
DB2®

XQuery Reference

Version 9

Linux, UNIX, and Windows

SC18-9796-00

���

DB2®

XQuery Reference

Version 9

Linux, UNIX, and Windows

SC18-9796-00

���

Note

Note: Before using this information and the product it supports, read the information in Notices.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by

copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order.

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/planetwide.

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Tables . ix

Figures . xi

Chapter 1. DB2 XQuery concepts . 1

Introduction to XQuery . 1

Comparison of XQuery to SQL . 2

Retrieving DB2 data with XQuery functions . 2

XQuery and XPath data model . 4

Sequences and items . 4

Atomic values . 4

Node hierarchies . 5

Node properties . 7

Node kinds . 7

Document order of nodes . 10

Node identity . 10

Typed values and string values of nodes . 10

Serialization of the XDM . 11

XML namespaces and QNames . 12

Qualified names (QNames) . 12

Statically known namespaces . 13

Language conventions . 14

Case sensitivity . 14

Whitespace . 14

Comments . 15

Where to find more information about XQuery . 15

Chapter 2. Type system . 17

The type hierarchy . 17

Types by category . 18

Constructor functions for built-in data types . 22

Type casting . 23

anyAtomicType data type . 25

anySimpleType data type . 25

anyType data type . 26

anyURI data type . 26

base64Binary data type . 26

boolean data type . 26

byte data type . 26

date data type . 26

dateTime data type . 27

dayTimeDuration data type . 28

decimal data type . 29

double data type . 29

duration data type . 30

ENTITY data type . 31

float data type . 31

gDay data type . 31

gMonth data type . 32

gMonthDay data type . 32

gYear data type . 32

gYearMonth data type . 33

hexBinary data type . 33

© Copyright IBM Corp. 2006 iii

ID data type . 33

IDREF data type . 33

int data type . 34

integer data type . 34

language data type . 34

long data type . 34

Name data type . 34

NCName data type . 34

negativeInteger data type . 34

NMTOKEN data type . 35

nonNegativeInteger data type . 35

nonPositiveInteger data type . 35

normalizedString data type . 35

NOTATION data type . 35

positiveInteger data type . 35

QName data type . 35

short data type . 36

string data type . 36

time data type . 36

token data type . 37

unsignedByte data type . 37

unsignedInt data type . 37

unsignedLong data type . 37

unsignedShort data type . 37

untyped data type . 37

untypedAtomic data type . 37

yearMonthDuration data type . 38

Chapter 3. Prolog . 39

Version declaration . 39

Boundary-space declaration . 40

Construction declaration . 40

Copy-namespaces declaration . 41

Default element/type namespace declaration . 42

Default function namespace declaration . 42

Empty order declaration . 43

Ordering mode declaration . 44

Namespace declaration . 44

Chapter 4. Expressions . 47

Concepts for expression processing . 47

Dynamic context and focus . 47

Precedence . 47

Order of results in XQuery expressions . 48

Atomization . 50

Subtype substitution . 50

Type promotion . 51

Effective Boolean value . 51

Primary expressions . 52

Literals . 52

Variable references . 54

Parenthesized expression . 55

Context item expressions . 55

Function calls . 55

Path expressions . 56

Syntax of path expressions . 57

iv IBM DB2 XQuery Reference

Axis steps . 58

Abbreviated syntax for path expressions . 61

Predicates . 63

Sequence expressions . 64

Expressions that construct sequences . 64

Filter expressions . 65

Expressions for combining sequences of nodes . 66

Arithmetic expressions . 67

Comparison expressions . 69

Value comparisons . 69

General comparisons . 71

Node comparisons . 73

Logical expressions . 73

Constructors . 75

Enclosed expressions in constructors . 75

Direct element constructors . 76

Computed element constructors . 83

Computed attribute constructors . 84

Document node constructors . 85

Text node constructors . 86

Processing instruction constructors . 86

Comment constructors . 88

FLWOR expressions . 89

Syntax of FLWOR expressions . 89

for and let clauses . 90

where clauses . 94

order by clauses . 95

return clauses . 97

FLWOR examples . 97

Conditional expressions . 100

Quantified expressions . 101

Cast expressions . 102

Chapter 5. Built-in functions . 105

Functions by category . 105

abs function . 109

avg function . 110

boolean function . 111

ceiling function . 111

codepoints-to-string function . 112

compare function . 113

concat function . 114

contains function . 114

count function . 115

current-date function . 115

current-dateTime function . 116

current-time function . 116

data function . 117

dateTime function . 117

deep-equal function . 118

default-collation function . 119

distinct-values function . 120

empty function . 121

ends-with function . 121

exactly-one function . 122

exists function . 122

Contents v

false function . 123

floor function . 123

implicit-timezone function . 124

in-scope-prefixes function . 124

index-of function . 125

insert-before function . 126

last function . 126

local-name function . 127

local-name-from-QName function . 128

lower-case function . 128

matches function . 129

max function . 130

min function . 131

name function . 132

namespace-uri function . 133

namespace-uri-for-prefix function . 134

namespace-uri-from-QName function . 134

node-name function . 135

normalize-space function . 135

normalize-unicode function . 136

not function . 137

number function . 137

one-or-more function . 138

position function . 138

QName function . 139

remove function . 140

replace function . 140

resolve-QName function . 142

reverse function . 143

root function . 143

round function . 144

round-half-to-even function . 145

sqlquery function . 146

starts-with function . 147

string function . 148

string-join function . 148

string-length function . 149

string-to-codepoints function . 149

subsequence function . 150

substring function . 151

substring-after function . 151

substring-before function . 152

sum function . 153

tokenize function . 154

translate function . 155

true function . 156

unordered function . 157

upper-case function . 157

xmlcolumn function . 158

zero-or-one function . 159

Chapter 6. Limits . 161

Limits for XQuery data types . 161

Size limits . 162

DB2 technical library in PDF format . 163

vi IBM DB2 XQuery Reference

Ordering printed DB2 books . 165

DB2 troubleshooting information . 167

Notices . 169

Contacting IBM . 173

Index . 175

Contents vii

viii IBM DB2 XQuery Reference

Tables

 1. String values and typed values of nodes . 10

 2. Predeclared namespaces in DB2 XQuery . 13

 3. Generic data types . 19

 4. Untyped data types . 19

 5. String data types . 19

 6. Numeric data types . 20

 7. Date, time, and duration data types . 20

 8. Other data types . 21

 9. Primitive type casting, part 1 (targets from xdt:untypedAtomic to xs:dateTime) 23

10. Primitive type casting, part 2 (targets from xs:time to xs:NOTATION) 24

11. Predeclared namespaces in DB2 XQuery . 45

12. Precedence in DB2 XQuery . 47

13. Summary of ordering of results in XQuery expressions 49

14. EBVs returned for specific types of values in XQuery 52

15. Predefined entity references in DB2 XQuery . 53

16. Supported axes in DB2 XQuery . 59

17. Supported name tests in DB2 XQuery . 60

18. Supported kind tests in DB2 XQuery . 60

19. Abbreviated syntax for path expressions . 61

20. Unabbreviated syntax and abbreviated syntax . 62

21. XQuery operators for combining sequences of nodes 66

22. Arithmetic operators in XQuery . 67

23. Valid types for operands of arithmetic expressions 68

24. Value comparison operators in XQuery . 69

25. Value comparison operators in XQuery . 71

26. Node comparison operators in XQuery . 73

27. Logical expression operators in XQuery . 73

28. Results of logical expressions based on EBVs of operands 74

29. Representation of special characters in attribute values 77

30. Representation of special characters in element content 78

31. Comparison of for and let clauses in FLWOR expressions 93

32. EBVs returned for specific types of values in XQuery 111

33. Deep equality for nodes in a sequence . 119

34. Limits for XQuery numeric data types . 161

35. Limits for XQuery date, time, and duration data types 162

36. DB2 technical information . 163

37. Technical information specific to DB2 Connect 164

38. WebSphere Information Integration technical information 164

© Copyright IBM Corp. 2006 ix

x IBM DB2 XQuery Reference

Figures

1. Structure of a typical query in XQuery . 1

2. Data model diagram for products.xml document . 6

3. DB2 XQuery type hierarchy . 18

© Copyright IBM Corp. 2006 xi

xii IBM DB2 XQuery Reference

Chapter 1. DB2 XQuery concepts

The following topics introduce basic XQuery concepts and describe how XQuery works with a DB2®

database.

Introduction to XQuery

XQuery is a functional programming language that was designed by the World Wide Web Consortium

(W3C) to meet specific requirements for querying XML data.

Unlike relational data, which is predictable and has a regular structure, XML data is highly variable. XML

data is often unpredictable, sparse, and self-describing.

Because the structure of XML data is unpredictable, the queries that you need to perform on XML data

often differ from typical relational queries. The XQuery language provides the flexibility required to perform

these kinds of operations. For example, you might need to create XML queries that perform the following

operations:

v Search XML data for objects that are at unknown levels of the hierarchy.

v Perform structural transformations on the data (for example, you might want to invert a hierarchy).

v Return results that have mixed types.

In XQuery, expressions are the main building blocks of a query. Expressions can be nested and form the

body of a query. A query can also have a prolog before this body. The prolog contains a series of

declarations that define the processing environment for the query. The query body consists of an

expression that defines the result of the query. This expression can be composed of multiple XQuery

expressions that are combined using operators or keywords.

Figure 1 illustrates the structure of a typical query. In this example, the prolog contains two declarations: a

version declaration, which specifies the version of the XQuery syntax to use to process the query, and a

default namespace declaration that specifies the namespace URI to use for unprefixed element and type

names. The query body contains an expression that constructs a price_list element. The content of the

price_list element is a list of product elements that are sorted in descending order by price.

 Related concepts

xquery version "1.0";
declare default element namespace "http://posample.org";

<price_list>{for $prod in db2-fn:xmlcolumn("PRODUCT.DESCRIPTION")/product/description
order by xs:decimal($prod/price) descending
return <product>{$prod/name, $prod/price}</product>}

</price_list>

Prolog

Query body

Figure 1. Structure of a typical query in XQuery

© Copyright IBM Corp. 2006 1

Chapter 3, “Prolog,” on page 39

 Chapter 4, “Expressions,” on page 47

Comparison of XQuery to SQL

DB2 supports storing well-formed XML data in a column of a table and retrieving the XML data from the

database by using SQL, XQuery, or a combination of SQL and XQuery. Both languages are supported as

primary query languages, and both languages provide functions for invoking the other language.

XQuery

A query that invokes XQuery directly begins with the keyword XQUERY. This keyword indicates

that XQuery is being used and that the DB2 server must therefore use case sensitivity rules that

apply to the XQuery language. Error handling is based on the interfaces that are used to process

XQuery expressions. XQuery errors are reported with an SQLCODE and SQLSTATE in the same

way that SQL error errors are reported. No warnings are returned from processing XQuery

expressions. XQuery obtains data by calling functions that extract XML data from DB2 tables and

views. XQuery can also be invoked from an SQL query. In this case, the SQL query can pass XML

data to XQuery in the form of bound variables. XQuery supports various expressions for

processing XML data and for constructing new XML objects such as elements and attributes. The

programming interface to XQuery provides facilities similar to those of SQL to prepare queries and

retrieve query results.

SQL SQL provides capabilities to define and instantiate values of the XML data type. Strings that

contain well-formed XML documents can be parsed into XML values, optionally validated against

an XML schema, and inserted or updated in tables. Alternatively, XML values can be constructed

by using SQL constructor functions, which convert other relational data into XML values. Functions

are also provided to query XML data by using XQuery and to convert XML data into a relational

table for use within an SQL query. Data can be cast between SQL and XML data types in addition

to serializing XML values into string data.

 SQL/XML provides the following functions and predicates for calling XQuery from SQL:

XMLQUERY

XMLQUERY is a scalar function that takes an XQuery expression as an argument and

returns an XML sequence. The function includes optional parameters that can be used to

pass SQL values to the XQuery expression as XQuery variables. The XML values that are

returned by XMLQUERY can be further processed within the context of the SQL query.

XMLTABLE

XMLTABLE is a table function that uses XQuery expressions to generate an SQL table

from XML data, which can be further processed by SQL.

XMLEXISTS

XMLEXISTS is an SQL predicate that determines if an XQuery expression returns a

sequence of one or more items (and not an empty sequence).

 Related concepts

 “Retrieving DB2 data with XQuery functions”

Retrieving DB2 data with XQuery functions

In XQuery, a query can call one of the following functions to obtain input XML data from a DB2 database:

db2-fn:sqlquery and db2-fn:xmlcolumn.

The function db2-fn:xmlcolumn retrieves an entire XML column, whereas db2-fn:sqlquery retrieves XML

values that are based on an SQL fullselect.

db2-fn:xmlcolumn

The db2-fn:xmlcolumn function takes a string literal argument that identifies an XML column in a

table or a view and returns a sequence of XML values that are in that column. The argument of

2 IBM DB2 XQuery Reference

this function is case sensitive. The string literal argument must be a qualified column name of type

XML. This function allows you to extract a whole column of XML data without applying a search

condition.

 In the following example, the query uses the db2-fn:xmlcolumn function to get all of the purchase

orders in the PURCHASE_ORDER column of the BUSINESS.ORDERS table. The query then

operates on this input data to extract the cities from the shipping address in these purchase

orders. The result of the query is a list of all cities to which orders are shipped:

db2-fn:xmlcolumn(’BUSINESS.ORDERS.PURCHASE_ORDER’)/shipping_address/city

db2-fn:sqlquery

The db2-fn:sqlquery function takes a string argument that represents a fullselect and returns an

XML sequence that is a concatenation of the XML values that are returned by the fullselect. The

fullselect must specify a single-column result set, and the column must have a data type of XML.

Specifying a fullselect allows you to use the power of SQL to present XML data to XQuery.

 In the following example, a table called BUSINESS.ORDERS contains an XML column called

PURCHASE_ORDER. The query in the example uses the db2-fn:sqlquery function to call SQL to

get all of the purchase orders where the ship date is June 15, 2005. The query then operates on

this input data to extract the cities from the shipping addresses in these purchase orders. The

result of the query is a list of all of the cities to which orders are shipped on June 15:

db2-fn:sqlquery("

SELECT purchase_order FROM business.orders

WHERE ship_date = ’2005-06-15’ ")/shipping_address/city

Important: An XML sequence that is returned by the db2-fn:sqlquery or db2-fn:xmlcolumn function can

contain any XML values, including atomic values and nodes. These functions do not always

return a sequence of well-formed documents. For example, the function might return a single

atomic value, like 36, as an instance of the XML data type.

SQL and XQuery have different conventions for case-sensitivity of names. You should be aware of these

differences when using the db2-fn:sqlquery and db2-fn:xmlcolumn functions.

SQL is not a case-sensitive language

By default, all ordinary identifiers, which are used in SQL statements, are automatically converted

to uppercase. Therefore, the names of SQL tables and columns are customarily uppercase names,

such as BUSINESS.ORDERS and PURCHASE_ORDER in the previous examples. In an SQL

statement, these columns can be referenced by using lowercase names, such as business.orders

and purchase_order, which are automatically converted to uppercase during processing of the

SQL statement. (You can also create a case-sensitive name that is called a delimited identifier in

SQL by enclosing the name in double quotation marks.)

XQuery is a case-sensitive language

XQuery does not convert lowercase names to uppercase. This difference can lead to some

confusion when XQuery and SQL are used together. The string that is passed to db2-fn:sqlquery is

interpreted as an SQL query and is parsed by the SQL parser, which converts all names to

uppercase. Thus, in the db2-fn:sqlquery example, the table name business.orders and the column

names purchase_order and ship_date can appear in either uppercase or lowercase. The operand

of db2-fn:xmlcolumn, however, is not an SQL query. The operand is a case-sensitive XQuery string

literal that represents the name of a column. Because the actual name of the column is

BUSINESS.ORDERS.PURCHASE_ORDER, this name must be specified in uppercase in the

operand of db2-fn:xmlcolumn.

 Related concepts

 “Comparison of XQuery to SQL” on page 2

 Related reference

 “xmlcolumn function” on page 158

 “sqlquery function” on page 146

Chapter 1. DB2 XQuery concepts 3

XQuery and XPath data model

XQuery expressions operate on instances of the XQuery and XPath data model (XDM) and return

instances of the data model. The XDM provides an abstract representation of one or more XML

documents or fragments. The data model defines all permissible values of expressions in XQuery,

including values that are used during intermediate calculations.

Parsing of XML data into the XDM and validating the data against a schema occur before data is

processed by XQuery. During data model generation, the input XML document is parsed and converted

into an instance of the XDM. The document can be parsed with or without validation.

The XDM is described in terms of sequences of atomic values and nodes.

 Related concepts

 “Serialization of the XDM” on page 11

Sequences and items

An instance of the XDM is a sequence. A sequence is an ordered collection of zero or more items. An item

is either an atomic value or a node.

A sequence can contain nodes, atomic values, or any mixture of nodes and atomic values. For example,

each of the following values is a sequence:

v 36

v <dog/>

v (2, 3, 4)

v (36, <dog/>, "cat")

v ()

v an XML document

Note: These examples use a notation to represent sequences that is consistent with the syntax that is

used to construct sequences in XQuery. Each item in the sequence is separated by a comma. The

entire sequence is enclosed in parentheses. A pair of empty parentheses represents an empty

sequence. A single item that appears on its own is equivalent to a sequence that contains one item.

For example, there is no distinction between the sequence (36) and the atomic value 36.

Sequences cannot be nested. When two sequences are combined, the result is always a flattened

sequence of nodes and atomic values. For example, appending the sequence (2, 3) to the sequence (3, 5,

6) results in the single sequence (3, 5, 6, 2, 3). Combining these sequences does not produce the

sequence (3, 5, 6, (2, 3)) because nested sequences never occur.

A sequence that contains zero items is called an empty sequence. Empty sequences can be used to

represent missing or unknown information.

 Related reference

 “Sequence expressions” on page 64

 “Context item expressions” on page 55

 “General comparisons” on page 71

Atomic values

An atomic value is an instance of one of the built-in atomic data types that are defined by XML Schema.

These data types include strings, integers, decimals, dates, and other atomic types. These types are

described as atomic because they cannot be subdivided.

4 IBM DB2 XQuery Reference

Unlike nodes, atomic values do not have an identity. Every instance of an atomic value (for example, the

integer 7) is identical to every other instance of that value.

The following examples are some of ways that atomic values are made:

v Extracted from nodes through a process called atomization. Atomization is used by expressions

whenever a sequence of atomic values is required.

v Specified as a numeric or string literal. Literals are interpreted by XQuery as atomic values. For

example, the following literals are interpreted as atomic values:

– ″this is a string″ (type is xs:string)

– 45 (type is xs:integer)

– 1.44 (type is xs:decimal)

v Computed by constructor functions. For example, the following constructor function builds a value of

type xs:date out of the string ″2005-01-01″:

xs:date("2005-01-01")

v Returned by the built-in functions fn:true() and fn:false(). These functions return the boolean values

true and false. These values cannot be expressed as literals.

v Returned by many kinds of expressions, such as arithmetic expressions and logical expressions.

 Related concepts

 “Atomization” on page 50

 Chapter 2, “Type system,” on page 17

 Chapter 4, “Expressions,” on page 47

 “Constructor functions for built-in data types” on page 22

 Related reference

 “Literals” on page 52

 “true function” on page 156

 “false function” on page 123

Node hierarchies

The nodes of a sequence form one or more hierarchies, or trees, that consist of a root node and all of the

nodes that are reachable directly or indirectly from the root node. Every node belongs to exactly one

hierarchy, and every hierarchy has exactly one root node. DB2 supports six node kinds: document,

element, attribute, text, processing instruction, and comment.

The following XML document, products.xml, includes a root element, named products, which contains

product elements. Each product element has an attribute named pid (product ID) and a child element

named description. The description element contains child elements named name and price.

<products>

 <product xmlns="http://posample.org" pid="10">

 <description>

 <name>Fleece jacket</name>

 <price>19.99</price>

 </description>

 </product>

 <product xmlns="http://posample.org" pid="11">

 <description>

 <name>Nylon pants</name>

 <price>9.99</price>

 </description>

 </product>

</products>

Chapter 1. DB2 XQuery concepts 5

Figure 2 shows a simplified representation of the data model for products.xml. The figure includes a

document node (D), element nodes (E), attribute nodes (A), and text nodes (T).

As the example illustrates, a node can have other nodes as children, thus forming one or more node

hierarchies. In the example, the element product is a child of products. The element description is a

child of product. The elements name and price are children of the element description. The text node

with the value Fleece Jacket is a child of the element name, and the text node 19.99 is a child of the

element price.

 Related concepts

 “Document order of nodes” on page 10

 “Node kinds” on page 7

 Related reference

 “Path expressions” on page 56

 “Expressions for combining sequences of nodes” on page 66

pid

<name>

Fleece jacket Nylon pants19.99 9.99

<name><price> <price>

<product> <product>

products.xml

<description> <description>

pid

<products>

E

E

D

A A

E

E

T T T T

EE E

E

E

Figure 2. Data model diagram for products.xml document

6 IBM DB2 XQuery Reference

Node properties

Each node has properties that describe characteristics of that node. For example, a node’s properties

might include the name of the node, its children, its parent, its attributes, and other information that

describes the node. The node kind determines which properties are present for specific nodes.

A node can have one or more of the following properties:

v node-name. The name of the node, expressed as a QName.

v parent. The node that is the parent of the current node.

v type-name. The dynamic (run-time) type of the node (also known as the type annotation).

v children. The sequence of nodes that are children of the current node.

v attributes. The set of attribute nodes that belong to the current node.

v string-value. A string value that can be extracted from the node.

v typed-value. A sequence of zero or more atomic values that can be extracted from the node.

v in-scope namespaces. The in-scope namespaces that are associated with the node.

v content. The content of the node.

 Related concepts

 “Node kinds”

 “Typed values and string values of nodes” on page 10

Node kinds

DB2 supports six node kinds: document, element, attribute, text, processing instruction, and comment.

 Related concepts

 “Node hierarchies” on page 5

 Related reference

 “Constructors” on page 75

Document nodes

A document node encapsulates an XML document.

A document node can have zero or more children. The children can include element nodes, processing

instruction nodes, comment nodes, and text nodes.

The string value of a document node is equal to the concatenated contents of all its descendant text

nodes in document order. The type of the string value is xs:string. The typed value of a document node is

the same as its string value, except that the type of the typed value is xdt:untypedAtomic.

A document node has the following node properties:

v children, possibly empty

v string-value

v typed-value

Document nodes can be constructed in XQuery expressions by using computed constructors. A sequence

of document nodes can also be returned by the db2-fn:xmlcolumn function.

 Related concepts

 “Node properties”

 Related reference

 “Document node constructors” on page 85

 “xmlcolumn function” on page 158

Chapter 1. DB2 XQuery concepts 7

Element nodes

An element node encapsulates an XML element.

An element can have zero or one parent, and zero or more children. The children can include element

nodes, processing instruction nodes, comment nodes, and text nodes. Document and attribute nodes are

never children of element nodes. However, an element node is considered to be the parent of its

attributes. The attributes of an element node must have unique QNames.

An element node has the following node properties:

v node-name

v parent, possibly empty

v type-name

v children, possibly empty

v attributes, possibly empty

v string-value

v typed-value

v in-scope-namespaces

Element nodes can be constructed in XQuery expressions by using direct or computed constructors.

The type-name property of an element node indicates the relationship between its typed value and its

string value. For example, if an element node has the type-name property xs:decimal and the string value

″47.5″, the typed value is the decimal value 47.5. If the type-name property of an element node is

xdt:untyped, the element’s typed value is equal to its string value and has the type xdt:untypedAtomic.

 Related concepts

 “Node properties” on page 7

Attribute nodes

An attribute node represents an XML attribute.

An attribute node can have zero or one parent. The element node that owns an attribute is considered to

be its parent, even though an attribute node is not a child of its parent element.

An attribute node has the following node properties:

v node-name

v parent, possibly empty

v type-name

v string-value

v typed-value

Attribute nodes can be constructed in XQuery expressions by using direct or computed constructors.

The type-name property of an attribute node indicates the relationship between its typed value and its

string value. For example, if an attribute node has the type-name property xs:decimal and the string value

″47.5″, its typed value is the decimal value 47.5.

 Related concepts

 “Node properties” on page 7

 Related reference

 “Computed attribute constructors” on page 84

 “Direct element constructors” on page 76

8 IBM DB2 XQuery Reference

Text nodes

A text node encapsulates XML character content.

A text node can have zero or one parent. Text nodes that are children of a document or element node

never appear as adjacent siblings. When a document or element node is constructed, any adjacent text

node siblings are combined into a single text node. If the resulting text node is empty, it is discarded.

Text nodes have the following node properties:

v content, possibly empty

v parent, possibly empty

Text nodes can be constructed in XQuery expressions by computed constructors, or by the action of a

direct element constructor.

 Related concepts

 “Node properties” on page 7

 Related reference

 “Text node constructors” on page 86

Processing instruction nodes

A processing instruction node encapsulates an XML processing instruction.

A processing instruction node can have zero or one parent. The content of a processing instruction cannot

include the string ?>. The target of a processing instruction must be an NCName. (The target is used to

identify the application to which the instruction is directed.)

A processing instruction node has the following node properties:

v target

v content

v parent, possibly empty

Processing instruction nodes can be constructed in XQuery expressions by using direct or computed

constructors.

 Related concepts

 “Node properties” on page 7

 Related reference

 “Processing instruction constructors” on page 86

Comment nodes

A comment node encapsulates an XML comment.

A comment node can have zero or one parent. The content of a comment node cannot include the string

″--″ (two hyphens) or contain the hyphen character (-) as the last character.

A comment node has the following node properties:

v content

v parent, possibly empty

Comment nodes can be constructed in XQuery expressions by using direct or computed constructors.

 Related concepts

 “Comments” on page 15

 “Node properties” on page 7

Chapter 1. DB2 XQuery concepts 9

Related reference

 “Comment constructors” on page 88

Document order of nodes

All of the nodes in a hierarchy conform to an order, called document order, in which each node appears

before its children. Document order corresponds to the order in which the nodes would appear if the node

hierarchy were represented in serialized XML.

The nodes appear in the following order:

v The root node is the first node.

v Element nodes occur before their children.

v Attribute nodes immediately follow the element node with which they are associated. The relative order

of attribute nodes is arbitrary, but this order does not change during the processing of a query.

v The relative order of siblings is determined by their order in the node hierarchy.

v Children and descendants of a node occur before siblings that follow the node.

 Related concepts

 “Node hierarchies” on page 5

Node identity

Each node has a unique identity. Two nodes are distinguishable even though their names and values

might be the same. In contrast, atomic values do not have an identity.

Node identity is not the same as an ID-type attribute. An element in an XML document can be given an

ID-type attribute by the document author. A node identity, however, is automatically assigned to every node

by the system but is not directly visible to users.

Node identity is used to process the following types of expressions:

v Node comparisons. Node identity is used by the is operator to determine if two nodes have the same

identity.

v Path expressions. Node identity is used by path expressions to eliminate duplicate nodes.

v Sequence expressions. Node identity is used by the union, intersect, or except operators to eliminate

duplicate nodes.

 Related reference

 “Node comparisons” on page 73

 “Path expressions” on page 56

 “Sequence expressions” on page 64

Typed values and string values of nodes

Each node has both a typed value and a string value. These two node properties are used in the

definitions of certain XQuery operations (such as atomization) and functions (such as fn:data, fn:string, and

fn:deep-equal).

 Table 1. String values and typed values of nodes

Node kind String value Typed value

Document An instance of the xs:string data type that is the

concatenated contents of all its descendant text

nodes, in document order.

An instance of the xdt:untypedAtomic data type

that is the concatenated contents of all its

descendant text nodes, in document order.

10 IBM DB2 XQuery Reference

Table 1. String values and typed values of nodes (continued)

Node kind String value Typed value

Element in a

validated

document

v If validation assigned to the element a simple

data type (such as xs:decimal) or a type that

has simple content (such as a ″temperature″

type whose content is xs:decimal), the string

value is the string that expresses the value of

the element in the original XML document.

v If validation assigned to the element a type that

permits it to have mixed content (both text and

child elements), the string value is an instance

of the xs:string data type that is the

concatenated contents of all its text node

descendants, in document order.

v If validation assigned to the element a type that

permits no content (neither text nor child

elements), the string value of the element is an

empty string.

v If validation assigned to the element a type that

permits it to contain only child elements (no

text), the string value of the element consists of

the concatenated string values of all its text

node descendants, in document order.

v If validation assigned to the element a simple

data type (such as xs:decimal) or a type that

has simple content (such as a ″temperature″

type whose content is xs:decimal), the typed

value is the result of casting the string value to

the simple type that is assigned by the

validation process (for example, xs:decimal).

v If validation assigned to the element a type that

permits it to have mixed content (both text and

child elements), the typed value is an instance

of the xdt:untypedAtomic data type that is the

concatenated contents of all its text node

descendants, in document order.

v If validation assigned to the element a type that

permits no content (neither text nor child

elements), the typed value is an empty

sequence.

v If validation assigned to the element a type that

permits it to contain only child elements (no

text), the element has no typed value, and an

attempt to extract its typed value (for example,

by the fn:data function) results in an error.

Element in an

unvalidated

document

An instance of the xs:string data type that is the

concatenated contents of all its text node

descendants, in document order.

An instance of the xdt:untypedAtomic data type

that is the concatenated contents of all its text

node descendants, in document order.

Attribute in a

validated

document

An instance of the xs:string data type that

represents the attribute value in the original XML

document.

The result of casting the string value into the type

that was assigned to the attribute during

validation. For example, if an attribute is validated

as having the type xs:decimal, its string value

might be the string ″74.8″ and its typed value

might be 74.8 as a decimal number.

Attribute in an

unvalidated

document

An instance of the xs:string data type that

represents the attribute value in the original XML

document.

An instance of the xdt:untypedAtomic data type

that represents the attribute value in the original

XML document.

Text The content as an instance of the xs:string data

type.

The content as an instance of the

xdt:untypedAtomic data type.

Comment The content as an instance of the xs:string data

type.

The content as an instance of the xs:string data

type.

Processing

instruction

The content as an instance of the xs:string data

type.

The content as an instance of the xs:string data

type.

 Related concepts

 “Node properties” on page 7

 “Atomization” on page 50

 “Document order of nodes” on page 10

 “Node kinds” on page 7

Serialization of the XDM

The result of an XQuery expression, which is an instance of the XDM, can be transformed into an XML

representation through a process called serialization.

Chapter 1. DB2 XQuery concepts 11

During serialization, the sequence of nodes and atomic values (the instance of the XDM) is converted into

an XML representation. The result of serialization does not always represent a well-formed document. In

fact, serialization can result in a single atomic value (for example, 17) or a sequence of elements that do

not have a common parent.

XQuery does not provide a function to serialize the XDM. How the XDM is serialized into XML data

depends on the environment in which the query is executing. For example, the CLP (command-line

processor) returns a sequence of serialized items with each serialized item returned as a row in the result.

For example, the query XQUERY (1, 2, 3), when entered from the CLP, returns the following result:

1

2

3

Serialization can also be performed by the SQL/XML function XMLSERIALIZE.

 Related concepts

 “XQuery and XPath data model” on page 4

XML namespaces and QNames

XML namespaces prevent naming collisions. An XML namespace is a collection of names that is identified

by a namespace URI. Namespaces provide a way of qualifying names that are used for elements,

attributes, data types, and functions in XQuery. A name that is qualified with a namespace prefix is a

qualified name (QName).

 Related reference

 “Namespace declaration” on page 44

 “Namespace declaration attributes” on page 79

 “In-scope namespaces of a constructed element” on page 82

Qualified names (QNames)

A QName consists of an optional namespace prefix and a local name. The namespace prefix and the local

name are separated by a colon. The namespace prefix, if present, is bound to a URI (Universal Resource

Identifier) and provides a shortened form of the URI.

During query processing, XQuery expands the QName and resolves the URI that is bound to the

namespace prefix. The expanded QName includes the namespace URI and a local name. Two QNames

are equal if they have the same namespace URI and local name. This means that two QNames can

match even if they have different prefixes provided that the prefixes are bound to the same namespace

URI.

The following example includes the QNames:

v ns1:name

v ns2:name

v name

In this example, ns1 is a prefix that is bound to the URI http://posample.org. The prefix ns2 is bound to

the URI http://mycompany.com. The default element namespace is another URI that is different from the

URIs that are associated with ns1 and ns2. The local name for all three elements is name.

<ns1:name>This text is in an element named "name" that is qualified

by the prefix "ns1".</ns1:name>

<ns2:name>This text is in an element named "name" that is qualified

by the prefix "ns2".</ns2:name>

<name>This text is in an element named "name" that is in the default

element namespace.</name>

12 IBM DB2 XQuery Reference

The elements in this example share the same local name, name, but naming conflicts do not occur because

the elements exist in different namespaces. During expression processing, the name ns1:name is

expanded into a name that includes the URI that is bound to ns1 and the local name, name. Likewise, the

name ns2:name is expanded into a name that includes the URI that is bound to ns2 and the local name,

name. The element name, which has an empty prefix, is bound to the default element namespace because

no prefix is specified. An error is returned if a name uses a prefix that is not bound to a URI.

QNames (qualified names) conform to the syntax that is defined in the W3C recommendation

Namespaces in XML.

 Related concepts

 “Statically known namespaces”

 Related reference

 “Namespace declaration” on page 44

 “resolve-QName function” on page 142

Statically known namespaces

Namespace prefixes are bound to URIs by namespace declarations. The set of these namespace bindings

that control the interpretation of QNames in a query expression is called the statically known namespaces.

Statically known namespaces are properties of a query expression and are independent of the data that is

processed by the expression.

Some namespace prefixes are predeclared; others can be added through declarations in either the query

prolog or an element constructor. DB2 includes the predeclared namespace prefixes that are described in

the following table.

 Table 2. Predeclared namespaces in DB2 XQuery

Prefix URI Description

xml http://www.w3.org/XML/1998/namespace XML reserved namespace

xs http://www.w3.org/2001/XMLSchema XML Schema namespace

xsi http://www.w3.org/2001/XMLSchema-instance XML Schema instance

namespace

fn http://www.w3.org/2005/xpath-functions Default function namespace

xdt http://www.w3.org/2005/xpath-datatypes XQuery type namespace

db2-fn http://www.ibm.com/xmlns/prod/db2/functions DB2 function namespace

In addition to the predeclared namespaces, a set of statically known namespaces can be provided in the

following ways:

v Declared in the query prolog, using either a namespace declaration or a default namespace declaration.

The following example namespace declaration associates the namespace prefix ns1 with the URI

http://mycompany.com:

declare namespace ns1 = "http://mycompany.com";

The following example default element/type namespace declaration sets the URI for element names in

the query that do not have prefixes:

declare default element namespace "http://posample.org";

v Declared by a namespace declaration attribute in an element constructor. The following example is an

element constructor that contains a namespace declaration attribute that binds the prefix ns2 to the URI

http://mycompany.com within the scope of the constructed element:

<ns2:price xmlns:ns2="http://mycompany.com">14.99</ns2:price>

v Provided by SQL/XML. SQL/XML can provide the following set of namespaces:

Chapter 1. DB2 XQuery concepts 13

– SQL/XML predeclared namespaces.

– Namespaces that are declared within SQL/XML constructors and other SQL/XML expressions.

Namespaces that are provided by SQL/XML can be overridden by namespace declarations in the

prolog, or subsequent namespace declaration attributes in element constructors. Namespaces that are

declared in the prolog can be overridden by namespace declaration attributes in element constructors.

 Related concepts

 “Qualified names (QNames)” on page 12

 Related reference

 “Namespace declaration” on page 44

 “Namespace declaration attributes” on page 79

 “In-scope namespaces of a constructed element” on page 82

Language conventions

XQuery language conventions are described in the following topics.

Case sensitivity

XQuery is a case-sensitive language.

Keywords in XQuery use lowercase characters and are not reserved. Names in XQuery expressions can

be the same as language keywords.

 Related concepts

 “Retrieving DB2 data with XQuery functions” on page 2

Whitespace

Whitespace is allowed in most XQuery expressions to improve readability even if whitespace is not part of

the syntax for the expression. Whitespace consists of space characters (X’20’), carriage returns (X’0D’),

line feeds (X’0A’), and tabs (X’09’).

In general, whitespace is not significant in a query, except in the following situations where whitespace is

preserved:

v The whitespace is in a string literal.

v The whitespace clarifies an expression by preventing the parser from recognizing two adjacent tokens

as one.

v The whitespace is in an element constructor. The boundary-space declaration in the prolog determines

whether to preserve or strip whitespace in element constructors.

For example, the following expressions require whitespace for clarity:

v name- name results in an error. The parser recognizes name- as a single QName (qualified name) and

returns an error when no operator is found.

v name -name does not result in an error. The parser recognizes the first name as a QName, the minus sign

(-) as an operator, and then the second name as another QName.

v name-name does not result in an error. However, the expression is parsed as a single QName because a

hypen (-) is a valid character in a QName.

v The following expressions all result in errors:

– 10 div3

– 10div3

In these expressions, whitespace is required for the parser to recognize each token separately.

 Related reference

14 IBM DB2 XQuery Reference

“Boundary whitespace in direct element constructors” on page 80

 “Boundary-space declaration” on page 40

Comments

Comments are allowed in the prolog or query body. Comments do not affect query processing.

A comment is composed of a string that is delimited by the symbols (: and :). The following example is a

comment in XQuery:

(: A comment. You can use comments to make your code easier to understand. :)

The following general rules apply to using comments in DB2 XQuery:

v Comments can be used wherever ignorable whitepace is allowed. Ignorable whitespace is whitespace

that is not significant to the expression results.

v Comments are not allowed in constructor content.

v Comments can nest within each other, but each nested comment must have open and close delimiters,

(: and :).

The following examples illustrate legal comments and comments that result in errors:

v (: is this a comment? ::) is a legal comment.

v (: is this a comment? ::) or an error? :) results in an error because there is an unbalanced

nesting of the symbols (: and :).

v (: commenting out a (: comment :) may be confusing, but often helpful :) is a legal comment

because a balanced nesting of comments is allowed.

v "this is just a string :)" is a legal expression.

v (: "this is just a string :)" :) results in an error. Likewise, "this is another string (:" is a

legal expression, but (: "this is another string (:" :) results in an error. Literal content can result

in an unbalanced nesting of comments.

 Related concepts

 “Comment nodes” on page 9

 Related reference

 “Comment constructors” on page 88

Where to find more information about XQuery

See these resources for more information about the specifications on which DB2 XQuery is based.

v XQuery 1.0

World Wide Web Consortium. XQuery 1.0: An XML Query Language. W3C Candidate

Recommendation, 03 November 2005. See www.w3.org/TR/2005/CR-xquery-20051103/.

v XQuery 1.0 and XPath 2.0 Functions and Operators

World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Functions and Operators. W3C Candidate

Recommendation, 03 November 2005. See www.w3.org/TR/2005/CR-xpath-functions-20051103/.

v XQuery 1.0 and XPath 2.0 Data Model

World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Data Model. W3C Candidate

Recommendation, 3 November 2005. See www.w3.org/TR/2005/CR-xpath-datamodel-20051103/.

v XML Query Use Cases

World Wide Web Consortium. XML Query Use Cases. W3C Working Draft, 15 September 2005. See

www.w3.org/TR/xquery-use-cases/.

v XML Schema

Chapter 1. DB2 XQuery concepts 15

World Wide Web Consortium. XML Schema, Parts 0, 1, and 2. W3C Recommendation, 2 May 2001.

See www.w3.org/TR/2001/REC-xmlschema-0-20010502/, www.w3.org/TR/2001/REC-xmlschema-1-
20010502/, and www.w3.org/TR/2001/REC-xmlschema-2-20010502/.

v XML Names

World Wide Web Consortium. Namespaces in XML. W3C Recommendation. See www.w3.org/TR/REC-
xml-names/.

16 IBM DB2 XQuery Reference

Chapter 2. Type system

XQuery is a strongly-typed language in which the operands of various expressions, operators, and

functions must conform to expected types. The type system for DB2 XQuery includes the built-in types of

XML Schema and the predefined types of XQuery.

The built-in types of XML Schema are in the namespace http://www.w3.org/2001/XMLSchema, which has

the predeclared namespace prefix xs. Some examples of built-in schema types include xs:integer,

xs:string, and xs:date.

The predefined types of XQuery are in the namespace http://www.w3.org/2005/xpath-datatypes, which

has the predeclared namespace prefix xdt. Some examples of predefined types of XQuery include

xdt:untypedAtomic, xdt:yearMonthDuration, and xdt:dayTimeDuration.

Each data type has a lexical form, which is a string that can be cast into the given type or that can be

used to represent a value of the given type after serialization.

 Related reference

 “Limits for XQuery data types” on page 161

The type hierarchy

The DB2 XQuery type hierarchy shows all of the types that can be used in XQuery expressions.

The hierarchy in Figure 3 on page 18 includes abstract base types and derived types. All atomic types

derive from the data type xdt:anyAtomicType. Solid lines connect each derived data type to the base types

from which it is derived.

© Copyright IBM Corp. 2006 17

Types by category

DB2 XQuery has the following categories of types: generic, untyped, string, numeric, date, time, duration,

and others.

xs:NOTATION

xs:QName

xs:anyURI

xs:base64Binary

xs:hexBinary

xs:boolean

xs:positiveInteger

xs:unsignedByte

xs:unsignedShort

xs:unsignedInt

xs:unsignedLong

xs:float

xs:double

xs:decimal

xs:integer

xs:string

xs:anySimpleType

xdt:untyped

xdt:untypedAtomic

xdt:anyAtomicType

xs:anyType

xs:nonNegativeInteger

xs:byte

xs:short

xs:int

xs:long

xs:negativeInteger

xs:nonPositiveInteger

xs:gMonth

xs:gDay

xs:gMonthDay

xs:gYear

xs:gYearMonth

xdt:dayTimeDuration

xdt:yearMonthDuration

xs:token

xs:normalizedString

xs:NCName

xs:Name

xs:NMTOKEN

xs:language

xs:ENTITY

xs:IDREF

xs:ID

xs:duration

xs:time

xs:date

xs:datetime

Figure 3. DB2 XQuery type hierarchy

18 IBM DB2 XQuery Reference

Generic data types

 Table 3. Generic data types

Type Description

“anyType data type” on page 26 The data type xs:anyType encompasses any sequence of

zero or more nodes and zero or more atomic values.

“anySimpleType data type” on page 25 The data type xs:anySimpleType denotes a context

where any simple type can be used. This data type

serves as the base type for all simple types. An instance

of a simple type may be any sequence of atomic values.

“anyAtomicType data type” on page 25 The data type xdt:anyAtomicType denotes a context

where any atomic type can be used. This data type

serves as the base type for all atomic types. An instance

of an atomic type is a single nondecomposable value

such as an integer, a string, or a date.

Untyped data types

 Table 4. Untyped data types

Type Description

“untyped data type” on page 37 The data type xdt:untyped denotes a node that has not

been validated by an XML schema.

“untypedAtomic data type” on page 37 The data type xdt:untypedAtomic denotes an atomic

value that has not been validated by an XML schema.

String data types

 Table 5. String data types

Type Description

“string data type” on page 36 The data type xs:string represents a character string.

“normalizedString data type” on page 35 The data type xs:normalizedString represents a

whitespace-normalized string.

“token data type” on page 37 The data type xs:token represents a tokenized string.

“language data type” on page 34 The data type xs:language represents a natural language

identifier as defined by RFC 3066.

“NMTOKEN data type” on page 35 The data type xs:NMTOKEN represents the NMTOKEN

attribute type from XML 1.0 (Third Edition).

“Name data type” on page 34 The data type xs:Name represents an XML Name.

“NCName data type” on page 34 The data type xs:NCName represents an XML

noncolonized name.

“ID data type” on page 33 The data type xs:ID represents the ID attribute type from

XML 1.0 (Third Edition).

“IDREF data type” on page 33 The data type xs:IDREF represents the IDREF attribute

type from XML 1.0 (Third Edition).

“ENTITY data type” on page 31 The data type xs:ENTITY represents the ENTITY attribute

type from XML 1.0 (Third Edition).

Chapter 2. Type system 19

Numeric data types

 Table 6. Numeric data types

Type Description

“decimal data type” on page 29 The data type xs:decimal represents a subset of the real

numbers that can be represented by decimal numerals.

“float data type” on page 31 The data type xs:float is patterned after the IEEE

single-precision 32-bit floating point type.

“double data type” on page 29 The data type xs:double is patterned after the IEEE

double-precision 64-bit floating point type.

“int data type” on page 34 The data type xs:int represents an integer that is less

than or equal to 2 147 483 647 and greater than or equal

to -2 147 483 648.

“nonPositiveInteger data type” on page 35 The data type xs:nonPositiveInteger represents an integer

that is less than or equal to zero.

“negativeInteger data type” on page 34 The data type xs:negativeInteger represents an integer

that is less than zero.

“nonNegativeInteger data type” on page 35 The data type xs:nonNegativeInteger represents an

integer that is greater than or equal to zero.

“long data type” on page 34 The data type xs:long represents an integer that is less

than or equal to 9 223 372 036 854 775 807 and greater

than or equal to -9 223 372 036 854 775 808.

“integer data type” on page 34 The data type xs:integer represents a number that is less

than or equal to 9 223 372 036 854 775 807 and greater

than or equal to -9 223 372 036 854 775 808.

“short data type” on page 36 The data type xs:short represents an integer that is less

than or equal to 32 767 and greater than or equal to -32

768.

“byte data type” on page 26 The data type xs:byte represents an integer that is less

than or equal to 127 and greater than or equal to -128.

“unsignedLong data type” on page 37 The data type xs:unsignedLong represents an unsigned

integer that is less than or equal to 9 223 372 036 854

775 807.

“unsignedInt data type” on page 37 The data type xs:unsignedInt represents an unsigned

integer that is less than or equal to 4 294 967 295.

“unsignedShort data type” on page 37 The data type xs:unsignedShort represents an unsigned

integer that is less than or equal to 65 535.

“unsignedByte data type” on page 37 The data type xs:unsignedByte represents an unsigned

integer that is less than or equal to 255.

“positiveInteger data type” on page 35 The data type xs:positiveInteger represents a positive

integer that is greater than or equal to 1.

Date, time, and duration data types

 Table 7. Date, time, and duration data types

Type Description

“duration data type” on page 30 The data type xs:duration represents a duration of time

that is expressed by the Gregorian year, month, day,

hour, minute, and second components.

20 IBM DB2 XQuery Reference

Table 7. Date, time, and duration data types (continued)

Type Description

“yearMonthDuration data type” on page 38 The data type xdt:yearMonthDuration represents a

duration of time that is expressed by the Gregorian year

and month components.

“dayTimeDuration data type” on page 28 The data type xdt:dayTimeDuration represents a duration

of time that is expressed by days, hours, minutes, and

seconds components.

“dateTime data type” on page 27 The data type xs:dateTime represents an instant that has

the following properties: year, month, day, hour, and

minute properties that are expressed as integer values; a

second property that is expressed as a decimal value;

and an optional time zone indicator.

“date data type” on page 26 The data type xs:date represents an interval of exactly

one day in duration that begins on the first moment of a

given day. The data type xs:date consists of year, month,

and day properties that are expressed as integer values

and an optional timezone indicator.

“time data type” on page 36 The data type xs:time represents an instant of time that

recurs every day.

“gYearMonth data type” on page 33 The data type xs:gYearMonth represents a specific

Gregorian month in a specific Gregorian year. Gregorian

calendar months are defined in ISO 8601.

“gYear data type” on page 32 The data type xs:gYear represents a Gregorian calendar

year. Gregorian calendar years are defined in ISO 8601.

“gMonthDay data type” on page 32 The data type xs:gMonthDay represents a Gregorian date

that recurs. Gregorian calendar dates are defined in ISO

8601.

“gDay data type” on page 31 The data type xs:gDay represents a Gregorian day that

recurs. Gregorian calendar days are defined in ISO 8601.

“gMonth data type” on page 32 The data type xs:gMonth represents a Gregorian month

that recurs every year. Gregorian calendar months are

defined in ISO 8601.

Other data types

 Table 8. Other data types

Type Description

“boolean data type” on page 26 The data type xs:boolean supports the mathematical

concept of binary-valued logic: true or false.

“anyURI data type” on page 26 The data type xs:anyURI represents a Uniform Resource

Identifier (URI).

“QName data type” on page 35 The data type xs:QName represents an XML qualified

name (QName). A QName includes an optional

namespace prefix, a URI that identifies the XML

namespace, and a local part, which is an NCName.

“NOTATION data type” on page 35 The data type xs:NOTATION represents the NOTATION

attribute type from XML 1.0 (Third Edition).

“hexBinary data type” on page 33 The data type xs:hexBinary represents hex-encoded

binary data.

Chapter 2. Type system 21

Table 8. Other data types (continued)

Type Description

“base64Binary data type” on page 26 The data type xs:base64Binary represents

base64-encoded binary data.

 Related reference

 “Type casting” on page 23

Constructor functions for built-in data types

Constructor functions convert an instance of one atomic type into an instance of a different atomic type. An

implicitly-defined constructor function exists for each of the built-in atomic types that are defined in XML

Schema. Constructor functions also exist for the data type xdt:untypedAtomic and the two derived data

types xdt:yearMonthDuration and xdt:dayTimeDuration.

Constructor functions are not available for xs:NOTATION, xs:anyType, xs:anySimpleType, or

xdt:anyAtomicType.

All constructor functions for built-in types share the following generic syntax:

�� type-name(value) ��

Note: The semantics of the constructor function type-name(value) are defined to be equivalent to the

expression (value cast as type-name?).

type-name

The QName of the target data type.

value

The value to be constructed as an instance of the target data type. Atomization is applied to the value.

If the result of atomization is an empty sequence, the empty sequence is returned. If the result of

atomization is a sequence of more than one item, an error is raised. Otherwise, the resulting atomic

value is cast to the target type. For information about which types can be cast to which other types,

see “Type casting” on page 23.

 For example, the following diagram represents the syntax of the constructor function for the XML Schema

data type xs:unsignedInt:

�� xs:unsignedInt(value) ��

The value that can be passed to this constructor function is any atomic value that can be validly cast into

the target data type. For example, the following invocations of this function return the same result, the

xs:unsignedInt value 12:

xs:unsignedInt(12)

xs:unsignedInt("12")

In the first example, the numeric literal 12 is passed to the constructor function. Because the literal does

not contain a decimal point, it is parsed as an xs:integer, and the xs:integer value is cast to the type

xs:unsignedInt. In the second example, the string literal ″12″ is passed to the constructor function. The

string literal is parsed as an xs:string, and the xs:string value is cast to the type xs:unsignedInt.

A constructor function can also be invoked with a node as its argument. In this case, DB2 XQuery

atomizes the node to extract its typed value and then calls the constructor with that value. If the value that

is passed to a constructor cannot be cast to the target data type, an error is returned.

22 IBM DB2 XQuery Reference

The constructor function for xs:QName differs from the generic syntax for constructor functions in that the

constructor function is constrained to take a string literal as its argument.

 Related concepts

 “Atomization” on page 50

 Related reference

 “Cast expressions” on page 102

 “Type casting”

Type casting

Type conversions are supported between xdt:untypedAtomic, xs:integer, the two derived types of

xs:duration (xdt:yearMonthDuration and xdt:dayTimeDuration), and the nineteen primitive types that are

defined in XML Schema. Type conversions are used in cast expressions and type constructors.

The type conversions that are supported are indicated in the following tables. Each table shows the

primitive types that are the source of the type conversion on the left side and the primitive types that are

the target of the type conversion on the top. The first table contains the targets from xdt:untypedAtomic to

xs:dateTime, and the second table contains the targets from xs:time to xs:NOTATION.

The cells in the tables contain one of three characters:

Y Yes. Indicates that a conversion from values of the source type to the target type is supported.

N No. Indicates that a conversion from values of the source type to the target type is not supported.

M Maybe. Indicates that a conversion from values of the source type to the target type might

succeed for some values and fail for other values.

Casting is not supported to or from xs:anySimpleType or to or from xdt:anyAtomicType.

If an unsupported casting is attempted, an error is raised.

 Table 9. Primitive type casting, part 1 (targets from xdt:untypedAtomic to xs:dateTime)

Source

data

type

Target data type

uA string float double decimal integer dur yMD dTD dT

uA Y Y M M M M M M M M

string Y Y M M M M M M M M

float Y Y Y Y M M N N N N

double Y Y M Y M M N N N N

decimal Y Y Y Y Y M N N N N

integer Y Y Y Y Y Y N N N N

dur Y Y N N N N Y Y Y N

yMD Y Y N N N N Y Y N N

dTD Y Y N N N N Y N Y N

dT Y Y N N N N N N N Y

time Y Y N N N N N N N N

date Y Y N N N N N N N Y

gYM Y Y N N N N N N N N

gYr Y Y N N N N N N N N

gMD Y Y N N N N N N N N

Chapter 2. Type system 23

Table 9. Primitive type casting, part 1 (targets from xdt:untypedAtomic to xs:dateTime) (continued)

Source

data

type

Target data type

uA string float double decimal integer dur yMD dTD dT

gDay Y Y N N N N N N N N

gMon Y Y N N N N N N N N

bool Y Y Y Y Y Y N N N N

b64 Y Y N N N N N N N N

hxB Y Y N N N N N N N N

aURI Y Y N N N N N N N N

QN Y Y N N N N N N N N

NOT Y Y N N N N N N N N

 Table 10. Primitive type casting, part 2 (targets from xs:time to xs:NOTATION)

Source

data

type

Target data type

time date gYM gYr gMD gDay gMon bool b64 hxB aURI QN NOT

uA M M M M M M M M M M M N N

string M M M M M M M M M M M M M

float N N N N N N N Y N N N N N

double N N N N N N N Y N N N N N

decimal N N N N N N N Y N N N N N

integer N N N N N N N Y N N N N N

dur N N N N N N N N N N N N N

yMD N N N N N N N N N N N N N

dTD N N N N N N N N N N N N N

dT Y Y Y Y Y Y Y N N N N N N

time Y N N N N N N N N N N N N

date N Y Y Y Y Y Y N N N N N N

gYM N N Y N N N N N N N N N N

gYr N N N Y N N N N N N N N N

gMD N N N N Y N N N N N N N N

gDay N N N N N Y N N N N N N N

gMon N N N N N N Y N N N N N N

bool N N N N N N N Y N N N N N

b64 N N N N N N N N Y Y N N N

hxB N N N N N N N N Y Y N N N

aURI N N N N N N N N N N Y N N

QN N N N N N N N N N N N N N

NOT N N N N N N N N N N N N M

The columns and rows are identified by short codes that identify the following types:

v uA = xdt:untypedAtomic

24 IBM DB2 XQuery Reference

v string = xs:string

v float = xs:float

v double = xs:double

v decimal = xs:decimal

v integer = xs:integer

v dur = xs:duration

v yMD = xdt:yearMonthDuration

v dTD = xdt:dayTimeDuration

v dT = xs:dateTime

v time = xs:time

v date = xs:date

v gYM = xs:gYearMonth

v gYr = xs:gYear

v gMD = xs:gMonthDay

v gDay = xs:gDay

v gMon = xs:gMonth

v bool = xs:boolean

v b64 = xs:base64Binary

v hxB = xs:hexBinary

v aURI = xs:anyURI

v QN = xs:QName

v NOT = xs:NOTATION

 Related concepts

 “Constructor functions for built-in data types” on page 22

 Related reference

 “Cast expressions” on page 102

 “Limits for XQuery data types” on page 161

anyAtomicType data type

The data type xdt:anyAtomicType denotes a context where any atomic type can be used. This data type

serves as the base type for all atomic types. An instance of an atomic type is a single nondecomposable

value such as an integer, a string, or a date.

The data type xdt:anyAtomicType has an unconstrained lexical form.

Casting is not supported to or from the data type xdt:anyAtomicType.

anySimpleType data type

The data type xs:anySimpleType denotes a context where any simple type can be used. This data type

serves as the base type for all simple types. An instance of a simple type may be any sequence of atomic

values.

The data type xs:anySimpleType has an unconstrained lexical form.

Casting is not supported to or from the data type xs:anySimpleType.

Chapter 2. Type system 25

anyType data type

The data type xs:anyType encompasses any sequence of zero or more nodes and zero or more atomic

values.

anyURI data type

The data type xs:anyURI represents a Uniform Resource Identifier (URI).

The lexical form of the data type xs:anyURI is a string that is a legal URI as defined by RFC 2396 and

amended by RFC 2732. Avoid using spaces in values of this type unless the spaces are encoded by %20.

base64Binary data type

The data type xs:base64Binary represents base64-encoded binary data.

For base64-encoded binary data, the entire binary stream is encoded by using the base64 alphabet. The

base64 alphabet is described in RFC 2045.

The lexical form of xs:base64Binary is limited to the 65 characters of the base64 alphabet that is defined

in RFC 2045. Valid characters include a-z, A-Z, 0-9, the plus sign (+), the forward slash (/), the equal sign

(=), and the characters defined in XML 1.0 (Third Edition) as white space. No other characters are

allowed.

boolean data type

The data type xs:boolean supports the mathematical concept of binary-valued logic: true or false.

The lexical form of the data type xs:boolean is constrained to the following values: true, false, 1, and 0.

byte data type

The data type xs:byte represents an integer that is less than or equal to 127 and greater than or equal to

-128.

The lexical form of xs:byte is an optional sign that is followed by a finite-length sequence of decimal digits.

If the sign is omitted, a positive sign (+) is assumed. The following numbers are valid examples of this

data type: -1, 0, 126, and +100.

date data type

The data type xs:date represents an interval of exactly one day in duration that begins on the first moment

of a given day. The data type xs:date consists of year, month, and day properties that are expressed as

integer values and an optional timezone indicator.

Time-zoned values of type xs:date track the starting moment of the day, as determined by the timezone.

The first moment of the day begins at 00:00:00, and the day continues until, but does not include,

24:00:00, which is the first moment of the following day. For example, the first moment of the date

2002-10-10+13:00 is the value 2002-10-10T00:00:00+13:00. This value is equivalent to

2002-10-09T11:00:00Z, which is also the first moment of 2002-10-09-11:00. Therefore, the values

2002-10-10+13:00 and 2002-10-09-11:00 represent the same interval.

The lexical form of xs:date is a finite-length sequence of characters of the following form:

yyyy-mm-ddzzzzzz. Negative dates are not allowed. The following abbreviations are used to describe this

form:

26 IBM DB2 XQuery Reference

yyyy

A 4-digit numeral that represents the year. Valid values are from 0001 through 9999. A plus sign (+) is

not allowed.

mm

A 2-digit numeral that represents the month.

dd A 2-digit numeral that represents the day.

zzzzzz

Optional. If present, represents the timezone. See “Timezone indicator” on page 28 for more

information about the format for this property.

dateTime data type

The data type xs:dateTime represents an instant that has the following properties: year, month, day, hour,

and minute properties that are expressed as integer values; a second property that is expressed as a

decimal value; and an optional time zone indicator.

Valid lexical representations of xs:dateTime might not have an explicit time zone. For representations that

do not have an explicit time zone, an implicit time zone of UTC (Coordinated Universal Time, also called

Greenwich Mean Time) is used. Each property expressed as a numeric value is constrained to the

maximum value within the interval that is determined by the next-higher property. For example, the day

value can never be 32 and cannot even be 29 for month 02 and year 2002 (February 2002).

The lexical form of xs:dateTime is a finite-length sequence of characters of the following form:

yyyy-mm-ddThh:mm:ss.sssssszzzzzz. Negative dates are not allowed. The following abbreviations

describe this form:

yyyy

A 4-digit numeral that represents the year. Valid values are from 0001 through 9999. A plus sign (+) is

not allowed.

- Separators between parts of the date portion

mm

A 2-digit numeral that represents the month.

dd A 2-digit numeral that represents the day.

T A separator to indicate that the time of day follows.

hh A 2-digit numeral that represents the hour. A value of 24 is allowed only when the minutes and

seconds that are represented are zero. A query that includes the time of 24:00:00 is treated as

00:00:00 of the next day.

: A separator between parts of the time portion.

mm

A 2-digit numeral that represents the minute.

ss A 2-digit numeral that represents the whole seconds.

.ssssss

Optional. If present, a 1-to-6 digit numeral that represents the fractional seconds.

zzzzzz

Optional. If present, represents the timezone. See “Timezone indicator” on page 28 for more

information about the format for this property.

For example, the following form indicates noon on 10 October 2005, Eastern Standard Time in the United

States:

2005-10-10T12:00:00-05:00

Chapter 2. Type system 27

This time is expressed in UTC as 2002-10-10T17:00:00Z.

Timezone indicator

The lexical form for the timezone indicator is a string that includes one of the following forms:

v A positive (+) or negative (-) sign that is followed by hh:mm, where the following abbreviations are used:

hh A 2-digit numeral (with leading zeros as required) that represents the hours. Currently, no legally

prescribed time zones have durations greater than 24 hours. Therefore, a value of 24 for the hours

property is allowed only when the value of the minutes property is zero.

mm

A 2-digit numeral that represents the minutes. The value of the minutes property must be zero when

the hours property is equal to 14.

+ Indicates that the specified time instant is in a time zone that is ahead of the UTC time by hh hours

and mm minutes.

- Indicates that the specified time instant is in a time zone that is behind UTC time by hh hours and

mm minutes.

v The literal Z, which represents the time in UTC (Z represents Zulu time, which is equivalent to UTC).

Specifying Z for the time zone is equivalent to specifying +00:00 or -00:00.

dayTimeDuration data type

The data type xdt:dayTimeDuration represents a duration of time that is expressed by days, hours,

minutes, and seconds components.

The range that can be represented by this data type is from

-P83333333333333Y3M11574074074DT1H46M39.999999S to

P83333333333333Y3M11574074074DT1H46M39.999999S (or -999999999999999 months and

-999999999999999.999999 seconds to 999999999999999 months and 999999999999999.999999

seconds).

The lexical form of xdt:dayTimeDuration is PnDTnHnMnS, which is a reduced form of the ISO 8601 format.

The following abbreviations describe this form:

P The duration designator.

nD

n is an unsigned integer that represents the number of days.

T The date and time separator.

nH

n is an unsigned integer that represents the number of hours.

nM

n is an unsigned integer that represents the number of minutes.

nS

n is an unsigned decimal that represents the number of seconds. If a decimal point appears, it must

be followed by one to six digits that represent fractional seconds.

For example, the following form indicates a duration of 3 days, 10 hours, and 30 minutes:

P3DT10H30M

The following form indicates a duration of negative 120 days:

-P120D

28 IBM DB2 XQuery Reference

An optional preceding minus sign (-) indicates a negative duration. If the sign is omitted, a positive

duration is assumed.

Reduced precision and truncated representations of this format are allowed, but they must conform to the

following requirements:

v If the number of days, hours, minutes, or seconds in any expression equals zero, the number and its

corresponding designator can be omitted. However, at least one number and its designator must be

present.

v The seconds part can have a decimal fraction.

v The designator T must be absent if and only if all of the time items are absent. The designator P must

always be present.

For example, the following forms are allowed:

P13D

PT47H

P3DT2H

-PT35.89S

P4D251M

The form P-134D is not allowed, but the form -P1347D is allowed.

decimal data type

The data type xs:decimal represents a subset of the real numbers that can be represented by decimal

numerals.

The lexical form of xs:decimal is a finite-length sequence of decimal digits that are separated by a period

as a decimal indicator. An optional leading sign is allowed. If the sign is omitted, a positive sign (+) is

assumed. Leading and trailing zeroes are optional. If the fractional part is zero, the period and any

following zeroes can be omitted. The following numbers are valid examples of this data type:

-1.23

12678967.543233

+100000.00

210

double data type

The data type xs:double is patterned after the IEEE double-precision 64-bit floating point type.

The basic value space of xs:double consists of values that range from -1.7976931348623158e+308 to

-2.2250738585072014e-308 and from +2.2250738585072014e-308 to +1.7976931348623158e+308. The

value space of xs:double also includes the following special values: positive infinity, negative infinity,

positive zero, negative zero, and not-a-number (NaN).

The lexical form of xs:double is a mantissa followed, optionally, by the character E or e, followed by an

exponent. The exponent must be an integer. The mantissa must be a decimal number. The

representations for the exponent and the mantissa must follow the lexical rules for xs:integer and

xs:decimal. If the E or e and the exponent that follows are omitted, an exponent value of 0 is assumed.

Lexical forms for zero can take a positive or negative sign. The following literals are valid examples of this

data type: -1E4, 1267.43233E12, 12.78e-2, 12 , -0, and 0.

The special values positive infinity, negative infinity, and not-a-number have the lexical forms INF, -INF and

NaN, respectively. The lexical form for positive infinity cannot take a positive sign.

Chapter 2. Type system 29

Tip: There is no literal for the special values INF, -INF and NaN. Construct the values INF, -INF, and NaN

from strings by using the xs:double type constructor. For example: xs:double("INF").

 Related reference

 “number function” on page 137

duration data type

The data type xs:duration represents a duration of time that is expressed by the Gregorian year, month,

day, hour, minute, and second components.

The range that can be represented by this data type is from

-P83333333333333Y3M11574074074DT1H46M39.999999S to

P83333333333333Y3M11574074074DT1H46M39.999999S (or -999999999999999 months and

-999999999999999.999999 seconds to 999999999999999 months and 999999999999999.999999

seconds).

The lexical form of xs:duration is the ISO 8601 extended format PnYnMnDTnHnMnS. The following

abbreviations describe the extended format:

P The duration designator.

nY

n is an unsigned integer that represents the number of years.

nM

n is an unsigned integer that represents the number of months.

nD

n is an unsigned integer that represents the number of days.

T The date and time separator.

nH

n is an unsigned integer that represents the number of hours.

nM

n is an unsigned integer that represents the number of minutes.

nS

n is an unsigned decimal that represents the number of seconds. If a decimal point appears, it must

be followed by one to six digits that represent fractional seconds.

For example, the following form indicates a duration of 1 year, 2 months, 3 days, 10 hours, and 30

minutes:

P1Y2M3DT10H30M

The following form indicates a duration of negative 120 days:

-P120D

An optional preceding minus sign (-) indicates a negative duration. If the sign is omitted, a positive

duration is assumed.

Reduced precision and truncated representations of this format are allowed, but they must conform to the

following requirements:

v If the number of years, months, days, hours, minutes, or seconds in any expression equals zero, the

number and its corresponding designator can be omitted. However, at least one number and its

designator must be present.

v The seconds part can have a decimal fraction.

30 IBM DB2 XQuery Reference

v The designator T must be absent if and only if all of the time items are absent.

v The designator P must always be present.

For example, the following forms are allowed:

P1347Y

P1347M

P1Y2MT2H

P0Y1347M

P0Y1347M0D

The form P1Y2MT is not allowed because no time items are present. The form P-1347M is not allowed, but

the form -P1347M is allowed.

ENTITY data type

The data type xs:ENTITY represents the ENTITY attribute type from XML 1.0 (Third Edition).

The lexical form of xs:ENTITY is an XML name that does not contain a colon (NCName).

float data type

The data type xs:float is patterned after the IEEE single-precision 32-bit floating point type.

The basic value space of xs:float consists of values that range from -3.4028234663852886e+38 to

-1.1754943508222875e-38 and from +1.1754943508222875e-38 to +3.4028234663852886e+38. The

value space of xs:float also includes the following special values: positive infinity, negative infinity, positive

zero, negative zero, and not-a-number (NaN).

The lexical form of xs:float is a mantissa followed, optionally, by the character E or e, followed by an

exponent. The exponent must be an integer. The mantissa must be a decimal number. The

representations for the exponent and the mantissa must follow the lexical rules for xs:integer and

xs:decimal. If the E or e and the exponent that follows are omitted, an exponent value of 0 is assumed.

Lexical forms for zero can take a positive or negative sign. The following literals are valid examples of this

data type: -1E4, 1267.43233E12, 12.78e-2, 12 , -0, and 0.

The special values positive infinity, negative infinity, and not-a-number have the lexical forms INF, -INF and

NaN, respectively. The lexical form for positive infinity cannot take a positive sign.

Tip: There is no literal for the special values INF, -INF and NaN. Construct the values INF, -INF, and NaN

from strings by using the xs:float type constructor. For example: xs:float("INF").

gDay data type

The data type xs:gDay represents a Gregorian day that recurs. Gregorian calendar days are defined in

ISO 8601.

This data type represents a specific day of the month. For example, this data type might be used to

indicate that payday is the 15th of each month.

The lexical form of xs:gDay is ---ddzzzzzz, which is a truncated representation of xs:date that does not

include the month or year properties. No preceding sign is allowed. No other formats are allowed. The

following abbreviations describe this form:

dd A 2-digit numeral that represents the day.

Chapter 2. Type system 31

zzzzzz

Optional. If present, represents the timezone. See “Timezone indicator” on page 28 for more

information about the format for this property.

For example, the following form indicates the sixteenth of the month, which is a day that recurs every

month:

---16

gMonth data type

The data type xs:gMonth represents a Gregorian month that recurs every year. Gregorian calendar months

are defined in ISO 8601.

This data type represents a specific month of the year. For example, this data type might be used to

indicate that Christmas is celebrated in the month of December.

The lexical form of xs:gMonth is --mmzzzzzz, which is a truncated representation of xs:date that does not

include the year or day properties. No preceding sign is allowed. No other formats are allowed. The

following abbreviations describe this form:

mm

A 2-digit numeral that represents the month.

zzzzzz

Optional. If present, represents the timezone. See “Timezone indicator” on page 28 for more

information about the format for this property.

For example, the following form indicates December, a specific month that recurs every year:

--12

gMonthDay data type

The data type xs:gMonthDay represents a Gregorian date that recurs. Gregorian calendar dates are

defined in ISO 8601.

This data type represents a specific day of the year. For example, this data type might be used to indicate

a birthday that occurs on the 16th of April every year.

The lexical form of xs:gMonthDay is --mm-ddzzzzzz, which is a truncated representation of xs:date that

does not include the year property. No preceding sign is allowed. No other formats are allowed. The

following abbreviations are used to describe this form:

mm

A 2-digit numeral that represents the month.

dd A 2-digit numeral that represents the day.

zzzzzz

Optional. If present, represents the timezone. See “Timezone indicator” on page 28 for more

information about the format for this property.

For example, the following form indicates April 16, a specific day that recurs every year:

--04-16

gYear data type

The data type xs:gYear represents a Gregorian calendar year. Gregorian calendar years are defined in

ISO 8601.

32 IBM DB2 XQuery Reference

The lexical form of xs:gYear is yyyyzzzzzz. This form is a truncated representation of xs:dateTime that

does not include the month, day, or time of day properties. Negative dates are not allowed. The following

abbreviations describe this form:

yyyy

A 4-digit numeral that represents the year. Valid values are from 0001 through 9999. A plus sign (+) is

not allowed.

zzzzzz

Optional. If present, represents the timezone. See “Timezone indicator” on page 28 for more

information about the format for this property.

For example, the following form represents the Gregorian year 2005: 2005.

gYearMonth data type

The data type xs:gYearMonth represents a specific Gregorian month in a specific Gregorian year.

Gregorian calendar months are defined in ISO 8601.

The lexical form of xs:gYearMonth is yyyy-mmzzzzzz. This form is a truncated representation of

xs:dateTime that does not include the time of day properties. Negative dates are not allowed. The

following abbreviations describe this form:

yyyy

A 4-digit numeral that represents the year. Valid values are from 0001 through 9999. A plus sign (+) is

not allowed.

mm

A 2-digit numeral that represents the month.

zzzzzz

Optional. If present, represents the timezone. See “Timezone indicator” on page 28 for more

information about the format for this property.

For example, the following form, which does not include an optional timezone indicator, indicates the

month of October in 2005:

2005-10

hexBinary data type

The data type xs:hexBinary represents hex-encoded binary data.

The lexical form of xs:hexBinary is a sequence of characters in which each binary octet is represented by

two hexadecimal digits. For example, the following form is a hex encoding for the 16-bit integer 4023,

which has a binary representation of 111110110111: 0FB7.

ID data type

The data type xs:ID represents the ID attribute type from XML 1.0 (Third Edition).

The lexical form of xs:ID is an XML name that does not contain a colon (NCName).

IDREF data type

The data type xs:IDREF represents the IDREF attribute type from XML 1.0 (Third Edition).

The lexical form of xs:IDREF is an XML name that does not contain a colon (NCName).

Chapter 2. Type system 33

int data type

The data type xs:int represents an integer that is less than or equal to 2 147 483 647 and greater than or

equal to -2 147 483 648.

The lexical form of xs:int is an optional sign that is followed by a finite-length sequence of decimal digits. If

the sign is omitted, a positive sign (+) is assumed. The following numbers are valid examples of this data

type: -1, 0, 126789675, and +100000.

integer data type

The data type xs:integer represents a number that is less than or equal to 9 223 372 036 854 775 807

and greater than or equal to -9 223 372 036 854 775 808.

The lexical form of xs:integer is a finite-length sequence of decimal digits with an optional leading sign. If

the sign is omitted, a positive sign (+) is assumed. The following numbers are valid examples of this data

type: -1, 0, 12678967543233, and +100000.

language data type

The data type xs:language represents a natural language identifier as defined by RFC 3066.

The lexical form of xs:language consists of strings of tags connected by hyphens. Each tag contains no

more than eight characters. The first tag can contain only alphabetic characters, and subsequent tags can

contain alphabetic and numeric characters. For example, the value en-US represents the English language

as used in the United States. The string conforms to the pattern [a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})*.

long data type

The data type xs:long represents an integer that is less than or equal to 9 223 372 036 854 775 807 and

greater than or equal to -9 223 372 036 854 775 808.

The lexical form of xs:long is an optional sign that is followed by a finite-length sequence of decimal digits.

If the sign is omitted, a positive sign (+) is assumed. The following numbers are valid examples of this

data type: -1, 0, 12678967543233, and +100000.

Name data type

The data type xs:Name represents an XML Name.

The lexical form of xs:Name is a string that matches the Name production of XML 1.0 (Third Edition).

NCName data type

The data type xs:NCName represents an XML noncolonized name.

The lexical form of xs:NCName is an XML name that does not contain a colon.

negativeInteger data type

The data type xs:negativeInteger represents an integer that is less than zero.

The lexical form of xs:negativeInteger is negative sign (-) that is followed by a finite-length sequence of

decimal digits. The range that can be represented by this data type is from -9223372036854775808 to -1.

The following numbers are valid examples of this data type: -1, -12678967543233, and -100000.

34 IBM DB2 XQuery Reference

NMTOKEN data type

The data type xs:NMTOKEN represents the NMTOKEN attribute type from XML 1.0 (Third Edition).

The lexical form of xs:NMTOKEN is a string that matches the Nmtoken production of XML 1.0 (Third

Edition).

nonNegativeInteger data type

The data type xs:nonNegativeInteger represents an integer that is greater than or equal to zero.

The lexical form of xs:nonNegativeInteger is an optional sign that is followed by a finite-length sequence of

decimal digits. If the sign is omitted, a positive sign (+) is assumed. For lexical forms that denote zero, the

sign may be positive (+) or negative (-). In all other lexical forms, the sign, if present, must be positive (+).

The range that can be represented by this data type is from 0 to +9223372036854775807. The following

numbers are valid examples of this data type: 1, 0, 12678967543233, and +100000.

nonPositiveInteger data type

The data type xs:nonPositiveInteger represents an integer that is less than or equal to zero.

The lexical form of xs:nonPositiveInteger is an optional preceding sign that is followed by a finite-length

sequence of decimal digits. For lexical forms that denote zero, the sign may be negative (-) or may be

omitted; in all other lexical forms, the negative sign (-) must be present. The range that can be

represented by this data type is from -9223372036854775808 to 0. The following numbers are valid

examples of this data type: -1, 0, -12678967543233, and -100000.

normalizedString data type

The data type xs:normalizedString represents a whitespace-normalized string.

The lexical form of xs:normalizedString is a string that does not contain the carriage return (X’0D’), line

feed (X’0A’), or tab (X’09’) characters.

NOTATION data type

The data type xs:NOTATION represents the NOTATION attribute type from XML 1.0 (Third Edition).

The lexical form of the data type xs:NOTATION is the lexical form of the type xs:QName.

 Related reference

 “QName data type”

positiveInteger data type

The data type xs:positiveInteger represents a positive integer that is greater than or equal to 1.

The lexical form of xs:positiveInteger is an optional positive sign (+) that is followed by a finite-length

sequence of decimal digits. The range that can be represented by this data type is from +1 to

+9223372036854775807. The following numbers are valid examples of this data type: 1, 12678967543233,

and +100000.

QName data type

The data type xs:QName represents an XML qualified name (QName). A QName includes an optional

namespace prefix, a URI that identifies the XML namespace, and a local part, which is an NCName.

Chapter 2. Type system 35

The lexical form of the data type xs:QName is a string of the following format: prefix:localName. The

following abbreviations are used to describe this form:

prefix

Optional. A namespace prefix. The namespace prefix must be bound to a URI reference by a

namespace declaration. The prefix functions only as a placeholder for a namespace name. If no prefix

is specified, the URI for the default element/type namespace is used.

localName

An NCName that is the local part of the qualified name. An NCName is an XML name without a colon.

For example, the following string is a valid lexical form of a QName that includes a prefix:

ns1:emp

short data type

The data type xs:short represents an integer that is less than or equal to 32 767 and greater than or equal

to -32 768.

The lexical form of xs:short is an optional sign that is followed by a finite-length sequence of decimal

digits. If the sign is omitted, a positive sign (+) is assumed. The following numbers are valid examples of

this data type: -1, 0, 12678, and +10000.

string data type

The data type xs:string represents a character string.

The lexical form of xs:string is a sequence of characters that can include any character that is in the range

of legal characters for XML.

time data type

The data type xs:time represents an instant of time that recurs every day.

The lexical form of xs:time is hh:mm:ss.sssssszzzzzz. This form is a truncated representation of

xs:dateTime that does not include the year, day, or month properties. The following abbreviations describe

this form:

hh A 2-digit numeral that represents the hour. A value of 24 is allowed only when the minutes and

seconds that are represented are zero. A query that includes the time of 24:00:00 is treated as

00:00:00 of the next day.

: A separator between parts of the time portion.

mm

A 2-digit numeral that represents the minute.

ss A 2-digit numeral that represents the whole seconds.

.ssssss

Optional. If present, a 1-to-6 digit numeral that represents the fractional seconds.

zzzzzz

Optional. If present, represents the timezone. See “Timezone indicator” on page 28 for more

information about the format for this property.

For example, the following form, which includes an optional timezone indicator, represents 1:20 pm

Eastern Standard Time, which is 5 hours earlier than Coordinated Universal Time (UTC):

13:20:00-05:00

36 IBM DB2 XQuery Reference

token data type

The data type xs:token represents a tokenized string.

The lexical form of xs:token is a string that does not contain any of the following characters:

v carriage return (X’0D’)

v line feed (X’0A’)

v tab (X’09’)

v leading or trailing spaces (X’20’)

v internal sequences of two or more spaces

unsignedByte data type

The data type xs:unsignedByte represents an unsigned integer that is less than or equal to 255.

The lexical form of xs:unsignedByte is a finite-length sequence of decimal digits. The following numbers

are valid examples of this data type: 0, 126, and 100.

unsignedInt data type

The data type xs:unsignedInt represents an unsigned integer that is less than or equal to 4 294 967 295.

The lexical form of xs:unsignedInt is a finite-length sequence of decimal digits. The following numbers are

valid examples of this data type: 0, 1267896754, and 100000.

unsignedLong data type

The data type xs:unsignedLong represents an unsigned integer that is less than or equal to 9 223 372 036

854 775 807.

The lexical form of xs:unsignedLong is a finite-length sequence of decimal digits. The following numbers

are valid examples of this data type: 0, 12678967543233, and 100000.

unsignedShort data type

The data type xs:unsignedShort represents an unsigned integer that is less than or equal to 65 535.

The lexical form of xs:unsignedShort is a finite-length sequence of decimal digits. The following numbers

are valid examples of this data type: 0, 12678, and 10000.

untyped data type

The data type xdt:untyped denotes a node that has not been validated by an XML schema.

If an element node is annotated as xdt:untyped, then all of its descendant element nodes are also

annotated as xdt:untyped.

untypedAtomic data type

The data type xdt:untypedAtomic denotes an atomic value that has not been validated by an XML

schema.

The data type xdt:untypedAtomic has an unconstrained lexical form.

Chapter 2. Type system 37

yearMonthDuration data type

The data type xdt:yearMonthDuration represents a duration of time that is expressed by the Gregorian

year and month components.

The range that can be represented by this data type is from -P83333333333333Y3M to

P83333333333333Y3M (or -999999999999999 to 999999999999999 months).

The lexical form of xdt:yearMonthDuration is PnYnM, which is a reduced form of the ISO 8601 format. The

following abbreviations describe this form:

nY

n is an unsigned integer that represents the number of years.

nM

n is an unsigned integer that represents the number of months.

An optional preceding minus sign (-) indicates a negative duration. If the sign is omitted, a positive

duration is assumed.

For example, the following form indicates a duration of 1 year and 2 months:

P1Y2M

The following form indicates a duration of negative 13 months:

-P13M

Reduced precision and truncated representations of this format are allowed, but they must conform to the

following requirements:

v The designator P must always be present.

v If the number of years or months in any expression equals zero, the number and its corresponding

designator can be omitted. However, at least one number and its designator (Y or M) must be present.

For example, the following forms are allowed:

P1347Y

P1347M

The form P-1347M is not allowed, but the form -P1347M is allowed. The forms P24YM and PY43M are not

allowed because Y must have at least one preceding digit and M must have one preceding digit.

38 IBM DB2 XQuery Reference

Chapter 3. Prolog

The prolog is series of declarations that define the processing environment for a query. Each declaration in

the prolog is followed by a semicolon (;). The prolog is an optional part of the query; a valid query can

consist of a query body with no prolog.

The prolog includes an optional version declaration, namespace declarations, and setters, which are

optional declarations that set the values of properties that affect query processing.

DB2 supports the boundary-space declaration that can be used to change how the query is processed.

The prolog also consists of namespace declarations and default namespace declarations.

DB2 also supports the following setters. However, they do not change the processing environment

because DB2 supports only one option in each case:

v Construction declaration

v Copy-namespaces declaration

v Empty order declaration

v Ordering mode declaration

The version declaration, if present, must be first in the prolog. Setters and other declarations can appear in

any order in the prolog after the version declaration.

Syntax

��

�

(1)

Version declaration

Boundary-space declaration

Construction declaration

Copy-namespaces declaration

Empty order declaration

Default element/type namespace declaration

Default function namespace declaration

Namespace declaration

Ordering mode declaration

��

Notes:

1 Each declaration can be specified only once, except for the namespace declaration.

 Related concepts

 “Introduction to XQuery” on page 1

Version declaration

A version declaration appears at the beginning of a query to identify the version of the XQuery syntax and

semantics that are needed to process the query. The version declaration can include an encoding

declaration, but the encoding declaration is ignored by DB2.

If present, the version declaration must be at the beginning of the prolog. The only version that is

supported by DB2 is ″1.0″.

Syntax

© Copyright IBM Corp. 2006 39

�� xquery version ″1.0″ ;

encoding

StringLiteral
 ��

1.0

Specifies that version 1.0 of the XQuery syntax and semantics is needed to process the query.

StringLiteral

Specifies a string literal that represents the encoding name. Specifying an encoding declaration has no

effect on the query because the value of StringLiteral is ignored. DB2 always assumes the encoding is

UTF-8.

Example

The following version declaration indicates that the query must be processed by an implementation that

supports XQuery Version 1.0:

xquery version "1.0";

Boundary-space declaration

A boundary-space declaration in the query prolog sets the boundary-space policy for the query. The

boundary-space policy controls how boundary whitespace is processed by element constructors. Boundary

whitespace includes all whitespace characters that occur by themselves in the boundaries between tags or

enclosed expressions in element constructors.

The boundary-space policy can specify that boundary whitespace is either preserved or stripped (removed)

when elements are constructed. If no boundary-space declaration is specified, the default behavior is to

strip boundary whitespace when elements are constructed.

The prolog can contain only one boundary-space declaration for a query.

Syntax

�� declare boundary-space strip ;

preserve
 ��

strip

Specifies that boundary whitespace is removed when elements are constructed.

preserve

Specifies that boundary whitespace is preserved when elements are constructed.

Example

The following boundary-space declaration specifies that boundary whitespace is preserved when elements

are constructed:

declare boundary-space preserve;

 Related concepts

 “Whitespace” on page 14

 Related reference

 “Boundary whitespace in direct element constructors” on page 80

Construction declaration

A construction declaration in the query prolog sets the construction mode for the query. The construction

mode controls how type annotations are assigned to element and attribute nodes that are copied to form

the content of a newly constructed node.

40 IBM DB2 XQuery Reference

In DB2 XQuery, the construction mode for constructed element nodes is always preserve. When the

construction mode is preserve, the copied attributes and descendants of the constructed element retain

their original types.

A construction declaration that specifies a value other than preserve results in an error. The prolog can

contain only one construction declaration for a query.

Syntax

�� declare construction preserve ; ��

preserve

Specifies that the copied attributes and descendants of the constructed element retain their original

types.

Example

The following construction declaration is valid, but does not change the default behavior for element

construction:

declare construction preserve;

 Related concepts

 Chapter 2, “Type system,” on page 17

Copy-namespaces declaration

The copy-namespaces mode controls the namespace bindings that are assigned when an existing element

node is copied by an element constructor.

In DB2, the copy-namespaces mode is always preserve and inherit. The setting preserve specifies that

all in-scope-namespaces of the original element are retained in the new copy. The default namespace is

treated like any other namespace binding: the copied node preserves its default namespace or absence of

a default namespace. The setting inherit specifies that the copied node inherits in-scope namespaces

from the constructed node. In case of a conflict, the namespace bindings that were preserved from the

original node take precedence.

A copy-namespaces declaration that specifies values other than preserve and inherit results in an error.

The prolog can contain only one copy-namespaces declaration for a query.

Syntax

�� declare copy-namespaces preserve , inherit ; ��

preserve

Specifies that all in-scope namespaces of the original element are retained in the new copy.

inherit

Specifies that the copied node inherits in-scope namespaces from the constructed node.

Example

The following copy-namespace declaration is valid, but does not change the default behavior for element

construction:

declare copy-namespaces preserve, inherit;

 Related reference

 “In-scope namespaces of a constructed element” on page 82

Chapter 3. Prolog 41

Default element/type namespace declaration

The default element/type namespace declaration in the query prolog specifies the namespace to use for

the unprefixed QNames (qualified names) of element and type names.

The query prolog can contain one default element/type namespace declaration only. This declaration is in

scope throughout the query in which it is declared, unless the declaration is overridden by a namespace

declaration attribute in a direct element constructor. If no default element/type namespace is declared, then

unprefixed element and type names are not in any namespace.

The default element/type namespace does not apply to unqualified attribute names. Unprefixed attribute

names and variable names are in no namespace.

Syntax

�� declare default element namespace URILiteral ; ��

element

Specifies that the declaration is a default element/type namespace declaration.

URILiteral

Specifies a string literal that represents the URI for the namespace. The string literal must be a valid

URI or a zero-length string. If the string literal in a default element/type namespace declaration is a

zero-length string, then unprefixed element and type names are not in any namespace.

Example

The following declaration specifies that the default namespace for element and type names is the

namespace that is associated with the URI http://posample.org:

declare default element namespace "http://posample.org";

<name>Snow boots</name>

When the query in the example executes, the newly created node (an element node called name) is in the

namespace that is associated with the namespace URI http://posample.org.

 Related concepts

 “XML namespaces and QNames” on page 12

 Related reference

 “Namespace declaration” on page 44

 “Namespace declaration attributes” on page 79

 “Direct element constructors” on page 76

Default function namespace declaration

The default function namespace declaration in the query prolog specifies a namespace URI that is used

for unprefixed function names in function calls.

The query prolog can contain one default function namespace declaration only. If no default function

namespace is declared, the default function namespace is the namespace of XPath and XQuery functions,

http://www.w3.org/2005/xpath-functions. If you declare a default function namespace, you can invoke

any function in the default function namespace without specifying a prefix.

DB2 returns an error if the local name for an unprefixed function call does not match a function in the

default function namespace.

42 IBM DB2 XQuery Reference

Syntax

�� declare default function namespace URILiteral ; ��

function

Specifies that the declaration is a default function namespace declaration

URILiteral

Specifies a string literal that represents the URI for the namespace. The string literal must be a valid

URI or a zero-length string. If the string literal in a default function namespace declaration is a

zero-length string, all function calls must use prefixed function names because every function is in

some namespace.

Example

The following declaration specifies that the default function namespace is associated with the URI

http://www.ibm.com/xmlns/prod/db2/functions:

declare default function namespace "http://www.ibm.com/xmlns/prod/db2/functions";

Within the query body for this example, you could refer to any function in the default function namespace

without including a prefix in the function name. This default function namespace includes the function

xmlcolumn, so you can type xmlcolumn(’T1.MYDOC’) instead of typing db2-fn:xmlcolumn(’T1.MYDOC’).

However, because the default function namespace in this example is no longer associated with the

namespace for XQuery functions, you would need to specify a prefix when you call XQuery built-in

functions. For example, you must type fn:current-date() instead of typing current-date().

 Related concepts

 Chapter 5, “Built-in functions,” on page 105

Empty order declaration

An empty order declaration in the query prolog controls whether an empty sequence or a NaN value is

interpreted as the greatest value or as the least value when an order by clause in a FLWOR expression is

processed.

In DB2 XQuery, an empty sequence is always interpreted as the greatest value during processing of an

order by clause in a FLWOR expression. A NaN value is interpreted as greater than all other values

except an empty sequence. This setting cannot be overridden. An empty order declaration that specifies a

value other than empty greatest results in an error. The query prolog can contain only one empty order

declaration for a query.

Syntax

�� declare default order empty greatest ; ��

greatest

Specifies that an empty sequence is always interpreted as the greatest value during processing of an

order by clause in a FLWOR expression. A NaN value is interpreted as greater than all other values

except an empty sequence.

Example

The following empty order declaration is valid:

declare default order empty greatest;

 Related reference

 “order by clauses” on page 95

Chapter 3. Prolog 43

Ordering mode declaration

An ordering mode declaration in the query prolog sets the ordering mode for the query. The ordering mode

defines the ordering of nodes in the query result.

Because DB2 does not support ordered mode as defined in XQuery 1.0: An XML Query Language, the

ordering mode declaration, if present, must specify unordered. For the rules that govern the order of query

results in DB2, see “Order of results in XQuery expressions” on page 48.

The query prolog can contain only one ordering mode declaration. An ordering mode declaration that

specifies a value other than unordered results in an error.

Syntax

�� declare ordering unordered ; ��

unordered

Specifies that the rules for ordered mode in XQuery 1.0: An XML Query Language are not in effect.

For the rules that govern the order of query results in DB2, see “Order of results in XQuery

expressions” on page 48.

Example

The following declaration is valid, but it does not change the default behavior of ordering because DB2

supports only unordered mode:

declare ordering unordered;

 Related reference

 “Order of results in XQuery expressions” on page 48

Namespace declaration

A namespace declaration in the query prolog declares a namespace prefix and associates the prefix with a

namespace URI. An association between a prefix and a namespace URI is called a namespace binding. A

namespace that is bound in a namespace declaration is added to the statically known namespaces. The

statically known namespaces consist of all of the namespace bindings that can be used to resolve

namespace prefixes during the processing of a query.

The namespace declaration is in scope throughout the query in which it is declared, unless the declaration

is overridden by a namespace declaration attribute in a direct element constructor. Multiple declarations of

the same namespace prefix in the query prolog result in an error.

Syntax

�� declare namespace prefix = URILiteral ; ��

prefix

Specifies a namespace prefix that is bound to the URI that is specified by URILiteral. The namespace

prefix is used in qualified names (QNames) to identify the namespace for an element, attribute, data

type, or function.

 The prefixes xmlns and xml are reserved and cannot be specified as prefixes in namespace

declarations.

URILiteral

Specifies the URI to which the prefix is bound. URILiteral must be a non-zero-length literal string that

contains a valid URI.

44 IBM DB2 XQuery Reference

Example

The following query includes a namespace declaration that declares the namespace prefix ns1 and

associates it with the namespace URI http://posample.org:

declare namespace ns1 = "http://posample.org";

<ns1:name>Thermal gloves</ns1:name>

When the query in the example executes, the newly created node (an element node called name) is in the

namespace that is associated with the namespace URI http://posample.org.

Predeclared namespace prefixes

XQuery has several predeclared namespace prefixes that are present in the statically known namespaces

before each query is processed. You can use any of the predeclared prefixes without an explicit

declaration. The predeclared namespace prefixes for DB2 XQuery include the prefix and URI pairs that are

shown in the following table:

 Table 11. Predeclared namespaces in DB2 XQuery

Prefix URI Description

xml http://www.w3.org/XML/1998/namespace XML reserved namespace

xs http://www.w3.org/2001/XMLSchema XML Schema namespace

xsi http://www.w3.org/2001/XMLSchema-instance XML Schema instance

namespace

fn http://www.w3.org/2005/xpath-functions Default function namespace

xdt http://www.w3.org/2005/xpath-datatypes XQuery type namespace

db2-fn http://www.ibm.com/xmlns/prod/db2/functions DB2 function namespace

You can override predeclared namespace prefixes by specifying a namespace declaration in a query

prolog. However, you cannot override the URI that is associated with the prefix xml.

 Related concepts

 “XML namespaces and QNames” on page 12

 Related reference

 “Namespace declaration attributes” on page 79

 “Default element/type namespace declaration” on page 42

Chapter 3. Prolog 45

46 IBM DB2 XQuery Reference

Chapter 4. Expressions

Expressions are the basic building blocks of a query. Expressions can be used alone or in combination

with other expressions to form complex queries. DB2 XQuery supports several kinds of expressions for

working with XML data.

Concepts for expression processing

The following topics describe certain operations that are often included in the processing of expressions.

This includes extracting atomic values from nodes, using type promotion and subtype substitution to obtain

values of an expected type, and computing the Boolean value of a sequence.

Dynamic context and focus

The dynamic context of an expression is the information that is available at the time that the expression is

evaluated. The focus, which consists of the context item, context position, and context size, is an important

part of the dynamic context.

The focus changes as DB2 processes each item in a sequence. The focus consists of the following

information:

Context item

The atomic value or node that is currently being processed. The context item can be retrieved by

the context item expression, which consists of a single dot (.).

Context position

The position of the context item in the sequence that is currently being processed. The context

item can be retrieved by the fn:position() function.

Context size

The number of items in the sequence that is currently being processed. The context size can be

retrieved by the fn:last() function.

 Related concepts

 “Sequences and items” on page 4

 Related reference

 “Context item expressions” on page 55

 “last function” on page 126

 “position function” on page 138

Precedence

The XQuery grammar defines a built-in precedence among operators and expressions. If an expression

that has a lower precedence is used as an operand of an expression that has a higher precedence, the

expression that has a lower precedence must be enclosed in parentheses.

The following table lists XQuery operators and expressions in order of their precedence from lowest to

highest. The associativity column indicates the order in which operators or expressions of equal

precedence are applied.

 Table 12. Precedence in DB2 XQuery

Operator or expression Associativity

, (comma) left-to-right

:= (assignment) right-to-left

FLWOR, some, every, if left-to-right

© Copyright IBM Corp. 2006 47

Table 12. Precedence in DB2 XQuery (continued)

Operator or expression Associativity

or left-to-right

and left-to-right

eq, ne, lt, le, gt, ge, =, !=, <, <=, >, >=, is, <<, >> left-to-right

to left-to-right

+, - left-to-right

*, div, idiv, mod left-to-right

union, | left-to-right

intersect, except left-to-right

cast left-to-right

-(unary), +(unary) right-to-left

? left-to-right

/, // left-to-right

[], (), {} left-to-right

 Related reference

 “Parenthesized expression” on page 55

 “Arithmetic expressions” on page 67

Order of results in XQuery expressions

In DB2, some kinds of expressions return sequences in a deterministic order while other kinds of

expressions do not.

The following kinds of expressions return sequences in a deterministic order:

v FLWOR expressions that contain an explicit order by clause return results in the order specified. For

example, the following expression returns a sequence of product elements in ascending order by price:

for $p in /product

order by $p/price

return $p

v Expressions that combine sequences with the union, intersect, or except operator return results in

document order.

v Path expressions that satisfy the following conditions return results in document order:

– The path expression contains only forward-axis steps.

– The path expression has its origin in a single node, such as might result from a function call or a

variable reference.

– No step in the path expression contains more than a single predicate.

– The path expression does not contain a fn:position function call or a fn:last function call.

The following example is a path expression that returns results in document order, assuming that the

variable $bib is bound to a single element.

 $bib/book[title eq "War and Peace"]/chapter

v Range expressions, which are expressions that contain the to operator, return sequences of integers in

ascending order. For example: 15 to 25.

v Expressions that contain comma operators, if all the operands are sequences with deterministic order,

return results in the order of their operands. For example the following expression returns the sequence

(5, 10, 15, 16, 17, 18, 19, 20, 25):

(5, 10, 15 to 20, 25)

48 IBM DB2 XQuery Reference

v Other expressions that contain operand expressions that return results in deterministic order return

results in a deterministic order. For example, assuming the variable $pub is bound to a single element,

the following conditional expression returns ordered results because the path expressions in the then

and else clauses return ordered results:

if ($pub/type eq "journal")

then $pub/editor

else $pub/author

If an expression that is not listed in the previous list returns more than one item, the order of items in the

sequence is nondeterministic.

 Table 13. Summary of ordering of results in XQuery expressions

Expression kind

Conditions for a

deterministic ordering Ordering of results Example

FLWOR Explicit order by clause Determined by the order by

clause

The following expression

returns a sequence of

product elements in

ascending order by price:

for $p in /product

order by $p/price

return $p

Expressions with union,

intersect, or except

operators

None Document order $managers union $students

Path expressions v The path expression

contains only

forward-axis steps.

v The path expression has

its origin in a single

node, such as might

result from a function call

or a variable reference.

v No step in the path

expression contains more

than a single predicate.

v The path expression

does not contain a

fn:position function call or

a fn:last function call.

Document order The following example is a

path expression that returns

results in document order,

assuming that the variable

$bib is bound to a single

element.

$bib/book

[title eq

"War and Peace"]

/chapter

Range expressions, which

are expressions that contain

the to operator

None Sequence of integers in

ascending order

15 to 25

Other expressions Operand expressions all

return results that are in a

deterministic order

Determined by the ordering

of the results of the nested

expressions

Assuming the variable $pub

is bound to a single

element, the following

conditional expression

returns ordered results

because the path

expressions in the then and

else clauses return ordered

results:

if ($pub/type

eq "journal")

then $pub/editor

else $pub/author

Chapter 4. Expressions 49

Note: If a positional predicate is applied to a sequence that does not have a deterministic order, the result

is nondeterministic, which means that any item in the sequence can be selected.

 Related reference

 “Ordering mode declaration” on page 44

 “order by clauses” on page 95

 “Conditional expressions” on page 100

 “Path expressions” on page 56

Atomization

Atomization is the process of converting a sequence of items into a sequence of atomic values.

Atomization is used by expressions whenever a sequence of atomic values is required.

Each item in a sequence is converted to an atomic value by applying the following rules:

v If the item is an atomic value, then the atomic value is returned.

v If the item is a node, then its typed value is returned. The typed value of a node is a sequence of zero

or more atomic values that can be extracted from the node. If the node has no typed value, then an

error is returned.

Implicit atomization of a sequence produces the same result as invoking the fn:data function explicitly on a

sequence.

For example, the following sequence contains a combination of nodes and atomic values:

("Some text",<anElement xsi:type="string">More text</anElement>,

<anotherElement xsi:type="decimal">1.23</anotherElement>,1001)

Applying atomization to this sequence results in the following sequence of atomic values:

("Some text", "More text", 1.23, 1001)

The following XQuery expressions use atomization to convert items into atomic values:

v Arithmetic expressions

v Comparison expressions

v Function calls with arguments whose expected types are atomic

v Cast expressions

v Constructor expressions for various kinds of nodes

v order by clauses in FLWOR expressions

v Type constructor functions

 Related concepts

 “Sequences and items” on page 4

 “Atomic values” on page 4

 “Typed values and string values of nodes” on page 10

 Related reference

 “data function” on page 117

Subtype substitution

Subtype substitution is the use of a value whose dynamic type is derived from an expected type.

Subtype substitution does not change the actual type of a value. For example, if an xs:integer value is

used where an xs:decimal value is expected, the value retains its type as xs:integer.

In the following example, the fn:compare function compares an xs:string value to an xs:NCName value:

50 IBM DB2 XQuery Reference

fn:compare("product", xs:NCName("product"))

The returned value is 0, which means that the arguments compare as equal. Although the fn:compare

function expects arguments of type xs:string, the function can be invoked with a value of type xs:NCNAME

because this type is derived from xs:string.

Subtype substitution is used whenever an expression is passed a value that is derived from an expected

type.

 Related concepts

 “The type hierarchy” on page 17

 Chapter 2, “Type system,” on page 17

Type promotion

Type promotion is a process that converts an atomic value from its original type to the type that is

expected by an expression. XQuery uses type promotion during the evaluation of function calls, order by

clauses, and operators that accept numeric or string operands.

XQuery permits the following type promotions:

Numeric type promotion:

A value of type xs:float (or any type that is derived by restriction from xs:float) can be promoted to

the type xs:double. The result is the xs:double value that is the same as the original value.

 A value of type xs:decimal (or any type that is derived by restriction from xs:decimal) can be

promoted to either of the types xs:float or xs:double. The result of this promotion is created by

casting the original value to the required type. This kind of promotion might cause loss of

precision.

In the following example, a sequence that contains the xs:double value 13.54e-2 and the

xs:decimal value 100 is passed to the fn:sum function, which returns a value of type xs:double:

fn:sum(xs:double(13.54e-2), xs:decimal(100))

URI type promotion:

A value of type xs:anyURI (or any type that is derived by restriction from xs:anyURI) can be

promoted to the type xs:string. The result of this promotion is created by casting the original value

to the type xs:string.

 In the following example, the URI value is promoted to the expected type xs:string, and the

function returns 18:

fn:string-length(xs:anyURI("http://example.com"))

Note that type promotion and subtype substitution differ in the following ways:

v For type promotion, the atomic value is actually converted from its original type to the type that is

expected by an expression.

v For subtype substitution, an expression that expects a specific type can be invoked with a value that is

derived from that type. However, the value retains its original type.

 Related concepts

 Chapter 2, “Type system,” on page 17

Effective Boolean value

The effective boolean value (EBV) of a sequence is computed implicitly during the processing of

expressions that require Boolean values. The EBV of a value is determined by applying the fn:boolean

function to a value.

Chapter 4. Expressions 51

The following table describes the EBVs that are returned for specific types of values.

 Table 14. EBVs returned for specific types of values in XQuery

Description of value EBV returned

An empty sequence false

A sequence whose first item is a node true

A single value of type xs:boolean (or derived from

xs:boolean)

false - if the xs:boolean value is false

true - if the xs:boolean value is true

A single value of type xs:string or xdt:untypedAtomic (or

derived from one of these types)

false - if the length of the value is zero

true - if the length if the value is greater than zero

A single value of any numeric type (or derived from a

numeric type)

false - if the value is NaN or is numerically equal to zero

true - if the value is not numerically equal to zero

All other values error

Note: The effective boolean value of a sequence that contains at least one node and at least one atomic value is

nondeterministic in a query where the order is unpredictable.

The effective boolean value of a sequence is computed implicitly when the following types of expressions

are processed:

v Logical expressions (and, or)

v The fn:not function

v The where clause of a FLWOR expression

v Certain types of predicates, such as a[b]

v Conditional expressions (if)

v Quantified expressions (some, every)

 Related reference

 “boolean function” on page 111

 “Logical expressions” on page 73

Primary expressions

Primary expressions are the basic primitives of the language. They include literals, variable references,

parenthesized expressions, context item expressions, constructors, and function calls.

Literals

A literal is a direct syntactic representation of an atomic value. DB2 XQuery supports two kinds of literals:

numeric literals and string literals.

A numeric literal is an atomic value of type xs:integer, xs:decimal, or xs:double:

v A numeric literal that contains no decimal point (.) and no e or E character is an atomic value of type

xs:integer. For example, 12 is a numeric literal.

v A numeric literal that contains a decimal point (.), but no e or E character is an atomic value of type

xs:decimal. For example, 12.5 is a numeric literal.

v A numeric literal that contains an e or E character is an atomic value of type xs:double. For example,

125E2 is a numeric literal.

Values of numeric literals are interpreted according to the rules of XML Schema.

52 IBM DB2 XQuery Reference

A string literal is an atomic value of type xs:string that is enclosed in delimiting single quotation marks (’) or

double quotation marks (″). String literals can include predefined entity references and character

references. For example, the following strings are valid string literals:

"12.5"

"He said, ""Let it be."""

’She said: "Why should I?"’

"Ben & Jerry's"

"€65.50" (: denotes the string €65.50 :)

Tip: To include a single quotation mark within a string literal that is delimited by single quotation marks,

specify two adjacent single quotation marks. Similarly, to include a double quotation mark within a

string literal that is delimited by double quotation marks, specify two adjacent double quotation marks.

Within a string literal, line endings are normalized according to the rules for XML 1.0 (Third Edition). Any

two-character sequence that contains a carriage return (X’0D’) followed by a line feed (X’0A’) is translated

into a single line feed (X’0A’). Any carriage return (X’0D’) that is not followed by a line feed (X’0A’) is

translated into a single line feed (X’0A’).

If the value that you want to instantiate has no literal representation, you can use a constructor function or

built-in function to return the value. The following functions and constructors return values that have no

literal representation:

v The built-in functions fn:true() and fn:false() return the boolean values true and false, respectively.

These values can also be returned by the constructor functions xs:boolean(″false″) and

xs:boolean(″true″).

v The constructor function xs:date("2005-04-16") returns an item whose type is xs:date and whose value

represents the date April 16, 2005.

v The constructor function xdt:dayTimeDuration("PT4H") returns an item whose type is

xdt:dayTimeDuration and whose value represents a duration of four hours.

v The constructor function xs:float("NaN") returns the special floating-point value, ″Not a Number.″

v The constructor function xs:double("INF") returns the special double-precision value, ″positive infinity.″

 Related concepts

 “Atomic values” on page 4

 “Constructor functions for built-in data types” on page 22

 Chapter 5, “Built-in functions,” on page 105

 Related reference

 “Size limits” on page 162

Predefined entity references

A predefined entity reference is a short sequence of characters that represents a character that has some

syntactic significance in DB2 XQuery. A predefined entity reference begins with an ampersand (&) and

ends with a semicolon (;). When a string literal is processed, each predefined entity reference is replaced

by the character that it represents.

The following table lists the predefined entity references that DB2 XQuery recognizes.

 Table 15. Predefined entity references in DB2 XQuery

Entity reference Character represented

< <

> >

& &

" ″

' ’

Chapter 4. Expressions 53

Related reference

 “Character references”

Character references

A character reference is an XML-style reference to a Unicode character that is identified by its decimal or

hexadecimal code point.

A character reference begins with either &#x or &#, and it ends with a semicolon (;). If the character

reference begins with &#x, the digits and letters before the terminating semicolon (;) provide a hexadecimal

representation of the character’s code point in the ISO/IEC 10646 standard. If the character reference

begins with &#, the digits before the terminating semicolon (;) provide a decimal representation of the

character’s code point.

Example

The character reference € or € represents the Euro symbol (€).

 Related reference

 “Predefined entity references” on page 53

Variable references

A variable reference is an NCName that is preceded by a dollar sign ($). When a query is evaluated, each

variable reference resolves to the value that is bound to the variable. Every variable reference must match

a name in the in-scope variables at the point of reference.

Variables are added to the in-scope variables in the following ways:

v A variable can be added to the in-scope variables by the host language environment, SQL/XML, through

the XMLQUERY function, the XMLTABLE function, or the XMLEXISTS predicate. A variable that is

added by SQL/XML is in scope for the entire query unless the variable is overridden by another binding

of the same variable in an XQuery expression.

v A variable can be bound to a value by an XQuery expression. The kinds of expressions that can bind

variables are FLWOR expressions and quantified expressions. Function calls also bind values to the

formal parameters of functions before executing the function body. A variable that is bound by an

XQuery expression is in scope throughout the expression in which it is bound.

A variable name cannot be declared more than once in a FLWOR expression. For example, DB2 does

not support the following expression:

for $i in (1, 2)

for $i in ("a", "b")

return $i

If a variable reference matches two or more variable bindings that are in scope, then the reference refers

to the inner binding (the binding whose scope is smaller).

Tip: To make your code easier to read, use unique names for variables within a query.

Example

In the following example, a FLWOR expression binds the variable $seq to the sequence (10, 20, 30):

let $seq := (10, 20, 30)

return $seq[2];

The returned value is 20.

 Related reference

 “FLWOR expressions” on page 89

54 IBM DB2 XQuery Reference

“Quantified expressions” on page 101

Parenthesized expression

Parentheses can be used to enforce a particular order of evaluation in expressions that contain multiple

operators.

For example, the expression (2 + 4) * 5 evaluates to thirty, because the parenthesized expression (2 +

4) is evaluated first, and its result is multiplied by five. Without parentheses, the expression 2 + 4 * 5

evaluates to twenty-two, because the multiplication operator has higher precedence than the addition

operator.

Empty parentheses denote an empty sequence.

 Related reference

 “Precedence” on page 47

 “Arithmetic expressions” on page 67

Context item expressions

A context item expression consists of a single period character (.). A context item expression evaluates to

the item that is currently being processed, which is known as the context item. The context item can be

either a node or an atomic value. Context items are defined only in path expressions and predicate

expressions.

Example

The following example contains a context item expression that invokes the modulus operator on every item

in the sequence that is returned by the range expression 1 to 100:

(1 to 100)[. mod 5 eq 0]

The result of this example is the sequence of integers between 1 and 100 that are evenly divisible by 5.

 Related reference

 “Dynamic context and focus” on page 47

 “Predicates” on page 63

 “Path expressions” on page 56

Function calls

A function call consists of a QName that is followed by a parenthesized list of zero or more expressions,

which are called arguments. DB2 XQuery supports calls to built-in XQuery functions and DB2-specific

functions.

Built-in XQuery functions are in the namespace http://www.w3.org/2005/xpath-functions, which is bound

to the prefix fn. DB2-specific functions are in the namespace http://www.ibm.com/xmlns/prod/db2/
functions, which is bound to the prefix db2-fn. If the QName in the function call has no namespace

prefix, the function must be in the default function namespace. The default function namespace is the

namespace of built-in XQuery functions (bound to the prefix fn) unless the namespace is overridden by a

default function declaration in the query prolog.

Important: Because the arguments of a function call are separated by commas, you must use

parentheses to enclose argument expressions that contain top-level comma operators.

The following steps explain the process that DB2 XQuery uses to evaluate functions:

1. DB2 XQuery evaluates each expression that is passed as an argument in the function call and returns

a value for each expression.

Chapter 4. Expressions 55

2. The value that is returned for each argument is converted to the data type that is expected for that

argument. When the argument expects an atomic value or a sequence of atomic values, DB2 XQuery

uses the following rules to convert the value of the argument to its expected type:

a. Atomization is applied to the given value. This results in a sequence of atomic values.

b. Each item in the atomic sequence that is of type xdt:untypedAtomic is cast to the expected atomic

type. For built-in functions that expect numeric arguments, arguments of type xdt:untypedAtomic

are cast to xs:double.

c. Numeric type promotion is applied to any numeric item in the atomic sequence that can be

promoted to the expected atomic type. Numeric items include items of type xs:integer (or derived

from xs:integer), xs:decimal, xs:float, or xs:double.

d. If the expected type is xs:string, each item in the atomic sequence that is of type xs:anyURI, or

derived from xs:anyURI, is promoted to xs:string

3. The function is evaluated using the converted values of its arguments. The result of the function call is

either an instance of the function’s declared return type or an error.

Examples

Function call with a string argument: The following function call takes an argument of type xs:string and

returns a value of type xs:string in which all characters are in uppercase:

fn:upper-case($ns1_customerinfo/ns1:addr/@country)

In this example, the argument that is passed to the fn:upper-case function is a path expression. When the

function is invoked, the path expression is evaluated and the resulting node sequence is atomized. Each

atomic value in the sequence is cast to the expected type, xs:string. The function is evaluated and returns

a sequence of atomic values of type xs:string.

Function call with a sequence argument: The following function takes a sequence, (1, 2, 3), as the

single argument.

fn:max((1, 2, 3))

Because the function fn:max expects a single argument that is a sequence of atomic values, nested

parentheses are required. The returned value is 3.

 Related concepts

 “XML namespaces and QNames” on page 12

 Chapter 5, “Built-in functions,” on page 105

 “Type promotion” on page 51

 “Atomization” on page 50

Path expressions

Path expressions identify nodes within an XML tree. Path expressions in DB2 XQuery are based on the

syntax of XPath 2.0.

A path expression consists of one or more steps that are separated by slash (/) or double-slash (//)

characters. A path expression can begin with a step or with a slash or double-slash character. Each step

before the final step generates a sequence of nodes that are used as context nodes for the step that

follows.

The first step specifies the starting point of the path, often by using a function call or variable reference

that returns a node or sequence of nodes. An initial ″/″ indicates that the path begins at the root node of

the tree that contains the context node. An initial ″//″ indicates that the path begins with an initial node

sequence that consists of the root node of the tree that contains the context node, plus all of the

descendants of the root node.

56 IBM DB2 XQuery Reference

Each step is executed repeatedly, once for each context node that is generated by the previous step. The

results of these repeated executions are then combined to form the sequence of context nodes for the

step that follows. Duplicate nodes are eliminated from this combined sequence, based on node identity.

The value of the path expression is the combined sequence of items that results from the final step in the

path. This value can be either a sequence of nodes or a sequence of atomic values. Because each step in

a path provides context nodes for the step that follows, the final step in a path is the only step that can

return a sequence of atomic values. A path expression that returns a mixture of nodes and atomic values

results in an error.

The node sequence that results from a path expression is not guaranteed to be in a specific order. To

understand when a path expression returns ordered results, see the topic that describes the order of

results in XQuery expressions.

 Related concepts

 “Node hierarchies” on page 5

 Related reference

 “Order of results in XQuery expressions” on page 48

Syntax of path expressions

Each step of a path expression is either an axis step or a filter expression. An axis step returns a

sequence of nodes that are reachable from the context node via a specified axis. A filter expression

consists of a primary expression that is followed by zero or more predicates.

��

/

//

�

 / or //

axis

step

filter

expression

��

axis step:

�

node-test

axis::

[PredicateExpression]

filter expression:

�

PrimaryExpression

[PredicateExpression]

/ An initial slash character (/) indicates that the path begins at the root node, which must be a document

node, of the tree that contains the context node. Slash characters within a path expression separate

steps.

// An initial double slash character (//) indicates that the path begins with an initial node sequence that

consists of the root node, which must be a document node, of the tree that contains the context node,

plus all of the descendants of the root node. To understand the meaning of a double slash character

between steps, see the topic about abbreviated syntax.

axis

A direction of movement through an XML document or fragment. The list of supported axes includes

child, descendant, attribute, self, descendant-or-self, and parent. Some of these axes can be

represented by using an abbreviated syntax.

Chapter 4. Expressions 57

node-test

A condition that must be true for each node that is selected by an axis step. This test can be either a

name test that selects nodes based on the name of the node or a kind test that selects nodes based

on the kind of node.

PrimaryExpression

A primary expression.

PredicateExpression

An expression that determines whether items of the sequence are retained or discarded.

Examples

The following example shows an axis step that includes two predicates. This step selects all the employee

children of the context node that have both a secretary child element and an assistant child element:

child::employee[secretary][assistant]

The following example uses a filter expression as a step in a path expression. The expression returns

every chapter or appendix that contains more than one footnote within a given book:

$book/(chapter | appendix)[fn:count(footnote) > 1]

 Related reference

 “Axis steps”

 “Abbreviated syntax for path expressions” on page 61

 “Primary expressions” on page 52

 “Predicates” on page 63

 “Filter expressions” on page 65

Axis steps

An axis step consists of three parts: an optional axis, which specifies a direction of movement; a node test,

which specifies the criteria that is used to select nodes; and zero or more predicates, which filter the

sequence that is returned by the step. The result of an axis step is always a sequence of zero or more

nodes.

An axis step can be either a forward step, which starts at the context node and moves through the XML

tree in document order, or a reverse step, which starts at the context node and moves through the XML

tree in reverse document order. If the context item is not a node, then the expression results in an error.

The unabbreviated syntax for an axis step consists of an axis name and node test that are separated by a

double colon, followed by zero or more predicates. The syntax of an axis expression can be abbreviated

by omitting the axis and using shorthand notations.

In the following example, child is the name of the axis and para is the name of the element nodes to be

selected on this axis.

child::para

The axis step in this example selects all para elements that are children of the context node.

 Related concepts

 “Node hierarchies” on page 5

 Related reference

 “Predicates” on page 63

 “Abbreviated syntax for path expressions” on page 61

58 IBM DB2 XQuery Reference

Axes

An axis is a part of an axis step that specifies a direction of movement through an XML document.

An axis can be either a forward or reverse axis. A forward axis contains the context node and nodes that

are after the context node in document order. A reverse axis contains the context node and nodes that are

before the context node in document order.

The following table describes the axes that are supported in DB2 XQuery.

 Table 16. Supported axes in DB2 XQuery

Axis Description Direction Notes

child Returns the children of the

context node.

Forward Document nodes and element nodes are the only

nodes that have children. If the context node is any

other kind of node, or if the context node is a

document or element node without any children, the

child axis is an empty sequence. The children of a

document node or element node can be element,

processing instruction, comment, or text nodes.

Attribute and document nodes can never appear as

children.

descendant Returns the descendants of the

context node (the children, the

children of the children, and so

on).

Forward

attribute Returns the attributes of the

context node.

Forward This axis is empty if the context node is not an

element node.

self Returns the context node only. Forward

descendant-

or-

self

Returns the context node and the

descendants of the context node.

Forward

parent Returns the parent of the context

node, or an empty sequence if

the context node has no parent.

Reverse An element node can be the parent of an attribute

node even though an attribute node is never a child

of an element node.

When an axis step selects a sequence of nodes, each node is assigned a context position that

corresponds to its position in the sequence. If the axis is a forward axis, context positions are assigned to

the nodes in document order, starting with 1. If the axis is a reverse axis, context positions are assigned to

the nodes in reverse document order, starting with 1. Context position assignments allow you to select a

node from the sequence by specifying its position.

 Related reference

 “Node tests”

 “Predicates” on page 63

Node tests

A node test is a condition that must be true for each node that is selected by an axis step. The node test

can be expressed as either a name test or a kind test. A name test selects nodes based on the name of

the node. A kind test selects nodes based on the kind of node.

Name tests

A name test consists of a QName or a wildcard. When a name test is specified in an axis step, the step

selects the nodes on the specified axis that match the QName or wildcard. If the name test is specified on

the attribute axis, then the step selects any attributes that match the name test. On all other axes, the step

Chapter 4. Expressions 59

selects any elements that match the name test. The QNames match if the expanded QName of the node

is equal (on a codepoint basis) to the expanded QName that is specified in the name test. Two expanded

QNames are equal if their namespace URIs are equal and their local names are equal (even if their

namespace prefixes are not equal).

Important: Any prefix that is specified in a name test must correspond to one of the statically known

namespaces for the expression. For name tests that are performed on the attribute axis,

unprefixed QNames have no namespace URI. For name tests that are performed on all other

axes, unprefixed QNames have the namespace URI of the default element/type namespace.

The following table describes the name tests that are supported in DB2 XQuery.

 Table 17. Supported name tests in DB2 XQuery

Test Description Examples

QName Matches any nodes (on the specified axis)

whose QName is equal to the specified

QName. If the axis is an attribute axis, this test

matches attribute nodes. On all other axes, this

test matches element nodes.

In the expression child::para, the name test

para selects all of the para elements on the

child axis.

* Matches all nodes on the specified axis. If the

axis is an attribute axis, this test matches all

attribute nodes. On all other axes, this test

matches all element nodes.

In the expression, child::*, the name test *

matches all of the elements on the child axis.

NCName:* Specifies an NCName that represents the prefix

part of a QName. This name test matches all

nodes (on the specified axis) whose

namespace URI matches the namespace URI

to which the prefix is bound. If the axis is an

attribute axis, this test matches attribute nodes.

On all other axes, this test matches element

nodes.

In the expression child::ns1:*, the name test

ns1:* matches all of the elements on the child

axis that are associated with the namespace

that is bound to the prefix ns1.

*:NCName Specifies an NCName that represents the local

part of a QName. This name test matches any

nodes (on the specified axis) whose local name

is equal to the NCName. If the axis is an

attribute axis, this test matches attribute nodes.

On all other axes, this test matches element

nodes.

In the expression child::*:customerinfo, the

name test *:customerinfo matches all of the

elements on the child axis that have the local

name customerinfo, regardless of the

namespace that is associated with the element

name.

Kind tests

When a kind test is specified in an axis step, the step selects only those nodes on the specified axis that

match the kind test. The following table describes the kind tests that are supported in DB2 XQuery.

 Table 18. Supported kind tests in DB2 XQuery

Test Description Examples

node() Matches any node on the specified axis. In the expression child::node(), the kind

test node() selects any nodes on the child

axis.

text() Matches any text node on the specified

axis.

In the expression child::text(), the kind

test text() selects any text nodes on the

child axis.

comment() Matches any comment node on the

specified axis.

In the expression child::comment(), the

kind test comment() selects any comment

nodes on the child axis.

60 IBM DB2 XQuery Reference

Table 18. Supported kind tests in DB2 XQuery (continued)

Test Description Examples

processing-instruction() Matches any processing-instruction node

on the specified axis.

In the expression child::processing-
instruction(), the kind test

processing-instruction() selects any

processing instruction nodes on the child

axis.

element() or element(*) Matches any element node on the

specified axis.

In the expression child::element(), the

kind test element() selects any element

nodes on the child axis. In the expression

child::element(*), the kind test

element(*) selects any element nodes on

the child axis.

attribute() or attribute(*) Matches any attribute node on the

specified axis.

In the expression child::attribute(), the

kind test attribute() selects any attribute

nodes on the child axis. In the expression

child::attribute(*), the kind test

attribute(*) selects any attribute nodes

on the child axis.

document-node() Matches any document node on the

specified axis.

In the expression self::document-node(),

the kind test document-node() selects a

document node that is the context node.

 Related reference

 “Axes” on page 59

 “Predicates” on page 63

Abbreviated syntax for path expressions

XQuery provides an abbreviated syntax for expressing axes in path expressions.

The following table describes the abbreviations that are allowed in path expressions.

 Table 19. Abbreviated syntax for path expressions

Abbreviated syntax Description Examples

no axis specified Shorthand abbreviation for child:: except

when the axis step specifies attribute() for

the node test. When the axis step specifies an

attribute test, an omitted axis is shorthand for

attribute::.

The path expression section/para is an

abbreviation for child::section/child::para.

The path expression section/attribute() is

an abbreviation for child::section/
attribute::attribute().

@ Shorthand abbreviation for attribute:: . The path expression section/@id is an

abbreviation for child::section/
attribute::id.

// Shorthand abbreviation for

/descendant-or-self::node()/, except when

this abbreviation appears at the beginning of

the path expression.

When this abbreviation appears at the

beginning of the path expression, the axis step

selects an initial node sequence that contains

the root of the tree in which the context node

is found, plus all nodes that are descended

from this root. This expression returns an error

if the root node is not a document node.

The path expression div1//para is an

abbreviation for child::div1/descendant-or-
self::node()/child::para .

Chapter 4. Expressions 61

Table 19. Abbreviated syntax for path expressions (continued)

Abbreviated syntax Description Examples

.. Shorthand abbreviation for parent::node(). The path expression ../title is an

abbreviation for parent::node()/child::title

.

Examples of abbreviated syntax and unabbreviated syntax

The following table provides examples of abbreviated syntax and unabbreviated syntax.

 Table 20. Unabbreviated syntax and abbreviated syntax

Unabbreviated syntax Abbreviated syntax Result

child::para para Selects the para elements

that are children of the

context node.

child::* * Selects all of the elements

that are children of the

context node.

child::text() text() Selects all of the text

nodes that are children of

the context node.

child::node() node() Selects all of the children

of the context node. This

expression returns no

attribute nodes because

attributes are not

considered children of a

node.

attribute::name @name Selects the name attribute

of the context node

attribute::* @* Selects all of the attributes

of the context node.

child::para[fn:position() = 1] para[1] Selects the first para

element that is a child of

the context node.

child::para[fn:position() = fn:last()] para[fn:last()] Selects the last para

element that is a child of

the context node.

/child::book/child::chapter[fn:position() = 5]

/child::section[fn:position() = 2]

/book/chapter[5]/section[2] Selects the second

section of the fifth chapter

of the book whose parent

is the document node that

contains the context node.

child::para[attribute::type="warning"] para[@type="warning"] Selects all para children of

the context node that have

a type attribute with the

value warning.

child::para[attribute::type=’warning’]

[fn:position() = 5]

para[@type="warning"][5] Selects the fifth para child

of the context node that

has a type attribute with

value warning.

62 IBM DB2 XQuery Reference

Table 20. Unabbreviated syntax and abbreviated syntax (continued)

Unabbreviated syntax Abbreviated syntax Result

child::para[fn:position() = 5]

[attribute::type="warning"]

para[5][@type="warning"] Selects the fifth para child

of the context node if that

child has a type attribute

with value warning.

child::chapter[child::title=’Introduction’] chapter[title="Introduction"] Selects the chapter

children of the context

node that have one or

more title children whose

typed value is equal to the

string Introduction.

child::chapter[child::title] chapter[title] Selects the chapter

children of the context

node that have one or

more title children.

 Related reference

 “Syntax of path expressions” on page 57

 “Axes” on page 59

Predicates

A predicate filters a sequence by retaining the qualifying items. A predicate consists of an expression,

called a predicate expression, that is enclosed in square brackets ([]). The predicate expression is

evaluated once for each item in the sequence, with the selected item as the context item. Each evaluation

of the predicate expression returns an xs:boolean value called the predicate truth value. Those items for

which the predicate truth value is true are retained, and those for which the predicate truth value is false

are discarded.

The following rules are used to determine the predicate truth value:

v If the predicate expression returns a non-numeric value, the predicate truth value is the effective

boolean value of the predicate expression.

v If the predicate expression returns a numeric value, the predicate truth value is true only for the item

whose position in the sequence is equal to that numeric value. For other items, the predicate truth value

is false. This kind of predicate is called a numeric predicate or positional predicate. For example, in the

expression $products[5], the numeric predicate [5] retains only the fifth item in the sequence bound to

the variable $products.

Important: The item that is selected from a sequence by a numeric predicate is deterministic only if the

sequence has a deterministic order.

Tip: The behavior of a predicate depends on whether the predicate expression returns a numeric value or

not, which might not be clear from looking at the predicate expression. You can force a predicate to

use an effective boolean value by using the fn:boolean function, as in

[fn:boolean(PredicateExpression)]. Alternatively, you can force a predicate to behave like a

positional predicate by using the fn:position function, as in [fn:position() eq PredicateExpression].

The following examples have predicates:

v chapter[2] selects the second chapter element that is a child of the context node.

v descendant::toy[@color = "Red"] selects all of the descendants of the context node that are elements

named toy and have a color attribute with the value ″Red″.

Chapter 4. Expressions 63

v employee[secretary][assistant] selects all of the employee children of the context node that have

both a secretary child element and an assistant child element.

v (<cat />, <dog />, 47, <zebra />)[2] returns the element <dog />.

 Related concepts

 “Effective Boolean value” on page 51

 Related reference

 “Order of results in XQuery expressions” on page 48

Sequence expressions

Sequence expressions construct, filter, and combine sequences of items. Sequences are never nested.

For example, combining the values 1, (2, 3), and () into a single sequence results in the sequence (1, 2,

3).

 Related concepts

 “Sequences and items” on page 4

Expressions that construct sequences

Sequences can be constructed by using either the comma operator or a range expression.

Comma operators

To construct a sequence by using the comma operator, specify two or more operands (expressions) that

are separated by commas. When the sequence expression is evaluated, the comma operator evaluates

each of its operands and concatenates the resulting sequences, in order, into a single result sequence.

For example, the following expression results in a sequence that contains five integers:

(15, 1, 3, 5, 7)

A sequence can contain duplicate atomic values and nodes. However, a sequence is never an item in

another sequence. When a new sequence is created by concatenating two or more input sequences, the

new sequence contains all of the items of the input sequences, and the length of the sequence is the sum

of the lengths of the input sequences.

The following expressions use the comma operator for sequence construction:

v This expression combines four sequences of length one, two, zero, and two, respectively, into a single

sequence of length five. The result of this expression is the sequence 10, 1, 2, 3, 4.

(10, (1, 2), (), (3, 4))

v The result of this expression is a sequence that contains all salary elements that are children of the

context node, followed by all bonus elements that are children of the context node.

(salary, bonus)

v Assuming that the variable $price is bound to the value 10.50, the result of this expression is the

sequence 10.50, 10.50.

($price, $price)

Range expressions

Range expressions construct a sequence of consecutive integers. A range expression consists of two

operands (expressions) that are separated by the to operator. The value of each operand must be

convertible to a value of type xs:integer. If either operand is an empty sequence, or if the integer that is

derived from the first operand is greater than the integer that is derived from the second operand, the

result of the range expression is an empty sequence. Otherwise, the result is a sequence that contains the

two integers that are derived from the operands and every integer between the two integers, in increasing

order. For example, the following range expression evaluates to the sequence 1, 2, 3, 4:

64 IBM DB2 XQuery Reference

(1 to 4)

The following examples use range expressions for sequence construction:

v This example uses a range expression as one operand in constructing a sequence. The sequence

expression evaluates to the sequence 10, 1, 2, 3, 4.

(10, 1 to 4)

v This example constructs a sequence of length one that contains the single integer 10.

10 to 10

v The result of this example is a sequence of length zero.

15 to 10

v This example uses the fn:reverse function to construct a sequence of six integers in decreasing order.

This sequence expression evaluates to the sequence 15, 14, 13, 12, 11, 10.

fn:reverse(10 to 15)

 Related concepts

 “Sequences and items” on page 4

Filter expressions

A filter expression consists of a primary expression that is followed by zero or more predicates. The

predicates, if present, filter the sequence that is returned by the primary expression.

The result of the filter expression consists of all of the items with a predicate truth value of true that are

returned by the primary expression. If no predicates are specified, the result is simply the result of the

primary expression. The items in the result sequence are in the same order as the items that are returned

by the primary expression. During evaluation of a predicate, each item has a context position that

represents its position in the sequence that is being filtered by that predicate. The first context position is

1.

Syntax

��

�

PrimaryExpression

[

PredicateExpression

]

��

PrimaryExpression

A primary expression.

PredicateExpression

An expression that determines whether items of the sequence are retained or discarded.

Examples

The following examples use filter expressions to return a filtered sequence:

v Given a sequence of products bound to a variable, this expression returns only those products with a

price that is greater than 100:

$products[price gt 100]

v This expression uses a range expression with a predicate to list all integers from 1 to 100 that are

divisible by 5. The range expression is processed as a primary expression because it is enclosed in

parentheses:

(1 to 100)[. mod 5 eq 0]

v This expression results in the integer 5:

(1 to 21)[5]

Chapter 4. Expressions 65

v This expression uses a filter expression as a step in a path expression. The expression returns the last

chapter or appendix within the book that is bound to the variable $book:

$book/(chapter | appendix)[fn:last()]

 Related concepts

 “Sequences and items” on page 4

 Related reference

 “Primary expressions” on page 52

 “Predicates” on page 63

Expressions for combining sequences of nodes

DB2 XQuery provides operators for combining sequences of nodes. These operators include union,

intersect, and except.

The following table describes the operators that are available for combining sequences of nodes.

 Table 21. XQuery operators for combining sequences of nodes

Operator Description

union or | Takes two node sequences as operands and returns a sequence that

contains all of the nodes that occur in either of the operands. The union

keyword and the | character are equivalent.

intersect Takes two node sequences as operands and returns a sequence that

contains all of the nodes that occur in both operands.

except Takes two node sequences as operands and returns a sequence that

contains all of the nodes that occur in the first operand but not in the

second operand.

All of these operators eliminate duplicate nodes from their result sequences based on node identity. The

resulting sequence is returned in document order.

The operands of union, intersect, or except must resolve to sequences that contain nodes only. If an

operand contains an item that is not a node, an error is returned.

In addition to the operators that are described in this topic, DB2 XQuery provides functions for indexed

access to items or sub-sequences of a sequence (fn:index-of), for indexed insertion or removal of items in

a sequence (fn:insert-before and fn:remove), and for removing duplicate items from a sequence

(fn:distinct-values).

Examples

In these examples, suppose that the variable $managers is bound to a set of employee nodes that

represent employees who are managers, and the variable $students is bound to a set of employee nodes

that represent employees who are students.

The following expressions are all valid examples that use operators to combine sequences of nodes:

v $managers union $students returns the set of nodes that represent employees who are either managers

or students.

v $managers intersect $students returns the set of nodes that represent employees who are both

managers and students.

v $managers except $students returns the set of nodes that represent employees who are managers but

not students.

 Related concepts

66 IBM DB2 XQuery Reference

“Sequences and items” on page 4

 “Node identity” on page 10

Arithmetic expressions

Arithmetic expressions perform operations that involve addition, subtraction, multiplication, division, and

modulus.

The following table describes the arithmetic operators and lists them in order of operator precedence from

highest to lowest. Unary operators have a higher precedence than binary operators unless parentheses

are used to force the evaluation of the binary operator.

 Table 22. Arithmetic operators in XQuery

Operator Purpose Associativity

-(unary),

+(unary)

negates value of operand, maintains value of

operand

right-to-left

*, div, idiv, mod multiplication, division, integer division, modulus left-to-right

+, - addition, subtraction left-to-right

Note: A subtraction operator must be preceded by whitespace if the operator could otherwise be interpreted as part of

a previous token. For example, a-b is interpreted as a name, but a - b and a -b are interpreted as arithmetic

operations.

The result of an arithmetic expression is a numeric value, an empty sequence, or an error. When an

arithmetic expression is evaluated, each operand is atomized (converted into an atomic value), and the

following rules are applied:

v If the atomized operand is an empty sequence, then the result of the arithmetic expression is an empty

sequence.

v If the atomized operand is a sequence that contains more than one value, an error is returned.

v If the atomized operand is an untyped atomic value (xdt:untypedAtomic), the value is cast to xs:double.

If the cast fails, an error is returned.

If the types of the operands, after evaluation, are a valid combination for the arithmetic operator, then the

operator is applied to the atomized operands, and the result of this operation is an atomic value or an

error (for example, an error might result from dividing by zero.) If the types of the operands are not a valid

combination for the arithmetic operator, an error is returned.

Table 23 on page 68 identifies valid combinations of types for arithmetic operators. In this table, the letter

A represents the first operand in the expression, and the letter B represents the second operand. The term

numeric denotes the types xs:integer, xs:decimal, xs:float, xs:double, or any types derived from one of

these types. If the result type of an operator is listed as numeric, the result type will be the first type in the

ordered list (xs:integer, xs:decimal, xs:float, xs:double) into which all operands can be converted by

subtype substitution and type promotion.

Chapter 4. Expressions 67

Table 23. Valid types for operands of arithmetic expressions

Operator with operands Type of operand A Type of operand B Result type

A + B numeric numeric numeric

xs:date xdt:yearMonthDuration xs:date

xdt:yearMonthDuration xs:date xs:date

xs:date xdt:dayTimeDuration xs:date

xdt:dayTimeDuration xs:date xs:date

xs:time xdt:dayTimeDuration xs:time

xdt:dayTimeDuration xs:time xs:time

xs:dateTime xdt:yearMonthDuration xs:dateTime

xdt:yearMonthDuration xs:dateTime xs:dateTime

xs:dateTime xdt:dayTimeDuration xs:dateTime

xdt:dayTimeDuration xs:dateTime xs:dateTime

xdt:yearMonthDuration xdt:yearMonthDuration xdt:yearMonthDuration

xdt:dayTimeDuration xdt:dayTimeDuration xdt:dayTimeDuration

A - B numeric numeric numeric

xs:date xs:date xdt:dayTimeDuration

xs:date xdt:yearMonthDuration xs:date

xs:date xdt:dayTimeDuration xs:date

xs:time xs:time xdt:dayTimeDuration

xs:time xdt:dayTimeDuration xs:time

xs:dateTime xs:dateTime xdt:dayTimeDuration

xs:dateTime xdt:yearMonthDuration xs:dateTime

xs:dateTime xdt:dayTimeDuration xs:dateTime

xdt:yearMonthDuration xdt:yearMonthDuration xdt:yearMonthDuration

xdt:dayTimeDuration xdt:dayTimeDuration xdt:dayTimeDuration

A * B numeric numeric numeric

xdt:yearMonthDuration numeric xdt:yearMonthDuration

numeric xdt:yearMonthDuration xdt:yearMonthDuration

xdt:dayTimeDuration numeric xdt:dayTimeDuration

numeric xdt:dayTimeDuration xdt:dayTimeDuration

A idiv B numeric numeric xs:integer

A div B numeric numeric numeric; but xs:decimal if

both operands are

xs:integer

xdt:yearMonthDuration numeric xdt:yearMonthDuration

xdt:dayTimeDuration numeric xdt:dayTimeDuration

xdt:yearMonthDuration xdt:yearMonthDuration xs:decimal

xdt:dayTimeDuration xdt:dayTimeDuration xs:decimal

A mod B numeric numeric numeric

68 IBM DB2 XQuery Reference

Examples

v The first expression below returns the xs:decimal value -1.5, and the second expression returns the

xs:integer value -1:

-3 div 2

-3 idiv 2

v In the following expression, the subtraction of two date values results in a value of type

xdt:dayTimeDuration:

$emp/hiredate - $emp/birthdate

v The following example illustrates the difference between a subtraction operator and hyphens that are

used in the variable names unit-price and unit-discount:

$unit-price - $unit-discount

 Related concepts

 “Atomization” on page 50

 “Whitespace” on page 14

 “Subtype substitution” on page 50

 “Type promotion” on page 51

 Chapter 2, “Type system,” on page 17

 Related reference

 “Precedence” on page 47

 “Parenthesized expression” on page 55

Comparison expressions

Comparison expressions compare two values. XQuery provides three kinds of comparison expressions:

value comparisons, general comparisons, and node comparisons.

Value comparisons

Value comparisons compare two atomic values. The value comparison operators include eq, ne, lt, le, gt,

and ge.

The following table describes these operators.

 Table 24. Value comparison operators in XQuery

Operator Purpose

eq Returns true if the first value is equal to the second value.

ne Returns true if the first value is not equal to the second value.

lt Returns true if the first value is less than the second value.

le Returns true if the first value is less than or equal to the second value.

gt Returns true if the first value is greater than the second value.

ge Returns true if the first value is greater than or equal to the second value.

Two values can be compared if they have the same type or if the type of one operand is a subtype of the

other operand’s type. Two operands of numeric types (types xs:float, xs:integer, xs:decimal, xs:double, and

types derived from these) can be compared. Also, xs:string and xs:anyURI values can be compared.

Special values: For xs:float and xs:double values, positive zero and negative zero compare equal. INF

equals INF, and -INF equals -INF. NaN does not equal itself. Positive infinity is greater

than all other non-NaN values; negative infinity is less than all other non-NaN values.

NaN ne NaN is true, and any other comparison involving a NaN value is false. Two

Chapter 4. Expressions 69

values of type xs:QName are considered to be equal if their namespace URIs are equal

and their local names are equal (namespace prefixes are not significant).

The result of a value comparison can be a boolean value, an empty sequence, or an error. When a value

comparison is evaluated, each operand is atomized (converted into an atomic value), and the following

rules are applied:

v If either atomized operand is an empty sequence, then the result of the value comparison is an empty

sequence.

v If either atomized operand is a sequence that contains more than one value, an error is returned.

v If either atomized operand is an untyped atomic value (xdt:untypedAtomic), that value is cast to

xs:string.

Casting values of type xdt:untypedAtomic to xs:string allows value comparisons to be transitive. In

contrast, general comparisons follow a different rule for casting untyped data and are therefore not

transitive. The transitivity of a value comparison might be compromised by loss of precision during type

conversions. For example, two xs:integer values that differ slightly might both be considered equal to

the same xs:float value because xs:float has less precision than xs:integer.

v If the types of the operands, after evaluation, are a valid combination for the operator, the operator is

applied to the atomized operands, and the result of the comparison is either true or false. If the types of

the operands are not a valid combination for the comparison operator, an error is returned.

The following types can be compared with the eq or ne operator. The term Gregorian refers to the types

xs:gYearMonth, xs:gYear, xs:gMonthDay, xs:gDay, and xs:gMonth. For binary operators that accept two

Gregorian-type operands, both operands must have the same type (for example, if one operand is of type

xs:gDay, the other operand must be of type xs:gDay). The term numeric refers to the types xs:integer,

xs:decimal, xs:float, xs:double, and any type derived from one of these types. During comparisons that

involve numeric values, subtype substitution and numeric type promotion are used to convert the operands

into the first type in the ordered list (xs:integer, xs:decimal, xs:float, xs:double) into which all operands can

be converted.

v Numeric

v xs:boolean

v xs:string

v xs:date

v xs:time

v xs:dateTime

v xs:duration

v xdt:yearMonthDuration

v xdt:dayTimeDuration

v Gregorian

v xs:hexBinary

v xs:base64Binary

v xs:QName

v xs:NOTATION

The following types can be compared with the gt, lt, ge, and le operators. The term numeric refers to the

types xs:integer, xs:decimal, xs:float, and xs:double. During comparisons that involve numeric values,

subtype substitution and numeric type promotion are used to convert the operands into the first type in the

ordered list (xs:integer, xs:decimal, xs:float, xs:double) into which all operands can be converted.

v Numeric

v xs:boolean

v xs:string

70 IBM DB2 XQuery Reference

v xs:date

v xs:time

v xs:dateTime

v xdt:yearMonthDuration

v xdt:dayTimeDuration

Examples

v The following comparison atomizes the nodes that are returned by the expression $book/author. The

comparison is true only if the result of atomization is the value ″Kennedy″ as an instance of xs:string or

xdt:untypedAtomic. If the result of atomization is a sequence that contains more than one value, an

error is returned

$book1/author eq "Kennedy"

v The following path expression contains a predicate that selects products whose weight is greater than

100. For any product that does not have a weight subelement, the value of the predicate is the empty

sequence, and the product is not selected:

//product[weight gt 100]

v The following comparisons are true because, in each case, the two constructed nodes have the same

value after atomization, even though they have different identities or names:

<a>5 eq <a>5

<a>5 eq 5

 Related concepts

 “Atomic values” on page 4

 Chapter 2, “Type system,” on page 17

General comparisons

General comparisons compare two sequences of any length to determine whether at least one item in the

first sequence and one item in the second sequence satisfy the specified comparison. The general

comparison operators include =, !=, <, <=, >, and >=.

The following table describes these operators.

 Table 25. Value comparison operators in XQuery

Operator Purpose

= Returns true if some value in the first sequence is equal to some value in the second

sequence.

!= Returns true if some value in the first sequence is not equal to some value in the second

sequence.

< Returns true if some value in the first sequence is less than some value in the second

sequence.

<= Returns true if some value in the first sequence is less than or equal to some value in the

second sequence.

> Returns true if some value in the first sequence is greater than some value in the second

sequence.

>= Returns true if some value in the first sequence is greater than or equal to some value in the

second sequence.

The result of a general comparison is either a boolean value or an error. When a general comparison is

evaluated, each operand is atomized (converted into a sequence of atomic values). The first sequence is

Chapter 4. Expressions 71

compared to the second sequence to determine whether at least one item in the first sequence and at

least one item in the second sequence satisfy the specified comparison. When comparing individual

atomic values, the following rules are applied:

v If one of the atomic values is an instance of xdt:untypedAtomic and the other is an instance of a

numeric type, then the untyped value is cast to the type xs:double.

v If one of the atomic values is an instance of xdt:untypedAtomic and the other is an instance of

xdt:untypedAtomic or xs:string, then the xdt:untypedAtomic values are cast to the type xs:string.

v If one of the atomic values is an instance of xdt:untypedAtomic and the other is not an instance of

xs:string, xdt:untypedAtomic, or any numeric type, then the xdt:untypedAtomic value is cast to the type

of the other value.

After the types are cast as described above, the atomic values are compared using one of the value

comparison operators eq, ne, lt, le, gt, or ge.

The result of the comparison is true if there is a pair of atomic values, one in the first operand sequence

and the other in the second operand sequence, for which the comparison is true.

Note: When errors occur, the result of a general comparison can be either a boolean value or an error.

For example, the comparison (1, 2) = (2, "Hello") might return true because 2 eq 2 is true, or

the comparison might return an error because the value 1 is not comparable with the value ″Hello″.

Tip: To compare two sequences on an item-by-item basis, use the XQuery function fn:deep-equal.

Examples

v The following comparison is true if the typed value of some author subelement of $book1 is ″Kennedy″

as an instance of xs:string or xdt:untypedAtomic:

$book1/author = "Kennedy"

v The following example contains three general comparisons. The value of the first two comparisons is

true, and the value of the third comparison is false. This example illustrates the fact that general

comparisons are not transitive:

(1, 2) = (2, 3)

(2, 3) = (3, 4)

(1, 2) = (3, 4)

v The following example contains two general comparisons, both of which are true. This example

illustrates the fact that the = and != operators are not inverses of each other:

(1, 2) = (2, 3)

(1, 2) != (2, 3)

v In the following example, the variables $a, $b, and $c are bound to element nodes that have the type

annotation xdt:untypedAtomic. The element nodes contain the string values ″1″, ″2″, and ″2.0″

respectively. In this example, the following expression returns false because the values that are bound

to $b and $c (″2″ and ″2.0″) are compared as strings:

($a, $b) = ($c, 3.0)

However, the following expression returns true because the value that is bound to $b (″2″) and the

value 2.0 are compared as numbers:

($a, $b) = ($c, 2.0)

 Related concepts

 “Sequences and items” on page 4

 “Atomic values” on page 4

 “Atomization” on page 50

 Related reference

 “deep-equal function” on page 118

72 IBM DB2 XQuery Reference

Node comparisons

Node comparisons compare two nodes. Nodes can be compared to determine if they share the same

identity or if one node precedes or follows another node in document order.

The following table describes the node comparison operators that are available in XQuery.

 Table 26. Node comparison operators in XQuery

Operator Purpose

is Returns true if the two nodes that are compared have the same identity.

<< Returns true if the first operand node precedes the second operand node in document order.

>> Returns true if the first operand node follows the second operand node in document order.

The result of a node comparison is either a boolean value, an empty sequence, or an error. The result of a

node comparison is defined by the following rules:

v Each operand must be either a single node or an empty sequence; otherwise, an error is returned.

v If either operand is an empty sequence, the result of the comparison is an empty sequence.

v A comparison that uses the is operator is true when the two nodes that are compared have the same

identity; otherwise, the comparison is false.

v A comparison that uses the << operator returns true when the left operand node precedes the right

operand node in document order; otherwise, the comparison returns false.

v A comparison that uses the >> operator returns true when the left operand node follows the right

operand node in document order; otherwise, the comparison returns false.

Examples

v The following comparison is true only if both the left operand and right operand evaluate to exactly the

same single node:

/books/book[isbn="1558604820"] is /books/book[call="QA76.9 C3845"]

v The following comparison is false because each constructed node has its own identity:

<a>5 is <a>5

v The following comparison is true only if the node that is identified by the left operand occurs before the

node that is identified by the right operand in document order:

/transactions/purchase[parcel="28-451"] << /transactions/sale[parcel="33-870"]

 Related concepts

 “Node identity” on page 10

 “Document order of nodes” on page 10

 “Node hierarchies” on page 5

Logical expressions

Logical expressions use the operators and and or to compute a Boolean value (true or false).

The following table describes these operators and lists them in order of operator precedence from highest

to lowest.

 Table 27. Logical expression operators in XQuery

Operator Purpose

and Returns true if both expressions are true.

or Returns true if one or both expressions are true.

Chapter 4. Expressions 73

The result of a logical expression is either a Boolean value (true or false) or an error. When a logical

expression is evaluated, the effective Boolean value (EBV) of each operand is determined. The operator is

then applied to the EBVs of the operands, and the result is either a boolean value or an error. If the EBV

of an operand is an error, then the logical expression might result in an error. The following table shows

the results that are returned by a logical expression based on the EBVs of its operands.

 Table 28. Results of logical expressions based on EBVs of operands

EBV of operand 1 Operator EBV of operand 2 Result

true and true true

true and false false

false and true false

false and false false

true and error error

error and true error

false and error false or error

error and false false or error

error and error error

true or true true

false or false false

true or false true

false or true true

true or error true or error

error or true true or error

false or error error

error or false error

error or error error

Tip: In addition to logical expressions, XQuery provides a function named fn:not that takes a general

sequence as a parameter and returns a Boolean value.

Examples

v The following expressions return true:

1 eq 1 and 2 eq 2

1 eq 1 or 2 eq 3

v The following expression might return either false or an error:

1 eq 2 and 3 idiv 0 = 1

v The following expression might return either true or an error:

1 eq 1 or 3 idiv 0 = 1

v The following expression returns an error:

1 eq 1 and 3 idiv 0 = 1

 Related concepts

 “Effective Boolean value” on page 51

 Related reference

 “not function” on page 137

74 IBM DB2 XQuery Reference

Constructors

Constructors create XML structures within a query. XQuery provides constructors for creating element

nodes, attribute nodes, document nodes, text nodes, processing instruction nodes, and comment nodes.

XQuery provides two kinds of constructors: direct constructors and computed constructors.

Direct constructors use an XML-like notation to create XML structures within a query. XQuery provides

direct constructors for creating element nodes (which might include attribute nodes, text nodes, and nested

element nodes), processing instruction nodes, and comment nodes. For example, the following constructor

creates a book element that contains an attribute and some nested elements:

<book isbn="isbn-0060229357">

 <title>Harold and the Purple Crayon</title>

 <author>

 <first>Crockett</first>

 <last>Johnson</last>

 </author>

</book>

Computed constructors use a notation that is based on enclosed expressions to create XML structures

within a query. A computed constructor begins with a keyword that identifies the type of node to be created

and is followed by the name of the node, if applicable, and an enclosed expression that computes the

content of the node. XQuery provides computed constructors for creating element nodes, attribute nodes,

document nodes, text nodes, processing-instruction nodes, and comment nodes. For example, the

following query contains computed constructors that generate the same result as the direct constructor

described above:

element book {

 attribute isbn {"isbn-0060229357" },

 element title { "Harold and the Purple Crayon"},

 element author {

 element first { "Crockett" },

 element last {"Johnson" }

 }

}

 Related concepts

 “Node kinds” on page 7

Enclosed expressions in constructors

Enclosed expressions are used in constructors to provide computed values for element and attribute

content. These expressions are evaluated and replaced by their value when the constructor is processed.

Enclosed expressions are enclosed in curly braces ({}) to distinguish them from literal text.

Enclosed expressions can be used in the following constructors to provide computed values:

v Direct element constructors:

– An attribute value in the start tag of a direct element constructor can include an enclosed expression.

– The content of a direct element constructor can include an enclosed expression that computes both

the content and the attributes of the constructed node.

v Computed constructors:

– An enclosed expression can be used to generate the content of the node.

For example, the following direct element constructor includes an enclosed expression:

<example>

 <p> Here is a query. </p>

 <eg> $b/title </eg>

 <p> Here is the result of the query. </p>

 <eg>{ $b/title }</eg>

</example>

Chapter 4. Expressions 75

When this constructor is evaluated, it might produce the following result (whitespace is added to this

example to improve readability):

<example>

 <p> Here is a query. </p>

 <eg> $b/title </eg>

 <p> Here is the result of the query. </p>

 <eg><title>Harold and the Purple Crayon</title></eg>

</example>

Tip: To use a curly brace as an ordinary character within the content of an element or attribute, you can

either include a pair of identical curly braces or use character references. For example, you can use

the pair {{ to represent the character {. Likewise, you can use the pair }} to represent }. Alternatively,

you can use the character references { and } to denote curly brace characters. A single

left curly brace ({) is interpreted as the beginning delimiter for an enclosed expression. A single right

curly brace (}) without a matching left curly brace is an error.

 Related reference

 “Computed attribute constructors” on page 84

 “Document node constructors” on page 85

 “Text node constructors” on page 86

 “Computed processing instruction constructors” on page 87

 “Computed comment constructors” on page 88

Direct element constructors

Direct element constructors use an XML-like notation to create element nodes. The constructed node can

be a simple element or a complex element that contains attributes, text content, and nested elements.

The result of a direct element constructor is a new element node that has its own node identity. All of the

attribute and descendant nodes of the new element node are also new nodes that have their own

identities.

Syntax

��

�

<

ElementName

AttributeName

=

’

AttributeValue

’

″

″

Namespace

declaration

attribute

�

�

�

 />

>

</

ElementName

>

ElementContent

 ��

Namespace declaration attribute:

 xmlns:prefixToBind = URILiteral

xmlns

ElementName

A QName that represents the name of the element to construct. The name that is used for

ElementName in the end tag must exactly match the name that is used in the corresponding start tag,

including the prefix or absence of a prefix. If ElementName includes a namespace prefix, the prefix is

76 IBM DB2 XQuery Reference

resolved to a namespace URI by using the statically known namespaces. If ElementName has no

namespace prefix, the name is implicitly qualified by the default element/type namespace. The

expanded QName that results from evaluating ElementName becomes the name of the constructed

element node.

AttributeName

A QName that represents the name of the attribute to construct. If AttributeName includes a

namespace prefix, the prefix is resolved to a namespace URI by using the statically known

namespaces. If AttributeName has no namespace prefix, the attribute is in no namespace. The

expanded QName that results from evaluating AttributeName becomes the name of the constructed

attribute node. The expanded QName of each attribute must be unique, or the expression results in a

error.

 Each attribute in a direct element constructor creates a new attribute node, with its own node identity.

The parent of the new attribute node is the constructed element node. The new attribute node is given

a type annotation of xdt:untypedAtomic.

AttributeValue

A string of characters that specify a value for the attribute. The attribute value can contain enclosed

expressions (expressions that are enclosed in curly braces) that are evaluated and replaced by their

value when the element constructor is processed. Predefined entity references and character

references are also valid and get replaced by the characters that they represent. The following table

lists special characters that are valid within AttributeValue, but must be represented by double

characters or an entity reference.

 Table 29. Representation of special characters in attribute values

Character Representation required in attribute values

{ two open curly braces ({{)

} two closed curly braces (}})

< <

& &

″ " or two double quotation marks (″″)

’ ' or two single quotation marks (″)

xmlns

The word that begins a namespace declaration attribute. When specified as a prefix in a QName,

xmlns indicates that the value of prefixToBind will be bound to the URI that is specified by URILiteral.

This namespace binding is added to the statically-known namespaces for this constructor expression

and for all of the expressions that are nested inside of the expression (unless the binding is overridden

by a nested namespace declaration attribute). In the following example, the namespace declaration

attribute xmlns:metric = "http://example.org/metric/units" binds the prefix metric to the

namespace http://example.org/metric/units.

 When specified as the complete QName with no prefix, xmlns indicates that the default element/type

namespace is set to the value of URILiteral. This default element/type namespace is in effect for this

constructor expression and for all expressions that are nested inside of the constructor expression

(unless the declaration is overridden by a nested namespace declaration attribute). In the following

example, the namespace declaration attribute xmlns = "http://example.org/animals" sets the default

element/type namespace to http://example.org/animals.

prefixToBind

The prefix to be bound to the URI that is specified for URILiteral. The value of prefixToBind cannot be

xml or xmlns. Specifying either of these values results in an error.

URILiteral

A string literal (a sequence of zero or more characters that is enclosed in single quotation marks or

double quotation marks) that represents a URI. The string literal value must be a valid URI. The value

Chapter 4. Expressions 77

of URILiteral can be a zero-length string only when the namespace declaration attribute is being used

to set the default element/type namespace. Otherwise, specifying a zero-length string for URILiteral

results in an error.

ElementContent

The content of the direct element constructor. The content consists of everything between the start tag

and end tag of the constructor. How boundary space is handled within element constructors is

controlled by the boundary-space declaration in the prolog. The resulting content sequence is a

concatenation of the content entities. Any resulting adjacent text characters, including text resulting

from enclosed expressions, are merged into a single text node. Any resulting attribute nodes must

come before any other content in the resulting content sequence.

 ElementContent can consist of any of the following content:

v Text characters. Text characters create text nodes and adjacent text nodes are merged into a

single text node. Line endings within sequences of characters are normalized according to the rules

for end-of-line handling that are specified for XML 1.0. The following table lists special characters

that are valid within ElementContent, but must be represented by double characters or an entity

reference.

 Table 30. Representation of special characters in element content

Character Representation required in element content

{ two open curly braces ({{)

} two closed curly braces (}})

< <

& &

v Nested direct constructors.

v CDataSections. CDataSections are specified using the following syntax: <![CDATA[contents]]>

where contents consists of a series of characters. The characters that are specified for contents,

including special characters such as < and &, are treated as literal characters rather than as

delimiters. The sequence]]> terminates the CDataSection and is therefore not allowed within

contents.

v Character references and predefined entity references. During processing, predefined entity

references and character references are expanded into their referenced strings.

v Enclosed expressions. An enclosed expression is an XQuery expression that is enclosed in curly

braces. For example, {5 + 7} is an enclosed expression. The value of an enclosed expression can

be any sequence of nodes and atomic values. Enclosed expressions can be used within the content

of a direct element constructor to compute both the content and the attributes of the constructed

node. For each node that is returned by an enclosed expression, a new copy is made of the node

and all of its descendants, which retain their original type annotations. Any attribute nodes that are

returned by ElementContent must be at the beginning of the resulting content sequence; these

attribute nodes become attributes of the constructed element. Any element, content, or processing

instruction nodes that are returned by ElementContent become children of the newly constructed

node. Any atomic values that are returned by ElementContent are converted to strings and stored in

text nodes, which become children of the constructed node. Adjacent text nodes are merged into a

single text node.

Examples

v The following direct element constructor creates a book element. The book element contains complex

content that includes an attribute node, some nested element nodes, and some text nodes:

<book isbn="isbn-0060229357">

 <title>Harold and the Purple Crayon</title>

 <author>

78 IBM DB2 XQuery Reference

<first>Crockett</first>

 <last>Johnson</last>

 </author>

</book>

v The following examples demonstrate how element content is processed in direct element constructors:

– The following expression constructs an element node that has one child, a text node that contains

the value ″1″:

<a>{1}

– The following expression constructs an element node that has one child, a text node that contains

the value ″1 2 3″:

<a>{1, 2, 3}

– The following expression constructs an element node that has one child, a text node that contains

the value ″123″:

<c>{1}{2}{3}</c>

– The following expression constructs an element node that has one child, a text node that contains

the value ″1 2 3″:

{1, "2", "3"}

– The following expression constructs an element node that has one child, a text node that contains

the value ″I saw 8 cats.″:

<fact>I saw 8 cats.</fact>

– The following expression constructs an element node that has one child, a text node that contains

the value ″I saw 8 cats.″

<fact>I saw {5 + 3} cats.</fact>

– The following expression constructs an element node that has three children: a text node that

contains ″I saw ″, a child element node that is named howmany, and a text node that contains "

cats." The child element node has a single child, a text node that contains the value ″8″.

<fact>I saw <howmany>{5 + 3}</howmany> cats.</fact>

 Related reference

 “Predefined entity references” on page 53

 “Character references” on page 54

 “Enclosed expressions in constructors” on page 75

 “Namespace declaration attributes”

 “Boundary-space declaration” on page 40

 “Boundary whitespace in direct element constructors” on page 80

Namespace declaration attributes

Namespace declaration attributes are specified in the start tag of a direct element constructor. Namespace

declaration attributes are used for two purposes: to bind a namespace prefix to a URI, and to set the

default element/type namespace for the constructed element node and for its attributes and descendants.

Syntactically, a namespace declaration attribute has the same form as an attribute in a direct element

constructor: the attribute is specified by a name and a value. The attribute name is constant QName. The

attribute value is a string literal that represents a valid URI.

A namespace declaration attribute does not cause an attribute node to be created.

Important: The name of each namespace declaration attribute in a direct element constructor must be

unique, or the expression results in an error.

Chapter 4. Expressions 79

Binding a namespace prefix to a URI

If the QName begins with the prefix xmlns followed by a local name, then the declaration is used to bind

the namespace prefix (specified as the local name) to a URI (specified as the attribute value). For

example, the namespace declaration attribute xmlns:metric = "http://example.org/metric/units" binds

the prefix metric to the namespace http://example.org/metric/units.

When the namespace declaration attribute is processed, the prefix and URI are added to the statically

known namespaces of the constructor expression, and the new binding overrides any existing binding of

the given prefix. The prefix and URI are also added as a namespace binding to the in-scope namespaces

of the constructed element.

For example, in the following element constructor, namespace declaration attributes are used to bind the

namespace prefixes metric and english:

<box xmlns:metric = "http://example.org/metric/units"

 xmlns:english = "http://example.org/english/units">

 <height> <metric:meters>3</metric:meters> </height>

 <width> <english:feet>6</english:feet> </width>

 <depth> <english:inches>18</english:inches> </depth>

</box>

Setting the default element/type namespace

If the QName is xmlns with no prefix, then the declaration is used to set the default element/type

namespace. For example, the namespace declaration attribute xmlns = "http://example.org/animals"

sets the default element/type namespace to http://example.org/animals.

When the namespace declaration attribute is processed, the value of the attribute is interpreted as a

namespace URI. This URI specifies the default element/type namespace of the constructor expression,

and the new specification overrides any existing default. The URI is also added (with no prefix) to the

in-scope namespaces of the constructed element, and the new specification overrides any existing

namespace binding that has no prefix. If the namespace URI is a zero-length string, then the default

element/type namespace of the constructor expression is set to ″none″.

For example, in the following direct element constructor, a namespace declaration attribute sets the default

element/type namespace to http://example.org/animals:

<cat xmlns = "http://example.org/animals">

 <breed>Persian</breed>

</cat>

 Related concepts

 “XML namespaces and QNames” on page 12

 Related reference

 “In-scope namespaces of a constructed element” on page 82

Boundary whitespace in direct element constructors

Within a direct element constructor, boundary whitespace is a sequence of consecutive whitespace

characters that is delimited at each end either by the start or end of the content, or by a direct constructor,

or by an enclosed expression. For example, boundary whitespace might be used in the content of the

constructor to separate the end tag of a direct constructor from the start tag of a nested element.

The following diagram shows an example of a direct element constructor, with the boundary whitespace

highlighted:

80 IBM DB2 XQuery Reference

<product>

</product>

<description> </description>{ " enclosed expression " }

The boundary whitespace in this example includes the following characters: a newline character and four

space characters that occur between the start tags of the product and description elements; four space

characters that occur between the start tag of the description element and the enclosed expression; four

space characters that occur between the enclosed expression and the end tag of the description

element; and one newline character that appears after the end tag of the description element.

Boundary whitespace does not include any of the following types of whitespace:

v Whitespace that is generated by an enclosed expression

v Characters that are generated by character references (for example,) or by CDataSections

v Whitespace characters that are adjacent to a character reference or a CDataSection

The boundary-space policy controls whether boundary whitespace is preserved by element constructors.

This policy is specified by a boundary-space declaration in the query prolog. If the boundary-space

declaration specifies strip, then boundary whitespace is discarded. If the boundary-space declaration

specifies preserve, then boundary whitespace is preserved. If no boundary-space declaration is specified,

then the default behavior is to strip boundary whitespace during element construction.

Examples

v In the following example, the constructed cat element node has two child element nodes that are

named breed and color:

<cat>

 <breed>{$b}</breed>

 <color>{$c}</color>

</cat>

Because the boundary-space policy is strip by default, the whitespace that surrounds the child

elements will be stripped away by the element constructor.

v In the following example, the boundary-space policy is strip. This example is equivalent to <a>abc:

declare boundary-space strip;

<a> {"abc"}

v In the following example, however, the boundary-space policy is preserve. This example is equivalent

to <a> abc :

declare boundary-space preserve;

<a> {"abc"}

Because the boundary-space policy is preserve, the spaces that appear before and after the enclosed

expression will be preserved by the element constructor.

v In the following example, the whitespace that surrounds the z is not boundary whitespace. The

whitespace is always preserved, and this example is equivalent to <a> z abc:

<a> z {"abc"}

v In the following example, the whitespace characters that are generated by the character reference and

adjacent whitespace characters are preserved, regardless of the boundary-space policy. This example is

equivalent to <a> abc:

<a> {"abc"}

Chapter 4. Expressions 81

v In the following example, the whitespace in the enclosed expression is preserved, regardless of the

boundary-space policy, because whitespace that is generated by an enclosed expression is never

considered to be boundary whitespace. This example is equivalent to <a> :

<a>{" "}

The two spaces in the enclosed expression will be preserved by the element constructor and will appear

between the start tag and the end tag in the result.

 Related concepts

 “Whitespace” on page 14

 Related reference

 “Boundary-space declaration” on page 40

 “Direct element constructors” on page 76

In-scope namespaces of a constructed element

A constructed element node has an in-scope namespaces property that consists of a set of namespace

bindings. Each namespace binding associates a namespace prefix with a URI. The namespace bindings

define the set of namespace prefixes that are available for interpreting QNames within the scope of an

element.

Important: To understand this topic, you need to understand the difference between the following

concepts:

Statically known namespaces

Statically known namespaces is a property of an expression. This property denotes

the set of namespace bindings that are used by XQuery to resolve namespace

prefixes during the processing of the expression. These bindings are not part of the

query result.

In-scope namespaces

In-scope namespaces is a property of an element node. This property denotes the set

of namespace bindings that are available to applications outside of XQuery when the

element and its content are processed. These bindings are serialized as part of the

query result so they will be available to outside applications.

The in-scope namespaces of a constructed element include all of the namespace bindings that are created

in the following ways:

v Explicitly through namespace declaration attributes. A namespace binding is created for each

namespace declaration attribute that is declared in the following constructors:

– The current element constructor.

– An enclosing direct element constructor (unless the namespace declaration attribute is overridden by

the current element constructor or an intermediate constructor).

v Automatically by the system. A namespace binding is created in the following situations:

– To bind the prefix xml to the namespace URI http://www.w3.org/XML/1998/namespace. This binding

is created for every constructed element.

– For each namespace that is used in the name of a constructed element or in the names of its

attributes (unless the namespace binding already exists in the in-scope namespaces of the element).

If the name of the node includes a prefix, then the prefix is used in the namespace binding. If the

name has no prefix, then a binding is created for the empty prefix. If a conflict arises that would

require two different bindings of the same prefix, then the prefix that is used in the node name is

changed to an arbitrary prefix, and the namespace binding is created for the arbitrary prefix.

Remember: A prefix that is used in a QName must resolve to a valid URI, or a binding for that

prefix cannot be added to the in-scope namespaces of the element. If the QName

cannot be resolved, the expression results in an error.

82 IBM DB2 XQuery Reference

Examples

The following query includes a prolog that contains namespace declarations and a body that contains a

direct element constructor:

declare namespace p="http://example.com/ns/p";

declare namespace q="http://example.com/ns/q";

declare namespace f="http://example.com/ns/f";

<p:newElement q:b="{f:func(2)}" xmlns:r="http://example.com/ns/r"/>

The namespace declarations in the prolog add the namespace bindings to the statically known

namespaces of the expression. However, the namespace bindings are added to the in-scope namespaces

of the constructed element only if the QNames in the constructor use these namespaces. Therefore, the

in-scope namespaces of p:newElement consist of the following namespace bindings:

v p = "http://example.com/ns/p" - This namespace binding is added to the in-scope namespaces

because the prefix p appears in the QName p:newElement.

v q = "http://example.com/ns/q" - This namespace binding is added to the in-scope namespaces

because the prefix q appears in the attribute QName q:b.

v r = "http://example.com/ns/r" - This namespace binding is added to the in-scope namespaces

because it is defined by a namespace declaration attribute.

v xml = "http://www.w3.org/XML/1998/namespace" - This namespace binding is added to the in-scope

namespaces because it is defined for every constructed element node.

Notice that no binding for the namespace f="http://example.com/ns/f" is added to the in-scope

namespaces. This is because the element constructor does not include element or attribute names that

use the prefix f (even though f:func(2) appears in the content of the attribute named q:b). Therefore, this

namespace binding does not appear in the query result, even though it is present in the statically known

namespaces and is available for use during processing of the query.

 Related concepts

 “XML namespaces and QNames” on page 12

 Related reference

 “Namespace declaration attributes” on page 79

 “Computed element constructors”

Computed element constructors

A computed element constructor creates an element node for which the content of the node is computed

based on an enclosed expression.

The result of a computed element constructor is a new element node that has its own node identity. All of

the attribute and descendant nodes of the new element node are also new nodes that have their own

identities, even if they are copies of existing nodes.

Syntax

�� element ElementName { }

ContentExpression
 ��

element

A keyword that indicates that an element node will be constructed.

ElementName

The QName of the element to construct. If ElementName includes a namespace prefix, the prefix is

resolved to a namespace URI by using the statically known namespaces. If ElementName has no

Chapter 4. Expressions 83

namespace prefix, the name is implicitly qualified by the default element/type namespace. The

expanded QName that results from evaluating ElementName becomes the name of the constructed

element node.

ContentExpression

An expression that generates the content of the constructed element node. The value of

ContentExpression can be any sequence of nodes and atomic values. ContentExpression can be used

to compute both the content and the attributes of the constructed node. For each node that is returned

by ContentExpression, a new copy is made of the node and all of its descendants, which retain their

original type annotations. Any attribute nodes that are returned by ContentExpression must be at the

beginning of the node sequence (before any other nodes); these attribute nodes become attributes of

the constructed element. Any element, content, or processing instruction nodes that are returned by

ContentExpression become children of the newly constructed node. Any atomic values that are

returned by ContentExpression are converted to strings and stored in text nodes, which become

children of the constructed node. Adjacent text nodes are merged into a single text node.

Examples

In the following expression, a computed element constructor makes a modified copy of an existing

element. Suppose that the variable $e is bound to an element that has numeric content. This constructor

creates a new element named length that has the same attributes as $e and has numeric content equal to

twice the content of $e:

element length {$e/@*, 2 * fn:data($e)}

In this example, if the variable $e is bound to the expression let $e := <length units="inches">{5}</
length>, then the result of the example expression is the element <length units="inches">10</length>.

 Related reference

 “Enclosed expressions in constructors” on page 75

 “In-scope namespaces of a constructed element” on page 82

Computed attribute constructors

A computed attribute constructor creates an attribute node for which the attribute value is computed based

on an enclosed expression.

The result of a computed attribute constructor is a new attribute node that has its own node identity.

Note: To construct an attribute node directly, declare the attribute in a direct element constructor.

Syntax

�� attribute AttributeName { }

AttributeValueExpression
 ��

attribute

A keyword that indicates that an attribute node will be constructed.

AttributeName

The QName of the attribute to construct. If AttributeName includes a namespace prefix, the prefix is

resolved to a namespace URI by using the statically known namespaces. If AttributeName has no

namespace prefix, the attribute is in no namespace. The expanded QName that results from

evaluating AttributeName becomes the name of the constructed attribute node. The expanded QName

of each attribute in an element must be unique, or the expression results in an error.

AttributeValueExpression

An expression that generates the value of the attribute node. During processing, atomization is applied

to the result of AttributeValueExpression, and each atomic value in the resulting sequence is cast to a

84 IBM DB2 XQuery Reference

string. The individual strings that result from the cast are concatenated with an intervening space

character. The concatenated string becomes the value of the constructed attribute node.

Example

The following computed attribute constructor constructs an attribute named size with a value of ″7″.

attribute size {4 + 3}

 Related concepts

 “Attribute nodes” on page 8

 Related reference

 “Enclosed expressions in constructors” on page 75

 “Direct element constructors” on page 76

Document node constructors

All document node constructors are computed constructors. A document node constructor creates a

document node for which the content of the node is computed based on an enclosed expression. A

document node constructor is useful when the result of a query is a complete document.

The result of a document node constructor is a new document node that has its own node identity.

Important: No validation is performed on the constructed document node. The XQuery document node

constructor does not enforce the XML 1.0 rules that govern the structure of an XML document.

For example, a document node is not required to have exactly one child that is an element

node.

Syntax

�� document { ContentExpression } ��

document

A keyword that indicates that a document node will be constructed.

ContentExpression

An expression that generates the content of the constructed document node. The value of

ContentExpression can be any sequence of nodes and atomic values except for an attribute node.

Attribute nodes in the content sequence result in an error. Document nodes in the content sequence

are replaced by their children. For each node that is returned by ContentExpression, a new copy is

made of the node and all of its descendants, which retain their original type annotations. Any atomic

values that are returned by the content expression are converted to strings and stored in text nodes,

which become children of the constructed document node. Adjacent text nodes are merged into a

single text node.

Examples

The following document node constructor includes a content expression that returns an XML document

that contains a root element named customer-list:

document

 {

 <customer-list>

 {db2-fn:xmlcolumn(’MYSCHEMA.CUSTOMER.INFO’)/ns1:customerinfo/name}

 </customer-list>

 }

 Related concepts

 “Document nodes” on page 7

 Related reference

Chapter 4. Expressions 85

“Enclosed expressions in constructors” on page 75

Text node constructors

All text node constructors are computed constructors. A text node constructor creates a text node for which

the content of the node is computed based on an enclosed expression.

The result of a text node constructor is a new text node that has its own node identity.

Syntax

�� text { ContentExpression } ��

text

A keyword that indicates that a text node will be constructed.

ContentExpression

An expression that generates the content of the constructed text node. During processing, atomization

is applied to the result of ContentExpression, and each atomic value in the resulting sequence is cast

to a string. The individual strings that result from the cast are concatenated with an intervening space

character. The concatenated string becomes the content of the constructed text node. If atomization

results in an empty sequence, no text node is constructed.

Note: A text node constructor can be used to construct a text node that contains a zero-length string.

However, if this text node is used in the content of a constructed element or a document node, then

the text node is deleted or merged with another text node.

Example

The following constructor creates a text node that contains the string ″Hello″:

text {"Hello"}

 Related concepts

 “Text nodes” on page 9

 Related reference

 “Enclosed expressions in constructors” on page 75

Processing instruction constructors

Processing instruction constructors create processing instruction nodes. XQuery provides both direct and

computed constructors for creating processing instruction nodes.

The constructed node has the following node properties:

A target property

Identifies the application to which the processing instruction is directed.

A content property

Specifies the content of the processing instruction.

 Related concepts

 “Processing instruction nodes” on page 9

Direct processing instruction constructors

Direct processing instruction constructors use an XML-like notation to create processing instruction nodes.

Syntax

86 IBM DB2 XQuery Reference

�� <? PITarget ?>

DirPIContents
 ��

PITarget

An NCName that represents the name of the processing application to which the processing

instruction is directed. The PI target of a processing instruction cannot consist of the characters ″XML″

in any combination of uppercase and lowercase.

DirPIContents

A series of characters that specify the contents of the processing instruction. The contents of a

processing instruction cannot contain the string ?>.

Example

The following constructor creates a processing instruction node:

<?format role="output" ?>

 Related concepts

 “Processing instruction nodes” on page 9

 Related reference

 “Computed processing instruction constructors”

Computed processing instruction constructors

A computed processing instruction constructor creates a processing instruction node for which the content

of the node is computed based on an enclosed expression.

The result of a computed processing instruction constructor is a new processing instruction node that has

its own node identity.

Syntax

�� processing-instruction PITarget { }

PIContentExpression
 ��

processing-instruction

A keyword that indicates that a processing instruction node will be constructed.

PITarget

An NCName that represents the name of the processing application to which the processing

instruction is directed. This name must conform to the format for NCNames that is specified by

Namespaces in XML.

PIContentExpression

An expression that generates the content of the processing instruction node. During processing,

atomization is applied to the result of PIContentExpression, and each atomic value in the resulting

sequence is cast to a string. The individual strings that result from the cast are concatenated with an

intervening space character. Leading whitespace is removed, and the concatenated string becomes

the content of the processing instruction node. If atomization results in an empty sequence, the

sequence is replaced by a zero-length string. The content sequence cannot contain the string ″?>″.

Example

The following computed constructor creates the processing instruction <?audio-output beep?>:

processing-instruction audio-output {"beep"}

 Related concepts

 “Processing instruction nodes” on page 9

 Related reference

Chapter 4. Expressions 87

“Direct processing instruction constructors” on page 86

 “Enclosed expressions in constructors” on page 75

Comment constructors

Comment constructors create comment nodes. XQuery provides both direct and computed constructors for

creating comment nodes.

 Related concepts

 “Comment nodes” on page 9

 “Comments” on page 15

Direct comment constructors

Direct comment constructors use an XML-like notation to create comment nodes.

Syntax

�� <!-- DirCommentContents --> ��

DirCommentContents

A series of characters that specify the contents of the comment. The contents of a comment cannot

contain two consecutive hyphens or end with a hyphen.

Examples

The following constructor creates a comment node:

<!-- This is an XML comment. -->

 Related concepts

 “Comment nodes” on page 9

 Related reference

 “Computed comment constructors”

Computed comment constructors

A computed comment constructor creates a comment node for which the content of the node is computed

based on an enclosed expression.

The result of a computed comment constructor is a new comment node that has its own node identity.

Syntax

�� comment { CommentContents } ��

comment

A keyword that indicates that a comment node will be constructed.

CommentContents

An expression that generates the content of the comment. During processing, atomization is applied to

the result of CommentContents, and each atomic value in the atomized sequence is cast to a string.

The individual strings that result from the cast are concatenated with an intervening space character. If

atomization results in an empty sequence, the sequence is replaced by a zero-length string. The

content sequence cannot contain two adjacent hyphens or end with a hyphen.

Examples

The following computed constructor creates the comment <!--Houston, we have a problem.--> :

let $homebase := "Houston"

return comment {fn:concat($homebase, ", we have a problem.")}

88 IBM DB2 XQuery Reference

Related concepts

 “Comment nodes” on page 9

 Related reference

 “Direct comment constructors” on page 88

 “Enclosed expressions in constructors” on page 75

FLWOR expressions

FLWOR expressions iterate over sequences and bind variables to intermediate results. FLWOR

expressions are useful for computing joins between two or more documents, restructuring data, and

sorting the result.

Syntax of FLWOR expressions

A FLWOR expression is composed of the following clauses, some of which are optional: for, let, where,

order by, and return.

��

�

for

clause

let

clause

where

Expression

�

,

ascending

order by

Expression

descending

�

� return Expression ��

for clause:

�

 ,

for

$VariableName

in

Expression

at

$PositionalVariableName

let clause:

�

 ,

let

$VariableName

:=

Expression

for

The keyword that begins a for clause. A for clause iterates over the result of Expression and binds

VariableName to each item that is returned by Expression.

let The keyword that begins a let clause. A let clause binds VariableName to the entire result of

Expression.

VariableName

The name of the variable to bind to the result of Expression.

PositionalVariableName

The name of an optional variable that is bound to the position within the input stream of the item that

is bound by each iteration of the for clause.

Expression

Any XQuery expression. If the expression includes a top-level comma operator, then the expression

must be enclosed in parentheses.

Chapter 4. Expressions 89

where

The keyword that begins a where clause. A where clause filters the tuples of variable bindings that

are generated by the for and let clauses.

order by

The keywords that begin an order by clause. An order by clause specifies the order in which values

are processed by the return clause.

ascending

Specifies that ordering keys are processed in ascending order.

descending

Specifies that ordering keys are processed in descending order.

return

The keyword that begins a return clause. The expression in the return clause is evaluated once for

each tuple of bound variables that is generated by the for, let, where, and order by clauses. The

results of all of the evaluations of the return clause are concatenated into a single sequence, which is

the result of the FLWOR expression.

 Related reference

 “for and let clauses”

 “where clauses” on page 94

 “order by clauses” on page 95

 “return clauses” on page 97

 “Variable references” on page 54

 “FLWOR examples” on page 97

for and let clauses

A for or let clause in a FLWOR expression binds one or more variables to values that will be used in other

clauses of the FLWOR expression.

 Related reference

 “Syntax of FLWOR expressions” on page 89

 “order by clauses” on page 95

for clauses

A for clause iterates through the result of an expression and binds a variable to each item in the

sequence.

The simplest type of for clause contains one variable and an associated expression. In the following

example, the for clause includes a variable called $i and an expression that constructs the sequence (1,

2, 3):

for $i in (1, 2, 3)

return <output>{$i}</output>

When the for clause is evaluated, three variable bindings are created (one binding for each item in the

sequence):

$i = 1

$i = 2

$i = 3

The return clause in the example executes once for each binding. The expression results in the following

output:

<output>1</output>

<output>2</output>

<output>3</output>

90 IBM DB2 XQuery Reference

A for clause can contain multiple variables, each of which is bound to the result of an expression. In the

following example, a for clause contains two variables, $a and $b, and expressions that construct the

sequences 1 2 and 4 5:

for $a in (1, 2), $b in (4, 5)

return <output>{$a, $b}</output>

When the for clause is evaluated, a tuple of variable bindings is created for each combination of values.

This results in four tuples of variable bindings:

($a = 1, $b = 4)

($a = 2, $b = 4)

($a = 1, $b = 5)

($a = 2, $b = 5)

The return clause in the example executes once for each tuple of bindings. The expression results in the

following output:

<output>1 4</output>

<output>2 4</output>

<output>1 5</output>

<output>2 5</output>

When the binding expression evaluates to an empty sequence, no for binding is generated, and no

iteration is performed.

Positional variables in for clauses

Each variable that is bound in a for clause can have an associated positional variable that is bound at the

same time. The name of the positional variable is preceded by the keyword at. When a variable iterates

over the items in a sequence, the positional variable iterates over the integers that represent the positions

of those items in the sequence, starting with 1.

In the following example, the for clause includes a variable called $cat and an expression that constructs

the sequence ("Persian", "Calico", "Siamese"). The clause also includes the positional variable $i,

which is referenced in an attribute constructor to compute the value of the order attribute:

for $cat at $i in ("Persian", "Calico", "Siamese")

return <cat order = "{$i}"> { $cat } </cat>

When the for clause is evaluated, three tuples of variable bindings are created, each of which includes a

binding for the positional variable:

($i = 1, $cat = "Persian")

($i = 2, $cat = "Calico")

($i = 3, $cat = "Siamese")

The return clause in the example executes once for each tuple of bindings. The expression results in the

following output:

<cat order = "1">Persian</cat>

<cat order = "2">Calico</cat>

<cat order = "3">Siamese</cat>

Although each output element contains an order attribute, the actual order of the elements in the output

stream is not guaranteed unless the FLWOR expression contains an order by clause such as order by

$i. The positional variable represents the ordinal position of a value in the input sequence, not in the

output sequence.

 Related reference

 “for and let clauses in the same expression” on page 92

 “for and let clauses compared” on page 93

 “Variable scope in for and let clauses” on page 93

Chapter 4. Expressions 91

let clauses

A let clause binds a variable to the entire result of an expression. A let clause does not perform any

iteration.

The simplest type of let clause contains one variable and an associated expression. In the following

example, the let clause includes a variable called $j and an expression that constructs the sequence (1,

2, 3).

let $j := (1, 2, 3)

return <output>{$j}</output>

When the let clause is evaluated, a single binding is created for the entire sequence that results from

evaluating the expression:

$j = 1 2 3

The return clause in the example executes once. The expression results in the following output:

<output>1 2 3</output>

A let clause can contain multiple variables. However, unlike a for clause, a let clause binds each variable

to the result of its associated expression, without iteration. In the following example, a let clause contains

two variables, $a and $b, and expressions that construct the sequences 1 2 and 4 5:

let $a := (1, 2), $b := (4, 5)

return <output>{$a, $b}</output>

When the let clause is evaluated, one tuple of variable bindings is created:

($a = 1 2, $b = 4 5)

The return clause in the example executes once for the tuple. The expression results in the following

output:

<output>1 2 4 5</output>

When the binding expression evaluates to an empty sequence, a let binding is created, which contains the

empty sequence.

 Related reference

 “for and let clauses in the same expression”

 “for and let clauses compared” on page 93

 “Variable scope in for and let clauses” on page 93

for and let clauses in the same expression

When a FLWOR expression contains both for and let clauses, the variable bindings that are generated by

let clauses are added to the variable bindings that are generated by the for clauses.

In the following example, the for clause includes a variable called $a and an expression that constructs the

sequence (1, 2, 3). The let clause includes a variable called $b and an expression that constructs the

sequence (4, 5, 6):

for $a in (1, 2, 3)

let $b := (4, 5, 6)

return <output>{$a, $b}</output>

The for and let clauses in this example result in three tuples of bindings. The number of tuples is

determined by the for clause.

($a = 1, $b = 4 5 6)

($a = 2, $b = 4 5 6)

($a = 3, $b = 4 5 6)

92 IBM DB2 XQuery Reference

The return clause in the example executes once for each tuple of bindings. The expression results in the

following output:

<output>1 4 5 6</output>

<output>2 4 5 6</output>

<output>3 4 5 6</output>

 Related reference

 “Variable scope in for and let clauses”

 “for and let clauses compared”

for and let clauses compared

Although for and let clauses both bind variables, the manner in which variables are bound is different.

The following table provides examples that compare the results that are returned by FLWOR expressions

that contain similar for and let clauses.

 Table 31. Comparison of for and let clauses in FLWOR expressions

Description of query FLWOR expression Result

Bind a single variable for $i in ("a", "b", "c")

return <output>{$i}</output>

<output>a</output>

<output>b</output>

<output>c</output>

let $i := ("a", "b", "c")

return <output>{$i}</output>

<output>a b c</output>

Bind multiple variables for $i in ("a", "b"), $j in ("c", "d")

return <output>{$i, $j}</output>

<output>a c</output>

<output>b c</output>

<output>a d</output>

<output>b d</output>

let $i := ("a", "b"), $j := ("c", "d")

return <output>{$i, $j}</output>

<output>a b c d</output>

Note: Because the expressions in this table do not include order by clauses, the order of the output elements is

non-deterministic.

 Related reference

 “Variable scope in for and let clauses”

 “for and let clauses in the same expression” on page 92

Variable scope in for and let clauses

A variable that is bound in a for or let clause is in scope for all of the sub-expressions of the FLWOR

expression that appear after the variable binding. This means that a for or let clause can reference

variables that are bound in earlier clauses or in earlier bindings in the same clause.

In the following example, a FLWOR expression has the following clauses:

v A let clause that binds the variable $orders.

v A for clause that references $orders and binds the variable $i.

v Another let clause that references both $orders and $i and binds the variable $c.

The example finds all of the distinct item numbers in a set of orders, and returns the number of orders for

each distinct item number.

let $orders := db2-fn:xmlcolumn("ORDERS.XMLORDER")

for $i in fn:distinct-values($orders/order/itemno)

let $c := fn:count($orders/order[itemno = $i])

return

<ordercount>

 <itemno> {$i} </itemno>

 <count> {$c} </count>

</ordercount>

Chapter 4. Expressions 93

Important: The for and let clauses of a FLWOR expression cannot bind the same variable name more

than once.

 Related reference

 “Variable references” on page 54

 “for and let clauses compared” on page 93

 “for and let clauses in the same expression” on page 92

where clauses

A where clause in a FLWOR expression filters the tuples of variable bindings that are generated by the for

and let clauses.

The where clause specifies a condition that is applied to each tuple of variable bindings. If the condition is

true (that is, if the expression results in an effective boolean value of true), then the tuple is retained, and

its bindings are used when the return clause executes. Otherwise, the tuple is discarded.

In the following example, the for clause binds the variables $x and $y to sequences of numeric values:

for $x in (1.5, 2.6, 1.9), $y in (.5, 1.6, 1.7)

 where ((fn:floor($x) eq 1) and (fn:floor($y) eq 1))

 return <output>{$x, $y}</output>

When the for clause is evaluated, nine tuples of variable bindings are created:

($x = 1.5, $y = .5)

($x = 2.6, $y = .5)

($x = 1.9, $y = .5)

($x = 1.5, $y = 1.6)

($x = 2.6, $y = 1.6)

($x = 1.9, $y = 1.6)

($x = 1.5, $y = 1.7)

($x = 2.6, $y = 1.7)

($x = 1.9, $y = 1.7)

The where clause filters these tuples, and the following tuples are retained:

($x = 1.5, $y = 1.6)

($x = 1.9, $y = 1.6)

($x = 1.5, $y = 1.7)

($x = 1.9, $y = 1.7)

The return clause executes once for each remaining tuple, and the expression results in the following

output:

<output>1.5 1.6</output>

<output>1.9 1.6</output>

<output>1.5 1.7</output>

<output>1.9 1.7</output>

Because the expression in this example does not include an order by clause, the order of the output

elements is non-deterministic.

 Related concepts

 “Effective Boolean value” on page 51

 Related reference

 “Syntax of FLWOR expressions” on page 89

 “Variable scope in for and let clauses” on page 93

94 IBM DB2 XQuery Reference

order by clauses

An order by clause in a FLWOR expression specifies the order in which values are processed by the

return clause. If no order by clause is present, the results of a FLWOR expression are returned in a

non-deterministic order.

An order by clause contains one or more ordering specifications. Ordering specifications are used to

reorder the tuples of variable bindings that are retained after being filtered by the where clause. The

resulting order determines the order in which the return clause is evaluated.

Each ordering specification consists of an expression, which is evaluated to produce an ordering key, and

an order modifier, which specifies the sort order (ascending or descending) for the ordering keys. The

relative order of two tuples is determined by comparing the values of their ordering keys, working from left

to right.

In the following example, a FLWOR expression includes an order by clause that sorts products in

descending order based on their price:

<price_list>{

 for $prod in db2-fn:xmlcolumn(’PRODUCT.DESCRIPTION’)/product/description

 order by xs:decimal($prod/price) descending

 return

 <product>{$prod/name, $prod/price}</product>}

</price_list>

During processing of the order by clause, the expression in the ordering specification is evaluated for

each tuple that is generated by the for clause. For the first tuple, the value that is returned by the

expression xs:decimal($prod/price) is 9.99. The expression is then evaluated for the next tuple, and the

expression returns the value 19.99. Because the ordering specification indicates that items are sorted in

descending order, the product with the price 19.99 sorts before the product with the price 9.99. This

sorting process continues until all tuples are reordered. The return clause then executes once for each

tuple in the reordered tuple stream.

When run against the PRODUCT.DESCRIPTION table of the SAMPLE database, the query in the example

returns the following result:

<price_list>

 <product>

 <name>Snow Shovel, Super Deluxe 26"</name>

 <price>49.99</price>

 </product>

 <product>

 <name>Snow Shovel, Deluxe 24"</name>

 <price>19.99</price></product>

 <product>

 <name>Snow Shovel, Basic 22"</name>

 <price>9.99</price>

 </product>

 <product>

 <name>Ice Scraper, Windshield 4" Wide</name>

 <price>3.99</price>

 </product>

</price_list>

In this example, the expression in the ordering specification constructs an xs:decimal value from the value

of the price element. This type conversion is necessary because the type annotation of the price element

in the XML schema is xs:string. Without this conversion, the result would use string ordering rather than

numeric ordering.

Explicit type conversion is also required when the dynamic type of the ordering key value is

xdt:untypedAtomic because the rules for comparing ordering keys dictate that untyped atomic data is

treated as a string.

Chapter 4. Expressions 95

Tip: You can use an order by clause in a FLWOR expression to specify value ordering in a query that

would otherwise not require iteration. For example, the following path expression returns a list of

customerinfo elements with a customer ID (Cid) that is greater than 1000:

db2-fn:xmlcolumn(’CUSTOMER.INFO’)/customerinfo[@Cid > "1000"]

To return these items in ascending order by the name of the customer, however, you would need to

specify a FLWOR expression that includes an order by clause:

for $custinfo in db2-fn:xmlcolumn(’CUSTOMER.INFO’)/customerinfo

where ($custinfo/@Cid > "1000")

order by $custinfo/name ascending

return $custinfo

The ordering key does not need be part of the output. The following query produces a list of product

names, in descending order by price, but does not include the price in the output:

for $prod in db2-fn:xmlcolumn(’PRODUCT.DESCRIPTION’)/product

order by $prod/description/price descending

return $prod/name

Rules for comparing ordering specifications

The process of evaluating and comparing ordering specifications is based on the following rules:

v The expression in the ordering specification is evaluated and atomization is applied to the result. The

result of atomization must be either a single atomic value or an empty sequence; otherwise an error is

returned. The result of evaluating an ordering specification is called an ordering key.

v If the type of an ordering key is xdt:untypedAtomic, then that key is cast to the type xs:string.

Consistently treating untyped values as strings enables the sorting process to begin without complete

knowledge of the types of all of the values to be sorted.

v If the values that are generated by an ordering specification are not all of the same type, these values

(keys) are converted to a common type by subtype substitution or type promotion. Keys are compared

by converting them to the least common type that supports the gt operator. For example, if an ordering

specification generates a list of keys that includes both xs:anyURI values and xs:string values, the keys

are compared by using the gt operator of the xs:string type. If the ordering keys that are generated by a

given ordering specification do not have a common type that supports the gt operator, an error results.

v The values of the ordering keys are used to determine the order in which tuples of bound variables are

passed to the return clause for execution. The ordering of tuples is determined by comparing their

ordering keys, working from left to right, by using the following rules:

– If the sort order is ascending, tuples with ordering keys that are greater than other tuples sort after

those tuples.

– If the sort order is descending, tuples with ordering keys that are greater than other tuples sort

before those tuples.

The greater-than relationship for ordering keys is defined as follows:

– An empty sequence is greater than all other values.

– NaN is interpreted as greater than all other values except the empty sequence.

– A value is greater than another value if, when the value is compared to another value, the gt

operator returns true.

– Neither of the special floating-point values positive zero or negative zero is greater than the other

because +0.0 gt -0.0 and -0.0 gt +0.0 are both false.

Note: Tuples whose ordering key is empty appear at the end of the output stream if the ascending

option, which is the default, is specified, or at the beginning of the output stream if the

descending option is specified.

 Related concepts

 “Atomization” on page 50

96 IBM DB2 XQuery Reference

“Subtype substitution” on page 50

 “Type promotion” on page 51

 Related reference

 “Syntax of FLWOR expressions” on page 89

 “Order of results in XQuery expressions” on page 48

return clauses

A return clause generates the result of the FLWOR expression.

The return clause is evaluated once for each tuple of variable bindings that is generated by the other

clauses of the FLWOR expression. The results of these evaluations are concatenated to form the result of

the FLWOR expression. The order in which tuples of bound variables are processed by the return clause

is non-deterministic unless the FLWOR expression contains an order by clause.

Tip: In return clauses, use parentheses to enclose expressions that contain top-level comma operators.

Because FLWOR expressions have a higher precedence than the comma operator, expressions that

contain top-level comma operators could result in errors or unexpected results if parentheses are not

used.

 Related reference

 “Syntax of FLWOR expressions” on page 89

 “order by clauses” on page 95

FLWOR examples

These examples show to how to use FLWOR expressions in complete queries to perform joins, grouping,

and aggregation.

FLWOR expression that joins XML data

The following query joins XML data from the PRODUCT and PURCHASEORDER tables in the SAMPLE

database to list the names of products ordered in purchase orders placed in 2005.

Because the elements in both the product documents and the PurchaseOrder documents are in the same

namespace, the query begins by declaring a default namespace so that the element names in the query

do not need prefixes. The for clause iterates over the PURCHASEORDER.PORDER column, specifically

for purchase orders with OrderDate attribute value that starts with ″2005″. For each purchase order, the let

clause assigns the partid values to the $parts variable. The return clause then lists the names of the

products that are included in the purchase order.

declare default element namespace ’http://posample.org’;

for $po in db2-fn:xmlcolumn(’PURCHASEORDER.PORDER’)

 /PurchaseOrder[fn:starts-with(@OrderDate, "2005")]

let $parts := $po/item/partid

return

 <ProductList PoNum = "{$po/@PoNum}">

 { db2-fn:xmlcolumn(’PRODUCT.DESCRIPTION’)

 /product[@pid = $parts]/description/name }

 </ProductList>

The result of the query is the following:

<ProductList xmlns="http://posample.org" PoNum="5001">

<name>

 Snow Shovel, Deluxe 24 inch

</name>

<name>

 Snow Shovel, Super Deluxe 26 inch

Chapter 4. Expressions 97

</name>

<name>

 Ice Scraper, Windshield 4 inch

</name>

</ProductList>

<ProductList xmlns="http://posample.org" PoNum="5003">

<name>

 Snow Shovel, Basic 22 inch

</name>

</ProductList>

<ProductList xmlns="http://posample.org" PoNum="5004">

<name>

 Snow Shovel, Basic 22 inch

</name>

<name>

 Snow Shovel, Super Deluxe 26 inch

</name>

</ProductList>

FLWOR expression that groups elements

The following query groups customer names in the CUSTOMER table of the SAMPLE database by city.

The for clause iterates over the customerinfo documents and binds each city element to the variable $city.

For each city, the let clause binds the variable $cust-names to an unordered list of all the customer names

in that city. The query returns city elements that each contain the name of a city and the nested name

elements of all of the customers who live in that city.

declare default element namespace ’http://posample.org’;

for $city in fn:distinct-values(db2-fn:xmlcolumn(’CUSTOMER.INFO’)

 /customerinfo/addr/city)

let $cust-names := db2-fn:xmlcolumn(’CUSTOMER.INFO’)

 /customerinfo/name[../addr/city = $city]

order by $city

return <city>{$city, $cust-names} </city>

The result of the query is the following:

<city xmlns="http://posample.org">Aurora

 <name>Robert Shoemaker</name>

</city>

<city xmlns="http://posample.org">Markham

 <name>Kathy Smith</name>

 <name>Jim Noodle</name>

</city>

<city xmlns="http://posample.org">Toronto

 <name>Kathy Smith</name>

 <name>Matt Foreman</name>

 <name>Larry Menard</name>

</city>

FLWOR expression that aggregates data

The following query returns the total revenue generated by each purchase order in 2005 and creates an

HTML report.

The query iterates over each PurchaseOrder element with an order date in 2005 and binds the element to

the variable $po in the for clause. The path expression $po/item/ then moves the context position to each

item element within a PurchaseOrder element. The nested expression (price * quantity) determines the

total revenue for that item. The fn:sum function adds the resulting sequence of total revenue for each item.

The let clause binds the result of the fn:sum function to the variable $revenue. The order by clause sorts

the results by total revenue for each purchase order. Finally, the return clause creates a row in the report

table for each purchase order.

98 IBM DB2 XQuery Reference

declare default element namespace ’http://posample.org’;

<html>

<body>

<h1>PO totals</h1>

<table>

<thead><tr><th>PO Number</th><th>Status</th>

<th>Revenue</th></tr></thead>

<tbody>{

 for $po in db2-fn:xmlcolumn(’PURCHASEORDER.PORDER’)/

 PurchaseOrder[fn:starts-with(@OrderDate, "2005")]

 let $revenue := sum($po/item/(price * quantity))

 order by $revenue descending

 return

 <tr>

 <td>{string($po/@PoNum)}</td>

 <td>{string($po/@Status)}</td>

 <td>{$revenue}</td>

 </tr>

}</tbody>

</table>

</body>

</html>

The result of this query is the following:

<html xmlns="http://posample.org">

<body>

 <h1>PO totals</h1>

 <table>

 <thead>

 <tr>

 <th>PO Number</th>

 <th>Status</th>

 <th>Revenue</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td>5004</td>

 <td>Shipped</td>

 <td>139.94</td>

 </tr>

 <tr>

 <td>5001</td>

 <td>Shipped</td>

 <td>123.96</td>

 </tr>

 <tr>

 <td>5003</td>

 <td>UnShipped</td>

 <td>9.99</td>

 </tr>

 </tbody>

 </table>

</body>

</html>

When viewed in a browser, the query output would look similar to the following:

PO totals

 PO Number Status Revenue

5004 Shipped 139.94

5001 Shipped 123.96

Chapter 4. Expressions 99

PO Number Status Revenue

5003 Unshipped 9.99

 Related reference

 “Syntax of FLWOR expressions” on page 89

Conditional expressions

Conditional expressions use the keywords if, then, and else to evaluate one of two expressions based on

whether the value of a test expression is true or false.

Syntax

�� if (TestExpression) then Expression else Expression ��

if The keyword that directly precedes the test expression.

TestExpression

An XQuery expression that determines which part of the conditional expression to evaluate.

then

If the effective boolean value of TestExpression is true, then the expression that follows this keyword is

evaluated. The expression is not evaluated or checked for errors if the effective boolean value of the

test expression is false.

else

If the effective boolean value of TestExpression is false, then the expression that follows this keyword

is evaluated. The expression is not evaluated or checked for errors if the effective boolean value of the

test expression is true.

Expression

Any XQuery expression. If the expression includes a top-level comma operator, then the expression

must be enclosed in parentheses.

Example

In the following example, the query constructs a list of product elements that include an attribute named

basic. The value of the basic attribute is specified conditionally based on whether the value of the price

element is less than 10:

declare namespace ns1= "http://posample.org";

for $prod in db2-fn:xmlcolumn(’PRODUCT.DESCRIPTION’)/ns1:product/ns1:description

return (

if (xs:decimal($prod/ns1:price) < 10)

then <product basic = "true">{fn:data($prod/ns1:name)}</product>

else <product basic = "false">{fn:data($prod/ns1:name)}</product>)

The query returns the following result:

<product basic="true">Snow Shovel, Basic 22"</product>

<product basic="false">Snow Shovel, Deluxe 24"</product>

<product basic="false">Snow Shovel, Super Deluxe 26"</product>

<product basic="true">Ice Scraper, Windshield 4" Wide</product>

In this example, the test expression constructs an xs:decimal value from the value of the price element.

The xs:decimal function is used to force a decimal comparison.

 Related concepts

 “Effective Boolean value” on page 51

100 IBM DB2 XQuery Reference

Quantified expressions

Quantified expressions return true if some or every item in one or more sequences satisfies a specific

condition. The value of a quantified expression is always true or false.

A quantified expression begins with a quantifier (some or every) that indicates whether the expression

performs existential or universal quantification. The quantifier is followed by one or more clauses that bind

variables to items that are returned by expressions. The bound variables are then referenced in a test

expression to determine if some or all of the bound values satisfy a specific condition.

Syntax

��

�

 ,

some

$VariableName

in

Expression

satisfies

TestExpression

every

��

some

When this keyword is specified, the quantified expression returns true if the effective boolean value of

TestExpression is true for at least one item that is returned by Expression. Otherwise, the quantified

expression returns false.

every

When this keyword is specified, the quantified expression returns true if the effective boolean value of

TestExpression is true for every item that is returned by Expression. Otherwise, the quantified

expression returns false.

VariableName

The name of the variable to bind to each item in the result of Expression. Variables that are bound in a

quantified expression are in scope for all of the sub-expressions that appear after the variable binding

in the quantified expression.

Expression

Any XQuery expression. If the expression includes a top-level comma operator, then the expression

must be enclosed in parentheses.

satisfies

The keyword that directly precedes the test expression

TestExpression

An XQuery expression that specifies the condition that must be met by some or every item in the

sequences returned by Expression.

Note: When errors occur, the result of a quantified comparison can be either a boolean value or an error.

Examples

v The quantified expression in the following example returns true if every customer in the

CUSTOMER.INFO column of the SAMPLE database has an address in Canada:

every $cust in db2-fn:xmlcolumn(’CUSTOMER.INFO’)/customerinfo

satisfies $cust/addr/@country = "Canada"

v In the following examples, each quantified expression evaluates its test expression for every

combination of values that are bound to the variables a and b (there are nine combinations in all).

The result of the following expression is true:

some $a in (3, 5, 9), $b in (1, 3, 5)

 satisfies $a * $b = 27

The result of the following expression is false:

every $a in (3, 5, 9), $b in (1, 3, 5)

 satisfies $a * $b = 27

Chapter 4. Expressions 101

v The following example demonstrates that the result of a quantified expression is not deterministic in the

presence of errors. The expression can either return true or an error because the test expression

returns true for one variable binding and returns an error for another:

some $a in (3, 5, "six") satisfies $a * 3 = 9

Likewise, the following expression can return false or an error:

every $a in (3, 5, "six") satisfies $a * 3 = 9

 Related concepts

 “Effective Boolean value” on page 51

 Related reference

 “Variable references” on page 54

Cast expressions

A cast expression creates a new value of a specific type based on an existing value.

A cast expression takes two operands: an input expression and a target type. When the cast expression is

evaluated, atomization is used to convert the result of the input expression into an atomic value or an

empty sequence. If atomization results in a sequence of more than one atomic value, an error is returned.

If no errors are returned, the cast expression attempts to create a new value of the target type that is

based on the input value. Some combinations of input and target types are not supported for casting. For

information about which types can be cast to which other types, see “Type casting” on page 23.

An empty sequence is a valid input value only when the target type is followed by a question mark (?).

Syntax

�� Expression cast as TargetType

?
 ��

Expression

Any XQuery expression that returns a single atomic value or an empty sequence. An empty sequence

is allowed when TargetType is followed by a question mark (?).

TargetType

The type to which the value of Expression is cast. TargetType must be an atomic type that is in the

predefined atomic XML schema types. The data types xs:NOTATION, xdt:anyAtomicType, and

xs:anySimpleType are not valid types for TargetType.

? Indicates that the result of Expression can be an empty sequence.

Example

In the following example, a cast expression is used to cast the value of the price element, which has the

type xs:string, to the type xs:decimal:

for $price in db2-fn:xmlcolumn(’PRODUCT.DESCRIPTION’)/product/description/price

return $price cast as xs:decimal

When run against the PRODUCT.DESCRIPTION table of the SAMPLE database, the query in the example

returns the following result:

9.99

19.99

49.99

3.99

 Related concepts

 Chapter 2, “Type system,” on page 17

102 IBM DB2 XQuery Reference

“Atomization” on page 50

 Related reference

 “Type casting” on page 23

Chapter 4. Expressions 103

104 IBM DB2 XQuery Reference

Chapter 5. Built-in functions

DB2 XQuery provides a library of built-in functions for working with XML data. These built-in functions

include XQuery-defined functions and DB2-defined functions.

XQuery-defined functions

XQuery-defined functions are in the namespace that is bound to the prefix fn. This namespace is

the default function namespace, which means that you can invoke XQuery-defined functions

without specifying a namespace prefix. If you override this default function namespace with a

default function namespace declaration in the query prolog, you must use the prefix fn to invoke

XQuery-defined functions.

DB2-defined functions

The two DB2-defined functions are db2-fn:xmlcolumn and db2-fn:sqlquery, which you use to

access XML values from a DB2 database. The prefix db2-fn is not the default function namespace,

so you must use the namespace prefix when invoking these functions unless you override the

default namespace with a default function namespace declaration in the query prolog.

 Related concepts

 “XML namespaces and QNames” on page 12

 Related reference

 “Default function namespace declaration” on page 42

Functions by category

The following categories of functions are available: string, boolean, number, date, sequence, QName,

node, and others.

String functions

 Function Description

“codepoints-to-string function” on page 112 The fn:codepoints-to-string function returns the string

equivalent of a sequence of Unicode code points.

“compare function” on page 113 The fn:compare function compares two strings.

“concat function” on page 114 The fn:concat function returns a string that is the

concatenation of two or more atomic values.

“contains function” on page 114 The fn:contains function determines whether a string

contains a given substring.

“ends-with function” on page 121 The fn:ends-with function determines whether a string

ends with a given substring.

“lower-case function” on page 128 The fn:lower-case function converts a string to lowercase.

“matches function” on page 129 The fn:matches function determines whether a string

matches a given pattern.

“normalize-space function” on page 135 The fn:normalize-space function strips leading and trailing

whitespace characters from a string and replaces each

internal sequence of whitespace characters with a single

blank character.

“normalize-unicode function” on page 136 The fn:normalize-unicode function performs Unicode

normalization on a string.

“replace function” on page 140 The fn:replace function compares each set of characters

within a string to a given pattern, and then it replaces the

characters that match the pattern with another set of

characters.

© Copyright IBM Corp. 2006 105

Function Description

“starts-with function” on page 147 The fn:starts-with function determines whether a string

begins with a given substring.

“string function” on page 148 The fn:string function returns the string representation of

a value.

“string-join function” on page 148 The fn:string-join function returns a string that is

generated by concatenating items separated by a

separator character.

“string-length function” on page 149 The fn:string-length function returns the length of a string.

“string-to-codepoints function” on page 149 The fn:string-to-codepoints function returns a sequence of

Unicode code points that correspond to a string value.

“substring function” on page 151 The fn:substring function returns a substring of a string.

“substring-after function” on page 151 The fn:substring-after function returns a substring that

occurs in a string after the end of the first occurrence of a

given search string.

“substring-before function” on page 152 The fn:substring-before function returns a substring that

occurs in a string before the first occurrence of a given

search string.

“tokenize function” on page 154 The fn:tokenize function breaks a string into a sequence

of substrings.

“translate function” on page 155 The fn:translate function replaces selected characters in a

string with replacement characters.

“upper-case function” on page 157 The fn:upper-case function converts a string to

uppercase.

Boolean functions

 Function Description

“boolean function” on page 111 The fn:boolean function returns the effective Boolean

value of a sequence.

“false function” on page 123 The fn:false function returns the xs:boolean value false.

“not function” on page 137 The fn:not function returns false if the effective boolean

value of a sequence is true, and true if the effective

boolean value of a sequence is false.

“true function” on page 156 The fn:true function returns the xs:boolean value true.

“zero-or-one function” on page 159 The fn:zero-or-one function returns its argument if the

argument contains one item or is the empty sequence.

Number functions

 Function Description

“abs function” on page 109 The fn:abs function returns the absolute value of a

numeric value.

“avg function” on page 110 The fn:avg function returns the average of the values in a

sequence.

“ceiling function” on page 111 The fn:ceiling function returns the smallest integer that is

greater than or equal to a given numeric value.

“floor function” on page 123 The fn:floor function returns the largest integer that is less

than or equal to a given numeric value.

106 IBM DB2 XQuery Reference

Function Description

“max function” on page 130 The fn:max function returns the maximum of the values in

a sequence.

“min function” on page 131 The fn:min function returns the minimum of the values in

a sequence.

“number function” on page 137 The fn:number function converts a value to the xs:double

data type.

“round function” on page 144 The fn:round function returns the integer that is closest to

a given numeric value.

“round-half-to-even function” on page 145 The fn:round-half-to-even function returns the numeric

value with a specified precision that is closest to a given

numeric value.

“sum function” on page 153 The fn:sum function returns the sum of the values in a

sequence.

Date functions

 Function Description

“current-date function” on page 115 The fn:current-date function returns the current date in

the implicit timezone of UTC.

“current-dateTime function” on page 116 The fn:current-dateTime function returns the current date

and time in the implicit timezone of UTC.

“current-time function” on page 116 The fn:current-time function returns the current time in the

implicit timezone of UTC.

“dateTime function” on page 117 The fn:dateTime function constructs an xs:dateTime value

from an xs:date value and an xs:time value.

“implicit-timezone function” on page 124 The fn:implicit-timezone function returns the implicit

timezone value of PT0S, which is of type

xs:dayTimeDuration. The value PT0S indicates that UTC

is the implicit timezone.

Sequence functions

 Function Description

“count function” on page 115 The fn:count function returns the number of values in a

sequence.

“data function” on page 117 The fn:data function returns the input sequence after

replacing any nodes in the input sequence by their typed

values.

“deep-equal function” on page 118 The fn:deep-equal function compares two sequences to

determine whether they meet the requirements for deep

equality.

“distinct-values function” on page 120 The fn:distinct-values function returns the distinct values

in a sequence.

“empty function” on page 121 The fn:empty function indicates whether the argument is

an empty sequence.

“exactly-one function” on page 122 The fn:exactly-one function returns its argument if the

argument contains exactly one item.

“exists function” on page 122 The fn:exists function indicates whether a sequence is not

the empty sequence.

Chapter 5. Built-in functions 107

Function Description

“last function” on page 126 The fn:last function returns the number of values in the

sequence that is currently being processed.

“index-of function” on page 125 The fn:index-of function returns the positions where an

item appears in a sequence.

“insert-before function” on page 126 The fn:insert-before function inserts a sequence before a

given position in another sequence.

“one-or-more function” on page 138 The fn:one-or-more function returns its argument if the

argument contains one or more items.

“position function” on page 138 The fn:position function returns the position of the context

item in the sequence that is currently being processed.

“remove function” on page 140 The fn:remove function removes an item from a

sequence.

“reverse function” on page 143 The fn:reverse function reverses the order of the items in

a sequence.

“subsequence function” on page 150 The fn:subsequence function returns a subsequence of a

sequence.

“unordered function” on page 157 The fn:unordered function returns the items in a

sequence in non-deterministic order.

QName functions

 Function Description

“in-scope-prefixes function” on page 124 The fn:in-scope-prefixes function returns a list of prefixes

for all in-scope namespaces of an element.

“local-name-from-QName function” on page 128 The fn:local-name-from-QName function returns the local

part of an xs:QName value.

“namespace-uri-for-prefix function” on page 134 The fn:namespace-uri-for-prefix function returns the

namespace URI that is associated with a prefix in the

in-scope namespaces for an element.

“namespace-uri-from-QName function” on page 134 The fn:namespace-uri-from-QName function returns the

namespace URI part of an xs:QName value.

“QName function” on page 139 The fn:QName function builds an expanded name from a

namespace URI and a string that contains a lexical

QName (with an optional prefix.) .

“resolve-QName function” on page 142 The fn:resolve-QName function converts a string

containing a lexical QName into an expanded QName by

using the in-scope namespaces of an element to resolve

the namespace prefix to a namespace URI.

Node functions

 Function Description

“local-name function” on page 127 The fn:local-name function returns the local name

property of a node.

“name function” on page 132 The fn:name function returns the prefix and local name

parts of a node name.

“namespace-uri function” on page 133 The fn:namespace-uri function returns the namespace

URI of the qualified name for a node.

108 IBM DB2 XQuery Reference

Function Description

“node-name function” on page 135 The fn:node-name function returns the expanded QName

of a node.

“root function” on page 143 The fn:root function returns the root node of a tree to

which a node belongs.

Other functions

 Function Description

“default-collation function” on page 119 The fn:default-collation function returns a URI that

represents the default collation that is defined for the

database.

“sqlquery function” on page 146 The db2-fn:sqlquery function retrieves a sequence that is

the result of an SQL fullselect in the currently connected

DB2 database.

“xmlcolumn function” on page 158 The db2-fn:xmlcolumn function retrieves a sequence from

a column in the currently connected DB2 database.

 Related reference

 “Default function namespace declaration” on page 42

abs function

The fn:abs function returns the absolute value of a numeric value.

Syntax

�� fn:abs(numeric-value) ��

numeric-value

An atomic value or an empty sequence.

 If numeric-value is an atomic value, it has one of the following types:

v xs:float

v xs:double

v xs:decimal

v xs:integer

v A type that is derived from any of the previously listed types

v xdt:untypedAtomic

If numeric-value has the xdt:untypedAtomic data type, it is converted to an xs:double value.

Returned value

If numeric-value is not the empty sequence, the returned value is the absolute value of numeric-value.

If numeric-value is the empty sequence, fn:abs returns the empty sequence.

The data type of the returned value depends on the data type of numeric-value:

v If numeric-value is xs:float, xs:double, xs:decimal, or xs:integer, the value that is returned has the same

type as numeric-value.

v If numeric-value has a data type that is derived from xs:float, xs:double, xs:decimal, or xs:integer, the

value that is returned has the direct parent data type of numeric-value.

Chapter 5. Built-in functions 109

v If numeric-value has the xdt:untypedAtomic data type, the value that is returned has the xs:double data

type.

Example

The following function returns the absolute value of –10.5.

fn:abs(-10.5)

The returned value is 10.5.

 Related concepts

 Chapter 2, “Type system,” on page 17

avg function

The fn:avg function returns the average of the values in a sequence.

Syntax

�� fn:avg(sequence-expression) ��

sequence-expression

A sequence that contains items of any of the following atomic types, or an empty sequence:

v xs:float

v xs:double

v xs:decimal

v xs:integer

v xdt:untypedAtomic

v xdt:dayTimeDuration

v xdt:yearMonthDuration

v A type that is derived from any of the previously listed types

Input items of type xdt:untypedAtomic are cast to xs:double. After this casting, all of the items in

the input sequence must be convertible to a common type by promotion or subtype substitution.

The average is computed in this common type. For example, if the input sequence contains items

of type money (derived from xs:decimal) and stockprice (derived from xs:float), the average is

computed in the type xs:float.

Returned value

If sequence-expression is not the empty sequence, the returned value is the average of the values in

sequence-expression. The data type of the returned value is the same as the data type of the items in

sequence-expression, or the data type to which the items in sequence-expression are promoted.

If sequence-expression is the empty sequence, the empty sequence is returned.

Example

The following function returns the average of the sequence (5, 1.0E2, 40.5):

fn:avg((5, 1.0E2, 40.5))

The values are promoted to the xs:double data type. The function returns the xs:double value 4.85E1,

which is serialized as ″48.5″.

 Related concepts

 “Sequences and items” on page 4

 “Type promotion” on page 51

110 IBM DB2 XQuery Reference

boolean function

The fn:boolean function returns the effective Boolean value of a sequence.

Syntax

�� fn:boolean(sequence-expression) ��

sequence-expression

Any sequence that contains items of any type, or the empty sequence.

Returned value

The returned effective Boolean value depends on the value of sequence-expression:

 Table 32. EBVs returned for specific types of values in XQuery

Description of value EBV returned

An empty sequence false

A sequence whose first item is a node true

A single value of type xs:boolean (or derived from

xs:boolean)

false - if the xs:boolean value is false

true - if the xs:boolean value is true

A single value of type xs:string or xdt:untypedAtomic (or

derived from one of these types)

false - if the length of the value is zero

true - if the length if the value is greater than zero

A single value of any numeric type (or derived from a

numeric type)

false - if the value is NaN or is numerically equal to zero

true - if the value is not numerically equal to zero

All other values error

Note: The effective boolean value of a sequence that contains at least one node and at least one atomic value is

nondeterministic in a query where the order is unpredictable.

Examples

Example with an argument that is a single numeric value: The following function returns the effective

Boolean value of 0:

fn:boolean(0)

The returned value is false.

Example with an argument that is a multiple-item sequence: The following function returns the

effective Boolean value of (<a/>, 0,):

fn:boolean((<a/>, 0,))

The returned value is true.

 Related concepts

 “Effective Boolean value” on page 51

 “Sequences and items” on page 4

ceiling function

The fn:ceiling function returns the smallest integer that is greater than or equal to a given numeric value.

Chapter 5. Built-in functions 111

Syntax

�� fn:ceiling(numeric-value) ��

numeric-value

An atomic value or an empty sequence.

 If numeric-value is an atomic value, it has one of the following types:

v xs:float

v xs:double

v xs:decimal

v xs:integer

v xdt:untypedAtomic

v A type that is derived from any of the previously listed types

If numeric-value has the xdt:untypedAtomic data type, it is converted to an xs:double value.

Returned value

If numeric-value is not the empty sequence, the returned value is the smallest integer that is greater than

or equal to numeric-value. The data type of the returned value depends on the data type of numeric-value:

v If numeric-value is xs:float, xs:double, xs:decimal, or xs:integer, the value that is returned has the same

type as numeric-value.

v If numeric-value has a data type that is derived from xs:float, xs:double, xs:decimal, or xs:integer, the

value that is returned has the direct parent data type of numeric-value.

If numeric-value is the empty sequence, the returned value is the empty sequence.

Examples

Example with a positive argument: The following function returns the ceiling value of 0.5:

fn:ceiling(0.5)

The returned value is 1.

Example with a negative argument: The following function returns the ceiling value of (-1.2):

fn:ceiling(-1.2)

The returned value is -1.

 Related concepts

 Chapter 2, “Type system,” on page 17

codepoints-to-string function

The fn:codepoints-to-string function returns the string equivalent of a sequence of Unicode code points.

Syntax

�� fn:codepoints-to-string(codepoint-sequence) ��

codepoint-sequence

A sequence of integers that correspond to Unicode code points, or the empty sequence.

112 IBM DB2 XQuery Reference

Returned value

If codepoint-sequence is not the empty sequence, the returned value is a string that is the concatenation

of the character equivalents of the items in codepoint-sequence. If any item in codepoint-sequence is not a

valid Unicode code point, an error is returned.

If codepoint-sequence is the empty sequence, the returned value is a string of length 0.

Example

The following function returns the character equivalent of the sequence of UTF-8 code points

(88,81,117,101,114,121).

fn:codepoints-to-string((88,81,117,101,114,121))

The returned value is ’XQuery’.

 Related reference

 “string-to-codepoints function” on page 149

compare function

The fn:compare function compares two strings.

Syntax

�� fn:compare(string-1,string-2) ��

string-1 , string-2

The xs:string values that are to be compared.

Returned value

If string-1 and string-2 are not the empty sequence, one of the following values is returned:

-1 If string-1 is less than string-2.

0 If string-1 is equal to string-2.

1 If string-1 is greater than string-2.

string-1 and string-2 are equal if they have the same length, including a length of zero, and all

corresponding characters are equal according to the default collation.

If string-1 and string-2 are not equal, their relationship (that is, which has the greater value) is determined

by the comparison of the first pair of unequal characters from the left end of the strings. This comparison

is made according to the default collation.

If string-1 is longer than string-2, and all characters of string-2 are equal to the leading characters of

string-1, string-1 is greater than string-2.

If string-1 or string-2 is the empty sequence, the empty sequence is returned.

Example

The following function compares ’ABC’ to ’ABD’ using the default collation.

fn:compare(’ABC’, ’ABD’)

’ABC’ is less than ’ABD’. The returned value is -1.

Chapter 5. Built-in functions 113

concat function

The fn:concat function returns a string that is the concatenation of two or more atomic values.

Syntax

��

�

 fn:concat(atomic-value,atomic-value)

,

,

atomic-value

 ��

atomic-value

An atomic value or the empty sequence. If an argument is the empty sequence, the argument is

treated as the zero-length string. If atomic-value is not an xs:string value, it is cast to xs:string

before the values are concatenated.

Returned value

If all atomic-value arguments are the empty sequence, the returned value is a string of length 0.

Otherwise, the returned value is the concatenation of the xs:string values that result from casting the

atomic-value arguments to strings.

Example

The following function concatenates the strings ’ABC’, ’ABD’, the empty sequence, and ’ABE’:

fn:concat(’ABC’, ’ABD’, (), ’ABE’)

The returned value is ’ABCABDABE’.

 Related concepts

 “Atomic values” on page 4

 Related reference

 “tokenize function” on page 154

contains function

The fn:contains function determines whether a string contains a given substring.

Syntax

�� fn:contains(string,substring) ��

string The string to search for substring.

 string has the xs:string data type, or is the empty sequence. If string is the empty sequence, string

is set to a string of length 0.

substring

The substring to search for in string.

 substring has the xs:string data type, or is the empty sequence.

Returned value

The returned value is the xs:boolean value true if either of the following conditions are satisfied:

v substring occurs anywhere within string.

v substring is an empty sequence or a string of length zero.

114 IBM DB2 XQuery Reference

Otherwise, the returned value is false.

Example

The following function determines whether the string ’Test literal’ contains the string ’lite’.

fn:contains(’Test literal’,’lite’)

The returned value is true.

 Related reference

 “ends-with function” on page 121

 “starts-with function” on page 147

count function

The fn:count function returns the number of values in a sequence.

Syntax

�� fn:count(sequence-expression) ��

sequence-expression

A sequence that contains items of any type, or an empty sequence.

Returned value

If sequence-expression is not the empty sequence, the number of values in sequence-expression is

returned. If sequence-expression is the empty sequence, 0 is returned.

Example

The following function returns the number of items in the sequence (5, 1.0E2, 40.5):

fn:count((5, 1.0E2, 40.5))

The returned value is 3.

 Related concepts

 “Sequences and items” on page 4

current-date function

The fn:current-date function returns the current date in the implicit timezone of UTC.

Syntax

�� fn:current-date() ��

Returned value

The returned value is an xs:date value that is the current date.

Example

The following function returns the current date.

fn:current-date()

Chapter 5. Built-in functions 115

If this function were invoked on December 2, 2005, the returned value would be 2005-12-02Z.

 Related reference

 “current-dateTime function”

 “current-time function”

 “dateTime function” on page 117

 “implicit-timezone function” on page 124

current-dateTime function

The fn:current-dateTime function returns the current date and time in the implicit timezone of UTC.

Syntax

�� fn:current-dateTime() ��

Returned value

The returned value is an xs:dateTime value that is the current date and time.

Example

The following function returns the current date and time.

fn:current-dateTime()

If this function were invoked on December 2, 2005 at 6:25 in Toronto (timezone -PT5H), the returned value

might be 2005-12-02T011:25:30.864001Z.

 Related reference

 “current-date function” on page 115

 “current-time function”

 “dateTime function” on page 117

 “implicit-timezone function” on page 124

current-time function

The fn:current-time function returns the current time in the implicit timezone of UTC.

Syntax

�� fn:current-time() ��

Returned value

The returned value is an xs:time value that is the current time.

Example

The following function returns the current time.

fn:current-time()

If this function were invoked at 6:31 Greenwich Mean Time, the returned value might be

06:31:35.519001Z.

 Related reference

116 IBM DB2 XQuery Reference

“current-date function” on page 115

 “current-dateTime function” on page 116

 “dateTime function”

 “implicit-timezone function” on page 124

data function

The fn:data function returns the input sequence after replacing any nodes in the input sequence by their

typed values.

Syntax

�� fn:data(sequence-expression) ��

sequence-expression

Any sequence, including the empty sequence.

Returned value

If sequence-expression is an empty sequence, the returned value is an empty sequence.

If sequence-expression is a single atomic value, the returned value is sequence-expression.

If sequence-expression is a single node, the returned value is the typed value of sequence-expression.

If sequence-expression is a sequence of more than one item, a sequence of atomic values is returned

from the items in sequence-expression. Each atomic value in sequence-expression remains unchanged.

Each node in sequence-expression is replaced by its typed value, which is a sequence of zero or more

atomic values.

Example

The following function returns a sequence that contains the atomic values that are in the sequence (<x

xsi:type=″string″>ABC</x>,<y xsi:type=″decimal″>1.23</y>).

fn:data((<x xsi:type="string">ABC</x>,<y xsi:type="decimal">1.23</y>))

The returned value is (″ABC″,1.23).

 Related concepts

 “Typed values and string values of nodes” on page 10

dateTime function

The fn:dateTime function constructs an xs:dateTime value from an xs:date value and an xs:time value.

Syntax

�� fn:dateTime(date-value,time-value) ��

date-value

An xs:date value.

time-value

An xs:time value.

Chapter 5. Built-in functions 117

Returned value

The returned value is an xs:dateTime value with a date component that is equal to date-value and a time

component that is equal to time-value. The timezone of the result is computed as follows:

v If neither argument has a timezone, the result has no timezone.

v If exactly one of the arguments has a timezone, or if both arguments have the same timezone, the

result has this timezone.

v If the two arguments have different timezones, an error is returned.

Example

The following function returns an xs:dateTime value from an xs:date value and an xs:time value.

fn:dateTime((xs:date("2005-04-16")), (xs:time("12:30:59")))

The returned value is the xs:dateTime value 2005-04-16T12:30:59.

 Related reference

 “current-date function” on page 115

 “current-time function” on page 116

 “implicit-timezone function” on page 124

deep-equal function

The fn:deep-equal function compares two sequences to determine whether they meet the requirements for

deep equality.

Syntax

�� fn:deep-equal(sequence-1,sequence-2) ��

sequence-1, sequence-2

The sequences that are to be compared. The items in each sequence can be atomic values of any

type, or nodes.

Returned value

The returned value is the xs:boolean value true if sequence-1 and sequence-2 have deep equality.

Otherwise the returned value is false.

If sequence-1 and sequence-2 are the empty sequence, they have deep equality.

If two sequences are not empty, the two sequences have deep equality if they satisfy both of the following

conditions:

v The number of items in sequence-1 is equal to the number of items in sequence-2.

v Each item in sequence-1 (item-1) satisfies the conditions for deep equality to the corresponding item in

sequence-2 (item-2). item-1 and item-2 have deep equality if they satisfy either of the following

conditions:

– item-1 and item-2 are both atomic values and satisfy either of the following conditions:

- The expression item-1 eq item-2 returns true

- Both item-1 and item-2 have the type xs:float or xs:double and the value NaN.

– item-1 and item-2 are both nodes of the same kind and satisfy the conditions for deep equality in the

following table.

118 IBM DB2 XQuery Reference

Table 33. Deep equality for nodes in a sequence

Node kind of both

item-1 and item-2 Conditions for deep equality

Document The sequence of the text and element children of item-1 is deep-equal to the sequence of

the text and element children of item-2.

Element All of the following conditions must be true:

v item-1 and item-2 have the same name, which means that their namespace URIs match

and their local names match. Namespace prefixes are ignored.

v item-1 and item-2 have the same number of attributes, and every attribute of item-1 is

deep-equal to an attribute of item-2.

v One of the following conditions is true:

– Both nodes are either unvalidated or validated with a type that permits mixed content

(both text and child elements), and the sequence of the text and element children of

item-1 is deep-equal to the sequence of the text and element children of item-2.

– Both nodes are validated with a simple type (such as xs:decimal) or a type that has

simple content (such as a ″temperature″ type whose content is xs:decimal), and the

typed value of item-1 is deep-equal to the typed value of item-2.

– Both nodes are validated with a type that permits no content (neither text nor child

elements).

– Both nodes are validated with a type that permits only child elements (no text), and

each child element of item-1 is deep-equal to the corresponding child element of

item-2.

Attribute All of the following conditions must be true:

v item-1 and item-2 have the same name, which means that their namespace URIs match

and their local names match. Namespace prefixes are ignored.

v The typed value of item-1 is deep-equal to the typed value of item-2.

Text The content property values are equal when compared as strings with the eq operator.

Comment The content property values are equal when compared as strings with the eq operator.

Processing instruction All of the following conditions must be true:

v item-1 and item-2 have the same name.

v The content property values are equal when compared as strings with the eq operator.

Example

The following function compares the sequences (1,’ABC’) and (1,’ABCD’) for deep equality. String

comparisons use the default correlation.

fn:deep-equal((1,’ABC’), (1,’ABCD’))

The returned value is false.

 Related concepts

 “Typed values and string values of nodes” on page 10

 “Node kinds” on page 7

 Related reference

 “General comparisons” on page 71

default-collation function

The fn:default-collation function returns a URI that represents the default collation that is defined for the

database.

Chapter 5. Built-in functions 119

Syntax

�� fn:default-collation() ��

Returned value

The returned value is of the type xs:anyURI and specifies the collation of the database.

Example

A DB2 database is created with the collation UCA400_NO specified. When querying this database, the

following function returns http://www.ibm.com/xmlns/prod/db2/sql/collations?name=UCA400_NO:

fn:default-collation()

distinct-values function

The fn:distinct-values function returns the distinct values in a sequence.

Syntax

�� fn:distinct-values(sequence-expression) ��

sequence-expression

A sequence of atomic values, or the empty sequence.

Returned value

If sequence-expression is not the empty sequence, the returned value is a sequence that contains the

distinct values in sequence-expression. Two values, value1 and value2, are distinct if value1 eq value2 is

false. If the eq operator is not defined for two values, those values are considered to be distinct.

Values of type xdt:untypedAtomic are converted to values of type xs:string before the values are

compared.

For xs:float and xs:double values, if sequence-expression contains multiple NaN values, a single NaN

value is returned.

For xs:dateTime, xs:date, or xs:time values, the values are adjusted for timezone differences before they

are compared. If a value does not have a timezone, the implicit timezone (UTC) is used.

If sequence-expression is the empty sequence, the empty sequence is returned.

If two values in the input sequence are equal by the eq operator but have different types, either of the

values, but not both, can appear in the result sequence. The result sequence might not preserve the order

of the input sequence.

Example

The following function returns the distinct values in a sequence, after atomizing the nodes in the

sequence:

fn:distinct-values((1, ’a’, 1.0, ’A’, <greeting>Hello</greeting>))

The returned value may be (1, ’a’, ’A’, ’Hello’) or (1.0, ’A’, ’a’, ’Hello’).

 Related reference

 “Value comparisons” on page 69

120 IBM DB2 XQuery Reference

empty function

The fn:empty function indicates whether the argument is an empty sequence.

Syntax

�� fn:empty(item) ��

item An expression of any data type, or the empty sequence.

Returned value

The returned value is true if item is the empty sequence. Otherwise, the returned value is false.

Example

The following example uses the empty function to determine whether the sequence in variable $seq is the

empty sequence.

let $seq := (5, 10)

return fn:empty($seq)

The returned value is false.

 Related concepts

 “Sequences and items” on page 4

ends-with function

The fn:ends-with function determines whether a string ends with a given substring.

Syntax

�� fn:ends-with(string,substring) ��

string The string to search for substring.

 string has the xs:string data type, or is an empty sequence. If string is an empty sequence, string

is set to a string of length 0.

substring

The substring to search for at the end of string.

 substring has the xs:string data type, or is an empty sequence.

Returned value

The returned value is the xs:boolean value true if either of the following conditions is satisfied:

v substring occurs at the end of string.

v substring is an empty sequence or a string of length zero.

Otherwise, the returned value is false.

Example

The following function determines whether the string ’Test literal’ ends with the string ’literal’.

fn:ends-with(’Test literal’,’literal’)

The returned value is true.

Chapter 5. Built-in functions 121

Related reference

 “contains function” on page 114

 “starts-with function” on page 147

exactly-one function

The fn:exactly-one function returns its argument if the argument contains exactly one item.

Syntax

�� fn:exactly-one(sequence-expression) ��

sequence-expression

Any sequence, including the empty sequence.

Returned value

If sequence-expression contains exactly one item, sequence-expression is returned. Otherwise, an error is

returned.

Example

The following example uses the exactly-one function to determine whether the sequence in variable $seq

contains exactly one item.

let $seq := 5

return fn:exactly-one($seq)

The value 5 is returned.

 Related concepts

 “Sequences and items” on page 4

 Related reference

 “one-or-more function” on page 138

 “zero-or-one function” on page 159

exists function

The fn:exists function indicates whether a sequence is not the empty sequence.

Syntax

�� fn:exists(sequence-expression) ��

sequence-expression

A sequence of any data type, or the empty sequence

Returned value

The returned value is true if sequence-expression is the not the empty sequence. Otherwise, the returned

value is false.

Example

The following example uses the exists function to determine whether the sequence in variable $seq is not

the empty sequence.

122 IBM DB2 XQuery Reference

let $seq := (5, 10)

return fn:exists($seq)

The value true is returned.

 Related concepts

 “Sequences and items” on page 4

false function

The fn:false function returns the xs:boolean value false.

Syntax

�� fn:false() ��

Returned value

The returned value is the xs:boolean value false.

Example

Use the false function to return the value false.

fn:false()

The value false is returned.

 Related reference

 “true function” on page 156

floor function

The fn:floor function returns the largest integer that is less than or equal to a given numeric value.

Syntax

�� fn:floor(numeric-value) ��

numeric-value

An atomic value or an empty sequence.

 If numeric-value is an atomic value, it has one of the following types:

v xs:float

v xs:double

v xs:decimal

v xs:integer

v xdt:untypedAtomic

v A type that is derived from any of the previously listed types

If numeric-value has the xdt:untypedAtomic data type, it is converted to an xs:double value.

Returned value

If numeric-value is not the empty sequence, the returned value is the largest integer that is less than

numeric-value. The data type of the returned value depends on the data type of numeric-value:

v If numeric-value is xs:float, xs:double, xs:decimal, or xs:integer, the value that is returned has the same

type as numeric-value.

Chapter 5. Built-in functions 123

v If numeric-value has a data type that is derived from xs:float, xs:double, xs:decimal, or xs:integer, the

value that is returned has the direct parent data type of numeric-value.

If numeric-value is the empty sequence, the returned value is the empty sequence.

Examples

Example with a positive argument: The following function returns the floor value of 0.5:

fn:floor(0.5)

The returned value is 0.

Example with a negative argument: The following function returns the floor value of (-1.2):

fn:floor(-1.2)

The returned value is -2.

implicit-timezone function

The fn:implicit-timezone function returns the implicit timezone value of PT0S, which is of type

xs:dayTimeDuration. The value PT0S indicates that UTC is the implicit timezone.

Syntax

�� fn:implicit-timezone() ��

Returned value

The returned value is PT0S, which is UTC represented by the type xs:dayTimeDuration.

Example

The following function returns xdt:dayTimeDuration(″PT0S″):

fn:implicit-timezone()

 Related reference

 “current-date function” on page 115

 “current-dateTime function” on page 116

 “current-time function” on page 116

 “dateTime function” on page 117

in-scope-prefixes function

The fn:in-scope-prefixes function returns a list of prefixes for all in-scope namespaces of an element.

Syntax

�� fn:in-scope-prefixes(element) ��

element

The element for which the prefixes for in-scope namespaces are to be retrieved.

124 IBM DB2 XQuery Reference

Returned value

The returned value is a sequence of xs:NCName values, which are the prefixes for all in-scope

namespaces for element. If a default namespace is in-scope for element, the sequence item for the default

namespace prefix is a string of length 0. The namespace ″xml″ is always included in the in-scope

namespaces of an element.

Example

The following query returns a sequences of prefixes (as NCNames) for in-scope namespaces for the

element emp.

declare namespace d="http://www.example.org";

let $department := document {

<comp:dept xmlns:comp="http://www.mycompany.com" id="A07">

 <comp:emp id="31201" />

</comp:dept> }

return fn:in-scope-prefixes($department/d:dept/d:emp)

The returned value is (″xml″, ″comp″), not necessarily in that order.

 Related reference

 “In-scope namespaces of a constructed element” on page 82

index-of function

The fn:index-of function returns the positions where an item appears in a sequence.

Syntax

�� fn:index-of(sequence-expression,search-value) ��

sequence-expression

Any sequence of atomic types, or the empty sequence.

search-value

The value to find in sequence-expression.

Returned value

The returned value is a sequence of xs:integer values that represent the positions of items in

sequence-expression that match search-value when compared by using the rules of the eq operator. Items

that cannot be compared because the eq operator is not defined for their types are considered to not

match search-value, and therefore the positions are not returned. The first item in a sequence has the

position 1.

The function returns an empty sequence if search-value does not match any items in sequence-expression

, or if sequence-expression is an empty sequence.

Example

The following function returns the positions where ’ABC’ appears in a sequence.

fn:index-of((’ABC’,’DEF’,’ABC’,’123’), ’ABC’)

The returned value is the sequence (1,3).

 Related concepts

 “Sequences and items” on page 4

Chapter 5. Built-in functions 125

insert-before function

The fn:insert-before function inserts a sequence before a given position in another sequence.

Syntax

�� fn:insert-before(source-sequence,insert-position,insert-sequence) ��

source-sequence

The sequence into which a sequence is to be inserted.

 source-sequence is a sequence of items of any data type, or is the empty sequence.

insert-position

The position in source-sequence before which a sequence is to be inserted. insert-position has the

xs:integer data type. If insert-position<=0, insert-position is set to 1. If insert-position is greater

than the number of items in source-sequence, insert-position is set to one greater than the number

of items in source-sequence.

insert-sequence

The sequence that is to be inserted into source-sequence.

 insert-sequence is a sequence of items of any data type, or is the empty sequence.

Returned value

If source-sequence is not the empty sequence:

v If insert-sequence is not the empty sequence, the returned value is a sequence with the following items,

in the following order:

– The items in source-sequence before item insert-position

– The items in insert-sequence

– The item in source-sequence at item insert-position

– The items in source-sequence after item insert-position

v If insert-sequence is the empty sequence, the returned value is source-sequence.

If source-sequence is the empty sequence:

v If insert-sequence is not an empty sequence, the returned value is insert-sequence.

v If insert-sequence is an empty sequence, the returned value is the empty sequence.

Example

The following function returns the sequence that results from inserting the sequence (4,5,6) before position

4 in sequence (1,2,3,7):

fn:insert-before((1,2,3,7),4,(4,5,6))

The returned value is (1,2,3,4,5,6,7).

 Related concepts

 “Sequences and items” on page 4

last function

The fn:last function returns the number of values in the sequence that is currently being processed.

Syntax

126 IBM DB2 XQuery Reference

�� fn:last() ��

Returned value

If the sequence that is currently being processed is not the empty sequence, the returned value is the

number of values in the sequence. If the sequence that is currently being processed is the empty

sequence, the returned value is the empty sequence.

Example

This function returns the number of items in the current sequence, which is (5, 1.0E2, 40.5):

fn:last()

The returned value is 3.

 Related concepts

 “Sequences and items” on page 4

 Related reference

 “Dynamic context and focus” on page 47

local-name function

The fn:local-name function returns the local name property of a node.

Syntax

�� fn:local-name()

node
 ��

node The node for which the local name is to be retrieved. If node is not specified, fn:local-name is

evaluated for the current context node.

Returned value

The returned value depends on whether node is specified, and the value of node:

v If node is not specified, the local name of the context node is returned.

v If node meets any of the following conditions, a string of length 0 is returned:

– node is the empty sequence.

– node is not an element node, an attribute node, or a processing-instruction node.

v If node meets any of the following conditions, an error is returned:

– node is undefined.

– node is not a node.

v Otherwise, an xs:string value is returned that contains the local name part of the expanded name for

node.

Examples

The following function returns the local name for node emp.

declare namespace a="http://posample.org";

fn:local-name(<a:b/>)

The returned value is b.

 Related concepts

Chapter 5. Built-in functions 127

“Node properties” on page 7

local-name-from-QName function

The fn:local-name-from-QName function returns the local part of an xs:QName value.

Syntax

�� fn:local-name-from-QName(qualified-name) ��

qualified-name

The qualified name from which the local part is to be retrieved.

 qualified-name has the xs:QName data type, or is the empty sequence.

Returned value

If qualified-name is not the empty sequence, the value that is returned is an xs:NCName value that is the

local part of qualified-name. If qualified-name is the empty sequence, the empty sequence is returned.

Example

The following function returns the local part of a qualified name.

fn:local-name-from-QName(fn:QName("http://www.mycompany.com/", "ns:employee"))

The returned value is ″employee″.

 Related concepts

 “Qualified names (QNames)” on page 12

lower-case function

The fn:lower-case function converts a string to lowercase.

Syntax

�� fn:lower-case(source-string) ��

source-string

The string that is to be converted to lowercase.

 source-string has the xs:string data type, or is the empty sequence.

Returned value

If source-string is not the empty sequence, the returned value is source-string, with each character

converted to its lowercase correspondent as defined in the Unicode standard. Every character that does

not have a lowercase correspondent is included in the returned value in its original form.

If source-string is the empty sequence, the returned value is a string of length 0.

Example

The following function converts the string ″Wireless Router TB2561″ to lowercase:

fn:lower-case("Wireless Router TB2561")

Returns: ″wireless router tb2561″

128 IBM DB2 XQuery Reference

matches function

The fn:matches function determines whether a string matches a given pattern.

Syntax

�� fn:matches(source-string,pattern)

,flags
 ��

source-string

A string that is compared to a pattern.

 source-string is an xs:string value or the empty sequence.

pattern

A regular expression that is compared to source-string. A regular expression is a set of characters,

wildcards, and operators that define a string or group of strings in a search pattern.

 pattern is an xs:string value.

flags An xs:string value that can contain any of the following values that control matching of pattern to

source-string:

s Indicates that the dot (.) matches any character.

 If the s flag is not specified, the dot (.) matches any character except the new line

character (X’0A’).

m Indicates that the caret (^) matches the start of a line (the position after a new line

character), and the dollar sign ($) matches the end of a line (the position before a new line

character).

 If the m flag is not specified, the caret (^) matches the start of a string, and the dollar sign

($) matches the end of the string.

i Indicates that matching is case-insensitive.

 If the i flag is not specified, case-sensitive matching is done.

x Indicates that whitespace characters within pattern are ignored.

 If the x flag is not specified, whitespace characters are used for matching.

Returned value

If source-string is not the empty sequence, the returned value is true if source-string matches pattern. The

returned value is false if source-string does not match pattern.

If pattern does not contain the string- or line-starting character caret (^), or the string- or line-ending

character dollar sign ($), source-string matches pattern if any substring of source-string matches pattern. If

pattern contains the string- or line-starting character caret (^), source-string matches pattern only if

source-string matches pattern from the beginning of source-string or the beginning of a line in

source-string. If pattern contains the string- or line-ending character dollar sign ($), source-string matches

pattern only if source-string matches pattern at the end of source-string or at the end of a line of

source-string. The m flag determines whether the match occurs from the beginning of the string or the

beginning of a line.

If source-string is the empty sequence, the returned value is false.

Chapter 5. Built-in functions 129

Examples

Example of matching a pattern to any substring within a string: The following function determines

whether the characters ″ac″ or ″bd″ appear anywhere within the string ″abbcacadbdcd″.

fn:matches("abbcacadbdcd","(ac)|(bd)")

The returned value is true.

Example of matching a pattern to an entire string: The following function determines whether the

characters ″ac″ or ″bd″ match the string ″bd″.

fn:matches("bd","^(ac)|(bd)$")

The returned value is true.

 Related reference

 Regular expressions
A regular expression is a sequence of characters that act as a pattern for matching and manipulating

strings. Regular expressions are used in the following XQuery functions: fn:matches, fn:replace, and

fn:tokenize. DB2 XQuery regular expression support is based on the XML schema regular expression

support as defined in the W3C Recommendation XML Schema Part 2: Datatypes Second Edition with

extensions as defined by W3C Candidate Recommendation XQuery 1.0 and XPath 2.0 Functions and

Operators.

max function

The fn:max function returns the maximum of the values in a sequence.

Syntax

�� fn:max(sequence-expression) ��

sequence-expression

A sequence that contains items of any of the following atomic types, or an empty sequence:

v xs:float

v xs:double

v xs:decimal

v xs:integer

v xs:string

v xs:date

v xs:time

v xs:dateTime

v xdt:untypedAtomic

v xdt:dayTimeDuration

v xdt:yearMonthDuration

v A type that is derived from any of the previously listed types

Input items of type xdt:untypedAtomic are cast to xs:double. After this casting, all the items in the

input sequence must be convertible by promotion or subtype substitution to a common type that

supports the ge operator. The maximum value is computed in this common type. For example, if

the input sequence contains items of type money (derived from xs:decimal) and stockprice

(derived from xs:float), the maximum is computed in the type xs:float.

 Before date, time, or dateTime values are compared, they are adjusted to a common timezone.

Datetime values without an explicit timezone component use the implicit timezone, which is UTC.

130 IBM DB2 XQuery Reference

Returned value

If sequence-expression is not the empty sequence, the returned value is the maximum of the values in

sequence-expression. The data type of the returned value is the same as the data type of the items in

sequence-expression, or the common data type to which the items in sequence-expression are promoted.

If sequence-expression is the empty sequence, the empty sequence is returned. If the sequence includes

the value NaN, NaN is returned.

Example

The following function returns the maximum of the sequence (500, 1.0E2, 40.5).

fn:max((500, 1.0E2, 40.5))

The values are promoted to the xs:double data type. The function returns the xs:double value 5.0E2,

which is serialized as ″500″.

 Related reference

 “min function”

min function

The fn:min function returns the minimum of the values in a sequence.

Syntax

�� fn:min(sequence-expression) ��

sequence-expression

A sequence that contains items of any of the following atomic types, or an empty sequence:

v xs:float

v xs:double

v xs:decimal

v xs:integer

v xs:string

v xs:date

v xs:time

v xs:dateTime

v xdt:untypedAtomic

v xdt:dayTimeDuration

v xdt:yearMonthDuration

v A type that is derived from any of the previously listed types

Input items of type xdt:untypedAtomic are cast to xs:double. After this casting, all of the items in

the input sequence must be convertible by promotion or subtype substitution to a common type

that supports the le operator. The minimum value is computed in this common type. For example,

if the input sequence contains items of type money (derived from xs:decimal) and stockprice

(derived from xs:float), the minimum is computed in the type xs:float.

 Before date, time, or dateTime values are compared, they are adjusted to a common timezone.

Datetime values without an explicit timezone component use the implicit timezone, which is UTC.

Returned value

If sequence-expression is not the empty sequence, the returned value is the minimum of the values in

sequence-expression. The data type of the returned value is the same as the data type of the items in

sequence-expression, or the common data type to which the items in sequence-expression are promoted.

Chapter 5. Built-in functions 131

If sequence-expression is the empty sequence, the empty sequence is returned. If the sequence includes

the value NaN, NaN is returned.

Examples

Example with numeric arguments: The following function returns the minimum of the sequence (500,

1.0E2, 40.5):

fn:min((500, 1.0E2, 40.5))

The values are promoted to the xs:double data type. The function returns the xs:double value 4.05E1,

which is serialized as ″40.5″.

Example with string arguments: The following function returns the minimum of the sequence (″x″, ″y″,

″Z″) using the default collation. Assume that the default collation sorts lowercase alphabetic characters

before uppercase alphabetic characters.

fn:min(("x", "y", "Z"))

The returned value is ″x″.

 Related reference

 “max function” on page 130

name function

The fn:name function returns the prefix and local name parts of a node name.

Syntax

�� fn:name()

node
 ��

node The qualified name of a node for which the name is to be retrieved. If node is not specified,

fn:name is evaluated for the current context node.

Returned value

The returned value depends on the value of node:

v If node meets any of the following conditions, a string of length 0 is returned:

– node is the empty sequence.

– node is not an element node, an attribute node, or a processing-instruction node.

v If node meets any of the following conditions, an error is returned:

– node is undefined.

– node is not a node.

v Otherwise, an xs:string value is returned that contains the prefix (if present) and local name for node.

Examples

The following query returns the value ″comp:emp″:

declare namespace d="http://www.example.org";

let $department := document {

<comp:dept xmlns:comp="http://www.mycompany.com" id="A07">

 <comp:emp id="31201" />

</comp:dept> }

return fn:name($department/d:dept/d:emp)

The following query also returns the value ″comp:emp″:

132 IBM DB2 XQuery Reference

declare namespace d="http://www.example.org";

let $department := document {

<comp:dept xmlns:comp="http://www.mycompany.com" id="A07">

 <comp:emp id="31201" />

</comp:dept> }

return $department/d:dept/d:emp/fn:name()

 Related concepts

 “Node properties” on page 7

namespace-uri function

The fn:namespace-uri function returns the namespace URI of the qualified name for a node.

Syntax

�� fn:namespace-uri()

node
 ��

node The qualified name of a node for which the namespace URI is to be retrieved. If node is not

specified, fn:namespace-uri is evaluated for the current context node.

Returned value

The returned value depends on the value of node:

v If node meets any of the following conditions, a string of length 0 is returned:

– node is the empty sequence.

– node is not an element node or an attribute node.

– node is an element node or an attribute node, but the expanded qualified name for node is not in a

namespace.

v If node meets any of the following conditions, an error is returned:

– node is undefined.

– node is not a node.

v Otherwise, an xs:string value is returned that contains the namespace URI of the expanded name for

node.

Examples

The following query returns the value ″http://www.mycompany.com″:

declare namespace d="http://www.example.org";

let $department := document {

<comp:dept xmlns:comp="http://www.mycompany.com" id="A07">

 <comp:emp id="31201" />

</comp:dept> }

return fn:namespace-uri($department/d:dept/d:emp)

The following query also returns the value ″http://www.mycompany.com″:

declare namespace d="http://www.example.org";

let $department := document {

<comp:dept xmlns:comp="http://www.mycompany.com" id="A07">

 <comp:emp id="31201" />

</comp:dept> }

return $department/d:dept/d:emp/fn:namespace-uri()

 Related concepts

 “XML namespaces and QNames” on page 12

Chapter 5. Built-in functions 133

namespace-uri-for-prefix function

The fn:namespace-uri-for-prefix function returns the namespace URI that is associated with a prefix in the

in-scope namespaces for an element.

Syntax

�� fn:namespace-uri-for-prefix(prefix,element) ��

prefix The prefix for which the namespace is returned.

 prefix has the xs:string data type, which can have zero length, or is an empty sequence.

element

An element that has an in-scope namespace that is bound to prefix.

Returned value

The returned value depends on the value of prefix:

v If element has an in-scope namespace whose prefix value matches the value of prefix, the namespace

URI for that namespace is returned.

v If element does not have an in-scope namespace whose prefix value matches the value of prefix, the

empty sequence is returned.

v If prefix is a string of length 0 or is an empty sequence, the namespace URI for the default namespace

is returned.

Example

The following query returns the value ″http://www.mycompany.com″:

declare namespace d="http://www.example.org";

let $department := document {

<comp:dept xmlns:comp="http://www.mycompany.com" id="A07">

 <comp:emp id="31201" />

</comp:dept> }

return fn:namespace-uri-for-prefix("comp", $department/d:dept/d:emp)

 Related concepts

 “XML namespaces and QNames” on page 12

namespace-uri-from-QName function

The fn:namespace-uri-from-QName function returns the namespace URI part of an xs:QName value.

Syntax

�� fn:namespace-uri-from-QName(qualified-name) ��

qualified-name

The qualified name from which the namespace URI part is to be retrieved.

 qualified-name has the xs:QName data type, or is an empty sequence.

Returned value

If qualified-name is not the empty sequence, the value that is returned is an xs:string value that is the

namespace URI part of qualified-name. If qualified-name is not in a namespace, a string of length 0 is

returned. If qualified-name is the empty sequence, the empty sequence is returned.

134 IBM DB2 XQuery Reference

Example

This function returns the string value ″http://www.mycompany.com″:

fn:namespace-uri-from-QName(fn:QName("http://www.mycompany.com", "comp:employee"))

 Related concepts

 “XML namespaces and QNames” on page 12

node-name function

The fn:node-name function returns the expanded QName of a node.

Syntax

�� fn:node-name(node) ��

node The node for which the expanded name is to be retrieved.

Returned value

The returned value is an xs:QName value that contains the expanded QName for node. If node is an

empty sequence, an empty sequence is returned.

Example

The following query returns the expanded QName that corresponds to the URI http://www.mycompany.com

and the lexical QName comp:emp:

declare namespace d="http://www.example.org";

let $department := document {

<comp:dept xmlns:comp="http://www.mycompany.com" id="A07">

 <comp:emp id="31201" />

</comp:dept> }

return fn:node-name($department/d:dept/d:emp)

 Related concepts

 “Node properties” on page 7

normalize-space function

The fn:normalize-space function strips leading and trailing whitespace characters from a string and

replaces each internal sequence of whitespace characters with a single blank character.

Syntax

�� fn:normalize-space()

source-string
 ��

source-string

A string in which whitespace is to be normalized.

 source-string is an xs:string value or the empty sequence.

 If source-string is not specified, the argument of fn:normalize-space is the current context item,

which is converted to an xs:string value by using the fn:string function.

Returned value

The returned value is the xs:string value that results when the following operations are performed on

source-string:

Chapter 5. Built-in functions 135

v Leading and trailing whitespace characters are removed.

v Each internal sequence of one or more adjacent whitespace characters is replaced by a single space

(X’20’) character.

Whitespace characters are space (X’20’), tab (X’09’), line feed (X’0A’), and carriage return (X’0D’).

If source-string is the empty sequence, a string of length 0 is returned.

Example

The following function removes extra whitespace characters from the string ″ a b c d ″.

fn:normalize-space(" a b c d ")

The returned value is ″a b c d″.

 Related concepts

 “Whitespace” on page 14

normalize-unicode function

The fn:normalize-unicode function performs Unicode normalization on a string.

Syntax

�� fn:normalize-unicode(source-string)

,normalization-type
 ��

source-string

A value on which Unicode normalization is to be performed.

 source-string is an xs:string value or the empty sequence.

normalization-type

An xs:string value that indicates the type of Unicode normalization that is to be performed.

Possible values are:

NFC Unicode Normalization Form C. If normalization-type, is not specified, NFC normalization

is performed.

NFD Unicode Normalization Form D.

NFKC Unicode Normalization Form KC.

NFKD Unicode Normalization Form KD.

If a zero-length string is specified, then no normalization is performed.

Returned value

If source-string is not the empty sequence, the returned value is the xs:string value that results when

Unicode normalization that is specified by normalization-type is performed on source-string. If

normalization-type is not specified, Unicode Normalization Form C (NFC) is performed on source-string.

Unicode normalization is described in Character Model for the World Wide Web 1.0.

If source-string is the empty sequence, a string of length 0 is returned.

Example

The following function performs Unicode Normalization Form C on the string ″ṃ″ (a Latin

lowercase letter m with a dot below):

136 IBM DB2 XQuery Reference

fn:normalize-unicode("ĉࠃ","NFC")

The returned value is ″&x7747;″.

not function

The fn:not function returns false if the effective boolean value of a sequence is true, and true if the

effective boolean value of a sequence is false.

Syntax

�� fn:not(sequence-expression) ��

sequence-expression

Any sequence that contains items of any type, or the empty sequence.

Returned value

If sequence-expression is not an empty sequence, then the value that is returned is true if the effective

boolean value of the sequence is false. The returned value is false if the effective boolean value of the

sequence is true.

If sequence-expression is the empty sequence, the returned value is true.

Example

The following function returns false because the effective boolean value of a node is true.

fn:not(<employee />)

 Related concepts

 “Effective Boolean value” on page 51

number function

The fn:number function converts a value to the xs:double data type.

Syntax

�� fn:number()

atomic-value
 ��

atomic-value

An atomic value or the empty sequence. If atomic-value is not specified, fn:number is evaluated

for the current context item.

Returned value

If atomic-value is not the empty sequence, the returned value is the result of casting atomic-value as

xs:double. If atomic-value cannot be cast to the xs:double data type, NaN is returned.

If numeric-value is the empty sequence, NaN is returned.

Example

Example of converting an xs:decimal value to xs:double: The following function converts the

xs:decimal value 2.75 to xs:double.

fn:number(2.75)

Chapter 5. Built-in functions 137

The returned value is 2.75E0 .

Example of converting an xs:boolean value to xs:double: The following function converts the boolean

value false() to xs:double.

fn:number(false())

The returned value is 0.0E0.

 Related reference

 “double data type” on page 29

one-or-more function

The fn:one-or-more function returns its argument if the argument contains one or more items.

Syntax

�� fn:one-or-more(sequence-expression) ��

sequence-expression

Any sequence, including the empty sequence.

Returned value

If sequence-expression contains one or more items, sequence-expression is returned. Otherwise, an error

is returned.

Example

The following example uses the fn:one-or-more function to determine if the sequence in variable $seq

contains one or more items.

let $seq := (5,10)

return fn:one-or-more($seq)

(5,10) is returned.

 Related concepts

 “Sequences and items” on page 4

 Related reference

 “exactly-one function” on page 122

 “zero-or-one function” on page 159

position function

The fn:position function returns the position of the context item in the sequence that is currently being

processed.

Syntax

�� fn:position() ��

Returned value

The returned value is an xs:integer value that indicates the position of the context item in the sequence

that is currently being processed. If the context item is undefined, an error is returned. The position

function returns a deterministic result only if the sequence that contains the context item has a

138 IBM DB2 XQuery Reference

deterministic order. The position function is typically used in a predicate.

Example

In the following expression, the position function is called for each item in a sequence of ten items. For

each item, the position function returns the position of that item in the sequence. The predicate position()

eq 5 is true only for the fifth item in the sequence.

(11 to 20)[position() eq 5]

The value returned by the expression is 15.

 Related concepts

 “Document order of nodes” on page 10

 “Sequences and items” on page 4

 Related reference

 “Dynamic context and focus” on page 47

QName function

The fn:QName function builds an expanded name from a namespace URI and a string that contains a

lexical QName (with an optional prefix.) .

Syntax

�� fn:QName(URI,QName) ��

URI The namespace portion of an expanded name.

 URI has the xs:string data type, or is an empty string or sequence.

QName

A value that is the correct lexical form of the data type xs:QName.

 QName has the xs:string data type.

Returned value

The returned value is an xs:QName value that is an expanded name with a namespace URI that is

specified by URI, and the prefix and local name that is specified by QName.

The fn:QName function associates the namespace prefix of QName with the value of URI. If QName has a

namespace prefix, URI cannot be a zero-length string or empty sequence. If QName has only a local

name and no prefix, URI can be a zero-length string or empty sequence.

Example

The following function is given a namespace URI and a string that contains a lexical QName, and it

returns a value of type xs:QName.

fn:QName("http://www.mycompany.com", "comp:employee")

The returned value is an xs:QName value with namespace URI of ″http://www.mycompany.com″, a prefix

of ″comp″, and local name of ″employee″.

 Related concepts

 “XML namespaces and QNames” on page 12

Chapter 5. Built-in functions 139

remove function

The fn:remove function removes an item from a sequence.

Syntax

�� fn:remove(source-sequence,remove-position) ��

source-sequence

The sequence from which an item is to be removed.

 source-sequence is a sequence of items of any data type, or is the empty sequence.

remove-position

The position in source-sequence of the item that is to be removed. remove-position has the

xs:integer data type.

Returned value

If source-sequence is not the empty sequence:

v If remove-position is less than one or greater than the length of source-sequence, the returned value is

source-sequence.

v If remove-position is greater than or equal to one and less than or equal to the length of

source-sequence, the returned value is a sequence with the following items, in the following order:

– The items in source-sequence before item remove-position

– The items in source-sequence after item remove-position

v If source-sequence is the empty sequence, the returned value is the empty sequence.

Example

The following function returns the sequence that results from removing the item at position three from the

sequence (1,2,4,7):

fn:remove((1,2,4,7),3)

The returned value is (1,2,7).

 Related concepts

 “Sequences and items” on page 4

replace function

The fn:replace function compares each set of characters within a string to a given pattern, and then it

replaces the characters that match the pattern with another set of characters.

Syntax

�� fn:replace(source-string,pattern,replacement-string)

,flags
 ��

source-string

A string that contains characters that are to be replaced.

 source-string is an xs:string value or the empty sequence.

pattern

A regular expression that is compared to source-string. A regular expression is a set of characters,

wildcards, and operators that define a string or group of strings in a search pattern.

 pattern is an xs:string value.

140 IBM DB2 XQuery Reference

replacement-string

A string that contains characters that replace characters that match pattern in source-string.

 replacement-string is an xs:string value.

 replacement-string can contain the variables $0 to $9. $0 represents the entire string in pattern.

The variable $1 through $9 represent one of nine possible parenthesized subexpressions in

pattern. ($1 represents the first subexpression, $2 represents the second subexpression, and so

on.)

 To use the literal dollar sign ($) in replacement-string, use the string ″\$″. To use the literal

backslash (\) in replacement-string, use the string ″\\″.

flags An xs:string value that can contain any of the following values that control the matching of pattern

to source-string:

s Indicates that the dot (.) replaces any character.

 If the s flag is not specified, the dot (.) replaces any character except the new-line

character (X’0A’).

m Indicates that the caret (^) replaces the start of a line (the position after a new-line

character), and the dollar sign ($) replaces the end of a line (the position before a new-line

character).

 If the m flag is not specified, the caret (^) replaces the start of a string, and the dollar sign

($) replaces the end of the string.

i Indicates that matching is case-insensitive.

 If the i flag is not specified, case-sensitive matching is done.

x Indicates that whitespace characters within pattern are ignored.

 If the x flag is not specified, whitespace characters are used for matching.

Returned value

If source-string is not the empty sequence, the returned value is a string that results when the following

operations are performed on source-string:

v source-string is searched for characters that match pattern. If pattern contains two or more alternative

sets of characters, the first set of characters in pattern that matches characters in source-string is

considered to be the matching pattern.

v Each set of characters in source-string that matches pattern is replaced with replacement-string. If

replacement-string contains any of the variables $0 through $9, the substring of source-string that

matches the subexpression in pattern that corresponds to the variable replaces the variable in

replacement-string. Then the modified replacement-string is inserted into source-string. If a variable

does not have a corresponding subexpression in pattern because there are more variables than

subexpressions or a subexpression does not have a match in source-string, a string of length 0

replaces the variable in replacement-string.

If pattern is not found in source-string, an error is returned.

If source-string is the empty sequence, a string of length 0 is returned.

Examples

Example of replacing a substring with another substring: The following function replaces all instances

of ″a″ in the string ″abbcacadbdcd″ with ″ba″.

fn:replace("abbcacadbdcd","a","ba")

Chapter 5. Built-in functions 141

The returned value is ″babbcbacbadbdcd″.

Example of replacing a substring using a replacement string with variables: The following function

replaces ″a″ and the character that follows ″a″ with two instances of the character that follows the ″a″ in

″abbcacadbdcd″.

fn:replace("abbcacadbdcd","a(.)","$1$1")

The returned value is ″bbbcccddbdcd″.

 Related reference

 “translate function” on page 155

 Regular expressions
A regular expression is a sequence of characters that act as a pattern for matching and manipulating

strings. Regular expressions are used in the following XQuery functions: fn:matches, fn:replace, and

fn:tokenize. DB2 XQuery regular expression support is based on the XML schema regular expression

support as defined in the W3C Recommendation XML Schema Part 2: Datatypes Second Edition with

extensions as defined by W3C Candidate Recommendation XQuery 1.0 and XPath 2.0 Functions and

Operators.

resolve-QName function

The fn:resolve-QName function converts a string containing a lexical QName into an expanded QName by

using the in-scope namespaces of an element to resolve the namespace prefix to a namespace URI.

Syntax

�� fn:resolve-QName(qualified-name,element-for-namespace) ��

qualified-name

A string that is in the form of a qualified name.

 qualified-name has the xs:string data type, or is the empty sequence.

element-for-namespace

An element that provides the in-scope namespaces for qualified-name.

 element-for-namespace is an element node.

Returned value

If qualified-name is not the empty sequence, the returned value is an expanded name that is constructed

as follows:

v The prefix and local name of the expanded QName is taken from qualified-name.

v If qualified-name has a prefix, and that prefix matches a prefix in the in-scope namespaces of

element-for-namespace, the namespace URI to which this prefix is bound is the namespace URI for the

returned value.

v If qualified-name has no prefix, and a default namespace URI is defined in the in-scope namespaces of

element-for-namespace, this default namespace URI is the namespace URI for the returned value.

v If qualified-name has no prefix, and no default namespace URI is defined in the in-scope namespaces

of element-for-namespace, the returned value has no namespace URI.

v If the prefix for qualified-name does not match a namespace prefix in the in-scope namespaces of

element-for-namespace, or qualified-name is not in the form of a valid qualified name, an error is

returned.

If qualified-name is the empty sequence, the empty sequence is returned.

142 IBM DB2 XQuery Reference

Example

The following query returns the expanded QName that corresponds to the URI http://www.mycompany.com

and the lexical QName comp:dept:

declare namespace d="http://www.mycompany.com";

let $department := document {

<comp:dept xmlns:comp="http://www.mycompany.com" id="A07">

 <comp:emp id="31201" />

</comp:dept> }

return fn:resolve-QName("comp:dept", $department/d:dept/d:emp)

 Related concepts

 “XML namespaces and QNames” on page 12

reverse function

The fn:reverse function reverses the order of the items in a sequence.

Syntax

�� fn:reverse(source-sequence) ��

source-sequence

The sequence that is to be reversed.

 source-sequence is a sequence of items of any data type, or is the empty sequence.

Returned value

If source-sequence is not the empty sequence, the returned value is a sequence that contains the items in

source-sequence, in reverse order.

If source-sequence is the empty sequence, the empty sequence is returned.

Example

The following function returns the items in sequence (1,2,3,7) in reverse order:

fn:reverse((1,2,3,7))

The returned value is (7,3,2,1).

 Related concepts

 “Sequences and items” on page 4

root function

The fn:root function returns the root node of a tree to which a node belongs.

Syntax

�� fn:root()

node
 ��

node A node or the empty sequence. The default value for node is the context node.

Returned value

If node is not the empty sequence, the returned value is the root node of the tree to which node belongs.

If node is the root node of the tree, the returned value is node.

Chapter 5. Built-in functions 143

If node is the empty sequence, the returned value is the empty sequence.

Example

Suppose that some XQuery variables are defined like this:

let $f := <first>Laura</first>

let $e := <emp> {$f} <last>Brown</last> </emp>

let $doc := document {<emps>{$e}</emps>}

Example of returning the root node of an element: The following function returns the root node of the

element named last:

fn:root($e/last)

The returned value is <emp><first>Laura</first><last>Brown</last></emp>.

Example of returning the root node of a document: The following function returns the root node of the

document that is bound to the variable $doc:

fn:root($doc)

The returned value is a document node.

 Related concepts

 “Node hierarchies” on page 5

round function

The fn:round function returns the integer that is closest to a given numeric value.

Syntax

�� fn:round(numeric-value) ��

numeric-value

An atomic value or an empty sequence.

 If numeric-value is an atomic value, it has one of the following types:

v xs:float

v xs:double

v xs:decimal

v xs:integer

v xdt:untypedAtomic

v A type that is derived from any of the previously listed types

If numeric-value has the xdt:untypedAtomic data type, it is converted to an xs:double value.

Returned value

If numeric-value is not the empty sequence, the returned value is the integer that is closest to

numeric-value. That is, fn:round(numeric-value) is equivalent to fn:floor(numeric-value+0.5). The data type

of the returned value depends on the data type of numeric-value:

v If numeric-value is xs:float, xs:double, xs:decimal, or xs:integer, the value that is returned has the same

type as numeric-value.

v If numeric-value has a data type that is derived from xs:float, xs:double, xs:decimal, or xs:integer, the

value that is returned has the direct parent data type of numeric-value.

If numeric-value is the empty sequence, the returned value is the empty sequence.

144 IBM DB2 XQuery Reference

Examples

Example with a positive argument: The following function returns the rounded value of 0.5:

fn:round(0.5)

The returned value is 1.

Example with a negative argument: The following function returns the rounded value of (-1.5):

fn:round(-1.5)

The returned value is -1.

 Related reference

 “round-half-to-even function”

round-half-to-even function

The fn:round-half-to-even function returns the numeric value with a specified precision that is closest to a

given numeric value.

Syntax

�� fn:round-half-to-even(numeric-value)

,precision
 ��

numeric-value

An atomic value or an empty sequence.

 If numeric-value is an atomic value, it has one of the following types:

v xs:float

v xs:double

v xs:decimal

v xs:integer

v xdt:untypedAtomic

v A type that is derived from any of the previously listed types

If numeric-value has the xdt:untypedAtomic data type, it is converted to an xs:double value.

precision

The number of digits to the right of the decimal point to which numeric-value is to be rounded.

precision is an xs:integer value. The default value for precision is 0.

Returned value

If numeric-value is not the empty sequence, and precision is 0 or not specified, the returned value is the

integer that is closest to numeric-value. If numeric-value is equally close to two integers, the returned

value is the even integer.

If numeric-value is not the empty sequence, and precision is not 0, the returned value is a numeric value

that has precision digits to the right of the decimal point and is closest to numeric-value. If numeric-value

is equally close to two values, the returned value is the value whose least significant digit is even.

The data type of the returned value depends on the data type of numeric-value:

v If numeric-value is xs:float, xs:double, xs:decimal, or xs:integer, the value that is returned has the same

type as numeric-value.

v If numeric-value has a data type that is derived from xs:float, xs:double, xs:decimal, or xs:integer, the

value that is returned has the direct parent data type of numeric-value.

Chapter 5. Built-in functions 145

If numeric-value is the empty sequence, the returned value is the empty sequence.

Examples

Example without a precision argument: The following function returns the rounded value of 0.5:

fn:round-half-to-even(0.5)

The returned value is 0.

Example with a non-zero precision argument: The following function returns 1.5432, rounded to two

decimal places.

fn:round-half-to-even(1.5432,2)

The returned value is 1.54.

Example with negative precision: The following function returns 35600.

fn:round-half-to-even(35612.25, -2)

 Related reference

 “round function” on page 144

sqlquery function

The db2-fn:sqlquery function retrieves a sequence that is the result of an SQL fullselect in the currently

connected DB2 database.

Syntax

�� db2-fn:sqlquery(string-literal) ��

string-literal

Contains a fullselect. The fullselect must specify a single-column result set, and the column must

have the XML data type.

 If the fullselect contains single quotation marks (for example, around a string constant), enclose

the function argument in double quotation marks. For example:

"select c1 from t1 where c2 = ’Hello’"

If the fullselect contains double quotation marks (for example, around a delimited identifier),

enclose the function argument in single quotation marks. For example:

’select c1 from "t1" where c2 = 47’

If the fullselect contains both single and double quotation marks, enclose the function argument in

single quotation marks and represent each internal single quote by two adjacent single quote

characters. For example:

’select c1 from "t1" where c2 = ’’Hello’’’

Returned value

The returned value is a sequence that is the result of the fullselect in string-literal. DB2 processes the

fullselect as an SQL statement, following the usual dynamic SQL rules for authorization and name

resolution. The XML values that are returned by the fullselect are concatenated to form the result of the

function. Rows that contain null values do not affect the result sequence. If the fullselect returns no rows

or returns only null values, the result of the function is an empty sequence.

146 IBM DB2 XQuery Reference

The number of items in the sequence that is returned by the db2-fn:sqlquery function can be different from

the number of rows that are returned by the fullselect because some of these rows can contain null values

or sequences with multiple items.

Examples

Example of fullselects that return a sequence of documents: The following example shows several

function calls that return the same sequence of documents from table PRODUCT. The documents are in

column DESCRIPTION.

Any of the following functions produce the same result:

db2-fn:sqlquery(’select description from product’)

db2-fn:sqlquery(’SELECT DESCRIPTION FROM PRODUCT’)

db2-fn:sqlquery(’select "DESCRIPTION" from "PRODUCT"’)

Example of fullselects that return a single document: The following example returns a sequence that is

a single document in table PRODUCT. The document is in column DESCRIPTION and is identified by a

value of ’100-103-01’ for column PID.

Any of the following functions produce the same result:

db2-fn:sqlquery(’select Description from Product where pID=’’100-103-01’’’)

db2-fn:sqlquery("select description from product where pid=’100-103-01’")

db2-fn:sqlquery("select ""DESCRIPTION"" from product where pid=’100-103-01’")

 Related concepts

 “Retrieving DB2 data with XQuery functions” on page 2

 Related reference

 “xmlcolumn function” on page 158

starts-with function

The fn:starts-with function determines whether a string begins with a given substring.

Syntax

�� fn:starts-with(string,substring) ��

string The string to search for substring.

 string has the xs:string data type, or is the empty sequence. If string is the empty sequence, string

is set to a string of length 0.

substring

The substring to search for at the beginning of string.

 substring has the xs:string data type, or is the empty sequence.

Returned value

The returned value is the xs:boolean value true if either of the following conditions are satisfied:

v substring occurs at the beginning of the string.

v substring is an empty sequence of a string of length zero.

Otherwise, the returned value is false.

Chapter 5. Built-in functions 147

Example

The following function determines whether the string ’Test literal’ begins with the string ’lite’.

fn:starts-with(’Test literal’,’lite’)

The returned value is false.

 Related reference

 “contains function” on page 114

 “ends-with function” on page 121

string function

The fn:string function returns the string representation of a value.

Syntax

�� fn:string()

value
 ��

value The value that is to be represented as a string.

 value is a node or an atomic value, or is the empty sequence.

 If value is not specified, fn:string is evaluated for the current context item. If the current context

item is undefined, an error is returned.

Returned value

If value is not the empty sequence:

v If value is a node, the returned value is the string value of the node.

v If value is an atomic value, the returned value is the result of casting value to the xs:string type.

If value is the empty sequence, the result is a string of length 0.

Example

The following function returns the string representation of 123:

fn:string(xs:integer(123))

The returned value is ’123’.

string-join function

The fn:string-join function returns a string that is generated by concatenating items separated by a

separator character.

Syntax

�� fn:string-join(sequence,separator) ��

sequence

The sequence of items that are to be concatenated to form a string.

 sequence is any sequence of xs:string values, or an empty sequence.

separator

A delimiter that is inserted into the resulting string between items from sequence.

148 IBM DB2 XQuery Reference

separator has a data type of xs:string.

Returned value

The returned value is a string that is the concatenation of the items in sequence, separated by separator.

If separator is a zero-length string, the items in sequence are concatenated without a separator. If

sequence is an empty sequence, a zero-length string is returned.

Example

The following function returns the string that is the result of concatenating the items in the sequence (″I″,

″made″, ″a″, ″sentence!″), using the whitespace character as a separator:

fn:string-join(("I" , "made", "a", "sentence!"), " ")

The returned value is the string ″I made a sentence!″

string-length function

The fn:string-length function returns the length of a string.

Syntax

�� fn:string-length(source-string) ��

source-string

The string for which the length is to be returned.

 source-string has the xs:string data type, or is an empty sequence.

Returned value

If source-string is not the empty sequence, the returned value is the length of source-string in characters.

Code points above xFFFF, which use two 16-bit values known as a surrogate pairs, are counted as one

character in the length of the string. source-string is an xs:integer value.

If source-string is the empty sequence, the returned value is 0.

Example

The following function returns the length of the string ’Test literal’.

fn:string-length(’Test literal’)

The returned value is 12.

string-to-codepoints function

The fn:string-to-codepoints function returns a sequence of Unicode code points that correspond to a string

value.

Syntax

�� fn:string-to-codepoints(source-string) ��

source-string

A string value for which the Unicode code point for each character is to be returned, or the empty

sequence.

Chapter 5. Built-in functions 149

Returned value

If source-string is not the empty sequence and does not have length 0, the returned value is a sequence

of xs:integer values that represent the code points for the characters in source-string.

If source-string is the empty sequence or has length 0, the returned value is the empty sequence.

Example

The following function returns a sequence of code points that represent the characters in the string

’XQuery’.

fn:string-to-codepoints("XQuery")

The returned value is (88,81,117,101,114,121).

 Related reference

 “codepoints-to-string function” on page 112

subsequence function

The fn:subsequence function returns a subsequence of a sequence.

Syntax

�� fn:subsequence(source-sequence,start)

,length
 ��

source-sequence

The sequence from which the subsequence is retrieved.

 source-sequence is any sequence, including the empty sequence.

start The starting position in source-sequence of the subsequence. The first position of

source-sequence is 1. If start<=0, start is set to 1.

 start has the xs:double data type.

length The number of items in the subsequence. The default for length is the number of items in

source-sequence. If start+length-1 is greater than the length of source-sequence, length is set to

(length of source-sequence)-start+1.

 length has the xs:double data type.

Returned value

If source-sequence is not the empty sequence, the returned value is a subsequence of source-sequence

that starts at position start and contains length items.

If source-sequence is the empty sequence, the empty sequence is returned.

Example

The following function returns three items from the sequence (’T’,’e’,’s’,’t’,’ ’,’s’,’e’,’q’,’u’,’e’,’n’,’c’,’e’), starting

at the sixth item.

fn:subsequence((’T’,’e’,’s’,’t’,’ ’,’s’,’e’,’q’,’u’,’e’,’n’,’c’,’e’),6,3)

The returned value is (’s’,’e’,’q’).

 Related concepts

 “Sequences and items” on page 4

150 IBM DB2 XQuery Reference

substring function

The fn:substring function returns a substring of a string.

Syntax

�� fn:substring(source-string,start)

,length
 ��

source-string

The string from which the substring is retrieved.

 source-string has the xs:string data type, or is an empty sequence.

start The starting character position in source-string of the substring. The first position of source-string

is 1. If start<= 0, start is set to 1. Code points above xFFFF, which use two 16-bit values known as

a surrogate pairs, are counted as one character.

 start has the xs:double data type.

length The length in characters of the substring. The default for length is the length of source-string. If

start+length-1 is greater than the length of source-string, length is set to (length of

source-string)-start+1. Code points above xFFFF, which use two 16-bit values known as a

surrogate pairs, are counted as one character in the length of the string.

 length has the xs:double data type.

Returned value

If source-string is not the empty sequence, the returned value is a substring of source-string that starts at

character position start and has length characters. If source-string is the empty sequence, the result is a

string of length 0.

Example

The following function returns seven characters starting at the sixth character of the string ’Test literal’.

fn:substring(’Test literal’,6,7)

The returned value is ’literal’.

 Related reference

 “substring-after function”

 “substring-before function” on page 152

substring-after function

The fn:substring-after function returns a substring that occurs in a string after the end of the first

occurrence of a given search string.

Syntax

�� fn:substring-after(source-string,search-string) ��

source-string

The string from which the substring is retrieved.

 source-string has the xs:string data type, or is an empty sequence. If source-string is the empty

sequence, source-string is set to a string of length 0.

Chapter 5. Built-in functions 151

search-string

The string whose first occurrence in source-string is to be searched for.

 search-string has the xs:string data type, or is an empty sequence.

Returned value

If source-string is not the empty sequence or a string of length 0:

v Suppose that the length of source-string is n, and m<n. If search-string is found in source-string, and

the end of the first occurrence of search-string in source-string is at position m, the returned value is the

substring that begins at position m+1, and ends at position n of source-string.

v Suppose that the length of source-string is n. If search-string is found in source-string, and the end of

the first occurrence of search-string in source-string is at position n, the returned value is a string of

length 0.

v If search-string is the empty string or a string of length 0, the returned value is source-string.

v If search-string is not found in source-string, the returned value is a string of length 0.

If source-string is the empty sequence or a string of length 0, the returned value is a string of length 0.

Example

The following function finds the characters after ’ABC’ in string to ’DEFABCD’ using the default collation.

fn:substring-after(’DEFABCD’, ’ABC’)

The returned value is ’D’.

 Related reference

 “substring-before function”

 “substring function” on page 151

substring-before function

The fn:substring-before function returns a substring that occurs in a string before the first occurrence of a

given search string.

Syntax

�� fn:substring-before(source-string,search-string) ��

source-string

The string from which the substring is retrieved.

 source-string has the xs:string data type, or is an empty sequence. If source-string is an empty

sequence, source-string is set to a string of length 0.

search-string

The string whose first occurrence in source-string is to be searched for.

 search-string has the xs:string data type, or is an empty sequence.

Returned value

If source-string is not the empty sequence or a string of length 0:

v If search-string is found at position m of source-string, and m>1, the returned value is the substring that

begins at position 1, and ends at position m of source-string.

v If search-string is found at position 1 of source-string, the returned value is a string of length 0.

v If search-string is an empty sequence or a string of length 0, the returned value is source-string.

152 IBM DB2 XQuery Reference

v If search-string is not found in source-string, the returned value is a string of length 0.

If source-string is the empty sequence or a string of length 0, the returned value is a string of length 0.

Example

The following function finds the characters before ’ABC’ in string to ’DEFABCD’ using the default collation.

fn:substring-before(’DEFABCD’, ’ABC’)

The returned value is ’DEF’.

 Related reference

 “substring-after function” on page 151

 “substring function” on page 151

sum function

The fn:sum function returns the sum of the values in a sequence.

Syntax

�� fn:sum(sequence-expression)

,empty-sequence-replacement
 ��

sequence-expression

A sequence that contains items of any of the following atomic types, or an empty sequence:

v xs:float

v xs:double

v xs:decimal

v xs:integer

v xdt:untypedAtomic

v xdt:dayTimeDuration

v xdt:yearMonthDuration

v A type that is derived from any of the previously listed types

Input items of type xdt:untypedAtomic are cast to xs:double. After this casting, all of the items in

the input sequence must be convertible to a common type by promotion or subtype substitution.

The sum is computed in this common type. For example, if the input sequence contains items of

type money (derived from xs:decimal) and stockprice (derived from xs:float), the sum is computed

in the type xs:float.

empty-sequence-replacement

The value that is returned if sequence-expression is the empty sequence. empty-sequence-
replacement can have one of the data types that is listed for sequence-expression.

Returned value

If sequence-expression is not the empty sequence, the returned value is the sum of the values in

sequence-expression. The data type of the returned value is the same as the data type of the items in

sequence-expression, or the data type to which the items in sequence-expression are promoted.

If sequence-expression is the empty sequence, and empty-sequence-replacement is not specified, fn:sum

returns 0.0E0. If sequence-expression is an empty sequence, and empty-sequence-replacement is

specified, fn:sum returns empty-sequence-replacement.

Chapter 5. Built-in functions 153

Example

The following function returns the sum of the sequence (500, 1.0E2, 40.5):

fn:sum((500, 1.0E2, 40.5))

The values are promoted to the xs:double data type. The function returns the xs:double value 6.405E2,

which is serialized as ″640.5″.

 Related concepts

 “Sequences and items” on page 4

tokenize function

The fn:tokenize function breaks a string into a sequence of substrings.

Syntax

�� fn:tokenize(source-string , pattern)

,

flags
 ��

source-string

A string that is to be broken into a sequence of substrings.

 source-string is an xs:string value or the empty sequence.

pattern

The delimiter between substrings in source-string.

 pattern is an xs:string value that contains a regular expression. A regular expression is a set of

characters, wildcards, and operators that define a string or group of strings in a search pattern.

flags An xs:string value that can contain any of the following values that control how pattern is matched

to characters in source-string:

s Indicates that the dot (.) in the regular expression matches any character, including the

new-line character (X’0A’).

 If the s flag is not specified, the dot (.) matches any character except the new-line

character (X’0A’).

m Indicates that the caret (^) matches the start of a line (the position after a new-line

character), and the dollar sign ($) matches the end of a line (the position before a new-line

character).

 If the m flag is not specified, the caret (^) matches the start of a string, and the dollar sign

($) matches the end of the string.

i Indicates that matching is case-insensitive.

 If the i flag is not specified, case-sensitive matching is done.

x Indicates that whitespace characters within pattern are ignored.

 If the x flag is not specified, whitespace characters are used for matching.

Returned value

If source-string is not the empty sequence or a zero-length string, the returned value is a sequence that

results when the following operations are performed on source-string:

v source-string is searched for characters that match pattern.

v If pattern contains two or more alternative sets of characters, the first set of characters in pattern that

matches characters in source-string is considered to be the matching pattern.

154 IBM DB2 XQuery Reference

v Each set of characters that does not match pattern becomes an item in the result sequence.

v If pattern matches characters at the beginning of source-string, the first item in the returned sequence is

a string of length 0.

v If two successive matches for pattern are found within source-string, a string of length 0 is added to the

sequence.

v If pattern matches characters at the end of source-string, the last item in the returned sequence is a

string of length 0.

If pattern is not found in source-string, an error is returned.

If source-string is the empty sequence, or is the zero-length string, the result is the empty sequence.

Example

The following function creates a sequence from the string ″Tokenize this sentence, please.″ ″\s+″ is a

regular expression that denotes one or more whitespace characters.

fn:tokenize("Tokenize this sentence, please.", "\s+")

The returned value is the sequence (″Tokenize″, ″this″, ″sentence,″, ″please.″).

 Related reference

 “concat function” on page 114

 Regular expressions
A regular expression is a sequence of characters that act as a pattern for matching and manipulating

strings. Regular expressions are used in the following XQuery functions: fn:matches, fn:replace, and

fn:tokenize. DB2 XQuery regular expression support is based on the XML schema regular expression

support as defined in the W3C Recommendation XML Schema Part 2: Datatypes Second Edition with

extensions as defined by W3C Candidate Recommendation XQuery 1.0 and XPath 2.0 Functions and

Operators.

translate function

The fn:translate function replaces selected characters in a string with replacement characters.

Syntax

�� fn:translate(source-string,original-string,replacement-string) ��

source-string

The string in which characters are to be converted.

 source-string has the xs:string data type, or is the empty sequence.

original-string

A string that contains the characters that can be converted.

 original-string has the xs:string data type.

replacement-string

A string that contains the characters that replace the characters in original-string.

 replacement-string has the xs:string data type.

 If the length of replacement-string is greater than the length of original-string, the additional

characters in replacement-string are ignored.

Chapter 5. Built-in functions 155

Returned value

If source-string is not the empty sequence, the returned value is the xs:string value that results when the

following operations are performed:

v For each character in source-string that appears in original-string, replace the character in source-string

with the character in replacement-string that appears at the same position as the character in

original-string.

If the length of original-string is greater than the length of replacement-string, delete each character in

source-string that appears in original-string, but the character position in original-string does not have a

corresponding position in replacement-string.

If a character appears more than once in original-string, the position of the first occurrence of the

character in original-string determines the character in replacement-string that is used.

v For each character in source-string that does not appear in original-string, leave the character as it is.

If source-string is the empty sequence, a string of length 0 is returned.

Examples

The following function returns the string that results from replacing e with o and l with m in the string ’Test

literal’.

fn:translate(’Test literal’,’el’,’om’)

The returned value is ’Tost mitoram’.

The following function returns the string that results from replacing A with B, t with f, e with i, and r with m

in the string literal ’Another test literal’.

fn:translate(’Another test literal’, ’Ater’, ’Bfim’)

The returned value is ’Bnofhim fisf lifimal’.

 Related reference

 “replace function” on page 140

true function

The fn:true function returns the xs:boolean value true.

Syntax

�� fn:true() ��

Returned value

The returned value is the xs:boolean value true.

Example

Use the true function to return the value true.

fn:true()

The value true is returned.

 Related reference

 “false function” on page 123

156 IBM DB2 XQuery Reference

unordered function

The fn:unordered function returns the items in a sequence in non-deterministic order.

Syntax

�� fn:unordered(sequence-expression) ��

sequence-expression

Any sequence, including the empty sequence.

Returned value

The returned value is the items in sequence-expression in non-deterministic order. This assists the query

optimizer in choosing access paths that are not dependent on the order of the items in the sequence.

Example

The following function returns the items in sequence (1,2,3) in non-deterministic order.

fn:unordered((1,2,3))

 Related concepts

 “Sequences and items” on page 4

 Related reference

 “Order of results in XQuery expressions” on page 48

upper-case function

The fn:upper-case function converts a string to uppercase.

Syntax

�� fn:upper-case(source-string) ��

source-string

The string that is to be converted to uppercase.

 source-string has the xs:string data type, or is an empty sequence.

Returned value

If source-string is not the empty sequence, the returned value is source-string, with each character

converted to uppercase.

If source-string is not an empty sequence, the returned value is source-string, with each character

converted to its upper-case correspondent as defined in the Unicode standard. Every character that does

not have an upper-case correspondent is included in the returned value in its original form

If source-string is the empty sequence, the returned value is a string of length 0.

Example

The following function converts the string ’Test literal 1’ to uppercase.

fn:upper-case(’Test literal 1’)

The returned value is ’TEST LITERAL 1’.

 Related reference

Chapter 5. Built-in functions 157

lower-case function

xmlcolumn function

The db2-fn:xmlcolumn function retrieves a sequence from a column in the currently connected DB2

database.

Syntax

�� db2-fn:xmlcolumn(string-literal) ��

string-literal

Specifies the name of the column from which the sequence is retrieved. The column name must

be qualified by a table name, view name, or alias name, and it must reference a column with the

XML data type. The SQL schema name is optional. If you do not specify the SQL schema name,

the CURRENT SCHEMA special register is used as the implicit qualifier for the table or view. The

string-literal is case sensitive. string-literal must use the exact characters that identify the column

name in the database.

Returned value

The returned value is a sequence that is the concatenation of the non-null XML values in the column that

is specified by string-literal. If there are no rows in the table or view, db2-fn:xmlcolumn returns the empty

sequence.

The number of items in the sequence that is returned by the db2-fn:xmlcolumn function can be different

from the number of rows in the specified table or view because some of these rows can contain null

values or sequences with multiple items.

The db2-fn:xmlcolumn function is related to the db2-fn:sqlquery function, and both can produce the same

result. However, the arguments of the two functions differ in case sensitivity. The argument in the

db2-fn:xmlcolumn function is processed by XQuery, and so it is case sensitive. Because table names and

column names in DB2 are in upper-case by default, the argument of db2-fn:xmlcolumn is usually in

upper-case. The argument of the db2-fn:sqlquery function is processed by SQL, which automatically

converts identifiers to upper-case.

The following function calls are equivalent and return the same results:

db2-fn:xmlcolumn(’SQLSCHEMA.TABLENAME.COLNAME’)

db2-fn:sqlquery(’select colname from sqlschema.tablename’)

Examples

Example that returns a sequence of documents: The following function returns a sequence of XML

documents that are stored in the XML column DESCRIPTION in the table named PRODUCT, which, for

this example, is in the SQL schema SAMPLE.

db2-fn:xmlcolumn(’SAMPLE.PRODUCT.DESCRIPTION’)

Example that uses an implicit SQL schema: In the following example, the CURRENT SCHEMA special

register in DB2 is set to SAMPLE, and so the function returns the same results as the previous example:

db2-fn:xmlcolumn(’PRODUCT.DESCRIPTION’)

Example that uses an SQL delimited identifier: The following function returns a sequence of documents

that are stored in the ″Thesis″ column of the ″Student″ table, assuming that the table is in the schema

currently assigned to CURRENT SCHEMA. Because the table name and column name contain lower-case

characters, there are two ways that they can be specified in the string literal argument of the

db2-fn:xmlcolumn function:

158 IBM DB2 XQuery Reference

v Specified as SQL-delimited identifiers (enclosed in double quotes):

db2-fn:xmlcolumn(’"Student"."Thesis"’)

v Specified as a string without indication that they are SQL-delimited identifiers:

db2-fn:xmlcolumn(’Student.Thesis’)

By contrast, the same table and column information that is used in the db2-fn:sqlquery function is required

to use the SQL-delimited identifiers as follows:

db2-fn:sqlquery(’select "Thesis" from "Student"’)

 Related concepts

 “Retrieving DB2 data with XQuery functions” on page 2

 Related reference

 “sqlquery function” on page 146

zero-or-one function

The fn:zero-or-one function returns its argument if the argument contains one item or is the empty

sequence.

Syntax

�� fn:zero-or-one(sequence-expression) ��

sequence-expression

Any sequence, including the empty sequence.

Returned value

If sequence-expression contains one item or is the empty sequence, sequence-expression is returned.

Otherwise, an error is returned.

Example

The following example uses the fn:zero-or-one function to determine if the sequence in variable $seq

contains one or fewer items.

let $seq := (5,10)

return fn:zero-or-one($seq)

An error is returned because the sequence contains two items.

 Related concepts

 “Sequences and items” on page 4

 Related reference

 “exactly-one function” on page 122

 “one-or-more function” on page 138

Chapter 5. Built-in functions 159

160 IBM DB2 XQuery Reference

Chapter 6. Limits

DB2 XQuery has size limits and limits for data types.

Limits for XQuery data types

This topic identifies the range of values that are allowed for specific DB2 XQuery data types.

 Table 34. Limits for XQuery numeric data types

Data type Description Limit

xs:float Smallest value -3.4028234663852886e+38

Largest value +3.4028234663852886e+38

Smallest positive value +1.1754943508222875e-38

Largest negative value -1.1754943508222875e-38

xs:double Smallest value -1.7976931348623158e+308

Largest value +1.7976931348623158e+308

Smallest positive value +2.2250738585072014e-308

Largest negative value +2.2250738585072014e-308

xs:decimal Largest decimal precision 31 digits

xs:integer Smallest value -9 223 372 036 854 775 808

Largest value +9 223 372 036 854 775 807

xs:nonPositiveInteger Smallest value -9 223 372 036 854 775 808

Largest value 0

xs:negativeInteger Smallest value -9 223 372 036 854 775 808

Largest value -1

xs:long Smallest value -9 223 372 036 854 775 808

Largest value 9 223 372 036 854 775 807

xs:int Smallest value -2 147 483 648

Largest value +2 147 483 647

xs:short Smallest value -32 768

Largest value +32 767

xs:byte Smallest value -128

Largest value +127

xs:nonNegativeInteger Smallest value 0

Largest value +9 223 372 036 854 775 807

xs:unsignedLong Smallest value 0

Largest value +9 223 372 036 854 775 807

xs:unsignedInt Smallest value 0

Largest value 4 294 967 295

xs:unsignedShort Smallest value 0

Largest value +65 535

xs:unsignedByte Smallest value 0

Largest value +255

© Copyright IBM Corp. 2006 161

Table 34. Limits for XQuery numeric data types (continued)

Data type Description Limit

xs:positiveInteger Smallest value +1

Largest value +9 223 372 036 854 775 807

 Table 35. Limits for XQuery date, time, and duration data types

Data type Description Limit

xs:duration Smallest value -P83333333333333Y3M11574074074DT1H46M39.999999S

Largest value P83333333333333Y3M11574074074DT1H46M39.999999S

xdt:yearMonthDuration Smallest value -P83333333333333Y3M

Largest value P83333333333333Y3M

xdt:dayTimeDuration Smallest value -P11574074074DT1H46M39.999999S

Largest value P11574074074DT1H46M39.999999S

xs:dateTime1, 2 Smallest value 0001-01-01T00:00:00.000000Z

Largest value 9999-12-31T23:59:59.999999Z

xs:date1 Smallest value 0001-01-01Z

Largest value 9999-12-31Z

xs:time2 Smallest value 00:00:00Z

Largest value 23:59:59Z

xs:gDay1 Smallest value 01Z

Largest value 31Z

xs:gMonth1 Smallest value 01Z

Largest value 12Z

xs:gYear1 Smallest value 0001Z

Largest value 9999Z

xs:gYearMonth1 Smallest value 0001-01Z

Largest value 9999-12Z

xs:gMonthDay1 Smallest value 01-01Z

Largest value 12-31Z

Note: DB2 XQuery provides no support for negative dates.

 Related concepts

 Chapter 2, “Type system,” on page 17

 Related reference

 “Type casting” on page 23

Size limits

DB2 XQuery has size limits for string literals and queries.

The size limit for a string literal is 32672 bytes.

The size limit for the length of a query is 2 097 152 bytes.

 Related reference

 “Literals” on page 52

162 IBM DB2 XQuery Reference

DB2 technical library in PDF format

The following tables describe the DB2 library available from the IBM® Publications Center at

www.ibm.com/shop/publications/order.

Although the tables identify books available in print, the books might not be available in your country or

region.

The information in these books is fundamental to all DB2 users; you will find this information useful

whether you are a programmer, a database administrator, or someone who works with DB2 Connect™ or

other DB2 products.

 Table 36. DB2 technical information

Name Form Number Available in print

Administration Guide: Implementation SC10-4221 Yes

Administration Guide: Planning SC10-4223 Yes

Administrative API Reference SC10-4231 Yes

Administrative SQL Routines and

Views

SC10-4293 No

Call Level Interface Guide and

Reference, Volume 1

SC10-4224 Yes

Call Level Interface Guide and

Reference, Volume 2

SC10-4225 Yes

Command Reference SC10-4226 No

Data Movement Utilities Guide and

Reference

SC10-4227 Yes

Data Recovery and High Availability

Guide and Reference

SC10-4228 Yes

Developing ADO.NET and OLE DB

Applications

SC10-4230 Yes

Developing Embedded SQL

Applications

SC10-4232 Yes

Developing Java™ Applications SC10-4233 Yes

Developing Perl and PHP

Applications

SC10-4234 No

Getting Started with Database

Application Development

SC10-4252 Yes

Getting started with DB2 installation

and administration on Linux® and

Windows®

GC10-4247 Yes

Message Reference Volume 1 SC10-4238 No

Message Reference Volume 2 SC10-4239 No

Migration Guide GC10-4237 Yes

Net Search Extender Administration

and User’s Guide

Note: HTML for this document is not

installed from the HTML

documentation CD.

SH12-6842 Yes

Performance Guide SC10-4222 Yes

© Copyright IBM Corp. 2006 163

www.ibm.com/shop/publications/order

Table 36. DB2 technical information (continued)

Name Form Number Available in print

Query Patroller Administration and

User’s Guide

GC10-4241 Yes

Quick Beginnings for DB2 Clients GC10-4242 No

Quick Beginnings for DB2 Servers GC10-4246 Yes

Spatial Extender and Geodetic Data

Management Feature User’s Guide

and Reference

SC18-9749 Yes

SQL Guide SC10-4248 Yes

SQL Reference, Volume 1 SC10-4249 Yes

SQL Reference, Volume 2 SC10-4250 Yes

System Monitor Guide and Reference SC10-4251 Yes

Troubleshooting Guide GC10-4240 No

Visual Explain Tutorial SC10-4319 No

What’s New SC10-4253 Yes

XML Extender Administration and

Programming

SC18-9750 Yes

XML Guide SC10-4254 Yes

XQuery Reference SC18-9796 Yes

 Table 37. Technical information specific to DB2 Connect

Name Form Number Available in print

DB2 Connect User’s Guide SC10-4229 Yes

Quick Beginnings for DB2 Connect

Personal Edition

GC10-4244 Yes

Quick Beginnings for DB2 Connect

Servers

GC10-4243 Yes

 Table 38. WebSphere Information Integration technical information

Name Form Number Available in print

WebSphere® Information Integration:

Administration Guide for Federated

Systems

SC19-1001 Yes

WebSphere Information Integration:

ASNCLP Program Reference for

Replication and Event Publishing

SC19-1000 Yes

WebSphere Information Integration:

Configuration Guide for Federated

Data Sources

No form number No

WebSphere Information Integration:

SQL Replication Guide and

Reference

SC19-1002 Yes

Note: The DB2 Release Notes provide additional information specific to your product’s release and fix

pack level.

164 IBM DB2 XQuery Reference

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all countries or regions.

You can always order printed DB2 books from your local IBM representative. Keep in mind that some

softcopy books on the DB2 PDF Documentation CD are unavailable in print. For example, neither volume

of the DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF Documentation CD can be ordered

for a fee from IBM. Depending on where you are placing your order from, you may be able to order books

online, from the IBM Publications Center. If online ordering is not available in your country or region, you

can always order printed DB2 books from your local IBM representative. Note that not all books on the

DB2 PDF Documentation CD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the DB2 Information Center

at http://publib.boulder.ibm.com/infocenter/db2help/.

To order printed DB2 books:

1. To find out whether you can order printed DB2 books online in your country or region, check the IBM

Publications Center at http://www.ibm.com/shop/publications/order. You must select a country, region,

or language to access publication ordering information and then follow the ordering instructions for

your location.

2. To order printed DB2 books from your local IBM representative, locate the contact information for your

local representative from one of the following Web sites:

a. The IBM directory of world wide contacts at http://www.ibm.com/planetwide.

b. The IBM Publications Web site at http://www.ibm.com/shop/publications/order. You will need to

select your country, region, or language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.

3. When you call, specify that you want to order a DB2 publication.

4. Provide your representative with the titles and form numbers of the books that you want to order.

© Copyright IBM Corp. 2006 165

http://publib.boulder.ibm.com/infocenter/db2help/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order

166 IBM DB2 XQuery Reference

DB2 troubleshooting information

A wide variety of troubleshooting and problem determination information is available to assist you in using

DB2 products.

The following resources are available:

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting Guide or the Support and

Troubleshooting section of the DB2 Information Center. There you will find information on how to

isolate and identify problems using DB2 diagnostic tools and utilities, solutions to some of the most

common problems, and other advice on how to solve problems you might encounter with your

DB2 products.

DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing problems and want help

finding possible causes and solutions. The Technical Support site has links to the latest DB2

publications, TechNotes, Authorized Program Analysis Reports (APARs or bug fixes), fix packs,

and other resources. You can search through this knowledge base to find possible solutions to

your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/software/data/db2/udb/
support.html.

© Copyright IBM Corp. 2006 167

http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/db2/udb/support.html

168 IBM DB2 XQuery Reference

Notices

IBM may not offer the products, services, or features discussed in this document in all countries. Consult

your local IBM representative for information on the products and services currently available in your area.

Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product, program, or service that

does not infringe any IBM intellectual property right may be used instead. However, it is the user’s

responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.

The furnishing of this document does not give you any license to these patents. You can send license

inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country/region or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country/region where

such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES

CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. Some states

do not allow disclaimer of express or implied warranties in certain transactions; therefore, this statement

may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication. IBM

may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product, and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this one)

and (ii) the mutual use of the information that has been exchanged, should contact:

IBM Canada Limited

Office of the Lab Director

8200 Warden Avenue

© Copyright IBM Corp. 2006 169

Markham, Ontario

L6G 1C7

CANADA

Such information may be available, subject to appropriate terms and conditions, including in some cases

payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by

IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any

equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results

obtained in other operating environments may vary significantly. Some measurements may have been

made on development-level systems, and there is no guarantee that these measurements will be the same

on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements, or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility, or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those

products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice,

and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious, and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs, in source language, which illustrate

programming techniques on various operating platforms. You may copy, modify, and distribute these

sample programs in any form without payment to IBM for the purposes of developing, using, marketing, or

distributing application programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not been thoroughly tested

under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice

as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©

Copyright IBM Corp. _ enter the year or years_. All rights reserved.

Trademarks

Company, product, or service names identified in the documents of the DB2 Version 9 documentation

library may be trademarks or service marks of International Business Machines Corporation or other

companies. Information on the trademarks of IBM Corporation in the United States, other countries, or

both is located at http://www.ibm.com/legal/copytrade.shtml.

170 IBM DB2 XQuery Reference

http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of other companies and have been used in at

least one of the documents in the DB2 documentation library:

Microsoft®, Windows, Windows NT®, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Intel®, Itanium®, Pentium®, and Xeon™ are trademarks of Intel Corporation in the United States, other

countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX® is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices 171

172 IBM DB2 XQuery Reference

Contacting IBM

To contact IBM in your country or region, check the IBM Directory of Worldwide Contacts at

http://www.ibm.com/planetwide.

To learn more about DB2 products, go to http://www.ibm.com/software/data/db2/.

© Copyright IBM Corp. 2006 173

http://www.ibm.com/planetwide
http://www.ibm.com/software/data/db2/

174 IBM DB2 XQuery Reference

Index

A
abbreviated syntax 61

abs function 109

and operator 73

anyAtomicType data type 25

anySimpleType data type 25

anyType data type 26

anyURI data type 26

arithmetic expressions 67

atomic types 17

atomic values 5

atomization 50

attribute axis 59

attribute nodes 8

attributes
computed constructors

description 84

constructing 84

namespace declaration 79

avg function 110

axes
abbreviated syntax 61

in path expressions 59

axis steps
in path expressions 58

node tests 59

B
base64Binary data type 26

boolean data type 26

boolean function 111

boolean functions, list of 106

boundary whitespace
declaration 40

in direct element constructors 80

boundary-space declarations 40

built-in data types, constructors for 22

built-in functions 105

byte data type 26

C
case sensitivity, query language 14

cast expressions 102

casting, data types 23

ceiling function 112

character references 54

child axis 59

codepoints-to-string function 112

comment nodes 9

comments
computed constructors 88

constructing, overview 88

direct constructors 88

query language, description 15

compare function 113

comparison expressions
general 71

nodes 73

overview 69

value 69

computed attribute constructors 84

computed constructors
attribute

description 84

comment 88

description 75

element 83

processing instruction 87

concat function 114

conditional expressions 100

construction declarations 41

constructors
attribute

description 84

built-in types 22

computed attribute 84

computed comment 88

computed element 83

computed processing instruction 87

direct comment 88

direct element
description 76

direct processing instruction 87

document node 85

enclosed expressions 75

in-scope namespaces 82

namespace declaration attributes 79

processing instruction 86

text node 86

XML 75

contains function 114

context item expressions 55

context of expressions 47

copy-namespace declarations 41

count function 115

current-date function 115

current-dateTime function 116

current-time function 116

D
data function 117

data model
XQuery and XPath 4

data type hierarchy 17

data types
built-in, constructors for 22

casting 23

categories 19

conversions and matching 47

date, time, and duration, list of 20

generic, list of 19

limits for 161

© Copyright IBM Corp. 2006 175

data types (continued)
lists of 19

numeric, list of 20

other, list of 21

overview 17

promotion 51

string. list of 19

substitution 50

untyped, list of 19

xdt:anyAtomicType 25

xdt:dayTimeDuration 28

xdt:untyped 37

xdt:untypedAtomic 37

xdt:yearMonthDuration 38

xs:anySimpleType 25

xs:anyType 26

xs:anyURI 26

xs:base64Binary 26

xs:boolean 26

xs:byte 26

xs:date 26

xs:dateTime 27

xs:decimal 29

xs:double 29

xs:duration 30

xs:ENTITY 31

xs:float 31

xs:gDay 31

xs:gMonth 32

xs:gMonthDay 32

xs:gYear 33

xs:gYearMonth 33

xs:hexBinary 33

xs:ID 33

xs:IDREF 33

xs:int 34

xs:integer 34

xs:language 34

xs:long 34

xs:Name 34

xs:NCName 34

xs:negativeInteger 34

xs:NMTOKEN 35

xs:nonNegativeInteger 35

xs:nonPositiveInteger 35

xs:normalizedString 35

xs:NOTATION 35

xs:positiveInteger 35

xs:QName 36

xs:short 36

xs:string 36

xs:time 36

xs:token 37

xs:unsignedByte 37

xs:unsignedInt 37

xs:unsignedLong 37

xs:unsignedShort 37

date data type 26

date data types, list of 20

date functions, list of 107

dateTime data type 27

dateTime function 117

dayTimeDuration data type 28

DB2 XQuery functions
abs 109

avg 110

boolean 111

boolean functions, list of 106

ceiling 112

codepoints-to-string 112

compare 113

concat 114

contains 114

count 115

current-date 115

current-dateTime 116

current-time 116

data 117

date functions, list of 107

dateTime 117

deep-equal 118

default-collation 120

distinct-values 120

empty 121

ends-with 121

exactly-one 122

exists 122

false 123

floor 123

implicit-timezone function 124

in-scope-prefixes 124

index-of 125

insert-before 126

last 127

local-name 127

local-name-from-QName 128

lower-case 128

matches 129

max 130

min 131

name 132

namespace-uri 133

namespace-uri-for-prefix 134

namespace-uri-from-QName 134

node functions, list of 108

node-name 135

normalize-space 135

normalize-unicode 136

not 137

number 137

number functions, list of 106

one-or-more 138

other functions, list of 109

position 138

QName 139

QName functions, list of 108

remove 140

replace 140

resolve-QName 142

reverse 143

root 143

round 144

176 IBM DB2 XQuery Reference

DB2 XQuery functions (continued)
round-half-to-even 145

sequence functions, list of 107

sqlquery 3, 146

starts-with 147

string 148

string functions, list of 105

string-join 148

string-length 149

string-to-codepoints 149

subsequence 150

substring 151

substring-after 151

substring-before 152

sum 153

tokenize 154

translate 155

true 156

unordered 157

upper-case 157

xmlcolumn 2, 158

zero-or-one 159

DB2 XQuery, overview 1

DB2-defined functions 105

decimal data type 29

declarations
boundary-space 40

construction 41

copy-namespaces 41

default element/type namespace declarations 42

default function namespace 42

empty order 43

namespace 44

ordering mode 44

prolog 39

version 39

deep-equal function 118

default element/type namespace declarations 42

default function namespace declarations 42

default-collation function 120

descendant axis 59

descendant-or-self axis 59

direct constructors
comment 88

description 75

element
description 76

processing instruction 87

whitespace in element 80

distinct-values function 120

document nodes
constructing 85

description 7

document order 10

double data type 29

duration data type 30

duration data types, list of 20

dynamic context, expressions 47

E
effective boolean value 52

element nodes 8

elements
computed constructors 83

direct constructors 76

in-scope namespaces 82

empty function 121

empty order declarations 43

empty sequences, ordering 43

enclosed expressions
in constructors 75

ends-with function 121

ENTITY data type 31

entity references 53

evaluating expresssions 47

exactly-one function 122

exists function 122

expanded QNames
converting 142

description 12

expressions
arithmetic 67

atomization 50

cast 102

combining node sequences 66

comparison
general 71

nodes 73

overview 69

value 69

conditional 100

constructing sequences 64

constructors
computed attribute 84

computed comment 88

computed element 83

computed processing instruction 87

description 75

direct comment 88

direct element 76

direct processing instruction 87

document node 85

in-scope namespaces 82

namespace declaration attributes 79

processing instruction 86

text node 86

dynamic context 47

effective boolean value 52

enclosed in constructors 75

filter 65

FLWOR
example 97

for and let clauses together 92

for and let clauses, comparison 93

for and let clauses, overview 90

for and let clauses, variable scope 93

for clauses 90

let clauses 92

order by clauses 95

overview 89

Index 177

expressions (continued)
FLWOR (continued)

return clauses 97

syntax 89

where clauses 94

focus 47

logical 73

order of results 48

overview 47

path
abbreviated syntax 61

description 56

syntax 57

precedence 47

predicates 63

primary
character references 54

context item 55

entity references 53

function calls 55

literals 52

overview 52

parenthesized 55

variable references 54

processing 47

quantified 101

range 64

sequence 64

subtype substitution 50

type promotion 51

F
false function 123

filter expressions 65

float data type 31

floor function 123

FLWOR expressions
example 97

for and let clauses
comparison 93

in the same expression 92

overview 90

variable scope 93

for clauses 90

let clauses
description 92

order by clauses 95

overview 89

return clauses 97

syntax 89

where clauses 94

focus of expressions 47

for clauses
description 90

forward axis 59

function calls 55

functions
DB2 XQuery

abs 109

avg 110

functions (continued)
DB2 XQuery (continued)

boolean 111

boolean functions, list of 106

categories 105

ceiling 112

codepoints-to-string 112

compare 113

concat 114

contains 114

count 115

current-date 115

current-dateTime 116

current-time 116

data 117

date functions, list of 107

dateTime 117

deep-equal 118

default-collation 120

distinct-values 120

empty 121

ends-with 121

exactly-one 122

exists 122

false 123

floor 123

implicit-timezone 124

index-of 125

ins-scope-prefixes 124

insert-before 126

last 127

lists of 105

local-name 127

local-name-from-QName 128

lower-case 128

matches 129

max 130

min 131

name 132

namespace-uri 133

namespace-uri-for-prefix 134

namespace-uri-from-QName 134

node functions, list of 108

node-name 135

normalize-space 135

normalize-unicode 136

not 137

number 137

number functions, list of 106

one-or-more 138

other functions, list of 109

position 138

QName 139

QName functions, list of 108

remove 140

replace 140

resolve-QName 142

reverse 143

root 143

round 144

round-half-to-even 145

178 IBM DB2 XQuery Reference

functions (continued)
DB2 XQuery (continued)

sequence functions, list of 107

sqlquery 146

starts-with 147

string 148

string functions, list of 105

string-join 148

string-length 149

string-to-codepoints 149

subsequence 150

substring 151

substring-after 151

substring-before 152

sum 153

tokenize 154

translate 155

true 156

unordered 157

upper-case 157

xmlcolumn 158

zero-or-one 159

G
gDay data type 31

general comparisons 71

generic data types, list of 19

gMonth data type 32

gMonthDay data type 32

gYear data type 33

gYearMonth data type 33

H
hexBinary data type 33

hierarchy, data type 17

hierarchy, nodes 10

I
ID data type 33

identity of nodes 10

IDREF data type 33

if-then-else expressions
description 100

implicit-timezone function 124

in-scope namespaces 82

in-scope-prefixes function 124

index-of function 125

insert-before function 126

int data type 34

integer data type 34

items in sequences 4

K
kind tests 60

L
language data type 34

last function 127

legal notices 169

let clauses
description 92

limits
size 162

XQuery data types 161

literals 52

local-name function 127

local-name-from-QName function 128

logical expressions 73

long data type 34

lower-case function 128

M
matches function 129

max function 130

min function 131

N
Name data type 34

name function 132

name tests 59

namespace declaration attributes 79

namespace declarations 44

namespace-uri function 133

namespace-uri-for-prefix function 134

namespace-uri-from-QName function 134

namespaces
binding a prefix 80

declaring 44

default element/type 42, 80

function default 42

in-scope 82

setting default 79

NCName data type 34

negativeInteger data type 34

NMTOKEN data type 35

node tests 59

node-name function 135

nodes
attribute 8

combining sequences 66

comment
computed constructors 88

constructing, overview 88

description 9

direct constructors 88

comparing 73

document
constructing 85

description 7

duplicate 10

element 8

hierarchy 10

identity 10

Index 179

nodes (continued)
overview 5, 7

processing instruction
constructing 86

description 9

properties 7

string values 10

text
constructing 86

description 9

typed values 10

nonNegativeInteger data type 35

nonPositiveInteger data type 35

normalize-space function 135

normalize-unicode function 136

normalizedString data type 35

not function 137

NOTATION data type 35

number function 137

number functions, list of 106

numeric data types, list of 20

numeric literal 52

numeric predicates 63

O
one-or-more function 138

operators
precedence 47

or operator 73

order by clauses 95

order of processing 95

order of results 48

ordering
books 165

ordering mode declarations 44

P
parent axis 59

parentheses, precedence of operations 47

parenthesized expressions 55

path expressions
abbreviated and unabbreviated syntax 61

axis steps 58

description 56

syntax 57

position function 138

positional predicates 63

positiveInteger data type 35

precedence
operators and expressions 47

predicates
in expressions 63

primary expressions 52

primitive type casting 23

problem determination 167

processing instruction nodes
constructing 86

description 9

processing order 95

prologs
boundary-space declarations 40

construction declarations 41

copy-namespace declarations 41

default element/type namespace declarations 42

default function namespace declarations 42

empty order declarations 43

namespace declarations 44

ordering mode declarations 44

syntax 39

version declarations 39

Q
QName data type 36

QName function 139

QNames (qualified names)
expanded, converting 142

overview 12

qualified names (QNames)
expanded, converting 142

overview 12

quantified expressions 101

queries
structure 1

query languages
case sensitivity 14

comments 15

XML data 2

R
range expressions 64

remove function 140

replace function 140

resolve-QName function 142

resources
XQuery 15

results
order for expressions 48

return clauses 97

reverse axis 59

reverse function 143

root function 143

round function 144

round-half-to-even function 145

S
self axis 59

sequence expressions 64

sequence functions, list of 107

sequences
atomization 50

constructing 64

description 4

effective boolean value 52

empty 43

nodes, combining 66

setters, prolog 39

short data type 36

180 IBM DB2 XQuery Reference

specifications
XQuery 15

sqlquery function 3, 146

starts-with function 147

statically known namespaces 82

string data type 36

string data types, list of 19

string function 148

string functions, list of 105

string literal 52

string values of nodes 10

string-join function 148

string-length function 149

string-to-codepoints function 149

subsequence function 150

substring function 151

substring-after function 151

substring-before function 152

subtype substitution 50

sum function 153

syntax
abbreviated 61

FLWOR expressions 89

T
technical library 163

text nodes
constructing 86

description 9

time data type 36

time data types, list of 20

timezone, implicit 124

token data type 37

tokenize function 154

translate function 155

troubleshooting
information 167

true function 156

type casting 23

type hierarchy 17

type promotion 51

typed values of nodes 10

types
see data types 19

U
Unicode characters 54

unordered function 157

unsignedByte data type 37

unsignedInt data type 37

unsignedLong data type 37

unsignedShort data type 37

untyped data type 37

untyped data types, list of 19

untypedAtomic data type 37

upper-case function 157

URI
binding a namespace prefix 80

V
value comparisons 69

values, atomic 5

variables
in scope in for and let clauses 93

positional in for clauses 91

references 54

version declarations 39

W
where clauses

description 94

whitespace
boundary 40

description 14

in direct element constructors 80

X
XML data

querying in DB2 database 2

xmlcolumn function 2, 158

XMLEXISTS function 2

XMLQUERY function 2

XMLTABLE function 2

XQuery
invoking from SQL 2

overview 1

resources 15

XQuery and XPath data model 4

XQuery-defined functions 105

Y
yearMonthDuration data type 38

Z
zero-or-one function 159

Index 181

182 IBM DB2 XQuery Reference

����

Printed in USA

SC18-9796-00

	Contents
	Tables
	Figures
	Chapter 1. DB2 XQuery concepts
	Introduction to XQuery
	Comparison of XQuery to SQL
	Retrieving DB2 data with XQuery functions
	XQuery and XPath data model
	Sequences and items
	Atomic values
	Node hierarchies
	Node properties
	Node kinds
	Document nodes
	Element nodes
	Attribute nodes
	Text nodes
	Processing instruction nodes
	Comment nodes

	Document order of nodes
	Node identity
	Typed values and string values of nodes

	Serialization of the XDM
	XML namespaces and QNames
	Qualified names (QNames)
	Statically known namespaces

	Language conventions
	Case sensitivity
	Whitespace
	Comments

	Where to find more information about XQuery

	Chapter 2. Type system
	The type hierarchy
	Types by category
	Constructor functions for built-in data types
	Type casting
	anyAtomicType data type
	anySimpleType data type
	anyType data type
	anyURI data type
	base64Binary data type
	boolean data type
	byte data type
	date data type
	dateTime data type
	dayTimeDuration data type
	decimal data type
	double data type
	duration data type
	ENTITY data type
	float data type
	gDay data type
	gMonth data type
	gMonthDay data type
	gYear data type
	gYearMonth data type
	hexBinary data type
	ID data type
	IDREF data type
	int data type
	integer data type
	language data type
	long data type
	Name data type
	NCName data type
	negativeInteger data type
	NMTOKEN data type
	nonNegativeInteger data type
	nonPositiveInteger data type
	normalizedString data type
	NOTATION data type
	positiveInteger data type
	QName data type
	short data type
	string data type
	time data type
	token data type
	unsignedByte data type
	unsignedInt data type
	unsignedLong data type
	unsignedShort data type
	untyped data type
	untypedAtomic data type
	yearMonthDuration data type

	Chapter 3. Prolog
	Version declaration
	Boundary-space declaration
	Construction declaration
	Copy-namespaces declaration
	Default element/type namespace declaration
	Default function namespace declaration
	Empty order declaration
	Ordering mode declaration
	Namespace declaration

	Chapter 4. Expressions
	Concepts for expression processing
	Dynamic context and focus
	Precedence
	Order of results in XQuery expressions
	Atomization
	Subtype substitution
	Type promotion
	Effective Boolean value

	Primary expressions
	Literals
	Predefined entity references
	Character references

	Variable references
	Parenthesized expression
	Context item expressions
	Function calls

	Path expressions
	Syntax of path expressions
	Axis steps
	Axes
	Node tests

	Abbreviated syntax for path expressions

	Predicates
	Sequence expressions
	Expressions that construct sequences
	Filter expressions
	Expressions for combining sequences of nodes

	Arithmetic expressions
	Comparison expressions
	Value comparisons
	General comparisons
	Node comparisons

	Logical expressions
	Constructors
	Enclosed expressions in constructors
	Direct element constructors
	Namespace declaration attributes
	Boundary whitespace in direct element constructors
	In-scope namespaces of a constructed element

	Computed element constructors
	Computed attribute constructors
	Document node constructors
	Text node constructors
	Processing instruction constructors
	Direct processing instruction constructors
	Computed processing instruction constructors

	Comment constructors
	Direct comment constructors
	Computed comment constructors

	FLWOR expressions
	Syntax of FLWOR expressions
	for and let clauses
	for clauses
	let clauses
	for and let clauses in the same expression
	for and let clauses compared
	Variable scope in for and let clauses

	where clauses
	order by clauses
	return clauses
	FLWOR examples

	Conditional expressions
	Quantified expressions
	Cast expressions

	Chapter 5. Built-in functions
	Functions by category
	abs function
	avg function
	boolean function
	ceiling function
	codepoints-to-string function
	compare function
	concat function
	contains function
	count function
	current-date function
	current-dateTime function
	current-time function
	data function
	dateTime function
	deep-equal function
	default-collation function
	distinct-values function
	empty function
	ends-with function
	exactly-one function
	exists function
	false function
	floor function
	implicit-timezone function
	in-scope-prefixes function
	index-of function
	insert-before function
	last function
	local-name function
	local-name-from-QName function
	lower-case function
	matches function
	max function
	min function
	name function
	namespace-uri function
	namespace-uri-for-prefix function
	namespace-uri-from-QName function
	node-name function
	normalize-space function
	normalize-unicode function
	not function
	number function
	one-or-more function
	position function
	QName function
	remove function
	replace function
	resolve-QName function
	reverse function
	root function
	round function
	round-half-to-even function
	sqlquery function
	starts-with function
	string function
	string-join function
	string-length function
	string-to-codepoints function
	subsequence function
	substring function
	substring-after function
	substring-before function
	sum function
	tokenize function
	translate function
	true function
	unordered function
	upper-case function
	xmlcolumn function
	zero-or-one function

	Chapter 6. Limits
	Limits for XQuery data types
	Size limits

	DB2 technical library in PDF format
	Ordering printed DB2 books
	DB2 troubleshooting information
	Notices
	Contacting IBM
	Index

