE_DB_AUTHORITIES

REDIST_NODEGROUP

 Related reference:

v “Audit record layout for SYSADMIN events” on page 650

Audit record layout for VALIDATE events

 Sample audit record:

timestamp=1998-06-24-08.42.11.527490;category=VALIDATE;audit event=CHECK_GROUP_MEMBERSHIP;

 event correlator=2;event status=-1092;

 database=FOO;userid=boss;authid=BOSS;execution id=newton;

 application id=*LOCAL.newton.980624124210;application name=testapp;

 auth type=SERVER;

Chapter 9. Auditing DB2 database activities 651

Table 86. Audit Record Layout for VALIDATE Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

 VALIDATE

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: GET_GROUPS, GET_USERID,

AUTHENTICATE_PASSWORD, VALIDATE_USER, and

GET_USERMAPPING_FROM_PLUGIN.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used

to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

 Successful event > = 0

 Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated. Blank if

this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Execution ID VARCHAR(1024) Execution ID in use at the time of the audit event.

Origin Node Number SMALLINT Node number at which the audit event occurred.

Coordinator Node

Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR (255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR (1024) Application name in use at the time the audit event occurred.

Authentication Type VARCHAR (32) Authentication type at the time of the audit event.

Package Schema VARCHAR (128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR (128) Name of package in use at the time the audit event occurred.

Package Section

Number

SMALLINT Section number in package being used at the time the audit event

occurred.

Package Version VARCHAR (64) Version of the package in use at the time the audit event occurred.

Plug-in Name VARCHAR(32) The name of the plug-in in use at the time the audit event occurred.

 Related concepts:

v “Audit facility record layouts (introduction)” on page 636

Audit record layout for CONTEXT events

 Sample audit record:

timestamp=1998-06-24-08.42.41.476840;category=CONTEXT;audit event=EXECUTE_IMMEDIATE;

 event correlator=3;

 database=FOO;userid=boss;authid=BOSS;

 application id=*LOCAL.newton.980624124210;application name=testapp;

 package schema=NULLID;package name=SQLC28A1;

 package section=203;text=create table audit(c1 char(10), c2 integer);

652 Administration Guide: Implementation

Table 87. Audit Record Layout for CONTEXT Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

 CONTEXT

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: Those shown in the list following this table.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used

to identify what audit records are associated with a single event.

Database Name CHAR(8) Name of the database for which the event was generated. Blank if

this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node Number SMALLINT Node number at which the audit event occurred.

Coordinator Node

Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR (255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR (1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR (128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR (128) Name of package in use at the time the audit event occurred.

Package Section

Number

SMALLINT Section number in package being used at the time the audit event

occurred.

Statement Text

(statement)

CLOB (2M) Text of the SQL or XQuery statement, if applicable. Null if no SQL

or XQuery statement text is available.

Package Version VARCHAR (64) Version of the package in use at the time the audit event occurred.

 Related concepts:

v “Audit facility record layouts (introduction)” on page 636

 Related reference:

v “List of possible CONTEXT audit events” on page 653

List of possible CONTEXT audit events

 The following is the list of possible CONTEXT audit events:

Chapter 9. Auditing DB2 database activities 653

Table 88. CONTEXT Audit Events

CONNECT

CONNECT_RESET

ATTACH

DETACH

DARI_START

DARI_STOP

BACKUP_DB

RESTORE_DB

ROLLFORWARD_DB

OPEN_TABLESPACE_QUERY

FETCH_TABLESPACE

CLOSE_TABLESPACE_QUERY

OPEN_CONTAINER_QUERY

CLOSE_CONTAINER_QUERY

FETCH_CONTAINER_QUERY

SET_TABLESPACE_CONTAINERS

GET_TABLESPACE_STATISTIC

READ_ASYNC_LOG_RECORD

QUIESCE_TABLESPACE

LOAD_TABLE

UNLOAD_TABLE

UPDATE_RECOVERY_HISTORY

PRUNE_RECOVERY_HISTORY

SINGLE_TABLESPACE_QUERY

LOAD_MSG_FILE

UNQUIESCE_TABLESPACE

ENABLE_MULTIPAGE

DESCRIBE_DATABASE

DROP_DATABASE

CREATE_DATABASE

ADD_NODE

FORCE_APPLICATION

SET_APPL_PRIORITY

RESET_DB_CFG

GET_DB_CFG

GET_DFLT_CFG

UPDATE_DBM_CFG

SET_MONITOR

GET_SNAPSHOT

ESTIMATE_SNAPSHOT_SIZE

RESET_MONITOR

OPEN_HISTORY_FILE

CLOSE_HISTORY_FILE

FETCH_HISTORY_FILE

SET_RUNTIME_DEGREE

UPDATE_AUDIT

DBM_CFG_OPERATION

DISCOVER

OPEN_CURSOR

CLOSE_CURSOR

FETCH_CURSOR

EXECUTE

EXECUTE_IMMEDIATE

PREPARE

DESCRIBE

BIND

REBIND

RUNSTATS

REORG

REDISTRIBUTE

COMMIT

ROLLBACK

REQUEST_ROLLBACK

IMPLICIT_REBIND

 Related reference:

v “Audit record layout for CONTEXT events” on page 652

Audit facility tips and techniques

 In most cases, when working with CHECKING events, the object type field in the

audit record is the object being checked to see if the required privilege or authority

is held by the user ID attempting to access the object. For example, if a user

attempts to ALTER a table by adding a column, then the CHECKING event audit

record will indicate the access attempted was “ALTER” and the object type being

checked was “TABLE” (note: not the column since it is table privileges that must

be checked).

However, when the checking involves verifying if a database authority exists to

allow a user ID to CREATE or BIND an object, or to delete an object, then

although there is a check against the database, the object type field will specify the

object being created, bound, or dropped (rather than the database itself).

When creating an index on a table, the privilege to create an index is required,

therefore the CHECKING event audit record will have an access attempt type of

“index” rather than “create”.

654 Administration Guide: Implementation

When binding a package that already exists, then an OBJMAINT event audit

record is created for the DROP of the package and then another OBJMAINT event

audit record is created for the CREATE of the new copy of the package.

Data Definition Language (DDL) may generate OBJMAINT or SECMAINT events

that are logged as successful. It is possible however that following the logging of

the event, a subsequent error may cause a ROLLBACK to occur. This would leave

the object as not created; or the GRANT or REVOKE actions as incomplete. The

use of CONTEXT events becomes important in this case. Such CONTEXT event

audit records, especially the statement that ends the event, will indicate the nature

of the completion of the attempted operation.

When extracting audit records in a delimited ASCII format suitable for loading into

a DB2 database relational table, you should be clear regarding the delimiter used

within the statement text field. This can be done when extracting the delimited

ASCII file and is done using:

 db2audit extract delasc delimiter <load delimiter>

The load delimiter can be a single character (such as ") or a four-byte string

representing a hexadecimal value (such as “0xff”). Examples of valid commands

are:

 db2audit extract delasc

 db2audit extract delasc delimiter !

 db2audit extract delasc delimiter 0xff

If you have used anything other than the default load delimiter (“″”) as the

delimiter when extracting, you should use the MODIFIED BY option on the LOAD

command. A partial example of the LOAD command with “0xff” used as the

delimiter follows:

 db2 load from context.del of del modified by chardel0xff replace into ...

This will override the default load character string delimiter which is “0xff”.

 Related concepts:

v “Audit facility record layouts (introduction)” on page 636

 Related reference:

v “Audit facility usage” on page 624

Controlling DB2 database audit facility activities

 Procedure:

 As part of our discussion on the control of the audit facility activities, we will use

a simple scenario: A user, newton, runs an application called testapp that connects

and creates a table. This same application is used in each of the examples

discussed below.

We begin by presenting an extreme example: You have determined to audit all

successful and unsuccessful audit events, therefore you will configure the audit

facility in the following way:

 db2audit configure scope all status both

Chapter 9. Auditing DB2 database activities 655

Note: This creates audit records for every possible auditable event. As a result,

many records are written to the audit log and this reduces the performance

of your database manager. This extreme case is shown here for

demonstration purposes only; there is no recommendation that you

configure the audit facility with the command shown above.

After beginning the audit facility with this configuration (using “db2audit start”),

and then running the testapp application, the following records are generated and

placed in the audit log. By extracting the audit records from the log, you will see

the following records generated for the two actions carried out by the application:

Action Type of Record Created

CONNECT

timestamp=1998-06-24-08.42.10.555345;category=CONTEXT;

audit event=CONNECT;event correlator=2;database=FOO;

application id=*LOCAL.newton.980624124210;

application name=testapp;

timestamp=1998-06-24-08.42.10.944374;category=VALIDATE;

audit event=AUTHENTICATION;event correlator=2;event status=0;

database=FOO;userid=boss;authid=BOSS;execution id=newton;

application id=*LOCAL.newton.980624124210;application name=testapp;

auth type=SERVER;

timestamp=1998-06-24-08.42.11.527490;category=VALIDATE;

audit event=CHECK_GROUP_MEMBERSHIP;event correlator=2;

event status=-1092;database=FOO;userid=boss;authid=BOSS;

execution id=newton;application id=*LOCAL.newton.980624124210;

application name=testapp;auth type=SERVER;

timestamp=1998-06-24-08.42.11.561187;category=VALIDATE;

audit event=CHECK_GROUP_MEMBERSHIP;event correlator=2;

event status=-1092;database=FOO;userid=boss;authid=BOSS;

execution id=newton;application id=*LOCAL.newton.980624124210;

application name=testapp;auth type=SERVER;

timestamp=1998-06-24-08.42.11.594620;category=VALIDATE;

audit event=CHECK_GROUP_MEMBERSHIP;event correlator=2;

event status=-1092;database=FOO;userid=boss;authid=BOSS;

execution id=newton;application id=*LOCAL.newton.980624124210;

application name=testapp;auth type=SERVER;

timestamp=1998-06-24-08.42.11.622984;category=CHECKING;

audit event=CHECKING_OBJECT;event correlator=2;event status=0;

database=FOO;userid=boss;authid=BOSS;

application id=*LOCAL.newton.980624124210;application name=testapp;

object name=FOO;object type=DATABASE;access approval reason=DATABASE;

access attempted=CONNECT;

timestamp=1998-06-24-08.42.11.801554;category=CONTEXT;

audit event=COMMIT;event correlator=2;database=FOO;userid=boss;

authid=BOSS;application id=*LOCAL.newton.980624124210;

application name=testapp;

timestamp=1998-06-24-08.42.41.450975;category=CHECKING;

audit event=CHECKING_OBJECT;event correlator=2;event status=0;

database=FOO;userid=boss;authid=BOSS;

application id=*LOCAL.newton.980624124210;application name=testapp;

package schema=NULLID;package name=SQLC28A1;object schema=NULLID;

object name=SQLC28A1;object type=PACKAGE;

access approval reason=OBJECT;access attempted=EXECUTE;

CREATE TABLE

656 Administration Guide: Implementation

timestamp=1998-06-24-08.42.41.476840;category=CONTEXT;

audit event=EXECUTE_IMMEDIATE;event correlator=3;database=FOO;

userid=boss;authid=BOSS;application id=*LOCAL.newton.980624124210;

application name=testapp;package schema=NULLID;package name=SQLC28A1;

package section=203;text=create table audit(c1 char(10), c2 integer);

timestamp=1998-06-24-08.42.41.539692;category=CHECKING;

audit event=CHECKING_OBJECT;event correlator=3;event status=0;

database=FOO;userid=boss;authid=BOSS;

application id=*LOCAL.newton.980624124210;application name=testapp;

package schema=NULLID;package name=SQLC28A1;package section=0;

object schema=BOSS;object name=AUDIT;object type=TABLE;

access approval reason=DATABASE;access attempted=CREATE;

timestamp=1998-06-24-08.42.41.570876;category=CHECKING;

audit event=CHECKING_OBJECT;event correlator=3;event status=0;

database=FOO;userid=boss;authid=BOSS;

application id=*LOCAL.newton.980624124210;application name=testapp;

package schema=NULLID;package name=SQLC28A1;package section=0;

object name=BOSS;object type=SCHEMA;access approval reason=DATABASE;

access attempted=CREATE;

timestamp=1998-06-24-08.42.41.957524;category=OBJMAINT;

audit event=CREATE_OBJECT;event correlator=3;event status=0;

database=FOO;userid=boss;authid=BOSS;

application id=*LOCAL.newton.980624124210;application name=testapp;

package schema=NULLID;package name=SQLC28A1;package section=0;

object schema=BOSS;object name=AUDIT;object type=TABLE;

timestamp=1998-06-24-08.42.42.018900;category=CONTEXT;

audit event=COMMIT;event correlator=3;database=FOO;userid=boss;

authid=BOSS;application id=*LOCAL.newton.980624124210;

application name=testapp;package schema=NULLID;

package name=SQLC28A1;

 As you can see, there are a significant number of audit records generated from the

audit configuration that requests the auditing of all possible audit events and

types.

In most cases, you will configure the audit facility for a more restricted or focused

view of the events you wish to audit. For example, you may want to only audit

those events that fail. In this case, the audit facility could be configured as follows:

 db2audit configure scope audit,checking,objmaint,secmaint,sysadmin,

 validate status failure

Note: This configuration is the initial audit configuration or the one that occurs

when the audit configuration is reset.

After beginning the audit facility with this configuration, and then running the

testapp application, the following records are generated and placed in the audit log.

(And we assume testapp has not been run before.) By extracting the audit records

from the log, you will see the following records generated for the two actions

carried out by the application:

Action Type of Record Created

CONNECT

timestamp=1998-06-24-08.42.11.527490;category=VALIDATE;

audit event=CHECK_GROUP_MEMBERSHIP;event correlator=2;

event status=-1092;database=FOO;userid=boss;authid=BOSS;

execution id=newton;application id=*LOCAL.newton.980624124210;

application name=testapp;auth type=SERVER;

timestamp=1998-06-24-08.42.11.561187;category=VALIDATE;

Chapter 9. Auditing DB2 database activities 657

audit event=CHECK_GROUP_MEMBERSHIP;event correlator=2;

event status=-1092;database=FOO;userid=boss;authid=BOSS;

execution id=newton;application id=*LOCAL.newton.980624124210;

application name=testapp;auth type=SERVER;

timestamp=1998-06-24-08.42.11.594620;category=VALIDATE;

audit event=CHECK_GROUP_MEMBERSHIP;event correlator=2;

event status=-1092;database=FOO;userid=boss;authid=BOSS;

execution id=newton;application id=*LOCAL.newton.980624124210;

application name=testapp;auth type=SERVER;

CREATE TABLE

(none)

 The are far fewer audit records generated from the audit configuration that

requests the auditing of all possible audit events (except CONTEXT) but only

when the event attempt fails. By changing the audit configuration you can control

the type and nature of the audit records that are generated.

The audit facility can allow you to create audit records when those you want to

audit have been successfully granted privileges on an object. In this case, you

could configure the audit facility as follows:

 db2audit configure scope checking status success

After beginning the audit facility with this configuration, and then running the

testapp application, the following records are generated and placed in the audit log.

(And we assume testapp has not been run before.) By extracting the audit records

from the log, you will see the following records generated for the two actions

carried out by the application:

Action Type of Record Created

CONNECT

timestamp=1998-06-24-08.42.11.622984;category=CHECKING;

audit event=CHECKING_OBJECT;event correlator=2;event status=0;

database=FOO;userid=boss;authid=BOSS;

timestamp=1998-06-24-08.42.41.450975;category=CHECKING;

audit event=CHECKING_OBJECT;event correlator=2;event status=0;

database=FOO;userid=boss;authid=BOSS;

application id=*LOCAL.newton.980624124210;application name=testapp;

package schema=NULLID;package name=SQLC28A1;object schema=NULLID;

object name=SQLC28A1;object type=PACKAGE;

access approval reason=OBJECT;access attempted=EXECUTE;

timestamp=1998-06-24-08.42.41.539692;category=CHECKING;

audit event=CHECKING_OBJECT;event correlator=3;event status=0;

database=FOO;userid=boss;authid=BOSS;

application id=*LOCAL.newton.980624124210;application name=testapp;

package schema=NULLID;package name=SQLC28A1;package section=0;

object schema=BOSS;object name=AUDIT;object type=TABLE;

access approval reason=DATABASE;access attempted=CREATE;

timestamp=1998-06-24-08.42.41.570876;category=CHECKING;

audit event=CHECKING_OBJECT;event correlator=3;event status=0;

database=FOO;userid=boss;authid=BOSS;

application id=*LOCAL.newton.980624124210;application name=testapp;

package schema=NULLID;package name=SQLC28A1;package section=0;

object name=BOSS;object type=SCHEMA;access approval reason=DATABASE;

access attempted=CREATE;

CREATE TABLE

(none)

658 Administration Guide: Implementation

Related concepts:

v “Audit facility record layouts (introduction)” on page 636

 Related reference:

v “Audit facility usage” on page 624

Chapter 9. Auditing DB2 database activities 659

660 Administration Guide: Implementation

Part 3. Appendixes

© Copyright IBM Corp. 1993, 2006 661

662 Administration Guide: Implementation

Appendix A. Conforming to the naming rules

General naming rules

 Rules exist for the naming of all objects, users and groups. Some of these rules are

specific to the platform you are working on. For example, there is a rule regarding

the use of upper and lowercase letters in a name.

v On UNIX platforms, names must be in lowercase.

v On Windows platforms, names can be in upper, lower, and mixed-case.

Unless otherwise specified, all names can include the following characters:

v A through Z. When used in most names, characters A through Z are converted

from lowercase to uppercase.

v 0 through 9.

v ! % () { } . – ^ ~ _ (underscore) @, #, $, and space.

v \ (backslash).

Names cannot begin with a number or with the underscore character.

Do not use SQL reserved words to name tables, views, columns, indexes, or

authorization IDs.

There are other special characters that might work separately depending on your

operating system and where you are working with the DB2 database. However,

while they might work, there is no guarantee that they will work. It is not

recommended that you use these other special characters when naming objects in

your database.

User and group names also need to follow the rules forced on specific operation

systems by the related systems. For example, on Linux and UNIX platforms, user

names and primary group names must follow these rules:

v Allowed characters: lowercase a through z, 0 through 9, and _ (underscore) for

names not starting with 0 through 9.

v Length must be less than or equal to 8 characters.

You also need to consider object naming rules, workstation naming rules, naming

rules in an NLS environment, and naming rules in a Unicode environment.

 Related concepts:

v “DB2 database object naming rules” on page 663

v “Federated database object naming rules” on page 666

v “User, user ID and group naming rules” on page 666

v “Workstation naming rules” on page 667

DB2 database object naming rules

 All objects follow the General Naming Rules. In addition, some objects have

additional restrictions shown in the accompanying tables.

© Copyright IBM Corp. 1993, 2006 663

Table 89. Database, database alias and instance naming rules

Objects Guidelines

v Databases

v Database aliases

v Instances

v Database names must be unique within the location in which they are cataloged. On

Linux and UNIX implementations of the DB2 database manager, this location is a

directory path, while on Windows implementations, it is a logical disk.

v Database alias names must be unique within the system database directory. When a

new database is created, the alias defaults to the database name. As a result, you

cannot create a database using a name that exists as a database alias, even if there is

no database with that name.

v Database, database alias and instance names can have up to 8 bytes.

v On Windows, no instance can have the same name as a service name.

Note: To avoid potential problems, do not use the special characters @, #, and $ in a

database name if you intend to use the database in a communications environment.

Also, because these characters are not common to all keyboards, do not use them if you

plan to use the database in another language.

 Table 90. Database object naming rules

Objects Guidelines

v Aliases

v Buffer pools

v Columns

v Event monitors

v Indexes

v Methods

v Nodegroups

v Packages

v Package versions

v Schemas

v Stored procedures

v Tables

v Table spaces

v Triggers

v UDFs

v UDTs

v Views

Can contain up to 18 bytes except for the following:

v Table names (including view names, summary table names, alias names, and

correlation names), which can contain up to 128 bytes

v Column names can contain up to 30 bytes

v Package names, which can contain up to 8 bytes

v Schema names, which can contain up to 30 bytes

v Package versions, which can contain up to 64 bytes

v Object names can also include:

– valid accented characters (such as ö)

– multibyte characters, except multibyte spaces (for multibyte environments)

v Package names and package versions can also include periods (.), hyphens (-), and

colons (:).

 Table 91. Federated database object naming rules

Objects Guidelines

v Function mappings

v Index specifications

v Nicknames

v Servers

v Type mappings

v User mappings

v Wrappers

v Nicknames, mappings, index specifications, servers, and wrapper names cannot

exceed 128 bytes.

v Server and nickname options and option settings are limited to 255 bytes.

v Names for federated database objects can also include:

– Valid accented letters (such as ö)

– Multibyte characters, except multibyte spaces (for multibyte environments)

 Delimited identifiers and object names:

664 Administration Guide: Implementation

Keywords can be used. If a keyword is used in a context where it could also be

interpreted as an SQL keyword, it must be specified as a delimited identifier.

Using delimited identifiers, it is possible to create an object that violates these

naming rules; however, subsequent use of the object could result in errors. For

example, if you create a column with a + or − sign included in the name and you

subsequently use that column in an index, you will experience problems when you

attempt to reorganize the table.

 Additional schema names information:

v User-defined types (UDTs) cannot have schema names longer than 8 bytes.

v The following schema names are reserved words and must not be used:

SYSCAT, SYSFUN, SYSIBM, SYSSTAT.

v To avoid potential migration problems in the future, do not use schema names

that begin with SYS. The database manager will not allow you to create triggers,

user-defined types or user-defined functions using a schema name beginning

with SYS.

v It is recommended that you not use SESSION as a schema name. Declared

temporary tables must be qualified by SESSION. It is therefore possible to have

an application declare a temporary table with a name identical to that of a

persistent table, in which case the application logic can become overly

complicated. Avoid the use of the schema SESSION, except when dealing with

declared temporary tables.

 Related concepts:

v “General naming rules” on page 663

Delimited identifiers and object names

 Keywords can be used. If a keyword is used in a context where it could also be

interpreted as an SQL keyword, it must be specified as a delimited identifier.

Using delimited identifiers, it is possible to create an object that violates these

naming rules; however, subsequent use of the object could result in errors. For

example, if you create a column with a + or − sign included in the name and you

subsequently use that column in an index, you will experience problems when you

attempt to reorganize the table.

 Related concepts:

v “General naming rules” on page 663

Appendix A. Conforming to the naming rules 665

User, user ID and group naming rules

 Table 92. User, user ID and group naming rules

Objects Guidelines

v Group names

v User names

v User IDs

v Group names can contain up to 30

characters.

v User IDs on Linux and UNIX operating

systems can contain up to 8 characters.

v User names on Windows can contain up

to 30 characters.

v When not using Client authentication,

non-Windows 32-bit clients connecting to

Windows with user names longer than 8

characters are supported when the user

name and password are specified

explicitly.

v Names and IDs cannot:

– Be USERS, ADMINS, GUESTS,

PUBLIC, LOCAL or any SQL reserved

word

– Begin with IBM, SQL or SYS.

Notes:

1. Some operating systems allow case sensitive user IDs and passwords. You

should check your operating system documentation to see if this is the case.

2. The authorization ID returned from a successful CONNECT or ATTACH is

truncated to 8 characters. An ellipsis (...) is appended to the authorization ID

and the SQLWARN fields contain warnings to indicate truncation.

3. Trailing blanks from user IDs and passwords are removed.

 Related concepts:

v “Federated database object naming rules” on page 666

v “General naming rules” on page 663

Federated database object naming rules

 Table 93. Federated database object naming rules

Objects Guidelines

v Function mappings

v Index specifications

v Nicknames

v Servers

v Type mappings

v User mappings

v Wrappers

v Nicknames, mappings, index specifications, servers, and wrapper names cannot

exceed 128 bytes.

v Server and nickname options and option settings are limited to 255 bytes.

v Names for federated database objects can also include:

– Valid accented letters (such as ö)

– Multibyte characters, except multibyte spaces (for multibyte environments)

 Related concepts:

v “General naming rules” on page 663

666 Administration Guide: Implementation

Additional restrictions and recommendations regarding the use of

schema names

v User-defined types (UDTs) cannot have schema names longer than 8 bytes.

v The following schema names are reserved words and must not be used:

SYSCAT, SYSFUN, SYSIBM, SYSSTAT.

v To avoid potential migration problems in the future, do not use schema names

that begin with SYS. The database manager will not allow you to create triggers,

user-defined types or user-defined functions using a schema name beginning

with SYS.

v It is recommended that you not use SESSION as a schema name. Declared

temporary tables must be qualified by SESSION. It is therefore possible to have

an application declare a temporary table with a name identical to that of a

persistent table, in which case the application logic can become overly

complicated. Avoid the use of the schema SESSION, except when dealing with

declared temporary tables.

 Related concepts:

v “General naming rules” on page 663

Maintaining passwords on servers

 You might be required to perform password maintenance tasks. Since such tasks

are required at the server, and many users are not able or comfortable working

with the server environment, performing these tasks can pose a significant

challenge. DB2 database system provides a way to update and verify passwords

without having to be at the server. For example, DB2 for OS/390 Version 5

supports this method of changing a user’s password. If an error message

SQL1404N “Password expired” is received, use the CONNECT statement to change

the password as follows:

 CONNECT TO <database> USER <userid> USING <password>

 NEW <new_password> CONFIRM <new_password>

The “Password change” dialog of the DB2 Configuration Assistant (CA) can also

be used to change the password.

 Related concepts:

v “Additional restrictions and recommendations regarding the use of schema

names” on page 667

v “DB2 database object naming rules” on page 663

v “Delimited identifiers and object names” on page 665

v “Federated database object naming rules” on page 666

v “General naming rules” on page 663

v “User, user ID and group naming rules” on page 666

v “Workstation naming rules” on page 667

Workstation naming rules

 A workstation name specifies the NetBIOS name for a database server, database

client, or DB2 Personal Edition that resides on the local workstation. This name is

stored in the database manager configuration file. The workstation name is known

as the workstation nname.

Appendix A. Conforming to the naming rules 667

In addition, the name you specify:

v Can contain 1 to 8 characters

v Cannot include &, #, or @

v Must be unique within the network

In a partitioned database system, there is still only one workstation nname that

represents the entire partitioned database system, but each node has its own

derived unique NetBIOS nname.

The workstation nname that represents the partitioned database system is stored in

the database manager configuration file for the database partition server that owns

the instance.

Each node’s unique nname is a derived combination of the workstation nname and

the node number.

If a node does not own an instance, its NetBIOS nname is derived as follows:

1. The first character of the instance-owning machine’s workstation nname is used

as the first character of the node’s NetBIOS nname.

2. The next 1 to 3 characters represent the node number. The range is from 1 to

999.

3. The remaining characters are taken from the instance-owning machine’s

workstation nname. The number of remaining characters depends on the length

of the instance-owning machine’s workstation nname. This number can be from

0 to 4.

For example:

 Instance-Owning Machine’s

Workstation nname

Node Number Derived Node NetBIOS nname

GEORGE 3 G3ORGE

A 7 A7

B2 94 B942

N0076543 21 N216543

GEORGE5 1 G1RGE5

If you have changed the default workstation nname during the installation, the

workstation nname’s last 4 characters should be unique across the NetBIOS

network to minimize the chance of deriving a conflicting NetBIOS nname.

 Related concepts:

v “General naming rules” on page 663

Naming rules in an NLS environment

 The basic character set that can be used in database names consists of the

single-byte uppercase and lowercase Latin letters (A...Z, a...z), the Arabic numerals

(0...9) and the underscore character (_). This list is augmented with three special

characters (#, @, and $) to provide compatibility with host database products. Use

special characters #, @, and $ with care in an NLS environment because they are

not included in the NLS host (EBCDIC) invariant character set. Characters from the

668 Administration Guide: Implementation

extended character set can also be used, depending on the code page that is being

used. If you are using the database in a multiple code page environment, you must

ensure that all code pages support any elements from the extended character set

you plan to use.

When naming database objects (such as tables and views), program labels, host

variables, cursors, and elements from the extended character set (for example,

letters with diacritical marks) can also be used. Precisely which characters are

available depends on the code page in use.

 Extended Character Set Definition for DBCS Identifiers:

 In DBCS environments, the extended character set consists of all the characters in

the basic character set, plus the following:

v All double-byte characters in each DBCS code page, except the double-byte

space, are valid letters.

v The double-byte space is a special character.

v The single-byte characters available in each mixed code page are assigned to

various categories as follows:

 Category Valid Code Points within each Mixed Code Page

Digits x30-39

Letters x23-24, x40-5A, x61-7A, xA6-DF (A6-DF for code pages 932 and 942 only)

Special

Characters

All other valid single-byte character code points

 Related concepts:

v “DB2 database object naming rules” on page 663

v “General naming rules” on page 663

v “Workstation naming rules” on page 667

Naming rules in a Unicode environment

 In a UCS-2 database, all identifiers are in multibyte UTF-8. Therefore, it is possible

to use any UCS-2 character in identifiers where the use of a character in the

extended character set (for example, an accented character, or a multibyte

character) is allowed by the DB2 database system.

Clients can enter any character that is supported by their environment, and all the

characters in the identifiers will be converted to UTF-8 by the database manager.

Two points must be taken into account when specifying national language

characters in identifiers for a UCS-2 database:

v Each non-ASCII character requires two to four bytes. Therefore, an n-byte

identifier can only hold somewhere between n/4 and n characters, depending on

the ratio of ASCII to non-ASCII characters. If you have only one or two

non-ASCII (for example, accented) characters, the limit is closer to n characters,

while for an identifier that is completely non-ASCII (for example, in Japanese),

only n/4 to n/3 characters can be used.

v If identifiers are to be entered from different client environments, they should be

defined using the common subset of characters available to those clients. For

example, if a UCS-2 database is to be accessed from Latin-1, Arabic, and

Japanese environments, all identifiers should realistically be limited to ASCII.

Appendix A. Conforming to the naming rules 669

Related concepts:

v “DB2 database object naming rules” on page 663

v “General naming rules” on page 663

v “Workstation naming rules” on page 667

670 Administration Guide: Implementation

Appendix B. Using Windows Management Instrumentation

(WMI) support

Introduction to Windows Management Instrumentation (WMI)

 There is an industry initiative that establishes management infrastructure standards

and provides a way to combine information from various hardware and software

management systems. This initiative is called Web-Based Enterprise Management

(WBEM). WBEM is based on the Common Information Model (CIM) schema,

which is an industry standard driven by the Desktop Management Task Force

(DMTF).

Microsoft Windows Management Instrumentation (WMI) is an implementation of

the WBEM initiative for supported Windows platforms. WMI is useful in a

Windows enterprise network where it reduces the maintenance and cost of

managing enterprise network components. WMI provides:

v A consistent model of Windows operation, configuration, and status.

v A COM API to allow access to management information.

v The ability to operate with other Windows management services.

v A flexible and extensible architecture allowing vendors a means of writing other

WMI providers to support new devices, applications, and other enhancements.

v The WMI Query Language (WQL) to create detailed queries of the information.

v An API for management application developers to write Visual Basic or

Windows Scripting Host (WSH) scripts.

The WMI architecture has two parts:

1. A management infrastructure that includes the CIM Object Manager (CIMOM)

and a central storage area for management data called the CIMOM object

repository. CIMOM allows applications to have a uniform way to access

management data.

2. WMI providers. WMI providers are the intermediaries between CIMOM and

managed objects. Using WMI APIs, WMI providers supply CIMOM with data

from managed objects, handle requests on behalf of management applications,

and generate event notifications.

Windows Management Instrumentation (WMI) providers are standard COM or

DCOM servers that function as mediators between managed objects and the CIM

Object Manager (CIMOM). If the CIMOM receives a request from a management

application for data that is not available from the CIMOM object repository, or for

events, the CIMOM forwards the request to the WMI providers. WMI providers

supply data, and event notifications, for managed objects that are specific to their

particular domain.

 Related concepts:

v “DB2 database system integration with Windows Management Instrumentation”

on page 672

 Related reference:

v “Windows Management Instrumentation samples” in Samples Topics

© Copyright IBM Corp. 1993, 2006 671

DB2 database system integration with Windows Management

Instrumentation

 The snapshot monitors can be accessed by Windows Management Instrumentation

(WMI) by means of the DB2 performance counters and using the built-in PerfMon

provider.

The DB2 profile registry variables can be accessed by WMI by using the built-in

Registry provider.

The WMI Software Development Kit (WMI SDK) includes several built-in

providers:

v PerfMon provider

v Registry event provider

v Registry provider

v Windows event log provider

v Win32 provider

v WDM provider

The DB2 errors that are in the Event Logs can be accessed by WMI by using the

built-in Windows Event Log provider.

DB2 database system has a DB2 WMI Administration provider, and sample WMI

script files, to access the following managed objects:

1. Instances of the database server including those instances that are distributed.

The following operations can be done:

v Enumerate instances

v Configure database manager parameters

v Start/stop/query the status of the DB2 server service

v Setup or establish communication
2. Databases. The following operations can be done:

v Enumerate databases

v Configure database parameters

v Create/drop databases

v Backup/restore/roll forward databases

You will need to register the DB2 WMI provider with the system before running

WMI applications. Registration is done by entering the following commands:

v mofcomp %DB2PATH%\bin\db2wmi.mof

This command loads the definition of the DB2 WMI schema into the system.

v regsvr %DB2PATH%\bin\db2wmi.dll

This command registers the DB2 WMI provider COM DLL with Windows.

In both commands, %DB2PATH% is the path where DB2 is installed. Also,

db2wmi.mof is the .MOF file that contains the DB2 WMI schema definition.

There are several benefits to integrating with the WMI infrastructure:

1. You are able to easily write scripts to manage DB2 servers in a Windows-based

environment using the WMI provided tool. Sample Visual Basic (VBS) scripts

are provided to carry out simple tasks such as listing instances, creating and

672 Administration Guide: Implementation

dropping databases, and updating configuration parameters. The sample scripts

are included in the DB2 Application Development for Windows product.

2. You can create powerful management applications that perform many tasks

using WMI. The tasks could include:

v Displaying system information

v Monitoring DB2 performance

v Monitoring DB2 system resource consumption

By monitoring both system events and DB2 events through this type of

management application, you can manage the database better.

3. You can use existing COM and Visual Basic programming knowledge and

skills. By providing a COM or Visual Basic interface, your programmers can

save time when developing enterprise management applications.

 Related concepts:

v “Introduction to Windows Management Instrumentation (WMI)” on page 671

 Related reference:

v “Windows Management Instrumentation samples” in Samples Topics

Appendix B. Using Windows Management Instrumentation (WMI) support 673

674 Administration Guide: Implementation

Appendix C. Using Windows security

DB2 and Windows security introduction

 A Windows domain is an arrangement of client and server computers referenced

by a specific and unique name; and, that share a single user accounts database

called the Security Access Manager (SAM). One of the computers in the domain is

the domain controller. The domain controller manages all aspects of user-domain

interactions. The domain controller uses the information in the domain user

accounts database to authenticate users logging onto domain accounts. For each

domain, one domain controller is the primary domain controller (PDC). Within the

domain, there may also be backup domain controllers (BDC) which authenticate

user accounts when there is no primary domain controller or the primary domain

controller is not available. Backup domain controllers hold a copy of the SAM

database which is regularly synchronized against the master copy on the PDC.

User accounts, user IDs, and passwords only need to be defined at the primary

domain controller to be able to access domain resources.

Note: Two-part user IDs are supported by the CONNECT statement and the

ATTACH command. The qualifier of the SAM-compatible user ID is the

NetBIOS style name which has a maximum length of 15 characters.

During the setup procedure when a Windows server is installed, you may select to

create:

v A primary domain controller in a new domain

v A backup domain controller in a known domain

v A stand-alone server in a known domain.

Selecting “controller” in a new domain makes that server the primary domain

controller.

The user may log on to the local machine, or when the machine is installed in a

Windows Domain, the user may log on to the Domain. To authenticate the user,

DB2 checks the local machine first, then the Domain Controller for the current

Domain, and finally any Trusted Domains known to the Domain Controller.

To illustrate how this works, suppose that the DB2 instance requires Server

authentication. The configuration is as follows:

© Copyright IBM Corp. 1993, 2006 675

Each machine has a security database, Security Access Management (SAM). DC1 is

the domain controller, in which the client machine, Ivan, and the DB2 server, Servr,

are enrolled. TDC2 is a trusted domain for DC1 and the client machine, Abdul, is a

member of TDC2’s domain.

 Related concepts:

v “Groups and user authentication on Windows” on page 679

 Related tasks:

v “Authentication with groups and domain security (Windows)” on page 681

v “Installing DB2 on a backup domain controller” on page 680

v “Using a backup domain controller with DB2 database systems” on page 677

A scenario with server authentication (Windows)

1. Abdul logs on to the TDC2 domain (that is, he is known in the TDC2 SAM

database).

2. Abdul then connects to a DB2 database that is cataloged to reside on SRV3:

 db2 connect to remotedb user Abdul using fredpw

3. SRV3 determines where Abdul is known. The API that is used to find this

information first searches the local machine (SRV3) and then the domain

controller (DC1) before trying any trusted domains. Username Abdul is found

on TDC2. This search order requires a single namespace for users and groups.

4. SRV3 then:

a. Validates the username and password with TDC2.

b. Finds out whether Abdul is an administrator by asking TDC2.

c. Enumerates all Abdul’s groups by asking TDC2.

 Related concepts:

v “DB2 and Windows security introduction” on page 675

Figure 7. Authentication Using Windows Domains

676 Administration Guide: Implementation

A scenario with client authentication and a Windows client machine

1. Dale, the administrator, logs on to SRV3 and changes the authentication for the

database instance to Client:

 db2 update dbm cfg using authentication client

 db2stop

 db2start

2. Ivan, at a Windows client machine, logs on to the DC1 domain (that is, he is

known in the DC1 SAM database).

3. Ivan then connects to a DB2 database that is cataloged to reside on SRV3:

 DB2 CONNECT to remotedb user Ivan using johnpw

4. Ivan’s machine validates the username and password. The API used to find this

information first searches the local machine (Ivan) and then the domain

controller (DC1) before trying any trusted domains. Username Ivan is found on

DC1.

5. Ivan’s machine then validates the username and password with DC1.

6. SRV3 then:

a. Determines where Ivan is known.

b. Finds out whether Ivan is an administrator by asking DC1.

c. Enumerates all Ivan’s groups by asking DC1.

Note: Before attempting to connect to the DB2 database, ensure that DB2 Security

Service has been started. The Security Service is installed as part of the

Windows installation. DB2 is then installed and “registered” as a Windows

service however, it is not started automatically. To start the DB2 Security

Service, enter the NET START DB2NTSECSERVER command.

 Related concepts:

v “DB2 and Windows security introduction” on page 675

Support for global groups (on Windows)

 DB2 database also supports global groups. In order to use global groups, you must

include global groups inside a local group. When DB2 database enumerates all the

groups that a person is a member of, it also lists the local groups the user is a

member of indirectly (by the virtue of being in a global group that is itself a

member of one or more local groups).

Global groups are used in two possible situations:

v Included inside a local group. Permission must be granted to this local group.

v Included on a domain controller. Permission must be granted to the global

group.

 Related concepts:

v “Groups and user authentication on Windows” on page 679

Using a backup domain controller with DB2 database systems

 Procedure:

Appendix C. Using Windows security 677

If the server you use for DB2 database systems also acts as a backup domain

controller, you can improve DB2 database performance and reduce network traffic

if you configure DB2 database to use the backup domain controller.

You specify the backup domain controller to the DB2 database system by setting

the DB2DMNBCKCTLR registry variable.

If you know the name of the domain for which DB2 database server is the backup

domain controller, use:

 db2dmnbckctlr=<domain_name>

where domain_name must be in upper case.

To have DB2 database system determine the domain for which the local machine is

a backup domain controller, use:

 DB2DMNBCKCTLR=?

Note: DB2 database does not use an existing backup domain controller by default

because a backup domain controller can get out-of-sync with the primary

domain controller, causing a security exposure. Domain controllers get

out-of-sync when the primary domain controller’s security database is

updated but the changes are not propagated to a backup domain controller.

This can happen if there are network latencies or if the computer browser

service is not operational.

 Related tasks:

v “Installing DB2 on a backup domain controller” on page 680

User authentication with DB2 for Windows

User authentication can cause problems for Windows users because of the way the

operating system authenticates. This section describes some considerations for user

authentication under DB2 for Windows:

v “User name and group name restrictions (Windows)”

v “DB2 database system and Windows security service” on page 680

v “Installing DB2 on a backup domain controller” on page 680

v “Authentication with groups and domain security (Windows)” on page 681

User name and group name restrictions (Windows)

 The following are the limitations in this environment:

v User names and group names are limited to 30 characters within the DB2

database system.

v User names under Windows are not case sensitive; however, passwords are case

sensitive.

v User names and group names can be a combination of upper- and lowercase

characters. However, they are usually converted to uppercase when used within

the DB2 database. For example, if you connect to the database and create the

table schema1.table1, this table is stored as SCHEMA1.TABLE1 within the

database. (If you wish to use lowercase object names, issue commands from the

command line processor, enclosing the object names in quotation marks, or use

third-party ODBC front-end tools.)

v A user can not belong to more than 64 groups.

678 Administration Guide: Implementation

v DB2 database supports a single namespace. That is, when running in a trusted

domains environment, you should not have a user account of the same name

that exists in multiple domains, or that exists in the local SAM of the server

machine and in another domain.

 Related concepts:

v “Groups and user authentication on Windows” on page 679

v “Trust relationships between domains on Windows” on page 679

Groups and user authentication on Windows

 Users are defined on Windows by creating user accounts using the Windows

administration tool called the “User Manager”.

An account containing other accounts, also called members, is a group. Groups

give Windows administrators the ability to grant rights and permissions to the

users within the group at the same time, without having to maintain each user

individually. Groups, like user accounts, are defined and maintained in the

Security Access Manager (SAM) database.

There are two types of groups:

v Local groups. A local group can include user accounts created in the local

accounts database. If the local group is on a machine that is part of a domain,

the local group can also contain domain accounts and groups from the Windows

domain. If the local group is created on a workstation, it is specific to that

workstation.

v Global groups. A global group exists only on a domain controller and contains

user accounts from the domain’s SAM database. That is, a global group can only

contain user accounts from the domain on which it is created; it cannot contain

any other groups as members. A global group can be used in servers and

workstations of its own domain, and in trusting domains.

 Related concepts:

v “Support for global groups (on Windows)” on page 677

v “Trust relationships between domains on Windows” on page 679

 Related tasks:

v “Authentication with groups and domain security (Windows)” on page 681

 Related reference:

v “User name and group name restrictions (Windows)” on page 678

Trust relationships between domains on Windows

 Trust relationships are an administration and communication link between two

domains. A trust relationship between two domains enables user accounts and

global groups to be used in a domain other than the domain where the accounts

are defined. Account information is shared to validate the rights and permissions

of user accounts and global groups residing in the trusted domain without being

authenticated. Trust relationships simplify user administration by combining two

or more domains into an single administrative unit.

There are two domains in a trust relationship:

Appendix C. Using Windows security 679

v The trusting domain. This domain trusts another domain to authenticate users

for them.

v The trusted domain. This domain authenticates users on behalf of (in trust for)

another domain.

Trust relationships are not transitive. This means that explicit trust relationships

need to be established in each direction between domains. For example, the

trusting domain may not necessarily be a trusted domain.

 Related concepts:

v “Groups and user authentication on Windows” on page 679

v “Support for global groups (on Windows)” on page 677

 Related reference:

v “User name and group name restrictions (Windows)” on page 678

DB2 database system and Windows security service

 In the DB2 database system, the authentication of user names and passwords is

integrated with the DB2 System Controller. The Security Service is only required

when a client is connected to a server that is configured for authentication

CLIENT.

 Related concepts:

v “DB2 and Windows security introduction” on page 675

Installing DB2 on a backup domain controller

 Procedure:

 In a Windows environment a user can be authenticated at either a primary or a

backup controller. This feature is very important in large distributed LANs with

one central primary domain controller and one or more backup domain controllers

(BDC) at each site. Users can then be authenticated on the backup domain

controller at their site instead of requiring a call to the primary domain controller

(PDC) for authentication.

The advantage of having a backup domain controller, in this case, is that users are

authenticated faster and the LAN is not as congested as it would have been had

there been no BDC.

Authentication can occur at the BDC under the following conditions:

v The DB2 server for Windows is installed on the backup domain controller.

v The DB2DMNBCKCTLR profile registry variable is set appropriately.

If the DB2DMNBCKCTLR profile registry variable is not set or is set to blank, the

DB2 server performs authentication at the primary domain controller.

The only valid declared settings for DB2DMNBCKCTLR are “?” or a domain

name.

If the DB2DMNBCKCTLR profile registry variable is set to a question mark

(DB2DMNBCKCTLR=?) then the DB2 server will perform its authentication on the

backup domain controller under the following conditions:

680 Administration Guide: Implementation

v The cachedPrimaryDomain is a registry value set to the name of the domain to

which this machine belongs. (You can find this setting under

HKEY_LOCAL_MACHINE—> Software—> Microsoft—> Windows NT—>

Current Version—> WinLogon.)

v The Server Manager shows the backup domain controller as active and available.

(That is, the icon for this machine is not greyed out.)

v The registry for the DB2 server indicates that the system is a backup domain

controller on the specified domain.

Under normal circumstances the setting DB2DMNBCKCTLR=? will work; however,

it will not work in all environments. The information supplied about the servers

on the domain is dynamic, and Computer Browser must be running to keep this

information accurate and current. Large LANs may not be running Computer

Browser and therefore Server Manager’s information may not be current. In this

case, there is a second method to tell the DB2 server to authenticate at the backup

domain controller: set DB2DMNBCKCTLR=xxx where xxx is the Windows domain

name for the DB2 server. With this setting, authentication will occur on the backup

domain controller based on the following conditions:

v The cachedPrimaryDomain is a registry value set to the name of the domain to

which this machine belongs. (You can find this setting under

HKEY_LOCAL_MACHINE—> Software—> Microsoft—> Windows NT—>

Current Version—> WinLogon.)

v The machine is configured as a backup domain controller for the specified

domain. (If the machine is set up as a backup domain controller for another

domain, this setting will result in an error.)

 Related tasks:

v “Using a backup domain controller with DB2 database systems” on page 677

Authentication with groups and domain security (Windows)

 Procedure:

 The DB2 database system allows you to specify either a local group or a global

group when granting privileges or defining authority levels. A user is determined

to be a member of a group if the user’s account is defined explicitly in the local or

global group, or implicitly by being a member of a global group defined to be a

member of a local group.

The DB2 database manager supports the following types of groups:

v Local groups

v Global groups

v Global groups as members of local groups.

The DB2 database manager enumerates the local and global groups that the user

is a member of, using the security database where the user was found. The DB2

database system provides an override that forces group enumeration to occur on

the local Windows server where the DB2 database is installed, regardless of

where the user account was found. This override can be achieved using the

following commands:

– For global settings:

 db2set -g DB2_GRP_LOOKUP=local

– For instance settings:

 db2set -i <instance name> DB2_GRP_LOOKUP=local

Appendix C. Using Windows security 681

After issuing this command, you must stop and start the DB2 database

instance for the change to take effect. Then create local groups and include

domain accounts or global groups in the local group.
To view all DB2 profile registry variables that are set, type

 db2set -all

If the DB2_GRP_LOOKUP profile registry variable is set to local, then DB2

database tries to enumerate the user's groups on the local machine only. If the user

is not defined as a member of a local or global group, then group enumeration

fails. DB2 does not try to enumerate the user's groups on another machine in the

domain or on the domain controllers.

If the DB2_GRP_LOOKUP profile registry variable is not set then:

1. The DB2 database system first tries to find the user on the same machine.

2. If the user name is defined locally, the user is authenticated locally.

3. If the user is not found locally, the DB2 database system attempts to find the

user name on it domain, and then on trusted domains.

If the DB2 database manager is running on a machine that is a primary or backup

domain controller in the resource domain, it is able to locate any domain controller

in any trusted domain. This occurs because the names of the domains of backup

domain controllers in trusted domains are only known if you are a domain

controller.

If the DB2 database manager is not running on a domain controller, then you

should issue:

 db2set -g DB2_GRP_LOOKUP=DOMAIN

This command tells the DB2 database system to use a domain controller in its own

domain to find the name of a domain controller in the accounts domain. That is,

when a DB2 database finds out that a particular user account is defined in domain

x, rather than attempting to locate a domain controller for domain x, it sends that

request to a domain controller in its own domain. The name of the domain

controller in the account domain will be found and returned to the machine the

DB2 database is running on. There are two advantages to this method:

1. The nearest domain controller is found when the primary domain controller is

unavailable.

2. The nearest domain controller is found when the primary domain controller is

geographically remote.

 Related concepts:

v “Acquiring Windows users’ group information using an access token” on page

483

v “Groups and user authentication on Windows” on page 679

Authentication using an ordered domain list

 User IDs may be defined more than once in a trusted domain forest. A trusted

domain forest is a collection of domains that are interrelated through a network. It

is possible for a user on one domain to have the same user ID as that for another

user on a different domain. This may cause difficulties when attempting to do any

of the following:

682 Administration Guide: Implementation

v Authenticating multiple users having the same user ID but on different domains.

v Group lookup for the purposes of granting and revoking privileges based on

groups.

v Validation of passwords.

v Control of network traffic.

 Procedure:

 To prevent the difficulties arising from the possibility of multiple users with the

same user ID across across a domain forest, you should use an ordered domain list

as defined using the db2set and the registry variable DB2DOMAINLIST. When

setting the order, the domains to be included in the list are separated by a comma.

You must make a conscious decision regarding the order that the domains are

searched when authenticating users.

Those user IDs that are present on domains further down the domain list will have

to be renamed by you if they are to be authenticated for access.

Control of access can be done through the domain list. For example, if the domain

of a user is not in the list, the user will not be allowed to connect.

Note: The DB2DOMAINLIST registry variable is effective only when CLIENT

authentication is set in the database manager configuration and is needed if

a single signon from a Windows desktop is required in a Windows domain

environment.

 Related concepts:

v “DB2 and Windows security introduction” on page 675

Domain security support (Windows)

 The following examples illustrate how the DB2 database management system can

support Windows domain security. In this first example, the connection works

because the user name and local group are on the same domain. In the second

example, the connection does not work because the user name and local or global

group are on different domains.

Example of a Successful Connection: The connection works in the following

scenario because the user name and local or global group are on the same domain.

Note that the user name and local or global group do not need to be defined on

the domain where the database server is running, but they must be on the same

domain as each other.

 Table 94. Successful Connection Using a Domain Controller

Domain1 Domain2

A trust relationship exists with Domain2. v A trust relationship exists with Domain1.

v The local or global group grp2 is defined.

v The user name id2 is defined.

v The user name id2 is part of grp2.

Appendix C. Using Windows security 683

Table 94. Successful Connection Using a Domain Controller (continued)

Domain1 Domain2

The DB2 server runs in this domain. The following DB2

commands are issued from it:

 REVOKE CONNECT ON db FROM public

 GRANT CONNECT ON db TO GROUP grp2

 CONNECT TO db USER id2

The local or global domain is scanned but id2 is not

found. Domain security is scanned.

 The user name id2 is found on this domain. DB2 gets

additional information about this user name (that is, it is

part of the group grp2).

The connection works because the user name and local

or global group are on the same domain.

 Related concepts:

v “Groups and user authentication on Windows” on page 679

 Related tasks:

v “Authentication with groups and domain security (Windows)” on page 681

684 Administration Guide: Implementation

Appendix D. Using the Windows Performance Monitor

Windows performance monitor introduction

 When working with DB2 database manager for Windows, there are tools that can

be used to monitor performance:

v DB2 Performance Expert

DB2 Performance Expert for Multiplatforms, Version 1.1 consolidates, reports,

analyzes and recommends self-managing and resource tuning changes based on

DB2 database performance-related information.

v DB2 Health Center

The functions of the Health Center provide you with different methods to work

with performance-related information. These functions somewhat replace the

performance monitor capability of the Control Center.

v Windows Performance Monitor

The Windows Performance Monitor enables you to monitor both database and

system performance, retrieving information from any of the performance data

providers registered with the system. Windows also provides performance

information data on all aspects of computer operation including:

– CPU usage

– Memory utilization

– Disk activity

– Network activity

 Related tasks:

v “Accessing remote DB2 database performance information” on page 688

v “Displaying DB2 database and DB2 Connect performance values” on page 687

v “Enabling remote access to DB2 performance information” on page 686

v “Registering DB2 with the Windows performance monitor” on page 685

v “Resetting DB2 performance values” on page 688

 Related reference:

v “Windows performance objects” on page 687

Registering DB2 with the Windows performance monitor

 Procedure:

 The setup program automatically registers DB2 with the Windows Performance

Monitor for you.

To make DB2 database and DB2 Connect performance information accessible to the

Windows Performance Monitor, you must register the DLL for the DB2 for

Windows Performance Counters. This also enables any other Windows application

using the Win32 performance APIs to get performance data.

To install and register the DB2 for Windows Performance Counters DLL

(DB2Perf.DLL) with the Windows Performance Monitor, type:

© Copyright IBM Corp. 1993, 2006 685

db2perfi -i

Registering the DLL also creates a new key in the services option of the registry.

One entry gives the name of the DLL, which provides the counter support. Three

other entries give names of functions provided within that DLL. These functions

include:

v Open

Called when the DLL is first loaded by the system in a process.

v Collect

Called to request performance information from the DLL.

v Close

Called when the DLL is unloaded.

 Related reference:

v “db2perfi - Performance counters registration utility command” in Command

Reference

Enabling remote access to DB2 performance information

 Procedure:

 If your DB2 for Windows workstation is networked to other Windows computers,

you can use the feature described in this section.

In order to see Windows performance objects from another DB2 for Windows

computer, you must register an administrator username and password with the

DB2 database manager. (The default Windows Performance Monitor username,

SYSTEM, is a DB2 database reserved word and cannot be used.) To register the

name, type:

 db2perfr -r username password

Note: The username used must conform to the DB2 database naming rules.

The username and password data is held in a key in the registry, with security that

allows access only by administrators and the SYSTEM account. The data is

encoded to prevent security concerns about storing an administrator password in

the registry.

Notes:

1. Once a username and password combination has been registered with the DB2

database system, even local instances of the Performance Monitor will explicitly

log on using that username and password. This means that if the username

information registered with DB2 database system does not match, local sessions

of the Performance Monitor will not show DB2 database performance

information.

2. The username and password combination must be maintained to match the

username and password values stored in the Windows Security database. If the

username or password is changed in the Windows Security database, the

username and password combination used for remote performance monitoring

must be reset.

3. To deregister, type:

 db2perfr -u <username> <password>

686 Administration Guide: Implementation

Related concepts:

v “General naming rules” on page 663

 Related reference:

v “db2perfr - Performance monitor registration tool command” in Command

Reference

Displaying DB2 database and DB2 Connect performance values

 Procedure:

 To display DB2 database and DB2 Connect performance values using the

Performance Monitor, simply choose the performance counters whose values you

want displayed from the Add to box. This box displays a list of performance

objects providing performance data. Select an object to see a list of the counters it

supplies.

A performance object can also have multiple instances. For example, the

LogicalDisk object provides counters such as “% Disk Read Time” and “Disk

Bytes/sec”; it also has an instance for each logical drive in the computer, including

“C:” and “D:”.

 Related concepts:

v “Windows performance monitor introduction” on page 685

 Related reference:

v “Windows performance objects” on page 687

Windows performance objects

 Windows provides the following performance objects:

v DB2 Database Manager

This object provides general information for a single Windows instance. The DB2

database instance being monitored appears as the object instance.

For practical and performance reasons, you can only get performance

information from one DB2 database instance at a time. The DB2 database

instance that the Performance Monitor shows is governed by the db2instance

registry variable in the Performance Monitor process. If you have multiple DB2

database instances running simultaneously and want to see performance

information from more than one, you must start a separate session of the

Performance Monitor, with db2instance set to the relevant value for each DB2

database instance to be monitored.

If you are running a partitioned database environment, you can only get

performance information from one database partition server at a time. By

default, the performance information for the default database partition (that is,

the database partition that has logical port 0) is displayed. To see performance

information of another database partition, you must start a separate session of

the Performance Monitor with the DB2NODE environment variable set to the

database partition number of the database partition to be monitored.

v DB2 Databases

This object provides information for a particular database. Information is

available for each currently active database.

Appendix D. Using the Windows Performance Monitor 687

v DB2 Applications

This object provides information for a particular DB2 database application.

Information is available for each currently active DB2 database application.

v DB2 DCS Databases

This object provides information for a particular DCS database. Information is

available for each currently active database.

v DB2 DCS Applications

This object provides information for a particular DB2 DCS application.

Information is available for each currently active DB2 DCS application.

Which of these objects will be listed by the Windows Performance Monitor

depends on what is installed on your Windows computer and what applications

are active. For example, if the DB2 database manager is installed has been started,

the DB2 Database Manager object will be listed. If there are also some DB2

databases and applications currently active on that computer, the DB2 Databases

and DB2 Applications objects will be listed as well. If you are using your Windows

system as a DB2 Connect gateway and there are some DCS databases and

applications currently active, the DB2 DCS Databases and DB2 DCS Applications

objects will be listed.

Accessing remote DB2 database performance information

 Procedure:

 Enabling remote access to DB2 Performance Information was discussed earlier. In

the Add to box, select another computer to monitor. This brings up a list of all the

available performance objects on that computer.

In order to be able to monitor DB2 Performance object on a remote computer, the

level of the DB2 database or DB2 Connect code installed on that computer must be

Version 6 or higher.

 Related concepts:

v “Windows performance monitor introduction” on page 685

Resetting DB2 performance values

 Procedure:

 When an application calls the DB2 monitor APIs, the information returned is

normally the cumulative values since the DB2 database server was started.

However, often it is useful to:

v Reset performance values

v Run a test

v Reset the values again

v Re-run the test.

To reset database performance values, use the db2perfc program. Type:

 db2perfc

688 Administration Guide: Implementation

By default, this resets performance values for all active DB2 databases. However,

you can also specify a list of databases to reset. You can also use the -d option to

specify that performance values for DCS databases should be reset. For example:

 db2perfc

 db2perfc dbalias1 dbalias2 ... dbaliasn

 db2perfc -d

 db2perfc -d dbalias1 dbalias2 ... dbaliasn

The first example resets performance values for all active DB2 databases. The next

example resets values for specific DB2 databases. The third example resets

performance values for all active DB2 DCS databases. The last example resets

values for specific DB2 DCS databases.

The db2perfc program resets the values for ALL programs currently accessing

database performance information for the relevant DB2 database server instance

(that is, the one held in DB2INSTANCE in the session in which you run db2perfc.

Invoking db2perfc also resets the values seen by anyone remotely accessing DB2

database performance information when the db2perfc command is executed.

Note: There is a DB2 database API, sqlmrset, that allows an application to reset the

values it sees locally, not globally, for particular databases.

 Related reference:

v “db2perfc - Reset database performance values command” in Command Reference

v “db2ResetMonitor API - Reset the database system monitor data” in

Administrative API Reference

Appendix D. Using the Windows Performance Monitor 689

690 Administration Guide: Implementation

Appendix E. DB2 Database technical information

Overview of the DB2 technical information

 DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF CD)

– printed books
v Command line help

– Command help

– Message help
v Sample programs

IBM periodically makes documentation updates available. If you access the online

version on the DB2 Information Center at ibm.com®, you do not need to install

documentation updates because this version is kept up-to-date by IBM. If you have

installed the DB2 Information Center, it is recommended that you install the

documentation updates. Documentation updates allow you to update the

information that you installed from the DB2 Information Center CD or downloaded

from Passport Advantage as new information becomes available.

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hard-copy books. To get the most current information, install

the documentation updates as they become available, or refer to the DB2

Information Center at ibm.com.

You can access additional DB2 technical information such as technotes, white

papers, and Redbooks™ online at ibm.com. Access the DB2 Information

Management software library site at http://www.ibm.com/software/data/sw-
library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how we can improve the DB2 documentation, send an e-mail to

db2docs@ca.ibm.com. The DB2 documentation team reads all of your feedback, but

cannot respond to you directly. Provide specific examples wherever possible so

that we can better understand your concerns. If you are providing feedback on a

specific topic or help file, include the topic title and URL.

Do not use this e-mail address to contact DB2 Customer Support. If you have a

DB2 technical issue that the documentation does not resolve, contact your local

IBM service center for assistance.

© Copyright IBM Corp. 1993, 2006 691

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/

Related concepts:

v “Features of the DB2 Information Center” in Online DB2 Information Center

v “Sample files” in Samples Topics

 Related tasks:

v “Invoking command help from the command line processor” in Command

Reference

v “Invoking message help from the command line processor” in Command

Reference

v “Updating the DB2 Information Center installed on your computer or intranet

server” on page 697

 Related reference:

v “DB2 technical library in PDF format” on page 692

DB2 technical library in PDF format

 The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order.

Although the tables identify books available in print, the books might not be

available in your country or region.

The information in these books is fundamental to all DB2 users; you will find this

information useful whether you are a programmer, a database administrator, or

someone who works with DB2 Connect or other DB2 products.

 Table 95. DB2 technical information

Name Form Number Available in print

Administration Guide:

Implementation

SC10-4221 Yes

Administration Guide: Planning SC10-4223 Yes

Administrative API Reference SC10-4231 Yes

Administrative SQL Routines and

Views

SC10-4293 No

Call Level Interface Guide and

Reference, Volume 1

SC10-4224 Yes

Call Level Interface Guide and

Reference, Volume 2

SC10-4225 Yes

Command Reference SC10-4226 No

Data Movement Utilities Guide

and Reference

SC10-4227 Yes

Data Recovery and High

Availability Guide and Reference

SC10-4228 Yes

Developing ADO.NET and OLE

DB Applications

SC10-4230 Yes

Developing Embedded SQL

Applications

SC10-4232 Yes

Developing SQL and External

Routines

SC10-4373 No

692 Administration Guide: Implementation

http://www.ibm.com/shop/publications/order

Table 95. DB2 technical information (continued)

Name Form Number Available in print

Developing Java Applications SC10-4233 Yes

Developing Perl and PHP

Applications

SC10-4234 No

Getting Started with Database

Application Development

SC10-4252 Yes

Getting started with DB2

installation and administration on

Linux and Windows

GC10-4247 Yes

Message Reference Volume 1 SC10-4238 No

Message Reference Volume 2 SC10-4239 No

Migration Guide GC10-4237 Yes

Net Search Extender

Administration and User’s Guide

Note: HTML for this

document is not installed from

the HTML documentation CD.

SH12-6842 Yes

Performance Guide SC10-4222 Yes

Query Patroller Administration

and User’s Guide

GC10-4241 Yes

Quick Beginnings for DB2

Clients

GC10-4242 No

Quick Beginnings for DB2

Servers

GC10-4246 Yes

Spatial Extender and Geodetic

Data Management Feature User’s

Guide and Reference

SC18-9749 Yes

SQL Guide SC10-4248 Yes

SQL Reference, Volume 1 SC10-4249 Yes

SQL Reference, Volume 2 SC10-4250 Yes

System Monitor Guide and

Reference

SC10-4251 Yes

Troubleshooting Guide GC10-4240 No

Visual Explain Tutorial SC10-4319 No

What’s New SC10-4253 Yes

XML Extender Administration

and Programming

SC18-9750 Yes

XML Guide SC10-4254 Yes

XQuery Reference SC18-9796 Yes

 Table 96. DB2 Connect-specific technical information

Name Form Number Available in print

DB2 Connect User’s Guide SC10-4229 Yes

Quick Beginnings for DB2

Connect Personal Edition

GC10-4244 Yes

Appendix E. DB2 Database technical information 693

Table 96. DB2 Connect-specific technical information (continued)

Name Form Number Available in print

Quick Beginnings for DB2

Connect Servers

GC10-4243 Yes

 Table 97. WebSphere Information Integration technical information

Name Form Number Available in print

WebSphere Information

Integration: Administration Guide

for Federated Systems

SC19-1001 Yes

WebSphere Information

Integration: ASNCLP Program

Reference for Replication and

Event Publishing

SC19-1000 Yes

WebSphere Information

Integration: Configuration Guide

for Federated Data Sources

SC19-1034 No

WebSphere Information

Integration: SQL Replication

Guide and Reference

SC19-1002 Yes

Note: The DB2 Release Notes provide additional information specific to your

product’s release and fix pack level. For more information, see the related

links.

 Related concepts:

v “Overview of the DB2 technical information” on page 691

v “About the Release Notes” in Release notes

 Related tasks:

v “Ordering printed DB2 books” on page 694

Ordering printed DB2 books

 If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation CD are unavailable in print. For example, neither volume of the DB2

Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation CD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation CD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/
db2help/.

 Procedure:

694 Administration Guide: Implementation

http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/

To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

– Locate the contact information for your local representative from one of the

following Web sites:

- The IBM directory of world wide contacts at www.ibm.com/planetwide

- The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
– When you call, specify that you want to order a DB2 publication.

– Provide your representative with the titles and form numbers of the books

that you want to order.

 Related concepts:

v “Overview of the DB2 technical information” on page 691

 Related reference:

v “DB2 technical library in PDF format” on page 692

Displaying SQL state help from the command line processor

 DB2 returns an SQLSTATE value for conditions that could be the result of an SQL

statement. SQLSTATE help explains the meanings of SQL states and SQL state class

codes.

 Procedure:

 To invoke SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

 Related tasks:

v “Invoking command help from the command line processor” in Command

Reference

v “Invoking message help from the command line processor” in Command

Reference

Accessing different versions of the DB2 Information Center

 For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/.

Appendix E. DB2 Database technical information 695

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/.

 Related tasks:

v “Setting up access to DB2 contextual help and documentation” on page 435

Displaying topics in your preferred language in the DB2 Information

Center

 The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

 Procedure:

 To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

v To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the fonts

required to display the topics in the preferred language.

v To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

To display topics in your preferred language in a Firefox or Mozilla browser:

1. Select the Tools —> Options —> Languages button. The Languages panel is

displayed in the Preferences window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

v To add a new language to the list, click the Add... button to select a language

from the Add Languages window.

v To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you might have to also

change the regional settings of your operating system to the locale and language of

your choice.

 Related concepts:

v “Overview of the DB2 technical information” on page 691

696 Administration Guide: Implementation

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Updating the DB2 Information Center installed on your computer or

intranet server

 If you have a locally-installed DB2 Information Center, updated topics can be

available for download. The 'Last updated' value found at the bottom of most

topics indicates the current level for that topic.

To determine if there is an update available for the entire DB2 Information Center,

look for the 'Last updated' value on the Information Center home page. Compare

the value in your locally installed home page to the latest value which is available

on the IBM hosted Information Center home page. If they are the same, you have

the latest documentation level and no update is required. If the are not the same,

you should update your locally-installed Information Center.

Updating your locally-installed DB2 Information Center requires that you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to download and apply updates.

2. Use the Update feature to determine if update packages are available from

IBM. If update packages are available, use the Update feature to download the

packages. (The Update feature is only available in stand-alone mode.)

3. Stop the stand-alone Information Center, and restart the DB2 Information

Center service on your computer.

 Procedure:

 To update the DB2 Information Center installed on your computer or intranet

server:

1. Stop the DB2 Information Center service.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Stop.

v On Linux, enter the following command:

/etc/init.d/db2icdv9 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the C:\Program

Files\IBM\DB2 Information Center\Version 9 directory.

c. Run the help_start.bat file using the fully qualified path for the DB2

Information Center:

<DB2 Information Center dir>\doc\bin\help_start.bat

v On Linux:

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the /opt/ibm/db2ic/V9

directory.

b. Run the help_start.sh file using the fully qualified path for the DB2

Information Center:

<DB2 Information Center dir>/doc/bin/help_start

Appendix E. DB2 Database technical information 697

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

The systems default Web browser launches to display the stand-alone

Information Center.

3. Click the Update button (

). On the right hand panel of the Information

Center, click Find Updates. A list of updates for existing documentation

displays.

4. To initiate the download process, check the selections you want to download,

then click Install Updates.

5. After the download and installation process has completed, click Finish.

6. Stop the stand-alone Information Center.

v On Windows, run the help_end.bat file using the fully qualified path for the

DB2 Information Center:

<DB2 Information Center dir>\doc\bin\help_end.bat

v On Linux, run the help_end.sh file using the fully qualified path for the DB2

Information Center:

<DB2 Information Center dir>/doc/bin/help_end

7. Restart the DB2 Information Center service.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv9 start

The updated DB2 Information Center displays the new and updated topics.

 Related concepts:

v “DB2 Information Center installation options” in Quick Beginnings for DB2 Servers

 Related tasks:

v “Installing the DB2 Information Center using the DB2 Setup wizard (Linux)” in

Quick Beginnings for DB2 Servers

v “Installing the DB2 Information Center using the DB2 Setup wizard (Windows)”

in Quick Beginnings for DB2 Servers

DB2 Visual Explain tutorial

 The DB2 Visual Explain tutorial helps you learn about analyzing, optimizing, and

tuning SQL statements for better performance. Lessons provide step-by-step

instructions.

 Before you begin:

 You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

 DB2 Visual Explain tutorial:

 To view the tutorial, click on the title.

Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

698 Administration Guide: Implementation

http://publib.boulder.ibm.com/infocenter/db2help/

Related concepts:

v “Visual Explain overview” on page 451

DB2 troubleshooting information

 A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting

Guide or the Support and Troubleshooting section of the DB2 Information

Center. There you will find information on how to isolate and identify

problems using DB2 diagnostic tools and utilities, solutions to some of the

most common problems, and other advice on how to solve problems you

might encounter with your DB2 products.

 DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/udb/support.html

 Related concepts:

v “Introduction to problem determination” in Troubleshooting Guide

v “Overview of the DB2 technical information” on page 691

Terms and Conditions

 Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

Appendix E. DB2 Database technical information 699

http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/db2/udb/support.html

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

700 Administration Guide: Implementation

Appendix F. Notices

 IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country/region or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product, and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1993, 2006 701

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

Office of the Lab Director

8200 Warden Avenue

Markham, Ontario

L6G 1C7

CANADA

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs, in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment

to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

702 Administration Guide: Implementation

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

Company, product, or service names identified in the documents of the DB2

Version 9 documentation library may be trademarks or service marks of

International Business Machines Corporation or other companies. Information on

the trademarks of IBM Corporation in the United States, other countries, or both is

located at http://www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

and have been used in at least one of the documents in the DB2 documentation

library:

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel®, Itanium®, Pentium®, and Xeon® are trademarks of Intel Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix F. Notices 703

http://www.ibm.com/legal/copytrade.shtml

704 Administration Guide: Implementation

Index

Special characters
$RAHBUFDIR 133

$RAHBUFNAME 133

$RAHENV 139

A
access

label-based access control

(LBAC) 538

to DB2 information Center 435

access control
authentication 490

column-specific 538

database manager 519

database objects 519

row-specific 538

view to table 525

access plan graph 453

access plan graph node 454

access plans
creating from Command Editor 465

out-of-date 467

overview 452

retrieving when using

LONGDATACOMPAT 468

viewing graphical presentation 473

access token 483

active directory
configuring DB2 576

DB2 objects 593

extending the directory schema 591

Lightweight Directory Access Protocol

(LDAP) 573

security 590

support 575

adding
automatic prefetchsize

adjustment 288

database partitions 125

foreign keys 310

primary keys 309

table check constraints 314

unique constraints 313

administration log file 182

administration server 91

administration tools
service-level information 370

shutting down 369

administrative views
AUTHORIZATIONIDS 610, 613

DB_HISTORY 87

OBJECTOWNERS 613

PRIVILEGES 610, 613

advisors
using 385

aggregating function 243

AIX
large page support 12

AIX (continued)
system commands

vmo 12

vmtune 12

alert objects
viewing 447

alert summaries
DB2 Health Monitor 62

viewing 446

aliases
authority 254

creating 254

DB2 for z/OS and OS/390 254

dropping 332

using 254

ALTER COLUMN clause
in table columns 305

alter materialized query table

properties 335

ALTER privilege 515

ALTER TABLE statement 300

adding check constraint example 314

adding columns example 304

adding keys example 310

adding unique constraint

example 313

dropping check constraint

example 317

dropping keys example 316

dropping unique constraint

example 315

ALTER TABLESPACE statement
example of 285

ALTER VIEW statement
example 330

altering
columns 305

database partition group 281

IDENTITY column 308

structured type 333

table spaces 284

views 330

altering a table 295

altering tables 297

using ALTER TABLE statement 300

using stored procedures 324

alternate servers
examples 49

identifying 49

application programming interfaces (API)
updating database directories 180

ATTACH command 5

attaching data partitions
description 346

attribute definitions
Netscape LDAP 593

attributes
table, changing 298

audit activities 621

audit facility
actions/events 621

audit facility (continued)
asynchronous record writing 623

audit data in tables
creating audit data files 631

creating tables for audit data 628

loading tables with audit

data 632

overview 628

selecting data from tables 635

audit events table 637

authorities/privileges 621

behavior 623

CHECKING access approval

reasons 640

CHECKING access attempted

types 641

checking events table 638

CONTEXT audit events 653

CONTEXT events table 652

controlling activities 655

error handling 623

ERRORTYPE parameter 623

examples 655

messages 636

monitoring access to data 527

OBJMAINT events table 643

parameter descriptions 624

record layouts 636

SECMAINT events table 645

SECMAINT privileges or

authorities 647

synchronous record writing 623

syntax 624

SYSADMIN audit events 650

SYSADMIN events table 650

tips and techniques 654

usage scenarios 624

VALIDATE events table 651

audit records
object types 639

audit trail 621

audit_buf_sz configuration

parameter 623

authentication
definition of 490

domain security 681

groups 681

Kerberos
details 496

partitioned database

considerations 496

remote client 495

types
CLIENT 490

KERBEROS 490

KRB_SERVER_ENCRYPT 490

SERVER 490

SERVER_ENCRYPT 490

using an ordered domain list 682

© Copyright IBM Corp. 1993, 2006 705

authority levels
database administration

(DBADM) 509, 513

removing DBADM from

SYSADM 506

removing DBADM from

SYSCTRL 507

security administrator

(SECADM) 508

See privileges 501

system administration

(SYSADM) 506

system control (SYSCTRL) 507

system maintenance

(SYSMAINT) 508

system monitor authority

(SYSMON) 510

authorization
trusted client 490

authorization ID
changing

SETSESSIONUSER 513

authorization names
create view for privileges

information 613

retrieving for privileges

information 610

retrieving names with DBADM

authority 611

retrieving names with table access

authority 612

retrieving privileges granted to 613

authorized user infraction information
viewing 415

Autoconfigure API 84

AUTOCONFIGURE command 84

sample output 85

automatic client reroute
configuration 52

connection failures 53

description 45

examples 49

limitations 47

roadmap 45

setup 45

automatic prefetch size adjustment
after adding or dropping

containers 288

automatic storage
for databases 54

restrictions 62

table spaces 58

automatic and large 63

temporary for table spaces 57

automatic storage path
adding 64

automatic summary tables
creating 201

B
backing up data

using the Backup wizard 387

backup domain controller
configuring DB2 677

installing DB2 680

Backup wizard
backing up data 387

backups
security risks 616

BIND command
OWNER option 523

bind options
viewing SQL or XQuery statement

details 469

BIND privilege
definition 517

BINDADD database authority
definition 511

binding
database utilities 183

rebinding invalid packages 521

block-structured devices 149

boundary ranges
specifying 195

buffer pools
altering 283

creating 166

for partitioned databases 167

built-in functions
viewing SQL or XQuery statement

details 469

C
caching

file system for table spaces 159

call level interface (CLI)
binding to a database 183

CARD row
under Statistics column 469

CASCADE semantic
for DROP COLUMN 300

CATALOG DATABASE command
example 176

catalog nodes 9

catalog tables
stored on database catalog node 9

cataloging
database systems 177

categories, task
managing 431

character serial devices 149

character strings
data type 217

check constraints
adding 229, 314

adding or changing 297

changing 314

defining 228

dropping 317

CLIENT authentication type
client-level security 490

client communication errors 45

client connectivity
using multiple DB2 copies

on Windows 22

client reroute
automatic 45

examples 49

interaction with connection

timeout 52

JCC Type 4 drivers 54

client reroute (continued)
limitations 47

clients
automatic rerouting 44

clustering
definition 454

code sets
success 420

managing 430

code sets, success
managing 430

column distribution
viewing SQL or XQuery statement

statistics 469

column groups
viewing SQL or XQuery statement

details 469

column properties
changing 304

column UDFs 243

columns
adding or changing 297

defining 217

definition
modifying 305

dropping LBAC protected 569

dropping or removing 320

effect of LBAC on reading 560

inserting LBAC protected 563

protecting a column with LBAC 558

updating LBAC protected 565

Command Editor
adding access plans 465

options, setting 449

command line processor (CLP)
binding to a database 183

command statement
setting termination character 434

commands
running in parallel 133

compliance details
resetting 415

viewing 415

compression
data row 188

existing tables 295

new tables 187

row 188

concepts
scheduler 420

success code sets 420

Configuration Advisor
generating recommended values 84

sample output 85

configuration parameters
partitioned database 9

TCP_KEEPALIVE 53

viewing SQL or XQuery statement

details 469

configuring
LDAP 576

LDAP user for applications 578

CONNECT database authority 511

connection failures
automaatic client reroute 53

706 Administration Guide: Implementation

connectivity
client, using multiple DB2 copies

on Windows 22

connectTimeout
interaction with client reroute 52

constraint violations
checking

using the SET INTEGRITY

statement 230

constraints
check

adding 229

changing 314

defining
foreign keys 226

referential constraints 224

unique constraints 223

dropping
unique constraints 315

informational 233

table check 228

contact groups
managing 428

contacting IBM 707

contacts
managing 428

containers
adding to SMS table spaces 289

definition 455

DMS table spaces
adding containers to 285

modifying containers in 286

contextual help
setting up access 435

settings for DB2 administration

tools 435

Control Center
DB2 federated system objects

adding to the object tree 389

displaying objects 392

displaying table information in the

contents pane 392

extensions
adding a folder 403

adding an example object 405

adding an object 407

adding the remove action 409

altering an object 410

creating sub menus 401

guidelines for plug-in

developers 395

plug-in architecture 395

positioning the menu item 400

writing plug-ins 397

filtering or pre-filtering objects 394

finding objects in the contents

pane 394

Help
accessing 435

how to access Help 385

legend 380

managing database partitions 282

obtaining diagnostic information 393

opening 382

overview 376

showing related objects 270

CONTROL privilege
described 515

implicit issuance 522

package privileges 517

controlling the rah command 139

cooked devices 149

copy schema
operation, restarting 173

copying
schemas and objects 170

tables 296

cost
definition 455

CREATE ALIAS statement
example of 254

CREATE DATABASE command
example of 113

RESTRICTIVE option 613

CREATE INDEX statement
examples 261

online reorganization 258, 261

overview 467

restrict access 261

unique index 261

CREATE TABLE statement 189

defining check constraints 228

defining referential constraints 224

example of 217

using multiple table spaces 190

CREATE TABLESPACE statement
example of 149

CREATE TRIGGER statement
example of 240

CREATE VIEW statement
changing column names 251

CHECK OPTION clause 251

example of 251

CREATE_EXTERNAL_ROUTINE

database authority 511

CREATE_NOT_FENCED_ROUTINE

database authority 511

CREATETAB database authority 511

creating
aliases 254

buffer pools
for partitioned databases 167

database objects 382

function mappings 244

function templates 245

hierarchy tables 216

index extensions 258

index specifications 258

indexes 467

enabling parallelism 10

overview 256

instances
UNIX 39

Windows 40

LBAC security labels 547

LDAP users 577

schemas 168

table spaces 149

tables 217

using a wizard 190

tables in multiple table spaces 190

tasks 425

triggers 240

creating (continued)
type mappings 248

typed tables 216

user-defined distinct types 247

user-defined functions 243

user-defined types 246

views 251

CURRENT SCHEMA special register 6,

169

cursor blocking
definition 460

custom folders
deleting 391

D
DAS (DB2 Administration Server)

first failure data capture 111

Java virtual machine setup 101

setting up when running multiple

DB2 copies 24

data
audit

creating audit data files 631

creating tables for 628

loading audit data into tables 632

selecting audit data from

tables 635

working with, overview 628

changing distribution 281

controlling database access 481

effect of LBAC on reading 560

indirect access 616

inserting LBAC protected 563

monitoring access 527

protecting with LBAC 558

securing system catalog 613

updating LBAC protected 565

data encryption
description 527

data movement mode
changing for tables 238

data partitions
adding 356

attach 210

attach, rolling-in data 336

attached 338

attaching 339

attributes 354

creating 195

defining the range 195

detach, rolling-out data 336

detached 338

detaching 339

dropping 358

rolling in, attaching 342

rolling out, detaching 342

rolling-in data, attaching 346

rolling-out, detaching 352

specifying 195

data redistribution 128

data row compression 188

data types
column definition 217

multibyte character set 217

source 249

length limits 250

Index 707

database 3

before creating 3

changing 281

considerations before changing 275

considerations for creating 33

creating 113

database access
controlling 481

database administration (DBADM)

authority
description 509

database authorities
BINDADD 511

CONNECT 511

CREATE_EXTERNAL_ROUTINE 511

CREATE_NOT_FENCED 511

CREATETAB 511

database manager (DBADM) 511

granting 511

granting to new groups 529

granting to new users 529

IMPLICIT_SCHEMA 511

LOAD 511

PUBLIC 511

QUIESCE_CONNECT 511

revoking 511

SECADM 511

security administrator

(SECADM) 511

database configuration
changing 279

changing across partitions 281

database configuration file
creating 80

database configuration parameters
generating recommended values 84

database directories
updating 180

database manager
access control 519

binding utilities 183

configuration parameters
generating recommended

values 84

index 256

starting on UNIX 4

starting on Windows 4

stopping on UNIX 13

stopping on Windows 14

database objects
access control 519

creating 382

modifying
statement dependencies 366

naming rules
NLS 668

Unicode 669

database partition groups
altering 281

creating 115

distribution key, changing 318

IBMDEFAULTGROUP default

table 191

initial definition 115

table considerations 191

database partition number 81

database partition servers
description 30

dropping 147

issuing commands 130

specifying 138

Windows 143

database partitions
adding 123, 125

to a running system 119

to a stopped system 120

to NT system 122

adding using a wizard 124

cataloging 9, 179

changing 145

changing database configuration 281

changing in database partition

group 281

creating database across all 9

dropping from an instance 127

managing 116

from the Control Center 282

database recovery log
defining 182

database server capacity
methods of expanding 29

database servers
alternate 49

database systems
cataloging 177

databases
access

privileges through package with

queries 523

altering database partition group 281

automatic storage 54

cataloging 176

changing distribution of data 281

creating across all database

partitions 9

directory information, changing 180

dropping 293

enabling data partitioning 9

enabling I/O parallelism 11

label-based access control

(LBAC) 538

package dependencies 366

quiescing 186

restore implications 59

unavailable status 391

unquiescing 186

DB_HISTORY administrative view 87

DB2 Administration Server (DAS)
configuration 106

configuring 95

creating 93

enabling discovery 107

listing 95

notification and contact list

setup 100

overview 91

ownership rules 79

removing 103

scheduler setup and configuration 96

security considerations 102

setting up with partitioned database

system 104

example 104

DB2 Administration Server (DAS)

(continued)
starting and stopping 94

update configuration 110

updating on UNIX 102

using Configuration Assistant and

Control Center 110

DB2 administration tools
setting hover help 435

DB2 Administration Tools
starting 369

DB2 copies
changing the default copy after

installation 21

differences 17

managing 26

restrictions 17

roadmap 15

setting the DAS 24

setting the default instance 25

uninstalling 28

using on same computer 17

DB2 database help
using 370

DB2 environment
automatically set

UNIX 43

manually set
UNIX 44

DB2 for Windows Performance

Counters 685

DB2 Health Monitor
alert summaries 62

DB2 Help menu 375

DB2 information Center
setting up access 435

DB2 Information Center
updating 697

versions 695

viewing in different languages 696

DB2 objects
naming rules 663

DB2 tools catalog
creating a database for 424

DB2 Tools menu 374

DB2 UDB for z/OS health monitor
overview 441

starting, stopping, refreshing 442

viewing alert objects 447

viewing alert summaries 446

viewing, submitting, saving

recommended actions 443

DB2 Universal JDBC driver
client reroute support 45

db2_all command 130, 131, 132

overview 130

db2_call_stack 131

DB2_CONNRETRIES_INTERVAL 70

registry variable 52

DB2_INDEX_TYPE2 70

db2_kill 131

DB2_LIC_STAT_SIZE 70

DB2_MAX_CLIENT_ CONNRETRIES
registry variable 52

DB2_MAX_CLIENT_CONNRETRIES 70

DB2_VIEW_REOPT_VALUES 70

DB2_WORKLOAD 75

708 Administration Guide: Implementation

DB2ACCOUNT 70

DB2ADMNS 486

db2audit 624

db2audit.log 621

DB2BIDI 70

DB2CODEPAGE 70

DB2DBDFT 70

DB2DBMSADDR 70

db2diag.log 182

DB2DISCOVERYTIME 70

DB2DMNBCKCTLR profile registry

variable 677, 680

db2gncol utility 321

DB2GRAPHICUNICODESERVER 70

db2icrt command
creating additional instances 38

db2idrop command 278

db2ilist command 41

DB2INCLUDE 70

DB2INSTANCE environment variable
defining default instance 16

DB2INSTDEF 70

DB2INSTOWNER 70

db2iupdt command 276, 277

DB2LBACREADARRAY rule 552

DB2LBACREADSET rule 552

DB2LBACREADTREE rule 552

DB2LBACRULES LBAC rule set 552

DB2LBACWRITEARRAY rule 552

DB2LBACWRITESET rule 552

DB2LBACWRITETREE rule 552

DB2LDAP_CLIENT_PROVIDER 575

db2ldcfg utility 578

DB2LOCALE 70

DB2NBDISCOVERRCVBUFS 70

db2nchg command 145

db2ncrt command 144

db2ndrop command 147

db2nlist command 143

DB2NODE
exported when adding server 119,

120, 122

db2nodes.cfg file 81

DB2NTNOCACHE option 159

db2perfc command 688

db2perfi command 685

db2perfr command 686

DB2SECURITYLABEL
providing explicit values 557

viewing as a string 557

db2set command 65, 68

db2start ADDNODE 144

db2start command 4

db2stop command 13, 14

DB2TERRITORY 70

DB2USERS 486

DBADM (database administration)

authority
description 509

DBADM authority
retrieving names 611

DBCS (double-byte character set)
naming rules 668

DDL statements
generating 183

DECLARE GLOBAL TEMPORARY

TABLE 212

default
notification message 423

default attribute specification 217

default DB2 copy
changing after installation 21

default options
setting 436

default scheduling scheme
setting 449

DELETE privilege 515

design, implementing 3

DETACH command
overview of 5

detached data partitions 354

description 352

diagnostic information
obtaining

in the Control Center 393

dimensions
defining on a table 235

Direct I/O (DIO)
supported configuration 159

directories
local database directory 178

system database directory 178

updating 180

directory information
database, changing 180

directory schema
extending

for IBM SecureWay Directory

Server 595

for Sun One Directory Server 596

directory support
Netscape LDAP 593

disabling notification
using the Health Center Status

Beacon 448

discovery feature
configuration 110

enabling 107

hiding server instances 108

setting parameters 109

distribution keys
changing 318

defining 229

index distributed on 258

table considerations 191

DMS table spaces
creating 149

documentation 691, 692

terms and conditions of use 699

domain controller
backup 677

domain list
ordered 682

domain security
authentication 681

Windows support 683

domains
trust relationships 679

DROP DATABASE command
example 293

Drop Database Partitions launchpad 127

DROP statement
indexes 327

table spaces 291

DROP statement (continued)
tables

examples 363

views
examples 330

dropped table recovery
CREATE TABLESPACE

statement 149

dropping
aliases 332

columns 300, 320

LBAC protected 569

containers 288

database partitions using a

launchpad 127

databases 293

foreign keys 316

index extensions 327

index specifications 327

indexes 327

LBAC security labels 547

materialized query tables 365

primary keys 316

schemas 294

sequences 320

staging tables 365

table check constraints 317

tables 363

triggers 329

type mappings 334

unique constraints 315

user table spaces 291

user-defined functions 333

user-defined tables 364

user-defined types 334

views 330

dynamic SQL or XQuery statements
cached

marked invalid 327

definition 455

EXECUTE privilege for database

access 523

E
eliminating duplicate machine

entries 138

enabling notification
using the Health Center Status

Beacon 448

encrypting data 527

Enhanced DIO
supported configuration 159

Enhanced Journal File System (JFS2) 159

environment variables
delcaring 68

profile registry 65

rah 139

RAHDOTFILES 140

setting
UNIX 79

Windows 77

environment-specific information 371

error messages
when adding nodes to partitioned

databases 128

Index 709

examples
alternate server 49

automatic client reroute 49

EXECUTE privilege
database access with dynamic

queries 523

database access with static

queries 523

definition 517, 518

explain snapshot
definition 456

explain tables
creating 466

explainable statements
definition 456

viewing 474

explained SQL statements
definition 456

viewing history 476

explained XQuery statements
definition 456

viewing history 476

explicit schema use 6

expressions
NEXTVAL 234

PREVVAL 234

extended security
Windows 486

F
fast communications manager (FCM)

service entry syntax 32

FCM (fast communications manager)
service entry syntax 32

federated databases
function mapping, creating 244

function template, creating 245

index specification
creating 258

object naming rules 666

type mapping, creating 248

federated systems objects
adding to the Control Center object

tree 389

file system caching
for table spaces 159

filtering
objects in the Control Center 394

finding
objects

in the Control Center contents

pane 394

firewalls
application proxy 620

circuit level 620

description 619

screening router 619

stateful multi-layer inspection

(SMLI) 620

first failure data capture (FFDC)
on DAS 111

fonts
changing for menus and text 437

foreign key constraints
referential constraints 226

rules for defining 226

foreign keys
adding or changing 297

adding to a table 310

changing 311

composite 226

constraint name 226

DROP FOREIGN KEY clause, ALTER

TABLE statement 316

import utility, referential integrity

implications for 227

load utility, referential integrity

implications for 227

privileges required for dropping 316

rules for defining 226

format
security label as string 549

function invocation, selectivity 268

function mappings
creating 244

function privileges 518

function statistics
viewing SQL or XQuery statement

statistics 469

function templates
creating 245

functions
DECRYPT 527

dropping a user-defined 333

ENCRYPT 527

GETHINT 527

G
generated columns

defining on a new table 219

modifying 308

global group support
Windows 677

global level profile registry 65

GRANT statement
example 519

implicit issuance 522

use of 519

granting
LBAC security labels 547

granting database authorities
to new groups 529

to new users 529

granting privileges
to new groups 530

to new users 534

group information
access token 483

grouping tasks 425

groups
naming rules 666

selecting 481

selecting new tasks for 427

groups and user authentication
Windows 679

guidelines
range-clustered tables 216

H
Health Center Status Beacon

enabling or disabling notification 448

help
accessing 435

displaying 696

for DB2 administration tools 370

for SQL statements 695

how to access
in the Control Center 385

hierarchy tables
creating 216

dropping 363

historical information
viewing in Journal 418

history file
accessing 87

hover help
setting for DB2 administration

tools 435

I
I/O parallelism

enabling 11

IBM eNetwork Directory, object classes

and attributes 598

IBM SecureWay Directory Server
extending the directory schema

for 595

IBMCATGROUP database partition

group 115

IBMDEFAULTGROUP database partition

group 115

IBMTEMPGROUP database partition

group 115

identity columns
altering 318

defining on a new table 220

modifying 308

IDENTITY columns 235

modifying 308

implicit authorization
managing 522

implicit schema authority

(IMPLICIT_SCHEMA) 513

implicit schema use 6

IMPLICIT_SCHEMA
authority 168

database authority 511

IMS
setting options 450

index extension 258

index keys 258

index maintenance
details 266

index privilege 518

INDEX privilege 515

index searching
details 266

index statistics
viewing SQL or XQuery statement

statistics 469

index type
unique index 258

710 Administration Guide: Implementation

indexes
CREATE INDEX statement 261

CREATE UNIQUE INDEX

statement 261

creating
overview 256

creation 467

definition of 258

DROP INDEX statement 327

dropping 327

estimating space requirements 272

nonprimary 327

nonunique 261

online reorganization 258, 261

optimizing number 258

performance tips for 260

primary versus user-defined 258

privileges
description 518

renaming 326

selectivity 268

specifications and extensions 258

unique 261

uniqueness for primary key 223

user-defined extended index

type 265

viewing SQL or XQuery statement

details 469

indexes exploitation 267

infopops
setting for DB2 administration

tools 435

turning on 435

Information Center
updating 697

versions 695

viewing in different languages 696

informational constraints 233

infraction information
viewing 415

INSERT privilege 515

inserting
effects of LBAC on 563

instance level profile registry 65

instance owner 36

instance profile registry 65

instance user
setting the environment 34

instances
add 41

adding partition servers 144

altering 275

auto-starting 42

creating 34

UNIX 39

Windows 40

creating additional 38

default 34

default, setting 25

definition 34

directory 34

disadvantages 34

listing 41

listing database partition servers 143

multiple 16

multiple on UNIX 36

multiple on Windows 37

instances (continued)
overview of 16

owner 36

partition servers
changing 145

dropping 147

quiescing 42

reasons for using 34

removing 278

running multiple 27

setting the current 67

starting on UNIX 4

starting on Windows 4

stopping on UNIX 13

stopping on Windows 14

unquiescing 42

updating the configuration
UNIX 276

Windows 277

inter-partition query parallelism
enabling 7

intra-partition parallelism
enabling 7

J
Java virtual machine

setup on DAS 101

JCC Type 4 drivers
with client reroute 54

Journal
overview 418

Journal File System (JFS) 159

K
Kerberos

authentication details 496

authentication type 490

security protocols
third party authentication 490

keys
foreign

changing 311

primary
changing 309

unique
adding or changing 312

changing 313

Known discovery 107

KRB_SERVER_ENCRYPT authentication

type 490

L
label-based access control (LBAC)

inserting data protected by 563

overview 538

protecting data using 558

reading data protected by 560

security label comparisons 550

updating data protected by 565

large object (LOB) data types
column considerations 221

large page support
AIX 64-bit environment 12

launchpads
using 385

LBAC (label-based access control)
inserting data protected by 563

overview 538

protecting data using 558

reading data protected by 560

security label comparisons 550

updating data protected by 565

LBAC credentials
description 538

LBAC protected data
adding protection 558

description 538

LBAC protected tables
description 538

LBAC rule exemptions
description and use 556

effect on security label

comparisons 550

LBAC rule sets
DB2LBACRULES 552

description 551

use in comparing security labels 550

LBAC security administrator
description 538

LBAC security label components
effect on security label

comparisons 550

LBAC security labels
ARRAY component type 543

compatible data types 547

components 541

description 538

how compared 550

SET component type 543

string format 549

TREE component type 544

use 547

LBAC security policies
adding to a table 558

description 538

description and use 540

LDAP (Lightweight Directory Access

Protocol)
attaching remotely 583

cataloging a node entry 581

configuring DB2 576

creating a user 577

DB2 Connect 589

deregistering
databases 584

servers 582

description 573

directory service 181

disabling 589

enabling 588

extending directory schema 591

object classes and attributes 598

refreshing entries 584

registering
databases 582

DB2 servers 578

host databases 586

searching
directory domains 585

directory partitions 585

Index 711

LDAP (Lightweight Directory Access

Protocol) (continued)
security 589

setting registry variables 587

supporting 575

updating protocol information 580

Windows 2000 active directory 591

LDAP clients
rerouting 580

legend
Control Center 380

length limits
source data types 250

LEVEL2 PCTFREE clause 261

License Center
definition 411

managing licenses 64

overview 411

viewing user details 415

license policies
viewing 414

licenses
adding 412

changing 413

removing 416

licensing information
viewing 413

lightweight directory access protocol

(LDAP)
attaching remotely 583

cataloging a node entry 581

configuring DB2 576

creating a user 577

DB2 Connect 589

deregistering
databases 584

servers 582

description 573

directory service 181

disabling 589

enabling 588

extending directory schema 591

object classes and attributes 598

refreshing entries 584

registering
databases 582

DB2 servers 578

host databases 586

searching
directory domains 585

directory partitions 585

security 589

setting registry variables 587

supporting 575

updating protocol information 580

Windows 2000 active directory 591

LOAD database authority 511

LOAD privilege 511

Load wizard
loading data into a table 237

loading data
enabling parallelism 10

into a table
using a Load wizard 237

LOB (large object) data types
column considerations 221

local database directory
description 178

viewing 179

local system account 485

LOCK TABLE statement
when using CREATE INDEX 261

log files
administration 182

logging
raw devices 163

logical nodes; see database partition

servers 30, 138

logs
audit 621

Policy Evaluation 441

LONGDATACOMPAT
retrieving access plan 468

M
machine list

for partitioned database

environment 137

materialized query tables
behavior 206

with partitioned tables 206

materialized query tables (MQTs)
altering properties 335

creating 201

dropping 365

populating 205

refreshing data 336

user-maintained 204, 205

maxRetriesForClientReroute 45

menus
changing fonts 437

DB2 Help 375

DB2 Tools 374

MERGE statement
updating table and view

contents 360

messages
audit facility 636

default notification, changing 423

viewing in Journal 418

method privileges 518

MINPCTUSED clause 261

modifying a table 295

monitoring
rah processes 134

MQTs (materialized query tables)
altering properties 335

creating 201

dropping 365

populating 205

refreshing data 336

user-maintained 204, 205

multiple DB2 copies
roadmap 15

setting the default instance 25

multiple instances 16

UNIX 36

Windows 37

multiple logical nodes
configuring 31

N
naming conventions

restrictions
general 663

Windows 678

naming rules
DB2 objects 663

delimited identifiers and object

names 665

federated database objects 666

general 663

national languages 668

objects and users 489

restrictions 663

schema names 667

Unicode 669

users, user IDs and groups 666

workstations 667

Netscape
LDAP directory support 593

NEXTVAL expression 234

nicknames
privileges

indirect through packages 524

NO FILE SYSTEM CACHING

clause 159

node configuration files
creating 81

node directories 179

node level profile registry 65

nodegroups (database partition groups)
creating 115

non-buffered I/O
enabling on UNIX 159

nonprimary indexes
dropping 327

notices 701

notification message
default 423

notifications
changing the default message 423

enabling or disabling
using the Health Center Status

Beacon 448

viewing in Journal 418

null column definition 217

O
object tree

adding databases 390

adding IMSplexes 390

adding instances 390

adding systems 390

adding z/OS subsystems 389

expanding and collapsing 389

refreshing objects 391

objects
modifying

statement dependencies 366

performance on Windows 687

schemas for grouping 6

objects in custom folders
deleting 391

operand
definition 457

712 Administration Guide: Implementation

operators
definition 457

viewing SQL or XQuery statement

details 469

optimizer
definition 458

ordered domain list
authentication using 682

ordering DB2 books 694

overviews
DB2 UDB for z/OS health

monitor 441

ownership
database objects 501, 609

P
packages

access privileges with queries 523

definition 459

dropping 327

inoperative 366

invalid
after adding foreign key 309

dependent on dropped

indexes 327

owner 523

privileges 517

revoking privileges 521

viewing explainable statements 474

page fetch pairs
viewing SQL or XQuery statement

statistics 469

PAGE SPLIT clause 261

parallelism
intra-partition

enabling 7

partitioned database environments
duplicate machine entries,

eliminating 138

specifying machine list 137

partitioned databases
errors when adding nodes 128

partitioned tables
altering 210, 336, 338, 356, 358

attaching 346

avoiding a mismatch 348

converting 348

creating 193, 198

data rotating 339

detaching 352

loading 198

migrating 348

moving data 342

restrictions 338

rolling in data 342

rolling out data 342

with materialized query tables 206

partitioning data
administration 9

partitioning keys
adding or changing for a table 297

partitions
dropping 125

partitions, data
add 336

adding 356

partitions, data (continued)
attach, rolling-in data 336

attached 338

attaching 210, 339

creating 195

defining the range 195

detach, rolling-out data 336

detached 338, 354

detaching 339

dropping 358

rolling in data, attaching 346

rolling in, attaching 342

rolling out, detaching 342

passwords
maintaining

on servers 667

performance
accessing remote information 688

catalog information, reducing

contention for 9

displaying information 687

enable remote access to

information 686

materialized query table 201

resetting values 688

Windows 687

Performance Configuration wizard
invoking 83

renamed to Configuration

Advisor 279

performance monitor
Windows 685

permissions
column-specific protection 538

row-specific protection 538

plug-ins
adding toolbar buttons 398

architecture 395

basic menu action separators 401

basic menu actions 399

compiling 396

developing 397

guidelines 395

menu items, restricting display 402

positioning menu items 400

running 396

setting tree object attributes 406

policies
changing 413

policy evaluation log
DB2 UDB for z/OS health

monitor 441

populating a typed table 217

port numbers
range

defining 144

pre-filtering
objects in the Control Center 394

PRECOMPILE command
OWNER option 523

predicate
definition 459

prefetch size
enabling automatic adjustment 288

prefix
sequences 135

PREVVAL 234

primary keys
add to table 309

adding or changing 297

changing 309

constraints 223

DROP PRIMARY KEY clause, ALTER

TABLE statement 316

dropping
using the Control Center 316

primary index 223, 258

privileges required to drop 316

when to create 223

printed books
ordering 694

privileges
ALTER 515

CONTROL 515

create view for information 613

DELETE 515

description 501

EXECUTE 518

GRANT statement 519

granting to new groups 530

granting to new users 534

hierarchy 501

implicit for packages 501

INDEX
description 515, 518

indirect 524

individual 501

INSERT 515

ownership (CONTROL) 501

package
creating 517

REFERENCES 515

retrieving
authorization names with 610

for names 613

REVOKE statement 521

schema 514

SELECT 515

SETSESSIONUSER 513

system catalog listing 609

table 515

table space 515

tasks and required authorities 608

UPDATE 515

USAGE 518

view 515

problem determination
online information 699

tutorials 699

procedure privileges 518

profile registry 65

properties of columns
changing 304

protected data (LBAC)
adding protection 558

protecting data with LBAC 558

PUBLIC clause
database authorities, figure 511

purging
task history records

Task Center 416

Index 713

Q
qualified object names 6

queries
rewrite, materialized query table 201

query optimization class
definition 460

QUIESCE_CONNECT database

authority 511

quiescing
databases 186

instances 42

tables 239

R
rah command

controlling 139

description 131

determining problems 141

environment variables 139

introduction 130

monitoring processes 134

overview 130

prefix sequences 135

RAHCHECKBUF environment

variable 133

RAHDOTFILES environment

variable 140

RAHOSTFILE environment

variable 137

RAHOSTLIST environment

variable 137

RAHWAITTIME environment

variable 134

recursively invoked 135

running commands in parallel 133

setting the default environment

profile 141

specifying
as a parameter or response 132

database partition server list 137

RAHCHECKBUF environment

variable 133

RAHDOTFILES environment

variable 140

RAHOSTFILE environment variable 137

RAHOSTLIST environment variable 137

RAHTREETHRESH environment

variable 135

RAHWAITTIME environment

variable 134

range-clustered tables
access path determination 215

examples 213

guidelines 216

ranges
defining for data partitions 195

generating 195

restrictions 195

raw devices 149

raw I/O
setting up on Linux 164

specifying 163

raw logs 163

rebalancing data across containers 285

recommended actions
viewing, submitting, saving 443

records
audit 621

recovery
allocating log during database

creation 182

summary tables, inoperative 361

views, inoperative 331

redistributing data 128

across database partitions 281

referenced column groups
viewing SQL or XQuery statement

details 469

referenced columns
viewing SQL or XQuery statement

details 469

REFERENCES clause
delete rules 227

use of 227

REFERENCES privilege 515

referential constraints
defining 224

PRIMARY KEY clause,

CREATE/ALTER TABLE

statements 224

REFERENCES clause,

CREATE/ALTER TABLE

statements 224

refreshing
data in materialized query table 336

DB2 UDB for z/OS health

monitor 442

objects in the object tree 391

registry variables
aggregate 75

DB2_CONNRETRIES_ INTERVAL 52

db2_connretries_interval 45

DB2_CONNRETRIES_INTERVAL 70

DB2_INDEX_TYPE2 70

DB2_LIC_STAT_SIZE 70

DB2_MAX_CLIENT_

CONNRETRIES 52, 70

db2_max_client_connretries 45

DB2_VIEW_REOPT_VALUES 70

DB2ACCOUNT 70

DB2BIDI 70

DB2CODEPAGE 70

DB2DBDFT 70

DB2DBMSADDR 70

DB2DISCOVERYTIME 70

DB2GRAPHICUNICODESERVER 70

DB2INCLUDE 70

DB2INSTDEF 70

DB2INSTOWNER 70

DB2LOCALE 70

DB2NBDISCOVERRCVBUFS 70

DB2SLOGON 70

DB2TERRITORY 70

DB2TRACEFLUSH 70

DB2TRACENAME 70

DB2TRACEON 70

DB2TRCSYSERR 70

DB2YIELD 70

declaring 68

environment variables 65

related objects
showing

in the Control Center 270

validating 271

remote
administration 104

performance 688

removing
columns 320

renaming
indexes 326

table spaces 290

tables 326

REORG-recommended alter 300

reorganization utility
binding to a database 183

rerouting clients 44

LDAP 580

resizing
table space 154

restore database
implications 59

Restore wizard
restoring data 388

restoring
data

using the Restore wizard 388

databases, enabling I/O

parallelism 11

table spaces, enabling I/O

parallelism 11

RESTRICT semantic
for DROP COLUMN 300

restrictions
automatic storage 62

naming
Windows 678

RESTRICTIVE option, CREATE

DATABASE 613

retryIntervalForClientReroute 45

REVOKE statement
example 521

implicit issuance 522

use 521

revoking
LBAC security labels 547

roadmaps
automatic client reroute 45

multiple DB2 copies 15

row blocking
see cursor blocking 460

row compression 188

definition 187

rows
deleting LBAC protected 569

effect of LBAC on reading 560

inserting LBAC protected 563

protecting a row with LBAC 558

updating LBAC protected 565

rule sets (LBAC)
description 551

exemptions 556

running tasks
immediately 421

runstats
using 468

714 Administration Guide: Implementation

S
saved schedules

managing 429

scalar functions
creating 243

scenarios
defining an index extension 268

schedule settings
enabling 419

scheduler 420

concept 420

DB2 administration server (DAS) 96

scheduler system 425

schedules
managing 429

scheduling
tasks 422

scheduling scheme
setting, default 449

schema names
description 667

schemas
copying schemas and objects 170

creating 168

description 6

dropping 294

restarting failed copy schema

operation 173

SESSION 364

setting 169

scope
adding 305

SEARCH discovery
in discovery parameter of Known

Discovery 107

SECADM database authority 501, 508,

511

SECLABEL
description 557

SECLABEL_BY_NAME
description 557

SECLABEL_TO_CHAR
description 557

security
CLIENT level 490

column-specific 538

db2extsec command
using 486

disabling extended security 486

enabling extended security 486

extended security 486

label-based access control

(LBAC) 538

maintaining passwords
on servers 667

planning for 481

risks 616

row-specific 538

UNIX considerations 489

Windows 486

description 675

domain security 683

services 680

users 485

security administrator (SECADM)

database authority 501, 508, 511

security labels (LBAC)
ARRAY component type 543

compatible data types 547

components 541

SET component type 543

string format 549

TREE component type 544

use 547

security policies (LBAC)
description and use 540

SELECT clause
used in a view 251

SELECT privilege 515

selectivity of predicates
definition 461

sequences 461

altering 319

comparing with IDENTITY

columns 235

creating 234

dropping 320

privileges 518

server administration tools
setting startup property 434

SERVER authentication type 490

SERVER_ENCRYPT authentication

type 490

servers
alternate 45, 49

service-level information
for administration tools 370

SET ENCRYPTION PASSWORD

statement 527

SET INTEGRITY statement
checking for constraint violations 230

SETSESSIONUSER privilege 513

settings
default environment profile for

rah 141

IMS options 450

schema 169

shutting down
administration tools 369

SIGTTIN message 132

SMS (system managed space)
table spaces

adding containers 289

creating 149

source data types 249

length limits 250

source tables
creating 210

space compression
existing tables 295

new tables 187

tables 187

space requirements
for tables and indexes

estimating 272

sparse file allocation 221

SQL (Structured Query Language)
keywords 665

SQL or XQuery statement
viewing text 469

SQL statements
displaying help 695

dynamically explaining 464

SQL statements (continued)
explained

viewing history 476

inoperative 366

staging tables
creating 211

deleting contents of 362

dropping 365

star joins
definition 462

START MVS system command 441

starting
DB2

UNIX 4

Windows 4

DB2 UDB for z/OS health

monitor 442

startup options
setting 436

startup property
setting 434

static SQL or XQuery statements
definition 463

EXECUTE privilege for database

access 523

stdin 132

STOP MVS system command 441

stopping
DB2

UNIX 13

Windows 14

DB2 UDB for z/OS health

monitor 442

storage
automatic, for databases 54

automatic, for table spaces 58

storage paths
automatic

adding 64

stored procedures
altering a table 324

stripe sets 285

structured types
altering 333

submenus
creating 401

success code sets 420

concept 420

managing 430

summary tables
recovering inoperative 361

Sun One Directory Server
extending directory schema for 596

SWITCH ONLINE clause 291

synonyms
DB2 for OS/390 or z/Series 254

SYSCAT catalog views
for security issues 609

SYSCATSPACE table spaces 148

system administration (SYSADM)

authority
description 506

privileges 506

system catalog tables
description 175

Index 715

system catalogs
dropping

tables 363

view implications 330

privileges listing 609

retrieving
authorization names with

privileges 610

names with DBADM

authority 611

names with table access

authority 612

privileges granted to names 613

security 613

system control authority (SYSCTRL) 507

system database directory
overview 178

viewing 179

system maintenance authority

(SYSMAINT) 508

system monitor authority

(SYSMON) 510

system names
changing 383

system temporary table spaces 158

T
table

altering 295

table function statistics
viewing SQL or XQuery statement

statistics 469

table information
displaying in the Control Center

contents pane 392

table objects
altering 295

creating 187

table partitions
managing 297

table properties
changing 299

table spaces
adding

containers 285

automatic resizing 154

automatic storage 58

automatic storage, regular and

large 63

changing 284

containers
extending 286

file example 149

file system example 149

creating
description 149

in database partition groups 163

definition 148

device container example 149

dropped table recovery 149

dropping
system temporary 292

user 291

user temporary 293

enabling I/O parallelism 11

initial 148

table spaces (continued)
privileges 515

renaming 290

resizing container 286

separating types of data,

example 190

switching states 291

system temporary 158

temporary automatic storage 57

user temporary 159

viewing SQL or XQuery statement

details 469

without file system caching 159

table statistics
viewing SQL or XQuery statement

statistics 469

table user-defined functions (UDFs)
description 243

tables
add referential constraints 309, 310

adding
columns, new 304

ALTER TABLE statement 304

altering partitioned tables 356, 358

altering using stored procedures 324

changing
distribution keys 318

changing attributes 298

converting 198

copying 296

CREATE TABLE statement 217

creating 187

in partitioned databases 191

creation
overview 189

defining
check constraints 228

dimensions 235

referential constraints 224

unique constraints 223

dropping 363

effect of LBAC on reading 560

estimating space requirements 272

explain
creating 466

generated columns 219, 321

identity columns 220

inserting into LBAC protected 563

loading data using the Load

wizard 237

making fully accessible 238

materialized query tables 206

migrating into partitioned tables 198

mismatch 210

naming 217

partitioned tables 206

protecting with LBAC 538, 558

quiescing 239

range-clustered 216

removing
rows 307

renaming 326

retrieving names with access to 612

revoking privileges 521

source 210

staging, deleting contents of 362

target 210

tables (continued)
tips for adding constraints 309, 310

updating using MERGE

statement 360

volatile, declaring 323

task categories
managing 431

Task Center
creating tasks 425

description 416

editing tasks 425

enabling scheduling settings 419

overview 416

purging task history records 416

tasks
authorizations 608

creating or editing 425

creatng or editing 425

running immediately 421

running now 421

scheduling 420, 422

viewing in Journal 418

TCP_KEEPALIVE
operating system configuration

parameter 53

temporary tables
dropping a user-defined 364

user-defined 212

TEMPSPACE1 table space 148

termination character
setting for command statement 434

terms and conditions
use of publications 699

toolbars
primary 371

secondary 373

tools
catalog database 96

Tools Settings
overview 432

trace facility 393

triggers
benefits 240

creating 240

dependencies 242

dropping 329

updates
update view contents 328

troubleshooting
online information 699

tutorials 699

trust relationships 679

trusted clients
CLIENT level security 490

tutorials
troubleshooting and problem

determination 699

Visual Explain 698

type mapping
creating 248

dropping 334

typed tables
creating 216

deleting rows 362

populating 217

updating rows 362

716 Administration Guide: Implementation

U
unavailable status

of databases 391

Unicode (UCS-2)
identifiers 669

naming rules 669

uninstalling
DB2 Copies 28

union all views
converting 198

unique constraints
adding 313

defining 223

dropping 315

unique key values
generating

using sequences 461

unique keys
adding or changing 312

changing 313

UNIX File System (UFS)
supported configuration 159

unquiescing
databases 186

instances 42

UPDATE privilege 515

updates
DAS configuration 110

DB2 Information Center 697

Information Center 697

typed table 362

updating
effects of LBAC on 565

view contents using triggers 328

USAGE privilege 518

user authentication
Windows 678

user IDs
naming rules 666

selecting 481

user table spaces 291

user temporary table spaces
creating 159

dropping 293

user-defined extended index types 265

user-defined functions (UDFs)
creating 243

database authority to create

non-fenced 511

dropping 333

types 243

viewing SQL or XQuery statement

details 469

user-defined temporary tables
creating 212

dropping 364

user-defined types (UDTs)
creating 246

distinct types
creating 247

dropping 334

structured types 248

users
selecting new tasks for 427

USERSPACE1 table space 148

utility execution options
setting, for z/OS 437

utility operations
constraint implications 227

V
validating

related objects 271

value compression
definition 187

existing tables 187, 295

VARCHAR data type
in table columns 305

VERITAS Storage Foundation 159

views
access control to table 525

access privileges, examples of 525

altering 330

column access 525

creating 251

data integrity 251

data security 251

dropping 330

dropping implications for system

catalogs 330

for privileges information 613

inoperative 331

recovering inoperative 331

removing rows 307

restrictions 330

row access 525

triggers to update 328

updating using MERGE

statement 360

Visual Explain
access plan graph 453

access plans 452

definition 463

overview 451

tutorial 698

up-level and down-level support 478

vmo
AIX system command 12

vmtune
AIX system command 12

W
Windows

active directory, DB2 objects
configuring on Windows 593

active directory, object classes and

attributes
configuring on Windows 598

adding database partitions 122

extending the directory schema
Windows 2000 591

Performance Monitor 685

security 486

Windows Management Instrumentation

(WMI)
DB2 database integration 672

description 671

Windows scenarios
client authentication

Windows client 677

server authentication 676

Windows support
local system account (LSA) 485

Windows user group
access token 483

wizards
Add Database Partitions wizard 124

Create Table 190

Performance Configuration 279

using 385

workstations
(nname), naming rules 667

write-down
description 552

write-up
description 552

X
XQuery statements

dynamically explaining 464

explained
viewing history 476

inoperative 366

Z
z/OS subsystems

adding to object tree 389

Index 717

718 Administration Guide: Implementation

Contacting IBM

 To contact IBM in your country or region, check the IBM Directory of Worldwide

Contacts at http://www.ibm.com/planetwide

To learn more about DB2 products, go to

http://www.ibm.com/software/data/db2/.

© Copyright IBM Corp. 1993, 2006 719

http://www.ibm.com/planetwide
http://www.ibm.com/software/data/db2/udb/

720 Administration Guide: Implementation

����

Printed in USA

SC10-4221-00

Sp
in
e
in
fo
rm
at
io
n:

 IB
M

DB

2
DB

2
Ve

rs
io

n
9

Ad
m

in
is

tra
tio

n
Gu

id
e:

Im

pl
em

en
ta

tio
n

�
�

�

	Contents
	About this book
	Who should use this book
	How this book is structured

	Part 1. Implementing Your Design
	Chapter 1. Before creating a database
	Working with instances
	Starting a DB2 instance (Linux, UNIX)
	Starting a DB2 instance (Windows)
	Attaching to and detaching from a non-default instance of the database manager
	Grouping objects by schema
	Enabling inter-partition query parallelism
	Enabling intra-partition parallelism for queries
	Enabling intra-partition parallelism for utilities
	Enabling database partitioning in a database
	Enabling parallelism for loading data
	Enabling parallelism when creating indexes
	Enabling I/O parallelism when backing up a database or table space
	Enabling I/O parallelism when restoring a database or table space

	Enabling large page support in a 64-bit environment (AIX)
	Stopping an instance (Linux, UNIX)
	Stopping an instance (Windows)

	Working with multiple DB2 copies
	Multiple DB2 copies roadmap
	Multiple instances of the database manager
	Multiple DB2 copies on the same computer (Windows)
	Changing the Default DB2 copy after installation (Windows)
	Client connectivity using multiple DB2 copies (Windows)
	Setting the DAS when running multiple DB2 copies (Windows)
	Setting the default instance when using multiple DB2 copies (Windows)
	Managing DB2 copies (Windows)
	Running multiple instances concurrently (Windows)
	Removing DB2 copies (Linux, UNIX, and Windows)

	Working with partitioned databases
	Management of database server capacity
	Multiple logical partitions
	When to use multiple logical partitions
	Configuring multiple logical partitions

	Fast communications manager (FCM) communications

	Preparing to create a database
	Designing logical and physical database characteristics
	Instance creation
	Instance management
	Multiple instances on a Linux or UNIX operating system
	Multiple instances on a Windows operating system
	Creating additional instances
	UNIX details when creating instances
	Windows details when creating instances
	Adding instances
	Listing instances
	Auto-starting instances
	Quiescing and unquiescing instances

	Setting the DB2 environment automatically on UNIX
	Setting the DB2 environment manually on UNIX
	Automatic client rerouting
	Automatic client reroute roadmap
	Automatic client reroute description and setup
	Automatic client reroute limitations
	Specifying a server for automatic client reroute
	Automatic client reroute examples
	Automatic client reroute configuration (DB2_MAX_CLIENT_CONNRETRIES and DB2_CONNRETRIES_INTERVAL)
	Interaction between client connection timeout and client reroute
	Distributor considerations
	Client reroute setup when using JCC Type 4 drivers

	Automatic storage
	Automatic storage databases
	Temporary automatic storage table spaces
	Automatic storage table spaces
	Restore database implications
	Monitoring storage paths
	Restrictions when using automatic storage
	Regular and large automatic storage table spaces
	Adding an automatic storage path

	License management
	Registry and environment variables
	Environment variables and the profile registry
	Setting the current instance environment variables
	Declaring, showing, changing, resetting, and deleting registry and environment variables
	General registry variables
	Aggregate registry variables
	Setting environment variables on Windows
	Setting environment variables on UNIX systems

	Configuration files and parameters
	Database configuration file
	Creating a node configuration file
	Defining the scope of configuration parameters using the Configuration Advisor
	Generating recommendations for database configuration
	Configuration Advisor sample output

	Database history file
	Accessing the history file using the DB_HISTORY administrative view

	Chapter 2. Creating and using the DB2 Administration Server (DAS)
	DB2 Administration Server
	Creating a DB2 administration server (DAS)
	Starting and stopping the DB2 administration server (DAS)
	Listing the DB2 administration server (DAS)
	Configuring the DB2 administration server (DAS)
	Tools catalog database and DB2 administration server (DAS) scheduler setup and configuration
	Notification and contact list setup and configuration
	DB2 administration server (DAS) Java virtual computer setup
	Security considerations for the DB2 administration server (DAS) on Windows
	Updating the DB2 administration server (DAS) on UNIX
	Removing the DB2 administration server (DAS)
	Setting up DB2 administration server (DAS) with Enterprise Server Edition (ESE) systems
	DB2 administration server (DAS) configuration on Enterprise Server Edition (ESE) systems
	Discovery of administration servers, instances, and databases
	Discovering and hiding server instances and databases
	Setting discovery parameters
	Setting up the DB2 administration server (DAS) to use the Configuration Assistant and the Control Center
	Updating a DB2 administration server (DAS) configuration for discovery
	DB2 administration server (DAS) first failure data capture (FFDC)

	Chapter 3. Creating a database
	Creating a database
	Initial database partition groups
	Creating and managing database partitions and database partition groups
	Creating database partition groups
	Managing database partitions
	Adding and dropping database partitions
	Adding a database partition to a running database system
	Adding a database partition to a stopped database system on UNIX
	Adding a database partition to a stopped database system on Windows
	Adding database partitions in a partitioned database environment
	Adding database partitions to an instance using the Add Partitions wizard
	Adding database partitions using the Add Partitions launchpad
	Dropping a database partition
	Dropping database partitions from the instance using the Drop Partitions launchpad

	Redistributing data in a database partition group
	Error recovery when adding database partitions
	Issuing commands to multiple database partitions
	Issuing commands in a partitioned database environment
	rah and db2_all commands overview
	rah and db2_all command descriptions
	Specifying the rah and db2_all commands
	Running commands in parallel on Linux and UNIX platforms
	Monitoring rah processes on Linux and UNIX platforms
	Additional rah information (Solaris and AIX only)
	rah command prefix sequences
	Specifying the list of computers in a partitioned database environment
	Eliminating duplicate entries from a list of computers in a partitioned database environment
	Controlling the rah command
	Using $RAHDOTFILES on Linux and UNIX platforms
	Setting the default environment profile for rah on Windows
	Determining problems with rah on Linux and UNIX platforms

	Using Windows database partition servers
	Listing database partition servers in an instance
	Adding a database partition server to an instance (Windows)
	Changing the database partition (Windows)
	Dropping a database partition from an instance (Windows)

	Creating table spaces
	Table spaces
	Defining initial table spaces
	Creating a table space
	Automatic resizing of table spaces
	Creating a system temporary table space
	Creating a user temporary table space
	Creating table spaces without file system caching
	Table spaces in database partition groups
	Attaching a direct disk access device
	Setting up a direct disk access device on Linux

	Creating a buffer pool
	Creating buffer pools for partitioned databases
	Creating schemas
	Creating a schema
	Setting a schema
	Copying a schema
	Restarting a failed copy schema operation

	System catalog tables
	Cataloging a database
	Cataloging database systems
	Database directories, directory services, and logs
	Local database directory
	System database directory
	Viewing the local or system database directory files
	Node directory
	Changing database directory information
	Updating the directories with information about remote database server computers
	Lightweight Directory Access Protocol (LDAP) directory service
	Database recovery log
	Administration notification log

	Binding utilities to the database
	Generating DDL statements for database objects
	Quiescing and unquiescing databases

	Chapter 4. Creating tables and other related table objects
	Space compression for tables
	Space value compression for new tables
	Data row compression
	Table creation
	Creating a table using the Create Table wizard
	Creating a table in multiple table spaces
	Creating a table in a partitioned database environment
	Creating partitioned tables
	Details of partitioned tables
	Approaches to defining ranges on partitioned tables
	Approaches to migrating existing tables and views to partitioned tables

	Creating materialized query tables
	Creating a materialized query table
	Creating a user-maintained materialized query table
	Populating a user-maintained materialized query table
	Partitioned materialized query table behavior

	Creating a new source table using db2look
	Creating a staging table
	Creating a user-defined temporary table
	Creating range-clustered tables
	Examples of range-clustered tables
	How the query compiler works with range-clustered tables
	Guidelines for using range-clustered tables

	Creating typed tables
	Creating a hierarchy table or a typed table
	Populating a typed table

	Creating and populating a table
	Details on creating and populating a table
	Defining columns
	Defining a generated column on a new table
	Defining an identity column on a new table
	Large object (LOB) column considerations

	Defining keys and constraints
	Defining a unique constraint on a table
	Defining referential constraints on tables
	Foreign keys in a referential constraint
	REFERENCES clause in a referential constraint
	Table constraint implications for utility operations
	Defining a table check constraint
	Defining distribution keys
	Adding check constraints
	Checking for constraint violations using SET INTEGRITY
	Defining an informational constraint
	Creating a sequence
	Comparing IDENTITY columns and sequences

	Defining dimensions on a table
	Loading data into a table using the Load wizard
	Making a table in no data movement mode fully accessible
	Quiescing tables

	Defining triggers
	Creating triggers
	Trigger dependencies

	Defining UDFs and UDTs
	User-defined functions (UDFs) or methods
	Details on creating a user-defined function (UDF) or method
	Creating a function mapping in a federated database
	Creating a function template in a federated system

	User-defined types (UDTs)
	Details on creating a user-defined type (UDT)
	Creating a user-defined distinct type
	User-defined structured types
	Creating a type mapping in a federated system

	Source data types
	Length limits for source data types

	Creating a view
	Creating an alias
	Creating indexes
	Creating an index
	Index, index extension, or index specification
	Using an index
	Options on the CREATE INDEX statement
	User-defined extended index types
	Creating user-defined extended index types
	Index maintenance
	Relational index searching
	Index exploitation
	Defining an index extension - example

	Showing related objects
	Validating related objects
	Estimating space requirements for tables and indexes

	Chapter 5. Altering a database
	Altering an instance
	Changing instances (UNIX only)
	Details on changing instances
	Updating instance configuration on UNIX
	Updating instance configuration on Windows
	Removing instances

	Changing node and database configuration files
	Changing the database configuration across multiple database partitions

	Altering a database
	Altering a database partition group
	Managing database partitions from the Control Center
	Altering a buffer pool
	Altering a table space
	Details on altering a table space
	Adding a container to a DMS table space
	Modifying containers in a DMS table space
	Automatic prefetchsize adjustment after adding or dropping containers
	Adding a container to an SMS table space on a database partition
	Renaming a table space
	Switching the state of a table space
	Dropping a user table space
	Dropping a system temporary table space
	Dropping a user temporary table space

	Dropping a database
	Dropping a schema

	Chapter 6. Altering tables and other related table objects
	Modifying tables
	Space value compression for existing tables
	Copying tables
	Altering a table
	Changing table attributes
	Changing table properties
	Altering columns and rows
	Using the ALTER TABLE statement to alter columns of a table
	Adding columns to an existing table
	Changing columns (properties)
	Modifying a column definition
	Removing rows from a table or view
	Modifying the generated or identity property of a column
	Modifying an identity column definition

	Altering keys and constraints
	Adding primary keys
	Changing primary keys
	Adding foreign keys
	Changing foreign keys
	Adding unique keys
	Changing unique keys
	Adding unique constraints
	Adding a table check constraint
	Changing check constraints
	Dropping a unique constraint
	Dropping primary keys
	Dropping foreign keys
	Dropping a table check constraint

	Changing distribution keys
	Altering an identity column
	Altering a sequence
	Dropping a sequence
	Dropping or removing columns
	Defining a generated column on an existing table
	Declaring a table volatile

	Using a stored procedure to alter a table
	Modifying indexes
	Renaming an existing table or index
	Dropping an index, index extension, or an index specification

	Modifying triggers
	Updating view contents using triggers
	Dropping a trigger

	Modifying aliases and views
	Altering or dropping a view
	Recovering inoperative views
	Dropping aliases

	Modifying UDFs and UDTs
	Altering a user-defined structured type
	Dropping a user-defined function (UDF), function mapping, or method
	Dropping a user-defined type (UDT) or type mapping

	Modifying materialized query tables
	Altering materialized query table properties
	Refreshing the data in a materialized query table

	Modifying partitioned tables
	Altering partitioned tables
	Guidelines and restrictions on altering partitioned tables with attached or detached data partitions
	Rotating data in a partitioned table
	Examples of rolling in and rolling out partitioned table data
	Attaching a data partition
	Resolving a mismatch when trying to attach a data partition to a partitioned table
	Detaching a data partition
	Attributes of detached data partitions
	Adding data partitions to partitioned tables
	Dropping a data partition

	Updating table and view contents using the MERGE statement
	Recovering inoperative summary tables
	Dropping or deleting tables
	Deleting and updating rows of a typed table
	Deleting the contents of staging tables
	Dropping a table
	Dropping a user-defined temporary table
	Dropping a materialized query or staging table

	Statement dependencies when changing objects

	Chapter 7. Using the DB2 administration tools
	Starting the server DB2 administration tools
	Shutting down server DB2 administration tools
	Finding service level information about the DB2 administration tools environment
	Using the DB2 database help
	Environment-specific information
	Menus and toolbars
	DB2 toolbar
	DB2 secondary toolbar
	DB2 Tools menu
	DB2 Help menu

	Control Center
	Control Center overview
	Control Center Legend
	Opening new Control Centers
	Creating database objects
	Changing system names displayed in the Control Center
	Getting help in the Control Center
	Using advisors, wizards, and launchpads to perform tasks quickly and easily
	Wizard overviews
	Backing up data using the Backup wizard
	Restoring data using the Restore wizard

	Control Center object tree and details view
	Expanding and collapsing the Control Center object tree
	Adding DB2 UDB for z/OS subsystems to the object tree
	Adding DB2 federated system objects to the object tree
	Adding DB2 systems and IMSplexes, instances, and databases to the object tree
	Refreshing objects in the objects tree and details view
	Deleting custom folders or objects in custom folders
	Database unavailable status in the database details pane of the Control
	Displaying objects in the Control Center
	Displaying table information in the contents pane
	Obtaining Control Center diagnostic information
	Finding objects in the contents pane
	Filtering or pre-filtering objects

	Extending the Control Center
	Introducing the plug-in architecture for the Control Center
	Guidelines for Control Center plugin developers
	Compiling and running the example plugins
	Writing plugins as Control Center extensions
	Plug-in task descriptions

	License Center
	License Center overview
	Adding licenses
	Changing licenses and policies
	Viewing licensing information
	Viewing license policy information
	Viewing authorized user infraction information
	Viewing and resetting compliance details
	Removing licenses

	Task Center and Journal
	Task Center overview
	Journal overview
	Enabling scheduling settings in the Task Center
	Scheduler
	Success code sets
	Running tasks immediately
	Scheduling a task
	Changing the default notification message
	Creating a database for the DB2 tools catalog
	Creating or editing a task
	Selecting users and groups for new tasks
	Managing contacts
	Managing saved schedules
	Managing success code sets
	Managing task categories

	Tools Settings
	Tools Settings overview
	Setting the server administration tools startup property
	Setting a command statement termination character
	Setting up access to DB2 contextual help and documentation
	Setting startup and default options for the DB2 administration tools
	Changing the fonts for menus and text
	Setting DB2 UDB OS/390 and z/OS utility execution options
	DB2 for z/OS health monitor
	DB2 UDB for z/OS health monitor overview
	Starting, stopping and refreshing the DB2 UDB for z/OS health monitor
	Viewing, submitting, and saving recommended actions
	Viewing health alert summaries
	Viewing health alert objects

	Enabling or disabling notification using the Health Center Status Beacon
	Setting the default scheduling scheme
	Setting Command Editor options
	Setting IMS options

	Visual Explain
	Visual Explain overview
	Visual Explain concepts
	Access plan
	Access plan graph
	Access plan graph node
	Clustering
	Container
	Cost
	Dynamic SQL or XQuery
	Explain snapshot
	Explainable statement
	Explained statement
	Operand
	Operator
	Optimizer
	Package
	Predicate
	Query optimization class
	Cursor blocking
	Selectivity of predicates
	Sequences
	Star join
	Static SQL or XQuery
	Visual Explain

	Dynamically explaining an SQL or an XQuery statement
	Creating an access plan using the Command Editor
	Explain tables
	Guidelines for creating indexes
	Out-of-date access plans
	Retrieving the access plan when using LONGDATACOMPAT
	Using RUNSTATS
	Viewing SQL or XQuery statement details and statistics
	Viewing a graphical representation of an access plan
	Viewing explainable statements for a package
	Viewing the history of previously explained query statements
	Visual Explain support for earlier and later releases

	Part 2. Database Security
	Chapter 8. Controlling database access
	Security issues when installing the DB2 database manager
	Acquiring Windows users' group information using an access token
	Details on security based on operating system
	Windows platform security considerations for users
	Windows local system account support
	Extended Windows security using DB2ADMNS and DB2USERS groups
	UNIX platform security considerations for users
	Location of the instance directory
	Security plug-ins

	Authentication methods for your server
	Authentication considerations for remote clients
	Partitioned database authentication considerations
	Kerberos authentication details
	Authorization, privileges, and object ownership
	Details on privileges, authorities, and authorization
	System administration authority (SYSADM)
	System control authority (SYSCTRL)
	System maintenance authority (SYSMAINT)
	Security administration authority (SECADM)
	Database administration authority (DBADM)
	System monitor authority (SYSMON)
	LOAD authority
	Database authorities
	Authorization ID privileges
	Implicit schema authority (IMPLICIT_SCHEMA) considerations
	Schema privileges
	Table space privileges
	Table and view privileges
	Package privileges
	Index privileges
	Sequence privileges
	Routine privileges

	Controlling access to database objects
	Details on controlling access to database objects
	Granting privileges
	Revoking privileges
	Managing implicit authorizations by creating and dropping objects
	Establishing ownership of a package
	Indirect privileges through a package
	Indirect privileges through a package containing nicknames
	Controlling access to data with views
	Monitoring access to data using the audit facility
	Data encryption
	Granting database authorities to new groups
	Granting database authorities to new users
	Granting privileges to new groups
	Granting privileges to new users

	Label-based access control (LBAC)
	Label-based access control (LBAC) overview
	LBAC security policies
	LBAC security label components
	LBAC security label components overview
	LBAC security label component type: SET
	LBAC security label component type: ARRAY
	LBAC security label component type: TREE

	LBAC security labels
	Format for security label values
	How LBAC security labels are compared
	LBAC rule sets
	LBAC rule sets overview
	LBAC rule set: DB2LBACRULES

	LBAC rule exemptions
	Built-in functions for dealing with LBAC security labels
	Protection of data using LBAC
	Reading of LBAC protected data
	Inserting of LBAC protected data
	Updating of LBAC protected data
	Deleting or dropping of LBAC protected data
	Removal of LBAC protection from data

	Lightweight directory access protocol (LDAP) directory services
	Lightweight Directory Access Protocol (LDAP) overview
	Supported LDAP client and server configurations
	Support for Active Directory
	Configuring DB2 to use Active Directory
	Configuring DB2 in the IBM LDAP environment
	Creating an LDAP user
	Configuring the LDAP user for DB2 applications
	Registration of DB2 servers after installation
	Update the protocol information for the DB2 server
	Rerouting LDAP clients to another server
	Catalog a node alias for ATTACH
	Deregistering the DB2 server
	Registration of databases in the LDAP directory
	Attaching to a remote server in the LDAP environment
	Deregistering the database from the LDAP directory
	Refreshing LDAP entries in local database and node directories
	Searching the LDAP servers
	Registering host databases in LDAP
	Setting DB2 registry variables at the user level in the LDAP environment
	Enabling LDAP support after installation is complete
	Disabling LDAP support
	LDAP support and DB2 Connect
	Security considerations in an LDAP environment
	Security considerations for Active Directory
	Extending the LDAP directory schema with DB2 object classes and attributes
	Extending the directory schema for Active Directory
	DB2 objects in the Active Directory
	Netscape LDAP directory support and attribute definitions
	Extending the directory schema for IBM Tivoli Directory Server
	Extending the directory schema for Sun One Directory Server
	LDAP object classes and attributes used by DB2

	Tasks and required authorizations
	Using the system catalog for security issues
	Details on using the system catalog for security issues
	Retrieving authorization names with granted privileges
	Retrieving all names with DBADM authority
	Retrieving names authorized to access a table
	Retrieving all privileges granted to users
	Securing the system catalog view

	Security considerations
	Introduction to firewall support
	Screening router firewalls
	Application proxy firewalls
	Circuit level firewalls
	Stateful multi-layer inspection (SMLI) firewalls

	Chapter 9. Auditing DB2 database activities
	Introduction to the DB2 database audit facility
	Audit facility behavior
	Audit facility usage
	Working with DB2 audit data in DB2 tables
	Working with DB2 audit data in DB2 tables
	Creating tables to hold the DB2 audit data
	Creating DB2 audit data files
	Loading DB2 audit data into tables
	Selecting DB2 audit data from tables

	Audit facility messages
	Audit facility record layouts (introduction)
	Details on audit facility record layouts
	Audit record layout for AUDIT events
	Audit record layout for CHECKING events
	Audit record object types
	List of possible CHECKING access approval reasons
	List of possible CHECKING access attempted types
	Audit record layout for OBJMAINT events
	Audit record layout for SECMAINT events
	List of possible SECMAINT privileges or authorities
	Audit record layout for SYSADMIN events
	List of possible SYSADMIN audit events
	Audit record layout for VALIDATE events
	Audit record layout for CONTEXT events
	List of possible CONTEXT audit events

	Audit facility tips and techniques
	Controlling DB2 database audit facility activities

	Part 3. Appendixes
	Appendix A. Conforming to the naming rules
	General naming rules
	DB2 database object naming rules
	Delimited identifiers and object names
	User, user ID and group naming rules
	Federated database object naming rules
	Additional restrictions and recommendations regarding the use of schema names
	Maintaining passwords on servers
	Workstation naming rules
	Naming rules in an NLS environment
	Naming rules in a Unicode environment

	Appendix B. Using Windows Management Instrumentation (WMI) support
	Introduction to Windows Management Instrumentation (WMI)
	DB2 database system integration with Windows Management Instrumentation

	Appendix C. Using Windows security
	DB2 and Windows security introduction
	A scenario with server authentication (Windows)
	A scenario with client authentication and a Windows client machine
	Support for global groups (on Windows)
	Using a backup domain controller with DB2 database systems
	User authentication with DB2 for Windows
	User name and group name restrictions (Windows)
	Groups and user authentication on Windows
	Trust relationships between domains on Windows
	DB2 database system and Windows security service
	Installing DB2 on a backup domain controller
	Authentication with groups and domain security (Windows)
	Authentication using an ordered domain list
	Domain security support (Windows)

	Appendix D. Using the Windows Performance Monitor
	Windows performance monitor introduction
	Registering DB2 with the Windows performance monitor
	Enabling remote access to DB2 performance information
	Displaying DB2 database and DB2 Connect performance values
	Windows performance objects
	Accessing remote DB2 database performance information
	Resetting DB2 performance values

	Appendix E. DB2 Database technical information
	Overview of the DB2 technical information
	Documentation feedback

	DB2 technical library in PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	DB2 Visual Explain tutorial
	DB2 troubleshooting information
	Terms and Conditions

	Appendix F. Notices
	Trademarks

	Index
	Contacting IBM

