
IBM
®

DB2
®

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Version

8.2

SC27-1226-01

���

IBM
®

DB2
®

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Version

8.2

SC27-1226-01

���

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

Notices.

This

document

contains

proprietary

information

of

IBM.

It

is

provided

under

a

license

agreement

and

is

protected

by

copyright

law.

The

information

contained

in

this

publication

does

not

include

any

product

warranties,

and

any

statements

provided

in

this

manual

should

not

be

interpreted

as

such.

You

can

order

IBM

publications

online

or

through

your

local

IBM

representative.

v

To

order

publications

online,

go

to

the

IBM

Publications

Center

at

www.ibm.com/shop/publications/order

v

To

find

your

local

IBM

representative,

go

to

the

IBM

Directory

of

Worldwide

Contacts

at

www.ibm.com/planetwide

To

order

DB2

publications

from

DB2

Marketing

and

Sales

in

the

United

States

or

Canada,

call

1-800-IBM-4YOU

(426-4968).

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1998,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

Part

1.

Introduction

.

.

.

.

.

.

.

.

. 1

Chapter

1.

About

DB2

Spatial

Extender

3

The

purpose

of

DB2

Spatial

Extender

.

.

.

.

.

. 3

Spatial

and

geodetic

data

.

.

.

.

.

.

.

.

.

. 4

How

data

represents

geographic

features

.

.

.

. 4

The

nature

of

spatial

data

.

.

.

.

.

.

.

.

. 5

The

nature

of

geodetic

data

.

.

.

.

.

.

.

. 6

Where

spatial

data

comes

from

.

.

.

.

.

.

. 6

How

features,

spatial

information,

spatial

data,

and

geometries

fit

together

.

.

.

.

.

.

.

.

.

.

. 8

Chapter

2.

About

geometries

.

.

.

.

.

. 9

Geometries

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Properties

of

geometries

.

.

.

.

.

.

.

.

.

. 11

Type

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Geometry

coordinates

.

.

.

.

.

.

.

.

.

. 11

X

and

Y

coordinates

.

.

.

.

.

.

.

.

.

. 12

Z

coordinates

.

.

.

.

.

.

.

.

.

.

.

.

. 12

M

coordinates

.

.

.

.

.

.

.

.

.

.

.

. 12

Interior,

boundary,

and

exterior

.

.

.

.

.

.

. 12

Simple

or

non-simple

.

.

.

.

.

.

.

.

.

. 12

Closed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

Empty

or

not

empty

.

.

.

.

.

.

.

.

.

. 12

Minimum

bounding

rectangle

(MBR)

.

.

.

.

. 12

Dimension

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Spatial

reference

system

identifier

.

.

.

.

.

. 13

Chapter

3.

How

to

use

DB2

Spatial

Extender

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

How

to

use

DB2

Spatial

Extender

.

.

.

.

.

.

. 15

Interfaces

to

DB2

Spatial

Extender

and

associated

functionality

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Tasks

that

you

perform

to

set

up

DB2

Spatial

Extender

and

create

projects

.

.

.

.

.

.

.

. 15

Part

2.

Setting

up

DB2

Spatial

Extender

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Chapter

4.

Getting

started

with

DB2

Spatial

Extender

.

.

.

.

.

.

.

.

.

. 23

Setting

up

and

installing

Spatial

Extender—Steps

.

. 23

Setting

up

and

installing

Spatial

Extender

.

.

. 23

System

requirements

for

installing

Spatial

Extender

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Installing

DB2

Spatial

Extender

for

Windows

.

. 25

Installing

DB2

Spatial

Extender

for

AIX

.

.

.

. 27

Installing

DB2

Spatial

Extender

for

HP-UX

.

.

. 28

Installing

DB2

Spatial

Extender

for

Solaris

Operating

Environment

.

.

.

.

.

.

.

.

. 30

Installing

DB2

Spatial

Extender

for

Linux

.

.

. 32

Creating

the

DB2

Spatial

Extender

instance

environment

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Verifying

the

Spatial

Extender

installation

.

.

. 36

Troubleshooting

installation

problems

.

.

.

. 37

Post-Installation

considerations

.

.

.

.

.

.

.

. 38

Downloading

ArcExplorer

for

DB2

.

.

.

.

. 38

Accessing

geocoder

reference

data

.

.

.

.

.

. 38

CDs

for

DB2

Spatial

Extender

data

and

maps

.

. 40

Chapter

5.

Migrating

the

Spatial

Extender

environment

to

DB2

Universal

Database

Version

8

.

.

.

.

.

.

.

.

. 41

Migrating

a

spatially-enabled

database

.

.

.

.

. 41

Migration

messages

.

.

.

.

.

.

.

.

.

. 41

The

db2se

migrate_v82

command

.

.

.

.

.

.

. 42

Chapter

6.

Setting

up

a

database

.

.

. 45

Configuring

a

database

to

accommodate

spatial

data

45

Tuning

the

database

configuration

parameters

.

.

. 45

Tuning

transaction

log

characteristics

.

.

.

.

. 45

Tuning

the

application

heap

size

.

.

.

.

.

. 46

Tuning

the

application

control

heap

size

.

.

.

. 47

Chapter

7.

Setting

up

spatial

resources

for

a

database

.

.

.

.

.

.

.

.

.

.

. 49

How

to

set

up

resources

in

your

database

.

.

.

. 49

Inventory

of

resources

supplied

for

your

database

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Enabling

a

database

for

spatial

operations

.

.

. 50

How

to

work

with

reference

data

.

.

.

.

.

.

. 50

Reference

data

.

.

.

.

.

.

.

.

.

.

.

. 50

Setting

up

access

to

reference

data

.

.

.

.

.

. 51

Registering

a

geocoder

.

.

.

.

.

.

.

.

. 51

Part

3.

Creating

projects

that

use

spatial

data

.

.

.

.

.

.

.

.

.

.

.

. 53

Chapter

8.

Setting

up

spatial

resources

for

a

project

.

.

.

.

.

.

.

.

.

.

.

. 55

How

to

use

coordinate

systems

.

.

.

.

.

.

.

. 55

Coordinate

systems

.

.

.

.

.

.

.

.

.

.

. 55

Geographic

coordinate

system

.

.

.

.

.

.

. 55

Projected

coordinate

systems

.

.

.

.

.

.

. 60

Selecting

or

creating

coordinate

systems

.

.

.

. 61

How

to

set

up

spatial

reference

systems

.

.

.

.

. 63

Spatial

reference

systems

.

.

.

.

.

.

.

.

. 63

Deciding

whether

to

use

a

default

spatial

reference

system

or

create

a

new

system

.

.

.

. 64

Spatial

reference

systems

supplied

with

DB2

Spatial

Extender

.

.

.

.

.

.

.

.

.

.

.

. 66

Conversion

factors

that

transform

coordinate

data

into

integers

.

.

.

.

.

.

.

.

.

.

.

.

. 68

Creating

a

spatial

reference

system

.

.

.

.

. 69

Calculating

scale

factors

.

.

.

.

.

.

.

.

. 72

©

Copyright

IBM

Corp.

1998,

2004

iii

||

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Determining

minimum

and

maximum

coordinates

and

measures

.

.

.

.

.

.

.

. 73

Calculating

offset

values

.

.

.

.

.

.

.

.

. 74

Chapter

9.

Setting

up

spatial

columns

77

Spatial

columns

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Spatial

columns

with

viewable

content

.

.

.

. 77

Spatial

data

types

.

.

.

.

.

.

.

.

.

.

. 77

Creating

spatial

columns

.

.

.

.

.

.

.

.

.

. 79

Registering

spatial

columns

.

.

.

.

.

.

.

.

. 80

Chapter

10.

Populating

spatial

columns

83

How

to

import

and

export

spatial

data

.

.

.

.

. 83

About

importing

and

exporting

spatial

data

.

. 83

Importing

spatial

data

.

.

.

.

.

.

.

.

.

. 84

Exporting

spatial

data

.

.

.

.

.

.

.

.

.

. 86

How

to

use

a

geocoder

.

.

.

.

.

.

.

.

.

. 88

Geocoders

and

geocoding

.

.

.

.

.

.

.

. 88

Setting

up

geocoding

operations

.

.

.

.

.

. 90

Setting

up

a

geocoder

to

run

automatically

.

.

. 92

Running

a

geocoder

in

batch

mode

.

.

.

.

. 93

Chapter

11.

Using

indexes

and

views

to

access

spatial

data

.

.

.

.

.

.

.

.

. 95

Types

of

spatial

indexes

.

.

.

.

.

.

.

.

.

. 95

Spatial

grid

indexes

.

.

.

.

.

.

.

.

.

.

. 96

Generation

of

spatial

grid

indexes

.

.

.

.

.

. 96

Use

of

spatial

functions

in

a

query

.

.

.

.

.

. 96

How

a

query

uses

a

spatial

grid

index

.

.

.

. 97

Considerations

for

number

of

index

levels

and

grid

sizes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

Number

of

grid

levels

.

.

.

.

.

.

.

.

.

. 98

Grid

cell

sizes

.

.

.

.

.

.

.

.

.

.

.

. 98

Creating

spatial

grid

indexes

.

.

.

.

.

.

.

. 102

CREATE

INDEX

statement

for

a

spatial

grid

index

104

Tuning

spatial

grid

indexes

with

the

Index

Advisor

106

Tuning

spatial

grid

indexes

with

the

Index

Advisor—Overview

.

.

.

.

.

.

.

.

.

. 106

Determining

grid

sizes

for

a

spatial

grid

index

106

Analyzing

spatial

grid

index

statistics

.

.

.

. 108

The

gseidx

command

.

.

.

.

.

.

.

.

.

.

. 112

Using

views

to

access

spatial

columns

.

.

.

.

. 115

Chapter

12.

Analyzing

and

Generating

spatial

information

.

.

.

.

.

.

.

.

. 117

Environments

for

performing

spatial

analysis

.

.

. 117

Examples

of

how

spatial

functions

operate

.

.

. 117

Functions

that

use

indexes

to

optimize

queries

.

. 118

Chapter

13.

DB2

Spatial

Extender

commands

.

.

.

.

.

.

.

.

.

.

.

. 121

Invoking

commands

for

setting

up

DB2

Spatial

Extender

and

developing

projects

.

.

.

.

.

. 121

Chapter

14.

Writing

applications

and

using

the

sample

program

.

.

.

.

.

. 129

Writing

applications

for

DB2

Spatial

Extender

.

. 129

Including

the

DB2

Spatial

Extender

header

file

in

spatial

applications

.

.

.

.

.

.

.

.

.

.

. 129

Calling

DB2

Spatial

Extender

stored

procedures

from

an

application

.

.

.

.

.

.

.

.

.

.

. 130

The

DB2

Spatial

Extender

sample

program

.

.

. 131

Chapter

15.

Identifying

DB2

Spatial

Extender

problems

.

.

.

.

.

.

.

.

. 139

How

to

interpret

DB2

Spatial

Extender

messages

139

DB2

Spatial

Extender

stored

procedure

output

parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

DB2

Spatial

Extender

function

messages

.

.

.

. 143

DB2

Spatial

Extender

CLP

messages

.

.

.

.

.

. 145

DB2

Control

Center

messages

.

.

.

.

.

.

.

. 146

Tracing

DB2

Spatial

Extender

problems

with

the

db2trc

command

.

.

.

.

.

.

.

.

.

.

.

. 148

The

administration

notification

file

.

.

.

.

.

. 149

Part

4.

Using

DB2

Geodetic

Extender

.

.

.

.

.

.

.

.

.

.

.

.

. 151

Chapter

16.

DB2

Geodetic

Extender

153

DB2

Geodetic

Extender

.

.

.

.

.

.

.

.

.

. 153

When

to

use

DB2

Geodetic

Extender

and

when

to

use

DB2

Spatial

Extender

.

.

.

.

.

.

.

.

. 154

Geodetic

datums

.

.

.

.

.

.

.

.

.

.

.

. 154

Geodetic

latitude

and

longitude

.

.

.

.

.

.

. 155

Geodesic

distances

.

.

.

.

.

.

.

.

.

.

. 156

Geodetic

regions

.

.

.

.

.

.

.

.

.

.

.

. 157

Chapter

17.

Setting

up

DB2

Geodetic

Extender

.

.

.

.

.

.

.

.

.

.

.

.

. 161

Setting

up

and

enabling

DB2

Geodetic

Extender

161

Migrating

from

Informix

Geodetic

DataBlade

to

DB2

Geodetic

Extender

.

.

.

.

.

.

.

.

.

. 162

Populating

spatial

columns

with

geodetic

data

.

. 169

Chapter

18.

Geodetic

Indexes

.

.

.

. 171

Geodetic

Voronoi

indexes

.

.

.

.

.

.

.

.

. 171

Voronoi

cell

structures

.

.

.

.

.

.

.

.

.

. 172

Considerations

for

selecting

an

alternate

Voronoi

cell

structure

.

.

.

.

.

.

.

.

.

.

.

.

. 173

Creating

geodetic

Voronoi

indexes

.

.

.

.

.

. 174

CREATE

INDEX

statement

for

a

geodetic

Voronoi

index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

Voronoi

cell

structures

supplied

with

DB2

Geodetic

Extender

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 178

World,

based

on

population

density

(Voronoi

ID:

1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 179

United

States

(Voronoi

ID:

2)

.

.

.

.

.

.

. 180

Canada

(Voronoi

ID:

3)

.

.

.

.

.

.

.

.

. 181

India

(Voronoi

ID:

4)

.

.

.

.

.

.

.

.

.

. 182

Japan

(Voronoi

ID:

5)

.

.

.

.

.

.

.

.

.

. 183

Africa

(Voronoi

ID:

6)

.

.

.

.

.

.

.

.

. 184

Australia

(Voronoi

ID:

7)

.

.

.

.

.

.

.

. 185

Europe

(Voronoi

ID:

8)

.

.

.

.

.

.

.

.

. 186

North

America

(Voronoi

ID:

9)

.

.

.

.

.

. 187

South

America

(Voronoi

ID:

10)

.

.

.

.

.

. 188

Mediterranean

(Voronoi

ID:

11)

.

.

.

.

.

. 189

World,

uniform

data

distribution,

medium

resolution

–

dodeca04

(Voronoi

ID:

12)

.

.

.

. 190

Table

of

contents

iv

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

||

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

World,

industrial

nations

–

G7

nations

(Voronoi

ID:

13)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 191

World,

uniform

data

distribution,

low

resolution

–

isotype

(Voronoi

ID:

14)

.

.

.

.

.

.

.

. 192

Chapter

19.

Differences

in

using

geodetic

and

spatial

data

.

.

.

.

.

. 193

Minimum

and

maximum

x

and

y

attributes

.

.

. 193

Differences

in

working

with

flat-Earth

and

round-Earth

representations

.

.

.

.

.

.

.

. 193

Line

segments

that

cross

the

180th

meridian

.

. 194

Polygons

that

straddle

the

180th

meridian

.

.

. 195

Polygons

that

enclose

a

pole

.

.

.

.

.

.

. 198

Polygons

that

represent

hemispheres,

equatorial

belts,

and

the

whole

Earth

.

.

.

.

.

.

.

. 199

Spatial

functions

supported

by

DB2

Geodetic

Extender

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

DB2

Geodetic

Extender

stored

procedures

and

catalog

views

.

.

.

.

.

.

.

.

.

.

.

.

. 207

Datums

supported

by

DB2

Geodetic

Extender

.

. 207

Geodetic

spheroids

.

.

.

.

.

.

.

.

.

.

. 216

Part

5.

Reference

material

.

.

.

.

. 217

Chapter

20.

Stored

procedures

.

.

.

. 219

GSE_export_sde

.

.

.

.

.

.

.

.

.

.

.

. 220

GSE_import_sde

.

.

.

.

.

.

.

.

.

.

.

. 222

ST_alter_coordsys

.

.

.

.

.

.

.

.

.

.

.

. 224

ST_alter_srs

.

.

.

.

.

.

.

.

.

.

.

.

.

. 226

ST_create_coordsys

.

.

.

.

.

.

.

.

.

.

. 229

ST_create_srs

.

.

.

.

.

.

.

.

.

.

.

.

. 231

ST_disable_autogeocoding

.

.

.

.

.

.

.

.

. 237

ST_disable_db

.

.

.

.

.

.

.

.

.

.

.

.

. 239

ST_drop_coordsys

.

.

.

.

.

.

.

.

.

.

.

. 240

ST_drop_srs

.

.

.

.

.

.

.

.

.

.

.

.

.

. 242

ST_enable_autogeocoding

.

.

.

.

.

.

.

.

. 243

ST_enable_db

.

.

.

.

.

.

.

.

.

.

.

.

. 245

ST_export_shape

.

.

.

.

.

.

.

.

.

.

.

. 247

ST_import_shape

.

.

.

.

.

.

.

.

.

.

.

. 250

ST_register_geocoder

.

.

.

.

.

.

.

.

.

.

. 258

ST_register_spatial_column

.

.

.

.

.

.

.

.

. 262

ST_remove_geocoding_setup

.

.

.

.

.

.

.

. 263

ST_run_geocoding

.

.

.

.

.

.

.

.

.

.

.

. 265

ST_setup_geocoding

.

.

.

.

.

.

.

.

.

.

. 268

ST_unregister_geocoder

.

.

.

.

.

.

.

.

.

. 271

ST_unregister_spatial_column

.

.

.

.

.

.

.

. 273

Chapter

21.

Catalog

views

.

.

.

.

.

. 275

The

DB2GSE.ST_COORDINATE_SYSTEMS

catalog

view

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 275

The

DB2GSE.ST_GEOMETRY_COLUMNS

catalog

view

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 276

The

DB2GSE.ST_GEOCODER_PARAMETERS

catalog

view

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

The

DB2GSE.ST_GEOCODERS

catalog

view

.

.

. 279

The

DB2GSE.ST_GEOCODING

catalog

view

.

.

. 279

The

DB2GSE.ST_GEOCODING_PARAMETERS

catalog

view

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

The

DB2GSE.ST_SIZINGS

catalog

view

.

.

.

.

. 282

The

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

catalog

view

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

The

DB2GSE.ST_UNITS_OF_MEASURE

catalog

view

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

Chapter

22.

Spatial

functions:

categories

and

uses

.

.

.

.

.

.

.

. 287

Spatial

functions

.

.

.

.

.

.

.

.

.

.

.

. 287

Spatial

functions

that

convert

geometry

values

to

data

exchange

formats

.

.

.

.

.

.

.

.

.

. 287

Constructor

functions

overview

.

.

.

.

.

.

. 288

Functions

that

operate

on

data

exchange

formats

.

.

.

.

.

.

.

.

.

.

.

.

.

. 288

A

function

that

creates

geometries

from

coordinates

.

.

.

.

.

.

.

.

.

.

.

.

. 289

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 290

Conversion

to

well-known

text

(WKT)

representation

.

.

.

.

.

.

.

.

.

.

.

.

. 291

Conversion

to

well-known

binary

(WKB)

representation

.

.

.

.

.

.

.

.

.

.

.

.

. 293

Conversion

to

ESRI

shape

representation

.

.

.

. 294

Conversion

to

Geography

Markup

Language

(GML)

representation

.

.

.

.

.

.

.

.

.

.

. 294

Functions

that

compare

geographic

features

.

.

. 295

Comparison

functions

overview

.

.

.

.

.

.

. 296

List

of

functions

.

.

.

.

.

.

.

.

.

.

. 297

Functions

that

check

whether

one

geometry

contains

another

.

.

.

.

.

.

.

.

.

.

.

. 298

ST_Contains

.

.

.

.

.

.

.

.

.

.

.

.

. 298

ST_Within

.

.

.

.

.

.

.

.

.

.

.

.

. 299

Functions

that

check

intersections

between

geometries

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

ST_Intersects

.

.

.

.

.

.

.

.

.

.

.

. 301

ST_Crosses

.

.

.

.

.

.

.

.

.

.

.

.

. 302

ST_Overlaps

.

.

.

.

.

.

.

.

.

.

.

.

. 303

ST_Touches

.

.

.

.

.

.

.

.

.

.

.

.

. 304

Functions

that

compare

geometries’

envelopes

.

. 306

ST_EnvIntersects

.

.

.

.

.

.

.

.

.

.

. 306

ST_MBRIntersects

.

.

.

.

.

.

.

.

.

.

. 306

Functions

that

check

whether

two

things

are

identical

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

ST_EqualCoordsys

.

.

.

.

.

.

.

.

.

.

. 306

ST_Equals

.

.

.

.

.

.

.

.

.

.

.

.

. 306

ST_EqualSRS

.

.

.

.

.

.

.

.

.

.

.

. 307

Function

that

checks

for

no

intersection

between

two

geometries

.

.

.

.

.

.

.

.

.

.

.

.

. 307

Function

that

compares

geometries

to

the

DE-9IM

pattern

matrix

string

.

.

.

.

.

.

.

.

.

.

. 308

Functions

that

return

information

about

properties

of

geometries

.

.

.

.

.

.

.

.

.

.

.

.

. 309

Function

that

returns

data-type

information

.

.

. 309

Functions

that

return

coordinate

and

measure

information

.

.

.

.

.

.

.

.

.

.

.

.

.

. 309

ST_CoordDim

.

.

.

.

.

.

.

.

.

.

.

. 310

ST_IsMeasured

.

.

.

.

.

.

.

.

.

.

.

. 310

ST_IsValid

.

.

.

.

.

.

.

.

.

.

.

.

. 310

ST_Is3D

.

.

.

.

.

.

.

.

.

.

.

.

.

. 310

ST_M

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 310

ST_MaxM

.

.

.

.

.

.

.

.

.

.

.

.

. 310

ST_MaxX

.

.

.

.

.

.

.

.

.

.

.

.

.

. 310

ST_MaxY

.

.

.

.

.

.

.

.

.

.

.

.

.

. 310

Table

of

contents

Contents

v

|
||
|
||

|
||
||
|
||
||
||
||
|
||
|
||
|
||
||
||

ST_MaxZ

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

ST_MinM

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

ST_MinX

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

ST_MinY

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

ST_MinZ

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

ST_X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

ST_Y

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

ST_Z

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

Functions

that

return

information

about

geometries

within

a

geometry

.

.

.

.

.

.

.

.

.

.

.

. 311

ST_Centroid

.

.

.

.

.

.

.

.

.

.

.

.

. 312

ST_EndPoint

.

.

.

.

.

.

.

.

.

.

.

. 312

ST_GeometryN

.

.

.

.

.

.

.

.

.

.

.

. 312

ST_LineStringN

.

.

.

.

.

.

.

.

.

.

. 312

ST_MidPoint

.

.

.

.

.

.

.

.

.

.

.

. 312

ST_NumGeometries

.

.

.

.

.

.

.

.

.

. 312

ST_NumLineStrings

.

.

.

.

.

.

.

.

.

. 312

ST_NumPoints

.

.

.

.

.

.

.

.

.

.

.

. 312

ST_NumPolygons

.

.

.

.

.

.

.

.

.

.

. 312

ST_PointN

.

.

.

.

.

.

.

.

.

.

.

.

. 312

ST_PolygonN

.

.

.

.

.

.

.

.

.

.

.

. 312

ST_StartPoint

.

.

.

.

.

.

.

.

.

.

.

. 313

Functions

that

show

information

about

boundaries,

envelopes,

and

rings

.

.

.

.

.

.

.

.

.

.

. 313

ST_Boundary

.

.

.

.

.

.

.

.

.

.

.

. 313

ST_Envelope

.

.

.

.

.

.

.

.

.

.

.

. 313

ST_EnvIntersects

.

.

.

.

.

.

.

.

.

.

. 313

ST_ExteriorRing

.

.

.

.

.

.

.

.

.

.

. 313

ST_InteriorRingN

.

.

.

.

.

.

.

.

.

.

. 313

ST_MBR

.

.

.

.

.

.

.

.

.

.

.

.

.

. 313

ST_MBRIntersects

.

.

.

.

.

.

.

.

.

.

. 314

ST_NumInteriorRing

.

.

.

.

.

.

.

.

.

. 314

ST_Perimeter

.

.

.

.

.

.

.

.

.

.

.

. 314

Functions

that

return

information

about

a

geometry’s

dimensions

.

.

.

.

.

.

.

.

.

. 314

ST_Area

.

.

.

.

.

.

.

.

.

.

.

.

.

. 314

ST_Dimension

.

.

.

.

.

.

.

.

.

.

.

. 314

ST_Length

.

.

.

.

.

.

.

.

.

.

.

.

. 314

Functions

that

reveal

whether

a

geometry

is

closed,

empty,

or

simple

.

.

.

.

.

.

.

.

.

.

.

. 314

ST_IsClosed

.

.

.

.

.

.

.

.

.

.

.

.

. 314

ST_IsEmpty

.

.

.

.

.

.

.

.

.

.

.

.

. 315

ST_IsSimple

.

.

.

.

.

.

.

.

.

.

.

.

. 315

Functions

that

identify

a

geometry’s

spatial

reference

system

.

.

.

.

.

.

.

.

.

.

.

. 315

ST_SrsId

(also

called

ST_SRID)

.

.

.

.

.

. 315

ST_SrsName

.

.

.

.

.

.

.

.

.

.

.

.

. 315

Functions

that

generate

new

geometries

from

existing

geometries

.

.

.

.

.

.

.

.

.

.

. 315

Functions

that

convert

one

geometry

to

another

316

ST_Polygon

.

.

.

.

.

.

.

.

.

.

.

.

. 316

ST_ToGeomColl

.

.

.

.

.

.

.

.

.

.

. 316

ST_ToLineString

.

.

.

.

.

.

.

.

.

.

. 316

ST_ToMultiLine

.

.

.

.

.

.

.

.

.

.

. 316

ST_ToMultiPoint

.

.

.

.

.

.

.

.

.

.

. 316

ST_ToMultiPolygon

.

.

.

.

.

.

.

.

.

. 316

ST_ToPoint

.

.

.

.

.

.

.

.

.

.

.

.

. 316

ST_ToPolygon

.

.

.

.

.

.

.

.

.

.

.

. 316

Functions

that

create

new

geometries

with

different

space

configurations

.

.

.

.

.

.

.

.

.

.

. 316

ST_Buffer

.

.

.

.

.

.

.

.

.

.

.

.

.

. 317

ST_ConvexHull

.

.

.

.

.

.

.

.

.

.

.

. 318

ST_Difference

.

.

.

.

.

.

.

.

.

.

.

. 318

ST_Intersection

.

.

.

.

.

.

.

.

.

.

.

. 319

ST_SymDifference

.

.

.

.

.

.

.

.

.

.

. 320

Functions

that

derive

one

geometry

from

many

320

MBR

Aggregate

.

.

.

.

.

.

.

.

.

.

. 320

ST_Union

.

.

.

.

.

.

.

.

.

.

.

.

.

. 321

Union

Aggregate

.

.

.

.

.

.

.

.

.

.

. 321

Functions

that

derive

new

geometries

based

on

measures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 321

ST_FindMeasure

(also

called

ST_LocateAlong)

321

ST_MeasureBetween

(also

called

ST_LocateBetween)

.

.

.

.

.

.

.

.

.

. 321

Functions

that

create

modified

forms

of

existing

geometries

.

.

.

.

.

.

.

.

.

.

.

.

.

. 322

ST_AppendPoint

.

.

.

.

.

.

.

.

.

.

. 322

ST_ChangePoint

.

.

.

.

.

.

.

.

.

.

. 322

ST_Generalize

.

.

.

.

.

.

.

.

.

.

.

. 322

ST_M

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

ST_PerpPoints

.

.

.

.

.

.

.

.

.

.

.

. 323

ST_RemovePoint

.

.

.

.

.

.

.

.

.

.

. 323

ST_X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

ST_Y

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

ST_Z

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

Function

that

returns

distance

information

.

.

. 323

Function

that

returns

index

information

.

.

.

. 324

Conversions

between

coordinate

systems

.

.

.

. 324

Chapter

23.

Spatial

functions:

syntax

and

parameters

.

.

.

.

.

.

.

.

.

. 325

Spatial

functions:

considerations

and

associated

data

types

.

.

.

.

.

.

.

.

.

.

.

.

.

. 325

Factors

to

consider

.

.

.

.

.

.

.

.

.

. 325

Treating

values

of

ST_Geometry

as

values

of

a

subtype

.

.

.

.

.

.

.

.

.

.

.

.

.

. 326

Spatial

functions

listed

according

to

input

type

326

EnvelopesIntersect

.

.

.

.

.

.

.

.

.

.

.

. 329

MBR

Aggregate

.

.

.

.

.

.

.

.

.

.

.

. 331

ST_AppendPoint

.

.

.

.

.

.

.

.

.

.

.

. 333

ST_Area

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 334

ST_AsBinary

.

.

.

.

.

.

.

.

.

.

.

.

. 337

ST_AsGML

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

ST_AsShape

.

.

.

.

.

.

.

.

.

.

.

.

.

. 340

ST_AsText

.

.

.

.

.

.

.

.

.

.

.

.

.

. 341

ST_Boundary

.

.

.

.

.

.

.

.

.

.

.

.

. 342

ST_Buffer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 343

ST_Centroid

.

.

.

.

.

.

.

.

.

.

.

.

.

. 346

ST_ChangePoint

.

.

.

.

.

.

.

.

.

.

.

. 347

ST_Contains

.

.

.

.

.

.

.

.

.

.

.

.

.

. 349

ST_ConvexHull

.

.

.

.

.

.

.

.

.

.

.

.

. 350

ST_CoordDim

.

.

.

.

.

.

.

.

.

.

.

.

. 352

ST_Crosses

.

.

.

.

.

.

.

.

.

.

.

.

.

. 353

ST_Difference

.

.

.

.

.

.

.

.

.

.

.

.

. 354

ST_Dimension

.

.

.

.

.

.

.

.

.

.

.

.

. 356

ST_Disjoint

.

.

.

.

.

.

.

.

.

.

.

.

.

. 357

ST_Distance

.

.

.

.

.

.

.

.

.

.

.

.

.

. 359

ST_Edge_GC_USA

.

.

.

.

.

.

.

.

.

.

. 362

ST_Endpoint

.

.

.

.

.

.

.

.

.

.

.

.

. 366

ST_Envelope

.

.

.

.

.

.

.

.

.

.

.

.

. 367

ST_EnvIntersects

.

.

.

.

.

.

.

.

.

.

.

. 368

ST_EqualCoordsys

.

.

.

.

.

.

.

.

.

.

.

. 369

Table

of

contents

vi

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|

ST_Equals

.

.

.

.

.

.

.

.

.

.

.

.

.

. 370

ST_EqualSRS

.

.

.

.

.

.

.

.

.

.

.

.

. 372

ST_ExteriorRing

.

.

.

.

.

.

.

.

.

.

.

. 373

ST_FindMeasure

or

ST_LocateAlong

.

.

.

.

.

. 374

ST_Generalize

.

.

.

.

.

.

.

.

.

.

.

.

. 375

ST_GeomCollection

.

.

.

.

.

.

.

.

.

.

. 377

ST_GeomCollFromTxt

.

.

.

.

.

.

.

.

.

. 379

ST_GeomCollFromWKB

.

.

.

.

.

.

.

.

.

. 380

ST_Geometry

.

.

.

.

.

.

.

.

.

.

.

.

. 382

ST_GeometryN

.

.

.

.

.

.

.

.

.

.

.

.

. 383

ST_GeometryType

.

.

.

.

.

.

.

.

.

.

.

. 385

ST_GeomFromText

.

.

.

.

.

.

.

.

.

.

. 385

ST_GeomFromWKB

.

.

.

.

.

.

.

.

.

.

. 387

ST_GetIndexParms

.

.

.

.

.

.

.

.

.

.

. 388

ST_InteriorRingN

.

.

.

.

.

.

.

.

.

.

.

. 390

ST_Intersection

.

.

.

.

.

.

.

.

.

.

.

.

. 391

ST_Intersects

.

.

.

.

.

.

.

.

.

.

.

.

. 393

ST_Is3d

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 395

ST_IsClosed

.

.

.

.

.

.

.

.

.

.

.

.

.

. 396

ST_IsEmpty

.

.

.

.

.

.

.

.

.

.

.

.

.

. 397

ST_IsMeasured

.

.

.

.

.

.

.

.

.

.

.

.

. 398

ST_IsRing

.

.

.

.

.

.

.

.

.

.

.

.

.

. 399

ST_IsSimple

.

.

.

.

.

.

.

.

.

.

.

.

.

. 400

ST_IsValid

.

.

.

.

.

.

.

.

.

.

.

.

.

. 402

ST_Length

.

.

.

.

.

.

.

.

.

.

.

.

.

. 403

ST_LineFromText

.

.

.

.

.

.

.

.

.

.

.

. 404

ST_LineFromWKB

.

.

.

.

.

.

.

.

.

.

.

. 405

ST_LineString

.

.

.

.

.

.

.

.

.

.

.

.

. 407

ST_LineStringN

.

.

.

.

.

.

.

.

.

.

.

. 408

ST_M

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 409

ST_MaxM

.

.

.

.

.

.

.

.

.

.

.

.

.

. 411

ST_MaxX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 412

ST_MaxY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 414

ST_MaxZ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 415

ST_MBR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 417

ST_MBRIntersects

.

.

.

.

.

.

.

.

.

.

.

. 418

ST_MeasureBetween,

ST_LocateBetween

.

.

.

. 420

ST_MidPoint

.

.

.

.

.

.

.

.

.

.

.

.

. 421

ST_MinM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 422

ST_MinX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 424

ST_MinY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 425

ST_MinZ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 426

ST_MLineFromText

.

.

.

.

.

.

.

.

.

.

. 428

ST_MLineFromWKB

.

.

.

.

.

.

.

.

.

.

. 429

ST_MPointFromText

.

.

.

.

.

.

.

.

.

.

. 431

ST_MPointFromWKB

.

.

.

.

.

.

.

.

.

.

. 432

ST_MPolyFromText

.

.

.

.

.

.

.

.

.

.

. 434

ST_MPolyFromWKB

.

.

.

.

.

.

.

.

.

.

. 435

ST_MultiLineString

.

.

.

.

.

.

.

.

.

.

. 437

ST_MultiPoint

.

.

.

.

.

.

.

.

.

.

.

.

. 439

ST_MultiPolygon

.

.

.

.

.

.

.

.

.

.

.

. 440

ST_NumGeometries

.

.

.

.

.

.

.

.

.

.

. 442

ST_NumInteriorRing

.

.

.

.

.

.

.

.

.

.

. 443

ST_NumLineStrings

.

.

.

.

.

.

.

.

.

.

. 444

ST_NumPoints

.

.

.

.

.

.

.

.

.

.

.

.

. 445

ST_NumPolygons

.

.

.

.

.

.

.

.

.

.

.

. 446

ST_Overlaps

.

.

.

.

.

.

.

.

.

.

.

.

.

. 447

ST_Perimeter

.

.

.

.

.

.

.

.

.

.

.

.

. 449

ST_PerpPoints

.

.

.

.

.

.

.

.

.

.

.

.

. 450

ST_Point

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 452

ST_PointFromText

.

.

.

.

.

.

.

.

.

.

.

. 455

ST_PointFromWKB

.

.

.

.

.

.

.

.

.

.

. 456

ST_PointN

.

.

.

.

.

.

.

.

.

.

.

.

.

. 458

ST_PointOnSurface

.

.

.

.

.

.

.

.

.

.

. 459

ST_PolyFromText

.

.

.

.

.

.

.

.

.

.

.

. 460

ST_PolyFromWKB

.

.

.

.

.

.

.

.

.

.

.

. 461

ST_Polygon

.

.

.

.

.

.

.

.

.

.

.

.

.

. 462

ST_PolygonN

.

.

.

.

.

.

.

.

.

.

.

.

. 465

ST_Relate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 466

ST_RemovePoint

.

.

.

.

.

.

.

.

.

.

.

. 467

ST_SrsId,

ST_SRID

.

.

.

.

.

.

.

.

.

.

. 468

ST_SrsName

.

.

.

.

.

.

.

.

.

.

.

.

.

. 469

ST_StartPoint

.

.

.

.

.

.

.

.

.

.

.

.

. 470

ST_SymDifference

.

.

.

.

.

.

.

.

.

.

.

. 471

ST_ToGeomColl

.

.

.

.

.

.

.

.

.

.

.

. 474

ST_ToLineString

.

.

.

.

.

.

.

.

.

.

.

. 475

ST_ToMultiLine

.

.

.

.

.

.

.

.

.

.

.

. 476

ST_ToMultiPoint

.

.

.

.

.

.

.

.

.

.

.

. 477

ST_ToMultiPolygon

.

.

.

.

.

.

.

.

.

.

. 478

ST_ToPoint

.

.

.

.

.

.

.

.

.

.

.

.

.

. 479

ST_ToPolygon

.

.

.

.

.

.

.

.

.

.

.

.

. 480

ST_Touches

.

.

.

.

.

.

.

.

.

.

.

.

.

. 481

ST_Transform

.

.

.

.

.

.

.

.

.

.

.

.

. 482

ST_Union

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 484

ST_Within

.

.

.

.

.

.

.

.

.

.

.

.

.

. 486

ST_WKBToSQL

.

.

.

.

.

.

.

.

.

.

.

.

. 487

ST_WKTToSQL

.

.

.

.

.

.

.

.

.

.

.

.

. 489

ST_X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 490

ST_Y

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 491

ST_Z

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 492

Union

aggregate

.

.

.

.

.

.

.

.

.

.

.

. 494

Chapter

24.

Transform

groups

.

.

.

. 497

Transform

groups

.

.

.

.

.

.

.

.

.

.

.

. 497

ST_WellKnownText

transform

group

.

.

.

.

. 497

ST_WellKnownBinary

transform

group

.

.

.

.

. 498

ST_Shape

transform

group

.

.

.

.

.

.

.

.

. 500

ST_GML

transform

group

.

.

.

.

.

.

.

.

. 501

Chapter

25.

Supported

data

formats

503

Well-known

text

(WKT)

representation

.

.

.

.

. 503

Well-known

binary

(WKB)

representation

.

.

.

. 508

Shape

representation

.

.

.

.

.

.

.

.

.

.

. 510

Geography

Markup

Language

(GML)

representation

.

.

.

.

.

.

.

.

.

.

.

.

. 510

Chapter

26.

Supported

coordinate

systems

.

.

.

.

.

.

.

.

.

.

.

.

.

. 513

Supported

coordinate

systems

.

.

.

.

.

.

.

. 513

Coordinate

systems

syntax

.

.

.

.

.

.

.

. 513

Supported

angular

units

.

.

.

.

.

.

.

.

. 515

Supported

spheroids

.

.

.

.

.

.

.

.

.

. 516

Supported

geodetic

datums

.

.

.

.

.

.

. 517

Supported

prime

meridians

.

.

.

.

.

.

. 519

Supported

map

projections

.

.

.

.

.

.

.

. 519

Appendix

A.

Deprecated

stored

procedures

.

.

.

.

.

.

.

.

.

.

.

. 523

db2gse.gse_enable_autogc

.

.

.

.

.

.

.

.

. 523

db2gse.gse_enable_db

.

.

.

.

.

.

.

.

.

. 525

db2gse.gse_enable_idx

.

.

.

.

.

.

.

.

.

. 526

Table

of

contents

Contents

vii

db2gse.gse_enable_sref

.

.

.

.

.

.

.

.

.

. 527

db2gse.gse_export_shape

.

.

.

.

.

.

.

.

. 529

db2gse.gse_disable_autogc

.

.

.

.

.

.

.

.

. 530

db2gse.gse_disable_db

.

.

.

.

.

.

.

.

.

. 531

db2gse.gse_disable_sref

.

.

.

.

.

.

.

.

.

. 532

db2gse.gse_import_shape

.

.

.

.

.

.

.

.

. 532

db2gse.gse_register_gc

.

.

.

.

.

.

.

.

.

. 534

db2gse.gse_register_layer

.

.

.

.

.

.

.

.

. 535

db2gse.gse_run_gc

.

.

.

.

.

.

.

.

.

.

.

. 540

db2gse.gse_unregist_gc

.

.

.

.

.

.

.

.

.

. 541

db2gse.gse_unregist_layer

.

.

.

.

.

.

.

.

. 542

Appendix

B.

Deprecated

catalog

views

545

DB2GSE.COORD_REF_SYS

.

.

.

.

.

.

.

.

. 545

DB2GSE.GEOMETRY_COLUMNS

.

.

.

.

.

. 545

DB2GSE.SPATIAL_GEOCODER

.

.

.

.

.

.

. 546

DB2GSE.SPATIAL_REF_SYS

.

.

.

.

.

.

.

. 546

Appendix

C.

Deprecated

spatial

functions

.

.

.

.

.

.

.

.

.

.

.

.

. 549

AsShape

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 550

GeometryFromShape

.

.

.

.

.

.

.

.

.

.

. 550

Is3d

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 550

IsMeasured

.

.

.

.

.

.

.

.

.

.

.

.

.

. 550

LineFromShape

.

.

.

.

.

.

.

.

.

.

.

.

. 551

LocateAlong

.

.

.

.

.

.

.

.

.

.

.

.

.

. 551

LocateBetween

.

.

.

.

.

.

.

.

.

.

.

.

. 551

M

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 552

MLine

FromShape

.

.

.

.

.

.

.

.

.

.

.

. 552

MPointFromShape

.

.

.

.

.

.

.

.

.

.

.

. 552

MPolyFromShape

.

.

.

.

.

.

.

.

.

.

.

. 552

PointFromShape

.

.

.

.

.

.

.

.

.

.

.

. 553

PolyFromShape

.

.

.

.

.

.

.

.

.

.

.

.

. 553

ShapeToSQL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 553

ST_GeomFromText

.

.

.

.

.

.

.

.

.

.

. 554

ST_GeomFromWKB

.

.

.

.

.

.

.

.

.

.

. 554

ST_LineFromText

.

.

.

.

.

.

.

.

.

.

.

. 554

ST_LineFromWKB

.

.

.

.

.

.

.

.

.

.

.

. 554

ST_MLineFromText

.

.

.

.

.

.

.

.

.

.

. 555

ST_MLineFromWKB

.

.

.

.

.

.

.

.

.

.

. 555

ST_MPointFromText

.

.

.

.

.

.

.

.

.

.

. 555

ST_MPointFromWKB

.

.

.

.

.

.

.

.

.

.

. 556

ST_MPolyFromText

.

.

.

.

.

.

.

.

.

.

. 556

ST_MPolyFromWKB

.

.

.

.

.

.

.

.

.

.

. 556

ST_OrderingEquals

.

.

.

.

.

.

.

.

.

.

. 557

ST_Point

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 557

ST_PointFromText

.

.

.

.

.

.

.

.

.

.

.

. 557

ST_PolyFromText

.

.

.

.

.

.

.

.

.

.

.

. 557

ST_PolyFromWKB

.

.

.

.

.

.

.

.

.

.

.

. 558

ST_Transform

.

.

.

.

.

.

.

.

.

.

.

.

. 558

ST_SymmetricDiff

.

.

.

.

.

.

.

.

.

.

.

. 558

Z

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 559

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 561

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 563

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 565

Contacting

IBM

.

.

.

.

.

.

.

.

.

. 571

Product

information

.

.

.

.

.

.

.

.

.

.

. 571

Table

of

contents

viii

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Part

1.

Introduction

©

Copyright

IBM

Corp.

1998,

2004

1

2

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Chapter

1.

About

DB2

Spatial

Extender

This

chapter

introduces

DB2

Spatial

Extender

by

explaining

its

purpose,

describing

the

data

that

it

supports,

and

explaining

how

its

underlying

concepts

fit

together.

The

purpose

of

DB2

Spatial

Extender

Use

DB2®

Spatial

Extender

to

generate

and

analyze

spatial

information

about

geographic

features,

and

to

store

and

manage

the

data

on

which

this

information

is

based.

A

geographic

feature

(sometimes

called

feature

in

this

discussion,

for

short)

is

anything

in

the

real

world

that

has

an

identifiable

location,

or

anything

that

could

be

imagined

as

existing

at

an

identifiable

location.

A

feature

can

be:

v

An

object

(that

is,

a

concrete

entity

of

any

sort);

for

example,

a

river,

forest,

or

range

of

mountains.

v

A

space;

for

example,

a

safety

zone

around

a

hazardous

site,

or

the

marketing

area

serviced

by

a

particular

business.

v

An

event

that

occurs

at

a

definable

location;

for

example,

an

auto

accident

that

occurred

at

a

particular

intersection,

or

a

sales

transaction

at

a

specific

store.

Features

exist

in

multiple

environments.

For

example,

the

objects

mentioned

in

the

preceding

list—river,

forest,

mountain

range—belong

to

the

natural

environment.

Other

objects,

such

as

cities,

buildings,

and

offices,

belong

to

the

cultural

environment.

Still

others,

such

as

parks,

zoos,

and

farmland,

represent

a

combination

of

the

natural

and

cultural

environments.

In

this

discussion,

the

term

spatial

information

refers

to

the

kind

of

information

that

DB2

Spatial

Extender

makes

available

to

its

users—namely,

facts

and

figures

about

the

locations

of

geographic

features.

Examples

of

spatial

information

are:

v

Locations

of

geographic

features

on

the

map

(for

example,

longitude

and

latitude

values

that

define

where

cities

are

situated)

v

The

location

of

geographic

features

with

respect

to

one

another

(for

example,

points

within

a

city

where

hospitals

and

clinics

are

located,

or

the

proximity

of

the

city’s

residences

to

local

earthquake

zones)

v

Ways

in

which

geographic

features

are

related

to

each

other

(for

example,

information

that

a

certain

river

system

is

enclosed

within

a

specific

region,

or

that

certain

bridges

in

that

region

cross

over

the

river

system’s

tributaries)

v

Measurements

that

apply

to

one

or

more

geographic

features

(for

example,

the

distance

between

an

office

building

and

its

lot

line,

or

the

length

of

a

bird

preserve’s

perimeter)

Spatial

information,

either

by

itself

or

in

combination

with

traditional

relational

data,

can

help

you

with

such

activities

as

defining

the

areas

in

which

you

provide

services,

and

determining

locations

of

possible

markets.

For

example,

suppose

that

the

manager

of

a

county

welfare

district

needs

to

verify

which

welfare

applicants

and

recipients

actually

live

within

the

area

that

the

district

services.

DB2

Spatial

Extender

can

derive

this

information

from

the

serviced

area’s

location

and

from

the

addresses

of

the

applicants

and

recipients.

Or

suppose

that

the

owner

of

a

restaurant

chain

wants

to

do

business

in

nearby

cities.

To

determine

where

to

open

new

restaurants,

the

owner

needs

answers

to

©

Copyright

IBM

Corp.

1998,

2004

3

such

questions

as:

Where

in

these

cities

are

concentrations

of

clientele

who

typically

frequent

my

restaurants?

Where

are

the

major

highways?

Where

is

the

crime

rate

lowest?

Where

are

the

competition’s

restaurants

located?

DB2

Spatial

Extender

and

DB2

can

produce

information

to

answer

these

questions.

Furthermore,

front-end

tools,

though

not

required,

can

play

a

part.

To

illustrate:

a

visualization

tool

can

put

information

produced

by

DB2

Spatial

Extender—for

example,

the

location

of

concentrations

of

clientele

and

the

proximity

of

major

highways

to

proposed

restaurants—in

graphic

form

on

a

map.

Business

intelligence

tools

can

put

associated

information—for

example,

names

and

descriptions

of

competing

restaurants—in

report

form.

Spatial

and

geodetic

data

This

section

provides

an

overview

of

the

data

that

you

generate,

store,

and

manipulate

to

obtain

spatial

information.

The

topics

covered

are:

v

How

data

represents

geographic

features

v

The

nature

of

spatial

data

and

geodetic

data

v

Ways

to

produce

spatial

data

How

data

represents

geographic

features

In

DB2®

Spatial

Extender,

a

geographic

feature

can

be

represented

by

one

or

more

data

items;

for

example,

the

data

items

in

a

row

of

a

table.

(A

data

item

is

the

value

or

values

that

occupy

a

cell

of

a

relational

table.)

For

example,

consider

office

buildings

and

residences.

In

Figure

1,

each

row

of

the

BRANCHES

table

represents

a

branch

office

of

a

bank.

Similarly,

each

row

of

the

CUSTOMERS

table

in

Figure

1,

taken

as

a

whole,

represents

a

customer

of

the

bank.

However,

a

subset

of

each

row—specifically,

the

data

items

that

constitute

a

customer’s

address—represent

the

customer’s

residence.

The

tables

in

Figure

1

contain

data

that

identifies

and

describes

the

bank’s

branches

and

customers.

This

discussion

refers

to

such

data

as

business

data.

A

subset

of

the

business

data—the

values

that

denote

the

branches’

and

customers’

addresses—can

be

translated

into

values

from

which

spatial

information

is

generated.

For

example,

as

shown

in

Figure

1,

one

branch

office’s

address

is

92467

Airzone

Blvd.,

San

Jose,

CA

95141,

USA.

A

customer’s

address

is

9

Concourt

Circle,

San

Jose,

CA

95141,

USA.

DB2

Spatial

Extender

can

translate

these

addresses

into

values

that

indicate

where

the

branch

and

the

customer’s

home

are

located

with

CUSTOMERS

ID LAST NAME FIRST NAME ADDRESS CITY SAVINGSCHECKING

59-6396 Kriner Endela 9 Concourt Circle San Jose A A

BRANCHES

ID NAME ADDRESS CITY STATE_PROVPOSTAL CODE

937 Airzone-Multern 92467 Airzone Blvd San Jose 95141 CA

COUNTRY

USA

COUNTRY

USA

STATE_PROVPOSTAL CODE

95141 CA

Figure

1.

Data

that

represents

geographic

features.

The

row

of

data

in

the

BRANCHES

table

represents

a

branch

office

of

a

bank.

The

address

data

in

the

CUSTOMERS

table

represents

the

residence

of

a

customer.

The

names

and

addresses

in

both

tables

are

fictional.

About

DB2

Spatial

Extender

4

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|
|

|
|
|

respect

to

one

another.

Figure

2

shows

the

BRANCHES

and

CUSTOMERS

tables

with

new

columns

that

are

designated

to

contain

such

values.

Because

spatial

information

will

be

derived

from

the

data

items

stored

in

the

LOCATION

column,

these

data

items

are

referred

to

in

this

discussion

as

spatial

data.

The

nature

of

spatial

data

Spatial

data

is

made

up

of

coordinates.

A

coordinate

is

a

number

that

denotes

either:

v

A

position

along

an

axis

relative

to

an

origin,

given

a

unit

of

length.

v

A

direction

relative

to

a

base

line

or

plane,

given

a

unit

of

angular

measure.

For

example,

latitude

is

a

coordinate

that

denotes

an

angle

relative

to

the

equatorial

plane,

usually

in

degrees.

Longitude

is

a

coordinate

that

denotes

an

angle

relative

to

the

Greenwich

meridian,

also

usually

in

degrees.

Thus,

on

a

map,

the

position

of

Yellowstone

National

Park

is

defined

by

latitude

44.45

degrees

north

of

the

equator

and

longitude

110.40

degrees

west

of

the

Greenwich

meridian.

More

precisely,

these

coordinates

reference

the

center

of

Yellowstone

National

Park

in

the

USA.

The

definitions

of

latitude

and

longitude,

their

points,

lines,

and

planes

of

reference,

units

of

measure,

and

other

associated

parameters

are

referred

to

collectively

as

a

coordinate

system.

Coordinate

systems

can

be

based

on

values

other

than

latitude

and

longitude.

These

coordinate

systems

have

their

own

points,

lines,

and

planes

of

reference,

units

of

measure,

and

additional

associated

parameters

(such

as

the

projection

transformation).

For

more

information,

refer

to

“Coordinate

systems”

on

page

55.

The

simplest

spatial

data

item

consists

of

a

single

coordinate

pair

that

defines

the

position

of

a

single

geographic

location.

A

more

extensive

spatial

data

item

consists

of

several

coordinates

that

define

a

linear

path

that

a

road

or

river

might

form.

A

third

kind

consists

of

coordinates

that

define

the

boundary

of

an

area;

for

example,

the

boundary

of

a

land

parcel

or

flood

plain.

Each

spatial

data

item

is

an

instance

of

a

spatial

data

type.

The

data

type

for

coordinates

that

mark

a

single

location

is

ST_Point;

the

data

type

for

coordinates

that

define

a

linear

path

is

ST_LineString;

and

the

data

type

for

coordinates

that

define

the

boundary

of

an

area

is

ST_Polygon.

These

types,

together

with

the

other

spatial

data

types,

are

structured

types

that

belong

to

a

single

hierarchy.

CUSTOMERS

ID LAST NAME FIRST NAME ADDRESS CITY POSTAL CODE LOCATION SAVINGSCHECKING

59-6396 Kriner Endela 9 Concourt Circle San Jose 95141 A A

BRANCHES

LOCATIONID NAME ADDRESS CITY POSTAL CODE

937 Airzone-Multern 92467 Airzone Blvd San Jose 95141

COUNTRY

USA

STATE_PROV

CA

COUNTRY

USA

STATE_PROV

CA

Figure

2.

Tables

with

spatial

columns

added.

In

each

table,

the

LOCATION

column

will

contain

coordinates

that

correspond

to

the

addresses.

About

DB2

Spatial

Extender

Chapter

1.

About

DB2

Spatial

Extender

5

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

The

nature

of

geodetic

data

DB2

Geodetic

Extender

uses

the

same

data

types

and

functions

as

Spatial

Extender

to

store

geographic

data

in

a

DB2

database.

Geodetic

data

is

spatial

data

that

is

expressed

in

latitude

and

longitude

coordinates,

in

a

coordinate

system

(see

“Coordinate

systems”

on

page

55)

that

describes

a

round,

continuous,

closed

surface.

Unlike

Spatial

Extender,

which

treats

the

Earth

as

a

flat

map,

Geodetic

Extender

treats

the

Earth

as

a

globe

that

has

no

edges

or

seams

at

the

poles

or

the

dateline.

A

flat

map

requires

projected

coordinates

to

transform

spherical

coordinates

to

planar

coordinates.

Whereas,

Geodetic

Extender

uses

latitude

and

longitude

on

an

ellipsoidal

model

of

the

Earth’s

surface.

Calculations

such

as

line

intersection,

area

overlap,

distance,

and

area,

are

accurate

and

precise,

regardless

of

location.

For

more

information,

refer

to

“When

to

use

DB2

Geodetic

Extender

and

when

to

use

DB2

Spatial

Extender”

on

page

154

and

“Differences

in

working

with

flat-Earth

and

round-Earth

representations”

on

page

193.

Where

spatial

data

comes

from

You

can

obtain

spatial

data

by:

v

Deriving

it

from

business

data

v

Generating

it

from

spatial

functions

v

Importing

it

from

external

sources

Using

business

data

as

source

data

DB2

Spatial

Extender

can

derive

spatial

data

from

business

data,

such

as

addresses

(as

mentioned

in

“How

data

represents

geographic

features”

on

page

4).

This

process

is

called

geocoding.

To

see

the

sequence

involved,

consider

Figure

2

on

page

5

as

a

“before”

picture

and

Figure

3

as

an

“after”

picture.

Figure

2

on

page

5

shows

that

the

BRANCHES

table

and

the

CUSTOMERS

table

both

have

a

column

designated

for

spatial

data.

Suppose

that

DB2

Spatial

Extender

geocodes

the

addresses

in

these

tables

to

obtain

coordinates

that

correspond

to

the

addresses,

and

places

the

coordinates

into

the

columns.

Figure

3

illustrates

this

result.

DB2

Spatial

Extender

uses

a

function,

called

a

geocoder,

to

translate

business

data

into

coordinates

to

allow

spatial

functions

to

operate

on

the

data.

Using

functions

to

generate

spatial

data

Spatial

data

can

be

generated

not

only

by

geocoders,

but

by

other

functions

as

well.

Some

of

these

functions,

referred

to

as

constructors,

can

generate

spatial

data

CUSTOMERS

ID LAST NAME FIRST NAME ADDRESS CITY POSTAL CODE LOCATION SAVINGSCHECKING

59-6396 Kriner Endela 9 Concourt Circle San Jose 95141 953 1527 A A

BRANCHES

LOCATION

1653 3094

ID NAME ADDRESS CITY POSTAL CODE

937 Airzone-Multern 92467 Airzone Blvd San Jose 95141

COUNTRY

USA

STATE_PROV

CA

COUNTRY

USA

STATE_PROV

CA

Figure

3.

Tables

that

include

spatial

data

derived

from

source

data.

The

LOCATION

column

in

the

CUSTOMERS

table

contains

coordinates

that

were

derived

from

the

address

in

the

ADDRESS,

CITY,

POSTAL

CODE,

STATE_PROV,

and

COUNTRY

columns.

Similarly,

the

LOCATION

column

in

the

BRANCHES

table

contains

coordinates

that

were

derived

from

the

address

in

this

table’s

ADDRESS,

CITY,

POSTAL

CODE,

STATE_PROV,

and

COUNTRY

columns.

About

DB2

Spatial

Extender

6

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

from

values

that

you

provide

as

input.

Others

require

existing

spatial

data

as

input.

For

example,

suppose

that

the

bank

whose

branches

are

defined

in

the

BRANCHES

table

wants

to

know

how

many

customers

are

located

within

five

miles

of

each

branch.

Before

the

bank

can

obtain

this

information

from

the

database,

it

needs

to

define

the

zone

that

lies

within

a

specified

radius

around

each

branch.

A

DB2

Spatial

Extender

function,

ST_Buffer,

can

create

such

a

definition.

Using

the

coordinates

of

each

branch

as

input,

ST_Buffer

can

generate

the

coordinates

that

demarcate

the

perimeters

of

the

zones.

Figure

4

shows

the

BRANCHES

table

with

information

that

is

supplied

by

ST_Buffer.

In

addition

to

ST_Buffer,

DB2

Spatial

Extender

provides

several

other

functions

that

derive

new

spatial

data

from

existing

spatial

data.

For

more

information

about

these

functions,

see

“Related

concepts”

and

“Related

reference”

at

the

end

of

this

topic.

Importing

spatial

data

A

third

way

to

obtain

spatial

data

is

to

import

it

from

files

provided

by

external

data

sources.

These

files

typically

contain

data

that

is

applied

to

maps:

street

networks,

flood

plains,

earthquake

faults,

and

so

on.

By

using

such

data

in

combination

with

spatial

data

that

you

produce,

you

can

augment

the

spatial

information

available

to

you.

For

example,

if

a

public

works

department

needs

to

determine

what

hazards

a

residential

community

is

vulnerable

to,

it

could

use

ST_Buffer

to

define

a

zone

around

the

community.

The

public

works

department

could

then

import

data

on

flood

plains

and

earthquake

faults

to

see

which

of

these

problem

areas

overlap

this

zone.

Related

concepts:

v

“DB2

Geodetic

Extender”

on

page

153

v

“When

to

use

DB2

Geodetic

Extender

and

when

to

use

DB2

Spatial

Extender”

on

page

154

v

“Spatial

functions”

on

page

287

v

“Coordinate

systems”

on

page

55

v

“Functions

that

create

new

geometries

with

different

space

configurations”

on

page

316

Related

reference:

v

“Differences

in

working

with

flat-Earth

and

round-Earth

representations”

on

page

193

v

“Spatial

functions

supported

by

DB2

Geodetic

Extender”

on

page

202

v

“ST_Buffer”

on

page

343

v

“Functions

that

generate

new

geometries

from

existing

geometries”

on

page

315

BRANCHES

LOCATION SALES_AREA

1653 3094 1002 2001,
1192 3564,
2502 3415,
1915 3394,
1002 2001

ID NAME ADDRESS CITY POSTAL CODE

937 Airzone-Multern 92467 Airzone Blvd San Jose 95141

COUNTRY

USA

STATE_PROV

CA

Figure

4.

Table

that

includes

new

spatial

data

derived

from

existing

spatial

data.

The

coordinates

in

the

SALES_AREA

column

were

derived

by

the

ST_Buffer

function

from

the

coordinates

in

the

LOCATION

column.

Like

the

coordinates

in

the

LOCATION

column,

those

in

the

SALES_AREA

column

are

simulated;

they

are

not

actual.

About

DB2

Spatial

Extender

Chapter

1.

About

DB2

Spatial

Extender

7

|
|
|
|

How

features,

spatial

information,

spatial

data,

and

geometries

fit

together

This

section

summarizes

several

basic

concepts

that

underlie

the

operations

of

DB2®

Spatial

Extender:

geographic

features,

spatial

information,

spatial

data,

and

geometries.

DB2

Spatial

Extender

lets

you

obtain

facts

and

figures

that

pertain

to

things

that

can

be

defined

geographically—that

is,

in

terms

of

their

location

on

earth,

or

within

a

region

of

the

earth.

The

DB2

documentation

refers

to

such

facts

and

figures

as

spatial

information,

and

to

the

things

as

geographic

features

(called

features

here,

for

short).

For

example,

you

could

use

DB2

Spatial

Extender

to

determine

whether

any

populated

areas

overlap

the

proposed

site

for

a

landfill.

The

populated

areas

and

the

proposed

site

are

features.

A

finding

as

to

whether

any

overlap

exists

would

be

an

example

of

spatial

information.

If

overlap

is

found

to

exist,

the

extent

of

it

would

also

be

an

example

of

spatial

information.

To

produce

spatial

information,

DB2

Spatial

Extender

must

process

data

that

defines

the

locations

of

features.

Such

data,

called

spatial

data,

consists

of

coordinates

that

reference

the

locations

on

a

map

or

similar

projection.

For

example,

to

determine

whether

one

feature

overlaps

another,

DB2

Spatial

Extender

must

determine

where

the

coordinates

of

one

of

the

features

are

situated

with

respect

to

the

coordinates

of

the

other.

In

the

world

of

spatial

information

technology,

it

is

common

to

think

of

features

as

being

represented

by

symbols

called

geometries.

Geometries

are

partly

visual

and

partly

mathematical.

Consider

their

visual

aspect.

The

symbol

for

a

feature

that

has

width

and

breadth,

such

as

a

park

or

town,

is

a

multisided

figure.

Such

a

geometry

is

called

a

polygon.

The

symbol

for

a

linear

feature,

such

as

a

river

or

a

road,

is

a

line.

Such

a

geometry

is

called

a

linestring.

A

geometry

has

properties

that

correspond

to

facts

about

the

feature

that

it

represents.

Most

of

these

properties

can

be

expressed

mathematically.

For

example,

the

coordinates

for

a

feature

collectively

constitute

one

of

the

properties

of

the

feature’s

corresponding

geometry.

Another

property,

called

dimension,

is

a

numerical

value

that

indicates

whether

a

feature

has

length

or

breadth.

Spatial

data

and

certain

spatial

information

can

be

viewed

in

terms

of

geometries.

Consider

the

example,

described

earlier,

of

the

populated

areas

and

the

proposed

landfill

site.

The

spatial

data

for

the

populated

areas

includes

coordinates

stored

in

a

column

of

a

table

in

a

DB2

database.

The

convention

is

to

regard

what

is

stored

not

simply

as

data,

but

as

actual

geometries.

Because

populated

areas

have

width

and

breadth,

you

can

see

that

these

geometries

are

polygons.

Like

spatial

data,

certain

spatial

information

is

also

viewed

in

terms

of

geometries.

For

example,

to

determine

whether

a

populated

area

overlaps

a

proposed

landfill

site,

DB2

Spatial

Extender

must

compare

the

coordinates

in

the

polygon

that

symbolizes

the

site

with

the

coordinates

of

the

polygons

that

represent

populated

areas.

The

resulting

information—that

is,

the

areas

of

overlap—are

themselves

regarded

as

polygons:

geometries

with

coordinates,

dimensions,

and

other

properties.

About

DB2

Spatial

Extender

8

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

Chapter

2.

About

geometries

This

chapter

discusses

entities

of

information,

called

geometries,

that

consist

of

coordinates

and

represent

geographic

features.

The

topics

covered

are:

v

Geometries

v

Properties

of

geometries

Geometries

Webster’s

Revised

Unabridged

Dictionary

defines

geometry

as

“That

branch

of

mathematics

which

investigates

the

relations,

properties,

and

measurement

of

solids,

surfaces,

lines,

and

angles;

the

science

which

treats

of

the

properties

and

relations

of

magnitudes;

the

science

of

the

relations

of

space.”

The

word

geometry

has

also

been

used

to

denote

the

geometric

features

that,

for

the

past

millennium

or

more,

cartographers

have

used

to

map

the

world.

An

abstract

definition

of

this

new

meaning

of

geometry

is

“a

point

or

aggregate

of

points

representing

a

feature

on

the

ground.”

In

DB2®

Spatial

Extender,

the

operational

definition

of

geometry

is

“a

model

of

a

geographic

feature.”

The

model

can

be

expressed

in

terms

of

the

feature’s

coordinates.

The

model

conveys

information;

for

example,

the

coordinates

identify

the

position

of

the

feature

with

respect

to

fixed

points

of

reference.

Also,

the

model

can

be

used

to

produce

information;

for

example,

the

ST_Overlaps

function

can

take

the

coordinates

of

two

proximate

regions

as

input

and

return

information

as

to

whether

the

regions

overlap

or

not.

The

coordinates

of

a

feature

that

a

geometry

represents

are

regarded

as

properties

of

the

geometry.

Several

kinds

of

geometries

have

other

properties

as

well;

for

example,

area,

length,

and

boundary.

The

geometries

supported

by

DB2

Spatial

Extender

form

a

hierarchy,

which

is

shown

in

the

following

figure.

The

geometry

hierarchy

is

defined

by

the

OpenGIS

Consortium,

Inc.

(OGC)

document

″OpenGIS

Simple

Features

Specification

for

SQL″.

Seven

members

of

the

hierarchy

are

instantiable.

That

is,

they

can

be

defined

with

specific

coordinate

values

and

rendered

visually

as

the

figure

shows.

©

Copyright

IBM

Corp.

1998,

2004

9

|
|

The

spatial

data

types

supported

by

DB2

Spatial

Extender

are

implementations

of

the

geometries

shown

in

the

figure.

As

the

figure

indicates,

a

superclass

called

geometry

is

the

root

of

the

hierarchy.

The

root

type

and

other

proper

subtypes

in

the

hierarchy

are

not

instantiable.

Additionally,

users

can

define

their

own

instantiable

or

not

instantiable

proper

subtypes.

The

subtypes

are

divided

into

two

categories:

the

base

geometry

subtypes,

and

the

homogeneous

collection

subtypes.

The

base

geometries

include:

Points

A

single

point.

Points

represent

discrete

features

that

are

perceived

as

occupying

the

locus

where

an

east-west

coordinate

line

(such

as

a

parallel)

intersects

a

north-south

coordinate

line

(such

as

a

meridian).

For

example,

suppose

that

the

notation

on

a

world

map

shows

that

each

city

on

the

map

is

located

at

the

intersection

of

a

parallel

and

a

meridian.

A

point

could

represent

each

city.

Linestrings

A

line

between

two

points.

It

does

not

have

to

be

a

straight

line.

Linestrings

represent

linear

geographic

features

(for

example,

streets,

canals,

and

pipelines).

Polygons

A

polygon

or

surface

within

a

polygon.

Polygons

represent

multisided

geographic

features

(for

example,

welfare

districts,

forests,

and

wildlife

habitats).

The

homogeneous

collections

include:

multistringmultipolygon

multisurface
multipointlinestring polygon

point
curve surface

geometry

geometry collection

multicurve

Figure

5.

Hierarchy

of

geometries

supported

by

DB2

Spatial

Extender.

Instantiable

geometries

in

this

figure

include

examples

of

how

they

might

be

rendered

visually.

About

Geometries

10

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|
|
|

|
|
|

|
|
|

|
|
|

Multipoints

A

multiple

point

geometry

collection.

Multipoints

represent

multipart

features

whose

components

are

each

located

at

the

intersection

of

an

east-west

coordinate

line

and

a

north-south

coordinate

line

(for

example,

an

island

chain

whose

members

are

each

situated

at

an

intersection

of

a

parallel

and

meridian).

Multilinestrings

A

multiple

curve

geometry

collection

with

multiple

strings.

Multilinestrings

represent

multipart

features

that

are

made

up

(for

example,

river

systems

and

highway

systems).

Multipolygons

A

multiple

surface

geometry

collection

with

multiple

polygons.

Multipolygons

represent

multipart

features

made

up

of

multisided

units

or

components

(for

example,

the

collective

farmlands

in

a

specific

region,

or

a

system

of

lakes).

As

their

names

imply,

the

homogeneous

collections

are

collections

of

base

geometries.

In

addition

to

sharing

base

geometry

properties,

homogeneous

collections

have

some

of

their

own

properties

as

well.

Related

concepts:

v

“Spatial

and

geodetic

data”

on

page

4

Properties

of

geometries

This

topic

describes

geometries’

properties.

These

properties

are:

v

The

type

that

a

geometry

belongs

to

v

Geometry

coordinates

v

A

geometry’s

interior,

boundary,

and

exterior

v

The

quality

of

being

simple

or

non-simple

v

The

quality

of

being

empty

or

not

empty

v

A

geometry’s

minimum

bounding

rectangle

or

envelope

v

Dimension

v

The

identifier

of

the

spatial

reference

system

with

which

a

geometry

is

associated

Type

Each

geometry

belongs

to

a

type

in

the

hierarchy

of

geometries

supported

by

DB2

Spatial

Extender.

For

a

description

of

the

hierarchy

of

geometries,

see

“Geometries”

on

page

9.

Seven

types

in

the

hierarchy—points,

linestrings,

polygons,

geometry

collections,

multipoints,

multilinestrings,

and

multipolygons—can

be

defined

with

specific

coordinate

values.

Geometry

coordinates

All

geometries

include

at

least

one

X

coordinate

and

one

Y

coordinate,

unless

they

are

empty

geometries,

in

which

case

they

contain

no

coordinates

at

all.

In

addition,

a

geometry

can

include

one

or

more

Z

coordinates

and

M

coordinates.

X,

Y,

Z,

and

M

coordinates

are

represented

as

double–precision

numbers.

The

following

subsections

explain:

v

X

and

Y

coordinates

v

Z

coordinates

About

Geometries

Chapter

2.

About

geometries

11

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

v

M

coordinates

X

and

Y

coordinates

An

X

coordinate

value

denotes

a

location

that

is

relative

to

a

point

of

reference

to

the

east

or

west.

A

Y

coordinate

value

denotes

a

location

that

is

relative

to

a

point

of

reference

to

the

north

or

south.

Z

coordinates

Some

geometries

have

an

associated

altitude

or

depth.

Each

of

the

points

that

form

the

geometry

of

a

feature

can

include

an

optional

Z

coordinate

that

represents

an

altitude

or

depth

normal

to

the

earth’s

surface.

M

coordinates

An

M

coordinate

(measure)

is

a

value

that

conveys

information

about

a

geographic

feature

and

that

is

stored

together

with

the

coordinates

that

define

the

feature’s

location.

For

example,

suppose

that

you

are

representing

highways

in

your

application.

If

you

want

your

application

to

process

values

that

denote

linear

distances

or

mileposts,

you

can

store

these

values

along

with

the

coordinates

that

define

locations

along

the

highway.

M

coordinates

are

represented

as

double–precision

numbers.

Interior,

boundary,

and

exterior

All

geometries

occupy

a

position

in

space

defined

by

their

interiors,

boundaries,

and

exteriors.

The

exterior

of

a

geometry

is

all

space

not

occupied

by

the

geometry.

The

boundary

of

a

geometry

serves

as

the

interface

between

its

interior

and

exterior.

The

interior

is

the

space

occupied

by

the

geometry.

Simple

or

non-simple

The

values

of

some

geometry

subtypes

(linestrings,

multipoints,

and

multilinestrings)

are

either

simple

or

non-simple.

A

geometry

is

simple

if

it

obeys

all

the

topological

rules

imposed

on

its

subtype

and

non-simple

if

it

doesn’t.

A

linestring

is

simple

if

it

does

not

intersect

its

interior.

A

multipoint

is

simple

if

none

of

its

elements

occupy

the

same

coordinate

space.

Points,

surfaces,

multisurfaces

and

empty

geometries

are

always

simple.

Closed

A

curve

is

closed

if

its

start

and

end

points

are

the

same.

A

multicurve

is

closed

if

all

of

its

elements

are

closed.

A

ring

is

a

simple,

closed

curve.

Empty

or

not

empty

A

geometry

is

empty

if

it

does

not

have

any

points.

The

envelope,

boundary,

interior,

and

exterior

of

an

empty

geometry

are

not

defined

and

will

be

represented

as

null.

An

empty

geometry

is

always

simple.

Empty

polygons

and

multipolygons

have

an

area

of

0.

Minimum

bounding

rectangle

(MBR)

The

MBR

of

a

geometry

is

the

bounding

geometry

formed

by

the

minimum

and

maximum

(X,Y)

coordinates.

Except

for

the

following

special

cases,

the

MBRs

of

geometries

form

a

boundary

rectangle:

v

The

MBR

of

any

point

is

the

point

itself,

because

its

minimum

and

maximum

X

coordinates

are

the

same

and

its

minimum

and

maximum

Y

coordinates

are

the

same.

About

Geometries

12

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|

|
|

v

The

MBR

of

a

horizontal

or

vertical

linestring

is

a

linestring

represented

by

the

boundary

(the

endpoints)

of

the

source

linestring.

Dimension

A

geometry

can

have

a

dimension

of

–1,

0,

1,

or

2.

The

dimensions

are

listed

as

follows:

–1

Is

empty

0

Has

no

length

and

an

area

of

0

(zero)

1

Has

a

length

larger

than

0

(zero)

and

an

area

of

0

(zero)

2

Has

an

area

that

is

larger

than

0

(zero)

The

point

and

multipoint

subtypes

have

a

dimension

of

zero.

Points

represent

dimensional

features

that

can

be

modeled

with

a

single

tuple

of

coordinates,

while

multipoint

subtypes

represent

data

that

must

be

modeled

with

a

set

of

points.

The

linestring

and

multilinestring

subtypes

have

a

dimension

of

one.

They

store

road

segments,

branching

river

systems

and

any

other

features

that

are

linear

in

nature.

Polygon

and

multipolygon

subtypes

have

a

dimension

of

two.

Features

whose

perimeter

encloses

a

definable

area,

such

as

forests,

parcels

of

land,

and

lakes,

can

be

represented

by

either

the

polygon

or

multipolygon

data

type.

Spatial

reference

system

identifier

The

numeric

identifier

for

a

spatial

reference

system

determines

which

spatial

reference

system

is

used

to

represent

the

geometry.

All

spatial

reference

systems

known

to

the

database

can

be

accessed

through

the

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

catalog

view.

About

Geometries

Chapter

2.

About

geometries

13

|
|

Introduction

14

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Chapter

3.

How

to

use

DB2

Spatial

Extender

How

to

use

DB2

Spatial

Extender

Support

and

use

of

DB2®

Spatial

Extender

involves

two

main

activities:

setting

up

DB2

Spatial

Extender

and

working

on

projects

that

use

spatial

data.

This

topic

introduces

the

interfaces

you

can

use

to

perform

spatial

tasks.

Interfaces

to

DB2

Spatial

Extender

and

associated

functionality

Several

interfaces

let

you

set

up

DB2

Spatial

Extender

and

create

projects

that

use

spatial

data.

These

interfaces

are:

v

The

DB2

Control

Center,

a

graphical-user

interface

that

includes

windows,

notebooks,

and

menu

choices

that

support

DB2

Spatial

Extender.

v

A

command

line

processor

(CLP)

provided

by

DB2

Spatial

Extender.

It

is

called

the

db2se

CLP.

v

Application

programs

that

call

DB2

Spatial

Extender’s

stored

procedures.

Other

interfaces

let

you

generate

spatial

information.

They

include:

v

SQL

queries

that

you

submit

from

the

DB2

CLP,

from

a

query

window

in

the

DB2

Control

Center,

or

from

an

application

program.

v

Visualization

tools

that

render

spatial

information

in

graphical

form.

An

example

is

ArcExplorer

for

DB2,

which

was

created

by

the

Environmental

Systems

Research

Institute

(ESRI)

for

IBM®.

ArcExplorer

for

DB2

can

be

downloaded

from

the

DB2

Spatial

Extender

Web

site:

http://www.ibm.com/software/data/spatial/

Tasks

that

you

perform

to

set

up

DB2

Spatial

Extender

and

create

projects

This

section

provides

an

overview

of

the

tasks

you

perform

to

set

up

DB2

Spatial

Extender

and

work

on

projects

that

use

spatial

data.

It

includes

a

scenario

that

illustrates

the

tasks.

The

tasks

fall

into

two

categories:

v

Setting

up

DB2

Spatial

Extender

v

Creating

projects

that

use

spatial

data

Setting

up

DB2

Spatial

Extender:

This

section

lists

the

tasks

that

you

perform

to

set

up

DB2

Spatial

Extender

and

uses

a

scenario

to

illustrate

how

a

fictional

company

might

approach

each

task.

To

set

up

DB2

Spatial

Extender:

1.

Plan

and

make

preparations

(decide

what

projects

to

create,

decide

what

interface

or

interfaces

to

use,

select

personnel

to

administer

DB2

Spatial

Extender

and

create

the

projects,

and

so

on).

Scenario:

The

Safe

Harbor

Real

Estate

Insurance

Company’s

information

systems

environment

includes

a

DB2

Universal

Database™

system

and

a

separate

file

system

for

spatial

data

only.

To

an

extent,

query

results

can

include

combinations

of

data

from

both

systems.

For

example,

a

DB2

table

©

Copyright

IBM

Corp.

1998,

2004

15

|
|
|
|

|

http://www.ibm.com/software/data/spatial/

stores

information

about

revenue,

and

a

file

in

the

file

system

contains

locations

of

the

company’s

branch

offices.

Therefore,

it

is

possible

to

find

out

which

offices

bring

in

revenues

of

specified

amounts,

and

then

to

determine

where

these

offices

are

located.

But

data

from

the

two

systems

cannot

be

integrated

(for

example,

users

cannot

join

DB2

columns

with

file

system

records,

and

DB2

services

such

as

query

optimization

are

unavailable

to

the

file

system.)

To

overcome

these

disadvantages,

Safe

Harbor

acquires

DB2

Spatial

Extender

Version

8

and

establishes

a

new

Spatial

Development

department

(called

a

Spatial

department,

for

short).

The

Spatial

department’s

first

mission

is

to

include

DB2

Spatial

Extender

in

Safe

Harbor’s

DB2

environment:

v

The

department’s

management

team

appoints

a

spatial

administration

team

to

install

and

implement

DB2

Spatial

Extender,

and

a

spatial

analysis

team

to

generate

and

analyze

spatial

information.

v

Because

the

administration

team

has

a

strong

UNIX®

background,

it

decides

to

use

the

db2se

CLP

to

administer

DB2

Spatial

Extender.

v

Because

Safe

Harbor’s

business

decisions

are

driven

primarily

by

customers’

requirements,

the

management

team

decides

to

install

DB2

Spatial

Extender

in

the

database

that

contains

information

about

its

customers.

Most

of

this

information

is

stored

in

a

table

called

CUSTOMERS.
2.

Install

DB2

Spatial

Extender.

Scenario:

The

spatial

administration

team

installs

DB2

Spatial

Extender

on

a

UNIX

machine

in

a

DB2

environment.

3.

If

you

have

DB2

Spatial

Extender

Version

7,

migrate

your

spatial

data

to

DB2

Version

8.

Scenario:

The

Version

8

release

is

the

first

one

that

Safe

Harbor

has

acquired.

No

migration

is

needed.

4.

Configure

your

database

to

accommodate

spatial

data.

You

adjust

configuration

parameters

to

ensure

that

your

database

has

enough

memory

and

space

for

spatial

functions,

log

files,

and

DB2

Spatial

Extender

applications.

Scenario:

A

member

of

the

spatial

administration

team

adjusts

the

transaction

log

characteristics,

application

heap

size,

and

application

control

heap

size

to

values

suited

to

DB2

Spatial

Extender’s

requirements.

5.

Set

up

spatial

resources

for

your

database.

These

resources

include

a

system

catalog,

spatial

data

types,

spatial

functions,

a

geocoder,

and

other

objects.

The

task

of

setting

up

these

resources

is

referred

to

as

enabling

the

database

for

spatial

operations.

The

geocoder

supplied

by

DB2

Spatial

Extender

translates

United

States

addresses

into

spatial

data.

It

is

called

DB2SE_USA_GEOCODER.

Your

organization

and

others

can

provide

geocoders

that

translate

addresses

outside

the

United

States,

as

well

as

other

kinds

of

data,

into

spatial

data.

Scenario:

The

spatial

administration

team

sets

up

resources

that

will

be

required

by

the

projects

that

it

is

planning.

v

A

member

of

the

team

issues

a

command

to

obtain

the

resources

that

enable

the

database

for

spatial

operations.

These

resources

include

the

DB2

Spatial

Extender

catalog,

spatial

data

types,

spatial

functions,

and

so

on.

v

Because

Safe

Harbor

is

starting

to

extend

its

business

into

Canada,

the

spatial

administration

team

begins

soliciting

Canadian

vendors

for

geocoders

that

translate

Canadian

addresses

into

spatial

data.

Safe

Harbor

does

not

expect

to

acquire

such

geocoders

for

a

few

months

yet.

Therefore,

the

first

locations

on

which

it

will

gather

data

will

be

in

the

United

States.

How

to

use

DB2

Spatial

Extender

16

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

Creating

projects

that

use

spatial

data:

After

you

set

up

DB2

Spatial

Extender,

you

are

ready

to

undertake

projects

that

use

spatial

data.

This

section

lists

the

tasks

involved

in

creating

such

a

project

and

continues

the

scenario

in

which

the

Safe

Harbor

Real

Estate

Insurance

Company

seeks

to

integrate

business

and

spatial

data.

To

create

a

project

that

uses

spatial

data:

1.

Plan

and

make

preparations

(set

goals

for

the

project,

decide

what

tables

and

data

you

need,

determine

what

coordinate

system

or

systems

to

use,

and

so

on).

Scenario:

The

Spatial

department

prepares

to

develop

a

project;

for

example:

v

The

management

team

sets

these

goals

for

the

project:

–

To

determine

where

to

establish

new

branch

offices

–

To

adjust

premiums

on

the

basis

of

customers’

proximity

to

hazardous

areas

(areas

with

high

rates

of

traffic

accidents,

areas

with

high

rates

of

crime,

flood

zones,

earthquake

faults,

and

so

on)
v

This

particular

project

will

be

concerned

with

customers

and

offices

in

the

United

States.

Therefore,

the

spatial

administration

team

decides

to:

–

Use

a

coordinate

system

for

the

United

States

that

DB2

Spatial

Extender

provides.

It

is

called

GCS_NORTH_AMERICAN_1983.

–

Use

DB2SE_USA_GEOCODER,

because

it

is

designed

to

geocode

United

States

addresses.
v

The

spatial

administration

team

decides

what

data

is

needed

to

meet

the

project’s

goals

and

what

tables

will

contain

this

data.
2.

Create

a

coordinate

system

if

you

need

to

do

so.

Scenario:

Because

Safe

Harbor

has

decided

to

use

GCS_NORTH_AMERICAN_1983,

the

company

can

ignore

this

step.

3.

Decide

whether

an

existing

spatial

reference

system

meets

your

needs.

If

none

does,

create

one.

A

spatial

reference

system

is

a

set

of

parameter

values

that

includes:

v

Coordinates

that

define

the

maximum

possible

extent

of

space

referenced

by

a

given

range

of

coordinates.

You

need

to

determine

the

maximum

possible

range

of

coordinates

that

can

be

determined

from

the

coordinate

system

that

you

are

using,

and

to

select

or

create

a

spatial

reference

system

that

reflects

this

range.

v

The

name

of

the

coordinate

system

from

which

the

coordinates

are

derived.

v

Numbers

used

in

mathematical

operations

to

convert

coordinates

received

as

input

into

values

that

can

be

processed

with

maximum

efficiency.

The

coordinates

are

stored

in

their

converted

form

and

returned

to

the

user

in

their

original

form.

Scenario:

DB2

Spatial

Extender

provides

a

spatial

reference

system,

NAD83_SRS_1,

that

is

designed

to

be

used

with

GCS_NORTH_AMERICAN_1983.

The

spatial

administration

team

decides

to

use

NAD83_SRS_1.

4.

Create

spatial

columns

as

needed.

Note

that

in

many

cases,

if

data

in

a

spatial

column

is

to

be

read

by

a

visualization

tool,

the

column

must

be

the

only

spatial

column

in

the

table

or

view

to

which

it

belongs.

Alternatively,

if

the

column

is

one

of

multiple

spatial

columns

in

a

table,

it

could

be

included

in

a

view

that

has

no

other

spatial

columns,

and

visualization

tools

could

read

the

data

from

this

view.

How

to

use

DB2

Spatial

Extender

Chapter

3.

How

to

use

DB2

Spatial

Extender

17

Scenario:

The

spatial

administration

team

defines

columns

to

contain

spatial

data.

v

The

team

adds

a

LOCATION

column

to

the

CUSTOMERS

table.

The

table

already

contains

customers’

addresses.

DB2SE_USA_GEOCODER

will

translate

them

into

spatial

data.

Then

DB2

will

store

this

data

in

the

LOCATION

column.

v

The

team

creates

an

OFFICE_LOCATIONS

table

and

an

OFFICE_SALES

table

to

contain

data

that

is

now

stored

in

the

separate

file

system.

This

data

includes

the

addresses

of

Safe

Harbor’s

branch

offices,

spatial

data

that

was

derived

from

these

addresses

by

a

geocoder,

and

spatial

data

that

defines

a

zone

within

a

five-mile

radius

around

each

office.

The

data

derived

by

the

geocoder

will

go

into

a

LOCATION

column

in

the

OFFICE_LOCATIONS

table,

and

the

data

that

defines

the

zones

will

go

into

a

SALES_AREA

column

in

the

OFFICE_SALES

table.
5.

Set

up

spatial

columns

for

access

by

visualization

tools,

as

needed.

You

do

this

by

registering

the

columns

in

the

DB2

Spatial

Extender

catalog.

When

you

register

a

spatial

column,

DB2

Spatial

Extender

imposes

a

constraint

that

all

data

in

the

column

must

belong

to

the

same

spatial

reference

system.

This

constraint

enforces

integrity

of

the

data—a

requirement

of

most

visualization

tools.

Scenario:

The

spatial

administration

team

expects

to

use

visualization

tools

to

render

the

content

of

the

LOCATION

columns

and

the

SALES_AREA

column

graphically

on

a

map.

Therefore,

the

team

registers

all

three

columns.

6.

Populate

spatial

columns:

For

a

project

that

requires

spatial

data

to

be

imported,

import

the

data.

For

a

project

that

requires

a

geocoder:

v

Set,

in

advance,

the

control

information

needed

when

a

geocoder

is

invoked.

v

As

an

option,

set

up

the

geocoder

to

run

automatically

each

time

a

new

address

is

added

to

the

database,

or

an

existing

address

is

updated.

Run

the

geocoder

in

batch

mode,

as

needed.

For

a

project

that

requires

spatial

data

to

be

created

by

a

spatial

function,

execute

this

function.

Scenario:

The

spatial

administration

team

populates

the

CUSTOMER

table’s

LOCATION

column,

the

OFFICE_LOCATIONS

table,

the

OFFICE_SALES

table,

and

a

new

HAZARD_ZONES

table:

v

The

team

uses

DB2SE_USA_GEOCODER

to

geocode

addresses

in

the

CUSTOMER

table.

The

coordinates

produced

by

the

geocoding

are

inserted

into

the

table’s

LOCATION

column.

v

The

team

uses

a

utility

to

load

office

data

from

the

file

system

into

a

file.

Then

the

team

imports

this

data

to

the

new

OFFICE_LOCATIONS

table.

v

The

team

creates

a

HAZARD_ZONES

table,

registers

its

spatial

columns,

and

imports

data

to

it.

The

data

comes

from

a

file

supplied

by

a

map

vendor.
7.

Facilitate

access

to

spatial

columns,

as

needed.

This

involves

defining

indexes

that

enable

DB2

to

access

spatial

data

quickly,

and

defining

views

that

enable

users

to

retrieve

interrelated

data

efficiently.

If

you

want

visualization

tools

to

access

the

views’

spatial

columns,

you

might

need

to

register

these

columns

with

DB2

Spatial

Extender

as

well.

Scenario:

The

spatial

administration

team

creates

indexes

for

the

registered

columns.

It

then

creates

a

view

that

joins

columns

from

the

CUSTOMERS

and

HAZARD

ZONES

tables.

Next,

it

registers

the

spatial

columns

in

this

view.

How

to

use

DB2

Spatial

Extender

18

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

8.

Generate

spatial

information

and

related

business

information.

Analyze

the

information.

This

task

involves

querying

spatial

columns

and

related

non-spatial

columns.

In

such

queries,

you

can

include

DB2

Spatial

Extender

functions

that

return

a

wide

variety

of

information;

for

example,

coordinates

that

define

a

proposed

safety

zone

around

a

hazardous

waste

site,

or

the

minimum

distance

between

this

site

and

the

nearest

public

building.

Scenario:

The

spatial

analysis

team

runs

queries

to

obtain

information

that

will

help

it

meet

the

original

goals:

to

determine

where

to

establish

new

branch

offices,

and

to

adjust

premiums

on

the

basis

of

customers’

proximity

to

hazard

areas.

Related

tasks:

v

“Setting

up

and

installing

Spatial

Extender”

on

page

23

v

“Enabling

a

database

for

spatial

operations”

on

page

50

v

“Registering

a

geocoder”

on

page

51

v

“Configuring

a

database

to

accommodate

spatial

data”

on

page

45

v

“Importing

shape

data

to

a

new

or

existing

table”

on

page

84

v

“Importing

SDE

transfer

data

to

a

new

or

existing

table”

on

page

85

v

“Setting

up

geocoding

operations”

on

page

90

v

“Setting

up

a

geocoder

to

run

automatically”

on

page

92

v

“Running

a

geocoder

in

batch

mode”

on

page

93

v

“Exporting

data

to

an

SDE

transfer

file”

on

page

87

v

“Selecting

or

creating

coordinate

systems”

on

page

61

v

“Registering

spatial

columns”

on

page

80

v

“Creating

spatial

columns”

on

page

79

v

“Creating

spatial

grid

indexes”

on

page

102

v

“Calling

DB2

Spatial

Extender

stored

procedures

from

an

application”

on

page

130

v

“Including

the

DB2

Spatial

Extender

header

file

in

spatial

applications”

on

page

129

Related

reference:

v

“Invoking

commands

for

setting

up

DB2

Spatial

Extender

and

developing

projects”

on

page

121

How

to

use

DB2

Spatial

Extender

Chapter

3.

How

to

use

DB2

Spatial

Extender

19

How

to

use

DB2

Spatial

Extender

20

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Part

2.

Setting

up

DB2

Spatial

Extender

©

Copyright

IBM

Corp.

1998,

2004

21

22

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Chapter

4.

Getting

started

with

DB2

Spatial

Extender

This

chapter

provides

instructions

for

installing

and

configuring

Spatial

Extender

for

AIX,

HP-UX,

Windows

NT,

Window

2000,

Linux,

Linux

for

z/OS,

and

Solaris

Operating

Environments.

This

chapter

also

explains

how

to

trouble

shoot

some

of

the

installation

and

configuration

problems

that

you

might

encounter

as

you

invoke

Spatial

Extender.

Setting

up

and

installing

Spatial

Extender—Steps

This

section

contains

details

for

the

following

topics:

v

System

requirements

for

installing

Spatial

Extender

v

Installation

instructions

for

UNIX

and

Windows

platforms

v

Explanation

on

how

to

create

a

DB2

Spatial

Extender

instance

environment

v

Verifying

the

Spatial

Extender

installation

v

Troubleshooting

tips

for

the

installation

sample

program

Setting

up

and

installing

Spatial

Extender

A

DB2

Spatial

Extender

system

consists

of

DB2

Universal

Database,

DB2

Spatial

Extender,

and,

for

most

applications,

a

geobrowser.

A

geobrowser

is

not

required

but

is

useful

for

visually

rendering

the

results

of

spatial

queries,

generally

in

the

form

of

maps.

Databases

enabled

for

spatial

operations

are

located

on

the

server.

You

can

use

client

applications

to

access

spatial

data

through

the

DB2

Spatial

Extender

stored

procedures

and

spatial

queries.

You

can

also

configure

DB2

Spatial

Extender

in

a

stand–alone

environment,

which

is

a

configuration

where

both

the

client

and

server

reside

on

the

same

machine.

In

both

client-server

and

stand–alone

configurations,

you

can

view

spatial

data

with

a

geobrowser,

such

as

ArcExplorer

for

DB2

or

ESRI’s

ArcGIS

tool

suites

running

with

ArcSDE.

You

can

download

a

free

copy

of

ArcExplorer

for

DB2

from

IBM’s

DB2

Spatial

Extender

Web

site:

http://www.ibm.com/software/data/spatial/

Prerequisites:

Before

you

set

up

DB2

Spatial

Extender,

you

must

have

DB2

software

installed

and

configured

on

the

client

and

the

server.

Procedure:

1.

Ensure

that

your

system

meets

all

software

requirements.

2.

Install

Spatial

Extender.

The

steps

vary

depending

on

your

operating

system:

v

Windows

v

AIX

v

HP-UX

v

Solaris

Operating

Environment

v

Linux
3.

For

UNIX

platforms:

Create

a

DB2

Spatial

Extender

instance

environment.

©

Copyright

IBM

Corp.

1998,

2004

23

|
|

|

|

|

http://www.ibm.com/software/data/spatial/

4.

Verify

the

installation.Verify

the

installation.

5.

If

necessary,

see

the

troubleshooting

tips

and

take

appropriate

actions

to

correct

any

problems.

6.

If

you

want

to

access

DB2

documentation

on

your

computer

and

you

have

not

yet

installed

the

DB2

Information

Center,

then

refer

to

either

Installing

the

DB2

Information

Center

(UNIX)″

or

Installing

the

DB2

Information

Center

(Windows).The

DB2

Information

Center

contains

documentation

for

DB2

Universal

Database

and

DB2

related

products.

Related

concepts:

v

“System

requirements

for

installing

Spatial

Extender”

on

page

24

Related

tasks:

v

“Installing

DB2

Spatial

Extender

for

Windows”

on

page

25

v

“Installing

DB2

Spatial

Extender

for

AIX”

on

page

27

v

“Installing

DB2

Spatial

Extender

for

HP-UX”

on

page

28

v

“Installing

DB2

Spatial

Extender

for

Solaris

Operating

Environment”

on

page

30

v

“Installing

DB2

Spatial

Extender

for

Linux”

on

page

32

v

“Creating

the

DB2

Spatial

Extender

instance

environment”

on

page

34

v

“Verifying

the

Spatial

Extender

installation”

on

page

36

v

“Troubleshooting

installation

problems”

on

page

37

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

in

the

Infrastructure

Topics

(DB2

Common

Files)

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

in

the

Infrastructure

Topics

(DB2

Common

Files)

v

“Downloading

ArcExplorer

for

DB2”

on

page

38

Related

reference:

v

“CDs

for

DB2

Spatial

Extender

data

and

maps”

on

page

40

System

requirements

for

installing

Spatial

Extender

Before

you

install

DB2®

Spatial

Extender,

ensure

that

your

system

meets

all

the

software

and

disk

space

requirements

described

below.

Operating

systems:

You

can

install

DB2

Spatial

Extender

on

32–bit

and

64–bit

versions

of

Windows®,

AIX®,

HP-UX,

Solaris

Operating

Environment,

and

Linux

for

Intel.

Spatial

Extender

supports

Linux

for

S/390®

(32–bit),

but

does

not

support

Linux

for

zSeries®

(64–bit).

Software

requirements:

To

install

Spatial

Extender,

you

must

have

the

following

DB2

software

installed

and

configured

on

the

server:

Server

software

DB2

Universal

Database™

Enterprise

Server

Edition

Version

8.2must

be

installed

on

your

system

before

you

install

DB2

Spatial

Extender.

If

you

plan

to

use

the

DB2

Control

Center,

create

and

configure

the

DB2

Getting

started

24

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|

|
|
|
|

|
|

Administration

Server

(DAS).

For

more

information

on

creating

and

configuring

DAS,

see

the

IBM®

DB2

Universal

Database

Administration

Guide:

Implementation.

Spatial

client

software

If

you

install

DB2

Spatial

Extender

on

Windows,

the

default

installation

for

Spatial

Extender

includes

the

spatial

client.

For

DB2

Spatial

Extender

on

AIX,

HP-UX,

Solaris

Operating

Environment,

Linux

for

Intel,

or

Linux

for

S/390,

you

can

install

the

spatial

client

when

you

install

the

DB2

server

with

the

administration

or

application

development

client.

If

you

do

not

install

these

clients,

you

must

install

the

spatial

client

manually

by

choosing

the

Custom

installation

option.

Disk

space

requirements:

To

install

Spatial

Extender,

your

system

must

meet

the

disk

space

requirements

listed

in

the

following

table.

The

library

code

for

DB2

Spatial

Extender

integrates

the

code

for

DB2

Geodetic

Extender

but

not

the

Geodetic

license

key.

Table

1.

Disk

space

requirements

for

DB2

Spatial

Extender

DB2

Spatial

Extender

software

Disk

space

Server

software

for

DB2

Spatial

Extender:

596

MB

total

disk

space:

v

Spatial

Extender

and

Geodetic

Extender

server

library

code,

sample

geocoder

reference

data,

and

documentation

v

33

MB

v

Optional

and

available

on

a

separate

CD:

geocoder

reference

data

(United

States)

v

563

MB

Table

1

specifies

the

disk

space

required

when

you

install

DB2

Universal

Database

and

DB2

Spatial

Extender

in

a

typical

installation

for

Windows

or

with

pre-selected

components

in

AIX,

HP-UX,

Solaris

Operating

Environment,

Linux

for

Intel,

and

Linux

for

S/390.

If

you

are

installing

DB2

Spatial

Extender

or

have

installed

DB2

Universal

Database

with

a

different

installation

type,

your

disk

space

calculations

will

differ.

When

your

system

meets

all

the

software

and

disk

space

requirements,

you

can

install

Spatial

Extender.

Installing

DB2

Spatial

Extender

for

Windows

This

task

is

part

of

the

larger

task

of

Setting

up

DB2

Spatial

Extender.

You

can

install

DB2

Spatial

Extender

on

Windows

operating

systems

by

using

the

DB2

Setup

wizard

or

a

response

file.

Recommendation:

use

the

DB2

Setup

wizard

to

install

Spatial

Extender.

The

setup

wizard

provides

an

easy-to-use

graphical

interface

with

installation

help,

automated

user

and

group

creation,

protocol

configuration,

and

instance

creation.

If

you

are

using

the

DB2

Setup

wizard

to

install

Spatial

Extender,

you

can

click

Cancel

at

any

point

during

the

installation

to

exit

the

process.

Prerequisites:

Getting

started

Chapter

4.

Getting

started

with

DB2

Spatial

Extender

25

|
|
|
|
|
|
|
|

|
|

|

|
|

|

|

Before

you

install

the

DB2

Spatial

Extender

product,

you

must

have

a

DB2

Version

8

server

product

installed.

Procedure:

To

install

Spatial

Extender

for

Windows

using

the

DB2

Setup

wizard:

1.

Insert

the

Spatial

Extender

CD

into

the

CD

drive.

The

DB2

Setup

Launchpad,

an

interface

from

which

you

can

install

DB2

Spatial

Extender,

opens.

2.

Click

Install

products.

3.

Select

DB2

Spatial

Extender

as

the

product

you

want

to

install

and

click

NEXT.

The

DB2

Setup

wizard

launches.

Click

NEXT.

Use

the

DB2

Setup

wizard

to

guide

you

through

setup,

and

through

the

remaining

installation

steps.

At

any

time

during

the

installation,

you

can

click

Help

to

launch

the

online

installation

help.

To

install

Spatial

Extender

for

Windows

using

the

response

file:

1.

Log

on

to

the

system

with

the

user

account

that

you

want

to

use

to

perform

the

installation.

2.

Insert

the

Spatial

Extender

CD.

See

the

DB2

Installation

and

Configuration

Supplement

for

more

information.

3.

Run

the

setup

program

by

issuing

the

following

from

a

command

prompt:

db2setup

command

��

db2setup

-f

-i

language

-l

log_file

�

�

-t

trace_file

-u

response_file

-?

-h

��

Where:

-f

Forces

any

DB2

processes

to

stop

before

installing.

-i

(language)

Is

the

two

letter

language

code

of

the

language

in

which

to

perform

the

installation.

-l

(log_file

)

Is

the

full

path

and

file

name

of

the

log

file

to

use.

-t

(trace_file)

Generates

a

fully

qualified

file

with

install

trace

information.

-u

(response_file)

Specifies

the

fully

qualified

response

file

name.

If

you

changed

and

renamed

the

sample

response

file

that

is

provided,

make

sure

that

this

parameter

matches

the

new

name.

This

parameter

is

required.

The

response

file

is

located

at

db2\Windows\samples\db2gse.rsp

on

your

DB2

Spatial

Extender

installation

CD.

-?,

-h

Generates

usage

information.
4.

After

the

installation

is

complete,

check

the

messages

in

the

log

file.

Related

concepts:

v

“System

requirements

for

installing

Spatial

Extender”

on

page

24

Getting

started

26

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|

|

Related

tasks:

v

“Creating

and

editing

a

response

file

(Windows)”

in

the

Installation

and

Configuration

Supplement

v

“Verifying

the

Spatial

Extender

installation”

on

page

36

v

“Troubleshooting

installation

problems”

on

page

37

Installing

DB2

Spatial

Extender

for

AIX

You

can

install

DB2

Spatial

Extender

for

AIX

by

using

the

DB2

Setup

wizard,

by

using

the

db2_install

script,

or

by

using

the

System

Management

Interface

Tool

(SMIT).

Recommendation:

Use

the

DB2

Setup

wizard

to

install

Spatial

Extender.

The

Setup

wizard

provides

an

easy-to-use

graphical

interface

with

installation

help,

automated

user

and

group

creation,

protocol

configuration,

and

instance

creation.

If

you

choose

not

to

use

the

wizard,

you

can

install

Spatial

Extender

by

using

the

db2_install

script

or

by

using

AIX’s

System

Management

Interface

Tool

(SMIT).

Using

SMIT

to

install

Spatial

Extender

is

only

recommended

for

advanced

users

in

situations

where

greater

manual

control

over

the

setup

process

is

required.

Prerequisites:

Before

you

install

Spatial

Extender

on

AIX:

v

Ensure

your

system

meets

all

software,

memory,

and

disk

space

requirements.

v

Update

the

configuration

parameters

and

restart

the

system

for

all

DB2

clients

and

servers

on

AIX.

v

You

must

have

a

DB2

Version

8

server

product

installed

if

you

are

installing

in

a

server

or

standalone

environment.

Note:

Check

if

the

DB2

Spatial

Client

is

already

installed.The

Spatial

Extender

client

and

sample

components

are

available

with

the

DB2

client

and

server.

You

can

install

these

spatial

components

when

you

use

the

DB2

custom

installation

type,

and

you

select

the

Spatial

Extender

Client

feature

under

Client

Support,

and

you

select

the

Spatial

Extender

Samples

feature

under

Application

Development

Tools.

If

you

only

need

spatial

client

functionality

and

have

already

installed

these

spatial

components

with

DB2,

you

do

not

need

to

perform

the

following

DB2

Spatial

Extender

installation

procedure.

v

You

must

have

root

authority.

Procedure:

To

install

Spatial

Extender

using

the

DB2

Setup

wizard:

1.

Log

in

as

a

user

with

root

authority.

2.

Insert

and

mount

the

Spatial

Extender

CD.

The

DB2

Setup

Launchpad,

an

interface

from

which

you

can

install

DB2

Spatial

Extender,

opens.

For

information

on

how

to

mount

a

CD,

see

the

DB2

Installation

and

Configuration

Supplement.

3.

Select

DB2

Spatial

Extender

as

the

product

you

want

to

install

and

click

NEXT.

4.

The

DB2

Setup

wizard

window

opens.

Use

the

DB2

Setup

wizard

to

guide

you

through

setup

and

through

the

remaining

installation

steps.

At

any

time

during

the

installation,

you

can

click

Help

to

launch

the

online

installation

help.

Getting

started

Chapter

4.

Getting

started

with

DB2

Spatial

Extender

27

|
|

|

|
|
|
|
|
|
|

|

|

To

install

DB2

Spatial

Extender

using

the

db2_install

script:

1.

Log

in

as

a

user

with

root

authority.

2.

Insert

and

mount

the

appropriate

CD.

3.

Enter

the

./db2_install

command

to

start

the

db2_install

script.

The

db2_install

script

can

be

found

in

the

root

directory

on

your

DB2

Version

8

product

CD.

The

db2_install

script

prompts

you

for

the

product

keyword.

4.

Type

DB2.GSE

to

install

DB2

Spatial

Extender.

To

install

DB2

Spatial

Extender

using

the

System

Management

Interface

Tool

(SMIT):

1.

Log

in

as

a

user

with

root

authority.

2.

Insert

and

mount

the

Spatial

Extender

CD.

3.

Enter

the

smit

install_latest

command.

4.

Type

/cdrom/db2

in

the

INPUT

device/directory

for

the

software

field.

5.

Click

DO

or

press

Enter

to

verify

that

the

installation

directory

exists.

6.

In

the

Software

to

install

field,

identify

whether

the

client

or

server

components

are

to

be

installed.

Note:

Refer

to

the

ComponentList.htm

file

on

the

DB2

Spatial

Extender

CD

for

a

complete

list

of

the

components

that

you

should

install

for

DB2

Spatial

Extender.

7.

Click

DO

or

press

Enter.

You

are

prompted

to

confirm

the

installation

parameters.

8.

Press

Enter

to

confirm.

9.

Log

out.

When

the

installation

is

complete,

Spatial

Extender

will

be

installed

in

the

/usr/opt/db2_08_01

directory

along

with

your

other

DB2

products.

After

you

install

Spatial

Extender,

create

your

DB2

instance

environment

if

you

did

not

already

do

so,

and

then

verify

the

installation.

Related

concepts:

v

“System

requirements

for

installing

Spatial

Extender”

on

page

24

Related

tasks:

v

“Installing

a

DB2

product

using

SMIT

(AIX)”

in

the

Installation

and

Configuration

Supplement

v

“Mounting

the

CD-ROM

(AIX)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Installing

a

DB2

product

using

the

db2_install

script

(UNIX)”

in

the

Installation

and

Configuration

Supplement

v

“Verifying

the

Spatial

Extender

installation”

on

page

36

v

“Troubleshooting

installation

problems”

on

page

37

Installing

DB2

Spatial

Extender

for

HP-UX

You

can

install

Spatial

Extender

using

the

DB2®

Setup

wizard,

by

using

the

db2_install

script,

or

by

using

the

swinstall

command.

Recommendation:

use

the

DB2

Setup

wizard

to

install

Spatial

Extender.

The

setup

wizard

provides

an

easy-to-use

graphical

interface

with

installation

help,

Getting

started

28

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|

|

automated

user

and

group

creation,

protocol

configuration,

and

instance

creation.

If

you

choose

not

to

use

the

wizard,

you

can

install

Spatial

Extender

for

HP-UX

by

using

the

db2_install

script

or

by

using

the

swinstall

command.

Using

the

HP-UX

swinstall

command

to

install

Spatial

Extender

is

only

recommended

for

advanced

users

in

situations

where

greater

manual

control

over

the

setup

process

is

required.

Prerequisites:

Before

you

install

the

DB2

Spatial

Extender

product

for

HP-UX:

v

Ensure

your

system

meets

all

hardware,

software,

and

memory

requirements.

v

You

must

have

a

DB2

Version

8

server

product

installed.

Note:

Check

if

the

DB2

Spatial

Client

is

already

installed.The

Spatial

Extender

client

and

sample

components

are

available

with

the

DB2

client

and

server.

You

can

install

these

spatial

components

when

you

use

the

DB2

custom

installation

type,

and

you

select

the

Spatial

Extender

Client

feature

under

Client

Support,

and

you

select

the

Spatial

Extender

Samples

feature

under

Application

Development

Tools.

If

you

only

need

spatial

client

functionality

and

have

already

installed

these

spatial

components

with

DB2,

you

do

not

need

to

perform

the

following

DB2

Spatial

Extender

installation

procedure.

v

Update

the

configuration

parameters

and

restart

the

system

for

all

DB2

clients

and

servers

on

HP-UX

v

You

must

have

root

authority.

Procedure:

To

install

Spatial

Extender

for

HP-UX

using

the

DB2

Setup

wizard:

1.

Insert

and

mount

the

DB2

Spatial

Extender

CD.

The

DB2

Setup

Launchpad,

an

interface

from

which

you

can

install

DB2

Spatial

Extender,

opens.

2.

Select

DB2

Spatial

Extender

as

the

product

you

want

to

install

and

click

NEXT.

The

DB2

Setup

wizard

launches.

Click

NEXT.

Use

the

DB2

Setup

wizard

to

guide

you

through

setup,

and

through

the

remaining

installation

steps.

At

any

time

during

the

installation,

you

can

click

Help

to

launch

the

online

installation

help.

To

install

Spatial

Extender

for

HP-UX

using

the

db2_install

script:

1.

Log

in

as

a

user

with

root

authority.

2.

Insert

and

mount

the

appropriate

CD.

3.

Enter

the

./db2_install

command

to

start

the

db2_install

script.

The

db2_install

script

can

be

found

in

the

root

directory

on

your

DB2

Version

8

product

CD.

The

db2_install

script

prompts

you

for

the

product

keyword.

4.

Type

DB2.GSE

to

install

DB2

Spatial

Extender.

To

install

Spatial

Extender

for

HP-UX

using

the

swinstall

command:

1.

Log

in

as

a

user

with

root

authority.

2.

Insert

and

mount

the

Spatial

Extender

CD.

3.

Run

the

swinstall

program

using

the

following

command:

swinstall

-x

autoselect_dependencies=true

This

command

opens

the

Software

Selection

window

and

the

Specify

Source

window.

If

necessary,

change

the

value

in

the

Source

host

name

field

in

the

Specify

Source

window.

Getting

started

Chapter

4.

Getting

started

with

DB2

Spatial

Extender

29

|

|
|
|
|
|
|
|

|
|

|

|

|

|

4.

In

the

Source

Depot

Path

field,

enter

/cdrom/db2/hpux,

where

/cdrom

represents

the

CD

mount

directory.

5.

Click

OK

to

return

to

the

Software

Selection

window.

The

Software

Selection

window

contains

a

list

of

available

software

to

install.

6.

Select

the

products

you

are

licensed

to

install.

7.

Select

Mark

for

Install

from

the

Actions

menu

to

choose

the

product

to

be

installed.

A

message

appears:

In

addition

to

the

software

you

just

marked,

other

software

was

automatically

marked

to

resolve

dependencies.

This

message

will

not

appear

again.

8.

Select

OK.

9.

Select

Install

(analysis)

from

the

Actions

menu

to

begin

installing

the

product

and

to

open

the

Install

Analysis

window.

10.

Select

OK

in

the

Install

Analysis

window

when

the

Status

field

displays

a

Ready

message.

11.

Select

Yes

in

the

Confirmation

windows

to

confirm

that

you

want

to

install

the

software.

View

the

Install

window

to

read

processing

data

while

the

software

is

being

installed,

until

the

Status

field

indicates

Ready

and

the

Note

window

opens.

The

swinstall

program

loads

the

file

set,

and

runs

the

control

scripts

for

the

file

set.

12.

Select

Exit

from

the

File

menu

to

exit

from

swinstall.

When

the

installation

is

complete,

Spatial

Extender

will

be

installed

in

the

/opt/IBM/db2/V8.1

directory

along

with

your

other

DB2

products.

After

you

install

Spatial

Extender,

create

your

DB2

instance

environment

if

you

did

not

already

do

so,

and

then

verify

the

installation.

Related

concepts:

v

“System

requirements

for

installing

Spatial

Extender”

on

page

24

Related

tasks:

v

“Installing

a

DB2

product

using

swinstall

(HP-UX)”

in

the

Installation

and

Configuration

Supplement

v

“Mounting

the

CD-ROM

(HP-UX)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Installing

a

DB2

product

using

the

db2_install

script

(UNIX)”

in

the

Installation

and

Configuration

Supplement

v

“Verifying

the

Spatial

Extender

installation”

on

page

36

v

“Troubleshooting

installation

problems”

on

page

37

Installing

DB2

Spatial

Extender

for

Solaris

Operating

Environment

You

can

install

Spatial

Extender

using

the

DB2®

Setup

wizard,

by

using

the

db2_install

script,

or

by

using

the

pkgadd

command.

Recommendation:

use

the

DB2

Setup

wizard

to

install

DB2

Spatial

Extender.

The

setup

wizard

provides

an

easy-to-use

graphical

interface

with

installation

help,

automated

user

and

group

creation,

protocol

configuration,

and

instance

creation.

If

you

choose

not

to

use

the

wizard,

you

can

install

Spatial

Extender

using

the

db2_install

script

or

by

using

the

Solaris

Operating

Environment

pkgadd

Getting

started

30

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

command.

Using

the

Solaris

Operating

Environment

pkgadd

command

is

only

recommended

for

advanced

users

in

situations

where

greater

manual

control

over

the

setup

process

is

required.

DB2

Spatial

Extender

is

made

up

of

different

functions

and

components

that

are

referred

to

as

packages

in

the

Solaris

Operating

Environment.

When

you

install

Spatial

Extender

using

the

pkgadd

command,

you

must

install

each

required

package

and

each

associated

package

for

the

optional

functions

that

you

want

to

use.

The

ComponentList.htm

file

on

your

DB2

Spatial

Extender

CD

has

a

complete

list

of

the

packages

that

you

should

install

for

DB2

Spatial

Extender.

The

ComponentList.htm

file

is

located

in

/cdrom/db2/solaris,

where

/cdrom

is

the

mount

point

for

your

DB2

Spatial

Extender

CD.

Prerequisites:

Before

you

install

the

DB2

Spatial

Extender

product

for

the

Solaris

Operating

Environments:

v

Ensure

your

system

meets

all

hardware,

software,

and

memory

requirements.

v

You

must

have

a

DB2

Version

8

server

product

installed

if

you

are

installing

in

a

server

or

stand-alone

environment.

Note:

Check

if

the

DB2

Spatial

Client

is

already

installed.The

Spatial

Extender

client

and

sample

components

are

available

with

the

DB2

client

and

server.

You

can

install

these

spatial

components

when

you

use

the

DB2

custom

installation

type,

and

you

select

the

Spatial

Extender

Client

feature

under

Client

Support,

and

you

select

the

Spatial

Extender

Samples

feature

under

Application

Development

Tools.

If

you

only

need

spatial

client

functionality

and

have

already

installed

these

spatial

components

with

DB2,

you

do

not

need

to

perform

the

following

DB2

Spatial

Extender

installation

procedure.

v

Update

the

configuration

parameters

and

restart

the

system

for

all

DB2

clients

and

servers

in

the

Solaris

Operating

Environment.

v

You

must

have

root

authority.

Procedure:

To

install

DB2

Spatial

Extender

for

Solaris

Operating

Environments

using

the

DB2

Setup

wizard:

1.

Log

in

as

a

user

with

root

authority.

2.

Insert

and

mount

your

DB2

Spatial

Extender

CD.

The

DB2

Setup

Launchpad,

an

interface

from

which

you

can

install

DB2

Spatial

Extender,

opens.

For

information

on

how

to

mount

a

CD,

see

DB2

for

UNIX

Quick

Beginnings.

3.

Select

Spatial

Extender

as

the

product

you

want

to

install

and

click

NEXT.

4.

The

DB2

Setup

wizard

launches.

Use

the

DB2

Setup

wizard

to

guide

you

through

the

setup,

and

through

the

remaining

installation

steps.

At

any

time

during

the

installation,

you

can

click

HELP

to

launch

the

online

installation

help.

To

install

DB2

Spatial

Extender

using

the

db2_install

script:

1.

Log

in

as

a

user

with

root

authority.

2.

Insert

and

mount

the

appropriate

CD.

Getting

started

Chapter

4.

Getting

started

with

DB2

Spatial

Extender

31

|

|
|
|
|
|
|
|

|

|

|

|

3.

Enter

the

./db2_install

command

to

start

the

db2_install

script.

The

db2_install

script

can

be

found

in

the

root

directory

on

your

DB2

Version

8

product

CD.

The

db2_install

script

prompts

you

for

the

product

keyword.

4.

Type

DB2.GSE

to

install

DB2

Spatial

Extender.

To

install

DB2

Spatial

Extender

for

Solaris

using

the

pkgadd

command:

1.

Log

in

as

a

user

with

root

authority.

2.

Insert

and

mount

the

DB2

Spatial

Extender

CD.

3.

Identify

the

required

packages

and

optional

packages

that

you

want

to

install.

See

the

ComponentList.htm

file

on

your

CD

for

a

complete

list

of

the

components

that

you

should

install

for

DB2

Spatial

Extender.

4.

Run

the

pkgadd

command

for

each

package

that

you

want

to

install

by

typing:

pkgadd

package_name

In

this

command,

package_name

is

the

package

that

you

want

to

install.

For

example,

if

you

want

to

install

the

Spatial

Extender

Base

Server

Support,

you

would

need

to

install

the

db2gssg81

package

by

entering

the

following

command:

pkgadd

db2gssg81

When

the

installation

is

complete,

your

Spatial

Extender

software

will

be

installed

in

the

/opt/IBM/db2/V8.1

directory.

Create

your

DB2

instance

environment

if

you

did

not

already

do

so,

and

then

verify

the

installation.

Related

concepts:

v

“System

requirements

for

installing

Spatial

Extender”

on

page

24

Related

tasks:

v

“Installing

a

DB2

product

using

pkgadd

(Solaris

Operating

Environments)”

in

the

Installation

and

Configuration

Supplement

v

“Installing

a

DB2

product

using

the

db2_install

script

(UNIX)”

in

the

Installation

and

Configuration

Supplement

v

“Mounting

the

CD-ROM

(Solaris

Operating

Environment)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Verifying

the

Spatial

Extender

installation”

on

page

36

v

“Troubleshooting

installation

problems”

on

page

37

Installing

DB2

Spatial

Extender

for

Linux

You

can

install

DB2

Spatial

Extender

for

Linux

by

using

the

DB2

Setup

wizard,

by

using

the

db2_install

script,

or

by

using

the

rpm

command.

Recommendation:

Use

the

DB2

Setup

wizard

to

install

Spatial

Extender.

The

setup

wizard

provides

an

easy-to-use

graphical

interface

with

installation

help,

automated

user

and

group

creation,

protocol

configuration,

and

instance

creation.

If

you

choose

not

to

use

the

wizard,

you

can

install

Spatial

Extender

by

using

the

db2_install

script

or

by

using

the

rpm

command.

Using

the

Linux

rpm

command

to

install

Spatial

Extender

is

only

recommended

for

advanced

users

in

situations

where

greater

manual

control

over

the

setup

process

is

required.

Getting

started

32

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|

|
|

|
|

|

Prerequisites:

Before

you

install

the

DB2

Spatial

Extender

product

for

Linux:

v

Ensure

your

system

meets

all

hardware,

software,

and

memory

requirements.

v

Ensure

that

you

have

a

DB2

Version

8

server

product

installed

if

you

are

installing

in

a

server

environment

or

a

stand–alone

environment.

Note:

v

Check

if

the

DB2

Spatial

Client

is

already

installed.

The

DB2

Spatial

Extender

client

and

sample

components

are

available

with

the

DB2

client

and

server.You

can

install

these

spatial

components

when

you

use

the

DB2

custom

installation

type,

and

you

select

the

Spatial

Extender

Client

feature

under

Client

Support,

and

you

select

the

Spatial

Extender

Samples

feature

under

Application

Development

Tools.

If

you

only

need

spatial

client

functionality

and

have

already

installed

these

spatial

components

with

DB2,

you

do

not

need

to

perform

the

following

DB2

Spatial

Extender

installation

procedure.

v

Update

the

configuration

parameters

and

restart

the

system

for

all

DB2

clients

and

servers

on

Linux.

v

Ensure

that

you

have

root

authority.

Procedure:

To

install

DB2

Spatial

Extender

using

the

DB2

Setup

wizard:

1.

Log

in

as

a

user

with

root

authority.

2.

Insert

and

mount

your

DB2

Spatial

Extender

CD.

The

DB2

Setup

Launchpad,

an

interface

from

which

you

can

install

DB2

Spatial

Extender,

opens.

For

information

on

how

to

mount

a

CD,

see

the

DB2

Installation

and

Configuration

Supplement.

3.

Click

Install

Products.

4.

Select

Spatial

Extender

as

the

product

you

want

to

install

and

click

NEXT.

5.

Select

the

option

that

you

want

on

the

DB2

Setup

wizard

window.

You

have

the

option

to

install

either

DB2

Spatial

Extender

or

DB2

Application

Development

Client.

v

If

you

need

only

spatial

client

functionality,

select

DB2

Application

Development

Client

and

select

the

following

features:

–

Spatial

Extender

Client

feature

under

Client

Support

–

Optional:

Spatial

Extender

Samples

feature

under

Application

Development

Tools

v

If

you

need

both

spatial

server

and

client

functionality,

select

DB2

Spatial

Extender

and

select

the

following

features:

–

Spatial

Extender

Base

Server

Support

feature

under

Server

Support

–

Spatial

Extender

Client

feature

under

Spatial

Extender

Client

Support

–

Optional:

Spatial

Extender

Samples

feature

under

Application

Development

Tools

Use

the

DB2

Setup

wizard

to

guide

you

through

setup

and

through

the

remaining

installation

steps.

At

any

time

during

the

installation,

you

can

click

Help

to

launch

the

online

installation

help.

To

install

DB2

Spatial

Extender

using

the

db2_install

script:

1.

Log

in

as

a

user

with

root

authority.

2.

Insert

and

mount

the

appropriate

CD.

Getting

started

Chapter

4.

Getting

started

with

DB2

Spatial

Extender

33

|

|

|
|
|
|
|
|
|
|

|
|

|

|

|

|

|

|
|

|

|
|

|
|

|

|

|
|

|

3.

Enter

the

./db2_install

command

to

start

the

db2_install

script.

The

db2_install

script

can

be

found

in

the

root

directory

on

your

DB2

Version

8

product

.

The

db2_install

script

prompts

you

for

the

product

keyword.

4.

Type

DB2.GSE

to

install

DB2

Spatial

Extender.

To

install

Spatial

Extender

for

Linux

using

the

rpm

command:

1.

Log

in

as

a

user

with

root

authority.

2.

Enable

your

system

for

DB2

for

Linux

installation.

See

the

DB2

Installation

and

Configuration

Supplement

for

more

information.

3.

Insert

and

mount

the

DB2

Spatial

Extender

CD.

4.

Identify

the

required

packages

and

optional

packages

you

want

to

install.

Note:

Refer

to

the

ComponentList.htm

file

on

your

DB2

Spatial

Extender

CD

for

a

complete

list

of

the

components

that

you

should

install

for

DB2

Spatial

Extender.

5.

Run

the

rpm

command

for

each

package

you

want

to

install:

rpm

-ivh

package_name

For

example,

if

you

want

to

install

the

server,

install

the

IBM_db2gssg81-8.1.0-
0.i386.rpm

package

by

entering

the

following

command:

rpm

-IBM_db2gssg81-8.1.0-0.i386.rpm

When

the

installation

is

complete,

Spatial

Extender

will

be

installed

in

the

/opt/IBM/db2/V8.1

directory

along

with

your

other

DB2

products.

After

you

install

Spatial

Extender,

create

your

DB2

instance

environment

if

you

did

not

already

do

so,

and

then

verify

the

installation.

Related

concepts:

v

“System

requirements

for

installing

Spatial

Extender”

on

page

24

Related

tasks:

v

“Installing

a

DB2

product

using

rpm

(Linux)”

in

the

Installation

and

Configuration

Supplement

v

“Mounting

the

CD-ROM

(Linux)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Installing

a

DB2

product

using

the

db2_install

script

(UNIX)”

in

the

Installation

and

Configuration

Supplement

v

“Verifying

the

Spatial

Extender

installation”

on

page

36

v

“Troubleshooting

installation

problems”

on

page

37

Creating

the

DB2

Spatial

Extender

instance

environment

This

task

is

part

of

the

larger

task

of

setting

up

Spatial

Extender.

This

section

is

only

applicable

for

UNIX

platforms.

DB2

Spatial

Extender

can

be

used

with

any

DB2

instance

that

is

created

after

installing

the

Spatial

Extender

code.

The

db2icrt

command

is

used

to

create

new

DB2

instances.

All

new

DB2

instances

that

you

create

after

installing

DB2

Spatial

Extender

include

DB2

Spatial

Extender

in

the

instance

environment.

Getting

started

34

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

DB2

instances

created

before

you

install

Spatial

Extender

do

not

include

DB2

Spatial

Extender

in

their

instance

environments.

To

update

existing

DB2

instances,

use

the

db2iupdt

command.

If

you

are

using

the

DB2

Control

Center

and

created

an

instance

for

the

DB2

Administration

server

prior

to

installing

DB2

Spatial

Extender,

then

you

must

update

this

instance.

Procedure:

To

update

an

instance

using

the

db2iupdt

command:

1.

Log

in

as

a

user

with

root

authority.

2.

Run

the

following

command:

DB2DIR/instance/db2iupdt

-a

AuthType

-u

FencedID

InstName

Where:

DB2DIR

The

DB2

installation

directory.

v

On

AIX,

the

DB2

installation

directory

is

/usr/opt/db2_08_01

v

On

all

other

UNIX-based

operating

systems,

the

installation

directory

is

/opt/IBM/db2/V8.1

-a

AuthType

Represents

the

authentication

type

for

the

instance.

AuthType

can

be

one

of

SERVER,

CLIENT,

DCS,

SERVER_ENCRYPT,

DCS_ENCRYPT.

SERVER

is

the

default.

This

parameter

is

optional.

-u

FencedID

Represents

the

name

of

the

user

under

which

fenced

user

defined

functions

(UDFs)

and

fenced

stored

procedures

will

run.

This

flag

is

not

required

if

you

are

creating

an

instance

on

a

DB2

client.

Specify

the

name

of

the

fenced

user

you

created.

InstName

Represents

the

name

of

instance.

The

name

of

the

instance

must

be

the

same

as

the

name

of

the

instance

owning

user.

Specify

the

name

of

the

instance

owning

user

you

created.

The

instance

will

be

created

in

the

instance

owning

user’s

home

directory.

To

create

an

instance

using

db2icrt:

1.

Log

in

as

user

with

root

authority.

2.

Run

the

following

command:

DB2DIR/instance/db2icrt

-a

AuthType

-u

FencedID

InstName

Where:

DB2DIR

the

DB2

installation

directory.

v

On

AIX,

the

DB2

installation

directory

is

/usr/opt/db2_08_01

v

On

all

other

UNIX-based

operating

systems,

the

installation

directory

is

/opt/IBM/db2/V8.1

-a

AuthType

Represents

the

authentication

type

for

the

instance.

AuthType

can

be

one

of

SERVER,

CLIENT,

DCS,

SERVER_ENCRYPT,

DCS_ENCRYPT.

SERVER

is

the

default.

This

parameter

is

optional.

Getting

started

Chapter

4.

Getting

started

with

DB2

Spatial

Extender

35

-u

FencedID

Represents

the

name

of

the

user

under

which

fenced

user

defined

functions

(UDFs)

and

fenced

stored

procedures

will

run.

This

flag

is

not

required

if

you

are

creating

an

instance

on

a

DB2

client.

Specify

the

name

of

the

fenced

user

you

created.

InstName

Represents

the

name

of

instance.

The

name

of

the

instance

must

be

the

same

as

the

name

of

the

instance

owning

user.

Specify

the

name

of

the

instance

owning

user

you

created.

The

instance

will

be

created

in

the

instance

owning

user’s

home

directory.

For

example,

if

you

are

using

server

authentication,

the

fenced

user

is

db2fenc1,

and

the

instance

owning

user

is

db2inst1.

Use

the

following

command

to

create

an

instance

on

an

AIX

system:

/usr/opt/db2_08_01/instance/db2icrt

-a

server

-u

db2fenc1

db2inst1

After

you

create

an

instance

you

might

want

to

configure

notification

for

health

monitoring.

This

task

can

be

performed

using

the

Health

Center

or

CLP.

See

the

DB2

Installation

and

Configuration

Supplement

for

more

information.

Verifying

the

Spatial

Extender

installation

This

task

is

part

of

a

larger

task

of

setting

up

and

configuring

Spatial

Extender.

After

you

install

DB2

Spatial

Extender,

you

can

create

a

database

and

run

the

installation

check

program

to

verify

that

DB2

Spatial

Extender

is

installed

and

configured

correctly.

You

can

verify

the

installation

by

using

the

DB2

Spatial

Extender

sample

program,

runGseDemo.

The

runGseDemo

program

is

designed

to

surface

problems

with

your

installation.

During

the

installation

verification,

you

might

receive

error

messages

that

can

help

you

diagnose

specific

system

problems.

Most

of

the

error

messages

are

caused

by

a

small

number

of

typical

problems.

To

avoid

these

errors,

see

″Prerequisites.″

The

verification

steps

in

this

section

apply

to

the

following

operating

systems:

Windows,

AIX,

HP-UX,

Solaris

Operating

Environments,

Linux

for

Intel,

and

Linux

for

S/390.

Prerequisites:

Before

you

execute

the

runGseDemo

program:

v

Be

sure

that

you

installed

the

DB2

Spatial

Extender

product

in

the

appropriate

environments.

v

Use

a

new

database

that

does

not

have

any

spatial

operations

associated

with

it.

v

For

UNIX

(AIX,

HP-UX,

Solaris

Operating

Environments,

Linux

for

Intel

and

Linux

for

S/390)

installations,

check

that

you

established

the

DB2

Spatial

Extender

instance

environment.

See

the

DB2

Installation

and

Configuration

Supplement

for

information

on

how

to

run

the

db2ilist

program

to

check

your

instances.You

might

need

to

run

the

db2start

command

to

start

the

DB2

instance.

v

Increase

the

database

configuration

parameter

value

for

application

heap

size.

For

details,

see

troubleshoot

the

installation.

Getting

started

36

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|
|
|
|
|

|
|
|

|
|

|

|

|
|

|
|

Procedure:

To

verify

the

installation:

1.

For

UNIX

only:

Log

on

as

the

instance

owner.

2.

Create

a

database.

Open

the

DB2

Command

Window

and

enter:

db2

create

database

mydb

where

mydb

is

the

database

name.

3.

Locate

the

installation

check

program.

a.

For

UNIX

operating

systems,

enter:

cd

$HOME/sqllib/samples/spatial

where

$HOME

is

the

instance

owner’s

home

directory.

b.

For

Windows,

enter:

cd

c:\Program

Files\IBM\sqllib\samples\spatial

where

c:\Program

Files\IBM\sqllib

is

the

directory

in

which

you

installed

DB2

Spatial

Extender.
4.

Run

the

installation

check

program.

At

the

DB2

command

line,

enter

the

runGseDemo

command.

For

example,

enter:

runGseDemo

mydb

userID

password

where

mydb

is

the

database

name.

If

you

receive

error

messages

during

the

verification

process,

you

need

to

troubleshoot

the

installation.

Related

tasks:

v

“Troubleshooting

installation

problems”

on

page

37

v

“Installing

DB2

Spatial

Extender

for

Windows”

on

page

25

v

“Installing

DB2

Spatial

Extender

for

AIX”

on

page

27

v

“Installing

DB2

Spatial

Extender

for

HP-UX”

on

page

28

v

“Installing

DB2

Spatial

Extender

for

Solaris

Operating

Environment”

on

page

30

v

“Installing

DB2

Spatial

Extender

for

Linux”

on

page

32

Troubleshooting

installation

problems

When

you

run

the

sample

program,

runGseDemo,

to

verify

that

Spatial

Extender

was

installed

properly,

you

could

encounter

the

following

errors:

Database

is

already

spatially

enabled

Check

that

the

database

for

which

you

are

verifying

the

installation

is

new

and

has

no

spatial

operations

associated

with

it;

if

it

does,

the

sample

program

will

fail.

You

will

receive

the

following

error

message

if

the

database

you

are

running

the

sample

program

against

is

already

spatially

enabled:

Getting

started

Chapter

4.

Getting

started

with

DB2

Spatial

Extender

37

|

|

|

|
|

|
|

Enabling

database

logtst...

Returning

from

ENABLE_DB:

Return

code

=

-14

Return

message

text

=

GSE0014E

The

database

has

already

been

enabled

for

spatial

operations.

To

fix

this

problem,

drop

the

database

and

repeat

the

steps

in

Verifying

the

Spatial

Extender

installation.

Database

manager

configuration

parameter

value

for

application

heap

size

If

APPLHEAPSZ

is

not

set

at

an

adequate

value,

you’ll

get

this

error

message

while

enabling

database

for

spatial

operations:

GSE0213N

A

bind

operation

failed.

SQLERROR

=

"SQL0001N

Binding

or

precompilation

did

not

complete

successfully.

SQLSTATE=00000".SQLSTATE=57011

To

increase

the

value

of

the

database

configuration

parameter

for

the

application

heap

size,

type:

db2

update

db

cfg

for

database_name

using

APPLHEAPSZ

2048

If

2048

is

inadequate,

increase

the

APPLHEAPSZ

parameter

in

increments

of

256.

Post-Installation

considerations

After

you

install

Spatial

Extender,

consider

the

following:

v

Downloading

ArcExplorer

v

Accessing

geocoder

reference

data

Downloading

ArcExplorer

for

DB2

IBM

provides

a

browser,

produced

by

Environmental

Systems

Research

Institute

(ESRI)

for

IBM,

that

can

directly

produce

visual

results

of

queries

of

DB2

Spatial

Extender

data

without

requiring

an

intermediate

data

server.

This

browser

is

ArcExplorer

for

DB2.

You

can

download

a

free

copy

of

ArcExplorer

for

DB2

from

IBM’s

Spatial

Extender

Web

site

at

the

following

location:

http://www.ibm.com/software/data/spatial/

For

more

information

on

installing

and

using

ArcExplorer

for

DB2,

see

Using

ArcExplorer,

which

is

also

available

as

part

of

the

ArcExplorer

for

DB2

product

download

on

the

DB2

Spatial

Extender

Web

site.

Important:

DB2

Universal

Database

Version

8.1

is

shipped

with

IBM

Software

Developer’s

Kit

(SDK)

for

Java

Version

1.3.1.

When

you

install

ArcExplorer

for

DB2,

place

it

in

a

separate

directory

from

DB2.

Remember

to

set

the

CLASSPATH

environment

variable.

Accessing

geocoder

reference

data

The

geocoder

reference

data

on

the

DB2

Spatial

Extender

Geocoder

Reference

Data

CD

is

created

specifically

to

work

with

a

geocoder

supplied

by

Spatial

Extender.

It

is

composed

of

data

from

base

maps

for

the

network

of

streets

in

the

USA.

The

DB2SE_USA

geocoder

uses

this

data

to

determine

the

coordinates

of

addresses

in

a

spatially

enabled

database.

This

base-map

data

is

collectively

called

reference

data.

The

DB2SE_USA

geocoder

takes

address

data

(non-spatial)

in

your

database,

Getting

started

38

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|

|
|

|
|
|

|

http://www.ibm.com/software/data/spatial/

compares

and

matches

it

with

the

reference

data,

and

converts

it

into

coordinates

that

can

be

stored

by

DB2

Spatial

Extender.

This

process

is

called

geocoding.

The

reference

data

provided

on

the

CD

includes

the

EDGELocator.loc

file.

The

EDGELocator.loc

file

is

used

by

the

DB2SE_USA

geocoder

to

locate

specific

reference

data.

For

example,

if

you

are

geocoding

addresses

in

California,

Kentucky,

and

Oregon,

the

DB2SE_USA

geocoder

uses

the

locator

file

on

the

CD

to

determine

the

address

locations

.

Procedure:

You

can

access

the

geocoder

data

directly

from

the

CD,

or

you

can

copy

the

data

to

your

hard

drive.

To

copy

geocoder

data

files

from

the

CD

to

your

DB2

Spatial

Extender

server

environment,

perform

the

steps

explained

in

this

section.

For

UNIX

operating

systems:

1.

Mount

the

CD.

For

information

on

how

to

mount

a

CD,

see

DB2

for

UNIX

Quick

Beginnings.

2.

Log

in

at

the

target

server

machine

as

a

user

with

root

authority.

3.

Type

one

of

the

following

commands:

v

For

AIX:

cp

/cdrom/db2/*

/usr/opt/db2_08_01/gse/refdata/

v

For

all

other

UNIX

platforms:

cp

/cdrom/db2/*

/0pt/IBM/db2/V8.1/gse/refdata/

Note:

You

can

copy

geocoder

data

files

into

any

directory

on

your

local

drive.

If

you

choose

to

copy

the

files

into

a

directory

that

you

specify,

you

must

modify

the

locator

file

to

point

to

the

new

location.

4.

Log

out.

For

Windows,

you

can

use

either

the

Command

window

or

Windows

Explorer.

To

use

the

Command

window

to

access

geocoder

data:

1.

Click

Start

–>

Program

–>

IBM

DB2

–>

Command

Window.

2.

Type

the

following

command:

copy

d:\db2*

%db2path%\gse\refdata

where

d:

is

the

letter

that

corresponds

to

your

CD

drive.

Note:

You

can

copy

geocoder

data

files

into

any

directory

on

your

local

drive.

If

you

choose

to

copy

the

files

into

a

directory

that

you

specify,

you

must

modify

the

locator

file

to

point

to

the

new

location.

To

use

the

Windows

Explorer

to

access

geocoder

data:

Copy

all

the

files

from

d:\db2

to

c:\Program

Files\IBM\sqllib\gse\refdata,

where

d:

is

the

CD

drive

and

c:\Program

Files\IBM\sqllib

is

the

directory

where

DB2

is

installed.

Related

tasks:

v

“Setting

up

and

installing

Spatial

Extender”

on

page

23

Getting

started

Chapter

4.

Getting

started

with

DB2

Spatial

Extender

39

|

|

|
|

|

|

|

CDs

for

DB2

Spatial

Extender

data

and

maps

DB2

Spatial

Extender

is

shipped

with

seven

data

and

maps

CDs.

The

data

and

maps

information,

labeled

DB2

Spatial

Extender

Data

and

Maps

1

–

7,

is

provided

on

seven

CDs.

The

following

table

provides

a

summary

of

the

data

located

on

each

CD.

Table

2.

Data

and

maps

CD

information

Data

and

Maps

CD

Type

of

map

data

summary

CD

1

Europe

and

World

CD

2

Canada,

Mexico

and

United

States

CD

3

United

States

CD

4

United

States

(western

region)

CD

5

United

States

(central

region)

CD

6

United

States

(eastern

region)

CD

7

United

States

(southern

region)

For

a

detailed

description

of

the

data

provided

by

ESRI,

see

the

ESRI

help

file,

esridata.hlp,

located

on

the

DB2

Spatial

Extender

Data

and

Maps

CD.

v

For

Windows,

view

the

help

file

in

x:

esridata.hlp,

where

x:

is

the

CD

drive.

v

For

UNIX

operating

systems,

view

or

print

the

help

file

located

on

the

CD

in

/cdrom/esridata.hlp

,

where

/cdrom

is

your

mount

point.

Related

tasks:

v

“Setting

up

and

enabling

DB2

Geodetic

Extender”

on

page

161

Getting

started

40

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|
|
|

||

||

||

||

||

||

||

||

||
|

|
|

|

|

Chapter

5.

Migrating

the

Spatial

Extender

environment

to

DB2

Universal

Database

Version

8

This

section

explains

how

you

migrate

DB2

Spatial

Extender

from

Version

8.1

to

Version

8.2.

It

also

explains

how

you

use

the

migration

utility

to

migrate

from

a

32-bit

environment

to

a

64-bit

environment.

Migrating

a

spatially-enabled

database

If

you

have

been

using

DB2

Spatial

Extender

Version

8.1,

you

must

complete

the

following

steps

before

using

an

existing

spatially-enabled

database

with

DB2

Spatial

Extender

Version

8.2

or

DB2

Geodetic

Extender

Version

8.2.

This

topic

describes

the

steps

required

to

migrate

spatially-enabled

databases

from

a

previous

version

of

DB2

Spatial

Extender.

Prerequisites:

Before

you

start

the

migration

process:

v

Terminate

all

connections

to

the

database

before

you

run

the

migration

utility.

v

Ensure

that

your

system

meets

the

installation

requirements

for

DB2

Spatial

Extender

Version8.2.

v

To

back

up

a

database,

you

must

have

SYSADM,

SYSCTRL,

or

SYSMAINT

authority

for

the

database.

v

To

migrate

a

database,

you

must

have

SYSADM

authority.

Procedure:

To

migrate

the

DB2

Spatial

Extender

environment:

1.

Back

up

your

Version

8.1

database.

For

information

on

how

to

back

up

your

database,

see

the

DB2

Installation

and

Configuration

Supplement.

2.

Install

DB2

Universal

Database

Version

8.2

and

DB2

Spatial

Extender

Version

8.2.

3.

Migrate

your

DB2

instance

and

databases

from

Version

8.1

to

Version

8.2.

For

more

information

on

how

to

migrate

your

DB2

instance

and

databases,

see

the

DB2

Installation

and

Configuration

Supplement.

4.

Migrate

a

spatially-enabled

database

from

Version

8.1

to

Version

8.2

using

the

Spatial

Extender

migration

utility.

a.

From

an

operating-system

command

prompt,

use

the

db2se

migrate_v82

command

to

migrate

the

database.

db2se

migrate_v82

database_name

userId

user_id

PW

password

For

the

syntax

of

this

command,

refer

to

“The

db2se

migrate_v82

command”

on

page

42.

Migration

messages

If

the

migration

is

successful,

the

following

message

displays:

GSE0000I

The

operation

was

completed

successfully

If

the

migration

is

not

successful,

the

following

message

displays:

©

Copyright

IBM

Corp.

1998,

2004

41

|

|

|

|
|

|
|

|
|
|

|
|

|
|

|

|
|

GSE9002N

An

error

occurred

during

an

attempt

to

perform

Spatial

Extender

database

migration.

Note:

The

following

errors

might

occur

during

migration:

v

Database

is

not

currently

spatially

enabled.

v

Database

is

not

a

Version

8.1

spatially-enabled

database.

v

Database

is

already

a

Version

8.2

spatially-enabled

database.

v

Database

name

is

not

valid.

v

Other

connections

to

the

database

exist.

Cannot

be

run.

v

Spatial

catalog

is

not

consistent.

v

User

is

not

authorized.

v

Password

is

not

valid.

v

Some

user

objects

could

not

be

migrated.

Be

sure

to

check

the

messages

file

for

details

on

any

errors

you

receive.

The

messages

file

also

contains

useful

information

such

as

indexes,

views,

and

the

geocoding

setup

that

was

migrated.

Related

tasks:

v

“Backing

up

databases

before

DB2

migration”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Migrating

databases”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Migrating

instances

(UNIX)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Migrating

DB2

UDB

(Windows)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Migrating

DB2

UDB

(UNIX)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Migrating

DB2

Personal

Edition

(Windows)”

in

the

Quick

Beginnings

for

DB2

Personal

Edition

v

“Migrating

DB2

Personal

Edition

(Linux)”

in

the

Quick

Beginnings

for

DB2

Personal

Edition

v

“Migrating

databases

on

DB2

Personal

Edition

(Windows)”

in

the

Quick

Beginnings

for

DB2

Personal

Edition

v

“Migrating

instances

and

databases

on

DB2

Personal

Edition

(Linux)”

in

the

Quick

Beginnings

for

DB2

Personal

Edition

Related

reference:

v

“The

db2se

migrate_v82

command”

on

page

42

The

db2se

migrate_v82

command

Use

the

db2se

migrate_v82

command

to

migrate

a

a

spatially-enabled

database

from

Version

8.1

to

Version

8.2.

Syntax:

��

db2se

migrate_v82

database_name

—userId

user_id

—pw

password

�

�

—tableCreationParameters

table_creation_parameters

�

Migrating

42

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|
|

|

||||||||||||||||||||
|

|
||||||||||||
|

||

�

—force

force_value

—messagesFile

messages_filename

��

Where:

-database_name

The

name

of

the

database

to

be

migrated.

-user_Id

The

database

user

ID

which

has

either

SYSADM

or

DBADM

authority

on

the

database

that

is

being

migrated.

-password

Your

user

password.

-messages_filename

The

file

name

containing

the

report

of

migration

actions.

The

file

name

you

provide

must

be

a

fully-qualified

file

name

on

the

server.

Related

tasks:

v

“Setting

up

and

enabling

DB2

Geodetic

Extender”

on

page

161

v

“Setting

up

and

installing

Spatial

Extender”

on

page

23

v

“Enabling

a

database

for

spatial

operations”

on

page

50

Migrating

Chapter

5.

Migrating

the

Spatial

Extender

environment

to

DB2

Universal

Database

Version

8

43

|
|
|||||||||||||||||||||||

|

|

|
|

|
|
|

|
|

|
|
|

|

|

|

|

Migrating

44

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Chapter

6.

Setting

up

a

database

This

chapter

discusses

how

to

configure

a

database

to

accommodate

spatial

data.

Configuring

a

database

to

accommodate

spatial

data

DB2

Spatial

Extender,

which

runs

in

the

DB2

Universal

Database

environment,

works

with

most

default

DB2

configuration

values.

However,

several

configuration

parameters

affect

spatial

operations.

You

must

tune

these

parameters

so

that

your

spatial

applications

perform

as

efficiently

as

possible.

In

certain

cases,

choosing

a

value

other

than

the

default

value

is

required

for

spatial

operations.

In

other

cases,

doing

so

is

recommended,

depending

on

your

applications

and

your

overall

DB2

environment.

This

topic

identifies

the

DB2

configuration

parameters

that

influence

the

operations

of

DB2

Spatial

Extender.

The

following

sections

explain

how

to

tune

the

DB2

database

manager

and

database

configuration

parameters

that

affect

DB2

Spatial

Extender

operations.

Tuning

the

database

configuration

parameters

Several

database

configuration

parameters

affect

spatial

applications.

To

modify

any

database

configuration

parameter,

you

must

be

connected

to

the

database.

When

you

modify

the

values

of

these

parameters

for

a

database,

the

change

affects

only

that

database.

The

following

sections

explain

how

to

tune

the

parameters

for

spatial

applications:

v

“Tuning

transaction

log

characteristics”

v

“Tuning

the

application

heap

size”

on

page

46

v

“Tuning

the

application

control

heap

size”

on

page

47

Tuning

transaction

log

characteristics

Before

you

enable

a

database

for

spatial

operations,

ensure

that

you

have

enough

transaction

log

capacity.

The

default

values

for

the

transaction

log

configuration

parameters

do

not

provide

sufficient

transaction

log

capacity

if

your

plans

include:

v

Enabling

a

database

for

spatial

operations

in

a

Windows

environment

v

Using

the

ST_import_shape

stored

procedure

to

import

from

shape

files

v

Using

geocoding

with

a

large

commit

scope

v

Running

concurrent

transactions

If

your

plans

include

any

of

these

uses

now

or

in

the

future,

you

need

to

increase

the

capacity

of

your

transaction

log

for

the

database

by

increasing

one

or

more

of

the

transaction

log

configuration

parameters.

Otherwise,

you

can

use

the

default

characteristics.

In

this

case,

proceed

to

“Tuning

the

application

heap

size”

on

page

46.

Recommendation:

Refer

to

the

following

table

for

the

recommended

minimum

values

for

the

three

transaction

log

configuration

parameters.

©

Copyright

IBM

Corp.

1998,

2004

45

Table

3.

Recommended

minimum

values

for

transaction

configuration

parameters

Parameter

Description

Default

value

Recommended

minimum

value

LOGFILSZ

Specifies

the

log

file

size

as

a

number

of

4-KB

blocks

1000

1000

LOGPRIMARY

Specifies

how

many

primary

log

files

are

to

be

preallocated

to

the

recovery

log

files

3

10

LOGSECOND

Specifies

the

number

of

secondary

log

files

2

2

If

the

capacity

of

your

transaction

log

is

inadequate,

the

following

error

message

is

issued

when

you

try

to

enable

a

database

for

spatial

operations:

GSE0010N

Not

enough

log

space

is

available

to

DB2.

Procedure:

To

increase

the

value

of

one

or

more

configuration

parameters:

1.

Find

the

current

value

for

the

LOGFILSIZ,

LOGPRIMARY,

and

LOGSECOND

parameters

by

reviewing

the

output

from

the

GET

DATABASE

CONFIGURATION

command

or

from

the

Configure

Database

window

of

the

DB2

Control

Center.

2.

Decide

whether

to

change

one,

two,

or

three

of

the

values

as

indicated

in

the

table

above.

3.

Change

each

value

that

you

want

to

modify.

You

can

change

the

values

by

issuing

one

or

more

of

the

following

commands,

where

db_name

identifies

your

database:

UPDATE

DATABASE

CONFIGURATION

FOR

db_name

USING

LOGFILSZ

1000

UPDATE

DATABASE

CONFIGURATION

FOR

db_name

USING

LOGPRIMARY

10

UPDATE

DATABASE

CONFIGURATION

FOR

db_name

USING

LOGSECOND

2

If

the

only

parameter

that

you

change

is

LOGSECOND,

the

change

takes

effect

immediately.

In

this

case,

proceed

to

“Tuning

the

application

heap

size.”

4.

If

you

change

the

LOGFILSIZ

or

LOGPRIMARY

parameter,

or

both:

a.

Disconnect

all

applications

from

the

database.

b.

If

the

database

was

explicitly

activated,

deactivate

the

database.

The

changes

to

the

LOGFILSIZ

or

LOGPRIMARY

parameters,

or

both,

take

effect

the

next

time

either

the

database

is

activated

or

a

connection

to

the

database

is

established.

Tuning

the

application

heap

size

You

use

the

database

configuration

parameter

APPLHEAPSZ

to

specify

the

size

of

the

application

heap

(in

number

of

4-KB

pages).

This

parameter

defines

the

number

of

private

memory

pages

that

are

available

for

use

by

the

database

manager

on

behalf

of

a

specific

agent

or

subagent.

The

heap

is

allocated

when

an

agent

or

subagent

is

initialized

for

an

application.

The

allocated

amount

is

the

minimum

amount

that

is

needed

to

process

the

request

to

the

agent

or

subagent.

Setting

up

a

database

46

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

As

the

agent

or

subagent

requires

more

heap

space

to

process

larger

SQL

statements,

the

database

manager

allocates

memory

as

needed,

up

to

the

maximum

that

is

specified

on

this

parameter.

The

application

heap

is

allocated

out

of

the

agent’s

private

memory.

The

default

value

for

the

APPLHEAPSZ

parameter

is

128

(4-KB

pages).

When

you

run

the

ST_enable_db

stored

procedure,

this

value

must

be

at

least

2048.

Recommendation:

For

most

DB2

Spatial

Extender

applications,

especially

those

that

import

from

or

export

to

shape

files,

use

an

APPLHEAPSZ

parameter

value

of

at

least

2048.

If

the

APPLHEAPSZ

is

set

to

an

inadequate

value,

the

following

error

message

is

issued

when

you

try

to

enable

a

database

for

spatial

operations:

GSE0009N

Not

enough

space

is

available

in

DB2’s

application

heap.

GSE0213N

A

bind

operation

failed.

SQLERROR

=

"SQL0001N

Binding

or

precompilation

did

not

complete

successfully.

SQLSTATE=00000".

Procedure:

To

change

the

application

heap

size:

1.

Find

the

current

value

for

the

APPLHEAPSZ

parameter

by

reviewing

the

output

from

the

GET

DATABASE

CONFIGURATION

command

or

from

the

Configure

Database

window

of

the

DB2

Control

Center.

2.

Change

the

value

to

the

recommended

value

of

2048

or

to

a

larger

value.

You

can

change

the

value

to

2048

by

issuing

the

following

command,

where

db_name

identifies

your

database:

UPDATE

DATABASE

CONFIGURATION

FOR

db_name

USING

APPLHEAPSZ

2048

3.

Disconnect

all

applications

from

the

database.

4.

If

the

database

was

explicitly

activated,

deactivate

the

database.

The

change

takes

effect

the

next

time

either

the

database

is

activated

or

a

connection

to

the

database

is

established.

Tuning

the

application

control

heap

size

All

DB2

Spatial

Extender

applications,

especially

those

that

import

from

or

export

to

shape

files,

can

benefit

from

using

the

recommended

value

for

the

application

control

heap

size.

You

specify

this

characteristic

with

the

APP_CTL_HEAP_SZ

parameter.

This

parameter

specifies

the

maximum

size,

in

4-KB

pages,

for

the

application

control

shared

memory.

Application

control

heaps

are

allocated

from

this

shared

memory.

One

application

control

heap

is

allocated

for

each

application

at

the

database

where

the

application

is

active

(or,

in

the

case

of

a

partitioned

database

system,

at

each

database

partition

where

the

application

is

active).

The

heap

is

allocated

during

connect

processing

by

the

first

agent

that

receives

a

request

for

the

application

at

the

database

(or

at

the

database

partition).

The

heap

is

used

for

sharing

information

between

agents

that

work

on

behalf

of

the

same

application.

(In

a

partitioned

database

environment,

the

sharing

occurs

at

the

database

partition

level;

sharing

does

not

occur

across

database

partitions.)

The

default

value

for

the

APP_CTL_HEAP_SZ

parameter

is

128.

Recommendation:

For

most

DB2

Spatial

Extender

applications,

use

an

APP_CTL_HEAP_SZ

parameter

value

of

at

least

1024

(4-KB

pages).

Setting

up

a

database

Chapter

6.

Setting

up

a

database

47

If

the

APP_CTL_HEAP_SZ

is

set

to

an

inadequate

value,

the

following

error

message

is

issued

when

you

import

data

into

a

database

from

shape

files:

GSE0214N

An

INSERT

statement

failed.

SQLERROR

=

"SQL0973N

Not

enough

storage

is

available

in

the

"APP_CTL_HEAP"

heap

to

process

the

statement.

Procedure:

To

change

the

application

control

heap

size:

1.

Find

the

current

value

for

the

APP_CTL_HEAP_SZ

parameter

by

reviewing

the

output

from

the

GET

DATABASE

CONFIGURATION

command

or

from

the

Configure

Database

window

of

the

DB2

Control

Center.

2.

Change

the

value

to

the

recommended

value

of

1024

(4-KB

pages)

or

to

a

larger

value.

You

can

issue

the

following

command,

where

db_name

identifies

your

database:

UPDATE

DATABASE

CONFIGURATION

FOR

db_name

USING

APP_CTL_HEAP_SZ

1024

3.

Disconnect

all

applications

from

the

database.

4.

If

the

database

was

explicitly

activated,

deactivate

the

database.

The

change

takes

effect

the

next

time

either

the

database

is

activated

or

a

connection

to

the

database

is

established.

Setting

up

a

database

48

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Chapter

7.

Setting

up

spatial

resources

for

a

database

After

you

set

up

your

database

to

accommodate

spatial

data,

you

are

ready

to

supply

the

database

with

resources

that

you

will

need

when

you

create

and

manage

spatial

columns

and

analyze

spatial

data.

These

resources

include:

v

Objects

provided

by

Spatial

Extender

to

support

spatial

operations;

for

example,

stored

procedures

to

administrate

a

database,

spatial

data

types,

and

spatial

utilities

for

geocoding

and

importing

or

exporting

spatial

data.

v

Reference

data:

Ranges

of

addresses

that

DB2SE_USA_GEOCODER

uses

to

convert

individual

addresses

to

coordinates.

v

Any

geocoders

that

users

or

vendors

provide.

This

chapter

describes

these

resources

and

introduces

the

tasks

through

which

you

make

them

available:

enabling

your

database

for

spatial

operations,

setting

up

access

to

reference

data,

and

registering

non-default

gecoders.

How

to

set

up

resources

in

your

database

The

first

task

that

you

perform

after

setting

up

your

database

to

accommodate

spatial

data

is

to

render

the

database

capable

of

supporting

spatial

operations—operations

such

as

populating

tables

with

spatial

data

and

processing

spatial

queries.

This

task

involves

loading

the

database

with

certain

resources

supplied

by

DB2

Spatial

Extender.

This

section

describes

these

resources

and

outlines

the

task.

Inventory

of

resources

supplied

for

your

database

To

enable

a

database

to

support

spatial

operations,

DB2®

Spatial

Extender

provides

the

database

with

the

following

resources:

v

Stored

procedures.

When

you

request

a

spatial

operation—for

example,

when

you

issue

a

command

to

import

spatial

data—DB2

Spatial

Extender

invokes

one

of

these

stored

procedures

to

perform

the

operation.

v

Spatial

data

types.

You

must

assign

a

spatial

data

type

to

each

table

or

view

column

that

is

to

contain

spatial

data.

v

DB2

Spatial

Extender’s

catalog.

Certain

operations

depend

on

this

catalog.

For

example,

before

you

can

access

a

spatial

column

from

the

visualization

tools,

the

tool

might

require

that

the

spatial

column

be

registered

in

the

catalog.

v

A

spatial

grid

index.

It

lets

you

to

define

grid

indexes

on

spatial

columns.

v

Spatial

functions.

You

use

these

to

work

with

spatial

data

in

a

number

of

ways;

for

example,

to

determine

relationships

between

geometries

and

to

generate

more

spatial

data.

v

Definitions

of

coordinate

systems.

v

Default

spatial

reference

systems.

v

Two

schemas:

DB2GSE

and

ST_INFORMTN_SCHEMA.

DB2GSE

contains

the

objects

just

listed:

stored

procedures,

spatial

data

types,

the

DB2

Spatial

Extender

catalog,

and

so

on.

Views

in

the

catalog

are

available

also

in

ST_INFORMTN_SCHEMA

to

conform

with

the

SQL/MM

standard..

©

Copyright

IBM

Corp.

1998,

2004

49

|

Enabling

a

database

for

spatial

operations

The

task

of

having

DB2

Spatial

Extender

supply

a

database

with

resources

for

creating

spatial

columns

and

manipulating

spatial

data

is

generally

referred

to

as

“enabling

the

database

for

spatial

operations”.

Prerequisite:

Before

you

enable

a

database

for

spatial

operations,

your

user

ID

must

have

either

SYSADM

or

DBADM

authority

on

the

database.

Restrictions:

You

can

only

use

data

types

created

by

the

enable_db

command.

Procedure:

You

can

enable

a

database

for

spatial

operations

in

any

of

the

following

ways:

v

Use

the

Enable

Database

window

from

the

DB2

Spatial

Extender

menu

option.

The

menu

option

is

available

from

the

database

object

of

the

DB2

Control

Center.

v

Issue

the

db2se

enable_db

command.

v

Run

an

application

that

calls

the

db2gse.ST_enable_db

stored

procedure.

Note:

You

can

explicitly

choose

the

table

space

in

which

you

want

the

DB2

Spatial

Extender

catalog

to

reside.

If

you

do

not

do

so,

DB2

will

use

the

default

table

space.

Related

concepts:

v

“Inventory

of

resources

supplied

for

your

database”

on

page

49

Related

tasks:

v

“Writing

applications

for

DB2

Spatial

Extender”

on

page

129

Related

reference:

v

“Invoking

commands

for

setting

up

DB2

Spatial

Extender

and

developing

projects”

on

page

121

v

“ST_enable_db”

on

page

245

How

to

work

with

reference

data

This

section

explains

what

reference

data

is

and

states

what

you

need

to

do

in

order

to

access

it.

Reference

data

Reference

data

is

range

of

addresses

that

DB2SE_USA_GEOCODER

uses

to

convert

individual

addresses

into

coordinates.

This

data

consists

of

ranges

of

the

most

recent

addresses

that

the

United

States

Census

Bureau

has

collected.

When

DB2SE_USA_GEOCODER

reads

an

address

from

the

database,

it

searches

the

reference

data

for:

Setting

up

spatial

resources

for

a

database

50

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

v

Names

of

certain

streets

within

the

area

designated

by

the

address’s

zip

code.

The

geocoder

looks

for

names

that

match

the

name

of

the

street

in

the

address

to

a

specified

degree,

or

to

a

degree

higher

than

the

specified

one;

for

example,

80

percent

or

higher.

v

The

address

range

that

corresponds

to

the

address

number.

If

a

match

is

found

and

does

not

have

the

requested

score,

the

geocoder

returns

the

coordinates

of

the

address

it

has

read.

If

a

match

is

not

found

or

does

not

have

the

requested

score,

the

geocoder

returns

a

null.

An

advanced

configuration

file

called

the

locator

file

can

be

used

to

further

influence

the

processing

performed

by

the

geocoder,

DB2SE_USA_GEOCODER.

The

default

configuration

provided

by

DB2®

Spatial

Extender

usually

does

not

not

need

to

be

changed

in

this

file.

Setting

up

access

to

reference

data

The

reference

data

for

DB2SE_USA_GEOCODER

is

on

one

of

the

CDs

on

which

Spatial

Extender

is

shipped.

This

section

describes

how

to

prepare

to

access

it.

Procedure:

To

prepare

to

access

the

default

geocoder’s

reference

data:

1.

Decide

whether

to

keep

the

reference

data

on

the

CD

or

to

store

it

on

your

hard

drive.

If

you

keep

it

on

the

CD,

then

you

save

the

space

(about

700

megabytes’

worth)

that

it

would

occupy

on

the

hard

drive.

If

you

store

it

on

hard

drive,

you

will

be

able

to

retrieve

it

faster

than

you

can

retrieve

it

from

the

CD.

2.

If

you

want

to

store

the

reference

data

on

your

hard

drive:

a.

Verify

that

the

hard

drive

has

enough

space

to

contain

the

data

(about

700

megabytes).

b.

Copy

the

data

to

the

hard

drive.

For

instructions,

see

the

README

that

accompanies

the

reference

data.

c.

Determine

whether

the

copy

was

successful:

To

verify

on

UNIX

that

the

data

was

loaded

properly,

look

for

it

in

the

$DB2INSTANCE/sqllib/gse/refdata/

directory.

To

verify

on

Windows

NT

that

the

data

was

loaded

properly,

look

for

it

in

the

%DB2PATH%\gse\refdata\

directory.
3.

Tell

DB2SE_USA_GEOCODER

the

name

and

location

of

the

locator

file

and

the

base

map.

You

do

this

by

setting

DB2SE_USA_GEOCODER’s

base_map

and

locator_file

parameters

to

the

appropriate

values.

For

more

information,

see

your

database

administrator

or

contact

your

IBM

representative.

Registering

a

geocoder

DB2SE_USA_GEOCODER

is

registered

to

DB2

Spatial

Extender

automatically

when

a

database

is

enabled

for

spatial

operations.

Before

other

geocoders

can

be

used,

they

also

must

be

registered.

Prerequisite:

Before

you

can

register

a

geocoder,

your

user

ID

must

hold

either

SYSADM

or

DBADM

authority

on

the

database

in

which

the

geocoder

resides.

Setting

up

spatial

resources

for

a

database

Chapter

7.

Setting

up

spatial

resources

for

a

database

51

|

|
|

|

Procedure:

You

can

register

a

geocoder

in

any

of

the

following

ways:

v

Register

it

from

the

Register

Geocoder

window

of

the

DB2

Control

Center.

v

Issue

the

db2se

register_gc

command.

v

Run

an

application

that

calls

the

db2gse.ST_register_geocoder

stored

procedure.

Related

concepts:

v

“Geocoders

and

geocoding”

on

page

88

Setting

up

spatial

resources

for

a

database

52

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Part

3.

Creating

projects

that

use

spatial

data

©

Copyright

IBM

Corp.

1998,

2004

53

54

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Chapter

8.

Setting

up

spatial

resources

for

a

project

After

your

database

is

enabled

for

spatial

operations,

you

are

ready

to

create

projects

that

use

spatial

data.

Among

the

resources

that

each

project

requires

are

a

coordinate

system

to

which

spatial

data

conforms

and

a

spatial

reference

system

that

defines

the

extent

of

the

geographical

area

that

is

referenced

by

the

data.

This

chapter:

v

Discusses

the

nature

of

coordinate

systems

and

tells

how

to

create

them

v

Explains

what

spatial

reference

systems

are

and

tells

how

to

create

them

How

to

use

coordinate

systems

When

you

plan

a

project

that

uses

spatial

data,

you

need

to

determine

whether

the

data

should

be

based

on

one

of

the

coordinate

systems

that

are

registered

to

the

Spatial

Extender

catalog.

If

none

of

these

coordinate

systems

meet

your

requirements,

you

can

create

one

that

does.

This

discussion

explains

the

concept

of

coordinate

systems

and

introduces

the

tasks

of

selecting

one

to

use

and

creating

a

new

one.

Coordinate

systems

A

coordinate

system

is

a

framework

for

defining

the

relative

locations

of

things

in

a

given

area;

for

example,

an

area

on

the

earth’s

surface

or

the

earth’s

surface

as

a

whole.

DB2®

Spatial

Extender

supports

the

following

types

of

coordinate

systems

to

determine

the

location

of

a

geographic

feature:

Geographic

coordinate

system

A

geographic

coordinate

system

is

a

reference

system

(see

“Spatial

reference

systems”

on

page

63)

that

uses

a

three-dimensional

spherical

surface

to

determine

locations

on

the

earth.

Any

location

on

earth

can

be

referenced

by

a

point

with

latitude

and

longitude

coordinates

based

on

angular

units

of

measure.

Projected

coordinate

system

A

projected

coordinate

system

is

a

flat,

two-dimensional

representation

of

the

earth.

It

uses

rectilinear

(Cartesian)

coordinates

based

on

linear

units

of

measure.

It

is

based

on

a

spherical

(or

spheroidal)

earth

model,

and

its

coordinates

are

related

to

geographic

coordinates

by

a

projection

transformation.

Related

concepts:

v

“Geographic

coordinate

system”

on

page

55

v

“Projected

coordinate

systems”

on

page

60

Related

reference:

v

“Supported

coordinate

systems”

on

page

513

Geographic

coordinate

system

A

geographic

coordinate

system

is

a

reference

system

(see

“Spatial

reference

systems”

on

page

63)

that

uses

a

three-dimensional

spherical

surface

to

determine

locations

©

Copyright

IBM

Corp.

1998,

2004

55

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

on

the

earth.

Any

location

on

earth

can

be

referenced

by

a

point

with

longitude

and

latitude

coordinates.

The

values

for

the

points

can

have

the

following

units

of

measurement:

v

Linear

units

when

the

geographic

coordinate

system

has

a

spatial

reference

system

identifier

(SRID)

that

DB2®

Geodetic

Extender

recognizes.

v

Any

of

the

following

units

when

the

geographic

coordinate

system

has

an

SRID

that

DB2

Geodetic

Extender

does

not

recognize.

–

Decimal

degrees

–

Decimal

minutes

–

Decimal

seconds

–

Gradians

–

Radians

For

the

range

of

values

for

these

units,

refer

to

“Supported

coordinate

systems”

on

page

513.

For

example,

Figure

6

shows

a

geographic

coordinate

system

where

a

location

is

represented

by

the

coordinates

longitude

80

degree

East

and

latitude

55

degree

North.

The

lines

that

run

east

and

west

each

have

a

constant

latitude

value

and

are

called

parallels.

They

are

equidistant

and

parallel

to

one

another,

and

form

concentric

circles

around

the

earth.

The

equator

is

the

largest

circle

and

divides

the

earth

in

half.

It

is

equal

in

distance

from

each

of

the

poles,

and

the

value

of

this

latitude

line

is

zero.

Locations

north

of

the

equator

have

positive

latitudes

that

range

from

0

to

+90

degrees,

while

locations

south

of

the

equator

have

negative

latitudes

that

range

from

0

to

-90

degrees.

Figure

7

on

page

57

illustrates

latitude

lines.

80°E 55° N

La
tit

ud
e

20 60 80
Longitude

0

55°Lat.

80°

S

N

EW

Figure

6.

A

geographic

coordinate

system

Setting

up

spatial

resources

for

a

project

56

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|
|

|
|

|
|

|

|

|

|

|

|
|

|
|
|

|
|
|

|
|
|

The

lines

that

run

north

and

south

each

have

a

constant

longitude

value

and

are

called

meridians.

They

form

circles

of

the

same

size

around

the

earth,

and

intersect

at

the

poles.

The

prime

meridian

is

the

line

of

longitude

that

defines

the

origin

(zero

degrees)

for

longitude

coordinates.

One

of

the

most

commonly

used

prime

meridian

locations

is

the

line

that

passes

through

Greenwich,

England.

However,

other

longitude

lines,

such

as

those

that

pass

through

Bern,

Bogota,

and

Paris,

have

also

been

used

as

the

prime

meridian.

Locations

east

of

the

prime

meridian

up

to

its

antipodal

meridian

(the

continuation

of

the

prime

meridian

on

the

other

side

of

the

globe)

have

positive

longitudes

ranging

from

0

to

+180

degrees.

Locations

west

of

the

prime

meridian

have

negative

longitudes

ranging

from

0

to

–180

degrees.

Figure

8

illustrates

longitude

lines.

Equator

Figure

7.

Latitude

lines

Prime
meridian

Figure

8.

Longitude

lines

Setting

up

spatial

resources

for

a

project

Chapter

8.

Setting

up

spatial

resources

for

a

project

57

|
|

|
|
|
|
|
|

The

latitude

and

longitude

lines

can

cover

the

globe

to

form

a

grid,

called

a

graticule.

The

point

of

origin

of

the

graticule

is

(0,0),

where

the

equator

and

the

prime

meridian

intersect.

The

equator

is

the

only

place

on

the

graticule

where

the

linear

distance

corresponding

to

one

degree

latitude

is

approximately

equal

the

distance

corresponding

to

one

degree

longitude.

Because

the

longitude

lines

converge

at

the

poles,

the

distance

between

two

meridians

is

different

at

every

parallel.

Therefore,

as

you

move

closer

to

the

poles,

the

distance

corresponding

to

one

degree

latitude

will

be

much

greater

than

that

corresponding

to

one

degree

longitude.

It

is

also

difficult

to

determine

the

lengths

of

the

latitude

lines

using

the

graticule.

The

latitude

lines

are

concentric

circles

that

become

smaller

near

the

poles.

They

form

a

single

point

at

the

poles

where

the

meridians

begin.

At

the

equator,

one

degree

of

longitude

is

approximately

111.321

kilometers,

while

at

60

degrees

of

latitude,

one

degree

of

longitude

is

only

55.802

km

(this

approximation

is

based

on

the

Clarke

1866

spheroid).

Therefore,

because

there

is

no

uniform

length

of

degrees

of

latitude

and

longitude,

the

distance

between

points

cannot

be

measured

accurately

by

using

angular

units

of

measure.

Figure

9

shows

the

different

dimensions

between

locations

on

the

graticule.

A

coordinate

system

can

be

defined

by

either

a

sphere

or

a

spheroid

approximation

of

the

earth’s

shape.

Because

the

earth

is

not

perfectly

round,

a

spheroid

can

help

maintain

accuracy

for

a

map,

depending

on

the

location

on

the

earth.

A

spheroid

is

an

ellipsoid,

that

is

based

on

an

ellipse,

whereas

a

sphere

is

based

on

a

circle.

The

shape

of

the

ellipse

is

determined

by

two

radii.

The

longer

radius

is

called

the

semimajor

axis,

and

the

shorter

radius

is

called

the

semiminor

axis.

An

ellipsoid

is

a

three-dimensional

shape

formed

by

rotating

an

ellipse

around

one

of

its

axes.

Figure

10

on

page

59

shows

the

sphere

and

spheroid

approximations

of

the

earth

and

the

major

and

minor

axes

of

an

ellipse.

111.321KM

55.802KM

(one degree of longitude
at the equator)

(one degree of longitude
at latitude)60°

Figure

9.

Different

dimensions

between

locations

on

the

graticule

Setting

up

spatial

resources

for

a

project

58

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

A

datum

is

a

set

of

values

that

defines

the

position

of

the

spheroid

relative

to

the

center

of

the

earth.

The

datum

provides

a

frame

of

reference

for

measuring

locations

and

defines

the

origin

and

orientation

of

latitude

and

longitude

lines.

Some

datums

are

global

and

intend

to

provide

good

average

accuracy

around

the

world.

A

local

datum

aligns

its

spheroid

to

closely

fit

the

earth’s

surface

in

a

particular

area.

Therefore,

the

coordinate

system’s

measurements

are

not

be

accurate

if

they

are

used

with

an

area

other

than

the

one

that

they

were

designed.

For

more

information

about

ellipsoids,

refer

to

“Supported

coordinate

systems”

on

page

513.

Figure

11

on

page

60

shows

how

different

datums

align

with

the

earth’s

surface.

The

local

datum,

NAD27,

more

closely

aligns

with

Earth’s

surface

than

the

Earth-centered

datum,

WGS84,

at

this

particular

location.

Sphere Spheroid
(Ellipsoid)

Major Axis

Semimajor AxisS
em

im
inor

A
xis

M
inor A

xis

The major and minor axes of an ellipse

Figure

10.

Sphere

and

spheroid

approximations

Setting

up

spatial

resources

for

a

project

Chapter

8.

Setting

up

spatial

resources

for

a

project

59

|
|
|
|
|
|

|
|

Whenever

you

change

the

datum,

the

geographic

coordinate

system

is

altered

and

the

coordinate

values

will

change.

For

example,

the

coordinates

in

DMS

of

a

control

point

in

Redlands,

California

using

the

North

American

Datum

of

1983

(NAD

1983)

are:

"-117

12

57.75961

34

01

43.77884"

The

coordinates

of

the

same

point

on

the

North

American

Datum

of

1927

(NAD

1927)

are:

"-117

12

54.61539

34

01

43.72995".

Projected

coordinate

systems

A

projected

coordinate

system

is

a

flat,

two-dimensional

representation

of

the

Earth.

It

is

based

on

a

sphere

or

spheroid

geographic

coordinate

system,

but

it

uses

linear

units

of

measure

for

coordinates,

so

that

calculations

of

distance

and

area

are

easily

done

in

terms

of

those

same

units.

The

latitude

and

longitude

coordinates

are

converted

to

x,

y

coordinates

on

the

flat

projection.

The

x

coordinate

is

usually

the

eastward

direction

of

a

point,

and

the

y

coordinate

is

usually

the

northward

direction

of

a

point.

The

center

line

that

runs

east

and

west

is

referred

to

as

the

x

axis,

and

the

center

line

that

runs

north

and

south

is

referred

to

as

the

y

axis.

The

intersection

of

the

x

and

y

axes

is

the

origin

and

usually

has

a

coordinate

of

(0,0).

The

values

above

the

x

axis

are

positive,

and

the

values

below

the

x

axis

are

negative.

The

lines

parallel

to

the

x

axis

are

equidistant

from

each

other.

The

values

to

the

right

of

the

y

axis

are

positive,

and

the

values

to

the

left

of

the

y

axis

are

negative.

The

lines

parallel

to

the

y

axis

are

equidistant.

Mathematical

formulas

are

used

to

convert

a

three-dimensional

geographic

coordinate

system

to

a

two-dimensional

flat

projected

coordinate

system.

The

transformation

is

referred

to

as

a

map

projection.

Map

projections

usually

are

classified

by

the

projection

surface

used,

such

as

conic,

cylindrical,

and

planar

surfaces.

Depending

on

the

projection

used,

different

spatial

properties

will

appear

distorted.

Projections

are

designed

to

minimize

the

distortion

of

one

or

two

of

the

data’s

characteristics,

yet

the

distance,

area,

shape,

direction,

or

a

combination

of

Earth's surface
Earth-centered (WGS84) datum
Local (NAD27) datum

Local geographic
coordinate system

Earth-centered geographic
coordinate system

Figure

11.

Datum

alignments

Setting

up

spatial

resources

for

a

project

60

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|
|

|
|

|

|

|

|

these

properties

might

not

be

accurate

representations

of

the

data

that

is

being

modeled.

There

are

several

types

of

projections

available.

While

most

map

projections

attempt

to

preserve

some

accuracy

of

the

spatial

properties,

there

are

others

that

attempt

to

minimize

overall

distortion

instead,

such

as

the

Robinson

projection.

The

most

common

types

of

map

projections

include:

Equal

area

projections

These

projections

preserve

the

area

of

specific

features.

These

projections

distort

shape,

angle,

and

scale.

The

Albers

Equal

Area

Conic

projection

is

an

example

of

an

equal

area

projection.

Conformal

projections

These

projections

preserve

local

shape

for

small

areas.

These

projections

preserve

individual

angles

to

describe

spatial

relationships

by

showing

perpendicular

graticule

lines

that

intersect

at

90

degree

angles

on

the

map.

All

of

the

angles

are

preserved;

however,

the

area

of

the

map

is

distorted.

The

Mercator

and

Lambert

Conformal

Conic

projections

are

examples

of

conformal

projections.

Equidistant

projections

These

projections

preserve

the

distances

between

certain

points

by

maintaining

the

scale

of

a

given

data

set.

Some

of

the

distances

will

be

true

distances,

which

are

the

same

distances

at

the

same

scale

as

the

globe.

If

you

go

outside

the

data

set,

the

scale

will

become

more

distorted.

The

Sinusoidal

projection

and

the

Equidistant

Conic

projection

are

examples

of

equidistant

projections.

True-direction

or

azimuthal

projections

These

projections

preserve

the

direction

from

one

point

to

all

other

points

by

maintaining

some

of

the

great

circle

arcs.

These

projections

give

the

directions

or

azimuths

of

all

points

on

the

map

correctly

with

respect

to

the

center.

Azimuthal

maps

can

be

combined

with

equal

area,

conformal,

and

equidistant

projections.

The

Lambert

Equal

Area

Azimuthal

projection

and

the

Azimuthal

Equidistant

projection

are

examples

of

azimuthal

projections.

Related

concepts:

v

“Geographic

coordinate

system”

on

page

55

v

“Coordinate

systems”

on

page

55

Related

tasks:

v

“Writing

applications

for

DB2

Spatial

Extender”

on

page

129

Related

reference:

v

“Invoking

commands

for

setting

up

DB2

Spatial

Extender

and

developing

projects”

on

page

121

v

“ST_create_coordsys”

on

page

229

v

“Supported

coordinate

systems”

on

page

513

Selecting

or

creating

coordinate

systems

After

you

enable

a

database

for

spatial

operations,

you

are

ready

to

plan

projects

that

use

spatial

data.

A

first

step

in

planning

a

project

is

to

determine

what

coordinate

system

to

use.

Your

options

are

as

follows:

Setting

up

spatial

resources

for

a

project

Chapter

8.

Setting

up

spatial

resources

for

a

project

61

v

You

can

use

a

coordinate

system

that

was

shipped

with

DB2

Spatial

Extender

or

one

that

was

created

by

a

user.

Over

2000

coordinate

systems

are

shipped

with

DB2

Spatial

Extender.

Among

them

are:

–

A

coordinate

system

that

DB2

Spatial

Extender

refers

to

as

“Unspecified.”

Use

this

coordinate

system

when:

-

You

need

to

define

locations

that

have

no

direct

relationship

to

the

earth’s

surface;

for

example,

locations

of

offices

within

an

office

building

or

locations

of

shelves

within

a

storage

room.

-

You

can

define

these

locations

in

terms

of

positive

coordinates

that

include

few

or

no

decimal

values.
–

GCS_NORTH_AMERICAN_1983.

Use

this

coordinate

system

when

you

need

to

define

locations

in

the

United

States;

for

example:

-

When

you

import

spatial

data

for

the

United

States

from

the

“Maps

and

Data”

CDs

that

are

shipped

with

DB2

Spatial

Extender.

-

When

you

plan

to

use

the

geocoder

shipped

with

DB2

Spatial

Extender

to

geocode

addresses

within

the

United

States

To

find

out

more

about

these

coordinate

systems,

and

to

determine

what

other

coordinate

systems

were

shipped

with

DB2

Spatial

Extender,

and

what

(if

any)

coordinate

systems

have

been

created

by

other

users,

consult

the

DB2SE.ST_COORDINATE_SYSTEMS

catalog

view.

v

You

can

create

a

coordinate

system.

Prerequisites:

Before

you

create

a

coordinate

system,

your

user

ID

must

have

either

SYSADM

or

DBADM

authority

on

the

database

that

has

been

enabled

for

spatial

operations.

No

authorization

is

required

to

use

an

existing

coordinate

system.

Procedure:

You

can

create

a

coordinate

system

in

any

of

the

following

ways:

v

Create

it

from

the

Create

Coordinate

System

window

of

the

DB2

Control

Center.

v

Issue

the

db2se

create_cs

command

from

the

db2se

command

line

processor.

v

Run

an

application

that

invokes

the

db2se.ST_create_coordsys

stored

procedure.

Related

concepts:

v

“Coordinate

systems”

on

page

55

Related

tasks:

v

“Writing

applications

for

DB2

Spatial

Extender”

on

page

129

Related

reference:

v

“Invoking

commands

for

setting

up

DB2

Spatial

Extender

and

developing

projects”

on

page

121

v

“ST_create_coordsys”

on

page

229

Setting

up

spatial

resources

for

a

project

62

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

How

to

set

up

spatial

reference

systems

When

you

plan

a

project

that

uses

spatial

data,

you

need

to

determine

whether

any

of

the

spatial

reference

systems

available

to

you

can

be

used

for

this

data.

If

none

of

the

available

systems

are

appropriate

for

the

data,

you

can

create

one

that

is.

This

section

explains

the

concept

of

spatial

reference

systems

and

describes

the

tasks

of

selecting

which

one

to

use

and

creating

one.

Spatial

reference

systems

A

spatial

reference

system

is

a

set

of

parameters

that

includes:

v

The

name

of

the

coordinate

system

from

which

the

coordinates

are

derived.

v

The

numeric

identifier

that

uniquely

identifies

the

spatial

reference

system.

v

Coordinates

that

define

the

maximum

possible

extent

of

space

that

is

referenced

by

a

given

range

of

coordinates.

v

Numbers

that,

when

applied

in

certain

mathematical

operations,

convert

coordinates

received

as

input

into

values

that

can

be

processed

with

maximum

efficiency.

The

following

sections

discuss

the

parameter

values

that

define

an

identifier,

a

maximum

extent

of

space,

and

conversion

factors.

Spatial

reference

system

identifier:

The

spatial

reference

system

identifier

(SRID)

is

used

as

an

input

parameter

for

various

spatial

functions.

For

a

geodetic

spatial

reference

system,

the

SRID

value

must

be

in

the

range

2000000000

to

2000001000.

DB2®

Geodetic

Extender

provides

318

predefined

geodetic

spatial

reference

systems

(SRS).

For

more

information,

refer

to

“DB2

Geodetic

Extender”

on

page

153.

Defining

the

space

that

encompasses

coordinates

stored

in

a

spatial

column:

The

coordinates

in

a

spatial

column

typically

define

locations

that

span

across

part

of

the

Earth.

The

space

over

which

the

span

extends—from

east

to

west

and

from

north

to

south—is

called

a

spatial

extent.

For

example,

consider

a

body

of

flood

plains

whose

coordinates

are

stored

in

a

spatial

column.

Suppose

that

the

westernmost

and

easternmost

of

these

coordinates

are

latitude

values

of

–24.556

and

–19.338,

respectively,

and

that

the

northernmost

and

southernmost

of

the

coordinates

are

longitude

values

of

18.819

and

15.809

degrees,

respectively.

The

spatial

extent

of

the

flood

plains

is

a

space

that

extends

on

a

west-east

plane

between

the

two

latitudes

and

on

a

north-south

plane

between

the

two

longitudes.

You

can

include

these

values

in

a

spatial

reference

system

by

assigning

them

to

certain

parameters.

If

the

spatial

column

includes

Z

coordinates

and

measures,

you

would

need

to

include

the

highest

and

lowest

Z

coordinates

and

measures

in

the

spatial

reference

system

as

well.

The

term

spatial

extent

can

refer

not

only

to

an

actual

span

of

locations,

as

in

the

previous

paragraph;

but

also

to

a

potential

one.

Suppose

that

the

flood

plains

in

the

preceding

example

were

expected

to

broaden

over

the

next

five

years.

You

could

estimate

what

the

westernmost,

easternmost,

northernmost,

and

southernmost

coordinates

of

the

planes

would

be

at

the

end

of

the

fifth

year.

You

could

then

assign

these

estimates,

rather

than

the

current

coordinates,

to

the

parameters

for

a

spatial

extent.

That

way,

you

could

retain

the

spatial

reference

Setting

up

spatial

resources

for

a

project

Chapter

8.

Setting

up

spatial

resources

for

a

project

63

|

|

|
|

|

|
|

|
|
|
|

system

as

the

plains

expand

and

their

wider

latitudes

and

longitudes

are

added

to

the

spatial

column.

Otherwise,

if

the

spatial

reference

system

is

limited

to

the

original

latitudes

and

longitudes,

it

would

need

to

be

altered

or

replaced

as

the

flood

planes

grew.

Converting

to

values

that

improve

performance:

Typically,

most

coordinates

in

a

coordinate

system

are

decimal

values;

some

are

integers.

In

addition,

coordinates

to

the

east

of

the

origin

are

positive;

those

to

the

west

are

negative.

Before

being

stored

by

Spatial

Extender,

the

negative

coordinates

are

converted

to

positive

values,

and

the

decimal

coordinates

are

converted

into

integers.

As

a

result,

all

coordinates

are

stored

by

Spatial

Extender

as

positive

integers.

The

purpose

is

to

enhance

performance

when

the

coordinates

are

processed.

Certain

parameters

in

a

spatial

reference

system

are

used

to

make

the

conversions

described

in

the

preceding

paragraph.

One

parameter,

called

an

offset,

is

subtracted

from

each

negative

coordinate,

which

leaves

a

positive

value

as

a

remainder.

Each

decimal

coordinate

is

multiplied

by

another

parameter,

called

a

scale

factor,

which

results

in

an

integer

whose

precision

is

the

same

as

that

of

the

decimal

coordinate.

(The

offset

is

subtracted

from

positive

coordinates

as

well

as

negative;

and

the

nondecimal

coordinates,

as

well

as

the

decimal

coordinates,

are

multiplied

by

the

scale

factor.

This

way,

all

positive

and

non-decimal

coordinates

remain

commensurate

with

the

negative

and

decimal

ones.)

These

conversions

take

place

internally,

and

remain

in

effect

only

until

coordinates

are

retrieved.

Input

and

query

results

always

contain

coordinates

in

their

original,

unconverted

form.

Related

concepts:

v

“Conversion

factors

that

transform

coordinate

data

into

integers”

on

page

68

v

“Coordinate

systems”

on

page

55

Related

tasks:

v

“Deciding

whether

to

use

a

default

spatial

reference

system

or

create

a

new

system”

on

page

64

v

“Creating

a

spatial

reference

system”

on

page

69

Deciding

whether

to

use

a

default

spatial

reference

system

or

create

a

new

system

After

you

determine

what

coordinate

system

to

use,

you

are

ready

to

provide

a

spatial

reference

system

that

suits

the

coordinate

data

that

you

are

working

with.

DB2

Spatial

Extender

provides

five

spatial

reference

systems

for

spatial

data,

and

DB2

Geodetic

Extender

provides

318

geodetic

spatial

reference

systems

for

geodetic

data.

Procedure:

To

determine

whether

you

can

use

one

of

the

default

spatial

reference

systems

or

predefined

geodetic

reference

systems:

1.

Answer

the

following

questions:

v

Does

the

coordinate

system

on

which

the

default

spatial

reference

system

is

based

cover

the

geographic

area

that

you

are

working

with?

Setting

up

spatial

resources

for

a

project

64

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|

|

|

|

|
|
|
|
|

|

|
|

|

|
|

These

coordinate

systems

are

shown

in

“Spatial

reference

systems

supplied

with

DB2

Spatial

Extender”

on

page

66.

v

Is

your

data

in

a

geographic

coordinate

system

that

uses

either

Decimal

Degrees

or

Grads

as

the

unit

of

measure?

Does

your

data

span

a

large

portion

of

the

Earth’s

surface?

Do

you

need

to

make

accurate

distance,

length

and

area

calculations?

Is

any

of

your

data

near

the

north

pole,

south

pole,

or

the

international

dateline?

If

you

answer

yes

to

any

of

these

questions,

you

might

want

to

use

one

of

the

predefined

318

geodetic

spatial

reference

systems.

For

information

on

these

predefined

geodetic

spatial

reference

systems,

see

“Datums

supported

by

DB2

Geodetic

Extender”

on

page

207.

v

Do

the

conversion

factors

associated

with

one

of

the

default

spatial

reference

systems

work

with

your

coordinate

data?

Spatial

Extender

uses

offset

values

and

scale

factors

to

convert

the

coordinate

data

that

you

provide

to

positive

integers.

To

determine

if

your

coordinate

data

works

with

the

given

offset

values

and

scale

factors

for

one

of

the

default

spatial

reference

systems:

a.

Review

the

information

in

“Conversion

factors

that

transform

coordinate

data

into

integers”

on

page

68.

b.

Look

at

how

these

factors

are

defined

for

the

default

spatial

reference

systems.

If,

after

applying

the

offset

value

to

the

minimum

X

and

Y

coordinates,

these

coordinates

are

not

both

greater

than

0,

you

must

create

a

new

spatial

reference

system

and

define

the

offsets

yourself.

For

more

information

about

how

to

create

a

new

spatial

reference

system,

see

“Creating

a

spatial

reference

system”

on

page

69.
v

Does

the

data

that

you

are

working

with

include

height

and

depth

coordinates

(Z

coordinates)

or

measures

(M

coordinates)?

If

you

are

working

with

Z

or

M

coordinates,

you

might

need

to

create

a

new

spatial

reference

system

with

Z

or

M

offsets

and

scale

factors

suitable

to

your

data.
2.

If

the

existing

spatial

reference

systems

or

geodetic

reference

systems

do

not

work

with

your

data,

you

need

to

“Creating

a

spatial

reference

system”

on

page

69.

After

you

decide

which

spatial

reference

system

you

need,

you

specify

this

choice

to

Spatial

Extender

when

you

do

one

of

the

following

tasks:

v

“Creating

spatial

columns”

on

page

79

v

“Registering

spatial

columns”

on

page

80

Related

concepts:

v

“Conversion

factors

that

transform

coordinate

data

into

integers”

on

page

68

v

“When

to

use

DB2

Geodetic

Extender

and

when

to

use

DB2

Spatial

Extender”

on

page

154

v

“Spatial

reference

systems”

on

page

63

Related

tasks:

v

“Creating

a

spatial

reference

system”

on

page

69

v

“Creating

spatial

columns”

on

page

79

v

“Registering

spatial

columns”

on

page

80

v

“Creating

a

spatial

reference

system:

Spatial

Extender

help”

Setting

up

spatial

resources

for

a

project

Chapter

8.

Setting

up

spatial

resources

for

a

project

65

|
|

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|

|

|

|

|

|
|

|

|

|

|

|

|

v

“Registering

a

spatial

column

with

a

spatial

reference

system:

Spatial

Extender

help”

v

“Selecting

a

spatial

reference

system

:

Spatial

Extender

help”

Related

reference:

v

“Spatial

reference

systems

supplied

with

DB2

Spatial

Extender”

on

page

66

v

“Datums

supported

by

DB2

Geodetic

Extender”

on

page

207

Spatial

reference

systems

supplied

with

DB2

Spatial

Extender

DB2

Spatial

Extender

provides

the

spatial

reference

systems

that

are

shown

in

the

table

below,

along

with

the

coordinate

system

on

which

each

spatial

reference

system

is

based

and

the

offset

values

and

scale

factors

that

DB2

Spatial

Extender

uses

to

convert

the

coordinate

data

to

positive

integers.You

can

find

information

about

these

spatial

reference

systems

in

the

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

catalog

view.

If

you

are

working

with

decimal-degrees

(all

the

data

on

the

DB2

Spatial

Extender

sample

data

CDs

is

in

decimal-degrees),

the

offset

values

and

scale

factors

for

the

default

spatial

reference

systems

support

the

full

range

of

latitude-longitude

coordinates

and

preserve

6

decimal

positions,

equivalent

to

approximately

10

cm.

If

you

plan

to

use

the

geocoder

which

works

only

with

U.S.

addresses,

ensure

that

you

select

or

create

a

spatial

reference

system

that

handles

U.S.

coordinates,

such

as

the

GCS_NORTH_AMERICAN_1983

coordinate

system.

If

you

do

not

specify

what

coordinate

system

your

spatial

data

should

derive

from,

Spatial

Extender

uses

the

DEFAULT_SRS

spatial

reference

system.

Use

the

table

below

to

decide

whether

to

use

a

default

spatial

reference

system

or

create

a

new

system

(see

“Deciding

whether

to

use

a

default

spatial

reference

system

or

create

a

new

system”

on

page

64.

If

none

of

the

default

spatial

reference

systems

meet

your

needs,

you

can

create

a

new

spatial

reference

system.

See

“Creating

a

spatial

reference

system”

on

page

69

for

more

information.

Table

4.

Spatial

reference

systems

provided

with

DB2

Spatial

Extender

Spatial

reference

system

SRS

ID

Coordinate

system

Offset

values

Scale

factors

When

to

use

DEFAULT

_SRS

0

None

xOffset

=

0

yOffset

=

0

zOffset

=

0

mOffset

=

0

xScale

=

1

yScale

=

1

zScale

=

1

mScale

=

1

You

can

select

this

system

when

your

data

is

independent

of

a

coordinate

system

or

you

cannot

or

do

not

need

to

specify

one.

Setting

up

spatial

resources

for

a

project

66

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|

|

|

|

|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

||

|
|
|

|
|
|
|
|||

|
|
|||
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

Table

4.

Spatial

reference

systems

provided

with

DB2

Spatial

Extender

(continued)

Spatial

reference

system

SRS

ID

Coordinate

system

Offset

values

Scale

factors

When

to

use

NAD83_

SRS_1

1

GCS_NORTH

_AMERICAN

_1983

xOffset

=

–180

yOffset

=

–90

zOffset

=

0

mOffset

=

0

xScale

=

1,000,000

yScale

=

1,000,000

zScale

=

1

mScale

=

1

You

can

select

this

spatial

reference

system

if

you

plan

to

use

the

U.S.

sample

data

shipped

with

DB2

Spatial

Extender.

If

the

coordinate

data

that

you

are

working

with

was

collected

after

1983,

use

this

system

instead

of

NAD27_SRS_1002.

NAD27_

SRS_1002

1002

GCS_NORTH

_AMERICAN

_1927

xOffset

=

–180

yOffset

=

–90

zOffset

=

0

mOffset

=

0

xScale

=

5,965,232

yScale

=

5,965,232

zScale

=

1

mScale

=

1

You

can

select

this

spatial

reference

system

if

you

plan

to

use

the

U.S.

sample

data

shipped

with

DB2

Spatial

Extender.

If

the

coordinate

data

that

you

are

working

with

was

collected

before

1983,

use

this

system

instead

of

NAD83_SRS_1.

This

system

provides

a

greater

degree

of

precision

than

the

other

default

spatial

reference

systems.

WGS84_

SRS_1003

1003

GCS_WGS

_1984

xOffset

=

–180

yOffset

=

–90

zOffset

=

0

mOffset

=

0

xScale

=

5,965,232

yScale

=

5,965,232

zScale

=

1

mScale

=

1

You

can

select

this

spatial

reference

system

if

you

are

working

with

data

outside

the

U.S.

(This

system

handles

worldwide

coordinates.)

Do

not

use

this

system

if

you

plan

to

use

the

default

geocoder

shipped

with

DB2

Spatial

Extender,

because

the

geocoder

is

only

for

U.S.

addresses.

Setting

up

spatial

resources

for

a

project

Chapter

8.

Setting

up

spatial

resources

for

a

project

67

|

|
|
|

|
|
|
|
|||

|
|
||
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
||
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
||
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table

4.

Spatial

reference

systems

provided

with

DB2

Spatial

Extender

(continued)

Spatial

reference

system

SRS

ID

Coordinate

system

Offset

values

Scale

factors

When

to

use

DE_HDN

_SRS_1004

1004

GCSW

_DEUTSCHE

_HAUPTDRE

IECKSNETZ

xOffset

=

–180

yOffset

=

–90

zOffset

=

0

mOffset

=

0

xScale

=

5,965,232

yScale

=

5,965,232

zScale

=

1

mScale

=

1

This

spatial

reference

system

is

based

on

a

coordinate

system

for

German

addresses.

Related

concepts:

v

“Spatial

reference

systems”

on

page

63

Related

reference:

v

“The

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

catalog

view”

on

page

283

Conversion

factors

that

transform

coordinate

data

into

integers

DB2®

Spatial

Extender

uses

offset

values

and

scale

factors

to

convert

the

coordinate

data

that

you

provide

to

positive

integers.

The

default

spatial

reference

systems

already

have

offset

value

and

scale

factors

associated

with

them.

If

you

are

creating

a

new

spatial

reference

system,

you

need

to

determine

the

scale

factors

and,

optionally,

the

offset

values

that

work

best

with

your

data.

For

more

information,

see

“Creating

a

spatial

reference

system”

on

page

69.

Offset

values

An

offset

value

is

a

number

that

is

subtracted

from

all

coordinates,

leaving

only

positive

values

as

a

remainder.

Spatial

Extender

converts

your

coordinate

data

using

the

following

formulas

to

ensure

that

all

adjusted

coordinate

values

are

greater

than

0.

Formula

notation:

In

these

formulas,

the

notation

“min”

represents

“the

minimum

of

all”.

For

example,

“min(x)”

means

“the

minimum

of

all

x

coordinates”.

The

offset

for

each

geographic

direction

is

represented

as

dimensionOffset.

For

example,

xOffset

is

the

offset

value

applied

to

all

X

coordinates.

min(x)

–

xOffset

≥

0

min(y)

–

yOffset

≥

0

min(z)

–

zOffset

≥

0

min(m)

–

mOffset

≥

0

Scale

factors

A

scale

factor

is

a

value

that,

when

multiplied

by

decimal

coordinates

and

measures,

yields

integers

with

at

least

the

same

number

of

significant

digits

as

the

original

coordinates

and

measures.

Spatial

Extender

converts

your

decimal

coordinate

data

using

the

following

formulas

to

ensure

that

all

adjusted

coordinate

values

are

positive

integers.

The

converted

values

cannot

exceed

253

(approximately

9

*

1015).

Formula

notation:

In

these

formulas,

the

notation

“max”

represents

“the

maximum

of

all”.

The

offset

for

each

geographic

dimension

is

represented

as

dimensionOffset

(for

example,

xOffset

is

the

offset

value

applied

to

all

X

coordinates).

The

scale

Setting

up

spatial

resources

for

a

project

68

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|
|
|

|
|
|
|
|||

|
|
||
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|

|

|

|

|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

factor

for

each

geographic

dimension

is

represented

as

dimensionScale

(for

example,

xScale

is

the

scale

factor

applied

to

X

coordinates).

(max(x)

–

xOffset)

*

xScale

≤

253

(max(y)

–

yOffset)

*

yScale

≤

253

(max(z)

–

zOffset)

*

zScale

≤

253

(max(m)

–

mOffset)

*

mScale

≤

253

When

you

choose

which

scale

factors

work

best

with

your

coordinate

data,

ensure

that:

v

You

use

the

same

scale

factor

for

X

and

Y

coordinates.

v

When

multiplied

by

a

decimal

X

coordinate

or

a

decimal

Y

coordinate,

the

scale

factor

yields

a

value

less

than

253.

One

common

technique

is

to

make

the

scale

factor

a

power

of

10.

That

is,

the

scale

factor

should

be

10

to

the

first

power

(10),

10

to

the

second

power

(100),

10

to

the

third

power

(1000),

or,

if

necessary,

a

larger

factor.

v

The

scale

factor

is

large

enough

to

ensure

that

the

number

of

significant

digits

in

the

new

integer

is

the

same

as

the

number

of

significant

digits

in

the

original

decimal

coordinate.

Example:

Suppose

that

the

ST_Point

function

is

given

input

that

consists

of

an

X

coordinate

of

10.01,

a

Y

coordinate

of

20.03,

and

the

identifier

of

a

spatial

reference

system.

When

ST_Point

is

invoked,

it

multiplies

the

value

of

10.01

and

the

value

of

20.03

by

the

spatial

reference

system’s

scale

factor

for

X

and

Y

coordinates.

If

this

scale

factor

is

10,

the

resulting

integers

that

Spatial

Extender

stores

will

be

100

and

200,

respectively.

Because

the

number

of

significant

digits

in

these

integers

(3)

is

less

than

the

number

of

significant

digits

in

the

coordinates

(4),

Spatial

Extender

will

not

be

able

to

convert

these

integers

back

to

the

original

coordinates,

or

to

derive

from

them

values

that

are

consistent

with

the

coordinate

system

to

which

these

coordinates

belong.

But

if

the

scale

factor

is

100,

the

resulting

integers

that

DB2

Spatial

Extender

stores

will

be

1001

and

2003—values

that

can

be

converted

back

to

the

original

coordinates

or

from

which

compatible

coordinates

can

be

derived.

Units

for

offset

values

and

scale

factors

Whether

you

use

an

existing

spatial

reference

system

or

create

a

new

one,

the

units

for

the

offset

values

and

scale

factors

will

vary

depending

on

the

type

of

coordinate

system

that

you

are

using.

For

example,

if

you

are

using

a

geographic

coordinate

system,

the

values

are

in

angular

units

such

as

decimal

degrees;

if

you

are

using

a

projected

coordinate

system,

the

values

are

in

linear

units

such

as

meters

or

feet.

Related

tasks:

v

“Deciding

whether

to

use

a

default

spatial

reference

system

or

create

a

new

system”

on

page

64

Creating

a

spatial

reference

system

If

none

of

the

spatial

reference

systems

provided

with

DB2

Spatial

Extender

work

with

your

data,

you

must

create

a

new

spatial

reference

system.

Procedure:

To

create

a

new

spatial

reference

system:

1.

Choose

the

interface.

Setting

up

spatial

resources

for

a

project

Chapter

8.

Setting

up

spatial

resources

for

a

project

69

|
|

|
|
|
|

|
|

|

|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

|

|
|

|

|

|

You

can

create

a

spatial

reference

system

in

any

of

the

following

ways:

v

Use

the

Create

Spatial

Reference

System

window

in

the

DB2

Control

Center.

See

the

online

help

for

more

information

about

how

to

use

this

window.

v

Issue

the

db2se

create_srs

command

from

the

db2se

command–line

processor.

For

more

information,

see

“Invoking

commands

for

setting

up

DB2

Spatial

Extender

and

developing

projects”

on

page

121.

v

Run

an

application

that

invokes

the

db2se.ST_create_srs

stored

procedure.

For

more

information,

see

“ST_create_srs”

on

page

231.
2.

Specify

an

appropriate

spatial

reference

system

ID

(SRID):

v

For

geodetic

data

in

a

round-earth

representation,

specify

an

SRID

value

in

the

range

of

200000318

to

2000001000.

v

For

spatial

data

in

a

flat-earth

representation,

specify

an

SRID

that

is

not

already

defined.
3.

Decide

on

the

degree

of

precision

that

you

want.

You

can

either:

v

Specify

the

extents

of

the

geographical

area

that

you

are

working

with

and

the

scale

factors

that

you

want

to

use

with

your

coordinate

data.

Spatial

Extender

takes

the

extents

that

you

specify

and

calculates

the

offset

for

you.

You

can

specify

extents

in

one

of

the

following

ways:

–

Choose

Extents

in

the

Create

Spatial

Reference

System

window

of

the

Control

Center.

–

Provide

the

appropriate

parameters

for

the

db2se

create_srs

command

or

db2se.ST_create_srs

stored

procedure.
v

Specify

both

the

offset

values

(required

for

Spatial

Extender

to

convert

negative

values

to

positive

values)

and

scale

factors

(required

for

Spatial

Extender

to

convert

decimal

values

to

integers).

Use

this

method

when

you

need

to

follow

strict

criteria

for

accuracy

or

precision.

You

can

specify

offset

values

and

scale

factors

in

one

of

the

following

ways:

–

Choose

Offset

in

the

Create

Spatial

Reference

System

window

of

the

Control

Center

–

Provide

the

appropriate

parameters

for

the

db2se

create_srs

command

or

db2se.ST_create_srs

stored

procedure.

For

more

information,

see

“Conversion

factors

that

transform

coordinate

data

into

integers”

on

page

68.
4.

Calculate

the

conversion

information

that

Spatial

Extender

needs

to

convert

coordinate

data

to

positive

integers,

and

provide

this

information

via

the

interface

that

you

chose.

This

information

differs

according

to

the

method

that

you

chose

in

step

3.

v

If

you

chose

the

“Extents”

method

in

step

3,

you

need

to

calculate

the

following

information:

–

Scale

factors.

If

any

of

the

coordinates

that

you

are

working

with

are

decimal

values,

calculate

scale

factors

(see

“Calculating

scale

factors”

on

page

72.

Scale

factors

are

numbers

that,

when

multiplied

by

decimal

coordinates

and

measures,

yields

integers

with

at

least

the

same

number

of

significant

digits

as

the

original

coordinates

and

measures.

If

the

coordinates

are

integers,

the

scale

factors

can

be

set

to

1.

If

the

coordinates

are

decimal

values,

the

scale

factor

should

be

set

to

a

number

that

converts

the

decimal

portion

to

an

integer

value.

For

example,

if

the

coordinate

units

are

meters

and

the

accuracy

of

the

data

is

1

cm.,

you

would

need

a

scale

factor

of

100.

Setting

up

spatial

resources

for

a

project

70

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|
|

|
|
|

|
|

|

|
|

|
|

|

|
|
|

|

|
|

|
|

|
|
|
|

|

|
|

|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

–

Minimum

and

maximum

values

for

your

coordinates

and

measures.

(See

“Determining

minimum

and

maximum

coordinates

and

measures”

on

page

73

for

more

information).
v

If

you

chose

the

“Offset

”

method

in

step

3,

you

need

to

calculate

the

following

information:

–

Offset

values

If

your

coordinate

data

includes

negative

numbers

or

measures,

you

need

to

specify

the

offset

values

that

you

want

to

use.

An

offset

is

a

number

that

is

subtracted

from

all

coordinates,

leaving

only

positive

values

as

a

remainder.

If

you

are

working

with

positive

coordinates,

set

all

offset

values

to

0.

If

you

are

not

working

with

positive

coordinates,

select

an

offset

that,

when

applied

against

the

coordinate

data,

results

in

integers

that

are

less

than

the

largest

positive

integer

value

(9,007,199,254,740,992).

(See

“Calculating

offset

values”

on

page

74

for

more

information).

–

Scale

factors

If

any

of

the

coordinates

for

the

locations

that

you

are

representing

are

decimal

numbers,

determine

what

scale

factors

to

use

and

enter

these

scale

factors

in

the

Create

Spatial

Reference

System

window.

See

“Calculating

scale

factors”

on

page

72.
5.

Submit

the

db2se

create_srs

command

or

db2se.ST_create_srs

stored

procedure.

For

example,

the

following

command

creates

a

spatial

reference

system

named

mysrs:

db2se

create_srs

mydb

-srsName

\"mysrs\"

-srsID

100

-xScale

10

-coordsysName

\"GCS_North_American_1983\"

For

more

information

on

how

to

run

an

application

that

invokes

the

db2se.ST_create_srs

stored

procedure,

see

“ST_create_srs”

on

page

231.

After

you

create

the

spatial

reference

system,

you

associate

it

with

a

spatial

column

with

one

of

the

following

tasks:

v

“Creating

spatial

columns”

on

page

79

v

“Registering

spatial

columns”

on

page

80

Related

concepts:

v

“Conversion

factors

that

transform

coordinate

data

into

integers”

on

page

68

v

“Coordinate

systems”

on

page

55

v

“Spatial

reference

systems”

on

page

63

Related

tasks:

v

“Calculating

scale

factors”

on

page

72

v

“Determining

minimum

and

maximum

coordinates

and

measures”

on

page

73

v

“Calculating

offset

values”

on

page

74

v

“Creating

spatial

columns”

on

page

79

v

“Registering

spatial

columns”

on

page

80

v

“Creating

a

spatial

reference

system:

Spatial

Extender

help”

v

“Registering

a

spatial

column

with

a

spatial

reference

system:

Spatial

Extender

help”

Related

reference:

v

“Invoking

commands

for

setting

up

DB2

Spatial

Extender

and

developing

projects”

on

page

121

Setting

up

spatial

resources

for

a

project

Chapter

8.

Setting

up

spatial

resources

for

a

project

71

|
|
|

|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|

|

|
|

|
|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

v

“ST_create_srs”

on

page

231

Calculating

scale

factors

If

you

create

a

spatial

reference

system

and

any

of

the

coordinates

that

you

are

working

with

are

decimal

values,

calculate

the

appropriate

scale

factors

for

your

coordinates

and

measures.

Scale

factors

are

numbers

that,

when

multiplied

by

decimal

coordinates

and

measures,

yields

integers

with

at

least

the

same

number

of

significant

digits

as

the

original

coordinates

and

measures.

Prerequisites:

Before

calculating

the

scale

factors

that

will

work

with

your

data,

ensure

that

you

understand

the

guidelines

to

choose

“Conversion

factors

that

transform

coordinate

data

into

integers”

on

page

68.

Procedure:

To

calculate

the

scale

factors:

1.

Determine

which

X

and

Y

coordinates

are,

or

are

likely

to

be,

decimal

numbers.

For

example,

suppose

that

of

the

various

X

and

Y

coordinates

that

you

will

be

dealing

with,

you

determine

that

three

of

them

are

decimal

numbers:

1.23,

5.1235,

and

6.789.

2.

Find

the

decimal

coordinate

that

has

the

longest

decimal

precision.

Then

determine

by

what

power

of

10

this

coordinate

can

be

multiplied

to

yield

an

integer

of

equal

precision.

For

example,

of

the

three

decimal

coordinates

in

the

current

example,

5.1235

has

the

longest

decimal

precision.

Multiplying

it

by

10

to

the

fourth

power

(10000)

yields

the

integer

51235.

3.

Determine

whether

the

integer

produced

by

the

multiplication

just

described

is

less

than

2

53.

51235

is

not

too

large.

But

suppose

that,

in

addition

to

1.23,

5.11235,

and

6.789,

your

range

of

X

and

Y

coordinates

includes

a

fourth

decimal

value,

10000000006.789876.

Because

this

coordinate’s

decimal

precision

is

longer

than

that

of

the

other

three,

you

would

multiply

this

coordinate—not

5.1235—by

a

power

of

10.

To

convert

it

to

an

integer,

you

could

multiply

it

by

10

to

the

sixth

power

(1000000).

But

the

resulting

value,

10000000006789876,

is

greater

than

2

53.

If

DB2

Spatial

Extender

tried

to

store

it,

the

results

would

be

unpredictable.

To

avoid

this

problem,

select

a

power

of

10

that,

when

multiplied

by

the

original

coordinate,

yields

a

decimal

number

that

DB2

Spatial

Extender

can

truncate

to

a

storable

integer,

with

minimum

loss

of

precision.

In

this

case,

you

could

select

10

to

the

fifth

power

(100000).

Multiplying

100000

by

10000000006.789876

yields

1000000000678987.6.

DB2

Spatial

Extender

would

round

this

number

to

1000000000678988,

reducing

its

accuracy

slightly.

After

you

calculate

scale

factors,

you

need

to

determine

the

extent

values

(see

“Determining

minimum

and

maximum

coordinates

and

measures”

on

page

73.

Then

submit

the

db2se

create_srs

command

or

db2se.ST_create_srs

stored

procedure.

Related

concepts:

v

“Conversion

factors

that

transform

coordinate

data

into

integers”

on

page

68

v

“Spatial

reference

systems”

on

page

63

Related

tasks:

v

“Determining

minimum

and

maximum

coordinates

and

measures”

on

page

73

Setting

up

spatial

resources

for

a

project

72

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|

|
|
|
|
|

|

|
|
|

|

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|

|

|

|

|

Determining

minimum

and

maximum

coordinates

and

measures

Determine

minimum

and

maximum

coordinates

and

measures

if

you

decide

to

specify

extent

transformations

when

you

create

a

spatial

reference

system.

Prerequisites:

Use

this

procedure

to

determine

minimum

and

maximum

coordinates

and

measures

if

you:

v

Decide

to

create

a

new

spatial

reference

system

because

none

of

the

spatial

reference

systems

provided

with

DB2

Spatial

Extender

work

with

your

data.

For

more

information,

see

“Deciding

whether

to

use

a

default

spatial

reference

system

or

create

a

new

system”

on

page

64.

v

Decide

to

use

extent

transformations

to

convert

your

coordinates.

Procedure:

To

determine

the

minimum

and

maximum

coordinates

and

measures

of

the

locations

that

you

want

to

represent:

v

Determine

the

minimum

and

maximum

X

coordinates.

To

find

the

minimum

X

coordinate,

identify

the

X

coordinate

in

your

domain

that

is

furthest

west.

(If

the

location

lies

to

the

west

of

the

point

of

origin,

this

coordinate

will

be

a

negative

value.)

To

find

the

maximum

X

coordinate,

identify

the

X

coordinate

in

your

domain

that

is

furthest

east.

For

example,

if

you

are

representing

oil

wells,

and

each

one

is

defined

by

a

pair

of

X

and

Y

coordinates,

the

X

coordinate

that

indicates

the

location

of

the

oil

well

that

is

furthest

west

is

the

minimum

X

coordinate,

and

the

X

coordinate

that

indicates

the

location

of

the

oil

well

that

is

furthest

east

is

the

maximum

X

coordinate.

v

Determine

the

minimum

and

maximum

Y

coordinates.

To

find

the

minimum

Y

coordinate,

identify

the

Y

coordinate

in

your

domain

that

is

furthest

south.

(If

the

location

lies

to

the

south

of

the

point

of

origin,

this

coordinate

will

be

a

negative

value.)

To

determine

the

maximum

Y

coordinate,

find

the

Y

coordinate

in

your

domain

that

is

furthest

north.

v

Determine

the

minimum

and

maximum

Z

coordinates.

The

minimum

Z

coordinate

is

the

greatest

of

the

depth

coordinates

and

the

maximum

Z

coordinate

is

the

greatest

of

the

height

coordinates.

v

Determine

the

minimum

and

maximum

measures

If

you

are

going

to

include

measures

in

your

spatial

data,

determine

which

measure

has

the

highest

numerical

value

and

which

has

the

lowest.

For

multifeature

types,

such

as

multipolygons,

ensure

that

you

pick

the

furthest

point

on

the

furthest

polygon

in

the

direction

that

you

are

calculating.

For

example,

if

you

are

trying

to

identify

the

minimum

X

coordinate,

identify

the

westernmost

X

coordinate

of

the

polygon

that

is

furthest

west

in

the

multipolygon.

After

you

determine

the

extent

values,

if

any

of

the

coordinates

are

decimal

values,

you

need

to

calculate

scale

factors

(see

“Calculating

scale

factors”

on

page

72.

Otherwise,

submit

the

db2se

create_srs

command

or

db2se.ST_create_srs

stored

procedure.

Related

tasks:

Setting

up

spatial

resources

for

a

project

Chapter

8.

Setting

up

spatial

resources

for

a

project

73

|
|

|

|
|

|
|
|
|

|

|

v

“Deciding

whether

to

use

a

default

spatial

reference

system

or

create

a

new

system”

on

page

64

v

“Calculating

scale

factors”

on

page

72

Calculating

offset

values

If

you

create

a

spatial

reference

system

and

your

coordinate

data

includes

negative

numbers

or

measures,

you

need

to

specify

the

offset

values

that

you

want

to

use.

An

offset

is

a

number

that

is

subtracted

from

all

coordinates,

leaving

only

positive

values

as

a

remainder.

You

can

improve

the

performance

of

spatial

operations

when

the

coordinates

are

positive

integers

instead

of

negative

numbers

or

measures..

Prerequisites:

You

specify

offset

values

if

your

coordinate

data

includes

negative

numbers

or

measures.

Procedure:

To

calculate

the

offset

values

for

the

coordinates

that

you

are

working

with:

1.

Determine

the

lowest

negative

X,

Y,

and

Z

coordinates

within

the

range

of

coordinates

for

the

locations

that

you

want

to

represent.

If

your

data

is

to

include

negative

measures,

determine

the

lowest

of

these

measures.

See

“Determining

minimum

and

maximum

coordinates

and

measures”

on

page

73.

2.

Optional

but

recommended:

Indicate

to

DB2

Spatial

Extender

that

the

domain

that

encompasses

the

locations

that

you

are

concerned

with

is

larger

than

it

actually

is.

Thus,

after

you

write

data

about

these

locations

to

a

spatial

column,

you

can

add

data

about

locations

of

new

features

as

they

are

added

to

outer

reaches

of

the

domain,

without

having

to

replace

your

spatial

reference

system

with

another

one.

For

each

coordinate

and

measure

that

you

identified

in

step

1,

add

an

amount

equal

to

five

to

ten

percent

of

the

coordinate

or

measure.

The

result

is

referred

to

as

an

augmented

value.

For

example,

if

the

lowest

negative

X

coordinate

is

–100,

you

could

add

–5

to

it,

yielding

an

augmented

value

of

–105.

Later,

when

you

create

the

spatial

reference

system,

you

will

indicate

that

the

lowest

X

coordinate

is

–105,

rather

than

the

true

value

of

–100.

DB2

Spatial

Extender

will

then

interpret

–105

as

the

westernmost

limit

of

your

domain.

3.

Find

a

value

that,

when

subtracted

from

your

augmented

X

value,

leaves

zero;

this

is

the

offset

value

for

X

coordinates.

DB2

Spatial

Extender

subtracts

this

number

from

all

X

coordinates

to

produce

only

positive

values.

For

example,

if

the

augmented

X

value

is

–105,

you

need

to

subtract

–105

from

it

to

get

0.

DB2

Spatial

Extender

will

then

subtract

–105

from

all

X

coordinates

that

are

associated

with

the

features

that

you

are

representing.

Because

none

of

these

coordinates

is

greater

than

–100,

all

the

values

that

result

from

the

subtraction

will

be

positive.

4.

Repeat

step

3

for

the

augmented

Y

value,

augmented

Z

value,

and

augmented

measure.

After

you

calculate

offset

values,

create

a

spatial

reference

system

(see

“Creating

a

spatial

reference

system”

on

page

69.

Related

tasks:

v

“Determining

minimum

and

maximum

coordinates

and

measures”

on

page

73

Setting

up

spatial

resources

for

a

project

74

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|
|
|

|
|

|

|

v

“Creating

a

spatial

reference

system”

on

page

69

Setting

up

spatial

resources

for

a

project

Chapter

8.

Setting

up

spatial

resources

for

a

project

75

Setting

up

spatial

resources

for

a

project

76

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Chapter

9.

Setting

up

spatial

columns

In

preparing

to

obtain

spatial

data

for

a

project,

you

not

only

choose

or

create

a

coordinate

system

and

spatial

reference

system;

you

also

provide

one

or

more

table

columns

to

contain

the

data.

This

chapter:

v

Notes

that

results

of

queries

of

the

columns

can

be

rendered

graphically,

and

provides

guidelines

for

choosing

data

types

for

the

columns

v

Describes

the

task

of

providing

the

columns

v

Describes

the

task

of

making

the

columns

accessible

to

tools

that

can

display

their

content

in

graphical

form

Spatial

columns

Spatial

columns

with

viewable

content

When

you

use

a

visualization

tool,

such

as

ArcExplorer

for

DB2®,

to

query

a

spatial

column,

the

tool

returns

results

in

the

form

of

a

graphical

display;

for

example,

a

map

of

parcel

boundaries

or

the

layout

of

a

road

system.

Some

visualization

tools

require

all

rows

of

the

column

to

use

the

same

spatial

reference

system.

The

way

you

enforce

this

constraint

is

to

register

the

column

with

a

spatial

reference

system.

Spatial

data

types

When

you

enable

a

database

for

spatial

operations,

DB2

Spatial

Extender

supplies

the

database

with

a

hierarchy

of

structured

data

types.

Figure

12

presents

this

hierarchy.

In

this

figure,

the

instantiable

types

have

a

white

background;

the

uninstantiable

types

have

a

shaded

background.

Instantiable

data

types

are

ST_Point,

ST_LineString,

ST_Polygon,

ST_GeomCollection,

ST_MultiPoint,

ST_MultiPolygon,

and

ST_MultiLineString.

Data

types

that

are

not

instantiable

are

ST_Geometry,

ST_Curve,

ST_Surface,

ST_MultiSurface,

and

ST_MultiCurve.

ST_MultiLineStringST_MultiPolygon

ST_MultiSurface ST_MultiPointST_LineString ST_Polygon

ST_Point ST_Curve ST_Surface

ST_Geometry

ST_GeomCollection

ST_MultiCurve

Figure

12.

Hierarchy

of

spatial

data

types.

Data

types

named

in

white

boxes

are

instantiable.

Data

types

named

in

shaded

boxes

are

not

instantiable.

©

Copyright

IBM

Corp.

1998,

2004

77

|

|
|

|
|

The

hierarchy

in

Figure

12

on

page

77

includes:

v

Data

types

for

geographic

features

that

can

be

perceived

as

forming

a

single

unit;

for

example,

individual

residences

and

isolated

lakes.

v

Data

types

for

geographic

features

that

are

made

up

of

multiple

units

or

components;

for

example,

canal

systems

and

groups

of

islands

in

a

lake.

v

A

data

type

for

geographic

features

of

all

kinds.

Data

types

for

single-unit

features

Use

ST_Point,

ST_LineString,

and

ST_Polygon

to

store

coordinates

that

define

the

space

occupied

by

features

that

can

be

perceived

as

forming

a

single

unit:

v

Use

ST_Point

when

you

want

to

indicate

the

point

in

space

that

is

occupied

by

a

discrete

geographic

feature.

The

feature

might

be

a

very

small

one,

such

as

a

water

well;

a

very

large

one,

such

as

a

city;

or

one

of

intermediate

size,

such

as

a

building

complex

or

park.

In

each

case,

the

point

in

space

can

be

located

at

the

intersection

of

an

east-west

coordinate

line

(for

example,

a

parallel)

and

a

north-south

coordinate

line

(for

example,

a

meridian).

An

ST_Point

data

item

includes

an

X

coordinate

and

a

Y

coordinate

that

define

such

an

intersection.

The

X

coordinate

indicates

where

the

intersection

lies

on

the

east-west

line;

the

Y

coordinate

indicates

where

the

intersection

lies

on

the

north-south

line.

v

Use

ST_Linestring

for

coordinates

that

define

the

space

that

is

occupied

by

linear

features;

for

example,

streets,

canals,

and

pipelines.

v

Use

ST_Polygon

when

you

want

to

indicate

the

extent

of

space

covered

by

a

multi-sided

feature;

for

example,

a

voting

district,

a

forest,

or

a

wildlife

habitat.

An

ST_Polygon

data

item

consists

of

the

coordinates

that

define

the

boundary

of

such

a

feature.

In

some

cases,

ST_Polygon

and

ST_Point

can

be

used

for

the

same

feature.

For

example,

suppose

that

you

need

spatial

information

about

an

apartment

complex.

If

you

want

to

represent

the

point

in

space

where

each

building

in

the

complex

is

located,

you

would

use

ST_Point

to

store

the

X

and

Y

coordinates

that

define

each

such

point.

Otherwise,

if

you

want

to

represent

the

area

occupied

by

the

complex

as

a

whole,

you

would

use

ST_Polygon

to

store

the

coordinates

that

define

the

boundary

of

this

area.

Data

types

for

multi-unit

features

Use

ST_MultiPoint,

ST_MultiLineString,

and

ST_MultiPolygon

to

store

coordinates

that

define

spaces

occupied

by

features

that

are

made

up

of

multiple

units:

v

Use

ST_MultiPoint

when

you

are

representing

features

made

up

of

units

whose

locations

are

each

referenced

by

an

X

coordinate

and

a

Y

coordinate.

For

example,

consider

a

table

whose

rows

represent

island

chains.

The

X

coordinate

and

Y

coordinate

for

each

island

has

been

identified.

If

you

want

the

table

to

include

these

coordinates

and

the

coordinates

for

each

chain

as

a

whole,

define

an

ST_MultiPoint

column

to

hold

these

coordinates.

v

Use

ST_MultiLineString

when

you

are

representing

features

made

up

of

linear

units,

and

you

want

to

store

the

coordinates

for

the

locations

of

these

units

and

the

location

of

each

feature

as

a

whole.

For

example,

consider

a

table

whose

rows

represent

river

systems.

If

you

want

the

table

to

include

coordinates

for

the

locations

of

the

systems

and

their

components,

define

an

ST_MultiLineString

column

to

hold

these

coordinates.

v

Use

ST_MultiPolygon

when

you

are

representing

features

made

up

of

multi-sided

units,

and

you

want

to

store

the

coordinates

for

the

locations

of

these

units

and

the

location

of

each

feature

as

a

whole.

For

example,

consider

a

table

whose

rows

represent

rural

counties

and

the

farms

in

each

county.

If

you

Setting

up

spatial

columns

78

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

want

the

table

to

include

coordinates

for

the

locations

of

the

counties

and

farms,

define

an

ST_MultiPolygon

column

to

hold

these

coordinates.

Multi-unit

is

not

meant

as

a

collection

of

individual

entities.

Rather,

multi-unit

refers

to

an

aggregate

of

the

parts

that

makes

up

the

whole.

A

data

type

for

all

features

You

can

use

ST_Geometry

when

you

are

not

sure

which

of

the

other

data

types

to

use.

Because

ST_Geometry

is

the

root

of

the

hierarchy

to

which

the

other

data

types

belong,

an

ST_Geometry

column

can

contain

the

same

kinds

of

data

items

that

columns

of

the

other

data

types

can

contain.

Attention:

If

you

plan

to

use

the

supplied

geocoder,

DB2SE_USA_GEOCODER,

to

produce

data

for

a

spatial

column,

the

column

must

be

of

type

ST_Point

or

ST_Geometry.

Certain

visualization

tools,

however,

do

not

support

ST_Geometry

columns,

but

only

columns

to

which

a

proper

subtype

of

ST_Geometry

has

been

assigned.

Related

tasks:

v

“Registering

spatial

columns”

on

page

80

v

“Creating

spatial

columns”

on

page

79

Creating

spatial

columns

This

task

is

part

of

a

larger

task

″Setting

up

spatial

resources

for

a

project.″

After

you

choose

a

coordinate

system

and

determine

which

spatial

reference

system

to

use

for

your

data,

you

create

a

spatial

column

in

an

existing

table

or

import

spatial

data

into

a

new

table.

Prerequisites:

Before

you

create

a

spatial

column,

your

user

ID

must

hold

the

authorizations

that

are

needed

for

the

DB2

SQL

CREATE

TABLE

or

ALTER

TABLE

statement.

The

user

ID

must

have

at

least

one

of

the

following

authorities

or

privileges:

v

SYSADM

or

DBADM

authority

on

the

database

where

the

table

that

has

the

column

resides

v

CREATETAB

authority

on

the

database

and

USE

privilege

on

the

table

space

as

well

as

one

of

the

following:

–

IMPLICIT_SCHEMA

authority

on

the

database,

if

the

implicit

or

explicit

schema

of

the

index

does

not

exist

–

CREATEIN

privilege

on

the

schema,

if

the

schema

name

of

the

index

refers

to

an

existing

schema
v

ALTER

privilege

on

the

table

to

be

altered

v

CONTROL

privilege

on

the

table

to

be

altered

v

ALTERIN

privilege

on

the

schema

of

the

table

Procedure:

You

can

provide

your

database

with

spatial

columns

in

one

of

several

ways:

v

Use

DB2’s

CREATE

TABLE

statement

to

create

a

table

and

to

include

a

spatial

column

within

that

table.

v

Use

DB2’s

ALTER

TABLE

statement

to

add

a

spatial

column

to

an

existing

table.

Setting

up

spatial

columns

Chapter

9.

Setting

up

spatial

columns

79

|
|
|
|

|

|
|
|

|
|

|
|

|
|

|
|

|

|

|

|

v

Use

the

Create

Spatial

Column

window

in

the

DB2

Control

Center.

Open

the

Spatial

Columns

window

from

a

table.

See

the

online

help

for

more

information

about

how

to

use

this

window.

v

If

you

are

importing

spatial

data

from

a

shape

file,

use

DB2

Spatial

Extender

to

create

a

table

and

to

provide

this

table

with

a

column

to

hold

the

data.

See

“Importing

shape

data

to

a

new

or

existing

table”

on

page

84.

v

If

you

are

importing

spatial

data

from

an

SDE

transfer

file,

use

DB2

Spatial

Extender

to

create

a

table,

to

provide

this

table

with

a

column

to

hold

the

data,

and

to

make

the

column

accessible

to

visualization

tools.

See

“Importing

SDE

transfer

data

to

a

new

or

existing

table”

on

page

85.

Next

task:

“Registering

spatial

columns”

Related

tasks:

v

“Importing

shape

data

to

a

new

or

existing

table”

on

page

84

v

“Importing

SDE

transfer

data

to

a

new

or

existing

table”

on

page

85

v

“Registering

spatial

columns”

on

page

80

v

“Writing

applications

for

DB2

Spatial

Extender”

on

page

129

v

“Creating

a

spatial

column:

Spatial

Extender

help”

Related

reference:

v

“ALTER

TABLE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TABLE

statement”

in

the

SQL

Reference,

Volume

2

v

“Invoking

commands

for

setting

up

DB2

Spatial

Extender

and

developing

projects”

on

page

121

Registering

spatial

columns

You

might

want

to

register

a

spatial

column

in

the

following

situations:

v

Access

by

visualization

tools

If

you

want

certain

visualization

tools—for

example,

ArcExplorer

for

DB2—to

generate

graphical

displays

of

the

data

in

a

spatial

column,

you

need

to

ensure

the

integrity

of

the

column’s

data.

You

do

this

by

imposing

a

constraint

that

requires

all

rows

of

the

column

to

use

the

same

spatial

reference

system.

To

impose

this

constraint,

register

the

column,

specifying

both

its

name

and

the

spatial

reference

system

that

applies

to

it.

v

Access

by

spatial

indexes

Use

the

same

coordinate

system

for

all

data

in

a

spatial

column

on

which

you

want

to

create

an

index

to

ensure

that

the

spatial

index

returns

the

correct

results.

You

register

a

spatial

column

to

constrain

all

data

to

use

the

same

spatial

reference

system

and,

correspondingly,

the

same

coordinate

system.

Prerequisites:

Before

you

register

a

spatial

column,

your

user

ID

must

hold

one

of

the

following

forms

of

authorization:

v

SYSADM

or

DBADM

authority

on

the

database

in

which

the

table

that

contains

the

column

resides.

v

The

CONTROL

or

ALTER

privilege

on

this

table.

Setting

up

spatial

columns

80

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|
|

|
|

|
|

|

|

|

|

|
|
|
|

If

you

are

using

the

db2se

command–line

processor

or

an

application

program

to

import

data

from

an

SDE

transfer

file,

you

can

have

DB2

Spatial

Extender

automatically

create

and

register

a

column

to

hold

the

data.

In

that

case,

your

user

ID

must

hold

SYSADM

or

DBADM

authority

on

the

database.

Procedure:

You

can

register

a

spatial

column

in

any

of

the

following

ways:

v

Use

the

Spatial

Columns

and

Select

Spatial

Reference

System

windows

of

the

DB2

Control

Center

to

register

the

column.

v

Issue

the

db2se

register_spatial_column

command.

v

Run

an

application

that

invokes

the

db2gse.ST_register_spatial_column

stored

procedure.

v

If

you

want

to

import

spatial

data

from

an

SDE

transfer

file,

you

can

use

the

Import

Spatial

Data

window

of

the

Control

Center,

the

import_sde

command,

or

the

db2gse.ST_import_sde

stored

procedure

to

create

a

table

with

a

spatial

column,

to

register

this

column,

and

to

import

the

data

into

the

column.

Refer

to

the

SRS_NAME

column

in

the

DB2GSE.GSE_GEOMETRY_COLUMNS

view

to

check

the

spatial

reference

system

you

chose

for

a

particular

column

after

you

register

the

column.

Related

tasks:

v

“Writing

applications

for

DB2

Spatial

Extender”

on

page

129

Related

reference:

v

“Invoking

commands

for

setting

up

DB2

Spatial

Extender

and

developing

projects”

on

page

121

v

“ST_register_spatial_column”

on

page

262

Setting

up

spatial

columns

Chapter

9.

Setting

up

spatial

columns

81

|
|
|

Setting

up

spatial

columns

82

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Chapter

10.

Populating

spatial

columns

After

you

create

spatial

columns,

and

register

the

ones

to

be

accessed

by

these

visualization

tools,

you

are

ready

to

populate

the

columns

with

spatial

data.

There

are

three

ways

to

supply

the

data:

import

it;

use

a

geocoder

to

derive

it

from

business

data;

or

use

spatial

functions

to

create

it

or

to

derive

it

from

business

data

or

other

spatial

data.

This

chapter:

v

Discusses

the

concept

and

task

of

importing

spatial

data

to

your

database,

and

the

concept

and

task

of

exporting

spatial

data

to

files

that

applications

can

use.

v

Discusses

geocoding

and

introduces

the

tasks

of

setting

up

geocoding

operations,

setting

up

geocoders

to

run

automatically,

and

running

geocoders

in

batch

mode.

How

to

import

and

export

spatial

data

This

section

discusses

the

concept

of

importing

and

exporting

data,

and

introduces

the

following

tasks:

v

Importing

spatial

data

to

a

new

table,

or

to

an

existing

table

or

view

v

Exporting

spatial

data

to

files

that

applications

can

use

About

importing

and

exporting

spatial

data

You

can

use

DB2®

Spatial

Extender

to

exchange

spatial

data

between

your

database

and

external

data

sources.

More

precisely,

you

can

import

spatial

data

from

external

sources

by

transferring

it

to

your

database

in

files,

called

data

exchange

files.

You

also

can

export

spatial

data

from

your

database

to

data

exchange

files,

from

which

external

sources

can

acquire

it.

This

section

suggests

some

of

the

reasons

for

importing

and

exporting

spatial

data,

and

describes

the

nature

of

the

data

exchange

files

that

DB2

Spatial

Extender

supports.

Reasons

for

importing

and

exporting

spatial

data:

By

importing

spatial

data,

you

can

obtain

a

great

deal

of

spatial

information

that

is

already

available

in

the

industry.

By

exporting

it,

you

can

make

it

available

in

a

standard

file

format

to

existing

applications.

Consider

these

scenarios:

v

Your

database

contains

spatial

data

that

represents

your

sales

offices,

customers,

and

other

business

concerns.

You

want

to

supplement

this

data

with

spatial

data

that

represents

your

organization’s

cultural

environment—cities,

streets,

points

of

interest,

and

so

on.

The

data

that

you

want

is

available

from

a

map

vendor.

You

can

use

DB2

Spatial

Extender

to

import

it

from

a

data

exchange

file

that

the

vendor

supplies.

v

You

want

to

migrate

spatial

data

from

an

Oracle

system

to

your

DB2

environment.

You

proceed

by

using

an

Oracle

utility

to

write

the

data

to

a

data

exchange

file.

You

then

use

DB2

Spatial

Extender

to

import

the

data

from

this

file

to

the

database

that

you

have

enabled

for

spatial

operations.

v

You

are

not

connected

to

DB2,

and

want

to

use

a

geobrowser

to

show

visual

presentations

of

spatial

information

to

customers.

The

browser

needs

only

files

to

work

from;

it

does

not

need

to

be

connected

to

a

database.

You

could

use

DB2

Spatial

Extender

to

export

the

data

to

a

data

exchange

file,

and

then

use

a

browser

to

render

the

data

in

visual

form.

©

Copyright

IBM

Corp.

1998,

2004

83

Shape

files

and

SDE

transfer

files:

DB2

Spatial

Extender

supports

two

types

of

data

exchange

files:

shape

files

and

SDE

transfer

files.

The

term

shape

file

actually

refers

to

a

collection

of

files

with

the

same

file

name

but

different

file

extensions.

The

collection

can

include

up

to

four

files.

They

are:

v

A

file

that

contains

spatial

data

in

shape

format,

a

de

facto

industry-standard

format

developed

by

ESRI.

Such

data

is

often

called

shape

data.

The

extension

of

a

file

containing

shape

data

is

.shp.

v

A

file

that

contains

business

data

that

pertains

to

locations

defined

by

shape

data.

This

file’s

extension

is

.dbf.

v

A

file

that

contains

an

index

to

shape

data.

This

file’s

extension

is

.shx.

v

A

file

that

contains

a

specification

of

the

coordinate

system

on

which

the

data

in

a

.shp

file

is

based.

This

file’s

extension

is

.prj.

Shape

files

are

often

used

for

importing

data

that

originates

in

file

systems,

and

for

exporting

data

to

files

within

file

systems.

When

you

use

DB2

Spatial

Extender

to

import

shape

data,

you

receive

at

least

one

.shp

file.

In

most

cases,

you

receive

one

or

more

of

the

other

three

kinds

of

shape

files

as

well.

SDE

transfer

files

are

often

used

for

importing

data

that

originates

in

ESRI

databases.

Each

file

includes

spatial

data,

a

spatial

reference

system

for

this

data,

and

business

data.

The

spatial

data,

whose

format

is

proprietary

to

ESRI,

is

intended

for

a

table

column

that

has

been

registered

to

the

DB2

Spatial

Extender

catalog.

The

business

data

is

targeted

for

other

columns

in

the

table

to

which

the

registered

column

belongs.

Importing

spatial

data

This

section

provides

an

overview

of

the

tasks

of

importing

shape

data

and

SDE

transfer

data

to

your

database.

The

section

includes

cross-references

to

specifics

that

you

need

to

know

(for

example,

processes

and

parameters)

in

order

to

perform

these

tasks.

Importing

shape

data

to

a

new

or

existing

table

You

can

import

shape

data

to

an

existing

table

or

view,

or

you

can

create

a

table

and

import

shape

data

to

it

in

a

single

operation.

More

specifically,

you

can:

v

Import

the

shape

data

to

a

spatial

column

in

an

existing

table,

an

existing

updateable

view,

or

an

existing

view

on

which

an

INSTEAD

OF

trigger

for

INSERTs

is

defined

v

Automatically

create

a

table

with

a

spatial

column

and

import

the

shape

data

to

this

column

Prerequisites:

Before

you

import

shape

data

to

an

existing

table

or

view,

your

user

ID

must

hold

one

of

the

following

forms

of

authorization:

v

SYSADM

or

DBADM

authority

on

the

database

that

contains

the

table

or

view

v

CONTROL

privilege

on

the

table

or

view

v

The

INSERT

privilege

on

the

table

or

view

Populating

spatial

columns

84

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

v

The

SELECT

privilege

on

the

table

or

view

(required

only

if

the

table

includes

an

ID

column

that

is

not

an

IDENTITY

column)

v

Privileges

to

access

the

directories

to

which

input

files

and

error

files

belong

v

Read

privileges

on

the

input

files

and

write

privileges

on

the

error

files

Before

you

begin

to

create

a

table

automatically

and

import

shape

data

to

it,

your

user

ID

must

hold

the

following

forms

of

authorization:

v

SYSADM,

DBADM,

or

CREATETAB

authority

on

the

database

that

contains

the

table

v

One

of

the

following

permissions:

–

CREATEIN

privilege

on

the

schema

to

which

the

table

belongs

(required

when

the

schema

already

exists)

–

IMPLICIT_SCHEMA

authority

on

the

database

that

contains

the

table

(required

when

the

schema

specified

for

the

table

does

not

actually

exist)
v

Privileges

to

access

the

directories

to

which

input

files

and

error

files

belong

v

Read

privileges

on

the

input

files

and

write

privileges

on

the

error

files

Procedure:

You

can

import

shape

data

in

any

of

the

following

ways:

v

Use

the

Import

Shape

Data

window

of

the

DB2

Control

Center.

v

Issue

the

db2se

import_shape

command.

v

Run

an

application

that

calls

the

db2gse.ST_import_shape

stored

procedure.

Recommendation:

You

can

enhance

the

performance

of

import

processing

by

exploiting

features

available

in

DB2.

For

example,

when

you

import

data

to

an

existing

table

or

to

a

table

that

you

create,

define

the

table

as

NOT

LOGGED

INITIALLY

by

specifying

the

appropriate

table

creation

parameters.

Related

concepts:

v

“About

importing

and

exporting

spatial

data”

on

page

83

Related

tasks:

v

“Importing

SDE

transfer

data

to

a

new

or

existing

table”

on

page

85

v

“Writing

applications

for

DB2

Spatial

Extender”

on

page

129

Related

reference:

v

“Invoking

commands

for

setting

up

DB2

Spatial

Extender

and

developing

projects”

on

page

121

v

“ST_import_shape”

on

page

250

Importing

SDE

transfer

data

to

a

new

or

existing

table

You

can

import

SDE

transfer

data

to

an

existing

table,

or

you

can

create

a

table

and

import

SDE

transfer

data

to

it

in

a

single

operation.

More

specifically,

you

can:

v

Import

SDE

transfer

data

to

an

existing

table

that

includes

a

spatial

column

that

is

already

registered

to

the

DB2

Spatial

Extender

catalog.

The

transfer

data

can

include

spatial

data

for

the

column

and

business

data

for

other

columns

in

the

table.

Populating

spatial

columns

Chapter

10.

Populating

spatial

columns

85

v

Automatically

create

a

table

that

has

a

spatial

column,

register

this

column

to

the

catalog,

and

import

SDE

transfer

data

to

this

column

as

well

as

to

the

table’s

other

columns.

Prerequisites:

Before

you

import

data

to

a

column

in

an

existing

table

or

view,

your

user

ID

must

hold

one

of

the

following

forms

of

authorization:

v

SYSADM

or

DBADM

authority

on

the

database

that

contains

the

table

or

view

v

CONTROL

privilege

on

the

table

or

view

v

Both

the

INSERT

and

SELECT

privileges

on

the

table

or

view

Before

you

initiate

the

operation

to

create

a

table

automatically

and

import

shape

data

to

it,

your

user

ID

must

hold

the

following

forms

of

authorization:

v

Either

SYSADM,

DBADM,

or

CREATETAB

authority

on

the

database

that

contains

the

table

v

One

of

the

following

permissions:

–

CREATEIN

privilege

on

the

schema

to

which

the

table

belongs

(required

when

the

schema

already

exists)

–

IMPLICIT_SCHEMA

authority

on

the

database

that

contains

the

table

(required

when

the

schema

specified

for

the

table

does

not

actually

exist)

Procedure:

You

can

import

SDE

transfer

data

in

any

of

the

following

ways:

v

Use

the

Import

window

of

the

DB2

Control

Center.

v

Issue

the

db2se

import_sde

command.

v

Run

an

application

that

calls

the

db2gse.GSE_import_sde

stored

procedure.

For

information

about

how

to

perform

these

actions,

consult

the

sources

that

are

listed

under

“Related

tasks”

at

the

end

of

this

discussion.

Related

concepts:

v

“About

importing

and

exporting

spatial

data”

on

page

83

Related

tasks:

v

“Importing

shape

data

to

a

new

or

existing

table”

on

page

84

v

“Writing

applications

for

DB2

Spatial

Extender”

on

page

129

Related

reference:

v

“Invoking

commands

for

setting

up

DB2

Spatial

Extender

and

developing

projects”

on

page

121

v

“GSE_import_sde”

on

page

222

Exporting

spatial

data

This

section

provides

an

overview

of

the

tasks

of

exporting

spatial

data

to

shape

and

SDE

transfer

files.

The

section

includes

cross-references

to

specifics

that

you

need

to

know

(for

example,

processes

and

parameters)

in

order

to

perform

these

tasks.

Populating

spatial

columns

86

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Exporting

data

to

a

shapefile

You

can

export

spatial

data

returned

in

query

results

to

a

shapefile.

The

data

might

come

from

sources

such

as

a

base

table,

a

join

or

union

of

multiple

tables,

result

sets

returned

when

you

query

views,

or

output

of

a

spatial

function.

If

a

file

to

which

you

want

to

export

data

exists,

DB2

Spatial

Extender

can

append

the

data

to

this

file.

If

such

a

file

does

not

exist,

you

can

use

DB2

Spatial

Extender

to

create

one.

Prerequisites:

Before

you

can

export

data

to

a

shapefile,

your

user

ID

must

hold

the

following

privileges:

v

The

privilege

to

execute

a

subselect

that

returns

the

results

that

you

want

to

export

v

The

privilege

to

write

to

the

directory

where

the

file

to

which

you

will

be

exporting

data

resides

v

The

privilege

to

create

a

file

to

contain

the

exported

data

(required

if

such

a

file

does

not

already

exist)

To

find

out

what

these

privileges

are

and

how

to

obtain

them,

consult

your

database

administrator.

Procedure:

You

can

export

data

to

a

shapefile

in

any

of

the

following

ways:

v

Initiate

the

export

from

the

Export

Shape

File

window

of

the

DB2

Control

Center.

v

Issue

the

db2se

export_shape

command

from

the

db2se

command

line

processor.

v

Run

an

application

that

calls

the

db2gse.ST_export_shape

stored

procedure.

For

information

about

how

to

perform

these

actions,

consult

the

sources

that

are

listed

under

“Related

tasks”

at

the

end

of

this

discussion.

Exporting

data

to

an

SDE

transfer

file

You

can

export

a

table

that

contains

spatial

data

to

an

SDE

transfer

file.

The

table

cannot

contain

more

than

one

spatial

column.

Moreover,

this

column

must

be

registered

to

the

DB2

Spatial

Extender

catalog.

If

the

table

contains

business

data,

this

data

will

be

exported

along

with

the

spatial

data.

You

can

export

either

all

rows

in

the

table

or

a

subset

of

rows.

To

export

a

subset,

specify

a

WHERE

clause

that

identifies

the

subset.

Prerequisites:

Before

you

can

export

data

to

an

SDE

transfer

file,

your

user

ID

must

hold

the

following

permissions:

v

Either

SYSADM

OR

DBADM

authority.

v

The

SELECT

privilege

on

the

table

that

is

to

be

exported.

v

The

privilege

to

write

to

the

directory

where

the

file

to

which

you

will

be

exporting

data

resides

Populating

spatial

columns

Chapter

10.

Populating

spatial

columns

87

Restrictions:

v

You

can

export

only

one

spatial

column

in

each

export

operation.

v

The

columns

that

you

export

must

have

data

types

that

the

SDE

format

supports.

v

The

table

must

contain

exactly

one

spatial

column.

v

This

column

must

be

registered

to

the

DB2

Spatial

Extender

catalog.

v

You

cannot

append

to

existing

SDE

files.

Procedure:

You

can

export

spatial

and

business

data

to

an

SDE

transfer

file

in

any

of

the

following

ways:

v

Use

the

Export

SDE

Files

window

of

the

DB2

Control

Center.

v

Issue

the

db2se

export_sde

command.

v

Run

an

application

that

calls

the

db2gse.GSE_export_sde

stored

procedure.

Related

concepts:

v

“About

importing

and

exporting

spatial

data”

on

page

83

Related

tasks:

v

“Writing

applications

for

DB2

Spatial

Extender”

on

page

129

Related

reference:

v

“Invoking

commands

for

setting

up

DB2

Spatial

Extender

and

developing

projects”

on

page

121

v

“GSE_export_sde”

on

page

220

How

to

use

a

geocoder

This

section

discusses

the

concept

of

geocoding

and

introduces

the

following

tasks:

v

Defining

the

work

that

you

want

a

geocoder

to

do;

for

example,

specifying

how

may

records

the

geocoder

should

process

before

a

commit

is

issued

v

Setting

up

a

geocoder

to

geocode

data

as

soon

as

the

data

is

added

to,

or

updated

in,

a

table.

v

Running

a

geocoder

in

batch

mode

Geocoders

and

geocoding

The

terms

geocoder

and

geocoding

are

used

in

several

contexts.

This

discussion

sorts

out

these

contexts,

so

that

the

terms’

meanings

can

be

clear

each

time

you

come

across

the

terms.

The

discussion

defines

geocoder

and

geocoding,

describes

the

modes

in

which

a

geocoder

operates,

describes

a

larger

activity

to

which

geocoding

belongs,

and

summarizes

users’

tasks

that

pertain

to

geocoding.

In

DB2®

Spatial

Extender,

a

geocoder

is

a

scalar

function

that

translates

existing

data

(the

function’s

input)

into

data

that

you

can

understand

in

spatial

terms

(the

function’s

output).

Typically,

the

existing

data

is

relational

data

that

describes

or

names

a

location.

For

example,

the

geocoder

that

is

shipped

with

DB2

Spatial

Extender,

DB2SE_USA_GEOCODER,

translates

United

States

addresses

into

ST_Point

data.

DB2

Spatial

Extender

can

support

vendor-supplied

and

user-supplied

geocoders

as

well;

and

their

input

and

output

need

not

be

like

that

of

DB2SE_USA_GEOCODER.

To

illustrate:

One

vendor-supplied

geocoder

might

Populating

spatial

columns

88

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

translate

addresses

into

coordinates

that

DB2

does

not

store,

but

rather

writes

to

a

file.

Another

might

be

able

to

translate

the

number

of

an

office

in

a

commercial

building

into

coordinates

that

define

office’s

location

in

the

building,

or

to

translate

the

identifier

of

a

shelf

in

a

warehouse

into

coordinates

that

define

the

shelf’s

location

in

the

warehouse.

In

other

cases,

the

existing

data

that

a

geocoder

translates

might

be

spatial

data.

For

example,

a

user-supplied

geocoder

might

translate

X

and

Y

coordinates

into

data

that

conforms

to

one

of

DB2

Spatial

Extender’s

data

types.

In

DB2

Spatial

Extender,

geocoding

is

simply

the

operation

in

which

a

geocoder

translates

its

input

into

output—translating

addresses

into

coordinates,

for

example.

Modes:

A

geocoder

operates

in

two

modes:

v

In

batch

mode,

a

geocoder

attempts,

in

a

single

operation,

to

translate

all

its

input

from

a

single

table.

For

example,

in

batch

mode,

DB2SE_USA_GEOCODER

attempts

to

translate

all

the

addresses

in

a

single

table

(or,

alternatively,

all

addresses

in

a

specified

subset

of

rows

in

the

table).

v

In

automatic

mode,

a

geocoder

translates

data

as

soon

as

it

is

inserted

or

updated

in

a

table.

The

geocoder

is

activated

by

INSERT

and

UPDATE

triggers

that

are

defined

on

the

table.

Geocoding

processes:

Geocoding

is

one

of

several

operations

by

which

the

contents

of

a

spatial

column

in

a

DB2

table

are

derived

from

other

data.

This

discussion

refers

to

these

operations

collectively

as

a

geocoding

process.

Geocoding

processes

can

vary

from

geocoder

to

geocoder.

For

example,

DB2SE_USA_GEOCODER

searches

files

of

known

addresses

to

determine

whether

each

address

it

receives

as

input

matches

a

known

address

to

a

given

degree.

Because

the

known

addresses

are

like

reference

material

that

people

look

up

when

they

do

research,

these

addresses

are

collectively

called

reference

data.

Other

geocoders

might

not

need

reference

data;

they

might

verify

their

input

in

other

ways.

The

geocoding

process

that

DB2SE_USA_GEOCODER

participates

in

is

as

follows:

1.

DB2SE_USA_GEOCODER

performs

operations

that

it

has

been

designed

to

carry

out:

a.

DB2SE_USA_GEOCODER

parses

each

address

that

it

receives

as

input.

b.

DB2SE_USA_GEOCODER

searches

the

reference

data

for

street

names

that,

to

a

certain

degree,

resemble

the

street

name

in

the

parsed

address.

It

confines

its

search

to

streets

within

the

area

designated

by

the

address’s

zip

code.

c.

If

the

search

is

successful,

DB2SE_USA_GEOCODER

determines

whether

any

address

on

the

streets

it

has

found

match

the

parsed

address

to

a

certain

degree.

d.

If

DB2SE_USA_GEOCODER

finds

a

match,

it

geocodes

the

parsed

address.

Otherwise,

it

returns

a

null.
2.

If

DB2SE_USA_GEOCODER

geocodes

the

parsed

address,

DB2

puts

the

resulting

coordinates

in

a

designated

spatial

column.

3.

If

DB2SE_USA_GEOCODER

is

geocoding

in

batch

mode,

DB2

Spatial

Extender

issues

a

commit

either

(a)

every

time

DB2SE_USA_GEOCODER

finishes

Populating

spatial

columns

Chapter

10.

Populating

spatial

columns

89

processing

a

certain

number

of

input

records

or

(b)

after

DB2SE_USA_GEOCODER

finishes

processing

all

of

its

input.

The

user’s

tasks:

In

DB2

Spatial

Extender,

the

tasks

that

pertain

to

geocoding

are:

v

Prescribing

how

certain

parts

of

the

geocoding

process

should

be

executed

for

a

given

spatial

column;

for

example,

setting

the

minimum

degree

to

which

street

names

in

input

records

and

street

names

in

reference

data

should

match;

setting

the

minimum

degree

to

which

addresses

in

input

records

and

addresses

in

reference

data

should

match;

and

determining

how

many

records

should

be

processed

before

each

commit.

This

task

can

be

referred

to

as

setting

up

geocoding

or

setting

up

geocoding

operations.

v

Specifying

that

data

should

be

automatically

geocoded

each

time

that

it

is

added

to,

or

updated

in,

a

table.

When

automatic

geocoding

occurs,

the

instructions

that

the

user

specified

when

he

or

she

set

up

geocoding

operations

will

take

effect

(except

for

the

instructions

involving

commits;

they

apply

only

to

batch

geocoding).

This

task

is

referred

to

as

setting

up

a

geocoder

to

run

automatically.

v

Running

a

geocoder

in

batch

mode.

If

the

user

has

set

up

geocoding

operations

already,

his

or

her

instructions

will

remain

in

effect

during

each

batch

session,

unless

the

user

overrides

them.

If

the

user

has

not

set

up

geocoding

operations

before

a

given

session,

the

user

can

specify

that

they

should

take

effect

set

them

up

for

that

particular

session.

This

task

can

be

referred

to

as

running

a

geocoder

in

batch

mode

and

running

geocoding

in

batch

mode.

Setting

up

geocoding

operations

DB2

Spatial

Extender

lets

you

set,

in

advance,

the

work

that

needs

to

be

done

when

a

geocoder

is

invoked.

For

example,

you

can

specify:

v

What

column

the

geocoder

is

to

provide

data

for.

v

Whether

the

input

that

the

geocoder

reads

from

a

table

or

view

should

be

limited

to

a

subset

of

rows

in

the

table

or

view.

v

The

range

or

number

of

records

that

the

geocoder

should

geocode

in

batch

sessions

within

a

unit

of

work

v

Requirements

for

geocoder-specific

operations.

For

example,

DB2SE_USA_GEOCODER

can

geocode

only

those

records

that

match

their

counterparts

in

the

reference

data

to

a

specified

degree

or

higher.

This

degree

is

called

the

minimum

match

score.

You

must

specify

the

parameters

described

in

the

foregoing

before

you

set

up

the

geocoder

to

run

in

automatic

mode.

From

then

on,

each

time

the

geocoder

is

invoked

(not

only

automatically,

but

also

for

batch

runs),

geocoding

operations

will

be

performed

in

accordance

with

your

specifications.

For

example,

if

you

specify

that

45

records

should

be

geocoded

in

batch

mode

within

each

unit

of

work,

a

commit

will

be

issued

after

every

forty-fifth

record

is

geocoded.

(Exception:

you

can

override

your

specifications

for

individual

sessions

of

batch

geocoding.)

You

do

not

have

to

establish

defaults

for

geocoding

operations

before

you

run

the

geocoder

in

batch

mode.

Rather,

at

the

time

that

you

initiate

a

batch

session,

you

can

specify

how

the

operations

are

to

be

performed

for

the

length

of

the

run.

If

you

do

establish

defaults

for

batch

sessions,

you

can

override

them,

as

needed,

for

individual

sessions.

Prerequisites:

Populating

spatial

columns

90

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Before

you

can

set

geocoding

operations

for

a

particular

geocoder,

your

user

ID

must

hold

one

of

the

following

forms

of

authorization:

v

SYSADM

or

DBADM

authority

on

the

database

that

contains

the

tables

that

the

geocoder

will

operate

on

v

The

SELECT

privilege

and

the

CONTROL

or

UPDATE

privilege

on

each

table

that

the

geocoder

operates

on

Procedure:

You

can

set

up

geocoding

operations

in

any

of

the

following

ways:

v

Invoke

it

from

the

Set

Up

Geocoding

window

of

the

DB2

Control

Center.

v

Issue

the

db2se

setup_gc

command.

v

Run

an

application

that

calls

the

db2gse.ST_setup_geocoding

stored

procedure.

For

information

about

how

to

perform

these

actions,

consult

the

sources

that

are

listed

under

“Related

tasks”

at

the

end

of

this

discussion.

Recommendations:

v

When

DB2SE_USA_GEOCODER

reads

a

record

of

address

data,

it

tries

to

match

that

record

with

a

counterpart

in

the

reference

data.

In

broad

outline,

the

way

it

proceeds

is

as

follows:

First,

it

searches

the

reference

data

for

streets

whose

zip

code

is

the

same

as

the

zip

code

in

the

record.

If

it

finds

a

street

name

that

is

similar

to

the

one

in

the

record

to

a

certain

minimum

degree,

or

to

a

degree

higher

than

this

minimum,

it

goes

on

to

look

for

an

entire

address.

If

it

finds

an

entire

address

that

is

similar

to

the

one

in

the

record

to

a

certain

minimum

degree,

or

to

a

degree

higher

than

this

minimum,

it

geocodes

the

record.

If

it

does

not

find

such

an

address,

it

returns

a

null.

The

minimum

degree

to

which

the

street

names

must

match

is

referred

to

as

spelling

sensitivity.

The

minimum

degree

to

which

the

entire

addresses

must

match

is

called

the

minimum

match

score.

For

example,

if

the

spelling

sensitivity

is

80,

then

the

match

between

the

street

names

must

be

at

least

80

percent

accurate

before

the

geocoder

will

search

for

the

entire

address.

If

the

minimum

match

score

is

60,

then

the

match

between

the

addresses

must

be

at

least

60

percent

accurate

before

the

geocoder

will

geocode

the

record.

You

can

specify

what

the

spelling

sensitivity

and

minimum

match

score

should

be.

Be

aware

that

you

might

need

to

adjust

them.

For

example,

suppose

that

the

spelling

sensitivity

and

minimum

match

score

are

both

95.

If

the

addresses

that

you

want

geocoded

have

not

been

carefully

validated,

matches

of

95

percent

accuracy

are

highly

unlikely.

As

a

result,

the

geocoder

is

likely

to

return

a

null

when

it

processes

these

records.

In

such

a

case,

it

is

advisable

to

lower

the

spelling

sensitivity

and

minimum

match

score,

and

run

the

geocoder

again.

Recommended

scores

for

spelling

sensitivity

and

the

minimum

match

score

are

70

and

60,

respectively.

v

As

noted

at

the

start

of

this

discussion,

you

can

determine

whether

the

input

that

the

geocoder

reads

from

a

table

or

view

should

be

limited

to

a

subset

of

rows

in

the

table

or

view.

For

example,

consider

the

following

scenarios:

–

You

invoke

the

geocoder

to

geocode

addresses

in

a

table

in

batch

mode.

Unfortunately,

the

minimum

match

score

is

too

high,

causing

the

geocoder

to

return

a

null

when

it

processes

most

of

the

addresses.

You

reduce

the

minimum

match

score

when

you

run

the

geocoder

again.

To

limit

its

input

to

those

addresses

that

were

not

geocoded,

you

specify

that

it

should

select

only

those

rows

that

contain

the

null

that

it

had

returned

earlier.

–

The

geocoder

selects

only

rows

that

were

added

after

a

certain

date.

Populating

spatial

columns

Chapter

10.

Populating

spatial

columns

91

|

–

The

geocoder

selects

only

rows

that

contain

addresses

in

a

particular

area;

for

example,

a

block

of

counties

or

a

state.
v

As

noted

at

the

start

of

this

discussion,

you

can

determine

the

number

of

records

that

the

geocoder

should

process

in

batch

sessions

within

a

unit

of

work.

You

can

have

the

geocoder

process

the

same

number

of

records

in

each

unit

of

work,

or

you

can

have

it

process

all

the

records

of

a

table

within

a

single

unit

of

work.

If

you

choose

the

latter

alternative,

be

aware

that:

–

You

have

less

control

over

the

size

of

the

unit

of

work

than

the

former

alternative

affords.

Consequently,

you

cannot

control

how

many

locks

are

held

or

how

many

log

entries

are

made

as

the

geocoder

operates.

–

If

the

geocoder

encounters

an

error

that

necessitates

a

rollback,

you

need

to

run

the

geocoder

to

run

against

all

the

records

again.

The

resulting

cost

in

resources

can

be

expensive

if

the

table

is

extremely

large

and

the

error

and

rollback

occur

after

most

records

have

been

processed.

Setting

up

a

geocoder

to

run

automatically

You

can

set

up

a

geocoder

to

automatically

translate

data

as

soon

as

the

data

is

added

to,

or

updated

in,

a

table.

Prerequisites:

Before

you

can

set

up

a

geocoder

to

run

automatically:

v

You

must

set

up

geocoding

operations

for

each

spatial

column

that

is

to

be

populated

by

output

from

the

geocoder.

v

Your

user

ID

must

hold

the

following

forms

of

authorization:

–

SYSADM

or

DBADM

authority

on

the

database

that

contains

the

table

on

which

triggers

to

invoke

the

geocoder

will

be

defined

–

One

or

more

privileges

on

this

table:

-

The

CONTROL

privilege.

-

If

you

do

not

have

the

CONTROL

privilege,

you

need

the

ALTER,

SELECT,

and

UPDATE

privileges.
–

The

privileges

required

to

create

triggers

on

this

table.

Procedure:

There

are

three

ways

to

set

up

automatic

geocoding:

v

Do

so

from

either

the

Set

Up

Geocoding

window

or

the

Geocoding

window

of

the

DB2

Control

Center.

v

Issue

the

db2se

enable_autogc

command.

v

Run

an

application

that

calls

the

db2gse.ST_enable_autogeocoding

stored

procedure.

For

information

about

how

to

perform

these

actions,

consult

the

sources

that

are

listed

under

“Related

tasks”

at

the

end

of

this

discussion.

Recommendations:

v

You

can

set

up

a

geocoder

to

run

automatically

before

you

invoke

it

in

batch

mode.

Therefore,

it

is

possible

for

automatic

geocoding

to

precede

batch

geocoding.

If

that

happens,

the

batch

geocoding

is

likely

to

involve

processing

the

same

data

that

was

processed

automatically.

This

redundancy

will

not

result

Populating

spatial

columns

92

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

in

duplicate

data,

because

when

spatial

data

is

produced

twice,

the

second

yield

of

data

overrides

the

first.

However,

it

can

degrade

performance.

v

Before

you

decide

whether

to

geocode

the

address

data

within

a

table

in

batch

mode

or

automatic

mode,

consider

that:

–

Performance

is

better

in

batch

geocoding

than

in

automatic

geocoding.

A

batch

session

opens

with

one

initialization

and

ends

with

one

cleanup.

In

automatic

geocoding,

each

data

item

is

geocoded

in

a

single

operation

that

begins

with

initialization

and

concludes

with

cleanup.

–

On

the

whole,

a

spatial

column

populated

by

means

of

automatic

geocoding

is

likely

to

be

more

up

to

date

than

a

spatial

column

populated

by

means

of

batch

geocoding.

After

a

batch

session,

address

data

can

accumulate

and

remain

ungeocoded

until

the

next

session.

But

if

automatic

geocoding

is

already

enabled,

address

data

is

geocoded

as

soon

as

it

is

stored

in

the

database.

Running

a

geocoder

in

batch

mode

You

can

invoke

a

geocoder

to

run

in

batch

mode;

that

is,

to

attempt,

in

a

single

operation,

to

translate

multiple

records

into

spatial

data

that

is

to

go

into

a

specific

column.

At

any

time

before

you

run

a

geocoder

to

populate

a

particular

spatial

column,

you

can

set

up

geocoding

operations

for

that

column.

Setting

up

the

operations

involves

specifying

how

certain

requirements

are

to

be

met

when

the

geocoder

is

run.

For

example,

suppose

that

you

require

DB2

Spatial

Extender

to

issue

a

commit

after

every

100

input

records

are

processed

by

the

geocoder.

When

you

set

up

the

operations,

you

would

specify

100

as

the

required

number.

When

you

are

ready

to

run

the

geocoder,

you

can

override

any

of

the

values

that

you

specified

when

you

set

up

operations.

Your

overrides

will

remain

in

effect

only

for

the

length

of

the

run.

If

you

do

not

set

up

operations,

you

must,

each

time

you

are

ready

to

run

the

geocoder,

specify

how

the

requirements

are

to

be

met

during

the

run.

Prerequisites:

Before

you

can

run

a

geocoder

in

batch

mode,

your

user

ID

must

hold

one

of

the

following

forms

of

authorization:

v

SYSADM

or

DBADM

authority

on

the

database

that

contains

the

table

whose

data

is

to

be

geocoded

v

The

CONTROL

or

UPDATE

privilege

on

this

table

v

You

also

need

the

SELECT

privilege

on

this

table,

so

that

you

can

specify

the

number

of

records

to

be

processed

before

each

commit.

If

you

specify

WHERE

clauses

to

limit

the

rows

on

which

the

geocoder

is

to

operate,

you

might

also

require

the

SELECT

privilege

on

any

tables

and

views

that

you

reference

in

these

clauses.

Ask

your

database

administrator.

Restrictions:

Procedure:

Populating

spatial

columns

Chapter

10.

Populating

spatial

columns

93

You

can

invoke

a

geocoder

to

run

in

batch

mode

in

any

of

the

following

ways:

v

Invoke

it

from

the

Run

Geocoding

window

of

the

DB2

Control

Center.

v

Issue

the

db2se

run_gc

command.

v

Run

an

application

that

calls

the

db2gse.ST_run_geocoding

stored

procedure.

Populating

spatial

columns

94

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Chapter

11.

Using

indexes

and

views

to

access

spatial

data

Before

you

query

spatial

columns,

you

can

create

indexes

and

views

that

will

facilitate

access

to

them.

This

chapter:

v

Describes

the

nature

of

the

indexes

that

Spatial

Extender

uses

to

expedite

access

to

spatial

data

v

Explains

how

to

create

such

indexes

v

Explains

how

to

use

views

to

access

spatial

data

Types

of

spatial

indexes

Good

query

performance

is

related

to

having

efficient

indexes

defined

on

the

columns

of

the

base

tables

in

a

database.

The

performance

of

the

query

is

directly

related

to

how

quickly

values

in

the

column

can

be

found

during

the

query.

Queries

that

use

an

index

can

execute

more

quickly

and

can

provide

a

significant

performance

improvement.

Spatial

queries

are

typically

queries

that

involve

two

or

more

dimensions.

For

example,

in

a

spatial

query

you

might

want

to

know

if

a

point

is

included

within

an

area

(polygon).

Due

to

the

multidimensional

nature

of

spatial

queries,

the

DB2®

native

B-tree

indexing

is

inefficient

for

these

queries.

Spatial

queries

can

use

the

following

types

of

indexes:

v

Spatial

grid

indexes

DB2

Spatial

Extender’s

indexing

technology

utilizes

grid

indexing,

which

is

designed

to

index

multi-dimensional

spatial

data,

to

index

spatial

columns.

DB2

Spatial

Extender

provides

a

grid

index

that

is

optimized

for

two-dimensional

data

on

a

flat

projection

of

the

Earth.

v

Geodetic

Voronoi

indexes

DB2

Geodetic

Extender

provides

support

for

a

new

spatial

access

method

that

enables

you

to

create

indexes

on

columns

containing

multi-dimensional

geodetic

data.

A

geodetic

Voronoi

index

is

more

suitable

than

a

grid

index

for

geodetic

data

because

it

treats

the

Earth

as

a

continuous

sphere

with

no

distortions

around

the

poles

or

edges

at

the

180th

meridian.

Related

concepts:

v

“Geodetic

Voronoi

indexes”

on

page

171

v

“Spatial

grid

indexes”

on

page

96

Related

tasks:

v

“Creating

geodetic

Voronoi

indexes”

on

page

174

v

“Creating

spatial

grid

indexes”

on

page

102

Related

reference:

v

“Functions

that

use

indexes

to

optimize

queries”

on

page

118

©

Copyright

IBM

Corp.

1998,

2004

95

|

|
|
|
|
|

|
|
|
|

|

|

|
|
|
|

|

|
|
|
|
|

|

|

|

|

|

|

|

|

Spatial

grid

indexes

Indexes

improve

application

query

performance,

especially

when

the

queried

table

or

tables

contain

many

rows.

If

you

create

appropriate

indexes

that

the

query

optimizer

chooses

to

run

your

query,

you

can

greatly

reduce

the

number

of

rows

to

process.

DB2

Spatial

Extender

provides

a

grid

index

that

is

optimized

for

two

dimensional

data.

The

index

is

created

on

the

X

and

Y

dimensions

of

a

geometry.

The

following

aspects

of

a

grid

index

are

helpful

to

understand:

v

The

generation

of

the

index

v

The

use

of

spatial

functions

in

a

query

v

How

a

query

uses

a

spatial

grid

index

Generation

of

spatial

grid

indexes

Spatial

Extender

generates

a

spatial

grid

index

using

the

minimum

bounding

rectangle

(MBR)

of

a

geometry.

For

most

geometries,

the

MBR

is

a

rectangle

that

surrounds

the

geometry.

For

more

details

about

MBRs,

see

“ST_MBR”

on

page

417.

A

spatial

grid

index

divides

a

region

into

logical

square

grids

with

a

fixed

size

that

you

specify

when

you

create

the

index.

The

spatial

index

is

constructed

on

a

spatial

column

by

making

one

or

more

entries

for

the

intersections

of

each

geometry’s

MBR

with

the

grid

cells.

An

index

entry

consists

of

the

grid

cell

identifier,

the

geometry

MBR,

and

the

internal

identifier

of

the

row

that

contains

the

geometry.

You

can

define

up

to

three

spatial

index

levels

(grid

levels).

Using

several

grid

levels

is

beneficial

because

it

allows

you

to

optimize

the

index

for

different

sizes

of

spatial

data.

For

more

information,

see

“Considerations

for

number

of

index

levels

and

grid

sizes”

on

page

98.

If

a

geometry

intersects

four

or

more

grid

cells,

the

geometry

is

promoted

to

the

next

larger

level.

In

general,

the

larger

geometrys

will

be

indexed

at

the

larger

levels.

If

a

geometry

intersects

10

or

more

grid

cells

at

the

largest

grid

size,

a

system-defined

overflow

index

level

is

used.

This

overflow

level

prevents

the

generation

of

too

many

index

entries.

For

best

performance,

define

your

grid

sizes

to

avoid

the

use

of

this

overflow

level.

For

example,

if

multiple

grid

levels

exist,

the

indexing

algorithm

attempts

to

use

the

lowest

grid

level

possible

to

provide

the

finest

resolution

for

the

indexed

data.

When

a

geometry

intersects

more

than

four

grid

cells

at

a

given

level,

it

is

promoted

to

the

next

higher

level,

(provided

that

there

is

another

level).

Therefore,

a

spatial

index

that

has

the

three

grid

levels

of

10.0,

100.0,

and

1000.0

will

first

intersect

each

geometry

with

the

level

10.0

grid.

If

a

geometry

intersects

with

more

than

four

grid

cells

of

size

10.0,

it

is

promoted

and

intersected

with

the

level

100.0

grid.

If

more

than

four

intersections

result

at

the

100.0

level,

the

geometry

is

promoted

to

the

1000.0

level.

If

more

than

10

intersections

result

at

the

1000.0

level,

the

geometry

is

indexed

in

the

overflow

level.

Use

of

spatial

functions

in

a

query

The

DB2

UDB

optimizer

considers

a

spatial

grid

index

for

use

when

a

query

contains

one

the

following

functions

in

its

WHERE

clause:

Using

indexes

and

views

96

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|
|
|

|

|

|

|

|

|

|
|

|
|
|

|

|
|
|
|

|
|
|
|
|
|
|

|
|

v

ST_Contains

v

ST_Crosses

v

ST_Distance

v

ST_EnvIntersects

v

EnvelopesIntersect

v

ST_Equals

v

ST_Intersects

v

ST_MBRIntersects

v

ST_Overlaps

v

ST_Touches

v

ST_Within

For

more

information,

see

“Functions

that

use

indexes

to

optimize

queries”

on

page

118.

How

a

query

uses

a

spatial

grid

index

When

the

query

optimizer

chooses

a

spatial

grid

index,

the

query

execution

uses

the

following

multiple-step

filter

process:

1.

Determine

the

grid

cells

that

intersect

the

query

window.

The

query

window

is

the

geometry

that

you

are

interested

in

and

that

you

specify

as

the

second

parameter

in

a

spatial

function

(see

examples

below).

2.

Scan

the

index

for

entries

that

have

matching

grid

cell

identifiers.

3.

Compare

the

geometry

MBR

values

in

the

index

entries

with

the

query

window

and

discard

any

values

that

are

outside

the

query

window.

4.

Perform

further

analysis

as

appropriate.

The

candidate

set

of

geometries

from

the

previous

steps

might

undergo

further

analysis

to

determine

if

they

satisfy

the

spatial

function

(ST_Contains,

ST_Distance,

and

so

on).

The

spatial

function

EnvelopesIntersect

omits

this

step

and

typically

has

the

best

performance.

The

following

examples

of

spatial

queries

have

a

spatial

grid

index

on

the

column

C.GEOMETRY:

SELECT

name

FROM

counties

AS

c

WHERE

EnvelopesIntersect(c.geometry,

-73.0,

42.0,

-72.0,

43.0,

1)

=

1

SELECT

name

FROM

counties

AS

c

WHERE

ST_Intersects(c.geometry,

:geometry2)

=

1

In

the

first

example,

the

four

coordinate

values

define

the

query

window.

These

coordinate

values

specify

the

lower-left

and

upper-right

corners

(42.0

–73.0

and

43.0

–72.0)

of

a

rectangle.

In

the

second

example,

Spatial

Extender

computes

the

MBR

of

the

geometry

specified

by

the

host

variable

:geometry2

and

uses

it

as

the

query

window.

When

you

create

a

spatial

grid

index,

you

should

specify

appropriate

grid

sizes

for

the

most

common

query

window

sizes

that

your

spatial

application

is

likely

to

use.

If

a

grid

size

is

larger,

index

entries

for

geometries

that

are

outside

of

the

query

window

must

be

scanned

because

they

reside

in

grid

cells

that

intersect

the

query

window,

and

these

extra

scans

degrade

performance.

However,

a

smaller

grid

size

might

generate

more

index

entries

for

each

geometry

and

more

index

entries

must

be

scanned,

which

also

degrades

query

performance.

Using

indexes

and

views

Chapter

11.

Using

indexes

and

views

to

access

spatial

data

97

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|
|
|

|

|
|

|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|

DB2

Spatial

Extender

provides

an

Index

Advisor

utility

that

analyzes

the

spatial

column

data

and

suggests

appropriate

grid

sizes

for

typical

query

window

sizes.

For

more

information,

see

“Determining

grid

sizes

for

a

spatial

grid

index”

on

page

106.

Related

concepts:

v

“Considerations

for

number

of

index

levels

and

grid

sizes”

on

page

98

v

“Types

of

spatial

indexes”

on

page

95

v

“Tuning

spatial

grid

indexes

with

the

Index

Advisor—Overview”

on

page

106

Related

tasks:

v

“Creating

spatial

grid

indexes”

on

page

102

Related

reference:

v

“CREATE

INDEX

statement

for

a

spatial

grid

index”

on

page

104

Considerations

for

number

of

index

levels

and

grid

sizes

Use

the

Index

Advisor

to

determine

appropriate

grid

sizes

for

your

spatial

grid

indexes

because

it

is

the

best

way

to

tune

the

indexes

and

make

your

spatial

queries

most

efficient.

This

section

provides

concepts

to

help

you

understand

the

effects

of

different

grid

levels

and

sizes.

Number

of

grid

levels

You

can

have

up

to

three

grid

levels.

However,

for

each

grid

level

in

a

spatial

grid

index,

a

separate

index

search

is

performed

during

a

spatial

query.

Therefore,

if

you

have

more

grid

levels,

your

query

is

less

efficient.

If

the

values

in

the

spatial

column

are

about

the

same

relative

size,

use

a

single

grid

level.

However,

a

typical

spatial

column

does

not

contain

geometries

of

the

same

relative

size,

but

geometries

in

a

spatial

column

can

be

grouped

according

to

size.

You

should

correspond

your

grid

levels

with

these

geometry

groupings.

For

example,

suppose

you

have

a

table

of

county

land

parcels

with

a

spatial

column

that

contains

groupings

of

small

urban

parcels

surrounded

by

larger

rural

parcels.

Because

the

sizes

of

the

parcels

can

be

grouped

into

two

groups

(small

urban

ones

and

larger

rural

ones),

you

would

specify

two

grid

levels

for

the

spatial

grid

index.

Grid

cell

sizes

The

general

rule

is

to

decrease

the

grid

sizes

as

much

as

possible

to

get

the

finest

resolution

while

minimizing

the

number

of

index

entries.

v

A

small

value

should

be

used

for

the

finest

grid

size

to

optimize

the

overall

index

for

small

geometries

in

the

column.

This

avoids

the

overhead

of

evaluating

geometries

that

are

not

within

the

search

area.

However,

the

finest

grid

size

also

produces

the

highest

number

of

index

entries.

Consequently,

the

number

of

index

entries

processed

at

query

time

increases,

as

does

the

amount

of

storage

needed

for

the

index.

These

factors

reduce

overall

performance.

v

Using

larger

grid

sizes,

the

index

can

be

optimized

further

for

larger

geometries.

The

larger

grid

sizes

produce

fewer

index

entries

for

large

geometries

than

the

finest

grid

size

would.

Consequently,

storage

requirements

for

the

index

are

reduced,

increasing

overall

performance.

Using

indexes

and

views

98

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|
|
|

|
|

|
|
|

|
|

The

following

figures

show

the

effects

of

different

grid

sizes.

Figure

13

shows

a

map

of

land

parcels,

each

parcel

represented

by

a

polygon

geometry.

The

black

rectangle

represents

a

query

window.

Suppose

you

want

to

find

all

of

the

geometries

whose

MBR

intersects

the

query

window.

Figure

13

shows

that

28

geometries

(highlighted

in

pink)

have

an

MBR

that

intersects

the

query

window.

Figure

14

on

page

100

shows

a

small

grid

size

(25)

that

provides

a

close

fit

to

the

query

window.

v

The

query

returns

only

the

28

geometries

that

are

highlighted,

but

the

query

must

examine

and

discard

three

additional

geometries

whose

MBRs

intersect

the

query

window.

v

This

small

grid

size

results

in

many

index

entries

per

geometry.

During

execution,

the

query

accesses

all

index

entries

for

these

31

geometries.

Figure

14

on

page

100

shows

256

grid

cells

that

overlay

the

query

window.

However,

the

query

execution

accesses

578

index

entries

because

many

geometries

are

indexed

with

the

same

grid

cells.

For

this

query

window,

this

small

grid

size

results

in

an

excessive

number

of

index

entries

to

scan.

Figure

13.

Land

parcels

in

a

neighborhood

Using

indexes

and

views

Chapter

11.

Using

indexes

and

views

to

access

spatial

data

99

|
|
|
|
|

Figure

15

on

page

101

shows

a

large

grid

size

(400)

that

encompasses

a

considerably

larger

area

with

many

more

geometries

than

the

query

window.

v

This

large

grid

size

results

in

only

one

index

entry

per

geometry,

but

the

query

must

examine

and

discard

59

additional

geometries

whose

MBRs

intersect

the

grid

cell.

v

During

execution,

the

query

accesses

all

index

entries

for

the

28

geometries

that

intersect

the

query

window,

plus

the

index

entries

for

the

59

additional

geometries,

for

a

total

of

112

index

entries.

For

this

query

window,

this

large

grid

size

results

in

an

excessive

number

of

geometries

to

examine.

Figure

14.

Small

grid

size

(25)

on

land

parcels

Using

indexes

and

views

100

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|

Figure

16

on

page

102

shows

a

medium

grid

size

(100)

that

provides

a

close

fit

to

the

query

window.

v

The

query

returns

only

the

28

geometries

that

are

highlighted,

but

the

query

must

examine

and

discard

five

additional

geometries

whose

MBRs

intersect

the

query

window.

v

During

execution,

the

query

accesses

all

index

entries

for

the

28

geometries

that

intersect

the

query

window,

plus

the

index

entries

for

the

5

additional

geometries,

for

a

total

of

91

index

entries.

For

this

query

window,

this

medium

grid

size

is

the

best

because

it

results

in

significantly

fewer

index

entries

than

the

small

grid

size

and

the

query

examines

fewer

additional

geometries

than

the

large

grid

size.

Figure

15.

Large

grid

size

(400)

on

land

parcels

Using

indexes

and

views

Chapter

11.

Using

indexes

and

views

to

access

spatial

data

101

|
|

|
|
|

|
|
|

|
|
|
|

Related

concepts:

v

“Spatial

grid

indexes”

on

page

96

v

“Tuning

spatial

grid

indexes

with

the

Index

Advisor—Overview”

on

page

106

Related

tasks:

v

“Determining

grid

sizes

for

a

spatial

grid

index”

on

page

106

v

“Analyzing

spatial

grid

index

statistics”

on

page

108

v

“Creating

spatial

grid

indexes”

on

page

102

Related

reference:

v

“Functions

that

use

indexes

to

optimize

queries”

on

page

118

Creating

spatial

grid

indexes

You

create

spatial

grid

indexes

to

improve

the

performance

of

queries

on

spatial

columns.

When

you

create

a

spatial

grid

index,

you

give

it

the

following

information:

v

A

name

v

The

name

of

the

spatial

column

on

which

it

is

to

be

defined

v

The

grid

sizes

(see

“Spatial

grid

indexes”

on

page

96).

The

combination

of

the

three

grid

sizes

helps

optimize

performance

by

minimizing

the

total

number

of

index

entries

and

the

number

of

index

entries

that

need

to

be

scanned

to

satisfy

a

query.

Prerequisites:

Before

you

create

a

spatial

grid

index:

Figure

16.

Medium

grid

size

(100)

on

land

parcels

Using

indexes

and

views

102

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|

|
|
|
|

v

Your

user

ID

must

hold

the

authorizations

that

are

needed

for

the

DB2

SQL

CREATE

INDEX

statement.

The

user

ID

must

have

at

least

one

of

the

following

authorities

or

privileges:

–

SYSADM

or

DBADM

authority

on

the

database

where

the

table

that

has

the

column

resides

–

Both

of

the

following

authorities

or

privileges:

-

One

of

the

following

table

privileges:

v

CONTROL

privilege

on

the

table

v

INDEX

privilege

on

the

table
-

One

of

the

following

authorizations

or

privileges

on

the

schema:

v

IMPLICIT_SCHEMA

authority

on

the

database,

if

the

implicit

or

explicit

schema

of

the

index

does

not

exist

v

CREATEIN

privilege

on

the

schema,

if

the

schema

name

of

the

index

refers

to

an

existing

schema
v

You

must

know

the

values

that

you

want

to

specify

for

the

fully

qualified

spatial

grid

index

name

and

the

three

grid

sizes

that

the

index

will

use.

For

more

information,

see

“Determining

grid

sizes

for

a

spatial

grid

index”

on

page

106.

Recommendations:

v

Before

you

create

a

spatial

grid

index

on

a

column,

use

the

Index

Advisor

to

determine

the

parameters

for

the

index.

The

Index

Advisor

can

analyze

the

spatial

column

data

and

suggest

appropriate

grid

sizes

for

your

spatial

grid

index.

v

If

you

plan

to

do

an

initial

load

of

data

into

the

column,

you

should

create

the

spatial

grid

index

after

you

complete

the

load

process.

That

way,

you

can

choose

optimal

grid

cell

sizes

that

are

based

on

the

characteristics

of

the

data

by

using

the

Index

Advisor.

In

addition,

loading

the

data

before

creating

the

index

will

improve

the

performance

of

the

load

process

because

then

the

spatial

grid

index

does

not

need

to

be

maintained

during

the

load

process.

Restrictions:

The

same

restrictions

for

creating

indexes

using

the

CREATE

INDEX

statement

are

in

effect

when

you

create

a

spatial

grid

index.

That

is,

the

column

on

which

you

create

an

index

must

be

a

base

table

column,

not

a

view

column

or

a

nickname

column.

DB2

UDB

will

resolve

aliases

in

the

process.

Procedure:

You

can

create

a

spatial

grid

index

in

one

of

the

following

ways:

v

Use

the

Spatial

Extender

window

of

the

DB2

Control

Center.

v

Use

the

SQL

CREATE

INDEX

statement

with

the

db2gse.spatial_index

extension

in

the

EXTEND

USING

clause.

v

Use

a

GIS

tool

that

works

with

DB2

Spatial

Extender.

If

you

use

such

a

tool

to

create

the

index,

the

tool

will

issue

the

appropriate

SQL

CREATE

INDEX

statement.

This

section

presents

the

steps

for

the

first

two

methods.

For

information

about

using

a

GIS

tool

to

create

a

spatial

grid

index,

see

the

documentation

that

comes

with

that

tool.

To

create

a

spatial

grid

index

using

the

Control

Center:

Using

indexes

and

views

Chapter

11.

Using

indexes

and

views

to

access

spatial

data

103

|
|
|

|

|
|
|
|

|
|
|
|
|
|

|

|

|
|
|

1.

In

the

Control

Center,

right-click

the

table

that

has

the

spatial

column

that

you

want

a

spatial

grid

index

on

and

select

Spatial

Extender

—�

Spatial

Indexes

from

the

pop-up

menu.

The

Spatial

Indexes

window

opens.

2.

Follow

the

instructions

in

the

online

help

for

the

Spatial

Indexes

window.

You

can

display

those

instructions

by

clicking

the

Help

push

button

in

the

Spatial

Indexes

window.

To

do

this

task

using

the

SQL

CREATE

INDEX

statement:

1.

Determine

the

CREATE

INDEX

statement

using

the

EXTEND

USING

clause

and

the

db2gse.spatial_index

grid

index

extension.

For

example,

the

following

statement

creates

the

spatial

grid

index

TERRIDX

for

table

BRANCHES

that

has

a

spatial

column

TERRITORY.

CREATE

INDEX

terridx

ON

branches

(territory)

EXTEND

USING

db2gse.spatial_index

(1.0,

10.0,

100.0)

2.

Issue

the

CREATE

INDEX

command

on

the

DB2

Command

Editor,

the

DB2

Command

Window,

or

the

DB2

command

line

processor.

Related

concepts:

v

“Spatial

grid

indexes”

on

page

96

v

“Considerations

for

number

of

index

levels

and

grid

sizes”

on

page

98

v

“Tuning

spatial

grid

indexes

with

the

Index

Advisor—Overview”

on

page

106

Related

tasks:

v

“Determining

grid

sizes

for

a

spatial

grid

index”

on

page

106

v

“Analyzing

spatial

grid

index

statistics”

on

page

108

Related

reference:

v

“CREATE

INDEX

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

INDEX

statement

for

a

spatial

grid

index”

on

page

104

v

“Functions

that

use

indexes

to

optimize

queries”

on

page

118

CREATE

INDEX

statement

for

a

spatial

grid

index

Use

the

CREATE

INDEX

statement

with

the

EXTEND

USING

clause

to

create

a

spatial

grid

index.

Syntax:

��

CREATE

INDEX

index_name

index_schema.

ON

�

�

table_name

table_schema.

(

column_name

)

EXTEND

USING

�

�

db2gse.spatial_index

(

finest_grid_size

,

middle_grid_size

�

�

,

coarsest_grid_size

)

��

Parameters:

index_schema.

Name

of

the

schema

to

which

the

index

that

you

are

creating

is

to

belong.

Using

indexes

and

views

104

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|
|

|

|
|

|

If

you

do

not

specify

a

name,

DB2

UDB

uses

the

schema

name

that

is

stored

in

the

CURRENT

SCHEMA

special

register.

index_name

Unqualified

name

of

the

grid

index

that

you

are

creating.

table_schema.

Name

of

the

schema

to

which

the

table

that

contains

column_name

belongs.

If

you

do

not

specify

a

name,

DB2

uses

the

schema

name

that

is

stored

in

the

CURRENT

SCHEMA

special

register.

table_name

Unqualified

name

of

the

table

that

contains

column_name.

column_name

Name

of

the

spatial

column

on

which

the

spatial

grid

index

is

created.

finest_grid_size,

middle_grid_size,

coarsest_grid_size

Grid

sizes

for

the

spatial

grid

index.

These

parameters

must

adhere

to

the

following

conditions:

v

finest_grid_size

must

be

larger

than

0.

v

middle_grid_size

must

either

be

larger

than

finest_grid_size

or

be

0.

v

coarsest_grid_size

must

either

be

larger

than

middle_grid_size

or

be

0.

Whether

you

create

the

spatial

grid

index

using

the

Control

Center

or

the

CREATE

INDEX

statement,

the

validity

of

the

grid

sizes

are

checked

when

the

first

geometry

is

indexed.

Therefore,

if

the

grid

sizes

that

you

specify

do

not

meet

the

conditions

of

their

values,

an

error

condition

is

raised

at

the

times

described

in

these

situations:

v

If

all

of

the

geometries

in

the

spatial

column

are

null,

Spatial

Extender

successfully

creates

the

index

without

verifying

the

validity

of

the

grid

sizes.

Spatial

Extender

validates

the

grid

sizes

when

you

insert

or

update

a

non-null

geometry

in

that

spatial

column.

If

the

specified

grid

sizes

are

not

valid,

an

error

occurs

when

you

insert

or

update

the

non-null

geometry.

v

If

non-null

geometries

exist

in

the

spatial

column

when

you

create

the

index,

Spatial

Extender

validates

the

grid

sizes

at

that

time.

If

the

specified

grid

sizes

are

not

valid,

an

error

occurs

immediately,

and

the

spatial

grid

index

is

not

created.

Examples:

The

following

example

CREATE

INDEX

statement

creates

the

TERRIDX

spatial

grid

index

on

the

spatial

column

TERRITORY

in

the

BRANCHES

table:

CREATE

INDEX

terridx

ON

branches

(territory)

EXTEND

USING

db2gse.spatial_index

(1.0,

10.0,

100.0)

Related

concepts:

v

“Considerations

for

number

of

index

levels

and

grid

sizes”

on

page

98

v

“Spatial

grid

indexes”

on

page

96

v

“Tuning

spatial

grid

indexes

with

the

Index

Advisor—Overview”

on

page

106

Related

tasks:

v

“Determining

grid

sizes

for

a

spatial

grid

index”

on

page

106

v

“Analyzing

spatial

grid

index

statistics”

on

page

108

v

“Creating

spatial

grid

indexes”

on

page

102

Using

indexes

and

views

Chapter

11.

Using

indexes

and

views

to

access

spatial

data

105

|

|

|

|
|
|
|
|

|
|
|
|

|
|

|
|
|

|

|

|

|

|

|

|

|

Related

reference:

v

“Functions

that

use

indexes

to

optimize

queries”

on

page

118

Tuning

spatial

grid

indexes

with

the

Index

Advisor

Tuning

spatial

grid

indexes

with

the

Index

Advisor—Overview

DB2®

Spatial

Extender

provides

a

utility,

called

the

Index

Advisor,

that

you

can

use

to:

v

Determine

appropriate

grid

sizes

for

your

spatial

grid

indexes.

The

Index

Advisor

analyzes

the

geometries

in

a

spatial

column

and

recommends

optimal

grid

sizes

for

your

spatial

grid

index.

For

the

procedure,

see

“Determining

grid

sizes

for

a

spatial

grid

index.”

v

Analyze

an

existing

grid

index.

The

Index

Advisor

can

collect

and

display

statistics

from

which

you

can

determine

how

well

the

current

grid

cell

sizes

facilitate

retrieval

of

the

spatial

data.

For

the

procedure,

see

“Analyzing

spatial

grid

index

statistics”

on

page

108.

Related

concepts:

v

“Considerations

for

number

of

index

levels

and

grid

sizes”

on

page

98

v

“Spatial

grid

indexes”

on

page

96

Related

tasks:

v

“Determining

grid

sizes

for

a

spatial

grid

index”

on

page

106

v

“Analyzing

spatial

grid

index

statistics”

on

page

108

Related

reference:

v

“CREATE

INDEX

statement

for

a

spatial

grid

index”

on

page

104

v

“The

gseidx

command”

on

page

112

v

“Functions

that

use

indexes

to

optimize

queries”

on

page

118

Determining

grid

sizes

for

a

spatial

grid

index

Before

you

create

a

spatial

grid

index

on

a

column,

you

can

use

the

Index

Advisor

to

determine

appropriate

grid

sizes.

Prerequisites:

Before

you

can

analyze

the

data

that

you

want

to

index:

v

Your

user

ID

must

hold

the

SELECT

privilege

on

this

table.

v

If

your

table

has

more

than

one

million

rows,

you

might

want

to

use

the

ANALYZE

clause

to

analyze

a

subset

of

the

rows

to

have

reasonable

processing

time.

You

must

have

a

USER

TEMPORARY

table

space

available

to

use

the

ANALYZE

clause.

Set

the

page

size

of

this

table

space

to

at

least

8

KB

and

ensure

that

you

have

USE

privileges

on

it.

For

example,

the

following

DDL

statements

create

a

buffer

pool

with

the

same

page

size

as

the

user

temporary

table

space

and

grant

the

USE

privilege

to

anyone:

CREATE

BUFFERPOOL

bp8k

SIZE

1000

PAGESIZE

8

K;

CREATE

USER

TEMPORARY

TABLESPACE

usertempts

PAGESIZE

8K

Using

indexes

and

views

106

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|

|
|

|

|
|

|

|
|
|

|

|
|
|
|

|
|

|

|

|
|
|
|
|
|
|

|
|
|

MANAGED

BY

SYSTEM

USING

(’c:\tempts’)

BUFFERPOOL

bp8k

GRANT

USE

OF

TABLESPACE

usertempts

TO

PUBLIC;

Alternatively,

you

can

use

the

DB2

Control

Center

to

create

a

user

table

space

and

the

corresponding

buffer

pool.

Procedure:

To

determine

appropriate

grid

sizes

for

a

spatial

grid

index:

1.

Ask

the

Index

Advisor

to

recommend

grid

cell

sizes

for

the

index

that

you

want

to

create.

a.

Enter

the

command

that

invokes

the

Index

Advisor

with

the

ADVISE

keyword

to

request

grid

cell

sizes.

For

example,

to

invoke

the

Index

Advisor

for

the

SHAPE

column

in

the

COUNTIES

table,

enter:

gseidx

CONNECT

TO

mydb

USER

userID

USING

password

GET

GEOMETRY

STATISTICS

FOR

COLUMN

userID.counties(shape)

ADVISE

Restriction:

If

you

enter

the

above

gseidx

command

from

an

operating

system

prompt,

you

must

type

the

entire

command

on

a

single

line.

Alternatively,

you

can

run

gseidx

commands

from

a

CLP

file,

which

allows

you

to

split

the

command

over

multiple

lines.

The

Index

Advisor

returns

recommended

grid

cell

sizes.

For

example,

the

above

gseidx

command

with

the

ADVISE

keyword

returns

the

following

recommended

cell

sizes

for

the

SHAPE

column:

Query

Window

Size

Suggested

Grid

Sizes

Cost

0.1

0.7,

2.8,

14.0

2.7

0.2

0.7,

2.8,

14.0

2.9

0.5

1.4,

3.5,

14.0

3.5

1

1.4,

3.5,

14.0

4.8

2

1.4,

3.5,

14.0

8.2

5

1.4,

3.5,

14.0

24

10

2.8,

8.4,

21.0

66

20

4.2,

14.7,

37.0

190

50

7.0,

14.0,

70.0

900

100

42.0,

0,

0

2800

b.

Choose

an

appropriate

query

window

size

from

the

gseidx

output,

based

on

the

width

of

the

coordinates

that

you

display

on

your

screen.

In

this

example,

latitude

and

longitude

values

in

decimal

degrees

represent

the

coordinates.

If

your

typical

map

display

has

a

width

of

about

0.5

degrees

(approximately

55

kilometers),

go

to

the

row

that

has

the

value

0.5

in

the

Query

Window

Size

column.

This

row

has

suggested

grid

sizes

of

1.4,

3.5,

and

14.0.
2.

Create

the

index

with

the

suggested

grid

sizes.

For

the

example

in

the

previous

step,

you

can

execute

the

following

SQL

statement:

CREATE

INDEX

counties_shape_idx

ON

userID.counties(shape)

EXTEND

USING

DB2GSE.SPATIAL_INDEX(1.4,3.5,14.0);

Related

concepts:

v

“Considerations

for

number

of

index

levels

and

grid

sizes”

on

page

98

v

“Spatial

grid

indexes”

on

page

96

Related

tasks:

v

“Analyzing

spatial

grid

index

statistics”

on

page

108

Related

reference:

Using

indexes

and

views

Chapter

11.

Using

indexes

and

views

to

access

spatial

data

107

|
|
|

|
|

|

|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|

|
|

v

“CREATE

INDEX

statement

for

a

spatial

grid

index”

on

page

104

v

“The

gseidx

command”

on

page

112

v

“Functions

that

use

indexes

to

optimize

queries”

on

page

118

Analyzing

spatial

grid

index

statistics

Statistics

on

an

existing

spatial

grid

index

can

tell

you

whether

the

index

is

efficient,

or

whether

it

should

be

replaced

by

a

more

efficient

index.

Use

the

Index

Advisor

to

obtain

these

statistics

and,

if

necessary,

to

replace

the

index.

Recommendation:

Equally

important

to

tuning

your

index

is

verifying

that

it

is

being

used

by

your

queries.

To

determine

if

a

spatial

index

is

being

used,

run

Visual

Explain

in

the

DB2

Control

Center

or

a

command

line

tool

such

db2exfmt

on

your

query.

In

the

“Access

Plan”

section

of

the

explain

output,

if

you

see

an

EISCAN

operator

and

the

name

of

your

spatial

index,

then

the

query

uses

your

index.

Prerequisites:

Before

you

can

analyze

the

data

that

you

want

to

index:

v

Your

user

ID

must

hold

the

SELECT

privilege

on

this

table.

v

If

your

table

has

more

than

one

million

rows,

you

might

want

to

use

the

ANALYZE

clause

to

analyze

a

subset

of

the

rows

to

have

reasonable

processing

time.

You

must

have

a

USER

TEMPORARY

table

space

available

to

use

the

ANALYZE

clause.

Set

the

page

size

of

this

table

space

to

at

least

8

KB

and

ensure

that

you

have

USE

privileges

on

it.

For

example,

the

following

DDL

statements

create

a

buffer

pool

with

the

same

page

size

as

the

user

temporary

table

space

and

grant

the

USE

privilege

to

anyone:

CREATE

BUFFERPOOL

bp8k

SIZE

1000

PAGESIZE

8

K;

CREATE

USER

TEMPORARY

TABLESPACE

usertempts

PAGESIZE

8K

MANAGED

BY

SYSTEM

USING

(’c:\tempts’)

BUFFERPOOL

bp8k

GRANT

USE

OF

TABLESPACE

usertempts

TO

PUBLIC;

Alternatively,

you

can

use

the

DB2

Control

Center

to

create

a

user

table

space

and

the

corresponding

buffer

pool.

Procedure:

To

obtain

statistics

on

a

spatial

grid

index

and,

if

necessary,

to

replace

the

index:

1.

Have

the

Index

Advisor

collect

statistics

based

on

the

grid

cell

sizes

of

the

existing

index.

You

can

ask

for

statistics

on

either

a

subset

of

the

indexed

data

or

all

of

the

data.

v

To

obtain

statistics

on

indexed

data

in

a

subset

of

rows,

enter

the

gseidx

command

and

specify

the

ANALYZE

keyword

and

its

parameters

in

addition

to

the

existing-index

clause

and

DETAIL

keyword.

You

can

specify

either

the

number

or

percentage

of

rows

that

the

Index

Advisor

is

to

analyze

to

obtain

statistics.

For

example,

to

obtain

statistics

on

a

subset

of

the

data

indexed

by

the

COUNTIES_SHAPE_IDX

index,

enter:

gseidx

CONNECT

TO

mydb

USER

userID

USING

password

GET

GEOMETRY

STATISTICS

FOR

INDEX

userID.counties_shape_idx

DETAIL

ANALYZE

25

PERCENT

ADVISE

Using

indexes

and

views

108

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|

|
|
|
|
|
|

|

|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|

|
|

|
|

|
|

|
|
|

v

To

obtain

statistics

on

all

indexed

data,

enter

the

gseidx

command

and

specify

its

existing-index

clause.

Include

the

DETAIL

keyword.

For

example,

to

invoke

the

Index

Advisor

for

the

COUNTIES_SHAPE_IDX

index,

enter:

gseidx

CONNECT

TO

mydb

USER

userID

USING

password

GET

GEOMETRY

STATISTICS

FOR

INDEX

userID.counties_shape_idx

DETAIL

SHOW

HISTOGRAM

ADVISE

The

Index

Advisor

returns

statistics,

a

histogram

of

the

data,

and

recommended

cell

sizes

for

the

existing

index.

For

example,

the

above

gseidx

command

for

all

data

indexed

by

COUNTIES_SHAPE_IDX

returns

the

following

statistics:

Grid

Level

1

Grid

Size

:

0.5

Number

of

Geometries

:

2936

Number

of

Index

Entries

:

12197

Number

of

occupied

Grid

Cells

:

2922

Index

Entry/Geometry

ratio

:

4.154292

Geometry/Grid

Cell

ratio

:

1.004791

Maximum

number

of

Geometries

per

Grid

Cell:

14

Minimum

number

of

Geometries

per

Grid

Cell:

1

Index

Entries

:

1

2

3

4

10

Absolute

:

86

564

72

1519

695

Percentage

(%):

2.93

19.21

2.45

51.74

23.67

Grid

Level

2

Grid

Size

:

0.0

No

geometries

indexed

on

this

level.

Grid

Level

3

Grid

Size

:

0.0

No

geometries

indexed

on

this

level.

Grid

Level

X

Number

of

Geometries

:

205

Number

of

Index

Entries

:

205

2.

Determine

how

well

the

grid

cell

sizes

of

the

existing

index

facilitate

retrieval.

Assess

the

statistics

returned

in

the

previous

step.

Tips:

v

The

statistic

“Index

Entry/Geometry

ratio”

should

be

a

value

in

the

range

of

1

to

4,

preferably

values

closer

to

1.

v

The

number

of

index

entries

per

geometry

should

be

less

that

10

at

the

largest

grid

size

to

avoid

the

overflow

level.

The

appearance

of

the

“Grid

Level

X”

section

in

the

Index

Advisor

output

indicates

that

an

overflow

level

exists.

The

index

statistics

obtained

in

the

previous

step

for

the

COUNTIES_SHAPE_IDX

indicate

that

the

grid

sizes

(0.5,

0,

0)

are

not

appropriate

for

the

data

in

this

column

because:

Using

indexes

and

views

Chapter

11.

Using

indexes

and

views

to

access

spatial

data

109

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|

|
|
|

v

For

Grid

Level

1,

the

“Index

Entry/Geometry

ratio”value

4.154292

is

greater

than

the

guideline

of

4.

The

“Index

Entries”

line

has

the

values

1,

2,

3,

4,

and

10,

which

indicates

the

number

of

index

entries

per

geometry.

The

“Absolute”

values

below

each

“Index

Entries”

column

indicates

the

number

of

geometries

that

have

that

specific

number

of

index

entries.

For

example,

the

output

in

the

previous

step

shows

1519

geometries

have

4

index

entries.

The

“Absolute”

value

for

10

index

entries

is

695

which

indicates

that

695

geometries

have

between

5

and

10

index

entries.

v

The

appearance

of

the

“Grid

Level

X”

section

indicates

that

an

overflow

index

level

exists.

The

statistics

show

that

205

geometries

have

more

than

10

index

entries

each.
3.

If

the

statistics

are

not

satisfactory,

look

at

the

“Histogram”

section

and

the

appropriate

rows

in

the

“Query

Window

Size”

and

“Suggested

Grid

Sizes”

columns

in

the

Index

Advisor

output:

a.

Find

the

MBR

size

with

the

largest

number

of

geometries.

The

“Histogram”

section

lists

the

MBR

sizes

and

the

number

of

geometries

that

have

that

MBR

size.

In

the

following

sample

histogram,

the

largest

number

of

geometries

(437)

is

in

MBR

size

0.5.

Histogram:

MBR

Size

Geometry

Count

0.040000

1

0.045000

3

0.050000

1

0.055000

3

0.060000

3

0.070000

4

0.075000

3

0.080000

4

0.085000

1

0.090000

2

0.095000

1

0.150000

10

0.200000

9

0.250000

15

0.300000

23

0.350000

83

0.400000

156

0.450000

282

0.500000

437

0.550000

397

0.600000

341

0.650000

246

0.700000

201

0.750000

154

0.800000

120

0.850000

66

0.900000

79

0.950000

59

1.000000

47

1.500000

230

2.000000

89

2.500000

34

3.000000

10

3.500000

5

4.000000

3

5.000000

3

5.500000

2

6.000000

2

6.500000

3

Using

indexes

and

views

110

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

7.000000

2

8.000000

1

15.000000

3

25.000000

2

30.000000

1

b.

Go

to

the

Query

Window

Size

row

with

the

value

0.5

to

obtain

the

suggested

grid

sizes

(1.4,

3.5,

14.0).

Query

Window

Size

Suggested

Grid

Sizes

Cost

0.1

0.7,

2.8,

14.0

2.7

0.2

0.7,

2.8,

14.0

2.9

0.5

1.4,

3.5,

14.0

3.5

1

1.4,

3.5,

14.0

4.8

2

1.4,

3.5,

14.0

8.2

5

1.4,

3.5,

14.0

24

10

2.8,

8.4,

21.0

66

20

4.2,

14.7,

37.0

190

50

7.0,

14.0,

70.0

900

100

42.0,

0,

0

2800

4.

Verify

that

the

recommended

sizes

meet

the

guidelines

in

step

2.

Run

the

gseidx

command

with

the

suggested

grid

sizes:

gseidx

CONNECT

TO

mydb

USER

userID

USING

password

GET

GEOMETRY

STATISTICS

FOR

COLUMN

userID.counties(shape)

USING

GRID

SIZES

(1.4,

3.5,

14.0)

Grid

Level

1

Grid

Size

:

1.4

Number

of

Geometries

:

3065

Number

of

Index

Entries

:

5951

Number

of

occupied

Grid

Cells

:

513

Index

Entry/Geometry

ratio

:

1.941599

Geometry/Grid

Cell

ratio

:

5.974659

Maximum

number

of

Geometries

per

Grid

Cell:

42

Minimum

number

of

Geometries

per

Grid

Cell:

1

Index

Entries

:

1

2

3

4

10

Absolute

:

1180

1377

15

493

0

Percentage

(%):

38.50

44.93

0.49

16.08

0.00

Grid

Level

2

Grid

Size

:

3.5

Number

of

Geometries

:

61

Number

of

Index

Entries

:

143

Number

of

occupied

Grid

Cells

:

56

Index

Entry/Geometry

ratio

:

2.344262

Geometry/Grid

Cell

ratio

:

1.089286

Maximum

number

of

Geometries

per

Grid

Cell:

10

Minimum

number

of

Geometries

per

Grid

Cell:

1

Index

Entries

:

1

2

3

4

10

Absolute

:

15

28

0

18

0

Percentage

(%):

24.59

45.90

0.00

29.51

0.00

Grid

Level

3

Grid

Size

:

14.0

Using

indexes

and

views

Chapter

11.

Using

indexes

and

views

to

access

spatial

data

111

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Number

of

Geometries

:

15

Number

of

Index

Entries

:

28

Number

of

occupied

Grid

Cells

:

9

Index

Entry/Geometry

ratio

:

1.866667

Geometry/Grid

Cell

ratio

:

1.666667

Maximum

number

of

Geometries

per

Grid

Cell:

10

Minimum

number

of

Geometries

per

Grid

Cell:

1

Index

Entries

:

1

2

3

4

10

Absolute

:

7

5

1

2

0

Percentage

(%):

46.67

33.33

6.67

13.33

0.00

The

statistics

now

show

values

within

the

guidelines:

v

The

“Index

Entry/Geometry

ratio”

values

are

1.941599

for

Grid

Level

1,

2.344262

for

Grid

Level

2,

and

1.866667

for

Grid

Level

3.

These

values

are

all

within

the

guideline

value

range

of

1

to

4.

v

The

absence

of

the

“Grid

Level

X”

section

indicates

that

no

index

entries

are

in

the

overflow

level.
5.

Drop

the

existing

index

and

replace

it

with

an

index

that

specifies

the

advised

grid

sizes.

For

the

sample

in

the

previous

step,

run

the

following

DDL

statements:

DROP

INDEX

userID.counties_shape_idx;

CREATE

INDEX

counties_shape_idx

ON

userID.counties(shape)

EXTEND

USING

DB2GSE.SPATIAL_INDEX(1.4,3.5,14.0);

Related

concepts:

v

“Considerations

for

number

of

index

levels

and

grid

sizes”

on

page

98

v

“Spatial

grid

indexes”

on

page

96

Related

tasks:

v

“Determining

grid

sizes

for

a

spatial

grid

index”

on

page

106

v

“Creating

spatial

grid

indexes”

on

page

102

Related

reference:

v

“CREATE

INDEX

statement

for

a

spatial

grid

index”

on

page

104

v

“The

gseidx

command”

on

page

112

v

“Functions

that

use

indexes

to

optimize

queries”

on

page

118

The

gseidx

command

Use

the

gseidx

command

to

invoke

the

Index

Advisor

for

spatial

grid

indexes.

Syntax

��

gseidx

CONNECT

TO

database_name

USER

userid

USING

password

�

�

GET

GEOMETRY

STATISTICS

existing-index

simulated-index

�

Using

indexes

and

views

112

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|
|

|
|
|

|

||||||

�

ONLY

ANALYZE

number

ROWS

(1)

PERCENT

�

�

MINIMUM

BOUNDING

RECTANGLE

SHOW

HISTOGRAM

WITH

n

BUCKETS

�

�

CELL

GRID

SIZES

ADVISE

��

existing-index:

FOR

INDEX

index-name

index-schema

.

DETAIL

simulated-index:

FOR

COLUMN

table-name

(

column-name

)

table-schema

.

�

�

�

,

CELL

(2)

USING

GRID

SIZES

(

grid-size

)

Notes:

1 Instead

of

the

PERCENT

keyword,

you

can

specify

a

percentage

sign

(%).

2 You

can

specify

cell

sizes

for

one,

two,

or

three

grid

levels.

Parameters:

database_name

The

name

of

the

database

in

which

the

spatial

table

resides.

userid

The

user

ID

that

has

either

SYSADM

or

DBADM

authority

on

the

database

in

which

the

index

or

table

resides

or

SELECT

authority

on

the

table.

If

you

log

on

to

the

DB2

command

environment

with

the

user

ID

of

the

database

owner,

you

do

not

need

to

specify

userid

and

password

in

the

gseidx

command.

password

Password

for

the

user

ID.

existing-index:

References

an

existing

index

to

gather

statistics

on.

index-schema

Name

of

the

schema

that

includes

the

existing

index.

index-name

Unqualified

name

of

the

existing

index.

Using

indexes

and

views

Chapter

11.

Using

indexes

and

views

to

access

spatial

data

113

|

||||

||||||

|

|
|

||
|
|
|
|

|
|

DETAIL

Shows

the

following

information

about

each

grid

level:

v

The

size

of

the

grid

cells

v

The

number

of

geometries

indexed

v

The

number

of

index

entries

v

The

number

of

grid

cells

that

contain

geometries

v

The

average

number

of

index

entries

per

geometry

v

The

average

number

of

geometries

per

grid

cell

v

The

number

of

geometries

in

the

cell

that

contains

the

most

geometries

v

The

number

of

geometries

in

the

cell

that

contains

the

fewest

geometries

simulated-index:

References

a

table

column

and

a

simulated

index

for

this

column.

table-schema

Name

of

the

schema

that

includes

the

table

with

the

column

for

which

the

simulated

index

is

intended.

table-name

Unqualified

name

of

the

table

with

the

column

for

which

the

simulated

index

is

intended.

column-name

Unqualified

name

of

the

table

column

for

which

the

simulated

index

is

intended.

grid-size

Sizes

of

the

cells

in

each

grid

level

(finest

level,

middle

level,

and

coarsest

level)

of

a

simulated

index.

You

must

specify

a

cell

size

for

at

least

one

level.

If

you

do

not

want

to

include

a

level,

either

do

not

specify

a

grid

cell

size

for

it

or

specify

a

grid

cell

size

of

zero

(0.0)

for

it.

When

you

specify

the

grid-size

parameter,

the

Index

Adviser

returns

the

same

kinds

of

statistics

that

it

returns

when

you

include

the

DETAIL

keyword

in

the

existing-index

clause.

ANALYZE

number

ROWS

|

PERCENT

ONLY

Gathers

statistics

on

data

in

a

subset

of

table

rows.

If

your

table

has

more

than

one

million

rows,

you

might

want

to

use

the

ANALYZE

clause

to

have

reasonable

processing

time.

Specify

the

approximate

quantity

or

approximate

percentage

of

the

rows

to

be

included

in

this

subset.

SHOW

MINIMUM

BOUNDING

RECTANGLE

HISTOGRAM

Displays

a

chart

that

shows

the

sizes

of

the

geometries’

minimum

bounding

rectangles

(MBRs)

and

the

number

of

geometries

whose

MBRs

are

of

the

same

size.

WITH

n

BUCKETS

Specifies

to

the

number

of

groupings

for

the

MBRs

of

all

analyzed

geometries.

Small

MBRs

are

grouped

together

with

other

small

geometries.

The

larger

MBRs

are

grouped

with

other

larger

geometries.

If

you

do

not

specify

this

parameter

or

specify

0

buckets,

the

Index

Advisor

displays

logarithmic

bucket

sizes.

For

example,

the

MBR

sizes

might

be

logarithmic

values

such

as

1.0,

2.0,

3.0,...

10.0,

20.0,

30.0,...

100.0,

200.0,

300.0,...

Using

indexes

and

views

114

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|
|
|

|
|
|

|
|
|

If

you

specify

a

number

of

buckets

greater

than

0,

the

Index

Advisor

displays

equal–sized

values.

For

example,

the

MBR

sizes

might

be

equal–sized

values

such

as

8.0,

16.0,

24.0,...

320.0,

328.0,

334.0.

The

default

is

to

use

logarithmic–sized

buckets.

ADVISE

GRID

CELL

SIZES

Computes

close-to-optimal

grid

cell

sizes.

Usage

note:

If

you

enter

the

gseidx

command

from

an

operating

system

prompt,

you

must

type

the

entire

command

on

a

single

line.

Example:

The

following

example

is

a

request

to

return

detailed

information

about

an

existing

grid

index

whose

name

is

COUNTIES_SHAPE_IDX

and

suggest

appropriate

grid

index

sizes:

gseidx

CONNECT

TO

mydb

USER

user

ID

USING

password

GET

GEOMETRY

STATISTICS

FOR

INDEX

userID.counties_shape_idx

DETAIL

ADVISE

For

an

explanation

of

the

information

that

this

command

returns,

see

“Analyzing

spatial

grid

index

statistics”

on

page

108.

Related

concepts:

v

“Considerations

for

number

of

index

levels

and

grid

sizes”

on

page

98

v

“Spatial

grid

indexes”

on

page

96

v

“Tuning

spatial

grid

indexes

with

the

Index

Advisor—Overview”

on

page

106

Related

tasks:

v

“Determining

grid

sizes

for

a

spatial

grid

index”

on

page

106

v

“Creating

spatial

grid

indexes”

on

page

102

Related

reference:

v

“CREATE

INDEX

statement

for

a

spatial

grid

index”

on

page

104

v

“Functions

that

use

indexes

to

optimize

queries”

on

page

118

Using

views

to

access

spatial

columns

You

can

define

a

view

that

uses

a

spatial

column

in

the

same

way

as

you

define

views

in

DB2

for

other

data

types.

If

you

have

a

table

that

has

a

spatial

column

and

you

want

a

view

to

use

it,

use

the

following

sources

of

information.

Related

tasks:

v

“Creating

a

view”

in

the

Administration

Guide:

Implementation

Related

reference:

v

“CREATE

VIEW

statement”

in

the

SQL

Reference,

Volume

2

Using

indexes

and

views

Chapter

11.

Using

indexes

and

views

to

access

spatial

data

115

|
|
|

|

|

|
|

|

|
|
|

|
|

|
|

Using

indexes

and

views

116

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Chapter

12.

Analyzing

and

Generating

spatial

information

After

you

populate

spatial

columns,

you

are

ready

to

query

them.

This

chapter:

v

Describes

the

environments

in

which

you

can

submit

queries

v

Provides

examples

of

the

various

types

of

spatial

functions

that

you

can

invoke

in

a

query

v

Provides

guidelines

on

using

spatial

functions

in

conjunction

with

spatial

indexes

Environments

for

performing

spatial

analysis

You

can

perform

spatial

analysis

by

using

SQL

and

spatial

functions

in

the

following

programming

environments:

v

Interactive

SQL

statements.

You

can

enter

interactive

SQL

statements

from

the

DB2®

Command

Editor,

the

DB2

Command

Window,

or

the

DB2

command

line

processor.

v

Application

programs

in

all

languages

supported

by

DB2.

Examples

of

how

spatial

functions

operate

DB2

Spatial

Extender

provides

functions

that

perform

various

operations

on

spatial

data.

Generally

speaking,

these

functions

can

be

categorized

according

to

the

type

of

operation

that

they

perform.

Table

5

lists

these

categories,

along

with

examples.

The

text

following

Table

5

shows

coding

for

these

examples.

Table

5.

Spatial

functions

and

operations

Category

of

function

Example

of

operation

Returns

information

about

specific

geometries.

Return

the

extent,

in

square

miles,

of

the

sales

area

of

Store

10.

Makes

comparisons.

Determine

whether

the

location

of

a

customer’s

home

lies

within

the

sales

area

of

Store

10.

Derives

new

geometries

from

existing

ones.

Derive

the

sales

area

of

a

store

from

its

location.

Converts

geometries

to

and

from

data

exchange

formats.

Convert

customer

information

in

GML

format

into

a

geometry,

so

that

the

information

can

be

added

to

a

DB2

database.

Example

1:

Returns

information

about

specific

geometries:

In

this

example,

the

ST_Area

function

returns

a

numeric

value

that

represents

the

sales

area

of

store

10.

The

function

will

return

the

area

in

the

same

units

as

the

units

of

the

coordinate

system

that

is

being

used

to

define

the

area’s

location.

SELECT

db2gse.ST_Area(sales_area)

FROM

stores

WHERE

id

=

10

The

following

example

shows

the

same

operation

as

the

preceding

one,

but

with

ST_Area

invoked

as

a

method

and

returning

the

area

in

units

of

square

miles.

©

Copyright

IBM

Corp.

1998,

2004

117

|
|

SELECT

saleas_area..ST_Area(’STATUTE

MILE’)

FROM

stores

WHERE

id

=

10

Example

2:

Makes

comparisons:

In

this

example,

the

ST_Within

function

compares

the

coordinates

of

the

geometry

representing

a

customer’s

residence

with

the

coordinates

of

a

geometry

representing

the

sales

area

of

store

10.

The

function’s

output

will

signify

whether

the

residence

lies

within

the

sales

area.

SELECT

c.first_name,

c.last_name,

db2gse.ST_Within(c.location,

s.sales_area)

FROM

customers

as

c.

stores

AS

s

WHERE

s.id

=

10

Example

3:

Derives

new

geometries

from

existing

ones:

In

this

example,

the

function

ST_Buffer

derives

a

geometry

representing

a

store’s

sales

area

from

a

geometry

representing

the

store’s

location.

UPDATE

stores

SET

sales_area

=

db2gse.ST_Buffer(location,

10,

’KILOMETERS’)

WHERE

id

=

10

The

following

example

shows

the

same

operation

as

the

preceding

one,

but

with

ST_Buffer

invoked

as

a

method.

UPDATE

stores

SET

sales_area

=

location..ST_Buffer(10,

’KILOMETERS’)

WHERE

id

=

10

Example

4:

Converts

geometries

to

and

from

data

exchange

formats.:

In

this

example,

customer

information

coded

in

GML

is

converted

into

a

geometry,

so

that

it

can

be

stored

in

a

DB2

database.

INSERT

INTO

c.name,c.phoneNo,c.address

VALUES

(

123,

’Mary

Anne’,

Smith’,

db2gse.ST_Point(’

<gml:Point><gml:coord><gml=X>-130.876</gml:X>

<gml:Y>41.120’</gml:Y></gml:coord></gml:Point>,

1)

)

Functions

that

use

indexes

to

optimize

queries

A

specialized

group

of

spatial

functions,

called

comparison

functions,

can

improve

query

performance

by

exploiting

either

a

spatial

grid

index

or

a

geodetic

Voronoi

index

(both

known

as

spatial

indexes).

Each

of

these

functions

compares

two

geometries

with

one

another.

If

the

results

of

the

comparison

meet

certain

criteria,

the

function

returns

a

value

of

1;

if

the

results

fail

to

meet

the

criteria,

the

function

returns

a

value

of

0.

If

the

comparison

cannot

be

performed,

the

function

can

return

a

null

value.

For

example,

the

function

ST_Overlaps

compares

two

geometries

that

have

the

same

dimension

(for

example,

two

linestrings

or

two

polygons).

If

the

geometries

overlap

partway,

and

if

the

space

covered

by

the

overlap

has

the

same

dimension

as

the

geometries,

ST_Overlaps

returns

a

value

of

1.

Table

6

on

page

119

shows

which

comparison

functions

can

use

a

spatial

grid

index

and

which

ones

can

use

a

geodetic

Voronoi

index:

Generating

and

analyzing

spatial

information

118

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|
|

|

|
|
|

|
|

Table

6.

Comparison

functions

that

can

use

a

spatial

grid

index

or

a

geodetic

Voronoi

index

Comparison

function

Can

use

spatial

grid

index

Can

use

geodetic

Voronoi

index

EnvelopesIntersect

Yes

Yes

ST_Contains

Yes

Yes

ST_Crosses

Yes

No

ST_Distance

Yes

Yes

ST_EnvIntersects

Yes

Yes

ST_Equals

Yes

No

ST_Intersects

Yes

Yes

ST_MBRIntersects

Yes

Yes

ST_Overlaps

Yes

No

ST_Touches

Yes

No

ST_Within

Yes

Yes

Because

of

the

time

and

memory

required

to

execute

a

function,

such

execution

can

involve

considerable

processing.

Furthermore,

the

more

complex

the

geometries

that

are

being

compared,

the

more

complex

and

time-intensive

the

comparison

will

be.

The

specialized

functions

listed

above

can

complete

their

operations

more

quickly

if

they

can

use

a

spatial

index

to

locate

geometries.

To

enable

such

a

function

to

use

a

spatial

index,

observe

all

of

the

following

rules:

v

The

function

must

be

specified

in

a

WHERE

clause.

If

it

is

specified

in

a

SELECT,

HAVING,

or

GROUP

BY

clause,

a

spatial

index

cannot

be

used.

v

The

function

must

be

the

expression

on

left

of

the

predicate.

v

The

operator

that

is

used

in

the

predicate

that

compares

the

result

of

the

function

with

another

expression

must

be

an

equal

sign,

with

one

exception:

the

ST_Distance

function

must

use

the

less

than

operator.

v

The

expression

on

the

right

of

the

predicate

must

be

the

constant

1,

except

when

ST_Distance

is

the

function

on

the

left.

v

The

operation

must

involve

a

search

in

a

spatial

column

on

which

a

spatial

index

is

defined.

For

example:

SELECT

c.name,

c.address,

c.phone

FROM

customers

AS

c,

bank_branches

AS

b

WHERE

db2gse.ST_Distance(c.location,

b.location)

<

10000

and

b.branch_id

=

3

Table

7

shows

correct

and

incorrect

ways

of

creating

spatial

queries

to

utilize

a

spatial

index.

Table

7.

Demonstration

of

how

spatial

functions

can

adhere

to

and

violate

rules

for

utilizing

a

spatial

index.

Queries

that

reference

spatial

functions

Rules

violated

SELECT

*

FROM

stores

AS

s

WHERE

db2gse.ST_Contains(s.sales_zone,

ST_Point(-121.8,37.3,

1))

=

1

No

condition

is

violated

in

this

example.

Generating

and

analyzing

spatial

information

Chapter

12.

Analyzing

and

Generating

spatial

information

119

||

|
|
|

|
|
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|

|
|

|
|

|
|
|

|
|

|
|

|

|
|
|
|

|
|

|

|

Table

7.

Demonstration

of

how

spatial

functions

can

adhere

to

and

violate

rules

for

utilizing

a

spatial

index.

(continued)

Queries

that

reference

spatial

functions

Rules

violated

SELECT

*

FROM

stores

AS

s

WHERE

db2gse.ST_Length(s.location)

>

10

The

spatial

function

ST_Length

does

not

compare

geometries

and

cannot

utilize

a

spatial

index.

SELECT

*

FROM

stores

AS

s

WHERE

1=db2gse.ST_Within(s.location,:BayArea)

The

function

must

be

an

expression

on

the

left

side

of

the

predicate.

SELECT

*

FROM

stores

AS

s

WHERE

db2gse.ST_Contains(s.sales_zone,

ST_Point(-121.8,37.3,

1))

<>

0

Equality

comparisons

must

use

the

integer

constant

1.

SELECT

*

FROM

stores

AS

s

WHERE

db2gse.ST_Contains(ST_Polygon

(’polygon((10

10,

10

20,

20

20,

20

10,

10

10))’,

1),

ST_Point(-121.8,

37.3,

1)

=

1

No

spatial

index

exists

on

either

of

the

arguments

for

the

function,

so

no

index

can

be

utilized.

Related

concepts:

v

“Considerations

for

number

of

index

levels

and

grid

sizes”

on

page

98

v

“Geodetic

Voronoi

indexes”

on

page

171

v

“Spatial

grid

indexes”

on

page

96

v

“Tuning

spatial

grid

indexes

with

the

Index

Advisor—Overview”

on

page

106

Related

tasks:

v

“Creating

geodetic

Voronoi

indexes”

on

page

174

v

“Creating

spatial

grid

indexes”

on

page

102

Generating

and

analyzing

spatial

information

120

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|

|

|

Chapter

13.

DB2

Spatial

Extender

commands

This

chapter

explains

the

commands

used

to

set

up

DB2

Spatial

Extender.

It

also

explains

how

you

use

these

commands

to

develop

projects.

Invoking

commands

for

setting

up

DB2

Spatial

Extender

and

developing

projects

You

can

use

a

command–line

processor

(CLP),

called

db2se,

to

set

up

Spatial

Extender

and

create

projects

that

use

spatial

data.

This

topic

explains

how

to

use

db2se

to

run

DB2

Spatial

Extender

commands.

Prerequisites:

Before

you

can

issue

db2se

commands,

you

must

be

authorized

to

do

so.

To

find

out

what

authorization

is

required

for

a

given

command,

consult

Table

8

for

the

associated

stored

procedure

topic

for

the

command.

For

example,

the

db2se

create_srs

command

requires

the

same

authorities

as

the

db2.ST_create_srs

stored

procedure.

Exception:

The

db2se

shape_info

command

does

not

call

a

stored

procedure.

Rather,

it

displays

information

about

the

contents

of

shape

files.

Procedure:

Enter

db2se

commands

from

an

operating

system

prompt.

To

find

out

what

subcommands

and

parameters

you

can

specify:

v

Type

db2se

or

db2se

-h;

then

press

Enter.

A

list

of

db2se

subcommands

is

displayed.

v

Type

db2se

and

a

subcommand,

or

db2se

and

a

subcommand

followed

by

-h.

Then

press

Enter.

The

syntax

required

for

the

subcommand

is

displayed.

In

this

syntax:

–

Each

parameter

is

preceded

by

a

dash

and

followed

by

a

placeholder

for

a

parameter

value.

–

Parameters

enclosed

by

brackets

are

optional.

The

other

parameters

are

required.

Important:

For

your

convenience,

command

syntax

can

be

retrieved

interactively

on

your

monitor;

you

do

not

need

to

look

up

the

syntax

elsewhere.

To

issue

a

db2se

command,

type

db2se.

Then

type

a

subcommand,

followed

by

the

parameters

and

parameter

values

that

the

subcommand

requires.

Finally,

press

Enter.

In

prior

versions,

any

Spatial

Extender

subcommands

had

to

be

prefaced

by

gseadm

instead

of

db2se.

Any

gseadm

scripts

that

you

created

in

prior

versions

still

work

in

Version

8.1,

but

IBM

recommends

that

you

migrate

your

scripts

to

use

the

db2se

command

line

processor.

Be

aware

that:

©

Copyright

IBM

Corp.

1998,

2004

121

|
|
|
|

v

You

might

need

to

type

the

user

ID

and

password

that

give

you

access

to

the

database

that

you

just

specified.

For

example,

type

the

ID

and

password

if

you

want

to

connect

to

the

database

as

a

user

other

than

yourself.

Always

precede

the

ID

with

the

parameter

userId

and

precede

the

password

with

the

parameter

pw.

If

you

do

not

specify

a

user

ID

and

password,

your

current

user

ID

and

password

will

be

used

by

default.

v

Values

that

you

enter

are

not

case–sensitive

by

default.

To

make

them

case-sensitive,

enclose

them

in

double

quotation

marks.

For

example,

to

specify

the

lowercase

table

name

mytable

type

the

following:

″mytable″

Note

:

you

might

have

to

escape

the

quotation

marks

to

ensure

they

are

not

interpreted

by

the

system

prompt

(shell),

for

example,

specify

the

following:

\"mytable\"

If

a

case-sensitive

value

is

qualified

by

another

case-sensitive

value,

delimit

the

two

values

individually;

for

example:

"myschema"."mytable"

Enclose

strings

in

double

quotation

marks;

for

example:

"select

*

from

newtable"

When

the

db2se

command

is

executed,

the

stored

procedure

that

corresponds

to

the

command

will

be

invoked,

and

the

operation

that

you

requested

will

be

performed.

Overview

of

db2se

commands:

The

following

table

indicates

what

db2se

commands

to

issue

to

perform

the

tasks

involved

in

setting

up

Spatial

Extender

and

creating

projects

that

use

spatial

data.

This

table

also

provides

examples

of

db2se

commands

and

refers

you

to

information

about

authorizations

and

command-specific

parameters.

To

the

right

of

the

task,

in

the

second

column,

you

will

see

a

link

or

reference

to

information

about

a

stored

procedure.

This

stored

procedure

is

called

when

the

command

is

issued.

Authorization

to

use

the

stored

procedure

is

the

same

as

the

authorization

to

use

the

command;

also,

the

command

and

stored

procedure

share

the

same

parameters.

For

more

information

about

authorization

and

the

meanings

of

the

parameters,

see

the

section

identified

by

the

reference.

Table

8.

db2se

commands

indexed

by

task

Task

Command

and

example

Create

a

coordinate

system.

db2se

create_cs

Command-specific

parameters

and

required

authorizations

are

the

same

as

those

for

the

db2gse.ST_create_coordsys

stored

procedure.

The

following

example

creates

a

coordinate

system

named

“mycoordsys”.

db2se

create_cs

mydb

-coordsysName

\"mycoordsys\"

-definition

GEOCS[\"GCS_NORTH_AMERICAN_1983\",

DATUM["D_North_American_1983\",

SPHEROID[\"GRS_1980\",6387137,298.257222101]],

PRIMEM[\"Greenwich\",0],UNIT["Degree\",

0.0174532925199432955]]

Commands

122

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Table

8.

db2se

commands

indexed

by

task

(continued)

Task

Command

and

example

Create

a

spatial

reference

system.

db2se

create_srs

Command-specific

parameters

are

the

same

as

those

for

the

db2gse.ST_create_srs

stored

procedure.

No

authorization

is

required.

The

following

example

creates

a

spatial

reference

system

named

“mysrs”.

db2se

create_srs

mydb

-srsName

\"mysrs\"

-srsID

100

-xScale

10

-coordsysName

\"GCS_North_American_1983\"

Drop

a

spatial

reference

system.

db2se

drop_srs

Command-specific

parameters

and

required

authorizations

are

the

same

as

those

for

the

db2gse.ST_drop_srsdb2gse.ST_drop_srs

stored

procedure.

The

following

example

drops

a

spatial

reference

system

named

“mysrs”.

db2se

drop_srs

mydb

-srsName

\"mysrs\"

Delete

a

coordinate

system

definition.

db2se

drop_cs

Command-specific

parameters

and

required

authorizations

are

the

same

as

those

for

the

db2gse.ST_drop_coordsysdb2gse.ST_drop_coordsys

stored

procedure.

The

following

example

drops

a

coordinate

system

named

“mycoordsys”.

db2se

drop_cs

mydb

-coordsysName

\"mycoordsys\"

Disable

a

setup

to

geocode

data

automatically.

db2se

disable_autogc

Command-specific

parameters

and

required

authorizations

are

the

same

as

those

for

the

db2gse.ST_disable_autogeocoding

stored

procedure.

The

following

example

disables

the

automatic

geocoding

for

a

geocoded

column

named

MYCOLUMN

in

table

MYTABLE.

db2se

disable_autogc

mydb

-tableName

\"mytable\"

-columnName

\"mycolumn\"

Enable

a

database

for

spatial

operations.

db2se

enable_db

Command-specific

parameters

and

required

authorizations

are

the

same

as

those

for

the

db2gse.ST_enable_dbdb2gse.ST_enable_db

stored

procedure.

The

following

example

enables

a

database

named

MYDB

for

spatial

operations.

db2se

enable_db

mydb

Commands

Chapter

13.

DB2

Spatial

Extender

commands

123

|

Table

8.

db2se

commands

indexed

by

task

(continued)

Task

Command

and

example

Export

data

to

an

SDE

transfer

file.

db2se

export_sde

Command-specific

parameters

and

required

authorizations

are

the

same

as

those

for

the

db2gse.GSE_export_sdedb2gse.GSE_export_sde

stored

procedure.

The

following

example

exports

data

from

table

MYSDETABLE,

which

contains

spatial

column

MYSPATIALCOLUMN,

to

an

SDE

transfer

file

named

mysdefile.

db2se

export_sde

mydb

-tableName

\"mySDEtable\"

-columnName

\"mySpatialcolumn\"

-fileName

/home/myaccount/mysdefile

The

next

example

exports

data

from

a

table

named

SPATIALTABLE

to

an

SDE

file

named

sdex,

which

will

be

created

on

the

DB2

client.

Errors

and

informational

messages

(for

example,

time

the

export

started

and

finished

and

how

many

rows

were

exported)

are

written

to

a

file

called

sdex.export.log.

db2se

export_sde

mydb

-client

-fileName

sdex

-selectStatement

"SELECT

*

FROM

spatialTable"

-messagesFile

sdex.export.log

Export

data

to

shape

files.

db2se

export_shape

Command-specific

parameters

and

required

authorizations

are

the

same

as

those

for

the

db2gse.ST_export_shape

stored

procedure.

The

following

example

exports

a

spatial

column

named

MYCOLUMN

and

its

associated

table,

MYTABLE,

to

a

shape

file

named

myshapefile.

db2se

export_shape

mydb

-fileName

/home/myaccount/myshapefile

-selectStatement

"select

*

from

mytable"

Import

an

SDE

transfer

file.

db2se

import_sde

Command-specific

parameters

and

required

authorizations

are

the

same

as

those

for

the

db2gse.GSE_import_sdedb2gse.GSE_import_sde

stored

procedure.

The

following

example

imports

an

SDE

transfer

file

named

mysdefile

to

table

MYSDETABLE,

which

contains

a

spatial

column

named

MYSPATIALCOLUMN.

A

commit

is

to

be

issued

for

every

ten

records.

db2se

import_sde

mydb

-tableName

\"mysdetable\"

-columnName

\"mySpatialcolumn\"

-fileName

/home/myaccount/"mysdefile"

-commitScope

10

The

next

example

shows

how

to

import

an

SDE

file

named

sdex,

which

resides

on

the

DB2

client.

In

this

example,

the

data

is

imported

into

a

table

named

SDETABLE

(to

a

column

named

ID)

and

a

commit

is

issued

every

100

records.

Any

errors

are

written

to

a

file

called

sdex.exceptions.

db2se

import_sde

mydb

-client

-filename

sdex

-srsId

1234

-tableName

sdeTable

-idColumn

id

-commitScope

100

-messagesFile

sdex.exceptions

Commands

124

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

Table

8.

db2se

commands

indexed

by

task

(continued)

Task

Command

and

example

Import

shape

files.

db2se

import_shape

Command-specific

parameters

and

required

authorizations

are

the

same

as

those

for

the

db2gse.ST_import_shape

stored

procedure.

The

following

command

imports

a

shape

file

named

myfile

to

a

table

named

MYTABLE.

During

the

import,

the

spatial

data

in

myfile

is

inserted

into

a

MYTABLE

column

named

MYCOLUMN.

db2se

import_shape

mydb

-fileName

\"myfile\"

-srsName

NAD83_SRS_1

-tableName

\"mytable\"

-spatialColumnName

\"mycolumn\"

Register

a

geocoder.

db2se

register_gc

Command-specific

parameters

and

required

authorizations

are

the

same

as

those

for

the

db2gse.ST_register_geocoder

stored

procedure.

The

following

example

registers

a

geocoder

named

“mygeocoder”,

which

is

implemented

by

a

function

named

“myschema.myfunction”.

db2se

register_gc

mydb

-geocoderName

\"mygeocoder"\

-functionSchema

\"myschema\"

-functionName

\"myfnction\"

-defaultParameterValues

"1,

’string’,,cast(null

as

varchar(50))"

-vendor

myvendor

-description

"myvendor

geocoder

returning

well-known

text"

Register

a

spatial

column.

db2se

register_spatial_column

Command-specific

parameters

and

required

authorizations

are

the

same

as

those

for

the

db2gse.ST_register_spatial_column

stored

procedure.

The

following

example

registers

a

spatial

column

named

MYCOLUMN

in

table

MYTABLE,

with

spatial

reference

system

“USA_SRS_1”.

db2se

register_spatial_column

mydb

-tableName

\"mytable\"

-columnName

\"mycolumn\"

-srsName

USA_SRS_1

Remove

the

resources

that

enable

a

database

for

spatial

operations.

db2se

disable_db

Command-specific

parameters

and

required

authorizations

are

the

same

as

those

for

the

db2gse.ST_disable_dbdb2gse.ST_disable_db

stored

procedure.

The

following

example

removes

the

resources

that

enable

database

MYDB

for

spatial

operations.

db2se

disable_db

mydb

Remove

a

setup

for

geocoding

operations.

db2se

remove_gc_setup

Command-specific

parameters

and

required

authorizations

are

the

same

as

those

for

the

db2gse.ST_remove_gc_setup

stored

procedure.

The

following

example

removes

a

setup

for

geocoding

operations

that

apply

to

a

spatial

column

named

MYCOLUMN

in

table

MYTABLE.

db2se

remove_geocoding_setup

mydb

-tableName

\"mytable\"

-columnName

\"mycolumn\"

Commands

Chapter

13.

DB2

Spatial

Extender

commands

125

Table

8.

db2se

commands

indexed

by

task

(continued)

Task

Command

and

example

Run

a

geocoder

in

batch

mode.

db2se

run_gc

Command-specific

parameters

and

required

authorizations

are

the

same

as

those

for

the

db2gse.ST_run_gc

stored

procedure.

The

following

example

runs

a

geocoder

in

batch

mode

to

populate

a

column

named

MYCOLUMN

in

a

table

named

MYTABLE.

db2se

run_gc

mydb

-tableName

\"mytable\"

-columnName

\"mycolumn\"

Set

up

a

geocoder

to

run

automatically.

db2se

enable_autogeocoding

Command-specific

parameters

and

required

authorizations

are

the

same

as

those

for

the

db2gse.ST_enable_autogeocoding

stored

procedure.

The

following

example

sets

up

automatic

geocoding

for

a

column

named

MYCOLUMN

in

table

MYTABLE

db2se

enable_autogeocoding

mydb

-tableName

\"mytable\"

-columnName

\"mycolumn\"

Set

up

geocoding

operations.

db2se

setup_gc

Command-specific

parameters

and

required

authorizations

are

the

same

as

those

for

the

db2gse.ST_setup_geocoding

stored

procedure.

The

following

example

sets

up

geocoding

operations

to

populate

a

spatial

column

named

MYCOLUMN

in

table

MYTABLE.

db2se

setup_gc

mydb

-tableName

\"mytable\"

-columnName

\"mycolumn\"

-geocoderName

\"db2se_USA_GEOCODER\"

-parameterValues

"address,city,state,zip,2,90,70,20,1.1,’meter’,4.."

-autogeocodingColumns

address,city,state,zip

commitScope

10

Show

information

about

a

shape

file

and

its

contents.

db2se

shape_info

To

use

this

command,

you

must:

v

Have

permission

to

read

the

file

that

the

command

references.

v

Be

able

to

connect

to

the

database

that

contains

this

file

(if

you

use

the

–database

parameter,

which

specifies

that

the

system

searches

the

named

database

for

compatible

coordinate

systems

and

spatial

reference

systems).

The

following

example

shows

information

about

a

shape

file

named

myfile,

which

is

located

in

the

current

directory.

db2se

shape_info

-fileName

myfile

The

following

example

shows

information

about

a

sample

UNIX

shape

file

named

offices.

The

–database

parameter

finds

all

compatible

coordinate

systems

and

spatial

reference

systems

in

the

named

database

(in

this

case,

MYDB).

db2se

shape_info

-fileName

~/sqllib/samples/spatial/data/offices

-database

myDB

Commands

126

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|
|

|
|
|
|

|
|

|

|
|
|
|

|
|
|

Table

8.

db2se

commands

indexed

by

task

(continued)

Task

Command

and

example

Show

information

about

an

SDE

file

and

its

contents.

db2se

sde_info

To

use

this

command,

you

must:

v

Have

permission

to

read

the

file

that

the

command

refers

to.

v

Be

able

to

connect

to

the

database

that

contains

this

file

(if

you

use

the

–database

parameter,

which

specifies

that

the

system

searches

the

named

database

for

compatible

coordinate

systems

and

spatial

reference

systems).

The

following

example

shows

information

about

an

SDE

file

named

sdefile,

which

is

located

in

the

current

directory.

db2se

sde_info

-fileName

myfile

The

next

example

shows

information

about

an

SDE

file

named

sdex

and

searches

a

database

named

MYDB

for

all

compatible

coordinate

systems

and

spatial

reference

systems.

db2se

sde_info

-fileName

data/sdex

-database

myDB

Unregister

a

geocoder.

db2se

unregister_gc

Command-specific

parameters

and

required

authorizations

are

the

same

as

those

for

the

db2gse.ST_unregister_geocoder

stored

procedure.

The

following

example

unregisters

a

geocoder

named

“mygeocoder”.

db2se

unregister_gc

mydb

-geocoderName

\"mygeoco

der\"

Unregister

a

spatial

column.

db2se

unregister_spatial_column

Command-specific

parameters

and

required

authorizations

are

the

same

as

those

for

the

db2gse.ST_unregister_spatial_column

stored

procedure.

The

following

example

unregisters

a

spatial

column

named

MYCOLUMN

in

table

MYTABLE.

db2se

unregister_spatial_column

mydb

-tableName

\"mytable\"

-columnName

\"mycolumn\"

Update

a

coordinate

system

definition.

db2se

alter_cs

Command-specific

parameters

and

required

authorizations

are

the

same

as

those

for

the

db2gse.ST_alter_coordsysdb2gse.ST_alter_coordsys

stored

procedure.

The

following

example

updates

the

definition

of

a

coordinate

system

named

“mycoordsys”

with

a

new

organization

name.

db2se

alter_cs

mydb

-coordsysName

\"mycoordsys\"

-organization

myNeworganizationb

-tableName

\"mytable\"

Commands

Chapter

13.

DB2

Spatial

Extender

commands

127

|

|

|

|
|
|
|

|
|

|

|
|
|

|

Table

8.

db2se

commands

indexed

by

task

(continued)

Task

Command

and

example

Update

a

spatial

reference

system

definition.

db2se

alter_srs

Command-specific

parameters

and

required

authorizations

are

the

same

as

those

for

the

db2gse.ST_alter_srsdb2gse.ST_alter_srs

stored

procedure.

The

following

example

alters

a

spatial

reference

system

named

“mysrs”

with

a

different

xOffset

and

description.

db2se

alter_srs

mydb

-srsName

\"mysrs\"

-xOffset

35

-description

"This

is

my

own

spatial

reference

system."

Commands

128

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Chapter

14.

Writing

applications

and

using

the

sample

program

This

chapter

explains

how

you

write

Spatial

Extender

applications.

Writing

applications

for

DB2

Spatial

Extender

If

you

plan

to

write

application

programs

that

invoke

DB2

Spatial

Extender

stored

procedures

or

functions,

read

the

following

task

and

reference

information.

Related

concepts:

v

“The

DB2

Spatial

Extender

sample

program”

on

page

131

Related

tasks:

v

“Calling

DB2

Spatial

Extender

stored

procedures

from

an

application”

on

page

130

v

“Including

the

DB2

Spatial

Extender

header

file

in

spatial

applications”

on

page

129

Including

the

DB2

Spatial

Extender

header

file

in

spatial

applications

DB2

Spatial

Extender

provides

a

header

file

that

defines

constants

that

can

be

used

with

the

stored

procedures

and

functions

of

the

DB2

Spatial

Extender.

Recommendation:

If

you

plan

to

call

DB2

Spatial

Extender

stored

procedures

or

functions

from

C

or

C++

programs,

include

this

header

file

in

your

spatial

applications.

Procedure:

To

ensure

that

your

DB2

Spatial

Extender

applications

can

use

the

necessary

definitions

in

this

header

file:

1.

Include

the

DB2

Spatial

Extender

header

file

in

your

application

program.

The

header

file

has

the

following

name:

db2gse.h

The

header

file

is

located

in

the

db2path/include

directory,

where

db2path

is

the

installation

directory

where

DB2

Universal

Database

is

installed.

2.

Ensure

that

the

path

of

the

include

directory

is

specified

in

your

makefile

with

the

compilation

option.

If

you

are

building

Windows

64-bit

applications

on

a

Windows

32-bit

system,

change

the

DB2_LIBS

parameter

in

the

samples/spatial/makefile.nt

file

to

accommodate

64–bit

applications.

The

necessary

changes

are

highlighted

below:

DB2_LIBS

=

$(DB2_DIR)\lib\Win64\db2cli.lib

$(DB2_DIR)\lib\Win64\db2api.lib

©

Copyright

IBM

Corp.

1998,

2004

129

|
|
|

|

Calling

DB2

Spatial

Extender

stored

procedures

from

an

application

DB2

Spatial

Extender

stored

procedures

are

created

when

you

enable

the

database

for

spatial

operations.

If

you

plan

to

write

application

programs

that

call

any

of

the

DB2

Spatial

Extender

stored

procedures,

you

use

the

SQL

CALL

statement

and

specify

the

name

of

the

stored

procedure.

Procedure:

To

call

DB2

Spatial

Extender

stored

procedures,

take

the

following

actions:

v

To

call

the

ST_enable_db

stored

procedure,

which

enables

a

database

for

spatial

operations,

specify

the

stored

procedure

name

as

follows:

CALL

db2gse!ST_enable_db

The

db2gse!

in

this

call

represents

the

DB2

Spatial

Extender

library

name.

The

ST_enable_db

stored

procedure

is

the

only

one

in

which

you

need

to

include

an

exclamation

mark

in

the

call

(that

is,

db2gse!).

v

To

call

any

other

DB2

Spatial

Extender

stored

procedure,

specify

the

stored

procedure

name

in

the

following

form,

where

db2gse

is

the

schema

name

for

all

DB2

Spatial

Extender

stored

procedures,

and

spatial_procedure_name

is

the

name

of

the

stored

procedure:

CALL

db2gse.spatial_procedure_name

Notice

that

no

exclamation

mark

is

included

in

the

preceding

call.

The

DB2

Spatial

Extender

stored

procedures

are

shown

in

the

following

table.

Table

9.

Stored

procedure

Description

GSE_export_sde

Exports

a

spatial

column

and

its

associated

table

to

an

SDE

transfer

file.

GSE_import_sde

Imports

an

SDE

transfer

file

to

a

database.

ST_alter_coordsys

Updates

an

attribute

of

a

coordinate

system

in

the

database.

ST_alter_srs

Updates

an

attribute

of

a

spatial

reference

system

in

the

database.

ST_create_coordsys

Creates

a

coordinate

system

in

the

database.

ST_create_srs

Creates

a

spatial

reference

system

in

the

database.

ST_disable_autogeocoding

Specifies

that

DB2

Spatial

Extender

is

to

stop

synchronizing

a

geocoded

column

with

its

associated

geocoding

columns.

ST_disable_db

Removes

resources

that

allow

DB2

Spatial

Extender

to

store

spatial

data

and

to

support

operations

that

are

performed

on

this

data.

ST_drop_coordsys

Deletes

a

coordinate

system

from

the

database.

ST_drop_srs

Deletes

a

spatial

reference

system

from

the

database.

ST_enable_autogeocoding

Specifies

that

DB2

Spatial

Extender

is

to

synchronize

a

geocoded

column

with

its

associated

geocoding

columns.

Writing

applications

and

using

the

sample

program

130

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Table

9.

(continued)

Stored

procedure

Description

ST_enable_db

Supplies

a

database

with

the

resources

that

it

needs

to

store

spatial

data

and

to

support

operations.

ST_export_shape

Exports

selected

data

in

the

database

to

a

shape

file.

ST_import_shape

Imports

a

shape

file

to

a

database.

ST_register_geocoder

Registers

a

geocoder

other

than

DB2SE_USA_GEOCODER,

which

is

part

of

the

DB2

Spatial

Extender

product.

ST_register_spatial_column

Registers

a

spatial

column

and

associates

a

spatial

reference

system

with

it.

ST_remove_geocoding_setup

Removes

all

the

geocoding

setup

information

for

the

geocoded

column.

ST_run_geocoding

Runs

a

geocoder

in

batch

mode.

ST_setup_geocoding

Associates

a

column

that

is

to

be

geocoded

with

a

geocoder

and

sets

up

the

corresponding

geocoding

parameter

values.

ST_unregister_geocoder

Unregisters

a

geocoder

other

than

DB2SE_USA_GEOCODER.

ST_unregister_spatial_column

Removes

the

registration

of

a

spatial

column.

The

DB2

Spatial

Extender

sample

program

The

DB2®

Spatial

Extender

sample

program,

runGseDemo,

has

two

purposes.

You

can

use

the

sample

program

to

become

familiar

with

application

programming

for

DB2

Spatial

Extender,

and

you

can

use

the

program

to

verify

the

DB2

Spatial

Extender

installation.

See

“Related

tasks”

at

the

end

of

this

topic

for

more

information

on

verifying

the

Spatial

Extender

installation.

v

On

UNIX®,

you

can

locate

the

runGseDemo

program

in

the

following

path:

$HOME/sqllib/samples/spatial

where

$HOME

is

the

instance

owner’s

home

directory.

v

On

Windows®,

you

can

locate

the

runGseDemo

program

in

the

following

path:

c:\Program

Files\IBM\sqllib\samples\spatial

where

c:\Program

Files\IBM\sqllib

is

the

directory

in

which

you

installed

DB2

Spatial

Extender.

The

DB2

Spatial

Extender

runGseDemo

sample

program

makes

application

programming

easier.

Using

this

sample

program,

you

can

enable

a

database

for

spatial

operations

and

perform

spatial

analysis

on

data

in

that

database.

This

database

will

contain

tables

with

fictitious

information

about

customers

and

flood

zones.

From

this

information

you

can

experiment

with

Spatial

Extender

and

determine

which

customers

are

at

risk

of

suffering

damage

from

a

flood.

With

the

sample

program,

you

can:

v

See

the

steps

typically

required

to

create

and

maintain

a

spatially-enabled

database.

Writing

applications

and

using

the

sample

program

Chapter

14.

Writing

applications

and

using

the

sample

program

131

|

|

|
|

v

Understand

how

to

call

spatial

stored

procedures

from

an

application

program.

v

Cut

and

paste

sample

code

into

your

own

applications.

Use

the

following

sample

program

to

code

tasks

for

DB2

Spatial

Extender.

For

example,

suppose

that

you

write

an

application

that

uses

the

database

interface

to

call

DB2

Spatial

Extender

stored

procedures.

From

the

sample

program,

you

can

copy

code

to

customize

your

application.

If

you

are

unfamiliar

with

the

programming

steps

for

DB2

Spatial

Extender,

you

can

run

the

sample

program,

which

shows

each

step

in

detail.

For

instructions

on

running

the

sample

program,

see

“Related

tasks”

at

the

end

of

this

topic.

The

following

table

describes

each

step

in

the

sample

program.

In

each

step

you

will

perform

an

action

and,

in

many

cases,

reverse

or

undo

that

action.

For

example,

in

the

first

step

you

will

enable

the

spatial

database

and

then

disable

the

spatial

database.

In

this

way,

you

will

become

familiar

with

many

of

the

Spatial

Extender

stored

procedures.

For

more

information

about

the

stored

procedures

responsible

for

each

step,

see

“Related

tasks”

at

the

end

of

this

topic.

Table

10.

DB2

Spatial

Extender

sample

program

steps

Steps

Action

and

description

Enable

or

disable

the

spatial

database

v

Enable

the

spatial

database

This

is

the

first

step

needed

to

use

DB2

Spatial

Extender.

A

database

that

has

been

enabled

for

spatial

operations

has

a

set

of

spatial

types,

a

set

of

spatial

functions,

a

set

of

spatial

predicates,

new

index

types,

and

a

set

of

spatial

catalog

tables

and

views.

v

Disable

the

spatial

database

This

step

is

usually

performed

when

you

have

enabled

spatial

capabilities

for

the

wrong

database,

or

you

no

longer

need

to

perform

spatial

operations

in

this

database.

When

you

disable

a

spatial

database,

you

remove

the

set

of

spatial

types,

the

set

of

spatial

functions,

the

set

of

spatial

predicates,

new

index

types,

and

the

set

of

spatial

catalog

tables

and

views

associated

with

that

database.

v

Enable

the

spatial

database

Same

as

above.

Create

or

drop

a

coordinate

system

v

Create

a

coordinate

system

named

NORTH_AMERICAN

This

step

creates

a

new

coordinate

system

in

the

database.

v

Drop

the

coordinate

system

named

NORTH_AMERICAN

This

step

drops

the

coordinate

system

NORTH_AMERICAN

from

the

database.

v

Create

a

coordinate

system

named

KY_STATE_PLANE

This

step

creates

a

new

coordinate

system,

KY_STATE_PLANE,

which

will

be

used

by

the

spatial

reference

system

created

in

the

next

step.

Writing

applications

and

using

the

sample

program

132

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|

||

||

|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

|

|

|
|
|

|

|

|
|

|

|
|
|

Table

10.

DB2

Spatial

Extender

sample

program

steps

(continued)

Steps

Action

and

description

Create

or

drop

a

spatial

reference

system

v

Create

a

spatial

reference

system

named

SRSDEMO1

This

step

defines

a

new

spatial

reference

system

(SRS)

that

is

used

to

interpret

the

coordinates.

The

SRS

includes

geometry

data

in

a

form

that

can

be

stored

in

a

column

of

a

spatially-enabled

database.

After

the

SRS

is

registered

to

a

specific

spatial

column,

the

coordinates

that

are

applicable

to

that

spatial

column

can

be

stored

in

the

associated

column

of

the

CUSTOMERS

table.

v

Drop

the

SRS

named

SRSDEMO1

This

step

is

performed

if

you

no

longer

need

the

SRS

in

the

database.

When

you

drop

an

SRS,

you

remove

the

SRS

definition

from

the

database.

v

Create

the

SRS

named

KY_STATE_SRS

Create

and

populate

the

spatial

tables

v

Create

the

CUSTOMERS

table

v

Populate

the

CUSTOMERS

table

The

CUSTOMERS

table

represents

business

data

that

has

been

stored

in

the

database

for

several

years.

v

Alter

the

CUSTOMERS

table

by

adding

the

LOCATION

column

The

ALTER

TABLE

statement

adds

a

new

column

(LOCATION)

of

type

ST_Point.

This

column

will

be

populated

by

geocoding

the

address

columns

in

a

subsequent

step.

v

Create

the

OFFICES

table

The

OFFICES

table

represents,

among

other

data,

the

sales

zone

for

each

office

of

an

insurance

company.

The

entire

table

will

be

populated

with

the

attribute

data

from

a

non-DB2

database

in

a

subsequent

step.

This

subsequent

step

involves

importing

attribute

data

into

the

OFFICES

table

from

a

shape

file.

Populate

the

columns

v

Geocode

the

addresses

data

for

the

LOCATION

column

of

the

CUSTOMERS

table

with

the

geocoder

named

KY_STATE_GC

This

step

performs

batch

spatial

geocoding

by

invoking

the

geocoder

utility.

Batch

geocoding

is

usually

performed

when

a

significant

portion

of

the

table

needs

to

be

geocoded

or

re-geocoded.

v

Load

the

previously-created

OFFICES

table

from

the

shape

file

using

spatial

reference

system

KY_STATE_SRS

This

step

loads

the

OFFICES

table

with

existing

spatial

data

in

the

form

of

a

shape

file.

Because

the

OFFICES

table

exists,

the

LOAD

utility

will

append

the

new

records

to

an

existing

table.

v

Create

and

load

the

FLOODZONES

table

from

the

shape

file

using

spatial

reference

system

KY_STATE_SRS

This

step

loads

the

FLOODZONES

table

with

existing

data

in

the

form

of

a

shape

file.

Because

the

table

does

not

exist,

the

LOAD

utility

will

create

the

table

before

the

data

is

loaded.

v

Create

and

load

the

REGIONS

table

from

the

shape

file

using

spatial

reference

system

KY_STATE_SRS

Writing

applications

and

using

the

sample

program

Chapter

14.

Writing

applications

and

using

the

sample

program

133

|

||

|
|
|

|
|
|
|
|
|
|

|

|
|
|

|

|
|
|

|

|
|

|
|

|
|
|
|

|

|
|
|
|
|
|

||
|

|
|
|
|

|
|

|
|
|
|

|
|

|
|
|

|
|

Table

10.

DB2

Spatial

Extender

sample

program

steps

(continued)

Steps

Action

and

description

Register

or

unregister

the

geocoder

v

Register

the

geocoder

named

SAMPLEGC

v

Unregister

the

geocoder

named

SAMPLEGC

v

Register

the

geocoder

KY_STATE_GC

These

steps

register

and

unregister

the

geocoder

named

SAMPLEGC

and

then

create

a

new

geocoder,

KY_STATE_GC,

to

use

in

the

sample

program.

Create

spatial

indexes

v

Create

the

spatial

grid

index

for

the

LOCATION

column

of

the

CUSTOMERS

table

v

Drop

the

spatial

grid

index

for

the

LOCATION

column

of

the

CUSTOMERS

table

v

Create

the

spatial

grid

index

for

the

LOCATION

column

of

the

CUSTOMERS

table

v

Create

the

spatial

grid

index

for

the

LOCATION

column

of

the

OFFICES

table

v

Create

the

spatial

grid

index

for

the

LOCATION

column

of

the

FLOODZONES

table

v

Create

the

spatial

grid

index

for

the

LOCATION

column

of

the

REGIONS

table

These

steps

create

the

spatial

grid

index

for

the

CUSTOMERS,

OFFICES,

FLOODZONES,

and

REGIONS

tables.

Enable

automatic

geocoding

v

Set

up

geocoding

for

the

LOCATION

column

of

the

CUSTOMERS

table

with

geocoder

KY_STATE_GC

This

step

associates

the

LOCATION

column

of

the

CUSTOMERS

table

with

geocoder

KY_STATE_GC

and

sets

up

the

corresponding

values

for

geocoding

parameters.

v

Enable

automatic

geocoding

for

the

LOCATION

column

of

the

CUSTOMERS

table

This

step

turns

on

the

automatic

invocation

of

the

geocoder.

Using

automatic

geocoding

causes

the

LOCATION,

STREET,

CITY,

STATE,

and

ZIP

columns

of

the

CUSTOMERS

table

to

be

synchronized

with

each

other

for

subsequent

insert

and

update

operations.

Perform

insert,

update,

and

delete

operations

on

the

CUSTOMERS

table

v

Insert

some

records

with

a

different

street

v

Update

some

records

with

a

new

address

v

Delete

all

records

from

the

table

These

steps

demonstrate

insert,

update,

and

delete

operations

on

the

STREET,

CITY,

STATE,

and

ZIP

columns

of

the

CUSTOMERS

table.

After

the

automatic

geocoding

is

enabled,

data

that

is

inserted

or

updated

in

these

columns

is

automatically

geocoded

into

the

LOCATION

column.

This

process

was

enabled

in

the

previous

step.

Writing

applications

and

using

the

sample

program

134

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

||

|
|
|

|

|

|
|
|

||
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|

|

|

|

|
|
|
|
|
|

Table

10.

DB2

Spatial

Extender

sample

program

steps

(continued)

Steps

Action

and

description

Disable

automatic

geocoding

v

Disable

automatic

geocoding

for

the

LOCATION

column

in

the

CUSTOMERS

table

v

Remove

the

geocoding

setup

for

the

LOCATION

column

of

the

CUSTOMERS

table

v

Drop

the

spatial

index

for

the

LOCATION

column

of

the

CUSTOMERS

table

These

steps

disable

the

automatic

invocation

of

the

geocoder

and

the

spatial

index

in

preparation

for

the

next

step.

The

next

step

involves

re-geocoding

the

entire

CUSTOMERS

table.

Recommendation:

If

you

are

loading

a

large

amount

of

geodata,

drop

the

spatial

index

before

you

load

the

data,

and

then

recreate

it

after

the

data

is

loaded.

Re-geocode

the

CUSTOMERS

table

v

Geocode

the

LOCATION

column

of

the

CUSTOMERS

table

again

with

a

lower

precision

level:

90%

instead

of

100%

v

Recreate

the

spatial

index

for

the

LOCATION

column

of

the

CUSTOMERS

table

v

Re-enable

automatic

geocoding

with

a

lower

precision

level:

90%

instead

of

100%

These

steps

run

the

geocoder

in

batch

mode,

recreate

the

spatial

index,

and

re-enable

the

automatic

geocoding

with

a

new

precision

level.

This

action

is

recommended

when

a

spatial

administrator

notices

a

high

failure

rate

in

the

geocoding

process.

If

the

precision

level

is

set

to

100%,

it

might

fail

to

geocode

an

address

because

it

cannot

find

a

matching

address

in

the

reference

data.

By

reducing

the

precision

level,

the

geocoder

might

be

more

successful

in

finding

matching

data.

After

the

table

is

re-geocoded

in

batch

mode,

the

automatic

geocoding

is

re-enabled

and

the

spatial

index

is

recreated.

This

allows

you

to

incrementally

maintain

the

spatial

index

and

the

spatial

column

for

subsequent

insert

and

update

operations.

Create

a

view

and

register

the

spatial

column

in

the

view

v

Create

a

view

called

HIGHRISKCUSTOMERS

based

on

the

join

of

the

CUSTOMERS

table

and

the

FLOODZONES

table

v

Register

the

view’s

spatial

column

These

steps

create

a

view

and

register

its

spatial

column.

Writing

applications

and

using

the

sample

program

Chapter

14.

Writing

applications

and

using

the

sample

program

135

|

||

|
|
|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|

|

Table

10.

DB2

Spatial

Extender

sample

program

steps

(continued)

Steps

Action

and

description

Perform

spatial

analysis

v

Find

the

number

of

customers

served

by

each

region

(ST_Within)

v

For

offices

and

customers

with

the

same

region,

find

the

number

of

customers

that

are

within

a

specific

distance

of

each

office

(ST_Within,

ST_Distance)

v

For

each

region,

find

the

average

income

and

premium

of

each

customer

(ST_Within)

v

Find

the

number

of

flood

zones

that

each

office

zone

overlaps

(ST_Overlaps)

v

Find

the

nearest

office

from

a

specific

customer

location,

assuming

that

the

office

is

located

in

the

centroid

of

the

office

zone

(ST_Distance)

v

Find

the

customers

whose

location

is

close

to

the

boundary

of

a

specific

flood

zone

(ST_Buffer,

ST_Intersects)

v

Find

those

high-risk

customers

within

a

specified

distance

from

a

specific

office

(ST_Within)

All

of

these

steps

use

the

sqlRunSpatialQueries

stored

procedure.

These

steps

perform

spatial

analysis

using

the

spatial

predicates

and

functions

in

DB2

SQL.

The

DB2

query

optimizer

exploits

the

spatial

index

on

the

spatial

columns

to

improve

the

query

performance

whenever

possible.

Export

spatial

data

into

shape

files

v

Export

the

HIGHRISKCUSTOMERS

view

to

shape

files

This

step

shows

an

example

of

exporting

the

HIGHRISKCUSTOMERS

view

to

shape

files.

Exporting

data

from

a

database

format

to

another

file

format

enables

the

information

to

be

used

by

other

tools

(such

as

ArcExplorer

for

DB2).

This

step

is

included

in

the

runGseDemo.c

program

but

is

commented

out

for

reference

only.

You

can

modify

the

sample

program

to

specify

the

location

for

the

export

shape

file,

and

rerun

the

sample

program.

Export

and

import

SDE

files

v

Export

the

CUSTOMERS

table

to

an

SDE

transfer

file

v

Import

data

from

the

newly

exported

SDE

transfer

file

These

steps

show

examples

of

exporting

and

importing

SDE

transfer

files.

These

steps

are

included

in

the

runGseDemo.c

program

but

are

commented

out

for

reference

only.

You

can

modify

the

sample

program

to

specify

the

location

for

the

export

SDE

file,

and

rerun

the

sample

program.

Related

tasks:

v

“Verifying

the

Spatial

Extender

installation”

on

page

36

v

“Troubleshooting

installation

problems”

on

page

37

v

“Writing

applications

for

DB2

Spatial

Extender”

on

page

129

v

“Calling

DB2

Spatial

Extender

stored

procedures

from

an

application”

on

page

130

Writing

applications

and

using

the

sample

program

136

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

||

||
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|

|
|

|
|
|
|
|

|

v

“Including

the

DB2

Spatial

Extender

header

file

in

spatial

applications”

on

page

129

Writing

applications

and

using

the

sample

program

Chapter

14.

Writing

applications

and

using

the

sample

program

137

Writing

applications

and

using

the

sample

program

138

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Chapter

15.

Identifying

DB2

Spatial

Extender

problems

If

you

encounter

a

problem

working

with

DB2

Spatial

Extender,

you

need

to

determine

the

cause

of

the

problem.

You

can

troubleshoot

problems

with

DB2

Spatial

Extender

in

these

ways:

v

You

can

use

message

information

to

diagnose

the

problem.

v

When

working

with

Spatial

Extender

stored

procedures

and

functions,

DB2

returns

information

about

the

success

or

failure

of

the

stored

procedure

or

function.

The

information

returned

will

be

a

message

code

(in

the

form

of

an

integer),

message

text,

or

both

depending

on

the

interface

that

you

use

to

work

with

DB2

Spatial

Extender.

v

You

can

view

the

DB2

administration

notification

file,

which

records

diagnostic

information

about

errors.

v

If

you

have

a

recurring

and

reproducible

Spatial

Extender

problem,

an

IBM

customer

support

representative

might

ask

you

to

use

the

DB2

trace

facility

to

help

them

diagnose

the

problem.

This

chapter

discusses

each

of

these

approaches.

How

to

interpret

DB2

Spatial

Extender

messages

You

can

work

with

DB2®

Spatial

Extender

through

four

different

interfaces:

v

DB2

Spatial

Extender

stored

procedures

v

DB2

Spatial

Extender

functions

v

DB2

Spatial

Extender

Command

Line

Processor

(CLP)

v

DB2

Control

Center

All

interfaces

return

DB2

Spatial

Extender

messages

to

help

you

determine

whether

the

spatial

operation

that

you

requested

completed

successfully

or

resulted

in

an

error.

The

following

table

explains

each

part

of

this

sample

DB2

Spatial

Extender

message

text:

GSE0000I:

The

operation

was

completed

successfully.

Table

11.

The

parts

of

the

DB2

Spatial

Extender

message

text

Message

text

part

Description

GSE

The

message

identifier.

All

DB2

Spatial

Extender

messages

begin

with

the

three-letter

prefix

GSE.

0000

The

message

number.

A

four

digit

number

that

ranges

from

0000

through

9999.

I

The

message

type.

A

single

letter

that

indicates

the

severity

of

message:

C

Critical

error

messages

N

Non-critical

error

messages

W

Warning

messages

I

Informational

messages

©

Copyright

IBM

Corp.

1998,

2004

139

|
|

Table

11.

The

parts

of

the

DB2

Spatial

Extender

message

text

(continued)

Message

text

part

Description

The

operation

was

completed

successfully.

The

message

explanation.

The

explanation

that

appears

in

the

message

text

is

the

brief

explanation.

You

can

retrieve

additional

information

about

the

message

that

includes

the

detailed

explanation

and

suggestions

to

avoid

or

correct

the

problem.

To

display

this

additional

information:

1.

Open

an

operating

system

command

prompt.

2.

Enter

the

DB2

help

command

with

the

message

identifier

and

message

number

to

display

additional

information

about

the

message.

For

example:

DB2

"?

GSEnnnn"

where

nnnn

is

the

message

number.

You

can

type

the

GSE

message

identifier

and

letter

indicating

the

message

type

in

uppercase

or

lowercase.

Typing

DB2

″?

GSE0000I″

will

yield

the

same

result

as

typing

db2

″?

gse0000i″.

You

can

omit

the

letter

after

the

message

number

when

you

type

the

command.

For

example,

typing

DB2

″?

GSE0000″

will

yield

the

same

result

as

typing

DB2

″?

GSE0000I″.

Suppose

the

message

code

is

GSE4107N.

When

you

type

DB2

″?

GSE4107N″

at

the

command

prompt,

the

following

information

is

displayed:

GSE4107N

Grid

size

value

"<grid-size>"

is

not

valid

where

it

is

used.

Explanation:

The

specified

grid

size

"<grid-size>"

is

not

valid.

One

of

the

following

invalid

specifications

was

made

when

the

grid

index

was

created

with

the

CREATE

INDEX

statement:

-

A

number

less

than

0

(zero)

was

specified

as

the

grid

size

for

the

first,

second,

or

third

grid

level.

-

0

(zero)

was

specified

as

the

grid

size

for

the

first

grid

level.

-

The

grid

size

specified

for

the

second

grid

level

is

less

than

the

grid

size

of

the

first

grid

level

but

it

is

not

0

(zero).

-

The

grid

size

specified

for

the

third

grid

level

is

less

than

the

grid

size

of

the

second

grid

level

but

it

is

not

0

(zero).

-

The

grid

size

specified

for

the

third

grid

level

is

greater

than

0

(zero)

but

the

grid

size

specified

for

the

second

grid

level

is

0

(zero).

User

Response:

Specify

a

valid

value

for

the

grid

size.

msgcode:

-4107

sqlstate:

38SC7

If

the

information

is

too

long

to

display

on

a

single

screen

and

your

operating

system

supports

the

more

executable

program

and

pipes,

type

this

command:

db2

"?

GSEnnnn"

|

more

Identifying

problems

140

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Using

the

more

program

will

force

the

display

to

pause

after

each

screen

of

data

so

that

you

can

read

the

information.

Related

concepts:

v

“DB2

Spatial

Extender

stored

procedure

output

parameters”

on

page

141

v

“DB2

Spatial

Extender

function

messages”

on

page

143

v

“DB2

Spatial

Extender

CLP

messages”

on

page

145

v

“DB2

Control

Center

messages”

on

page

146

v

“The

administration

notification

file”

on

page

149

Related

tasks:

v

“Tracing

DB2

Spatial

Extender

problems

with

the

db2trc

command”

on

page

148

Related

reference:

v

“GSE

messages”

in

the

Message

Reference

Volume

1

DB2

Spatial

Extender

stored

procedure

output

parameters

DB2®

Spatial

Extender

stored

procedures

are

invoked

implicitly

when

you

enable

and

use

Spatial

Extender

from

the

DB2

Control

Center

or

when

you

use

the

DB2

Spatial

Extender

CLP

(db2se).

You

can

invoke

stored

procedures

explicitly

in

an

application

program

or

from

the

DB2

command

line.

This

topic

describes

how

to

diagnose

problems

when

stored

procedures

are

invoked

explicitly

in

application

programs

or

from

the

DB2

command

line.

To

diagnose

stored

procedures

invoked

implicitly,

you

use

the

messages

returned

by

the

DB2

Spatial

Extender

CLP

or

the

messages

returned

by

the

DB2

Control

Center.

These

messages

are

discussed

in

separate

topics.

DB2

Spatial

Extender

stored

procedures

have

two

output

parameters:

the

message

code

(msg_code)

and

the

message

text

(msg_text).

The

parameter

values

indicate

the

success

or

failure

of

a

stored

procedure.

msg_code

The

msg_code

parameter

is

an

integer,

which

can

be

positive,

negative,

or

zero

(0).

Positive

numbers

are

used

for

warnings,

negative

numbers

are

used

for

errors

(both

critical

and

non-critical),

and

zero

(0)

is

used

for

informational

messages.

The

absolute

value

of

the

msg_code

is

included

in

the

msg_text

as

the

message

number.

For

example

v

If

the

msg_code

is

0,

the

message

number

is

0000.

v

If

the

msg_code

is

–219

,

the

message

number

is

0219.

The

negative

msg_code

indicates

that

the

message

is

a

critical

or

non-critical

error.

v

If

the

msg_code

is

+1036,

the

message

number

is

1036.

The

positive

msg_code

number

indicates

that

the

message

is

a

warning.

The

msg_code

numbers

for

Spatial

Extender

stored

procedures

are

divided

into

the

three

categories

shown

in

the

following

table:

Table

12.

Stored

procedure

message

codes

Codes

Category

0000

–

0999

Common

messages

Identifying

problems

Chapter

15.

Identifying

DB2

Spatial

Extender

problems

141

Table

12.

Stored

procedure

message

codes

(continued)

Codes

Category

1000

–

1999

Administrative

messages

2000

–

2999

Import

and

export

messages

msg_text

The

msg_text

parameter

is

comprised

of

the

message

identifier,

the

message

number,

the

message

type,

and

the

explanation.

An

example

of

a

stored

procedure

msg_text

value

is:

GSE0219N

An

EXECUTE

IMMEDIATE

statement

failed.

SQLERROR

=

"<sql-error>".

The

explanation

that

appears

in

the

msg_text

parameter

is

the

brief

explanation.

You

can

retrieve

additional

information

about

the

message

that

includes

the

detailed

explanation

and

suggestions

to

avoid

or

correct

the

problem.

For

a

detailed

explanation

of

the

parts

of

the

msg_text

parameter,

and

information

on

how

to

retrieve

additional

information

about

the

message,

see

the

topic:

How

to

interpret

DB2

Spatial

Extender

messages.

Working

with

stored

procedures

in

applications:

When

you

call

a

DB2

Spatial

Extender

stored

procedure

from

an

application,

you

will

receive

the

msg_code

and

msg_text

as

output

parameters.

You

can:

v

Program

your

application

to

return

the

output

parameter

values

to

the

application

user.

v

Perform

some

action

based

on

the

type

of

msg_code

value

returned.

Working

with

stored

procedures

from

the

DB2

command

line:

When

you

invoke

a

DB2

Spatial

Extender

stored

procedure

from

the

DB2

command

line,

you

receive

the

msg_code

and

the

msg_text

output

parameters.

These

output

parameters

indicate

the

success

or

failure

of

the

stored

procedure.

Suppose

you

connect

to

a

database

and

want

to

invoke

the

ST_disable_db

stored

procedure.

The

example

below

uses

a

DB2

CALL

command

to

disable

the

database

for

spatial

operations

and

shows

the

output

value

results.

A

force

parameter

value

of

0

is

used,

along

with

two

question

marks

at

the

end

of

the

CALL

command

to

represent

the

msg_code

and

msg_text

output

parameters.

The

values

for

these

output

parameters

are

displayed

after

the

stored

procedure

runs.

call

db2gse.st_disable_db(0,

?,

?)

Value

of

output

parameters

Parameter

Name

:

MSGCODE

Parameter

Value

:

0

Parameter

Name

:

MSGTEXT

Parameter

Value

:

GSE0000I

The

operation

was

completed

successfully.

Return

Status

=

0

Suppose

the

msg_text

returned

is

GSE2110N.

Use

the

DB2

help

command

to

display

more

information

about

the

message.

For

example:

Identifying

problems

142

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

"?

GSE2110"

The

following

information

is

displayed:

GSE2110N

The

spatial

reference

system

for

the

geomentry

in

row

"<row-number>"

is

invalid.

The

spatial

reference

system’s

numerical

identifier

is

"<srs-id>".

Explanation:

In

row

row-number,

the

geometry

that

is

to

be

exported

uses

an

invalid

spatial

reference

system.

The

geometry

cannot

be

exported.

User

Response:

Correct

the

indicated

geometry

or

exclude

the

row

from

the

export

operation

by

modifying

the

SELECT

statement

accordingly.

msg_code:

-2110

sqlstate:

38S9A

Related

concepts:

v

“How

to

interpret

DB2

Spatial

Extender

messages”

on

page

139

v

“DB2

Spatial

Extender

function

messages”

on

page

143

v

“DB2

Spatial

Extender

CLP

messages”

on

page

145

v

“DB2

Control

Center

messages”

on

page

146

Related

reference:

v

“GSE

messages”

in

the

Message

Reference

Volume

1

DB2

Spatial

Extender

function

messages

The

messages

returned

by

DB2®

Spatial

Extender

functions

are

typically

embedded

in

an

SQL

message.

The

SQLCODE

returned

in

the

message

indicates

if

an

error

occurred

with

the

function

or

that

a

warning

is

associated

with

the

function.

For

example:

v

The

SQLCODE

–443

(message

number

SQL0443)

indicates

that

an

error

occurred

with

the

function.

v

The

SQLCODE

+462

(message

number

SQL0462)

indicates

that

a

warning

is

associated

with

the

function.

The

following

table

explains

the

significant

parts

of

this

sample

message:

DB21034E

The

command

was

processed

as

an

SQL

statement

because

it

was

not

a

valid

Command

Line

Processor

command.

During

SQL

processing

it

returned:

SQL0443N

Routine

"DB2GSE.GSEGEOMFROMWKT"

(specific

name

"GSEGEOMWKT1")

has

returned

an

error

SQLSTATE

with

diagnostic

text

"GSE3421N

Polygon

is

not

closed.".

SQLSTATE=38SSL

Table

13.

The

significant

parts

of

DB2

Spatial

Extender

function

messages

Message

part

Description

SQL0443N

The

SQLCODE

indicates

the

type

of

problem.

Identifying

problems

Chapter

15.

Identifying

DB2

Spatial

Extender

problems

143

Table

13.

The

significant

parts

of

DB2

Spatial

Extender

function

messages

(continued)

Message

part

Description

GSE3421N

The

DB2

Spatial

Extender

message

number

and

message

type.

The

message

numbers

for

functions

range

from

GSE3000

to

GSE3999.

Additionally,

common

messages

can

be

returned

when

you

work

with

DB2

Spatial

Extender

functions.

The

message

numbers

for

common

messages

range

from

GSE0001

to

GSE0999.

Polygon

is

not

closed

The

DB2

Spatial

Extender

message

explanation.

SQLSTATE=38SSL

An

SQLSTATE

code

that

further

identifies

the

error.

An

SQLSTATE

code

is

returned

for

each

statement

or

row.

v

The

SQLSTATE

codes

for

Spatial

Extender

function

errors

are

38Sxx,

where

each

x

is

a

character

letter

or

number.

v

The

SQLSTATE

codes

for

Spatial

Extender

function

warnings

are

01HSx,

where

the

x

is

a

character

letter

or

number.

An

example

of

an

SQL0443

error

message:

Suppose

that

you

attempt

to

insert

the

values

for

a

polygon

into

the

table

POLYGON_TABLE,

as

shown

below:

INSERT

INTO

polygon_table

(

geometry

)

VALUES

(

ST_Polygon

(

’polygon

((

0

0,

0

2,

2

2,

1

2))

’)

)

This

results

in

an

error

message

because

you

did

not

provide

the

end

value

to

close

the

polygon.

The

error

message

returned

is:

DB21034E

The

command

was

processed

as

an

SQL

statement

because

it

was

not

a

valid

Command

Line

Processor

command.

During

SQL

processing

it

returned:

SQL0443N

Routine

"DB2GSE.GSEGEOMFROMWKT"

(specific

name

"GSEGEOMWKT1")

has

returned

an

error

SQLSTATE

with

diagnostic

text

"GSE3421N

Polygon

is

not

closed.".

SQLSTATE=38SSL

The

SQL

message

number

SQL0443N

indicates

that

an

error

occurred

and

the

message

includes

the

Spatial

Extender

message

text

GSE3421N

Polygon

is

not

closed.

When

you

receive

this

type

of

message:

1.

Locate

the

GSE

message

number

within

the

DB2

or

SQL

error

message.

2.

Use

the

DB2

help

command

(DB2

?)

to

see

the

Spatial

Extender

message

explanation

and

user

response.

Using

the

above

example,

type

the

following

command

in

an

operating

system

command

line

prompt:

DB2

"?

GSE3421"

The

message

is

repeated,

along

with

a

detailed

explanation

and

recommended

user

response.

Related

concepts:

v

“How

to

interpret

DB2

Spatial

Extender

messages”

on

page

139

v

“DB2

Spatial

Extender

stored

procedure

output

parameters”

on

page

141

v

“DB2

Spatial

Extender

CLP

messages”

on

page

145

v

“DB2

Control

Center

messages”

on

page

146

Related

reference:

Identifying

problems

144

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

v

“GSE

messages”

in

the

Message

Reference

Volume

1

DB2

Spatial

Extender

CLP

messages

The

DB2®

Spatial

Extender

CLP

(db2se)

returns

messages

for:

v

Stored

procedures,

if

invoked

implicitly.

v

Shape

information,

if

you

have

invoked

the

shape_info

subcommand

program

from

the

DB2

Spatial

Extender

CLP.

These

are

informational

messages.

v

Migration

operations.

v

Import

and

export

shape

operations

to

and

from

the

client.

Examples

of

stored

procedure

messages

returned

by

the

DB2

Spatial

Extender

CLP:

Most

of

the

messages

returned

through

the

DB2

Spatial

Extender

CLP

are

for

DB2

Spatial

Extender

stored

procedures.

When

you

invoke

a

stored

procedure

from

the

DB2

Spatial

Extender

CLP,

you

will

receive

message

text

that

indicates

the

success

or

failure

of

the

stored

procedure.

The

message

text

is

comprised

of

the

message

identifier,

the

message

number,

the

message

type,

and

the

explanation.

For

example,

if

you

enable

a

database

using

the

command

db2se

enable_db

testdb,

the

message

text

returned

by

the

Spatial

Extender

CLP

is:

Enabling

database.

Please

wait

...

GSE1036W

The

operation

was

successful.

But

values

of

certain

database

manager

and

database

configuration

parameters

should

be

increased.

Likewise,

if

you

disable

a

database

using

the

command

db2se

disable_db

testdb

the

message

text

returned

by

the

Spatial

Extender

CLP

is:

GSE0000I

The

operation

was

completed

successfully.

The

explanation

that

appears

in

the

message

text

is

the

brief

explanation.

You

can

retrieve

additional

information

about

the

message

that

includes

the

detailed

explanation

and

suggestions

to

avoid

or

correct

the

problem.

The

steps

to

retrieve

this

information,

and

a

detailed

explanation

of

how

to

interpret

the

parts

of

the

message

text,

are

discussed

in

a

separate

topic.

If

you

are

invoking

stored

procedures

through

an

application

program

or

from

the

DB2

command

line,

there

is

a

separate

topic

that

discusses

diagnosing

the

output

parameters.

Example

of

shape

information

messages

returned

by

the

Spatial

Extender

CLP:

Suppose

you

decide

to

display

information

for

a

shape

file

named

office.

Through

the

Spatial

Extender

CLP

(db2se)

you

would

issue

this

command:

db2se

shape_info

-fileName

/tmp/offices

This

is

an

example

of

the

information

that

displays:

Shape

file

information

File

code

=

9994

Identifying

problems

Chapter

15.

Identifying

DB2

Spatial

Extender

problems

145

File

length

(16-bit

words)

=

484

Shape

file

version

=

1000

Shape

type

=

1

(ST_POINT)

Number

of

records

=

31

Minimum

X

coordinate

=

-87.053834

Maximum

X

coordinate

=

-83.408752

Minimum

Y

coordinate

=

36.939628

Maximum

Y

coordinate

=

39.016477

Shapes

do

not

have

Z

coordinates.

Shapes

do

not

have

M

coordinates.

Shape

index

file

(extension

.shx)

is

present.

Attribute

file

information

dBase

file

code

=

3

Date

of

last

update

=

1901-08-15

Number

of

records

=

31

Number

of

bytes

in

header

=

129

Number

of

bytes

in

each

record

=

39

Number

of

columns

=

3

Column

Number

Column

Name

Data

Type

Length

Decimal

1

NAME

C

(

Character)

16

0

2

EMPLOYEES

N

(

Numeric™)

11

0

3

ID

N

(

Numeric)

11

0

Coordinate

system

definition:

"GEOGCS["GCS_North_American_1983",

DATUM["D_North_American_1983",SPHEROID["GRS_1980",6378137,298.257222101]],

PRIMEM["Greenwich",0],UNIT["Degree",0.017453292519943295]]"

Examples

of

migration

messages

returned

by

the

Spatial

Extender

CLP:

When

you

invoke

commands

that

perform

migration

operations,

messages

are

returned

that

indicate

the

success

or

failure

of

that

operation.

Suppose

you

invoke

the

migration

of

the

database

mydb

using

the

command

db2se

migrate

mydb

-messagesFile

/tmp/migrate.msg.

The

message

text

returned

by

the

Spatial

Extender

CLP

is:

Migrating

database.

Please

wait

...

GSE0000I

The

operation

was

completed

successfully.

Related

concepts:

v

“How

to

interpret

DB2

Spatial

Extender

messages”

on

page

139

v

“DB2

Spatial

Extender

stored

procedure

output

parameters”

on

page

141

v

“DB2

Spatial

Extender

function

messages”

on

page

143

v

“DB2

Control

Center

messages”

on

page

146

Related

reference:

v

“GSE

messages”

in

the

Message

Reference

Volume

1

DB2

Control

Center

messages

When

you

work

with

DB2®

Spatial

Extender

through

the

DB2

Control

Center,

messages

will

appear

in

the

DB2

Message

window.

Most

of

the

messages

that

you

will

encounter

will

be

DB2

Spatial

Extender

messages.

Occasionally,

you

will

receive

an

SQL

message.

The

SQL

messages

are

returned

when

an

error

involves

Identifying

problems

146

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

licensing,

locking,

or

when

a

DAS

service

is

not

available.

The

following

sections

provide

examples

of

how

DB2

Spatial

Extender

messages

and

SQL

messages

will

appear

in

the

DB2

Control

Center.

DB2

Spatial

Extender

messages:

When

you

receive

a

DB2

Spatial

Extender

message

through

the

Control

Center,

the

entire

message

text

appears

in

the

text

area

of

DB2

Message

window,

for

example:

GSE0219N

An

EXECUTE

IMMEDIATE

statement

failed.

SQLERROR

=

"<sql-error>".

SQL

messages:

When

you

receive

an

SQL

message

through

the

Control

Center

that

pertains

to

DB2

Spatial

Extender:

v

The

message

identifier,

message

number,

and

message

type

appear

on

the

left

side

of

the

DB2

Message

window,

for

example:

SQL0612N.

v

The

message

text

appears

in

the

text

area

of

the

DB2

Message

window.

The

message

text

that

appears

in

the

DB2

Message

window

might

contain

the

SQL

message

text

and

the

SQLSTATE,

or

it

might

contain

the

message

text

and

the

detailed

explanation

and

user

response.

An

example

of

an

SQL

message

that

contains

the

SQL

message

text

and

the

SQLSTATE

is:

[IBM][CLI

Driver][DB2/NT]

SQL0612N

"<name>"

is

a

duplicate

name.

SQLSTATE=42711

An

example

of

an

SQL

message

that

contains

the

message

text

and

the

detailed

explanation

and

user

response

is:

SQL8008N

The

product

"DB2

Spatial

Extender"

does

not

have

a

valid

license

key

installed

and

the

evaluation

period

has

expired.

Explanation:

A

valid

license

key

could

not

be

found

and

the

evaluation

period

has

expired.

User

Response:

Install

a

license

key

for

the

fully

entitled

version

of

the

product.

You

can

obtain

a

license

key

for

the

product

by

contacting

your

IBM®

representative

or

authorized

dealer.

Related

concepts:

v

“How

to

interpret

DB2

Spatial

Extender

messages”

on

page

139

v

“DB2

Spatial

Extender

stored

procedure

output

parameters”

on

page

141

v

“DB2

Spatial

Extender

function

messages”

on

page

143

v

“DB2

Spatial

Extender

CLP

messages”

on

page

145

Related

reference:

v

“GSE

messages”

in

the

Message

Reference

Volume

1

Identifying

problems

Chapter

15.

Identifying

DB2

Spatial

Extender

problems

147

Tracing

DB2

Spatial

Extender

problems

with

the

db2trc

command

When

you

have

a

recurring

and

reproducible

DB2

Spatial

Extender

problem,

you

can

use

the

DB2

trace

facility

to

capture

information

about

the

problem.

The

DB2

trace

facility

is

activated

by

the

db2trc

system

command.

The

DB2

trace

facility

can:

v

Trace

events

v

Dump

the

trace

data

to

a

file

v

Format

trace

data

into

a

readable

format

Restrictions:

Activate

this

facility

only

when

directed

by

a

DB2

technical

support

representative.

On

UNIX

operating

systems,

you

must

have

SYSADM,

SYSCTRL,

or

SYSMAINT

authorization

to

trace

a

DB2

instance.

On

Windows

operating

systems,

no

special

authorization

is

required.

Procedure:

To

trace

the

DB2

Spatial

Extender

events

to

memory,

follow

these

basic

steps:

1.

Shut

down

all

other

applications.

2.

Turn

the

trace

on.

The

DB2

Support

technical

support

representative

will

provide

you

with

the

specific

parameters

for

this

step.

The

basic

command

is:

db2trc

on

Restriction:

The

db2trc

command

must

be

entered

at

a

operating–system

command

prompt

or

in

a

shell

script.

It

cannot

be

used

in

the

DB2

Spatial

Extender

command–line

interface

(db2se)

or

in

the

DB2

CLP.

You

can

trace

to

memory

or

to

a

file.

The

preferred

method

for

tracing

is

to

trace

to

memory.

If

the

problem

being

recreated

suspends

the

workstation

and

prevents

you

from

dumping

the

trace,

trace

to

a

file.

3.

Reproduce

the

problem.

4.

Dump

the

trace

to

a

file.

For

example:

db2trc

dump

january23trace.dmp

This

command

creates

a

file

(january23trace.dmp)

in

the

current

directory

with

the

name

that

you

specify,

and

dumps

the

trace

information

in

that

file.

You

can

specify

a

different

directory

by

including

the

file

path.

For

example,

to

place

the

dump

file

in

the

/tmp/spatial/errors

directory,

the

syntax

is:

db2trc

dump

/tmp/spatial/errors/january23trace.dmp

Dump

the

trace

immediately

after

the

problem

occurs.

5.

Turn

the

trace

off.

For

example:

db2trc

off

6.

Format

the

data

as

an

ASCII

file.

You

can

sort

the

data

two

ways:

v

Use

the

flw

option

to

sort

the

data

by

process

or

thread.

For

example:

db2trc

flw

january23trace.dmp

january23trace.flw

v

Use

the

fmt

option

to

list

every

event

chronologically.

For

example:

db2trc

fmt

january23trace.dmp

january23trace.fmt

Related

concepts:

Identifying

problems

148

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

v

“DB2

trace

(db2trc)”

in

the

Troubleshooting

Guide

v

“How

to

interpret

DB2

Spatial

Extender

messages”

on

page

139

v

“The

administration

notification

file”

on

page

149

Related

reference:

v

“GSE

messages”

in

the

Message

Reference

Volume

1

The

administration

notification

file

Diagnostic

information

about

errors

is

recorded

in

the

administration

notification

file.

This

information

is

used

for

problem

determination

and

is

intended

for

DB2®

technical

support.

The

administration

notification

file

contains

text

information

logged

by

DB2

as

well

as

DB2

Spatial

Extender.

It

is

located

in

the

directory

specified

by

the

DIAGPATH

database

manager

configuration

parameter.

On

Windows®

NT,

Windows

2000,

and

Windows

XP

systems,

the

DB2

administration

notification

file

is

found

in

the

event

log

and

can

be

reviewed

through

the

Windows

Event

Viewer.

The

information

that

DB2

records

in

the

administration

log

is

determined

by

the

DIAGLEVEL

and

NOTIFYLEVEL

settings.

Use

a

text

editor

to

view

the

file

on

the

machine

where

you

suspect

a

problem

to

have

occurred.

The

most

recent

events

recorded

are

the

furthest

down

the

file.

Generally,

each

entry

contains

the

following

parts:

v

A

timestamp.

v

The

location

reporting

the

error.

Application

identifiers

allow

you

to

match

up

entries

pertaining

to

an

application

on

the

logs

of

servers

and

clients.

v

A

diagnostic

message

(usually

beginning

with

″DIA″

or

″ADM″)

explaining

the

error.

v

Any

available

supporting

data,

such

as

SQLCA

data

structures

and

pointers

to

the

location

of

any

extra

dump

or

trap

files.

If

the

database

is

behaving

normally,

this

type

of

information

is

not

important

and

can

be

ignored.

The

administration

notification

file

grows

continuously.

When

it

gets

too

large,

back

it

up

and

then

erase

the

file.

A

new

file

is

generated

automatically

the

next

time

it

is

required

by

the

system.

Related

concepts:

v

“Interpreting

the

administration

logs”

in

the

Troubleshooting

Guide

v

“How

to

interpret

DB2

Spatial

Extender

messages”

on

page

139

Related

tasks:

v

“Tracing

DB2

Spatial

Extender

problems

with

the

db2trc

command”

on

page

148

Related

reference:

v

“GSE

messages”

in

the

Message

Reference

Volume

1

Identifying

problems

Chapter

15.

Identifying

DB2

Spatial

Extender

problems

149

|

Creating

projects

150

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Part

4.

Using

DB2

Geodetic

Extender

©

Copyright

IBM

Corp.

1998,

2004

151

|

|

|

Using

DB2

Geodetic

Extender

152

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Chapter

16.

DB2

Geodetic

Extender

This

chapter

introduces

DB2

Geodetic

Extender

by

explaining

its

purpose,

describing

when

to

use

it,

and

explaining

geodetic

concepts.

DB2

Geodetic

Extender

The

DB2®

Geodetic

Extender

enables

you

to

treat

the

Earth

as

a

globe.

Using

the

same

spatial

data

types

and

functions

as

for

any

other

Spatial

Extender

operations,

you

can

use

Geodetic

Extender

to

run

seamless

queries

of

data

around

the

poles

and

data

that

crosses

the

180th

meridian.

You

can

maintain

data

that

is

referenced

to

a

precise

location

on

the

surface

of

the

Earth.

Geodetic

Extender

is

named

for

the

discipline

known

as

geodesy.

Geodesy

is

the

study

of

the

size

and

shape

of

the

Earth

(or

any

body

modeled

by

an

ellipsoid,

such

as

the

Sun

or

a

celestial

sphere).

Geodetic

Extender

is

designed

to

handle

objects

defined

on

the

Earth’s

surface

with

a

high

degree

of

precision.

To

obtain

this

precision,

Geodetic

Extender

uses

a

latitude

and

longitude

coordinate

system

on

an

ellipsoidal

Earth

model,

or

geodetic

datum,

rather

than

a

planar,

x-

and

y-coordinate

system.

An

ellipsoidal

model

avoids

distortions,

inaccuracies,

and

imprecision

that

can

be

introduced

using

flat-plane

projections.

For

more

information,

see

“Geodetic

latitude

and

longitude”

on

page

155,

“Geographic

coordinate

system”

on

page

55,

and

“Projected

coordinate

systems”

on

page

60.

To

access

geodetic

rather

than

spatial

operations,

you

must

define

a

geodetic

spatial

reference

system

for

your

data.

These

systems

have

spatial

reference

system

IDs

(SRIDs)

in

the

range

2000000000

to

2000001000.

Geodetic

Extender

provides

318

predefined

geodetic

spatial

reference

systems.

DB2

Spatial

Extender

must

be

installed

before

you

can

use

DB2

Geodetic

Extender.

You

order

DB2

Geodetic

Extender

separately

from

DB2

Spatial

Extender,

and

you

must

purchase

a

separate

license

for

Geodetic

Extender.

Related

concepts:

v

“When

to

use

DB2

Geodetic

Extender

and

when

to

use

DB2

Spatial

Extender”

on

page

154

v

“Geodetic

datums”

on

page

154

Related

tasks:

v

“Setting

up

and

enabling

DB2

Geodetic

Extender”

on

page

161

Related

reference:

v

“Datums

supported

by

DB2

Geodetic

Extender”

on

page

207

©

Copyright

IBM

Corp.

1998,

2004

153

|

|

|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

|

|
|

|

|

|

|

|

When

to

use

DB2

Geodetic

Extender

and

when

to

use

DB2

Spatial

Extender

DB2®

Spatial

Extender

and

DB2

Geodetic

Extender

both

manage

geographic

information

system

(GIS)

data

in

a

DB2

database.

Each

extender

uses

different

core

technologies

that

solve

different

problems

and

complement

each

other:

v

Geodetic

Extender

treats

the

Earth

as

a

globe.

It

uses

a

latitude

and

longitude

coordinate

system

on

an

ellipsoidal

Earth

model.

Geometric

operations

are

precise,

regardless

of

location.

It

is

built

on

the

Hipparchus

library,

which

is

licensed

from

Geodyssey

Limited.

Refer

to

http://www.geodyssey.com

for

more

geodetic

information.

Geodetic

Extender

is

best

used

for

global

data

sets

and

applications

that

cover

large

areas

on

the

Earth,

where

a

single

map

projection

cannot

provide

the

accuracy

required

by

the

application.

v

Spatial

Extender

treats

the

Earth

as

a

flat

map.

It

uses

planimetric

(flat-plane)

geometry,

which

means

that

it

approximates

the

round

surface

of

the

Earth

by

projecting

it

onto

a

flat

plane.

This

projection

causes

distortions,

which

can

vary

across

the

extent

of

the

data,

but

the

distortions

generally

increase

toward

the

edges

of

the

projected

region.

Every

flat-map

projection

has

distortions

of

some

kind.

Spatial

Extender

is

built

on

the

ESRI

shape

library,

which

is

licensed

from

ESRI.

Refer

to

http://www.esri.com

for

more

spatial

information.

Spatial

Extender

is

best

used

for

local

and

regional

data

sets

that

are

well

represented

in

projected

coordinates,

and

for

applications

where

location

accuracy

is

not

important.

For

example,

a

medical

insurance

company

might

want

to

know

the

locations

of

hospitals

and

clinics

within

a

state

or

province.

Related

concepts:

v

“DB2

Geodetic

Extender”

on

page

153

v

“Geodetic

regions”

on

page

157

v

“Geodetic

latitude

and

longitude”

on

page

155

v

“Geodesic

distances”

on

page

156

v

“Geodetic

spheroids”

on

page

216

Related

tasks:

v

“Setting

up

and

enabling

DB2

Geodetic

Extender”

on

page

161

Geodetic

datums

A

geodetic

datum

is

a

reference

system

that

describes

the

surface

of

the

Earth.

Many

such

reference

systems

have

been

developed

over

the

centuries

as

science

has

developed

new

tools

for

measuring

the

Earth.

Both

ground

and

satellite

measurements

have

been

used

to

create

datums,

which

in

turn

are

used

to

create

flat-map

projections.

Geodetic

datums

are

based

on

an

approximation

of

the

general

shape

of

the

Earth

by

an

ellipsoid

of

rotation

(also

called

a

spheroid).

A

spheroid

is

the

three-dimensional

shape

described

by

an

ellipse

when

it

is

rotated

around

one

of

its

axes.

For

more

information

on

spheroids,

refer

to

“Geographic

coordinate

system”

on

page

55.

Every

spatial

object

that

you

define

must

be

referenced

to

a

specific

datum.

You

specify

a

datum

by

its

spatial

reference

system

identifier

(SRID).

You

can

choose

DB2

Geodetic

Extender

154

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|

|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

|

|

|

|

|

|

|

|
|

|
|
|
|
|

|
|
|
|
|

|
|

http://www.geodyssey.com
http://www.esri.com

any

datum

that

is

supported

by

DB2®

Geodetic

Extender.

These

systems

have

SRIDs

in

the

range

2000000000

to

2000001000.

v

“Datums

supported

by

DB2

Geodetic

Extender”

on

page

207

lists

the

318

predefined

geodetic

spatial

reference

systems

that

Geodetic

Extender

provides.

v

You

can

also

define

a

new

datum

by

creating

a

spatial

reference

system

with

an

ID

in

the

range

of

2000000318

to

2000001000.

For

more

information,

refer

to

“Creating

a

spatial

reference

system”

on

page

69.

Restrictions:

Functions

that

take

more

than

one

geo-spatial

object

as

arguments

cannot

handle

combinations

of

datums.

Geodetic

Extender

does

not

perform

datum

conversions.

Related

concepts:

v

“When

to

use

DB2

Geodetic

Extender

and

when

to

use

DB2

Spatial

Extender”

on

page

154

v

“Geodetic

regions”

on

page

157

v

“Geodetic

latitude

and

longitude”

on

page

155

v

“Geodesic

distances”

on

page

156

v

“Geodetic

spheroids”

on

page

216

Related

tasks:

v

“Deciding

whether

to

use

a

default

spatial

reference

system

or

create

a

new

system”

on

page

64

v

“Creating

a

spatial

reference

system”

on

page

69

Related

reference:

v

“Datums

supported

by

DB2

Geodetic

Extender”

on

page

207

Geodetic

latitude

and

longitude

DB2

Geodetic

Extender’s

coordinate

reference

system

uses

geodetic

latitude

and

longitude

to

describe

locations

relative

to

the

Earth.

Geodetic

latitude

and

longitude

are

always

based

on

a

specific

datum.

Geodetic

latitude

The

geodetic

latitude

of

a

point

is

the

angle

between

the

equatorial

plane

and

the

perpendicular

line

that

intersects

the

normal

line

at

the

point

on

the

surface

of

the

Earth.

Geodetic

longitude

Geodetic

longitude

is

the

angle

in

the

equatorial

plane

between

the

line

a

that

connects

the

Earth’s

center

with

the

prime

meridian

and

the

line

b

that

connects

the

center

with

the

meridian

on

which

the

point

lies.

A

meridian

is

a

direct

path

on

the

surface

of

the

datum

that

is

the

shortest

distance

between

the

poles.

The

ellipsoid

in

Figure

17

on

page

156

shows

the

angles

that

represent

geodetic

latitude

and

longitude.

The

angle

for

the

geodetic

latitude

does

not

start

at

the

very

center

because

of

the

Earth’s

ellipsoidal

shape.

DB2

Geodetic

Extender

Chapter

16.

DB2

Geodetic

Extender

155

|
|

|
|

|
|
|

|
|
|

|

|
|

|

|

|

|

|

|
|

|

|

|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

Latitude

and

longitude

coordinates

are

expressed

in

degrees

with

a

decimal

fraction.

There

are

360

degrees

of

longitude,

starting

at

the

prime

meridian

(0°

longitude)

and

proceeding

eastward

in

a

positive

direction

through

180°

and

west

in

negative

values

through

–180°.

Latitude

degrees

begin

at

the

equator

(0°

latitude)

and

proceed

to

the

North

Pole

(90°

latitude)

and

South

Pole

(–90°

latitude).

Related

concepts:

v

“DB2

Geodetic

Extender”

on

page

153

v

“When

to

use

DB2

Geodetic

Extender

and

when

to

use

DB2

Spatial

Extender”

on

page

154

v

“Geodetic

regions”

on

page

157

v

“Geodetic

datums”

on

page

154

v

“Geodesic

distances”

on

page

156

v

“Geodetic

spheroids”

on

page

216

Geodesic

distances

DB2®

Geodetic

Extender

measures

distance

between

two

points

along

a

geodesic.

A

geodesic

is

the

shortest

path

between

two

points

on

the

ellipsoidal

shape

of

the

Earth,

and

this

shortest

path

might

not

follow

a

line

of

constant

latitude

even

though

the

two

end

points

are

at

the

same

latitude.

Because

line

segments

are

computed

as

geodesics,

a

four-point

polygon

with

widely

separated

points,

as

Figure

18

on

page

157

shows,

might

not

enclose

the

intended

region.

This

polygon

covers

a

region

with

longitude

lines

that

are

about

120

degrees

apart,

and

the

top

two

points

have

the

same

latitude

values

and

the

pPrime Meridian Point

Longitude of point
Equator

p

p

a

b

Geodetic latitude
of point

Figure

17.

Geodetic

latitude

and

longitude

angles

DB2

Geodetic

Extender

156

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|
|
|
|
|

|

|

|
|

|

|

|

|

|
|

|
|
|
|

|
|
|
|

bottom

two

points

have

the

same

latitude

values.

The

geodesic

between

the

two

longitude

lines

follows

the

curve

on

the

ellipsoidal

shape

of

the

Earth.

The

latitude

increases

along

the

geodesic

to

20

degrees

more

in

the

middle

than

on

either

end

of

the

geodesic.

To

represent

a

path

that

is

not

a

geodesic,

for

example,

if

you

want

a

line

segment

to

follow

a

constant

latitude,

you

need

to

insert

additional

intermediate

points.

Related

concepts:

v

“Geographic

coordinate

system”

on

page

55

Related

reference:

v

“Differences

in

working

with

flat-Earth

and

round-Earth

representations”

on

page

193

v

“ST_Distance”

on

page

359

Geodetic

regions

A

geodetic

region

(polygon)

is

an

area

on

the

Earth’s

surface

that

has

some

characteristic

specific

to

an

application.

Examples

of

regions

include

an

area

of

market

influence

or

an

area

seen

by

a

satellite

over

a

specified

time.

Figure

18.

Region

enclosed

by

a

polygon

with

widely

separated

points

DB2

Geodetic

Extender

Chapter

16.

DB2

Geodetic

Extender

157

|
|
|
|
|

|
|

|

|

|

|
|

|

|
|

|
|
|

Geodetic

Extender

defines

a

region

by

an

ordered

sequence

of

points

that

form

a

closed

ring.

The

order

in

which

you

specify

points

in

a

polygon

is

significant.

As

you

follow

a

polygon

from

vertex

to

vertex

in

the

order

defined,

the

area

to

the

left

is

inside

the

polygon.

You

can

use

an

ST_Polygon

data

type

to

define

a

region

enclosed

by

one

or

more

rings,

as

Figure

19

on

page

158

shows.

Define

the

polygon

by

the

latitude

and

longitude

coordinates

of

the

points

(vertices)

that

make

up

its

rings.

A

ring

divides

the

surface

of

the

Earth

into

two

regions:

one

region

inside

the

polygon

and

one

outside

the

polygon.

The

left

side

of

Figure

19

shows

a

ring

with

vertices

specified

in

counter-clockwise

sequence

so

that

all

points

to

the

left

are

inside

the

ring.

The

right

side

of

the

figure

shows

a

ring

with

vertices

in

clockwise

sequence

so

that

all

points

to

the

left

are

outside

the

ring.

To

define

a

region

as

a

polygon,

you

must

specify

the

order

of

the

vertices

of

each

ring

such

that

the

interior

of

the

polygon

is

on

your

left

when

you

traverse

the

ring.

To

define

an

excluded

region,

you

must

specify

the

vertices

of

the

ring

in

the

opposite

order,

as

Figure

20

on

page

159

illustrates.

The

interior

of

the

polygon

is

always

to

the

left.

Figure

20

on

page

159

shows

two

rings,

one

inside

the

other.

The

larger

ring

defines

the

outer

boundary

of

the

polygon

and

is

drawn

counter-clockwise.

The

smaller

ring

defines

the

inner

boundary

and

is

drawn

clockwise.

Exclude this area Define this area

Left

Exclude
this areaDefine

this area

Left

Figure

19.

Defining

and

excluding

areas

DB2

Geodetic

Extender

158

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

If

you

create

a

polygon

that

is

larger

than

a

hemisphere,

the

following

warning

message

is

returned.

You

might

actually

want

this

large

polygon,

but

the

warning

is

for

cases

where

you

inadvertently

specify

the

wrong

vertex

order

and

a

large

polygon

results

when

you

want

a

small

polygon.

GSE3733W

"Polygon

covers

more

than

half

the

earth.

Verify

counter-clockwise

orientation

of

the

vertex

points."

Related

concepts:

v

“Projected

coordinate

systems”

on

page

60

v

“Geodetic

datums”

on

page

154

v

“Spatial

reference

systems”

on

page

63

Related

tasks:

v

“Deciding

whether

to

use

a

default

spatial

reference

system

or

create

a

new

system”

on

page

64

v

“Creating

a

spatial

reference

system”

on

page

69

Define this area

Left

Left

Exclude
this area

Figure

20.

Defining

an

area

with

multiple

rings

DB2

Geodetic

Extender

Chapter

16.

DB2

Geodetic

Extender

159

|
|
|
|

|
|

|

|

|

|

|

|
|

|

|

Using

DB2

Geodetic

Extender

160

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Chapter

17.

Setting

up

DB2

Geodetic

Extender

This

chapter

provides

instructions

for

setting

up

DB2

Geodetic

Extender,

migrating

from

Informix

Geodetic

DataBlade,

and

populating

spatial

columns

with

geodetic

data.

Setting

up

and

enabling

DB2

Geodetic

Extender

DB2

Geodetic

Extender

treats

the

Earth

as

a

globe;

whereas,

Spatial

Extender

treats

the

round

surface

of

the

Earth

as

a

flat

map.

If

you

install

the

Geodetic

Extender,

you

can

analyze

spatial

data

with

more

accuracy

than

a

flat

map.

A

DB2

Geodetic

Extender

system

consists

of

DB2

Universal

Database,

DB2

Spatial

Extender,

DB2

Geodetic

Extender,

and,

for

most

applications,

a

geobrowser.

Recommendation:

For

any

additional

or

changed

information

to

enable

DB2

Geodetic

Extender,

refer

to

the

DB2

Release

Notes.

Prerequisites:

Before

you

enable

DB2

Geodetic

Extender,

you

must:

v

Install

and

configure

DB2

Universal

Database™

Enterprise

Server

Edition

Version

8.2.

You

must

install

DB2

UDB

on

your

system

before

you

install

DB2

Spatial

Extender

and

DB2

Geodetic

Extender.

If

you

plan

to

use

the

DB2

Control

Center,

create

and

configure

the

DB2

Administration

Server

(DAS).

For

more

information

on

creating

and

configuring

DAS,

see

the

IBM®

DB2

Universal

Database

Administration

Guide:

Implementation

v

Install

and

configure

DB2

Spatial

Extender.

DB2

Geodetic

Extender

is

integrated

into

the

same

library

code

as

DB2

Spatial

Extender.

Therefore,

the

installation

CD

for

Spatial

Extender

includes

Geodetic

Extender.

The

disk

space

requirements

for

Spatial

Extender

include

Geodetic

Extender.

However,

you

cannot

use

Geodetic

Extender

until

you

purchase

and

enable

a

Geodetic

Extender

license.

For

more

information,

refer

to

“System

requirements

for

installing

Spatial

Extender”

on

page

24

and

“Setting

up

and

installing

Spatial

Extender”

on

page

23.

v

If

you

have

a

DB2

Spatial

Extender

Version

8.1

database,

you

need

to

migrate

it

to

Version

8.2

before

you

can

use

DB2

Geodetic

Extender.

Geodetic

Extender

redefines

several

spatial

functions

and

defines

additional

geodetic

spatial

reference

systems

to

handle

geodetic

data.

The

migration

utility

migrate_v82

allows

an

existing

spatially-enabled

database

to

handle

geodetic

data.

For

more

information,

refer

to

“Migrating

a

spatially-enabled

database”

on

page

41.

v

Purchase

a

license

for

DB2

Geodetic

Extender.

When

you

purchase

a

DB2

Geodetic

Extender

license,

you

can

enable

the

Geodetic

license

key.

Contact

your

Sales

Representative

if

you

want

to

purchase

DB2

Geodetic

Extender.

Restrictions:

©

Copyright

IBM

Corp.

1998,

2004

161

|

|

|
|
|

|
|

|
|
|

|
|

|
|

|

|

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

|
|

|
|
|
|
|

|

|
|
|

|

DB2

Geodetic

Extender

is

licensed

only

for

DB2

Universal

Database™

Enterprise

Server

Edition

Version

8.2.

Procedure:

Enable

the

DB2

Geodetic

Extender

license

in

one

of

the

following

ways:

v

Use

the

License

Center

on

the

DB2

Control

Center.

See

the

online

help

on

the

DB2

License

Center

for

more

information

on

how

to

enable

the

Geodetic

license.

v

Run

the

db2licm

command.

After

you

enable

the

DB2

Geodetic

Extender

license,

you

“Populating

spatial

columns

with

geodetic

data”

on

page

169.

Related

concepts:

v

“System

requirements

for

installing

Spatial

Extender”

on

page

24

Related

tasks:

v

“Setting

up

and

installing

Spatial

Extender”

on

page

23

v

“Migrating

a

spatially-enabled

database”

on

page

41

v

“Populating

spatial

columns

with

geodetic

data”

on

page

169

Related

reference:

v

“CDs

for

DB2

Spatial

Extender

data

and

maps”

on

page

40

Migrating

from

Informix

Geodetic

DataBlade

to

DB2

Geodetic

Extender

If

you

use

the

IBM

Informix

Geodetic

DataBlade

to

store

and

manipulate

geospatial

objects

in

a

database,

you

can

migrate

your

data

and

applications

to

IBM

DB2

Geodetic

Extender

with

some

restrictions.

Prerequisites:

You

must

port

your

Geodetic

DataBlade

applications

to

use

DB2

Geodetic

Extender

data

types

and

functions.

Restrictions:

If

you

currently

use

the

Informix

Geodetic

DataBlade,

you

might

be

able

to

migrate

to

DB2

Geodetic

Extender

if

you

meet

the

following

criteria:

v

Use

only

GeoPoint,

GeoLineseg,

GeoString,

GeoRing

and

GeoPolygon

data

types.

v

Use

only

Geodetic

DataBlade

functions

that

have

equivalent

or

near-equivalent

counterparts

in

DB2

Geodetic

Extender,

as

the

tables

below

describe.

v

Index

only

the

spatial

component

of

GeoObjects;

in

other

words,

you

do

not

index

time

ranges

or

altitude

ranges.

Procedure:

To

migrate

from

IBM

Informix

Geodetic

DataBlade

to

IBM

DB2

Geodetic

Extender:

1.

Rewrite

your

SQL

statements

to

use

DB2

Geodetic

Extender

data

types

and

functions.

See

the

following

tables

for

corresponding

data

types

and

functions:

v

Table

14

on

page

163

v

Table

15

on

page

164

Setting

up

DB2

Geodetic

Extender

162

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|

|

|

|
|

|

|
|

|

|

|

|

|

|

|

|

|
|

|
|
|

|

|
|

|

|
|

|
|

|
|

|
|

|

|

|
|

|

|

v

Table

16

on

page

164

v

Table

17

on

page

164

v

Table

18

on

page

165

v

Table

19

on

page

166

v

Table

20

on

page

166

v

Table

21

on

page

166

v

Table

22

on

page

167

v

Table

23

on

page

167
2.

Load

or

import

your

data

into

DB2

Geodetic

Extender.

3.

Rewrite

applications

which

use

Informix

ODBC,

ESQL/C,

and

JDBC.

Table

24

on

page

168

shows

the

corresponding

client

connectivity

in

Geodetic

DataBlade

and

Geodetic

Extender.

Table

14.

Corresponding

data

types

in

Informix

Geodetic

DataBlade

and

Geodetic

Extender

Data

type

in

Informix

Geodetic

DataBlade

Corresponding

data

type

in

DB2

Geodetic

Extender

Comments

for

near-equivalent

data

types

GeoBox

First

convert

to

a

GeoPolygon

in

Geodetic

DataBlade,

then

use

ST_Polygon

in

Geodetic

Extender

GeoCircle

First

convert

to

a

GeoPolygon,

then

migrate

to

ST_Polygon

GeoEllipse

First

convert

to

a

GeoPolygon,

then

migrate

to

ST_Polygon

GeoLineseg

ST_LineString

GeoObject

ST_Geometry

ST_Geometry

and

its

subtypes

do

not

support

the

GeoAltRange

and

GeoTimeRange

data

types

GeoPoint

ST_Point

GeoPolygon

ST_MultiPolygon,

ST_Polygon

ST_MultiPolygon

requires

an

explicit

closure

point

for

each

ring.

If

a

GeoPolygon

has

one

outer

ring,

it

can

be

mapped

to

a

ST_Polygon.

GeoRing

ST_LineString

GeoString

ST_LineString

The

following

Geodetic

DataBlade

data

types

do

not

have

a

corresponding

data

type

in

Geodetic

Extender:

v

GeoAltitude

v

GeoAltRange

v

GeoAngle

v

GeoAzimuth

v

GeoBox

v

GeoCircle

v

GeoCoords

v

GeoDistance

v

GeoEllipse

v

GeoLatitude

v

GeoLongitude

v

GeoTimeRange

Setting

up

DB2

Geodetic

Extender

Chapter

17.

Setting

up

DB2

Geodetic

Extender

163

|

|

|

|

|

|

|

|

|

|
|
|

||

|
|
|
|

|
|
|

|

|||
|
|

|||
|

|||
|

|||

|||
|

|||

||
|
|
|
|

|||

|||
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

v

GeoVoronoi

Table

15.

Corresponding

predicate

functions

in

Informix

Geodetic

DataBlade

and

Geodetic

Extender

Function

in

Informix

Geodetic

DataBlade

Corresponding

function

in

DB2

Geodetic

Extender

Contains

ST_Contains

Inside

ST_Within

Intersect

ST_Intersects

Outside

ST_Disjoint

Within

ST_Distance

The

following

Geodetic

DataBlade

predicate

functions

do

not

have

a

corresponding

function

in

Geodetic

Extender:

v

Beyond

v

Equal

v

Nearest

Table

16.

Corresponding

production

functions

in

Informix

Geodetic

DataBlade

and

Geodetic

Extender

Function

in

Informix

Geodetic

DataBlade

Corresponding

function

in

DB2

Geodetic

Extender

Comments

for

near-equivalent

functions

Difference

ST_Difference

ST_Difference

supports

points

in

addition

to

polygons

Generalize

ST_Generalize

Intersection

ST_Intersection

ST_Intersection(line,line)

might

result

in

a

multipoint.

ST_Intersection

(line,poly)

might

result

in

a

multlinestring.

Returns

Empty

for

disjoint

objects.

SymDifference

ST_SymDifference

ST_SymDifference

supports

points

in

addition

to

polygons

Union

ST_Union

ST_Union

supports

points

and

lines

in

addition

to

polygons

Table

17.

Corresponding

accessor

functions

in

Informix

Geodetic

DataBlade

and

Geodetic

Extender

Function

in

Informix

Geodetic

DataBlade

Corresponding

function

in

DB2

Geodetic

Extender

Comments

for

near-equivalent

functions

Center

ST_MidPoint,

ST_PointOnSurface

ST_MidPoint

is

a

near

substitute

for

lines.

ST_PointOnSurface

is

a

near

substitute

for

polygons.

Coords

ST_PointN

Dimension

ST_Dimension

HasZValue

ST_Is3d

Setting

up

DB2

Geodetic

Extender

164

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

||
|

|
|
|

||

||

||

||

||
|

|
|

|

|

|

||
|

|
|
|
|
|
|

|||
|

|||

|||
|
|
|
|
|

|||
|
|

|||
|
|
|

||
|

|
|
|
|
|
|

||
|
|
|
|
|

|||

|||

|||

Table

17.

Corresponding

accessor

functions

in

Informix

Geodetic

DataBlade

and

Geodetic

Extender

(continued)

Function

in

Informix

Geodetic

DataBlade

Corresponding

function

in

DB2

Geodetic

Extender

Comments

for

near-equivalent

functions

IsGeoBox

Use

IS

OF

expression

or

ST_GeometryType

IsGeoCircle

Use

IS

OF

expression

or

ST_GeometryType

IsGeoEllipse

Use

IS

OF

expression

or

ST_GeometryType

IsGeoLineseg

Use

IS

OF

expression

or

ST_GeometryType

IsGeoPoint

Use

IS

OF

expression

or

ST_GeometryType

IsGeoPolygon

Use

IS

OF

expression

or

ST_GeometryType

IsGeoRing

Use

IS

OF

expression

or

ST_GeometryType

IsGeoString

Use

IS

OF

expression

or

ST_GeometryType

Latitude

ST_Y

Longitude

ST_X

NPoints

ST_NumPoints

NRings

ST_NumGeometries,

ST_NumInteriorRing

Use

ST_NumGeometries

to

obtain

total

number

of

outer

rings,

and

sum

ST_NumInteriorRings

for

each

polygon

in

the

multipolygon

set

Ring

ST_GeometryN,

ST_ExteriorRing,

ST_InteriorRingN

Use

ST_GeometryN

in

conjunction

with

ST_ExteriorRing

and

ST_InteriorRingN

SRID

ST_SRID

Zvalue

ST_Z

The

following

Geodetic

DataBlade

accessor

functions

do

not

have

a

corresponding

function

in

Geodetic

Extender:

v

IsLarge

v

IsSmallArea

Table

18.

Corresponding

modifier

functions

in

Informix

Geodetic

DataBlade

and

Geodetic

Extender

Function

in

Informix

Geodetic

DataBlade

Corresponding

function

in

DB2

Geodetic

Extender

SetSRID

ST_SRID

The

following

Geodetic

DataBlade

modifier

functions

do

not

have

a

corresponding

function

in

Geodetic

Extender:

Setting

up

DB2

Geodetic

Extender

Chapter

17.

Setting

up

DB2

Geodetic

Extender

165

|
|

|
|
|
|
|
|

||
|
|

||
|
|

||
|
|

||
|
|

||
|
|

||
|
|

||
|
|

||
|
|

|||

|||

|||

||
|
|
|
|
|
|
|

||
|
|

|
|
|
|

|||

|||
|

|
|

|

|

||
|

|
|
|

||
|

|
|

v

SetAltRange

v

SetAltRangeZ

v

SetDist

v

SetTimeRange

Table

19.

Corresponding

measurement

functions

in

Informix

Geodetic

DataBlade

and

Geodetic

Extender

Function

in

Informix

Geodetic

DataBlade

Corresponding

function

in

DB2

Geodetic

Extender

Area

ST_Area

Distance

ST_Distance

Length

ST_Length,

ST_Perimeter

The

VoronoiResolution

measurement

function

does

not

have

a

corresponding

function

in

Geodetic

Extender.

Table

20.

Corresponding

downcast

functions

in

Informix

Geodetic

DataBlade

and

Geodetic

Extender

Function

in

Informix

Geodetic

DataBlade

Corresponding

function

in

DB2

Geodetic

Extender

GeoBox

Use

SQL

TREAT

expression

GeoCircle

Use

SQL

TREAT

expression

GeoEllipse

Use

SQL

TREAT

expression

GeoLineseg

Use

SQL

TREAT

expression

GeoPoint

Use

SQL

TREAT

expression

GeoPolygon

Use

SQL

TREAT

expression

GeoRing

Use

SQL

TREAT

expression

GeoString

Use

SQL

TREAT

expression

Table

21.

Corresponding

constructor

functions

in

Informix

Geodetic

DataBlade

and

Geodetic

Extender

Function

in

Informix

Geodetic

DataBlade

Corresponding

function

in

DB2

Geodetic

Extender

GeoCoords

ST_Point

GeoPoint

ST_Point

The

following

Geodetic

DataBlade

constructor

functions

do

not

have

a

corresponding

function

in

Geodetic

Extender:

v

GeoBox

v

GeoCircle

v

GeoEllipse

v

GeoLineseg

Setting

up

DB2

Geodetic

Extender

166

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|

|

|

||
|

|
|
|

||

||

||
|

|
|

||
|

|
|
|

||

||

||

||

||

||

||

||
|

||
|

|
|
|

||

||
|

|
|

|

|

|

|

Table

22.

Corresponding

diagnostic

functions

in

Informix

Geodetic

DataBlade

and

Geodetic

Extender

Function

in

Informix

Geodetic

DataBlade

Corresponding

function

in

DB2

Geodetic

Extender

GeoTraceLevel

DB2

Trace

Facility

IsValidGeometry

ST_IsValid

The

following

Geodetic

DataBlade

diagnostic

functions

do

not

have

a

corresponding

function

in

Geodetic

Extender:

v

GeoInRowSize

v

GeoOutOfRowSize

v

GeoRelease

v

GeoTotalSize

v

GeoTraceLevelSet

v

GeoWarningLevel

v

GeoWarningLevelSet

v

IsValidSDTS

Table

23.

Corresponding

system

catalog

tables

in

Informix

Geodetic

DataBlade

and

Geodetic

Extender

System

catalog

table

in

Informix

Geodetic

DataBlade

Corresponding

catalog

view

in

DB2

Geodetic

Extender

GeoLenUnit

DB2GSE.ST_UNITS_OF_MEASURE

GeoSpatialRef

DB2GSE.SPATIAL_REF_SYS

The

following

Geodetic

DataBlade

system

catalog

tables

do

not

have

a

corresponding

table

or

view

in

Geodetic

Extender:

v

GeoEllipsoid

v

GeoParam

v

GeoVoronoi

The

following

Geodetic

DataBlade

user–settable

parameter

functions

do

not

have

a

corresponding

function

in

Geodetic

Extender:

v

GeoParamSessionGet

v

GeoParamSessionSet

The

following

Geodetic

DataBlade

AltRange

functions

do

not

have

a

corresponding

function

in

Geodetic

Extender:

v

AltRange

v

Bottom

v

Contains

v

Equal

v

Inside

v

Intersect

v

IsAny

v

Outside

v

Top

Setting

up

DB2

Geodetic

Extender

Chapter

17.

Setting

up

DB2

Geodetic

Extender

167

||
|

|
|
|

||

||
|

|
|

|

|

|

|

|

|

|

|

||
|

|
|
|
|

||

||
|

|
|

|

|

|

|
|

|

|

|
|

|

|

|

|

|

|

|

|

|

The

following

Geodetic

DataBlade

TimeRange

functions

do

not

have

a

corresponding

function

in

Geodetic

Extender:

v

Begin

v

Contains

v

End

v

Equal

v

IsAny

v

Inside

v

Intersect

v

Outside

v

TimeRange

The

following

Geodetic

DataBlade

ellipse

functions

do

not

have

a

corresponding

function

in

Geodetic

Extender:

v

Azimuth

v

Coords

v

Major

v

Minor

The

following

Geodetic

DataBlade

circle

functions

do

not

have

a

corresponding

function

in

Geodetic

Extender:

v

Coords

v

Radius

The

following

Geodetic

DataBlade

angle

arithmetic

functions

do

not

have

a

corresponding

function

in

Geodetic

Extender:

v

Divide

v

Minus

v

Negate

v

Plus

v

Times

Table

24.

Corresponding

client

connectivity

products

in

Geodetic

DataBlade

and

DB2

Geodetic

Extender

Client

connectivity

in

Informix

Geodetic

DataBlade

Corresponding

client

connectivity

in

DB2

Geodetic

Extender

ESQLC

SQC

ODBC

ODBC

JDBC

JDBC

The

following

Geodetic

DataBlade

client

connectivity

do

not

have

a

corresponding

client

connectivity

in

Geodetic

Extender:

v

Java

API

v

LIBMI

Setting

up

DB2

Geodetic

Extender

168

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|
|

|

|

|

|

|

||
|

|
|
|
|

||

||

||
|
|
|

|

|

Populating

spatial

columns

with

geodetic

data

After

you

create

spatial

columns

and

register

the

columns

on

which

you

plan

to

create

a

spatial

index,

you

are

ready

to

populate

the

columns

with

geodetic

data.

You

can

supply

geodetic

data

in

the

following

ways:

v

Import

the

following

data

formats

to

a

new

or

existing

table:

–

Shape

–

SDE
v

Insert

or

update

values

in

the

following

data

formats:

–

Shape

–

SDE

–

Well-known

text

(WKT)

–

Well-known

binary

(WKB)

–

GML

(Geography

Markup

Language)

Restrictions:

v

For

Spatial

Extender

Version

8.2,

you

cannot

use

the

geocoder

commands

or

stored

procedures

to

translate

data

into

geodetic

data.

v

For

geodetic

behavior,

use

spatial

reference

systems

that

have

SRIDs

in

the

range

2,000,000,000

to

2,000,001,000.

For

more

information,

see

“Spatial

reference

systems”

on

page

63.

v

Shape

data

and

SDE

transfer

data

must

be

in

a

geographic

coordinate

system.

For

more

information,

see

“Geographic

coordinate

system”

on

page

55.

Procedure:

The

procedure

to

import

geodetic

data

is

the

same

as

with

spatial

data.

For

details,

refer

to

“Importing

shape

data

to

a

new

or

existing

table”

on

page

84

and

“Importing

SDE

transfer

data

to

a

new

or

existing

table”

on

page

85.

Related

concepts:

v

“Spatial

reference

systems”

on

page

63

v

“Geographic

coordinate

system”

on

page

55

Related

tasks:

v

“Importing

shape

data

to

a

new

or

existing

table”

on

page

84

v

“Importing

SDE

transfer

data

to

a

new

or

existing

table”

on

page

85

v

“Registering

spatial

columns”

on

page

80

Setting

up

DB2

Geodetic

Extender

Chapter

17.

Setting

up

DB2

Geodetic

Extender

169

|
|

|
|
|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|

|
|

|

|
|
|

|

|

|

|

|

|

|

|

Using

DB2

Geodetic

Extender

170

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Chapter

18.

Geodetic

Indexes

You

can

create

geodetic

Voronoi

indexes

that

can

improve

performance

when

you

query

geodetic

data.

This

chapter:

v

Describes

Geodetic

Voronoi

indexes

v

Describes

Voronoi

cell

structures

and

when

you

might

select

an

alternate

structure.

v

Explains

how

to

create

a

Geodetic

Voronoi

index.

Geodetic

Voronoi

indexes

DB2®

Geodetic

Extender

provides

a

geodetic

Voronoi

index

that

speeds

access

to

geodetic

data.

This

index

organizes

access

to

geodetic

data

by

using

Voronoi

tessellations

of

the

Earth’s

surface.

For

more

information,

refer

to

“Voronoi

cell

structures”

on

page

172.

Geodetic

Extender

calculates

the

minimum

bounding

circle

(MBC)

for

each

geometry.

The

MBC

is

a

circle

that

surrounds

a

geodetic

geometry.

The

Voronoi

index

uses

this

MBC

information

to

organize

data

in

a

cell

structure.

A

search

using

a

Voronoi

index

can

quickly

descend

within

the

organized

data

to

find

objects

in

the

general

area

of

interest

and

then

perform

more

exact

tests

on

the

objects

themselves.

A

Voronoi

index

can

improve

performance

because

it

eliminates

the

need

to

examine

objects

outside

the

area

of

interest.

Without

a

Voronoi

index,

a

query

would

need

to

evaluate

every

object

to

find

those

that

match

the

query

criteria.

The

optimizer

considers

a

geodetic

Voronoi

index

for

use

by

all

queries

that

contain

the

following

functions

in

their

WHERE

clause:

v

EnvelopesIntersect

v

ST_Contains

v

ST_Distance

v

ST_EnvIntersects

v

ST_Intersects

v

ST_MBRIntersects

v

ST_Within

For

more

information,

see

“Functions

that

use

indexes

to

optimize

queries”

on

page

118.

When

you

create

a

geodetic

Voronoi

index,

you

can

choose

an

alternate

Voronoi

cell

structure.

For

details,

see

“Considerations

for

selecting

an

alternate

Voronoi

cell

structure”

on

page

173.

Related

concepts:

v

“Voronoi

cell

structures”

on

page

172

v

“Considerations

for

selecting

an

alternate

Voronoi

cell

structure”

on

page

173

v

“Spatial

grid

indexes”

on

page

96

Related

tasks:

©

Copyright

IBM

Corp.

1998,

2004

171

|

|

|
|

|

|
|

|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|

|

|

|

|

|

|

|
|

|
|
|

|

|

|

|

|

v

“Creating

geodetic

Voronoi

indexes”

on

page

174

Related

reference:

v

“Voronoi

cell

structures

supplied

with

DB2

Geodetic

Extender”

on

page

178

v

“Functions

that

use

indexes

to

optimize

queries”

on

page

118

Voronoi

cell

structures

To

perform

computations

efficiently,

DB2®

Geodetic

Extender

subdivides

the

surface

of

the

Earth

into

smaller,

more

manageable,

honeycomb-like

cells.

This

subdivision

is

known

as

a

Voronoi

tessellation,

and

the

data

structure

that

describes

it

is

called

a

Voronoi

cell

structure.

A

Voronoi

tessellation

is

a

cell

structure

where

each

cell’s

interior

consists

of

all

points

that

are

closer

to

a

particular

lattice

point

than

to

any

other

lattice

point.

The

cells

in

a

Voronoi

cell

structure

are

convex

hulls.

A

convex

hull

of

a

set

of

points

is

the

smallest

convex

set

that

includes

the

points

(or,

the

smallest

polygon

that

defines

the

″outside″

of

a

group

of

points).

Voronoi

cell

structures

tend

to

be

irregularly

shaped

polygons;

the

number

and

location

of

cells

can

be

tuned

to

match

the

density

and

location

of

your

spatial

data.

For

example,

a

Voronoi

cell

structure

can

subdivide

the

Earth

into

polygons

based

on

human

population.

Where

the

population

(and

the

data)

is

dense,

there

are

small

polygons.

Where

the

population

is

sparse,

there

are

large

polygons.

Figure

21

on

page

173

shows

the

Voronoi

structure

that

is

based

on

world

population

density.

Geodetic

Extender

uses

this

cell

structure

in

its

spatial

computations.

Geodetic

Indexes

172

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

Related

concepts:

v

“Geodetic

Voronoi

indexes”

on

page

171

v

“Considerations

for

selecting

an

alternate

Voronoi

cell

structure”

on

page

173

Related

tasks:

v

“Creating

geodetic

Voronoi

indexes”

on

page

174

Related

reference:

v

“CREATE

INDEX

statement

for

a

geodetic

Voronoi

index”

on

page

176

v

“Voronoi

cell

structures

supplied

with

DB2

Geodetic

Extender”

on

page

178

Considerations

for

selecting

an

alternate

Voronoi

cell

structure

All

operations

on

geodetic

geometries

use

a

Voronoi

ID

of

1

that

specifies

the

Voronoi

cell

structure

based

on

world

population

density.

When

you

create

an

index,

if

your

data

is

clustered

in

one

or

more

areas

of

the

Earth,

such

as

street

data

for

one

or

more

countries,

you

can

choose

an

alternate

Voronoi

cell

structure

that

has

smaller

cells

in

the

areas

where

your

data

is

located

(because

resolution

is

inversely

proportional

to

cell

size).

DB2®

Geodetic

Extender

provides

a

number

of

Voronoi

cell

structures

for

indexing

that

might

be

better

suited

to

your

data.

For

a

Figure

21.

Voronoi

structure

based

on

world

population

density

Geodetic

Indexes

Chapter

18.

Geodetic

Indexes

173

|

|

|

|

|

|

|

|

|
|

|
|
|
|
|
|
|

list

of

the

available

alternate

structures

and

diagrams

that

illustrate

these

cell

structures,

refer

to

“Voronoi

cell

structures

supplied

with

DB2

Geodetic

Extender”

on

page

178.

Restriction:

You

can

choose

an

alternate

Voronoi

cell

structure

only

when

you

create

a

geodetic

Voronoi

index.

The

dodeca04

structure

(Voronoi

ID

12)

is

best

suited

for

data

that

is

uniformly

distributed

over

the

entire

surface

of

the

Earth,

such

as

satellite

imagery.

The

cells

are

all

roughly

uniform

in

size

and

the

worst-case

resolution

is

approximately

10

centimeters.

Consider

using

a

different

Voronoi

cell

structure

than

the

default

world

population

stucture

(Voronoi

ID

1)

or

the

dodeca04

structure,

if

any

of

the

following

conditions

apply

to

your

data

or

your

application:

High

resolution

If

you

need

to

determine

if

objects

less

than

10

centimeters

apart

intersect,

you

must

use

a

Voronoi

cell

structure

that

has

smaller

cells

in

the

regions

where

your

data

is

located.

Resolution

is

inversely

proportional

to

cell

size.

Polygons

with

many

vertexes

If

your

data

consist

of

polygons

that

have

relatively

large

numbers

of

vertexes

and

are

relatively

small

in

area,

you

might

want

to

switch

to

a

Voronoi

cell

structure

that

has

more

cells

in

your

regions

of

interest.

If

most

of

your

polygons

have

50

or

fewer

vertexes,

you

might

not

need

to

switch.

If

the

only

polygons

in

your

data

set

that

have

many

vertexes

are

continent-sized,

you

also

might

not

need

to

switch.

If

you

have

many

3000-vertex

polygons

that

are

the

size

of

U.S.

counties,

you

might

be

able

to

substantially

improve

query

performance

by

switching

to

a

different

Voronoi

cell

structure,

particularly

if

your

application

performs

a

number

of

polygon-intersect-polygon

queries.

Very

dense

data

If

your

data

is

concentrated

in

very

small

regions

(for

example,

you

have

hundreds

of

objects

per

square

kilometer)

you

might

be

able

to

improve

query

performance

by

using

a

Voronoi

cell

structure

whose

cell

density

matches

your

data

density.

Related

concepts:

v

“Geodetic

Voronoi

indexes”

on

page

171

v

“Voronoi

cell

structures”

on

page

172

Related

tasks:

v

“Creating

geodetic

Voronoi

indexes”

on

page

174

Related

reference:

v

“CREATE

INDEX

statement

for

a

geodetic

Voronoi

index”

on

page

176

v

“Voronoi

cell

structures

supplied

with

DB2

Geodetic

Extender”

on

page

178

Creating

geodetic

Voronoi

indexes

DB2

Geodetic

Extender

provides

a

new

spatial

access

method

that

enables

you

to

create

indexes

on

columns

containing

geodetic

data.

Queries

that

use

an

index

can

execute

more

quickly.

Prerequisites:

Geodetic

Indexes

174

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|

|

|

|

|

|

|

|
|

|
|
|

|

Before

you

create

a

geodetic

Voronoi

index,

your

user

ID

must

hold

the

same

authorizations

and

privileges

as

when

you

create

a

spatial

grid

index

(see

“Creating

spatial

grid

indexes”

on

page

102).

Restrictions:

The

same

restrictions

for

creating

indexes

using

the

CREATE

INDEX

statement

are

in

effect

when

you

create

a

geodetic

Voronoi

index.

That

is,

the

column

on

which

you

create

an

index

must

be

a

base

table

column,

not

a

view

column

or

a

nickname

column.

DB2

UDB

will

resolve

aliases

in

the

process.

Procedure:

You

can

create

a

geodetic

Voronoi

index

in

one

of

the

following

ways:

v

Use

the

Create

Index

window

of

the

DB2

Control

Center.

v

Use

the

SQL

CREATE

INDEX

statement

with

the

db2gse.spatial_index

extension

in

the

EXTEND

USING

clause.

To

create

a

geodetic

Voronoi

index

using

the

Control

Center:

1.

In

the

Control

Center,

right-click

the

table

that

has

the

spatial

column

that

you

want

to

create

a

geodetic

Voronoi

index

on

and

select

Spatial

Extender

—�

Spatial

Indexes

from

the

pop-up

menu.

The

Spatial

Indexes

window

opens.

2.

Follow

the

instructions

in

the

online

help

for

the

Spatial

Indexes

window.

You

can

display

those

instructions

by

clicking

on

the

Help

push

button

in

the

Spatial

Indexes

window.

To

create

a

geodetic

Voronoi

index

using

the

SQL

CREATE

INDEX

statement:

Issue

the

CREATE

INDEX

statement

using

the

EXTEND

USING

clause

and

the

db2gse.spatial_index

grid

index

extension.

Example:

The

following

example

CREATE

INDEX

statement

creates

the

STORESX1

geodetic

index

on

the

spatial

column

LOCATION

in

the

CUSTOMERS

table:

CREATE

INDEX

storesx1

ON

customers

(location)

EXTEND

USING

db2gse.spatial_index

(-1,

-1,

1)

For

a

geodetic

Voronoi

index,

you

must

specify

the

value

–1

in

the

first

two

parameters

of

the

USING

db2gse.spatial_index

clause.

For

details,

refer

to

“CREATE

INDEX

statement

for

a

geodetic

Voronoi

index”

on

page

176.

Related

concepts:

v

“Geodetic

Voronoi

indexes”

on

page

171

v

“Voronoi

cell

structures”

on

page

172

v

“Considerations

for

selecting

an

alternate

Voronoi

cell

structure”

on

page

173

Related

tasks:

v

“Creating

spatial

grid

indexes”

on

page

102

Related

reference:

v

“CREATE

INDEX

statement

for

a

geodetic

Voronoi

index”

on

page

176

v

“Voronoi

cell

structures

supplied

with

DB2

Geodetic

Extender”

on

page

178

Geodetic

Indexes

Chapter

18.

Geodetic

Indexes

175

|
|
|

|

|
|
|
|

|

|

|

|
|

|

|
|
|
|

|
|
|

|
|
|

|

|
|
|

|
|
|

|
|
|

|

|

|

|

|

|

|

|

|

v

“Functions

that

use

indexes

to

optimize

queries”

on

page

118

CREATE

INDEX

statement

for

a

geodetic

Voronoi

index

Use

the

CREATE

INDEX

statement

with

the

EXTEND

USING

clause

to

create

a

geodetic

Voronoi

index.

Syntax:

��

CREATE

INDEX

index_name

index_schema.

ON

�

�

table_name

table_schema.

(

column_name

)

EXTEND

USING

�

�

db2gse.spatial_index

(

-1

,

-1

,

Voronoi_ID

)

��

Where:

index_schema

Name

of

the

schema

to

which

the

index

that

you

are

creating

is

to

belong.

If

you

do

not

specify

a

name,

DB2

UDB

uses

the

schema

name

that

is

stored

in

the

CURRENT

SCHEMA

special

register.

index_name

Unqualified

name

of

the

geodetic

index

that

you

are

creating.

table_schema

Name

of

the

schema

to

which

the

table

that

contains

column_name

belongs.

If

you

do

not

specify

a

name,

DB2

UDB

uses

the

schema

name

that

is

stored

in

the

CURRENT

SCHEMA

special

register.

table_name

Unqualified

name

of

the

table

that

contains

column_name.

column_name

Name

of

the

spatial

column

on

which

the

geodetic

Voronoi

index

is

created.

Voronoi_ID

An

integer

that

identifies

the

Voronoi

cell

structure

ID.

Fourteen

Voronoi

cell

structures

are

available.

A

Voronoi

ID

of

1

specifies

the

Voronoi

cell

structure

that

is

based

on

world

population

density

that

is

also

used

for

all

spatial

operations

by

DB2

Geodetic

Extender.

Examples:

The

following

example

CREATE

INDEX

statement

creates

the

STORESX1

geodetic

index

on

the

spatial

column

LOCATION

in

the

CUSTOMERS

table:

CREATE

INDEX

storesx1

ON

customers

(location)

EXTEND

USING

db2gse.spatial_index

(-1,

-1,

1)

The

optimizer

considers

a

Voronoi

index

for

use

by

all

queries

that

contain

the

following

functions

in

their

WHERE

clause:

v

ST_Contains

v

ST_Distance

Geodetic

Indexes

176

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|
|

|
|

|

|||||||||||||||
|

|
|||||||||||||||||||
|

|
|||||||||||||||||||||
|

|

|
|
|
|

|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|

|

|
|

|
|
|

|
|

|

|

v

ST_Intersects

v

ST_MBRIntersects

v

ST_EnvIntersects

v

EnvelopesIntersect

v

ST_Within

The

following

statements

demonstrate

the

use

of

a

Voronoi

index.

First,

insert

data

into

the

CUSTOMER

table.

You

can

enter

values

directly,

as

shown

in

this

first

INSERT

statement:

INSERT

INTO

customer

(id,

last_name,

first_name,

address,

city,

state,

zip,

location)

VALUES

(’123-456789’,

’Duck’,

’Donald’,

’123

Mallard

Way’,

’Wetland

Marsh’,

’ND’,

’55555-5555’,

db2gse.ST_GeomFromWKT(’POINT(123.123,

45.67)’,

2000000000))

Alternatively,

you

can

use

variables

in

an

application,

as

the

next

query

shows,

to

insert

values

into

a

table:

INSERT

INTO

customer

(id,

last_name,

first_name,

address,

city,

state,

zip,

location)

VALUES

(:mid,

:mlast,

:mfirst,

:maddress,

:mcity,

:mstate,

:mzip,

db2gse.ST_GeomFromWKB(:mlocation))

The

following

UPDATE

statement

modifies

the

inserted

data.

It

does

not

use

the

STORESX1

index

because

it

does

not

use

the

ST_Contains,

ST_Distance,

ST_Intersects,

ST_MBRIntersects,

ST_EnvIntersects,

EnvelopesIntersect,

or

ST_Within

function

in

its

WHERE

clause.

UPDATE

customer

SET

location

=

db2gse.ST_GeomFromWKT(’POINT(123.123,

45.67)’,

2000000000)

WHERE

id

=

’123-456789’;

The

following

DELETE

statements

can

use

the

STORESX1

index,

if

the

optimizer

determines

that

the

index

improves

performance

because

the

DELETE

statements

use

the

ST_Within

function

and

ST_Intersects

functions

in

their

WHERE

clauses,

respectively:

DELETE

FROM

customers

WHERE

db2gse.ST_Within(location,

:BayArea)

=

1;

DELETE

FROM

customers

WHERE

db2gse.ST_Intersects(c.location,

:BayArea)

=

1

The

following

two

SELECT

statements

can

also

use

the

STORESX1

index:

SELECT

s.id,

AVG(c.location..ST_Distance(s.location))

FROM

customers

c,

stores

s

WHERE

db2gse.ST_Within(c.location,

s.zone)

=

1

GROUP

BY

s.id;

SELECT

c.location..ST_AsText()

FROM

customers

c

WHERE

db2gse.ST_Within(c.location,

:BayArea)

=

1

Related

concepts:

v

“Geodetic

Voronoi

indexes”

on

page

171

Geodetic

Indexes

Chapter

18.

Geodetic

Indexes

177

|

|

|

|

|

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|

|
|
|
|
|
|
|

|

|

v

“Voronoi

cell

structures”

on

page

172

v

“Considerations

for

selecting

an

alternate

Voronoi

cell

structure”

on

page

173

Related

tasks:

v

“Creating

geodetic

Voronoi

indexes”

on

page

174

Related

reference:

v

“Voronoi

cell

structures

supplied

with

DB2

Geodetic

Extender”

on

page

178

Voronoi

cell

structures

supplied

with

DB2

Geodetic

Extender

Each

Voronoi

cell

structure

covers

the

entire

Earth.

In

the

illustrations

that

follow,

only

those

portions

of

the

Earth

in

the

area

where

cells

are

dense

for

that

Voronoi

cell

structure

are

shown.

When

you

select

a

Voronoi

cell

structure,

keep

in

mind

that

the

cells

outside

the

illustrated

areas

will

be

large,

with

correspondingly

lower

resolution.

If

your

data

is

located

in

these

sparse

areas,

query

performance

might

be

degraded.

The

following

table

lists

the

Voronoi

cell

structures

that

DB2

Geodetic

Extender

supplies.

These

Voronoi

cell

structures

are

provided

by

Geodyssey

Ltd.

Table

25.

Voronoi

cell

structures

Description

Voronoi

ID

Illustration

World,

based

on

population

density

1

Figure

22

on

page

179

United

States

2

Figure

23

on

page

180

Canada

3

Figure

24

on

page

181

India

4

Figure

25

on

page

182

Japan

5

Figure

26

on

page

183

Africa

6

Figure

27

on

page

184

Australia

7

Figure

28

on

page

185

Europe

8

Figure

29

on

page

186

North

America

9

Figure

30

on

page

187

South

America

10

Figure

31

on

page

188

Mediterranean

11

Figure

32

on

page

189

World,

uniform

data

distribution,

medium

resolution

(dodeca04)

12

Figure

33

on

page

190

World,

based

on

industrial

output

(G7

nations)

13

Figure

34

on

page

191

World,

uniform

data

distribution,

low

resolution

(isotype)

14

Figure

35

on

page

192

Geodetic

Indexes

178

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|

|

|

|

|

|
|

|
|
|
|
|
|

|
|

||

|||

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|
|
|

||

|
|
||

|
|
|

||

|

World,

based

on

population

density

(Voronoi

ID:

1)

Figure

22.

Voronoi

cell

structure

for

the

world

(population)

Geodetic

Indexes

Chapter

18.

Geodetic

Indexes

179

|

|

United

States

(Voronoi

ID:

2)

Figure

23.

Voronoi

cell

structure

for

the

USA

Geodetic

Indexes

180

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

||

Canada

(Voronoi

ID:

3)

Figure

24.

Voronoi

cell

structure

for

Canada

Geodetic

Indexes

Chapter

18.

Geodetic

Indexes

181

|

||

India

(Voronoi

ID:

4)

Figure

25.

Voronoi

cell

structure

for

India

Geodetic

Indexes

182

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

||

Japan

(Voronoi

ID:

5)

Figure

26.

Voronoi

cell

structure

for

Japan

Geodetic

Indexes

Chapter

18.

Geodetic

Indexes

183

|

||

Africa

(Voronoi

ID:

6)

Figure

27.

Voronoi

cell

structure

for

Africa

Geodetic

Indexes

184

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

||

Australia

(Voronoi

ID:

7)

Figure

28.

Voronoi

cell

structure

for

Australia

Geodetic

Indexes

Chapter

18.

Geodetic

Indexes

185

|

||

Europe

(Voronoi

ID:

8)

Figure

29.

Voronoi

cell

structure

for

Europe

Geodetic

Indexes

186

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

||

North

America

(Voronoi

ID:

9)

Figure

30.

Voronoi

cell

structure

for

North

America

Geodetic

Indexes

Chapter

18.

Geodetic

Indexes

187

|

||

South

America

(Voronoi

ID:

10)

Figure

31.

Voronoi

cell

structure

for

South

America

Geodetic

Indexes

188

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

||

Mediterranean

(Voronoi

ID:

11)

Figure

32.

Voronoi

cell

structure

for

the

Mediterranean

area

Geodetic

Indexes

Chapter

18.

Geodetic

Indexes

189

|

||

World,

uniform

data

distribution,

medium

resolution

–

dodeca04

(Voronoi

ID:

12)

Figure

33.

Voronoi

cell

structure

for

the

world

(dodeca04)

Geodetic

Indexes

190

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|

||

World,

industrial

nations

–

G7

nations

(Voronoi

ID:

13)

Figure

34.

Voronoi

cell

structure

for

(g7nations)

Geodetic

Indexes

Chapter

18.

Geodetic

Indexes

191

|

||

World,

uniform

data

distribution,

low

resolution

–

isotype

(Voronoi

ID:

14)

Figure

35.

Voronoi

cell

structure

for

the

world

(isotype)

Geodetic

Indexes

192

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|

||

Chapter

19.

Differences

in

using

geodetic

and

spatial

data

This

chapter

describes

the

following

differences

in

using

geodetic

and

spatial

data:

v

Minimum

and

maximum

x

and

y

attributes

for

ST_Geometry

data

types

v

Differences

in

working

with

flat-Earth

and

round-Earth

representations

v

Spatial

functions

supported

by

DB2

Geodetic

Extender

and

differences

in

function

behavior

v

Stored

procedures

and

catalog

views

supported

by

DB2

Geodetic

Extender

v

Additional

geodetic

spatial

references

systems

(datums)

and

geodetic

ellipsoids

Minimum

and

maximum

x

and

y

attributes

DB2®

Geodetic

Extender

uses

a

minimum

bounding

circle

(MBC)

instead

of

a

minimum

bounding

rectangle

to

organize

data

into

cell

structures

for

the

geodetic

Voronoi

index.

For

geodetic

geometries,

the

MBC

is

a

circle

that

surrounds

the

geometries,

and

the

minimum

and

maximum

x

and

y

have

the

following

internal

values:

xmin

The

i

term

of

the

direction

cosine

of

the

center

of

the

bounding

circle.

xmax

The

j

term

of

the

direction

cosine

of

the

center

of

the

bounding

circle.

ymin

The

k

term

of

the

direction

cosine

of

the

center

of

the

bounding

circle.

ymax

The

arc_radius

of

the

bounding

circle.

For

geodetic

geometries,

the

ST_MinX,

ST_MaxX,

ST_MinY

and

ST_MaxY

functions

display

points

along

the

MBC.

The

results

of

these

functions

still

produce

longitude

and

latitude

values

similar

to

spatial

geometries,

but

the

results

can

differ

for

geodetic

geometries

as

follows:

v

If

the

MBC

crosses

the

dateline,

the

ST_MinX

value

is

greater

than

the

ST_MaxX

value.

For

example,

if

the

center

of

a

MBC

is

at

the

dateline

and

has

a

radius

of

5

degrees,

then

the

ST_MinX

value

is

175,

and

the

ST_MaxX

value

is

–175.

v

If

the

MBC

includes

the

North

pole

or

the

South

pole,

ST_MinX

is

–180

and

ST_MaxX

is

180.

v

If

the

MBC

includes

the

North

pole,

the

ST_MaxY

value

is

90.

v

If

the

MBC

includes

the

South

pole,

the

ST_MinY

value

is

–90.

Differences

in

working

with

flat-Earth

and

round-Earth

representations

DB2

Spatial

Extender

and

DB2

Geodetic

Extender

use

different

core

technologies:

v

Spatial

Extender

uses

a

flat

(or

planar)

map,

based

on

projected

coordinates.

However,

no

map

projection

can

faithfully

represent

the

entire

Earth

because

every

map

has

edges;

whereas,

the

Earth

does

not

have

edges.

v

Geodetic

Extender

uses

an

ellipsoid

as

its

model

to

treat

the

Earth

as

a

seamless

globe

that

has

no

distortions

at

the

poles

or

edges

at

the

180th

meridian.

In

this

section,

the

term

″flat-Earth″

refers

to

the

use

of

a

projection

to

represent

the

entire

Earth.

The

term

″round-Earth″

referes

to

the

use

of

a

reference

system

that

uses

an

ellipsoid

as

its

Earth

model.

©

Copyright

IBM

Corp.

1998,

2004

193

|

|

|

|

|

|
|

|

|

|
|

|
|
|

|
|

||

||

||

||

|
|
|
|

|
|
|

|
|

|

|

|
|

|

|
|
|

|
|

|
|
|

The

different

technologies

lead

to

differences

in

how

geometries

are

handled

in

certain

situations,

especially

those

illustrated

in

this

topic:

v

Line

segments

(and

measured

distances)

that

cross

the

180th

meridian.

v

Polygons

that

straddle

the

180th

meridian.

v

Minimum

bounding

rectangles

that

cross

the

180th

meridian.

v

Polygons

that

enclose

a

pole.

v

Polygons

that

represent

hemispheres,

equatorial

belts,

or

the

whole

Earth.

Geodetic

Extender

has

particular

advantages

when

you

are

working

with

geometries

that

cross

the

180th

meridian,

or

are

close

to

a

pole,

where

the

flat-Earth

representation

used

by

Spatial

Extender

encounters

limitations.

Line

segments

that

cross

the

180th

meridian

Figure

36

on

page

195

shows

the

different

ways

that

Spatial

Extender

and

Geodetic

Extender

handle

a

line

segment

that

crosses

the

180th

meridian.

In

this

example,

the

line

segment

is

used

to

measure

the

distance

between

Anchorage

and

Tokyo.

Geodetic

Extender

measures

distance

between

two

points

along

a

geodesic,

the

shortest

path

between

two

points

on

the

ellipsoid

(see

“Geodesic

distances”

on

page

156).

The

two

points

can

be

located

anywhere

on

the

globe,

and

Geodetic

Extender

correctly

chooses

a

line

segment

that

travels

west

from

Anchorage

to

Tokyo

because

it

uses

the

round-Earth

representation.

However,

because

Spatial

Extender

uses

flat-map

projection,

Spatial

Extender

is

unaware

that

a

line

segment

could

connect

Anchorage

and

Tokyo

that

way,

and

it

chooses

a

much

longer

line

segment

that

travels

eastwards

to

Tokyo.

The

flat-map

projection

has

the

–180th

meridian

at

the

left

edge

and

the

180th

meridian

at

the

right

edge.

To

obtain

a

correct

result

using

Spatial

Extender,

you

need

to

take

one

of

the

following

actions:

v

Split

the

line

segment

into

two

line

segments,

one

east

of

the

180th

meridian

and

the

other

west

of

it.

v

Reproject

the

data

in

such

a

way

that

the

180th

meridian

is

not

at

an

edge.

Differences

in

using

geodetic

and

spatial

data

194

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|

|

|

|

|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|

|

Polygons

that

straddle

the

180th

meridian

To

handle

a

polygon

that

straddles

the

180th

meridian,

the

flat-Earth

representation

(Spatial

Extender)

requires

that

you

split

the

polygon

into

two

parts,

a

polygon

for

the

portion

to

the

east

of

the

180th

meridian,

and

a

polygon

for

the

portion

to

the

west

of

the

meridian:

MULTIPOLYGON(

((–180

30,

–165

30,

–165

40,

–180

40,

–180

30)),

((180

30,

180

40,

165

40,

165

30,

180

30)))

As

Figure

37

on

page

196

shows,

the

round-Earth

representation

(Geodetic

Extender)

requires

no

such

split,

and

you

can

use

a

single,

unaltered

polygon:

POLYGON((165

30,

–165

30,

–165

40,

165

40,

165

30))

Figure

36.

Lines

that

cross

the

180th

meridian

Differences

in

using

geodetic

and

spatial

data

Chapter

19.

Differences

in

using

geodetic

and

spatial

data

195

|

|

|
|
|
|

|
|
|

|
|

|

|

If

you

did

not

create

two

separate

polygons

while

using

Spatial

Extender,

it

would

actually

reorder

the

vertices

of

the

polygon

so

that

it

defined

a

different

area,

as

Figure

38

on

page

197

shows.

The

top

part

of

Figure

38

on

page

197

shows

the

correct

vertices

of

a

polygon

straddling

the

180th

meridian:

POLYGON((90

0,

–90

0,

–90

40,

90

40,

90

0))

The

bottom

part

of

Figure

38

on

page

197

shows

the

reordered

vertices

which

results

in

a

polygon

that

no

longer

straddles

the

180th

meridian,

but

now

straddles

the

0th

meridian.

POLYGON((–90

0,

90

0,

90

40,

–90

40,

–90

0))

Figure

37.

Polygons

that

straddle

the

180th

meridian—create

two

separate

polygons

Differences

in

using

geodetic

and

spatial

data

196

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|
|
|

|

|
|
|

|

|

The

area

defined

would

be

the

complementary

area

of

the

Earth,

and

not

the

intended

area,

as

shown

in

Figure

39

on

page

198.

Similar

to

the

line

segment

example

above,

another

way

to

handle

this

situation

is

to

reproject

the

data

in

such

a

way

that

the

180th

meridian

is

not

at

an

edge.

But Spatial Extender reorders the vertices and the resultant
polygon defines a different area:

Polygon ((-90 0, 90 0, 90 40, -90 40))

You want a polygon that straddles the 180th meridian:
Polygon ((90 0, -90 0, -90 40, 90 40))

Figure

38.

Polygons

that

straddle

the

180th

meridian—reordered

vertices

Differences

in

using

geodetic

and

spatial

data

Chapter

19.

Differences

in

using

geodetic

and

spatial

data

197

|
|
|
|
|

Polygons

that

enclose

a

pole

Figure

40

on

page

199

shows

how

you

could

work

with

a

polygon

that

encloses

the

South

pole

with

Spatial

Extender

or

with

Geodetic

Extender.

Because

you

are

working

right

at

the

edge

of

the

flat-map

projection

with

Spatial

Extender,

the

map’s

distortion

of

the

Earth’s

surface

requires

you

to

add

extra

edges

and

vertices

to

represent

the

pole

within

a

polygon:

POLYGON((–180

–90,

180

–90,

180

–60,

–180

–60,

–180

–90))

The

round-Earth

representation

(Geodetic

Extender)

shows

the

polygon

around

the

South

Pole

as

a

circle

that

follows

the

–60°

South

parallel:

POLYGON((0

–60,

–1

–60,

–2

–60,

...,

–179

–60,

180

–60,

179

–60,

...,

1

–60,

0

–60))

A

better

way

to

represent

this

circle

is

to

reproject

the

data

in

such

a

way

that

the

entire

South

Pole

and

surrounding

area

are

visible

on

the

map.

90, 40

-90, 090, 0

-90, 40

Figure

39.

Polygons

that

straddle

the

180th

meridian—complementary

area

Differences

in

using

geodetic

and

spatial

data

198

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|

|
|
|
|
|

|

|
|

|

|
|
|

In

the

examples

above,

you

can

obtain

accurate

results

if

you

choose

an

appropriate

projected

spatial

reference

system.

However,

no

one

projection

can

solve

them

all

simultaneously.

For

example,

a

projection

that

does

not

have

the

180th

meridian

at

the

edge

puts

the

edge

somewhere

else

and

shifts

the

problem

area.

Polygons

that

represent

hemispheres,

equatorial

belts,

and

the

whole

Earth

When

you

need

to

use

a

polygon

to

represent

large

areas

of

the

Earth’s

surface,

such

as

one

of

the

hemispheres,

the

equatorial

belts,

or

the

whole

Earth

itself,

you

need

to

be

aware

of

the

different

ways

that

Spatial

Extender

and

Geodetic

Extender

handle

these

cases.

In

these

situations,

a

round-Earth

representation

obtains

accurate

results

for

distance

and

area

calculations;

whereas,

a

careful

choice

of

projection

cannot.

For

example,

Figure

41

on

page

200,

shows

the

polygons

that

define

the

Western

hemisphere

in

a

flat-Earth

representation

(Spatial

Extender)

and

a

round-Earth

representation

(Geodetic

Extender).

v

In

the

flat-Earth

representation

in

the

top

part

of

Figure

41

on

page

200,

four

coordinates

represent

the

Western

hemisphere

in

well-known

text

format

as

’POLYGON((0

-90,

0

90,

-180

90,

180

-90,

0

-90))’.

v

In

the

round-Earth

representation,

four

coordinates

represent

the

Western

hemisphere

in

well-known

text

format

as

’POLYGON((0

0,

0

90,

180

0,

0

-90,

0

0))’.

These

four

coordinates

define

a

ring

around

the

Earth

along

the

0th

meridian

and

its

antipodal

line,

the

180th

meridian.

When

you

specify

the

same

four

points

in

the

opposite

order,

you

define

the

Eastern

hemisphere:

v

In

a

flat-Earth

representation,

the

Eastern

hemisphere

is

’POLYGON((0

-90,

180

-90,

180

90,

0

90,

0

-90))’.

extra edges
extra vertex extra vertex

1 2

Figure

40.

Polygons

that

enclose

a

pole

Differences

in

using

geodetic

and

spatial

data

Chapter

19.

Differences

in

using

geodetic

and

spatial

data

199

|
|
|
|
|

|

|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

v

In

a

round-Earth

representation,

the

Eastern

hemisphere

is

’POLYGON((0

-90,

180

0,

0

90,

0

0,

0

-90))’.

Figure

42

on

page

201,

shows

the

coordinates

of

polygons

that

define

the

equatorial

belt

in

a

flat-Earth

representation

(Spatial

Extender)

and

a

round-Earth

representation

(Geodetic

Extender).

v

The

top

part

of

Figure

42

on

page

201

shows

the

flat-earth

representation

of

the

equatorial

belt

with

coordinates

in

well-known

text

format

as

’POLYGON((180

–60,

180

60,

–180

60,

–180

–60,

180

–60))’.

1

1

2

4

3

2

4

3

Western hemisphere, round-earth representation
Polygon ((0 0, 0 90, 180 0, 0 -90, 0 0))

Western hemisphere, flat-earth representation
Polygon ((0 -90, 0 90, -180 90, 180 -90, 0 -90))

Figure

41.

Polygons

that

represent

hemispheres

Differences

in

using

geodetic

and

spatial

data

200

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|

|

|
|
|

|
|
|

v

In

the

round-earth

representation

in

the

bottom

part

of

Figure

42,

you

define

the

exclusion

area

of

two

rings

to

represent

the

equatorial

belt:

’MULTIPOLYGON(((0

60,

-120

60,

120

60,

0

60)),

((0

-60,

120

-60,

-120

-60,

0

-60)))’

Only

three

points

in

each

ring

are

shown

for

clarity.

In

reality,

if

you

want

the

rings

to

more

closely

follow

the

60

or

–60

latitude

line,

you

need

to

add

more

intermediate

points.

The

first

ring

((0

60,

-120

60,

120

60,

0

60))

specifies

the

vertices

in

the

order

that

defines

the

area

south

of

the

60th

latitude

line.

The

second

ring

((0

-60,

120

-60,

-120

-60,

0

-60))

specifies

the

area

north

of

the

–60

latitude

line.

Figure

43

on

page

202,

shows

polygons

that

define

the

whole

Earth

in

a

flat-Earth

representation

(Spatial

Extender)

and

a

round-earth

representation

(Geodetic

Extender).

Both

representations

represent

the

whole

Earth

with

the

same

polygon

4

3

12 3

6 4 5

1

2

Figure

42.

Polygons

that

represent

Equatorial

belts

Differences

in

using

geodetic

and

spatial

data

Chapter

19.

Differences

in

using

geodetic

and

spatial

data

201

|
|

|
|

|
|
|
|
|
|

|

|
|
|

in

well-known

text

format

as

’POLYGON((-180

-90,

180

-90,

180

90,

-180

90,

-180

-90))’.

Related

concepts:

v

“When

to

use

DB2

Geodetic

Extender

and

when

to

use

DB2

Spatial

Extender”

on

page

154

v

“Geodetic

regions”

on

page

157

v

“Geodetic

latitude

and

longitude”

on

page

155

v

“Geodesic

distances”

on

page

156

v

“Geodetic

spheroids”

on

page

216

Spatial

functions

supported

by

DB2

Geodetic

Extender

DB2

Spatial

Extender

is

built

on

the

function

library

provided

by

ESRI,

and

DB2

Geodetic

Extender

is

built

on

the

Hipparchus

function

library.

Differences

between

functionality

in

the

ESRI

and

Hipparchus

libraries

lead

to

minor

differences

in

how

some

functions

behave.

The

following

table

shows

Spatial

Extender

functions

that

Geodetic

Extender

supports

and

it

notes

any

differences

in

behavior.

For

information

about

the

usage

and

syntax

of

spatial

functions,

see

the

appropriate

spatial

function

topic.

Table

26.

Function

support

for

Geodetic

Extender

Function

Supported

by

DB2

Geodetic

Extender?

Difference

in

behavior

for

DB2

Geodetic

Extender

EnvelopesIntersect

Yes

None

MBR

Aggregate

No

Not

applicable

ST_AppendPoint

No

Not

applicable

Flat plane representation

Ellipsoid representation:
Such a polygon has no boundary,

so you need special notation

Figure

43.

Polygons

that

represent

the

whole

Earth

Differences

in

using

geodetic

and

spatial

data

202

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|
|

|

|
|

|

|

|

|

|
|

|
|
|
|
|
|
|

||

|
|
|
|
|

|||

|||

|||

Table

26.

Function

support

for

Geodetic

Extender

(continued)

Function

Supported

by

DB2

Geodetic

Extender?

Difference

in

behavior

for

DB2

Geodetic

Extender

ST_Area

Yes

Default

unit

of

measure

is

meters.

ST_AsBinary

Yes

None

ST_AsGML

Yes

None

ST_AsShape

Yes

None

ST_AsText

Yes

None

ST_Boundary

No

Not

applicable

ST_Buffer

Yes

Supported

with

points

and

multipoints

only.

Distance

can

be

a

negative

value.

Default

unit

of

measure

is

meters.

ST_Centroid

No

Not

applicable

ST_ChangePoint

No

Not

applicable

ST_Contains

Yes

Both

geometries

must

be

in

the

same

geodetic

spatial

reference

system

(SRS).

ST_ConvexHull

No

Not

applicable

ST_CoordDim

Yes

None

ST_Crosses

No

Not

applicable

ST_Difference

Yes

Not

supported

with

linestrings

and

multilinestrings.

Both

geometries

must

be

in

the

same

geodetic

SRS.

Dimension

of

returned

geometry

is

the

same

as

that

of

the

input

geometries.

ST_Dimension

Yes

None

ST_Disjoint

Yes

None

ST_Distance

Yes

Returns

the

geodesic

distance.

Both

geometries

must

be

in

the

same

geodetic

SRS.

Default

unit

of

measure

is

meters.

ST_Edge_GC_USA

Yes

None

ST_Endpoint

Yes

None

ST_Envelope

Yes

Envelope

is

a

polygon

that

encloses

the

minimum

bounding

circle

(MBC)

of

the

geometry.

ST_EnvIntersects

Yes

None

ST_EqualCoordsys

Yes

None

ST_Equals

No

Not

applicable

ST_EqualSRS

Yes

None

ST_ExteriorRing

Yes

None

ST_FindMeasure

or

ST_LocateAlong

No

Not

applicable

ST_Generalize

Yes

Unit

for

threshold

is

meters.

ST_GeomCollection

No

Not

applicable

ST_GeomCollFromTxt

No

Not

applicable

ST_GeomCollFromWKB

No

Not

applicable

ST_Geometry

Yes

None

Differences

in

using

geodetic

and

spatial

data

Chapter

19.

Differences

in

using

geodetic

and

spatial

data

203

|

|
|
|
|
|

|||

|||

|||

|||

|||

|||

|||
|
|

|||

|||

|||
|

|||

|||

|||

|||
|
|
|
|

|||

|||

|||
|
|

|||

|||

|||
|
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table

26.

Function

support

for

Geodetic

Extender

(continued)

Function

Supported

by

DB2

Geodetic

Extender?

Difference

in

behavior

for

DB2

Geodetic

Extender

ST_GeometryN

Yes

None

ST_GeometryType

Yes

None

ST_GeomFromText

Yes

None

ST_GeomFromWKB

Yes

None

ST_GetIndexParms

No

Not

applicable

ST_InteriorRingN

Yes

None

ST_Intersection

Yes

Dimension

of

returned

geometry

is

that

of

the

input

with

the

lower

dimension,

except

the

dimension

of

the

intersection

of

two

linestrings

is

0.

ST_Intersects

Yes

Both

geometries

must

be

in

the

same

geodetic

SRS.

ST_Is3d

Yes

None

ST_IsClosed

Yes

None

ST_IsEmpty

Yes

None

ST_IsMeasured

Yes

None

ST_IsRing

No

Not

applicable

ST_IsSimple

No

Not

applicable

ST_IsValid

Yes

None

ST_Length

Yes

Default

unit

of

measure

is

meters.

ST_LineFromText

Yes

None

ST_LineFromWKB

Yes

None

ST_LineString

Yes

None

ST_LineStringN

Yes

None

ST_M

Yes

None

ST_MaxM

Yes

None

ST_MaxX

Yes

Returns

the

maximum

X

value

of

the

minimum

bounding

circle

(MBC).

Note:

If

the

MBC

crosses

the

dateline,

the

ST_MaxX

value

is

less

than

the

ST_MinX.

If

the

MBC

includes

the

North

pole,

or

the

South

pole,

ST_MinX

is

–180

and

ST_MaxX

is

180.

ST_MaxY

Yes

Returns

the

maximum

Y

value

of

the

MBC.

Note:

If

the

MBC

includes

the

North

pole,

the

ST_MaxY

value

is

90.

ST_MaxZ

Yes

None

ST_MBR

Yes

MBR

is

a

geometry

that

encloses

the

MBC

of

the

geometry.

ST_MBRIntersects

Yes

None

ST_MeasureBetween

or

ST_LocateBetween

No

Not

applicable

ST_MidPoint

Yes

None

ST_MinM

Yes

None

Differences

in

using

geodetic

and

spatial

data

204

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|
|
|
|
|

|||

|||

|||

|||

|||

|||

|||
|
|
|

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|
|
|
|
|

|||
|
|

|||

|||
|

|||

|||

|||

|||

Table

26.

Function

support

for

Geodetic

Extender

(continued)

Function

Supported

by

DB2

Geodetic

Extender?

Difference

in

behavior

for

DB2

Geodetic

Extender

ST_MinX

Yes

Returns

the

minimum

X

value

of

the

MBC.

Note:

If

the

MBC

crosses

the

dateline,

the

ST_MinX

value

is

greater

than

the

ST_MaxX

value.

If

the

MBC

includes

the

North

pole,

or

the

South

pole,

ST_MinX

is

–180

and

ST_MaxX

is

180.

ST_MinY

Yes

Returns

the

minimum

Y

value

of

the

MBC.

Note:

If

the

MBC

includes

the

South

pole,

the

ST_MinY

value

is

–90.

ST_MinZ

Yes

None

ST_MLineFromText

Yes

None

ST_MLineFromWKB

Yes

None

ST_MPointFromText

Yes

None

ST_MPointFromWKB

Yes

None

ST_MPolyFromText

Yes

None

ST_MPolyFromWKB

Yes

None

ST_MultiLineString

Yes

None

ST_MultiPoint

Yes

None

ST_MultiPolygon

Yes

None

ST_NumGeometries

Yes

None

ST_NumInteriorRing

Yes

None

ST_NumLineStrings

Yes

None

ST_NumPoints

Yes

None

ST_NumPolygons

Yes

None

ST_Overlaps

No

Not

applicable

ST_Perimeter

Yes

Default

unit

of

measure

is

meters.

ST_PerpPoints

No

Not

applicable

ST_Point

Yes

None

ST_PointFromText

Yes

None

ST_PointFromWKB

Yes

None

ST_PointN

Yes

None

ST_PolyFromText

Yes

None

ST_PolyFromWKB

Yes

None

ST_PointOnSurface

Yes

None

ST_Polygon

Yes

None

ST_PolygonN

Yes

None

ST_Relate

No

Not

applicable

ST_RemovePoint

No

Not

applicable

ST_SrsId

or

ST_SRID

Yes

None

ST_SrsName

Yes

None

ST_StartPoint

Yes

None

Differences

in

using

geodetic

and

spatial

data

Chapter

19.

Differences

in

using

geodetic

and

spatial

data

205

|

|
|
|
|
|

|||
|
|
|
|
|

|||
|
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table

26.

Function

support

for

Geodetic

Extender

(continued)

Function

Supported

by

DB2

Geodetic

Extender?

Difference

in

behavior

for

DB2

Geodetic

Extender

ST_SymDifference

Yes

Not

supported

with

linestrings

and

multi-linestrings.

Dimension

of

returned

geometry

is

same

as

that

of

input

geometries.

Both

geometries

must

be

in

the

same

geodetic

SRS.

ST_ToGeomColl

No

Not

applicable

ST_ToLineString

Yes

None

ST_ToMultiLine

Yes

None

ST_ToMultiPoint

Yes

None

ST_ToPoint

Yes

None

ST_ToPolygon

Yes

None

ST_Touches

No

Not

applicable

ST_Transform

Yes

None.

Note:

Coordinate

transformations

are

done

point-by-point.

When

transforming

between

geodetic

coordinate

systems

and

non-projected

planar

coordinate

systems,

check

carefully

any

polygons

and

linestrings

that

straddle

the

180th

meridian

or

enclose

one

or

both

poles.

Because

Spatial

Extender

and

Geodetic

Extender

handle

these

cases

differently,

it

is

possible

that

geometries

that

are

valid

in

a

flat-Earth

coordinate

system

will

not

be

valid

in

a

round-Earth

system

and

vice-versa.

For

more

information,

see

“Differences

in

working

with

flat-Earth

and

round-Earth

representations”

on

page

193.

ST_Union

Yes

Both

geometries

must

be

in

the

same

geodetic

SRS.

ST_Within

Yes

Both

geometries

must

be

in

the

same

geodetic

SRS.

ST_WKBToSQL

Yes

None

ST_WKTToSQL

Yes

None

ST_X

Yes

None

ST_Y

Yes

None

ST_Z

Yes

None

Union

Aggregate

No

Not

applicable

Related

concepts:

v

“When

to

use

DB2

Geodetic

Extender

and

when

to

use

DB2

Spatial

Extender”

on

page

154

v

“Geodetic

regions”

on

page

157

v

“Geodetic

latitude

and

longitude”

on

page

155

v

“Geodesic

distances”

on

page

156

Related

tasks:

v

“Creating

geodetic

Voronoi

indexes”

on

page

174

Differences

in

using

geodetic

and

spatial

data

206

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|
|
|
|
|

|||
|
|
|
|

|||

|||

|||

|||

|||

|||

|||

|||
|
|
|
|
|
|
|
|
|
|
|
|
|

|||
|

|||
|

|||

|||

|||

|||

|||

|||
|

|

|
|

|

|

|

|

|

Related

reference:

v

“Differences

in

working

with

flat-Earth

and

round-Earth

representations”

on

page

193

DB2

Geodetic

Extender

stored

procedures

and

catalog

views

DB2

Geodetic

Extender

supports

the

same

catalog

views

as

DB2

Spatial

Extender

and

supports

a

subset

of

the

spatial

stored

procedures.

Geodetic

Extender

does

not

support

the

following

stored

procedures:

v

ST_disable_autogeocoding

v

ST_enable_autogeocoding

v

ST_register_geocoder

v

ST_remove_geocoding_setup

v

ST_run_geocoding

v

ST_setup_geocoding

v

ST_unregister_geocoder

Geodetic

Extender

provides

318

predefined

geodetic

spatial

reference

systems

that

appear

in

the

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

catalog

view.

See

“Datums

supported

by

DB2

Geodetic

Extender”

for

a

complete

list.

Datums

supported

by

DB2

Geodetic

Extender

As

“Geographic

coordinate

system”

on

page

55

describes,

a

datum

is

a

set

of

values

that

defines

the

position

of

an

ellipsoid

relative

to

the

center

of

the

earth.

A

spatial

reference

system

(SRS)

is

a

set

of

parameters

that

associate

a

datum

with

an

ellipsoid

and

is

identified

with

a

spatial

reference

system

identifier

(SRID).

Table

28

lists

the

predefined

datums

that

DB2

Geodetic

Extender

provides.

The

offset

values

and

scale

factors

for

all

of

the

predefined

geodetic

SRSs

are

the

same,

and

the

following

table

shows

their

values.

Table

27.

Offset

and

scale

values

for

predefined

geodetic

SRSs

SRS

Parameter

Value

xOffset

–180

yOffset

–90

zOffset

–50000

mOffset

–1000

xScale

5965232

yScale

5965232

zScale

1000

mScale

1000

The

yScale

is

always

the

same

as

the

xScale.

You

can

choose

any

datum

listed

in

Table

28

for

your

spatial

reference

system.

Ideally,

choose

the

one

that

best

suits

your

data.

For

example,

one

of

the

most

commonly

used

datums,

World

Geodetic

System

1984

(WGS

1984),

takes

the

center

of

the

Earth

as

its

point

of

origin

and

maps

the

whole

of

the

globe;

it

is

an

Earth-centered

datum.

In

contrast,

a

regional

datum,

such

as

the

North

American

Differences

in

using

geodetic

and

spatial

data

Chapter

19.

Differences

in

using

geodetic

and

spatial

data

207

|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|
|
|

|
|

|
|
|
|
|
|
|

||

||

||

||

||

||

||

||

||

||
|

|

|
|
|
|
|

1927

datum,

maps

North

America

starting

from

a

point

on

the

ground.

A

regional

datum

is

accurate

for

the

region

it

aims

to

model,

but

an

Earth-centered

geodetic

datum

is

necessary

to

handle

locations

over

the

entire

globe.

Table

28.

SRIDs

with

associated

datum

and

ellipsoid

SRID

Datum

name

Reference

ellipsoid

2000000000

WGS

1984

WGS

1984

2000000001

Abidjan

1987

Clarke

1880

(RGS)

2000000002

Accra

War

Office

2000000003

Adindan

Clarke

1880

(RGS)

2000000004

Afgooye

Krasovsky

1940

2000000005

Agadez

Clarke

1880

(IGN)

2000000006

Australian

Geodetic

Datum

1966

Australian

2000000007

Australian

Geodetic

Datum

1984

Australian

2000000008

Ain

el

Abd

1970

International

1924

2000000009

Airy

1830

Airy

1830

2000000010

Airy

Modified

Airy

Modified

2000000011

Alaskan

Islands

Clarke

1866

2000000012

Amersfoort

Bessel

1841

2000000013

Anguilla

1957

Clarke

1880

(RGS)

2000000014

Anna

1

Astro

1965

Australian

2000000015

Antigua

Astro

1943

Clarke

1880

(RGS)

2000000016

Aratu

International

1924

2000000017

Arc

1950

Clarke

1880

(Arc)

2000000018

Arc

1960

Clarke

1880

(RGS)

2000000019

Ascension

Island

1958

International

1924

2000000020

Assumed

Geographic

(NAD27

for

shapefiles

without

a

PRJ)

Clarke

1866

2000000021

Astronomical

Station

1952

International

1924

2000000022

ATF

(Paris)

Plessis

1817

2000000023

Average

Terrestrial

System

1977

ATS

1977

2000000024

Australian

National

Australian

2000000025

Ayabelle

Lighthouse

Clarke

1880

(RGS)

2000000026

Bab

South

Astro

(Bablethuap

Is,

Republic

of

Palau)

Clarke

1866

2000000027

Barbados

1938

Clarke

1880

(RGS)

2000000028

Batavia

Bessel

1841

2000000029

Batavia

(Jakarta)

Bessel

1841

2000000030

Astro

Beacon

E

1945

International

1924

2000000031

Beduaram

Clarke

1880

(IGN)

2000000032

Beijing

1954

Krasovsky

1940

2000000033

Reseau

National

Belge

1950

International

1924

2000000034

Belge

1950

(Brussels)

International

1924

2000000035

Reseau

National

Belge

1972

International

1924

Differences

in

using

geodetic

and

spatial

data

208

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

||
|
|

|||

|||

|||

|||

|||

||
|
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table

28.

SRIDs

with

associated

datum

and

ellipsoid

(continued)

SRID

Datum

name

Reference

ellipsoid

2000000036

Bellevue

(IGN)

International

1924

2000000037

Bermuda

1957

Clarke

1866

2000000038

Bern

1898

Bessel

1841

2000000039

Bern

1898

(Bern)

Bessel

1841

2000000040

Bern

1938

Bessel

1841

2000000041

Bessel

1841

Bessel

1841

2000000042

Bessel

Modified

Bessel

Modified

2000000043

Bessel

Namibia

Bessel

Namibia

2000000044

Bissau

International

1924

2000000045

Bogota

International

1924

2000000046

Bogota

(Bogota)

International

1924

2000000047

Bukit

Rimpah

Bessel

1841

2000000048

Camacupa

Clarke

1880

(RGS)

2000000049

Campo

Inchauspe

International

1924

2000000050

Camp

Area

Astro

International

1924

2000000051

Canton

Astro

1966

International

1924

2000000052

Cape

Clarke

1880

(Arc)

2000000053

Cape

Canaveral

Clarke

1866

2000000054

Carthage

Clarke

1880

(IGN)

2000000055

Carthage

(degrees)

Clarke

1880

(IGN)

2000000056

Carthage

(Paris)

Clarke

1880

(IGN)

2000000057

CH

1903

Bessel

1841

2000000058

CH

1903+

Bessel

1841

2000000059

Chatham

Island

Astro

1971

International

1924

2000000060

Chos

Malal

1914

International

1924

2000000061

Swiss

Terrestrial

Ref.

Frame

1995

GRS

1980

2000000062

Chua

International

1924

2000000063

Clarke

1858

Clarke

1858

2000000064

Clarke

1866

Clarke

1866

2000000065

Clarke

1866

(Michigan)

Clarke

1866

(Michigan)

2000000066

Clarke

1880

Clarke

1880

2000000067

Clarke

1880

(Arc)

Clarke

1880

(Arc)

2000000068

Clarke

1880

(Benoit)

Clarke

1880

(Benoit)

2000000069

Clarke

1880

(IGN)

Clarke

1880

(IGN)

2000000070

Clarke

1880

(RGS)

Clarke

1880

(RGS)

2000000071

Clarke

1880

(SGA)

Clarke

1880

(SGA)

2000000072

Conakry

1905

Clarke

1880

(IGN)

2000000073

Corrego

Alegre

International

1924

2000000074

Cote

d’Ivoire

Clarke

1880

(IGN)

Differences

in

using

geodetic

and

spatial

data

Chapter

19.

Differences

in

using

geodetic

and

spatial

data

209

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table

28.

SRIDs

with

associated

datum

and

ellipsoid

(continued)

SRID

Datum

name

Reference

ellipsoid

2000000075

Dabola

1981

Clarke

1880

(RGS)

2000000076

Datum

73

International

1924

2000000077

Dealul

Piscului

1933

(Romania)

International

1924

2000000078

Dealul

Piscului

1970

(Romania)

Krasovsky

1940

2000000079

Deception

Island

Clarke

1880

(RGS)

2000000080

Deir

ez

Zor

Clarke

1880

(IGN)

2000000081

Deutsche

Hauptdreiecksnetz

Bessel

1841

2000000082

Dominica

1945

Clarke

1880

(RGS)

2000000083

DOS

1968

International

1924

2000000084

Astro

DOS

71/4

International

1924

2000000085

Douala

Clarke

1880

(IGN)

2000000086

Easter

Island

1967

International

1924

2000000087

European

Datum

1950

International

1924

2000000088

European

Datum

1950

(ED77)

International

1924

2000000089

European

Datum

1987

International

1924

2000000090

Egypt

1907

Helmert

1906

2000000091

Estonia

1937

Bessel

1841

2000000092

Estonia

1992

GRS

1980

2000000093

European

Terrestrial

Ref.

Frame

1989

WGS

1984

2000000094

European

1979

International

1924

2000000095

European

Libyan

Datum

1979

International

1924

2000000096

Everest

1830

Everest

1830

2000000097

Everest

(Bangladesh)

Everest

Adjustment

1937

2000000098

Everest

(Definition

1962)

Everest

(Definition

1962)

2000000099

Everest

(Definition

1967)

Everest

(Definition

1967)

2000000100

Everest

(Definition

1975)

Everest

(Definition

1975)

2000000101

Everest

(India

and

Nepal)

Everest

(Definition

1962)

2000000102

Everest

1830

Modified

Everest

1830

Modified

2000000103

Everest

Modified

1969

Everest

Modified

1969

2000000104

Fahud

Clarke

1880

(RGS)

2000000105

Final

Datum

1958

Clarke

1880

(RGS)

2000000106

Fischer

1960

Fischer

1960

2000000107

Fischer

1968

Fischer

1968

2000000108

Fischer

Modified

Fischer

Modified

2000000109

Fort

Thomas

1955

Clarke

1880

(RGS)

2000000110

Gandajika

1970

International

1924

Differences

in

using

geodetic

and

spatial

data

210

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||
|

|||
|

|||
|

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table

28.

SRIDs

with

associated

datum

and

ellipsoid

(continued)

SRID

Datum

name

Reference

ellipsoid

2000000111

Gan

1970

International

1924

2000000112

Garoua

Clarke

1880

(IGN)

2000000113

Geocentric

Datum

of

Australia

1994

GRS

1980

2000000114

GEM

10C

Gravity

Potential

Model

GEM

10C

2000000115

Greek

Geodetic

Ref.

System

1987

GRS

1980

2000000116

Graciosa

Base

SW

1948

International

1924

2000000117

Greek

Bessel

1841

2000000118

Greek

(Athens)

Bessel

1841

2000000119

Grenada

1953

Clarke

1880

(RGS)

2000000120

GRS

1967

GRS

1967

2000000121

GRS

1980

GRS

1980

2000000122

Guam

1963

Clarke

1866

2000000123

Gunung

Segara

Bessel

1841

2000000124

GUX

1

Astro

International

1924

2000000125

Guyane

Francaise

International

1924

2000000126

Hanoi

1972

Krasovsky

1940

2000000127

Hartebeesthoek

1994

WGS

1984

2000000128

Helmert

1906

Helmert

1906

2000000129

Herat

North

International

1924

2000000130

Hermannskogel

Bessel

1841

2000000131

Hito

XVIII

1963

International

1924

2000000132

Hjorsey

1955

International

1924

2000000133

Hong

Kong

1963

International

1924

2000000134

Hong

Kong

1980

International

1924

2000000135

Hough

1960

Hough

1960

2000000136

Hungarian

Datum

1972

GRS

1967

2000000137

Hu

Tzu

Shan

International

1924

2000000138

Indian

1954

Everest

Adjustment

1937

2000000139

Indian

1960

Everest

Adjustment

1937

2000000140

Indian

1975

Everest

Adjustment

1937

2000000141

Indonesian

National

Indonesian

National

2000000142

Indonesian

Datum

1974

Indonesian

2000000143

International

1927

International

1924

2000000144

International

1967

International

1967

2000000145

IRENET95

GRS

1980

2000000146

Israel

GRS

1980

2000000147

ISTS

061

Astro

1968

International

1924

2000000148

ISTS

073

Astro

1969

International

1924

Differences

in

using

geodetic

and

spatial

data

Chapter

19.

Differences

in

using

geodetic

and

spatial

data

211

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||
|

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

Table

28.

SRIDs

with

associated

datum

and

ellipsoid

(continued)

SRID

Datum

name

Reference

ellipsoid

2000000149

Jamaica

1875

Clarke

1880

2000000150

Jamaica

1969

Clarke

1866

2000000151

Japan

Geodetic

Datum

2000

GRS

1980

2000000152

Johnston

Island

1961

International

1924

2000000153

Kalianpur

1880

Everest

1830

2000000154

Kalianpur

1937

Everest

Adjustment

1937

2000000155

Kalianpur

1962

Everest

(Definition

1962)

2000000156

Kalianpur

1975

Everest

(Definition

1975)

2000000157

Kandawala

Everest

Adjustment

1937

2000000158

Kerguelen

Island

1949

International

1924

2000000159

Kertau

Everest

1830

Modified

2000000160

Kartastokoordinaattijarjestelma

International

1924

2000000161

Kuwait

Oil

Company

Clarke

1880

(RGS)

2000000162

Korean

Datum

1985

Bessel

1841

2000000163

Korean

Datum

1995

WGS

1984

2000000164

Krasovsky

1940

Krasovsky

1940

2000000165

Kuwait

Utility

GRS

1980

2000000166

Kusaie

Astro

1951

International

1924

2000000167

Lake

International

1924

2000000168

La

Canoa

International

1924

2000000169

L.C.

5

Astro

1961

Clarke

1866

2000000170

Leigon

Clarke

1880

(RGS)

2000000171

Liberia

1964

Clarke

1880

(RGS)

2000000172

Datum

Lisboa

Bessel

Bessel

1841

2000000173

Datum

Lisboa

Hayford

International

1924

2000000174

Lisbon

International

1924

2000000175

Lisbon

(Lisbon)

International

1924

2000000176

LKS

1994

GRS

1980

2000000177

Locodjo

1965

Clarke

1880

(RGS)

2000000178

Loma

Quintana

International

1924

2000000179

Lome

Clarke

1880

(IGN)

2000000180

Luzon

1911

Clarke

1866

2000000181

Madrid

1870

(Madrid

Prime

Merid.)

Struve

1860

2000000182

Madzansua

Clarke

1866

2000000183

Mahe

1971

Clarke

1880

(RGS)

2000000184

Majuro

(Republic

of

Marshall

Is.)

Clarke

1866

2000000185

Makassar

Bessel

1841

Differences

in

using

geodetic

and

spatial

data

212

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|||

|||

|||

|||

|||

|||

|||
|

|||
|

|||
|

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table

28.

SRIDs

with

associated

datum

and

ellipsoid

(continued)

SRID

Datum

name

Reference

ellipsoid

2000000186

Makassar

(Jakarta)

Bessel

1841

2000000187

Malongo

1987

International

1924

2000000188

Manoca

Clarke

1880

(RGS)

2000000189

Massawa

Bessel

1841

2000000190

Merchich

Clarke

1880

(IGN)

2000000191

Merchich

(degrees)

Clarke

1880

(IGN)

2000000192

Militar-Geographische

Institut

Bessel

1841

2000000193

MGI

(Ferro)

Bessel

1841

2000000194

Mhast

International

1924

2000000195

Midway

Astro

1961

International

1924

2000000196

Minna

Clarke

1880

(RGS)

2000000197

Monte

Mario

International

1924

2000000198

Monte

Mario

(Rome)

International

1924

2000000199

Montserrat

Astro

1958

Clarke

1880

(RGS)

2000000200

Mount

Dillon

Clarke

1858

2000000201

Moznet

WGS

1984

2000000202

M’poraloko

Clarke

1880

(IGN)

2000000203

North

American

Datum

1927

Clarke

1866

2000000204

NAD

1927

CGQ77

Clarke

1866

2000000205

NAD

1927

(1976)

Clarke

1866

2000000206

North

American

Datum

1983

GRS

1980

2000000207

NAD

1983

(Canadian

Spatial

Ref.

System)

GRS

1980

2000000208

North

American

Datum

1983

(HARN)

GRS

1980

2000000209

NAD

Michigan

Clarke

1866

(Michigan)

2000000210

Nahrwan

1967

Clarke

1880

(RGS)

2000000211

Naparima

1955

International

1924

2000000212

Naparima

1972

International

1924

2000000213

Nord

de

Guerre

(Paris)

Plessis

1817

2000000214

National

Geodetic

Network

(Kuwait)

WGS

1984

2000000215

NGO

1948

Bessel

Modified

2000000216

NGO

1948

(Oslo)

Bessel

Modified

2000000217

Nord

Sahara

1959

Clarke

1880

(RGS)

2000000218

NSWC

9Z-2

NWL

9D

2000000219

Nouvelle

Triangulation

Francaise

(degrees)

Clarke

1880

(IGN)

2000000220

NTF

(Paris)

(grads)

Clarke

1880

(IGN)

2000000221

NWL

9D

Transit

Precise

Ephemeris

NWL

9D

2000000222

New

Zealand

Geodetic

Datum

1949

International

1924

2000000223

New

Zealand

Geodetic

Datum

2000

GRS

1980

2000000224

Observatario

Clarke

1866

Differences

in

using

geodetic

and

spatial

data

Chapter

19.

Differences

in

using

geodetic

and

spatial

data

213

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table

28.

SRIDs

with

associated

datum

and

ellipsoid

(continued)

SRID

Datum

name

Reference

ellipsoid

2000000225

Observ.

Meteorologico

1939

International

1924

2000000226

Old

Hawaiian

Clarke

1866

2000000227

Oman

Clarke

1880

(RGS)

2000000228

OSGB

1936

Airy

1830

2000000229

OSGB

1970

(SN)

Airy

1830

2000000230

OSU

1986

Geoidal

Model

OSU

86F

2000000231

OSU

1991

Geoidal

Model

OSU

91A

2000000232

OS

(SN)

1980

Airy

1830

2000000233

Padang

1884

Bessel

1841

2000000234

Padang

1884

(Jakarta)

Bessel

1841

2000000235

Palestine

1923

Clarke

1880

(Benoit)

2000000236

Pampa

del

Castillo

International

1924

2000000237

PDO

Survey

Datum

1993

Clarke

1880

(RGS)

2000000238

Pico

de

Las

Nieves

International

1924

2000000239

Pitcairn

Astro

1967

International

1924

2000000240

Plessis

1817

Plessis

1817

2000000241

Pohnpei

(Fed.

States

of

Micronesia)

Clarke

1866

2000000242

Point

58

Clarke

1880

(RGS)

2000000243

Pointe

Noire

Clarke

1880

(IGN)

2000000244

Porto

Santo

1936

International

1924

2000000245

POSGAR

GRS

1980

2000000246

Provisional

South

Amer.

Datum

1956

International

1924

2000000247

Puerto

Rico

Clarke

1866

2000000248

Pulkovo

1942

Krasovsky

1940

2000000249

Pulkovo

1995

Krasovsky

1940

2000000250

Qatar

1974

International

1924

2000000251

Qatar

1948

Helmert

1906

2000000252

Qornoq

International

1924

2000000253

Rassadiran

International

1924

2000000254

REGVEN

GRS

1980

2000000255

Reunion

International

1924

2000000256

Reseau

Geodesique

Francais

1993

GRS

1980

2000000257

RT38

Bessel

1841

2000000258

RT38

(Stockholm)

Bessel

1841

2000000259

RT

1990

Bessel

1841

2000000260

S-42

Hungary

Krasovsky

1940

2000000261

South

American

Datum

1969

GRS

1967

Truncated

2000000262

Samboja

Bessel

1841

2000000263

American

Samoa

1962

Clarke

1866

2000000264

Santo

DOS

1965

International

1924

Differences

in

using

geodetic

and

spatial

data

214

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table

28.

SRIDs

with

associated

datum

and

ellipsoid

(continued)

SRID

Datum

name

Reference

ellipsoid

2000000265

Sao

Braz

International

1924

2000000266

Sapper

Hill

1943

International

1924

2000000267

Schwarzeck

Bessel

Namibia

2000000268

Segora

Bessel

1841

2000000269

Selvagem

Grande

1938

International

1924

2000000270

Serindung

Bessel

1841

2000000271

Sierra

Leone

1924

War

Office

2000000272

Sierra

Leone

1960

Clarke

1880

(RGS)

2000000273

Sierra

Leone

1968

Clarke

1880

(RGS)

2000000274

SIRGAS

GRS

1980

2000000275

South

Yemen

Krasovsky

1940

2000000276

Authalic

sphere

Sphere

2000000277

Authalic

sphere

(ARC/INFO)

Sphere

ARC

INFO

2000000278

Struve

1860

Struve

1860

2000000279

St.

George

Island

(Alaska)

Clarke

1866

2000000280

St.

Kitts

1955

Clarke

1880

(RGS)

2000000281

St.

Lawrence

Island

(Alaska)

Clarke

1866

2000000282

St.

Lucia

1955

Clarke

1880

(RGS)

2000000283

St.

Paul

Island

(Alaska)

Clarke

1866

2000000284

St.

Vincent

1945

Clarke

1880

(RGS)

2000000285

Sudan

Clarke

1880

(IGN)

2000000286

South

Asia

Singapore

Fischer

Modified

2000000287

S-JTSK

Bessel

1841

2000000288

S-JTSK

(Ferro)

Bessel

1841

2000000289

Tananarive

1925

International

1924

2000000290

Tananarive

1925

(Paris)

International

1924

2000000291

Tern

Island

Astro

1961

International

1924

2000000292

Tete

Clarke

1866

2000000293

Timbalai

1948

Everest

(Definition

1967)

2000000294

TM65

Airy

Modified

2000000295

TM75

Airy

Modified

2000000296

Tokyo

Bessel

1841

2000000297

Trinidad

1903

Clarke

1858

2000000298

Tristan

Astro

1968

International

1924

2000000299

Trucial

Coast

1948

Helmert

1906

2000000300

Viti

Levu

1916

Clarke

1880

(RGS)

2000000301

Voirol

1875

Clarke

1880

(IGN)

2000000302

Voirol

1875

(degrees)

Clarke

1880

(IGN)

2000000303

Voirol

1875

(Paris)

Clarke

1880

(IGN)

Differences

in

using

geodetic

and

spatial

data

Chapter

19.

Differences

in

using

geodetic

and

spatial

data

215

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table

28.

SRIDs

with

associated

datum

and

ellipsoid

(continued)

SRID

Datum

name

Reference

ellipsoid

2000000304

Voirol

Unifie

1960

Clarke

1880

(RGS)

2000000305

Voirol

Unifie

1960

(degrees)

Clarke

1880

(RGS)

2000000306

Voirol

Unifie

1960

(Paris)

Clarke

1880

(RGS)

2000000307

Wake-Eniwetok

1960

Hough

1960

2000000308

Wake

Island

Astro

1952

International

1924

2000000309

Walbeck

Walbeck

2000000310

War

Office

War

Office

2000000311

WGS

1966

WGS

1966

2000000312

WGS

1972

WGS

1972

2000000313

WGS

1972

Transit

Broadcast

Ephemeris

WGS

1972

2000000314

Yacare

International

1924

2000000315

Yemen

Nat’l

Geodetic

Network

1996

WGS

1984

2000000316

Yoff

Clarke

1880

(IGN)

2000000317

Zanderij

International

1924

Geodetic

spheroids

A

spheroid

(also

known

as

an

ellipsoid)

is

the

part

of

a

geographic

coordinate

system

that

defines

the

shape

of

the

Earth’s

surface

at

a

specific

location.

The

definition

of

a

coordinate

system

includes

the

definition

of

an

ellipsoid

in

the

SPHEROID

definition

which

is

part

of

the

DATUM

definition,

as

the

following

example

shows:

GEOGCS["GCS_North_American_1983",DATUM["D_North_American_1983",

SPHEROID["GRS_1980",6378137,298.257222101]],

PRIMEM["Greenwich",0],UNIT["Degree",0.0174532925199432955]]

For

a

list

of

the

spheroids

that

Spatial

Extender

and

Geodetic

Extender

provide,

see

“Supported

coordinate

systems”

on

page

513.

You

can

use

the

DB2GSE.ST_COORDINATE_SYSTEMS

catalog

view

to

retrieve

this

information.

The

DEFINITION

column

in

the

DB2GSE.ST_COORDINATE_SYSTEMS

catalog

view

contains

the

values

in

the

Name,

Semi-major

axis,

and

Flattening

columns

in

the

Supported

spheroids

table.

Related

concepts:

v

“Geographic

coordinate

system”

on

page

55

Related

reference:

v

“The

DB2GSE.ST_COORDINATE_SYSTEMS

catalog

view”

on

page

275

v

“ST_create_coordsys”

on

page

229

Differences

in

using

geodetic

and

spatial

data

216

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|

|

|

|

|

|

|

Part

5.

Reference

material

©

Copyright

IBM

Corp.

1998,

2004

217

218

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Chapter

20.

Stored

procedures

This

section

provides

reference

information

about

the

stored

procedures

that

you

can

use

to

set

up

DB2

Spatial

Extender

and

create

projects

that

use

spatial

data.

When

you

set

up

DB2

Spatial

Extender

or

create

projects

from

the

DB2

Control

Center

or

the

DB2

command

line

processor,

you

invoke

these

stored

procedures

implicitly.

For

example,

when

you

click

OK

from

a

DB2

Spatial

Extender

window

in

the

DB2

Control

Center,

DB2

calls

the

stored

procedure

that

is

associated

with

that

window.

Alternatively,

you

can

invoke

the

stored

procedures

explicitly

in

an

application

program.

Before

invoking

most

DB2

Spatial

Extender

stored

procedures

on

a

database,

you

must

enable

that

database

for

spatial

operations

by

invoking

the

ST_enable_db

stored

procedure,

either

directly

or

by

using

the

DB2

Control

Center.

(You

can

read

about

invoking

this

stored

procedure

in

the

topic

about

ST_enable_db,

later

in

this

section.)

After

a

database

is

enabled

for

spatial

operations,

you

can

invoke

any

DB2

Spatial

Extender

stored

procedure,

either

implicitly

or

explicitly,

on

that

database

if

you

are

connected

to

that

database.

This

chapter

provides

topics

for

all

the

DB2

Spatial

Extender

stored

procedures,

as

follows:

v

GSE_export_sde

v

GSE_import_sde

v

ST_alter_coordsys

v

ST_alter_srs

v

ST_create_coordsys

v

ST_create_srs

v

ST_disable_autogeocoding

v

ST_disable_db

v

ST_drop_coordsys

v

ST_drop_srs

v

ST_enable_autogeocoding

v

ST_enable_db

v

ST_export_shape

v

ST_import_shape

v

ST_register_geocoder

v

ST_register_spatial_column

v

ST_remove_geocoding_setup

v

ST_run_geocoding

v

ST_setup_geocoding

v

ST_unregister_geocoder

v

ST_unregister_spatial_column

©

Copyright

IBM

Corp.

1998,

2004

219

The

implementations

of

the

stored

procedures

are

archived

in

the

db2gse

library

on

the

DB2

Spatial

Extender

server.

GSE_export_sde

Use

this

stored

procedure

to

export

a

spatial

column

and

its

associated

table

to

an

SDE

transfer

file.

Restrictions:

v

Exactly

one

spatial

column

must

exist

in

the

table

or

view.

v

The

spatial

column

must

be

registered.

v

You

cannot

append

to

existing

SDE

files.

Authorization:

The

user

ID

under

which

the

stored

procedure

is

invoked

must

have

either

SYSADM

or

DBADM

authority.

In

addition,

this

user

ID

under

must

hold

the

SELECT

privilege

on

the

table

that

is

to

be

exported.

Syntax:

��

db2gse.GSE_export_sde

(

table_schema

null

,

table_name

,

column_name

�

�

,

file_name

,

where_clause

null

)

��

Parameter

descriptions:

table_schema

Names

the

schema

to

which

the

table

that

is

specified

in

the

table_name

parameter

belongs.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

value

in

the

CURRENT

SCHEMA

special

register

is

used

as

the

schema

name

for

the

table

or

view.

The

table_schema

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

table_name

Specifies

the

unqualified

name

of

the

table

that

you

are

exporting.

You

must

specify

a

non-null

value

for

this

parameter.

The

table_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

column_name

Names

the

registered

spatial

column

that

you

are

exporting.

You

must

specify

a

non-null

value

for

this

parameter.

The

column_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

Stored

procedures

220

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

file_name

Names

the

SDE

transfer

file

to

which

the

specified

spatial

column

and

its

associated

table

are

to

be

exported.

You

must

specify

a

non-null

value

for

this

parameter.

The

data

type

of

this

parameter

is

VARCHAR(256).

where_clause

Specifies

the

body

of

the

SQL

WHERE

clause,

which

defines

a

restriction

on

the

set

of

records

that

are

to

be

exported.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

no

restrictions

are

defined

in

the

WHERE

clause.

If

this

parameter

is

specified,

the

value

can

reference

any

attribute

column

in

the

table

that

you

are

exporting.

The

data

type

of

this

parameter

is

VARCHAR(1024).

Output

parameters:

msg_code

Specifies

the

message

code

that

is

returned

from

the

stored

procedure.

The

value

of

this

output

parameter

identifies

the

error,

success,

or

warning

condition

that

was

encountered

during

the

processing

of

the

procedure.

If

this

parameter

value

is

for

a

success

or

warning

condition,

the

procedure

finished

its

task.

If

the

parameter

value

is

for

an

error

condition,

no

changes

to

the

database

were

performed.

The

data

type

of

this

output

parameter

is

INTEGER.

msg_text

Specifies

the

actual

message

text,

associated

with

the

message

code,

that

is

returned

from

the

stored

procedure.

The

message

text

can

include

additional

information

about

the

success,

warning,

or

error

condition,

such

as

where

an

error

was

encountered.

The

data

type

of

this

output

parameter

is

VARCHAR(1024).

Example:

This

example

shows

how

to

use

the

DB2

command

line

processor

to

invoke

the

GSE_export_sde

stored

procedure.

This

example

uses

a

DB2

CALL

command

to

export

data

from

a

table

named

CUSTOMERS

to

SDE

files:

call

db2gse.GSE_export_sde(NULL,’CUSTOMERS’,’LOCATION’,’/tmp/export_sde_file’,

NULL,?,?)

The

two

question

marks

at

the

end

of

this

CALL

command

represent

the

output

parameters,

msg_code

and

msg_text.

The

values

for

these

output

parameters

are

displayed

after

the

stored

procedure

runs.

Related

reference:

v

“GSE_import_sde”

on

page

222

GSE_export_sde

Chapter

20.

Stored

procedures

221

GSE_import_sde

Use

this

stored

procedure

to

import

an

SDE

transfer

file

to

a

database

that

is

enabled

for

spatial

operations.

The

stored

procedure

can

operate

in

either

of

two

ways:

v

If

the

SDE

transfer

file

is

targeted

for

an

existing

table

that

has

a

registered

spatial

column,

DB2

Spatial

Extender

loads

the

table

with

the

file’s

data.

v

Otherwise,

DB2

Spatial

Extender

creates

a

table

that

has

a

spatial

column,

registers

this

column,

and

loads

the

spatial

column

and

the

table’s

other

columns

with

the

file’s

data.

The

spatial

reference

system

that

is

specified

in

the

SDE

transfer

file

is

compared

with

the

spatial

reference

systems

that

are

registered

to

DB2

Spatial

Extender.

If

the

specified

system

matches

a

registered

system,

all

data

values

in

the

transfer

data,

when

loaded,

are

modified

in

the

way

that

the

registered

system

specifies.

If

the

specified

system

matches

none

of

the

registered

systems,

DB2

Spatial

Extender

creates

a

new

spatial

reference

system

to

specify

the

modifications.

Authorization:

When

you

import

data

to

an

existing

table,

the

user

ID

under

which

this

stored

procedure

is

invoked

must

hold

one

of

the

following

authorities

or

privileges:

v

SYSADM

or

DBADM

authority

on

the

database

that

contains

the

table

to

which

data

is

to

be

imported

v

CONTROL

privilege

on

this

table

When

the

table

to

which

you

want

to

import

data

must

be

created,

the

user

ID

under

which

this

stored

procedure

is

invoked

must

hold

either

SYSADM

or

DBADM

authority

on

the

database

that

contains

the

table

that

is

to

be

created.

Syntax:

��

db2gse.GSE_import_sde

(

table_schema

null

,

table_name

,

column_name

�

�

,

file_name

,

commit_scope

null

)

��

Parameter

descriptions:

table_schema

Names

the

schema

to

which

the

table

or

view

that

is

specified

in

the

table_name

parameter

belongs.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

value

in

the

CURRENT

SCHEMA

special

register

is

used

as

the

schema

name

for

the

table

or

view.

The

table_schema

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

table_name

Specifies

the

unqualified

name

of

the

table

into

which

the

SDE

transfer

data

is

to

be

loaded.

You

must

specify

a

non-null

value

for

this

parameter.

GSE_import_sde

222

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

The

table_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

column_name

Names

the

registered

column

into

which

the

SDE

transfer

file’s

spatial

data

is

to

be

loaded.

You

must

specify

a

non-null

value

for

this

parameter.

The

column_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

file_name

Names

the

SDE

transfer

file

that

is

to

be

imported.

You

must

specify

a

non-null

value

for

this

parameter.

The

data

type

of

this

parameter

is

VARCHAR(256).

commit_scope

Specifies

the

number

of

records

that

are

to

be

imported

before

a

COMMIT

is

issued.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

a

value

of

0

(zero)

is

used

and

no

records

are

committed.

The

data

type

of

this

parameter

is

INTEGER.

Output

parameters:

msg_code

Specifies

the

message

code

that

is

returned

from

the

stored

procedure.

The

value

of

this

output

parameter

identifies

the

error,

success,

or

warning

condition

that

was

encountered

during

the

processing

of

the

procedure.

If

this

parameter

value

is

for

a

success

or

warning

condition,

the

procedure

finished

its

task.

If

the

parameter

value

is

for

an

error

condition,

no

changes

to

the

database

were

performed.

The

data

type

of

this

output

parameter

is

INTEGER.

msg_text

Specifies

the

actual

message

text,

associated

with

the

message

code,

that

is

returned

from

the

stored

procedure.

The

message

text

can

include

additional

information

about

the

success,

warning,

or

error

condition,

such

as

where

an

error

was

encountered.

The

data

type

of

this

output

parameter

is

VARCHAR(1024).

Example:

This

example

shows

how

to

use

the

DB2

command

line

processor

to

invoke

the

GSE_import_sde

stored

procedure.

This

example

uses

a

DB2

CALL

command

to

import

an

SDE

file

named

tmp/customerSDE

into

a

table

named

CUSTOMERS.

This

CALL

command

specifies

that

a

COMMIT

is

to

be

performed

after

every

5

records

are

imported:

call

db2gse.GSE_import_sde(NULL,’CUSTOMERS’,’LOCATION’,

’/tmp/customerSde’,

5,

?,?)

GSE_import_sde

Chapter

20.

Stored

procedures

223

The

two

question

marks

at

the

end

of

this

CALL

command

represent

the

output

parameters,

msg_code

and

msg_text.

The

values

for

these

output

parameters

are

displayed

after

the

stored

procedure

runs.

Related

reference:

v

“GSE_export_sde”

on

page

220

ST_alter_coordsys

Use

this

stored

procedure

to

update

a

coordinate

system

definition

in

the

database.

When

this

stored

procedure

is

processed,

information

about

the

coordinate

system

is

updated

in

the

DB2GSE.ST_COORDINATE_SYSTEMS

catalog

view.

Attention:

Use

care

with

this

stored

procedure.

If

you

use

this

stored

procedure

to

change

the

definition

of

the

coordinate

system

and

you

have

existing

spatial

data

that

is

associated

with

a

spatial

reference

system

that

is

based

on

this

coordinate

system,

you

might

inadvertently

change

the

spatial

data.

If

spatial

data

is

affected,

you

are

responsible

for

ensuring

that

the

changed

spatial

data

is

still

accurate

and

valid.

Authorization:

The

user

ID

under

which

the

stored

procedure

is

invoked

must

have

either

SYSADM

or

DBADM

authority.

Syntax:

��

db2gse.ST_alter_coordsys

(

coordsys_name

,

definition

null

,

�

�

organization

null

,

organization_coordsys_id

null

,

description

null

)

��

Parameter

descriptions:

coordsys_name

Uniquely

identifies

the

coordinate

system.

You

must

specify

a

non-null

value

for

this

parameter.

The

coordsys_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

definition

Defines

the

coordinate

system.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

definition

of

the

coordinate

system

is

not

changed.

The

data

type

of

this

parameter

is

VARCHAR(2048).

organization

Names

the

organization

that

defined

the

coordinate

system

and

provided

the

definition

for

it;

for

example,

″European

Petroleum

Survey

Group

(EPSG).″

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

organization

of

the

coordinate

system

is

not

changed.

If

this

parameter

is

not

null,

the

organization_coordsys_id

parameter

GSE_import_sde

224

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

cannot

be

null;

in

this

case,

the

combination

of

the

organization

and

organization_coordsys_id

parameters

uniquely

identifies

the

coordinate

system.

The

data

type

of

this

parameter

is

VARCHAR(128).

organization_coordsys_id

Specifies

a

numeric

identifier

that

is

assigned

to

this

coordinate

system

by

the

entity

listed

in

the

organization

parameter.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

organization

parameter

must

also

be

null;

in

this

case,

the

organization’s

coordinate

system

identifier

is

not

changed.

If

this

parameter

is

not

null,

the

organization

parameter

cannot

be

null;

in

this

case,

the

combination

of

the

organization

and

organization_coordsys_id

parameters

uniquely

identifies

the

coordinate

system.

The

data

type

of

this

parameter

is

INTEGER.

description

Describes

the

coordinate

system

by

explaining

its

application.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

description

information

about

the

coordinate

system

is

not

changed.

The

data

type

of

this

parameter

is

VARCHAR(256).

Output

parameters:

msg_code

Specifies

the

message

code

that

is

returned

from

the

stored

procedure.

The

value

of

this

output

parameter

identifies

the

error,

success,

or

warning

condition

that

was

encountered

during

the

processing

of

the

procedure.

If

this

parameter

value

is

for

a

success

or

warning

condition,

the

procedure

finished

its

task.

If

the

parameter

value

is

for

an

error

condition,

no

changes

to

the

database

were

performed.

The

data

type

of

this

output

parameter

is

INTEGER.

msg_text

Specifies

the

actual

message

text,

associated

with

the

message

code,

that

is

returned

from

the

stored

procedure.

The

message

text

can

include

additional

information

about

the

success,

warning,

or

error

condition,

such

as

where

an

error

was

encountered.

The

data

type

of

this

output

parameter

is

VARCHAR(1024).

Example:

This

example

shows

how

to

use

the

DB2

command

line

processor

to

invoke

the

ST_alter_coordsys

stored

procedure.

This

example

uses

a

DB2

CALL

command

to

update

a

coordinate

system

named

NORTH_AMERICAN_TEST.

This

CALL

command

assigns

a

value

of

1002

to

the

coordsys_id

parameter:

call

db2gse.ST_alter_coordsys(’NORTH_AMERICAN_TEST’,NULL,NULL,1002,NULL,?,?)

The

two

question

marks

at

the

end

of

this

CALL

command

represent

the

output

parameters,

msg_code

and

msg_text.

The

values

for

these

output

parameters

are

displayed

after

the

stored

procedure

runs.

Related

reference:

v

“ST_create_coordsys”

on

page

229

v

“ST_drop_coordsys”

on

page

240

ST_alter_coordsys

Chapter

20.

Stored

procedures

225

ST_alter_srs

Use

this

stored

procedure

to

update

a

spatial

reference

system

definition

in

the

database.

When

this

stored

procedure

is

processed,

information

about

the

spatial

reference

system

is

updated

in

the

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

catalog

view.

Internally,

DB2

Spatial

Extender

stores

the

coordinate

values

as

positive

integers.

Thus

during

computation,

the

impact

of

rounding

errors

(which

are

heavily

dependent

on

the

actual

value

for

floating-point

operations)

can

be

reduced.

Performance

of

the

spatial

operations

can

also

improve

significantly.

Restriction:

You

cannot

alter

a

spatial

reference

system

if

a

registered

spatial

column

uses

that

spatial

reference

system.

Attention:

Use

care

with

this

stored

procedure.

If

you

use

this

stored

procedure

to

change

offset,

scale,

or

coordsys_name

parameters

of

the

spatial

reference

system,

and

if

you

have

existing

spatial

data

that

is

associated

with

the

spatial

reference

system,

you

might

inadvertently

change

the

spatial

data.

If

spatial

data

is

affected,

you

are

responsible

for

ensuring

that

the

changed

spatial

data

is

still

accurate

and

valid.

Authorization:

The

user

ID

under

which

the

stored

procedure

is

invoked

must

have

either

SYSADM

or

DBADM

authority.

Syntax:

��

db2gse.ST_alter_srs

(

srs_name

,

srs_id

null

,

x_offset

null

,

�

�

x_scale

null

,

y_offset

null

,

y_scale

null

,

z_offset

null

,

�

�

z_scale

null

,

m_offset

null

,

m_scale

null

,

coordsys_name

null

,

�

�

description

null

)

��

Parameter

descriptions:

srs_name

Identifies

the

spatial

reference

system.

You

must

specify

a

non-null

value

for

this

parameter.

The

srs_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

srs_id

Uniquely

identifies

the

spatial

reference

system.

This

identifier

is

used

as

an

input

parameter

for

various

spatial

functions.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

numeric

identifier

of

the

spatial

reference

system

is

not

changed.

ST_alter_srs

226

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

The

data

type

of

this

parameter

is

INTEGER.

x_offset

Specifies

the

offset

for

all

X

coordinates

of

geometries

that

are

represented

in

this

spatial

reference

system.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

value

for

this

parameter

in

the

definition

of

the

spatial

reference

system

is

not

changed.

The

offset

is

subtracted

before

the

scale

factor

x_scale

is

applied

when

geometries

are

converted

from

external

representations

(WKT,

WKB,

shape)

to

the

DB2

Spatial

Extender

internal

representation.

(WKT

is

well-known

text,

and

WKB

is

well-known

binary.)

The

data

type

of

this

parameter

is

DOUBLE.

x_scale

Specifies

the

scale

factor

for

all

X

coordinates

of

geometries

that

are

represented

in

this

spatial

reference

system.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

value

for

this

parameter

in

the

definition

of

the

spatial

reference

system

is

not

changed.

The

scale

factor

is

applied

(multiplication)

after

the

offset

x_offset

is

subtracted

when

geometries

are

converted

from

external

representations

(WKT,

WKB,

shape)

to

the

DB2

Spatial

Extender

internal

representation.

The

data

type

of

this

parameter

is

DOUBLE.

y_offset

Specifies

the

offset

for

all

Y

coordinates

of

geometries

that

are

represented

in

this

spatial

reference

system.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

value

for

this

parameter

in

the

definition

of

the

spatial

reference

system

is

not

changed.

The

offset

is

subtracted

before

the

scale

factor

y_scale

is

applied

when

geometries

are

converted

from

external

representations

(WKT,

WKB,

shape)

to

the

DB2

Spatial

Extender

internal

representation.

The

data

type

of

this

parameter

is

DOUBLE.

y_scale

Specifies

the

scale

factor

for

all

Y

coordinates

of

geometries

that

are

represented

in

this

spatial

reference

system.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

value

for

this

parameter

in

the

definition

of

the

spatial

reference

system

is

not

changed.

The

scale

factor

is

applied

(multiplication)

after

the

offset

y_offset

is

subtracted

when

geometries

are

converted

from

external

representations

(WKT,

WKB,

shape)

to

the

DB2

Spatial

Extender

internal

representation.

This

scale

factor

must

be

the

same

as

x_scale.

The

data

type

of

this

parameter

is

DOUBLE.

z_offset

Specifies

the

offset

for

all

Z

coordinates

of

geometries

that

are

represented

in

this

spatial

reference

system.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

value

for

this

parameter

in

the

definition

of

the

spatial

reference

system

is

not

changed.

The

offset

is

subtracted

before

the

scale

factor

z_scale

is

applied

when

geometries

are

converted

from

external

representations

(WKT,

WKB,

shape)

to

the

DB2

Spatial

Extender

internal

representation.

The

data

type

of

this

parameter

is

DOUBLE.

ST_alter_srs

Chapter

20.

Stored

procedures

227

z_scale

Specifies

the

scale

factor

for

all

Z

coordinates

of

geometries

that

are

represented

in

this

spatial

reference

system.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

value

for

this

parameter

in

the

definition

of

the

spatial

reference

system

is

not

changed.

The

scale

factor

is

applied

(multiplication)

after

the

offset

z_offset

is

subtracted

when

geometries

are

converted

from

external

representations

(WKT,

WKB,

shape)

to

the

DB2

Spatial

Extender

internal

representation.

The

data

type

of

this

parameter

is

DOUBLE.

m_offset

Specifies

the

offset

for

all

M

coordinates

of

geometries

that

are

represented

in

this

spatial

reference

system.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

value

for

this

parameter

in

the

definition

of

the

spatial

reference

system

is

not

changed.

The

offset

is

subtracted

before

the

scale

factor

m_scale

is

applied

when

geometries

are

converted

from

external

representations

(WKT,

WKB,

shape)

to

the

DB2

Spatial

Extender

internal

representation.

The

data

type

of

this

parameter

is

DOUBLE.

m_scale

Specifies

the

scale

factor

for

all

M

coordinates

of

geometries

that

are

represented

in

this

spatial

reference

system.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

value

for

this

parameter

in

the

definition

of

the

spatial

reference

system

is

not

changed.

The

scale

factor

is

applied

(multiplication)

after

the

offset

m_offset

is

subtracted

when

geometries

are

converted

from

external

representations

(WKT,

WKB,

shape)

to

the

DB2

Spatial

Extender

internal

representation.

The

data

type

of

this

parameter

is

DOUBLE.

coordsys_name

Uniquely

identifies

the

coordinate

system

on

which

this

spatial

reference

system

is

based.

The

coordinate

system

must

be

listed

in

the

view

ST_COORDINATE_SYSTEMS.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

coordinate

system

that

is

used

for

this

spatial

reference

system

is

not

changed.

The

coordsys_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

description

Describes

the

spatial

reference

system

by

explaining

its

application.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

description

information

about

the

spatial

reference

system

is

not

changed.

The

data

type

of

this

parameter

is

VARCHAR(256).

Output

parameters:

msg_code

Specifies

the

message

code

that

is

returned

from

the

stored

procedure.

The

value

of

this

output

parameter

identifies

the

error,

success,

or

warning

condition

that

was

encountered

during

the

processing

of

the

procedure.

If

this

ST_alter_srs

228

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

parameter

value

is

for

a

success

or

warning

condition,

the

procedure

finished

its

task.

If

the

parameter

value

is

for

an

error

condition,

no

changes

to

the

database

were

performed.

The

data

type

of

this

output

parameter

is

INTEGER.

msg_text

Specifies

the

actual

message

text,

associated

with

the

message

code,

that

is

returned

from

the

stored

procedure.

The

message

text

can

include

additional

information

about

the

success,

warning,

or

error

condition,

such

as

where

an

error

was

encountered.

The

data

type

of

this

output

parameter

is

VARCHAR(1024).

Example:

This

example

shows

how

to

use

the

DB2

command

line

processor

to

invoke

the

ST_alter_srs

stored

procedure.

This

example

uses

a

DB2

CALL

command

to

change

the

description

parameter

value

of

a

spatial

reference

system

named

SRSDEMO:

call

db2gse.ST_alter_srs(’SRSDEMO’,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,

NULL,NULL,’SRS

for

GSE

Demo

Program:

offices

table’,?,?)

The

two

question

marks

at

the

end

of

this

CALL

command

represent

the

output

parameters,

msg_code

and

msg_text.

The

values

for

these

output

parameters

are

displayed

after

the

stored

procedure

runs.

Related

reference:

v

“ST_drop_srs”

on

page

242

v

“ST_create_srs”

on

page

231

ST_create_coordsys

Use

this

stored

procedure

to

store

information

in

the

database

about

a

new

coordinate

system.

When

this

stored

procedure

is

processed,

information

about

the

coordinate

system

is

added

to

the

DB2GSE.ST_COORDINATE_SYSTEMS

catalog

view.

Authorization:

The

user

ID

under

which

the

stored

procedure

is

invoked

must

have

either

SYSADM

or

DBADM

authority.

Syntax:

��

db2gse.ST_create_coordsys

(

coordsys_name

,

definition

,

�

�

organization

null

,

organization_coordsys_id

null

,

description

null

)

��

Parameter

descriptions:

coordsys_name

Uniquely

identifies

the

coordinate

system.

You

must

specify

a

non-null

value

for

this

parameter.

The

coordsys_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

ST_alter_srs

Chapter

20.

Stored

procedures

229

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

definition

Defines

the

coordinate

system.

You

must

specify

a

non-null

value

for

this

parameter.

The

vendor

that

supplies

the

coordinate

system

usually

provides

the

information

for

this

parameter.

The

data

type

of

this

parameter

is

VARCHAR(2048).

organization

Names

the

organization

that

defined

the

coordinate

system

and

provided

the

definition

for

it;

for

example,

″European

Petroleum

Survey

Group

(EPSG).″

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

organization_coordsys_id

parameter

must

also

be

null.

If

this

parameter

is

not

null,

the

organization_coordsys_id

parameter

cannot

be

null;

in

this

case,

the

combination

of

the

organization

and

organization_coordsys_id

parameters

uniquely

identifies

the

coordinate

system.

The

data

type

of

this

parameter

is

VARCHAR(128).

organization_coordsys_id

Specifies

a

numeric

identifier.

The

entity

that

is

specified

in

the

organization

parameter

assigns

this

value.

This

value

is

not

necessarily

unique

across

all

coordinate

systems.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

organization

parameter

must

also

be

null.

If

this

parameter

is

not

null,

the

organization

parameter

cannot

be

null;

in

this

case,

the

combination

of

the

organization

and

organization_coordsys_id

parameters

uniquely

identifies

the

coordinate

system.

The

data

type

of

this

parameter

is

INTEGER.

description

Describes

the

coordinate

system

by

explaining

its

application.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

no

description

information

about

the

coordinate

system

is

recorded.

The

data

type

of

this

parameter

is

VARCHAR(256).

Output

parameters:

msg_code

Specifies

the

message

code

that

is

returned

from

the

stored

procedure.

The

value

of

this

output

parameter

identifies

the

error,

success,

or

warning

condition

that

was

encountered

during

the

processing

of

the

procedure.

If

this

parameter

value

is

for

a

success

or

warning

condition,

the

procedure

finished

its

task.

If

the

parameter

value

is

for

an

error

condition,

no

changes

to

the

database

were

performed.

The

data

type

of

this

output

parameter

is

INTEGER.

msg_text

Specifies

the

actual

message

text,

associated

with

the

message

code,

that

is

returned

from

the

stored

procedure.

The

message

text

can

include

additional

information

about

the

success,

warning,

or

error

condition,

such

as

where

an

error

was

encountered.

The

data

type

of

this

output

parameter

is

VARCHAR(1024).

Example:

ST_create_coordsys

230

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

This

example

shows

how

to

use

the

DB2

command

line

processor

to

invoke

the

ST_create_coordsys

stored

procedure.

This

example

uses

a

DB2

CALL

command

to

create

a

coordinate

system

with

the

following

parameter

values:

v

coordsys_name

parameter:

NORTH_AMERICAN_TEST

v

definition

parameter:

GEOGCS["GCS_North_American_1983",

DATUM["D_North_American_1983",

SPHEROID["GRS_1980",6378137.0,298.257222101]],

PRIMEM["Greenwich",0.0],

UNIT["Degree",0.0174532925199433]]

v

organization

parameter:

EPSG

v

organization_coordsys_id

parameter:

1001

v

description

parameter:

Test

Coordinate

Systems
call

db2gse.ST_create_coordsys(’NORTH_AMERICAN_TEST’,

’GEOGCS["GCS_North_American_1983",DATUM["D_North_American_1983",

SPHEROID["GRS_1980",6378137.0,298.257222101]],

PRIMEM["Greenwich",0.0],UNIT["Degree",

0.0174532925199433]]’,’EPSG’,1001,’Test

Coordinate

Systems’,?,?)

The

two

question

marks

at

the

end

of

this

CALL

command

represent

the

output

parameters,

msg_code

and

msg_text.

The

values

for

these

output

parameters

are

displayed

after

the

stored

procedure

runs.

Related

reference:

v

“ST_drop_srs”

on

page

242

v

“ST_alter_srs”

on

page

226

ST_create_srs

Use

these

stored

procedures

to

create

a

spatial

reference

system.

A

spatial

reference

system

is

defined

by

the

coordinate

system,

the

precision,

and

the

extents

of

coordinates

that

are

represented

in

this

spatial

reference

system.

The

extents

are

the

minimum

and

maximum

possible

coordinate

values

for

the

X,

Y,

Z,

and

M

coordinates.

Internally,

DB2

Spatial

Extender

stores

the

coordinate

values

as

positive

integers.

Thus

during

computation,

the

impact

of

rounding

errors

(which

are

heavily

dependent

on

the

actual

value

for

floating-point

operations)

can

be

reduced.

Performance

of

the

spatial

operations

can

also

improve

significantly.

This

stored

procedure

has

two

variations:

v

The

first

variation

takes

the

conversion

factors

(offsets

and

scale

factors)

as

input

parameters.

v

The

second

variation

takes

the

extents

and

the

precision

as

input

parameters

and

calculates

the

conversion

factors

internally.

This

stored

procedure

replaces

db2gse.gse_enable_sref.

Authorization:

None

required.

Syntax:

ST_create_coordsys

Chapter

20.

Stored

procedures

231

With

conversion

factors

(version

1):

��

db2gse.ST_create_srs

(

srs_name

,

srs_id

,

x_offset

null

,

x_scale

�

�

,

y_offset

null

,

y_scale

null

,

z_offset

null

,

z_scale

null

,

�

�

m_offset

null

,

m_scale

null

,

coordsys_name

,

description

null

)

��

With

maximum

possible

extend

(version

2):

��

db2gse.ST_create_srs

(

srs_name

,

srs_id

,

x_min

,

x_max

,

�

�

x_scale

,

,

y_min

,

y_max

y_scale

null

,

z_min

,

z_max

,

�

�

z_scale

null

,

m_min

,

m_max

,

m_scale

null

,

coordsys_name

,

�

�

description

null

��

Parameter

descriptions:

With

conversion

factors

(version

1):

srs_name

Identifies

the

spatial

reference

system.

You

must

specify

a

non-null

value

for

this

parameter.

The

srs_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

srs_id

Uniquely

identifies

the

spatial

reference

system.

This

numeric

identifier

is

used

as

an

input

parameter

for

various

spatial

functions.

You

must

specify

a

non-null

value

for

this

parameter.

For

a

geodetic

spatial

reference

system,

the

srs_id

value

must

be

in

the

range

2000000318

to

2000001000.

DB2

Geodetic

Extender

provides

predefined

geodetic

spatial

reference

systems

with

srs_id

values

2000000000

to

2000000317.

The

data

type

of

this

parameter

is

INTEGER.

x_offset

Specifies

the

offset

for

all

X

coordinates

of

geometries

that

are

represented

in

this

spatial

reference

system.

The

offset

is

subtracted

before

the

scale

factor

x_scale

is

applied

when

geometries

are

converted

from

external

representations

(WKT,

WKB,

shape)

to

the

DB2

Spatial

Extender

internal

representation.

(WKT

is

well-known

text,

and

WKB

is

well-known

binary.)

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

a

value

of

0

(zero)

is

used.

The

data

type

of

this

parameter

is

DOUBLE.

x_scale

Specifies

the

scale

factor

for

all

X

coordinates

of

geometries

that

are

represented

in

this

spatial

reference

system.

The

scale

factor

is

applied

ST_create_srs

232

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|
|

(multiplication)

after

the

offset

x_offset

is

subtracted

when

geometries

are

converted

from

external

representations

(WKT,

WKB,

shape)

to

the

DB2

Spatial

Extender

internal

representation.

Either

the

x_offset

value

is

specified

explicitly,

or

a

default

x_offset

value

of

0

is

used.

You

must

specify

a

non-null

value

for

this

parameter.

The

data

type

of

this

parameter

is

DOUBLE.

y_offset

Specifies

the

offset

for

all

Y

coordinates

of

geometries

that

are

represented

in

this

spatial

reference

system.

The

offset

is

subtracted

before

the

scale

factor

y_scale

is

applied

when

geometries

are

converted

from

external

representations

(WKT,

WKB,

shape)

to

the

DB2

Spatial

Extender

internal

representation.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

the

null

value,

a

value

of

0

(zero)

is

used.

The

data

type

of

this

parameter

is

DOUBLE.

y_scale

Specifies

the

scale

factor

for

all

Y

coordinates

of

geometries

that

are

represented

in

this

spatial

reference

system.

The

scale

factor

is

applied

(multiplication)

after

the

offset

y_offset

is

subtracted

when

geometries

are

converted

from

external

representations

(WKT,

WKB,

shape)

to

the

DB2

Spatial

Extender

internal

representation.

Either

the

y_offset

value

is

specified

explicitly,

or

a

default

y_offset

value

of

0

is

used.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

value

of

the

x_scale

parameter

is

used.

If

you

specify

a

value

other

than

null

for

this

parameter,

the

value

that

you

specify

must

match

the

value

of

the

x_scale

parameter.

The

data

type

of

this

parameter

is

DOUBLE.

z_offset

Specifies

the

offset

for

all

Z

coordinates

of

geometries

that

are

represented

in

this

spatial

reference

system.

The

offset

is

subtracted

before

the

scale

factor

z_scale

is

applied

when

geometries

are

converted

from

external

representations

(WKT,

WKB,

shape)

to

the

DB2

Spatial

Extender

internal

representation.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

a

value

of

0

(zero)

is

used.

The

data

type

of

this

parameter

is

DOUBLE.

z_scale

Specifies

the

scale

factor

for

all

Z

coordinates

of

geometries

that

are

represented

in

this

spatial

reference

system.

The

scale

factor

is

applied

(multiplication)

after

the

offset

z_offset

is

subtracted

when

geometries

are

converted

from

external

representations

(WKT,

WKB,

shape)

to

the

DB2

Spatial

Extender

internal

representation.

Either

the

z_offset

value

is

specified

explicitly,

or

a

default

z_offset

value

of

0

is

used.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

a

value

of

1

is

used.

The

data

type

of

this

parameter

is

DOUBLE.

m_offset

Specifies

the

offset

for

all

M

coordinates

of

geometries

that

are

represented

in

this

spatial

reference

system.

The

offset

is

subtracted

before

the

scale

factor

m_scale

is

applied

when

geometries

are

converted

from

external

representations

(WKT,

WKB,

shape)

to

the

DB2

Spatial

Extender

internal

representation.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

a

value

of

0

(zero)

is

used.

ST_create_srs

Chapter

20.

Stored

procedures

233

The

data

type

of

this

parameter

is

DOUBLE.

m_scale

Specifies

the

scale

factor

for

all

M

coordinates

of

geometries

that

are

represented

in

this

spatial

reference

system.

The

scale

factor

is

applied

(multiplication)

after

the

offset

m_offset

is

subtracted

when

geometries

are

converted

from

external

representations

(WKT,

WKB,

shape)

to

the

DB2

Spatial

Extender

internal

representation.

Either

the

m_offset

value

is

specified

explicitly,

or

a

default

m_offset

value

of

0

is

used.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

a

value

of

1

is

used.

The

data

type

of

this

parameter

is

DOUBLE.

coordsys_name

Uniquely

identifies

the

coordinate

system

on

which

this

spatial

reference

system

is

based.

The

coordinate

system

must

be

listed

in

the

view

ST_COORDINATE_SYSTEMS.

You

must

supply

a

non-null

value

for

this

parameter.

The

coordsys_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

description

Describes

the

spatial

reference

system

by

explaining

the

application’s

purpose.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

no

description

information

is

recorded.

The

data

type

of

this

parameter

is

VARCHAR(256).

With

maximum

possible

extend

(version

2):

srs_name

Identifies

the

spatial

reference

system.

You

must

specify

a

non-null

value

for

this

parameter.

The

srs_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

srs_id

Uniquely

identifies

the

spatial

reference

system.

This

numeric

identifier

is

used

as

an

input

parameter

for

various

spatial

functions.

You

must

specify

a

non-null

value

for

this

parameter.

The

data

type

of

this

parameter

is

INTEGER.

x_min

Specifies

the

minimum

possible

X

coordinate

value

for

all

geometries

that

use

this

spatial

reference

system.

You

must

specify

a

non-null

value

for

this

parameter.

The

data

type

of

this

parameter

is

DOUBLE.

x_max

Specifies

the

maximum

possible

X

coordinate

value

for

all

geometries

that

use

this

spatial

reference

system.

You

must

specify

a

non-null

value

for

this

parameter.

ST_create_srs

234

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Depending

on

the

value

of

x_scale,

the

value

that

is

shown

in

the

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

might

be

larger

than

the

value

that

is

specified

here.

The

value

from

the

view

is

correct.

The

data

type

of

this

parameter

is

DOUBLE.

x_scale

Specifies

the

scale

factor

for

all

X

coordinates

of

geometries

that

are

represented

in

this

spatial

reference

system.

The

scale

factor

is

applied

(multiplication)

after

the

offset

x_offset

is

subtracted

when

geometries

are

converted

from

external

representations

(WKT,

WKB,

shape)

to

the

DB2

Spatial

Extender

internal

representation.

The

calculation

of

the

offset

x_offset

is

based

on

the

x_min

value.

You

must

supply

a

non-null

value

for

this

parameter.

If

both

the

x_scale

and

y_scale

parameters

are

specified,

the

values

must

match.

The

data

type

of

this

parameter

is

DOUBLE.

y_min

Specifies

the

minimum

possible

Y

coordinate

value

for

all

geometries

that

use

this

spatial

reference

system.

You

must

supply

a

non-null

value

for

this

parameter.

The

data

type

of

this

parameter

is

DOUBLE.

y_max

Specifies

the

maximum

possible

Y

coordinate

value

for

all

geometries

that

use

this

spatial

reference

system.

You

must

supply

a

non-null

value

for

this

parameter.

Depending

on

the

value

of

y_scale,

the

value

that

is

shown

in

the

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

might

be

larger

than

the

value

that

is

specified

here.

The

value

from

the

view

is

correct.

The

data

type

of

this

parameter

is

DOUBLE.

y_scale

Specifies

the

scale

factor

for

all

Y

coordinates

of

geometries

that

are

represented

in

this

spatial

reference

system.

The

scale

factor

is

applied

(multiplication)

after

the

offset

y_offset

is

subtracted

when

geometries

are

converted

from

external

representations

(WKT,

WKB,

shape)

to

the

DB2

Spatial

Extender

internal

representation.

The

calculation

of

the

offset

y_offset

is

based

on

the

y_min

value.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

value

of

the

x_scale

parameter

is

used.

If

both

the

y_scale

and

x_scale

parameters

are

specified,

the

values

must

match.

The

data

type

of

this

parameter

is

DOUBLE.

z_min

Specifies

the

minimum

possible

Z

coordinate

value

for

all

geometries

that

use

this

spatial

reference

system.

You

must

specify

a

non-null

value

for

this

parameter.

The

data

type

of

this

parameter

is

DOUBLE.

z_max

Specifies

the

maximum

possible

Z

coordinate

value

for

all

geometries

that

use

this

spatial

reference

system.

You

must

specify

a

non-null

value

for

this

parameter.

ST_create_srs

Chapter

20.

Stored

procedures

235

Depending

on

the

value

of

z_scale,

the

value

that

is

shown

in

the

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

might

be

larger

than

the

value

that

is

specified

here.

The

value

from

the

view

is

correct.

The

data

type

of

this

parameter

is

DOUBLE.

z_scale

Specifies

the

scale

factor

for

all

Z

coordinates

of

geometries

that

are

represented

in

this

spatial

reference

system.

The

scale

factor

is

applied

(multiplication)

after

the

offset

z_offset

is

subtracted

when

geometries

are

converted

from

external

representations

(WKT,

WKB,

shape)

to

the

DB2

Spatial

Extender

internal

representation.

The

calculation

of

the

offset

z_offset

is

based

on

the

z_min

value.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

a

value

of

1

is

used.

The

data

type

of

this

parameter

is

DOUBLE.

m_min

Specifies

the

minimum

possible

M

coordinate

value

for

all

geometries

that

use

this

spatial

reference

system.

You

must

specify

a

non-null

value

for

this

parameter.

The

data

type

of

this

parameter

is

DOUBLE.

m_max

Specifies

the

maximum

possible

M

coordinate

value

for

all

geometries

that

use

this

spatial

reference

system.

You

must

specify

a

non-null

value

for

this

parameter.

Depending

on

the

value

of

m_scale,

the

value

that

is

shown

in

the

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

might

be

larger

than

the

value

that

is

specified

here.

The

value

from

the

view

is

correct.

The

data

type

of

this

parameter

is

DOUBLE.

m_scale

Specifies

the

scale

factor

for

all

M

coordinates

of

geometries

that

are

represented

in

this

spatial

reference

system.

The

scale

factor

is

applied

(multiplication)

after

the

offset

m_offset

is

subtracted

when

geometries

are

converted

from

external

representations

(WKT,

WKB,

shape)

to

the

DB2

Spatial

Extender

internal

representation.

The

calculation

of

the

offset

m_offset

is

based

on

the

m_min

value.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

a

value

of

1

is

used.

The

data

type

of

this

parameter

is

DOUBLE.

coordsys_name

Uniquely

identifies

the

coordinate

system

on

which

this

spatial

reference

system

is

based.

The

coordinate

system

must

be

listed

in

the

view

ST_COORDINATE_SYSTEMS.

You

must

specify

a

non-null

value

for

this

parameter.

The

coordsys_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

description

Describes

the

spatial

reference

system

by

explaining

the

application’s

purpose.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

no

description

information

is

recorded.

ST_create_srs

236

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

The

data

type

of

this

parameter

is

VARCHAR(256).

Output

parameters:

msg_code

Specifies

the

message

code

that

is

returned

from

the

stored

procedure.

The

value

of

this

output

parameter

identifies

the

error,

success,

or

warning

condition

that

was

encountered

during

the

processing

of

the

procedure.

If

this

parameter

value

is

for

a

success

or

warning

condition,

the

procedure

finished

its

task.

If

the

parameter

value

is

for

an

error

condition,

no

changes

to

the

database

were

performed.

The

data

type

of

this

output

parameter

is

INTEGER.

msg_text

Specifies

the

actual

message

text,

associated

with

the

message

code,

that

is

returned

from

the

stored

procedure.

The

message

text

can

include

additional

information

about

the

success,

warning,

or

error

condition,

such

as

where

an

error

was

encountered.

The

data

type

of

this

output

parameter

is

VARCHAR(1024).

Example:

This

example

shows

how

to

use

the

DB2

command

line

processor

to

invoke

the

ST_create_srs

stored

procedure.

This

example

uses

a

DB2

CALL

command

to

create

a

spatial

reference

system

named

SRSDEMO

with

the

following

parameter

values:

v

srs_id:

1000000

v

x_offset:

-180

v

x_scale:

1000000

v

y_offset:

-90

v

y_scale:

1000000
call

db2gse.ST_create_srs(’SRSDEMO’,1000000,

-180,1000000,

-90,

1000000,

0,

1,

0,

1,’NORTH_AMERICAN’,

’SRS

for

GSE

Demo

Program:

customer

table’,?,?)

The

two

question

marks

at

the

end

of

this

CALL

command

represent

the

output

parameters,

msg_code

and

msg_text.

The

values

for

these

output

parameters

are

displayed

after

the

stored

procedure

runs.

Related

concepts:

v

“Spatial

reference

systems”

on

page

63

Related

tasks:

v

“Creating

a

spatial

reference

system”

on

page

69

ST_disable_autogeocoding

Use

this

stored

procedure

to

specify

that

DB2

Spatial

Extender

is

to

stop

synchronizing

a

geocoded

column

with

its

associated

geocoding

column

or

columns.

A

geocoding

column

is

used

as

input

to

the

geocoder.

This

stored

procedure

replaces

db2gse.gse_disable_autogc.

Authorization:

ST_create_srs

Chapter

20.

Stored

procedures

237

The

user

ID

under

which

this

stored

procedure

is

invoked

must

have

one

of

the

following

authorities

or

privileges:

v

SYSADM

or

DBADM

authority

on

the

database

that

contains

the

table

on

which

the

triggers

that

are

being

dropped

are

defined

v

CONTROL

privilege

on

this

table

v

ALTER

and

UPDATE

privileges

on

this

table

Note:

For

CONTROL

and

ALTER

privileges,

you

must

have

DROPIN

authority

on

the

DB2GSE

schema.

Syntax:

��

db2gse.ST_disable_autogeocoding

(

table_schema

null

,

table_name

,

�

�

column_name

)

��

Parameter

descriptions:

table_schema

Names

the

schema

to

which

the

table

or

view

that

is

specified

in

the

table_name

parameter

belongs.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

value

in

the

CURRENT

SCHEMA

special

register

is

used

as

the

schema

name

for

the

table

or

view.

The

table_schema

value

is

converted

to

uppercase

unless

you

enclose

it

in

quotation

marks.

The

data

type

for

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

table_name

Specifies

the

unqualified

name

of

the

table

on

which

the

triggers

that

you

want

dropped

are

defined.

You

must

specify

a

non-null

value

for

this

parameter.

The

table_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

for

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

column_name

Names

the

geocoded

column

that

is

maintained

by

the

triggers

that

you

want

dropped.

You

must

specify

a

non-null

value

for

this

parameter.

The

column_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

for

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

Output

parameters:

msg_code

Specifies

the

message

code

that

is

returned

from

the

stored

procedure.

The

value

of

this

output

parameter

identifies

the

error,

success,

or

warning

condition

that

was

encountered

during

the

processing

of

the

procedure.

If

this

parameter

value

is

for

a

success

or

warning

condition,

the

procedure

finished

its

task.

If

the

parameter

value

is

for

an

error

condition,

no

changes

to

the

database

were

performed.

ST_disable_autogeocoding

238

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

The

data

type

of

this

output

parameter

is

INTEGER.

msg_text

Specifies

the

actual

message

text,

associated

with

the

message

code,

that

is

returned

from

the

stored

procedure.

The

message

text

can

include

additional

information

about

the

success,

warning,

or

error

condition,

such

as

where

an

error

was

encountered.

The

data

type

of

this

output

parameter

is

VARCHAR(1024).

Example:

This

example

shows

how

to

use

the

DB2

command

line

processor

to

invoke

the

ST_disable_autogeocoding

stored

procedure.

This

example

uses

a

DB2

CALL

command

to

disable

autogeocoding

on

the

LOCATION

column

in

the

table

named

CUSTOMERS:

call

db2gse.ST_disable_autogeocoding(NULL,’CUSTOMERS’,’LOCATION’,?,?)

The

two

question

marks

at

the

end

of

this

CALL

command

represent

the

output

parameters,

msg_code

and

msg_text.

The

values

for

these

output

parameters

are

displayed

after

the

stored

procedure

runs.

Related

reference:

v

“ST_enable_autogeocoding”

on

page

243

v

“ST_setup_geocoding”

on

page

268

ST_disable_db

Use

this

stored

procedure

to

remove

resources

that

allow

DB2

Spatial

Extender

to

store

spatial

data

and

to

support

operations

that

are

performed

on

this

data.

This

stored

procedure

helps

you

resolve

problems

or

issues

that

arise

after

you

enable

your

database

for

spatial

operations.

For

example,

you

might

enable

a

database

for

spatial

operations

and

then

decide

to

use

another

database

with

DB2

Spatial

Extender

instead.

If

you

did

not

define

any

spatial

columns

or

import

any

spatial

data,

you

can

invoke

this

stored

procedure

to

remove

all

spatial

resources

from

the

first

database.

Because

of

the

interdependency

between

spatial

columns

and

the

type

definitions,

you

cannot

drop

the

type

definitions

when

columns

of

those

types

exist.

If

you

already

defined

spatial

columns

but

still

want

to

disable

a

database

for

spatial

operations,

you

must

specify

a

value

other

than

0

(zero)

for

the

force

parameter

to

remove

all

spatial

resources

in

the

database

that

do

not

have

other

dependencies

on

them.

This

stored

procedure

replaces

db2gse.gse_disable_db.

Authorization:

The

user

ID

under

which

this

stored

procedure

is

invoked

must

have

either

SYSADM

or

DBADM

authority

on

the

database

from

which

DB2

Spatial

Extender

resources

are

to

be

removed.

Syntax:

��

db2gse.ST_disable_db

(

force

null

)

��

ST_disable_autogeocoding

Chapter

20.

Stored

procedures

239

Parameter

descriptions:

force

Specifies

that

you

want

to

disable

a

database

for

spatial

operations,

even

though

you

might

have

database

objects

that

are

dependent

on

the

spatial

types

or

spatial

functions.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

you

specify

a

value

other

than

0

(zero)

or

null

for

the

force

parameter,

the

database

is

disabled,

and

all

resources

of

the

DB2

Spatial

Extender

are

removed

(if

possible).

If

you

specify

0

(zero)

or

null,

the

database

is

not

disabled

if

any

database

objects

are

dependent

on

spatial

types

or

spatial

functions.

Database

objects

that

might

have

such

dependencies

include

tables,

views,

constraints,

triggers,

generated

columns,

methods,

functions,

procedures,

and

other

data

types

(subtypes

or

structured

types

with

a

spatial

attribute).

The

data

type

of

this

parameter

is

SMALLINT.

Output

parameters:

msg_code

Specifies

the

message

code

that

is

returned

from

the

stored

procedure.

The

value

of

this

output

parameter

identifies

the

error,

success,

or

warning

condition

that

was

encountered

during

the

processing

of

the

procedure.

If

this

parameter

value

is

for

a

success

or

warning

condition,

the

procedure

finished

its

task.

If

the

parameter

value

is

for

an

error

condition,

no

changes

to

the

database

were

performed.

The

data

type

of

this

output

parameter

is

INTEGER.

msg_text

Specifies

the

actual

message

text,

associated

with

the

message

code,

that

is

returned

from

the

stored

procedure.

The

message

text

can

include

additional

information

about

the

success,

warning,

or

error

condition,

such

as

where

an

error

was

encountered.

The

data

type

of

this

output

parameter

is

VARCHAR(1024).

Example:

This

example

shows

how

to

use

the

DB2

command

line

processor

to

invoke

the

ST_disable_db

stored

procedure.

This

example

uses

a

DB2

CALL

command

to

disable

the

database

for

spatial

operations,

with

a

force

parameter

value

of

1:

call

db2gse.ST_disable_db(1,?,?)

The

two

question

marks

at

the

end

of

this

CALL

command

represent

the

output

parameters,

msg_code

and

msg_text.

The

values

for

these

output

parameters

are

displayed

after

the

stored

procedure

runs.

Related

reference:

v

“ST_alter_coordsys”

on

page

224

v

“ST_create_coordsys”

on

page

229

ST_drop_coordsys

Use

this

stored

procedure

to

delete

information

about

a

coordinate

system

from

the

database.

When

this

stored

procedure

is

processed,

information

about

the

coordinate

system

is

removed

from

the

DB2GSE.ST_COORDINATE_SYSTEMS

catalog

view.

ST_disable_db

240

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Restriction:

You

cannot

drop

a

coordinate

system

on

which

a

spatial

reference

system

is

based.

Authorization:

The

user

ID

under

which

the

stored

procedure

is

invoked

must

have

either

SYSADM

or

DBADM

authority.

Syntax:

��

db2gse.ST_drop_coordsys

(

coordsys_name

)

��

Parameter

descriptions:

coordsys_name

Uniquely

identifies

the

coordinate

system.

You

must

specify

a

non-null

value

for

this

parameter.

The

coordsys_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

for

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

Output

parameters:

msg_code

Specifies

the

message

code

that

is

returned

from

the

stored

procedure.

The

value

of

this

output

parameter

identifies

the

error,

success,

or

warning

condition

that

was

encountered

during

the

processing

of

the

procedure.

If

this

parameter

value

is

for

a

success

or

warning

condition,

the

procedure

finished

its

task.

If

the

parameter

value

is

for

an

error

condition,

no

changes

to

the

database

were

performed.

The

data

type

of

this

output

parameter

is

INTEGER.

msg_text

Specifies

the

actual

message

text,

associated

with

the

message

code,

that

is

returned

from

the

stored

procedure.

The

message

text

can

include

additional

information

about

the

success,

warning,

or

error

condition,

such

as

where

an

error

was

encountered.

The

data

type

of

this

output

parameter

is

VARCHAR(1024).

Example:

This

example

shows

how

to

use

the

DB2

command

line

processor

to

invoke

the

ST_drop_coordsys

stored

procedure.

This

example

uses

a

DB2

CALL

command

to

delete

a

coordinate

system

named

NORTH_AMERICAN_TEST

from

the

database:

call

db2gse.ST_drop_coordsys(’NORTH_AMERICAN_TEST’,?,?)

The

two

question

marks

at

the

end

of

this

CALL

command

represent

the

output

parameters,

msg_code

and

msg_text.

The

values

for

these

output

parameters

are

displayed

after

the

stored

procedure

runs.

ST_drop_coordsys

Chapter

20.

Stored

procedures

241

ST_drop_srs

Use

this

stored

procedure

to

drop

a

spatial

reference

system.

When

this

stored

procedure

is

processed,

information

about

the

spatial

reference

system

is

removed

from

the

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

catalog

view.

Restriction:

You

cannot

drop

a

spatial

reference

system

if

a

spatial

column

that

uses

that

spatial

reference

system

is

registered.

Important:

Use

care

when

you

use

this

stored

procedure.

If

you

use

this

stored

procedure

to

drop

a

spatial

reference

system,

and

if

any

spatial

data

is

associated

with

that

spatial

reference

system,

you

can

no

longer

perform

spatial

operations

on

the

spatial

data.

This

stored

procedure

replaces

db2gse.gse_disable_sref.

Authorization:

The

user

ID

under

which

the

stored

procedure

is

invoked

must

have

either

SYSADM

or

DBADM

authority.

Syntax:

��

db2gse.ST_drop_srs

(

srs_name

)

��

Parameter

descriptions:

srs_name

Identifies

the

spatial

reference

system.

You

must

specify

a

non-null

value

for

this

parameter.

The

srs_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

Output

parameters:

msg_code

Specifies

the

message

code

that

is

returned

from

the

stored

procedure.

The

value

of

this

output

parameter

identifies

the

error,

success,

or

warning

condition

that

was

encountered

during

the

processing

of

the

procedure.

If

this

parameter

value

is

for

a

success

or

warning

condition,

the

procedure

finished

its

task.

If

the

parameter

value

is

for

an

error

condition,

no

changes

to

the

database

were

performed.

The

data

type

of

this

output

parameter

is

INTEGER.

msg_text

Specifies

the

actual

message

text,

associated

with

the

message

code,

that

is

returned

from

the

stored

procedure.

The

message

text

can

include

additional

information

about

the

success,

warning,

or

error

condition,

such

as

where

an

error

was

encountered.

The

data

type

of

this

output

parameter

is

VARCHAR(1024).

Example:

ST_drop_srs

242

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

This

example

shows

how

to

use

the

DB2

command

line

processor

to

invoke

the

ST_drop_srs

stored

procedure.

This

example

uses

a

DB2

CALL

command

to

delete

a

spatial

reference

system

named

SRSDEMO:

call

db2gse.ST_drop_srs(’SRSDEMO’,?,?)

The

two

question

marks

at

the

end

of

this

CALL

command

represent

the

output

parameters,

msg_code

and

msg_text.

The

values

for

these

output

parameters

are

displayed

after

the

stored

procedure

runs.

Related

reference:

v

“ST_create_srs”

on

page

231

v

“ST_alter_srs”

on

page

226

ST_enable_autogeocoding

Use

this

stored

procedure

to

specify

that

DB2

Spatial

Extender

is

to

synchronize

a

geocoded

column

with

its

associated

geocoding

column

or

columns.

A

geocoding

column

is

used

as

input

to

the

geocoder.

Each

time

that

values

are

inserted

into,

or

updated

in,

the

geocoding

column

or

columns,

triggers

are

activated.

These

triggers

invoke

the

associated

geocoder

to

geocode

the

inserted

or

updated

values

and

to

place

the

resulting

data

in

the

geocoded

column.

Restriction:

You

can

enable

autogeocoding

only

on

tables

on

which

INSERT

and

UPDATE

triggers

can

be

created.

Consequently,

you

cannot

enable

autogeocoding

on

views

or

nicknames.

Prerequisite:

Before

enabling

autogeocoding,

you

must

perform

the

geocoding

setup

step

by

invoking

the

ST_setup_geocoding

stored

procedure.

The

geocoding

setup

step

specifies

the

geocoder

and

the

geocoding

parameter

values.

It

also

identifies

the

geocoding

columns

that

are

to

be

synchronized

with

the

geocoded

columns.

This

stored

procedure

replaces

db2gse.gse_enable_autogc.

Authorization:

The

user

ID

under

which

this

stored

procedure

is

invoked

must

have

one

of

the

following

authorities

or

privileges:

v

SYSADM

or

DBADM

authority

on

the

database

that

contains

the

table

on

which

the

triggers

that

are

created

by

this

stored

procedure

are

defined

v

CONTROL

privilege

on

the

table

v

ALTER

privilege

on

the

table

If

the

authorization

ID

of

the

statement

does

not

have

SYSADM

or

DBADM

authority,

the

privileges

that

the

authorization

ID

of

the

statement

holds

(without

considering

PUBLIC

or

group

privileges)

must

include

all

of

the

following

privileges

as

long

as

the

trigger

exists:

v

SELECT

privilege

on

the

table

on

which

autogeocoding

is

enabled

v

Necessary

privileges

to

evaluate

the

SQL

expressions

that

are

specified

for

the

parameters

in

the

geocoding

setup

Syntax:

ST_drop_srs

Chapter

20.

Stored

procedures

243

��

db2gse.ST_enable_autogeocoding

(

table_schema

null

,

table_name

,

�

�

column_name

)

��

Parameter

descriptions:

table_schema

Identifies

the

schema

to

which

the

table

that

is

specified

in

the

table_name

parameter

belongs.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

value

in

the

CURRENT

SCHEMA

special

register

is

used

as

the

schema

name

for

the

table.

The

table_schema

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

table_name

Specifies

the

unqualified

name

of

the

table

that

contains

the

column

into

which

the

geocoded

data

is

to

be

inserted

or

updated.

You

must

specify

a

non-null

value

for

this

parameter.

The

table_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

column_name

Identifies

the

column

into

which

the

geocoded

data

is

to

be

inserted

or

updated.

This

column

is

referred

to

as

the

geocoded

column.

You

must

specify

a

non-null

value

for

this

parameter.

The

column_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

Output

parameters:

msg_code

Specifies

the

message

code

that

is

returned

from

the

stored

procedure.

The

value

of

this

output

parameter

identifies

the

error,

success,

or

warning

condition

that

was

encountered

during

the

processing

of

the

procedure.

If

this

parameter

value

is

for

a

success

or

warning

condition,

the

procedure

finished

its

task.

If

the

parameter

value

is

for

an

error

condition,

no

changes

to

the

database

were

performed.

The

data

type

of

this

output

parameter

is

INTEGER.

msg_text

Specifies

the

actual

message

text,

associated

with

the

message

code,

that

is

returned

from

the

stored

procedure.

The

message

text

can

include

additional

information

about

the

success,

warning,

or

error

condition,

such

as

where

an

error

was

encountered.

The

data

type

of

this

output

parameter

is

VARCHAR(1024).

Example:

ST_enable_autogeocoding

244

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

This

example

shows

how

to

use

the

DB2

command

line

processor

to

invoke

the

ST_enable_autogeocoding

stored

procedure.

This

example

uses

a

DB2

CALL

command

to

enable

autogeocoding

on

the

LOCATION

column

in

the

table

named

CUSTOMERS:

call

db2gse.ST_enable_autogeocoding(NULL,’CUSTOMERS’,’LOCATION’,?,?)

The

two

question

marks

at

the

end

of

this

CALL

command

represent

the

output

parameters,

msg_code

and

msg_text.

The

values

for

these

output

parameters

are

displayed

after

the

stored

procedure

runs.

Related

reference:

v

“ST_setup_geocoding”

on

page

268

ST_enable_db

Use

this

stored

procedure

to

supply

a

database

with

the

resources

that

it

needs

to

store

spatial

data

and

to

support

spatial

operations.

These

resources

include

spatial

data

types,

spatial

index

types,

catalog

views,

supplied

functions,

and

other

stored

procedures.

This

stored

procedure

replaces

db2gse.gse_enable_db.

Authorization:

The

user

ID

under

which

the

stored

procedure

is

invoked

must

have

either

SYSADM

or

DBADM

authority

on

the

database

that

is

being

enabled.

Syntax:

��

db2gse.ST_enable_db

(

table_creation_parameters

null

)

��

Parameter

descriptions:

table_creation_parameters

Specifies

any

options

that

are

to

be

added

to

the

CREATE

TABLE

statements

for

the

DB2

Spatial

Extender

catalog

tables.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

no

options

are

added

to

the

CREATE

TABLE

statements.

To

specify

these

options,

use

the

syntax

of

the

DB2

CREATE

TABLE

statement.

For

example,

to

specify

a

table

space

in

which

to

create

the

tables,

use:

IN

tsName

INDEX

IN

indexTsName

The

data

type

of

this

parameter

is

VARCHAR(32K).

Output

parameters:

msg_code

Specifies

the

message

code

that

is

returned

from

the

stored

procedure.

The

value

of

this

output

parameter

identifies

the

error,

success,

or

warning

condition

that

was

encountered

during

the

processing

of

the

procedure.

If

this

parameter

value

is

for

a

success

or

warning

condition,

the

procedure

finished

its

task.

If

the

parameter

value

is

for

an

error

condition,

no

changes

to

the

database

were

performed.

The

data

type

of

this

output

parameter

is

INTEGER.

ST_enable_autogeocoding

Chapter

20.

Stored

procedures

245

msg_text

Specifies

the

actual

message

text,

associated

with

the

message

code,

that

is

returned

from

the

stored

procedure.

The

message

text

can

include

additional

information

about

the

success,

warning,

or

error

condition,

such

as

where

an

error

was

encountered.

The

data

type

of

this

output

parameter

is

VARCHAR(1024).

Example:

The

following

example

shows

how

to

use

Call

Level

Interface

(CLI)

to

invoke

the

ST_enable_db

stored

procedure:

SQLHANDLE

henv;

SQLHANDLE

hdbc;

SQLHANDLE

hstmt;

SQLCHAR

uid[MAX_UID_LENGTH

+

1];

SQLCHAR

pwd[MAX_PWD_LENGTH

+

1];

SQLINTEGER

ind[3];

SQLINTEGER

msg_code

=

0;

char

msg_text[1024]

=

"";

SQLRETURN

rc;

char

*table_creation_parameters

=

NULL;

/*

Allocate

environment

handle

*/

rc

=

SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&henv);

/*

Allocate

database

handle

*/

rc

=

SQLAllocHandle(SQL_HANDLE_DBC,

henv,

&hdbc);

/*

Establish

a

connection

to

database

"testdb"

*/

rc

=

SQLConnect(hdbc,

(SQLCHAR

*)"testdb",

SQL_NTS,

(SQLCHAR

*)uid,SQL_NTS,

(SQLCHAR

*)pwd,

SQL_NTS);

/*

Allocate

statement

handle

*/

rc

=

SQLAllocHandle(SQL_HANDLE_STMT,

hdbc,

&hstmt)

;

/*

Associate

SQL

statement

to

call

the

ST_enable_db

stored

procedure

*/

/*

with

statement

handle

and

send

the

statement

to

DBMS

to

be

prepared.

*/

rc

=

SQLPrepare(hstmt,

"call

db2gse!ST_enable_db(?,?,?)",

SQL_NTS);

/*

Bind

1st

parameter

marker

in

the

SQL

call

statement,

the

input

*/

/*

parameter

for

table

creation

parameters,

to

variable

*/

/*

table_creation_parameters.

*/

ind[0]

=

SQL_NULL_DATA;

rc

=

SQLBindParameter(hstmt,

1,

SQL_PARAM_OUTPUT,

SQL_C_CHAR,

SQL_VARCHAR,

255,

0,

table_creation_parameters,

256,

&ind[0]);

/*

Bind

2nd

parameter

marker

in

the

SQL

call

statement,

the

output

*/

/*

parameter

for

returned

message

code,

to

variable

msg_code.

*/

ind[1]

=

0;

rc

=

SQLBindParameter(hstmt,

2,

SQL_PARAM_OUTPUT,

SQL_C_LONG,

SQL_INTEGER,

0,

0,

&msg_code,

4,

&ind[1]);

/*

Bind

3rd

parameter

marker

in

the

SQL

call

statement,

the

output

*/

/*

parameter

returned

message

text,

to

variable

msg_text.

*/

ind[2]

=

0;

rc

=

SQLBindParameter(hstmt,

3,

SQL_PARAM_OUTPUT,

SQL_C_CHAR,

SQL_VARCHAR,

(sizeof(msg_text)-1),

0,

msg_text,

sizeof(msg_text),

&ind[2]);

rc

=

SQLExecute(hstmt);

Related

reference:

v

“ST_disable_db”

on

page

239

ST_enable_db

246

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

ST_export_shape

Use

this

stored

procedure

to

export

a

spatial

column

and

its

associated

table

to

a

shape

file.

This

stored

procedure

replaces

db2gse.gse_export_shape.

Authorization:

The

user

ID

under

which

this

stored

procedure

is

invoked

must

have

the

necessary

privileges

to

successfully

execute

the

SELECT

statement

from

which

the

data

is

to

be

exported.

The

stored

procedure,

which

runs

as

a

process

that

is

owned

by

the

DB2

instance

owner,

must

have

the

necessary

privileges

on

the

server

machine

to

create

or

write

to

the

shape

files.

Syntax:

��

db2gse.ST_export_shape

(

file_name

,

append_flag

null

,

�

�

output_column_names

null

,

select_statement

,

messages_file

null

)

��

Parameter

descriptions:

file_name

Specifies

the

full

path

name

of

a

shape

file

to

which

the

specified

data

is

to

be

exported.

You

must

specify

a

non-null

value

for

this

parameter.

You

can

use

the

ST_export_shape

stored

procedure

to

export

a

new

file

or

to

export

to

an

existing

file

by

appending

the

exported

data

to

it:

v

If

you

are

exporting

to

a

new

file,

you

can

specify

the

optional

file

extension

as

.shp

or

.SHP.

If

you

specify

.shp

or

.SHP

for

the

file

extension,

DB2

Spatial

Extender

creates

the

file

with

the

specified

file_name

value.

If

you

do

not

specify

the

optional

file

extension,

DB2

Spatial

Extender

creates

the

file

that

has

the

name

of

the

file_name

value

that

you

specify

and

with

an

extension

of

.shp.

v

If

you

are

exporting

data

by

appending

the

data

to

an

existing

file,

DB2

Spatial

Extender

first

looks

for

an

exact

match

of

the

name

that

you

specify

for

the

file_name

parameter.

If

DB2

Spatial

Extender

does

not

find

an

exact

match,

it

looks

first

for

a

file

with

the

.shp

extension,

and

then

for

a

file

with

the

.SHP

extension.

If

the

value

of

the

append_flag

parameter

indicates

that

you

are

not

appending

to

an

existing

file,

but

the

file

that

you

name

in

the

file_name

parameter

already

exists,

DB2

Spatial

Extender

returns

an

error

and

does

not

overwrite

the

file.

See

“Usage

notes”

on

page

249

for

a

list

of

files

that

are

written

on

the

server

machine.

The

stored

procedure,

which

runs

as

a

process

that

is

owned

by

the

DB2

instance

owner,

must

have

the

necessary

privileges

on

the

server

machine

to

create

or

write

to

the

files.

The

data

type

of

this

parameter

is

VARCHAR(256).

ST_export_shape

Chapter

20.

Stored

procedures

247

append_flag

Indicates

whether

the

data

that

is

to

be

exported

is

to

be

appended

to

an

existing

shape

file.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

Indicate

whether

you

want

to

append

to

an

existing

shape

file

as

follows:

v

If

you

want

to

append

data

to

an

existing

shape

file,

specify

any

value

other

than

0

(zero)

and

null.

In

this

case,

the

file

structure

must

match

the

exported

data;

otherwise

an

error

is

returned.

v

If

you

want

to

export

to

a

new

file,

specify

0

(zero)

or

null.

In

this

case,

DB2

Spatial

Extender

does

not

overwrite

any

existing

files.

The

data

type

of

this

parameter

is

SMALLINT.

output_column_names

Specifies

one

or

more

column

names

(separated

by

commas)

that

are

to

be

used

for

non-spatial

columns

in

the

output

dBASE

file.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

names

that

are

derived

from

the

SELECT

statement

are

used.

If

you

specify

this

parameter

but

do

not

enclose

column

names

in

double

quotation

marks,

the

column

names

are

converted

to

uppercase.

The

number

of

specified

columns

must

match

the

number

of

columns

that

are

returned

from

the

SELECT

statement,

as

specified

in

the

select_statement

parameter,

excluding

the

spatial

column.

The

data

type

of

this

parameter

is

VARCHAR(32K).

select_statement

Specifies

the

subselect

that

returns

the

data

that

is

to

be

exported.

The

subselect

must

reference

exactly

one

spatial

column

and

any

number

of

attribute

columns.

You

must

specify

a

non-null

value

for

this

parameter.

The

data

type

of

this

parameter

is

VARCHAR(32K).

messages_file

Specifies

the

full

path

name

of

the

file

(on

the

server

machine)

that

is

to

contain

messages

about

the

export

operation.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

no

file

for

DB2

Spatial

Extender

messages

is

created.

The

messages

that

are

sent

to

this

messages

file

can

be:

v

Informational

messages,

such

as

a

summary

of

the

export

operation

v

Error

messages

for

data

that

could

not

be

exported,

for

example

because

of

different

coordinate

systems

The

stored

procedure,

which

runs

as

a

process

that

is

owned

by

the

DB2

instance

owner,

must

have

the

necessary

privileges

on

the

server

to

create

the

file.

The

data

type

of

this

parameter

is

VARCHAR(256).

Output

parameters:

msg_code

Specifies

the

message

code

that

is

returned

from

the

stored

procedure.

The

value

of

this

output

parameter

identifies

the

error,

success,

or

warning

condition

that

was

encountered

during

the

processing

of

the

procedure.

If

this

ST_export_shape

248

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

parameter

value

is

for

a

success

or

warning

condition,

the

procedure

finished

its

task.

If

the

parameter

value

is

for

an

error

condition,

no

changes

to

the

database

were

performed.

The

data

type

of

this

output

parameter

is

INTEGER.

msg_text

Specifies

the

actual

message

text,

associated

with

the

message

code,

that

is

returned

from

the

stored

procedure.

The

message

text

can

include

additional

information

about

the

success,

warning,

or

error

condition,

such

as

where

an

error

was

encountered.

The

data

type

of

this

output

parameter

is

VARCHAR(1024).

Usage

notes:

You

can

export

only

one

spatial

column

at

a

time.

The

ST_export_shape

stored

procedure

creates

or

writes

to

the

following

four

files:

v

The

main

shape

file

(.shp

extension).

v

The

shape

index

file

(.shx

extension).

v

A

dBASE

file

that

contains

data

for

non-spatial

columns

(.dbf

extension).

This

file

is

created

only

if

attribute

columns

actually

need

to

be

exported

v

A

projection

file

that

specifies

the

coordinate

system

that

is

associated

with

the

spatial

data,

if

the

coordinate

system

is

not

equal

to

″UNSPECIFIED″

(.prj

extension).

The

coordinate

system

is

obtained

from

the

first

spatial

record.

An

error

occurs

if

subsequent

records

have

different

coordinate

systems.

The

following

table

describes

how

DB2

data

types

are

stored

in

dBASE

attribute

files.

All

other

DB2

data

types

are

not

supported.

Table

29.

Storage

of

DB2

data

types

in

attribute

files

SQL

type

.dbf

type

.dbf

length

.dbf

decimals

Comments

SMALLINT

N

6

0

INTEGER

N

11

0

BIGINT

N

20

0

DECIMAL

N

precision+2

scale

REAL

FLOAT(1)

through

FLOAT(24)

F

14

6

DOUBLE

FLOAT(25)

through

FLOAT(53)

F

19

9

CHARACTER,

VARCHAR,

LONG

VARCHAR,

and

DATALINK

C

len

0

length

≤

255

DATE

D

8

0

TIME

C

8

0

TIMESTAMP

C

26

0

All

synonyms

for

data

types

and

distinct

types

that

are

based

on

the

types

listed

in

the

preceding

table

are

supported.

Example:

ST_export_shape

Chapter

20.

Stored

procedures

249

This

example

shows

how

to

use

the

DB2

command

line

processor

to

invoke

the

ST_export_shape

stored

procedure.

This

example

uses

a

DB2

CALL

command

to

export

all

rows

from

the

CUSTOMERS

table

to

a

shape

file

that

is

to

be

created

and

named

/tmp/export_file:

call

db2gse.ST_export_shape(’/tmp/export_file’,0,NULL,

’select

*

from

customers’,’/tmp/export_msg’,?,?)

The

two

question

marks

at

the

end

of

this

CALL

command

represent

the

output

parameters,

msg_code

and

msg_text.

The

values

for

these

output

parameters

are

displayed

after

the

stored

procedure

runs.

Related

reference:

v

“ST_import_shape”

on

page

250

ST_import_shape

Use

this

stored

procedure

to

import

a

shape

file

to

a

database

that

is

enabled

for

spatial

operations.

The

stored

procedure

can

operate

in

either

of

two

ways,

based

on

the

create_table_flag

parameter:

v

DB2

Spatial

Extender

can

create

a

table

that

has

a

spatial

column

and

attribute

columns,

and

it

can

then

load

the

table’s

columns

with

the

file’s

data.

v

Otherwise,

the

shape

and

attribute

data

can

be

loaded

into

an

existing

table

that

has

a

spatial

column

and

attribute

columns

that

match

the

file’s

data.

This

stored

procedure

replaces

db2gse.gse_import_shape.

Authorization:

The

owner

of

the

DB2

instance

must

have

the

necessary

privileges

on

the

server

machine

for

reading

the

input

files

and

optionally

writing

error

files.

Additional

authorization

requirements

vary

based

on

whether

you

are

importing

into

an

existing

table

or

into

a

new

table.

v

When

importing

into

an

existing

table,

the

user

ID

under

which

this

stored

procedure

is

invoked

must

hold

one

of

the

following

authorities

or

privileges:

–

SYSADM

or

DBADM

–

CONTROL

privilege

on

the

table

or

view

–

INSERT

and

SELECT

privilege

on

the

table

or

view
v

When

importing

into

a

new

table,

the

user

ID

under

which

this

stored

procedure

is

invoked

must

hold

one

of

the

following

authorities

or

privileges:

–

SYSADM

or

DBADM

–

CREATETAB

authority

on

the

database

The

user

ID

must

also

have

one

of

the

following

authorities:

–

IMPLICIT_SCHEMA

authority

on

the

database,

if

the

schema

name

of

the

table

does

not

exist

–

CREATEIN

privilege

on

the

schema,

if

the

schema

of

the

table

exists

Syntax:

��

db2gse.ST_import_shape

(

file_name

,

input_attr_columns

null

,

�

ST_export_shape

250

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

�

srs_name

,

table_schema

null

,

table_name

,

table_attr_columns

null

,

�

�

create_table_flag

null

,

table_creation_parameters

null

,

spatial_column

�

�

,

type_schema

null

,

type_name

null

,

inline_length

null

,

id_column

null

�

�

,

id_column_is_identity

null

,

restart_count

null

,

commit_scope

null

,

�

�

exception_file

null

,

messages_file

null

)

��

Parameter

descriptions:

file_name

Specifies

the

full

path

name

of

the

shape

file

that

is

to

be

imported.

You

must

specify

a

non-null

value

for

this

parameter.

If

you

specify

the

optional

file

extension,

specify

either

.shp

or

.SHP.

DB2

Spatial

Extender

first

looks

for

an

exact

match

of

the

specified

file

name.

If

DB2

Spatial

Extender

does

not

find

an

exact

match,

it

looks

first

for

a

file

with

the

.shp

extension,

and

then

for

a

file

with

the

.SHP

extension.

See

“Usage

notes”

on

page

256

for

a

list

of

required

files,

which

must

reside

on

the

server

machine.

The

stored

procedure,

which

runs

as

a

process

that

is

owned

by

the

DB2

instance

owner,

must

have

the

necessary

privileges

on

the

server

to

read

the

files.

The

data

type

of

this

parameter

is

VARCHAR(256).

input_attr_columns

Specifies

a

list

of

attribute

columns

to

import

from

the

dBASE

file.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

all

columns

are

imported.

If

the

dBASE

file

does

not

exist,

this

parameter

must

be

the

empty

string

or

null.

To

specify

a

non-null

value

for

this

parameter,

use

one

of

the

following

specifications:

v

List

the

attribute

column

names.

The

following

example

shows

how

to

specify

a

list

of

the

names

of

the

attribute

columns

that

are

to

be

imported

from

the

dBASE

file:

N(COLUMN1,COLUMN5,COLUMN3,COLUMN7)

If

a

column

name

is

not

enclosed

in

double

quotation

marks,

it

is

converted

to

uppercase.

Each

name

in

the

list

must

be

separated

by

a

comma.

The

resulting

names

must

exactly

match

the

column

names

in

the

dBASE

file.

v

List

the

attribute

column

numbers.

The

following

example

shows

how

to

specify

a

list

of

the

numbers

of

the

attribute

columns

that

are

to

be

imported

from

the

dBASE

file:

P(1,5,3,7)

Columns

are

numbered

beginning

with

1.

Each

number

in

the

list

must

be

separated

by

a

comma.

v

Indicate

that

no

attribute

data

is

to

be

imported.

Specify

″″,

which

is

an

empty

string

that

explicitly

specifies

that

DB2

Spatial

Extender

is

to

import

no

attribute

data.

ST_import_shape

Chapter

20.

Stored

procedures

251

The

data

type

of

this

parameter

is

VARCHAR(32K).

srs_name

Identifies

the

spatial

reference

system

that

is

to

be

used

for

the

geometries

that

are

imported

into

the

spatial

column.

You

must

specify

a

non-null

value

for

this

parameter.

The

spatial

column

will

not

be

registered.

The

spatial

reference

system

(SRS)

must

exist

before

the

data

is

imported.

The

import

process

does

not

implicitly

create

the

SRS,

but

it

does

compare

the

coordinate

system

of

the

SRS

with

the

coordinate

system

that

is

specified

in

the

.prj

file

(if

available

with

the

shape

file).

The

import

process

also

verifies

that

the

extents

of

the

data

in

the

shape

file

can

be

represented

in

the

given

spatial

reference

system.

That

is,

the

import

process

verifies

that

the

extents

lie

within

the

minimum

and

maximum

possible

X,

Y,

Z,

and

M

coordinates

of

the

SRS.

The

srs_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

for

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

table_schema

Names

the

schema

to

which

the

table

that

is

specified

in

the

table_name

parameter

belongs.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

value

in

the

CURRENT

SCHEMA

special

register

is

used

as

the

schema

name

for

the

table

or

view.

The

table_schema

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

for

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

table_name

Specifies

the

unqualified

name

of

the

table

into

which

the

imported

shape

file

is

to

be

loaded.

You

must

specify

a

non-null

value

for

this

parameter.

The

table_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

for

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

table_attr_columns

Specifies

the

table

column

names

where

attribute

data

from

the

dBASE

file

is

to

be

stored.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

names

of

the

columns

in

the

dBASE

file

are

used.

If

this

parameter

is

specified,

the

number

of

names

must

match

the

number

of

columns

that

are

imported

from

the

dBASE

file.

If

the

table

exists,

the

column

definitions

must

match

the

incoming

data.

See

“Usage

notes”

on

page

256

for

an

explanation

of

how

attribute

data

types

are

mapped

to

DB2

data

types.

The

data

type

of

this

parameter

is

VARCHAR(32K).

create_table_flag

Specifies

whether

the

import

process

is

to

create

a

new

table.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null

or

any

other

value

other

than

0

(zero),

a

new

table

is

created.

(If

the

table

already

exists,

an

error

is

returned.)

If

this

parameter

is

0

(zero),

no

table

is

created,

and

the

table

must

already

exist.

ST_import_shape

252

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

The

data

type

of

this

parameter

is

INTEGER.

table_creation_parameters

Specifies

any

options

that

are

to

be

added

to

the

CREATE

TABLE

statement

that

creates

a

table

into

which

data

is

to

be

imported.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

no

options

are

added

to

the

CREATE

TABLE

statement.

To

specify

any

CREATE

TABLE

options,

use

the

syntax

of

the

DB2

CREATE

TABLE

statement.

For

example,

to

specify

a

table

space

in

which

to

create

the

tables,

specify:

IN

tsName

INDEX

IN

indexTsName

LONG

IN

longTsName

The

data

type

of

this

parameter

is

VARCHAR(32K).

spatial_column

Name

of

the

spatial

column

in

the

table

into

which

the

shape

data

is

to

be

loaded.

You

must

specify

a

non-null

value

for

this

parameter.

For

a

new

table,

this

parameter

specifies

the

name

of

the

new

spatial

column

that

is

to

be

created.

Otherwise,

this

parameter

specifies

the

name

of

an

existing

spatial

column

in

the

table.

The

spatial_column

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

for

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

type_schema

Specifies

the

schema

name

of

the

spatial

data

type

(specified

by

the

type_name

parameter)

that

is

to

be

used

when

creating

a

spatial

column

in

a

new

table.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

a

value

of

DB2GSE

is

used.

The

type_schema

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

for

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

type_name

Names

the

data

type

that

is

to

be

used

for

the

spatial

values.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

data

type

is

determined

by

the

shape

file

and

is

one

of

the

following

types:

v

ST_Point

v

ST_MultiPoint

v

ST_MultiLineString

v

ST_MultiPolygon

Note

that

shape

files,

by

definition,

allow

a

distinction

only

between

points

and

multipoints,

but

not

between

polygons

and

multipolygons

or

between

linestrings

and

multilinestrings.

If

you

are

importing

into

a

table

that

does

not

yet

exist,

this

data

type

is

also

used

for

the

data

type

of

the

spatial

column.

In

that

case,

the

data

type

can

also

be

a

super

type

of

ST_Point,

ST_MultiPoint,

ST_MultiLineString,

or

ST_MultiPolygon.

ST_import_shape

Chapter

20.

Stored

procedures

253

The

type_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

for

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

inline_length

Specifies,

for

a

new

table,

the

maximum

number

of

bytes

that

are

to

be

allocated

for

the

spatial

column

within

the

table.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

no

explicit

INLINE

LENGTH

option

is

used

in

the

CREATE

TABLE

statement,

and

DB2

defaults

are

used

implicitly.

Spatial

records

that

exceed

this

size

are

stored

separately

in

the

LOB

table

space,

which

might

be

slower

to

access.

Typical

sizes

that

are

needed

for

various

spatial

types

are

as

follows:

v

One

point:

292.

v

Multipoint,

line,

or

polygon:

As

large

a

value

as

possible.

Consider

that

the

total

number

of

bytes

in

one

row

should

not

exceed

the

limit

for

the

page

size

of

the

table

space

for

which

the

table

is

created.

See

the

DB2

documentation

about

the

CREATE

TABLE

SQL

statement

for

a

complete

description

of

this

value.

See

also

the

db2dart

utility

to

determine

the

number

of

inline

geometries

for

existing

tables

and

the

ability

to

alter

the

inline

length.

The

data

type

of

this

parameter

is

INTEGER.

id_column

Names

a

column

that

is

to

be

created

to

contain

a

unique

number

for

each

row

of

data.

(ESRI

tools

require

a

column

named

SE_ROW_ID.)

The

unique

values

for

that

column

are

generated

automatically

during

the

import

process.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null

if

no

column

(with

a

unique

ID

in

each

row)

exists

in

the

table

or

if

you

are

not

adding

such

a

column

to

a

newly

created

table.

If

this

parameter

is

null,

no

column

is

created

or

populated

with

unique

numbers.

Restriction:

You

cannot

specify

an

id_column

name

that

matches

the

name

of

any

column

in

the

dBASE

file.

The

requirements

and

effect

of

this

parameter

depend

on

whether

the

table

already

exists.

v

For

an

existing

table,

the

data

type

of

the

id_column

parameter

can

be

any

integer

type

(INTEGER,

SMALLINT,

or

BIGINT).

v

For

a

new

table

that

is

to

be

created,

the

column

is

added

to

the

table

when

the

stored

procedure

creates

it.

The

column

will

be

defined

as

follows:

INTEGER

NOT

NULL

PRIMARY

KEY

If

the

value

of

the

id_column_is_identity

parameter

is

not

null

and

not

0

(zero),

the

definition

is

expanded

as

follows:

INTEGER

NOT

NULL

PRIMARY

KEY

GENERATED

ALWAYS

AS

IDENTITY

(

START

WITH

1

INCREMENT

BY

1

)

The

id_column

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

ST_import_shape

254

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

The

data

type

for

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

id_column_is_identity

Indicates

whether

the

specified

id_column

is

to

be

created

using

the

IDENTITY

clause.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

0

(zero)

or

null,

the

column

is

not

created

as

the

identity

column.

If

the

parameter

is

any

value

other

than

0

or

null,

the

column

is

created

as

the

identity

column.

This

parameter

is

ignored

for

tables

that

already

exist.

The

data

type

of

this

parameter

is

SMALLINT.

restart_count

Specifies

that

an

import

operation

is

to

be

started

at

record

n

+

1.

The

first

n

records

are

skipped.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

all

records

(starting

with

record

number

1)

are

imported.

The

data

type

of

this

parameter

is

INTEGER.

commit_scope

Specifies

that

a

COMMIT

is

to

be

performed

after

at

least

n

records

are

imported.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

a

value

of

0

(zero)

is

used,

and

no

records

are

committed.

The

data

type

of

this

parameter

is

INTEGER.

exception_file

Specifies

the

full

path

name

of

a

shape

file

in

which

the

shape

data

that

could

not

be

imported

is

stored.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

the

parameter

is

null,

no

files

are

created.

If

you

specify

a

value

for

the

parameter

and

include

the

optional

file

extension,

specify

either

.shp

or

.SHP.

If

the

extension

is

null,

an

extension

of

.shp

is

appended.

The

exception

file

holds

the

complete

block

of

rows

for

which

a

single

insert

statement

failed.

For

example,

assume

that

one

row

cannot

be

imported

because

the

shape

data

is

incorrectly

encoded.

A

single

insert

statement

attempts

to

import

20

rows,

including

the

one

that

is

in

error.

Because

of

the

problem

with

the

single

row,

the

entire

block

of

20

rows

is

written

to

the

exception

file.

Records

are

written

to

the

exception

file

only

when

those

records

can

be

correctly

identified,

as

is

the

case

when

the

shape

record

type

is

not

valid.

Some

types

of

corruption

to

the

shape

data

(.shp

files)

and

shape

index

(.shx

files)

do

not

allow

the

appropriate

records

to

be

identified.

In

this

case,

no

records

are

written

to

the

exception

file,

and

an

error

message

is

issued

to

report

the

problem.

If

you

specify

a

value

for

this

parameter,

four

files

are

created

on

the

server

machine.

See

“Usage

notes”

on

page

256

for

an

explanation

these

files.

The

stored

procedure,

which

runs

as

a

process

that

is

owned

by

the

DB2

instance

owner,

must

have

the

necessary

privileges

on

the

server

to

create

the

files.

If

the

files

already

exist,

the

stored

procedure

returns

an

error.

The

data

type

of

this

parameter

is

VARCHAR(256).

messages_file

Specifies

the

full

path

name

of

the

file

(on

the

server

machine)

that

is

to

ST_import_shape

Chapter

20.

Stored

procedures

255

contain

messages

about

the

import

operation.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

the

parameter

is

null,

no

file

for

DB2

Spatial

Extender

messages

is

created.

The

messages

that

are

written

to

the

messages

file

can

be:

v

Informational

messages,

such

as

a

summary

of

the

import

operation

v

Error

messages

for

data

that

could

not

be

imported,

for

example

because

of

different

coordinate

systems

These

messages

correspond

to

the

shape

data

that

is

stored

in

the

exception

file

(identified

by

the

exception_file

parameter).

The

stored

procedure,

which

runs

as

a

process

that

is

owned

by

the

DB2

instance

owner,

must

have

the

necessary

privileges

on

the

server

to

create

the

file.

If

the

file

already

exists,

the

stored

procedure

returns

an

error.

The

data

type

of

this

parameter

is

VARCHAR(256).

Output

parameters:

msg_code

Specifies

the

message

code

that

is

returned

from

the

stored

procedure.

The

value

of

this

output

parameter

identifies

the

error,

success,

or

warning

condition

that

was

encountered

during

the

processing

of

the

procedure.

If

this

parameter

value

is

for

a

success

or

warning

condition,

the

procedure

finished

its

task.

If

the

parameter

value

is

for

an

error

condition,

no

changes

to

the

database

were

performed.

The

data

type

of

this

output

parameter

is

INTEGER.

msg_text

Specifies

the

actual

message

text,

associated

with

the

message

code,

that

is

returned

from

the

stored

procedure.

The

message

text

can

include

additional

information

about

the

success,

warning,

or

error

condition,

such

as

where

an

error

was

encountered.

The

data

type

of

this

output

parameter

is

VARCHAR(1024).

Usage

notes:

The

ST_import_shape

stored

procedure

uses

from

one

to

four

files:

v

The

main

shape

file

(.shp

extension).

This

file

is

required.

v

The

shape

index

file

(.shx

extension).

This

file

is

optional.

If

it

is

present,

performance

of

the

import

operation

might

improve.

v

A

dBASE

file

that

contains

attribute

data

(.dbf

extension).

This

file

is

required

only

if

attribute

data

is

to

be

imported.

v

The

projection

file

that

specifies

the

coordinate

system

of

the

shape

data

(.prj

extension).

This

file

is

optional.

If

this

file

is

present,

the

coordinate

system

that

is

defined

in

it

is

compared

with

the

coordinate

system

of

the

spatial

reference

system

that

is

specified

by

the

srs_id

parameter.

The

following

table

describes

how

dBASE

attribute

data

types

are

mapped

to

DB2

data

types.

All

other

attribute

data

types

are

not

supported.

ST_import_shape

256

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Table

30.

Relationship

between

DB2

data

types

and

dBASE

attribute

data

types

.dbf

type

.dbf

length�

(See

note)

.dbf

decimals�

(See

note)

SQL

type

Comments

N

<

5

0

SMALLINT

N

<

10

0

INTEGER

N

<

20

0

BIGINT

N

len

dec

DECIMAL(len,dec)

len<32

F

len

dec

REAL

len

+

dec

<

7

F

len

dec

DOUBLE

C

len

CHAR(len)

L

CHAR(1)

D

DATE

Note:

This

table

includes

the

following

variables,

both

of

which

are

defined

in

the

header

of

the

dBASE

file:

v

len,

which

represents

the

total

length

of

the

column

in

the

dBASE

file.

DB2

Spatial

Extender

uses

this

value

for

two

purposes:

–

To

define

the

precision

for

the

SQL

data

type

DECIMAL

or

the

length

for

the

SQL

data

type

CHAR

–

To

determine

which

of

the

integer

or

floating-point

types

is

to

be

used
v

dec,

which

represents

the

maximum

number

of

digits

to

the

right

of

the

decimal

point

of

the

column

in

the

dBASE

file.

DB2

Spatial

Extender

uses

this

value

to

define

the

scale

for

the

SQL

data

type

DECIMAL.

For

example,

assume

that

the

dBASE

file

contains

a

column

of

data

whose

length

(len)

is

defined

as

20.

Assume

that

the

number

of

digits

to

the

right

of

the

decimal

point

(dec)

is

defined

as

5.

When

DB2

Spatial

Extender

imports

data

from

that

column,

it

uses

the

values

of

len

and

dec

to

derive

the

following

SQL

data

type:

DECIMAL(20,5).

Example:

This

example

shows

how

to

use

the

DB2

command

line

processor

to

invoke

the

ST_import_shape

stored

procedure.

This

example

uses

a

DB2

CALL

command

to

import

a

shape

file

named

/tmp/officesShape

into

the

table

named

OFFICES:

call

db2gse.ST_import_shape(’/tmp/officesShape’,NULL,’USA_SRS_1’,NULL,

’OFFICES’,NULL,0,NULL,’LOCATION’,NULL,NULL,NULL,NULL,

NULL,NULL,NULL,NULL,’/tmp/import_msg’,?,?)

The

two

question

marks

at

the

end

of

this

CALL

command

represent

the

output

parameters,

msg_code

and

msg_text.

The

values

for

these

output

parameters

are

displayed

after

the

stored

procedure

runs.

Related

reference:

v

“ST_export_shape”

on

page

247

ST_import_shape

Chapter

20.

Stored

procedures

257

ST_register_geocoder

Use

this

stored

procedure

to

register

a

geocoder

other

than

the

DB2SE_USA_GEOCODER

geocoder,

which

is

shipped

with

DB2

Spatial

Extender.

The

DB2SE_USA_GEOCODER

geocoder

is

registered

by

DB2

Spatial

Extender

when

the

database

is

enabled.

Prerequisites:

Before

registering

a

geocoder:

v

Ensure

that

the

function

that

implements

the

geocoder

is

already

created.

Each

geocoder

function

can

be

registered

as

a

geocoder

with

a

uniquely

identified

geocoder

name.

v

Obtain

information

from

the

geocoder

vendor,

such

as:

–

The

SQL

statement

that

creates

the

function

–

The

values

to

use

with

the

ST_create_srs

parameters

so

that

geometric

data

can

be

supported

–

Information

for

registering

the

geocoder,

such

as:

-

A

description

of

the

geocoder

-

Descriptions

of

the

parameters

for

the

geocoder

-

The

default

values

of

the

geocoder

parameters

The

geocoder

function’s

return

type

must

match

the

data

type

of

the

geocoded

column.

The

geocoding

parameters

can

be

either

a

column

name

(called

a

geocoding

column)

which

contains

data

that

the

geocoder

needs.

For

example,

the

geocoder

parameters

can

identify

addresses

or

a

value

of

particular

meaning

to

the

geocoder,

such

as

the

minimum

match

score.

If

the

geocoding

parameter

is

a

column

name,

the

column

must

be

in

the

same

table

or

view

as

the

geocoded

column.

The

geocoder

function’s

return

type

serves

as

the

data

type

for

the

geocoded

column.

The

return

type

can

be

any

DB2

data

type,

user-defined

type,

or

structured

type.

If

a

user-defined

type

or

structured

type

is

returned,

the

geocoder

function

is

responsible

for

returning

a

valid

value

of

the

respective

data

type.

If

the

geocoder

function

returns

values

of

a

spatial

type,

that

is

ST_Geometry

or

one

of

its

subtypes,

the

geocoder

function

is

responsible

for

constructing

a

valid

geometry.

The

geometry

must

be

represented

using

an

existing

spatial

reference

system.

The

geometry

is

valid

if

you

invoke

the

ST_IsValid

spatial

function

on

the

geometry

and

a

value

of

1

is

returned.

The

returned

data

from

the

geocoder

function

is

updated

in

or

is

inserted

into

the

geocoded

column,

depending

on

which

operation

(INSERT

or

UPDATE)

caused

the

generation

of

the

geocoded

value.

To

find

out

whether

a

geocoder

is

already

registered,

examine

the

DB2GSE.ST_GEOCODERS

catalog

view.

This

stored

procedure

replaces

db2gse.gse_register_gc.

Authorization:

The

user

ID

under

which

this

stored

procedure

is

invoked

must

hold

either

SYSADM

or

DBADM

authority

on

the

database

that

contains

the

geocoder

that

this

stored

procedure

registers.

Syntax:

ST_register_geocoder

258

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

��

db2gse.ST_register_geocoder

(

geocoder_name

,

function_schema

null

,

�

�

function_name

null

,

specific_name

null

,

default_parameter_values

null

,

�

�

parameter_descriptions

null

,

vendor

null

,

description

null

)

��

Parameter

descriptions:

geocoder_name

Uniquely

identifies

the

geocoder.

You

must

specify

a

non-null

value

for

this

parameter.

The

geocoder_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

function_schema

Names

the

schema

for

the

function

that

implements

this

geocoder.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

value

in

the

CURRENT

SCHEMA

special

register

is

used

as

the

schema

name

for

the

function.

The

function_schema

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

function_name

Specifies

the

unqualified

name

of

the

function

that

implements

this

geocoder.

The

function

must

already

be

created

and

listed

in

SYSCAT.ROUTINES.

For

this

parameter,

you

can

specify

null

if

the

specific_name

parameter

is

specified.

If

the

specific_name

parameter

is

not

specified,

the

function_name

value,

together

with

the

implicitly

or

explicitly

defined

function_schema

value,

must

uniquely

identify

the

function.

If

the

function_name

parameter

is

not

specified,

DB2

Spatial

Extender

retrieves

the

function_name

value

from

the

SYSCAT.ROUTINES

catalog

view.

The

function_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

specific_name

Identifies

the

specific

name

of

the

function

that

implements

the

geocoder.

The

function

must

already

be

created

and

listed

in

SYSCAT.ROUTINES.

For

this

parameter,

you

can

specify

null

if

the

function_name

parameter

is

specified

and

the

combination

of

function_schema

and

function_name

uniquely

identifies

the

geocoder

function.

If

the

geocoder

function

name

is

overloaded,

the

specific_name

parameter

cannot

be

null.

(A

function

name

is

overloaded

if

it

has

the

same

name,

but

not

the

same

parameters

or

parameter

data

types,

as

one

or

more

other

functions.)

The

specific_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

ST_register_geocoder

Chapter

20.

Stored

procedures

259

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

default_parameter_values

Specifies

the

list

of

default

geocoding

parameter

values

for

the

geocoder

function.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

the

entire

default_parameter_values

parameter

is

null,

all

parameter

default

values

are

null.

If

you

specify

any

parameter

values,

specify

them

in

the

order

that

the

function

defined

them,

and

separate

them

with

a

comma.

For

example:

default_parm1_value,default_parm2_value,...

Each

parameter

value

is

an

SQL

expression.

Follow

these

guidelines:

v

If

a

value

is

a

string,

enclose

it

in

single

quotation

marks.

v

If

a

parameter

value

is

a

number,

do

not

enclose

it

in

single

quotation

marks.

v

If

the

parameter

value

is

null,

cast

it

to

the

correct

type.

For

example,

instead

of

specifying

just

NULL,

specify:

CAST(NULL

AS

INTEGER)

v

If

the

geocoding

parameter

is

to

be

a

geocoding

column,

do

not

specify

the

default

parameter

value.

If

any

parameter

value

is

not

specified

(that

is,

if

you

specify

two

consecutive

commas

(...,,...)),

this

parameter

must

be

specified

either

when

geocoding

is

set

up

or

when

geocoding

is

run

in

batch

mode

with

the

parameter_values

parameter

of

the

respective

stored

procedures.

The

data

type

of

this

parameter

is

VARCHAR(32K).

parameter_descriptions

Specifies

the

list

of

geocoding

parameter

descriptions

for

the

geocoder

function.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

the

entire

parameter_descriptions

parameter

is

null,

all

parameter

descriptions

are

null.

Each

parameter

description

that

you

specify

explains

the

meaning

and

usage

of

the

parameter,

and

can

be

up

to

256

characters

long.

The

descriptions

for

the

parameters

must

be

separated

by

commas

and

must

appear

in

the

order

of

the

parameters

as

defined

by

the

function.

If

a

comma

shall

be

used

within

the

description

of

a

parameter,

enclose

the

string

in

single

or

double

quotation

marks.

For

example:

description,’description2,

which

contains

a

comma’,description3

The

data

type

of

this

parameter

is

VARCHAR(32K).

vendor

Names

the

vendor

who

implemented

the

geocoder.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

no

information

about

the

vendor

who

implemented

the

geocoder

is

recorded.

The

data

type

of

this

parameter

is

VARCHAR(128).

description

Describes

the

geocoder

by

explaining

its

application.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

no

description

information

about

the

geocoder

is

recorded.

ST_register_geocoder

260

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Recommendation:

Include

the

following

information:

v

Coordinate

system

name

if

spatial

data,

such

as

well-known

text

(WKT)

or

well-known

binary

(WKB),

is

to

be

returned

v

Spatial

reference

system,

if

ST_Geometry

or

any

of

its

subtypes

are

to

be

returned

v

Name

of

the

geographical

area

to

which

this

geocoder

applies

v

Any

other

information

about

the

geocoder

that

users

should

know

The

data

type

of

this

parameter

is

VARCHAR(256).

Output

parameters:

msg_code

Specifies

the

message

code

that

is

returned

from

the

stored

procedure.

The

value

of

this

output

parameter

identifies

the

error,

success,

or

warning

condition

that

was

encountered

during

the

processing

of

the

procedure.

If

this

parameter

value

is

for

a

success

or

warning

condition,

the

procedure

finished

its

task.

If

the

parameter

value

is

for

an

error

condition,

no

changes

to

the

database

were

performed.

The

data

type

of

this

output

parameter

is

INTEGER.

msg_text

Specifies

the

actual

message

text,

associated

with

the

message

code,

that

is

returned

from

the

stored

procedure.

The

message

text

can

include

additional

information

about

the

success,

warning,

or

error

condition,

such

as

where

an

error

was

encountered.

The

data

type

of

this

output

parameter

is

VARCHAR(1024).

Example:

This

example

assumes

that

you

want

to

create

a

geocoder

that

takes

latitude

and

longitude

as

input

and

geocodes

into

ST_Point

spatial

data.

To

do

this,

you

first

create

a

function

named

lat_long_gc_func.

Then

you

register

a

geocoder

named

SAMPLEGC,

which

uses

the

function

lat_long_gc_func.

Here

is

an

example

of

the

SQL

statement

that

creates

the

function

lat_long_gc_func

that

returns

ST_Point:

CREATE

FUNCTION

lat_long_gc_func(latitude

double,

longitude

double,

srId

integer)

RETURNS

db2gse.ST_Point

LANGUAGE

SQL

RETURN

db2gse.ST_Point(latitude,

longitude,

srId)

After

the

function

is

created,

you

can

register

it

as

a

geocoder.

This

example

shows

how

to

use

the

DB2

command

line

processor

CALL

command

to

invoke

the

ST_register_geocoder

stored

procedure

to

register

a

geocoder

named

SAMPLEGC

with

function

lat_long_gc_func:

call

db2gse.ST_register_geocoder

(’SAMPLEGC’,NULL,’LAT_LONG_GC_FUNC’,’,,1’

,NULL,’My

Company’,’Latitude/Longitude

to

ST_Point

Geocoder’?,?)

The

two

question

marks

at

the

end

of

this

CALL

command

represent

the

output

parameters,

msg_code

and

msg_text.

The

values

for

these

output

parameters

are

displayed

after

the

stored

procedure

runs.

Related

reference:

ST_register_geocoder

Chapter

20.

Stored

procedures

261

v

“ST_unregister_geocoder”

on

page

271

ST_register_spatial_column

Use

this

stored

procedure

to

register

a

spatial

column

and

to

associate

a

spatial

reference

system

(SRS)

with

it.

When

this

stored

procedure

is

processed,

information

about

the

spatial

column

that

is

being

registered

is

added

to

the

DB2GSE.ST_GEOMETRY_COLUMNS

catalog

view.

Registering

a

spatial

column

creates

a

constraint

on

the

table,

if

possible,

to

ensure

that

all

geometries

use

the

specified

SRS.

This

stored

procedure

replaces

db2gse.gse_register_layer.

Authorization:

The

user

ID

under

which

this

stored

procedure

is

invoked

must

hold

one

of

the

following

authorities

or

privileges:

v

SYSADM

or

DBADM

authority

on

the

database

that

contains

the

table

to

which

the

spatial

column

that

is

being

registered

belongs

v

CONTROL

or

ALTER

privilege

on

this

table

Syntax:

��

db2gse.ST_register_spatial_column

(

table_schema

null

,

table_name

,

�

�

column_name

,

srs_name

)

��

Parameter

descriptions:

table_schema

Names

the

schema

to

which

the

table

or

view

that

is

specified

in

the

table_name

parameter

belongs.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

value

in

the

CURRENT

SCHEMA

special

register

is

used

as

the

schema

name

for

the

table

or

view.

The

table_schema

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

table_name

Specifies

the

unqualified

name

of

the

table

or

view

that

contains

the

column

that

is

being

registered.

You

must

specify

a

non-null

value

for

this

parameter.

The

table_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

column_name

Names

the

column

that

is

being

registered.

You

must

specify

a

non-null

value

for

this

parameter.

The

column_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

ST_register_geocoder

262

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

srs_name

Names

the

spatial

reference

system

that

is

to

be

used

for

this

spatial

column.

You

must

specify

a

non-null

value

for

this

parameter.

The

srs_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

Output

parameters:

msg_code

Specifies

the

message

code

that

is

returned

from

the

stored

procedure.

The

value

of

this

output

parameter

identifies

the

error,

success,

or

warning

condition

that

was

encountered

during

the

processing

of

the

procedure.

If

this

parameter

value

is

for

a

success

or

warning

condition,

the

procedure

finished

its

task.

If

the

parameter

value

is

for

an

error

condition,

no

changes

to

the

database

were

performed.

The

data

type

of

this

output

parameter

is

INTEGER.

msg_text

Specifies

the

actual

message

text,

associated

with

the

message

code,

that

is

returned

from

the

stored

procedure.

The

message

text

can

include

additional

information

about

the

success,

warning,

or

error

condition,

such

as

where

an

error

was

encountered.

The

data

type

of

this

output

parameter

is

VARCHAR(1024).

Example:

This

example

shows

how

to

use

the

DB2

command

line

processor

to

invoke

the

ST_register_spatial_column

stored

procedure.

This

example

uses

a

DB2

CALL

command

to

register

the

spatial

column

named

LOCATION

in

the

table

named

CUSTOMERS.

This

CALL

command

specifies

the

srs_name

parameter

value

as

USA_SRS_1:

call

db2gse.ST_register_spatial_column(NULL,’CUSTOMERS’,’LOCATION’,

’USA_SRS_1’,?,?)

The

two

question

marks

at

the

end

of

this

CALL

command

represent

the

output

parameters,

msg_code

and

msg_text.

The

values

for

these

output

parameters

are

displayed

after

the

stored

procedure

runs.

Related

reference:

v

“ST_unregister_spatial_column”

on

page

273

ST_remove_geocoding_setup

Use

this

stored

procedure

to

remove

all

the

geocoding

setup

information

for

the

geocoded

column.

This

stored

procedure

removes

information

that

is

associated

with

the

specified

geocoded

column

from

the

DB2GSE.ST_GEOCODING

and

DB2GSE.ST_GEOCODING_PARAMETERS

catalog

views.

ST_register_spatial_column

Chapter

20.

Stored

procedures

263

Restriction:

You

cannot

remove

a

geocoding

setup

if

autogeocoding

is

enabled

for

the

geocoded

column.

Authorization:

The

user

ID

under

which

this

stored

procedure

is

invoked

must

hold

one

of

the

following

authorities

or

privileges:

v

SYSADM

or

DBADM

authority

on

the

database

that

contains

the

table

on

which

the

specified

geocoder

is

to

operate

v

CONTROL

or

UPDATE

privilege

on

this

table

Syntax:

��

db2gse.ST_remove_geocoding_setup

(

table_schema

null

,

table_name

,

�

�

column_name

)

��

Parameter

descriptions:

table_schema

Names

the

schema

to

which

the

table

or

view

that

is

specified

in

the

table_name

parameter

belongs.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

value

in

the

CURRENT

SCHEMA

special

register

is

used

as

the

schema

name

for

the

table

or

view.

The

table_schema

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

for

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

table_name

Specifies

the

unqualified

name

of

the

table

or

view

that

contains

the

column

into

which

the

geocoded

data

is

to

be

inserted

or

updated.

You

must

specify

a

non-null

value

for

this

parameter.

The

table_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

for

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

column_name

Names

the

column

into

which

the

geocoded

data

is

to

be

inserted

or

updated.

You

must

specify

a

non-null

value

for

this

parameter.

The

column_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

for

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

Output

parameters:

msg_code

Specifies

the

message

code

that

is

returned

from

the

stored

procedure.

The

value

of

this

output

parameter

identifies

the

error,

success,

or

warning

condition

that

was

encountered

during

the

processing

of

the

procedure.

If

this

ST_remove_geocoding_setup

264

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

parameter

value

is

for

a

success

or

warning

condition,

the

procedure

finished

its

task.

If

the

parameter

value

is

for

an

error

condition,

no

changes

to

the

database

were

performed.

The

data

type

of

this

output

parameter

is

INTEGER.

msg_text

Specifies

the

actual

message

text,

associated

with

the

message

code,

that

is

returned

from

the

stored

procedure.

The

message

text

can

include

additional

information

about

the

success,

warning,

or

error

condition,

such

as

where

an

error

was

encountered.

The

data

type

of

this

output

parameter

is

VARCHAR(1024).

Example:

This

example

shows

how

to

use

the

DB2

command

line

processor

to

invoke

the

ST_remove_geocoding_setup

stored

procedure.

This

example

uses

a

DB2

CALL

command

to

remove

the

geocoding

setup

for

the

table

named

CUSTOMER

and

the

column

named

LOCATION:

call

db2gse.ST_remove_geocoding_setup(NULL,

’CUSTOMERS’,

’LOCATION’,?,?)

The

two

question

marks

at

the

end

of

this

CALL

command

represent

the

output

parameters,

msg_code

and

msg_text.

The

values

for

these

output

parameters

are

displayed

after

the

stored

procedure

runs.

Related

reference:

v

“ST_setup_geocoding”

on

page

268

ST_run_geocoding

Use

this

stored

procedure

to

run

a

geocoder

in

batch

mode

on

a

geocoded

column.

This

stored

procedure

replaces

db2gse.gse_run_gc.

Authorization:

The

user

ID

under

which

this

stored

procedure

is

invoked

must

hold

one

of

the

following

authorities

or

privileges:

v

SYSADM

or

DBADM

authority

on

the

database

that

contains

the

table

on

which

the

specified

geocoder

is

to

operate

v

CONTROL

or

UPDATE

privilege

on

this

table

Syntax:

��

db2gse.ST_run_geocoding

(

table_schema

null

,

table_name

,

�

�

column_name

,

geocoder_name

null

,

parameter_values

null

,

�

�

where_clause

null

,

commit_scope

null

)

��

Parameter

descriptions:

ST_remove_geocoding_setup

Chapter

20.

Stored

procedures

265

table_schema

Names

the

schema

to

which

the

table

or

view

that

is

specified

in

the

table_name

parameter

belongs.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

value

in

the

CURRENT

SCHEMA

special

register

is

used

as

the

schema

name

for

the

table

or

view.

The

table_schema

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

table_name

Specifies

the

unqualified

name

of

the

table

or

view

that

contains

the

column

into

which

the

geocoded

data

is

to

be

inserted

or

updated.

If

a

view

name

is

specified,

the

view

must

be

an

updatable

view.

You

must

specify

a

non-null

value

for

this

parameter.

The

table_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

column_name

Names

the

column

into

which

the

geocoded

data

is

to

be

inserted

or

updated.

You

must

specify

a

non-null

value

for

this

parameter.

The

column_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

geocoder_name

Names

the

geocoder

that

is

to

perform

the

geocoding.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

geocoding

is

performed

by

the

geocoder

that

was

specified

when

geocoding

was

set

up.

The

geocoder_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

parameter_values

Specifies

the

list

of

geocoding

parameter

values

for

the

geocoder

function.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

the

entire

parameter_values

parameter

is

null,

the

values

that

are

used

are

either

the

parameter

values

that

were

specified

when

the

geocoder

was

set

up

or

the

default

parameter

values

for

the

geocoder

if

the

geocoder

was

not

set

up.

If

you

specify

any

parameter

values,

specify

them

in

the

order

that

the

function

defined

them,

and

separate

them

with

a

comma.

For

example:

parameter1-value,parameter2-value,...

Each

parameter

value

can

be

a

column

name,

a

string,

a

numeric

value,

or

null.

Each

parameter

value

is

an

SQL

expression.

Follow

these

guidelines:

ST_run_geocoding

266

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

v

If

a

parameter

value

is

a

geocoding

column

name,

ensure

that

the

column

is

in

the

same

table

or

view

where

the

geocoded

column

resides.

v

If

a

parameter

value

is

a

string,

enclose

it

in

single

quotation

marks.

v

If

a

parameter

value

is

a

number,

do

not

enclose

it

in

single

quotation

marks.

v

If

the

parameter

is

null,

cast

it

to

the

correct

type.

For

example,

instead

of

specifying

just

NULL,

specify:

CAST(NULL

AS

INTEGER)

If

any

parameter

value

is

not

specified

(that

is,

if

you

specify

two

consecutive

commas

(...,,...)),

this

parameter

must

be

specified

either

when

geocoding

is

set

up

or

when

geocoding

is

run

in

batch

mode

with

the

parameter_values

parameter

of

the

respective

stored

procedures.

The

data

type

of

this

parameter

is

VARCHAR(32K).

where_clause

Specifies

the

body

of

the

WHERE

clause,

which

defines

a

restriction

on

the

set

of

records

that

are

to

be

geocoded.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

the

where_clause

parameter

is

null,

the

resulting

behavior

depends

on

whether

geocoding

was

set

up

for

the

column

(specified

in

the

column_name

parameter)

before

the

stored

procedure

runs.

If

the

where_clause

parameter

is

null,

and:

v

A

value

was

specified

when

geocoding

was

set

up,

that

value

is

used

for

the

where_clause

parameter.

v

Either

geocoding

was

not

set

up

or

no

value

was

specified

when

geocoding

was

set

up,

no

where

clause

is

used.

You

can

specify

a

clause

that

references

any

column

in

the

table

or

view

that

the

geocoder

is

to

operate

on.

Do

not

specify

the

keyword

WHERE.

The

data

type

of

this

parameter

is

VARCHAR(32K).

commit_scope

Specifies

that

a

COMMIT

is

to

be

performed

after

every

n

records

that

are

geocoded.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

the

commit_scope

parameter

is

null,

the

resulting

behavior

depends

on

whether

geocoding

was

set

up

for

the

column

(specified

in

the

column_name

parameter)

before

the

stored

procedure

runs.

If

the

commit_scope

parameter

is

null

and:

v

A

value

was

specified

when

geocoding

was

set

up

for

the

column,

that

value

is

used

for

the

commit_scope

parameter.

v

Either

geocoding

was

not

set

up

or

it

was

set

up

but

no

value

was

specified,

the

default

value

of

0

(zero)

is

used,

and

no

COMMIT

is

performed.

The

data

type

of

this

parameter

is

INTEGER.

Output

parameters:

msg_code

Specifies

the

message

code

that

is

returned

from

the

stored

procedure.

The

value

of

this

output

parameter

identifies

the

error,

success,

or

warning

condition

that

was

encountered

during

the

processing

of

the

procedure.

If

this

ST_run_geocoding

Chapter

20.

Stored

procedures

267

parameter

value

is

for

a

success

or

warning

condition,

the

procedure

finished

its

task.

If

the

parameter

value

is

for

an

error

condition,

no

changes

to

the

database

were

performed.

The

data

type

of

this

output

parameter

is

INTEGER.

msg_text

Specifies

the

actual

message

text,

associated

with

the

message

code,

that

is

returned

from

the

stored

procedure.

The

message

text

can

include

additional

information

about

the

success,

warning,

or

error

condition,

such

as

where

an

error

was

encountered.

The

data

type

of

this

output

parameter

is

VARCHAR(1024).

Example:

This

example

shows

how

to

use

the

DB2

command

line

processor

to

invoke

the

ST_run_geocoding

stored

procedure.

This

example

uses

a

DB2

CALL

command

to

geocode

the

LOCATION

column

in

the

table

named

CUSTOMER.

This

CALL

command

specifies

the

geocoder_name

parameter

value

as

DB2SE_USA_GEOCODER

and

the

commit_scope

parameter

value

as

10.

A

COMMIT

is

to

be

performed

after

every

10

records

are

geocoded:

call

db2gse.ST_run_geocoding(NULL,

’CUSTOMERS’,

’LOCATION’,

’DB2SE_USA_GEOCODER’,NULL,NULL,10,?,?)

The

two

question

marks

at

the

end

of

this

CALL

command

represent

the

output

parameters,

msg_code

and

msg_text.

The

values

for

these

output

parameters

are

displayed

after

the

stored

procedure

runs.

Related

reference:

v

“ST_setup_geocoding”

on

page

268

ST_setup_geocoding

Use

this

stored

procedure

to

associate

a

column

that

is

to

be

geocoded

with

a

geocoder

and

to

set

up

the

corresponding

geocoding

parameters.

Information

that

is

set

up

here

is

recorded

in

the

DB2GSE.ST_GEOCODING

and

DB2GSE.ST_GEOCODING_PARAMETERS

catalog

views.

This

stored

procedure

does

not

invoke

geocoding.

It

provides

a

way

for

you

to

specify

parameter

settings

for

the

column

that

is

to

be

geocoded.

With

these

settings,

the

subsequent

invocation

of

either

batch

geocoding

or

autogeocoding

can

be

done

with

a

much

simpler

interface.

Parameter

settings

that

are

specified

in

this

setup

step

override

any

of

the

default

parameter

values

for

the

geocoder

that

were

specified

when

the

geocoder

was

registered.

You

can

also

override

these

parameter

settings

by

running

the

ST_run_geocoding

stored

procedure

in

batch

mode.

This

step

is

a

prerequisite

for

autogeocoding.

You

cannot

enable

autogeocoding

without

first

setting

up

the

geocoding

parameters.

This

step

is

not

a

prerequisite

for

batch

geocoding.

You

can

run

geocoding

in

batch

mode

with

or

without

performing

the

setup

step.

However,

if

the

setup

step

is

done

prior

to

batch

geocoding,

parameter

values

are

taken

from

the

setup

time

if

they

are

not

specified

at

run

time.

Authorization:

ST_run_geocoding

268

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

The

user

ID

under

which

this

stored

procedure

is

invoked

must

hold

one

of

the

following

authorities

or

privileges:

v

SYSADM

or

DBADM

authority

on

the

database

that

contains

the

table

on

which

the

specified

geocoder

is

to

operate

v

CONTROL

or

UPDATE

privilege

on

this

table

Syntax:

��

db2gse.ST_setup_geocoding

(

table_schema

null

,

table_name

,

�

�

column_name

,

geocoder_name

,

parameter_values

null

,

�

�

autogeocoding_columns

null

,

where_clause

null

,

commit_scope

null

)

��

Parameter

descriptions:

table_schema

Names

the

schema

to

which

the

table

or

view

that

is

specified

in

the

table_name

parameter

belongs.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

value

in

the

CURRENT

SCHEMA

special

register

is

used

as

the

schema

name

for

the

table

or

view.

The

table_schema

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

table_name

Specifies

the

unqualified

name

of

the

table

or

view

that

contains

the

column

into

which

the

geocoded

data

is

to

be

inserted

or

updated.

If

a

view

name

is

specified,

the

view

must

be

updatable.

You

must

specify

a

non-null

value

for

this

parameter.

The

table_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

column_name

Names

the

column

into

which

the

geocoded

data

is

to

be

inserted

or

updated.

You

must

specify

a

non-null

value

for

this

parameter.

The

column_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

geocoder_name

Names

the

geocoder

that

is

to

perform

the

geocoding.

You

must

specify

a

non-null

value

for

this

parameter.

The

geocoder_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

ST_setup_geocoding

Chapter

20.

Stored

procedures

269

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

parameter_values

Specifies

the

list

of

geocoding

parameter

values

for

the

geocoder

function.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

the

entire

parameter_values

parameter

is

null,

the

values

that

are

used

are

taken

from

the

default

parameter

values

at

the

time

the

geocoder

was

registered.

If

you

specify

parameter

values,

specify

them

in

the

order

that

the

function

defined

them,

and

separate

them

with

a

comma.

For

example:

parameter1-value,parameter2-value,...

Each

parameter

value

is

an

SQL

expression

and

can

be

a

column

name,

a

string,

a

numeric

value,

or

null.

Follow

these

guidelines:

v

If

a

parameter

value

is

a

geocoding

column

name,

ensure

that

the

column

is

in

the

same

table

or

view

where

the

geocoded

column

resides.

v

If

a

parameter

value

is

a

string,

enclose

it

in

single

quotation

marks.

v

If

a

parameter

value

is

a

number,

do

not

enclose

it

in

single

quotation

marks.

v

If

the

parameter

value

is

specified

as

a

null

value,

cast

it

to

the

correct

type.

For

example,

instead

of

specifying

just

NULL,

specify:

CAST(NULL

AS

INTEGER)

If

any

parameter

value

is

not

specified

(that

is,

if

you

specify

two

consecutive

commas

(...,,...)),

this

parameter

must

be

specified

either

when

geocoding

is

set

up

or

when

geocoding

is

run

in

batch

mode

with

the

parameter_values

parameter

of

the

respective

stored

procedures.

The

data

type

of

this

parameter

is

VARCHAR(32K).

autogeocoding_columns

Specifies

the

list

of

column

names

on

which

the

trigger

is

to

be

created.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null

and

autogeocoding

is

enabled,

an

update

of

any

column

in

the

table

causes

the

trigger

to

be

activated.

If

you

specify

a

value

for

the

autogeocoding_columns

parameter,

specify

column

names

in

any

order,

and

separate

column

names

with

a

comma.

The

column

name

must

exist

in

the

same

table

where

the

geocoded

column

resides.

This

parameter

setting

applies

only

to

subsequent

autogeocoding.

The

data

type

of

this

parameter

is

VARCHAR(32K).

where_clause

Specifies

the

body

of

the

WHERE

clause,

which

defines

a

restriction

on

the

set

of

records

that

are

to

be

geocoded.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

no

restrictions

are

defined

in

the

WHERE

clause.

The

clause

can

reference

any

column

in

the

table

or

view

that

the

geocoder

is

to

operate

on.

Do

not

specify

the

keyword

WHERE.

This

parameter

setting

applies

only

to

subsequent

batch-mode

geocoding.

The

data

type

of

this

parameter

is

VARCHAR(32K).

commit_scope

Specifies

that

a

COMMIT

is

to

be

performed

for

every

n

records

that

are

ST_setup_geocoding

270

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

geocoded.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

a

COMMIT

is

performed

after

all

records

are

geocoded.

This

parameter

setting

applies

only

to

subsequent

batch-mode

geocoding.

The

data

type

of

this

parameter

is

INTEGER.

Output

parameters:

msg_code

Specifies

the

message

code

that

is

returned

from

the

stored

procedure.

The

value

of

this

output

parameter

identifies

the

error,

success,

or

warning

condition

that

was

encountered

during

the

processing

of

the

procedure.

If

this

parameter

value

is

for

a

success

or

warning

condition,

the

procedure

finished

its

task.

If

the

parameter

value

is

for

an

error

condition,

no

changes

to

the

database

were

performed.

The

data

type

of

this

output

parameter

is

INTEGER.

msg_text

Specifies

the

actual

message

text,

associated

with

the

message

code,

that

is

returned

from

the

stored

procedure.

The

message

text

can

include

additional

information

about

the

success,

warning,

or

error

condition,

such

as

where

an

error

was

encountered.

The

data

type

of

this

output

parameter

is

VARCHAR(1024).

Example:

This

example

shows

how

to

use

the

DB2

command

line

processor

to

invoke

the

ST_setup_geocoding

stored

procedure.

This

example

uses

a

DB2

CALL

command

to

set

up

a

geocoding

process

for

the

geocoded

column

named

LOCATION

in

the

table

named

CUSTOMER.

This

CALL

command

specifies

the

geocoder_name

parameter

value

as

DB2SE_USA_GEOCODER:

call

db2gse.ST_setup_geocoding(NULL,

’CUSTOMERS’,

’LOCATION’,

’DB2SE_USA_GEOCODER’,’ADDRESS,CITY,STATE,ZIP,1,100,80,,,,"$HOME/sqllib/

gse/refdata/ky.edg","$HOME/sqllib/samples/spatial/EDGESample.loc"’,

’ADDRESS,CITY,STATE,ZIP’,NULL,10,?,?)

The

two

question

marks

at

the

end

of

this

CALL

command

represent

the

output

parameters,

msg_code

and

msg_text.

The

values

for

these

output

parameters

are

displayed

after

the

stored

procedure

runs

Related

reference:

v

“ST_unregister_geocoder”

on

page

271

v

“ST_remove_geocoding_setup”

on

page

263

ST_unregister_geocoder

Use

this

stored

procedure

to

unregister

a

geocoder

other

than

the

DB2SE_USA_GEOCODER

geocoder,

which

is

shipped

with

DB2

Spatial

Extender.

Restriction:

You

cannot

unregister

a

geocoder

if

it

is

specified

in

the

geocoding

setup

for

any

column.

To

determine

whether

a

geocoder

is

specified

in

the

geocoding

setup

for

a

column,

check

the

DB2GSE.ST_GEOCODING

and

ST_setup_geocoding

Chapter

20.

Stored

procedures

271

DB2GSE.ST_GEOCODING_PARAMETERS

catalog

views.

To

find

information

about

the

geocoder

that

you

want

to

unregister,

consult

the

DB2GSE.ST_GEOCODERS

catalog

view.

This

stored

procedure

replaces

db2gse.gse_unregist_gc.

Authorization:

The

user

ID

under

which

this

stored

procedure

is

invoked

must

hold

either

SYSADM

or

DBADM

authority

on

the

database

that

contains

the

geocoder

that

is

to

be

unregistered.

Syntax:

��

db2gse.ST_unregister_geocoder

(

geocoder_name

)

��

Parameter

descriptions:

geocoder_name

Uniquely

identifies

the

geocoder.

You

must

specify

a

non-null

value

for

this

parameter.

The

geocoder_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

Output

parameters:

msg_code

Specifies

the

message

code

that

is

returned

from

the

stored

procedure.

The

value

of

this

output

parameter

identifies

the

error,

success,

or

warning

condition

that

was

encountered

during

the

processing

of

the

procedure.

If

this

parameter

value

is

for

a

success

or

warning

condition,

the

procedure

finished

its

task.

If

the

parameter

value

is

for

an

error

condition,

no

changes

to

the

database

were

performed.

The

data

type

of

this

output

parameter

is

INTEGER.

msg_text

Specifies

the

actual

message

text,

associated

with

the

message

code,

that

is

returned

from

the

stored

procedure.

The

message

text

can

include

additional

information

about

the

success,

warning,

or

error

condition,

such

as

where

an

error

was

encountered.

The

data

type

of

this

output

parameter

is

VARCHAR(1024).

Example:

This

example

shows

how

to

use

the

DB2

command

line

processor

to

invoke

the

ST_unregister_geocoder

stored

procedure.

This

example

uses

a

DB2

CALL

command

to

unregister

the

geocoder

named

SAMPLEGC:

call

db2gse.ST_unregister_geocoder(’SAMPLEGC’,?,?)

The

two

question

marks

at

the

end

of

this

CALL

command

represent

the

output

parameters,

msg_code

and

msg_text.

The

values

for

these

output

parameters

are

displayed

after

the

stored

procedure

runs.

ST_unregister_geocoder

272

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Related

reference:

v

“ST_register_geocoder”

on

page

258

v

“ST_setup_geocoding”

on

page

268

ST_unregister_spatial_column

Use

this

stored

procedure

to

remove

the

registration

of

a

spatial

column.

The

stored

procedure

removes

the

registration

by:

v

Removing

association

of

the

spatial

reference

system

with

the

spatial

column.

The

ST_GEOMETRY_COLUMNS

catalog

view

continues

to

contain

the

spatial

column,

but

the

column

is

no

longer

associated

with

any

spatial

reference

system.

v

For

a

base

table,

dropping

the

constraint

that

DB2

Spatial

Extender

placed

on

this

table

to

ensure

that

the

geometry

values

in

this

spatial

column

are

all

represented

in

the

same

spatial

reference

system.

This

stored

procedure

replaces

db2gse.gse_unregist_layer.

Authorization:

The

user

ID

under

which

this

stored

procedure

is

invoked

must

hold

one

of

the

following

authorities

or

privileges:

v

SYSADM

or

DBADM

authority

v

CONTROL

or

ALTER

privilege

on

this

table

Syntax:

��

db2gse.ST_unregister_spatial_column

(

table_schema

null

,

table_name

,

�

�

column_name

)

��

Parameter

descriptions:

table_schema

Names

the

schema

to

which

the

table

that

is

specified

in

the

table_name

parameter

belongs.

Although

you

must

specify

a

value

for

this

parameter,

the

value

can

be

null.

If

this

parameter

is

null,

the

value

in

the

CURRENT

SCHEMA

special

register

is

used

as

the

schema

name

for

the

table

or

view.

The

table_schema

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

table_name

Specifies

the

unqualified

name

of

the

table

that

contains

the

column

that

is

specified

in

the

column_name

parameter.

You

must

specify

a

non-null

value

for

this

parameter.

The

table_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

ST_unregister_geocoder

Chapter

20.

Stored

procedures

273

column_name

Names

the

spatial

column

that

you

want

to

unregister.

You

must

specify

a

non-null

value

for

this

parameter.

The

column_name

value

is

converted

to

uppercase

unless

you

enclose

it

in

double

quotation

marks.

The

data

type

of

this

parameter

is

VARCHAR(128)

or,

if

you

enclose

the

value

in

double

quotation

marks,

VARCHAR(130).

Output

parameters:

msg_code

Specifies

the

message

code

that

is

returned

from

the

stored

procedure.

The

value

of

this

output

parameter

identifies

the

error,

success,

or

warning

condition

that

was

encountered

during

the

processing

of

the

procedure.

If

this

parameter

value

is

for

a

success

or

warning

condition,

the

procedure

finished

its

task.

If

the

parameter

value

is

for

an

error

condition,

no

changes

to

the

database

were

performed.

The

data

type

of

this

output

parameter

is

INTEGER.

msg_text

Specifies

the

actual

message

text,

associated

with

the

message

code,

that

is

returned

from

the

stored

procedure.

The

message

text

can

include

additional

information

about

the

success,

warning,

or

error

condition,

such

as

where

an

error

was

encountered.

The

data

type

of

this

output

parameter

is

VARCHAR(1024).

Example:

This

example

shows

how

to

use

the

DB2

command

line

processor

to

invoke

the

ST_unregister_spatial_column

stored

procedure.

This

example

uses

a

DB2

CALL

command

to

unregister

the

spatial

column

named

LOCATION

in

the

table

named

CUSTOMERS:

call

db2gse.ST_unregister_spatial_column(NULL,’CUSTOMERS’,’LOCATION’,?,?)

The

two

question

marks

at

the

end

of

this

CALL

command

represent

the

output

parameters,

msg_code

and

msg_text.

The

values

for

these

output

parameters

are

displayed

after

the

stored

procedure

runs.

Related

reference:

v

“ST_register_spatial_column”

on

page

262

ST_unregister_spatial_column

274

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Chapter

21.

Catalog

views

Spatial

Extender’s

catalog

views

contain

information

about:

“The

DB2GSE.ST_COORDINATE_SYSTEMS

catalog

view”

Coordinate

systems

that

you

can

use

“The

DB2GSE.ST_GEOMETRY_COLUMNS

catalog

view”

on

page

276

Spatial

columns

that

you

can

populate

or

update.

“The

DB2GSE.ST_GEOCODERS

catalog

view”

on

page

279

and

“The

DB2GSE.ST_GEOCODING_PARAMETERS

catalog

view”

on

page

280

Geocoders

that

you

can

use

“The

DB2GSE.ST_GEOCODING

catalog

view”

on

page

279

and

“The

DB2GSE.ST_GEOCODING_PARAMETERS

catalog

view”

on

page

280

Specifications

for

setting

up

a

geocoder

to

run

automatically

and

for

setting,

in

advance,

operations

to

be

performed

during

batch

geocoding.

“The

DB2GSE.ST_SIZINGS

catalog

view”

on

page

282

Allowable

maximum

lengths

of

values

that

you

can

assign

to

variables.

“The

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

catalog

view”

on

page

283

Spatial

reference

systems

that

you

can

use.

“The

DB2GSE.ST_UNITS_OF_MEASURE

catalog

view”

on

page

285

The

units

of

measure

(meters,

miles,

feet,

and

so

on)

in

which

distances

generated

by

spatial

functions

can

be

expressed.

The

DB2GSE.ST_COORDINATE_SYSTEMS

catalog

view

Query

the

DB2GSE.ST_COORDINATE_SYSTEMS

catalog

view

to

retrieve

information

about

registered

coordinate

systems.

Spatial

Extender

automatically

registers

coordinate

systems

in

the

Spatial

Extender

catalog

at

the

following

times:

v

When

you

enable

a

database

for

spatial

operations.

v

When

users

define

additional

coordinate

systems

to

the

database.

For

a

description

of

columns

in

this

view,

see

the

following

table.

Table

31.

Columns

in

the

DB2GSE.ST_COORDINATE_SYSTEMS

catalog

view

Name

Data

type

Nullable?

Content

COORDSYS_NAME

VARCHAR(128)

No

Name

of

this

coordinate

system.

The

name

is

unique

within

the

database.

©

Copyright

IBM

Corp.

1998,

2004

275

|
|
|

Table

31.

Columns

in

the

DB2GSE.ST_COORDINATE_SYSTEMS

catalog

view

(continued)

Name

Data

type

Nullable?

Content

COORDSYS_TYPE

VARCHAR(128)

No

Type

of

this

coordinate

system:

PROJECTED

Two-dimensional.

GEOGRAPHIC

Three-dimensional.

Uses

X

and

Y

coordinates.

GEOCENTRIC

Three-dimensional.

Uses

X,

Y,

and

Z

coordinates.

UNSPECIFIED

Abstract

or

non-real

world

coordinate

system.
The

value

for

this

column

is

obtained

from

the

DEFINITION

column.

DEFINITION

VARCHAR(2048)

No

Well-known

text

representation

of

the

definition

of

this

coordinate

system.

ORGANIZATION

VARCHAR(128)

Yes

Name

of

the

organization

(for

example,

a

standards

body

such

as

the

European

Petrol

Survey

Group,

or

ESPG)

that

defined

this

coordinate

system.

This

column

is

null

if

the

ORGANIZATION_COORDSYS_ID

column

is

null.

ORGANIZATION_

COORDSYS_ID

INTEGER

Yes

Numeric

identifier

assigned

to

this

coordinate

system

by

the

organization

that

defined

the

coordinate

system.

This

identifier

and

the

value

in

the

ORGANIZATION

column

uniquely

identify

the

coordinate

system

unless

the

identifier

and

the

value

are

both

null.

If

the

ORGANIZATION

column

is

null,

then

the

ORGANIZATION_COORDSYS_ID

column

is

also

null.

DESCRIPTION

VARCHAR(256)

Yes

Description

of

the

coordinate

system

that

indicates

its

application.

The

DB2GSE.ST_GEOMETRY_COLUMNS

catalog

view

Use

the

DB2GSE.ST_GEOMETRY_COLUMNS

catalog

view

to

find

information

about

all

spatial

columns

in

all

tables

that

contain

spatial

data

in

the

database.

If

a

spatial

column

was

registered

in

association

with

a

spatial

reference

system,

you

can

also

use

the

view

to

find

out

the

spatial

reference

system’s

name

and

numeric

identifier.

For

additional

information

about

spatial

columns,

query

DB2’s

SYSCAT.COLUMN

catalog

view.

For

a

description

of

DB2GSE.ST_GEOMETRY_COLUMNS,

see

the

following

table.

Table

32.

Columns

in

the

DB2GSE.ST_GEOMETRY_COLUMNS

catalog

view

Name

Data

type

Nullable?

Content

TABLE_SCHEMA

VARCHAR(128)

No

Name

of

the

schema

to

which

the

table

that

contains

this

spatial

column

belongs.

TABLE_NAME

VARCHAR(128)

No

Unqualified

name

of

the

table

that

contains

this

spatial

column.

DB2GSE.ST_COORDINATE_SYSTEMS

catalog

view

276

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Table

32.

Columns

in

the

DB2GSE.ST_GEOMETRY_COLUMNS

catalog

view

(continued)

Name

Data

type

Nullable?

Content

COLUMN_NAME

VARCHAR(128)

No

Name

of

this

spatial

column.

The

combination

of

TABLE_SCHEMA,

TABLE_NAME,

and

COLUMN_NAME

uniquely

identifies

the

column.

TYPE_SCHEMA

VARCHAR(128)

No

Name

of

the

schema

to

which

the

declared

data

type

of

this

spatial

column

belongs.

This

name

is

obtained

from

the

DB2

catalog.

TYPE_NAME

VARCHAR(128)

No

Unqualified

name

of

the

declared

data

type

of

this

spatial

column.

This

name

is

obtained

from

the

DB2

catalog.

SRS_NAME

VARCHAR(128)

Yes

Name

of

the

spatial

reference

system

that

is

associated

with

this

spatial

column.

If

no

spatial

reference

system

is

associated

with

the

column,

then

SRS_NAME

is

null.

SRS_ID

INTEGER

Yes

Numeric

identifier

of

the

spatial

reference

system

that

is

associated

with

this

spatial

column.

If

no

spatial

reference

system

is

associated

with

the

column,

then

SRS_ID

is

null.

The

DB2GSE.ST_GEOCODER_PARAMETERS

catalog

view

When

you

enable

a

database

for

spatial

operations,

information

about

the

parameters

of

the

supplied

geocoder,

DB2GSE_USA_GEOCODER,

is

automatically

recorded

in

the

DB2

Spatial

Extender

catalog.

If

you

register

additional

geocoders,

information

about

their

parameters

is

also

recorded

in

the

catalog.

To

retrieve

information

about

a

geocoders’

parameters

from

the

catalog,

query

the

DB2GSE.ST_GEOCODER_PARAMETERS

catalog

view.

For

a

description

of

columns

in

this

view,

see

the

following

table.

For

more

information

about

geocoders’

parameters,

query

DB2’s

SYSCAT.ROUTINEPARMS

catalog

view.

For

a

description

of

this

view,

see

the

SQL

Reference.

Table

33.

Columns

in

the

DB2GSE.ST_GEOCODER_PARAMETERS

Name

Data

type

Nullable?

Content

GEOCODER_NAME

VARCHAR(128)

No

Name

of

the

geocoder

to

which

this

parameter

belongs.

DB2GSE.ST_GEOMETRY_COLUMNS

catalog

view

Chapter

21.

Catalog

views

277

Table

33.

Columns

in

the

DB2GSE.ST_GEOCODER_PARAMETERS

(continued)

Name

Data

type

Nullable?

Content

ORDINAL

SMALLINT

No

Position

of

this

parameter

(that

is,

the

parameter

specified

in

the

PARAMETER_NAME

column)

in

the

signature

of

the

function

that

serves

as

the

geocoder

specified

in

the

GEOCODER_NAME

column.

The

combined

values

in

the

GEOCODER_NAME

and

ORDINAL

columns

uniquely

identify

this

parameter.

A

record

in

DB2’s

SYSCAT.ROUTINEPARMS

catalog

view

also

contains

information

about

this

parameter.

This

record

contains

a

value

that

appears

in

the

ORDINAL

column

of

SYSCAT.ROUTINEPARMS.

This

value

is

the

same

one

that

appears

in

the

ORDINAL

column

of

the

DB2GSE.ST_GEOCODER_PARAMETERS

view.

PARAMETER_NAME

VARCHAR(128)

Yes

Name

of

this

parameter.

If

a

name

was

not

specified

when

the

function

to

which

this

parameter

belongs

was

created,

the

PARAMETER_NAME

column

is

null.

The

content

of

the

PARAMETER_NAME

column

is

obtained

from

the

DB2

catalog.

TYPE_SCHEMA

VARCHAR(128)

No

Name

of

the

schema

to

which

this

parameter

belongs.

This

name

is

obtained

from

the

DB2

catalog.

TYPE_NAME

VARCHAR(128)

No

Unqualified

name

of

the

data

type

of

the

values

assigned

to

this

parameter.

This

name

is

obtained

from

the

DB2

catalog.

PARAMETER_DEFAULT

VARCHAR(2048)

Yes

The

default

value

that

is

to

be

assigned

to

this

parameter.

DB2

will

interpret

this

value

as

an

SQL

expression.

If

the

value

is

enclosed

in

quotation

marks,

it

will

be

passed

to

the

geocoder

as

a

string.

Otherwise,

the

evaluation

of

the

SQL

expression

will

determine

what

parameter’s

data

type

will

be

when

it

is

passed

to

the

geocoder.

If

the

PARAMETER_DEFAULT

column

contains

a

null,

then

this

null

value

will

be

passed

to

the

geocoder.

The

default

value

can

have

a

corresponding

value

in

the

DB2GSE.ST_GEOCODING_PARAMETERS

catalog

view.

It

can

also

have

a

corresponding

value

in

the

input

to

the

ST_run_geocoding

stored

procedure.

If

either

corresponding

value

differs

from

the

default

value,

the

corresponding

value

will

override

the

default

value.

DESCRIPTION

VARCHAR(256)

Yes

Description

of

the

parameter

indicating

its

application.

DB2GSE.ST_GEOCODER_PARAMETERS

catalog

view

278

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

The

DB2GSE.ST_GEOCODERS

catalog

view

When

you

enable

a

database

for

spatial

operations,

the

supplied

geocoder,

DB2GSE_USA_GEOCODER,

is

automatically

registered

in

the

DB2

Spatial

Extender

catalog.

When

you

want

to

make

additional

geocoders

available

to

users,

you

need

to

register

these

geocoders.

To

retrieve

information

about

registered

geocoders,

query

the

DB2GSE.ST_GEOCODERS

catalog

view.

For

a

description

of

columns

in

this

view,

see

the

following

table.

For

information

about

geocoders’

parameters,

query

DB2

Spatial

Extender’s

DB2GSE.ST_GEOCODER_PARAMETERS

catalog

view

and

DB2’s

SYSCAT.ROUTINEPARMS

catalog

view.

For

information

about

functions

that

are

used

as

geocoders,

query

DB2’s

SYSCAT.ROUTINES

catalog

view.

Table

34.

Columns

in

the

DB2GSE.ST_GEOCODERS

catalog

view

Name

Data

type

Nullable?

Content

GEOCODER_NAME

VARCHAR(128)

No

Name

of

this

geocoder.

It

is

unique

within

the

database.

FUNCTION_SCHEMA

VARCHAR(128)

No

Name

of

the

schema

to

which

the

function

that

is

being

used

as

this

geocoder

belongs.

FUNCTION_NAME

VARCHAR(128)

No

Unqualified

name

of

the

function

that

is

being

used

as

this

geocoder.

SPECIFIC_NAME

VARCHAR(128)

No

Specific

name

of

the

function

that

is

being

used

as

this

geocoder.

The

combined

values

of

FUNCTION_SCHEMA

and

SPECIFIC_NAME

uniquely

identify

the

function

that

is

being

used

as

this

geocoder.

RETURN_TYPE_SCHEMA

VARCHAR(128)

No

Name

of

the

schema

to

which

the

data

type

of

this

geocoder’s

output

parameter

belongs.

This

name

is

obtained

from

the

DB2

catalog.

RETURN_TYPE_NAME

VARCHAR(128)

No

Unqualified

name

of

the

data

type

of

this

geocoder’s

output

parameter.

This

name

is

obtained

from

the

DB2

catalog.

VENDOR

VARCHAR(256)

Yes

Name

of

the

vendor

that

created

this

geocoder.

DESCRIPTION

VARCHAR(256)

Yes

Description

of

the

geocoder

that

indicates

its

application.

The

DB2GSE.ST_GEOCODING

catalog

view

When

you

set

up

geocoding

operations,

the

particulars

of

your

settings

are

automatically

recorded

in

the

DB2

Spatial

Extender

catalog.

To

find

out

these

particulars,

query

the

DB2GSE.ST_GEOCODING

and

DB2GSE.ST_GEOCODING_PARAMETERS

catalog

views.

The

DB2GSE.ST_GEOCODING

catalog

view,

which

is

described

in

the

following

table,

contains

particulars

of

all

settings;

for

example,

the

number

of

records

that

a

geocoder

is

to

process

before

each

commit.

The

DB2GSE.ST_GEOCODING_PARAMETERS

catalog

view

contains

particulars

that

are

specific

to

each

geocoder.

For

example,

set-ups

for

the

supplied

geocoder,

DB2GSE_USA_GEOCODER,

include

the

minimum

degree

to

which

addresses

given

as

input

and

actual

addresses

must

match

in

order

for

the

geocoder

to

DB2GSE.ST_GEOCODERS

catalog

view

Chapter

21.

Catalog

views

279

geocode

the

input.

This

minimum

requirement,

called

the

minimum

match

score,

is

recorded

in

the

DB2GSE.ST_GEOCODING_PARAMETERS

catalog

view.

Table

35.

Columns

in

the

DB2GSE.ST_GEOCODING

catalog

view

Name

Data

type

Nullable?

Content

TABLE_SCHEMA

VARCHAR(128)

No

Name

of

the

schema

that

contains

the

table

that

contains

the

column

identified

in

the

COLUMN_NAME

column.

TABLE_NAME

VARCHAR(128)

No

Unqualified

name

of

the

table

that

contains

the

column

identified

in

the

COLUMN_NAME

column.

COLUMN_NAME

VARCHAR(128)

No

Name

of

the

spatial

column

to

be

populated

according

to

the

specifications

shown

in

this

catalog

view.

The

combined

values

in

the

TABLE_SCHEMA,

TABLE_NAME,

and

COLUMN_NAME

columns

uniquely

identify

the

spatial

column.

GEOCODER_NAME

VARCHAR(128)

No

Name

of

the

geocoder

that

is

to

produce

data

for

the

spatial

column

specified

in

the

COLUMN_NAME

column.

Only

one

geocoder

can

be

assigned

to

a

spatial

column.

MODE

VARCHAR(128)

No

Mode

for

the

geocoding

process:

BATCH

Only

batch

geocoding

is

enabled.

AUTO

Automatic

geocoding

is

set

up

and

activated.

INVALID

An

inconsistency

in

the

spatial

catalog

tables

was

detected;

the

geocoding

entry

is

invalid.

SOURCE_COLUMNS

VARCHAR(10000)

Yes

Names

of

table

columns

set

up

for

automatic

geocoding.

Whenever

these

columns

are

updated,

a

trigger

prompts

the

geocoder

to

geocode

the

updated

data.

WHERE_CLAUSE

VARCHAR(10000)

Yes

Search

condition

within

a

WHERE

clause.

This

condition

indicates

that

when

the

geocoder

runs

in

batch

mode,

it

is

geocode

only

data

within

a

specified

subset

of

records.

COMMIT_COUNT

INTEGER

Yes

The

number

of

rows

that

are

to

be

processed

during

batch

geocoding

before

a

commit

is

issued.

If

the

value

in

the

COMMIT_COUNT

column

is

0

(zero)

or

null,

then

no

commits

are

issued.

The

DB2GSE.ST_GEOCODING_PARAMETERS

catalog

view

When

you

set

up

geocoding

operations

for

a

particular

geocoder,

geocoder-specific

aspects

of

the

settings

are

automatically

recorded

in

the

Spatial

Extender

catalog.

For

example,

an

operation

specific

to

the

supplied

geocoder,

DB2GSE_USA_GEOCODER,

is

to

compare

addresses

given

as

input

to

reference

data,

and

to

geocode

the

former

if

they

match

the

latter

to

a

specified

degree,

or

to

a

degree

higher

than

the

specified

one.

When

you

set

up

operations

for

this

geocoder,

you

specify

what

this

degree,

called

the

minimum

match

score,

should

be;

and

your

specification

is

recorded

in

the

catalog.

DB2GSE.ST_GEOCODING

catalog

view

280

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

To

find

out

the

geocoder-specific

aspects

of

a

settings

for

geocoding

operations,

query

the

DB2GSE.ST_GEOCODING_PARAMETERS

catalog

view.

This

view

is

described

in

the

following

table.

Certain

defaults

for

set-ups

of

geocoding

operations

are

available

in

the

DB2GSE.ST_GEOCODER_PARAMETERS

catalog

view.

Values

in

the

DB2GSE.ST_GEOCODING_PARAMETERS

view

override

the

defaults.

Table

36.

Columns

in

the

DB2GSE.ST_GEOCODING_PARAMETERS

catalog

view

Name

Data

type

Nullable?

Content

TABLE_SCHEMA

VARCHAR(128)

No

Name

of

the

schema

that

contains

the

table

that

contains

the

column

identified

in

the

COLUMN_NAME

column.

TABLE_NAME

VARCHAR(128)

No

Unqualified

name

of

the

table

that

contains

the

spatial

column.

COLUMN_NAME

VARCHAR(128)

No

Name

of

the

spatial

column

to

be

populated

according

to

the

specifications

shown

in

this

catalog

view.

The

combined

values

in

the

TABLE_SCHEMA,

TABLE_NAME,

and

COLUMN_NAME

columns

uniquely

identify

this

spatial

column.

ORDINAL

SMALLINT

No

Position

of

this

parameter

(that

is,

the

parameter

specified

in

the

PARAMETER_NAME

column)

in

the

signature

of

the

function

that

serves

as

the

geocoder

for

the

column

identified

in

the

COLUMN_NAME

column.

A

record

in

DB2’s

SYSCAT.ROUTINEPARMS

catalog

view

also

contains

information

about

this

parameter.

This

record

contains

a

value

that

appears

in

the

ORDINAL

column

of

SYSCAT.ROUTINEPARMS.

This

value

is

the

same

one

that

appears

in

the

ORDINAL

column

of

the

DB2GSE.ST_GEOCODING_PARAMETERS

view.

PARAMETER_NAME

VARCHAR(128)

Yes

Name

of

a

parameter

in

the

definition

of

the

geocoder.

If

no

name

was

specified

when

the

geocoder

was

defined,

PARAMETER_NAME

is

null.

This

content

of

the

PARAMETER_NAME

column

is

obtained

from

the

DB2

catalog.

DB2GSE.ST_GEOCODING_PARAMETERS

catalog

view

Chapter

21.

Catalog

views

281

Table

36.

Columns

in

the

DB2GSE.ST_GEOCODING_PARAMETERS

catalog

view

(continued)

Name

Data

type

Nullable?

Content

PARAMETER_VALUE

VARCHAR(2048)

Yes

The

value

that

is

assigned

to

this

parameter.

DB2

will

interpret

this

value

as

an

SQL

expression.

If

the

value

is

enclosed

in

quotation

marks,

it

will

be

passed

to

the

geocoder

as

a

string.

Otherwise,

the

evaluation

of

the

SQL

expression

will

determine

what

the

parameter’s

data

type

will

be

when

it

is

passed

to

the

geocoder.

If

the

PARAMETER_VALUE

column

contains

a

null,

then

this

null

is

passed

to

the

geocoder.

The

PARAMETER_VALUE

column

corresponds

to

the

PARAMETER_DEFAULT

column

in

the

DB2GSE.ST_GEOCODER_PARAMETERS

catalog

view.

If

the

PARAMETER_VALUE

column

contains

a

value,

this

value

overrides

the

default

value

in

the

PARAMETER_DEFAULT

column.

If

the

PARAMETER_VALUE

column

is

null,

the

default

value

will

be

used.

The

DB2GSE.ST_SIZINGS

catalog

view

Use

the

DB2GSE.ST_SIZINGS

catalog

view

to

retrieve:

v

All

the

variables

supported

by

Spatial

Extender;

for

example,

coordinate

system

name,

geocoder

name,

and

variables

to

which

well-known

text

representations

of

spatial

data

can

be

assigned.

v

The

allowable

maximum

length,

if

known,

of

values

assigned

to

these

variables

(for

example,

the

maximum

allowable

lengths

of

names

of

coordinate

systems,

of

names

of

geocoders,

and

of

well-known

text

representations

of

spatial

data).

For

a

description

of

columns

in

the

view,

see

the

following

table.

Table

37.

Columns

in

the

DB2GSE.ST_SIZINGS

catalog

view

Name

Data

type

Nullable?

Content

VARIABLE_NAME

VARCHAR(128)

No

Term

that

denotes

a

variable.

The

term

is

unique

within

the

database.

SUPPORTED_VALUE

INTEGER

Yes

Allowable

maximum

length

of

the

values

assigned

to

the

variable

shown

in

the

VARIABLE_NAME

column.

Possible

values

in

the

SUPPORTED_VALUE

column

are:

A

numeric

value

other

than

0

The

allowable

maximum

length

of

values

assigned

to

this

variable.

0

Either

any

length

is

allowed,

or

the

allowable

length

cannot

be

determined.

NULL

Spatial

Extender

does

not

support

this

variable.

DESCRIPTION

VARCHAR(128)

Yes

Description

of

this

variable.

DB2GSE.ST_GEOCODING_PARAMETERS

catalog

view

282

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

The

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

catalog

view

Query

the

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

catalog

view

to

retrieve

information

about

registered

spatial

reference

systems.

Spatial

Extender

automatically

registers

spatial

reference

systems

in

the

Spatial

Extender

catalog

at

the

following

times:

v

When

you

enable

a

database

for

spatial

operations,

five

default

spatial

reference

systems

and

318

predefined

geodetic

spatial

reference

systems.

For

details,

see

“Deciding

whether

to

use

a

default

spatial

reference

system

or

create

a

new

system”

on

page

64

and

“Datums

supported

by

DB2

Geodetic

Extender”

on

page

207.

v

When

users

create

additional

spatial

reference

systems.

To

get

full

value

from

the

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

catalog

view,

you

need

to

understand

that

each

spatial

reference

system

is

associated

with

a

coordinate

system.

The

spatial

reference

system

is

designed

partly

to

convert

coordinates

derived

from

the

coordinate

system

into

values

that

DB2

can

process

with

maximum

efficiency,

and

partly

to

define

the

maximum

possible

extent

of

space

that

these

coordinates

can

reference.

To

find

out

the

name

and

type

of

the

coordinate

system

associated

with

a

given

spatial

reference

system,

query

the

COORDSYS_NAME

and

COORDSYS_TYPE

columns

of

the

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

catalog

view.

For

more

information

about

the

coordinate

system,

query

the

DB2GSE.ST_COORDINATE_SYSTEMS

catalog

view.

Table

38.

Columns

in

the

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

catalog

view

Name

Data

type

Nullable?

Content

SRS_NAME

VARCHAR(128)

No

Name

of

the

spatial

reference

system.

This

name

is

unique

within

the

database.

SRS_ID

INTEGER

No

Numerical

identifier

of

the

spatial

reference

system.

Each

spatial

reference

system

has

a

unique

numerical

identifier.

Geodetic

spatial

reference

systems

have

SRS_ID

values

in

the

range

2000000000

to

2000001000.

Spatial

functions

specify

spatial

reference

systems

by

their

numerical

identifiers

rather

than

by

their

names.

X_OFFSET

DOUBLE

No

Offset

to

be

subtracted

from

all

X

coordinates

of

a

geometry.

The

subtraction

is

a

step

in

the

process

of

converting

the

geometry’s

coordinates

into

values

that

DB2

can

process

with

maximum

efficiency.

A

subsequent

step

is

to

multiply

the

figure

resulting

from

the

subtraction

by

the

scale

factor

shown

in

the

X_SCALE

column.

X_SCALE

DOUBLE

No

Scale

factor

by

which

to

multiply

the

figure

that

results

when

an

offset

is

subtracted

from

an

X

coordinate.

This

factor

is

identical

to

the

value

shown

in

the

Y_SCALE

column.

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

catalog

view

Chapter

21.

Catalog

views

283

|
|
|
|

|
|
|
|
|

|
|
|

|

Table

38.

Columns

in

the

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

catalog

view

(continued)

Name

Data

type

Nullable?

Content

Y_OFFSET

DOUBLE

No

Offset

to

be

subtracted

from

all

Y

coordinates

of

a

geometry.

The

subtraction

is

a

step

in

the

process

of

converting

the

geometry’s

coordinates

into

values

that

DB2

can

process

with

maximum

efficiency.

A

subsequent

step

is

to

multiply

the

figure

resulting

from

the

subtraction

by

the

scale

factor

shown

in

the

Y_SCALE

column.

Y_SCALE

DOUBLE

No

Scale

factor

by

which

to

multiply

the

figure

that

results

when

an

offset

is

subtracted

from

a

Y

coordinate.

This

factor

is

identical

to

the

value

shown

in

the

X_SCALE

column.

Z_OFFSET

DOUBLE

No

Offset

to

be

subtracted

from

all

Z

coordinates

of

a

geometry.

The

subtraction

is

a

step

in

the

process

of

converting

the

geometry’s

coordinates

into

values

that

DB2

can

process

with

maximum

efficiency.

A

subsequent

step

is

to

multiply

the

figure

resulting

from

the

subtraction

by

the

scale

factor

shown

in

the

Z_SCALE

column.

Z_SCALE

DOUBLE

No

Scale

factor

by

which

to

multiply

the

figure

that

results

when

an

offset

is

subtracted

from

a

Z

coordinate.

M_OFFSET

DOUBLE

No

Offset

to

be

subtracted

from

all

measures

associated

with

a

geometry.

The

subtraction

is

a

step

in

the

process

of

converting

the

measures

into

values

that

DB2

can

process

with

maximum

efficiency.

A

subsequent

step

is

to

multiply

the

figure

resulting

from

the

subtraction

by

the

scale

factor

shown

in

the

M_SCALE

column.

M_SCALE

DOUBLE

No

Scale

factor

by

which

to

multiply

the

figure

that

results

when

an

offset

is

subtracted

from

a

measure.

MIN_X

DOUBLE

No

Minimum

possible

value

for

X

coordinates

in

the

geometries

to

which

this

spatial

reference

system

applies.

This

value

is

derived

from

the

values

in

the

X_OFFSET

and

X_SCALE

columns.

MAX_X

DOUBLE

No

Maximum

possible

value

for

X

coordinates

in

the

geometries

to

which

this

spatial

reference

system

applies.

This

value

is

derived

from

the

values

in

the

X_OFFSET

and

X_SCALE

columns.

MIN_Y

DOUBLE

No

Minimum

possible

value

for

Y

coordinates

in

the

geometries

to

which

this

spatial

reference

system

applies.

This

value

is

derived

from

the

values

in

the

Y_OFFSET

and

Y_SCALE

columns.

MAX_Y

DOUBLE

No

Maximum

possible

value

for

Y

coordinates

in

the

geometries

to

which

this

spatial

reference

system

applies.

This

value

is

derived

from

the

values

in

the

Y_OFFSET

and

Y_SCALE

columns.

MIN_Z

DOUBLE

No

Minimum

possible

value

for

Z

coordinates

in

geometries

to

which

this

spatial

reference

system

applies

This

value

is

derived

from

the

values

in

the

Z_OFFSET

and

Z_SCALE

columns.

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

catalog

view

284

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Table

38.

Columns

in

the

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

catalog

view

(continued)

Name

Data

type

Nullable?

Content

MAX_Z

DOUBLE

No

Maximum

possible

value

for

Z

coordinates

in

geometries

to

which

this

spatial

reference

system

applies.

This

value

is

derived

from

the

values

in

the

Z_OFFSET

and

Z_SCALE

columns.

MIN_M

DOUBLE

No

Minimum

possible

value

for

measures

that

can

be

stored

with

geometries

to

which

this

spatial

reference

system

applies.

This

value

is

derived

from

the

values

in

the

M_OFFSET

and

M_SCALE

columns.

MAX_M

DOUBLE

No

Maximum

possible

value

for

measures

that

can

be

stored

with

geometries

to

which

this

spatial

reference

system

applies.

This

value

is

derived

from

the

values

in

the

M_OFFSET

and

M_SCALE

columns.

COORDSYS_NAME

VARCHAR(128)

No

Identifying

name

of

the

coordinate

system

on

which

this

spatial

reference

system

is

based.

COORDSYS_TYPE

VARCHAR(128)

No

Type

of

the

coordinate

system

on

which

this

spatial

reference

system

is

based.

ORGANIZATION

VARCHAR(128)

Yes

Name

of

the

organization

(for

example,

a

standards

body)

that

defined

the

coordinate

system

on

which

this

spatial

reference

system

is

based.

ORGANIZATION

is

null

if

ORGANIZATION_COORSYS_ID

is

null.

ORGANIZATION_

COORDSYS_ID

INTEGER

Yes

Name

of

the

organization

(for

example,

a

standards

body)

that

defined

the

coordinate

system

on

which

this

spatial

reference

system

is

based.

ORGANIZATION_COORDSYS_ID

is

null

if

ORGANIZATION

is

null.

DEFINITION

VARCHAR(2048)

No

Well-known

text

representation

of

the

definition

of

the

coordinate

system.

DESCRIPTION

VARCHAR(256)

Yes

Description

of

the

spatial

reference

system.

Related

concepts:

v

“Spatial

reference

systems”

on

page

63

Related

tasks:

v

“Creating

a

spatial

reference

system”

on

page

69

The

DB2GSE.ST_UNITS_OF_MEASURE

catalog

view

Certain

spatial

functions

accept

or

return

values

that

denote

a

specific

distance.

In

some

cases,

you

can

choose

what

unit

of

measure

the

distance

is

to

be

expressed

in.

For

example,

ST_Distance

returns

the

minimum

distance

between

two

specified

geometries.

On

one

occasion

you

might

require

ST_Distance

to

return

the

distance

in

terms

of

miles;

on

another,

you

might

require

a

distance

expressed

in

terms

of

meters.

To

find

out

what

units

of

measure

you

can

choose

from,

consult

the

DB2GSE.ST_UNITS_OF_MEASURE

catalog

view.

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

catalog

view

Chapter

21.

Catalog

views

285

Table

39.

Columns

in

the

DB2GSE.ST_UNITS_OF_MEASURE

catalog

view

Name

Data

type

Nullable?

Content

UNIT_NAME

VARCHAR(128)

No

Name

of

the

unit

of

measure.

This

name

is

unique

in

the

database.

UNIT_TYPE

VARCHAR(128)

No

Type

of

the

unit

of

measure.

Possible

values

are:

LINEAR

The

unit

of

measure

is

linear.

ANGULAR

The

unit

of

measure

is

angular.

CONVERSION_FACTOR

DOUBLE

No

Numeric

value

used

to

convert

this

unit

of

measure

to

its

base

unit.

The

base

unit

for

linear

units

of

measure

is

METER;

the

base

unit

for

angular

units

of

measure

is

RADIAN.

The

base

unit

itself

has

a

conversion

factor

of

1.0.

DESCRIPTION

VARCHAR(256)

Yes

Description

of

the

unit

of

measure.

DB2GSE.ST_UNITS_OF_MEASURE

catalog

view

286

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Chapter

22.

Spatial

functions:

categories

and

uses

This

chapter

introduces

all

the

spatial

functions,

organizing

them

by

category.

Spatial

functions

DB2®

Spatial

Extender

provides

functions

that:

v

Convert

geometries

to

and

from

various

data

exchange

formats.

These

functions

are

called

constructor

functions.

v

Compare

geometries

for

boundaries,

intersections,

and

other

information.

These

functions

are

called

comparison

functions.

v

Return

information

about

properties

of

geometries,

such

as

coordinates

and

measures

within

geometries,

relationships

between

geometries,

and

boundary

and

other

information.

v

Generate

new

geometries

from

existing

geometries.

v

Measure

the

shortest

distance

between

points

in

geometries.

v

Provide

information

about

index

parameters.

v

Provide

projections

and

conversions

between

different

coordinate

systems.

Related

concepts:

v

“Function

that

returns

distance

information”

on

page

323

v

“Function

that

returns

index

information”

on

page

324

v

“Conversions

between

coordinate

systems”

on

page

324

Related

reference:

v

“Examples

of

how

spatial

functions

operate”

on

page

117

v

“Functions

that

return

information

about

properties

of

geometries”

on

page

309

v

“Functions

that

compare

geographic

features”

on

page

295

v

“Functions

that

generate

new

geometries

from

existing

geometries”

on

page

315

v

“Spatial

functions

that

convert

geometry

values

to

data

exchange

formats”

on

page

287

Spatial

functions

that

convert

geometry

values

to

data

exchange

formats

DB2

Spatial

Extender

provides

spatial

functions

that

convert

geometries

to

and

from

the

following

data

exchange

formats:

v

Well-known

text

(WKT)

representation

v

Well-known

binary

(WKB)

representation

v

ESRI

shape

representation

v

Geography

Markup

Language

(GML)

representation

The

functions

for

creating

geometries

from

these

formats

are

known

as

constructor

functions.

Related

concepts:

©

Copyright

IBM

Corp.

1998,

2004

287

v

“Constructor

functions

overview”

on

page

288

v

“Conversion

to

well-known

text

(WKT)

representation”

on

page

291

v

“Conversion

to

well-known

binary

(WKB)

representation”

on

page

293

v

“Conversion

to

ESRI

shape

representation”

on

page

294

v

“Conversion

to

Geography

Markup

Language

(GML)

representation”

on

page

294

Related

reference:

v

“Transform

groups”

on

page

497

Constructor

functions

overview

Constructor

functions

have

the

same

name

as

the

geometry

data

type

of

the

column

into

which

the

data

will

be

inserted.

These

functions

operate

consistently

on

each

of

the

input

data

exchange

formats.

This

section

provides:

v

The

SQL

for

calling

functions

that

operate

on

data

exchange

formats,

and

the

type

of

geometry

returned

by

these

functions

v

The

SQL

for

calling

a

function

that

creates

points

from

X

and

Y

coordinates,

and

the

type

of

geometry

returned

by

this

function

v

Examples

of

code

and

result

sets

Functions

that

operate

on

data

exchange

formats

This

section

provides

the

syntax

for

calling

functions

that

operate

on

data

exchange

formats,

describes

the

input

parameters

for

the

functions,

and

identifies

the

type

of

geometry

that

these

functions

return.

Syntax:

��

geometry_type

db2gse.

(

wkt

wkb

shape

gml

,

srs_id

)

��

Parameters

and

other

elements

of

syntax:

db2gse

Name

of

the

schema

to

which

the

spatial

data

types

supplied

by

DB2®

Spatial

Extender

belong.

geometry_type

One

of

the

following

constructor

functions:

v

ST_Point

v

ST_LineString

v

ST_Polygon

v

ST_MultiPoint

v

ST_MultiLineString

v

ST_MultiPolygon

v

ST_GeomCollection

v

ST_Geometry

wkt

A

value

of

type

CLOB(2G)

that

contains

the

well-known

text

representation

of

the

geometry.

Spatial

functions

288

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

wkb

A

value

of

type

BLOB(2G)

that

contains

the

well-known

binary

representation

of

the

geometry.

shape

A

value

of

type

BLOB(2G)

that

contains

the

ESRI

shape

representation

of

the

geometry.

gml

A

value

of

type

CLOB(2G)

that

contains

the

Geography

Markup

Language

(GML)

representation

of

the

geometry.

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

geometry.

If

the

srs_id

parameter

is

omitted,

then

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used.

Return

Type:

geometry_type

If

geometry_type

is

ST_Geometry,

the

dynamic

type

of

the

returned

geometry

type

corresponds

to

the

geometry

indicated

by

the

input

value.

If

geometry_type

is

any

other

type,

the

dynamic

type

of

the

returned

geometry

type

corresponds

to

the

function

name.

If

the

geometry

indicated

by

the

input

value

does

not

match

the

function

name

or

the

name

of

one

of

its

subtypes,

an

error

is

returned.

A

function

that

creates

geometries

from

coordinates

The

ST_Point

function

creates

geometries

not

only

from

data

exchange

formats,

but

also

from

numeric

coordinate

values—a

very

useful

capability

if

your

location

data

is

already

stored

in

your

database.

This

section

provides

the

syntax

for

calling

ST_Point,

an

explanation

of

its

parameters,

and

information

about

the

type

of

geometry

that

it

returns.

Syntax:

��

db2gse.ST_Point

(

coordinates

,

srs_id

)

��

coordinates:

x_coordinate

,

y_coordinate

,

z_coordinate

,

m_coordinate

Parameters:

x_coordinate

A

value

of

type

DOUBLE

that

specifies

the

X

coordinate

for

the

resulting

point.

y_coordinate

A

value

of

type

DOUBLE

that

specifies

the

Y

coordinate

for

the

resulting

point.

z_coordinate

A

value

of

type

DOUBLE

that

specifies

the

Z

coordinate

for

the

resulting

point.

Spatial

functions

Chapter

22.

Spatial

functions:

categories

and

uses

289

If

the

z_coordinate

parameter

is

omitted,

the

resulting

point

will

not

have

a

Z

coordinate.

The

result

of

ST_Is3D

is

0

(zero)

for

such

a

point.

m_coordinate

A

value

of

type

DOUBLE

that

specifies

the

M

coordinate

for

the

resulting

point.

If

the

m_coordinate

parameter

is

omitted,

the

resulting

point

will

not

have

a

measure.

The

result

of

ST_IsMeasured

is

0

(zero)

for

such

a

point.

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

point.

If

the

srs_id

parameter

is

omitted,

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used.

If

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

exception

condition

is

raised

(SQLSTATE

38SU1).

Return

type:

db2gse.ST_Point

Examples

This

section

provides

examples

of

code

for

invoking

constructor

functions,

code

for

creating

tables

to

contain

the

output

of

constructor

functions,

code

for

retrieving

the

output,

and

the

output

itself.

The

following

example

inserts

a

row

into

the

SAMPLE_GEOMETRY

table

with

ID

100

and

a

point

value

with

an

X

coordinate

of

30,

a

Y

coordinate

of

40,

and

in

spatial

reference

system

1

using

the

coordinate

representation

and

well-known

text

(WKT)

representation.

It

then

inserts

another

row

with

ID

200

and

a

linestring

value

with

the

coordinates

indicated.

CREATE

TABLE

sample_geometry

(id

INT,

geom

db2gse.ST_Geometry);

INSERT

INTO

sample_geometry(id,

geom)

VALUES(100,db2gse.ST_Geometry(’point(30

40)’,

1));

INSERT

INTO

sample_geometry(id,

geom)

VALUES(200,db2gse.ST_Geometry(’linestring(50

50,

100

100’,

1));

SELECT

id,

TYPE_NAME(geom)

FROM

sample_geometry

ID

2

100

"ST_POINT"

200

"ST_LINESTRING"

If

you

know

that

the

spatial

column

can

only

contain

ST_Point

values,

you

can

use

the

following

example,

which

inserts

two

points.

Attempting

to

insert

a

linestring

or

any

other

type

which

is

not

a

point

results

in

an

SQL

error.

The

first

insert

creates

a

point

geometry

from

the

well-known-text

representation

(WKT).

The

second

insert

creates

a

point

geometry

from

numeric

coordinate

values.

Note

that

these

input

values

could

also

be

selected

from

existing

table

columns.

CREATE

TABLE

sample_points

(id

INT,

geom

db2gse.ST_Point);

INSERT

INTO

sample_points(id,

geom)

VALUES(100,db2gse.ST_Point(’point(30

40)’,

1));

Spatial

functions

290

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

INSERT

INTO

sample_points(id,

geom)

VALUES(101,db2gse.ST_Point(50,

50,

1));

SELECT

id,

TYPE_NAME(geom)

FROM

sample_geometry

ID

2

100

"ST_POINT"

101

"ST_POINT"

The

following

example

uses

embedded

SQL

and

assumes

that

the

application

fills

the

data

areas

with

the

appropriate

values.

EXEC

SQL

BEGIN

DECLARE

SECTION;

sqlint32

id

=

0;

SQL

TYPE

IS

CLOB(10000)

wkt_buffer;

SQL

TYPE

IS

CLOB(10000)

gml_buffer;

SQL

TYPE

IS

BLOB(10000)

wkb_buffer;

SQL

TYPE

IS

BLOB(10000)

shape_buffer;

EXEC

SQL

END

DECLARE

SECTION;

//

*

Application

logic

to

read

into

buffers

goes

here

*/

EXEC

SQL

INSERT

INTO

sample_geometry(id,

geom)

VALUES(:id,

db2gse.ST_Geometry(:wkt_buffer,1));

EXEC

SQL

INSERT

INTO

sample_geometry(id,

geom)

VALUES:id,

db2gse.ST_Geometry(:wkb_buffer,1));

EXEC

SQL

INSERT

INTO

sample_geometry(id,

geom)

VALUES(:id,

db2gse.ST_Geometry(:gml_buffer,1));

EXEC

SQL

INSERT

INTO

sample_geometry(id,

geom)

VALUES(:id,

db2gse.ST_Geometry(:shape_buffer,1));

The

following

sample

Java™

code

uses

JDBC

to

insert

point

geometries

using

X,

Y

numeric

coordinate

values

and

uses

the

WKT

representation

to

specify

the

geometries.

String

ins1

=

"INSERT

into

sample_geometry

(id,

geom)

VALUES(?,

db2gse.ST_PointFromText(CAST(

?

as

VARCHAR(128)),

1))";

PreparedStatement

pstmt

=

con.prepareStatement(ins1);

pstmt.setInt(1,

100);

//

id

value

pstmt.setString(2,

"point(32.4

50.7)");

//

wkt

value

int

rc

=

pstmt.executeUpdate();

String

ins2

=

"INSERT

into

sample_geometry

(id,

geom)

VALUES(?,

db2gse.ST_Point(CAST(

?

as

double),

CAST(?

as

double),

1))";

pstmt

=

con.prepareStatement(ins2);

pstmt.setInt(1,

200);

//

id

value

pstmt.setDouble(2,

40.3);

//

lat

pstmt.setDouble(3,

-72.5);

//

long

rc

=

pstmt.executeUpdate();

Related

reference:

v

“Transform

groups”

on

page

497

Conversion

to

well-known

text

(WKT)

representation

Text

representations

are

CLOB

values

representing

ASCII

character

strings.

They

allow

geometries

to

be

exchanged

in

ASCII

text

form.

Spatial

functions

Chapter

22.

Spatial

functions:

categories

and

uses

291

The

ST_AsText

function

converts

a

geometry

value

stored

in

a

table

to

a

WKT

string.

The

following

example

uses

a

simple

command-line

query

to

select

the

values

that

were

previously

inserted

into

the

SAMPLE_GEOMETRY

table.

SELECT

id,

VARCHAR(db2gse.ST_AsText(geom),

50)

AS

WKTGEOM

FROM

sample_geometry;

ID

WKTGEOM

100

POINT

(

30.00000000

40.00000000)

200

LINESTRING

(

50.00000000

50.00000000,

100.00000000

100.00000000)

The

following

example

uses

embedded

SQL

to

select

the

values

that

were

previously

inserted

into

the

SAMPLE_GEOMETRY

table.

EXEC

SQL

BEGIN

DECLARE

SECTION;

sqlint32

id

=

0;

SQL

TYPE

IS

CLOB(10000)

wkt_buffer;

short

wkt_buffer_ind

=

-1;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

id,

db2gse.ST_AsText(geom)

INTO

:id,

:wkt_buffer

:wkt_buffer_ind

FROM

sample_geometry

WHERE

id

=

100;

Alternatively,

you

can

use

the

ST_WellKnownText

transform

group

to

implicitly

convert

geometries

to

their

well-known

text

representation

when

binding

them

out.

The

following

sample

code

shows

how

to

use

the

transform

group.

EXEC

SQL

BEGIN

DECLARE

SECTION;

sqlint32

id

=

0;

SQL

TYPE

IS

CLOB(10000)

wkt_buffer;

short

wkt_buffer_ind

=

-1;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SET

CURRENT

DEFAULT

TRANSFORM

GROUP

=

ST_WellKnownText;

EXEC

SQL

SELECT

id,

geom

INTO

:id,

:wkt_buffer

:wkt_buffer_ind

FROM

sample_geometry

WHERE

id

=

100;

No

spatial

function

is

used

in

the

SELECT

statement

to

convert

the

geometry.

In

addition

to

the

functions

explained

in

this

section,

DB2®

Spatial

Extender

provides

other

functions

that

also

convert

geometries

to

and

from

well-known

text

representations.

DB2

Spatial

Extender

provides

these

other

functions

to

conform

to

the

OGC

“Simple

Features

for

SQL”

specification

and

the

ISO

SQL/MM

Part

3:

Spatial

standard.

These

functions

are:

v

ST_WKTToSQL

v

ST_GeomFromText

v

ST_GeomCollFromTxt

v

ST_PointFromText

v

ST_LineFromText

v

ST_PolyFromText

v

ST_MPointFromText

v

ST_MLineFromText

Spatial

functions

292

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

v

ST_MPolyFromText

Related

reference:

v

“Transform

groups”

on

page

497

Conversion

to

well-known

binary

(WKB)

representation

The

WKB

representation

consists

of

binary

data

structures

that

must

be

BLOB

values.

These

BLOB

values

represent

binary

data

structures

that

must

be

managed

by

an

application

program

written

in

a

programming

language

that

DB2®

supports

and

for

which

DB2

has

a

language

binding.

The

ST_AsBinary

function

converts

a

geometry

value

stored

in

a

table

to

the

well-known

binary

(WKB)

representation,

which

can

be

fetched

into

a

BLOB

variable

in

program

storage.

The

following

example

uses

embedded

SQL

to

select

the

values

that

were

previously

inserted

into

the

SAMPLE_GEOMETRY

table.

EXEC

SQL

BEGIN

DECLARE

SECTION;

sqlint32

id

=

0;

SQL

TYPE

IS

BLOB(10000)

wkb_buffer;

short

wkb_buffer_ind

=

-1;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

id,

db2gse.ST_AsBinary(geom)

INTO

:id,

:wkb_buffer

:wkb_buffer_ind

FROM

sample_geometry

WHERE

id

=

200;

Alternatively,

you

can

use

the

ST_WellKnownBinary

transform

group

to

implicitly

convert

geometries

to

their

well-known

binary

representation

when

binding

them

out.

The

following

sample

code

shows

how

to

use

this

transform

group.

EXEC

SQL

BEGIN

DECLARE

SECTION;

sqlint32

id

=

0;

SQL

TYPE

IS

BLOB(10000)

wkb_buffer;

short

wkb_buffer_ind

=

-1;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SET

CURRENT

DEFAULT

TRANSFORM

GROUP

=

ST_WellKnownBinary;

EXEC

SQL

SELECT

id,

geom

INTO

:id,

:wkb_buffer

:wkb_buffer_ind

FROM

sample_geometry

WHERE

id

=

200;

No

spatial

function

is

used

in

the

SELECT

statement

to

convert

the

geometry.

In

addition

to

the

functions

explained

in

this

section,

there

are

other

functions

that

also

convert

geometries

to

and

from

well-known

binary

representations.

DB2

Spatial

Extender

provides

these

other

functions

to

conform

to

the

OGC

“Simple

Features

for

SQL”

specification

and

the

ISO

SQL/MM

Part

3:

Spatial

standard.

These

functions

are:

v

ST_WKBToSQL

v

ST_GeomFromWKB

v

ST_GeomCollFromWKB

v

ST_PointFromWKB

Spatial

functions

Chapter

22.

Spatial

functions:

categories

and

uses

293

v

ST_LineFromWKB

v

ST_PolyFromWKB

v

ST_MPointFromWKB

v

ST_MLineFromWKB

v

ST_MPolyFromWKB

Related

reference:

v

“Transform

groups”

on

page

497

Conversion

to

ESRI

shape

representation

The

ESRI

Shape

representation

consists

of

binary

data

structures

that

must

be

managed

by

an

application

program

written

in

a

supported

language.

The

ST_AsShape

function

converts

a

geometry

value

stored

in

a

table

to

the

ESRI

Shape

representation,

which

can

be

fetched

into

a

BLOB

variable

in

program

storage.

The

following

example

uses

embedded

SQL

to

select

the

values

that

were

previously

inserted

into

the

SAMPLE_GEOMETRY

table.

EXEC

SQL

BEGIN

DECLARE

SECTION;

sqlint32

id;

SQL

TYPE

IS

BLOB(10000)

shape_buffer;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

id,

db2gse.ST_AsShape(geom)

INTO

:id,

:shape_buffer

FROM

sample_geometry;

Alternatively,

you

can

use

the

ST_Shape

transform

group

to

implicitly

convert

geometries

to

their

shape

representation

when

binding

them

out.

The

following

sample

code

shows

how

to

use

the

transform

group.

EXEC

SQL

BEGIN

DECLARE

SECTION;

sqlint32

id

=

0;

SQL

TYPE

IS

BLOB(10000)

shape_buffer;

short

shape_buffer_ind

=

-1;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SET

CURRENT

DEFAULT

TRANSFORM

GROUP

=

ST_Shape;

EXEC

SQL

SELECT

id,

geom

FROM

sample_geometry

WHERE

id

=

300;

No

spatial

function

is

used

in

the

SELECT

statement

to

convert

the

geometry.

Related

reference:

v

“Transform

groups”

on

page

497

Conversion

to

Geography

Markup

Language

(GML)

representation

Geography

Markup

Language

(GML)

representations

are

ASCII

strings.

They

allow

geometries

to

be

exchanged

in

ASCII

text

form.

Spatial

functions

294

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

The

ST_AsGML

function

converts

a

geometry

value

stored

in

a

table

to

a

GML

text

string.

The

following

example

selects

the

values

that

were

previously

inserted

into

the

SAMPLE_GEOMETRY

table.

The

results

shown

in

the

example

have

been

reformatted

for

readability.

The

spacing

in

your

results

might

vary

according

to

your

online

display.

SELECT

id,

VARCHAR(db2gse.ST_AsGML(geom),

500)

AS

GMLGEOM

FROM

sample_geometry;

ID

GMLGEOM

--

100

<gml:Point

srsName="EPSG:4269">

<gml:coord><gml:X>30</gml:X><gml:Y>40</gml:Y></gml:coord>

</gml:Point>

200

<gml:LineString

srsName="EPSG:4269">

<gml:coord><gml:X>50</gml:X><gml:Y>50</gml:Y></gml:coord>

<gml:coord><gml:X>100</gml:X><gml:Y>100</gml:Y></gml:coord>

</gml:LineString>

Alternatively,

you

can

use

the

ST_GML

transform

group

to

implicitly

convert

geometries

to

their

HTML

representation

when

binding

them

out.

SET

CURRENT

DEFAULT

TRANSFORM

GROUP

=

ST_GML

SELECT

id,

geom

AS

GMLGEOM

FROM

sample_geometry;

ID

GMLGEOM

--

100

<gml:Point

srsName="EPSG:4269">

<gml:coord><gml:X>30</gml:X><gml:Y>40</gml:Y></gml:coord>

</gml:Point>

200

<gml:LineString

srsName="EPSG:4269">

<gml:coord><gml:X>50</gml:X><gml:Y>50</gml:Y></gml:coord>

<gml:coord><gml:X>100</gml:X><gml:Y>100</gml:Y></gml:coord>

</gml:LineString>

No

spatial

function

is

used

in

the

SELECT

statement

to

convert

the

geometry.

Related

reference:

v

“Transform

groups”

on

page

497

Functions

that

compare

geographic

features

Certain

spatial

functions

return

information

about

ways

in

which

geographic

features

relate

to

one

another

or

compare

with

one

another.

Other

spatial

functions

return

information

as

to

whether

two

definitions

of

coordinate

systems

or

two

spatial

reference

systems

are

the

same.

In

all

cases,

the

information

returned

is

a

result

of

a

comparison

between

geometries,

between

definitions

of

coordinate

systems,

or

between

spatial

reference

systems.

The

functions

that

provide

this

information

are

called

comparison

functions.

The

comparison

functions

are:

v

ST_Contains

and

ST_Within.

These

functions

take

two

geometries

as

input

and

determine

whether

the

interior

of

one

intersects

the

interior

of

the

other.

v

ST_Intersects,

ST_Crosses,

ST_Overlaps,

and

ST_Touches.

These

functions

return

information

about

intersections

of

geometries.

Spatial

functions

Chapter

22.

Spatial

functions:

categories

and

uses

295

v

ST_EnvIntersects

and

ST_MBRIntersects.

These

functions

determine

whether

the

smallest

rectangle

that

encloses

one

geometry

intersects

with

the

smallest

rectangle

that

encloses

another

geometry.

v

ST_Equals,

ST_EqualCoordsys

and

ST_EqualSRS.

These

functions

determine

whether

two

things

being

compared

are

identical.

v

ST_Relate.

This

function

determines

whether

the

geometries

being

compared

meet

the

conditions

of

the

DE-9IM

pattern

matrix

string.

v

ST_Disjoint.

This

function

checks

for

no

intersection

between

two

geometries.

Related

concepts:

v

“Function

that

compares

geometries

to

the

DE-9IM

pattern

matrix

string”

on

page

308

v

“Comparison

functions

overview”

on

page

296

v

“Functions

that

check

whether

one

geometry

contains

another”

on

page

298

v

“Functions

that

check

intersections

between

geometries”

on

page

301

v

“Functions

that

compare

geometries’

envelopes”

on

page

306

v

“Functions

that

check

whether

two

things

are

identical”

on

page

306

v

“Function

that

checks

for

no

intersection

between

two

geometries”

on

page

307

Comparison

functions

overview

DB2®

Spatial

Extender’s

comparison

functions

return

a

value

of

1

(one)

if

a

comparison

meets

certain

criteria,

a

value

of

0

(zero)

if

a

comparison

fails

to

meet

the

criteria,

and

a

null

value

if

the

comparison

could

not

be

performed.

Comparisons

cannot

be

performed

if

the

comparison

operation

has

not

been

defined

for

the

input

parameters,

or

if

either

of

the

parameters

is

null.

Comparisons

can

be

performed

if

geometries

with

different

data

types

or

dimensions

are

assigned

to

the

parameters.

The

Dimensionally

Extended

9

Intersection

Model

(DE-9IM)

is

a

mathematical

approach

that

defines

the

pair-wise

spatial

relationship

between

geometries

of

different

types

and

dimensions.

This

model

expresses

spatial

relationships

between

all

types

of

geometries

as

pair-wise

intersections

of

their

interiors,

boundaries,

and

exteriors,

with

consideration

for

the

dimension

of

the

resulting

intersections.

Given

geometries

a

and

b:

I(a),

B(a),

and

E(a)

represent

the

interior,

boundary,

and

exterior

of

a,

respectively.

And,

I(b),

B(b),

and

E(b)

represent

the

interior,

boundary,

and

exterior

of

b.

The

intersections

of

I(a),

B(a),

and

E(a)

with

I(b),

B(b),

and

E(b)

produce

a

3–by–3

matrix.

Each

intersection

can

result

in

geometries

of

different

dimensions.

For

example,

the

intersection

of

the

boundaries

of

two

polygons

consists

of

a

point

and

a

linestring,

in

which

case

the

dim

function

returns

the

maximum

dimension

of

1.

The

dim

function

returns

a

value

of

–1,

0,

1

or

2.

The

–1

corresponds

to

the

null

set

or

dim(null),

which

is

returned

when

no

intersection

was

found.

Interior

Boundary

Exterior

Interior

dim(I(a)

�

I(b))

dim(I(a)

�

B(b))

dim(I(a)

�

E(b))

Boundary

dim(B(a)

�

I(b))

dim(B(a)

�

B(b))

dim(B(a)

�

E(b))

Exterior

dim(E(a)

�

I(b))

dim(E(a)

�

B(b))

dim(E(a)

�

E(b))

Spatial

functions

296

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Results

returned

by

comparison

functions

can

be

understood

or

verified

by

comparing

the

results

returned

by

a

comparison

function

with

a

pattern

matrix

that

represents

the

acceptable

values

for

the

DE-9IM.

The

pattern

matrix

contains

the

acceptable

values

for

each

of

the

intersection

matrix

cells.

The

possible

pattern

values

are:

T

An

intersection

must

exist;

dim

=

0,

1,

or

2.

F

An

intersection

must

not

exist;

dim

=

-1.

*

It

does

not

matter

if

an

intersection

exists;

dim

=

-1,

0,

1,

or

2.

0

An

intersection

must

exist

and

its

exact

dimension

must

be

0;

dim

=

0.

1

An

intersection

must

exist

and

its

maximum

dimension

must

be

1;

dim

=

1.

2

An

intersection

must

exist

and

its

maximum

dimension

must

be

2;

dim

=

2.

For

example,

the

following

pattern

matrix

for

the

ST_Within

function

includes

the

values

T,

F,

and

*.

Table

40.

Matrix

for

ST_Within.

The

pattern

matrix

of

the

ST_Within

function

for

geometry

combinations.

Geometry

b

Interior

Geometry

b

Boundary

Geometry

b

Exterior

Geometry

a

Interior

T

*

F

Geometry

a

Boundary

*

*

F

Geometry

a

Exterior

*

*

*

The

ST_Within

function

returns

a

value

of

1

when

the

interiors

of

both

geometries

intersect

and

when

the

interior

or

boundary

of

a

does

not

intersect

the

exterior

of

b.

All

other

conditions

do

not

matter.

Each

function

has

at

least

one

pattern

matrix,

but

some

require

more

than

one

to

describe

the

relationships

of

various

geometry

type

combinations.

The

DE-9IM

was

developed

by

Clementini

and

Felice,

who

dimensionally

extended

the

9

Intersection

Model

of

Egenhofer

and

Herring.

The

DE-9IM

is

a

collaboration

of

four

authors

(Clementini,

Eliseo,

Di

Felice,

and

van

Osstrom)

who

published

the

model

in

″A

Small

Set

of

Formal

Topological

Relationships

Suitable

for

End-User

Interaction,″

D.

Abel

and

B.C.

Ooi

(Ed.),

Advances

in

Spatial

Database—Third

International

Symposium.

SSD

’93.

LNCS

692.

Pp.

277-295.

The

9

Intersection

model

by

M.

J.

Egenhofer

and

J.

Herring

(Springer-Verlag

Singapore

[1993])

was

published

in

″Categorizing

binary

topological

relationships

between

regions,

lines,

and

points

in

geographic

databases,″

Tech.

Report,

Department

of

Surveying

Engineering,

University

of

Maine,

Orono,

ME

1991.

List

of

functions

The

comparison

functions

are:

v

ST_Contains

v

ST_Crosses

v

ST_Disjoint

v

ST_EnvIntersects

Spatial

functions

Chapter

22.

Spatial

functions:

categories

and

uses

297

v

ST_EqualCoordsys

v

ST_Equals

v

ST_EqualSRS

v

ST_Intersects

v

ST_MBRIntersects

v

ST_Overlaps

v

ST_Relate

v

ST_Touches

v

ST_Within

Functions

that

check

whether

one

geometry

contains

another

ST_Contains

and

ST_Within

both

take

two

geometries

as

input

and

determine

whether

the

interior

of

one

intersects

the

interior

of

the

other.

In

colloquial

terms,

ST_Contains

determines

whether

the

first

geometry

given

to

it

encloses

the

second

geometry

(whether

the

first

contains

the

second).

ST_Within

determines

whether

the

first

geometry

is

completely

inside

the

second

(whether

the

first

is

within

the

second).

ST_Contains

ST_Contains

returns

a

value

of

1

(one)

if

the

second

geometry

is

completely

contained

by

the

first

geometry.

The

ST_Contains

function

returns

the

exact

opposite

result

of

the

ST_Within

function.

Figure

44

on

page

299

shows

examples

of

ST_Contains:

v

A

multipoint

geometry

contains

a

point

or

multipoint

geometries

when

all

of

the

points

are

within

the

first

geometry.

v

A

polygon

geometry

contains

a

multipoint

geometry

when

all

of

the

points

are

either

on

the

boundary

of

the

polygon

or

in

the

interior

of

the

polygon.

v

A

linestring

geometry

contains

a

point,

multipoint,

or

linestring

geometries

when

all

of

the

points

are

within

the

first

geometry.

v

A

polygon

geometry

contains

a

point,

linestring

or

polygon

geometries

when

the

second

geometry

is

in

the

interior

of

the

polygon.

Spatial

functions

298

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|
|

|
|

|
|

|
|

The

pattern

matrix

of

the

ST_Contains

function

states

that

the

interiors

of

both

geometries

must

intersect

and

that

the

interior

or

boundary

of

the

secondary

(geometry

b

)

must

not

intersect

the

exterior

of

the

primary

(geometry

a).

The

asterisk

(*)

indicates

that

it

does

not

matter

if

an

intersection

exists

between

these

parts

of

the

geometries.

Table

41.

Matrix

for

ST_Contains

Geometry

b

Interior

Geometry

b

Boundary

Geometry

b

Exterior

Geometry

a

Interior

T

*

*

Geometry

a

Boundary

*

*

*

Geometry

a

Exterior

F

F

*

ST_Within

ST_Within

returns

a

value

of

1

(one)

if

the

first

geometry

is

completely

within

the

second

geometry.

ST_Within

returns

the

exact

opposite

result

of

ST_Contains.

Figure

44.

ST_Contains.

The

dark

geometries

represent

geometry

a

and

the

gray

geometries

represent

geometry

b.

In

all

cases,

geometry

a

contains

geometry

b

completely.

Spatial

functions

Chapter

22.

Spatial

functions:

categories

and

uses

299

|
|
|
|

The

ST_Within

function

pattern

matrix

states

that

the

interiors

of

both

geometries

must

intersect,

and

that

the

interior

or

boundary

of

the

primary

geometry

(geometry

a

)

must

not

intersect

the

exterior

of

the

secondary

(geometry

b

).

The

asterisk

(*)

indicates

that

all

other

intersections

do

not

matter.

Table

42.

Matrix

for

ST_Within

Geometry

b

Interior

Geometry

b

Boundary

Geometry

b

Exterior

Geometry

a

Interior

T

*

F

Geometry

a

Boundary

*

*

F

Geometry

a

Exterior

*

*

*

Figure

45

shows

examples

of

ST_Within:

v

A

point

geometry

is

within

a

multipoint

geometry

when

its

interior

intersects

one

of

the

points

in

the

second

geometry.

v

A

multipoint

geometry

is

within

a

multipoint

geometry

when

the

interiors

of

all

points

intersect

the

second

geometry.

v

A

multipoint

geometry

is

within

a

polygon

geometry

when

all

of

the

points

are

either

on

the

boundary

of

the

polygon

or

in

the

interior

of

the

polygon.

v

A

point

geometry

is

within

a

linestring

geometry

when

all

of

the

points

are

within

the

second

geometry.

In

Figure

45,

the

point

is

not

within

the

linestring

Figure

45.

ST_Within

Spatial

functions

300

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|
|

|

|
|

|
|

|
|

|
|

because

its

interior

does

not

intersect

the

linestring;

however,

the

multipoint

geometry

is

within

the

linestring

because

all

of

its

points

intersect

the

interior

of

the

linestring.

v

A

linestring

geometry

is

within

another

linestring

geometries

when

all

of

its

points

intersect

the

second

geometry.

v

A

point

geometry

is

not

within

a

polygon

geometry

because

its

interior

does

not

intersect

the

boundary

or

interior

of

the

polygon.

v

A

linestring

geometry

is

within

a

polygon

geometry

when

all

of

its

points

intersect

either

the

boundary

or

interior

of

the

polygon.

v

A

polygon

geometry

is

within

a

polygon

geometry

when

all

of

its

points

intersect

either

the

boundary

or

interior

of

the

polygon.

Functions

that

check

intersections

between

geometries

ST_Intersects,

ST_Crosses,

ST_Overlaps,

and

ST_Touches

all

determine

whether

one

geometry

intersects

another.

They

differ

mainly

as

to

the

scope

of

intersection

that

they

test

for:

v

ST_Intersects

tests

to

determine

whether

the

two

geometries

given

to

it

meet

one

of

four

conditions:

that

the

geometries’

interiors

intersect,

that

their

boundaries

intersect,

that

the

boundary

of

the

first

geometry

intersects

with

the

interior

of

the

second,

or

that

the

interior

of

the

first

geometry

intersects

with

the

boundary

of

the

second.

v

ST_Crosses

is

used

to

analyze

the

intersection

of

geometries

of

different

dimensions,

with

one

exception:

it

can

also

analyze

the

intersection

of

linestrings.

In

all

cases,

the

place

of

intersection

is

itself

considered

a

geometry;

and

ST_Crosses

requires

that

this

geometry

be

of

a

lesser

dimension

than

the

greater

of

the

intersecting

geometries

(or,

if

both

are

linestrings,

that

the

place

of

intersection

be

of

a

lesser

dimension

than

a

linestring).

For

example,

the

dimensions

of

a

linestring

and

polygon

are

1

and

2,

respectively.

If

two

such

geometries

intersect,

and

if

the

place

of

intersection

is

linear

(the

linestring’s

path

along

the

polygon),

then

that

place

can

itself

be

considered

a

linestring.

And

because

a

linestring’s

dimension

(1)

is

lesser

than

a

polygon’s

(2),

ST_Crosses,

after

analyzing

the

intersection,

would

return

a

value

of

1.

v

The

geometries

given

to

ST_Overlaps

as

input

must

be

of

the

same

dimension.

ST_Overlaps

requires

that

these

geometries

overlap

part-way,

forming

a

new

geometry

(the

region

of

overlap)

that

is

the

same

dimension

as

they

are.

v

ST_Touches

determines

whether

the

boundaries

of

two

geometries

intersect.

ST_Intersects

ST_Intersects

returns

a

value

of

1

(one)

if

the

intersection

does

not

result

in

an

empty

set.

ST_Intersects

returns

the

exact

opposite

result

of

ST_Disjoint.

The

ST_Intersects

function

returns

1

(one)

if

the

conditions

of

any

of

the

following

pattern

matrices

returns

TRUE.

Table

43.

Matrix

for

ST_Intersects

(1).

The

ST_Intersects

function

returns

1

(one)

if

the

interiors

of

both

geometries

intersect.

Geometry

b

Interior

Geometry

b

Boundary

Geometry

b

Exterior

Geometry

a

Boundary

*

*

*

Geometry

a

Interior

T

*

*

Geometry

a

Exterior

*

*

*

Spatial

functions

Chapter

22.

Spatial

functions:

categories

and

uses

301

|
|
|

|
|

|
|

|
|

|
|

Table

44.

Matrix

for

ST_Intersects

(2).

The

ST_Intersects

function

returns

1

(one)

if

the

boundary

of

the

first

geometry

intersects

the

boundary

of

the

second

geometry.

Geometry

b

Interior

Geometry

b

Boundary

Geometry

b

Exterior

Geometry

a

Boundary

*

*

*

Geometry

a

Interior

*

T

*

Geometry

a

Exterior

*

*

*

Table

45.

Matrix

for

ST_Intersects

(3).

The

ST_Intersects

function

returns

1

(one)

if

the

boundary

of

the

first

geometry

intersects

the

interior

of

the

second.

Geometry

b

Interior

Geometry

b

Boundary

Geometry

b

Exterior

Geometry

a

Boundary

T

*

*

Geometry

a

Interior

*

*

*

Geometry

a

Exterior

*

*

*

Table

46.

Matrix

for

ST_Intersects

(4).

The

ST_Intersects

function

returns

1

(one)

if

the

boundaries

of

either

geometry

intersect.

Geometry

b

Interior

Geometry

b

Boundary

Geometry

b

Exterior

Geometry

a

Boundary

*

T

*

Geometry

a

Interior

*

*

*

Geometry

a

Exterior

*

*

*

ST_Crosses

ST_Crosses

takes

two

geometries

and

returns

a

value

of

1

(one)

if:

v

The

intersection

results

in

a

geometry

whose

dimension

is

less

than

the

maximum

dimension

of

the

source

geometries.

v

The

intersection

set

is

interior

to

both

source

geometries.

ST_Crosses

returns

a

null

if

the

first

geometry

is

a

surface

or

multisurface

or

if

the

second

geometry

is

a

point

or

multipoint.

For

all

other

combinations,

ST_Crosses

returns

either

a

value

of

1

(indicating

that

the

two

geometries

cross)

or

a

value

of

0

(indicating

that

they

do

not

cross).

The

following

figure

illustrates

multipoints

crossing

linestring,

linestring

crossing

linestring,

multiple

points

crossing

a

polygon,

and

linestring

crossing

a

pollygon.

In

three

of

the

four

cases,

geometry

b

crosses

geometry

a.

In

the

fourth

case

geometry

a

is

a

multipoint

which

does

not

cross

the

line,

but

does

touch

the

area

inside

the

geometry

b

polygon.

The

dark

geometries

represent

geometry

a;

the

gray

geometries

represent

geometry

b.

Spatial

functions

302

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|
|
|
|

The

pattern

matrix

in

Table

47

applies

if

the

first

geometry

is

a

point

or

multipoint,

or

if

the

first

geometry

is

a

curve

or

multicurve,

and

the

second

geometry

is

a

surface.

The

matrix

states

that

the

interiors

must

intersect

and

that

the

interior

of

the

primary

(geometry

a)

must

intersect

the

exterior

of

the

secondary

(geometry

b).

Table

47.

Matrix

for

ST_Crosses

(1)

Geometry

b

Interior

Geometry

b

Boundary

Geometry

b

Exterior

Geometry

a

Boundary

*

*

*

Geometry

a

Interior

T

*

T

Geometry

a

Exterior

*

*

*

The

pattern

matrix

in

Table

48

applies

if

the

first

and

second

geometries

are

both

curves

or

multicurves.

The

0

indicates

that

the

intersection

of

the

interiors

must

be

a

point

(dimension

0).

If

the

dimension

of

this

intersection

is

1

(intersect

at

a

linestring),

the

ST_Crosses

function

returns

a

value

of

0

(indicating

that

the

geometries

do

not

cross);

however,

the

ST_Overlaps

function

returns

a

value

of

1

(indicating

that

the

geometries

overlap).

Table

48.

Matrix

for

ST_Crosses

(2)

Geometry

b

Interior

Geometry

b

Boundary

Geometry

b

Exterior

Geometry

a

Boundary

*

*

*

Geometry

a

Interior

0

*

*

Geometry

a

Exterior

*

*

*

ST_Overlaps

ST_Overlaps

compares

two

geometries

of

the

same

dimension.

It

returns

a

value

of

1

(one)

if

their

intersection

set

results

in

a

geometry

different

from

both,

but

that

has

the

same

dimension.

multipoint/linestring linestring/linestring

multipoint/polygon linestring/polygon

Figure

46.

ST_Crosses

Spatial

functions

Chapter

22.

Spatial

functions:

categories

and

uses

303

|
|

The

dark

geometries

represent

geometry

a;

the

gray

geometries

represent

geometry

b.

In

all

cases,

both

geometries

have

the

same

dimension,

and

one

overlaps

the

other

partway.

The

area

of

overlap

is

a

new

geometry;

it

has

the

same

dimension

as

geometries

a

and

b.

The

following

figure

illustrates

overlaps

in

geometries.

The

three

examples

show

overlaps

with

points,

linestrings,

and

polygons.

With

points

the

actual

points

overlap.

With

linestrings,

a

portion

of

the

line

overlaps.

With

polygons

a

portion

of

the

area

overlaps.

The

pattern

matrix

in

Table

49

applies

if

the

first

and

second

geometries

are

both

either

points,

multipoints,

surfaces,

or

multisurfaces.

ST_Overlaps

returns

a

value

of

1

if

the

interior

of

each

geometry

intersects

the

other

geometry’s

interior

and

exterior.

Table

49.

Matrix

for

ST_Overlaps

(1)

Geometry

b

Interior

Geometry

b

Boundary

Geometry

b

Exterior

Geometry

a

Boundary

*

*

*

Geometry

a

Interior

T

*

T

Geometry

a

Exterior

T

*

*

The

pattern

matrix

in

Table

50

applies

if

the

first

and

second

geometries

are

both

curves

or

multicurves.

In

this

case,

the

intersection

of

the

geometries

must

result

in

a

geometry

that

has

a

dimension

of

1

(another

curve).

If

the

dimension

of

the

intersection

of

the

interiors

is

0,

ST_Overlaps

returns

a

value

of

0

(indicating

that

the

geometries

do

not

overlap);

however

the

ST_Crosses

function

would

return

a

value

of

1

(indicating

that

the

geometries

cross).

Table

50.

Matrix

for

ST_Overlaps

(2)

Geometry

b

Interior

Geometry

b

Boundary

Geometry

b

Exterior

Geometry

a

Boundary

*

*

*

Geometry

a

Interior

1

*

T

Geometry

a

Exterior

T

*

*

ST_Touches

ST_Touches

returns

a

value

of

1

(one)

if

all

the

points

common

to

both

geometries

can

be

found

only

on

the

boundaries.

The

interiors

of

the

geometries

must

not

intersect

one

another.

At

least

one

geometry

must

be

a

curve,

surface,

multicurve,

or

multisurface.

multipoint/multipoint linestring/linestring polygon/polygon

Figure

47.

ST_Overlaps

Spatial

functions

304

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|
|
|

|

The

dark

geometries

represent

geometry

a;

the

gray

geometries

represent

geometry

b.

In

all

cases,

the

boundary

of

geometry

b

intersects

geometry

a.

The

interior

of

geometry

b

remains

separate

from

geometry

a.

The

following

figure

shows

examples

of

touching

with

types

of

geometries,

such

as

point

and

linestring,

linestring

and

linestring,

point

and

polygon,

multipoint

and

polygon,

and

linestring

and

polygon.

The

pattern

matrices

show

that

the

ST_Touches

function

returns

1

(one)

when

the

interiors

of

the

geometry

do

not

intersect,

and

the

boundary

of

either

geometry

intersects

the

other’s

interior

or

its

boundary.

Table

51.

Matrix

for

ST_Touches

(1)

Geometry

b

Interior

Geometry

b

Boundary

Geometry

b

Exterior

Geometry

a

Boundary

*

*

*

Geometry

a

Interior

F

T

*

Geometry

a

Exterior

*

*

*

Table

52.

Matrix

for

ST_Touches

(2)

Geometry

b

Interior

Geometry

b

Boundary

Geometry

b

Exterior

Geometry

a

Boundary

T

*

*

Geometry

a

Interior

F

*

*

Geometry

a

Exterior

*

*

*

point/linestring multipoint/linestring linestring/linestring

point/polygon multipoint/polygon linestring/polygon

Figure

48.

ST_Touches

Spatial

functions

Chapter

22.

Spatial

functions:

categories

and

uses

305

|
|
|

Table

53.

Matrix

for

ST_Touches

(3)

Geometry

b

Interior

Geometry

b

Boundary

Geometry

b

Exterior

Geometry

a

Boundary

*

T

*

Geometry

a

Interior

F

*

*

Geometry

a

Exterior

*

*

*

Functions

that

compare

geometries’

envelopes

ST_EnvIntersects

and

ST_MBRIntersects

are

similar

in

that

they

determine

whether

the

smallest

rectangle

that

encloses

one

geometry

intersects

with

the

smallest

rectangle

that

encloses

another

geometry.

Such

a

rectangle

has

traditionally

been

called

an

envelope.

Multipolygons,

polygons,

multilinestrings,

and

crooked

linestrings

abut

against

the

sides

of

their

envelopes;

horizontal

linestrings,

vertical

linestrings,

and

points

are

slightly

smaller

than

their

envelopes.

ST_EnvIntersects

tests

to

determine

whether

envelopes

of

geometries

intersect.

The

smallest

rectangular

area

into

which

a

geometry

can

fit

is

called

a

minimum

bounding

rectangle

(MBR).

The

envelopes

surrounding

multipolygons,

polygons,

multilinestrings,

and

crooked

linestrings

are

actually

MBRs.

But

the

envelopes

surrounding

horizontal

linestrings,

vertical

linestrings,

and

points

are

not

MBRs,

because

they

do

not

constitute

a

minimum

area

in

which

these

latter

geometries

fit.

These

latter

geometries

occupy

no

definable

space

and

therefore

cannot

have

MBRs.

Nevertheless,

a

convention

has

been

adopted

whereby

they

are

referred

to

as

their

own

MBRs.

Therefore,

with

respect

to

multipolygons,

polygons,

multilinestrings,

and

crooked

linestrings,

ST_MBRIntersects

tests

the

intersection

of

the

same

surrounding

rectangles

that

ST_EnvIntersects

tests.

But

for

horizontal

linestrings,

vertical

linestrings,

and

points,

ST_MBRIntersects

tests

the

intersections

of

these

geometries

themselves.

ST_EnvIntersects

ST_EnvIntersects

returns

a

value

of

1

(one)

if

the

envelopes

of

two

geometries

intersect.

It

is

a

convenience

function

that

efficiently

implements

ST_Intersects

(ST_Envelope(g1),ST_Envelope(g2)).

ST_MBRIntersects

ST_MBRIntersects

returns

a

value

of

1

(one)

if

the

minimum

bounding

rectangles

(MBRs)

of

two

geometries

intersect.

Functions

that

check

whether

two

things

are

identical

ST_EqualCoordsys

ST_EqualCoordsys

returns

a

value

of

1

(one)

if

two

coordinate

system

definitions

are

identical.

In

comparing

the

definitions,

ST_EqualCoordsys

disregards

differences

in

case,

spaces,

parentheses,

and

representation

of

floating

point

numbers.

ST_Equals

ST_Equals

returns

a

value

of

1

(one)

if

two

geometries

are

identical.

The

order

of

the

points

used

to

define

the

geometries

is

not

relevant

to

the

test

of

equality.

Spatial

functions

306

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Table

54.

Matrix

for

equality.

The

DE-9IM

pattern

matrix

for

equality

ensures

that

the

interiors

intersect

and

that

no

part

interior

or

boundary

of

either

geometry

intersects

the

exterior

of

the

other.

Geometry

b

Interior

Geometry

b

Boundary

Geometry

b

Exterior

Geometry

a

Boundary

*

*

F

Geometry

a

Interior

T

*

F

Geometry

a

Exterior

F

F

*

ST_EqualSRS

ST_EqualSRS

returns

a

value

of

1

(one)

if

two

spatial

reference

systems

are

identical,

provided

that

the

numeric

identifier

of

either

or

both

systems

is

not

null.

Function

that

checks

for

no

intersection

between

two

geometries

ST_Disjoint

returns

a

value

of

1

(one)

if

the

intersection

of

the

two

geometries

is

an

empty

set.

This

function

returns

the

exact

opposite

of

what

ST_Intersects

returns.

In

the

six

examples

(point,

multipoint,

linestring,

multistring,

polygon,

and

multipolygon)

geometry

a

and

geometry

b

are

the

same.

Figure

49.

ST_Equals.

The

dark

geometries

represent

geometry

a;

the

gray

geometries

represent

geometry

b.

In

all

cases,

geometry

a

is

equal

to

geometry

b.

Spatial

functions

Chapter

22.

Spatial

functions:

categories

and

uses

307

|
|

Table

55.

Matrix

for

ST_Disjoint.

This

matrix

simply

states

that

neither

the

interiors

nor

the

boundaries

of

either

geometry

intersect.

Geometry

b

Interior

Geometry

b

Boundary

Geometry

b

Exterior

Geometry

a

Boundary

F

F

*

Geometry

a

Interior

F

F

*

Geometry

a

Exterior

*

*

*

Function

that

compares

geometries

to

the

DE-9IM

pattern

matrix

string

The

ST_Relate

function

compares

two

geometries

and

returns

a

value

of

1

(one)

if

the

geometries

meet

the

conditions

specified

by

the

DE-9IM

pattern

matrix

string;

otherwise,

the

function

returns

a

value

of

0

(zero).

The

illustration

shows

different

geometries

and

how

the

boundaries

do

not

intersect

at

any

point.

Figure

50.

ST_Disjoint.

The

dark

geometries

represent

geometry

a;

the

gray

geometries

represent

geometry

b.

In

all

cases,

geometry

a

and

geometry

b

are

disjoint

from

one

another.

Spatial

functions

308

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|

Functions

that

return

information

about

properties

of

geometries

This

section

introduces

spatial

functions

that

return

information

about

properties

of

geometries.

This

information

concerns:

v

Data

types

of

geometries

v

Coordinates

and

measures

within

a

geometry

v

Rings,

boundaries,

envelopes,

and

minimum

bounding

rectangles

(MBRs)

v

Dimensions

v

The

qualities

of

being

closed,

empty,

or

simple

v

Base

geometries

within

a

geometry

collection

v

Spatial

reference

systems

Some

properties

are

geometries

in

their

own

right;

for

example,

the

exterior

and

interior

rings

of

a

surface,

or

the

start-

and

endpoints

of

a

curve.

These

geometries

are

produced

by

some

of

the

functions

in

this

category.

Functions

that

produce

other

kinds

of

geometries—for

example,

geometries

that

represent

zones

that

surround

a

given

location—belong

to

another

category.

For

information

about

this

other

category,

which

is

called

“Spatial

functions

that

generate

new

geometries”,

see

the

appropriate

link

or

cross-reference

at

the

end

of

this

section.

Related

concepts:

v

“Function

that

returns

data-type

information”

on

page

309

v

“Functions

that

return

coordinate

and

measure

information”

on

page

309

v

“Functions

that

return

information

about

geometries

within

a

geometry”

on

page

311

v

“Functions

that

show

information

about

boundaries,

envelopes,

and

rings”

on

page

313

v

“Functions

that

return

information

about

a

geometry’s

dimensions”

on

page

314

v

“Functions

that

reveal

whether

a

geometry

is

closed,

empty,

or

simple”

on

page

314

v

“Functions

that

identify

a

geometry’s

spatial

reference

system”

on

page

315

Function

that

returns

data-type

information

ST_GeometryType

takes

a

geometry

as

an

input

parameter

and

returns

the

fully-qualified

type

name

of

the

dynamic

type

of

that

geometry.

Functions

that

return

coordinate

and

measure

information

The

following

functions

return

information

about

the

coordinates

and

measures

within

a

geometry.

For

example,

ST_X

can

return

the

X

coordinate

within

a

specified

point,

ST_MaxX

returns

the

highest

X

coordinate

within

a

geometry,

and

ST_MinX

returns

the

lowest

X

coordinate

within

a

geometry.

These

functions

are:

v

ST_CoordDim

v

ST_IsMeasured

v

ST_IsValid

v

ST_Is3D

Spatial

functions

Chapter

22.

Spatial

functions:

categories

and

uses

309

v

ST_M

v

ST_MaxM

v

ST_MaxX

v

ST_MaxY

v

ST_MaxZ

v

ST_MinM

v

ST_MinX

v

ST_MinY

v

ST_MinZ

v

ST_X

v

ST_Y

v

ST_Z

ST_CoordDim

ST_CoordDim

returns

a

value

that

denotes

what

types

of

coordinates

a

geometry

has,

and

whether

the

geometry

also

contains

any

measures.

This

value

is

called

a

coordinate

dimension.

A

coordinate

dimension

is

not

the

same

thing

as

the

property

referred

to

as

dimension.

The

latter

indicates

whether

a

geometry

has

breadth

or

length,

not

whether

it

contains

coordinates

of

a

specific

type

or

measures.

ST_IsMeasured

ST_IsMeasured

takes

a

geometry

as

an

input

parameter

and

returns

1

if

the

given

geometry

has

M

coordinates

(measures).

Otherwise

0

(zero)

is

returned.

ST_IsValid

ST_IsValid

takes

a

geometry

as

an

input

parameter

and

returns

1

if

it

is

valid.

Otherwise

0

(zero)

is

returned.

A

geometry

is

valid

only

if

all

of

the

attributes

in

the

structured

type

are

consistent

with

the

internal

representation

of

geometry

data,

and

if

the

internal

representation

is

not

corrupted.

ST_Is3D

ST_Is3d

takes

a

geometry

as

an

input

parameter

and

returns

1

if

the

given

geometry

has

Z

coordinates.

Otherwise,

0

(zero)

is

returned.

ST_M

If

a

measure

is

stored

with

a

given

point,

ST_M

can

take

the

point

as

an

input

parameter

and

return

the

measure.

ST_MaxM

ST_MaxM

takes

a

geometry

as

an

input

parameter

and

returns

its

maximum

measure.

ST_MaxX

ST_MaxX

takes

a

geometry

as

an

input

parameter

and

returns

its

maximum

X

coordinate.

ST_MaxY

ST_MaxY

takes

a

geometry

as

an

input

parameter

and

returns

its

maximum

Y

coordinate.

Spatial

functions

310

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

ST_MaxZ

ST_MaxZ

takes

a

geometry

as

an

input

parameter

and

returns

its

maximum

Z

coordinate.

ST_MinM

ST_MinM

takes

a

geometry

as

an

input

parameter

and

returns

its

minimum

measure.

ST_MinX

ST_MinX

takes

a

geometry

as

an

input

parameter

and

returns

its

minimum

X

coordinate.

ST_MinY

ST_MinY

takes

a

geometry

as

an

input

parameter

and

returns

its

minimum

Y

coordinate.

ST_MinZ

ST_MinY

takes

a

geometry

as

an

input

parameter

and

returns

its

minimum

Z

coordinate.

ST_X

ST_X

can

take

a

point

as

an

input

parameter

and

return

the

point’s

X

coordinate.

ST_Y

ST_Y

can

take

a

point

as

an

input

parameter

and

return

the

point’s

Y

coordinate.

ST_Z

If

a

Z

coordinate

is

stored

with

a

given

point,

ST_Z

can

take

the

point

as

an

input

parameter

and

return

the

Z

coordinate.

Functions

that

return

information

about

geometries

within

a

geometry

The

following

functions

return

information

about

geometries

within

a

geometry.

Some

functions

identify

specific

points

within

a

geometry;

others

return

the

number

of

base

geometries

within

a

collection.

These

functions

are:

v

ST_Centroid

v

ST_EndPoint

v

ST_GeometryN

v

ST_LineStringN

v

ST_MidPoint

v

ST_NumGeometries

v

ST_NumLineStrings

v

ST_NumPoints

v

ST_NumPolygons

v

ST_PointN

v

ST_PolygonN

Spatial

functions

Chapter

22.

Spatial

functions:

categories

and

uses

311

|

v

ST_StartPoint

ST_Centroid

ST_Centroid

takes

a

geometry

as

an

input

parameter

and

returns

the

geometric

center,

which

is

the

center

of

the

minimum

bounding

rectangle

of

the

given

geometry,

as

a

point.

ST_EndPoint

ST_Endpoint

takes

a

curve

as

an

input

parameter

and

returns

the

point

that

is

the

last

point

of

the

curve.

ST_GeometryN

ST_GeometryN

takes

a

geometry

collection

and

an

index

as

input

parameters

and

returns

the

geometry

in

the

collection

that

is

identified

by

the

index.

ST_LineStringN

ST_LineStringN

takes

a

multilinestring

and

an

index

as

input

parameters

and

returns

the

linestring

that

is

identified

by

the

index.

ST_MidPoint

ST_MidPoint

takes

a

curve

as

an

input

parameter

and

returns

the

point

on

the

curve

that

is

equidistant

from

both

end

points

of

the

curve,

measured

along

the

curve.

ST_NumGeometries

ST_NumGeometries

takes

a

geometry

collection

as

an

input

parameter

and

returns

the

number

of

geometries

in

the

collection.

ST_NumLineStrings

ST_NumLineStrings

takes

a

multilinestring

as

an

input

parameter

and

returns

the

number

of

linestrings

that

it

contains.

ST_NumPoints

ST_NumPoints

takes

a

geometry

as

an

input

parameter

and

returns

the

number

of

points

that

were

used

to

define

that

geometry.

For

example,

if

the

geometry

is

a

polygon

and

five

points

were

used

to

define

that

polygon,

then

the

returned

number

is

5.

ST_NumPolygons

ST_NumPolygons

takes

a

multipolygon

as

an

input

parameter

and

returns

the

number

of

polygons

that

it

contains.

ST_PointN

ST_PointN

takes

a

linestring

or

a

multipoint

and

an

index

as

input

parameters

and

returns

that

point

in

the

linestring

or

multipoint

that

is

identified

by

the

index.

ST_PolygonN

ST_PolygonN

takes

a

multipolygon

and

an

index

as

input

parameters

and

returns

the

polygon

that

is

identified

by

the

index.

Spatial

functions

312

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

ST_StartPoint

ST_StartPoint

takes

a

curve

as

an

input

parameter

and

returns

the

point

that

is

the

first

point

of

the

curve.

Functions

that

show

information

about

boundaries,

envelopes,

and

rings

The

following

functions

return

information

about

demarcations

that

divide

an

inner

part

of

a

geometry

from

an

outer

part,

or

that

divide

the

geometry

itself

from

the

space

external

to

it.

For

example,

ST_Boundary

returns

a

geometry’s

boundary

in

the

form

of

a

curve.

These

functions

are:

v

ST_Boundary

v

ST_Envelope

v

ST_EnvIntersects

v

ST_ExteriorRing

v

ST_InteriorRingN

v

ST_MBR

v

ST_MBRIntersects

v

ST_NumInteriorRing

v

ST_Perimeter

ST_Boundary

ST_Boundary

takes

a

geometry

as

an

input

parameter

and

returns

its

boundary

as

a

new

geometry.

ST_Envelope

ST_Envelope

takes

a

geometry

as

an

input

parameter

and

returns

an

envelope

around

the

geometry.

The

envelope

is

a

rectangle

that

is

represented

as

a

polygon.

ST_EnvIntersects

ST_EnvIntersects

takes

two

geometries

as

input

parameters

and

returns

1

if

the

envelopes

of

two

geometries

intersect.

Otherwise,

0

(zero)

is

returned.

ST_ExteriorRing

ST_ExteriorRing

takes

a

polygon

as

an

input

parameter

and

returns

its

exterior

ring

as

a

curve.

ST_InteriorRingN

ST_InteriorRingN

takes

a

polygon

and

an

index

as

input

parameters

and

returns

the

interior

ring

identified

by

the

given

index

as

a

linestring.

The

interior

rings

are

organized

according

to

the

rules

defined

by

the

internal

geometry

verification

routines.

ST_MBR

ST_MBR

takes

a

geometry

as

an

input

parameter

and

returns

its

minimum

bounding

rectangle.

Spatial

functions

Chapter

22.

Spatial

functions:

categories

and

uses

313

|

ST_MBRIntersects

ST_MBRIntersects

returns

a

value

of

1

(one)

if

the

minimum

bounding

rectangles

(MBRs)

of

two

geometries

intersect.

ST_NumInteriorRing

ST_NumInteriorRing

takes

a

polygon

as

an

input

parameter

and

returns

the

number

of

its

interior

rings.

ST_Perimeter

ST_Perimeter

takes

a

surface

or

multisurface

and,

optionally,

a

unit

as

input

parameters

and

returns

the

perimeter

of

the

surface

or

multisurface

(that

is,

the

length

of

its

boundary)

measured

in

the

given

units.

Functions

that

return

information

about

a

geometry’s

dimensions

The

following

functions

return

information

about

the

dimension

of

a

geometry.

For

example,

ST_Area

reports

how

much

area

a

given

geometry

covers.

These

functions

are:

v

ST_Area

v

ST_Dimension

v

ST_Length

ST_Area

ST_Area

takes

a

geometry

and,

optionally,

a

unit

as

input

parameters

and

returns

the

area

covered

by

the

given

geometry

in

the

given

unit

of

measure.

ST_Dimension

ST_Dimension

takes

a

geometry

as

an

input

parameter

and

returns

its

dimension.

ST_Length

ST_Length

takes

a

curve

or

multicurve

and,

optionally,

a

unit

as

input

parameters

and

returns

the

length

of

the

given

curve

or

multicurve

in

the

given

unit

of

measure.

Functions

that

reveal

whether

a

geometry

is

closed,

empty,

or

simple

The

following

functions

indicate:

v

Whether

a

given

curve

or

multicurve

is

closed

(that

is,

whether

the

start

point

and

end

point

of

the

curve

or

multicurve

are

the

same)

v

Whether

a

given

geometry

is

empty

(that

is,

devoid

of

points)

v

Whether

a

curve,

multicurve,

or

multipoint

is

simple

(that

is,

whether

such

geometries

have

typical

configurations)

ST_IsClosed

ST_IsClosed

takes

a

curve

or

multicurve

as

an

input

parameter

and

returns

1

if

the

given

curve

or

multicurve

is

closed.

Otherwise,

0

(zero)

is

returned.

Spatial

functions

314

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

ST_IsEmpty

ST_IsEmpty

takes

a

geometry

as

an

input

parameter

and

returns

1

if

the

given

geometry

is

empty.

Otherwise

0

(zero)

is

returned.

ST_IsSimple

ST_IsSimple

takes

a

geometry

as

an

input

parameter

and

returns

1

if

the

given

geometry

is

simple.

Otherwise,

0

(zero)

is

returned.

Functions

that

identify

a

geometry’s

spatial

reference

system

The

following

functions

return

values

that

identify

the

spatial

reference

system

that

has

been

associated

with

the

geometry.

In

addition,

the

function

ST_SrsID

can

change

the

geometry’s

spatial

reference

system

without

changing

or

transforming

the

geometry.

ST_SrsId

(also

called

ST_SRID)

ST_SrsId

(or

ST_SRID)

takes

a

geometry

and,

optionally,

a

spatial

reference

system

identifier

as

input

parameters.

What

this

function

returns

depends

on

what

input

parameters

are

specified:

v

If

the

spatial

reference

system

identifier

is

specified,

the

function

returns

the

geometry

with

its

spatial

reference

system

changed

to

the

specified

spatial

reference

system.

No

transformation

of

the

geometry

is

performed.

v

If

no

spatial

reference

system

identifier

is

given

as

an

input

parameter,

the

current

spatial

reference

system

identifier

of

the

given

geometry

is

returned.

ST_SrsName

ST_SrsName

takes

a

geometry

as

an

input

parameter

and

returns

the

name

of

the

spatial

reference

system

in

which

the

given

geometry

is

represented.

Functions

that

generate

new

geometries

from

existing

geometries

This

section

introduces

the

category

of

functions

that

derive

new

geometries

from

existing

ones.

This

category

does

not

include

functions

that

derive

geometries

that

represent

properties

of

other

geometries.

Rather,

it

is

for

functions

that:

v

Convert

geometries

into

other

geometries

v

Create

geometries

that

represent

configurations

of

space

v

Derive

individual

geometries

from

multiple

geometries

v

Create

geometries

based

on

measures

v

Create

modifications

of

geometries

Related

concepts:

v

“Functions

that

convert

one

geometry

to

another”

on

page

316

v

“Functions

that

create

new

geometries

with

different

space

configurations”

on

page

316

v

“Functions

that

derive

one

geometry

from

many”

on

page

320

v

“Functions

that

derive

new

geometries

based

on

measures”

on

page

321

v

“Functions

that

create

modified

forms

of

existing

geometries”

on

page

322

Spatial

functions

Chapter

22.

Spatial

functions:

categories

and

uses

315

Functions

that

convert

one

geometry

to

another

The

following

functions

can

convert

geometries

of

a

supertype

into

corresponding

geometries

of

a

subtype.

For

example,

the

ST_ToLineString

function

can

convert

a

linestring

of

type

ST_Geometry

into

a

linestring

of

ST_LineString.

Some

of

these

functions

can

also

combine

base

geometries

and

geometry

collections

into

a

single

geometry

collection.

For

example,

ST_ToMultiLine

can

convert

a

linestring

and

a

multilinestring

into

a

single

multilinestring.

ST_Polygon

ST_Polygon

can

construct

a

polygon

from

a

closed

linestring.

The

linestring

will

define

the

exterior

ring

of

the

polygon.

ST_ToGeomColl

ST_ToGeomColl

takes

a

geometry

as

an

input

parameter

and

converts

it

to

a

geometry

collection.

ST_ToLineString

ST_ToLineString

takes

a

geometry

as

an

input

parameter

and

converts

it

to

a

linestring.

ST_ToMultiLine

ST_ToMultiLine

takes

a

geometry

as

an

input

parameter

and

converts

it

to

a

multilinestring.

ST_ToMultiPoint

ST_ToMultiPoint

takes

a

geometry

as

an

input

parameter

and

converts

it

to

a

multipoint.

ST_ToMultiPolygon

ST_ToMultiPolygon

takes

a

geometry

as

an

input

parameter

and

converts

it

to

a

multipolygon.

ST_ToPoint

ST_ToPoint

takes

a

geometry

as

an

input

parameter

and

converts

it

to

a

point.

ST_ToPolygon

ST_ToPolygon

takes

a

geometry

as

an

input

parameter

and

converts

it

to

a

polygon.

Functions

that

create

new

geometries

with

different

space

configurations

Using

existing

geometries

as

a

starting

point,

the

following

functions

create

new

geometries

that

represent

circular

areas

or

other

configurations

of

space.

For

example,

given

a

point

that

represents

the

center

of

a

proposed

airport,

ST_Buffer

can

create

a

surface

that

represents,

in

circular

form,

the

proposed

extent

of

the

airport.

These

functions

are:

Spatial

functions

316

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

v

ST_Buffer

v

ST_ConvexHull

v

ST_Difference

v

ST_Intersection

v

ST_SymDifference

ST_Buffer

The

ST_Buffer

function

can

generate

a

new

geometry

that

extends

outward

from

an

existing

geometry

by

a

specified

radius.

The

new

geometry

will

be

a

surface

when

the

existing

geometry

is

buffered

or

whenever

the

elements

of

a

collection

are

so

close

that

the

buffers

around

the

single

elements

of

the

collection

overlap.

However,

when

the

buffers

are

separate,

individual

buffer

surfaces

result,

in

which

case

ST_Buffer

returns

a

multisurface.

The

following

figure

illustrates

the

buffer

around

single

and

overlapped

elements.

The

ST_Buffer

function

accepts

both

positive

and

negative

distance;

however,

only

geometries

with

a

dimension

of

two

(surfaces

and

multisurfaces)

apply

a

negative

buffer.

The

absolute

value

of

the

buffer

distance

is

used

whenever

the

dimension

of

the

source

geometry

is

less

than

2

(all

geometries

that

are

not

surfaces

or

multisurfaces).

In

general,

for

exterior

rings,

positive

buffer

distances

generate

surface

rings

that

are

away

from

the

center

of

the

source

geometry;

negative

buffer

distances

generate

surface

or

multisurface

rings

toward

the

center.

For

interior

rings

of

a

surface

or

multisurface,

a

positive

buffer

distance

generates

a

buffer

ring

toward

the

center,

and

a

negative

buffer

distance

generates

a

buffer

ring

away

from

the

center.

The

buffering

process

merges

surfaces

that

overlap.

Negative

distances

greater

than

one

half

the

maximum

interior

width

of

a

polygon

result

in

an

empty

geometry.

Figure

51.

ST_Buffer

Spatial

functions

Chapter

22.

Spatial

functions:

categories

and

uses

317

|

ST_ConvexHull

The

ST_ConvexHull

function

returns

the

convex

hull

of

any

geometry

that

has

at

least

three

vertices

forming

a

convex.

Vertices

are

the

pairs

of

X

and

Y

coordinates

within

geometries.

A

convex

hull

is

the

smallest

convex

polygon

that

can

be

formed

by

all

vertices

within

a

given

set

of

vertices.

The

following

illustration

shows

four

examples

of

convex

hull.

In

the

first

example

an

irregular

shape

resembling

the

letter

c

has

been

drawn.

The

c

is

closed

by

the

convex

hull.

In

the

fourth

example

there

are

four

points

with

lines

in

a

zig-zag

pattern.

The

convex

line

goes

between

points

four

and

two

on

one

side

and

three

and

one

on

the

other

side.

ST_Difference

ST_Difference

takes

two

geometries

of

the

same

dimension

as

input.

The

ST_Difference

function

returns

that

portion

of

the

first

geometry

that

is

not

intersected

by

the

second

geometry.

This

operation

is

the

spatial

equivalent

of

the

logical

AND

NOT.

The

portion

of

geometry

returned

by

ST_Difference

is

itself

a

geometry—a

collection

that

has

the

same

dimension

as

the

geometries

taken

as

input.

If

these

two

geometries

are

equal—that

is,

if

they

occupy

the

same

space—

the

returned

geometry

is

empty.

To

the

left

of

each

arrow

are

two

geometries

that

are

given

to

ST_Difference

as

input.

To

the

right

of

each

arrow

is

the

output

of

ST_Difference.

If

part

of

the

first

geometry

is

intersected

by

the

second,

the

output

is

that

part

of

the

first

geometry

that

is

not

intersected.

If

the

geometries

given

as

input

are

equal,

the

output

is

an

empty

geometry

(denoted

by

the

term

nil)

This

figure

illustrates

input

and

output

for

ST_Difference.

For

example,

if

input

is

points,

and

point

a

and

point

b

are

the

same,

the

output

would

be

null.

If

point

a

and

point

b

are

different,

output

would

be

a

new

point

between

the

two.

If

input

was

a

polygon

for

b

and

a

smaller

but

identical

polygon

for

geometry

a

inside

the

first,

the

outcome

would

be

null.

If

the

polygons

were

overlapping,

the

output

would

be

the

outer

edges

of

the

combined

polygons.

Figure

52.

ST_ConvexHull

Spatial

functions

318

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|
|
|
|

|
|
|
|
|
|

ST_Intersection

The

ST_Intersection

function

returns

a

set

of

points,

represented

as

a

geometry,

which

define

the

intersection

of

two

given

geometries.

If

the

geometries

given

to

ST_Intersection

as

input

do

not

intersect,

or

if

they

do,

and

the

dimension

of

their

intersection

is

less

than

the

geometries’

dimensions,

ST_Intersection

returns

an

empty

geometry.

To

the

left

of

each

arrow

are

two

intersecting

geometries

that

are

given

to

ST_Intersection

as

input.

To

the

right

of

each

arrow

is

the

output

of

ST_Intersection—a

geometry

that

represents

the

intersection

created

by

the

geometries

at

the

left.

This

figure

illustrates

ten

examples

of

output

of

ST_Intersection,

which

returns

information

on

where

given

geometries

intersect.

For

example,

if

b

was

a

linestring

and

geometry

a

was

a

point

on

the

line,

the

output

would

be

the

multipoint

where

geometry

a

and

geometry

b

converged.

If

geometry

a

and

geometry

b

were

overlapping

polygons,

the

output

would

be

a

new

multipolygon

of

only

that

portion

that

overlapped.

Figure

53.

ST_Difference

Spatial

functions

Chapter

22.

Spatial

functions:

categories

and

uses

319

|
|
|
|
|
|

ST_SymDifference

The

ST_SymDifference

function

returns

the

symmetric

difference

(the

spatial

equivalent

of

the

logical

XOR

operation)

of

two

intersecting

geometries

that

have

the

same

dimension.

If

these

geometries

are

equal,

ST_SymDifference

returns

an

empty

geometry.

If

they

are

not

equal,

then

a

portion

of

one

or

both

of

them

will

lie

outside

the

area

of

intersection.

Functions

that

derive

one

geometry

from

many

The

following

functions

derive

individual

geometries

from

multiple

geometries.

For

example,

ST_Union

combines

two

geometries

into

a

single

geometry.

MBR

Aggregate

The

combination

of

the

functions

ST_BuildMBRAggr

and

ST_GetAggrResult

aggregates

a

column

of

geometries

in

a

selected

column

to

a

single

geometry

by

constructing

a

rectangle

that

represents

the

minimum

bounding

rectangle

that

encloses

all

the

geometries

in

the

column.

Z

and

M

coordinates

are

discarded

when

the

aggregate

is

computed.

Figure

54.

ST_Intersection

Spatial

functions

320

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

ST_Union

The

ST_Union

function

returns

the

union

set

of

two

geometries.

This

operation

is

the

spatial

equivalent

of

the

logical

OR.

The

two

geometries

must

be

of

the

same

dimension.

ST_Union

always

returns

the

result

as

a

collection.

Union

Aggregate

A

union

aggregate

is

the

combination

of

the

ST_BuildUnionAggr

and

ST_GetAggrResult

functions.

This

combination

aggregates

a

column

of

geometries

in

a

table

to

a

single

geometry

by

constructing

the

union.

Functions

that

derive

new

geometries

based

on

measures

The

functions

explained

in

this

section

can

create

geometries

whose

points

are

associated

with

a

specific

measure

or

with

a

specific

sequence

of

two

measures.

For

example,

suppose

that

measures

ranging

from

a

value

of

4

to

a

value

of

8

are

stored

with

the

points

in

a

multicurve.

If

you

want

to

know

with

which

points

a

measure

with

a

value

of

7

is

stored,

you

could

use

the

ST_FindMeasure

function

to

return

those

points

within

a

single

multipoint.

These

functions

are:

v

ST_FindMeasure

(also

called

ST_LocateAlong)

v

ST_MeasureBetween

(also

called

ST_LocateBetween)

ST_FindMeasure

(also

called

ST_LocateAlong)

ST_FindMeasure

(or

ST_LocateAlong)

takes

a

geometry

and

measure

as

input

parameters.

It

returns

a

multipoint

or

multicurve

of

the

given

geometry

that

matched

the

specified

measure.

For

points

and

multipoints,

all

the

points

with

the

specified

measure

are

returned.

For

curves,

multicurves,

surfaces,

and

multisurfaces,

interpolation

is

performed

to

compute

the

result.

The

computation

for

surfaces

and

multisurfaces

is

performed

on

the

boundary

of

the

geometry.

ST_MeasureBetween

(also

called

ST_LocateBetween)

ST_MeasureBetween

(or

ST_LocateBetween)

takes

a

geometry

and

two

M

coordinates

(measures)

as

input

parameters

and

returns

that

part

of

the

given

geometry

that

represents

the

set

of

disconnected

paths

or

points

between

the

two

M

coordinates.

Figure

55.

ST_Union

Spatial

functions

Chapter

22.

Spatial

functions:

categories

and

uses

321

|
|
|
|
|
|

For

curves,

multicurves,

surfaces,

and

multisurfaces,

interpolation

is

performed

to

compute

the

result.

In

Figure

56

points

3,

4,

5,

6,

7,

8,

and

9

represent

a

curve.

If

the

two

M

coordiates

are

4

and

7,

ST_MeasureBetween

returns

the

part

of

the

curve

between

points

4

and

7.

Functions

that

create

modified

forms

of

existing

geometries

The

following

functions

create

modified

forms

of

existing

geometries.

For

example,

the

ST_AppendPoint

function

creates

extended

versions

of

existing

curves.

Each

version

includes

the

points

in

an

existing

curve

plus

an

additional

point.

These

functions

are:

v

ST_AppendPoint

v

ST_ChangePoint

v

ST_Generalize

v

ST_M

v

ST_PerpPoints

v

ST_RemovePoint

v

ST_X

v

ST_Y

v

ST_Z

ST_AppendPoint

ST_AppendPoint

takes

a

curve

and

a

point

as

input

parameters

and

extends

the

curve

by

the

given

point.

ST_ChangePoint

ST_ChangePoint

takes

a

curve

and

two

points

as

input

parameters.

It

replaces

all

occurrences

of

the

first

point

in

the

given

curve

with

the

second

point

and

returns

the

resulting

curve.

ST_Generalize

ST_Generalize

takes

a

geometry

and

a

threshold

as

input

parameters

and

represents

the

given

geometry

with

a

reduced

number

of

points,

while

preserving

the

general

characteristics

of

the

geometry.

The

Douglas-Peucker

line-simplification

algorithm

is

used,

by

which

the

sequence

of

points

that

define

the

geometry

is

recursively

subdivided

until

a

run

of

the

points

can

be

replaced

by

a

straight

line

segment.

In

this

line

segment,

none

of

the

defining

points

deviates

from

the

straight

line

segment

by

more

than

the

given

threshold.

Z

and

M

coordinates

are

not

considered

for

the

simplification.

Figure

56.

LocateBetween

Spatial

functions

322

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|
|

|

ST_M

If

a

given

point

is

not

associated

with

a

measure,

ST_M

can

provide

a

measure

to

be

stored

with

the

point.

If

the

point

has

an

associated

measure,

ST_M

can

replace

this

measure

with

another

one.

ST_PerpPoints

ST_PerpPoints

takes

a

curve

or

multicurve

and

a

point

as

input

parameters

and

returns

the

perpendicular

projection

of

the

given

point

on

the

curve

or

multicurve.

The

point

with

the

smallest

distance

between

the

given

point

and

the

perpendicular

point

is

returned.

If

two

or

more

such

perpendicular

projected

points

are

equidistant

from

the

given

point,

they

are

all

returned.

ST_RemovePoint

ST_RemovePoint

takes

a

curve

and

a

point

as

input

parameters

and

returns

the

given

curve

with

all

points

equal

to

the

specified

point

removed

from

it.

If

the

given

curve

has

Z

or

M

coordinates,

then

the

point

must

also

have

Z

or

M

coordinates.

ST_X

ST_X

can

replace

a

point’s

X

coordinate

with

another

X

coordinate.

ST_Y

ST_Y

can

replace

a

point’s

Y

coordinate

with

another

Y

coordinate.

ST_Z

If

a

given

point

has

no

Z

coordinate,

ST_Z

can

add

a

Z

coordinate

to

the

point.

If

the

point

does

have

a

Z

coordinate,

ST_Z

can

replace

this

coordinate

with

another

Z

coordinate.

Function

that

returns

distance

information

ST_Distance

takes

two

geometries

and,

optionally,

a

unit

as

input

parameters

and

returns

the

shortest

distance

between

any

point

in

the

first

geometry

to

any

point

in

the

second

geometry,

measured

in

the

given

units.

If

the

second

geometry

is

not

represented

in

the

same

spatial

reference

system

as

the

first

geometry,

it

will

be

converted

to

the

other

spatial

reference

system.

If

any

of

the

two

given

geometries

is

null

or

is

empty,

then

null

is

returned.

For

example,

ST_Distance

could

report

the

shortest

distance

an

aircraft

must

travel

between

two

locations.

Figure

57

on

page

324

illustrates

this

information.

Spatial

functions

Chapter

22.

Spatial

functions:

categories

and

uses

323

Function

that

returns

index

information

ST_GetIndexParms

takes

either

the

identifier

for

a

spatial

index

or

for

a

spatial

column

as

an

input

parameter

and

returns

the

parameters

used

to

define

the

index

or

the

index

on

the

spatial

column.

If

an

additional

parameter

number

is

specified,

only

the

parameter

identified

by

the

number

is

returned.

Conversions

between

coordinate

systems

ST_Transform

takes

a

geometry

and

a

spatial

reference

system

identifier

as

input

parameters

and

transforms

the

geometry

to

be

represented

in

the

given

spatial

reference

system.

Projections

and

conversions

between

different

coordinate

systems

are

performed

and

the

coordinates

of

the

geometries

are

adjusted

accordingly.

The

figure

shows

a

map

of

the

United

States

with

a

straight

line

between

points

labeled

Los

Angeles

and

Chicago.

Figure

57.

Minimum

distance

between

two

cities.

ST_Distance

can

take

the

coordinates

for

the

locations

of

Los

Angeles

and

Chicago

as

input,

and

return

a

value

denoting

the

minimum

distance

between

these

locations.

Spatial

functions

324

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|

Chapter

23.

Spatial

functions:

syntax

and

parameters

This

section

introduces

the

spatial

functions

described

in

the

following

sections.

It

discusses

certain

factors

that

are

common

to

all

or

most

spatial

functions.

The

functions

are

documented

here

in

alphabetical

order.

Spatial

functions:

considerations

and

associated

data

types

This

section

provides

information

that

you

need

to

know

when

you

code

spatial

functions.

This

information

includes:

v

Factors

to

consider:

the

requirement

to

specify

the

schema

to

which

spatial

functions

belong,

and

the

fact

that

some

functions

can

be

invoked

as

methods.

v

How

to

address

a

situation

in

which

a

spatial

function

cannot

process

the

type

of

geometries

returned

by

another

spatial

function.

v

A

table

showing

which

functions

take

values

of

each

spatial

data

type

as

input

Factors

to

consider

When

you

use

spatial

functions,

be

aware

of

these

factors:

v

Before

a

spatial

function

can

be

called,

its

name

must

be

qualified

by

the

name

of

the

schema

to

which

spatial

functions

belong:

DB2GSE.

One

way

to

do

this

is

to

explicitly

specify

the

schema

in

the

SQL

statement

that

references

the

function;

for

example:

SELECT

db2gse.ST_Relate

(g1,

g2,

’T*F**FFF2’)

EQUALS

FROM

relate_test

Alternatively,

to

avoid

specifying

the

schema

each

time

a

function

is

to

be

called,

you

can

add

DB2GSE

to

the

CURRENT

FUNCTION

PATH

special

register.

To

obtain

the

current

settings

for

this

special

register,

type

the

following

SQL

command:

VALUES

CURRENT

FUNCTION

PATH

To

update

the

CURRENT

FUNCTION

PATH

special

register

with

DB2GSE,

issue

the

following

SQL

command:

set

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

v

Some

spatial

functions

can

be

invoked

as

methods.

In

the

following

code,

for

example,

ST_Area

is

invoked

first

as

a

function

and

then

as

a

method.

In

both

cases,

ST_Area

is

coded

to

operate

on

a

polygon

that

has

an

ID

of

10

and

that

is

stored

in

the

SALES_ZONE

column

of

a

table

named

STORES.

When

invoked,

ST_Area

will

return

the

area

of

the

real-world

feature—Sales

Zone

no.

10—that

the

polygon

represents.

ST_Area

invoked

as

a

function:

SELECT

ST_Area(sales_zone)

FROM

stores

WHERE

id

=

10

ST_Area

invoked

as

a

method:

SELECT

sales_zone..ST_Area()

FROM

stores

WHERE

id

=

10

©

Copyright

IBM

Corp.

1998,

2004

325

Treating

values

of

ST_Geometry

as

values

of

a

subtype

If

a

spatial

function

returns

a

geometry

whose

static

type

is

a

super

type,

and

if

the

geometry

is

passed

to

a

function

that

accepts

only

geometries

of

a

type

that

is

subordinate

to

this

super

type,

a

compile-time

exception

is

raised.

For

example,

the

static

type

of

the

output

parameter

of

the

ST_Union

function

is

ST_Geometry,

the

super

type

of

all

spatial

data

types.

The

static

input

parameter

for

the

ST_PointOnSurface

function

can

be

either

ST_Polygon

or

ST_MultiPolygon,

two

subtypes

of

ST_Geometry.

If

DB2®

attempts

to

pass

geometries

returned

by

ST_Union

to

ST_PointOnSurface,

DB2

raises

the

following

compile-time

exception:

SQL00440N

No

function

by

the

name

"ST_POINTONSURFACE"

having

compatible

arguments

was

found

in

the

function

path.

SQLSTATE=42884

This

message

indicates

that

DB2

could

not

find

a

function

that

is

named

ST_PointOnSurface

and

that

has

an

input

parameter

of

ST_Geometry.

To

let

geometries

of

a

super

type

pass

to

functions

that

accept

only

subtypes

of

the

super

type,

use

the

TREAT

operator.

As

indicated

earlier,

ST_Union

returns

geometries

of

a

static

type

of

ST_Geometry.

It

can

also

return

geometries

of

a

dynamic

subtype

of

ST_Geometry.

Suppose,

for

example,

that

it

returns

a

geometry

with

a

dynamic

type

of

ST_MultiPolygon.

In

that

case,

the

TREAT

operator

requires

that

this

geometry

be

used

with

the

static

type

ST_MultiPolygon.

This

matches

one

of

the

data

types

of

the

input

parameter

of

ST_PointOnSurface.

If

ST_Union

does

not

return

an

ST_MultiPolygon

value,

DB2

raises

a

run-time

exception.

If

a

function

returns

a

geometry

of

a

super

type,

the

TREAT

operator

generally

can

tell

DB2

to

regard

this

geometry

as

a

subtype

of

this

super

type.

But

be

aware

that

this

operation

succeeds

only

if

the

subtype

matches

or

is

subordinate

to

a

static

subtype

defined

as

an

input

parameter

of

the

function

to

which

the

geometry

is

passed.

If

this

condition

is

not

met,

DB2

raises

a

run-time

exception.

Consider

another

example:

suppose

that

you

want

to

determine

the

perpendicular

points

for

a

given

point

on

the

boundary

of

a

polygon

that

has

no

holes.

You

use

the

ST_Boundary

function

to

derive

the

boundary

from

the

polygon.

The

static

output

parameter

of

ST_Boundary

is

ST_Geometry,

but

ST_PerpPoints

accepts

ST_Curve

geometries.

Because

all

polygons

have

a

linestring

(which

is

also

a

curve)

as

a

boundary,

and

because

the

data

type

of

linestrings

(ST_LineString)

is

subordinate

to

ST_Curve,

the

following

operation

will

let

an

ST_Geometry

polygon

returned

by

ST_Boundary

pass

to

ST_PerpPoints:

SELECT

ST_AsText(ST_PerpPoints(TREAT(ST_Boundary(polygon)

as

ST_Curve)),

ST_Point(30.5,

65.3,

1)))

FROM

polygon_table

Instead

of

invoking

ST_Boundary

and

ST_PerpPoints

as

functions,

you

can

invoke

them

as

methods.

To

do

so,

specify

the

following

code:

SELECT

TREAT(ST_Boundary(polygon)

as

ST_Curve)..

ST_PerpPoints(St_Point(30.5,

65.3,

))..ST_AsText()

FROM

polygon_table

Spatial

functions

listed

according

to

input

type

Table

56

on

page

327

lists

the

spatial

functions

according

to

the

type

of

input

that

they

can

accept.

Considerations

for

spatial

functions

326

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Important:

As

noted

elsewhere,

the

spatial

data

types

form

a

hierarchy,

with

ST_Geometry

as

the

root.

When

the

documentation

for

DB2

Spatial

Extender

indicates

that

a

value

of

a

super

type

in

this

hierarchy

can

be

used

as

input

to

a

function,

alternatively,

a

value

of

any

subtype

of

this

super

type

can

also

be

used

as

input

to

the

function.

For

example,

the

first

entries

in

Table

56

indicate

that

ST_Area

and

a

number

of

other

functions

can

take

values

of

the

ST_Geometry

data

type

as

input.

Therefore,

input

to

these

functions

can

also

be

values

of

any

subtype

of

ST_Geometry:

ST_Point,

ST_Curve,

ST_LineString,

and

so

on.

Table

56.

Spatial

functions

listed

according

to

input

type

Data

type

of

input

parameter

Function

ST_Geometry

EnvelopesIntersect

ST_Area

ST_AsBinary

ST_AsGML

ST_AsShape

ST_AsText

ST_Boundary

ST_Buffer

ST_BuildMBRAggr

ST_BuildUnionAggr

ST_Centroid

ST_Contains

ST_ConvexHull

ST_CoordDim

ST_Crosses

ST_Difference

ST_Dimension

ST_Disjoint

ST_Distance

ST_Envelope

ST_EnvIntersects

ST_Equals

ST_FindMeasure

or

ST_LocateAlong

ST_Generalize

ST_GeometryType

Considerations

for

spatial

functions

Chapter

23.

Spatial

functions:

syntax

and

parameters

327

|

|

Table

56.

Spatial

functions

listed

according

to

input

type

(continued)

Data

type

of

input

parameter

Function

ST_Geometry,

continued

ST_Intersection

ST_Intersects

ST_Is3D

ST_IsEmpty

ST_IsMeasured

ST_IsSimple

ST_IsValid

ST_MaxM

ST_MaxX

ST_MaxY

ST_MaxZ

ST_MBR

ST_MBRIntersects

ST_MeasureBetween

or

ST_LocateBetween

ST_MinM

ST_MinX

ST_MinY

ST_MinZ

ST_NumPoints

ST_Overlaps

ST_Relate

ST_SRID

or

ST_SrsId

ST_SrsName

ST_SymDifference

ST_ToGeomColl

ST_ToLineString

ST_ToMultiLine

ST_ToMultiPoint

ST_ToMultiPolygon

ST_ToPoint

ST_ToPolygon

ST_Touches

ST_Transform

ST_Union

ST_Within

ST_Point

ST_M

ST_X

ST_Y

ST_Z

ST_Curve

ST_AppendPoint

ST_ChangePoint

ST_EndPoint

ST_IsClosed

ST_IsRing

ST_Length

ST_MidPoint

ST_PerpPoints

ST_RemovePoint

ST_StartPoint

ST_LineString

ST_PointN

ST_Polygon

ST_Surface

ST_Perimeter

ST_PointOnSurface

ST_GeomCollection

ST_GeometryN

ST_NumGeometries

Considerations

for

spatial

functions

328

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

Table

56.

Spatial

functions

listed

according

to

input

type

(continued)

Data

type

of

input

parameter

Function

ST_MultiPoint

ST_PointN

ST_MultiCurve

ST_IsClosed

ST_Length

ST_PerpPoints

ST_MultiLineString

ST_LineStringN

ST_NumLineStrings

ST_Polygon

ST_MultiSurface

ST_Perimeter

ST_PointOnSurface

ST_MultiPolygon

ST_NumPolygons

ST_PolygonN

The

functions

ST_BuildMBRAggr

and

ST_BuildUnionAggr

are

described

in

″MBR

Aggregate″

and

″Union

Aggregate″,

respectively.

Related

reference:

v

“MBR

Aggregate”

on

page

331

v

“ST_Boundary”

on

page

342

v

“ST_Area”

on

page

334

v

“ST_PerpPoints”

on

page

450

v

“ST_Point”

on

page

452

v

“ST_PointOnSurface”

on

page

459

v

“ST_Relate”

on

page

466

v

“ST_Union”

on

page

484

v

“Union

aggregate”

on

page

494

EnvelopesIntersect

EnvelopesIntersect

accepts

two

types

of

input

parameters:

v

Two

geometries

EnvelopesIntersect

returns

1

if

the

envelope

of

the

first

geometry

intersects

the

envelope

of

the

second

geometry.

Otherwise,

0

(zero)

is

returned.

v

A

geometry,

four

type

DOUBLE

coordinate

values

that

define

the

lower-left

and

upper-right

corners

of

a

rectangular

window,

and

the

spatial

reference

system

identifier.

EnvelopesIntersect

returns

1

if

the

envelope

of

the

first

geometry

intersects

with

the

envelope

defined

by

the

four

type

DOUBLE

values.

Otherwise,

0

(zero)

is

returned.

Syntax:

��

db2gse.EnvelopesIntersect

(

geometry1

,

geometry2

)

rectangular-window

��

Considerations

for

spatial

functions

Chapter

23.

Spatial

functions:

syntax

and

parameters

329

|
|

|

|

|

|
|

|
|
|

|
|
|

|

||||||||||||||||||||||||

|

rectangular-window:

x_min

,

y_min

,

x_max

,

y_max

,

srs_id

Parameters:

geometry1

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

whose

envelope

is

to

be

tested

for

intersection

with

the

envelope

of

either

geometry2

or

the

rectangular

window

defined

by

the

four

type

DOUBLE

values.

geometry2

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

whose

envelope

is

to

be

tested

for

intersection

with

the

envelope

of

geometry1.

x_min

Specifies

the

minimum

X

coordinate

value

for

the

envelope.

You

must

specify

a

non-null

value

for

this

parameter.

The

data

type

of

this

parameter

is

DOUBLE.

For

geodetic

data,

the

following

conditions

apply:

v

x_min

must

be

a

longitude

value

between

–180

and

180

degrees.

v

x_min

is

greater

than

x_max

when

the

envelope

overlaps

the

180th

meridian.

y_min

Specifies

the

minimum

Y

coordinate

value

for

the

envelope.

You

must

specify

a

non-null

value

for

this

parameter.

The

data

type

of

this

parameter

is

DOUBLE.

For

geodetic

data,

the

following

conditions

apply:

v

y_min

must

be

a

latitude

value

between

–90

and

90

degrees.

v

y_min

must

be

less

than

the

y_max

value.

x_max

Specifies

the

maximum

X

coordinate

value

for

the

envelope.

You

must

specify

a

non-null

value

for

this

parameter.

The

data

type

of

this

parameter

is

DOUBLE.

For

geodetic

data,

the

following

conditions

apply:

v

x_max

must

be

a

longitude

value

between

–180

and

180

degrees.

v

x_max

is

less

than

the

x_min

value

when

the

envelope

overlaps

the

180th

meridian.

y_max

Specifies

the

maximum

Y

coordinate

value

for

the

envelope.

You

must

specify

a

non-null

value

for

this

parameter.

The

data

type

of

this

parameter

is

DOUBLE.

For

geodetic

data,

the

following

conditions

apply:

v

y_max

must

be

a

latitude

value

between

–90

and

90

degrees.

v

y_max

must

be

greater

than

the

y_min

value.

srs_id

Uniquely

identifies

the

spatial

reference

system.

The

spatial

reference

system

Considerations

for

spatial

functions

330

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|||||||||||||||||||||||||
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|

|

|

|

|
|
|

|

|

|

|

|
|
|

|

|

|

|
|

|
|
|

|

|

|

|

|
|

identifier

must

match

the

spatial

reference

system

identifier

of

the

geometry

parameter.

You

must

specify

a

non-null

value

for

this

parameter.

The

data

type

of

this

parameter

is

INTEGER.

Return

type:

INTEGER

Example:

This

example

creates

two

polygons

that

represent

counties

and

then

determines

if

any

of

them

intersect

a

geographic

area

specified

by

the

four

type

DOUBLE

values.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

counties

(id

INTEGER,

name

CHAR(20),

geometry

ST_Polygon)

INSERT

INTO

counties

VALUES

(1,

’County_1’,

ST_Polygon(’polygon((0

0,

30

0,

40

30,

40

35,

5

35,

5

10,

20

10,

20

5,

0

0))’

,0))

INSERT

INTO

counties

VALUES

(2,

’County_2’,

ST_Polygon(’polygon((15

15,

15

20,

60

20,

60

15,

15

15))’

,0))

INSERT

INTO

counties

VALUES

(3,

’County_3’,

ST_Polygon(’polygon((115

15,

115

20,

160

20,

160

15,

115

15))’

,0))

SELECT

name

FROM

counties

as

c

WHERE

EnvelopesIntersect(c.geometry,

15,

15,

60,

20,

0)

=1

Results:

Name

County_1

County_2

MBR

Aggregate

The

combination

of

the

functions

ST_BuildMBRAggr

and

ST_GetAggrResult

aggregates

a

column

of

geometries

in

a

selected

column

to

a

single

geometry

by

constructing

a

rectangle

that

represents

the

minimum

bounding

rectangle

that

encloses

all

the

geometries

in

the

column.

Z

and

M

coordinates

are

discarded

when

the

aggregate

is

computed.

If

all

of

the

geometries

to

be

combined

are

null,

then

null

is

returned.

If

all

of

the

geometries

are

either

null

or

empty,

then

an

empty

geometry

is

returned.

If

the

minimum

bounding

rectangle

of

all

the

geometries

to

be

combined

results

in

a

point,

then

this

point

is

returned

as

an

ST_Point

value.

If

the

minimum

bounding

rectangle

of

all

the

geometries

to

be

combined

results

in

a

horizontal

or

vertical

linestring,

then

this

linestring

is

returned

as

an

ST_LineString

value.

Otherwise,

the

minimum

bounding

rectangle

is

returned

as

an

ST_Polygon

value.

Syntax:

Considerations

for

spatial

functions

Chapter

23.

Spatial

functions:

syntax

and

parameters

331

|
|

|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|

��

db2gse.ST_GetAggrResult

(

MAX

(

�

�

db2gse.ST_BuildMBRAggr

(

geometries

)

)

)

��

Parameter:

geometries

A

selected

column

that

has

a

type

of

ST_Geometry

or

one

of

its

subtypes

and

represents

all

the

geometries

for

which

the

minimum

bounding

rectangle

is

to

be

computed.

Return

type:

db2gse.ST_Geometry

Restrictions:

You

cannot

construct

the

union

aggregate

of

a

spatial

column

in

a

full-select

in

any

of

the

following

situations:

v

In

an

MPP

environment.

v

If

GROUP

BY

clause

is

used

in

the

full-select.

v

If

you

use

a

function

other

than

the

DB2

aggregate

function

MAX.

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

This

example

shows

how

to

use

the

ST_BuildMBRAggr

function

to

obtain

the

maximum

bounding

rectangle

of

all

of

the

geometries

within

a

column.

In

this

example,

several

points

are

added

to

the

GEOMETRY

column

in

the

SAMPLE_POINTS

table.

The

SQL

code

then

determines

the

maximum

bounding

rectangle

of

all

of

the

points

put

together.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_points

(id

integer,

geometry

ST_Point)

INSERT

INTO

sample_points

(id,

geometry)

VALUES

(1,

ST_Point(2,

3,

1)),

(2,

ST_Point(4,

5,

1)),

(3,

ST_Point(13,

15,

1)),

(4,

ST_Point(12,

5,

1)),

(5,

ST_Point(23,

2,

1)),

(6,

ST_Point(11,

4,

1))

SELECT

cast(ST_GetAggrResult(MAX(ST_BuildMBRAggr

(geometry)))..ST_AsText

AS

varchar(160))

AS

";Aggregate_of_Points";

FROM

sample_points

Results:

Aggregate_of_Points

--

POLYGON

((

2.00000000

2.00000000,

23.00000000

2.00000000,

23.00000000

15.00000000,

2.00000000

15.00000000,

2.00000000

2.00000000))

MBR

Aggregate

332

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

ST_AppendPoint

ST_AppendPoint

takes

a

curve

and

a

point

as

input

parameters

and

extends

the

curve

by

the

given

point.

If

the

given

curve

has

Z

or

M

coordinates,

then

the

point

must

also

have

Z

or

M

coordinates.

The

resulting

curve

is

represented

in

the

spatial

reference

system

of

the

given

curve.

If

the

point

to

be

appended

is

not

represented

in

the

same

spatial

reference

system

as

the

curve,

it

will

be

converted

to

the

other

spatial

reference

system.

If

the

given

curve

is

closed

or

simple,

the

resulting

curve

might

not

be

closed

or

simple

anymore.

If

the

given

curve

or

point

is

null,

or

if

the

curve

is

empty,

then

null

is

returned.

If

the

point

to

be

appended

is

empty,

then

the

given

curve

is

returned

unchanged

and

a

warning

is

raised

(SQLSTATE

01HS3).

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_AppendPoint

(

curve

,

point

)

��

Parameter:

curve

A

value

of

type

ST_Curve

or

one

of

its

subtypes

that

represents

the

curve

to

which

point

will

be

appended.

point

A

value

of

type

ST_Point

that

represents

the

point

that

is

appended

to

curve.

Return

type:

db2gse.ST_Curve

Examples:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

This

code

creates

two

linestrings,

each

with

three

points.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_lines(id

integer,

line

ST_Linestring)

INSERT

INTO

sample_lines

VALUES

(1,

ST_LineString(’linestring

(10

10,

10

0,

0

0

)’,

0)

)

INSERT

INTO

sample_lines

VALUES

(2,

ST_LineString(’linestring

z

(0

0

4,

5

5

5,

10

10

6)’,

0)

)

Example

1:

This

example

adds

the

point

(5,

5)

to

the

end

of

a

linestring.

SELECT

CAST(ST_AsText(ST_AppendPoint(line,

ST_Point(5,

5)))

AS

VARCHAR(120))

New

FROM

sample_lines

WHERE

id=1

Results:

ST_AppendPoint

Chapter

23.

Spatial

functions:

syntax

and

parameters

333

NEW

--

LINESTRING

(

10.00000000

10.00000000,

10.00000000

0.00000000,

0.00000000

0.00000000,

5.00000000

5.00000000)

Example

2:

This

example

adds

the

point

(15,

15,

7)

to

the

end

of

a

linestring

with

Z

coordinates.

SELECT

CAST(ST_AsText(ST_AppendPoint(line,

ST_Point(15.0,

15.0,

7.0)))

AS

VARCHAR(160))

New

FROM

sample_lines

WHERE

id=2

Results:

NEW

--

LINESTRING

Z

(

0.00000000

0.00000000

4.00000000,

5.00000000

5.00000000

5.00000000,

10.00000000

10.00000000

6.00000000,

15.00000000

15.00000000

7.00000000)

ST_Area

ST_Area

takes

a

geometry

and,

optionally,

a

unit

as

input

parameters

and

returns

the

area

covered

by

the

geometry

in

either

the

default

or

given

unit

of

measure.

If

the

geometry

is

a

polygon

or

multipolygon,

then

the

area

covered

by

the

geometry

is

returned.

The

area

of

points,

linestrings,

multipoints,

and

multilinestrings

is

0

(zero).

If

the

geometry

is

null

or

is

an

empty

geometry,

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_Area

(

geometry

)

,

unit

��

Parameters:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

that

determines

the

area.

unit

A

VARCHAR(128)

value

that

identifies

the

units

in

which

the

area

is

measured.

The

supported

units

of

measure

are

listed

in

the

DB2GSE.ST_UNITS_OF_MEASURE

catalog

view.

If

the

unit

parameter

is

omitted,

the

following

rules

are

used

to

determine

the

unit

in

which

the

area

is

measured:

v

If

geometry

is

in

a

projected

or

geocentric

coordinate

system,

the

linear

unit

associated

with

this

coordinate

system

is

used.

v

If

geometry

is

in

a

geographic

coordinate

system,

but

is

not

in

a

geodetic

spatial

reference

system

(SRS),

the

angular

unit

associated

with

this

coordinate

system

is

used.

ST_AppendPoint

334

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|

|
|

|
|

v

If

geometry

is

in

a

geodetic

SRS,

the

default

unit

of

measure

is

square

meters.

Restrictions

on

unit

conversions:

An

error

(SQLSTATE

38SU4)

is

returned

if

any

of

the

following

conditions

occur:

v

The

geometry

is

in

an

unspecified

coordinate

system

and

the

unit

parameter

is

specified.

v

The

geometry

is

in

a

projected

coordinate

system

and

an

angular

unit

is

specified.

v

The

geometry

is

in

a

geographic

coordinate

system,

but

is

not

in

a

geodetic

SRS,

and

a

linear

unit

is

specified.

v

The

geometry

is

in

a

geographic

coordinate

system,

is

in

a

geodetic

SRS,

and

an

angular

unit

is

specified.

Return

type:

DOUBLE

Examples:

Example

1:

The

spatial

analyst

needs

a

list

of

the

area

covered

by

each

sales

region.

The

sales

region

polygons

are

stored

in

the

SAMPLE_POLYGONS

table.

The

area

is

calculated

by

applying

the

ST_Area

function

to

the

geometry

column.

db2se

create_srs

se_bank

-srsId

4000

-srsName

new_york1983

-xOffset

0

-yOffset

0

-xScale

1

-yScale

1

-coordsysName

NAD_1983_StatePlane_New_York_East_FIPS_3101_Feet

CREATE

TABLE

sample_polygons

(id

INTEGER,

geometry

ST_POLYGON)

INSERT

INTO

sample_polygons

(id,

geometry)

VALUES

(1,

ST_Polygon(’polygon((0

0,

0

10,

10

10,

10

0,

0

0))’,

4000)

),

(2,

ST_Polygon(’polygon((20

0,

30

20,

40

0,

20

0

))’,

4000)

),

(3,

ST_Polygon(’polygon((20

30,

25

35,

30

30,

20

30))’,

4000))

The

following

SELECT

statement

retrieves

the

sales

region

ID

and

area:

SELECT

id,

ST_Area(geometry)

AS

area

FROM

sample_polygons

Results:

ID

AREA

1

+1.00000000000000E+002

2

+2.00000000000000E+002

3

+2.50000000000000E+001

Example

2:

The

following

SELECT

statement

retrieves

the

sales

region

ID

and

area

in

various

units:

ST_Area

Chapter

23.

Spatial

functions:

syntax

and

parameters

335

|
|

|
|

|
|

|
|

|
|

|
|

SELECT

id,

ST_Area(geometry)

square_feet,

ST_Area(geometry,

’METER’)

square_meters,

ST_Area(geometry,

’STATUTE

MILE’)

square_miles

FROM

sample_polygons

Results:

ID

SQUARE_FEET

SQUARE_METERS

SQUARE_MILES

1

+1.00000000000000E+002

+9.29034116132748E+000

+3.58702077598427E-006

2

+2.00000000000000E+002

+1.85806823226550E+001

+7.17404155196855E-006

3

+2.50000000000000E+001

+2.32258529033187E+000

+8.96755193996069E-007

Example

3:

This

example

finds

the

area

of

a

polygon

defined

in

State

Plane

coordinates.

The

State

Plane

spatial

reference

system

with

an

ID

of

3

is

created

with

the

following

command:

db2se

create_srs

SAMP_DB

-srsId

3

-srsName

z3101a

-xOffset

0

-yOffset

0

-xScale

1

-yScale

1

-coordsysName

NAD_1983_StatePlane_New_York_East_FIPS_3101_Feet

The

following

SQL

statements

add

the

polygon,

in

spatial

reference

system

3,

to

the

table

and

determines

the

area

in

square

feet,

square

meters,

and

square

miles.

SET

current

function

path

db2gse;

CREATE

TABLE

Sample_Poly3

(id

integer,

geometry

ST_Polygon);

INSERT

into

Sample_Poly3

VALUES

(1,

ST_Polygon(’polygon((567176.0

1166411.0,

567176.0

1177640.0,

637948.0

1177640.0,

637948.0

1166411.0,

567176.0

1166411.0

))’,

3));

SELECT

id,

ST_Area(geometry)

"Square

Feet",

ST_Area(geometry,

’METER’)

"Square

Meters",

ST_Area(geometry,

’STATUTE

MILE’)

"Square

Miles"

FROM

Sample_Poly3;

Results:

ID

Square

Feet

Square

Meters

Square

Miles

1

+7.94698788000000E+008

+7.38302286101346E+007

+2.85060106320552E+001

Example

4:

The

spatial

analyst

needs

a

list

of

the

area

covered

by

each

region

of

exploration.

The

exploration

region

polygons

are

stored

in

the

SAMPLE_GEODETIC_TAB

table,

and

they

include

the

following

regions:

v

A

region

around

the

North

Pole

v

A

region

around

the

South

Pole

v

A

region

that

straddles

the

180th

Meridian

The

second

field

in

the

following

input

file,

samp_wkt_rows.txt,

contains

polygons

that

represent

these

regions:

1|’polygon((5

82,15

82,25

82,35

82,45

82,55

82,65

82,75

82,85

82,95

82,

105

82,115

82,125

82,135

82,145

82,155

82,165

82,175

82,-175

82,-165

82,

-155

82,-145

82,-135

82,-125

82,-115

82,-105

82,-95

82,-85

82,-75

82,

-65

82,-55

82,-45

82,-35

82,-25

82,-15

82,-5

82,5

82))’|’North

Pole

region’

2|’polygon((175

-82,165

-82,155

-82,145

-82,135

-82,125

-82,115

-82,

105

-82,95

-82,85

-82,75

-82,65

-82,55

-82,45

-82,35

-82,25

-82,15

-82,

ST_Area

336

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|

|

|
|
|

|

|

|

|
|

|
|
|
|
|
|

5

-82,-5

-82,-15

-82,-25

-82,-35

-82,-45

-82,-55

-82,-65

-82,-75

-82,

-85

-82,-95

-82,-105

-82,-115

-82,-125

-82,-135

-82,-145

-82,-155

-82,

-165

-82,-175

-82,175

-82))’|’South

Pole

region’

3|’polygon((-175

-42,-175

1,-175

42,175

42,175

-1,175

-42,-175

-42))

’|’180th

meridian’

The

following

SQL

statements

add

the

polygons,

in

geodetic

spatial

reference

system

2000000000,

to

the

SAMPLE_GEODETIC_TAB

table.

SET

current

function

path

db2gse;

CREATE

TABLE

db2se_samp.gsege_temp_samp

(

gid

INTEGER,

g1_wkt

varchar(500),

comment

varchar(255)

)

NOT

LOGGED

INITIALLY;

LOAD

FROM

samp_wkt_rows.txt

OF

DEL

MODIFIED

BY

CHARDEL’’

COLDEL|

INSERT

INTO

db2se_samp.gsege_temp_samp;

CREATE

TABLE

sample_geodetic_tab

(gid

INTEGER

NOT

NULL

PRIMARY

KEY,

geometry

ST_Geometry),

comment

varchar(255));

INSERT

INTO

sample_geodetic_tab

SELECT

gid,

ST_GeomFromText(g1_wkt,

2000000000),

comment

FROM

db2se_samp.gsege_temp_samp;

The

ST_Area

function

calculates

the

area

of

the

polygon

in

the

geometry

column.

The

default

unit

of

measure

from

ST_Area

is

square

meters.

The

following

SELECT

statement

retrieves

the

exploration

region

ID

and

area

in

square

meters,

square

feet,

and

square

miles

.

SELECT

id,

ST_Area(geometry)

AS

SQUARE_METERS,

ST_Area(geometry,’FOOT’)

AS

SQUARE_FEET,

ST_Area(geometry,

’STATUTE

MILE’)

AS

SQUARE_MILES

FROM

sample_geodetic_tab

WHERE

id

BETWEEN

1

AND

9

ORDER

BY

id;

ID

SQUARE_METERS

SQUARE_FEET

SQUARE_MILES

1

+2.52472719957839E+012

+2.71759374028922E+013

+9.74802621488040E+005

2

+2.52475431563494E+012

+2.71762292776957E+013

+9.74813091056005E+005

3

+9.43568029137069E+012

+1.01564817377028E+014

+3.64313652781464E+006

Related

reference:

v

“Spatial

functions

supported

by

DB2

Geodetic

Extender”

on

page

202

v

“The

DB2GSE.ST_UNITS_OF_MEASURE

catalog

view”

on

page

285

ST_AsBinary

ST_AsBinary

takes

a

geometry

as

an

input

parameter

and

returns

its

well-known

binary

representation.

The

Z

and

M

coordinates

are

discarded

and

will

not

be

represented

in

the

well-known

binary

representation.

If

the

given

geometry

is

null,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_AsBinary

(

geometry

)

��

Parameter:

ST_Area

Chapter

23.

Spatial

functions:

syntax

and

parameters

337

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

to

be

converted

to

the

corresponding

well-known

binary

representation.

Return

type:

BLOB(2G)

Examples:

The

following

code

illustrates

how

to

use

the

ST_AsBinary

function

to

convert

the

points

in

the

geometry

columns

of

the

SAMPLE_POINTS

table

into

well-known

binary

(WKB)

representation

in

the

BLOB

column.

CREATE

TABLE

SAMPLE_POINTS

(id

integer,

geometry

ST_POINT,

wkb

BLOB(32K))

INSERT

INTO

SAMPLE_POINTS

(id,

geometry)

VALUES

(1100,

ST_Point(10,

20,

1))

Example

1:

This

example

populates

the

WKB

column,

with

an

ID

of

1111,

from

the

GEOMETRY

column,

with

an

ID

of

1100.

INSERT

INTO

sample_points(id,

wkb)

VALUES

(1111,

(SELECT

ST_AsBinary(geometry)

FROM

sample_points

WHERE

id

=

1100))

SELECT

id,

cast(ST_Point(wkb)..ST_AsText

AS

varchar(35))

AS

point

FROM

sample_points

WHERE

id

=

1111

Results:

ID

Point

1111

POINT

(

10.00000000

20.00000000)

Example

2:

This

example

displays

the

WKB

binary

representation.

SELECT

id,

substr(ST_AsBinary(geometry),

1,

21)

AS

point_wkb

FROM

sample_points

WHERE

id

=

1100

Results:

ID

POINT_WKB

1100

x’010100000000000000000024400000000000003440’

Related

reference:

v

“Well-known

binary

(WKB)

representation”

on

page

508

ST_AsBinary

338

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

ST_AsGML

ST_AsGML

takes

a

geometry

as

an

input

parameter

and

returns

its

representation

using

the

geography

markup

language.

If

the

given

geometry

is

null,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_AsGML

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

to

be

converted

to

the

corresponding

GML

representation.

Return

type:

CLOB(2G)

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

The

following

code

fragment

illustrates

how

to

use

the

ST_AsGML

function

to

view

the

GML

fragment.

This

example

populates

the

GML

column,

from

the

geometry

column,

with

an

ID

of

2222.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

SAMPLE_POINTS

(id

integer,

geometry

ST_POINT,

gml

CLOB(32K))

INSERT

INTO

SAMPLE_POINTS

(id,

geometry)

VALUES

(1100,

ST_Point(10,

20,

1))

INSERT

INTO

sample_points(id,

gml)

VALUES

(2222,

(SELECT

ST_AsGML(geometry)

FROM

sample_points

WHERE

id

=

1100))

The

following

SELECT

statement

lists

the

ID

and

the

GML

representation

of

the

geometries.

The

geometry

is

converted

to

a

GML

fragment

by

the

ST_AsGML

function.

SELECT

id,

cast(ST_AsGML(geometry)

AS

varchar(110))

AS

gml_fragment

FROM

sample_points

WHERE

id

=

1100

Results:

The

SELECT

statement

returns

the

following

result

set:

ID

GML_FRAGMENT

--

ST_AsGML

Chapter

23.

Spatial

functions:

syntax

and

parameters

339

1100

<gml:Point

srsName";EPSG:4269";><gml:coord>

<gml:X>10</gml:X><gml:Y>20</gml:Y>

</gml:coord></gml:Point>

Related

reference:

v

“Spatial

functions

that

convert

geometry

values

to

data

exchange

formats”

on

page

287

v

“Geography

Markup

Language

(GML)

representation”

on

page

510

ST_AsShape

ST_AsShape

takes

a

geometry

as

an

input

parameter

and

returns

its

ESRI

shape

representation.

If

the

given

geometry

is

null,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_AsShape

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

to

be

converted

to

the

corresponding

ESRI

shape

representation.

Return

type:

BLOB(2G)

Example:

The

following

code

fragment

illustrates

how

to

use

the

ST_AsShape

function

to

convert

the

points

in

the

geometry

column

of

the

SAMPLE_POINTS

table

into

shape

binary

representation

in

the

shape

BLOB

column.

This

example

populates

the

shape

column

from

the

geometry

column.

The

shape

binary

representation

is

used

to

display

the

geometries

in

geobrowsers,

which

require

geometries

to

comply

with

the

ESRI

shapefile

format,

or

to

construct

the

geometries

for

the

*.SHP

file

of

the

shape

file.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

SAMPLE_POINTS

(id

integer,

geometry

ST_POINT,

shape

BLOB(32K))

INSERT

INTO

SAMPLE_POINTS

(id,

geometry)

VALUES

(1100,

ST_Point(10,

20,

1))

INSERT

INTO

sample_points(id,

shape)

VALUES

(2222,

(SELECT

ST_AsShape(geometry)

FROM

sample_points

WHERE

id

=

1100))

ST_AsGML

340

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

SELECT

id,

substr(ST_AsShape(geometry),

1,

20)

AS

shape

FROM

sample_points

WHERE

id

=

1100

Returns:

ID

SHAPE

1100

x’0100000000000000000024400000000000003440’

Related

reference:

v

“Shape

representation”

on

page

510

ST_AsText

ST_AsText

takes

a

geometry

as

an

input

parameter

and

returns

its

well-known

text

representation.

If

the

given

geometry

is

null,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_AsText

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

to

be

converted

to

the

corresponding

well-known

text

representation.

Return

type:

CLOB(2G)

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

After

capturing

and

inserting

the

data

into

the

SAMPLE_GEOMETRIES

table,

an

analyst

wants

to

verify

that

the

values

inserted

are

correct

by

looking

at

the

well-known

text

representation

of

the

geometries.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geometries(id

SMALLINT,

spatial_type

varchar(18),

geometry

ST_GEOMETRY)

INSERT

INTO

sample_geometries(id,

spatial_type,

geometry)

VALUES

(1,

’st_point’,

ST_Point(50,

50,

0)),

(2,

’st_linestring’,

ST_LineString(’linestring

(200

100,

210

130,

220

140)’,

0)),

(3,

’st_polygon’,

ST_Polygon(’polygon((110

120,

110

140,

130

140,

130

120,

110

120))’,

0))

ST_AsShape

Chapter

23.

Spatial

functions:

syntax

and

parameters

341

The

following

SELECT

statement

lists

the

spatial

type

and

the

WKT

representation

of

the

geometries.

The

geometry

is

converted

to

text

by

the

ST_AsText

function.

It

is

then

cast

to

a

varchar(120)

because

the

default

output

of

the

ST_AsText

function

is

CLOB(2G).

SELECT

id,

spatial_type,

cast(geometry..ST_AsText

AS

varchar(150))

AS

wkt

FROM

sample_geometries

Results:

ID

SPATIAL_TYPE

WKT

--

1

st_point

POINT

(

50.00000000

50.00000000)

2

st_linestring

LINESTRING

(

200.00000000

100.00000000,

210.00000000

130.00000000,

220.00000000

140.00000000)

3

st_polygon

POLYGON

((

110.00000000

120.00000000,

130.00000000

120.00000000,

130.00000000

140.00000000,

110.00000000140.00000000,

110.00000000

120.00000000))

Related

reference:

v

“Well-known

text

(WKT)

representation”

on

page

503

ST_Boundary

ST_Boundary

takes

a

geometry

as

an

input

parameter

and

returns

its

boundary

as

a

new

geometry.

The

resulting

geometry

is

represented

in

the

spatial

reference

system

of

the

given

geometry.

If

the

given

geometry

is

a

point,

multipoint,

closed

curve,

or

closed

multicurve,

or

if

it

is

empty,

then

the

result

is

an

empty

geometry

of

type

ST_Point.

For

curves

or

multicurves

that

are

not

closed,

the

start

points

and

end

points

of

the

curves

are

returned

as

an

ST_MultiPoint

value,

unless

such

a

point

is

the

start

or

end

point

of

an

even

number

of

curves.

For

surfaces

and

multisurfaces,

the

curve

defining

the

boundary

of

the

given

geometry

is

returned,

either

as

an

ST_Curve

or

an

ST_MultiCurve

value.

If

the

given

geometry

is

null,

then

null

is

returned.

If

possible,

the

specific

type

of

the

returned

geometry

will

be

ST_Point,

ST_LineString,

or

ST_Polygon.

For

example,

the

boundary

of

a

polygon

with

no

holes

is

a

single

linestring,

represented

as

ST_LineString.

The

boundary

of

a

polygon

with

one

or

more

holes

consists

of

multiple

linestrings,

represented

as

ST_MultiLineString.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_Boundary

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes.

The

boundary

of

this

geometry

is

returned.

ST_AsText

342

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Return

type:

db2gse.ST_Geometry

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

This

example

creates

several

geometries

and

determines

the

boundary

of

each

geometry.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geoms

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geoms

VALUES

(1,

ST_Polygon(’polygon((40

120,

90

120,

90

150,

40

150,

40

120))’,

0))

INSERT

INTO

sample_geoms

VALUES

(2,

ST_Polygon(’polygon((40

120,

90

120,

90

150,

40

150,

40

120),

(70

130,

80

130,

80

140,

70

140,

70

130))’

,0))

INSERT

INTO

sample_geoms

VALUES

(3,

ST_Geometry(’linestring(60

60,

65

60,

65

70,

70

70)’

,0))

INSERT

INTO

sample_geoms

VALUES

(4,

ST_Geometry(’multilinestring((60

60,

65

60,

65

70,

70

70),

(80

80,

85

80,

85

90,

90

90),

(50

50,

55

50,

55

60,

60

60))’

,0))

INSERT

INTO

sample_geoms

VALUES

(5,

ST_Geometry(’point(30

30)’

,0))

SELECT

id,

CAST(ST_AsText(ST_Boundary(geometry))

as

VARCHAR(320))

Boundary

FROM

sample_geoms

Results

ID

BOUNDARY

--

1

LINESTRING

(

40.00000000

120.00000000,

90.00000000

120.00000000,

90.00000000

150.00000000,

40.00000000

150.00000000,

40.00000000

120.00000000)

2

MULTILINESTRING

((

40.00000000

120.00000000,

90.00000000

120.00000000,

90.00000000

150.00000000,

40.00000000

150.00000000,

40.00000000

120.00000000),(

70.00000000

130.00000000,

70.00000000

140.00000000,

80.00000000

140.00000000,

80.00000000

130.00000000,

70.00000000

130.00000000))

3

MULTIPOINT

(

60.00000000

60.00000000,

70.00000000

70.00000000)

4

MULTIPOINT

(

50.00000000

50.00000000,

70.00000000

70.00000000,

80.00000000

80.00000000,

90.00000000

90.00000000)

5

POINT

EMPTY

ST_Buffer

ST_Buffer

takes

a

geometry,

a

distance,

and,

optionally,

a

unit

as

input

parameters

and

returns

the

geometry

that

surrounds

the

given

geometry

by

the

specified

distance,

measured

in

the

given

unit.

Each

point

on

the

boundary

of

the

resulting

geometry

is

the

specified

distance

away

from

the

given

geometry.

The

resulting

geometry

is

represented

in

the

spatial

reference

system

of

the

given

geometry.

For

geodetic

data,

if

you

specify

a

negative

distance,

ST_Buffer

returns

a

region

that

is

further

than

the

specified

distance

away

from

all

points

of

the

input

geometry.

In

other

words,

a

negative

distance

returns

the

complementary

region.

ST_Boundary

Chapter

23.

Spatial

functions:

syntax

and

parameters

343

|
|
|

Any

circular

curve

in

the

boundary

of

the

resulting

geometry

is

approximated

by

linear

strings.

For

example,

the

buffer

around

a

point,

which

would

result

in

a

circular

region,

is

approximated

by

a

polygon

whose

boundary

is

a

linestring.

If

the

given

geometry

is

null

or

is

empty,

null

will

be

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_Buffer

(

geometry

,

distance

)

,

unit

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

to

create

the

buffer

around.

For

geodetic

data,

ST_Buffer

supports

only

ST_Point

and

ST_MultiPoint

data

types.

distance

A

DOUBLE

PRECISION

value

that

specifies

the

distance

to

be

used

for

the

buffer

around

geometry.

For

geodetic

data,

the

distance

must

not

be

greater

than

the

Earth’s

equatorial

radius.

For

the

WGS-84

ellipsoid,

this

length

is

6378137.0

meters.

unit

A

VARCHAR(128)

value

that

identifies

the

unit

in

which

distance

is

measured.

The

supported

units

of

measure

are

listed

in

the

DB2GSE.ST_UNITS_OF_MEASURE

catalog

view.

If

the

unit

parameter

is

omitted,

the

following

rules

are

used

to

determine

the

unit

of

measure

used

for

distance:

v

If

geometry

is

in

a

projected

or

geocentric

coordinate

system,

the

linear

unit

associated

with

this

coordinate

system

is

the

default.

v

If

geometry

is

in

a

geographic

coordinate

system,

but

is

not

in

a

geodetic

spatial

reference

system

(SRS),

the

angular

unit

associated

with

this

coordinate

system

is

the

default.

v

If

geometry

is

in

a

geodetic

SRS,

the

default

unit

of

measure

is

meters.

Restrictions

on

unit

conversions:

An

error

(SQLSTATE

38SU4)

is

returned

if

any

of

the

following

conditions

occur:

v

The

geometry

is

in

an

unspecified

coordinate

system

and

the

unit

parameter

is

specified.

v

The

geometry

is

in

a

projected

coordinate

system

and

an

angular

unit

is

specified.

v

The

geometry

is

in

a

geographic

coordinate

system,

but

is

not

in

a

geodetic

SRS,

and

a

linear

unit

is

specified.

v

The

geometry

is

in

a

geographic

coordinate

system,

is

in

a

geodetic

SRS,

and

an

angular

unit

is

specified.

Return

type:

db2gse.ST_Geometry

Examples:

ST_Buffer

344

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|

|
|
|

|

|
|
|

|

|
|

|
|

|
|

|
|

|
|

In

the

following

examples,

the

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

display.

The

following

code

creates

a

spatial

reference

system,

creates

the

SAMPLE_GEOMETRIES

table,

and

populates

it.

db2se

create_srs

se_bank

-srsId

4000

-srsName

new_york1983

-xOffset

0

-yOffset

0

-xScale

1

-yScale

1

-coordsysName

NAD_1983_StatePlane_New_York_East_FIPS_3101_Feet

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geometries

(id

INTEGER,

spatial_type

varchar(18),

geometry

ST_GEOMETRY)

INSERT

INTO

sample_geometries(id,

spatial_type,

geometry)

VALUES

(1,

’st_point’,

ST_Point(50,

50,

4000)),

(2,

’st_linestring’,

ST_LineString(’linestring(200

100,

210

130,

220

140)’,

4000)),

(3,

’st_polygon’,

ST_Polygon(’polygon((110

120,

110

140,

130

140,

130

120,

110

120))’,4000)),

(4,

’st_multipolygon’,

ST_MultiPolygon(’multipolygon(((30

30,

30

40,

35

40,

35

30,

30

30),(35

30,

35

40,

45

40,

45

30,

35

30)))’,

4000))

Example

1:

The

following

SELECT

statement

uses

the

ST_Buffer

function

to

apply

a

buffer

of

10.

SELECT

id,

spatial_type,

cast(geometry..ST_Buffer(10)..ST_AsText

AS

varchar(470))

AS

buffer_10

FROM

sample_geometries

Results:

ID

SPATIAL_TYPE

BUFFER_10

--

1

st_point

POLYGON

((

60.00000000

50.00000000,

59.00000000

55.00000000,

54.00000000

59.00000000,

49.00000000

60.00000000,

44.00000000

58.00000000,

41.00000000

53.00000000,

40.00000000

48.00000000,42.00000000

43.00000000,

47.00000000

41.00000000,

52.00000000

40.00000000,

57.00000000

42.00000000,

60.00000000

50.00000000))

2

st_linestring

POLYGON

((

230.00000000

140.00000000,

229.00000000

145.00000000,

224.00000000

149.00000000,

219.00000000

150.00000000,

213.00000000

147.00000000,

203.00000000

137.00000000,

201.00000000

133.00000000,

191.00000000

103.00000000,

191.00000000

99.00000000,

192.00000000

95.00000000,

196.00000000

91.00000000,

200.00000000

91.00000000,204.00000000

91.00000000,

209.00000000

97.00000000,

218.00000000

124.00000000,

227.00000000

133.00000000,

230.00000000

140.00000000))

3

st_polygon

POLYGON

((

140.00000000

120.00000000,

140.00000000

140.00000000,

139.00000000

145.00000000,

130.00000000

150.00000000,

110.00000000

150.00000000,

105.00000000

149.00000000,

100.00000000

140.00000000,100.00000000

120.00000000,

101.00000000

115.00000000,

110.00000000

110.00000000,130.00000000

110.00000000,

135.00000000

111.00000000,

140.00000000

120.00000000))

4

st_multipolygon

POLYGON

((

55.00000000

30.00000000,

ST_Buffer

Chapter

23.

Spatial

functions:

syntax

and

parameters

345

|
|

55.00000000

40.00000000,

54.00000000

45.00000000,

45.00000000

50.00000000,

30.00000000

50.00000000,

25.00000000

49.00000000,

20.00000000

40.00000000,

20.00000000

30.00000000,

21.00000000

25.00000000,

30.00000000

20.00000000,

45.00000000

20.00000000,

50.00000000

21.00000000,

55.00000000

30.00000000))

Example

2:

The

following

SELECT

statement

uses

the

ST_Buffer

function

to

apply

a

negative

buffer

of

5.

SELECT

id,

spatial_type,

cast(ST_AsText(ST_Buffer(geometry,

-5))

AS

varchar(150))

AS

buffer_negative_5

FROM

sample_geometries

WHERE

id

=

3

Results:

ID

SPATIAL_TYPE

BUFFER_NEGATIVE_5

3

st_polygon

POLYGON

((

115.00000000

125.00000000,

125.00000000

125.00000000,

125.00000000

135.00000000,

115.00000000

135.00000000,

115.00000000

125.00000000))

Example

3:

The

following

SELECT

statement

shows

the

result

of

applying

a

buffer

with

the

unit

parameter

specified.

SELECT

id,

spatial_type,

cast(ST_AsText(ST_Buffer(geometry,

10,

’METER’))

AS

varchar(680))

AS

buffer_10_meter

FROM

sample_geometries

WHERE

id

=

3

Results:

ID

SPATIAL_TYPE

BUFFER_10_METER

3

st_polygon

POLYGON

((

163.00000000

120.00000000,

163.00000000

140.00000000,

162.00000000

149.00000000,

159.00000000

157.00000000,

152.00000000

165.00000000,

143.00000000

170.00000000,

130.00000000

173.00000000,

110.00000000

173.00000000,

101.00000000

172.00000000,

92.00000000

167.00000000,

84.00000000

160.00000000,

79.00000000

151.00000000,

77.00000000

140.00000000,

77.00000000

120.00000000,

78.00000000

111.00000000,

83.00000000

102.00000000,

90.00000000

94.00000000,

99.00000000

89.00000000,

110.00000000

87.00000000,

130.00000000

87.00000000,

139.00000000

88.00000000,

147.00000000

91.00000000,

155.00000000

98.00000000,

160.00000000

107.00000000,

163.00000000

120.00000000))

Related

reference:

v

“Spatial

functions

supported

by

DB2

Geodetic

Extender”

on

page

202

v

“The

DB2GSE.ST_UNITS_OF_MEASURE

catalog

view”

on

page

285

ST_Centroid

ST_Centroid

takes

a

geometry

as

an

input

parameter

and

returns

the

geometric

center,

which

is

the

center

of

the

minimum

bounding

rectangle

of

the

given

geometry,

as

a

point.

The

resulting

point

is

represented

in

the

spatial

reference

system

of

the

given

geometry.

ST_Buffer

346

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|

If

the

given

geometry

is

null

or

is

empty,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_Centroid

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

to

determine

the

geometric

center.

Return

type:

db2gse.ST_Point

Example:

This

example

creates

two

geometries

and

finds

the

centroid

of

them.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geoms

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geoms

VALUES

(1,

ST_Polygon(’polygon

((40

120,

90

120,

90

150,

40

150,

40

120),

(50

130,

80

130,

80

140,

50

140,

50

130))’,0))

INSERT

INTO

sample_geoms

VALUES

(2,

ST_MultiPoint(’multipoint(10

10,

50

10,

10

30)’

,0))

SELECT

id,

CAST(ST_AsText(ST_Centroid(geometry))

as

VARCHAR(40))

Centroid

FROM

sample_geoms

Results:

ID

CENTROID

--

1

POINT

(

65.00000000

135.00000000)

2

POINT

(

30.00000000

20.00000000)

ST_ChangePoint

ST_ChangePoint

takes

a

curve

and

two

points

as

input

parameters.

It

replaces

all

occurrences

of

the

first

point

in

the

given

curve

with

the

second

point

and

returns

the

resulting

curve.

The

resulting

geometry

is

represented

in

the

spatial

reference

system

of

the

given

geometry.

If

the

two

points

are

not

represented

in

the

same

spatial

reference

system

as

the

curve,

they

will

be

converted

to

the

spatial

reference

system

used

for

the

curve.

If

the

given

curve

is

empty,

then

an

empty

value

is

returned.

If

the

given

curve

is

null,

or

if

any

of

the

given

points

is

null

or

empty,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

ST_Centroid

Chapter

23.

Spatial

functions:

syntax

and

parameters

347

Syntax:

��

db2gse.ST_ChangePoint

(

curve

,

old_point

,

new_point

)

��

Parameter:

curve

A

value

of

type

ST_Curve

or

one

of

its

subtypes

that

represents

the

curve

in

which

the

points

identified

by

old_point

are

changed

tonew_point.

old_point

A

value

of

type

ST_Point

that

identifies

the

points

in

the

curve

that

are

changed

to

new_point.

new_point

A

value

of

type

ST_Point

that

represents

the

new

locations

of

the

points

in

the

curve

identified

by

old_point.

Return

type:

db2gse.ST_Curve

Restrictions:

The

point

to

be

changed

in

the

curve

must

be

one

of

the

points

used

to

define

the

curve.

If

the

curve

has

Z

or

M

coordinates,

then

the

given

points

also

must

have

Z

or

M

coordinates.

Examples:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

The

following

code

creates

and

populates

the

SAMPLE_LINES

table.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_lines(id

INTEGER,

line

ST_Linestring)

INSERT

INTO

sample_lines

VALUES

(1,

ST_LineString(’linestring

(10

10,

5

5,

0

0,

10

0,

5

5,

0

10)’,

0)

)

INSERT

INTO

sample_lines

VALUES

(2,

ST_LineString(’linestring

z

(0

0

4,

5

5

5,

10

10

6,

5

5

7)’,

0)

)

Example

1:

This

example

changes

all

occurrences

of

the

point

(5,

5)

to

the

point

(6,

6)

in

the

linestring.

SELECT

cast(ST_AsText(ST_ChangePoint(line,

ST_Point(5,

5),

ST_Point(6,

6)))

as

VARCHAR(160))

FROM

sample_lines

WHERE

id=1

Results:

NEW

--

LINESTRING

(

10.00000000

10.00000000,

6.00000000

6.00000000,

0.00000000

0.00000000,

10.00000000

0.00000000,

6.00000000

6.00000000,

0.00000000

10.00000000)

ST_ChangePoint

348

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Example

2:

This

example

changes

all

occurrences

of

the

point

(5,

5,

5)

to

the

point

(6,

6,

6)

in

the

linestring.

SELECT

cast(ST_AsText(ST_ChangePoint(line,

ST_Point(5.0,

5.0,

5.0),

ST_Point(6.0,

6.0,

6.0)

))

as

VARCHAR(180))

FROM

sample_lines

WHERE

id=2

Results:

NEW

LINESTRING

Z

(

0.00000000

0.00000000

4.00000000,

6.00000000

6.00000000

6.00000000,

10.00000000

10.00000000

6.00000000,

5.00000000

5.00000000

7.00000000)

ST_Contains

ST_Contains

takes

two

geometries

as

input

parameter

and

returns

1

if

the

first

geometry

completely

contains

the

second;

otherwise

it

returns

0

(zero)

to

indicate

that

the

first

geometry

does

not

completely

contain

the

second.

If

any

of

the

given

geometries

is

null

or

is

empty,

then

null

is

returned.

For

non–geodetic

data,

if

the

second

geometry

is

not

represented

in

the

same

spatial

reference

system

as

the

first

geometry,

it

will

be

converted

to

the

other

spatial

reference

system.

For

geodetic

data,

both

geometries

must

be

in

the

same

geodetic

spatial

reference

system

(SRS).

Syntax:

��

db2gse.ST_Contains

(

geometry1

,

geometry2

)

��

Parameter:

geometry1

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

that

is

to

be

tested

to

completely

contain

geometry2.

geometry2

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

that

is

to

be

tested

to

be

completely

within

geometry1.

Restrictions:

For

geodetic

data,

both

geometries

must

be

geodetic

and

they

both

must

be

in

the

same

geodetic

SRS.

Return

type:

INTEGER

Examples:

The

following

code

creates

and

populates

these

tables.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_points(id

SMALLINT,

geometry

ST_POINT)

CREATE

TABLE

sample_lines(id

SMALLINT,

geometry

ST_LINESTRING)

ST_ChangePoint

Chapter

23.

Spatial

functions:

syntax

and

parameters

349

|
|
|
|

|
|

CREATE

TABLE

sample_polygons(id

SMALLINT,

geometry

ST_POLYGON)

INSERT

INTO

sample_points

(id,

geometry)

VALUES

(1,

ST_Point(10,

20,

1)),

(2,

ST_Point(’point(41

41)’,

1))

INSERT

INTO

sample_lines

(id,

geometry)

VALUES

(10,

ST_LineString(’linestring

(1

10,

3

12,

10

10)’,

1)

),

(20,

ST_LineString(’linestring

(50

10,

50

12,

45

10)’,

1)

)

INSERT

INTO

sample_polygons(id,

geometry)

VALUES

(100,

ST_Polygon(’polygon((0

0,

0

40,

40

40,

40

0,

0

0))’,

1)

)

Example

1:

The

following

code

fragment

uses

the

ST_Contains

function

to

determine

which

points

are

contained

by

a

particular

polygon.

SELECT

poly.id

AS

polygon_id,

CASE

ST_Contains(poly.geometry,

pts.geometry)

WHEN

0

THEN

’does

not

contain’

WHEN

1

THEN

’does

contain’

END

AS

contains,

pts.id

AS

point_id

FROM

sample_points

pts,

sample_polygons

poly

Results:

POLYGON_ID

CONTAINS

POINT_ID

100

does

contain

1

100

does

not

contain

2

Example

2:

The

following

code

fragment

uses

the

ST_Contains

function

to

determine

which

lines

are

contained

by

a

particular

polygon.

SELECT

poly.id

AS

polygon_id,

CASE

ST_Contains(poly.geometry,

line.geometry)

WHEN

0

THEN

’does

not

contain’

WHEN

1

THEN

’does

contain

END

AS

contains,

line.id

AS

line_id

FROM

sample_lines

line,

sample_polygons

poly

Results:

POLYGON_ID

CONTAINS

LINE_ID

100

does

contain

10

100

does

not

contain

20

Related

reference:

v

“ST_Within”

on

page

486

ST_ConvexHull

ST_ConvexHull

takes

a

geometry

as

an

input

parameter

and

returns

the

convex

hull

of

it.

ST_Contains

350

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

The

resulting

geometry

is

represented

in

the

spatial

reference

system

of

the

given

geometry.

If

possible,

the

specific

type

of

the

returned

geometry

will

be

ST_Point,

ST_LineString,

or

ST_Polygon.

For

example,

the

boundary

of

a

polygon

with

no

holes

is

a

single

linestring,

represented

as

ST_LineString.

The

boundary

of

a

polygon

with

one

or

more

holes

consists

of

multiple

linestrings,

represented

as

ST_MultiLineString.

If

the

given

geometry

is

null

or

is

empty,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_ConvexHull

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

to

compute

the

convex

hull.

Return

type:

db2gse.ST_Geometry

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

The

following

code

creates

and

populates

the

SAMPLE_GEOMETRIES

table.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geometries(id

INTEGER,

spatial_type

varchar(18),

geometry

ST_GEOMETRY)

INSERT

INTO

sample_geometries(id,

spatial_type,

geometry)

VALUES

(1,

’ST_LineString’,

ST_LineString

(’linestring(20

20,

30

30,

20

40,

30

50)’,

0)),

(2,

’ST_Polygon’,

ST_Polygon(’polygon

((110

120,

110

140,

120

130,

110

120))’,

0)

),

(3,

’ST_Polygon’,

ST_Polygon(’polygon((30

30,

25

35,

15

50,

35

80,

40

85,

80

90,70

75,

65

70,

55

50,

75

40,

60

30,

30

30))’,

0)

),

(4,

’ST_MultiPoint’,

ST_MultiPoint(’multipoint(20

20,

30

30,

20

40,

30

50)’,

1))

The

following

SELECT

statement

calculates

the

convex

hull

for

all

the

geometries

constructed

above

and

displays

the

result.

SELECT

id,

spatial_type,

cast(geometry..ST_ConvexHull..ST_AsText

AS

varchar(300))

AS

convexhull

FROM

sample_geometries

Results:

ST_ConvexHull

Chapter

23.

Spatial

functions:

syntax

and

parameters

351

ID

SPATIAL_TYPE

CONVEXHULL

--

1

ST_LineString

POLYGON

((

20.00000000

40.00000000,

20.00000000

20.00000000,

30.00000000

30.00000000,

30.00000000

50.00000000,

20.00000000

40.00000000))

2

ST_Polygon

POLYGON

((

110.00000000

140.00000000,

110.00000000

120.00000000,

120.00000000

130.00000000,

110.00000000

140.00000000))

3

ST_Polygon

POLYGON

((

15.00000000

50.00000000,

25.00000000

35.00000000,

30.00000000

30.00000000,

60.00000000

30.00000000,

75.00000000

40.00000000,

80.00000000

90.00000000,

40.00000000

85.00000000,

35.00000000

80.00000000,

15.00000000

50.00000000))

4

ST_MultiPoint

POLYGON

((

20.00000000

40.00000000,

20.00000000

20.00000000,

30.00000000

30.00000000,

30.00000000

50.00000000,

20.00000000

40.00000000))

ST_CoordDim

ST_CoordDim

takes

a

geometry

as

an

input

parameter

and

returns

the

dimensionality

of

its

coordinates.

If

the

given

geometry

does

not

have

Z

and

M

coordinates,

the

dimensionality

is

2.

If

it

has

Z

coordinates

and

no

M

coordinates,

or

if

it

has

M

coordinates

and

no

Z

coordinates,

the

dimensionality

is

3.

If

it

has

Z

and

M

coordinates,

the

dimensionality

is

4.

If

the

geometry

is

null,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_CoordDim

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

to

retrieve

the

dimensionality

from.

Return

type:

INTEGER

Example:

This

example

creates

several

geometries

and

then

determines

the

dimensionality

of

their

coordinates.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geoms

(id

CHARACTER(15),

geometry

ST_Geometry)

INSERT

INTO

sample_geoms

VALUES

(’Empty

Point’,

ST_Geometry(’point

EMPTY’,0))

ST_ConvexHull

352

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

INSERT

INTO

sample_geoms

VALUES

(’Linestring’,

ST_Geometry(’linestring

(10

10,

15

20)’,0))

INSERT

INTO

sample_geoms

VALUES

(’Polygon’,

ST_Geometry(’polygon((40

120,

90

120,

90

150,

40

150,

40

120))’

,0))

INSERT

INTO

sample_geoms

VALUES

(’Multipoint

M’,

ST_Geometry(’multipoint

m

(10

10

5,

50

10

6,

10

30

8)’

,0))

INSERT

INTO

sample_geoms

VALUES

(’Multipoint

Z’,

ST_Geometry(’multipoint

z

(47

34

295,

23

45

678)’

,0))

INSERT

INTO

sample_geoms

VALUES

(’Point

ZM’,

ST_Geometry(’point

zm

(10

10

16

30)’

,0))

SELECT

id,

ST_CoordDim(geometry)

COORDDIM

FROM

sample_geoms

Results:

ID

COORDDIM

Empty

Point

2

Linestring

2

Polygon

2

Multipoint

M

3

Multipoint

Z

3

Point

ZM

4

ST_Crosses

ST_Crosses

takes

two

geometries

as

input

parameters

and

returns

1

if

the

first

geometry

crosses

the

second.

Otherwise,

0

(zero)

is

returned.

If

the

second

geometry

is

not

represented

in

the

same

spatial

reference

system

as

the

first

geometry,

it

will

be

converted

to

the

other

spatial

reference

system.

If

the

first

geometry

is

a

polygon

or

a

multipolygon,

or

if

the

second

geometry

is

a

point

or

multipoint,

or

if

any

of

the

geometries

is

null

value

or

is

empty,

then

null

is

returned.

If

the

intersection

of

the

two

geometries

results

in

a

geometry

that

has

a

dimension

that

is

one

less

than

the

maximum

dimension

of

the

two

given

geometries,

and

if

the

resulting

geometry

is

not

equal

any

of

the

two

given

geometries,

then

1

is

returned.

Otherwise,

the

result

is

0

(zero).

Syntax:

��

db2gse.ST_Crosses

(

geometry1

,

geometry2

)

��

Parameter:

geometry1

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

that

is

to

be

tested

for

crossing

geometry2.

geometry2

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

that

is

to

be

tested

to

determine

if

it

is

crossed

by

geometry1.

ST_CoordDim

Chapter

23.

Spatial

functions:

syntax

and

parameters

353

Return

Type:

INTEGER

Example:

This

code

determines

if

the

constructed

geometries

cross

each

other.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geoms

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geoms

VALUES

(1,

ST_Geometry(’polygon((30

30,

30

50,

50

50,

50

30,

30

30))’

,0))

INSERT

INTO

sample_geoms

VALUES

(2,

ST_Geometry(’linestring(40

50,

50

40)’

,0))

INSERT

INTO

sample_geoms

VALUES

(3,

ST_Geometry(’linestring(20

20,

60

60)’

,0))

SELECT

a.id,

b.id,

ST_Crosses(a.geometry,

b.geometry)

Crosses

FROM

sample_geoms

a,

sample_geoms

b

Results:

ID

ID

CROSSES

1

1

-

2

1

0

3

1

1

1

2

-

2

2

0

3

2

1

1

3

-

2

3

1

3

3

0

Related

reference:

v

“Functions

that

compare

geographic

features”

on

page

295

ST_Difference

ST_Difference

takes

two

geometries

as

input

parameters

and

returns

the

part

of

the

first

geometry

that

does

not

intersect

with

the

second

geometry.

Both

geometries

must

be

of

the

same

dimension.

If

either

geometry

is

null,

null

is

returned.

If

the

first

geometry

is

empty,

an

empty

geometry

of

type

ST_Point

is

returned.

If

the

second

geometry

is

empty,

then

the

first

geometry

is

returned

unchanged.

For

non–geodetic

data,

if

the

second

geometry

is

not

represented

in

the

same

spatial

reference

system

as

the

first

geometry,

it

will

be

converted

to

the

other

spatial

reference

system.

For

geodetic

data,

both

geometries

must

be

in

the

same

geodetic

spatial

reference

system

(SRS).

This

function

can

also

be

called

as

a

method.

ST_Crosses

354

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|

|
|

|
|
|
|

Syntax:

��

db2gse.ST_Difference

(

geometry1

,

geometry2

)

��

Parameter:

geometry1

A

value

of

type

ST_Geometry

that

represents

the

first

geometry

to

use

to

compute

the

difference

to

geometry2.

geometry2

A

value

of

type

ST_Geometry

that

represents

the

second

geometry

that

is

used

to

compute

the

difference

to

geometry1.

Restrictions

for

geodetic

data:

v

Both

geometries

must

be

geodetic

and

they

both

must

be

in

the

same

geodetic

SRS.

v

ST_Difference

supports

only

ST_Point,

ST_Polygon,

ST_MultiPoint,

and

ST_MultiPolygon

data

types.

Return

type:

db2gse.ST_Geometry

The

dimension

of

the

returned

geometry

is

the

same

as

that

of

the

input

geometries.

Examples:

In

the

following

example,

the

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

display.

The

following

code

creates

and

populates

the

SAMPLE_GEOMETRIES

table.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geoms

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geoms

VALUES

(1,

ST_Geometry(’polygon((10

10,

10

20,

20

20,

20

10,

10

10))’

,0))

INSERT

INTO

sample_geoms

VALUES

(2,

ST_Geometry(’polygon((30

30,

30

50,

50

50,

50

30,

30

30))’

,0))

INSERT

INTO

sample_geoms

VALUES

(3,

ST_Geometry(’polygon((40

40,

40

60,

60

60,

60

40,

40

40))’

,0))

INSERT

INTO

sample_geoms

VALUES

(4,

ST_Geometry(’linestring(70

70,

80

80)’

,0))

INSERT

INTO

sample_geoms

VALUES

(5,

ST_Geometry(’linestring(75

75,

90

90)’

,0))

Example

1:

This

example

finds

the

difference

between

two

disjoint

polygons.

SELECT

a.id,

b.id,

CAST(ST_AsText(ST_Difference(a.geometry,

b.geometry))

as

VARCHAR(200))

Difference

FROM

sample_geoms

a,

sample_geoms

b

WHERE

a.id

=

1

and

b.id

=

2

Results:

ST_Difference

Chapter

23.

Spatial

functions:

syntax

and

parameters

355

|

|
|

|
|

|
|

|
|

ID

ID

DIFFERENCE

--

1

2

POLYGON

((

10.00000000

10.00000000,

20.00000000

10.00000000,

20.00000000

20.00000000,

10.00000000

20.00000000,

10.00000000

10.00000000))

Example

2:

This

example

finds

the

difference

between

two

intersecting

polygons.

SELECT

a.id,

b.id,

CAST(ST_AsText(ST_Difference(a.geometry,

b.geometry))

as

VARCHAR(200))

Difference

FROM

sample_geoms

a,

sample_geoms

b

WHERE

a.id

=

2

and

b.id

=

3

Results:

ID

ID

DIFFERENCE

2

3

POLYGON

((

30.00000000

30.00000000,

50.00000000

30.00000000,

50.00000000

40.00000000,

40.00000000

40.00000000,

40.00000000

50.00000000,

30.00000000

50.00000000,

30.00000000

30.00000000))

Example

3:

This

example

finds

the

difference

between

two

overlapping

linestrings.

SELECT

a.id,

b.id,

CAST(ST_AsText(ST_Difference(a.geometry,

b.geometry))

as

VARCHAR(100))

Difference

FROM

sample_geoms

a,

sample_geoms

b

WHERE

a.id

=

4

and

b.id

=

5

Results:

ID

ID

DIFFERENCE

--

4

5

LINESTRING

(

70.00000000

70.00000000,

75.00000000

75.00000000)

ST_Dimension

ST_Dimension

takes

a

geometry

as

an

input

parameter

and

returns

its

dimension.

If

the

given

geometry

is

empty,

then

-1

is

returned.

For

points

and

multipoints,

the

dimension

is

0

(zero);

for

curves

and

multicurves,

the

dimension

is

1;

and

for

polygons

and

multipolygons,

the

dimension

is

2.

If

the

given

geometry

is

null,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_Dimension

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

that

represents

the

geometry

for

which

the

dimension

is

returned.

Return

type:

ST_Difference

356

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

INTEGER

Example:

This

example

creates

several

different

geometries

and

finds

their

dimensions.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geoms

(id

char(15),

geometry

ST_Geometry)

INSERT

INTO

sample_geoms

VALUES

(’Empty

Point’,

ST_Geometry(’point

EMPTY’,0))

INSERT

INTO

sample_geoms

VALUES

(’Point

ZM’,

ST_Geometry(’point

zm

(10

10

16

30)’

,0))

INSERT

INTO

sample_geoms

VALUES

(’MultiPoint

M’,

ST_Geometry(’multipoint

m

(10

10

5,

50

10

6,

10

30

8)’

,0))

INSERT

INTO

sample_geoms

VALUES

(’LineString’,

ST_Geometry(’linestring

(10

10,

15

20)’,0))

INSERT

INTO

sample_geoms

VALUES

(’Polygon’,

ST_Geometry(’polygon((40

120,

90

120,

90

150,

40

150,

40

120))’

,0))

SELECT

id,

ST_Dimension(geometry)

Dimension

FROM

sample_geoms

Results:

ID

DIMENSION

Empty

Point

-1

Point

ZM

0

MultiPoint

M

0

LineString

1

Polygon

2

ST_Disjoint

ST_Disjoint

takes

two

geometries

as

input

parameters

and

returns

1

if

the

given

geometries

do

not

intersect.

If

the

geometries

do

intersect,

then

0

(zero)

is

returned.

If

the

second

geometry

is

not

represented

in

the

same

spatial

reference

system

as

the

first

geometry,

it

will

be

converted

to

the

other

spatial

reference

system.

If

any

of

the

two

geometries

is

null

or

is

empty,

then

null

value

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_Disjoint

(

geometry1

,

geometry2

)

��

Parameter:

geometry1

A

value

of

type

ST_Geometry

that

represents

the

geometry

that

is

tested

to

be

disjoint

with

geometry2.

ST_Dimension

Chapter

23.

Spatial

functions:

syntax

and

parameters

357

geometry2

A

value

of

type

ST_Geometry

that

represents

the

geometry

that

that

is

tested

to

be

disjoint

with

geometry1.

Return

type:

INTEGER

Examples:

This

code

creates

several

geometries

in

the

SAMPLE_GEOMETRIES

table.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geoms

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geoms

VALUES

(1,

ST_Geometry(’polygon((20

30,

30

30,

30

40,

20

40,

20

30))’,0))

INSERT

INTO

sample_geoms

VALUES

(2,

ST_Geometry(’polygon((30

30,

30

50,

50

50,

50

30,

30

30))’,0))

INSERT

INTO

sample_geoms

VALUES

(3,

ST_Geometry(’polygon((40

40,

40

60,

60

60,

60

40,

40

40))’,0))

INSERT

INTO

sample_geoms

VALUES

(4,

ST_Geometry(’linestring(60

60,

70

70)’

,0))

INSERT

INTO

sample_geoms

VALUES

(5,

ST_Geometry(’linestring(30

30,

40

40)’

,0))

Example

1:

This

example

determines

if

the

first

polygon

is

disjoint

from

any

of

the

geometries.

SELECT

a.id,

b.id,

ST_Disjoint(a.geometry,

b.geometry)

DisJoint

FROM

sample_geoms

a,

sample_geoms

b

WHERE

a.id

=

1

Results:

ID

ID

DISJOINT

1

1

0

1

2

0

1

3

1

1

4

1

1

5

0

Example

2:

This

example

determines

if

the

third

polygon

is

disjoint

from

any

of

the

geometries.

SELECT

a.id,

b.id,

ST_Disjoint(a.geometry,

b.geometry)

DisJoint

FROM

sample_geoms

a,

sample_geoms

b

WHERE

a.id

=

3

Results:

ID

ID

DISJOINT

3

1

1

3

2

0

3

3

0

3

4

0

3

5

0

ST_Disjoint

358

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Example

3:

This

example

determines

if

the

second

linestring

is

disjoint

from

any

of

the

geometries.

SELECT

a.id,

b.id,

ST_Disjoint(a.geometry,

b.geometry)

DisJoint

FROM

sample_geoms

a,

sample_geoms

b

WHERE

a.id

=

5

Results:

ID

ID

DISJOINT

5

1

0

5

2

0

5

3

0

5

4

1

5

5

0

Related

reference:

v

“Functions

that

compare

geographic

features”

on

page

295

ST_Distance

ST_Distance

takes

two

geometries

and,

optionally,

a

unit

as

input

parameters

and

returns

the

shortest

distance

between

any

point

in

the

first

geometry

to

any

point

in

the

second

geometry,

measured

in

the

default

or

given

units.

For

geodetic

data,

ST_Distance

returns

the

geodesic

distance

between

any

two

geometries.

The

geodesic

distance

is

the

shortest

distance

on

the

surface

of

the

ellipsoid.

For

more

information,

refer

to

“Geodesic

distances”

on

page

156.

If

any

of

the

two

geometries

is

null

or

is

empty,

null

is

returned.

For

non–geodetic

data,

if

the

second

geometry

is

not

represented

in

the

same

spatial

reference

system

as

the

first

geometry,

it

will

be

converted

to

the

other

spatial

reference

system.

For

geodetic

data,

both

geometries

must

be

in

the

same

geodetic

spatial

reference

system

(SRS).

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_Distance

(

geometry1

,

geometry2

)

,

unit

��

Parameter:

geometry1

A

value

of

type

ST_Geometry

that

represents

the

geometry

that

is

used

to

compute

the

distance

to

geometry2.

geometry2

A

value

of

type

ST_Geometry

that

represents

the

geometry

that

is

used

to

compute

the

distance

to

geometry1.

unit

VARCHAR(128)

value

that

identifies

the

unit

in

which

the

result

is

measured.

The

supported

units

of

measure

are

listed

in

the

DB2GSE.ST_UNITS_OF_MEASURE

catalog

view.

ST_Disjoint

Chapter

23.

Spatial

functions:

syntax

and

parameters

359

|

|
|
|

|

|
|
|
|

For

geodetic

data,

both

geometries

must

be

geodetic

and

they

both

must

be

in

the

same

geodetic

SRS.

If

the

unit

parameter

is

omitted,

the

following

rules

are

used

to

determine

the

unit

of

measure

used

for

the

result:

v

If

geometry1

is

in

a

projected

or

geocentric

coordinate

system,

the

linear

unit

associated

with

this

coordinate

system

is

the

default.

v

If

geometry1

is

in

a

geographic

coordinate

system,

but

is

not

in

a

geodetic

SRS,

the

angular

unit

associated

with

this

coordinate

system

is

the

default.

v

If

geometry1

is

in

a

geodetic

SRS,

the

default

unit

of

measure

is

meters.

Restrictions

on

unit

conversions:

An

error

(SQLSTATE

38SU4)

is

returned

if

any

of

the

following

conditions

occur:

v

The

geometry

is

in

an

unspecified

coordinate

system

and

the

unit

parameter

is

specified.

v

The

geometry

is

in

a

projected

coordinate

system

and

an

angular

unit

is

specified.

v

The

geometry

is

in

a

geographic

coordinate

system,

but

is

not

in

a

geodetic

SRS,

and

a

linear

unit

is

specified.

v

The

geometry

is

in

a

geographic

coordinate

system,

is

in

a

geodetic

SRS,

and

an

angular

unit

is

specified.

Return

type:

DOUBLE

Examples:

The

following

SQL

statements

create

and

populate

the

SAMPLE_GEOMETRIES1

and

SAMPLE_GEOMETRIES2

tables.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geometries1(id

SMALLINT,

spatial_type

varchar(13),

geometry

ST_GEOMETRY)

CREATE

TABLE

sample_geometries2(id

SMALLINT,

spatial_type

varchar(13),

geometry

ST_GEOMETRY)

INSERT

INTO

sample_geometries1(id,

spatial_type,

geometry)

VALUES

(

1,

’ST_Point’,

ST_Point(’point(100

100)’,

1)

),

(10,

’ST_LineString’,

ST_LineString(’linestring(125

125,

125

175)’,

1)

),

(20,

’ST_Polygon’,

ST_Polygon(’polygon

((50

50,

50

150,

150

150,

150

50,

50

50))’,

1)

)

INSERT

INTO

sample_geometries2(id,

spatial_type,

geometry)

VALUES

(101,

’ST_Point’,

ST_Point(’point(200

200)’,

1)

),

(102,

’ST_Point’,

ST_Point(’point(200

300)’,

1)

),

(103,

’ST_Point’,

ST_Point(’point(200

0)’,

1)

),

(110,

’ST_LineString’,

ST_LineString(’linestring(200

100,

200

200)’,

1)

),

(120,

’ST_Polygon’,

ST_Polygon(’polygon

((200

0,

200

200,

300

200,

300

0,

200

0))’,

1)

)

Example

1:

The

following

SELECT

statement

calculates

the

distance

between

the

various

geometries

in

the

SAMPLE_GEOMTRIES1

and

SAMPLE_GEOMTRIES2

tables.

ST_Distance

360

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|

|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

SELECT

sg1.id

AS

sg1_id,

sg1.spatial_type

AS

sg1_type,

sg2.id

AS

sg1_id,

sg2.spatial_type

AS

sg2_type,

cast(ST_Distance(sg1.geometry,

sg2.geometry)

AS

Decimal(8,

4))

AS

distance

FROM

sample_geometries1

sg1,

sample_geometries2

sg2

ORDER

BY

sg1.id

Results:

SG1_ID

SG1_TYPE

SG1_ID

SG2_TYPE

DISTANCE

1

ST_Point

101

ST_Point

141.4213

1

ST_Point

102

ST_Point

223.6067

1

ST_Point

103

ST_Point

141.4213

1

ST_Point

110

ST_LineString

100.0000

1

ST_Point

120

ST_Polygon

100.0000

10

ST_LineString

101

ST_Point

79.0569

10

ST_LineString

102

ST_Point

145.7737

10

ST_LineString

103

ST_Point

145.7737

10

ST_LineString

110

ST_LineString

75.0000

10

ST_LineString

120

ST_Polygon

75.0000

20

ST_Polygon

101

ST_Point

70.7106

20

ST_Polygon

102

ST_Point

158.1138

20

ST_Polygon

103

ST_Point

70.7106

20

ST_Polygon

110

ST_LineString

50.0000

20

ST_Polygon

120

ST_Polygon

50.0000

Example

2:

The

following

SELECT

statement

illustrates

how

to

find

all

the

geometries

that

are

within

a

distance

of

100

of

each

other.

SELECT

sg1.id

AS

sg1_id,

sg1.spatial_type

AS

sg1_type,

sg2.id

AS

sg1_id,

sg2.spatial_type

AS

sg2_type,

cast(ST_Distance(sg1.geometry,

sg2.geometry)

AS

Decimal(8,

4))

AS

distance

FROM

sample_geometries1

sg1,

sample_geometries2

sg2

WHERE

ST_Distance(sg1.geometry,

sg2.geometry)

<=

100

Results:

SG1_ID

SG1_TYPE

SG1_ID

SG2_TYPE

DISTANCE

1

ST_Point

110

ST_LineString

100.0000

1

ST_Point

120

ST_Polygon

100.0000

10

ST_LineString

101

ST_Point

79.0569

10

ST_LineString

110

ST_LineString

75.0000

10

ST_LineString

120

ST_Polygon

75.0000

20

ST_Polygon

101

ST_Point

70.7106

20

ST_Polygon

103

ST_Point

70.7106

20

ST_Polygon

110

ST_LineString

50.0000

20

ST_Polygon

120

ST_Polygon

50.0000

Example

3:

The

following

SELECT

statement

calculates

the

distance

in

kilometers

between

the

various

geometries.

SAMPLE_GEOMTRIES1

and

SAMPLE_GEOMTRIES2

tables.

SELECT

sg1.id

AS

sg1_id,

sg1.spatial_type

AS

sg1_type,

sg2.id

AS

sg1_id,

sg2.spatial_type

AS

sg2_type,

cast(ST_Distance(sg1.geometry,

sg2.geometry,

’KILOMETER’)

AS

DECIMAL(10,

4))

AS

distance

FROM

sample_geometries1

sg1,

sample_geometries2

sg2

ORDER

BY

sg1.id

ST_Distance

Chapter

23.

Spatial

functions:

syntax

and

parameters

361

Results:

SG1_ID

SG1_TYPE

SG1_ID

SG2_TYPE

DISTANCE

1

ST_Point

101

ST_Point

12373.2168

1

ST_Point

102

ST_Point

16311.3816

1

ST_Point

103

ST_Point

9809.4713

1

ST_Point

110

ST_LineString

1707.4463

1

ST_Point

120

ST_Polygon

12373.2168

10

ST_LineString

101

ST_Point

8648.2333

10

ST_LineString

102

ST_Point

11317.3934

10

ST_LineString

103

ST_Point

10959.7313

10

ST_LineString

110

ST_LineString

3753.5862

10

ST_LineString

120

ST_Polygon

10891.1254

20

ST_Polygon

101

ST_Point

7700.5333

20

ST_Polygon

102

ST_Point

15039.8109

20

ST_Polygon

103

ST_Point

7284.8552

20

ST_Polygon

110

ST_LineString

6001.8407

20

ST_Polygon

120

ST_Polygon

14515.8872

Related

reference:

v

“Functions

that

compare

geographic

features”

on

page

295

ST_Edge_GC_USA

ST_Edge_GC_USA

is

the

function

that

implements

the

DB2SE_USA_GEOCODER

which

geocodes

addresses

located

in

the

United

States

of

America

into

points.

The

addresses

are

compared

(matched)

against

EDGE

files,

which

are

provided

on

the

geocoder

data

CD.

The

function

takes

the

street

number

and

name,

the

city

name,

the

state,

the

zip

code,

and

the

spatial

reference

system

identifier

for

the

resulting

point

as

input

parameters

and

returns

an

ST_Point

value.

Additionally,

several

configuration

parameters

that

influence

the

geocoding

process

can

be

specified.

Syntax:

��

db2gse.ST_Edge_GC_USA

(

street

,

city

,

state

,

zip

,

srs_id

,

�

�

spelling_sens

,

min_match_score

,

side_offset

,

side_offset_units

,

end_offset

,

�

�

base_map

,

locator_file

)

��

Parameter:

street

A

value

of

type

VARCHAR(128)

that

contains

the

street

number

and

name

of

the

address

to

be

geocoded.

This

value

must

not

be

null.

city

A

value

of

type

VARCHAR(128)

that

contains

the

name

of

the

city

of

the

address

to

be

geocoded.

This

value

can

be

null

if

the

zip

parameter

is

specified.

state

A

value

of

type

VARCHAR(128)

that

contains

the

name

of

the

state

of

the

address

to

be

geocoded.

The

state

can

be

abbreviated

or

spelled

out.

This

value

can

be

null

if

the

zip

parameter

is

specified.

zip

A

value

of

type

VARCHAR(10)

that

contains

the

zip

code

of

the

address

to

be

geocoded.

The

zip

code

can

be

given

as

5

digits

or

in

the

5+4

notation.

This

value

can

be

null

if

the

city

and

state

parameters

are

specified.

ST_Distance

362

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

srs_id

A

value

of

type

INTEGER

that

contains

the

numeric

identifier

of

the

spatial

reference

system

for

the

resulting

point.

The

value

must

identify

an

existing

spatial

reference

system,

that

uses

a

projected

coordinate

system

based

on

the

geographic

coordinate

system

GCS_NORTH_AMERICAN_1983,

or

an

existing

spatial

reference

system

that

uses

the

geographic

coordinate

system

itself,

GCS_NORTH_AMERICAN_1983.

If

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

error

is

returned

(SQLSTATE

38SU1).

spelling_sens

A

value

of

type

INTEGER

that

specifies

the

spelling

sensitivity

that

should

be

applied

to

the

given

address.

The

value

must

be

in

the

range

from

0

(zero)

to

100.

The

higher

this

value

is,

the

more

strict

the

geocoder

will

be

regarding

differences

in

the

spelling

of

the

given

address.

Deviations

result

in

a

higher

penalty

that

will

be

applied

to

the

final

score

of

the

match.

If

the

spelling

sensitivity

is

set

too

high,

fewer

addresses

might

be

geocoded

successfully,

and

a

null

will

be

returned

instead.

If

it

the

spelling

sensitivity

is

set

too

low,

a

more

unmatching

addresses

might

be

considered

correct

matches

due

to

the

accepted

level

of

difference

in

the

spelling

of

the

addresses.

Recommendation:

Set

this

value

to

60.

If

this

value

is

null,

the

spelling

sensitivity

will

be

derived

from

the

locatior

file.

If

it

is

not

specified

in

the

locator

file,

a

spelling

sensitivity

of

60

is

used.

min_match_score

A

value

of

type

INTEGER

that

contains

the

minimum

score

value

that

a

point

must

have

to

be

considered

a

match

for

the

given

address.

The

minimum

score

value

must

be

in

the

range

from

0

(zero)

to

100.

If

the

score

of

the

point

is

lower

than

the

min_match_score

value,

null

is

returned

instead

of

the

point,

and

the

address

is

not

geocoded.

Different

factors

like

the

quality

of

the

base

map,

the

spelling

sensitivity,

or

the

accuracy

if

the

address

influence

the

score

of

a

point.

Recommendation:

Set

this

value

to

80.

If

this

value

is

null,

the

minimum

match

score

will

be

derived

from

the

locator

file.

If

it

is

not

specified

in

the

locator

file,

a

minimum

score

value

of

80

is

used.

side_offset

A

value

of

type

DOUBLE

that

specifies

how

far

a

resulting

point

is

to

be

placed

off

the

center

of

the

street.

The

value

must

be

larger

than

or

equal

to

0

(zero).

The

side_offset_unit

parameter

identifies

the

units

that

are

used

to

measure

the

side

offset.

If

this

value

is

null,

the

side

offset

will

be

derived

from

the

locator

file.

If

it

is

not

specified

in

the

locator

file,

a

side

offset

of

0.0

is

used.

side_offset_units

A

value

of

type

VARCHAR(128)

that

contains

the

units

in

which

the

side_offset

parameter

is

measured.

The

value

must

be

one

of

the

following

units:

v

Inches

v

Points

v

Feet

ST_Edge_GC_USA

Chapter

23.

Spatial

functions:

syntax

and

parameters

363

v

Yards

v

Miles

v

Nautical

miles

v

Millimeters

v

Centimeters

v

Meters

v

Kilometers

v

Decimal

degrees

v

Projected

meters

v

Reference

data

units

If

this

value

is

null,

the

side

offset

units

will

be

derived

from

the

locator

file.

If

it

is

not

specified

in

the

locator

file,

the

side

offset

will

be

measured

in

feet.

end_offset

A

value

of

type

INTEGER

that

indicates

how

far

a

point

that

would

be

exactly

at

the

end

of

a

street

segment

should

be

placed

in

the

segment

instead.

The

value

must

be

larger

than

or

equal

to

0

(zero).

This

parameter

is

used

to

avoid

placing

resulting

points

in

the

middle

of

a

street

at

intersections.

The

end

offset

is

measured

in

points

(the

smallest

possible

resolution)

on

the

base

map.

If

this

value

is

null,

the

end

offset

will

be

derived

from

the

locator

file.

If

it

is

not

specified

in

the

locator

file,

an

end

offset

of

3

is

used.

base_map

A

value

of

type

VARCHAR(256)

that

contains

the

fully

qualified

path,

including

the

base

name,

to

the

base

map

(.edg)

file.

The

base

map

file

is

used

by

the

geocoder

to

match

the

given

addresses

against.

The

base

maps

supplied

by

the

DB2

Spatial

Extender

should

be

used.

You

can

use

this

parameter

if

you

placed

the

base

maps

in

a

different

directory.

If

this

value

is

null,

the

path

to

the

base

map

will

be

derived

from

the

locator

file.

If

it

is

not

specified

in

the

locator

file,

the

base

map

will

be

searched

for

in

the

sqllib

directory

of

the

current

instance,

in

the

gse/refdata

subdirectory.

The

base

name

of

the

file

searched

for

is

usa.edg.

locator_file

A

value

of

type

VARCHAR(256)

that

contains

the

fully

qualified

path,

including

the

base

name,

to

the

locator

file

that

contains

additional

configuration

parameters

for

the

geocoder.

The

locator

file

supplied

by

the

DB2

Spatial

Extender

should

be

used.

If

this

value

is

null,

the

locator

file

will

be

searched

for

in

the

sqllib

directory

of

the

current

instance,

in

the

gse/cfg/geocoder

subdirectory.

The

base

name

of

the

file

searched

for

is

EDGELocator.loc.

Return

type:

db2gse.ST_Point

Examples:

Example

1:

ST_Edge_GC_USA

364

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

The

following

code

creates

a

table

SAMPLE_GEOCODING

and

inserts

two

addresses

that

are

subsequently

geocoded.

The

minimum

match

score

will

be

set

to

50

for

the

given

addresses,

and

the

spatial

reference

system

for

the

resulting

points

is

1.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geocoding

(

street

VARCHAR(128),

city

VARCHAR(128),

state

VARCHAR(128),

zip

VARCHAR(5)

)

INSERT

INTO

geocoding(street,

city,

state,

zip)

VALUES

(’1212

New

York

Ave

NW’,

’Washington’,

’DC’,

’20005’),

(’100

First

North

Street’,

’San

Jose’,

’CA’,

NULL)

SELECT

VARCHAR(ST_AsText(ST_Edge_GC_USA(street,

city,

state,

zip,

1,

CAST(NULL

AS

INTEGER),

50,

CAST(NULL

AS

DOUBLE),

CAST(NULL

AS

VARCHAR(128)),

CAST(NULL

AS

INTEGER),

CAST(NULL

AS

VARCHAR(256)),

CAST(NULL

AS

VARCHAR(256)))),

50)

FROM

sample_geocoding

Results:

1

--

POINT

(

-77.02829300

38.90049000)

POINT

(

-121.94507200

37.28766700)

Example

2:

In

this

example,

a

spatial

reference

system

is

created

that

uses

a

projected

coordinate

system.

To

simplify

the

interface

of

the

geocoding

function,

a

user-defined

function

is

created

to

wrap

the

ST_Edge_GC_USA

function.

db2se

create_srs

<db_name>

-srsName

CALIFORNIA

-srsId

101

-xScale

1

-coordsysName

NAD_1983_STATEPLANE_CALIFORNIA_I_FIPS_0401

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

FUNCTION

California_GC

(

street

VARCHAR(128),

city

VARCHAR(128),

zip

VARCHAR(10))

RETURNS

db2gse.ST_Point

LANGUAGE

SQL

RETURN

db2gse.ST_Edge_GC_USA(street,

city,

’CA’,

zip,

101,

CAST(NULL

AS

INTEGER),

CAST(NULL

AS

INTEGER),

CAST(NULL

AS

DOUBLE),

CAST(NULL

AS

VARCHAR(128)),

CAST(NULL

AS

INTEGER),

CAST(NULL

AS

VARCHAR(256)))

CREATE

TABLE

sample_geocoding

(

street

VARCHAR(128),

city

VARCHAR(128),

state

VARCHAR(128),

zip

VARCHAR(5)

)

INSERT

INTO

geocoding(street,

city,

state,

zip)

VALUES

(’100

First

North

Street’,

’San

Jose’,

’CA’,

NULL)

SELECT

VARCHAR(ST_AsText(California_GC(street,

city,

zip)),

50)

FROM

sample_geocoding

Results:

ST_Edge_GC_USA

Chapter

23.

Spatial

functions:

syntax

and

parameters

365

1

--

POINT

(

2004879.00000000

272723.00000000)

NetBIOS

Note:

The

values

of

the

X

and

Y

coordinates

of

the

point

are

different

than

in

the

first

example

because

a

different

spatial

reference

system

is

used.

ST_Endpoint

ST_Endpoint

takes

a

curve

as

an

input

parameter

and

returns

the

point

that

is

the

last

point

of

the

curve.

The

resulting

point

is

represented

in

the

spatial

reference

system

of

the

given

curve.

If

the

given

curve

is

null

or

is

empty,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_EndPoint

(

curve

)

��

Parameter:

curve

A

value

of

type

ST_Curve

that

represents

the

geometry

from

which

the

last

point

is

returned.

Return

type:

db2gse.ST_Point

Example:

The

SELECT

statement

finds

the

endpoint

of

each

of

the

geometries

in

the

SAMPLE_LINES

table.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_lines(id

INTEGER,

line

ST_Linestring)

INSERT

INTO

sample_lines

VALUES

(1,

ST_LineString(’linestring

(10

10,

5

5,

0

0,

10

0,

5

5,

0

10)’,

0)

)

INSERT

INTO

sample_lines

VALUES

(2,

ST_LineString(’linestring

z

(0

0

4,

5

5

5,

10

10

6,

5

5

7)’,

0)

)

SELECT

id,

CAST(ST_AsText(ST_EndPoint(line))

as

VARCHAR(50))

Endpoint

FROM

sample_lines

Results:

ID

ENDPOINT

--

1

POINT

(

0.00000000

10.00000000)

2

POINT

Z

(

5.00000000

5.00000000

7.00000000)

ST_Edge_GC_USA

366

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Related

reference:

v

“ST_PointN”

on

page

458

ST_Envelope

ST_Envelope

takes

a

geometry

as

an

input

parameter

and

returns

an

envelope

around

the

geometry.

The

envelope

is

a

rectangle

that

is

represented

as

a

polygon.

If

the

given

geometry

is

a

point,

a

horizontal

linestring,

or

a

vertical

linestring,

then

a

rectangle,

which

is

slightly

larger

than

the

given

geometry,

is

returned.

Otherwise,

the

minimum

bounding

rectangle

of

the

geometry

is

returned

as

the

envelope.

If

the

given

geometry

is

null

or

is

empty,

then

null

is

returned.

To

return

the

exact

minimum

bounding

rectangle

for

all

geometries,

use

the

function

ST_MBR.

For

geodetic

data,

the

envelope

is

a

polygon

that

encloses

the

minimum

bounding

circle

of

the

geometry.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_Envelope

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

that

represents

the

geometry

to

return

the

envelope

for.

Return

type:

db2gse.ST_Polygon

Example:

In

the

following

examples,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

This

example

creates

several

geometries

and

then

determines

their

envelopes.

For

the

non-empty

point

and

the

linestring

(which

is

horizontal),

the

envelope

is

a

rectangle

that

is

slightly

larger

than

the

geometry.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geoms

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geoms

VALUES

(1,

ST_Geometry(’point

EMPTY’,0))

INSERT

INTO

sample_geoms

VALUES

(2,

ST_Geometry(’point

zm

(10

10

16

30)’

,0))

INSERT

INTO

sample_geoms

VALUES

(3,

ST_Geometry(’multipoint

m

(10

10

5,

50

10

6,

10

30

8)’

,0))

INSERT

INTO

sample_geoms

VALUES

(4,

ST_Geometry(’linestring

(10

10,

20

10)’,0))

INSERT

INTO

sample_geoms

VALUES

ST_Endpoint

Chapter

23.

Spatial

functions:

syntax

and

parameters

367

|
|

(5,

ST_Geometry(’polygon((40

120,

90

120,

90

150,

40

150,

40

120))’,0))

SELECT

id,

CAST(ST_AsText(ST_Envelope(geometry))

as

VARCHAR(160))

Envelope

FROM

sample_geoms

Results:

ID

ENVELOPE

1

-

2

POLYGON

((

9.00000000

9.00000000,

11.00000000

9.00000000,

11.00000000

11.00000000,

9.00000000

11.00000000,

9.00000000

9.00000000))

3

POLYGON

((

10.00000000

10.00000000,

50.00000000

10.00000000,

50.00000000

30.00000000,

10.00000000

30.00000000,

10.00000000

10.00000000))

4

POLYGON

((

10.00000000

9.00000000,

20.00000000

9.00000000,

20.00000000

11.00000000,

10.00000000

11.00000000,

10.00000000

9.00000000))

5

POLYGON

((

40.00000000

120.00000000,

90.00000000

120.00000000,

90.00000000

150.00000000,

40.00000000

150.00000000,

40.00000000

120.00000000))

Related

reference:

v

“ST_MBR”

on

page

417

ST_EnvIntersects

ST_EnvIntersects

takes

two

geometries

as

input

parameters

and

returns

1

if

the

envelopes

of

two

geometries

intersect.

Otherwise,

0

(zero)

is

returned.

If

the

second

geometry

is

not

represented

in

the

same

spatial

reference

system

as

the

first

geometry,

it

will

be

converted

to

the

other

spatial

reference

system.

If

any

of

the

given

geometries

is

null

or

is

empty,

then

null

value

is

returned.

Syntax:

��

db2gse.ST_EnvIntersects

(

geometry1

,

geometry2

)

��

Parameter:

geometry1

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

whose

envelope

is

to

be

tested

for

intersection

with

the

envelope

of

geometry2.

geometry2

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

whose

envelope

is

to

be

tested

for

intersection

with

the

envelope

of

geometry1.

Return

type:

ST_Envelope

368

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

INTEGER

Example:

This

example

creates

two

parallel

linestrings

and

checks

them

for

intersection.

The

linestrings

themselves

do

not

intersect,

but

the

envelopes

for

them

do.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geoms

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geoms

VALUES

(1,

ST_Geometry(’linestring

(10

10,

50

50)’,0))

INSERT

INTO

sample_geoms

VALUES

(2,

ST_Geometry(’linestring

(10

20,

50

60)’,0))

SELECT

a.id,

b.id,

ST_Intersects(a.geometry,

b.geometry)

Intersects,

ST_EnvIntersects(a.geometry,

b.geometry)

Envelope_Intersects

FROM

sample_geoms

a

,

sample_geoms

b

WHERE

a.id

=

1

and

b.id=2

Results:

ID

ID

INTERSECTS

ENVELOPE_INTERSECTS

1

2

0

1

ST_EqualCoordsys

ST_EqualCoordsys

takes

two

coordinate

system

definitions

as

input

parameters

and

returns

the

integer

value

1

(one)

if

the

given

definitions

are

identical.

Otherwise,

the

integer

value

0

(zero)

is

returned.

The

coordinate

system

definitions

are

compared

regardless

of

differences

in

spaces,

parenthesis,

uppercase

and

lowercase

characters,

and

the

representation

of

floating

point

numbers.

If

any

of

the

given

coordinate

system

definitions

is

null,

null

is

returned.

Syntax:

��

db2gse.ST_EqualCoordsys

(

coordinate_system1

,

coordinate_system2

)

��

Parameter:

coordinate_system1

A

value

of

type

VARCHAR(2048)

that

defines

the

first

coordinate

system

to

be

compared

with

coordinate_system2.

coordinate_system2

A

value

of

type

VARCHAR(2048)

that

defines

the

second

coordinate

system

to

be

compared

with

coordinate_system1.

Return

type:

INTEGER

Example:

ST_EnvIntersects

Chapter

23.

Spatial

functions:

syntax

and

parameters

369

This

example

compares

two

Australian

coordinate

systems

to

see

if

they

are

the

same.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

VALUES

ST_EqualCoordSys(

(SELECT

definition

FROM

db2gse.ST_COORDINATE_SYSTEMS

WHERE

coordsys_name=’GCS_AUSTRALIAN’)

,

(SELECT

definition

FROM

db2gse.ST_COORDINATE_SYSTEMS

WHERE

coordsys_name=’GCS_AUSTRALIAN_1984’)

)

Results:

1

0

Related

reference:

v

“The

DB2GSE.ST_COORDINATE_SYSTEMS

catalog

view”

on

page

275

ST_Equals

ST_Equals

takes

two

geometries

as

input

parameters

and

returns

1

if

the

geometries

are

equal.

Otherwise

0

(zero)

is

returned.

The

order

of

the

points

used

to

define

the

geometry

is

not

relevant

for

the

test

for

equality.

If

the

second

geometry

is

not

represented

in

the

same

spatial

reference

system

as

the

first

geometry,

it

will

be

converted

to

the

other

spatial

reference

system.

If

any

of

the

two

given

geometries

is

null,

then

null

is

returned.

Syntax:

��

db2gse.ST_Equals

(

geometry1

,

geometry2

)

��

Parameter:

geometry1

A

value

of

type

ST_Geometry

that

represents

the

geometry

that

is

to

be

compared

with

geometry2.

geometry2

A

value

of

type

ST_Geometry

that

represents

the

geometry

that

is

to

be

compared

with

geometry1.

Return

type:

INTEGER

Examples:

Example

1:

ST_EqualCoordsys

370

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

This

example

creates

two

polygons

that

have

their

coordinates

in

a

different

order.

ST_Equal

is

used

to

show

that

these

polygons

are

considered

equal.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geoms

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geoms

VALUES

(1,

ST_Geometry(’polygon((50

30,

30

30,

30

50,

50

50,

50

30))’

,0))

INSERT

INTO

sample_geoms

VALUES

(2,

ST_Geometry(’polygon((50

30,

50

50,

30

50,

30

30,

50

30))’

,0))

SELECT

a.id,

b.id,

ST_Equals(a.geometry,

b.geometry)

Equals

FROM

sample_geoms

a,

sample_geoms

b

WHERE

a.id

=

1

and

b.id

=

2

Results:

ID

ID

EQUALS

1

2

1

Example

2:

In

this

example,

two

geometries

are

created

with

the

same

X

and

Y

coordinates,

but

different

M

coordinates

(measures).

When

the

geometries

are

compared

with

the

ST_Equal

function,

a

0

(zero)

is

returned

to

indicate

that

these

geometries

are

not

equal.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geoms

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geoms

VALUES

(3,

ST_Geometry(’multipoint

m(80

80

6,

90

90

7)’

,0))

INSERT

INTO

sample_geoms

VALUES

(4,

ST_Geometry(’multipoint

m(80

80

6,

90

90

4)’

,0))

SELECT

a.id,

b.id,

ST_Equals(a.geometry,

b.geometry)

Equals

FROM

sample_geoms

a,

sample_geoms

b

WHERE

a.id

=

3

and

b.id

=

4

Results:

ID

ID

EQUALS

3

4

0

Example

3:

In

this

example,

two

geometries

are

created

with

a

different

set

of

coordinates,

but

both

represent

the

same

geometry.

ST_Equal

compares

the

geometries

and

indicates

that

both

geometries

are

indeed

equal.

SET

current

function

path

=

current

function

path,

db2gse

CREATE

TABLE

sample_geoms

(

id

INTEGER,

geometry

ST_Geometry

)

INSERT

INTO

sample_geoms

VALUES

(5,

ST_LineString(’linestring

(

10

10,

40

40

)’,

0)),

(6,

ST_LineString(’linestring

(

10

10,

20

20,

40

40)’,

0))

ST_Equals

Chapter

23.

Spatial

functions:

syntax

and

parameters

371

SELECT

a.id,

b.id,

ST_Equals(a.geometry,

b.geometry)

Equals

FROM

sample_geoms

a,

sample_geoms

b

WHERE

a.id

=

5

AND

b.id

=

6

Results:

ID

ID

EQUALS

5

6

1

Related

reference:

v

“Functions

that

compare

geographic

features”

on

page

295

ST_EqualSRS

ST_EqualSRS

takes

two

spatial

reference

system

identifiers

as

input

parameters

and

returns

1

if

the

given

spatial

reference

systems

are

identical.

Otherwise,

0

(zero)

is

returned.

The

offsets,

scale

factors,

and

the

coordinate

systems

are

compared.

If

any

of

the

given

spatial

reference

system

identifiers

is

null,

null

is

returned.

Syntax:

��

db2gse.ST_EqualSRS

(

srs_id1

,

srs_id2

)

��

Parameter:

srs_id1

A

value

of

type

INTEGER

that

identifies

the

first

spatial

reference

system

to

be

compared

with

the

spatial

reference

system

identified

by

srs_id2.

srs_id2

A

value

of

type

INTEGER

that

identifies

the

second

spatial

reference

system

to

be

compared

with

the

spatial

reference

system

identified

by

srs_id1.

Return

type:

INTEGER

Example:

Two

similar

spatial

reference

systems

are

created

with

the

following

calls

to

db2se.

db2se

create_srs

SAMP_DB

-srsId

12

-srsName

NYE_12

-xOffset

0

-yOffset

0

-xScale

1

-yScale

1

-coordsysName

NAD_1983_StatePlane_New_York_East_FIPS_3101_Feet

db2se

create_srs

SAMP_DB

-srsId

22

-srsName

NYE_22

-xOffset

0

-yOffset

0

-xScale

1

-yScale

1

-coordsysName

NAD_1983_StatePlane_New_York_East_FIPS_3101_Feet

These

SRSs

have

the

same

offset

and

scale

values,

and

they

refer

to

the

same

coordinate

systems.

The

only

difference

is

in

the

defined

name

and

the

SRS

ID.

Therefore,

the

comparison

returns

1,

which

indicates

that

they

are

the

same.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

VALUES

ST_EqualSRS(12,

22)

Results:

ST_Equals

372

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

1

1

Related

reference:

v

“The

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

catalog

view”

on

page

283

ST_ExteriorRing

ST_ExteriorRing

takes

a

polygon

as

an

input

parameter

and

returns

its

exterior

ring

as

a

curve.

The

resulting

curve

is

represented

in

the

spatial

reference

system

of

the

given

polygon.

If

the

given

polygon

is

null

or

is

empty,

then

null

is

returned.

If

the

polygon

does

not

have

any

interior

rings,

the

returned

exterior

ring

is

identical

to

the

boundary

of

the

polygon.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_ExteriorRing

(

polygon

)

��

Parameter:

polygon

A

value

of

type

ST_Polygon

that

represents

the

polygon

for

which

the

exterior

ring

is

to

be

returned.

Return

type:

db2gse.ST_Curve

Example:

In

the

following

examples,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

This

example

creates

two

polygons,

one

with

two

interior

rings

and

one

with

no

interior

rings,

then

it

determines

their

exterior

rings.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_polys

(id

INTEGER,

geometry

ST_Polygon)

INSERT

INTO

sample_polys

VALUES

(1,

ST_Polygon(’polygon((40

120,

90

120,

90

150,

40

150,

40

120),

(50

130,

60

130,

60

140,

50

140,

50

130),

(70

130,

80

130,

80

140,

70

140,

70

130))’

,0))

INSERT

INTO

sample_polys

VALUES

(2,

ST_Polygon(’polygon((10

10,

50

10,

10

30,

10

10))’

,0))

SELECT

id,

CAST(ST_AsText(ST_ExteriorRing(geometry))

AS

VARCHAR(180))

Exterior_Ring

FROM

sample_polys

Results:

ST_EqualSRS

Chapter

23.

Spatial

functions:

syntax

and

parameters

373

ID

EXTERIOR_RING

--

1

LINESTRING

(

40.00000000

120.00000000,

90.00000000

120.00000000,

90.00000000

150.00000000,

40.00000000

150.00000000,

40.00000000

120.00000000)

2

LINESTRING

(

10.00000000

10.00000000,

50.00000000

10.00000000,

10.00000000

30.00000000,

10.00000000

10.00000000)

Related

reference:

v

“ST_Boundary”

on

page

342

ST_FindMeasure

or

ST_LocateAlong

ST_FindMeasure

or

ST_LocateAlong

takes

a

geometry

and

a

measure

as

input

parameters

and

returns

a

multipoint

or

multicurve

of

that

part

of

the

given

geometry

that

has

exactly

the

specified

measure

of

the

given

geometry

that

contains

the

specified

measure.

For

points

and

multipoints,

all

the

points

with

the

specified

measure

are

returned.

For

curves,

multicurves,

surfaces,

and

multisurfaces,

interpolation

is

performed

to

compute

the

result.

The

computation

for

surfaces

and

multisurfaces

is

performed

on

the

boundary

of

the

geometry.

For

points

and

multipoints,

if

the

given

measure

is

not

found,

then

an

empty

geometry

is

returned.

For

all

other

geometries,

if

the

given

measure

is

lower

than

the

lowest

measure

in

the

geometry

or

higher

than

the

highest

measure

in

the

geometry,

then

an

empty

geometry

is

returned.

If

the

given

geometry

is

null,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_FindMeasure

db2gse.ST_LocateAlong

(

geometry

,

measure

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

in

which

to

search

for

parts

whose

M

coordinates

(measures)

contain

measure.

measure

A

value

of

type

DOUBLE

that

is

the

measure

that

the

parts

of

geometry

must

be

included

in

the

result.

Return

type:

db2gse.ST_Geometry

Examples:

The

following

CREATE

TABLE

statement

creates

the

SAMPLE_GEOMETRIES

table.

SAMPLE_GEOMETRIES

has

two

columns:

the

ID

column,

which

uniquely

identifies

each

row,

and

the

GEOMETRY

ST_Geometry

column,

which

stores

sample

geometry.

ST_ExteriorRing

374

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geometries(id

SMALLINT,

geometry

ST_GEOMETRY)

The

following

INSERT

statements

insert

two

rows.

The

first

is

a

linestring;

the

second

is

a

multipoint.

INSERT

INTO

sample_geometries(id,

geometry)

VALUES

(1,

ST_LineString(’linestring

m

(2

2

3,

3

5

3,

3

3

6,

4

4

8)’,

1)),

(2,

ST_MultiPoint(’multipoint

m

(2

2

3,

3

5

3,

3

3

6,

4

4

6,

5

5

6,

6

6

8)’,

1))

Example

1:

In

the

following

SELECT

statement

and

the

corresponding

result

set,

the

ST_FindMeasure

function

is

directed

to

find

points

whose

measure

is

7.

The

first

row

returns

a

point.

However,

the

second

row

returns

an

empty

point.

For

linear

features

(geometry

with

a

dimension

greater

than

0),

ST_FindMeasure

can

interpolate

the

point;

however,

for

multipoints,

the

target

measure

must

match

exactly.

SELECT

id,

cast(ST_AsText(ST_FindMeasure(geometry,

7))

AS

varchar(45))

AS

measure_7

FROM

sample_geometries

Results:

ID

MEASURE_7

1

POINT

M

(

3.50000000

3.50000000

7.00000000)

2

POINT

EMPTY

Example

2:

In

the

following

SELECT

statement

and

the

corresponding

result

set,

the

ST_FindMeasure

function

returns

a

point

and

a

multipoint.

The

target

measure

of

6

matches

the

measures

in

both

the

ST_FindMeasure

and

multipoint

source

data.

SELECT

id,

cast(ST_AsText(ST_FindMeasure(geometry,

6))

AS

varchar(120))

AS

measure_6

FROM

sample_geometries

Results:

ID

MEASURE_6

--

1

POINT

M

(

3.00000000

3.00000000

6.00000000)

2

MULTIPOINT

M

(

3.00000000

3.00000000

6.00000000,

4.00000000

4.00000000

6.00000000,

5.00000000

5.00000000

6.00000000)

Related

reference:

v

“ST_MeasureBetween,

ST_LocateBetween”

on

page

420

ST_Generalize

ST_Generalize

takes

a

geometry

and

a

threshold

as

input

parameters

and

represents

the

given

geometry

with

a

reduced

number

of

points,

while

preserving

the

general

characteristics

of

the

geometry.

The

Douglas-Peucker

line-simplification

algorithm

is

used,

by

which

the

sequence

of

points

that

define

the

geometry

is

recursively

subdivided

until

a

run

of

the

points

can

be

replaced

by

a

straight

line

segment.

In

this

line

segment,

none

of

the

defining

points

deviates

from

the

ST_FindMeasure

or

ST_LocateAlong

Chapter

23.

Spatial

functions:

syntax

and

parameters

375

|

straight

line

segment

by

more

than

the

given

threshold.

Z

and

M

coordinates

are

not

considered

for

the

simplification.

The

resulting

geometry

is

in

the

spatial

reference

system

of

the

given

geometry.

If

the

given

geometry

is

empty,

an

empty

geometry

of

type

ST_Point

is

returned.

If

the

given

geometry

or

the

threshold

is

null,

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_Generalize

(

geometry

,

threshold

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

for

which

the

line-simplification

is

applied.

threshold

A

value

of

type

DOUBLE

that

identifies

the

threshold

to

be

used

for

the

line-simplification

algorithm.

The

threshold

must

be

greater

than

or

equal

to

0

(zero).

The

larger

the

threshold,

the

smaller

the

number

of

points

that

will

be

used

to

represent

the

generalized

geometry.

For

geodetic

data,

the

unit

for

threshold

is

in

meters.

Return

type:

db2gse.ST_Geometry

Examples:

In

the

following

examples,

the

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

display.

A

linestring

is

created

with

eight

points

that

go

from

(10,

10)

to

(80,

80).

The

path

is

almost

a

straight

line,

but

some

of

the

points

are

slightly

off

of

the

line.

The

ST_Generalize

function

can

be

used

to

reduce

the

number

of

points

in

the

line.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_lines

(id

INTEGER,

geometry

ST_LineString)

INSERT

INTO

sample_lines

VALUES

(1,

ST_Linestring(’linestring(10

10,

21

20,

34

26,

40

40,

52

50,

59

63,

70

71,

80

80)’

,0))

Example

1:

When

a

generalization

factor

of

3

is

used,

the

linestring

is

reduced

to

four

coordinates,

and

is

still

very

close

to

the

original

representation

of

the

linestring.

SELECT

CAST(ST_AsText(ST_Generalize(geometry,

3))

as

VARCHAR(115))

Generalize_3

FROM

sample_lines

Results:

ST_Generalize

376

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|

|

|
|

|
|

GENERALIZE

3

--

LINESTRING

(

10.00000000

10.00000000,

34.00000000

26.00000000,

59.00000000

63.00000000,

80.00000000

80.00000000)

Example

2:

When

a

generalization

factor

of

6

is

used,

the

linestring

is

reduced

to

only

two

coordinates.

This

produces

a

simpler

linestring

than

the

previous

example,

however

it

deviates

more

from

the

original

representation.

SELECT

CAST(ST_AsText(ST_Generalize(geometry,

6))

as

VARCHAR(65))

Generalize_6

FROM

sample_lines

Results:

GENERALIZE

6

--

LINESTRING

(

10.00000000

10.00000000,

80.00000000

80.00000000)

ST_GeomCollection

ST_GeomCollection

constructs

a

geometry

collection

from

one

of

the

following

inputs:

v

A

well-known

text

representation

v

A

well-known

binary

representation

v

An

ESRI

shape

representation

v

A

representation

in

the

geography

markup

language

(GML)

An

optional

spatial

reference

system

identifier

can

be

specified

to

identify

the

spatial

reference

system

that

the

resulting

geometry

collection

is

in.

If

the

well-known

text

representation,

the

well-known

binary

representation,

the

ESRI

shape

representation,

or

the

GML

representation

is

null,

then

null

is

returned.

Syntax:

��

db2gse.ST_GeomCollection

(

wkt

wkb

shape

gml

,

srs_id

)

��

Parameter:

wkt

A

value

of

type

CLOB(2G)

that

contains

the

well-known

text

representation

of

the

resulting

geometry

collection.

wkb

A

value

of

type

BLOB(2G)

that

contains

the

well-known

binary

representation

of

the

resulting

geometry

collection.

shape

A

value

of

type

BLOB(2G)

that

represents

the

ESRI

shape

representation

of

the

resulting

geometry

collection.

gml

A

value

of

type

CLOB(2G)

that

represents

the

resulting

geometry

collection

using

the

geography

markup

language

(GML).

ST_Generalize

Chapter

23.

Spatial

functions:

syntax

and

parameters

377

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

geometry

collection.

If

the

srs_id

parameter

is

omitted,

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used

implicitly.

If

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

error

is

returned

(SQLSTATE

38SU1).

Return

type:

db2gse.ST_GeomCollection

Notes:

If

the

srs_id

parameter

is

omitted,

it

might

be

necessary

to

cast

wkt

and

gml

explicitly

to

the

CLOB

data

type.

Otherwise,

DB2

might

resolve

to

the

function

used

to

cast

values

from

the

reference

type

REF(ST_GeomCollection)

to

the

ST_GeomCollection

type.

The

following

example

ensures

that

DB2

resolves

to

the

correct

function:

Example:

In

the

following

examples,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

The

following

code

illustrates

how

the

ST_GeomCollection

function

can

be

used

to

create

and

insert

a

multipoint,

multiline,

and

multipolygon

from

well-known

text

(WKT)

representation

and

a

multipoint

from

geographic

markup

language

(GML)

into

a

GeomCollection

column.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geomcollections(id

INTEGER,

geometry

ST_GEOMCOLLECTION)

INSERT

INTO

sample_geomcollections(id,

geometry)

VALUES

(4001,

ST_GeomCollection(’multipoint(1

2,

4

3,

5

6)’,

1)

),

(4002,

ST_GeomCollection(’multilinestring(

(33

2,

34

3,

35

6),

(28

4,

29

5,

31

8,

43

12),

(39

3,

37

4,

36

7))’,

1)

),

(4003,

ST_GeomCollection(’multipolygon(((3

3,

4

6,

5

3,

3

3),

(8

24,

9

25,

1

28,

8

24),

(13

33,

7

36,

1

40,

10

43,

13

33)))’,

1)),

(4004,

ST_GeomCollection(’<gml:MultiPoint

srsName="EPSG:4269"

><gml:PointMember><gml:Point>

<gml:coord><gml:X>10</gml:X>

<gml:Y>20</gml:Y></gml:

coord></gml:Point>

</gml:PointMember><gml:PointMember>

<gml:Point><gml:coord><gml:X>30</gml:X>

<gml:Y>40</gml:Y></gml:coord></gml:Point>

</gml:PointMember></gml:MultiPoint>’,

1))

SELECT

id,

cast(geometry..ST_AsText

AS

varchar(350))

AS

geomcollection

FROM

sample_geomcollections

Results:

ST_GeomCollection

378

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

ID

GEOMCOLLECTION

4001

MULTIPOINT

(

1.00000000

2.00000000,

4.00000000

3.00000000,

5.00000000

6.00000000)

4002

MULTILINESTRING

((

33.00000000

2.00000000,

34.00000000

3.00000000,

35.00000000

6.00000000),(

28.00000000

4.00000000,

29.00000000

5.00000000,

31.00000000

8.00000000,

43.00000000

12.00000000),(39.00000000

3.00000000,

37.00000000

4.00000000,

36.00000000

7.00000000))

4003

MULTIPOLYGON

(((

13.00000000

33.00000000,

10.00000000

43.00000000,

1.00000000

40.00000000,

7.00000000

36.00000000,

13.00000000

33.00000000)),((

8.00000000

24.00000000,

9.00000000

25.00000000,

1.00000000

28.00000000,

8.00000000

24.00000000)),

((

3.00000000

3.00000000,5.00000000

3.00000000,

4.00000000

6.00000000,3.00000000

3.00000000)))

4004

MULTIPOINT

(

10.00000000

20.00000000,

30.00000000

40.00000000)

Related

reference:

v

“Well-known

text

(WKT)

representation”

on

page

503

v

“Well-known

binary

(WKB)

representation”

on

page

508

v

“Shape

representation”

on

page

510

v

“Geography

Markup

Language

(GML)

representation”

on

page

510

ST_GeomCollFromTxt

ST_GeomCollFromTxt

takes

a

well-known

text

representation

of

a

geometry

collection

and,

optionally,

a

spatial

reference

system

identifier

as

input

parameters

and

returns

the

corresponding

geometry

collection.

If

the

given

well-known

text

representation

is

null,

then

null

is

returned.

The

recommended

function

for

achieving

the

same

result

is

ST_GeomCollection.

It

is

recommended

because

of

its

flexibility:

ST_GeomCollection

takes

additional

forms

of

input

as

well

as

the

well-known

binary

representation.

Syntax:

��

db2gse.ST_GeomCollFromTxt

(

wkt

,

srs_id

)

��

Parameter:

wkt

A

value

of

type

CLOB(2G)

that

contains

the

well-known

text

representation

of

the

resulting

geometry

collection.

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

geometry

collection.

If

the

srs_id

parameter

is

omitted,

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used

implicitly.

If

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

error

is

returned

(SQLSTATE

38SU1).

Return

type:

ST_GeomCollection

Chapter

23.

Spatial

functions:

syntax

and

parameters

379

db2gse.ST_GeomCollection

Example:

In

the

following

examples,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

The

following

code

illustrates

how

the

ST_GeomCollFromTxt

function

can

be

used

to

create

and

insert

a

multipoint,

multiline,

and

multipolygon

from

a

well-known

text

(WKT)

representation

into

a

GeomCollection

column.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geomcollections(id

INTEGER,

geometry

ST_GEOMCOLLECTION)

INSERT

INTO

sample_geomcollections(id,

geometry)

VALUES

(4011,

ST_GeomCollFromTxt(’multipoint(1

2,

4

3,

5

6)’,

1)

),

(4012,

ST_GeomCollFromTxt(’multilinestring(

(33

2,

34

3,

35

6),

(28

4,

29

5,

31

8,

43

12),

(39

3,

37

4,

36

7))’,

1)

),

(4013,

ST_GeomCollFromTxt(’multipolygon(((3

3,

4

6,

5

3,

3

3),

(8

24,

9

25,

1

28,

8

24),

(13

33,

7

36,

1

40,

10

43,

13

33)))’,

1))

SELECT

id,

cast(geometry..ST_AsText

AS

varchar(340))

AS

geomcollection

FROM

sample_geomcollections

Results:

ID

GEOMCOLLECTION

4011

MULTIPOINT

(

1.00000000

2.00000000,

4.00000000

3.00000000,

5.00000000

6.00000000)

4012

MULTILINESTRING

((

33.00000000

2.00000000,

34.00000000

3.00000000,

35.00000000

6.00000000),(

28.00000000

4.00000000,

29.00000000

5.00000000,

31.00000000

8.00000000,

43.00000000

12.00000000),(

39.00000000

3.00000000,

37.00000000

4.00000000,

36.00000000

7.00000000))

4013

MULTIPOLYGON

(((

13.00000000

33.00000000,

10.00000000

43.00000000,

1.00000000

40.00000000,

7.00000000

36.00000000,

13.00000000

33.00000000)),

((

8.00000000

24.00000000,

9.00000000

25.00000000,

1.00000000

28.00000000,

8.00000000

24.00000000)),((

3.00000000

3.00000000,

5.00000000

3.00000000,

4.00000000

6.00000000,

3.00000000

3.00000000)))

Related

reference:

v

“ST_GeomCollection”

on

page

377

ST_GeomCollFromWKB

ST_GeomCollFromWKB

takes

a

well-known

binary

representation

of

a

geometry

collection

and,

optionally,

a

spatial

reference

system

identifier

as

input

parameters

and

returns

the

corresponding

geometry

collection.

If

the

given

well-known

binary

representation

is

null,

then

null

is

returned.

The

preferred

version

for

this

functionality

is

ST_GeomCollection.

Syntax:

ST_GeomCollFromTxt

380

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

��

db2gse.ST_GeomCollFromTxt

(

wkb

,

srs_id

)

��

Parameter:

wkb

A

value

of

type

BLOB(2G)

that

contains

the

well-known

binary

representation

of

the

resulting

geometry

collection.

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

geometry

collection.

If

the

srs_id

parameter

is

omitted,

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used

implicitly.

If

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

error

is

returned

(SQLSTATE

38SU1).

Return

type:

db2gse.ST_GeomCollection

Example:

In

the

following

examples,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

The

following

code

illustrates

how

the

ST_GeomCollFromWKB

function

can

be

used

to

create

and

query

the

coordinates

of

a

geometry

collection

in

a

well-known

binary

representation.

The

rows

are

inserted

into

the

SAMPLE_GEOMCOLLECTION

table

with

IDs

4021

and

4022

and

geometry

collections

in

spatial

reference

system

1.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geomcollections(id

INTEGER,

geometry

ST_GEOMCOLLECTION,

wkb

BLOB(32k))

INSERT

INTO

sample_geomcollections(id,

geometry)

VALUES

(4021,

ST_GeomCollFromTxt(’multipoint(1

2,

4

3,

5

6)’,

1)),

(4022,

ST_GeomCollFromTxt(’multilinestring(

(33

2,

34

3,

35

6),

(28

4,

29

5,

31

8,

43

12))’,

1))

UPDATE

sample_geomcollections

AS

temp_correlated

SET

wkb

=

geometry..ST_AsBinary

WHERE

id

=

temp_correlated.id

SELECT

id,

cast(ST_GeomCollFromWKB(wkb)..ST_AsText

AS

varchar(190))

AS

GeomCollection

FROM

sample_geomcollections

Results:

ID

GEOMCOLLECTION

4021

MULTIPOINT

(

1.00000000

2.00000000,

4.00000000

3.00000000,

5.00000000

6.00000000)

4022

MULTILINESTRING

((

33.00000000

2.00000000,

34.00000000

3.00000000,

35.00000000

6.00000000),(

28.00000000

4.00000000,

29.00000000

5.00000000,

31.00000000

8.00000000,

43.00000000

12.00000000))

ST_GeomCollFromWKB

Chapter

23.

Spatial

functions:

syntax

and

parameters

381

Related

reference:

v

“Well-known

binary

(WKB)

representation”

on

page

508

ST_Geometry

ST_Geometry

constructs

a

geometry

from

one

of

the

following

inputs:

v

A

well-known

text

representation

v

A

well-known

binary

representation

v

An

ESRI

shape

representation

v

A

representation

in

the

geography

markup

language

(GML)

An

optional

spatial

reference

system

identifier

can

be

specified

to

identify

the

spatial

reference

system

that

the

resulting

geometry

is

in.

The

dynamic

type

of

the

resulting

geometry

is

one

of

the

instantiable

subtypes

of

ST_Geometry.

If

the

well-known

text

representation,

the

well-known

binary

representation,

the

ESRI

shape

representation,

or

the

GML

representation

is

null,

then

null

is

returned.

Syntax:

��

db2gse.ST_Geometry

(

wkt

wkb

shape

gml

,

srs_id

)

��

Parameter:

wkt

A

value

of

type

CLOB(2G)

that

contains

the

well-known

text

representation

of

the

resulting

geometry.

wkb

A

value

of

type

BLOB(2G)

that

contains

the

well-known

binary

representation

of

the

resulting

geometry.

shape

A

value

of

type

BLOB(2G)

that

represents

the

ESRI

shape

representation

of

the

resulting

geometry.

gml

A

value

of

type

CLOB(2G)

that

represents

the

resulting

geometry

using

the

geography

markup

language

(GML).

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

geometry.

If

the

srs_id

parameter

is

omitted,

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used

implicitly.

If

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

error

is

returned

(SQLSTATE

38SU1).

Return

type:

db2gse.ST_Geometry

Example:

ST_GeomCollFromWKB

382

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

In

the

following

examples,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

The

following

code

illustrates

how

the

ST_Geometry

function

can

be

used

to

create

and

insert

a

point

from

a

well-known

text

(WKT)

point

representation

or

line

from

Geographic

Markup

Language

(GML)

line

representation.

The

ST_Geometry

function

is

the

most

flexible

of

the

spatial

type

constructor

functions

because

it

can

create

any

spatial

type

from

various

geometry

representations.

ST_LineFromText

can

create

only

a

line

from

WKT

line

representation.

ST_WKTToSql

can

construct

any

type,

but

only

from

WKT

representation.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geometries(id

INTEGER,

geometry

ST_GEOMETRY)

INSERT

INTO

sample_geometries(id,

geometry)

VALUES

(7001,

ST_Geometry(’point(1

2)’,

1)

),

(7002,

ST_Geometry(’linestring(33

2,

34

3,

35

6)’,

1)

),

(7003,

ST_Geometry(’polygon((3

3,

4

6,

5

3,

3

3))’,

1)),

(7004,

ST_Geometry(’<gml:Point

srsName=";EPSG:4269";><gml:coord>

<gml:X>50</gml:X><gml:Y>60</gml:Y></gml:coord>

</gml:Point>’,

1))

SELECT

id,

cast(geometry..ST_AsText

AS

varchar(120))

AS

geometry

FROM

sample_geometries

Results:

ID

GEOMETRY

--

7001

POINT

(

1.00000000

2.00000000)

7002

LINESTRING

(

33.00000000

2.00000000,

34.00000000

3.00000000,

35.00000000

6.00000000)

7003

POLYGON

((

3.00000000

3.00000000,

5.00000000

3.00000000,

4.00000000

6.00000000,

3.00000000

3.00000000))

7004

POINT

(

50.00000000

60.00000000)

Related

reference:

v

“Well-known

text

(WKT)

representation”

on

page

503

ST_GeometryN

ST_GeometryN

takes

a

geometry

collection

and

an

index

as

input

parameters

and

returns

the

geometry

in

the

collection

that

is

identified

by

the

index.

The

resulting

geometry

is

represented

in

the

spatial

reference

system

of

the

given

geometry

collection.

If

the

given

geometry

collection

is

null

or

is

empty,

or

if

the

index

is

smaller

than

1

or

larger

than

the

number

of

geometries

in

the

collection,

then

null

is

returned

and

a

warning

condition

is

raised

(01HS0).

This

function

can

also

be

called

as

a

method.

Syntax:

ST_Geometry

Chapter

23.

Spatial

functions:

syntax

and

parameters

383

��

db2gse.ST_GeometryN

(

collection

,

index

)

��

Parameter:

collection

A

value

of

type

ST_GeomCollection

or

one

of

its

subtypes

that

represents

the

geometry

collection

to

locate

the

nth

geometry

within.

index

A

value

of

type

INTEGER

that

identifies

the

nth

geometry

that

is

to

be

returned

from

collection.

If

index

is

smaller

than

1

or

larger

than

the

number

of

geometries

in

the

collection,

then

null

is

returned

and

a

warning

is

returned

(SQLSTATE

01HS0).

Return

type:

db2gse.ST_Geometry

Example:

The

following

code

illustrates

how

to

choose

the

second

geometry

inside

a

geometry

collection.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geomcollections

(id

INTEGER,

geometry

ST_GEOMCOLLECTION)

INSERT

INTO

sample_geomcollections(id,

geometry)

VALUES

(4001,

ST_GeomCollection(’multipoint(1

2,

4

3)’,

1)

),

(4002,

ST_GeomCollection(’multilinestring(

(33

2,

34

3,

35

6),

(28

4,

29

5,

31

8,

43

12),

(39

3,

37

4,

36

7))’,

1)

),

(4003,

ST_GeomCollection(’multipolygon(((3

3,

4

6,

5

3,

3

3),

(8

24,

9

25,

1

28,

8

24),

(13

33,

7

36,

1

40,

10

43,

13

33)))’,

1))

SELECT

id,

cast(ST_GeometryN(geometry,

2)..ST_AsText

AS

varchar(110))

AS

second_geometry

FROM

sample_geomcollections

Results:

ID

SECOND_GEOMETRY

--

4001

POINT

(

4.00000000

3.00000000)

4002

LINESTRING

(

28.00000000

4.00000000,

29.00000000

5.00000000,

31.00000000

8.00000000,

43.00000000

12.00000000)

4003

POLYGON

((

8.00000000

24.00000000,

9.00000000

25.00000000,

1.00000000

28.00000000,

8.00000000

24.00000000))

Related

reference:

v

“ST_NumGeometries”

on

page

442

ST_GeometryN

384

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

ST_GeometryType

ST_GeometryType

takes

a

geometry

as

input

parameter

and

returns

the

fully

qualified

type

name

of

the

dynamic

type

of

that

geometry.

The

DB2

functions

TYPE_SCHEMA

and

TYPE_NAME

have

the

same

effect.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_GeometryType

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

for

which

the

geometry

type

is

to

be

returned.

Return

type:

VARCHAR(128)

Examples:

The

following

code

illustrates

how

to

determine

the

type

of

a

geometry.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geometries

(id

INTEGER,

geometry

ST_GEOMETRY)

INSERT

INTO

sample_geometries(id,

geometry)

VALUES

(7101,

ST_Geometry(’point(1

2)’,

1)

),

(7102,

ST_Geometry(’linestring(33

2,

34

3,

35

6)’,

1)

),

(7103,

ST_Geometry(’polygon((3

3,

4

6,

5

3,

3

3))’,

1)),

(7104,

ST_Geometry(’multipoint(1

2,

4

3)’,

1)

)

SELECT

id,

geometry..ST_GeometryType

AS

geometry_type

FROM

sample_geometries

Results:

ID

GEOMETRY_TYPE

7101

"DB2GSE

"."ST_POINT"

7102

"DB2GSE

"."ST_LINESTRING"

7103

"DB2GSE

"."ST_POLYGON"

7104

"DB2GSE

"."ST_MULTIPOINT"

ST_GeomFromText

ST_GeomFromText

takes

a

well-known

text

representation

of

a

geometry

and,

optionally,

a

spatial

reference

system

identifier

as

input

parameters

and

returns

the

corresponding

geometry.

If

the

given

well-known

text

representation

is

null,

then

null

is

returned.

The

preferred

version

for

this

functionality

is

ST_Geometry.

ST_GeometryType

Chapter

23.

Spatial

functions:

syntax

and

parameters

385

Syntax:

��

db2gse.ST_GeomFromText

(

wkt

,

srs_id

)

��

Parameter:

wkt

A

value

of

type

CLOB(2G)

that

contains

the

well-known

text

representation

of

the

resulting

geometry.

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

geometry.

If

the

srs_id

parameter

is

omitted,

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used

implicitly.

If

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

error

is

returned

(SQLSTATE

38SU1).

Return

type:

db2gse.ST_Geometry

Example:

In

the

following

examples,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

In

this

example

the

ST_GeomFromText

function

is

used

to

create

and

insert

a

point

from

a

well

known

text

(WKT)

point

representation.

The

following

code

inserts

rows

into

the

SAMPLE_POINTS

table

with

IDs

and

geometries

in

spatial

reference

system

1

using

WKT

representation.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geometries(id

INTEGER,

geometry

ST_GEOMETRY)

INSERT

INTO

sample_geometries(id,

geometry)

VALUES

(1251,

ST_GeomFromText(’point(1

2)’,

1)

),

(1252,

ST_GeomFromText(’linestring(33

2,

34

3,

35

6)’,

1)

),

(1253,

ST_GeomFromText(’polygon((3

3,

4

6,

5

3,

3

3))’,

1))

The

following

SELECT

statement

will

return

the

ID

and

GEOMETRIES

from

the

SAMPLE_GEOMETRIES

table.

SELECT

id,

cast(geometry..ST_AsText

AS

varchar(105))

AS

geometry

FROM

sample_geometries

Results:

ID

GEOMETRY

1251

POINT

(

1.00000000

2.00000000)

1252

LINESTRING

(

33.00000000

2.00000000,

34.00000000

3.00000000,

35.00000000

6.00000000)

1253

POLYGON

((

3.00000000

3.00000000,

5.00000000

3.00000000,

4.00000000

6.00000000,

3.00000000

3.00000000))

ST_GeomFromText

386

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Related

reference:

v

“Well-known

text

(WKT)

representation”

on

page

503

ST_GeomFromWKB

ST_GeomFromWKB

takes

a

well-known

binary

representation

of

a

geometry

and,

optionally,

a

spatial

reference

system

identifier

as

input

parameters

and

returns

the

corresponding

geometry.

If

the

given

well-known

binary

representation

is

null,

then

null

is

returned.

The

preferred

version

for

this

functionality

is

ST_Geometry.

Syntax:

��

db2gse.ST_GeomFromWKB

(

wkb

)

,

srs_id

��

Parameter:

wkb

A

value

of

type

BLOB(2G)

that

contains

the

well-known

binary

representation

of

the

resulting

geometry.

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

geometry.

If

the

srs_id

parameter

is

omitted,

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used

implicitly.

If

the

specified

srs_id

parameter

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

error

is

returned

(SQLSTATE

38SU1).

Return

type:

db2gse.ST_Geometry

Examples:

In

the

following

examples,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

The

following

code

illustrates

how

the

ST_GeomFromWKB

function

can

be

used

to

create

and

insert

a

line

from

a

well-known

binary

(WKB)

line

representation.

The

following

example

inserts

a

record

into

the

SAMPLE_GEOMETRIES

table

with

an

ID

and

a

geometry

in

spatial

reference

system

1

in

a

WKB

representation.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geometries

(id

INTEGER,

geometry

ST_GEOMETRY,

wkb

BLOB(32K))

INSERT

INTO

sample_geometries(id,

geometry)

VALUES

(1901,

ST_GeomFromText(’point(1

2)’,

1)

),

(1902,

ST_GeomFromText(’linestring(33

2,

34

3,

35

6)’,

1)

),

(1903,

ST_GeomFromText(’polygon((3

3,

4

6,

5

3,

3

3))’,

1))

ST_GeomFromText

Chapter

23.

Spatial

functions:

syntax

and

parameters

387

UPDATE

sample_geometries

AS

temp_correlated

SET

wkb

=

geometry..ST_AsBinary

WHERE

id

=

temp_correlated.id

SELECT

id,

cast(ST_GeomFromWKB(wkb)..ST_AsText

AS

varchar(190))

AS

geometry

FROM

sample_geometries

Results:

ID

GEOMETRY

--

1901

POINT

(

1.00000000

2.00000000)

1902

LINESTRING

(

33.00000000

2.00000000,

34.00000000

3.00000000,

35.00000000

6.00000000)

1903

POLYGON

((

3.00000000

3.00000000,

5.00000000

3.00000000,

4.00000000

6.00000000,

3.00000000

3.00000000))

Related

reference:

v

“Well-known

binary

(WKB)

representation”

on

page

508

ST_GetIndexParms

ST_GetIndexParms

takes

either

the

identifier

for

a

spatial

index

or

for

a

spatial

column

as

an

input

parameter

and

returns

the

parameters

used

to

define

the

index

or

the

index

on

the

spatial

column.

If

an

additional

parameter

number

is

specified,

only

the

grid

size

identified

by

the

number

is

returned.

Syntax:

��

db2gse.ST_GetIndexParms

(

�

�

index_schema

,

index_name

table_schema

,

table_name

,

column_name

,

grid_size_number

)

��

Parameter:

index_schema

A

value

of

type

VARCHAR(128)

that

identifies

the

schema

in

which

the

spatial

index

with

the

unqualified

name

index_name

is

in.

The

schema

name

is

case-sensitive

and

must

be

listed

in

the

SYSCAT.SCHEMATA

catalog

view.

If

this

parameter

is

null,

then

the

value

of

the

CURRENT

SCHEMA

special

register

is

used

as

the

schema

name

for

the

spatial

index.

index_name

A

value

of

type

VARCHAR(128)

that

contains

the

unqualified

name

of

the

spatial

index

for

which

the

index

parameters

are

returned.

The

index

name

is

case-sensitive

and

must

be

listed

in

the

SYSCAT.INDEXES

catalog

view

for

the

schema

index_schema.

table_schema

A

value

of

type

VARCHAR(128)

that

identifies

the

schema

in

which

the

table

with

the

unqualified

name

table_name

is

in.

The

schema

name

is

case-sensitive

and

must

be

listed

in

the

SYSCAT.SCHEMATA

catalog

view.

ST_GeomFromWKB

388

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

If

this

is

parameter

null,

then

the

value

of

the

CURRENT

SCHEMA

special

register

is

used

as

the

schema

name

for

the

spatial

index.

table_name

A

value

of

type

VARCHAR(128)

that

contains

the

unqualified

name

of

the

table

with

the

spatial

column

column_name.

The

table

name

is

case-sensitive

and

must

be

listed

in

the

SYSCAT.TABLES

catalog

view

for

the

schema

table_schema.

column_name

A

value

of

type

VARCHAR(128)

that

identifies

the

column

in

the

table

table_schema.table_name

for

which

the

index

parameters

of

the

spatial

index

on

that

column

are

returned.

The

column

name

is

case-sensitive

and

must

be

listed

in

the

SYSCAT.COLUMNS

catalog

view

for

the

table

table_schema.table_name.

If

there

is

no

spatial

index

defined

in

the

column,

then

an

error

is

raised

(SQLSTATE

38SQ0).

grid_size_number

A

DOUBLE

value

that

identifies

the

parameter

whose

value

or

values

are

to

be

returned.

If

this

value

is

smaller

than

1

or

larger

than

3,

then

an

error

is

raised

(SQLSTATE

38SQ1).

Return

type:

DOUBLE

(if

grid_size_number

is

specified)

If

grid_size_number

is

not

specified,

then

a

table

with

the

two

columns

ORDINAL

and

VALUE

is

returned.

The

column

ORDINAL

is

of

type

INTEGER,

and

the

column

VALUE

is

of

type

DOUBLE.

If

the

parameters

are

returned

for

a

grid

index,

the

ORDINAL

column

contains

the

values

1,

2,

and

3

for

the

first,

second,

and

third

grid

size,

respectively.

The

column

VALUE

contains

the

grid

sizes.

The

VALUE

column

contains

the

respective

values

for

each

of

the

parameters.

Examples:

This

code

creates

a

table

with

a

spatial

column

and

a

spatial

index.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sch.offices

(name

VARCHAR(30),

location

ST_Point

)

CREATE

INDEX

sch.idx

ON

sch.offices(location)

EXTEND

USING

db2gse.spatial_index(1e0,

10e0,

1000e0)

The

ST_GetIndexParms

function

can

be

used

to

retrieve

the

values

for

the

parameters

that

were

used

when

the

spatial

index

was

created.

Example

1:

This

example

shows

how

to

retrieve

the

three

grid

sizes

for

a

spatial

grid

index

separately

by

explicitly

specifying

which

parameter,

identified

by

its

number,

is

to

be

returned.

VALUES

ST_GetIndexParms(’SCH’,

’OFFICES’,

’LOCATION’,

1)

ST_GetIndexParms

Chapter

23.

Spatial

functions:

syntax

and

parameters

389

Results:

1

+1.00000000000000E+000

VALUES

ST_GetIndexParms(’SCH’,

’OFFICES’,

’LOCATION’,

2)

Results:

1

+1.00000000000000E+001

VALUES

ST_GetIndexParms(’SCH’,

’IDX’,

3)

Results:

1

+1.00000000000000E+003

Example

2:

This

example

shows

how

to

retrieve

all

the

parameters

of

a

spatial

grid

index.

The

ST_GetIndexParms

function

returns

a

table

that

indicates

the

parameter

number

and

the

corresponding

grid

size.

SELECT

*

FROM

TABLE

(

ST_GetIndexParms(’SCH’,

’OFFICES’,

’LOCATION’)

)

AS

t

Results:

ORDINAL

VALUE

1

+1.00000000000000E+000

2

+1.00000000000000E+001

3

+1.00000000000000E+003

SELECT

*

FROM

TABLE

(

ST_GetIndexParms(’SCH’,

’IDX’)

)

AS

t

Results:

ORDINAL

VALUE

1

+1.00000000000000E+000

2

+1.00000000000000E+001

3

+1.00000000000000E+003

Related

concepts:

v

“Spatial

grid

indexes”

on

page

96

ST_InteriorRingN

ST_InteriorRingN

takes

a

polygon

and

an

index

as

input

parameters

and

returns

the

interior

ring

identified

by

the

given

index

as

a

linestring.

The

interior

rings

are

organized

according

to

the

rules

defined

by

the

internal

geometry

verification

routines.

If

the

given

polygon

is

null

or

is

empty,

or

if

it

does

not

have

any

interior

rings,

then

null

is

returned.

If

the

index

is

smaller

than

1

or

larger

than

the

number

of

interior

rings

in

the

polygon,

then

null

is

returned

and

a

warning

condition

is

raised

(1HS1).

This

function

can

also

be

called

as

a

method.

ST_GetIndexParms

390

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

Syntax:

��

db2gse.ST_InteriorRingN

(

polygon

,

index

)

��

Parameter:

polygon

A

value

of

type

ST_Polygon

that

represents

the

geometry

from

which

the

interior

ring

identified

by

index

is

returned.

index

A

value

of

type

INTEGER

that

identifies

the

nthe

interior

ring

that

is

returned.

If

there

is

no

interior

ring

identified

by

index,

then

a

warning

condition

is

raised

(01HS1).

Return

type:

db2gse.ST_Curve

Example:

In

this

example,

a

polygon

is

created

with

two

interior

rings.

The

ST_InteriorRingN

call

is

then

used

to

retrieve

the

second

interior

ring.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_polys

(id

INTEGER,

geometry

ST_Polygon)

INSERT

INTO

sample_polys

VALUES

(1,

ST_Polygon(’polygon((40

120,

90

120,

90

150,

40

150,

40

120),

(50

130,

60

130,

60

140,

50

140,

50

130),

(70

130,

80

130,

80

140,

70

140,

70

130))’

,0))

SELECT

id,

CAST(ST_AsText(ST_InteriorRingN(geometry,

2))

as

VARCHAR(180))

Interior_Ring

FROM

sample_polys

Results:

ID

INTERIOR_RING

--

1

LINESTRING

(

70.00000000

130.00000000,

70.00000000

140.00000000,

80.00000000

140.00000000,

80.00000000

130.00000000,

70.00000000

130.00000000)

Related

reference:

v

“ST_ExteriorRing”

on

page

373

v

“ST_NumInteriorRing”

on

page

443

ST_Intersection

ST_Intersection

takes

two

geometries

as

input

parameters

and

returns

the

geometry

that

is

the

intersection

of

the

two

given

geometries.

The

intersection

is

the

common

part

of

the

first

geometry

and

the

second

geometry.

The

resulting

geometry

is

represented

in

the

spatial

reference

system

of

the

first

geometry.

If

possible,

the

specific

type

of

the

returned

geometry

will

be

ST_Point,

ST_LineString,

or

ST_Polygon.

For

example,

the

intersection

of

a

point

and

a

polygon

is

either

empty

or

a

single

point,

represented

as

ST_MultiPoint.

ST_InteriorRingN

Chapter

23.

Spatial

functions:

syntax

and

parameters

391

|

|
|

If

any

of

the

two

geometries

is

null,

null

is

returned.

For

non–geodetic

data,

if

the

second

geometry

is

not

represented

in

the

same

spatial

reference

system

as

the

first

geometry,

it

will

be

converted

to

the

other

spatial

reference

system.

For

geodetic

data,

both

geometries

must

be

in

the

same

geodetic

spatial

reference

system

(SRS).

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_Intersection

(

geometry1

,

geometry2

)

��

Parameter:

geometry1

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

first

geometry

to

compute

the

intersection

with

geometry2.

geometry2

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

second

geometry

to

compute

the

intersection

with

geometry1.

For

geodetic

data,

both

geometries

must

be

geodetic

and

they

both

must

be

in

the

same

geodetic

SRS.

Return

type:

db2gse.ST_Geometry

The

dimension

of

the

returned

geometry

is

that

of

the

input

with

the

lower

dimension,

except

for

linestrings

in

geodetic

data.

For

geodetic

data,

the

dimension

of

the

intersection

of

two

linestrings

is

0

(in

other

words,

the

intersection

is

a

point

or

multipoint).

Example:

In

the

following

examples,

the

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

display.

This

example

creates

several

different

geometries

and

then

determines

the

intersection

(if

any)

with

the

first

one.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geoms

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geoms

VALUES

(1,

ST_Geometry(’polygon((30

30,

30

50,

50

50,

50

30,

30

30))’

,0))

INSERT

INTO

sample_geoms

VALUES

(2,

ST_Geometry(’polygon((20

30,

30

30,

30

40,

20

40,

20

30))’

,0))

INSERT

INTO

sample_geoms

VALUES

(3,

ST_Geometry(’polygon((40

40,

40

60,

60

60,

60

40,

40

40))’

,0))

INSERT

INTO

sample_geoms

VALUES

(4,

ST_Geometry(’linestring(60

60,

70

70)’

,0))

INSERT

INTO

sample_geoms

VALUES

(5,

ST_Geometry(’linestring(30

30,

60

60)’

,0))

ST_Intersection

392

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|
|
|
|

|
|

|
|
|
|

|
|

SELECT

a.id,

b.id,

CAST(ST_AsText(ST_Intersection(a.geometry,

b.geometry))

as

VARCHAR(150))

Intersection

FROM

sample_geoms

a,

sample_geoms

b

WHERE

a.id

=

1

Results:

ID

ID

INTERSECTION

--

1

1

POLYGON

((

30.00000000

30.00000000,

50.00000000

30.00000000,

50.00000000

50.00000000,

30.00000000

50.00000000,

30.00000000

30.00000000))

1

2

LINESTRING

(

30.00000000

40.00000000,

30.00000000

30.00000000)

1

3

POLYGON

((

40.00000000

40.00000000,

50.00000000

40.00000000,

50.00000000

50.00000000,

40.00000000

50.00000000,

40.00000000

40.00000000))

1

4

POINT

EMPTY

1

5

LINESTRING

(

30.00000000

30.00000000,

50.00000000

50.00000000)

5

record(s)

selected.

ST_Intersects

ST_Intersects

takes

two

geometries

as

input

parameters

and

returns

1

if

the

given

geometries

intersect.

If

the

geometries

do

not

intersect,

0

(zero)

is

returned.

If

any

of

the

two

geometries

is

null

or

is

empty,

null

is

returned.

For

non–geodetic

data,

if

the

second

geometry

is

not

represented

in

the

same

spatial

reference

system

as

the

first

geometry,

it

will

be

converted

to

the

other

spatial

reference

system.

For

geodetic

data,

both

geometries

must

be

in

the

same

geodetic

spatial

reference

system

(SRS).

Syntax:

��

db2gse.ST_Intersects

(

geometry1

,

geometry2

)

��

Parameter:

geometry1

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

to

test

for

intersection

with

geometry2.

geometry2

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

to

test

for

intersection

with

geometry1.

Restrictions:

For

geodetic

data,

both

geometries

must

be

geodetic,

and

they

both

must

be

in

the

same

geodetic

SRS.

Return

type:

INTEGER

Example:

ST_Intersection

Chapter

23.

Spatial

functions:

syntax

and

parameters

393

|

|

|
|
|
|

|
|

|
|

|
|

The

following

statements

create

and

populate

the

SAMPLE_GEOMETRIES1

and

SAMPLE_GEOMETRIES2

tables.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geometries1(id

SMALLINT,

spatial_type

varchar(13),

geometry

ST_GEOMETRY);

CREATE

TABLE

sample_geometries2(id

SMALLINT,

spatial_type

varchar(13),

geometry

ST_GEOMETRY);

INSERT

INTO

sample_geometries1(id,

spatial_type,

geometry)

VALUES

(

1,

’ST_Point’,

ST_Point(’point(550

150)’,

1)

),

(10,

’ST_LineString’,

ST_LineString(’linestring(800

800,

900

800)’,

1)),

(20,

’ST_Polygon’,

ST_Polygon(’polygon((500

100,

500

200,

700

200,

700

100,

500

100))’,

1)

)

INSERT

INTO

sample_geometries2(id,

spatial_type,

geometry)

VALUES

(101,

’ST_Point’,

ST_Point(’point(550

150)’,

1)

),

(102,

’ST_Point’,

ST_Point(’point(650

200)’,

1)

),

(103,

’ST_Point’,

ST_Point(’point(800

800)’,

1)

),

(110,

’ST_LineString’,

ST_LineString(’linestring(850

250,

850

850)’,

1)),

(120,

’ST_Polygon’,

ST_Polygon(’polygon((650

50,

650

150,

800

150,

800

50,

650

50))’,

1)),

(121,

’ST_Polygon’,

ST_Polygon(’polygon((20

20,

20

40,

40

40,

40

20,

20

20))’,

1)

)

The

following

SELECT

statement

determines

whether

the

various

geometries

in

the

SAMPLE_GEOMTRIES1

and

SAMPLE_GEOMTRIES2

tables

intersect.

SELECT

sg1.id

AS

sg1_id,

sg1.spatial_type

AS

sg1_type,

sg2.id

AS

sg2_id,

sg2.spatial_type

AS

sg2_type,

CASE

ST_Intersects(sg1.geometry,

sg2.geometry)

WHEN

0

THEN

’Geometries

do

not

intersect’

WHEN

1

THEN

’Geometries

intersect’

END

AS

intersects

FROM

sample_geometries1

sg1,

sample_geometries2

sg2

ORDER

BY

sg1.id

Results:

SG1_ID

SG1_TYPE

SG2_ID

SG2_TYPE

INTERSECTS

1

ST_Point

101

ST_Point

Geometries

intersect

1

ST_Point

102

ST_Point

Geometries

do

not

intersect

1

ST_Point

103

ST_Point

Geometries

do

not

intersect

1

ST_Point

110

ST_LineString

Geometries

do

not

intersect

1

ST_Point

120

ST_Polygon

Geometries

do

not

intersect

1

ST_Point

121

ST_Polygon

Geometries

do

not

intersect

10

ST_LineString

101

ST_Point

Geometries

do

not

intersect

10

ST_LineString

102

ST_Point

Geometries

do

not

intersect

10

ST_LineString

103

ST_Point

Geometries

intersect

10

ST_LineString

110

ST_LineString

Geometries

intersect

10

ST_LineString

120

ST_Polygon

Geometries

do

not

intersect

10

ST_LineString

121

ST_Polygon

Geometries

do

not

intersect

20

ST_Polygon

101

ST_Point

Geometries

intersect

20

ST_Polygon

102

ST_Point

Geometries

intersect

20

ST_Polygon

103

ST_Point

Geometries

do

not

intersect

20

ST_Polygon

110

ST_LineString

Geometries

do

not

intersect

20

ST_Polygon

120

ST_Polygon

Geometries

intersect

20

ST_Polygon

121

ST_Polygon

Geometries

do

not

intersect

Related

reference:

v

“Functions

that

compare

geographic

features”

on

page

295

ST_Intersects

394

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

ST_Is3d

ST_Is3d

takes

a

geometry

as

an

input

parameter

and

returns

1

if

the

given

geometry

has

Z

coordinates.

Otherwise,

0

(zero)

is

returned.

If

the

given

geometry

is

null

or

is

empty,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_Is3D

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

that

is

to

be

tested

for

the

existence

of

Z

coordinates.

Return

type:

INTEGER

Example:

In

this

example,

several

geometries

are

created

with

and

without

Z

coordinates

and

M

coordinates

(measures).

ST_Is3d

is

then

used

to

determine

which

of

them

contain

Z

coordinates.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geoms

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geoms

VALUES

(1,

ST_Geometry(’point

EMPTY’,0))

INSERT

INTO

sample_geoms

VALUES

(2,

ST_Geometry(’polygon((40

120,

90

120,

90

150,

40

150,

40

120))’

,0))

INSERT

INTO

sample_geoms

VALUES

(3,

ST_Geometry(’multipoint

m

(10

10

5,

50

10

6,

10

30

8)’

,0))

INSERT

INTO

sample_geoms

VALUES

(4,

ST_Geometry(’linestring

z

(10

10

166,

20

10

168)’,0))

INSERT

INTO

sample_geoms

VALUES

(5,

ST_Geometry(’point

zm

(10

10

16

30)’

,0))

SELECT

id,

ST_Is3d(geometry)

Is_3D

FROM

sample_geoms

Results:

ID

IS_3D

1

0

2

0

3

0

4

1

ST_Is3d

Chapter

23.

Spatial

functions:

syntax

and

parameters

395

5

1

ST_IsClosed

ST_IsClosed

takes

a

curve

or

multicurve

as

an

input

parameter

and

returns

1

if

the

given

curve

or

multicurve

is

closed.

Otherwise,

0

(zero)

is

returned.

A

curve

is

closed

if

the

start

point

and

end

point

are

equal.

If

the

curve

has

Z

coordinates,

the

Z

coordinates

of

the

start

and

end

point

must

be

equal.

Otherwise,

the

points

are

not

considered

equal,

and

the

curve

is

not

closed.

A

multicurve

is

closed

if

each

of

its

curves

are

closed.

If

the

given

curve

or

multicurve

is

empty,

then

0

(zero)

is

returned.

If

it

is

null,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_IsClosed

(

curve

)

��

Parameter:

curve

A

value

of

type

ST_Curve

or

ST_MultiCurve

or

one

of

their

subtypes

that

represent

the

curve

or

multicurve

that

is

to

be

tested.

Return

type:

INTEGER

Examples:

Example

1:

This

example

creates

several

linestrings.

The

last

two

linestrings

have

the

same

X

and

Y

coordinates,

but

one

linestring

contains

varying

Z

coordinates

that

cause

the

linestring

to

not

be

closed,

and

the

other

linestring

contains

varying

M

coordinates

(measures)

that

do

not

affect

whether

the

linestring

is

closed.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_lines

(id

INTEGER,

geometry

ST_Linestring)

INSERT

INTO

sample_lines

VALUES

(1,

ST_Linestring(’linestring

EMPTY’,0))

INSERT

INTO

sample_lines

VALUES

(2,

ST_Linestring(’linestring(10

10,

20

10,

20

20)’

,0))

INSERT

INTO

sample_lines

VALUES

(3,

ST_Linestring(’linestring(10

10,

20

10,

20

20,

10

10)’

,0))

INSERT

INTO

sample_lines

VALUES

(4,

ST_Linestring(’linestring

m(10

10

1,

20

10

2,

20

20

3,

10

10

4)’

,0))

INSERT

INTO

sample_lines

VALUES

(5,

ST_Linestring(’linestring

z(10

10

5,

20

10

6,

20

20

7,

ST_Is3d

396

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

10

10

8)’

,0))

SELECT

id,

ST_IsClosed(geometry)

Is_Closed

FROM

sample_lines

Results:

ID

IS_CLOSED

1

0

2

0

3

1

4

1

5

0

Example

2:

In

this

example,

two

multilinestrings

are

created.

ST_IsClosed

is

used

to

determine

if

the

multilinestrings

are

closed.

The

first

one

is

not

closed,

even

though

all

of

the

curves

together

form

a

complete

closed

loop.

This

is

because

each

curve

itself

is

not

closed.

The

second

multilinestring

is

closed

because

each

curve

itself

is

closed.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_mlines

(id

INTEGER,

geometry

ST_MultiLinestring)

INSERT

INTO

sample_mlines

VALUES

(6,

ST_MultiLinestring(’multilinestring((10

10,

20

10,

20

20),

(20

20,

30

20,

30

30),

(30

30,

10

30,

10

10))’,0))

INSERT

INTO

sample_mlines

VALUES

(7,

ST_MultiLinestring(’multilinestring((10

10,

20

10,

20

20,

10

10

),

(30

30,

50

30,

50

50,

30

30

))’,0))

SELECT

id,

ST_IsClosed(geometry)

Is_Closed

FROM

sample_mlines

Results:

ID

IS_CLOSED

6

0

7

1

ST_IsEmpty

ST_IsEmpty

takes

a

geometry

as

an

input

parameter

and

returns

1

if

the

given

geometry

is

empty.

Otherwise

0

(zero)

is

returned.

A

geometry

is

empty

if

it

does

not

have

any

points

that

define

it.

If

the

given

geometry

is

null,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

ST_IsClosed

Chapter

23.

Spatial

functions:

syntax

and

parameters

397

��

db2gse.ST_IsEmpty

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

that

is

to

be

tested.

Return

type:

INTEGER

Example:

The

following

code

creates

three

geometries

and

then

determines

if

they

are

empty.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geoms

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geoms

VALUES

(1,

ST_Geometry(’point

EMPTY’,0))

INSERT

INTO

sample_geoms

VALUES

(2,

ST_Geometry(’polygon((40

120,

90

120,

90

150,

40

150,

40

120))’

,0))

INSERT

INTO

sample_geoms

VALUES

(3,

ST_Geometry(’multipoint

m

(10

10

5,

50

10

6,

10

30

8)’

,0))

INSERT

INTO

sample_geoms

VALUES

(4,

ST_Geometry(’linestring

z

(10

10

166,

20

10

168)’,0))

INSERT

INTO

sample_geoms

VALUES

(5,

ST_Geometry(’point

zm

(10

10

16

30)’

,0))

SELECT

id,

ST_IsEmpty(geometry)

Is_Empty

FROM

sample_geoms

Results:

ID

IS_EMPTY

1

1

2

0

3

0

4

0

5

0

ST_IsMeasured

ST_IsMeasured

takes

a

geometry

as

an

input

parameter

and

returns

1

if

the

given

geometry

has

M

coordinates

(measures).

Otherwise

0

(zero)

is

returned.

If

the

given

geometry

is

null

or

is

empty,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

ST_IsEmpty

398

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|

|

|

|

��

db2gse.ST_IsMeasured

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

to

be

tested

for

the

existence

of

M

coordinates

(measures).

Return

type:

INTEGER

Example:

In

this

example,

several

geometries

are

created

with

and

without

Z

coordinates

and

M

coordinates

(measures).

ST_IsMeasured

is

then

used

to

determine

which

of

them

contained

measures.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geoms

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geoms

VALUES

(1,

ST_Geometry(’point

EMPTY’,0))

INSERT

INTO

sample_geoms

VALUES

(2,

ST_Geometry(’polygon((40

120,

90

120,

90

150,

40

150,

40

120))’

,0))

INSERT

INTO

sample_geoms

VALUES

(3,

ST_Geometry(’multipoint

m

(10

10

5,

50

10

6,

10

30

8)’

,0))

INSERT

INTO

sample_geoms

VALUES

(4,

ST_Geometry(’linestring

z

(10

10

166,

20

10

168)’,0))

INSERT

INTO

sample_geoms

VALUES

(5,

ST_Geometry(’point

zm

(10

10

16

30)’

,0))

SELECT

id,

ST_IsMeasured(geometry)

Is_Measured

FROM

sample_geoms

Results:

ID

IS_MEASURED

1

0

2

0

3

1

4

0

5

1

ST_IsRing

ST_IsRing

takes

a

curve

as

an

input

parameter

and

returns

1

if

it

is

a

ring.

Otherwise,

0

(zero)

is

returned.

A

curve

is

a

ring

if

it

is

simple

and

closed.

If

the

given

curve

is

empty,

then

0

(zero)

is

returned.

If

it

is

null,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

ST_IsMeasured

Chapter

23.

Spatial

functions:

syntax

and

parameters

399

��

db2gse.ST_IsRing

(

curve

)

��

Parameter:

curve

A

value

of

type

ST_Curve

or

one

of

its

subtypes

that

represents

the

curve

to

be

tested.

Return

type:

INTEGER

Examples:

In

this

example,

four

linestrings

are

created.

ST_IsRing

is

used

to

check

if

they

are

rings.

The

last

one

is

not

considered

a

ring

even

though

it

is

closed

because

the

path

crosses

over

itself.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_lines

(id

INTEGER,

geometry

ST_Linestring)

INSERT

INTO

sample_lines

VALUES

(1,

ST_Linestring(’linestring

EMPTY’,0))

INSERT

INTO

sample_lines

VALUES

(2,

ST_Linestring(’linestring(10

10,

20

10,

20

20)’

,0))

INSERT

INTO

sample_lines

VALUES

(3,

ST_Linestring(’linestring(10

10,

20

10,

20

20,

10

10)’

,0))

INSERT

INTO

sample_lines

VALUES

(4,

ST_Linestring(’linestring(10

10,

20

10,

10

20,

20

20,

10

10)’

,0))

SELECT

id,

ST_IsClosed(geometry)

Is_Closed,

ST_IsRing(geometry)

Is_Ring

FROM

sample_lines

Results:

ID

IS_CLOSED

IS_RING

1

1

0

2

0

0

3

1

1

4

1

0

Related

reference:

v

“ST_IsClosed”

on

page

396

v

“ST_IsSimple”

on

page

400

ST_IsSimple

ST_IsSimple

takes

a

geometry

as

an

input

parameter

and

returns

1

if

the

given

geometry

is

simple.

Otherwise,

0

(zero)

is

returned.

Points,

surfaces,

and

multisurfaces

are

always

simple.

A

curve

is

simple

if

it

does

not

pass

through

the

same

point

twice;

a

multipoint

is

simple

if

it

does

not

contain

ST_IsRing

400

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

two

equal

points;

and

a

multicurve

is

simple

if

all

of

its

curves

are

simple

and

the

only

intersections

occur

at

points

that

are

on

the

boundary

of

the

curves

in

the

multicurve.

If

the

given

geometry

is

empty,

then

1

is

returned.

If

it

is

null,

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_IsSimple

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

to

be

tested.

Return

type:

INTEGER

Examples:

In

this

example,

several

geometries

are

created

and

checked

if

they

are

simple.

The

geometry

with

an

ID

of

4

is

not

considered

simple

because

it

contains

more

than

one

point

that

is

the

same.

The

geometry

with

an

ID

of

6

is

not

considered

simple

because

the

linestring

crosses

over

itself.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geoms

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geoms

VALUES

(1,

ST_Geometry(’point

EMPTY’

,0))

INSERT

INTO

sample_geoms

VALUES

(2,

ST_Geometry(’point

(21

33)’

,0))

INSERT

INTO

sample_geoms

VALUES

(3,

ST_Geometry(’multipoint(10

10,

20

20,

30

30)’

,0))

INSERT

INTO

sample_geoms

VALUES

(4,

ST_Geometry(’multipoint(10

10,

20

20,

30

30,

20

20)’

,0))

INSERT

INTO

sample_geoms

VALUES

(5,

ST_Geometry(’linestring(60

60,

70

60,

70

70)’

,0))

INSERT

INTO

sample_geoms

VALUES

(6,

ST_Geometry(’linestring(20

20,

30

30,

30

20,

20

30

)’

,0))

INSERT

INTO

sample_geoms

VALUES

(7,

ST_Geometry(’polygon((40

40,

50

40,

50

50,

40

40

))’

,0))

SELECT

id,

ST_IsSimple(geometry)

Is_Simple

FROM

sample_geoms

Results:

ID

IS_SIMPLE

1

1

2

1

3

1

ST_IsSimple

Chapter

23.

Spatial

functions:

syntax

and

parameters

401

4

0

5

1

6

0

7

1

ST_IsValid

ST_IsValid

takes

a

geometry

as

an

input

parameter

and

returns

1

if

it

is

valid.

Otherwise

0

(zero)

is

returned.

A

geometry

is

valid

only

if

all

of

the

attributes

in

the

structured

type

are

consistent

with

the

internal

representation

of

geometry

data,

and

if

the

internal

representation

is

not

corrupted.

If

the

given

geometry

is

null,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_IsValid

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes.

Return

type:

INTEGER

Example:

This

example

creates

several

geometries

and

uses

ST_IsValid

to

check

if

they

are

valid.

All

of

the

geometries

are

valid

because

the

constructor

routines,

such

as

ST_Geometry,

do

not

allow

invalid

geometries

to

be

constructed.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geoms

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geoms

VALUES

(1,

ST_Geometry(’point

EMPTY’,0))

INSERT

INTO

sample_geoms

VALUES

(2,

ST_Geometry(’polygon((40

120,

90

120,

90

150,

40

150,

40

120))’

,0))

INSERT

INTO

sample_geoms

VALUES

(3,

ST_Geometry(’multipoint

m

(10

10

5,

50

10

6,

10

30

8)’

,0))

INSERT

INTO

sample_geoms

VALUES

(4,

ST_Geometry(’linestring

z

(10

10

166,

20

10

168)’,0))

INSERT

INTO

sample_geoms

VALUES

(5,

ST_Geometry(’point

zm

(10

10

16

30)’

,0))

SELECT

id,

ST_IsValid(geometry)

Is_Valid

FROM

sample_geoms

Results:

ST_IsSimple

402

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

ID

IS_VALID

1

1

2

1

3

1

4

1

5

1

ST_Length

ST_Length

takes

a

curve

or

multicurve

and,

optionally,

a

unit

as

input

parameters

and

returns

the

length

of

the

given

curve

or

multicurve

in

the

default

or

given

unit

of

measure.

If

the

given

curve

or

multicurve

is

null

or

is

empty,

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_Length

(

curve

,

unit

)

��

Parameter:

curve

A

value

of

type

ST_Curve

or

ST_MultiCurve

that

represents

the

curves

for

which

the

length

is

returned.

unit

A

VARCHAR(128)

value

that

identifies

the

units

in

which

the

length

of

the

curve

is

measured.

The

supported

units

of

measure

are

listed

in

the

DB2GSE.ST_UNITS_OF_MEASURE

catalog

view.

If

the

unit

parameter

is

omitted,

the

following

rules

are

used

to

determine

the

unit

in

which

the

length

is

measured:

v

If

curve

is

in

a

projected

or

geocentric

coordinate

system,

the

linear

unit

associated

with

this

coordinate

system

is

the

default.

v

If

curve

is

in

a

geographic

coordinate

system,

but

is

not

in

a

geodetic

spatial

reference

system

(SRS),

the

angular

unit

associated

with

this

coordinate

system

is

the

default.

v

If

curve

is

in

a

geodetic

SRS,

the

default

unit

of

measure

is

meters.

Restrictions

on

unit

conversions:

An

error

(SQLSTATE

38SU4)

is

returned

if

any

of

the

following

conditions

occur:

v

The

curve

is

in

an

unspecified

coordinate

system

and

the

unit

parameter

is

specified.

v

The

curve

is

in

a

projected

coordinate

system

and

an

angular

unit

is

specified.

v

The

curve

is

in

a

geographic

coordinate

system,

but

is

not

in

a

geodetic

SRS,

and

a

linear

unit

is

specified.

v

The

curve

is

in

a

geodetic

SRS

and

an

angular

unit

is

specified.

Return

type:

DOUBLE

ST_IsValid

Chapter

23.

Spatial

functions:

syntax

and

parameters

403

|

|

|

|
|
|

|

|
|

|
|

|

|
|

|

Examples:

The

following

SQL

statements

create

a

table

SAMPLE_GEOMETRIES

and

insert

a

line

and

a

multiline

into

the

table.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geometries(id

SMALLINT,

spatial_type

varchar(20),

geometry

ST_GEOMETRY)

INSERT

INTO

sample_geometries(id,

spatial_type,

geometry)

VALUES

(1110,

’ST_LineString’,

ST_LineString(’linestring(50

10,

50

20)’,

1)),

(1111,

’ST_MultiLineString’,

ST_MultiLineString(’multilinestring

((33

2,

34

3,

35

6),

(28

4,

29

5,

31

8,

43

12),

(39

3,

37

4,

36

7))’,

1))

Example

1:

The

following

SELECT

statement

calculates

the

length

of

the

line

in

the

SAMPLE_GEOMTRIES

table.

SELECT

id,

spatial_type,

cast(ST_Length(geometry..ST_ToLineString)

AS

DECIMAL(7,

2))

AS

"Line

Length"

FROM

sample_geometries

WHERE

id

=

1110

Results:

ID

SPATIAL_TYPE

Line

Length

1110

ST_LineString

10.00

Example

2:

The

following

SELECT

statement

calculates

the

length

of

the

multiline

in

the

SAMPLE_GEOMTRIES

table.

SELECT

id,

spatial_type,

ST_Length(ST_ToMultiLine(geometry))

AS

multiline_length

FROM

sample_geometries

WHERE

id

=

1111

Results:

ID

SPATIAL_TYPE

MULTILINE_LENGTH

1111

ST_MultiLineString

+2.76437123387202E+001

ST_LineFromText

ST_LineFromText

takes

a

well-known

text

representation

of

a

linestring

and,

optionally,

a

spatial

reference

system

identifier

as

input

parameters

and

returns

the

corresponding

linestring.

If

the

given

well-known

text

representation

is

null,

then

null

is

returned.

The

preferred

version

for

this

functionality

is

ST_LineString.

Syntax:

ST_Length

404

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

��

db2gse.ST_LineFromText

(

wkt

,

srs_id

)

��

Parameter:

wkt

A

value

of

type

CLOB(2G)

that

contains

the

well-known

text

representation

of

the

resulting

linestring.

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

linestring.

If

the

srs_id

parameter

is

omitted,

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used.

If

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

error

is

returned

(SQLSTATE

38SU1).

Return

type:

db2gse.ST_LineString

Example:

In

the

following

examples,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

The

following

code

uses

the

ST_LineFromText

function

to

create

and

insert

a

line

from

a

well-known

text

(WKT)

line

representation.

The

rows

are

inserted

into

the

SAMPLE_LINES

table

with

an

ID

and

a

line

value

in

spatial

reference

system

1

in

WKT

representation.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_lines(id

SMALLINT,

geometry

ST_LineString)

INSERT

INTO

sample_lines(id,

geometry)

VALUES

(1110,

ST_LineFromText(’linestring(850

250,

850

850)’,

1)

),

(1111,

ST_LineFromText(’linestring

empty’,

1)

)

SELECT

id,

cast(geometry..ST_AsText

AS

varchar(75))

AS

linestring

FROM

sample_lines

Results:

ID

LINESTRING

--

1110

LINESTRING

(

850.00000000

250.00000000,

850.00000000

850.00000000)

1111

LINESTRING

EMPTY

Related

reference:

v

“Well-known

text

(WKT)

representation”

on

page

503

ST_LineFromWKB

ST_LineFromWKB

takes

a

well-known

binary

representation

of

a

linestring

and,

optionally,

a

spatial

reference

system

identifier

as

input

parameters

and

returns

the

corresponding

linestring.

If

the

given

well-known

binary

representation

is

null,

then

null

is

returned.

ST_LineFromText

Chapter

23.

Spatial

functions:

syntax

and

parameters

405

The

preferred

version

for

this

functionality

is

ST_LineString.

Syntax:

��

db2gse.ST_LineFromWKB

(

wkb

,

srs_id

)

��

Parameter:

wkb

A

value

of

type

BLOB(2G)

that

contains

the

well-known

binary

representation

of

the

resulting

linestring.

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

linestring.

If

the

srs_id

parameter

is

omitted,

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used.

If

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

error

is

returned

(SQLSTATE

38SU1).

Return

type:

db2gse.ST_LineString

Example:

In

the

following

examples,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

The

following

code

uses

the

ST_LineFromWKB

function

to

create

and

insert

a

line

from

a

well-known

binary

representation.

The

row

is

inserted

into

the

SAMPLE_LINES

table

with

an

ID

and

a

line

in

spatial

reference

system

1

in

WKB

representation.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_lines(id

SMALLINT,

geometry

ST_LineString,

wkb

BLOB(32k))

INSERT

INTO

sample_lines(id,

geometry)

VALUES

(1901,

ST_LineString(’linestring(850

250,

850

850)’,

1)

),

(1902,

ST_LineString(’linestring(33

2,

34

3,

35

6)’,

1)

)

UPDATE

sample_lines

AS

temp_correlated

SET

wkb

=

geometry..ST_AsBinary

WHERE

id

=

temp_correlated.id

SELECT

id,

cast(ST_LineFromWKB(wkb)..ST_AsText

AS

varchar(90))

AS

line

FROM

sample_lines

Results:

ID

LINE

--

1901

LINESTRING

(

850.00000000

250.00000000,

850.00000000

850.00000000)

1902

LINESTRING

(

33.00000000

2.00000000,

34.00000000

3.00000000,

35.00000000

6.00000000)

Related

reference:

v

“Well-known

binary

(WKB)

representation”

on

page

508

ST_LineFromWKB

406

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

ST_LineString

ST_LineString

constructs

a

linestring

from

one

of

the

following

inputs:

v

A

well-known

text

representation

v

A

well-known

binary

representation

v

An

ESRI

shape

representation

v

A

representation

in

the

geography

markup

language

(GML)

A

spatial

reference

system

identifier

can

be

provided

optionally

to

identify

the

spatial

reference

system

that

the

resulting

linestring

is

in.

If

the

well-known

text

representation,

the

well-known

binary

representation,

the

ESRI

shape

representation,

or

the

GML

representation

is

null,

then

null

is

returned.

Syntax:

��

db2gse.ST_LineString

(

wkt

wkb

shape

gml

,

srs_id

)

��

Parameter:

wkt

A

value

of

type

CLOB(2G)

that

contains

the

well-known

text

representation

of

the

resulting

polygon.

wkb

A

value

of

type

BLOB(2G)

that

contains

the

well-known

binary

representation

of

the

resulting

polygon.

shape

A

value

of

type

BLOB(2G)

that

represents

the

ESRI

shape

representation

of

the

resulting

polygon.

gml

A

value

of

type

CLOB(2G)

that

represents

the

resulting

polygon

using

the

geography

markup

language

(GML).

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

polygon.

If

the

srs_id

parameter

is

omitted,

then

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used.

If

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

error

is

returned

(SQLSTATE

38SU1).

Return

type:

db2gse.ST_LineString

Examples:

The

following

code

uses

the

ST_LineString

function

to

create

and

insert

a

line

from

a

well-known

text

(WKT)

line

representation

or

from

a

well-known

binary

(WKB)

representation.

The

following

example

inserts

a

row

into

the

SAMPLE_LINES

table

with

an

ID

and

line

in

spatial

reference

system

1

in

WKT

and

GML

representation

ST_LineString

Chapter

23.

Spatial

functions:

syntax

and

parameters

407

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_lines(id

SMALLINT,

geometry

ST_LineString)

INSERT

INTO

sample_lines(id,

geometry)

VALUES

(1110,

ST_LineString(’linestring(850

250,

850

850)’,

1)

),

(1111,

ST_LineString(’<gml:LineString

srsName=";EPSG:4269";><gml:coord>

<gml:X>90</gml:X><gml:Y>90</gml:Y>

</gml:coord><gml:coord><gml:X>100</gml:X>

<gml:Y>100</gml:Y></gml:coord>

</gml:LineString>’,

1)

)

SELECT

id,

cast(geometry..ST_AsText

AS

varchar(75))

AS

linestring

FROM

sample_lines

Results:

ID

LINESTRING

--

1110

LINESTRING

(

850.00000000

250.00000000,

850.00000000

850.00000000)

1111

LINESTRING

(

90.00000000

90.00000000,

100.00000000

100.00000000)

Related

reference:

v

“Spatial

functions

that

convert

geometry

values

to

data

exchange

formats”

on

page

287

v

“Well-known

text

(WKT)

representation”

on

page

503

ST_LineStringN

ST_LineStringN

takes

a

multilinestring

and

an

index

as

input

parameters

and

returns

the

linestring

that

is

identified

by

the

index.

The

resulting

linestring

is

represented

in

the

spatial

reference

system

of

the

given

multilinestring.

If

the

given

multilinestring

is

null

or

is

empty,

or

if

the

index

is

smaller

than

1

or

larger

than

the

number

of

linestrings,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_LineStringN

(

multi_linestring

,

index

)

��

Parameter:

multi_linestring

A

value

of

type

ST_MultiLineString

that

represents

the

multilinestring

from

which

the

linestring

that

is

identified

by

index

is

returned.

index

A

value

of

type

INTEGER

that

identifies

the

nth

linestring,

which

is

to

be

returned

from

multi_linestring.

If

index

is

smaller

than

1

or

larger

than

the

number

of

linestrings

in

multi_linestring,

then

null

is

returned

and

a

warning

condition

is

returned

(SQLSTATE

01HS0).

Return

type:

db2gse.ST_LineString

ST_LineString

408

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Example:

In

the

following

examples,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

The

SELECT

statement

illustrates

how

to

choose

the

second

geometry

inside

a

multilinestring

in

the

SAMPLE_MLINES

table.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_mlines

(id

INTEGER,

geometry

ST_MULTILINESTRING)

INSERT

INTO

sample_mlines(id,

geometry)

VALUES

(1110,

ST_MultiLineString(’multilinestring

((33

2,

34

3,

35

6),

(28

4,

29

5,

31

8,

43

12),

(39

3,

37

4,

36

7))’,

1)

),

(1111,

ST_MLineFromText(’multilinestring(

(61

2,

64

3,

65

6),

(58

4,

59

5,

61

8),

(69

3,

67

4,

66

7,

68

9))’,

1)

)

SELECT

id,

cast(ST_LineStringN(geometry,

2)..ST_AsText

AS

varchar(110))

AS

second_linestring

FROM

sample_mlines

Results:

ID

SECOND_LINESTRING

1110

LINESTRING

(

28.00000000

4.00000000,

29.00000000

5.00000000,

31.00000000

8.00000000,

43.00000000

12.00000000)

1111

LINESTRING

(

58.00000000

4.00000000,

59.00000000

5.00000000,

61.00000000

8.00000000)

Related

reference:

v

“ST_NumLineStrings”

on

page

444

ST_M

ST_M

can

either:

v

Take

a

point

as

an

input

parameter

and

return

its

M

(measure)

coordinate

v

Take

a

point

and

an

M

coordinate

and

return

the

point

itself

with

its

M

coordinate

set

to

the

given

measure,

even

if

the

specified

point

has

no

existing

M

coordinate.

If

the

specified

M

coordinate

is

null,

then

the

M

coordinate

of

the

point

is

removed.

If

the

specified

point

is

null

or

is

empty,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

ST_LineStringN

Chapter

23.

Spatial

functions:

syntax

and

parameters

409

��

db2gse.ST_M

(

point

)

,

m_coordinate

��

Parameters:

point

A

value

of

type

ST_Point

for

which

the

M

coordinate

is

returned

or

modified.

m_coordinate

A

value

of

type

DOUBLE

that

represents

the

new

M

coordinate

for

point.

If

m_coordinate

is

null,

then

the

M

coordinate

is

removed

from

point.

Return

types:

v

DOUBLE,

if

m_coordinate

is

not

specified

v

db2gse.ST_Point,

if

m_coordinate

is

specified

Examples:

These

examples

illustrate

the

use

of

the

ST_M

function.

Three

points

are

created

and

inserted

into

the

SAMPLE_POINTS

table.

They

are

all

in

the

spatial

reference

system

that

has

an

ID

of

1.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_points

(id

INTEGER,

geometry

ST_Point)

INSERT

INTO

sample_points

VALUES

(1,

ST_Point

(2,

3,

32,

5,

1))

INSERT

INTO

sample_points

VALUES

(2,

ST_Point

(4,

5,

20,

4,

1))

INSERT

INTO

sample_points

VALUES

(3,

ST_Point

(3,

8,

23,

7,

1))

Example

1:

This

example

finds

the

M

coordinate

of

the

points

in

the

SAMPLE_POINTS

table.

SELECT

id,

ST_M

(geometry)

M_COORD

FROM

sample_points

Results:

ID

M_COORD

1

+5.00000000000000E+000

2

+4.00000000000000E+000

3

+7.00000000000000E+000

Example

2:

This

example

returns

one

of

the

points

with

its

M

coordinate

set

to

40.

SELECT

id,

CAST

(ST_AsText

(ST_M

(geometry,

40)

)

AS

VARCHAR(60)

)

M_COORD_40

FROM

sample_points

WHERE

id=3

Results:

ID

M_COORD_40

3

POINT

ZM

(3.00000000

8.00000000

23.00000000

40.00000000)

ST_M

410

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Related

reference:

v

“ST_X”

on

page

490

v

“ST_Y”

on

page

491

v

“ST_Z”

on

page

492

ST_MaxM

ST_MaxM

takes

a

geometry

as

an

input

parameter

and

returns

its

maximum

M

coordinate.

If

the

given

geometry

is

null

or

is

empty,

or

if

it

does

not

have

M

coordinates,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_MaxM

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

for

which

the

maximum

M

coordinate

is

returned.

Return

type:

DOUBLE

Examples:

These

examples

illustrate

the

use

of

the

ST_MaxM

function.

Three

polygons

are

created

and

inserted

into

the

SAMPLE_POLYS

table.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_polys

(id

INTEGER,

geometry

ST_Polygon)

INSERT

INTO

sample_polys

VALUES

(1,

ST_Polygon(’polygon

zm

((110

120

20

3,

110

140

22

3,

120

130

26

4,

110

120

20

3))’,

0)

)

INSERT

INTO

sample_polys

VALUES

(2,

ST_Polygon(’polygon

zm

((0

0

40

7,

0

4

35

9,

5

4

32

12,

5

0

31

5,

0

0

40

7))’,

0)

)

INSERT

INTO

sample_polys

VALUES

(3,

ST_Polygon(’polygon

zm

((12

13

10

16,

8

4

10

12,

9

4

12

11,

12

13

10

16))’,

0)

)

Example

1:

ST_M

Chapter

23.

Spatial

functions:

syntax

and

parameters

411

This

example

finds

the

maximum

M

coordinate

of

each

polygon

in

SAMPLE_POLYS.

SELECT

id,

CAST

(

ST_MaxM(geometry)

AS

INTEGER)

MAX_M

FROM

sample_polys

Results:

ID

MAX_M

1

4

2

12

3

16

Example

2:

This

example

finds

the

maximum

M

coordinate

that

exists

for

all

polygons

in

the

GEOMETRY

column.

SELECT

CAST

(

MAX

(

ST_MaxM(geometry)

)

AS

INTEGER)

OVERALL_MAX_M

FROM

sample_polys

Results:

OVERALL_MAX_M

16

Related

concepts:

v

“ST_MaxX”

on

page

412

Related

reference:

v

“ST_MaxY”

on

page

414

v

“ST_MaxZ”

on

page

415

v

“ST_MinM”

on

page

422

ST_MaxX

ST_MaxX

takes

a

geometry

as

an

input

parameter

and

returns

its

maximum

X

coordinate.

If

the

given

geometry

is

null

or

is

empty,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_MaxX

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

for

which

the

maximum

X

coordinate

is

returned.

Return

type:

DOUBLE

ST_MaxM

412

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Examples:

These

examples

illustrate

the

use

of

the

ST_MaxX

function.

Three

polygons

are

created

and

inserted

into

the

SAMPLE_POLYS

table.

The

third

example

illustrates

how

you

can

use

all

of

the

functions

that

return

the

maximum

and

minimum

coordinate

values

to

assess

the

spatial

range

of

the

geometries

that

are

stored

in

a

particular

spatial

column.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_polys

(id

INTEGER,

geometry

ST_Polygon)

INSERT

INTO

sample_polys

VALUES

(1,

ST_Polygon(’polygon

zm

((110

120

20

3,

110

140

22

3,

120

130

26

4,

110

120

20

3))’,

0)

)

INSERT

INTO

sample_polys

VALUES

(2,

ST_Polygon(’polygon

zm

((0

0

40

7,

0

4

35

9,

5

4

32

12,

5

0

31

5,

0

0

40

7))’,

0)

)

INSERT

INTO

sample_polys

VALUES

(3,

ST_Polygon(’polygon

zm

((12

13

10

16,

8

4

10

12,

9

4

12

11,

12

13

10

16))’,

0)

)

Example

1:

This

example

finds

the

maximum

X

coordinate

of

each

polygon

in

SAMPLE_POLYS.

SELECT

id,

CAST

(

ST_MaxX(geometry)

AS

INTEGER)

MAX_X_COORD

FROM

sample_polys

Results:

ID

MAX_X_COORD

1

120

2

5

3

12

Example

2:

This

example

finds

the

maximum

X

coordinate

that

exists

for

all

polygons

in

the

GEOMETRY

column.

SELECT

CAST

(

MAX

(

ST_MaxX(geometry)

)

AS

INTEGER)

OVERALL_MAX_X

FROM

sample_polys

Results:

OVERALL_MAX_X

120

Example

3:

This

example

finds

the

spatial

extent

(overall

minimum

to

overall

maximum)

of

all

the

polygons

in

the

SAMPLE_POLYS

table.

This

calculation

is

typically

used

to

ST_MaxX

Chapter

23.

Spatial

functions:

syntax

and

parameters

413

compare

the

actual

spatial

extent

of

the

geometries

to

the

spatial

extent

of

the

spatial

reference

system

associated

with

the

data

to

determine

if

the

data

has

room

to

grow.

SELECT

CAST

(

MIN

(ST_MinX

(geometry))

AS

INTEGER)

MIN_X,

CAST

(

MIN

(ST_MinY

(geometry))

AS

INTEGER)

MIN_Y,

CAST

(

MIN

(ST_MinZ

(geometry))

AS

INTEGER)

MIN_Z,

CAST

(

MIN

(ST_MinM

(geometry))

AS

INTEGER)

MIN_M,

CAST

(

MAX

(ST_MaxX

(geometry))

AS

INTEGER)

MAX_X,

CAST

(

MAX

(ST_MaxY

(geometry))

AS

INTEGER)

MAX_Y,

CAST

(

MAX

(ST_MaxZ

(geometry))

AS

INTEGER)

MAX_Z,

CAST

(

MAX

(ST_MaxmM(geometry))

AS

INTEGER)

MAX_M,

FROM

sample_polys

Results:

MIN_X

MIN_Y

MIN_Z

MIN_M

MAX_X

MAX_Y

MAX_Z

MAX_M

0

0

10

3

120

140

40

16

Related

reference:

v

“ST_MaxM”

on

page

411

v

“ST_MaxY”

on

page

414

v

“ST_MaxZ”

on

page

415

v

“ST_MinX”

on

page

424

ST_MaxY

ST_MaxY

takes

a

geometry

as

an

input

parameter

and

returns

its

maximum

Y

coordinate.

If

the

given

geometry

is

null

or

is

empty,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_MaxY

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

for

which

the

maximum

Y

coordinate

is

returned.

Return

type:

DOUBLE

Examples:

These

examples

illustrate

the

use

of

the

ST_MaxY

function.

Three

polygons

are

created

and

inserted

into

the

SAMPLE_POLYS

table.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_polys

(id

INTEGER,

geometry

ST_Polygon)

INSERT

INTO

sample_polys

VALUES

(1,

ST_Polygon(’polygon

zm

((110

120

20

3,

110

140

22

3,

ST_MaxX

414

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

120

130

26

4,

110

120

20

3))’,

0)

)

INSERT

INTO

sample_polys

VALUES

(2,

ST_Polygon(’polygon

zm

((0

0

40

7,

0

4

35

9,

5

4

32

12,

5

0

31

5,

0

0

40

7))’,

0)

)

INSERT

INTO

sample_polys

VALUES

(3,

ST_Polygon(’polygon

zm

((12

13

10

16,

8

4

10

12,

9

4

12

11,

12

13

10

16))’,

0)

)

Example

1:

This

example

finds

the

maximum

Y

coordinate

of

each

polygon

in

SAMPLE_POLYS.

SELECT

id,

CAST

(

ST_MaxY(geometry)

AS

INTEGER)

MAX_Y

FROM

sample_polys

Results:

ID

MAX_Y

1

140

2

4

3

13

Example

2:

This

example

finds

the

maximum

Y

coordinate

that

exists

for

all

polygons

in

the

GEOMETRY

column.

SELECT

CAST

(

MAX

(

ST_MaxY(geometry)

)

AS

INTEGER)

OVERALL_MAX_Y

FROM

sample_polys

Results:

OVERALL_MAX_Y

140

Related

concepts:

v

“ST_MaxX”

on

page

412

Related

reference:

v

“ST_MaxM”

on

page

411

v

“ST_MaxZ”

on

page

415

v

“ST_MinY”

on

page

425

ST_MaxZ

ST_MaxZ

takes

a

geometry

as

an

input

parameter

and

returns

its

maximum

Z

coordinate.

If

the

given

geometry

is

null

or

is

empty,

or

if

it

does

not

have

Z

coordinates,

then

null

is

returned.

ST_MaxY

Chapter

23.

Spatial

functions:

syntax

and

parameters

415

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_MaxZ

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

for

which

the

maximum

Z

coordinate

is

returned.

Return

type:

DOUBLE

Examples:

These

examples

illustrate

the

use

of

the

ST_MaxZ

function.

Three

polygons

are

created

and

inserted

into

the

SAMPLE_POLYS

table.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_polys

(id

INTEGER,

geometry

ST_Polygon)

INSERT

INTO

sample_polys

VALUES

(1,

ST_Polygon(’polygon

zm

((110

120

20

3,

110

140

22

3,

120

130

26

4,

110

120

20

3))’,

0)

)

INSERT

INTO

sample_polys

VALUES

(2,

ST_Polygon(’polygon

zm

((0

0

40

7,

0

4

35

9,

5

4

32

12,

5

0

31

5,

0

0

40

7))’,

0)

)

INSERT

INTO

sample_polys

VALUES

(3,

ST_Polygon(’polygon

zm

((12

13

10

16,

8

4

10

12,

9

4

12

11,

12

13

10

16))’,

0)

)

Example

1:

This

example

finds

the

maximum

Z

coordinate

of

each

polygon

in

SAMPLE_POLYS.

SELECT

id,

CAST

(

ST_MaxZ(geometry)

AS

INTEGER)

MAX_Z

FROM

sample_polys

Results:

ID

MAX_Z

1

26

2

40

3

12

Example

2:

This

example

finds

the

maximum

Z

coordinate

that

exists

for

all

polygons

in

the

GEOMETRY

column.

ST_MaxZ

416

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

SELECT

CAST

(

MAX

(

ST_MaxZ(geometry)

)

AS

INTEGER)

OVERALL_MAX_Z

FROM

sample_polys

Results:

OVERALL_MAX_Z

40

Related

concepts:

v

“ST_MaxX”

on

page

412

Related

reference:

v

“ST_MaxM”

on

page

411

v

“ST_MaxY”

on

page

414

v

“ST_MinZ”

on

page

426

ST_MBR

ST_MBR

takes

a

geometry

as

an

input

parameter

and

returns

its

minimum

bounding

rectangle.

If

the

given

geometry

is

a

point,

then

the

point

itself

is

returned.

If

the

geometry

is

a

horizontal

linestring

or

a

vertical

linestring

and

the

spatial

reference

system

is

non-geodetic,

the

horizontal

or

vertical

linestring

itself

is

returned.

Otherwise,

the

minimum

bounding

rectangle

of

the

geometry

is

returned

as

a

polygon.

If

the

given

geometry

is

null

or

is

empty,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_MBR

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

for

which

the

minimum

bounding

rectangle

is

returned.

Return

type:

db2gse.ST_Geometry

Example:

This

example

illustrates

how

the

ST_MBR

function

can

be

used

to

return

the

minimum

bounding

rectangle

of

a

polygon.

Because

the

specified

geometry

is

a

polygon,

the

minimum

bounding

rectangle

is

returned

as

a

polygon.

In

the

following

examples,

the

lines

of

results

have

been

reformatted

here

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_polys

(id

INTEGER,

geometry

ST_Polygon)

INSERT

INTO

sample_polys

VALUES

(1,

ST_Polygon

(’polygon

((

5

5,

7

7,

5

9,

7

9,

9

11,

13

9,

ST_MaxZ

Chapter

23.

Spatial

functions:

syntax

and

parameters

417

|
|
|

15

9,

13

7,

15

5,

9

6,

5

5))’,

0)

)

INSERT

INTO

sample_polys

VALUES

(2,

ST_Polygon

(’polygon

((

20

30,

25

35,

30

30,

20

30))’,

0)

)

SELECT

id,

CAST

(ST_AsText

(

ST_MBR(geometry))

AS

VARCHAR(150)

)

MBR

FROM

sample_polys

Results:

ID

MBR

--

1

POLYGON

((

5.00000000

5.00000000,

15.00000000

5.00000000,

15.00000000

11.00000000,

5.00000000

11.00000000,

5.00000000

5.00000000))

2

POLYGON

((

20.00000000

30.00000000,

30.00000000

30.00000000,

30.00000000

35.00000000,

20.00000000

35.00000000,

20.00000000

30.00000000

))

Related

reference:

v

“ST_Envelope”

on

page

367

v

“ST_MBRIntersects”

on

page

418

ST_MBRIntersects

ST_MBRIntersects

takes

two

geometries

as

input

parameters

and

returns

1

if

the

minimum

bounding

rectangles

of

the

two

geometries

intersect.

Otherwise,

0

(zero)

is

returned.

The

minimum

bounding

rectangle

of

a

point

and

a

horizontal

or

vertical

linestring

is

the

geometry

itself.

If

the

second

geometry

is

not

represented

in

the

same

spatial

reference

system

as

the

first

geometry,

it

will

be

converted

to

the

other

spatial

reference

system.

If

either

of

the

given

geometries

is

null

or

is

empty,

then

null

is

returned.

Syntax:

��

db2gse.ST_MBRIntersects

(

geometry1

,

geometry2

)

��

Parameters:

geometry1

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

whose

minimum

bounding

rectangle

is

to

be

tested

for

intersection

with

the

minimum

bounding

rectangle

of

geometry2.

geometry2

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

whose

minimum

bounding

rectangle

is

to

be

tested

for

intersection

with

the

minimum

bounding

rectangle

of

geometry1.

Return

type:

INTEGER

Examples:

These

examples

illustrate

the

use

of

ST_MBRIntersects

to

get

an

approximation

of

whether

two

nonintersecting

polygons

are

close

to

each

other

by

seeing

if

their

ST_MBR

418

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

minimum

bounding

rectangles

intersect.

The

first

example

uses

the

SQL

CASE

expression.

The

second

example

uses

a

single

SELECT

statement

to

find

those

polygons

that

intersect

the

minimum

bounding

rectangle

of

the

polygon

with

ID

=

2.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_polys

(id

INTEGER,

geometry

ST_Polygon)

INSERT

INTO

sample_polys

VALUES

(1,

ST_Polygon

(’polygon

((

0

0,

30

0,

40

30,

40

35,

5

35,

5

10,

20

10,

20

5,

0

0

))’,

0)

)

INSERT

INTO

sample_polys

VALUES

(2,

ST_Polygon

(’polygon

((

15

15,

15

20,

60

20,

60

15,

15

15

))’,

0)

)

INSERT

INTO

sample_polys

VALUES

(3,

ST_Polygon

(’polygon

((

115

15,

115

20,

160

20,

160

15,

115

15

))’,

0)

)

Example

1:

The

following

SELECT

statement

uses

a

CASE

expression

to

find

the

IDs

of

the

polygons

that

have

minimum

bounding

rectangles

that

intersect.

SELECT

a.id,

b.id,

CASE

ST_MBRIntersects

(a.geometry,

b.geometry)

WHEN

0

THEN

’MBRs

do

not

intersect’

WHEN

1

THEN

’MBRs

intersect’

END

AS

MBR_INTERSECTS

FROM

sample_polys

a,

sample_polys

b

WHERE

a.id

<=

b.id

Results:

ID

ID

MBR_INTERSECTS

1

1

MBRs

intersect

1

2

MBRs

intersect

2

2

MBRs

intersect

1

3

MBRs

do

not

intersect

2

3

MBRs

do

not

intersect

3

3

MBRs

intersect

Example

2:

The

following

SELECT

statement

determines

whether

the

minimum

bounding

rectangles

for

the

geometries

intersect

that

for

the

polygon

with

ID

=

2.

SELECT

a.id,

b.id,

ST_MBRIntersects

(a.geometry,

b.geometry)

MBR_INTERSECTS

FROM

sample_polys

a,

sample_polys

b

WHERE

a.id

=

2

Results

ID

ID

MBR_INTERSECTS

2

1

1

2

2

1

2

3

0

Related

reference:

v

“ST_EnvIntersects”

on

page

368

v

“ST_MBR”

on

page

417

ST_MBRIntersects

Chapter

23.

Spatial

functions:

syntax

and

parameters

419

ST_MeasureBetween,

ST_LocateBetween

ST_MeasureBetween

or

ST_LocateBetween

takes

a

geometry

and

two

M

coordinates

(measures)

as

input

parameters

and

returns

that

part

of

the

given

geometry

that

represents

the

set

of

disconnected

paths

or

points

between

the

two

M

coordinates.

For

curves,

multicurves,

surfaces,

and

multisurfaces,

interpolation

is

performed

to

compute

the

result.

The

resulting

geometry

is

represented

in

the

spatial

reference

system

of

the

given

geometry.

If

the

given

geometry

is

a

surface

or

multisurface,

then

ST_MeasureBetween

or

ST_LocateBetween

will

be

applied

to

the

exterior

and

interior

rings

of

the

geometry.

If

none

of

the

parts

of

the

given

geometry

are

in

the

interval

defined

by

the

given

M

coordinates,

then

an

empty

geometry

is

returned.

If

the

given

geometry

is

null

,

then

null

is

returned.

The

resulting

geometry

is

represented

in

the

most

appropriate

spatial

type.

If

it

can

be

represented

as

a

point,

linestring,

or

polygon,

then

one

of

those

types

is

used.

Otherwise,

the

multipoint,

multilinestring,

or

multipolygon

type

is

used.

Both

functions

can

also

be

called

as

methods.

Syntax:

��

db2gse.ST_MeasureBetween

db2gse.ST_LocateBetween

�

�

(

geometry

,

startMeasure

,

endMeasure

)

��

Parameters:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

in

which

those

parts

with

measure

values

between

startMeasure

to

endMeasure

are

to

be

found.

startMeasure

A

value

of

type

DOUBLE

that

represents

the

lower

bound

of

the

measure

interval.

If

this

value

is

null,

no

lower

bound

is

applied.

endMeasure

A

value

of

type

DOUBLE

that

represents

the

upper

bound

of

the

measure

interval.

If

this

value

is

null,

no

upper

bound

is

applied.

Return

type:

db2gse.ST_Geometry

Example:

In

the

following

examples,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

The

M

coordinate

(measure)

of

a

geometry

is

defined

by

the

user.

It

is

very

versatile

because

it

can

represent

anything

that

you

want

to

measure;

for

example,

distance

along

a

highway,

temperature,

pressure,

or

pH

measurements.

ST_MeasureBetween

and

ST_LocateBetween

420

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

This

example

illustrates

the

use

of

the

M

coordinate

to

record

collected

data

of

pH

measurements.

A

researcher

collects

the

pH

of

the

soil

along

a

highway

at

specific

places.

Following

his

standard

operating

procedures,

he

writes

down

the

values

that

he

needs

at

every

place

at

which

he

takes

a

soil

sample:

the

X

and

Y

coordinates

of

that

place

and

the

pH

that

he

measures.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_lines

(id

INTEGER,

geometry

ST_LineString)

INSERT

INTO

sample_lines

VALUES

(1,

ST_LineString

(’linestring

m

(2

2

3,

3

5

3,

3

3

6,

4

4

6,

5

5

6,

6

6

8)’,

1

)

)

To

find

the

path

where

the

acidity

of

the

soil

varies

between

4

and

6,

the

researcher

would

use

this

SELECT

statement:

SELECT

id,

CAST(

ST_AsText(

ST_MeasureBetween(

4,

6)

)

AS

VARCHAR(150)

)

MEAS_BETWEEN_4_AND_6

FROM

sample_lines

Results:

ID

MEAS_BETWEEN_4_AND_6

--

1

LINESTRING

M

(3.00000000

4.33333300

4.00000000,

3.00000000

3.00000000

6.00000000,

4.00000000

4.00000000

6.00000000,

5.00000000

5.00000000

6.00000000)

ST_MidPoint

ST_MidPoint

takes

a

curve

as

an

input

parameter

and

returns

the

point

on

the

curve

that

is

equidistant

from

both

end

points

of

the

curve,

measured

along

the

curve.

The

resulting

point

is

represented

in

the

spatial

reference

system

of

the

given

curve.

If

the

given

curve

is

empty,

then

an

empty

point

is

returned.

If

the

given

curve

is

null,

then

null

is

returned.

If

the

curve

contains

Z

coordinates

or

M

coordinates

(measures),

the

midpoint

is

determined

solely

by

the

values

of

the

X

and

Y

coordinates

in

the

curve.

The

Z

coordinate

and

measure

in

the

returned

point

are

interpolated.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_MidPoint

(

curve

)

��

Parameter:

curve

A

value

of

type

ST_Curve

or

one

of

its

subtypes

that

represents

the

curve

for

which

the

point

in

the

middle

is

returned.

Return

type:

db2gse.ST_Point

Example:

ST_MeasureBetween

and

ST_LocateBetween

Chapter

23.

Spatial

functions:

syntax

and

parameters

421

This

example

illustrates

the

use

of

ST_MidPoint

for

returning

the

midpoint

of

curves.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_lines

(id

INTEGER,

geometry

ST_LineString)

INSERT

INTO

sample_lines

(id,

geometry)

VALUES

(1,

ST_LineString

(’linestring

(0

0,

0

10,

0

20,

0

30,

0

40)’,

1

)

)

INSERT

INTO

sample_lines

(id,

geometry)

VALUES

(2,

ST_LineString

(’linestring

(2

2,

3

5,

3

3,

4

4,

5

5,

6

6)’,

1

)

)

INSERT

INTO

sample_lines

(id,

geometry)

VALUES

(3,

ST_LineString

(’linestring

(0

10,

0

0,

10

0,

10

10)’,

1

)

)

INSERT

INTO

sample_lines

(id,

geometry)

VALUES

(4,

ST_LineString

(’linestring

(0

20,

5

20,

10

20,

15

20)’,

1

)

)

SELECT

id,

CAST(

ST_AsText(

ST_MidPoint(geometry)

)

AS

VARCHAR(60)

)

MID_POINT

FROM

sample_lines

Results:

ID

MID_POINT

1

POINT

(

0.00000000

20.00000000)

2

POINT

(

3.00000000

3.45981800)

3

POINT

(

5.00000000

0.00000000)

4

POINT

(

7.50000000

20.00000000)

ST_MinM

ST_MinM

takes

a

geometry

as

an

input

parameter

and

returns

its

minimum

M

coordinate.

If

the

given

geometry

is

null

or

is

empty,

or

if

it

does

not

have

M

coordinates,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_MinM

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

for

which

the

minimum

M

coordinate

is

returned.

Return

type:

DOUBLE

Examples:

These

examples

illustrate

the

use

of

the

ST_MinM

function.

Three

polygons

are

created

and

inserted

into

the

SAMPLE_POLYS

table.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_polys

(id

INTEGER,

geometry

ST_Polygon)

ST_MidPoint

422

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

INSERT

INTO

sample_polys

VALUES

(1,

ST_Polygon(’polygon

zm

((110

120

20

3,

110

140

22

3,

120

130

26

4,

110

120

20

3))’,

0)

)

INSERT

INTO

sample_polys

VALUES

(2,

ST_Polygon(’polygon

zm

((0

0

40

7,

0

4

35

9,

5

4

32

12,

5

0

31

5,

0

0

40

7))’,

0)

)

INSERT

INTO

sample_polys

VALUES

(3,

ST_Polygon(’polygon

zm

((12

13

10

16,

8

4

10

12,

9

4

12

11,

12

13

10

16))’,

0)

)

Example

1:

This

example

finds

the

minimum

M

coordinate

of

each

polygon

in

SAMPLE_POLYS.

SELECT

id,

CAST

(

ST_MinM(geometry)

AS

INTEGER)

MIN_M

FROM

sample_polys

Results:

ID

MIN_M

1

3

2

5

3

11

Example

2:

This

example

finds

the

minimum

M

coordinate

that

exists

for

all

polygons

in

the

GEOMETRY

column.

SELECT

CAST

(

MIN

(

ST_MinM(geometry)

)

AS

INTEGER)

OVERALL_MIN_M

FROM

sample_polys

Results:

OVERALL_MIN_M

3

Related

reference:

v

“ST_MaxM”

on

page

411

v

“ST_MinX”

on

page

424

v

“ST_MinY”

on

page

425

v

“ST_MinZ”

on

page

426

ST_MinM

Chapter

23.

Spatial

functions:

syntax

and

parameters

423

ST_MinX

ST_MinX

takes

a

geometry

as

an

input

parameter

and

returns

its

minimum

X

coordinate.

If

the

given

geometry

is

null

or

is

empty,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_MinX

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

for

which

the

minimum

X

coordinate

is

returned.

Return

type:

DOUBLE

Examples:

These

examples

illustrate

the

use

of

the

ST_MinX

function.

Three

polygons

are

created

and

inserted

into

the

SAMPLE_POLYS

table.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_polys

(id

INTEGER,

geometry

ST_Polygon)

INSERT

INTO

sample_polys

VALUES

(1,

ST_Polygon(’polygon

zm

((110

120

20

3,

110

140

22

3,

120

130

26

4,

110

120

20

3))’,

0)

)

INSERT

INTO

sample_polys

VALUES

(2,

ST_Polygon(’polygon

zm

((0

0

40

7,

0

4

35

9,

5

4

32

12,

5

0

31

5,

0

0

40

7))’,

0)

)

INSERT

INTO

sample_polys

VALUES

(3,

ST_Polygon(’polygon

zm

((12

13

10

16,

8

4

10

12,

9

4

12

11,

12

13

10

16))’,

0)

)

Example

1:

This

example

finds

the

minimum

X

coordinate

of

each

polygon

in

SAMPLE_POLYS.

SELECT

id,

CAST

(

ST_MinX(geometry)

AS

INTEGER)

MIN_X

FROM

sample_polys

Results:

ST_MinX

424

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

ID

MIN_X

1

110

2

0

3

8

Example

2:

This

example

finds

the

minimum

X

coordinate

that

exists

for

all

polygons

in

the

GEOMETRY

column.

SELECT

CAST

(

MIN

(

ST_MinX(geometry)

)

AS

INTEGER)

OVERALL_MIN_X

FROM

sample_polys

Results:

OVERALL_MIN_X

0

Related

concepts:

v

“ST_MaxX”

on

page

412

Related

reference:

v

“ST_MinM”

on

page

422

v

“ST_MinY”

on

page

425

v

“ST_MinZ”

on

page

426

ST_MinY

ST_MinY

takes

a

geometry

as

an

input

parameter

and

returns

its

minimum

Y

coordinate.

If

the

given

geometry

is

null

or

is

empty,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_MinY

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

for

which

the

minimum

Y

coordinate

is

returned.

Return

type:

DOUBLE

Examples:

These

examples

illustrate

the

use

of

the

ST_MinY

function.

Three

polygons

are

created

and

inserted

into

the

SAMPLE_POLYS

table.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_polys

(id

INTEGER,

geometry

ST_Polygon)

ST_MinX

Chapter

23.

Spatial

functions:

syntax

and

parameters

425

INSERT

INTO

sample_polys

VALUES

(1,

ST_Polygon(’polygon

zm

((110

120

20

3,

110

140

22

3,

120

130

26

4,

110

120

20

3))’,

0)

)

INSERT

INTO

sample_polys

VALUES

(2,

ST_Polygon(’polygon

zm

((0

0

40

7,

0

4

35

9,

5

4

32

12,

5

0

31

5,

0

0

40

7))’,

0)

)

INSERT

INTO

sample_polys

VALUES

(3,

ST_Polygon(’polygon

zm

((12

13

10

16,

8

4

10

12,

9

4

12

11,

12

13

10

16))’,

0)

)

Example

1:

This

example

finds

the

minimum

Y

coordinate

of

each

polygon

in

SAMPLE_POLYS.

SELECT

id,

CAST

(

ST_MinY(geometry)

AS

INTEGER)

MIN_Y

FROM

sample_polys

Results:

ID

MIN_Y

1

120

2

0

3

4

Example

2:

This

example

finds

the

minimum

Y

coordinate

that

exists

for

all

polygons

in

the

GEOMETRY

column.

SELECT

CAST

(

MIN

(

ST_MinY(geometry)

)

AS

INTEGER)

OVERALL_MIN_Y

FROM

sample_polys

Results:

OVERALL_MIN_Y

0

Related

reference:

v

“ST_MaxY”

on

page

414

v

“ST_MinM”

on

page

422

v

“ST_MinX”

on

page

424

v

“ST_MinZ”

on

page

426

ST_MinZ

ST_MinZ

takes

a

geometry

as

an

input

parameter

and

returns

its

minimum

Z

coordinate.

If

the

given

geometry

is

null

or

is

empty,

or

if

it

does

not

have

Z

coordinates,

then

null

is

returned.

ST_MinY

426

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_MinZ

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

for

which

the

minimum

Z

coordinate

is

returned.

Return

type:

DOUBLE

Examples:

These

examples

illustrate

the

use

of

the

ST_MinZ

function.

Three

polygons

are

created

and

inserted

into

the

SAMPLE_POLYS

table.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_polys

(id

INTEGER,

geometry

ST_Polygon)

INSERT

INTO

sample_polys

VALUES

(1,

ST_Polygon(’polygon

zm

((110

120

20

3,

110

140

22

3,

120

130

26

4,

110

120

20

3))’,

0)

)

INSERT

INTO

sample_polys

VALUES

(2,

ST_Polygon(’polygon

zm

((0

0

40

7,

0

4

35

9,

5

4

32

12,

5

0

31

5,

0

0

40

7))’,

0)

)

INSERT

INTO

sample_polys

VALUES

(3,

ST_Polygon(’polygon

zm

((12

13

10

16,

8

4

10

12,

9

4

12

11,

12

13

10

16))’,

0)

)

Example

1:

This

example

finds

the

minimum

Z

coordinate

of

each

polygon

in

SAMPLE_POLYS.

SELECT

id,

CAST

(

ST_MinZ(geometry)

AS

INTEGER)

MIN_Z

FROM

sample_polys

Results:

ID

MIN_Z

1

20

2

31

3

10

Example

2:

This

example

finds

the

minimum

Z

coordinate

that

exists

for

all

polygons

in

the

GEOMETRY

column.

ST_MinZ

Chapter

23.

Spatial

functions:

syntax

and

parameters

427

SELECT

CAST

(

MIN

(

ST_MinZ(geometry)

)

AS

INTEGER)

OVERALL_MIN_Z

FROM

sample_polys

Results:

OVERALL_MIN_Z

10

Related

reference:

v

“ST_MaxZ”

on

page

415

v

“ST_MinM”

on

page

422

v

“ST_MinX”

on

page

424

v

“ST_MinY”

on

page

425

ST_MLineFromText

ST_MLineFromText

takes

a

well-known

text

representation

of

a

multilinestring

and,

optionally,

a

spatial

reference

system

identifier

as

input

parameters

and

returns

the

corresponding

multilinestring.

If

the

given

well-known

text

representation

is

null,

then

null

is

returned.

The

recommended

function

for

achieving

the

same

result

is

the

ST_MultiLineString

function.

It

is

recommended

because

of

its

flexibility:

ST_MultiLineString

takes

additional

forms

of

input

as

well

as

the

well-known

text

representation.

Syntax:

��

db2gse.ST_MLineFromText

(

wkt

)

,

srs_id

��

Parameters:

wkt

A

value

of

type

CLOB(2G)

that

contains

the

well-known

text

representation

of

the

resulting

multilinestring.

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

multilinestring.

If

the

srs_id

parameter

is

omitted,

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used.

If

the

specified

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

exception

condition

is

raised

(SQLSTATE

38SU1).

Return

type:

db2gse.ST_MultiLineString

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

This

example

illustrates

how

ST_MLineFromText

can

be

used

to

create

and

insert

a

multilinestring

from

its

well-known

text

representation.

The

record

that

is

inserted

ST_MinZ

428

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

has

ID

=

1110,

and

the

geometry

is

a

multilinestring

in

spatial

reference

system

1.

The

multilinestring

is

in

the

well-known

text

representation

of

a

multilinestring.

The

X

and

Y

coordinates

for

this

geometry

are:

v

Line

1:

(33,

2)

(34,

3)

(35,

6)

v

Line

2:

(28,

4)

(29,

5)

(31,

8)

(43,

12)

v

Line

3:

(39,

3)

(37,

4)

(36,

7)
SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_mlines

(id

INTEGER,

geometry

ST_MultiLineString)

INSERT

INTO

sample_mlines

VALUES

(1110,

ST_MLineFromText

(’multilinestring

(

(33

2,

34

3,

35

6),

(28

4,

29

5,

31

8,

43

12),

(39

3,

37

4,

36

7)

)’,

1)

)

The

following

SELECT

statement

returns

the

multilinestring

that

was

recorded

in

the

table:

SELECT

id,

CAST(

ST_AsText(

geometry

)

AS

VARCHAR(280)

)

MULTI_LINE_STRING

FROM

sample_mlines

WHERE

id

=

1110

Results:

ID

MULTI_LINE_STRING

--

1110

MULTILINESTRING

((

33.00000000

2.00000000,

34.00000000

3.00000000,

35.00000000

6.00000000),

(

28.00000000

4.00000000,

29.00000000

5.00000000,

31.00000000

8.0000000,

43.00000000

12.00000000),

(

39.00000000

3.00000000,

37.00000000

4.00000000,

36.00000000

7.00000000

))

Related

concepts:

v

“Spatial

and

geodetic

data”

on

page

4

Related

reference:

v

“ST_MLineFromWKB”

on

page

429

v

“ST_MultiLineString”

on

page

437

ST_MLineFromWKB

ST_MLineFromWKB

takes

a

well-known

binary

representation

of

a

multilinestring

and,

optionally,

a

spatial

reference

system

identifier

as

input

parameters

and

returns

the

corresponding

multilinestring.

If

the

given

well-known

binary

representation

is

null,

then

null

is

returned.

The

recommended

function

for

achieving

the

same

result

is

the

ST_MultiLineString

function.

It

is

recommended

because

of

its

flexibility:

ST_MultiLineString

takes

additional

forms

of

input

as

well

as

the

well-known

binary

representation.

Syntax:

��

db2gse.ST_MLineFromWKB

(

wkb

)

,

srs_id

��

Parameters:

ST_MLineFromText

Chapter

23.

Spatial

functions:

syntax

and

parameters

429

wkb

A

value

of

type

BLOB(2G)

that

contains

the

well-known

binary

representation

of

the

resulting

multilinestring.

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

multilinestring.

If

the

srs_id

parameter

is

omitted,

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used.

If

the

specified

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

exception

condition

is

raised

(SQLSTATE

38SU1).

Return

type:

db2gse.ST_MultiLineString

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

This

example

illustrates

how

ST_MLineFromWKB

can

be

used

to

create

a

multilinestring

from

its

well-known

binary

representation.

The

geometry

is

a

multilinestring

in

spatial

reference

system

1.

In

this

example,

the

multilinestring

gets

stored

with

ID

=

10

in

the

GEOMETRY

column

of

the

SAMPLE_MLINES

table,

and

then

the

WKB

column

is

updated

with

its

well-known

binary

representation

(using

the

ST_AsBinary

function).

Finally,

the

ST_MLineFromWKB

function

is

used

to

return

the

multilinestring

from

the

WKB

column.

The

X

and

Y

coordinates

for

this

geometry

are:

v

Line

1:

(61,

2)

(64,

3)

(65,

6)

v

Line

2:

(58,

4)

(59,

5)

(61,

8)

v

Line

3:

(69,

3)

(67,

4)

(66,

7)

(68,

9)

The

SAMPLE_MLINES

table

has

a

GEOMETRY

column,

where

the

multilinestring

is

stored,

and

a

WKB

column,

where

the

multilinestring’s

well-known

binary

representation

is

stored.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_mlines

(id

INTEGER,

geometry

ST_MultiLineString,

wkb

BLOB(32K))

INSERT

INTO

sample_mlines

VALUES

(10,

ST_MultiLineString

(’multilinestring

(

(61

2,

64

3,

65

6),

(58

4,

59

5,

61

8),

(69

3,

67

4,

66

7,

68

9)

)’,

1)

)

UPDATE

sample_mlines

AS

temporary_correlated

SET

wkb

=

ST_AsBinary(

geometry

)

WHERE

id

=

temporary_correlated.id

In

the

following

SELECT

statement,

the

ST_MLineFromWKB

function

is

used

to

retrieve

the

multilinestring

from

the

WKB

column.

SELECT

id,

CAST(

ST_AsText(

ST_MLineFromWKB

(wkb)

)

AS

VARCHAR(280)

)

MULTI_LINE_STRING

FROM

sample_mlines

WHERE

id

=

10

Results:

ST_MLineFromWKB

430

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

ID

MULTI_LINE_STRING

--

10

MULTILINESTRING

((

61.00000000

2.00000000,

64.00000000

3.00000000,

65.00000000

6.00000000),

(

58.00000000

4.00000000,

59.00000000

5.00000000,

61.00000000

8.0000000),

(

69.00000000

3.00000000,

67.00000000

4.00000000,

66.00000000

7.00000000,

68.00000000

9.00000000

))

Related

concepts:

v

“Spatial

and

geodetic

data”

on

page

4

Related

reference:

v

“ST_MLineFromText”

on

page

428

v

“ST_MultiLineString”

on

page

437

v

“Well-known

binary

(WKB)

representation”

on

page

508

ST_MPointFromText

ST_MPointFromText

takes

a

well-known

text

representation

of

a

multipoint

and,

optionally,

a

spatial

reference

system

identifier

as

input

parameters

and

returns

the

corresponding

multipoint.

If

the

given

well-known

text

representation

is

null,

then

null

is

returned.

The

recommended

function

for

achieving

the

same

result

is

the

ST_MultiPoint

function.

It

is

recommended

because

of

its

flexibility:

ST_MultiPoint

takes

additional

forms

of

input

as

well

as

the

well-known

text

representation.

Syntax:

��

db2gse.ST_MPointFromText

(

wkt

)

,

srs_id

��

Parameters:

wkt

A

value

of

type

CLOB(2G)

that

contains

the

well-known

text

representation

of

the

resulting

multipoint.

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

multipoint.

If

the

srs_id

parameter

is

omitted,

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used.

If

the

specified

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

exception

condition

is

raised

(SQLSTATE

38SU1).

Return

type:

db2gse.ST_MultiPoint

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

ST_MLineFromWKB

Chapter

23.

Spatial

functions:

syntax

and

parameters

431

This

example

illustrates

how

ST_MPointFromText

can

be

used

to

create

and

insert

a

multipoint

from

its

well-known

text

representation.

The

record

that

is

inserted

has

ID

=

1110,

and

the

geometry

is

a

multipoint

in

spatial

reference

system

1.

The

multipoint

is

in

the

well-known

text

representation

of

a

multipoint.

The

X

and

Y

coordinates

for

this

geometry

are:

(1,

2)

(4,

3)

(5,

6).

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_mpoints

(id

INTEGER,

geometry

ST_MultiPoint)

INSERT

INTO

sample_mpoints

VALUES

(1110,

ST_MPointFromText

(’multipoint

(1

2,

4

3,

5

6)

)’,

1)

)

The

following

SELECT

statement

returns

the

multipoint

that

was

recorded

in

the

table:

SELECT

id,

CAST(

ST_AsText(

geometry

)

AS

VARCHAR(280)

)

MULTIPOINT

FROM

sample_mpoints

WHERE

id

=

1110

Results:

ID

MULTIPOINT

--

1110

MULTIPOINT

(1.00000000

2.00000000,

4.00000000

3.00000000,

5.00000000

6.00000000)

Related

concepts:

v

“Spatial

and

geodetic

data”

on

page

4

Related

reference:

v

“ST_MPointFromWKB”

on

page

432

v

“ST_MultiPoint”

on

page

439

v

“Well-known

text

(WKT)

representation”

on

page

503

ST_MPointFromWKB

ST_MPointFromWKB

takes

a

well-known

binary

representation

of

a

multipoint

and,

optionally,

a

spatial

reference

system

identifier

as

input

parameters

and

returns

the

corresponding

multipoint.

If

the

given

well-known

binary

representation

is

null,

then

null

is

returned.

The

recommended

function

for

achieving

the

same

result

is

the

ST_MultiPoint

function.

It

is

recommended

because

of

its

flexibility:

ST_MultiPoint

takes

additional

forms

of

input

as

well

as

the

well-known

binary

representation.

Syntax:

��

db2gse.ST_MPointFromWKB

(

wkb

)

,

srs_id

��

Parameters:

wkb

A

value

of

type

BLOB(2G)

that

contains

the

well-known

binary

representation

of

the

resulting

multipoint.

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

multipoint.

ST_MPointFromText

432

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

If

the

srs_id

parameter

is

omitted,

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used.

If

the

specified

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

exception

condition

is

raised

(SQLSTATE

38SU1).

Return

type:

db2gse.ST_MultiPoint

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

This

example

illustrates

how

ST_MPointFromWKB

can

be

used

to

create

a

multipoint

from

its

well-known

binary

representation.

The

geometry

is

a

multipoint

in

spatial

reference

system

1.

In

this

example,

the

multipoint

gets

stored

with

ID

=

10

in

the

GEOMETRY

column

of

the

SAMPLE_MPOINTS

table,

and

then

the

WKB

column

is

updated

with

its

well-known

binary

representation

(using

the

ST_AsBinary

function).

Finally,

the

ST_MPointFromWKB

function

is

used

to

return

the

multipoint

from

the

WKB

column.

The

X

and

Y

coordinates

for

this

geometry

are:

(44,

14)

(35,

16)

(24,

13).

The

SAMPLE_MPOINTS

table

has

a

GEOMETRY

column,

where

the

multipoint

is

stored,

and

a

WKB

column,

where

the

multipoint’s

well-known

binary

representation

is

stored.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_mpoints

(id

INTEGER,

geometry

ST_MultiPoint,

wkb

BLOB(32K))

INSERT

INTO

sample_mpoints

VALUES

(10,

ST_MultiPoint

(’multipoint

(

4

14,

35

16,

24

13)’,

1))

UPDATE

sample_mpoints

AS

temporary_correlated

SET

wkb

=

ST_AsBinary(

geometry

)

WHERE

id

=

temporary_correlated.id

In

the

following

SELECT

statement,

the

ST_MPointFromWKB

function

is

used

to

retrieve

the

multipoint

from

the

WKB

column.

SELECT

id,

CAST(

ST_AsText(

ST_MLineFromWKB

(wkb))

AS

VARCHAR(100))

MULTIPOINT

FROM

sample_mpoints

WHERE

id

=

10

Results:

ID

MULTIPOINT

--

10

MULTIPOINT

(44.00000000

14.00000000,

35.00000000

16.00000000

24.00000000

13.00000000)

Related

concepts:

v

“Spatial

and

geodetic

data”

on

page

4

Related

reference:

v

“ST_MPointFromText”

on

page

431

v

“ST_MultiPoint”

on

page

439

ST_MPointFromWKB

Chapter

23.

Spatial

functions:

syntax

and

parameters

433

v

“Well-known

binary

(WKB)

representation”

on

page

508

v

“ST_Point”

on

page

452

ST_MPolyFromText

ST_MPolyFromText

takes

a

well-known

text

representation

of

a

multipolygon

and,

optionally,

a

spatial

reference

system

identifier

as

input

parameters

and

returns

the

corresponding

multipolygon.

If

the

given

well-known

text

representation

is

null,

then

null

is

returned.

The

recommended

function

for

achieving

the

same

result

is

the

ST_MultiPolygon

function.

It

is

recommended

because

of

its

flexibility:

ST_MultiPolygon

takes

additional

forms

of

input

as

well

as

the

well-known

text

representation.

Syntax:

��

db2gse.ST_MPolyFromText

(

wkt

)

,

srs_id

��

Parameters:

wkt

A

value

of

type

CLOB(2G)

that

contains

the

well-known

text

representation

of

the

resulting

multipolygon.

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

multipolygon.

If

the

srs_id

parameter

is

omitted,

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used.

If

the

specified

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

exception

condition

is

raised

(SQLSTATE

38SU1).

Return

type:

db2gse.ST_MultiPolygon

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

This

example

illustrates

how

ST_MPolyFromText

can

be

used

to

create

and

insert

a

multipolygon

from

its

well-known

text

representation.

The

record

that

is

inserted

has

ID

=

1110,

and

the

geometry

is

a

multipolygon

in

spatial

reference

system

1.

The

multipolygon

is

in

the

well-known

text

representation

of

a

multipolygon.

The

X

and

Y

coordinates

for

this

geometry

are:

v

Polygon

1:

(3,

3)

(4,

6)

(5,

3)

(3,

3)

v

Polygon

2:

(8,

24)

(9,

25)

(1,

28)

(8,

24)

v

Polygon

3:

(13,

33)

(7,

36)

(1,

40)

(10,

43)

(13,

33)
SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_mpolys

(id

INTEGER,

geometry

ST_MultiPolygon)

INSERT

INTO

sample_mpolys

VALUES

(1110,

ST_MPointFromWKB

434

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

ST_MPolyFromText

(’multipolygon

((

(3

3,

4

6,

5

3,

3

3),

(8

24,

9

25,

1

28,

8

24),

(13

33,

7

36,

1

40,

10

43

13

33)

))’,

1)

)

The

following

SELECT

statement

returns

the

multipolygon

that

was

recorded

in

the

table:

SELECT

id,

CAST(

ST_AsText(

geometry

)

AS

VARCHAR(350)

)

MULTI_POLYGON

FROM

sample_mpolys

WHERE

id

=

1110

Results:

ID

MULTI_POLYGON

--

1110

MULTIPOLYGON

(((

13.00000000

33.00000000,

10.00000000

43.00000000,

1.00000000

40.00000000,

7.00000000

36.00000000,

13.00000000

33.00000000)),

((

8.00000000

24.00000000,

9.00000000

25.00000000,

1.00000000

28.0000000,

8.00000000

24.00000000)),

(

3.00000000

3.00000000,

5.00000000

3.00000000,

4.00000000

6.00000000,

3.00000000

3.00000000)))

Related

concepts:

v

“Spatial

and

geodetic

data”

on

page

4

Related

reference:

v

“ST_MPolyFromWKB”

on

page

435

v

“ST_MultiPolygon”

on

page

440

v

“Well-known

text

(WKT)

representation”

on

page

503

ST_MPolyFromWKB

ST_MPolyFromWKB

takes

a

well-known

binary

representation

of

a

multipolygon

and,

optionally,

a

spatial

reference

system

identifier

as

input

parameters

and

returns

the

corresponding

multipolygon.

If

the

given

well-known

binary

representation

is

null,

then

null

is

returned.

The

recommended

function

for

achieving

the

same

result

is

the

ST_MultiPolygon

function.

It

is

recommended

because

of

its

flexibility:

ST_MultiPolygon

takes

additional

forms

of

input

as

well

as

the

well-known

binary

representation.

Syntax:

��

db2gse.ST_MPolyFromWKB

(

wkb

)

,

srs_id

��

Parameters:

wkb

A

value

of

type

BLOB(2G)

that

contains

the

well-known

binary

representation

of

the

resulting

multipolygon.

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

multipolygon.

If

the

srs_id

parameter

is

omitted,

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used.

ST_MPolyFromText

Chapter

23.

Spatial

functions:

syntax

and

parameters

435

If

the

specified

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

exception

condition

is

raised

(SQLSTATE

38SU1).

Return

type:

db2gse.ST_MultiPolygon

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

This

example

illustrates

how

ST_MPolyFromWKB

can

be

used

to

create

a

multipolygon

from

its

well-known

binary

representation.

The

geometry

is

a

multipolygon

in

spatial

reference

system

1.

In

this

example,

the

multipolygon

gets

stored

with

ID

=

10

in

the

GEOMETRY

column

of

the

SAMPLE_MPOLYS

table,

and

then

the

WKB

column

is

updated

with

its

well-known

binary

representation

(using

the

ST_AsBinary

function).

Finally,

the

ST_MPolyFromWKB

function

is

used

to

return

the

multipolygon

from

the

WKB

column.

The

X

and

Y

coordinates

for

this

geometry

are:

v

Polygon

1:

(1,

72)

(4,

79)

(5,

76)

(1,

72)

v

Polygon

2:

(10,

20)

(10,

40)

(30,

41)

(10,

20)

v

Polygon

3:

(9,

43)

(7,

44)

(6,

47)

(9,

43)

The

SAMPLE_MPOLYS

table

has

a

GEOMETRY

column,

where

the

multipolygon

is

stored,

and

a

WKB

column,

where

the

multipolygon’s

well-known

binary

representation

is

stored.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_mpolys

(id

INTEGER,

geometry

ST_MultiPolygon,

wkb

BLOB(32K))

INSERT

INTO

sample_mpolys

VALUES

(10,

ST_MultiPolygon

(’multipolygon

((

(1

72,

4

79,

5

76,

1

72),

(10

20,

10

40,

30

41,

10

20),

(9

43,

7

44,

6

47,

9

43)

))’,

1))

UPDATE

sample_mpolys

AS

temporary_correlated

SET

wkb

=

ST_AsBinary(

geometry

)

WHERE

id

=

temporary_correlated.id

In

the

following

SELECT

statement,

the

ST_MPolyFromWKB

function

is

used

to

retrieve

the

multipolygon

from

the

WKB

column.

SELECT

id,

CAST(

ST_AsText(

ST_MPolyFromWKB

(wkb)

)

AS

VARCHAR(320)

)

MULTIPOLYGON

FROM

sample_mpolys

WHERE

id

=

10

Results:

ID

MULTIPOLYGON

--

10

MULTIPOLYGON

(((

10.00000000

20.00000000,

30.00000000

41.00000000,

10.00000000

40.00000000,

10.00000000

20.00000000)),

(

1.00000000

72.00000000,

5.00000000

76.00000000,

4.00000000

79.0000000,

1.00000000

ST_MPolyFromWKB

436

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

72,00000000)),

(

9.00000000

43.00000000,

6.00000000

47.00000000,

7.00000000

44.00000000,

9.00000000

43.00000000

)))

Related

concepts:

v

“Spatial

and

geodetic

data”

on

page

4

Related

reference:

v

“ST_MPolyFromText”

on

page

434

v

“ST_MultiPolygon”

on

page

440

v

“Well-known

binary

(WKB)

representation”

on

page

508

v

“ST_Polygon”

on

page

462

ST_MultiLineString

ST_MultiLineString

constructs

a

multilinestring

from

one

of

the

following

inputs:

v

A

well-known

text

representation

v

A

well-known

binary

representation

v

A

shape

representation

v

A

representation

in

the

geography

markup

language

(GML)

An

optional

spatial

reference

system

identifier

can

be

specified

to

identify

the

spatial

reference

system

that

the

resulting

multilinestring

is

in.

If

the

well-known

text

representation,

the

well-known

binary

representation,

the

shape

representation,

or

the

GML

representation

is

null,

then

null

is

returned.

Syntax:

��

db2gse.ST_MultiLineString

(

wkt

wkb

gml

shape

,

srs_id

)

��

Parameters:

wkt

A

value

of

type

CLOB(2G)

that

contains

the

well-known

text

representation

of

the

resulting

multilinestring.

wkb

A

value

of

type

BLOB(2G)

that

contains

the

well-known

binary

representation

of

the

resulting

multilinestring.

gml

A

value

of

type

CLOB(2G)

that

represents

the

resulting

multilinestring

using

the

geography

markup

language.

shape

A

value

of

type

BLOB(2G)

that

represents

the

shape

representation

of

the

resulting

multilinestring.

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

multilinestring.

If

the

srs_id

parameter

is

omitted,

then

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used.

If

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

exception

condition

is

raised

(SQLSTATE

38SU1).

ST_MPolyFromWKB

Chapter

23.

Spatial

functions:

syntax

and

parameters

437

Return

type:

db2gse.ST_MultiLineString

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

This

example

illustrates

how

ST_MultiLineString

can

be

used

to

create

and

insert

a

multilinestring

from

its

well-known

text

representation.

The

record

that

is

inserted

has

ID

=

1110,

and

the

geometry

is

a

multilinestring

in

spatial

reference

system

1.

The

multilinestring

is

in

the

well-known

text

representation

of

a

multilinestring.

The

X

and

Y

coordinates

for

this

geometry

are:

v

Line

1:

(33,

2)

(34,

3)

(35,

6)

v

Line

2:

(28,

4)

(29,

5)

(31,

8)

(43,

12)

v

Line

3:

(39,

3)

(37,

4)

(36,

7)
SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_mlines

(id

INTEGER,

geometry

ST_MultiLineString)

INSERT

INTO

sample_mlines

VALUES

(1110,

ST_MultiLineString

(’multilinestring

(

(33

2,

34

3,

35

6),

(28

4,

29

5,

31

8,

43

12),

(39

3,

37

4,

36

7)

)’,

1)

)

The

following

SELECT

statement

returns

the

multilinestring

that

was

recorded

in

the

table:

SELECT

id,

CAST(

ST_AsText(

geometry

)

AS

VARCHAR(280)

)

MULTI_LINE_STRING

FROM

sample_mlines

WHERE

id

=

1110

Results:

ID

MULTI_LINE_STRING

--

1110

MULTILINESTRING

((

33.00000000

2.00000000,

34.00000000

3.00000000,

35.00000000

6.00000000),

(

28.00000000

4.00000000,

29.00000000

5.00000000,

31.00000000

8.0000000,

43.00000000

12.00000000),

(

39.00000000

3.00000000,

37.00000000

4.00000000,

36.00000000

7.00000000

))

Related

concepts:

v

“Spatial

and

geodetic

data”

on

page

4

Related

reference:

v

“Well-known

text

(WKT)

representation”

on

page

503

v

“Well-known

binary

(WKB)

representation”

on

page

508

v

“Shape

representation”

on

page

510

v

“Geography

Markup

Language

(GML)

representation”

on

page

510

ST_MultiLineString

438

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

ST_MultiPoint

ST_MultiPoint

constructs

a

multipoint

from

one

of

the

following

inputs:

v

A

well-known

text

representation

v

A

well-known

binary

representation

v

A

shape

representation

v

A

representation

in

the

geography

markup

language

(GML)

An

optional

spatial

reference

system

identifier

can

be

specified

to

indicate

the

spatial

reference

system

the

resulting

multipoint

is

in.

If

the

well-known

text

representation,

the

well-known

binary

representation,

the

shape

representation,

or

the

GML

representation

is

null,

then

null

is

returned.

Syntax:

��

db2gse.ST_MultiPoint

(

wkt

wkb

gml

shape

,

srs_id

)

��

Parameters:

wkt

A

value

of

type

CLOB(2G)

that

contains

the

well-known

text

representation

of

the

resulting

multipoint.

wkb

A

value

of

type

BLOB(2G)

that

contains

the

well-known

binary

representation

of

the

resulting

multipoint.

gml

A

value

of

type

CLOB(2G)

that

represents

the

resulting

multipoint

using

the

geography

markup

language.

shape

A

value

of

type

BLOB(2G)

that

represents

the

shape

representation

of

the

resulting

multipoint.

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

multipoint.

If

the

srs_id

parameter

is

omitted,

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used.

If

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

exception

condition

is

raised

(SQLSTATE

38SU1).

Return

type:

db2gse.ST_Point

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

This

example

illustrates

how

ST_MultiPoint

can

be

used

to

create

and

insert

a

multipoint

from

its

well-known

text

representation.

The

record

that

is

inserted

has

ID

=

1110,

and

the

geometry

is

a

multipoint

in

spatial

reference

system

1.

The

ST_MultiPoint

Chapter

23.

Spatial

functions:

syntax

and

parameters

439

multipoint

is

in

the

well-known

text

representation

of

a

multipoint.

The

X

and

Y

coordinates

for

this

geometry

are:

(1,

2)

(4,

3)

(5,

6).

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_mpoints

(id

INTEGER,

geometry

ST_MultiPoint)

INSERT

INTO

sample_mpoints

VALUES

(1110,

ST_MultiPoint

(’multipoint

(1

2,

4

3,

5

6)

)’,

1))

The

following

SELECT

statement

returns

the

multipoint

that

was

recorded

in

the

table:

SELECT

id,

CAST(

ST_AsText(geometry)

AS

VARCHAR(90))

MULTIPOINT

FROM

sample_mpoints

WHERE

id

=

1110

Results:

ID

MULTIPOINT

1110

MULTIPOINT

(1.00000000

2.00000000,

4.00000000

3.00000000,

5.00000000

6.00000000)

Related

concepts:

v

“Spatial

and

geodetic

data”

on

page

4

Related

reference:

v

“Well-known

text

(WKT)

representation”

on

page

503

v

“Well-known

binary

(WKB)

representation”

on

page

508

v

“Shape

representation”

on

page

510

v

“Geography

Markup

Language

(GML)

representation”

on

page

510

ST_MultiPolygon

ST_MultiPolygon

constructs

a

multipolygon

from

one

of

the

following

inputs:

v

A

well-known

text

representation

v

A

well-known

binary

representation

v

A

shape

representation

v

A

representation

in

the

geography

markup

language

(GML)

An

optional

spatial

reference

system

identifier

can

be

specified

to

identify

the

spatial

reference

system

that

the

resulting

multipolygon

is

in.

If

the

well-known

text

representation,

the

well-known

binary

representation,

the

shape

representation,

or

the

GML

representation

is

null,

then

null

is

returned.

Syntax:

��

db2gse.ST_MultiPolygon

wkt

wkb

shape

gml

,

srs_id

)

��

Parameters:

wkt

A

value

of

type

CLOB(2G)

that

contains

the

well-known

text

representation

of

the

resulting

multipolygon.

ST_MultiPoint

440

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

wkb

A

value

of

type

BLOB(2G)

that

contains

the

well-known

binary

representation

of

the

resulting

multipolygon.

gml

A

value

of

type

CLOB(2G)

that

represents

the

resulting

multipolygon

using

the

geography

markup

language.

shape

A

value

of

type

BLOB(2G)

that

represents

the

shape

representation

of

the

resulting

multipolygon.

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

multipolygon.

If

the

srs_id

parameter

is

omitted,

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used.

If

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

exception

condition

is

raised

(SQLSTATE

38SU1).

Return

type:

db2gse.ST_MultiPolygon

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

This

example

illustrates

how

ST_MultiPolygon

can

be

used

to

create

and

insert

a

multipolygon

from

its

well-known

text

representation.

The

record

that

is

inserted

has

ID

=

1110,

and

the

geometry

is

a

multipolygon

in

spatial

reference

system

1.

The

multipolygon

is

in

the

well-known

text

representation

of

a

multipolygon.

The

X

and

Y

coordinates

for

this

geometry

are:

v

Polygon

1:

(3,

3)

(4,

6)

(5,

3)

(3,

3)

v

Polygon

2:

(8,

24)

(9,

25)

(1,

28)

(8,

24)

v

Polygon

3:

(13,

33)

(7,

36)

(1,

40)

(10,

43)

(13,

33)
SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_mpolys

(id

INTEGER,

geometry

ST_MultiPolygon)

INSERT

INTO

sample_mpolys

VALUES

(1110,

ST_MultiPolygon

(’multipolygon

((

(3

3,

4

6,

5

3,

3

3),

(8

24,

9

25,

1

28,

8

24),

(13

33,

7

36,

1

40,

10

43

13

33)

))’,

1)

)

The

following

SELECT

statement

returns

the

multipolygon

that

was

recorded

in

the

table:

SELECT

id,

CAST(

ST_AsText(

geometry

)

AS

VARCHAR(350)

)

MULTI_POLYGON

FROM

sample_mpolys

WHERE

id

=

1110

Results:

ID

MULTI_POLYGON

--

1110

MULTIPOLYGON

(((

13.00000000

33.00000000,

10.00000000

43.00000000,

1.00000000

40.00000000,

7.00000000

36.00000000,

13.00000000

33.00000000)),

((

8.00000000

24.00000000,

9.00000000

25.00000000,

ST_MultiPolygon

Chapter

23.

Spatial

functions:

syntax

and

parameters

441

1.00000000

28.0000000,

8.00000000

24.00000000)),

((

3.00000000

3.00000000,

5.00000000

3.00000000,

4.00000000

6.00000000,

3.00000000

3.00000000)))

Related

concepts:

v

“Spatial

and

geodetic

data”

on

page

4

Related

reference:

v

“Well-known

text

(WKT)

representation”

on

page

503

v

“Well-known

binary

(WKB)

representation”

on

page

508

v

“Shape

representation”

on

page

510

v

“Geography

Markup

Language

(GML)

representation”

on

page

510

ST_NumGeometries

ST_NumGeometries

takes

a

geometry

collection

as

an

input

parameter

and

returns

the

number

of

geometries

in

the

collection.

If

the

given

geometry

collection

is

null

or

is

empty,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_NumGeometries

(

collection

)

��

Parameter:

collection

A

value

of

type

ST_GeomCollection

or

one

of

its

subtypes

that

represents

the

geometry

collection

for

which

the

number

of

geometries

is

returned.

Return

Type:

INTEGER

Example:

Two

geometry

collections

are

stored

in

the

SAMPLE_GEOMCOLL

table.

One

is

a

multipolygon,

and

the

other

is

a

multipoint.

The

ST_NumGeometries

function

determines

how

many

individual

geometries

are

within

each

geometry

collection.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geomcoll

(id

INTEGER,

geometry

ST_GeomCollection)

INSERT

INTO

sample_geomcoll

VALUES

(1,

ST_MultiPolygon

(’multipolygon

((

(3

3,

4

6,

5

3,

3

3),

(8

24,

9

25,

1

28,

8

24),

(13

33,

7

36,

1

40,

10

43,

13

33)

))’,

1)

)

INSERT

INTO

sample_geomcoll

VALUES

(2,

ST_MultiPoint

(’multipoint

(1

2,

4

3,

5

6,

7

6,

8

8)’,

1)

)

SELECT

id,

ST_NumGeometries

(geometry)

NUM_GEOMS_IN_COLL

FROM

sample_geomcoll

Results:

ST_MultiPolygon

442

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

ID

NUM_GEOMS_IN_COLL

1

3

2

5

Related

reference:

v

“ST_GeometryN”

on

page

383

ST_NumInteriorRing

ST_NumInteriorRing

takes

a

polygon

as

an

input

parameter

and

returns

the

number

of

its

interior

rings.

If

the

given

polygon

is

null

or

is

empty,

then

null

is

returned.

If

the

polygon

has

no

interior

rings,

then

0

(zero)

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_NumInteriorRing

(

polygon

)

��

Parameter:

polygon

A

value

of

type

ST_Polygon

that

represents

the

polygon

for

which

the

number

of

interior

rings

is

returned.

Return

type:

INTEGER

Example:

The

following

example

creates

two

polygons:

v

One

with

two

interior

rings

v

One

without

any

interior

rings
SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_polys

(id

INTEGER,

geometry

ST_Polygon)

INSERT

INTO

sample_polys

VALUES

(1,

ST_Polygon(’polygon

((40

120,

90

120,

90

150,

40

150,

40

120),

(50

130,

60

130,

60

140,

50

140,

50

130),

(70

130,

80

130,

80

140,

70

140,

70

130))’

,

0)

)

INSERT

INTO

sample_polys

VALUES

(2,

ST_Polygon(’polygon

((5

15,

50

15,

50

105,

5

15))’

,

0)

)

The

ST_NumInteriorRing

function

is

used

to

return

the

number

of

rings

in

the

geometries

in

the

table:

SELECT

id,

ST_NumInteriorRing(geometry)

NUM_RINGS

FROM

sample_polys

Results:

ST_NumGeometries

Chapter

23.

Spatial

functions:

syntax

and

parameters

443

ID

NUM_RINGS

1

2

2

0

Related

reference:

v

“ST_InteriorRingN”

on

page

390

ST_NumLineStrings

ST_NumLineStrings

takes

a

multilinestring

as

an

input

parameter

and

returns

the

number

of

linestrings

that

it

contains.

If

the

given

multilinestring

is

null

or

is

empty,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_NumLineStrings

(

multilinestring

)

��

Parameter:

multilinestring

A

value

of

type

ST_MultiLineString

that

represents

the

multilinestring

for

which

the

number

of

linestrings

is

returned.

Return

type:

INTEGER

Example:

Multilinestrings

are

stored

in

the

SAMPLE_MLINES

table.

The

ST_NumLineStrings

function

determines

how

many

individual

geometries

are

within

each

multilinestring.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_mlines

(id

INTEGER,

geometry

ST_MultiLineString)

INSERT

INTO

sample_mlines

VALUES

(110,

ST_MultiLineString

(’multilinestring

(

(33

2,

34

3,

35

6),

(28

4,

29

5,

31

8,

43

12),

(39

3,

37

4,

36

7))’,

1)

)

INSERT

INTO

sample_mlines

VALUES

(111,

ST_MultiLineString

(’multilinestring

(

(3

2,

4

3,

5

6),

(8

4,

9

5,

3

8,

4

12))’,

1)

)

SELECT

id,

ST_NumLineStrings

(geometry)

NUM_WITHIN

FROM

sample_mlines

Results:

ID

NUM_WITHIN

110

3

111

2

Related

reference:

ST_NumInteriorRing

444

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

v

“ST_LineStringN”

on

page

408

ST_NumPoints

ST_NumPoints

takes

a

geometry

as

an

input

parameter

and

returns

the

number

of

points

that

were

used

to

define

that

geometry.

For

example,

if

the

geometry

is

a

polygon

and

five

points

were

used

to

define

that

polygon,

then

the

returned

number

is

5.

If

the

given

geometry

is

null

or

is

empty,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_NumPoints

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

for

which

the

number

of

points

is

returned.

Return

type:

INTEGER

Example:

A

variety

of

geometries

are

stored

in

the

table.

The

ST_NumPoints

function

determines

how

many

points

are

within

each

geometry

in

the

SAMPLE_GEOMETRIES

table.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geometries

(spatial_type

VARCHAR(18),

geometry

ST_Geometry)

INSERT

INTO

sample_geometries

VALUES

(’st_point’,

ST_Point

(2,

3,

0)

)

INSERT

INTO

sample_geometries

VALUES

(’st_linestring’,

ST_LineString

(’linestring

(2

5,

21

3,

23

10)’,

0)

)

INSERT

INTO

sample_geometries

VALUES

(’st_polygon’,

ST_Polygon

(’polygon

((110

120,

110

140,

120

130,

110

120))’,

0)

)

SELECT

spatial_type,

ST_NumPoints

(geometry)

NUM_POINTS

FROM

sample_geometries

Results:

SPATIAL_TYPE

NUM_POINTS

st_point

1

st_linestring

3

st_polygon

4

Related

reference:

v

“ST_PointN”

on

page

458

ST_NumLineStrings

Chapter

23.

Spatial

functions:

syntax

and

parameters

445

ST_NumPolygons

ST_NumPolygons

takes

a

multipolygon

as

an

input

parameter

and

returns

the

number

of

polygons

that

it

contains.

If

the

given

multipolygon

is

null

or

is

empty,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_NumPolygons

(

multipolygon

)

��

Parameter:

multipolygon

A

value

of

type

ST_MultiPolygon

that

represents

the

multipolygon

for

which

the

number

of

polygons

is

returned.

Return

type:

INTEGER

Example:

Multipolygons

are

stored

in

the

SAMPLE_MPOLYS

table.

The

ST_NumPolygons

function

determines

how

many

individual

geometries

are

within

each

multipolygon.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_mpolys

(id

INTEGER,

geometry

ST_MultiPolygon)

INSERT

INTO

sample_mpolys

VALUES

(1,

ST_MultiPolygon

(’multipolygon

((

(3

3,

4

6,

5

3,

3

3),

(8

24,

9

25,

1

28,

8

24),

(13

33,

7

36,

1

40,

10

43,

13

33)

))’,

1)

)

INSERT

INTO

sample_polys

VALUES

(2,

ST_MultiPolygon

(’multipolygon

empty’,

1)

)

INSERT

INTO

sample_polys

VALUES

(3,

ST_MultiPolygon

(’multipolygon

((

(3

3,

4

6,

5

3,

3

3),

(13

33,

7

36,

1

40,

10

43,

13

33)

))’,

1)

)

SELECT

id,

ST_NumPolygons

(geometry)

NUM_WITHIN

FROM

sample_mpolys

Results:

ID

NUM_WITHIN

1

3

2

0

3

2

Related

reference:

v

“ST_PolygonN”

on

page

465

ST_NumPolygons

446

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

ST_Overlaps

ST_Overlaps

takes

two

geometries

as

input

parameters

and

returns

1

if

the

intersection

of

the

geometries

results

in

a

geometry

of

the

same

dimension

but

is

not

equal

to

either

of

the

given

geometries.

Otherwise,

0

(zero)

is

returned.

If

any

of

the

two

geometries

is

null

or

is

empty,

then

null

is

returned.

If

the

second

geometry

is

not

represented

in

the

same

spatial

reference

system

as

the

first

geometry,

it

will

be

converted

to

the

other

spatial

reference

system.

Syntax:

��

db2gse.ST_Overlaps

(

geometry1

,

geometry2

)

��

Parameters:

geometry1

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

that

is

tested

to

overlap

with

geometry2.

geometry2

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

that

is

tested

to

overlap

with

geometry1.

Return

type:

INTEGER

Examples:

These

examples

illustrate

the

use

of

ST_Overlaps.

Various

geometries

are

created

and

inserted

into

the

SAMPLE_GEOMETRIES

table

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geometries

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geometries

VALUES

(1,

ST_Point

(10,

20,

1)),

(2,

ST_Point

(’point

(41

41)’,

1)

),

(10,

ST_LineString

(’linestring

(1

10,

3

12,

10

10)’,

1)

),

(20,

ST_LineString

(’linestring

(50

10,

50

12,

45

10)’,

1)

),

(30,

ST_LineString

(’linestring

(50

12,

50

10,

60

8)’,

1)

),

(100,

ST_Polygon

(’polygon

((0

0,

0

40,

40

40,

40

0,

0

0))’,

1)

),

(110,

ST_Polygon

(’polygon

((30

10,

30

30,

50

30,

50

10,

30

10))’,

1)

),

(120,

ST_Polygon

(’polygon

((0

50,

0

60,

40

60,

40

60,

0

50))’,

1)

)

Example

1:

This

example

finds

the

IDs

of

points

that

overlap.

SELECT

sg1.id,

sg2.id

CASE

ST_Overlaps

(sg1.geometry,

sg2.geometry)

WHEN

0

THEN

’Points_do_not_overlap’

WHEN

1

THEN

’Points_overlap’

END

AS

OVERLAP

FROM

sample_geometries

sg1,

sample_geometries

sg2

WHERE

sg1.id

<

10

AND

sg2.id

<

10

AND

sg1.id

>=

sg2.id

Results:

ST_Overlaps

Chapter

23.

Spatial

functions:

syntax

and

parameters

447

ID

ID

OVERLAP

1

1

Points_do_not_overlap

2

1

Points_do_not_overlap

2

2

Points_do_not_overlap

Example

2:

This

example

finds

the

IDs

of

lines

that

overlap.

SELECT

sg1.id,

sg2.id

CASE

ST_Overlaps

(sg1.geometry,

sg2.geometry)

WHEN

0

THEN

’Lines_do_not_overlap’

WHEN

1

THEN

’Lines_overlap’

END

AS

OVERLAP

FROM

sample_geometries

sg1,

sample_geometries

sg2

WHERE

sg1.id

>=

10

AND

sg1.id

<

100

AND

sg2.id

>=

10

AND

sg2.id

<

100

AND

sg1.id

>=

sg2.id

Results:

ID

ID

OVERLAP

10

10

Lines_do_not_overlap

20

10

Lines_do_not_overlap

30

10

Lines_do_not_overlap

20

20

Lines_do_not_overlap

30

20

Lines_overlap

30

30

Lines_do_not_overlap

Example

3:

This

example

finds

the

IDs

of

polygons

that

overlap.

SELECT

sg1.id,

sg2.id

CASE

ST_Overlaps

(sg1.geometry,

sg2.geometry)

WHEN

0

THEN

’Polygons_do_not_overlap’

WHEN

1

THEN

’Polygons_overlap’

END

AS

OVERLAP

FROM

sample_geometries

sg1,

sample_geometries

sg2

WHERE

sg1.id

>=

100

AND

sg2.id

>=

100

AND

sg1.id

>=

sg2.id

Results:

ID

ID

OVERLAP

100

100

Polygons_do_not_overlap

110

100

Polygons_overlap

120

100

Polygons_do_not_overlap

110

110

Polygons_do_not_overlap

120

110

Polygons_do_not_overlap

120

120

Polygons_do_not_overlap

Related

reference:

v

“Functions

that

use

indexes

to

optimize

queries”

on

page

118

ST_Overlaps

448

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

ST_Perimeter

ST_Perimeter

takes

a

surface

or

multisurface

and,

optionally,

a

unit

as

input

parameters

and

returns

the

perimeter

of

the

surface

or

multisurface,

that

is

the

length

of

its

boundary,

measured

in

the

default

or

given

units.

If

the

given

surface

or

multisurface

is

null

or

is

empty,

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_Perimeter

(

surface

)

,

unit

��

Parameters:

surface

A

value

of

type

ST_Surface,

ST_MultiSurface,

or

one

of

their

subtypes

for

which

the

perimeter

is

returned.

unit

A

VARCHAR(128)

value

that

identifies

the

units

in

which

the

perimeter

is

measured.

The

supported

units

of

measure

are

listed

in

the

DB2GSE.ST_UNITS_OF_MEASURE

catalog

view.

If

the

unit

parameter

is

omitted,

the

following

rules

are

used

to

determine

the

unit

in

which

the

perimeter

is

measured:

v

If

surface

is

in

a

projected

or

geocentric

coordinate

system,

the

linear

unit

associated

with

this

coordinate

system

is

the

default.

v

If

surface

is

in

a

geographic

coordinate

system,

but

is

not

in

a

geodetic

spatial

reference

system

(SRS),

the

angular

unit

associated

with

this

coordinate

system

is

the

default.

v

If

surface

is

in

a

geodetic

SRS,

the

default

unit

of

measure

is

meters.

Restrictions

on

unit

conversions:

An

error

(SQLSTATE

38SU4)

is

returned

if

any

of

the

following

conditions

occur:

v

The

geometry

is

in

an

unspecified

coordinate

system

and

the

unit

parameter

is

specified.

v

The

geometry

is

in

a

projected

coordinate

system

and

an

angular

unit

is

specified.

v

The

geometry

is

in

a

geographic

coordinate

system,

but

is

not

in

a

geodetic

SRS,

and

a

linear

unit

is

specified.

v

The

geometry

is

in

a

geographic

coordinate

system,

is

in

a

geodetic

SRS,

and

an

angular

unit

is

specified.

Return

type:

DOUBLE

Examples:

These

examples

illustrate

the

use

of

the

ST_Perimeter

function.

A

spatial

reference

system

with

an

ID

of

4000

is

created

using

a

call

to

db2se,

and

a

polygon

is

created

in

that

spatial

reference

system.

ST_Perimeter

Chapter

23.

Spatial

functions:

syntax

and

parameters

449

|

|

|

|
|
|

|

|
|

|
|

|
|

|
|

|
|

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

db2se

create_srs

se_bank

-srsId

4000

-srsName

new_york1983

-xOffset

0

-yOffset

0

-xScale

1

-yScale

1

-coordsysName

NAD_1983_StatePlane_New_York_East_FIPS_3101_Feet

The

SAMPLE_POLYS

table

is

created

to

hold

a

geometry

with

a

perimeter

of

18.

CREATE

TABLE

sample_polys

(id

SMALLINT,

geometry

ST_Polygon)

INSERT

INTO

sample_polys

VALUES

(1,

ST_Polygon

(’polygon

((0

0,

0

4,

5

4,

5

0,

0

0))’,

4000))

Example

1:

This

example

lists

the

ID

and

perimeter

of

the

polygon.

SELECT

id,

ST_Perimeter

(geometry)

AS

PERIMETER

FROM

sample_polys

Results:

ID

PERIMETER

1

+1.80000000000000E+001

Example

2:

This

example

lists

the

ID

and

perimeter

of

the

polygon

with

the

perimeter

measured

in

meters.

SELECT

id,

ST_Perimeter

(geometry,

’METER’)

AS

PERIMETER_METER

FROM

sample_polys

Results:

ID

PERIMETER_METER

1

+5.48641097282195E+000

ST_PerpPoints

ST_PerpPoints

takes

a

curve

or

multicurve

and

a

point

as

input

parameters

and

returns

the

perpendicular

projection

of

the

given

point

on

the

curve

or

multicurve.

The

point

with

the

smallest

distance

between

the

given

point

and

the

perpendicular

point

is

returned.

If

two

or

more

such

perpendicular

projected

points

are

equidistant

from

the

given

point,

they

are

all

returned.

If

no

perpendicular

point

can

be

constructed,

then

an

empty

point

is

returned.

If

the

given

curve

or

multicurve

has

Z

or

M

coordinates,

the

Z

or

M

coordinate

of

the

resulting

points

are

computed

by

interpolation

on

the

given

curve

or

multicurve.

If

the

given

curve

or

point

is

empty,

then

an

empty

point

is

returned.

If

the

given

curve

or

point

is

null

,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

ST_Perimeter

450

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

��

db2gse.ST_PerpPoints

(

curve

,

point

)

��

Parameters:

curve

A

value

of

type

ST_Curve,

ST_MultiCurve,

or

one

of

their

subtypes

that

represents

the

curve

or

multicurve

in

which

the

perpendicular

projection

of

the

point

is

returned.

point

A

value

of

type

ST_Point

that

represents

the

point

that

is

perpendicular

projected

onto

curve.

Return

type:

db2gse.ST_MultiPoint

Examples:

These

examples

illustrate

the

use

of

the

ST_PerpPoints

function

to

find

points

that

are

perpendicular

to

the

linestring

stored

in

the

following

table.

The

ST_LineString

function

is

used

in

the

INSERT

statement

to

create

the

linestring.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_lines

(id

INTEGER,

line

ST_LineString)

INSERT

INTO

sample_lines

(id,

line)

VALUES

(1,

ST_LineString(’linestring

(0

10,

0

0,

10

0,

10

10)’

,

0)

)

Example

1:

This

example

finds

the

perpendicular

projection

on

the

linestring

of

a

point

with

coordinates

(5,

0).

The

ST_AsText

function

is

used

to

convert

the

returned

value

(a

multipoint)

to

its

well-known

text

representation.

SELECT

CAST

(

ST_AsText(

ST_PerpPoints(

line,

ST_Point(5,

0)

)

)

AS

VARCHAR(50)

)

PERP

FROM

sample_lines

Results:

PERP

--

MULTIPOINT

(

5.00000000

0.00000000)

Example

2:

This

example

finds

the

perpendicular

projections

on

the

linestring

of

a

point

with

coordinates

(5,

5).

In

this

case,

there

are

three

points

on

the

linestring

that

are

equidistant

to

the

given

location.

Therefore,

a

multipoint

that

consists

of

all

three

points

is

returned.

SELECT

CAST

(

ST_AsText(

ST_PerpPoints(

line,

ST_Point(5,

5)

)

)

AS

VARCHAR160)

)

PERP

FROM

sample_lines

Results:

PERP

--

MULTIPOINT

(

0.00000000

5.00000000,

5.00000000

0.00000000,

10.00000000

5.00000000)

Example

3:

This

example

finds

the

perpendicular

projections

on

the

linestring

of

a

point

with

coordinates

(5,

10).

In

this

case

there

are

three

different

perpendicular

points

that

can

be

found.

However,

the

ST_PerpPoints

function

only

returns

those

points

that

ST_PerpPoints

Chapter

23.

Spatial

functions:

syntax

and

parameters

451

are

closest

to

the

given

point.

Thus,

a

multipoint

that

consists

of

only

the

two

closest

points

is

returned.

The

third

point

is

not

included.

SELECT

CAST

(

ST_AsText(

ST_PerpPoints(

line,

ST_Point(5,

10)

)

)

AS

VARCHAR(80)

)

PERP

FROM

sample_lines

Results:

PERP

--

MULTIPOINT

(

0.00000000

10.00000000,

10.00000000

10.00000000

)

Example

4:

This

example

finds

the

perpendicular

projection

on

the

linestring

of

a

point

with

coordinates

(5,

15).

SELECT

CAST

(

ST_AsText(

ST_PerpPoints(

line,

ST_Point(’point(5

15)’,

0

)

)

)

AS

VARCHAR(80)

)

PERP

FROM

sample_lines

Results:

PERP

MULTIPOINT

(

5.00000000

0.00000000

)

Example

5:

In

this

example,

the

specified

point

with

coordinates

(15

15)

has

no

perpendicular

projection

on

the

linestring.

Therefore,

an

empty

geometry

is

returned.

SELECT

CAST

(

ST_AsText(

ST_PerpPoints(

line,

ST_Point(15,

15)

)

)

AS

VARCHAR(80)

)

PERP

FROM

sample_lines

Results:

PERP

--

MULTIPOINT

EMPTY

ST_Point

ST_Point

constructs

a

point

from

one

of

the

following

sets

of

input:

v

X

and

Y

coordinates

only

v

X,

Y,

and

Z

coordinates

v

X,

Y,

Z,

and

M

coordinates

v

A

well-known

text

representation

v

A

well-known

binary

representation

v

A

shape

representation

v

A

representation

in

the

geography

markup

language

(GML)

An

optional

spatial

reference

system

identifier

can

be

specified

to

indicate

the

spatial

reference

system

that

the

resulting

point

is

in.

If

the

point

is

constructed

from

coordinates,

and

if

the

X

or

Y

coordinate

is

null,

then

an

exception

condition

is

raised

(SQLSTATE

38SUP).

If

the

Z

or

M

coordinate

is

null,

then

the

resulting

point

will

not

have

a

Z

or

M

coordinate,

respectively.

If

the

point

is

constructed

from

its

well-known

text

representation,

its

well-known

ST_PerpPoints

452

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

binary

representation,

its

shape

representation,

or

its

GML

representation,

and

if

the

representation

is

null,

then

null

is

returned.

Syntax:

��

db2gse.ST_Point

(

coordinates

wkt

wkb

gml

shape

,

srs_id

)

��

coordinates:

x_coordinate

,

y_coordinate

,

z_coordinate

,

m_coordinate

Parameters:

wkt

A

value

of

type

CLOB(2G)

that

contains

the

well-known

text

representation

of

the

resulting

point.

wkb

A

value

of

type

BLOB(2G)

that

contains

the

well-known

binary

representation

of

the

resulting

point.

gml

A

value

of

type

CLOB(2G)

that

represents

the

resulting

point

using

the

geography

markup

language.

shape

A

value

of

type

BLOB(2G)

that

represents

the

shape

representation

of

the

resulting

point.

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

point.

If

the

srs_id

parameter

is

omitted,

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used.

If

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

exception

condition

is

raised

(SQLSTATE

38SU1).

x_coordinate

A

value

of

type

DOUBLE

that

specifies

the

X

coordinate

for

the

resulting

point.

y_coordinate

A

value

of

type

DOUBLE

that

specifies

the

Y

coordinate

for

the

resulting

point.

z_coordinate

A

value

of

type

DOUBLE

that

specifies

the

Z

coordinate

for

the

resulting

point.

If

the

z_coordinate

parameter

is

omitted,

the

resulting

point

will

not

have

a

Z

coordinate.

The

result

of

ST_Is3D

is

0

(zero)

for

such

a

point.

m_coordinate

A

value

of

type

DOUBLE

that

specifies

the

M

coordinate

for

the

resulting

point.

If

the

m_coordinate

parameter

is

omitted,

the

resulting

point

will

not

have

a

measure.

The

result

of

ST_IsMeasured

is

0

(zero)

for

such

a

point.

ST_Point

Chapter

23.

Spatial

functions:

syntax

and

parameters

453

Return

type:

db2gse.ST_Point

Example:

In

the

following

examples,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

Example

1:

This

example

illustrates

how

ST_Point

can

be

used

to

create

and

insert

points.

The

first

point

is

created

using

a

set

of

X

and

Y

coordinates.

The

second

point

is

created

using

its

well-known

text

representation.

Both

points

are

geometries

in

spatial

reference

system

1.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_points

(id

INTEGER,

geometry

ST_Point)

INSERT

INTO

sample_points

VALUES

(1100,

ST_Point

(10,

20,

1)

)

INSERT

INTO

sample_points

VALUES

(1101,

ST_Point

(’point

(30

40)’,

1)

)

The

following

SELECT

statement

returns

the

points

that

were

recorded

in

the

table:

SELECT

id,

CAST(

ST_AsText(

geometry

)

AS

VARCHAR(90))

POINTS

FROM

sample_points

Results:

ID

POINTS

1110

POINT

(

10.00000000

20.00000000)

1101

POINT

(

30.00000000

40.00000000)

Example

2:

This

example

inserts

a

record

into

the

SAMPLE_POINTS

table

with

ID

1103

and

a

point

value

with

an

X

coordinate

of

120,

a

Y

coordinate

of

358,

an

M

coordinate

of

34,

but

no

Z

coordinate.

INSERT

INTO

SAMPLE_POINTS(ID,

GEOMETRY)

VALUES(1103,

db2gse.ST_Point(120,

358,

CAST(NULL

AS

DOUBLE),

34,

1))

SELECT

id,

CAST(

ST_AsText(

geometry

)

AS

VARCHAR(90)

)

POINTS

FROM

sample_points

Results:

ID

POINTS

--

1103

POINT

M

(

120.0000000

358.0000000

34.00000000)

Example

3:

This

example

inserts

a

row

into

the

SAMPLE_POINTS

table

with

ID

1104

and

a

point

value

with

an

X

coordinate

of

1003,

a

Y

coordinate

of

9876,

a

Z

coordinate

of

20,

and

in

spatial

reference

system

0,

using

the

geography

markup

language

for

its

representation.

ST_Point

454

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

INSERT

INTO

SAMPLE_POINTS(ID,

GEOMETRY)

VALUES(1104,

db2gse.ST_Point(’<gml:Point><gml:coord>

<gml:x>1003</gml:X><gml:Y>9876</gml:Y><gml:Z>20</gml:Z>

</gml:coord></gml:Point>’,

1))

SELECT

id,

CAST(

ST_AsText(

geometry

)

AS

VARCHAR(90)

)

POINTS

FROM

sample_points

Results:

ID

POINTS

--

1104

POINT

Z

(

1003.000000

9876.000000

20.00000000)

Related

concepts:

v

“Spatial

and

geodetic

data”

on

page

4

Related

reference:

v

“ST_Is3d”

on

page

395

v

“ST_IsMeasured”

on

page

398

v

“Well-known

text

(WKT)

representation”

on

page

503

v

“Well-known

binary

(WKB)

representation”

on

page

508

v

“Shape

representation”

on

page

510

v

“Geography

Markup

Language

(GML)

representation”

on

page

510

ST_PointFromText

ST_PointFromText

takes

a

well-known

text

representation

of

a

point

and,

optionally,

a

spatial

reference

system

identifier

as

input

parameters

and

returns

the

corresponding

point.

If

the

given

well-known

text

representation

is

null,

then

null

is

returned.

The

recommended

function

for

achieving

the

same

result

is

the

ST_Point

function.

It

is

recommended

because

of

its

flexibility:

ST_Point

takes

additional

forms

of

input

as

well

as

the

well-known

text

representation.

Syntax:

��

db2gse.ST_PointFromText

(

wkt

)

,

srs_id

��

Parameters:

wkt

A

value

of

type

CLOB(2G)

that

contains

the

well-known

text

representation

of

the

resulting

point.

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

point.

If

the

srs_id

parameter

is

omitted,

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used.

If

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

exception

condition

is

raised

(SQLSTATE

38SU1).

Return

type:

ST_Point

Chapter

23.

Spatial

functions:

syntax

and

parameters

455

db2gse.ST_Point

Example:

This

example

illustrates

how

ST_PointFromText

can

be

used

to

create

and

insert

a

point

from

its

well-known

text

representation.

The

record

that

is

inserted

has

ID

=

1110,

and

the

geometry

is

a

point

in

spatial

reference

system

1.

The

point

is

in

the

well-known

text

representation

of

a

point.

The

X

and

Y

coordinates

for

this

geometry

are:

(10,

20).

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_points

(id

INTEGER,

geometry

ST_Point)

INSERT

INTO

sample_points

VALUES

(1110,

ST_PointFromText

(’point

(30

40)’,

1)

)

The

following

SELECT

statement

returns

the

polygon

that

was

recorded

in

the

table:

SELECT

id,

CAST(

ST_AsText(

geometry

)

AS

VARCHAR(35)

)

POINTS

FROM

sample_points

WHERE

id

=

1110

Results:

ID

POINTS

1110

POINTS

(

30.00000000

40.00000000)

Related

concepts:

v

“Spatial

and

geodetic

data”

on

page

4

Related

reference:

v

“ST_Point”

on

page

452

v

“ST_PointFromWKB”

on

page

456

ST_PointFromWKB

ST_PointFromWKB

takes

a

well-known

binary

representation

of

a

point

and,

optionally,

a

spatial

reference

system

identifier

as

input

parameters

and

returns

the

corresponding

point.

If

the

given

well-known

binary

representation

is

null,

then

null

is

returned.

The

recommended

function

for

achieving

the

same

result

is

the

ST_Point

function.

It

is

recommended

because

of

its

flexibility:

ST_Point

takes

additional

forms

of

input

as

well

as

the

well-known

binary

representation.

Syntax:

��

db2gse.ST_PointFromWKB

(

wkb

)

,

srs_id

��

Parameters:

wkb

A

value

of

type

BLOB(2G)

that

contains

the

well-known

binary

representation

of

the

resulting

point.

ST_PointFromText

456

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

point.

If

the

srs_id

parameter

is

omitted,

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used

implicitly.

If

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

exception

condition

is

raised

(SQLSTATE

38SU1).

Return

type:

db2gse.ST_Point

Example:

This

example

illustrates

how

ST_PointFromWKB

can

be

used

to

create

a

point

from

its

well-known

binary

representation.

The

geometries

are

points

in

spatial

reference

system

1.

In

this

example,

the

points

get

stored

in

the

GEOMETRY

column

of

the

SAMPLE_POLYS

table,

and

then

the

WKB

column

is

updated

with

their

well-known

binary

representations

(using

the

ST_AsBinary

function).

Finally,

the

ST_PointFromWKB

function

is

used

to

return

the

points

from

the

WKB

column.

The

SAMPLE_POINTS

table

has

a

GEOMETRY

column,

where

the

points

are

stored,

and

a

WKB

column,

where

the

points’

well-known

binary

representations

are

stored.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_points

(id

INTEGER,

geometry

ST_Point,

wkb

BLOB(32K))

INSERT

INTO

sample_points

VALUES

(10,

ST_Point

(’point

(44

14)’,

1)

),

VALUES

(11,

ST_Point

(’point

(24

13)’,

1))

UPDATE

sample_points

AS

temporary_correlated

SET

wkb

=

ST_AsBinary(

geometry

)

WHERE

id

=

temporary_correlated.id

In

the

following

SELECT

statement,

the

ST_PointFromWKB

function

is

used

to

retrieve

the

points

from

the

WKB

column.

SELECT

id,

CAST(

ST_AsText(

ST_PolyFromWKB

(wkb)

)

AS

VARCHAR(35)

)

POINTS

FROM

sample_points

Results:

ID

POINTS

10

POINT

(

44.00000000

14.00000000)

11

POINT

(

24.00000000

13.00000000)

Related

concepts:

v

“Spatial

and

geodetic

data”

on

page

4

Related

reference:

v

“ST_Point”

on

page

452

v

“ST_PointFromText”

on

page

455

ST_PointFromWKB

Chapter

23.

Spatial

functions:

syntax

and

parameters

457

ST_PointN

ST_PointN

takes

a

linestring

or

a

multipoint

and

an

index

as

input

parameters

and

returns

that

point

in

the

linestring

or

multipoint

that

is

identified

by

the

index.

The

resulting

point

is

represented

in

the

spatial

reference

system

of

the

given

linestring

or

multipoint.

If

the

given

linestring

or

multipoint

is

null

or

is

empty,

then

null

is

returned.

If

the

index

is

smaller

than

1

or

larger

than

the

number

of

points

in

the

linestring

or

multipoint,

then

null

is

returned

and

a

warning

condition

is

returned

(SQLSTATE

01HS2).

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_PointN

(

geometry

,

index

)

��

Parameters:

geometry

A

value

of

type

ST_LineString

or

ST_MultiPoint

that

represents

the

geometry

from

which

the

point

that

is

identified

by

index

is

returned.

index

A

value

of

type

INTEGER

that

identifies

the

nth

point

which

is

to

be

returned

from

geometry.

Return

type:

db2gse.ST_Point

Example:

The

following

example

illustrates

the

use

of

ST_PointN.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_lines

(id

INTEGER,

line

ST_LineString)

INSERT

INTO

sample_lines

VALUES

(1,

ST_LineString

(’linestring

(10

10,

5

5,

0

0,

10

0,

5

5,

0

10)’,

0)

)

SELECT

id,

CAST

(

ST_AsText

(ST_PointN

(line,

2)

)

AS

VARCHAR(60)

)

SECOND_INDEX

FROM

sample_lines

Results:

ID

SECOND_INDEX

1

POINT

(5.00000000

5.00000000)

Related

reference:

v

“ST_Endpoint”

on

page

366

v

“ST_NumPoints”

on

page

445

v

“ST_StartPoint”

on

page

470

ST_PointN

458

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

ST_PointOnSurface

ST_PointOnSurface

takes

a

surface

or

a

multisurface

as

an

input

parameter

and

returns

a

point

that

is

guaranteed

to

be

in

the

interior

of

the

surface

or

multisurface.

This

point

is

the

paracentroid

of

the

surface.

The

resulting

point

is

represented

in

the

spatial

reference

system

of

the

given

surface

or

multisurface.

If

the

given

surface

or

multisurface

is

null

or

is

empty,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_PointOnSurface

(

surface

)

��

Parameter:

surface

A

value

of

type

ST_Surface,

ST_MultiSurface,

or

one

of

their

subtypes

that

represents

the

geometry

for

which

a

point

on

the

surface

is

returned.

Return

type:

db2gse.ST_Point

Example:

In

the

following

example,

two

polygons

are

created

and

then

ST_PointOnSurface

is

used.

One

of

the

polygons

has

a

hole

in

its

center.

The

returned

points

are

on

the

surface

of

the

polygons.

They

are

not

necessarily

at

the

exact

center

of

the

polygons.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_polys

(id

INTEGER,

geometry

ST_Polygon)

INSERT

INTO

sample_polys

VALUES

(1,

ST_Polygon

(’polygon

(

(40

120,

90

120,

90

150,

40

150,

40

120)

,

(50

130,

80

130,

80

140,

50

140,

50

130)

)’

,0)

)

INSERT

INTO

sample_polys

VALUES

(2,

ST_Polygon

(’polygon

(

(10

10,

50

10,

10

30,

10

10)

)’,

0)

)

SELECT

id,

CAST

(ST_AsText

(ST_PointOnSurface

(geometry)

)

AS

VARCHAR(80)

)

POINT_ON_SURFACE

FROM

sample_polys

Results:

ID

POINT_ON_SURFACE

1

POINT

(

65.00000000

125.00000000)

2

POINT

(

30.00000000

15.00000000)

ST_PointOnSurface

Chapter

23.

Spatial

functions:

syntax

and

parameters

459

ST_PolyFromText

ST_PolyFromText

takes

a

well-known

text

representation

of

a

polygon

and,

optionally,

a

spatial

reference

system

identifier

as

input

parameters

and

returns

the

corresponding

polygon.

If

the

given

well-known

text

representation

is

null,

then

null

is

returned.

The

recommended

function

for

achieving

the

same

result

is

the

ST_Polygon

function.

It

is

recommended

because

of

its

flexibility:

ST_Polygon

takes

additional

forms

of

input

as

well

as

the

well-known

text

representation.

Syntax:

��

db2gse.ST_PolyFromText

(

wkt

)

,

srs_id

��

Parameters:

wkt

A

value

of

type

CLOB(2G)

that

contains

the

well-known

text

representation

of

the

resulting

polygon.

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

polygon.

If

the

srs_id

parameter

is

omitted,

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used.

If

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

exception

condition

is

raised

(SQLSTATE

38SU1).

Return

type:

db2gse.ST_Polygon

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

This

example

illustrates

how

ST_PolyFromText

can

be

used

to

create

and

insert

a

polygon

from

its

well-known

text

representation.

The

record

that

is

inserted

has

ID

=

1110,

and

the

geometry

is

a

polygon

in

spatial

reference

system

1.

The

polygon

is

in

the

well-known

text

representation

of

a

polygon.

The

X

and

Y

coordinates

for

this

geometry

are:

(50,

20)

(50,

40)

(70,

30).

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_polys

(id

INTEGER,

geometry

ST_Polygon)

INSERT

INTO

sample_polys

VALUES

(1110,

ST_PolyFromText

(’polygon

((50

20,

50

40,

70

30,

50

20))’,

1)

)

The

following

SELECT

statement

returns

the

polygon

that

was

recorded

in

the

table:

SELECT

id,

CAST(

ST_AsText(

geometry

)

AS

VARCHAR(120)

)

POLYGON

FROM

sample_polys

WHERE

id

=

1110

ST_PolyFromText

460

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Results:

ID

POLYGON

--

1110

POLYGON

((

50.00000000

20.00000000,

70.00000000

30.00000000,

50.00000000

40.00000000,

50.00000000

20.00000000))

Related

concepts:

v

“Spatial

and

geodetic

data”

on

page

4

Related

reference:

v

“ST_PolyFromWKB”

on

page

461

v

“ST_Polygon”

on

page

462

ST_PolyFromWKB

ST_PolyFromWKB

takes

a

well-known

binary

representation

of

a

polygon

and,

optionally,

a

spatial

reference

system

identifier

as

input

parameters

and

returns

the

corresponding

polygon.

If

the

given

well-known

binary

representation

is

null,

then

null

is

returned.

The

recommended

function

for

achieving

the

same

result

is

the

ST_Polygon

function.

It

is

recommended

because

of

its

flexibility:

ST_Polygon

takes

additional

forms

of

input

as

well

as

the

well-known

binary

representation.

Syntax:

��

db2gse.ST_PolyFromWKB

(

wkb

)

,

srs_id

��

Parameters:

wkb

A

value

of

type

BLOB(2G)

that

contains

the

well-known

binary

representation

of

the

resulting

polygon.

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

polygon.

If

the

srs_id

parameter

is

omitted,

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used.

If

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

exception

condition

is

raised

(SQLSTATE

38SU1).

Return

type:

db2gse.ST_Polygon

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

This

example

illustrates

how

ST_PolyFromWKB

can

be

used

to

create

a

polygon

from

its

well-known

binary

representation.

The

geometry

is

a

polygon

in

spatial

reference

system

1.

In

this

example,

the

polygon

gets

stored

with

ID

=

1115

in

the

ST_PolyFromText

Chapter

23.

Spatial

functions:

syntax

and

parameters

461

GEOMETRY

column

of

the

SAMPLE_POLYS

table,

and

then

the

WKB

column

is

updated

with

its

well-known

binary

representation

(using

the

ST_AsBinary

function).

Finally,

the

ST_PolyFromWKB

function

is

used

to

return

the

multipolygon

from

the

WKB

column.

The

X

and

Y

coordinates

for

this

geometry

are:

(50,

20)

(50,

40)

(70,

30).

The

SAMPLE_POLYS

table

has

a

GEOMETRY

column,

where

the

polygon

is

stored,

and

a

WKB

column,

where

the

polygon’s

well-known

binary

representation

is

stored.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_polys

(id

INTEGER,

geometry

ST_Polygon,

wkb

BLOB(32K))

INSERT

INTO

sample_polys

VALUES

(10,

ST_Polygon

(’polygon

((50

20,

50

40,

70

30,

50

20))’,

1)

)

UPDATE

sample_polys

AS

temporary_correlated

SET

wkb

=

ST_AsBinary(

geometry

)

WHERE

id

=

temporary_correlated.id

In

the

following

SELECT

statement,

the

ST_PolyFromWKB

function

is

used

to

retrieve

the

polygon

from

the

WKB

column.

SELECT

id,

CAST(

ST_AsText(

ST_PolyFromWKB

(wkb)

)

AS

VARCHAR(120)

)

POLYGON

FROM

sample_polys

WHERE

id

=

1115

Results:

ID

POLYGON

--

1115

POLYGON

((

50.00000000

20.00000000,

70.00000000

30.00000000,50.00000000

40.00000000,

50.00000000

20.00000000))

Related

concepts:

v

“Spatial

and

geodetic

data”

on

page

4

Related

reference:

v

“ST_PolyFromText”

on

page

460

v

“ST_Polygon”

on

page

462

ST_Polygon

ST_Polygon

constructs

a

polygon

from

one

of

the

following

inputs:

v

A

closed

linestring

that

defines

the

exterior

ring

of

the

resulting

polygon

v

A

well-known

text

representation

v

A

well-known

binary

representation

v

A

shape

representation

v

A

representation

in

the

geography

markup

language

(GML)

An

optional

spatial

reference

system

identifier

can

be

specified

to

identify

the

spatial

reference

system

that

the

resulting

polygon

is

in.

If

the

polygon

is

constructed

from

a

linestring

and

the

given

linestring

is

null,

then

null

is

returned.

If

the

given

linestring

is

empty,

then

an

empty

polygon

is

returned.

If

the

polygon

is

constructed

from

its

well-known

text

representation,

its

ST_PolyFromWKB

462

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

well-known

binary

representation,

its

shape

representation,

or

its

GML

representation,

and

if

the

representation

is

null,

then

null

is

returned.

This

function

can

also

be

called

as

a

method

for

the

following

cases

only:

ST_Polygon(linestring)

and

ST_Polygon(linestring,

srs_id).

Syntax:

��

db2gse.ST_Polygon

(

linestring

)

wkt

,

srs_id

wkb

shape

gml

��

Parameters:

linestring

A

value

of

type

ST_LineString

that

represents

the

linestring

that

defines

the

exterior

ring

for

the

outer

boundary.

If

linestring

is

not

closed

and

simple,

an

exception

condition

is

raised

(SQLSTATE

38SSL).

wkt

A

value

of

type

CLOB(2G)

that

contains

the

well-known

text

representation

of

the

resulting

polygon.

wkb

A

value

of

type

BLOB(2G)

that

contains

the

well-known

binary

representation

of

the

resulting

polygon.

shape

A

value

of

type

BLOB(2G)

that

represents

the

shape

representation

of

the

resulting

polygon.

gml

A

value

of

type

CLOB(2G)

that

represents

the

resulting

polygon

using

the

geography

markup

language.

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

polygon.

If

the

polygon

is

constructed

from

a

given

linestring

parameter

and

the

srs_id

parameter

is

omitted,

then

the

spatial

reference

system

from

linestring

is

used

implicitly.

Otherwise,

if

the

srs_id

parameter

is

omitted,

the

spatial

reference

system

with

the

numeric

identifier

0

(zero)

is

used.

If

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

exception

condition

is

raised

(SQLSTATE

38SU1).

Return

type:

db2gse.ST_Polygon

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

This

example

illustrates

how

ST_Polygon

can

be

used

to

create

and

insert

polygons.

Three

polygons

are

created

and

inserted.

All

of

them

are

geometries

in

spatial

reference

system

1.

v

The

first

polygon

is

created

from

a

ring

(a

closed

and

simple

linestring).

The

X

and

Y

coordinates

for

this

polygon

are:

(10,

20)

(10,

40)

(20,

30).

ST_Polygon

Chapter

23.

Spatial

functions:

syntax

and

parameters

463

v

The

second

polygon

is

created

using

its

well-known

text

representation.

The

X

and

Y

coordinates

for

this

polygon

are:

(110,

120)

(110,

140)

(120,

130).

v

The

third

polygon

is

a

donut

polygon.

A

donut

polygon

consists

of

an

interior

and

an

exterior

polygon.

This

donut

polygon

is

created

using

its

well-known

text

representation.

The

X

and

Y

coordinates

for

the

exterior

polygon

are:

(110,

120)

(110,

140)

(130,

140)

(130,

120)

(110,

120).

The

X

and

Y

coordinates

for

the

interior

polygon

are:

(115,

125)

(115,

135)

(125,

135)

(125,

135)

(115,

125).
SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_polys

(id

INTEGER,

geometry

ST_Polygon)

INSERT

INTO

sample_polys

VALUES

(1100,

ST_Polygon

(ST_LineString

(’linestring

(10

20,

10

40,

20

30,

10

20)’,1),

1))

INSERT

INTO

sample_polys

VALUES

(1101,

ST_Polygon

(’polygon

((110

120,

110

140,

120

130,

110

120))’,

1))

INSERT

INTO

sample_polys

VALUES

(1102,

ST_Polygon

(’polygon

((110

120,

110

140,

130

140,

130

120,

110

120),

(115

125,

115

135,

125

135,

125

135,

115

125))’,

1))

The

following

SELECT

statement

returns

the

polygons

that

were

recorded

in

the

table:

SELECT

id,

CAST(

ST_AsText(

geometry

)

AS

VARCHAR(120)

)

POLYGONS

FROM

sample_polys

Results:

ID

POLYGONS

--

1110

POLYGON

((

10.00000000

20.00000000,

20.00000000

30.00000000

10.00000000

40.00000000,

10.00000000

20.00000000))

1101

POLYGON

((

110.00000000

120.00000000,

120.00000000

130.00000000

110.00000000

140.00000000,

110.00000000

120.00000000))

1102

POLYGON

((

110.00000000

120.00000000,

130.00000000

120.00000000

130.00000000

140.00000000,

110.00000000

140.00000000

110.00000000

120.00000000),

(

115.00000000

125.00000000,

115.00000000

135.00000000

125.00000000

135.00000000,

125.00000000

135.00000000

115.00000000

125.00000000))

Related

concepts:

v

“Spatial

and

geodetic

data”

on

page

4

Related

reference:

v

“Well-known

text

(WKT)

representation”

on

page

503

v

“Well-known

binary

(WKB)

representation”

on

page

508

v

“Shape

representation”

on

page

510

v

“Geography

Markup

Language

(GML)

representation”

on

page

510

ST_Polygon

464

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

ST_PolygonN

ST_PolygonN

takes

a

multipolygon

and

an

index

as

input

parameters

and

returns

the

polygon

that

is

identified

by

the

index.

The

resulting

polygon

is

represented

in

the

spatial

reference

system

of

the

given

multipolygon.

If

the

given

multipolygon

is

null

or

is

empty,

or

if

the

index

is

smaller

than

1

or

larger

than

the

number

of

polygons,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_PolygonN

(

multipolygon

,

index

)

��

Parameters:

multipolygon

A

value

of

type

ST_MultiPolygon

that

represents

the

multipolygon

from

which

the

polygon

that

is

identified

by

index

is

returned.

index

A

value

of

type

INTEGER

that

identifies

the

nth

polygon

that

is

to

be

returned

from

multipolygon.

Return

type:

db2gse.ST_Polygon

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display

This

example

illustrates

the

use

of

ST_PolygonN.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_mpolys

(id

INTEGER,

geometry

ST_MultiPolygon)

INSERT

INTO

sample_mpolys

VALUES

(1,

ST_Polygon

(’multipolygon

(((3

3,

4

6,

5

3,

3

3),

(8

24,

9

25,

1

28,

8

24)

(13

33,

7

36,

1

40,

10

43,

13

33)))’,

1))

SELECT

id,

CAST

(

ST_AsText

(ST_PolygonN

(geometry,

2)

)

AS

VARCHAR(120)

)

SECOND_INDEX

FROM

sample_mpolys

Results:

ID

SECOND_INDEX

1

POLYGON

((

8.00000000

24.00000000,

9.00000000

25.00000000,

1.00000000

28.00000000,

8.00000000

24.00000000))

Related

reference:

v

“ST_NumPolygons”

on

page

446

ST_PolygonN

Chapter

23.

Spatial

functions:

syntax

and

parameters

465

ST_Relate

ST_Relate

takes

two

geometries

and

a

Dimensionally

Extended

9

Intersection

Model

(DE-9IM)

matrix

as

input

parameters

and

returns

1

if

the

given

geometries

meet

the

conditions

specified

by

the

matrix.

Otherwise,

0

(zero)

is

returned.

If

any

of

the

given

geometries

is

null

or

is

empty,

then

null

is

returned.

If

the

second

geometry

is

not

represented

in

the

same

spatial

reference

system

as

the

first

geometry,

it

will

be

converted

to

the

other

spatial

reference

system.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_Relate

(

geometry1

,

geometry2

,

matrix

)

��

Parameters:

geometry1

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

that

is

tested

against

geometry2.

geometry2

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

that

is

tested

against

geometry1.

matrix

A

value

of

CHAR(9)

that

represents

the

DE-9IM

matrix

which

is

to

be

used

for

the

test

of

geometry1

and

geometry2.

Return

type:

INTEGER

Example:

The

following

code

creates

two

separate

polygons.

Then,

the

ST_Relate

function

is

used

to

determine

several

relationships

between

the

two

polygons.

For

example,

whether

the

two

polygons

overlap.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_polys

(id

INTEGER,

geometry

ST_Polygon)

INSERT

INTO

sample_polys

VALUES

(1,

ST_Polygon(’polygon

(

(40

120,

90

120,

90

150,

40

150,

40

120)

)’,

0))

INSERT

INTO

sample_polys

VALUES

(2,

ST_Polygon(’polygon

(

(30

110,

50

110,

50

130,

30

130,

30

110)

)’,

0))

SELECT

ST_Relate(a.geometry,

b.geometry,

’T*T***T**’)

"Overlaps

",

ST_Relate(a.geometry,

b.geometry,

’T*T***FF*’)

"Contains

",

ST_Relate(a.geometry,

b.geometry,

’T*F**F***’)

"Within

"

ST_Relate(a.geometry,

b.geometry,

’T********’)

"Intersects",

ST_Relate(a.geometry,

b.geometry,

’T*F**FFF2’)

"Equals

"

FROM

sample_polys

a,

sample_polys

b

WHERE

a.id

=

1

AND

b.id

=

2

Results:

ST_Relate

466

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Overlaps

Contains

Within

Intersects

Equals

1

0

0

1

0

Related

reference:

v

“Functions

that

compare

geographic

features”

on

page

295

ST_RemovePoint

ST_RemovePoint

takes

a

curve

and

a

point

as

input

parameters

and

returns

the

given

curve

with

all

points

equal

to

the

specified

point

removed

from

it.

If

the

given

curve

has

Z

or

M

coordinates,

then

the

point

must

also

have

Z

or

M

coordinates.

The

resulting

geometry

is

represented

in

the

spatial

reference

system

of

the

given

geometry.

If

the

given

curve

is

empty,

then

an

empty

curve

is

returned.

If

the

given

curve

is

null,

or

if

the

given

point

is

null

or

empty,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_RemovePoint

(

curve

,

point

)

��

Parameters:

curve

A

value

of

type

ST_Curve

or

one

of

its

subtypes

that

represents

the

curve

from

which

point

is

removed.

point

A

value

of

type

ST_Point

that

identifies

the

points

that

are

removed

from

curve.

Return

type:

db2gse.ST_Curve

Examples:

In

the

following

example,

two

linestrings

are

added

to

the

SAMPLE_LINES

table.

These

linestrings

are

used

in

the

examples

below.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_lines

(id

INTEGER,

line

ST_LineString)

INSERT

INTO

sample_lines

VALUES

(1,ST_LineString(’linestring

(10

10,

5

5,

0

0,

10

0,

5

5,

0

10)’,

0))

INSERT

INTO

sample_lines

VALUES

(2,

ST_LineString(’linestring

z

(0

0

4,

5

5

5,

10

10

6,

5

5

7,

0

0

8)’,

0))

In

the

following

examples,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

Example

1:

ST_Relate

Chapter

23.

Spatial

functions:

syntax

and

parameters

467

The

following

example

removes

the

point

(5,

5)

from

the

linestring

that

has

ID

=

1.

This

point

occurs

twice

in

the

linestring.

Therefore,

both

occurrences

are

removed.

SELECT

CAST(ST_AsText

(ST_RemovePoint

(line,

ST_Point(5,

5)

)

)

AS

VARCHAR(120)

)

RESULT

FROM

sample_lines

WHERE

id

=

1

Results:

RESULT

--

LINESTRING

(

10.00000000

10.00000000,

0.00000000

0.00000000,

10.00000000

0.00000000,

0.00000000

10.00000000)

Example

2:

The

following

example

removes

the

point

(5,

5,

5)

from

the

linestring

that

has

ID

=

2.

This

point

occurs

only

once,

so

only

that

occurrence

is

removed.

SELECT

CAST

(ST_AsText

(ST_RemovePoint

(line,

ST_Point(5.0,

5.0,

5.0)))

AS

VARCHAR(160)

)

RESULT

FROM

sample_lines

WHERE

id=2

Results:

RESULT

LINESTRING

Z

(

0.00000000

0.00000000

4.00000000,

10.00000000

10.00000000

6.00000000,

5.00000000

5.00000000

7.00000000,

0.00000000

0.00000000

8.00000000)

ST_SrsId,

ST_SRID

ST_SrsId

(or

ST_SRID)

takes

a

geometry

and,

optionally,

a

spatial

reference

system

identifier

as

input

parameters.

What

it

returns

depends

on

what

input

parameters

are

specified:

v

If

the

spatial

reference

system

identifier

is

specified,

it

returns

the

geometry

with

its

spatial

reference

system

changed

to

the

specified

spatial

reference

system.

No

transformation

of

the

geometry

is

performed.

v

If

no

spatial

reference

system

identifier

is

given

as

an

input

parameter,

the

current

spatial

reference

system

identifier

of

the

given

geometry

is

returned.

If

the

given

geometry

is

null,

then

null

is

returned.

These

functions

can

also

be

called

as

methods.

Syntax:

��

db2gse.ST_SrsId

db2gse.ST_SRID

(

geometry

)

,

srs_id

��

Parameters:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

for

which

the

spatial

reference

system

identifier

is

to

be

set

or

returned.

ST_RemovePoint

468

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

to

be

used

for

the

resulting

geometry.

Attention:

If

this

parameter

is

specified,

the

geometry

is

not

transformed,

but

is

returned

with

its

spatial

reference

system

changed

to

the

specified

spatial

reference

system.

As

a

result

of

changing

to

the

new

spatial

reference

system,

the

data

might

be

corrupted.

For

transformations,

use

ST_Transform

instead.

If

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

exception

condition

is

raised

(SQLSTATE

38SU1).

Return

types:

v

INTEGER,

if

an

srs_id

is

not

specified

v

db2gse.ST_Geometry,

if

an

srs_id

is

specified

Example:

Two

points

are

created

in

two

different

spatial

reference

systems.

The

ID

of

the

spatial

reference

system

that

is

associated

with

each

point

can

be

found

by

using

the

ST_SrsId

function.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_points

(id

INTEGER,

geometry

ST_Point)

INSERT

INTO

sample_points

VALUES

(1,

ST_Point(

’point

(80

180)’,

0

)

)

INSERT

INTO

sample_points

VALUES

(2,

ST_Point(

’point

(-74.21450127

+

42.03415094)’,

1

)

)

SELECT

id,

ST_SRSId

(geometry)

SRSID

FROM

sample_points

Results:

ID

SRSID

1

0

2

1

Related

reference:

v

“ST_Transform”

on

page

482

ST_SrsName

ST_SrsName

takes

a

geometry

as

an

input

parameter

and

returns

the

name

of

the

spatial

reference

system

in

which

the

given

geometry

is

represented.

If

the

given

geometry

is

null,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_SrsName

(

geometry

)

��

Parameter:

ST_SrsId

and

ST_SRID

Chapter

23.

Spatial

functions:

syntax

and

parameters

469

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

for

which

the

name

of

the

spatial

reference

system

is

returned.

Return

type:

VARCHAR(128)

Example:

Two

points

are

created

in

different

spatial

reference

systems.

The

ST_SrsName

function

is

used

to

find

out

the

name

of

the

spatial

reference

system

that

is

associated

with

each

point.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_points

(id

INTEGER,

geometry,

ST_Point)

INSERT

INTO

sample_points

VALUES

(1,

ST_Point

(’point

(80

180)’,

0)

)

INSERT

INTO

sample_points

VALUES

(2,

ST_Point

(’point

(-74.21450127

+

42.03415094)’,

1)

)

SELECT

id,

ST_SrsName

(geometry)

SRSNAME

FROM

sample_points

Results:

ID

SRSNAME

1

DEFAULT_SRS

2

NAD83_SRS_1

Related

reference:

v

“ST_SrsId,

ST_SRID”

on

page

468

ST_StartPoint

ST_StartPoint

takes

a

curve

as

an

input

parameter

and

returns

the

point

that

is

the

first

point

of

the

curve.

The

resulting

point

is

represented

in

the

spatial

reference

system

of

the

given

curve.

This

result

is

equivalent

to

the

function

call

ST_PointN(curve,

1)

If

the

given

curve

is

null

or

is

empty,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_StartPoint

(

curve

)

��

Parameters:

curve

A

value

of

type

ST_Curve

or

one

of

its

subtypes

that

represents

the

geometry

from

which

the

first

point

is

returned.

Return

type:

db2gse.ST_Point

ST_SrsName

470

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Example:

In

the

following

example,

two

linestrings

are

added

to

the

SAMPLE_LINES

table.

The

first

one

is

a

linestring

with

X

and

Y

coordinates.

The

second

one

is

a

linestring

with

X,

Y,

and

Z

coordinates.

The

ST_StartPoint

function

is

used

to

return

the

first

point

in

each

linestring.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_lines

(id

INTEGER,

line

ST_LineString)

INSERT

INTO

sample_lines

VALUES

(1,

ST_LineString

(’linestring

(10

10,

5

5,

0

0,

10

0,

5

5,

0

10)’,

0))

INSERT

INTO

sample_lines

VALUES

(1,

ST_LineString

(’linestring

z

(0

0

4,

5

5

5,

10

10

6,

5

5

7,

0

0

8)’,

0))

SELECT

id,

CAST(

ST_AsText(

ST_StartPoint(

line

)

)

AS

VARCHAR(80))

START_POINT

FROM

sample_lines

Results:

ID

START_POINT

--

1

POINT

(

10.00000000

10.00000000)

2

POINT

Z

(

0.00000000

0.00000000

4.00000000)

Related

reference:

v

“ST_Endpoint”

on

page

366

v

“ST_PointN”

on

page

458

ST_SymDifference

ST_SymDifference

takes

two

geometries

as

input

parameters

and

returns

the

geometry

that

is

the

symmetrical

difference

of

the

two

geometries.

The

symmetrical

difference

is

the

nonintersecting

part

of

the

two

given

geometries.

The

resulting

geometry

is

represented

in

the

spatial

reference

system

of

the

first

geometry.

The

dimension

of

the

returned

geometry

is

the

same

as

that

of

the

input

geometries.

Both

geometries

must

be

of

the

same

dimension.

For

non–geodetic

data,

if

the

second

geometry

is

not

represented

in

the

same

spatial

reference

system

as

the

first

geometry,

it

will

be

converted

to

the

other

spatial

reference

system.

For

geodetic

data,

both

geometries

must

be

in

the

same

geodetic

spatial

reference

system

(SRS).

If

the

geometries

are

equal,

an

empty

geometry

of

type

ST_Point

is

returned.

If

either

geometry

is

null,

then

null

is

returned.

The

resulting

geometry

is

represented

in

the

most

appropriate

spatial

type.

If

it

can

be

represented

as

a

point,

linestring,

or

polygon,

then

one

of

those

types

is

used.

Otherwise,

the

multipoint,

multilinestring,

or

multipolygon

type

is

used.

This

function

can

also

be

called

as

a

method.

Syntax:

ST_StartPoint

Chapter

23.

Spatial

functions:

syntax

and

parameters

471

|

|
|
|

|
|
|
|

|
|

��

db2gse.ST_SymDifference

(

geometry1

,

geometry2

)

��

Parameters:

geometry1

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

first

geometry

to

compute

the

symmetrical

difference

with

geometry2.

geometry2

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

second

geometry

to

compute

the

symmetrical

difference

with

geometry1.

Restrictions

for

geodetic

data:

v

Both

geometries

must

be

geodetic

and

they

both

must

be

in

the

same

geodetic

SRS.

v

ST_SymDifference

supports

only

ST_Point,

ST_Polygon,

ST_MultiPoint,

and

ST_MultiPolygon

data

types.

Return

type:

db2gse.ST_Geometry

Examples:

These

examples

illustrate

the

use

of

the

ST_SymDifference

function.

The

geometries

are

stored

in

the

SAMPLE_GEOMS

table.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geoms

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geoms

VALUES

(1,

ST_Geometry

(’polygon

(

(10

10,

10

20,

20

20,

20

10,

10

10)

)’,

0))

INSERT

INTO

sample_geoms

VALUES

(2,

ST_Geometry

(’polygon

(

(30

30,

30

50,

50

50,

50

30,

30

30)

)’,

0))

INSERT

INTO

sample_geoms

VALUES

(3,ST_Geometry

(’polygon

(

(40

40,

40

60,

60

60,

60

40,

40

40)

)’,

0))

INSERT

INTO

sample_geoms

VALUES

(4,

ST_Geometry

(’linestring

(70

70,

80

80)’

,

0)

)

INSERT

INTO

sample_geoms

VALUES

(5,

ST_Geometry(’linestring(75

75,

90

90)’

,0));

In

the

following

examples,

the

results

have

been

reformatted

for

readability.

Your

results

will

vary

according

to

your

display.

Example

1:

This

example

uses

ST_SymDifference

to

return

the

symmetric

difference

of

two

disjoint

polygons

in

the

SAMPLE_GEOMS

table.

ST_SymDifference

472

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|
|

|
|

|
|

SELECT

a.id,

b.id,

CAST

(ST_AsText

(ST_SymDifference

(a.geometry,

b.geometry)

)

AS

VARCHAR(350)

)

SYM_DIFF

FROM

sample_geoms

a,

sample_geoms

b

WHERE

a.id

=

1

AND

b.id

=

2

Results:

ID

ID

SYM_DIFF

1

2

MULTIPOLYGON

(((

10.00000000

10.00000000,

20.00000000

10.00000000,

20.00000000

20.00000000,

10.00000000

20.00000000,

10.00000000

10.00000000)),

((

30.00000000

30.00000000,

50.00000000

30.00000000,

50.00000000

50.00000000,

30.00000000

50.00000000,

30.00000000

30.00000000)))

Example

2:

This

example

uses

ST_SymDifference

to

return

the

symmetric

difference

of

two

intersecting

polygons

in

the

SAMPLE_GEOMS

table.

SELECT

a.id,

b.id,

CAST

(ST_AsText

(ST_SymDifference

(a.geometry,

b.geometry)

)

AS

VARCHAR(500)

)

SYM_DIFF

FROM

sample_geoms

a,

sample_geoms

b

WHERE

a.id

=

2

AND

b.id

=

3

Results:

ID

ID

SYM_DIFF

2

3

MULTIPOLYGON

(((

40.00000000

50.00000000,

50.00000000

50.00000000,

50.00000000

40.00000000,

60.00000000

40.00000000,

60.00000000

60.00000000,

40.00000000

60.00000000,

40.00000000

50.00000000)),

((

30.00000000

30.00000000,

50.00000000

30.00000000,

50.00000000

40.00000000,

40.00000000

40.00000000,

40.00000000

50.00000000,

30.00000000

50.00000000,

30.00000000

30.00000000)))

Example

3:

This

example

uses

ST_SymDifference

to

return

the

symmetric

difference

of

two

intersecting

linestrings

in

the

SAMPLE_GEOMS

table.

SELECT

a.id,

b.id,

CAST

(ST_AsText

(ST_SymDifference

(a.geometry,

b.geometry)

)

AS

VARCHAR(350)

)

SYM_DIFF

FROM

sample_geoms

a,

sample_geoms

b

WHERE

a.id

=

4

AND

b.id

=

5

Results:

ID

ID

SYM_DIFF

4

5

MULTILINESTRING

((

70.00000000

70.00000000,

75.00000000

75.00000000),

(

80.00000000

80.00000000,

90.00000000

90.00000000))

Related

reference:

v

“ST_Difference”

on

page

354

ST_SymDifference

Chapter

23.

Spatial

functions:

syntax

and

parameters

473

ST_ToGeomColl

ST_ToGeomColl

takes

a

geometry

as

an

input

parameter

and

converts

it

to

a

geometry

collection.

The

resulting

geometry

collection

is

represented

in

the

spatial

reference

system

of

the

given

geometry.

If

the

specified

geometry

is

empty,

then

it

can

be

of

any

type.

However,

it

is

then

converted

to

ST_Multipoint,

ST_MultiLineString,

or

ST_MultiPolygon

as

appropriate.

If

the

specified

geometry

is

not

empty,

then

it

must

be

of

type

ST_Point,

ST_LineString,

or

ST_Polygon.

These

are

then

converted

to

ST_Multipoint,

ST_MultiLineString,

or

ST_MultiPolygon

respectively.

If

the

given

geometry

is

null,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_ToGeomColl

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

that

is

converted

to

a

geometry

collection.

Return

type:

db2gse.ST_GeomCollection

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display

This

example

illustrates

the

use

of

the

ST_ToGeomColl

function.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geometries

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geometries

VALUES

(1,

ST_Polygon

(’polygon

((3

3,

4

6,

5

3,

3

3))’,

1)),

(2,

ST_Point

(’point

(1

2)’,

1))

In

the

following

SELECT

statement,

the

ST_ToGeomColl

function

is

used

to

return

geometries

as

their

corresponding

geometry

collection

subtypes.

SELECT

id,

CAST(

ST_AsText(

ST_ToGeomColl(geometry)

)

AS

VARCHAR(120)

)

GEOM_COLL

FROM

sample_geometries

Results:

ID

GEOM_COLL

--

1

MULTIPOLYGON

(((

3.00000000

3.00000000,

5.00000000

ST_ToGeomColl

474

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

3.00000000,

4.00000000

6.00000000,

3.00000000

3.00000000)))

2

MULTIPOINT

(

1.00000000

2.00000000)

ST_ToLineString

ST_ToLineString

takes

a

geometry

as

an

input

parameter

and

converts

it

to

a

linestring.

The

resulting

linestring

is

represented

in

the

spatial

reference

system

of

the

given

geometry.

The

given

geometry

must

be

empty

or

a

linestring.

If

the

given

geometry

is

null,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_ToLineString

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

that

is

converted

to

a

linestring.

A

geometry

can

be

converted

to

a

linestring

if

it

is

empty

or

a

linestring.

If

the

conversion

cannot

be

performed,

then

an

exception

condition

is

raised

(SQLSTATE

38SUD).

Return

type:

db2gse.ST_LineString

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display

This

example

illustrates

the

use

of

the

ST_ToLineString

function.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geometries

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geometries

VALUES

(1,

ST_Geometry

(’linestring

z

(0

10

1,

0

0

3,

10

0

5)’,

0)),

(2,

ST_Geometry

(’point

empty’,

1)

),

(3,

ST_Geometry

(’multipolygon

empty’,

1)

)

In

the

following

SELECT

statement,

the

ST_ToLineString

function

is

used

to

return

linestrings

converted

to

ST_LineString

from

the

static

type

of

ST_Geometry.

SELECT

CAST(

ST_AsText(

ST_ToLineString(geometry)

)

AS

VARCHAR(130)

)

LINES

FROM

sample_geometries

Results:

LINES

--

LINESTRING

Z

(

0.00000000

10.00000000

1.00000000,

0.00000000

ST_ToGeomColl

Chapter

23.

Spatial

functions:

syntax

and

parameters

475

0.00000000

3.00000000,

10.00000000

0.00000000

5.00000000)

LINESTRING

EMPTY

LINESTRING

EMPTY

ST_ToMultiLine

ST_ToMultiLine

takes

a

geometry

as

an

input

parameter

and

converts

it

to

a

multilinestring.

The

resulting

multilinestring

is

represented

in

the

spatial

reference

system

of

the

given

geometry.

The

given

geometry

must

be

empty,

a

multilinestring,

or

a

linestring.

If

the

given

geometry

is

null,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_ToMultiLine

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

that

is

converted

to

a

multilinestring.

A

geometry

can

be

converted

to

a

multilinestring

if

it

is

empty,

a

linestring,

or

a

multilinestring.

If

the

conversion

cannot

be

performed,

then

an

exception

condition

is

raised

(SQLSTATE

38SUD).

Return

type:

db2gse.ST_MultiLineString

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display

This

example

illustrates

the

use

of

the

ST_ToMultiLine

function.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geometries

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geometries

VALUES

(1,

ST_Geometry

(’multilinestring

((0

10

1,

0

0

3,

10

0

5),

(23

43,

27

34,

35

12))’,

0)

),

(2,

ST_Geometry

(’linestring

z

(0

10

1,

0

0

3,

10

0

5)’,

0)

),

(3,

ST_Geometry

(’point

empty’,

1)

),

(4,

ST_Geometry

(’multipolygon

empty’,

1)

)

In

the

following

SELECT

statement,

the

ST_ToMultiLine

function

is

used

to

return

multilinestrings

converted

to

ST_MultiLineString

from

the

static

type

of

ST_Geometry.

SELECT

CAST(

ST_AsText(

ST_ToMultiLine(geometry)

)

AS

VARCHAR(130)

)

LINES

FROM

sample_geometries

Results:

ST_ToLineString

476

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

LINES

--

MULTILINESTRING

Z

(

0.00000000

10.00000000

1.00000000,

0.00000000

0.00000000

3.00000000,

10.00000000

0.00000000

5.00000000)

MULTILINESTRING

EMPTY

MULTILINESTRING

EMPTY

ST_ToMultiPoint

ST_ToMultiPoint

takes

a

geometry

as

an

input

parameter

and

converts

it

to

a

multipoint.

The

resulting

multipoint

is

represented

in

the

spatial

reference

system

of

the

given

geometry.

The

given

geometry

must

be

empty,

a

point,

or

a

multipoint.

If

the

given

geometry

is

null,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_ToMultiPoint

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

that

is

converted

to

a

multipoint.

A

geometry

can

be

converted

to

a

multipoint

if

it

is

empty,

a

point,

or

a

multipoint.

If

the

conversion

cannot

be

performed,

then

an

exception

condition

is

raised

(SQLSTATE

38SUD).

Return

type:

db2gse.ST_MultiPoint

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display

This

example

illustrates

the

use

of

the

ST_ToMultiPoint

function.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geometries

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geometries

VALUES

(1,

ST_Geometry

(’multipoint

(0

0,

0

4)’,

1)

),

(2,

ST_Geometry

(’point

(30

40)’,

1)

),

(3,

ST_Geometry

(’multipolygon

empty’,

1)

)

In

the

following

SELECT

statement,

the

ST_ToMultiPoint

function

is

used

to

return

multipoints

converted

to

ST_MultiPoint

from

the

static

type

of

ST_Geometry.

SELECT

CAST(

ST_AsText(

ST_ToMultiPoint(geometry))

AS

VARCHAR(62)

)

MULTIPOINTS

FROM

sample_geometries

Results:

ST_ToMultiLine

Chapter

23.

Spatial

functions:

syntax

and

parameters

477

MULTIPOINTS

--

MULTIPOINT

(

0.00000000

0.00000000,

0.00000000

4.00000000)

MULTIPOINT

(

30.00000000

40.00000000)

MULTIPOINT

EMPTY

ST_ToMultiPolygon

ST_ToMultiPolygon

takes

a

geometry

as

an

input

parameter

and

converts

it

to

a

multipolygon.

The

resulting

multipolygon

is

represented

in

the

spatial

reference

system

of

the

given

geometry.

The

given

geometry

must

be

empty,

a

polygon,

or

a

multipolygon.

If

the

given

geometry

is

null,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_ToMultiPolygon

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

that

is

converted

to

a

multipolygon.

A

geometry

can

be

converted

to

a

multipolygon

if

it

is

empty,

a

polygon,

or

a

multipolygon.

If

the

conversion

cannot

be

performed,

then

an

exception

condition

is

raised

(SQLSTATE

38SUD).

Return

type:

db2gse.ST_MultiPolygon

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display

This

example

creates

several

geometries

and

then

uses

ST_ToMultiPolygon

to

return

multipolygons.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geometries

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geometries

VALUES

(1,

ST_Geometry

(’polygon

((0

0,

0

4,

5

4,

5

0,

0

0))’,

1)),

(2,

ST_Geometry

(’point

empty’,

1)),

(3,

ST_Geometry

(’multipoint

empty’,

1))

In

the

following

SELECT

statement,

the

ST_ToMultiPolygon

function

is

used

to

return

multipolygons

converted

to

ST_MultiPolygon

from

the

static

type

of

ST_Geometry.

SELECT

CAST(

ST_AsText(

ST_ToMultiPolygon(geometry)

)

AS

VARCHAR(130)

)

POLYGONS

FROM

sample_geometries

Results:

ST_ToMultiPoint

478

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

POLYGONS

--

MULTIPOLYGON

((

0.00000000

0.00000000,

5.00000000

0.00000000,

5.00000000

4.00000000,

0.00000000

4.00000000,

0.00000000

0.00000000))

MULTIPOLYGON

EMPTY

MULTIPOLYGON

EMPTY

ST_ToPoint

ST_ToPoint

takes

a

geometry

as

an

input

parameter

and

converts

it

to

a

point.

The

resulting

point

is

represented

in

the

spatial

reference

system

of

the

given

geometry.

The

given

geometry

must

be

empty

or

a

point.

If

the

given

geometry

is

null,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_ToPoint

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

that

is

converted

to

a

point.

A

geometry

can

be

converted

to

a

point

if

it

is

empty

or

a

point.

If

the

conversion

cannot

be

performed,

then

an

exception

condition

is

raised

(SQLSTATE

38SUD).

Return

type:

db2gse.ST_Point

Example:

This

example

creates

three

geometries

in

SAMPLE_GEOMETRIES

and

converts

each

to

a

point.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geometries

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geometries

VALUES

(1,

ST_Geometry

(’point

(30

40)’,

1)

),

(2,

ST_Geometry

(’linestring

empty’,

1)

),

(3,

ST_Geometry

(’multipolygon

empty’,

1)

)

In

the

following

SELECT

statement,

the

ST_ToPoint

function

is

used

to

return

points

converted

to

ST_Point

from

the

static

type

of

ST_Geometry.

SELECT

CAST(

ST_AsText(

ST_ToPoint(geometry)

)

AS

VARCHAR(35)

)

POINTS

FROM

sample_geometries

Results:

ST_ToMultiPolygon

Chapter

23.

Spatial

functions:

syntax

and

parameters

479

POINTS

POINT

(

30.00000000

40.00000000)

POINT

EMPTY

POINT

EMPTY

ST_ToPolygon

ST_ToPolygon

takes

a

geometry

as

an

input

parameter

and

converts

it

to

a

polygon.

The

resulting

polygon

is

represented

in

the

spatial

reference

system

of

the

given

geometry.

The

given

geometry

must

be

empty

or

a

polygon.

If

the

given

geometry

is

null,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_ToPolygon

(

geometry

)

��

Parameter:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

that

is

converted

to

a

polygon.

A

geometry

can

be

converted

to

a

polygon

if

it

is

empty

or

a

polygon.

If

the

conversion

cannot

be

performed,

then

an

exception

condition

is

raised

(SQLSTATE

38SUD).

Return

type:

db2gse.ST_Polygon

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display

This

example

creates

three

geometries

in

SAMPLE_GEOMETRIES

and

converts

each

to

a

polygon.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geometries

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geometries

VALUES

(1,

ST_Geometry

(’polygon

((0

0,

0

4,

5

4,

5

0,

0

0))’,

1)

),

(2,

ST_Geometry

(’point

empty’,

1)

),

(3,

ST_Geometry

(’multipolygon

empty’,

1)

)

In

the

following

SELECT

statement,

the

ST_ToPolygon

function

is

used

to

return

polygons

converted

to

ST_Polygon

from

the

static

type

of

ST_Geometry.

SELECT

CAST(

ST_AsText(

ST_ToPolygon(geometry)

)

AS

VARCHAR(130)

)

POLYGONS

FROM

sample_geometries

Results:

ST_ToPoint

480

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

POLYGONS

POLYGON

((

0.00000000

0.00000000,

5.00000000

0.00000000,

5.00000000

4.00000000,0.00000000

4.00000000,

0.00000000

0.00000000))

POLYGON

EMPTY

POLYGON

EMPTY

ST_Touches

ST_Touches

takes

two

geometries

as

input

parameters

and

returns

1

if

the

given

geometries

spatially

touch.

Otherwise,

0

(zero)

is

returned.

Two

geometries

touch

if

the

interiors

of

both

geometries

do

not

intersect,

but

the

boundary

of

one

of

the

geometries

intersects

with

either

the

boundary

or

the

interior

of

the

other

geometry.

If

the

second

geometry

is

not

represented

in

the

same

spatial

reference

system

as

the

first

geometry,

it

will

be

converted

to

the

other

spatial

reference

system.

If

both

of

the

given

geometries

are

points

or

multipoints,

or

if

any

of

the

given

geometries

is

null

or

empty,

then

null

is

returned.

Syntax:

��

db2gse.ST_Touches

(

geometry1

,

geometry2

)

��

Parameters:

geometry1

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

that

is

to

be

tested

to

touch

geometry2.

geometry2

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

that

is

to

be

tested

to

touch

geometry1.

Return

type:

INTEGER

Example:

Several

geometries

are

added

to

the

SAMPLE_GEOMS

table.

The

ST_Touches

function

is

then

used

to

determine

which

geometries

touch

each

other.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geoms

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geoms

VALUES

(1,

ST_Geometry(’polygon

(

(20

30,

30

30,

30

40,

20

40,

20

30)

)’

,

0)

)

INSERT

INTO

sample_geoms

VALUES

(2,

ST_Geometry(’polygon

(

(30

30,

30

50,

50

50,

50

30,

30

30)

)’

,0)

)

INSERT

INTO

sample_geoms

VALUES

(3,

ST_Geometry(’polygon

(

(40

40,

40

60,

60

60,

60

40,

40

40)

)’

,

0)

)

INSERT

INTO

sample_geoms

VALUES

(4,

ST_Geometry(’linestring(

60

60,

70

70

)’

,

0)

)

ST_ToPolygon

Chapter

23.

Spatial

functions:

syntax

and

parameters

481

INSERT

INTO

sample_geoms

VALUES

(5,

ST_Geometry(’linestring(

30

30,

60

60

)’

,

0)

)

SELECT

a.id,

b.id,

ST_Touches

(a.geometry,

b.geometry)

TOUCHES

FROM

sample_geoms

a,

sample_geoms

b

WHERE

b.id

>=

a.id

Results:

ID

ID

TOUCHES

1

1

0

1

2

1

1

3

0

1

4

0

1

5

1

2

2

0

2

3

0

2

4

0

2

5

1

3

3

0

3

4

1

3

5

1

4

4

0

4

5

1

5

5

0

Related

reference:

v

“Functions

that

use

indexes

to

optimize

queries”

on

page

118

ST_Transform

ST_Transform

takes

a

geometry

and

a

spatial

reference

system

identifier

as

input

parameters

and

transforms

the

geometry

to

be

represented

in

the

given

spatial

reference

system.

Projections

and

conversions

between

different

coordinate

systems

are

performed

and

the

coordinates

of

the

geometries

are

adjusted

accordingly.

The

geometry

can

be

converted

to

the

specified

spatial

reference

system

only

if

the

geometry’s

current

spatial

reference

system

is

based

in

the

same

geographic

coordinate

system

as

the

specified

spatial

spatial

reference

system.

If

either

the

geometry’s

current

spatial

reference

system

or

the

specified

spatial

reference

system

is

based

on

a

projected

coordinate

system,

a

reverse

projection

is

performed

to

determine

the

geographic

coordinate

system

that

underlies

the

projected

one.

If

the

given

geometry

is

null,

then

null

will

be

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_Transform

(

geometry

,

srs_id

)

��

Parameters:

geometry

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

represents

the

geometry

that

is

transformed

to

the

spatial

reference

system

identified

by

srs_id.

ST_Touches

482

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

srs_id

A

value

of

type

INTEGER

that

identifies

the

spatial

reference

system

for

the

resulting

geometry.

If

the

transformation

to

the

specified

spatial

reference

system

cannot

be

performed

because

the

current

spatial

reference

system

of

geometry

is

not

compatible

with

the

spatial

reference

system

identified

by

srs_id,

then

an

exception

condition

is

raised

(SQLSTATE

38SUC).

If

srs_id

does

not

identify

a

spatial

reference

system

listed

in

the

catalog

view

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS,

then

an

exception

condition

is

raised

(SQLSTATE

38SU1).

Return

type:

db2gse.ST_Geometry

Examples:

The

following

examples

illustrate

the

use

of

ST_Transform

to

convert

a

geometry

from

one

spatial

reference

system

to

another.

First,

the

state

plane

spatial

reference

system

with

an

ID

of

3

is

created

using

a

call

to

db2se.

db2se

create_srs

SAMP_DB

-srsId

3

-srsName

z3101a

-xOffset

0

-yOffset

0

-xScale

1

-yScale

1

-

coordsysName

NAD_1983_StatePlane_New_York_East_FIPS_3101_Feet

Then,

points

are

added

to:

v

The

SAMPLE_POINTS_SP

table

in

state

plane

coordinates

using

that

spatial

reference

system.

v

The

SAMPLE_POINTS_LL

table

using

coordinates

specified

in

latitude

and

longitude.
SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_points_sp

(id

INTEGER,

geometry

ST_Point)

CREATE

TABLE

sample_points_ll

(id

INTEGER,

geometry

ST_Point)

INSERT

INTO

sample_points_sp

VALUES

(12457,

ST_Point(’point

(

567176.0

1166411.0)’,

3)

)

INSERT

INTO

sample_points_sp

VALUES

(12477,

ST_Point(’point

(

637948.0

1177640.0)’,

3)

)

INSERT

INTO

sample_points_ll

VALUES

(12457,

ST_Point(’point

(

-74.22371600

42.03498700)’,

1)

)

INSERT

INTO

sample_points_ll

VALUES

(12477,

ST_Point(’point

(

-73.96293200

42.06487900)’,

1)

)

Then

the

ST_Transform

function

is

used

to

convert

the

geometries.

Example

1:

This

example

converts

points

that

are

in

latitude

and

longitude

coordinates

to

state

plane

coordinates.

SELECT

id,

CAST(

ST_AsText(

ST_Transform(

geometry,

3)

)

AS

VARCHAR(100)

)

STATE_PLANE

FROM

sample_points_ll

Results:

ST_Transform

Chapter

23.

Spatial

functions:

syntax

and

parameters

483

ID

STATE_PLANE

12457

POINT

(

567176.00000000

1166411.00000000)

12477

POINT

(

637948.00000000

1177640.00000000)

Example

2:

This

example

converts

points

that

are

in

state

plane

coordinates

to

latitude

and

longitude

coordinates.

SELECT

id,

CAST(

ST_AsText(

ST_Transform(

geometry,

1)

)

AS

VARCHAR(100)

)

LAT_LONG

FROM

sample_points_sp

Results:

ID

LAT_LONG

12457

POINT

(

-74.22371500

42.03498800)

12477

POINT

(

-73.96293100

42.06488000)

Related

reference:

v

“The

DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS

catalog

view”

on

page

283

ST_Union

ST_Union

takes

two

geometries

as

input

parameters

and

returns

the

geometry

that

is

the

union

of

the

given

geometries.

The

resulting

geometry

is

represented

in

the

spatial

reference

system

of

the

first

geometry.

Both

geometries

must

be

of

the

same

dimension.

If

any

of

the

two

given

geometries

is

null,

null

is

returned.

For

non–geodetic

data,

if

the

second

geometry

is

not

represented

in

the

same

spatial

reference

system

as

the

first

geometry,

it

will

be

converted

to

the

other

spatial

reference

system.

For

geodetic

data,

both

geometries

must

be

in

the

same

geodetic

spatial

reference

system

(SRS).

The

resulting

geometry

is

represented

in

the

most

appropriate

spatial

type.

If

it

can

be

represented

as

a

point,

linestring,

or

polygon,

then

one

of

those

types

is

used.

Otherwise,

the

multipoint,

multilinestring,

or

multipolygon

type

is

used.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_Union

(

geometry1

,

geometry2

)

��

Parameters:

geometry1

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

is

combined

with

geometry2.

geometry2

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

is

combined

with

geometry1.

ST_Transform

484

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|
|

|
|
|
|

Restrictions

for

geodetic

data:

Both

geometries

must

be

geodetic

and

they

both

must

be

in

the

same

geodetic

SRS.

Return

type:

db2gse.ST_Geometry

Examples:

The

following

SQL

statements

create

and

populate

the

SAMPLE_GEOMS

table.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geoms

(id

INTEGER,

geometry,

ST_Geometry)

INSERT

INTO

sample_geoms

VALUES

(1,

ST_Geometry(

’polygon

((10

10,

10

20,

20

20,

20

10,

10

10)

)’,

0))

INSERT

INTO

sample_geoms

VALUES

(2,

ST_Geometry(

’polygon

((30

30,

30

50,

50

50,

50

30,

30

30)

)’,

0))

INSERT

INTO

sample_geoms

VALUES

(3,

ST_Geometry(

’polygon

((40

40,

40

60,

60

60,

60

40,

40

40)

)’,

0))

INSERT

INTO

sample_geoms

VALUES

(4,

ST_Geometry(’linestring

(70

70,

80

80)’,

0))

INSERT

INTO

sample_geoms

VALUES

(5,

ST_Geometry(’linestring

(80

80,

100

70)’,

0))

In

the

following

examples,

the

results

have

been

reformatted

for

readability.

Your

results

will

vary

according

to

your

display.

Example

1:

This

example

finds

the

union

of

two

disjoint

polygons.

SELECT

a.id,

b.id,

CAST

(

ST_AsText(

ST_Union(

a.geometry,

b.geometry)

)

AS

VARCHAR

(350)

)

UNION

FROM

sample_geoms

a,

sample_geoms

b

WHERE

a.id

=

1

AND

b.id

=

2

Results:

ID

ID

UNION

1

2

MULTIPOLYGON

(((

10.00000000

10.00000000,

20.00000000

10.00000000,

20.00000000

20.00000000,

10.00000000

20.00000000,

10.00000000

10.00000000))

((

30.00000000

30.00000000,

50.00000000

30.00000000,50.00000000

50.00000000,

30.00000000

50.00000000,30.00000000

30.00000000)))

Example

2:

This

example

finds

the

union

of

two

intersecting

polygons.

SELECT

a.id,

b.id,

CAST

(

ST_AsText(

ST_Union(a.geometry,

b.geometry))

AS

VARCHAR

(250))

UNION

FROM

sample_geoms

a,

sample_geoms

b

WHERE

a.id

=

2

AND

b.id

=

3

Results:

ST_Union

Chapter

23.

Spatial

functions:

syntax

and

parameters

485

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

ID

ID

UNION

--

2

3

POLYGON

((

30.00000000

30.00000000,

50.00000000

30.00000000,50.00000000

40.00000000,

60.00000000

40.00000000,60.00000000

60.00000000,

40.00000000

60.00000000

40.00000000

50.00000000,

30.00000000

50.00000000,

30.00000000

30.00000000))

Example

3:

Find

the

union

of

two

linestrings.

SELECT

a.id,

b.id,

CAST

(

ST_AsText(

ST_Union(

a.geometry,

b.geometry)

)

AS

VARCHAR

(250)

)

UNION

FROM

sample_geoms

a,

sample_geoms

b

WHERE

a.id

=

4

AND

b.id

=

5

Results:

ID

ID

UNION

4

5

MULTILINESTRING

((

70.00000000

70.00000000,

80.00000000

80.00000000),

(

80.00000000

80.00000000,

100.00000000

70.00000000))

ST_Within

ST_Within

takes

two

geometries

as

input

parameters

and

returns

1

if

the

first

geometry

is

completely

within

the

second

geometry.

Otherwise,

0

(zero)

is

returned.

If

any

of

the

given

geometries

is

null

or

is

empty,

null

is

returned.

For

non–geodetic

data,

if

the

second

geometry

is

not

represented

in

the

same

spatial

reference

system

as

the

first

geometry,

it

will

be

converted

to

the

other

spatial

reference

system.

For

geodetic

data,

both

geometries

must

be

in

the

same

geodetic

spatial

reference

system

(SRS).

ST_Within

performs

the

same

logical

operation

that

ST_Contains

performs

with

the

parameters

reversed.

Syntax:

��

db2gse.ST_Within

(

geometry1

,

geometry2

)

��

Parameters:

geometry1

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

is

to

be

tested

to

be

fully

within

geometry2.

geometry2

A

value

of

type

ST_Geometry

or

one

of

its

subtypes

that

is

to

be

tested

to

be

fully

within

geometry1.

Restrictions

for

geodetic

data:

Both

geometries

must

be

geodetic

and

they

both

must

be

in

the

same

geodetic

SRS.

Return

type:

INTEGER

Examples:

ST_Union

486

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|
|
|
|

|
|

These

examples

illustrate

use

of

the

ST_Within

function.

Geometries

are

created

and

inserted

into

three

tables,

SAMPLE_POINTS,

SAMPLE_LINES,

and

SAMPLE_POLYGONS.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_points

(id

INTEGER,

geometry

ST_Point)

CREATE

TABLE

sample_lines

(id

INTEGER,

line

ST_LineString)

CREATE

TABLE

sample_polygons

(id

INTEGER,

geometry

ST_Polygon)

INSERT

INTO

sample_points

(id,

geometry)

VALUES

(1,

ST_Point

(10,

20,

1)

),

(2,

ST_Point

(’point

(41

41)’,

1)

)

INSERT

INTO

sample_lines

(id,

line)

VALUES

(10,

ST_LineString

(’linestring

(1

10,

3

12,

10

10)’,

1)

),

(20,

ST_LineString

(’linestring

(50

10,

50

12,

45

10)’,

1)

)

INSERT

INTO

sample_polygons

(id,

geometry)

VALUES

(100,

ST_Polygon

(’polygon

((

0

0,

0

40,

40

40,

40

0,

0

0))’,

1)

)

Example

1:

This

example

finds

points

from

the

SAMPLE_POINTS

table

that

are

in

the

polygons

in

the

SAMPLE_POLYGONS

table.

SELECT

a.id

POINT_ID_WITHIN_POLYGONS

FROM

sample_points

a,

sample_polygons

b

WHERE

ST_Within(

b.geometry,

a.geometry)

=

0

Results:

POINT_ID_WITHIN_POLYGONS

2

Example

2:

This

example

finds

linestrings

from

the

SAMPLE_LINES

table

that

are

in

the

polygons

in

the

SAMPLE_POLYGONS

table.

SELECT

a.id

LINE_ID_WITHIN_POLYGONS

FROM

sample_lines

a,

sample_polygons

b

WHERE

ST_Within(

b.geometry,

a.geometry)

=

0

Results:

LINE_ID_WITHIN_POLYGONS

1

Related

reference:

v

“ST_Contains”

on

page

349

ST_WKBToSQL

ST_WKBToSQL

takes

a

well-known

binary

representation

of

a

geometry

and

returns

the

corresponding

geometry.

The

spatial

reference

system

with

the

identifier

0

(zero)

is

used

for

the

resulting

geometry.

If

the

given

well-known

binary

representation

is

null,

then

null

is

returned.

ST_Within

Chapter

23.

Spatial

functions:

syntax

and

parameters

487

ST_WKBToSQL(wkb)

gives

the

same

result

as

ST_Geometry(wkb,0).

Using

the

ST_Geometry

function

is

recommended

over

using

ST_WKBToSQL

because

of

its

flexibility:

ST_Geometry

takes

additional

forms

of

input

as

well

as

the

well-known

binary

representation.

Syntax:

��

db2gse.ST_WKBToSQL

(

wkb

)

��

Parameter:

wkb

A

value

of

type

BLOB(2G)

that

contains

the

well-known

binary

representation

of

the

resulting

geometry.

Return

type:

db2gse.ST_Geometry

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

This

example

illustrates

use

of

the

ST_WKBToSQL

function.

First,

geometries

are

stored

in

the

SAMPLE_GEOMETRIES

table

in

its

GEOMETRY

column.

Then,

their

well-known

binary

representations

are

stored

in

the

WKB

column

using

the

ST_AsBinary

function

in

the

UPDATE

statement.

Finally,

the

ST_WKBToSQL

function

is

used

to

return

the

coordinates

of

the

geometries

in

the

WKB

column.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geometries

(id

INTEGER,

geometry

ST_Geometry,

wkb

BLOB(32K)

)

INSERT

INTO

sample_geometries

(id,

geometry)

VALUES

(10,

ST_Point

(

’point

(44

14)’,

0

)

),

(11,

ST_Point

(

’point

(24

13)’,

0

)

),

(12,

ST_Polygon

(’polygon

((50

20,

50

40,

70

30,

50

20))’,

0

)

)

UPDATE

sample_geometries

AS

temp_correlated

SET

wkb

=

ST_AsBinary(geometry)

WHERE

id

=

temp_correlated.id

Use

this

SELECT

statement

to

see

the

geometries

in

the

WKB

column.

SELECT

id,

CAST(

ST_AsText(

ST_WKBToSQL(wkb)

)

AS

VARCHAR(120)

)

GEOMETRIES

FROM

sample_geometries

Results:

ID

GEOMETRIES

10

POINT

(

44.00000000

14.00000000)

11

POINT

(

24.00000000

13.00000000)

12

POLYGON

((

50.00000000

20.00000000,

70.00000000

30.00000000,

50.00000000

40.00000000,

50.00000000

20.00000000))

Related

concepts:

v

“Spatial

and

geodetic

data”

on

page

4

Related

reference:

v

“ST_Geometry”

on

page

382

v

“ST_WKTToSQL”

on

page

489

ST_WKBToSQL

488

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

ST_WKTToSQL

ST_WKTToSQL

takes

a

well-known

text

representation

of

a

geometry

and

returns

the

corresponding

geometry.

The

spatial

reference

system

with

the

identifier

0

(zero)

is

used

for

the

resulting

geometry.

If

the

given

well-known

text

representation

is

null,

then

null

is

returned.

ST_WKTToSQL(wkt)

gives

the

same

result

as

ST_Geometry(wkt,0).

Using

the

ST_Geometry

function

is

recommended

over

using

ST_WKTToSQL

because

of

its

flexibility:

ST_Geometry

takes

additional

forms

of

input

as

well

as

the

well-known

text

representation.

Syntax:

��

db2gse.ST_WKTToSQL

(

wkt

)

��

Parameter:

wkt

A

value

of

type

CLOB(2G)

that

contains

the

well-known

text

representation

of

the

resulting

geometry.

Return

type:

db2gse.ST_Geometry

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

This

example

illustrates

how

ST_WKTToSQL

can

create

and

insert

geometries

using

their

well-known

text

representations.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_geometries

(id

INTEGER,

geometry

ST_Geometry)

INSERT

INTO

sample_geometries

VALUES

(10,

ST_WKTToSQL(

’point

(44

14)’

)

),

(11,

ST_WKTTSQL

(

’point

(24

13)’

)

),

(12,

ST_WKTToSQL

(’polygon

((50

20,

50

40,

70

30,

50

20))’

)

)

This

SELECT

statement

returns

the

geometries

that

have

been

inserted.

SELECT

id,

CAST(

ST_AsText(geometry)

AS

VARCHAR(120)

)

GEOMETRIES

FROM

sample_geometries

Results:

ID

GEOMETRIES

10

POINT

(

44.00000000

14.00000000)

11

POINT

(

24.00000000

13.00000000)

12

POLYGON

((

50.00000000

20.00000000,

70.00000000

30.00000000,

50.00000000

40.00000000,

50.00000000

20.00000000))

Related

concepts:

v

“Spatial

and

geodetic

data”

on

page

4

Related

reference:

ST_WKTToSQL

Chapter

23.

Spatial

functions:

syntax

and

parameters

489

v

“ST_Geometry”

on

page

382

v

“ST_WKBToSQL”

on

page

487

ST_X

ST_X

takes

either:

v

A

point

as

an

input

parameter

and

returns

its

X

coordinate

v

A

point

and

an

X

coordinate

and

returns

the

point

itself

with

its

X

coordinate

set

to

the

given

value

If

the

given

point

is

null

or

is

empty,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_X

(

point

)

,

x_coordinate

��

Parameters:

point

A

value

of

type

ST_Point

for

which

the

X

coordinate

is

returned

or

modified.

x_coordinate

A

value

of

type

DOUBLE

that

represents

the

new

X

coordinate

for

point.

Return

types:

v

DOUBLE,

if

x_coordinate

is

not

specified

v

db2gse.ST_Point,

if

x_coordinate

is

specified

Examples:

These

examples

illustrate

use

of

the

ST_X

function.

Geometries

are

created

and

inserted

into

the

SAMPLE_POINTS

table.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_points

(id

INTEGER,

geometry

ST_Point)

INSERT

INTO

sample_points

(id,

geometry)

VALUES

(1,

ST_Point

(2,

3,

32,

5,

1)

),

(2,

ST_Point

(4,

5,

20,

4,

1)

),

(3,

ST_Point

(3,

8,

23,

7,

1)

)

Example

1:

This

example

finds

the

X

coordinates

of

the

points

in

the

table.

SELECT

id,

ST_X

(geometry)

X_COORD

FROM

sample_points

Results:

ID

X_COORD

1

+2.00000000000000E+000

2

+4.00000000000000E+000

3

+3.00000000000000E+000

ST_WKTToSQL

490

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Example

2:

This

example

returns

a

point

with

its

X

coordinate

set

to

40.

SELECT

id,

CAST(

ST_AsText(

ST_X

(geometry,

40))

AS

VARCHAR(60)

)

X_40

FROM

sample_points

WHERE

id=3

Results:

ID

X_40

--

3

POINT

ZM

(

40.00000000

8.00000000

23.00000000

7.00000000)

Related

reference:

v

“ST_M”

on

page

409

v

“ST_Y”

on

page

491

v

“ST_Z”

on

page

492

ST_Y

ST_Y

takes

either:

v

A

point

as

an

input

parameter

and

returns

its

Y

coordinate

v

A

point

and

a

Y

coordinate

and

returns

the

point

itself

with

its

Y

coordinate

set

to

the

given

value

If

the

given

point

is

null

or

is

empty,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_Y

(

point

)

,

y_coordinate

��

Parameters:

point

A

value

of

type

ST_Point

for

which

the

Y

coordinate

is

returned

or

modified.

y_coordinate

A

value

of

type

DOUBLE

that

represents

the

new

Y

coordinate

for

point.

Return

types:

v

DOUBLE,

if

y_coordinate

is

not

specified

v

db2gse.ST_Point,

if

y_coordinate

is

specified

Examples:

These

examples

illustrate

use

of

the

ST_Y

function.

Geometries

are

created

and

inserted

into

the

SAMPLE_POINTS

table.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_points

(id

INTEGER,

geometry

ST_Point)

ST_X

Chapter

23.

Spatial

functions:

syntax

and

parameters

491

INSERT

INTO

sample_points

(id,

geometry)

VALUES

(1,

ST_Point

(2,

3,

32,

5,

1)

),

(2,

ST_Point

(4,

5,

20,

4,

1)

),

(3,

ST_Point

(3,

8,

23,

7,

1)

)

Example

1:

This

example

finds

the

Y

coordinates

of

the

points

in

the

table.

SELECT

id,

ST_Y

(geometry)

Y_COORD

FROM

sample_points

Results:

ID

Y_COORD

1

+3.00000000000000E+000

2

+5.00000000000000E+000

3

+8.00000000000000E+000

Example

2:

This

example

returns

a

point

with

its

Y

coordinate

set

to

40.

SELECT

id,

CAST(

ST_AsText(

ST_Y

(geometry,

40))

AS

VARCHAR(60)

)

Y_40

FROM

sample_points

WHERE

id=3

Results:

ID

Y_40

3

POINT

ZM

(

3.00000000

40.00000000

23.00000000

7.00000000)

Related

reference:

v

“ST_M”

on

page

409

v

“ST_X”

on

page

490

v

“ST_Z”

on

page

492

ST_Z

ST_Z

takes

either:

v

A

point

as

an

input

parameter

and

returns

its

Z

coordinate

v

A

point

and

a

Z

coordinate

and

returns

the

point

itself

with

its

Z

coordinate

set

to

the

given

value,

even

if

the

specified

point

has

no

existing

Z

coordinate.

If

the

specified

Z

coordinate

is

null,

then

the

Z

coordinate

is

removed

from

the

point.

If

the

specified

point

is

null

or

empty,

then

null

is

returned.

This

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_Z

(

point

)

,

z_coordinate

��

Parameters:

ST_Y

492

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

point

A

value

of

type

ST_Point

for

which

the

Z

coordinate

is

returned

or

modified.

z_coordinate

A

value

of

type

DOUBLE

that

represents

the

new

Z

coordinate

for

point.

If

z_coordinate

is

null,

then

the

Z

coordinate

is

removed

from

point.

Return

types:

v

DOUBLE,

if

z_coordinate

is

not

specified

v

db2gse.ST_Point,

if

z_coordinate

is

specified

Examples:

These

examples

illustrate

use

of

the

ST_Z

function.

Geometries

are

created

and

inserted

into

the

SAMPLE_POINTS

table.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_points

(id

INTEGER,

geometry

ST_Point)

INSERT

INTO

sample_points

(id,

geometry)

VALUES

(1,

ST_Point

(2,

3,

32,

5,

1)

),

(2,

ST_Point

(4,

5,

20,

4,

1)

),

(3,

ST_Point

(3,

8,

23,

7,

1)

)

Example

1:

This

example

finds

the

Z

coordinates

of

the

points

in

the

table.

SELECT

id,

ST_Z

(geometry)

Z_COORD

FROM

sample_points

Results:

ID

Z_COORD

1

+3.20000000000000E+001

2

+2.00000000000000E+001

3

+2.30000000000000E+001

Example

2:

This

example

returns

a

point

with

its

Z

coordinate

set

to

40.

SELECT

id,

CAST(

ST_AsText(

ST_Z

(geometry,

40))

AS

VARCHAR(60)

)

Z_40

FROM

sample_points

WHERE

id=3

Results:

ID

Z_40

3

POINT

ZM

(

3.00000000

8.00000000

40.00000000

7.00000000)

Related

reference:

v

“ST_M”

on

page

409

v

“ST_X”

on

page

490

v

“ST_Y”

on

page

491

ST_Z

Chapter

23.

Spatial

functions:

syntax

and

parameters

493

Union

aggregate

A

union

aggregate

is

the

combination

of

the

ST_BuildUnionAggr

and

ST_GetAggrResult

functions.

This

combination

aggregates

a

column

of

geometries

in

a

table

to

single

geometry

by

constructing

the

union.

If

all

of

the

geometries

to

be

combined

in

the

union

are

null

,

then

null

is

returned.

If

each

of

the

geometries

to

be

combined

in

the

union

are

either

null

or

are

empty,

then

an

empty

geometry

of

type

ST_Point

is

returned.

The

ST_BuildUnionAggr

function

can

also

be

called

as

a

method.

Syntax:

��

db2gse.ST_GetAggrResult

(

�

�

MAX

(

db2sge.ST_BuildUnionAggr

(

geometries

)

)

)

��

Parameters:

geometries

A

column

in

a

table

that

has

a

type

of

ST_Geometry

or

one

of

its

subtypes

and

represents

all

the

geometries

that

are

to

be

combined

into

a

union.

Return

type:

db2gse.ST_Geometry

Restrictions:

You

cannot

construct

the

union

aggregate

of

a

spatial

column

in

a

table

in

any

of

the

following

situations:

v

In

massively

parallel

processing

(MPP)

environments

v

If

a

GROUP

BY

clause

is

used

in

the

select

v

If

you

use

a

function

other

than

the

DB2

aggregate

function

MAX

Example:

In

the

following

example,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

will

vary

according

to

your

online

display.

This

example

illustrates

how

a

union

aggregate

can

be

used

to

combine

a

set

of

points

into

multipoints.

Several

points

are

added

to

the

SAMPLE_POINTS

table.

The

ST_GetAggrResult

and

ST_BuildUnionAggr

functions

are

used

to

construct

the

union

of

the

points.

SET

CURRENT

FUNCTION

PATH

=

CURRENT

FUNCTION

PATH,

db2gse

CREATE

TABLE

sample_points

(id

INTEGER,

geometry

ST_Point)

INSERT

INTO

sample_points

VALUES

(1,

ST_Point

(2,

3,

1)

)

INSERT

INTO

sample_points

VALUES

(2,

ST_Point

(4,

5,

1)

)

INSERT

INTO

sample_points

VALUES

(3,

ST_Point

(13,

15,

1)

)

INSERT

INTO

sample_points

VALUES

(4,

ST_Point

(12,

5,

1)

)

INSERT

INTO

sample_points

Union

aggregate

494

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

VALUES

(5,

ST_Point

(23,

2,

1)

)

INSERT

INTO

sample_points

VALUES

(6,

ST_Point

(11,

4,

1)

)

SELECT

CAST

(ST_AsText(

ST_GetAggrResult(

MAX(

ST_BuildUnionAggregate

(geometry)

)

))

AS

VARCHAR(160))

POINT_AGGREGATE

FROM

sample_points

Results:

POINT_AGGREGATE

--

MULTIPOINT

(

2.00000000

3.00000000,

4.00000000

5.00000000,

11.00000000

4.00000000,

12.00000000

5.00000000,

13.00000000

15.00000000,

23.00000000

2.00000000)

Union

aggregate

Chapter

23.

Spatial

functions:

syntax

and

parameters

495

Union

aggregate

496

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Chapter

24.

Transform

groups

Transform

groups

Spatial

Extender

provides

four

transform

groups

that

are

used

to

transfer

geometries

between

the

DB2

server

and

a

client

application.

These

transform

groups

accommodate

the

following

data

exchange

formats:

v

Well-known

text

(WKT)

representation

v

Well-known

binary

(WKB)

representation

v

ESRI

shape

representation

v

Geography

Markup

Language

(GML)

When

data

is

retrieved

from

a

table

that

contains

a

spatial

column,

the

data

from

the

spatial

column

is

transformed

to

either

a

CLOB(2G)

or

a

BLOB(2G)

data

type,

depending

on

whether

you

indicated

whether

the

transformed

data

was

to

be

represented

in

binary

or

text

format.

You

can

also

use

the

transform

groups

to

transfer

spatial

data

to

the

database.

To

select

which

transform

group

is

to

be

used

when

the

data

is

transferred,

use

the

SET

CURRENT

DEFAULT

TRANSFORM

GROUP

statement

to

modify

the

DB2

special

register

CURRENT

DEFAULT

TRANSFORM

GROUP.

DB2

uses

the

value

of

this

special

register

to

determine

which

transform

functions

must

be

called

to

perform

the

necessary

conversions.

Transform

groups

can

simplify

application

programming.

Instead

of

explicitly

using

conversion

functions

in

the

SQL

statements,

you

can

specify

a

transform

group,

which

lets

DB2

handle

that

task.

Related

concepts:

v

“ST_WellKnownText

transform

group”

on

page

497

v

“ST_WellKnownBinary

transform

group”

on

page

498

v

“ST_Shape

transform

group”

on

page

500

v

“ST_GML

transform

group”

on

page

501

ST_WellKnownText

transform

group

You

can

use

the

ST_WellKnownText

transform

group

to

transmit

data

to

and

from

DB2®

using

the

well-known

text

(WKT)

representation.

When

binding

out

a

value

from

the

database

server

to

the

client,

the

same

function

provided

by

ST_AsText()

is

used

to

convert

a

geometry

to

the

WKT

representation.

When

the

well-known

text

representation

of

a

geometry

is

transferred

to

the

database

server,

the

ST_Geometry(CLOB)

function

is

implicitly

used

to

perform

the

conversions

to

an

ST_Geometry

value.

Using

the

transform

group

for

binding

in

values

to

DB2

causes

the

geometries

to

be

represented

in

the

spatial

reference

system

with

the

numeric

identifier

0

(zero).

Example:

©

Copyright

IBM

Corp.

1998,

2004

497

In

the

following

examples,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

might

vary

according

to

your

online

display.

Example

1:

The

following

SQL

script

shows

how

to

use

the

ST_WellKnownText

transform

group

to

retrieve

a

geometry

in

its

well-known

text

representation

without

using

the

explicit

ST_AsText

function.

CREATE

TABLE

transforms_sample

(

id

INTEGER,

geom

db2gse.ST_Geometry)

INSERT

INTO

transforms_sample

VALUES

(1,

db2gse.ST_LineString(’linestring

(100

100,

200

100)’,

0))

SET

CURRENT

DEFAULT

TRANSFORM

GROUP

=

ST_WellKnownText

SELECT

id,

geom

FROM

transforms_sample

WHERE

id

=

1

Results:

ID

GEOM

1

LINESTRING

(

100.00000000

100.00000000,

200.00000000

100.00000000)

Example

2:

The

following

C

code

shows

how

to

use

the

ST_WellKnownText

transform

group

to

insert

geometries

using

the

explicit

ST_Geometry

function

for

the

host-variable

wkt_buffer,

which

is

of

type

CLOB

and

contains

the

well-known

text

representation

of

the

point

(10

10)

that

is

to

be

inserted.

EXEC

SQL

BEGIN

DECLARE

SECTION;

sqlint32

id

=

0;

SQL

TYPE

IS

db2gse.ST_Geometry

AS

CLOB(1000)

wkt_buffer;

EXEC

SQL

END

DECLARE

SECTION;

//

set

the

transform

group

for

all

subsequent

SQL

statements

EXEC

SQL

SET

CURRENT

DEFAULT

TRANSFORM

GROUP

=

ST_WellKnownText;

id

=

100;

strcpy(wkt_buffer.data,

"point

(

10

10

)");

wkt_buffer.length

=

strlen(wkt_buffer.data);

//

insert

point

using

WKT

into

column

of

type

ST_Geometry

EXEC

SQL

INSERT

INTO

transforms_sample(id,

geom)

VALUES

(:id,

:wkt_buffer);

ST_WellKnownBinary

transform

group

Use

the

ST_WellKnownBinary

transform

group

to

transmit

data

to

and

from

DB2®

using

the

well-known

binary

(WKB)

representation.

When

binding

out

a

value

from

the

database

server

to

the

client,

the

same

function

provided

by

ST_AsBinary()

is

used

to

convert

a

geometry

to

the

WKB

ST_WellKnownText

498

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

representation.

When

the

well-known

binary

representation

of

a

geometry

is

transferred

to

the

database

server,

the

ST_Geometry(BLOB)

function

is

used

implicitly

to

perform

the

conversions

to

an

ST_Geometry

value.

Using

the

transform

group

for

binding

in

values

to

DB2

causes

the

geometries

to

be

represented

in

the

spatial

reference

system

with

the

numeric

identifier

0

(zero).

Example:

In

the

following

examples,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

might

vary

according

to

your

online

display.

Example

1:

The

following

SQL

script

shows

how

to

use

the

ST_WellKnownBinary

transform

group

to

retrieve

a

geometry

in

its

well-known

binary

representation

without

using

the

explicit

ST_AsBinary

function.

CREATE

TABLE

transforms_sample

(

id

INTEGER,

geom

db2gse.ST_Geometry)

INSERT

INTO

transforms_sample

VALUES

(

1,

db2gse.ST_Polygon(’polygon

((10

10,

20

10,

20

20,

10

20,

10

10))’,

0))

SET

CURRENT

DEFAULT

TRANSFORM

GROUP

=

ST_WellKnownBinary

SELECT

id,

geom

FROM

transforms_sample

WHERE

id

=

1

Results:

ID

GEOM

--

1

x’01030000000100000005000000000000000000244000

0000000000244000000000000024400000000000003440

0000000000003440000000000000344000000000000034

4000000000000024400000000000002440000000000000

2440’

Example

2:

The

following

C

code

shows

how

to

use

the

ST_WellKnownBinary

transform

group

for

inserting

geometries

using

the

explicit

ST_Geometry

function

for

the

host-variable

wkb_buffer,

which

is

of

type

BLOB

and

contains

the

well-known

binary

representation

of

a

geometry

that

is

to

be

inserted.

EXEC

SQL

BEGIN

DECLARE

SECTION;

sqlint32

id

=

0;

SQL

TYPE

IS

db2gse.ST_Geometry

AS

BLOB(1000)

wkb_buffer;

EXEC

SQL

END

DECLARE

SECTION;

//

set

the

transform

group

for

all

subsequent

SQL

statements

EXEC

SQL

SET

CURRENT

DEFAULT

TRANSFORM

GROUP

=

ST_WellKnownBinary;

//

initialize

host

variables

...

//

insert

geometry

using

WKB

into

column

of

type

ST_Geometry

ST_WellKnownBinary

Chapter

24.

Transform

groups

499

EXEC

SQL

INSERT

INTO

transforms_sample(id,

geom)

VALUES

(

:id,

:wkb_buffer

);

ST_Shape

transform

group

Use

the

ST_Shape

transform

group

to

transmit

data

to

and

from

DB2®

using

the

ESRI

shape

representation.

When

binding

out

a

value

from

the

database

server

to

the

client,

the

same

function

provided

by

ST_AsShape()

is

used

to

convert

a

geometry

to

its

shape

representation.

When

transferring

the

shape

representation

of

a

geometry

to

the

database

server,

the

ST_Geometry(BLOB)

function

is

used

implicitly

to

perform

the

conversions

to

an

ST_Geometry

value.

Using

the

transform

group

for

binding

in

values

to

DB2

causes

the

geometries

to

be

represented

in

the

spatial

reference

system

with

the

numeric

identifier

0

(zero).

Examples:

In

the

following

examples,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

might

vary

according

to

your

online

display.

Example

1:

The

following

SQL

script

shows

how

the

ST_Shape

transform

group

can

be

used

to

retrieve

a

geometry

in

its

shape

representation

without

using

the

explicit

ST_AsShape

function.

CREATE

TABLE

transforms_sample(

id

INTEGER,

geom

db2gse.ST_Geometry)

INSERT

INTO

transforms_sample

VALUES

(

1,

db2gse.ST_Point(20.0,

30.0,

0)

)

SET

CURRENT

DEFAULT

TRANSFORM

GROUP

=

ST_Shape

SELECT

id,

geom

FROM

transforms_sample

WHERE

id

=

1

Results:

ID

GEOM

1

x’0100000000000000000034400000000000003E40’

Example

2:

The

following

C

code

shows

how

to

use

the

ST_Shape

transform

group

to

insert

geometries

using

the

explicit

ST_Geometry

function

for

the

host-variable

shape_buffer,

which

is

of

type

BLOB

and

contains

the

shape

representation

of

a

geometry

that

is

to

be

inserted.

EXEC

SQL

BEGIN

DECLARE

SECTION;

sqlint32

id

=

0;

SQL

TYPE

IS

db2gse.ST_Geometry

AS

BLOB(1000)

shape_buffer;

EXEC

SQL

END

DECLARE

SECTION;

ST_WellKnownBinary

500

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

//

set

the

transform

group

for

all

subsequent

SQL

statements

EXEC

SQL

SET

CURRENT

DEFAULT

TRANSFORM

GROUP

=

ST_Shape;

//

initialize

host

variables

...

SET

CURRENT

DEFAULT

TRANSFORM

GROUP

=

ST_Shape;

//

insert

geometry

using

shape

representation

into

column

of

type

ST_Geometry

EXEC

SQL

INSERT

INTO

transforms_sample(id,

geom)

VALUES

(

:id,

:shape_buffer

);

ST_GML

transform

group

Use

the

ST_GML

transform

group

to

transmit

data

to

and

from

DB2®

using

the

geography

markup

language

(GML).

When

binding

out

a

value

from

the

database

server

to

the

client,

the

same

function

provided

by

ST_AsGML()

is

used

to

convert

a

geometry

to

its

GML

representation.

When

the

GML

representation

of

a

geometry

is

transferred

to

the

database

server,

the

ST_Geometry(CLOB)

function

is

used

implicitly

to

perform

the

conversions

to

an

ST_Geometry

value.

Using

the

transform

group

for

binding

in

values

to

DB2

causes

the

geometries

to

be

represented

in

the

spatial

reference

system

with

the

numeric

identifier

0

(zero).

Examples:

In

the

following

examples,

the

lines

of

results

have

been

reformatted

for

readability.

The

spacing

in

your

results

might

vary

according

to

your

online

display.

Example

1:

The

following

SQL

script

shows

how

the

ST_GML

transform

group

can

be

used

to

retrieve

a

geometry

in

its

GML

representation

without

using

the

explicit

ST_AsGML

function.

CREATE

TABLE

transforms_sample

(

id

INTEGER,

geom

db2gse.ST_Geometry)

INSERT

INTO

transforms_sample

VALUES

(

1,

db2gse.ST_Geometry(’multipoint

z

(10

10

3,

20

20

4,

15

20

30)’,

0)

)

SET

CURRENT

DEFAULT

TRANSFORM

GROUP

=

ST_GML

SELECT

id,

geom

FROM

transforms_sample

WHERE

id

=

1

Results:

ID

GEOM

1

<gml:MultiPoint

srsName=UNSPECIFIED><gml:PointMember>

<gml:Point><gml:coord><gml:X>10</gml:X>

<gml:Y>10</gml:Y><gml:Z>3</gml:Z>

</gml:coord></gml:Point></gml:PointMember>

<gml:PointMember><gml:Point><gml:coord>

ST_Shape

Chapter

24.

Transform

groups

501

<gml:X>20</gml:X><gml:Y>20</gml:Y>

<gml:Z>4</gml:Z></gml:coord></gml:Point>

</gml:PointMember><gml:PointMember><gml:Point>

<gml:coord><gml:X>15</gml:X><gml:Y>20

</gml:Y><gml:Z>30</gml:Z></gml:coord>

</gml:Point></gml:PointMember></gml:MultiPoint>

Example

2:

The

following

C

code

shows

how

to

use

the

ST_GML

transform

group

for

inserting

geometries

without

using

the

explicit

ST_Geometry

function

for

the

host-variable

gml_buffer,

which

is

of

type

CLOB

and

contains

the

GML

representation

of

the

point

(20

,20)

that

is

to

be

inserted.

EXEC

SQL

BEGIN

DECLARE

SECTION;

sqlint32

id

=

0;

SQL

TYPE

IS

db2gse.ST_Geometry

AS

CLOB(1000)

gml_buffer;

EXEC

SQL

END

DECLARE

SECTION;

//

set

the

transform

group

for

all

subsequent

SQL

statements

EXEC

SQL

SET

CURRENT

DEFAULT

TRANSFORM

GROUP

=

ST_GML;

id

=

100;

strcpy(gml_buffer.data,

"<gml:point><gml:coord>"

"<gml:X>20</gml:X>

<gml:Y>20</gml:Y></gml:coord></gml:point>");

//initialize

host

variables

wkt_buffer.length

=

strlen(gml_buffer.data);

//

insert

point

using

WKT

into

column

of

type

ST_Geometry

EXEC

SQL

INSERT

INTO

transforms_sample(id,

geom)

VALUES

(

:id,

:gml_buffer

);

ST_GML

502

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Chapter

25.

Supported

data

formats

This

chapter

describes

the

industry

standard

spatial

data

formats

that

can

be

used

with

DB2

Spatial

Extender.

See

“Spatial

functions

that

convert

geometry

values

to

data

exchange

formats”

on

page

287

for

information

on

functions

which

accept

and

produce

these

formats.

See

“About

importing

and

exporting

spatial

data”

on

page

83

for

information

on

importing

and

exporting

files

containing

these

formats.

The

following

four

spatial

data

formats

are

described:

v

Well-known

text

(WKT)

representation

v

Well-known

binary

(WKB)

representation

v

Shape

representation

v

Geography

Markup

Language

(GML)

representation

Well-known

text

(WKT)

representation

The

OpenGIS

Consortium

″Simple

Features

for

SQL″

specification

defines

the

well-known

text

representation

to

exchange

geometry

data

in

ASCII

format.

This

representation

is

also

referenced

by

the

ISO

″SQL/MM

Part:

3

Spatial″

standard.

See

″Spatial

functions

that

convert

geometries

to

and

from

data

exchange

formats″

for

information

on

functions

which

accept

and

produce

WKT

data.

The

well-known

text

representation

of

a

geometry

is

defined

as

follows:

��

POINT

LINESTRING

POLYGON

MULTIPOINT

MULTILINESTRING

MULTIPOLYGON

point-tagged-text

linestring-tagged

text

polygon-tagged-text

multipoint-tagged-text

multilinestring-tagged-text

multipolygon-tagged-text

��

point-tagged-text:

EMPTY

(

point-coordinates

)

Z

EMPTY

(

point-z-coordinates

)

M

EMPTY

(

point-m-coordinates

)

ZM

EMPTY

(

point-zm-coordinates

)

©

Copyright

IBM

Corp.

1998,

2004

503

linestring-tagged-text:

EMPTY

(

linestring-points

)

Z

EMPTY

(

linestring-z-points

)

M

EMPTY

(

linestring-m-points

)

ZM

EMPTY

(

linestring-zm-points

)

polygon-tagged-text:

EMPTY

(

polygon-rings

)

Z

EMPTY

(

polygon-z-rings

)

M

EMPTY

(

polygon-m-rings

)

ZM

EMPTY

(

polygon-zm-rings

)

multipoint-tagged-text:

EMPTY

(

multipoint-parts

)

Z

EMPTY

(

multipoint-z-parts

)

M

EMPTY

(

multipoint-m-parts

)

ZM

EMPTY

(

multipoint-zm-parts

)

multilinestring-tagged-text:

EMPTY

(

multilinestring-parts

)

Z

EMPTY

(

multilinestring-z-parts

)

M

EMPTY

(

multilinestring-m-parts

)

ZM

EMPTY

(

multilinestring-zm-parts

)

multipolygon-tagged-text:

EMPTY

(

multipolygon-parts

)

Z

EMPTY

(

multipolygon-z-parts

)

M

EMPTY

(

multipolygon-m-parts

)

ZM

EMPTY

(

multipolygon-zm-parts

)

Well-known

text

(WKT)

representation

504

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

point-coordinates:

x_coord

y_coord

point-z-coordinates:

point-coordinates

y_coord

point-m-coordinates:

point-coordinates

m_coord

point-zm-coordinates:

point-coordinates

y_coord

m_coord

linestring-points:

point-coordinates

,

�

,

point-coordinates

linestring-z-points:

point-z-coordinates

,

�

,

point-z-coordinates

linestring-m-points:

point-m-coordinates

,

�

,

point-m-coordinates

linestring-zm-points:

point-zm-coordinates

,

�

,

point-zm-coordinates

polygon-rings:

�

,

(

linestring-points

linestring-points

)

Well-known

text

(WKT)

representation

Chapter

25.

Supported

data

formats

505

polygon-z-rings:

�

,

(

linestring-z-points

linestring-z-points

)

polygon-m-rings:

�

,

(

linestring-m-points

linestring-m-points

)

polygon-zm-rings:

�

,

(

linestring-zm-points

linestring-zm-points

)

multipoint-parts:

�

,

point-coordinates

multipoint-z-parts:

�

,

point-z-coordinates

multipoint-m-parts:

�

,

point-m-coordinates

multipoint-zm-parts:

�

,

point-zm-coordinates

multilinestring-parts:

�

,

(

linestring-points

)

Well-known

text

(WKT)

representation

506

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

multilinestring-z-parts:

�

,

(

linestring-z-points

)

multilinestring-m-parts:

�

,

(

linestring-m-points

)

multilinestring-zm-parts:

�

,

(

linestring-zm-points

)

multipolygon-parts:

�

,

(

polygon-rings

)

multipolygon-z-parts:

�

,

(

polygon-z-rings

)

multipolygon-m-parts:

�

,

(

polygon-m-rings

)

multipolygon-zm-parts:

�

,

(

polygon-zm-rings

)

Parameters:

x_coord

A

numerical

value

(fixed,

integer,

or

floating

point),

which

represents

the

X

coordinate

of

a

point.

y_coord

A

numerical

value

(fixed,

integer,

or

floating

point),

which

represents

the

Y

coordinate

of

a

point.

Well-known

text

(WKT)

representation

Chapter

25.

Supported

data

formats

507

z_coord

A

numerical

value

(fixed,

integer,

or

floating

point),

which

represents

the

Z

coordinate

of

a

point.

m_coord

A

numerical

value

(fixed,

integer,

or

floating

point),

which

represents

the

M

coordinate

(measure)

of

a

point.

If

the

geometry

is

empty,

then

the

keyword

EMPTY

is

to

be

specified

instead

of

the

coordinate

list.

The

EMPTY

keyword

must

not

be

embedded

within

the

coordinate

list

The

following

table

provides

some

examples

of

possible

text

representations.

Table

57.

Geometry

types

and

their

text

representations

Geometry

type

WKT

representation

Comment

point

POINT

EMPTY

empty

point

point

POINT

(

10.05

10.28

)

point

point

POINT

Z(

10.05

10.28

2.51

)

point

with

Z

coordinate

point

POINT

M(

10.05

10.28

4.72

)

point

with

M

coordinate

point

POINT

ZM(

10.05

10.28

2.51

4.72

)

point

with

Z

coordinate

and

M

coordinate

linestring

LINESTRING

EMPTY

empty

linestring

polygon

POLYGON

((

10

10,

10

20,

20

20,

20

15,

10

10))

polygon

multipoint

MULTIPOINT

Z(10

10

2,

20

20

3)

multipoint

with

Z

coordinates

multilinestring

MULTILINESTRING

M((

310

30

1,

40

30

20,

50

20

10

)(

10

10

0,

20

20

1))

multilinestring

with

M

coordinates

multipolygon

MULTIPOLYGON

ZM(((

1

1

1

1,

1

2

3

4,

2

2

5

6,

2

1

7

8,

1

1

1

1

)))

multipolygon

with

Z

coordinates

and

M

coordinates

Related

reference:

v

“Spatial

functions

that

convert

geometry

values

to

data

exchange

formats”

on

page

287

Well-known

binary

(WKB)

representation

This

section

describes

the

well-known

binary

representation

for

geometries.

The

OpenGIS

Consortium

″Simple

Features

for

SQL″

specification

defines

the

well-known

binary

representation.

This

representation

is

also

defined

by

the

International

Organization

for

Standardization

(ISO)

″SQL/MM

Part:

3

Spatial″

standard.

See

the

related

reference

section

at

the

end

of

this

topic

for

information

on

functions

that

accept

and

produce

the

WKB.

Well-known

text

(WKT)

representation

508

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

The

basic

building

block

for

well-known

binary

representations

is

the

byte

stream

for

a

point,

which

consists

of

two

double

values.

The

byte

streams

for

other

geometries

are

built

using

the

byte

streams

for

geometries

that

are

already

defined.

The

following

example

illustrates

the

basic

building

block

for

well-known

binary

representations.

//

Basic

Type

definitions

//

byte

:

1

byte

//

uint32

:

32

bit

unsigned

integer

(4

bytes)

//

double

:

double

precision

number

(8

bytes)

//

Building

Blocks

:

Point,

LinearRing

Point

{

double

x;

double

y;

};

LinearRing

{

uint32

numPoints;

Point

points[numPoints];

};

enum

wkbGeometryType

{

wkbPoint

=

1,

wkbLineString

=

2,

wkbPolygon

=

3,

wkbMultiPoint

=

4,

wkbMultiLineString

=

5,

wkbMultiPolygon

=

6

};

enum

wkbByteOrder

{

wkbXDR

=

0,

//

Big

Endian

wkbNDR

=

1

//

Little

Endian

};

WKBPoint

{

byte

byteOrder;

uint32

wkbType;

//

1=wkbPoint

Point

point;

};

WKBLineString

{

byte

byteOrder;

uint32

wkbType;

//

2=wkbLineString

uint32

numPoints;

Point

points[numPoints];

};

WKBPolygon

{

byte

byteOrder;

uint32

wkbType;

//

3=wkbPolygon

uint32

numRings;

LinearRing

rings[numRings];

};

WKBMultiPoint

{

byte

byteOrder;

uint32

wkbType;

//

4=wkbMultipoint

uint32

num_wkbPoints;

WKBPoint

WKBPoints[num_wkbPoints];

};

WKBMultiLineString

{

byte

byteOrder;

uint32

wkbType;

//

5=wkbMultiLineString

uint32

num_wkbLineStrings;

WKBLineString

WKBLineStrings[num_wkbLineStrings];

};

wkbMultiPolygon

{

byte

byteOrder;

Well-known

binary

(WKB)

representation

Chapter

25.

Supported

data

formats

509

uint32

wkbType;

//

6=wkbMultiPolygon

uint32

num_wkbPolygons;

WKBPolygon

wkbPolygons[num_wkbPolygons];

};

WKBGeometry

{

union

{

WKBPoint

point;

WKBLineString

linestring;

WKBPolygon

polygon;

WKBMultiPoint

mpoint;

WKBMultiLineString

mlinestring;

WKBMultiPolygon

mpolygon;

}

};

The

following

figure

shows

an

example

of

a

geometry

in

well-known

binary

representation

using

NDR

coding.

Related

reference:

v

“Spatial

functions

that

convert

geometry

values

to

data

exchange

formats”

on

page

287

Shape

representation

Shape

representation

is

a

widely

used

industry

standard

defined

by

ESRI.

For

a

full

description

of

shape

representation,

see

the

ESRI

website

at

http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf.

The

″Spatial

functions

that

convert

geometries

to

and

from

data

exchange

formats″

topic

in

the

related

link

section

below

explains

the

spatial

functions

that

accept

and

produce

shape

data

format.

Related

reference:

v

“Spatial

functions

that

convert

geometry

values

to

data

exchange

formats”

on

page

287

Geography

Markup

Language

(GML)

representation

DB2

Spatial

Extender

has

several

functions

that

generate

geometries

from

representations

in

geography

markup

language(GML)

representation.

See

″Spatial

functions

that

convert

geometries

to

and

from

data

exchange

formats″

in

the

related

link

section

below

for

a

detailed

description

of

the

functions

provided

by

DB2

Spatial

Extender

that

convert

geometry

values

to

and

from

GML

representation.

Figure

58.

Geometry

representation

in

NDR

format.

(B=1)

of

type

polygon

(T=3)

with

2

linears

(NR=2),

where

each

ring

has

3

points

(NP=3).

Well-known

binary

(WKB)

representation

510

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

The

Geography

Markup

Language

(GML)

is

an

XML

encoding

for

geographic

information

defined

by

the

OpenGIS

Consortium

″Geography

Markup

Language

V2″

specification.

This

OpenGIS

Consortium

specification

can

be

found

at

http://www.opengis.org/techno/implementation.htm.

Related

reference:

v

“Spatial

functions

that

convert

geometry

values

to

data

exchange

formats”

on

page

287

GML

representation

Chapter

25.

Supported

data

formats

511

GML

representation

512

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Chapter

26.

Supported

coordinate

systems

This

chapter

provides

reference

information

about

the

coordinate

values

used

to

interpret

spatial

data.

The

following

topics

are

covered:

v

Overview

of

coordinate

systems

v

Supported

linear

units

v

Supported

angular

units

v

Supported

spheroids

v

Supported

geodetic

datums

v

Supported

prime

meridians

v

Supported

map

projections

Supported

coordinate

systems

This

topic

provides

an

explanation

of

coordinate

systems

syntax

and

lists

the

coordinate

system

values

that

are

supported

by

DB2

Spatial

Extender.

Coordinate

systems

syntax

The

well-known

text

representation

of

spatial

reference

systems

provides

a

standard

textual

representation

for

coordinate

system

information.

The

definitions

of

the

well-known

text

representation

are

defined

by

the

OGC

″Simple

Features

for

SQL″

specification

and

the

ISO

SQL/MM

Part

3:

Spatial

standard.

A

coordinate

system

is

a

geographic

(latitude-longitude),

a

projected

(X,Y),

or

a

geocentric

(X,Y,Z)

coordinate

system.

The

coordinate

system

is

composed

of

several

objects.

Each

object

has

a

keyword

in

uppercase

(for

example,

DATUM

or

UNIT)

followed

by

the

comma-delimited

defining

parameters

of

the

object

in

brackets.

Some

objects

are

composed

of

other

objects,

so

the

result

is

a

nested

structure.

Note:

Implementations

are

free

to

substitute

standard

brackets

(

)

for

square

brackets

[

]

and

should

be

able

to

read

both

forms

of

brackets.

The

EBNF

(Extended

Backus

Naur

Form)

definition

for

the

string

representation

of

a

coordinate

system

using

square

brackets

is

as

follows

(see

note

above

regarding

the

use

of

brackets):

<coordinate

system>

=

<projected

cs>

|

<geographic

cs>

|

<geocentric

cs>

<projected

cs>

=

PROJCS["<name>",

<geographic

cs>,

<projection>,

{<parameter>,}*

<linear

unit>]

<projection>

=

PROJECTION["<name>"]

<parameter>

=

PARAMETER["<name>",

<value>]

<value>

=

<number>

The

type

of

coordinate

system

is

identified

by

the

keyword

used:

PROJCS

A

data

set’s

coordinate

system

is

identified

by

the

PROJCS

keyword

if

the

data

is

in

projected

coordinates

©

Copyright

IBM

Corp.

1998,

2004

513

|
|
|

GEOGCS

A

data

set’s

coordinate

system

is

identified

by

the

GEOGCS

keyword

if

the

data

is

in

geographic

coordinates

GEOCCS

A

data

set’s

coordinate

system

is

identified

by

the

GEOCCS

keyword

if

the

data

is

in

geocentric

coordinates

The

PROJCS

keyword

is

followed

by

all

of

the

″pieces″

that

define

the

projected

coordinate

system.

The

first

piece

of

any

object

is

always

the

name.

Several

objects

follow

the

projected

coordinate

system

name:

the

geographic

coordinate

system,

the

map

projection,

one

or

more

parameters,

and

the

linear

unit

of

measure.

All

projected

coordinate

systems

are

based

upon

a

geographic

coordinate

system,

so

this

section

describes

the

pieces

specific

to

a

projected

coordinate

system

first.

For

example,

UTM

zone

10N

on

the

NAD83

datum

is

defined:

PROJCS["NAD_1983_UTM_Zone_10N",

<geographic

cs>,

PROJECTION["Transverse_Mercator"],

PARAMETER["False_Easting",500000.0],

PARAMETER["False_Northing",0.0],

PARAMETER["Central_Meridian",−123.0],

PARAMETER["Scale_Factor",0.9996],

PARAMETER["Latitude_of_Origin",0.0],

UNIT["Meter",1.0]]

The

name

and

several

objects

define

the

geographic

coordinate

system

object

in

turn:

the

datum,

the

prime

meridian,

and

the

angular

unit

of

measure.

<geographic

cs>

=

GEOGCS["<name>",

<datum>,

<prime

meridian>,

<angular

unit>]

<datum>

=

DATUM["<name>",

<spheroid>]

<spheroid>

=

SPHEROID["<name>",

<semi-major

axis>,

<inverse

flattening>]

<semi-major

axis>

=

<number>

<inverse

flattening>

=

<number>

<prime

meridian>

=

PRIMEM["<name>",

<longitude>]

<longitude>

=

<number>

The

semi-major

axis

is

measured

in

meters

and

must

be

greater

than

zero.

The

geographic

coordinate

system

string

for

UTM

zone

10

on

NAD83:

GEOGCS["GCS_North_American_1983",

DATUM["D_North_American_1983",

SPHEROID["GRS_1980",6378137,298.257222101]],

PRIMEM["Greenwich",0],

UNIT["Degree",0.0174532925199433]]

The

UNIT

object

can

represent

angular

or

linear

unit

of

measures:

<angular

unit>

=

<unit>

<linear

unit>

=

<unit>

<unit>

=

UNIT["<name>",

<conversion

factor>]

<conversion

factor>

=

<number>

The

conversion

factor

specifies

number

of

meters

(for

a

linear

unit)

or

number

of

radians

(for

an

angular

unit)

per

unit

and

must

be

greater

than

zero.

So

the

full

string

representation

of

UTM

Zone

10N

is

as

follows:

PROJCS["NAD_1983_UTM_Zone_10N",

GEOGCS["GCS_North_American_1983",

DATUM[

"D_North_American_1983",SPHEROID["GRS_1980",6378137,298.257222101]],

PRIMEM["Greenwich",0],UNIT["Degree",0.0174532925199433]],

Supported

coordinate

systems

514

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],

PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",−123.0],

PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_of_Origin",0.0],

UNIT["Meter",1.0]]

A

geocentric

coordinate

system

is

quite

similar

to

a

geographic

coordinate

system:

<geocentric

cs>

=

GEOCCS["<name>",

<datum>,

<prime

meridian>,

<linear

unit>]

Supported

linear

units

Table

58.

Supported

linear

units

Unit

Conversion

factor

Meter

1.0

Foot

(International)

0.3048

U.S.

Foot

12/39.37

Modified

American

Foot

12.0004584/39.37

Clarke’s

Foot

12/39.370432

Indian

Foot

12/39.370141

Link

7.92/39.370432

Link

(Benoit)

7.92/39.370113

Link

(Sears)

7.92/39.370147

Chain

(Benoit)

792/39.370113

Chain

(Sears)

792/39.370147

Yard

(Indian)

36/39.370141

Yard

(Sears)

36/39.370147

Fathom

1.8288

Nautical

Mile

1852.0

Supported

angular

units

Table

59.

Supported

angular

units

Unit

Valid

range

for

latitude

Valid

range

for

longitude

Conversion

factor

Radian

–pi/2

and

pi/2

radians

(inclusive)

–pi

and

pi

radians

(inclusive)

1.0

Decimal

Degree

–90

and

90

degrees

(inclusive)

–180

and

180

degrees

(inclusive)

pi/180

Decimal

Minute

–5400

and

5400

minutes

(inclusive)

–10800

and

10800

minutes

(inclusive)

(pi/180)/60

Decimal

Second

–324000

and

324000

seconds

(inclusive)

–648000

and

648000

seconds

(inclusive)

(pi/180)*3600

Gon

–100

and

100

gradians

(inclusive)

–200

and

200

gradians

(inclusive)

pi/200

Grad

–100

and

100

gradians

(inclusive)

–200

and

200

gradians

(inclusive)

pi/200

Supported

coordinate

systems

Chapter

26.

Supported

coordinate

systems

515

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

Supported

spheroids

Table

60.

Supported

spheroids

Name

Semi-major

axis

Inverse

flattening

Airy

1830

6377563.396

299.3249646

Airy

Modified

1849

6377340.189

299.3249646

Average

Terrestrial

System

1977

6378135.0

298.257

Australian

National

Spheroid

6378160.0

298.25

Bessel

1841

6377397.155

299.1528128

Bessel

Modified

6377492.018

299.1528128

Bessel

Namibia

6377483.865

299.1528128

Clarke

1858

6378293.639

294.260676369

Clarke

1866

6378206.4

294.9786982

Clarke

1866

(Michigan)

6378450.047

294.978684677

Clarke

1880

6378249.138

293.466307656

Clarke

1880

(Arc)

6378249.145

293.466307656

Clarke

1880

(Benoit)

6378300.79

293.466234571

Clarke

1880

(IGN)

6378249.2

293.46602

Clarke

1880

(RGS)

6378249.145

293.465

Clarke

1880

(SGA

1922)

6378249.2

293.46598

Everest

(1830

Definition)

6377299.36

300.8017

Everest

1830

Modified

6377304.063

300.8017

Everest

Adjustment

1937

6377276.345

300.8017

Everest

1830

(1962

Definition)

6377301.243

300.8017255

Everest

1830

(1967

Definition)

6377298.556

300.8017

Everest

1830

(1975

Definition)

6377299.151

300.8017255

Everest

1969

Modified

6377295.664

300.8017

Fischer

1960

6378166.0

298.3

Fischer

1968

6378150

.0

298.3

Modified

Fischer

6378155

.0

298.3

GEM

10C

6378137.0

298.257222101

GRS

1967

6378160.0

298.247167427

GRS

1967

Truncated

6378160.0

298.25

GRS

1980

6378137.0

298.257222101

Helmert

1906

6378200.0

298.3

Hough

1960

6378270.0

297.0

Indonesian

National

Spheroid

6378160.0

298.247

International

1924

6378388.0

297.0

International

1967

6378160.0

298.25

Krassowsky

1940

6378245.0

298.3

NWL

9D

6378145.0

298.25

NWL

10D

6378135.0

298.26

Supported

coordinate

systems

516

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

|

|
|
||

||

|

|

|

|||

|

||

|

|||

|

|

||

|

|||

|||

|

|

||

||

|||

|||

|

|

||

|||

|

|||

||

||

|||

Table

60.

Supported

spheroids

(continued)

Name

Semi-major

axis

Inverse

flattening

OSU

86F

6378136.2

298.25722

OSU

91A

6378136.3

298.25722

Plessis

1817

6376523.0

308.64

Sphere

6371000.0

0.0

Sphere

(ArcInfo)

6370997.0

0.0

Struve

1860

6378298.3

294.73

Walbeck

6376896.0

302.78

War

Office

6378300.0

296.0

WGS

1966

6378145.0

298.25

WGS

1972

6378135.0

298.26

WGS

1984

6378137.0

298.257223563

Supported

geodetic

datums

Table

61.

Supported

geodetic

datums

Name

Geodetic

datum

Adindan

Lisbon

Afgooye

Loma

Quintana

Agadez

Lome

Australian

Geodetic

Datum

1966

Luzon

1911

Australian

Geodetic

Datum

1984

Mahe

1971

Ain

el

Abd

1970

Makassar

Amersfoort

Malongo

1987

Aratu

Manoca

Arc

1950

Massawa

Arc

1960

Merchich

Ancienne

Triangulation

Francaise

Militar-Geographische

Institute

Barbados

Mhast

Batavia

Minna

Beduaram

Monte

Mario

Beijing

1954

M’poraloko

Reseau

National

Belge

1950

NAD

Michigan

Reseau

National

Belge

1972

North

American

Datum

1927

Bermuda

1957

North

American

Datum

1983

Bern

1898

Nahrwan

1967

Bern

1938

Naparima

1972

Ancienne

Triangulation

Francaise

Militar-Geographische

Institute

Barbados

Mhast

Batavia

Minna

Beduaram

Monte

Mario

Supported

coordinate

systems

Chapter

26.

Supported

coordinate

systems

517

|

|

|

|||

|||

|

|

||

|

|

|

||

Table

61.

Supported

geodetic

datums

(continued)

Name

Geodetic

datum

Beijing

1954

M’poraloko

Reseau

National

Belge

1950

NAD

Michigan

Reseau

National

Belge

1972

North

American

Datum

1927

Bermuda

1957

North

American

Datum

1983

Bern

1898

Nahrwan

1967

Bern

1938

Naparima

1972

Ancienne

Triangulation

Francaise

Militar-Geographische

Institute

Barbados

Mhast

Batavia

Minna

Beduaram

Monte

Mario

Beijing

1954

M’poraloko

Reseau

National

Belge

1950

NAD

Michigan

Reseau

National

Belge

1972

North

American

Datum

1927

Bermuda

1957

North

American

Datum

1983

Bern

1898

Nahrwan

1967

Bern

1938

Naparima

1972

Bogota

Nord

de

Guerre

Bukit

Rimpah

NGO

1948

Camacupa

Nord

Sahara

1959

Campo

Inchauspe

NSWC

9Z-2

Cape

Nouvelle

Triangulation

Francaise

Carthage

New

Zealand

Geodetic

Datum

1949

Chua

OS

(SN)

1980

Conakry

1905

OSGB

1936

Corrego

Alegre

OSGB

1970

(SN)

Cote

d’Ivoire

Padang

1884

Datum

73

Palestine

1923

Deir

ez

Zor

Pointe

Noire

Deutsche

Hauptdreiecksnetz

Provisional

South

American

Datum

1956

Douala

Pulkovo

1942

European

Datum

1950

Qatar

European

Datum

1987

Qatar

1948

Egypt

1907

Qornoq

European

Reference

System

1989

RT38

Fahud

South

American

Datum

1969

Gandajika

1970

Sapper

Hill

1943

Garoua

Schwarzeck

Geocentric

Datum

of

Australia

1994

Segora

Guyane

Francaise

Serindung

Herat

North

Stockholm

1938

Supported

coordinate

systems

518

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

||

Table

61.

Supported

geodetic

datums

(continued)

Name

Geodetic

datum

Hito

XVIII

1963

Sudan

Hu

Tzu

Shan

Tananarive

1925

Hungarian

Datum

1972

Timbalai

1948

Indian

1954

TM65

Indian

1975

TM75

Indonesian

Datum

1974

Tokyo

Jamaica

1875

Trinidad

1903

Jamaica

1969

Trucial

Coast

1948

Kalianpur

Voirol

1875

Kandawala

Voirol

Unifie

1960

Kertau

WGS

1972

Kuwait

Oil

Company

WGS

1972

Transit

Broadcast

Ephemeris

La

Canoa

WGS

1984

Lake

Yacare

Leigon

Yoff

Liberia

1964

Zanderij

Supported

prime

meridians

Table

62.

Supported

prime

meridians

Location

Coordinates

Greenwich

0°

0'

0"

Bern

7°

26'

22.5"

E

Bogota

74°

4'

51.3"

W

Brussels

4°

22'

4.71"

E

Ferro

17°

40'

0"

W

Jakarta

106°

48'

27.79"

E

Lisbon

9°

7'

54.862"

W

Madrid

3°

41'

16.58"

W

Paris

2°

20'

14.025"

E

Rome

12°

27'

8.4"

E

Stockholm

18°

3'

29"

E

Supported

map

projections

Table

63.

Cylindrical

projections

Cylindrical

projections

Pseudocylindrical

projections

Behrmann

Craster

parabolic

Cassini

Eckert

I

Cylindrical

equal

area

Eckert

II

Equirectangular

Eckert

III

Supported

coordinate

systems

Chapter

26.

Supported

coordinate

systems

519

||

Table

63.

Cylindrical

projections

(continued)

Cylindrical

projections

Pseudocylindrical

projections

Gall’s

stereographic

Eckert

IV

Gauss-Kruger

Eckert

V

Mercator

Eckert

VI

Miller

cylindrical

McBryde-Thomas

flat

polar

quartic

Oblique

Mercator

(Hotine)

Mollweide

Plate-Carée

Robinson

Times

Sinusoidal

(Sansom-Flamsteed)

Transverse

Mercator

Winkel

I

Table

64.

Conic

projections

Name

Conic

projection

Albers

conic

equal-area

Chamberlin

trimetric

Bipolar

oblique

conformal

conic

Two-point

equidistant

Bonne

Hammer-Aitoff

equal-area

Equidistant

conic

Van

der

Grinten

I

Lambert

conformal

conic

Miscellaneous

Polyconic

Alaska

series

E

Simple

conic

Alaska

Grid

(Modified-Stereographic

by

Snyder)

Table

65.

Map

projection

parameters

Parameter

Description

central_meridian

The

line

of

longitude

chosen

as

the

origin

of

x-coordinates.

scale_factor

Scale_factor

is

used

generally

to

reduce

the

amount

of

distortion

in

a

map

projection.

standard_parallel_1

A

line

of

latitude

that

has

no

distortion

generally.

Also

used

for

″latitude

of

true

scale.″

standard_parallel_2

A

line

of

longitude

that

has

no

distortion

generally.

longitude_of_center

The

longitude

that

defines

the

center

point

of

the

map

projection.

latitude_of_center

The

latitude

that

defines

the

center

point

of

the

map

projection.

longitude_of_origin

The

longitude

chosen

as

the

origin

of

x-coordinates.

latitude_of_origin

The

latitude

chosen

as

the

origin

of

y-coordinates.

false_easting

A

value

added

to

x-coordinates

so

that

all

x-coordinate

values

are

positive.

false_northing

A

value

added

to

y-coordinates

so

that

all

y-coordinates

are

positive.

Supported

coordinate

systems

520

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

||

Table

65.

Map

projection

parameters

(continued)

Parameter

Description

azimuth

The

angle

east

of

north

that

defines

the

center

line

of

an

oblique

projection.

longitude_of_point_1

The

longitude

of

the

first

point

needed

for

a

map

projection.

latitude_of_point_1

The

latitude

of

the

first

point

needed

for

a

map

projection.

longitude_of_point_2

The

longitude

of

the

second

point

needed

for

a

map

projection.

latitude_of_point_2

The

latitude

of

the

second

point

needed

for

a

map

projection.

longitude_of_point_3

The

longitude

of

the

third

point

needed

for

a

map

projection.

latitude_of_point_3

The

latitude

of

the

third

point

needed

for

a

map

projection.

landsat_number

The

number

of

a

Landsat

satellite.

path_number

The

orbital

path

number

for

a

particular

satellite.

perspective_point_height

The

height

above

the

earth

of

the

perspective

point

of

the

map

projection.

fipszone

State

Plane

Coordinate

System

zone

number.

zone

UTM

zone

number.

Supported

coordinate

systems

Chapter

26.

Supported

coordinate

systems

521

Reference

material

522

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Appendix

A.

Deprecated

stored

procedures

This

topic

outlines

the

deprecated

stored

procedures.

Note:

Recommendation:

write

all

new

applications

using

the

stored

procedures

defined

in

DB2

Spatial

Extender

Version

8

and

update

current

applications

to

use

the

stored

procedures

defined

in

Version

8.

The

deprecated

stored

procedures

carried

out

the

tasks

summarized

in

the

table

below.

Table

66.

Deprecated

stored

procedures

Stored

procedure

name

Stored

procedure

task

db2gse.gse_enable_autogc

Enabled

a

geocoder

to

automatically

keep

spatial

columns

synchronized

with

their

corresponding

attribute

columns

db2gse.gse_enable_db

Enabled

a

database

to

support

spatial

operations

db2gse.gse_enable_idx

Created

an

index

for

a

spatial

column

db2gse.gse_enable_sref

Created

a

spatial

reference

system

db2gse.gse_export_shape

Exported

a

layer

and

its

associated

table

to

a

shape

file

db2gse.gse_disable_autogc

Disabled

a

geocoder

so

that

it

could

not

automatically

keep

spatial

columns

synchronized

with

their

corresponding

attribute

columns

db2gse.gse_disable_db

Disabled

support

for

spatial

operations

in

a

database

db2gse.gse_disable_sref

Dropped

a

spatial

reference

system

db2gse.gse_import_shape

Imported

a

layer

and

its

associated

table

from

an

ESRI_SDE

transfer

file

db2gse.gse_register_gc

Registered

a

geocoder

other

than

the

default

geocoder

db2gse.gse_register_layer

Registered

a

spatial

column

as

a

layer

db2gse.gse_run_gc

Running

a

geocoder

in

batch

mode

db2gse.gse_unregist_gc

Unregistered

a

geocoder

other

than

the

default

geocoder

db2gse.gse_unregist_layer

Unregistered

a

layer

db2gse.gse_enable_autogc

Use

this

stored

procedure

to:

v

Create

triggers

that

keep

a

spatial

column

synchronized

with

its

associated

attribute

column

or

columns.

Each

time

values

are

inserted

into,

or

updated

in,

the

attribute

column

or

columns,

a

trigger

calls

a

registered

geocoder

to

geocode

the

inserted

or

updated

values

and

place

the

resulting

data

in

the

spatial

column.

v

Reactivate

the

triggers

after

they

are

temporarily

disabled.

©

Copyright

IBM

Corp.

1998,

2004

523

v

Establish

which

function

to

use

to

geocode

the

inserted

and

updated

values.

Authorization:

The

user

ID

under

which

this

stored

procedure

is

invoked

must

have

the

following

authorities

or

privileges:

v

SYSADM

or

DBADM

authority

on

the

database

that

contains

the

table

on

which

the

triggers

created

by

this

stored

procedure

are

defined.

v

The

CONTROL

privilege

on

this

table.

v

The

ALTER,

SELECT,

and

UPDATE

privileges

on

this

table.

Parameters:

Table

67.

Input

parameters

for

the

db2gse.gse_enable_autogc

stored

procedure.

Name

Data

type

Description

operMode

SMALLINT

Value

that

indicates

whether

the

triggers

that

initiate

the

geocoding

are

to

be

created

for

the

first

time

or

to

be

reactivated

after

being

temporarily

disabled.

This

parameter

is

not

nullable.

Comment:

To

create

the

triggers,

use

the

GSE_AUTOGC_CREATE

macro.

To

reactivate

them,

use

the

GSE_AUTOGC_RECREATE

macro.

To

find

out

what

values

are

associated

with

these

macros,

consult

the

db2gse.h

file.

On

AIX,

this

file

is

stored

in

the

$DB2INSTANCE/sqllib/include/

directory.

On

Windows

NT,

it

is

stored

in

the

%DB2PATH%\include\

directory.

If

the

operMode

parameter

is

set

to

GSE_AUTOGC_CREATE,

you

must

assign

an

identifier

of

a

registered

geocoder

to

the

gcId

parameter.

layerSchema

VARCHAR(30)

Name

of

the

schema

to

which

the

table

specified

in

the

layerTable

parameter

belongs.

This

parameter

is

nullable.

If

you

do

not

supply

a

value

for

the

layerSchema

parameter,

it

will

default

to

the

user

ID

under

which

the

db2gse.gse_enable_autogc

stored

procedure

is

invoked.

layerTable

VARCHAR(128)

Name

of

the

table

that

the

triggers

created

or

reactivated

by

this

stored

procedure

are

to

operate

on.

This

parameter

is

not

nullable.

layerColumn

VARCHAR(128)

Name

of

the

spatial

column

that

is

to

be

maintained

by

the

triggers

that

this

stored

procedure

creates

or

reactivates.

This

parameter

is

not

nullable.

The

layerColumn

parameter

must

reference

a

column

that

has

been

registered

as

a

table

layer.

Deprecated

stored

procedures

524

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Table

67.

Input

parameters

for

the

db2gse.gse_enable_autogc

stored

procedure.

(continued)

Name

Data

type

Description

gcId

INTEGER

Identifier

of

the

geocoder

that

will

be

invoked

by

the

insert

and

update

triggers

that

this

stored

procedure

creates

or

reactivates.

This

parameter

is

not

nullable

if

the

operMode

parameter

is

set

to

GSE_AUTOGC_CREATE.

It

is

nullable

if

operMode

is

set

to

GSE_AUTOGC_RECREATE.

precisionLevel

INTEGER

The

degree

to

which

source

data

must

match

corresponding

reference

data

in

order

for

the

geocoder

to

process

the

source

data

successfully.

This

parameter

is

not

nullable

if

the

operMode

parameter

is

set

to

GSE_AUTOGC_CREATE.

It

is

nullable

if

operMode

is

set

to

GSE_AUTOGC_RECREATE.

The

precision

level

can

range

from

1

to

100

percent.

vendorSpecific

VARCHAR(256)

Technical

information

provided

by

the

vendor;

for

example,

the

path

and

name

of

a

file

that

the

vendor

uses

to

set

parameters.

This

parameter

is

not

nullable

if

the

operMode

parameter

is

set

to

GSE_AUTOGC_CREATE.

It

is

nullable

if

operMode

is

set

to

GSE_AUTOGC_RECREATE.

Results:

Table

68.

Output

parameters

for

the

db2gse.gse_enable_autogc

stored

procedure.

Name

Data

type

Description

msgCode

INTEGER

Code

associated

with

the

messages

that

the

caller

of

this

stored

procedure

can

return.

msgText

VARCHAR(1024)

Complete

error

message,

as

constructed

at

the

server.

db2gse.gse_enable_db

Use

this

stored

procedure

to

supply

a

database

with

the

resources

that

it

needs

to

store

spatial

data

and

to

support

operations.

These

resources

include

spatial

data

types,

a

spatial

index

type,

catalog

tables

and

views,

supplied

functions,

and

other

stored

procedures.

The

external

library

and

function

name

for

this

stored

procedure

is

db2gse.gse_enable_db.

Authorization:

The

user

ID

under

which

the

stored

procedure

is

invoked

must

have

either

SYSADM

or

DBADM

authority

on

the

database

that

is

being

enabled.

Deprecated

stored

procedures

Appendix

A.

Deprecated

stored

procedures

525

Results:

Table

69.

Output

parameters

for

the

db2gse.gse_enable_db

stored

procedure.

Name

Data

type

Description

msgCode

INTEGER

Code

associated

with

the

messages

that

the

caller

of

this

stored

procedure

can

return.

msgText

VARCHAR(1024)

Complete

error

message,

as

constructed

at

the

DB2

Spatial

Extender

server.

db2gse.gse_enable_idx

Use

this

stored

procedure

to

create

an

index

for

a

spatial

column.

Authorization:

The

user

ID

under

which

this

stored

procedure

is

invoked

must

hold

one

of

the

following

authorities

or

privileges:

v

SYSADM

or

DBADM

authority

on

the

database

that

contains

the

table

for

which

the

enabled

index

is

to

be

used.

v

The

CONTROL

or

INDEX

privilege

on

this

table.

Parameters:

Table

70.

Input

parameters

for

the

db2gse.gse_enable_idx

stored

procedure.

Name

Data

type

Description

layerSchema

VARCHAR(30)

Name

of

the

schema

to

which

the

table

specified

in

the

layerTable

parameter

belongs.

This

parameter

is

nullable.

You

must

supply

a

value

for

this

parameter.

The

parameter

can

be

a

NULL

value.

layerTable

VARCHAR(128)

Name

of

the

table

on

which

the

index

that

you

are

creating

is

to

be

defined.

This

parameter

is

not

nullable.

layerColumn

VARCHAR(128)

Name

of

the

spatially

enabled

column

that

is

to

be

searched

with

the

aid

of

the

index

that

you

are

creating.

This

parameter

is

not

nullable.

indexName

VARCHAR(128)

Name

of

the

index

that

is

to

be

created.

This

parameter

is

not

nullable.

Do

not

specify

a

schema

name.

DB2

Spatial

Extender

automatically

assigns

the

index

to

the

schema

referenced

by

the

layerSchema

parameter.

gridSize1

DOUBLE

Number

that

indicates

what

the

granularity

of

the

finest

index

grid

should

be.

This

parameter

is

not

nullable.

Deprecated

stored

procedures

526

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Table

70.

Input

parameters

for

the

db2gse.gse_enable_idx

stored

procedure.

(continued)

Name

Data

type

Description

gridSize2

DOUBLE

Number

that

denotes

either

(1)

that

there

is

to

be

no

second

grid

for

this

index

or

(2)

what

the

granularity

of

the

second

grid

should

be.

This

parameter

is

nullable.

If

there

is

to

be

no

second

grid,

specify

0.

If

you

want

a

second

grid,

it

must

be

less

granular

than

the

grid

denoted

by

gridSize1.

gridSize3

DOUBLE

Number

that

denotes

either

(1)

that

there

is

to

be

no

third

grid

for

this

index

or

(2)

what

the

granularity

of

the

third

grid

should

be.

This

parameter

is

nullable.

If

there

is

to

be

no

third

grid,

specify

0.

If

you

want

a

third

grid,

it

must

be

less

granular

than

the

grid

denoted

by

gridSize2.

Results:

Table

71.

Output

parameters

for

the

db2gse.gse_enable_idx

stored

procedure.

Name

Data

type

Description

msgCode

INTEGER

Code

associated

with

the

messages

that

the

caller

of

this

stored

procedure

can

return.

msgText

VARCHAR(1024)

Complete

error

message,

as

constructed

at

the

DB2

Spatial

Extender

server.

db2gse.gse_enable_sref

Use

this

stored

procedure

to

specify

how

negative

and

decimal

numbers

in

a

specific

coordinate

system

are

to

be

converted

into

positive

integers,

so

that

DB2

Spatial

Extender

can

store

them.

Your

specifications

are

collectively

called

a

spatial

reference

system.

When

this

stored

procedure

is

processed,

information

about

the

spatial

reference

system

is

added

to

the

DB2GSE.SPATIAL_REF_SYS

catalog

view.

Authorization:

None

required.

Parameters:

Table

72.

Input

parameters

for

the

db2gse.gse_enable_sref

stored

procedure.

Name

Data

type

Description

srId

INTEGER

A

numeric

identifier

for

the

spatial

reference

system.

This

identifier

must

be

unique

within

your

spatially-enabled

database.

This

parameter

is

not

nullable.

Deprecated

stored

procedures

Appendix

A.

Deprecated

stored

procedures

527

Table

72.

Input

parameters

for

the

db2gse.gse_enable_sref

stored

procedure.

(continued)

Name

Data

type

Description

srName

VARCHAR(64)

Short

description

of

the

spatial

reference

system.

This

description

must

be

unique

within

your

spatially-enabled

database.

This

parameter

is

not

nullable.

falsex

DOUBLE

A

number

that,

when

subtracted

from

a

negative

X

coordinate

value,

leaves

a

non-negative

number

(that

is,

a

positive

number

or

a

zero).

This

parameter

is

not

nullable.

falsey

DOUBLE

A

number

that,

when

subtracted

from

a

negative

Y

coordinate

value,

leaves

a

non-negative

number

(that

is,

a

positive

number

or

a

zero).

This

parameter

is

not

nullable.

xyunits

DOUBLE

A

number

that,

when

multiplied

by

a

decimal

X

coordinate

or

a

decimal

Y

coordinate,

yields

an

integer

that

can

be

stored

as

a

32-bit

data

item.

This

parameter

is

not

nullable.

falsez

DOUBLE

A

number

that,

when

subtracted

from

a

negative

Z

coordinate

value,

leaves

a

non-negative

number

(that

is,

a

positive

number

or

a

zero).

This

parameter

is

not

nullable.

zunits

DOUBLE

A

number

that,

when

multiplied

by

a

decimal

Z

coordinate,

yields

an

integer

that

can

be

stored

as

a

32-bit

data

item.

This

parameter

is

not

nullable.

falsem

DOUBLE

A

number

that,

when

subtracted

from

a

negative

measure,

leaves

a

non-negative

number

(that

is,

a

positive

number

or

a

zero).

This

parameter

is

not

nullable.

munits

DOUBLE

A

number

that,

when

multiplied

by

a

decimal

measure,

yields

an

integer

that

can

be

stored

as

a

32-bit

data

item.

This

parameter

is

not

nullable.

scId

INTEGER

Numeric

identifier

of

the

coordinate

system

from

which

the

spatial

reference

system

is

being

derived.

To

find

out

what

a

coordinate

system’s

numeric

identifier

is,

consult

the

DB2GSE.COORD_REF_SYS

catalog

view.

This

parameter

is

not

nullable.

Deprecated

stored

procedures

528

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Results:

Table

73.

Output

parameters

for

the

db2gse.gse_enable_sref

stored

procedure.

Name

Data

type

Description

msgCode

INTEGER

Code

associated

with

the

messages

that

the

caller

of

this

stored

procedure

can

return.

msgText

VARCHAR(1024)

Complete

error

message,

as

constructed

at

the

DB2

Spatial

Extender

server.

db2gse.gse_export_shape

Use

this

stored

procedure

to

export

a

layer

and

its

associated

table

to

a

shape

file,

or

to

create

a

new

shape

file

and

export

a

layer

and

its

associated

table

to

this

new

file.

Authorization:

The

user

ID

under

which

this

stored

procedure

is

invoked

must

hold

the

SELECT

privilege

on

the

table

that

is

to

be

exported.

Parameters:

Table

74.

Input

parameters

for

the

db2gse.gse_export_shape

stored

procedure.

Name

Data

type

Description

layerSchema

VARCHAR(30)

Name

of

the

schema

to

which

the

table

specified

in

the

layerTable

parameter

belongs.

This

parameter

is

nullable.

If

you

do

not

supply

a

value

for

the

layerSchema

parameter,

it

will

default

to

the

user

ID

under

which

the

db2gse.gse_export_shape

stored

procedure

is

invoked.

layerTable

VARCHAR(128)

Name

of

the

table

that

you

are

exporting.

This

parameter

is

not

nullable.

layerColumn

VARCHAR(30)

Name

of

the

column

that

has

been

registered

as

the

layer

that

you

are

exporting.

This

parameter

is

not

nullable.

fileName

VARCHAR(128)

Name

of

the

shape

file

to

which

the

specified

layer

is

to

be

exported.

This

parameter

is

not

nullable.

whereClause

VARCHAR(1024)

The

body

of

the

whereClause.

It

defines

a

restriction

on

the

set

of

rows

to

be

exported.

The

clause

can

reference

any

attribute

column

in

the

table

that

you

are

exporting.

The

keyword

WHERE

is

not

needed

in

this

clause.

This

parameter

is

nullable.

Deprecated

stored

procedures

Appendix

A.

Deprecated

stored

procedures

529

Results:

Table

75.

Output

parameters

for

the

db2gse.gse_export_shape

stored

procedure.

Name

Data

type

Description

msgCode

INTEGER

Code

associated

with

the

messages

that

the

caller

of

this

stored

procedure

can

return.

msgText

VARCHAR(1024)

Complete

error

message,

as

constructed

at

the

DB2

Spatial

Extender

server.

Restriction:

You

can

export

only

one

layer

at

a

time.

db2gse.gse_disable_autogc

Use

this

stored

procedure

to

drop

or

temporarily

disable

triggers

that

keep

a

spatial

column

synchronized

with

its

associated

attribute

column

or

columns.

For

example,

it

is

advisable

to

disable

the

triggers

while

you

geocode

the

values

in

the

attribute

column

or

columns

in

batch

mode.

Authorization:

The

user

ID

under

which

this

stored

procedure

is

invoked

must

have

one

of

the

following

authorities,

privileges,

or

set

of

privileges:

v

SYSADM

or

DBADM

authority

on

the

database

that

contains

the

table

on

which

the

triggers

that

are

being

dropped

or

temporarily

disabled

are

defined.

v

The

CONTROL

privilege

on

this

table.

v

The

ALTER

and

UPDATE

privileges

on

this

table.

Note:

For

CONTROL

and

ALTER

privileges,

you

must

have

DROPIN

authority

on

the

DB2GSE

schema.

Parameters:

Table

76.

Input

parameters

for

the

db2gse.gse_disable_autogc

stored

procedure.

Name

Data

type

Description

operMode

SMALLINT

Indicates

whether

the

triggers

are

to

be

dropped

or

temporarily

disabled.

Dropped

triggers

have

no

effect

on

SQL

statements.

Temporarily

disabled

triggers

can

be

re-created

without

having

to

re-specify

previously

set

parameters.

This

parameter

is

not

nullable.

To

drop

triggers,

use

the

GSE_AUTOGC_DROP

macro.

To

temporarily

disable

them,

use

the

GSE_AUTOGC_INVALIDATE

macro.

To

find

out

what

values

are

associated

with

these

macros,

consult

the

db2gse.h

file.

On

AIX,

this

file

is

stored

in

the

$DB2INSTANCE/sqllib/include/

directory.

On

Windows

NT,

it

is

stored

in

the

%DB2PATH%\include\

directory.

Deprecated

stored

procedures

530

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Table

76.

Input

parameters

for

the

db2gse.gse_disable_autogc

stored

procedure.

(continued)

Name

Data

type

Description

layerSchema

VARCHAR(30)

Name

of

the

schema

to

which

the

table

or

view

specified

in

the

layerTable

parameter

belongs.

This

parameter

is

nullable.

If

you

do

not

supply

a

value

for

the

layerSchema

parameter,

it

will

default

to

the

user

ID

under

which

the

db2gse.gse_disable_autogc

stored

procedure

is

invoked.

layerTable

VARCHAR(128)

Name

of

the

table

on

which

the

triggers

that

you

want

dropped

or

temporarily

disabled

are

defined.

This

parameter

is

not

nullable.

layerColumn

VARCHAR(128)

Name

of

the

spatially

enabled

column

that

is

maintained

by

the

triggers

that

you

want

dropped

or

temporarily

disabled.

This

parameter

is

not

nullable.

Results:

Table

77.

Output

parameters

for

the

db2gse.gse_disable_autogc

stored

procedure.

Name

Data

type

Description

msgCode

INTEGER

Code

associated

with

the

messages

that

the

caller

of

this

stored

procedure

can

return.

msgText

VARCHAR(1024)

Complete

error

message,

as

constructed

at

the

DB2

Spatial

Extender

server.

db2gse.gse_disable_db

Use

this

stored

procedure

to

remove

resources

that

allow

DB2

Spatial

Extender

to

store

spatial

data

and

to

support

operations

performed

on

this

data.

The

purpose

of

this

stored

procedure

is

to

help

you

resolve

problems

or

issues

that

arise

after

you

enable

your

database

for

spatial

operations,

but

before

you

add

any

spatial

table

columns

or

data

to

it.

For

example,

if,

after

you

enable

a

database

for

spatial

operations,

if

you

decide

to

use

DB2

Spatial

Extender

for

another

database

instead.

If

you

did

not

define

any

spatial

columns

or

import

any

spatial

data,

you

can

invoke

this

stored

procedure

to

remove

all

spatial

resources

from

the

first

database.

Authorization:

The

user

ID

under

which

this

stored

procedure

is

invoked

must

have

either

SYSADM

or

DBADM

authority

on

the

database

from

which

DB2

Spatial

Extender

resources

are

to

be

removed.

Deprecated

stored

procedures

Appendix

A.

Deprecated

stored

procedures

531

Results:

Table

78.

Output

parameters

for

the

db2gse.gse_disable_db

stored

procedure.

Name

Data

type

Description

msgCode

INTEGER

Code

associated

with

the

messages

that

the

caller

of

this

stored

procedure

can

return.

msgText

VARCHAR(1024)

Complete

error

message,

as

constructed

at

the

DB2

Spatial

Extender

server.

db2gse.gse_disable_sref

Use

this

stored

procedure

to

drop

a

spatial

reference

system.

When

this

stored

procedure

is

processed,

information

about

the

spatial

reference

system

is

removed

from

the

DB2GSE.SPATIAL_REF_SYS

catalog

view.

Prerequisites:

Before

you

can

drop

a

spatial

reference

system,

you

must

unregister

any

layers

that

use

it.

If

such

layers

remain

unregistered,

the

request

to

drop

the

spatial

reference

system

will

be

rejected.

Authorization:

None

required.

Process:

Table

79.

Input

parameter

for

the

db2gse.gse_disable_sref

stored

procedure.

Name

Data

type

Description

srId

INTEGER

Numeric

identifier

of

the

spatial

reference

system

that

is

to

be

dropped.

This

parameter

is

not

nullable.

Results:

Table

80.

Output

parameters

for

the

db2gse.gse_disable_sref

stored

procedure.

Name

Data

type

Description

msgCode

INTEGER

Code

associated

with

the

messages

that

the

caller

of

this

stored

procedure

can

return.

msgText

VARCHAR(1024)

Complete

error

message,

as

constructed

at

the

DB2

Spatial

Extender

server.

db2gse.gse_import_shape

Use

this

stored

procedure

to

import

an

ESRI

shape

file

to

a

database

that

is

enabled

for

spatial

operations.

The

stored

procedure

can

operate

in

either

of

two

ways:

v

If

the

shape

file

is

targeted

for

an

existing

table

that

has

a

registered

layer

column,

DB2

Spatial

Extender

will

load

the

table

with

the

file’s

data.

Deprecated

stored

procedures

532

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

v

If

the

shape

file

is

targeted

for

a

table

that

does

not

exist,

DB2

Spatial

Extender

will

create

a

table

that

has

a

spatial

column,

register

this

column

as

a

layer,

and

load

the

layer

and

the

table’s

other

columns

with

the

file’s

data.

When

you

import

a

set

of

ESRI

shape

representations,

you

receive

at

least

two

files.

All

the

files

have

the

same

file

name

prefix,

but

different

extensions.

For

example,

the

extensions

of

the

two

files

that

you

always

receive

are

.shp

and

.shx.

To

receive

the

files

for

a

set

of

shape

representations,

assign

the

name

that

the

files

have

in

common

to

the

fileName

parameter.

Do

not

specify

an

extension.

This

way,

you

can

be

sure

that

all

the

files

that

you

need—the

.shp

file,

the

.shx

file,

and

any

others

that

might

be

included—will

be

imported.

For

example,

suppose

that

a

set

of

ESRI

shape

representations

is

stored

in

files

called

Lakes.shp

and

Lakes.shx.

When

importing

these

representations,

you

would

assign

only

the

name

Lakes

to

the

fileName

parameter.

SDE

transfer

files

have

names

but

not

extensions.

Therefore,

when

importing

an

SDE

transfer

file,

you

assign

its

name,

but

no

extension,

to

the

fileName

parameter.

Authorization:

The

user

ID

under

which

this

stored

procedure

is

invoked

must

hold

one

of

the

following

authorities

or

privileges:

v

SYSADM

or

DBADM

authority

on

the

database

that

contains

the

table

into

which

imported

shape

data

is

to

be

loaded.

v

The

CONTROL

privilege

on

this

table.

Parameters:

Table

81.

Input

parameters

for

the

db2gse.gse_import_shape

stored

procedure.

Name

Data

type

Description

layerSchema

VARCHAR(30)

Name

of

the

schema

to

which

the

table

or

view

specified

in

the

layerTable

parameter

belongs.

This

parameter

is

nullable.

If

you

do

not

supply

a

value

for

the

layerSchema

parameter,

it

will

default

to

the

user

ID

under

which

the

db2gse.gse_import_shape

stored

procedure

is

invoked.

layerTable

VARCHAR(128)

Name

of

the

table

into

which

the

imported

shape

file

is

to

be

loaded.

This

parameter

is

not

nullable.

layerColumn

VARCHAR(30)

Name

of

the

column

that

has

been

registered

as

the

layer

into

which

shape

data

is

to

be

loaded.

This

parameter

is

not

nullable.

fileName

VARCHAR(128)

Name

of

the

shape

file

that

is

to

be

imported.

This

parameter

is

not

nullable.

Deprecated

stored

procedures

Appendix

A.

Deprecated

stored

procedures

533

Table

81.

Input

parameters

for

the

db2gse.gse_import_shape

stored

procedure.

(continued)

Name

Data

type

Description

exceptionFile

VARCHAR(128)

Path

and

name

of

the

file

in

which

the

shapes

that

could

not

be

imported

are

stored.

This

is

a

new

file

that

will

be

created

when

the

db2gse.gse_import_shape

stored

procedure

is

run.

Assign

a

file

name,

but

not

an

extension,

to

the

exceptionFile

parameter

This

parameter

is

not

nullable.

srId

INTEGER

Identifier

of

the

spatial

reference

system

to

be

used

for

the

layer

into

which

shape

data

is

to

be

loaded.

This

parameter

is

nullable.

If

this

identifier

is

not

specified,

the

internal

transformation

will

be

set

to

the

maximum

resolution

possible

resolution

for

the

shape

file.

commitScope

INTEGER

Number

of

records

per

checkpoint.

This

parameter

is

I

was

nullable.

Results:

Table

82.

Output

parameters

for

the

db2gse.gse_import_shape

stored

procedure.

Name

Data

type

Description

msgCode

INTEGER

Code

associated

with

the

messages

that

the

caller

of

this

stored

procedure

can

return.

msgText

VARCHAR(1024)

Complete

error

message,

as

constructed

at

the

DB2

Spatial

Extender

server.

db2gse.gse_register_gc

Use

this

stored

procedure

to

register

a

geocoder

other

than

the

default.

To

find

out

whether

a

geocoder

is

already

registered,

consult

the

DB2GSE.SPATIAL_GEOCODER

catalog

view.

Authorization:

The

user

ID

under

which

this

stored

procedure

is

invoked

must

hold

either

SYSADM

or

DBADM

authority

on

the

database

that

contains

the

geocoder

that

this

stored

procedure

registers.

Parameters:

Table

83.

Input

parameters

for

the

db2gse.gse_register_gc

stored

procedure.

Name

Data

type

Description

gcId

INTEGER

Numeric

identifier

of

the

geocoder

that

you

are

registering.

This

identifier

must

be

unique

within

the

database.

This

parameter

is

not

nullable.

Deprecated

stored

procedures

534

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Table

83.

Input

parameters

for

the

db2gse.gse_register_gc

stored

procedure.

(continued)

Name

Data

type

Description

gcName

VARCHAR(64)

Short

description

of

the

gecoder

that

you

are

registering.

This

description

must

be

a

unique

character

string

within

the

database.

This

parameter

is

not

nullable.

vendorName

VARCHAR(64)

Name

of

vendor

that

supplied

the

geocoder

that

you

are

registering.

This

parameter

is

not

nullable.

primaryUDF

VARCHAR(256)

Fully-qualified

name

of

the

geocoder

that

you

are

registering.

This

parameter

is

not

nullable.

precisionLevel

INTEGER

The

degree

to

which

source

data

must

match

corresponding

reference

data

in

order

for

the

geocoder

to

process

the

source

data

successfully.

The

precision

level

can

range

from

1

to

100

percent.

This

parameter

is

not

nullable.

vendorSpecific

VARCHAR(256)

Technical

information

provided

by

the

vendor;

for

example,

the

path

and

name

of

a

file

that

the

vendor

uses

to

set

parameters.

This

parameter

is

nullable.

geoArea

VARCHAR(256)

Geographical

area

to

be

geocoded.

This

parameter

is

nullable.

description

VARCHAR(256)

Remarks

provided

by

the

vendor

This

parameter

is

nullable.

Results:

Table

84.

Output

parameters

for

the

db2gse.gse_register_gc

stored

procedure.

Name

Data

type

Description

msgCode

INTEGER

Code

associated

with

the

messages

that

the

caller

of

this

stored

procedure

can

return.

msgText

VARCHAR(1024)

Complete

error

message,

as

constructed

at

the

DB2

Spatial

Extender

server.

db2gse.gse_register_layer

Use

this

stored

procedure

to

register

a

spatial

column

as

a

layer.

When

this

stored

procedure

is

processed,

information

about

the

layer

being

registered

is

added

to

the

DB2GSE.GEOMETRY_COLUMNS

catalog

view.

Authorization:

The

user

ID

under

which

this

stored

procedure

is

invoked

must

hold

one

of

the

following

authorities

or

privileges:

Deprecated

stored

procedures

Appendix

A.

Deprecated

stored

procedures

535

v

For

a

table

layer:

–

SYSADM

or

DBADM

authority

on

the

database

that

contains

the

table

to

which

this

layer

belongs.

–

The

CONTROL

or

ALTER

privilege

on

this

table.
v

For

a

view

layer:

–

The

SELECT

privilege

on

the

base

table

or

tables

that

contain

(1)

the

address

data

that

is

to

be

geocoded

for

this

layer

and

(2)

the

spatial

data

that

results

from

the

geocoding.

Parameters:

Table

85.

Input

parameters

for

the

db2gse.gse_register_layer

stored

procedure.

Name

Data

type

Description

layerSchema

INTEGER(30)

Name

of

the

schema

to

which

the

table

or

view

specified

in

the

layerTable

parameter

belongs.

This

parameter

is

nullable.

If

you

do

not

supply

a

value

for

the

layerSchema

parameter,

it

will

default

to

the

user

ID

under

which

the

db2gse.gse_register_layer

stored

procedure

is

invoked.

layerTable

VARCHAR(128)

Name

of

the

table

or

view

that

contains

the

column

that

is

being

registered

as

a

layer.

This

parameter

is

not

nullable.

layerColumn

VARCHAR(128)

Name

of

the

column

that

is

being

registered

as

a

layer.

For

a

table,

if

the

column

does

not

exist,

DB2

Spatial

Extender

will

add

it

using

the

ALTER

statement.

For

a

view,

the

column

must

already

exist.

Only

one

column

can

be

specified

for

the

layerColumn

parameter.

Thus,

when

you

register

multiple

columns

of

a

table

or

view

as

layers,

you

must

execute

this

stored

procedure

separately

for

each

column.

This

parameter

is

not

nullable.

layerTypeName

VARCHAR(64)

Data

type

of

the

column

that

is

being

registered

as

a

layer.

Only

data

types

provided

by

DB2

Spatial

Extender

are

accepted.

You

must

specify

the

data

type

in

uppercase;

for

example:

ST_POINT

You

do

not

need

to

specify

a

schema

name

because

it

is

automatically

added.

This

parameter

is

not

nullable

if

the

column

is

a

table

column

that

is

to

be

created

when

this

stored

procedure

is

processed.

Otherwise,

if

the

column

is

an

existing

column

within

a

table

or

view,

this

parameter

is

nullable.

Deprecated

stored

procedures

536

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Table

85.

Input

parameters

for

the

db2gse.gse_register_layer

stored

procedure.

(continued)

Name

Data

type

Description

srId

INTEGER

Identifier

of

the

spatial

reference

system

used

for

this

layer.

This

parameter

is

not

nullable

for

a

table

layer.

DB2

Spatial

Extender

ignores

this

parameter

when

you

register

a

view

layer.

geoSchema

VARCHAR(30)

The

schema

of

the

table

that

underlies

the

view

to

which

the

column

belongs.

This

parameter

applies

when

you

register

a

view

column

as

a

layer.

This

parameter

is

nullable

when

you

register

a

view

column

as

a

layer.

DB2

Spatial

Extender

ignores

this

parameter

when

you

register

a

table

column

as

a

layer.

Views

based

on

more

than

one

base

table

or

other

views

are

not

supported

by

this

parameter.

If

you

do

not

supply

a

value

for

the

geoSchema

parameter,

it

will

default

to

the

value

of

the

layerSchema

parameter.

geoTable

VARCHAR(128)

The

name

of

the

table

that

underlies

the

view

to

which

the

column

belongs.

This

parameter

applies

when

you

register

a

view

column

as

a

layer.

Views

based

on

more

than

one

base

table

or

other

views

are

not

supported

by

this

parameter.

This

parameter

is

not

nullable

when

you

register

a

view

column

as

a

layer.

DB2

Spatial

Extender

ignores

this

parameter

when

you

register

a

table

column

as

a

layer.

geoColumn

VARCHAR(128)

The

name

of

the

table

column

that

underlies

this

view

column.

This

parameter

applies

when

you

register

a

view

column

as

a

layer.

Views

based

on

more

than

one

base

table

or

other

views

are

not

supported

by

this

parameter.

This

parameter

is

not

nullable

when

you

register

a

view

column

as

a

layer.

DB2

Spatial

Extender

ignores

this

parameter

when

you

register

a

table

column

as

a

layer.

nAttributes

SMALLINT

Number

of

columns

that

contain

the

source

data

that

is

to

be

geocoded

for

this

layer.

This

parameter

is

nullable

when

you

register

a

table

column

as

a

layer.

DB2

Spatial

Extender

ignores

this

parameter

when

you

register

a

view

column

as

a

layer.

Deprecated

stored

procedures

Appendix

A.

Deprecated

stored

procedures

537

Table

85.

Input

parameters

for

the

db2gse.gse_register_layer

stored

procedure.

(continued)

Name

Data

type

Description

attr1Name

VARCHAR(128)

Name

of

the

first

column

that

contains

source

data

that

is

to

be

geocoded

for

this

layer.

This

parameter

is

nullable

when

you

register

a

table

column

as

a

layer.

DB2

Spatial

Extender

ignores

this

parameter

when

you

register

a

view

column

as

a

layer.

If

you

intend

to

use

the

default

geocoder,

you

need

to

store

street

addresses

in

the

attr1Name

column.

attr2Name

VARCHAR(128)

Name

of

the

second

column

that

contains

source

data

that

is

to

be

geocoded

for

this

layer.

This

parameter

is

nullable

when

you

register

a

table

column

as

a

layer.

DB2

Spatial

Extender

ignores

this

parameter

when

you

register

a

view

column

as

a

layer.

If

you

intend

to

use

the

default

geocoder,

you

need

to

store

names

of

cities

in

the

attr2Name

column.

attr3Name

VARCHAR(128)

Name

of

the

third

column

that

contains

source

data

that

is

to

be

geocoded

for

this

layer.

This

parameter

is

nullable

when

you

register

a

table

column

as

a

layer.

DB2

Spatial

Extender

ignores

this

parameter

when

you

register

a

view

column

as

a

layer.

If

you

intend

to

use

the

default

geocoder,

you

need

to

store

names

or

abbreviations

of

states

in

the

attr3Name

column.

attr4Name

VARCHAR(128)

Name

of

the

fourth

column

that

contains

source

data

that

is

to

be

geocoded

for

this

layer.

This

parameter

is

nullable

when

you

register

a

table

column

as

a

layer.

DB2

Spatial

Extender

ignores

this

parameter

when

you

register

a

view

column

as

a

layer.

If

you

intend

to

use

the

default

geocoder,

you

need

to

store

zip

codes

in

the

attr4Name

column.

attr5Name

VARCHAR(128)

Name

of

the

fifth

column

that

contains

source

data

that

is

to

be

geocoded

for

this

layer.

This

parameter

is

nullable

when

you

register

a

table

column

as

a

layer.

DB2

Spatial

Extender

ignores

this

parameter

when

you

register

a

view

column

as

a

layer.

The

default

gecoder

ignores

the

Attr5Name

column.

Deprecated

stored

procedures

538

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Table

85.

Input

parameters

for

the

db2gse.gse_register_layer

stored

procedure.

(continued)

Name

Data

type

Description

attr6Name

VARCHAR(128)

Name

of

the

sixth

column

that

contains

source

data

that

is

to

be

geocoded

for

this

layer.

This

parameter

is

nullable

when

you

register

a

table

column

as

a

layer.

DB2

Spatial

Extender

ignores

this

parameter

when

you

register

a

view

column

as

a

layer.

The

default

gecoder

ignores

the

Attr6Name

column.

attr7Name

VARCHAR(128)

Name

of

the

seventh

column

that

contains

source

data

that

is

to

be

geocoded

for

this

layer.

This

parameter

is

nullable

when

you

register

a

table

column

as

a

layer.

DB2

Spatial

Extender

ignores

this

parameter

when

you

register

a

view

column

as

a

layer.

The

default

gecoder

ignores

the

Attr7Name

column.

attr8Name

VARCHAR(128)

Name

of

the

eighth

column

that

contains

source

data

that

is

to

be

geocoded

for

this

layer.

This

parameter

is

nullable

when

you

register

a

table

column

as

a

layer.

DB2

Spatial

Extender

ignores

this

parameter

when

you

register

a

view

column

as

a

layer.

The

default

gecoder

ignores

the

Attr8Name

column.

attr9Name

VARCHAR(128)

Name

of

the

ninth

column

that

contains

source

data

that

is

to

be

geocoded

for

this

layer.

This

parameter

is

nullable

when

you

register

a

table

column

as

a

layer.

DB2

Spatial

Extender

ignores

this

parameter

when

you

register

a

view

column

as

a

layer.

The

default

gecoder

ignores

the

Attr9Name

column.

attr10Name

VARCHAR(128)

Name

of

the

tenth

column

that

contains

source

data

that

is

to

be

geocoded

for

this

layer.

This

parameter

is

nullable

when

you

register

a

table

column

as

a

layer.

DB2

Spatial

Extender

ignores

this

parameter

when

you

register

a

view

column

as

a

layer.

The

default

gecoder

ignores

the

Attr10Name

column.

Results:

Table

86.

Output

parameters

for

the

db2gse.gse_register_layer

stored

procedure.

Name

Data

type

Description

msgCode

INTEGER

Code

associated

with

the

messages

that

the

caller

of

this

stored

procedure

can

return.

msgText

VARCHAR(1024)

Complete

error

message,

as

constructed

at

the

DB2

Spatial

Extender

server.

Deprecated

stored

procedures

Appendix

A.

Deprecated

stored

procedures

539

Restrictions:

This

stored

procedure

does

not

work

on

the

following

table

types:

v

A

=

Alias

v

H

=

Hierarchy

table

v

N

=

Nickname

v

S

=

Summary

table

v

U

=

Typed

table

v

W

=

Typed

view

The

following

restrictions

also

apply:

v

If

you

are

registering

a

view

column

as

a

layer,

it

must

be

based

on

a

table

column

that

has

already

been

registered

as

a

layer.

v

No

more

than

ten

attribute

columns

can

contain

the

data

that

is

to

be

geocoded

for

the

layer

that

you

are

registering.

db2gse.gse_run_gc

Use

this

stored

procedure

to

run

a

geocoder

in

batch

mode.

Authorization:

The

user

ID

under

which

this

stored

procedure

is

invoked

must

hold

one

of

the

following

authorities

or

privileges:

v

SYSADM

or

DBADM

authority

on

the

database

that

contains

the

table

on

which

the

specified

geocoder

is

to

operate.

v

The

CONTROL

or

UPDATE

privilege

on

this

table.

Parameters:

Table

87.

Input

parameters

for

the

db2gse.gse_run_gc

stored

procedure.

Name

Data

type

Description

layerSchema

VARCHAR(30)

Name

of

the

schema

to

which

the

table

or

view

specified

in

the

layerTable

parameter

belongs.

This

parameter

is

nullable.

If

you

do

not

supply

a

value

for

the

layerSchema

parameter,

it

will

default

to

the

user

ID

under

which

the

db2gse.gse_run_gc

is

invoked.

layerTable

VARCHAR(128)

Name

of

the

table

that

contains

the

column

into

which

the

geocoded

data

is

to

be

inserted.

This

parameter

is

not

nullable.

layerColumn

VARCHAR(128)

Name

of

the

column

into

which

the

geocoded

data

is

to

be

inserted.

This

parameter

is

not

nullable.

Deprecated

stored

procedures

540

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Table

87.

Input

parameters

for

the

db2gse.gse_run_gc

stored

procedure.

(continued)

Name

Data

type

Description

gcId

INTEGER

Identifier

of

the

geocoder

that

you

want

to

run.

This

parameter

is

nullable.

To

find

the

identifiers

of

registered

geocoders,

consult

the

DB2GSE.SPATIAL_GEOCODER

catalog

view.

precisionLevel

INTEGER

The

degree

to

which

source

data

must

match

corresponding

reference

data

in

order

for

the

geocoder

to

process

the

source

data

successfully.

This

parameter

is

nullable.

The

precision

level

can

range

from

1

to

100

percent.

vendorSpecific

VARCHAR(256)

Technical

information

provided

by

the

vendor;

for

example,

the

path

and

name

of

a

file

that

the

vendor

uses

to

set

parameters.

This

parameter

is

nullable.

whereClause

VARCHAR(256)

The

body

of

the

WHERE

clause.

It

defines

a

restriction

on

the

set

of

records

to

be

geocoded.

The

clause

can

reference

any

attribute

column

in

the

table

that

the

geocoder

is

to

operate

on.

This

parameter

is

nullable.

commitScope

INTEGER

Number

of

records

per

checkpoint.

This

parameter

is

nullable.

Results:

Table

88.

Output

parameters

for

the

db2gse.gse_run_gc

stored

procedure.

Name

Data

type

Description

msgCode

INTEGER

Code

associated

with

the

messages

that

the

caller

of

this

stored

procedure

can

return.

msgText

VARCHAR(1024)

Complete

error

message,

as

constructed

at

the

DB2

Spatial

Extender

server.

db2gse.gse_unregist_gc

Use

this

stored

procedure

to

unregister

a

geocoder

other

than

the

default

geocoder.

To

find

information

about

the

geocoder

that

you

want

to

unregister,

consult

the

DB2GSE.SPATIAL_GEOCODER

catalog

view.

Authorization:

The

user

ID

under

which

this

stored

procedure

is

invoked

must

hold

either

SYSADM

or

DBADM

authority

on

the

database

that

contains

the

geocoder

that

is

to

be

unregistered.

Deprecated

stored

procedures

Appendix

A.

Deprecated

stored

procedures

541

Parameters::

Table

89.

Input

parameter

for

the

db2gse.gse_unregist_gc

stored

procedure.

Name

Data

type

Description

gcId

INTEGER

The

identifier

of

the

geocoder

that

is

to

be

unregistered.

This

parameter

is

not

nullable.

Results:

Table

90.

Output

parameters

for

the

db2gse.gse_unregist_gc

stored

procedure.

Name

Data

type

Description

msgCode

INTEGER

Code

associated

with

the

messages

that

the

caller

of

this

stored

procedure

can

return.

msgText

VARCHAR(1024)

Complete

error

message,

as

constructed

at

the

DB2

Spatial

Extender

server.

db2gse.gse_unregist_layer

Use

this

stored

procedure

to

unregister

a

layer.

The

stored

procedure

does

this

by:

v

Removing

the

definition

of

the

layer

from

DB2

Spatial

Extender

catalog

tables.

v

Deleting

the

check

constraint

that

DB2

Spatial

Extender

placed

on

this

layer’s

base

table

to

ensure

that

the

layer’s

spatial

data

conforms

to

the

requirements

of

the

layer’s

spatial

reference

system.

v

Dropping

the

triggers

that

are

used

to

update

the

spatial

column

whenever

address

data

is

added,

changed,

or

removed.

When

address

data

in

a

table

row

is

geocoded,

the

resulting

spatial

data

is

placed

in

the

same

row.

Therefore,

if

the

row

is

deleted,

the

address

data

and

spatial

data

are

deleted

at

the

same

time.

Triggers

do

not

delete

the

spatial

data.

When

the

stored

procedure

is

processed,

information

about

the

layer

is

removed

from

the

DB2GSE.GEOMETRY_COLUMNS

catalog

view.

Authorization:

The

user

ID

under

which

this

stored

procedure

is

invoked

must

hold

one

of

the

following

authorities

or

privileges:

v

For

a

table

layer:

–

SYSADM

or

DBADM

authority

on

the

database

that

contains

this

layer’s

base

table.

–

The

CONTROL

or

ALTER

privilege

on

this

table.
v

For

a

view

layer:

–

The

SELECT

privilege

on

the

base

table

or

tables

that

contain

(1)

the

address

data

that

is

geocoded

for

this

layer

and

(2)

the

spatial

data

that

results

from

the

geocoding.

Deprecated

stored

procedures

542

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Parameters:

Table

91.

Input

parameters

for

the

db2gse.gse_unregist_layer

stored

procedure.

Name

Data

type

Description

layerSchema

VARCHAR(30)

Name

of

the

schema

to

which

the

table

specified

in

the

layerTable

parameter

belongs.

This

parameter

is

nullable.

If

you

do

not

supply

a

value

for

the

layerSchema

parameter,

it

will

default

to

the

user

ID

under

which

the

db2gse.gse_unregister_layer

stored

procedure

is

invoked.

You

must

specify

in

uppercase

any

schema

name,

table

name,

view

name,

column

name,

or

layer

name

that

you

assign

to

a

parameter.

layerTable

VARCHAR(128)

Name

of

the

table

that

contains

the

column

specified

in

the

layerColumn

parameter.

This

parameter

is

not

nullable.

layerColumn

VARCHAR(128)

Name

of

the

spatial

column

that

is

defined

as

the

layer

that

you

want

to

unregister.

This

parameter

is

not

nullable.

Only

one

layer

can

be

specified

for

the

layerColumn

parameter.

Thus,

when

you

unregister

multiple

layers

in

a

table

or

view,

you

must

execute

this

stored

procedure

separately

for

each

layer.

Results:

Table

92.

Output

parameters

for

the

db2gse.gse_unregist_layer

stored

procedure.

Name

Data

type

Description

msgCode

INTEGER

Code

associated

with

the

messages

that

the

caller

of

this

stored

procedure

can

return.

msgText

VARCHAR(1024)

Complete

error

message,

as

constructed

at

the

DB2

Spatial

Extender

server.

Restriction::

If

a

view

column

that

has

been

defined

as

a

view

layer

is

based

on

a

table

column

that

has

been

defined

as

a

table

layer,

you

cannot

unregister

this

table

layer

until

you

unregister

the

view

layer.

Deprecated

stored

procedures

Appendix

A.

Deprecated

stored

procedures

543

Index

544

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Appendix

B.

Deprecated

catalog

views

This

topic

outlines

the

deprecated

catalog

views.

Note:

Recommendation:

Develop

all

new

applications

with

the

views

defined

in

DB2

Spatial

Extender

Version

8.

All

current

applications

should

also

be

updated

to

use

the

views

defined

in

Version

8.

Applications

which

reference

the

undocumented

underlying

catalog

tables

defined

in

Version

7

will

no

longer

work

after

migrating

to

Version

8

and

should

be

modified

to

use

the

documented

Version

8

catalog

views.

DB2GSE.COORD_REF_SYS

When

you

enable

a

database

for

spatial

operations,

DB2

Spatial

Extender

registers

the

coordinate

systems

that

you

can

use

in

a

catalog

table.

Selected

columns

from

this

table

comprise

the

DB2GSE.COORD_REF_SYS

catalog

view,

which

is

described

in

the

following

table.

Table

93.

Columns

in

the

DB2GSE.COORD_REF_SYS

catalog

view

Name

Data

Type

Nullable?

Content

CSID

INTEGER

Yes

Unique

numeric

identifier

for

this

coordinate

system.

If

the

coordinate

system

was

created

using

the

V8

administration

interface,

then

no

CSID

will

be

recorded

and

null

is

used

instead

CS_NAME

VARCHAR(64)

No

Name

of

this

coordinate

system.

AUTH_NAME

VARCHAR(256)

Yes

Name

of

the

organization

that

compiled

this

coordinate

system

adheres

to;

for

example,

the

European

Petroleum

Survey

Group

(EPSG).

AUTH_SRID

INTEGER

Yes

A

numeric

identifier

assigned

to

this

coordinate

system

by

the

organization

specified

in

the

AUTH_NAME

column.

DESC

VARCHAR(256)

Yes

Description

of

this

coordinate

system.

SRTEXT

VARCHAR(2048)

No

Annotation

text

for

this

coordinate

system.

DB2GSE.GEOMETRY_COLUMNS

When

you

create

a

layer,

DB2

Spatial

Extender

registers

it

by

recording

its

identifier

and

information

relating

to

it

in

a

catalog

table.

Selected

columns

from

this

table

comprise

the

DB2GSE.GEOMETRY_COLUMNS

catalog

view,

which

is

described

in

the

following

table.

Table

94.

Columns

in

the

DB2GSE.GEOMETRY_COLUMNS

catalog

view

Name

Data

Type

Nullable?

Content

LAYER_CATALOG

VARCHAR(30)

Yes

NULL.

There

is

no

concept

of

LAYER_CATALOG

in

DB2

Spatial

Extender.

LAYER_SCHEMA

VARCHAR(30)

No

Schema

of

the

table

or

view

that

contains

the

column

that

was

registered

as

this

layer.

©

Copyright

IBM

Corp.

1998,

2004

545

Table

94.

Columns

in

the

DB2GSE.GEOMETRY_COLUMNS

catalog

view

(continued)

Name

Data

Type

Nullable?

Content

LAYER_TABLE

VARCHAR(128)

No

Name

of

the

table

or

view

that

contains

the

column

that

was

registered

as

this

layer.

LAYER_COLUMN

VARCHAR(128)

No

Name

of

the

column

that

was

registered

as

this

layer.

GEOMETRY_TYPE

INTEGER

Yes

Data

type

of

the

column

that

was

registered

as

this

layer.

If

the

column

has

a

user-defined

subtype

of

any

of

the

geometry

types

defined

by

the

spatial

extender,

then

this

value

will

be

null

SRID

INTEGER

No

Identifier

of

the

spatial

reference

system

used

for

the

values

in

the

column

that

was

registered

as

this

layer.

STORAGE_TYPE

INTEGER

Yes

NULL.

DB2GSE.SPATIAL_GEOCODER

Available

geocoders

are

registered

in

a

catalog

table.

Selected

columns

from

this

table

comprise

the

DB2GSE.SPATIAL_GEOCODER

catalog

view,

which

is

described

in

the

following

table.

Table

95.

Columns

in

the

DB2GSE.SPATIAL_GEOCODER

catalog

view

Name

Data

Type

Nullable?

Content

GCID

INTEGER

No

Numeric

identifier

of

the

geocoder.

GC_NAME

VARCHAR(64)

No

Name

identifier

of

the

geocoder.

VENDOR_NAME

VARCHAR(128)

No

Name

of

the

vendor

that

provided

the

geocoder.

PRIMARY_UDF

VARCHAR(256)

No

Fully

qualified

name

of

the

geocoder.

PRECISION_LEVEL

INTEGER

No

The

degree

to

which

source

data

must

match

corresponding

reference

data

in

order

to

be

processed

successfully

by

the

geocoder.

VENDOR_SPECIFIC

VARCHAR(256)

Yes

Path

to,

and

name

of,

a

file

a

vendor

can

use

to

set

any

special

parameters

the

geocoder

supports.

GEO_AREA

VARCHAR(256)

Yes

Geographical

area

containing

the

locations

to

be

geocoded.

DESCRIPTION

VARCHAR(256)

Yes

Description

of

the

geocoder.

DB2GSE.SPATIAL_REF_SYS

When

you

create

a

spatial

reference

system,

DB2

Spatial

Extender

registers

it

by

recording

its

identifier

and

information

related

to

it

in

a

catalog

table.

Selected

columns

from

this

table

comprise

the

DB2GSE.SPATIAL_REF_SYS

catalog

view,

which

is

described

in

the

following

table.

Table

96.

Columns

in

the

DB2GSE.SPATIAL_REF_SYS

catalog

view

Name

Data

Type

Nullable?

Content

SRID

INTEGER

No

User-defined

identifier

for

this

spatial

reference

system.

SR_NAME

VARCHAR(64)

No

Name

of

this

spatial

reference

system.

Deprecated

catalog

views

546

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Table

96.

Columns

in

the

DB2GSE.SPATIAL_REF_SYS

catalog

view

(continued)

Name

Data

Type

Nullable?

Content

CSID

INTEGER

No

Numeric

identifier

for

the

coordinate

system

that

underlies

this

spatial

reference

system.

CS_NAME

VARCHAR(64)

No

Name

of

the

coordinate

system

that

underlies

this

spatial

reference

system.

AUTH_NAME

VARCHAR(256)

Yes

Name

of

the

organization

that

sets

the

standards

for

this

spatial

reference

system.

AUTH_SRID

INTEGER

Yes

The

identifier

that

the

organization

specified

in

the

AUTH_NAME

column

assigns

to

this

spatial

reference

system.

SRTEXT

VARCHAR(2048)

No

Annotation

text

for

this

spatial

reference

system.

FALSEX

FLOAT

No

A

number

that,

when

subtracted

from

a

negative

X

coordinate

value,

leaves

a

non-negative

number

(that

is,

a

positive

number

or

a

zero).

FALSEY

FLOAT

No

A

number

that,

when

subtracted

from

a

negative

Y

coordinate

value,

leaves

a

non-negative

number

(that

is,

a

positive

number

or

a

zero).

XYUNITS

FLOAT

No

A

number

that,

when

multiplied

by

a

decimal

X

coordinate

or

a

decimal

Y

coordinate,

yields

an

integer

that

can

be

stored

as

a

32–bit

data

item.

FALSEZ

FLOAT

No

A

number

that,

when

subtracted

from

a

negative

Z

coordinate

value,

leaves

a

non-negative

number

(that

is,

a

positive

number

or

a

zero).

ZUNITS

FLOAT

No

A

number

that,

when

multiplied

by

a

decimal

Z

coordinate,

yields

an

integer

that

can

be

stored

as

a

32–bit

data

item.

FALSEM

FLOAT

No

A

number

that,

when

subtracted

from

a

negative

measure,

leaves

a

non-negative

number

(that

is,

a

positive

number

or

a

zero).

MUNITS

FLOAT

No

A

number

that,

when

multiplied

by

a

decimal

measure,

yields

an

integer

that

can

be

stored

as

a

32–bit

data

item.

Deprecated

catalog

views

Appendix

B.

Deprecated

catalog

views

547

Deprecated

catalog

views

548

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Appendix

C.

Deprecated

spatial

functions

This

topic

outlines

the

functions

have

been

deprecated.

The

table

below

lists

all

the

deprecated

spatial

functions

and

the

new

replacement

functions

for

Version

8.

Table

97.

The

deprecated

functions

and

their

new

counterparts.

Deprecated

function

New

Function

AsShape

ST_AsShape

GeometryFromShape

ST_Geometry

Is3D

ST_Is3D

IsMeasured

ST_IsMeasured

LineFromShape

ST_Linestring

LocateAlong

ST_FindMeasure

LocateBetween

ST_MeasureBetween

M

ST_M

MLine

FromShape

ST_MultiLineString

MPointFromShape

ST_MultiPoint

MPolyFromShape

ST_MultiPolygon

PointFromShape

ST_Point

PolyFromShape

ST_Polygon

ShapeToSQL

ST_Geometry

ST_GeomFromText

ST_Geometry

ST_GeomFromWKB

ST_Geometry

ST_LineFromText

ST_LineString

ST_LineFromWKB

ST_LineString

ST_MLineFromText

ST_MultiLineString

ST_MLineFromWKB

ST_MultiLineString

ST_MPointFromText

ST_MultiPoint

ST_MPointFromWKB

ST_MultiPoint

ST_MPolyFromText

ST_MultiPolygon

ST_MPolyFromWKB

ST_MultiPolygon

ST_OrderingEquals

ST_Point(Double,

Double,

db2gse.coordref)

ST_Point(Double,

Double,

Integer)

ST_PointFromText

ST_Point

ST_PolyFromText

ST_Polygon

ST_PolyFromWKB

ST_Polygon

ST_Transform(Double,

Double,

db2gse.coordref)

ST_Transform(ST_Geometry,

Integer)

ST_SymmetricDiff

ST_SymDifference

Z

ST_Z

©

Copyright

IBM

Corp.

1998,

2004

549

||

AsShape

Purpose:

AsShape

takes

a

geometry

object

and

returns

a

BLOB.

Format:

db2gse.AsShape(g

db2gse.ST_Geometry)

Results:

BLOB(1m)

GeometryFromShape

Purpose:

GeometryFromShape

takes

a

shape

and

a

spatial

reference

system

identifier

to

return

a

geometry

object.

Format:

db2gse.GeometryFromShape(ShapeGeometry

Blob(1M),

SRID

db2gse.coordref)

Results:

db2gse.ST_Geometry

Is3d

Purpose:

Is3d

takes

a

geometry

object

and

returns

1

if

the

object

has

3D

coordinates;

otherwise,

it

returns

0.

Format:

db2gse.Is3d(g

db2gse.ST_Geometry)

Results:

Integer

IsMeasured

Purpose:

IsMeasured

takes

a

geometry

object

and

returns

1

if

the

object

has

measures;

otherwise

it

returns

0.

Format:

Deprecated

spatial

functions

550

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

|

db2gse.IsMeasured(g

db2gse.ST_Geometry)

Results:

Integer

LineFromShape

Purpose:

LineFromShape

takes

a

shape

of

type

point

and

a

spatial

reference

system

identifier

and

returns

a

linestring.

Format:

db2gse.Line

FromShape(ShapeLineString

Blob(1M),

SRID

db2gse.coordref)

Results:

db2gse.ST_LineString

LocateAlong

Purpose:

LocateAlong

takes

a

geometry

object

and

a

measure

to

return

as

a

multipoint

the

set

of

points

found

at

the

measure.

If

LocateAlong

is

given

a

multipoint

and

a

measure

as

input,

and

if

the

multipoint

does

not

include

this

measure,

then

LocateAlong

returns

POINT

EMPTY.

Format:

db2gse.LocateAlong(g

db2gse.ST_Geometry,

measure

Double)

Results:

db2gse.ST_Geometry

LocateBetween

Purpose:

LocateBetween

takes

a

geometry

object

and

two

measure

locations

and

returns

a

geometry

that

represents

the

set

of

disconnected

paths

between

the

two

measure

locations.

Format:

db2gse.LocateBetween(g

db2gse.ST_Geometry,

measure

Double,

measure

Double)

Results:

db2gse.ST_Geometry

Deprecated

spatial

functions

Appendix

C.

Deprecated

spatial

functions

551

M

Purpose:

M

takes

a

point

and

returns

its

measure.

Format:

db2gse.M(p

db2gse.ST_Point)

Results:

Double

MLine

FromShape

Purpose:

MLine

FromShape

takes

a

shape

of

type

multilinestring

and

a

spatial

reference

system

identifier

and

returns

a

multilinestring.

Format:

db2gse.MLineFromShape(ShapeMultiLineString

Blob(1M),

SRID

db2gse.coordref)

Results:

db2gse.ST_MultiLineString

MPointFromShape

Purpose:

MPointFromShape

takes

a

shape

of

type

multipoint

and

a

spatial

reference

system

identifier

to

return

a

multipoint.

Format:

db2gse.MPointFromShape(ShapeMultiPoint

BLOB(1M),

SRID

db2gse.coordref)

Results:

db2gse.ST_MultiPoint

MPolyFromShape

Purpose:

MPolyFromShape

takes

a

shape

of

type

multipolygon

and

a

spatial

reference

system

identifier

to

return

a

multipolygon.

Format:

Deprecated

spatial

functions

552

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

db2gse.MPolyFromShape(ShapeMultiPolygon

Blob(1m),

SRID

db2gse.coordref)

Results:

db2gse.ST_MultiPolygon

PointFromShape

Purpose:

PointFromShape

takes

a

shape

of

type

point

and

a

spatial

reference

system

identifier

to

return

a

point.

Format:

db2gse.PointFromShape(db2gse.ShapePoint

blob(1M),

SRID

db2gse.coordref)

Results:

db2gse.ST_Point

PolyFromShape

Purpose:

PolyFromShape

takes

a

shape

of

type

polygon

and

a

spatial

reference

system

identifier

to

return

a

polygon.

Format:

db2gse.PolyFromShape

(ShapePolygon

Blob(1M),

SRID

db2gse.coordref)

Results:

db2gse.ST_Polygon

ShapeToSQL

Purpose:

ShapeToSQL

constructs

a

db2gse.ST_Geometry

value

given

its

shape

representation.

The

SRID

value

of

0

is

automatically

used.

Format:

db2gse.ShapeToSQL(ShapeGeometry

blob(1M))

Results:

db2gse.ST_Geometry

Deprecated

spatial

functions

Appendix

C.

Deprecated

spatial

functions

553

ST_GeomFromText

Purpose:

ST_GeomFromText

takes

a

well-known

text

representation

and

a

spatial

reference

system

identifier

and

returns

a

geometry

object.

Format:

db2gse.ST_GeomFromText(geometryTaggedText

Varchar(4000),

SRID

db2gse.coordref)

Results:

db2gse.ST_Geometry

ST_GeomFromWKB

Purpose:

ST_GeomFromWKB

takes

a

well-known

binary

representation

and

a

spatial

reference

system

identifier

and

returns

a

geometry

object.

Format:

db2gse.ST_GeomFromWKB(WKBGeometry

Blob(1M),

SRID

db2gse.coordref)

Results:

db2gse.ST_Geometry

ST_LineFromText

Purpose:

ST_LineFromText

takes

a

well-known

text

representation

of

type

linestring

and

a

spatial

reference

system

identifier

and

returns

a

linestring.

Format:

db2gse.ST_LineFromText(lineStringTaggedText

Varchar(4000),

SRID

db2gse.coordref)

Results:

db2gse.ST_LineString

ST_LineFromWKB

Purpose:

Deprecated

spatial

functions

554

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

ST_LineFromWKB

takes

a

well-known

binary

representation

of

the

type

linestring

and

a

spatial

reference

system

identifier,

and

returns

a

linestring.

Format:

db2gse.ST_LineFromWKB(WKBLineString

Blob(1M),

SRID

db2gse.coordref)

Results:

db2gse.ST_LineString

ST_MLineFromText

Purpose:

ST_MLineFromText

takes

a

well-known

text

representation

of

type

multilinestring

and

a

spatial

reference

system

identifier

and

returns

a

multilinestring.

Format:

db2gse.ST_MLineFromText(multiLineStringTaggedText

String,

SRID

db2gse.coordref)

Results:

db2gse.ST_MultiLineString

ST_MLineFromWKB

Purpose:

ST_MLineFromWKB

takes

a

well-known

binary

representation

of

type

multilinestring

and

a

spatial

reference

system

identifier

and

returns

a

multilinestring.

Format:

db2gse.ST_MLineFromWKB(WKBMultiLineString

Blob(1M),

SRID

db2gse.coordref)

Results:

db2gse.ST_MultiLineString

ST_MPointFromText

Purpose:

ST_MPointFromText

takes

a

well-known

text

representation

of

type

multipoint

and

a

spatial

reference

system

identifier

and

returns

a

multipoint.

Format:

db2gse.ST_MPointFromText(multiPointTaggedText

Varchar(4000),

SRID

db2gse.coordref)

Deprecated

spatial

functions

Appendix

C.

Deprecated

spatial

functions

555

Results:

db2gse.ST_MultiPoint

ST_MPointFromWKB

Purpose:

ST_MPointFromWKB

takes

a

well-known

binary

representation

of

type

multipoint

and

a

spatial

reference

system

identifier

to

return

a

multipoint.

Format:

db2gse.ST_MPointFromWKB(WKBMultiPoint

Blob(1M),

SRID

db2gse.coordref)

Results:

db2gse.ST_MultiPoint

ST_MPolyFromText

Purpose:

ST_MPolyFromText

takes

a

well-known

text

representation

of

type

multipolygon

and

a

spatial

reference

system

identifier

and

returns

a

multipolygon.

This

function

cannot

take

as

input

a

multipolygon

that

contains

multiple

polygons

with

the

same

coordinates.

Format:

db2gse.ST_MPolyFromText(multiPolygonTaggedText

Varchar(4000),

SRID

db2gse.coordref)

Results:

db2gse.ST_MultiPolygon

ST_MPolyFromWKB

Purpose:

ST_MPolyFromWKB

takes

a

well-known

binary

representation

of

type

multipolygon

and

a

spatial

reference

system

identifier

and

returns

a

multipolygon.

Format:

db2gse.ST_MPolyFromWKB(WKBMultiPolygon

Blob(1M),

SRID

db2gse.coordref)

Results:

db2gse.ST_MultiPolygon

Deprecated

spatial

functions

556

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

ST_OrderingEquals

Purpose:

ST_OrderingEquals

compares

two

geometries

and

returns

1

(TRUE)

if

the

geometries

are

equal

and

the

coordinates

are

in

the

same

order;

otherwise

it

returns

0

(FALSE).

Format:

db2gse.ST_OrderingEquals(g1

db2gse.ST_Geometry,

g2

db2gse.ST_Geometry)

Results:

Integer

ST_Point

Purpose:

ST_Point

returns

an

ST_Point,

given

an

x-coordinate,

y-coordinate,

and

spatial

reference.

Format:

db2gse.ST_Point(X

Double,

Y

Double,

SRID

db2gse.coordref)

Results:

db2gse.ST_Point

ST_PointFromText

Purpose:

ST_PointFromText

takes

a

well-known

text

representation

of

type

point

and

a

spatial

reference

system

identifier

and

returns

a

point.

Format:

db2gse.ST_PointFromText(pointTaggedText

Varchar(4000),

SRID

db2gse.coordref)

Results:

db2gse.ST_Point

ST_PolyFromText

Purpose:

Deprecated

spatial

functions

Appendix

C.

Deprecated

spatial

functions

557

ST_PolyFromText

takes

a

well-known

text

representation

of

type

polygon

and

a

spatial

reference

system

identifier

and

returns

a

polygon.

Format:

db2gse.ST_PolyFromText(polygonTaggedText

Varchar(4000),

SRID

db2gse.coordref)

Results:

db2gse.ST_Polygon

ST_PolyFromWKB

Purpose:

ST_PolyFromWKB

takes

a

well-known

binary

representation

of

type

polygon

and

a

spatial

reference

system

identifier

to

return

a

polygon.

Format:

db2gse.ST_PolyFromWKB(WKBPolygon

Blob(1M),

SRID

db2gse.coordref)

Results:

db2gse.ST_Polygon

ST_Transform

Purpose:

ST_Transform

associates

a

geometry

to

a

spatial

reference

system

other

than

the

spatial

reference

system

to

which

the

geometry

is

currently

associated.

Format:

db2gse.ST_Transform(g

db2gse.ST_Geometry,

SRID

db2gse.coordref)

Results:

db2gse.ST_Geometry

ST_SymmetricDiff

Purpose:

ST_SymmetricDiff

takes

two

geometry

objects

and

returns

a

geometry

object

that

is

the

symmetrical

difference

of

the

source

objects.

The

ST_SymmetricDiff

function

returns

the

symmetric

difference

(the

Boolean

logical

XOR

of

space)

of

two

intersecting

geometries

that

have

the

same

dimension.

If

these

geometries

are

equal,

ST_SymmetricDiff

returns

an

empty

geometry.

If

they

are

not

equal,

then

a

portion

of

one

or

both

of

them

will

lie

outside

the

area

of

intersection.

ST_SymmetricDiff

returns

the

non-intersection

portion

or

portions

as

a

collection;

for

example,

as

a

multipolygon.

Deprecated

spatial

functions

558

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

If

ST_SymmetricDiff

is

given

geometries

of

different

dimensions

as

input,

it

returns

a

null.

Format:

db2gse.ST_SymmetricDiff(g1

db2gse.ST_Geometry,

g2

db2gse.ST_Geometry)

Results:

db2gse.ST_Geometry

Z

Purpose:

Z

takes

a

point

and

returns

its

Z

coordinate.

Format:

db2gse.Z(p

db2gse.ST_Point)

Results:

Double

Related

reference:

v

“ST_AsShape”

on

page

340

v

“ST_MeasureBetween,

ST_LocateBetween”

on

page

420

v

“ST_EnvIntersects”

on

page

368

v

“ST_FindMeasure

or

ST_LocateAlong”

on

page

374

v

“ST_Geometry”

on

page

382

v

“ST_Is3d”

on

page

395

v

“ST_LineString”

on

page

407

v

“ST_M”

on

page

409

v

“ST_MultiLineString”

on

page

437

v

“ST_MultiPoint”

on

page

439

v

“ST_MultiPolygon”

on

page

440

v

“ST_Point”

on

page

452

v

“ST_Polygon”

on

page

462

v

“ST_SymDifference”

on

page

471

v

“ST_Transform”

on

page

482

v

“ST_Z”

on

page

492

Deprecated

spatial

functions

Appendix

C.

Deprecated

spatial

functions

559

Deprecated

spatial

functions

560

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Notices

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country/region

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country/region

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY,

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions;

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product,

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

1998,

2004

561

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

that

has

been

exchanged,

should

contact:

IBM

Canada

Limited

Office

of

the

Lab

Director

8200

Warden

Avenue

Markham,

Ontario

L6G

1C7

CANADA

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems,

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurements

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements,

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility,

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious,

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

may

contain

sample

application

programs,

in

source

language,

which

illustrate

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work

must

include

a

copyright

notice

as

follows:

562

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

_enter

the

year

or

years_.

All

rights

reserved.

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both,

and

have

been

used

in

at

least

one

of

the

documents

in

the

DB2

UDB

documentation

library.

ACF/VTAM

AISPO

AIX

AIXwindows

AnyNet

APPN

AS/400

BookManager

C

Set++

C/370

CICS

Database

2

DataHub

DataJoiner

DataPropagator

DataRefresher

DB2

DB2

Connect

DB2

Extenders

DB2

OLAP

Server

DB2

Information

Integrator

DB2

Query

Patroller

DB2

Universal

Database

Distributed

Relational

Database

Architecture

DRDA

eServer

Extended

Services

FFST

First

Failure

Support

Technology

IBM

IMS

IMS/ESA

iSeries

LAN

Distance

MVS

MVS/ESA

MVS/XA

Net.Data

NetView

OS/390

OS/400

PowerPC

pSeries

QBIC

QMF

RACF

RISC

System/6000

RS/6000

S/370

SP

SQL/400

SQL/DS

System/370

System/390

SystemView

Tivoli

VisualAge

VM/ESA

VSE/ESA

VTAM

WebExplorer

WebSphere

WIN-OS/2

z/OS

zSeries

The

following

terms

are

trademarks

or

registered

trademarks

of

other

companies

and

have

been

used

in

at

least

one

of

the

documents

in

the

DB2

UDB

documentation

library:

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

Intel

and

Pentium

are

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Notices

563

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

or

service

names

may

be

trademarks

or

service

marks

of

others.

564

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Index

Numerics
180th

meridian
geometries

that

cross

193

minimum

bounding

circles

that

cross

202

180th

meridian,

lines

that

cross

193

A
administration

notification

log

149

aggregate

function
spatial

columns

331,

494

AIX
installing

DB2

Spatial

Extender

27

analyzing

indexes
using

Index

Advisor

108

angular

units
coordinate

systems

513

APP_CTL_HEAP_SZ

parameter,

tuning

45

APPLHEAPSZ

configuration

parameter
tuning

45

application

control

heap

size

configuration

parameter

45

application

heap

size

parameter

(APPLHEAPSZ)

45

applications
sample

program

131

spatial

129

spatial

applications
including

header

files

129

Spatial

Extender
calling

stored

procedures

130

ArcExplorer
using

as

interface

117

AsShape,

deprecated

spatial

function

549

automatic

geocoding

88,

92

azimuthal

projections

60

B
batch

geocoding

88

C
catalog

views
ST_COORDINATE_

SYSTEMS

275

ST_GEOCODER_

PARAMETERS

277

ST_GEOCODERS

279

ST_GEOCODING

279

ST_GEOCODING_

PARAMETERS

280

ST_GEOMETRY_

COLUMNS

276

ST_SIZINGS

282

ST_SPATIAL_

REFERENCE_SYSTEMS

283

ST_UNITS_OF_

MEASURE

285

columns
spatial

data

in

79

command

line

processor

(CLP)
messages

145

Spatial

Extender

commands

121

commands
db2se

121

comparison

functions
container

relationships

298

DE-9IM

pattern

matrix

string

308

geometry

envelopes

306

identical

geometries

306

intersections

between

geometries

301,

307

overview

295

configuration

parameters
spatial

applications
tuning

45

values

45

conformal

projections

60

constructor

functions
ESRI

shape

representation

294

Geography

Markup

Language

(GML)

representation

294

overview

288

well-known

binary

representation

293

well-known

text

representation

291

Control

Center
messages

146

conversions
improve

processing

coordinates

68

spatial

data

between

coordinate

systems

324

COORD_REF_SYS

spatial

catalog

view,

deprecated

545

coordinate

reference

system
latitude

and

longitude

153

coordinate

systems
creating

61

overview

55

selecting

61

ST_COORDINATE_

SYSTEMS

catalog

view

275

ST_SPATIAL_

REFERENCE_SYSTEMS

catalog

view

283

supported

513

coordinates
conversion

in

spatial

reference

system

63

conversions

to

improve

performance

68

finding

minimum

and

maximum

69

obtaining

309

spatial

reference

systems

63

CREATE

INDEX

statement
geodetic

Voronoi

index

176

spatial

grid

index

104

creating
geodetic

Voronoi

indexes

174

spatial

grid

indexes

102

D
data

formats
Geography

Markup

Language

(GML)

510

shape

representation

510

well-known

binary

(WKB)

representation

508

well-known

text

(WKT)

representation

503

data

maps
Spatial

Extender

40

data-type

information,

obtaining

309

database
enabling

spatial

operations

50

migrating

spatial

data

41

database

configuration

parameters
spatial

applications
APP_CTL_HEAP_SZ

parameter

45

APPLHEAPSZ

parameter

45

LOGFILSZ

parameter

45

LOGPRIMARY

parameter

45

LOGSECOND

parameter

45

tuning

45

database

manager

configuration
parameter,

tuning

for

spatial

applications

45

databases
configuring

for

spatial

applications

45

enabling

for

spatial

operations
overview

49

setting

up

for

spatial

applications

45

datum
geodetic

153,

154

in

coordinate

system

definition

216

DB2

Geodetic

Extender
spatial

functions

supported

202

db2se

commands

121

db2trc

command

148

DE_HDN

_SRS_1004
spatial

reference

system

66

DEFAULT

_SRS
spatial

reference

system

66

default

spatial

reference

systems

64

degrees
latitude

and

longitude

155

distance
along

a

geodesic

156

ST_Distance

function

359

distance

information

for

geometries

323

E
ellipsoids

Geodetic

Extender

216

enabling
spatial

operations

49,

50

enabling

Geodetic

license

161

equal-area

projections

60

©

Copyright

IBM

Corp.

1998,

2004

565

equator

155

equatorial

belt
polygons

representing

193

equidistant

projections

60

exporting

data
data

SDE

transfer

files

87

shape

files

87

extents
creating

a

spatial

reference

system

using

69

F
factors,

conversion
coordinates

68

formulas

used

in

geocoding

68

function

messages

143

functions
spatial

data-exchange

format

conversions

287

overview

287

G
GCS_NORTH

_AMERICAN

_1927
coordinate

system

66

GCS_NORTH

_AMERICAN

_1983
coordinate

system

66

GCS_WGS

_1984
coordinate

system

66

GCSW

_DEUTSCHE

_HAUPTDRE

IECKSNETZ
coordinate

system

66

geocoders
overview

88

reference

data

38

registering

51

running

in

batch

mode

93

ST_GEOCODER_

PARAMETERS

catalog

view

277

ST_GEOCODERS

catalog

view

279

ST_GEOCODING

catalog

view

279

ST_GEOCODING_

PARAMETERS

catalog

view

280

ST_SIZINGS

catalog

view

282

geocoding
batch

mode

93

overview

88

setting

up

90

geodesic
definition

156

example

193

Geodesy

153

geodetic

behavior
ST_Area

334

ST_Buffer

343

ST_Contains

349

ST_Difference

354

ST_Distance

359

ST_Generalize

375

ST_Intersection

391

ST_Intersects

393

ST_Length

403

ST_Perimeter

449

geodetic

behavior

(continued)
ST_SymDifference

471

ST_Union

484

ST_Within

486

geodetic

data
description

4

populating

tables

with

169

geodetic

datum

154

geodetic

datums
coordinate

systems

513

description

153

ST_SPATIAL_

REFERENCE_SYSTEMS

283

Geodetic

Extender
description

153

differences

193

ellipsoids

216

setting

up

161

spatial

catalog

views

supported

207

spatial

stored

procedures

supported

207

ST_Geometry

attributes

193

when

to

use

154

geodetic

latitude

155

geodetic

longitude

155

geodetic

polygons

157

geodetic

regions
description

157

geodetic

spatial

reference

system

(SRS)
description

63

geodetic

spatial

reference

system

ID
ST_create_srs

231

geodetic

spatial

reference

systems

153

geodetic

Voronoi

indexes
compared

to

spatial

grid

indexes

95

CREATE

INDEX

statement

176

creating

174

exploiting

118

functions

that

exploit

171

selecting

alternate

Voronoi

structure

173

geographic

coordinate

system

55

geographic

extents,

defining

69

geographic

features
description

3

represented

by

data

4

Geographic

Markup

Language

(GML),

data

format

510

geometries
client-server

data

transfer

497

generating

new
based

on

existing

measures

321

conversion

of

one

to

another

316

modified

forms

322

new

space

configurations

316

one

from

many

320

overview

315

overview

9

properties
overview

11

See

also

″Spatial

functions,

properties

of

geometries″

309

spatial

data

8

GEOMETRY_COLUMNS,

spatial

deprecated

catalog

view

545

GeometryFromShape,

deprecated

spatial

function

549

GET

GEOMETRY

command
syntax

112

grid

indexes
creating

102

overview

96

tuning

106

gse_disable_autogc

deprecated

spatial

stored

procedure

523

gse_disable_autogc

stored

procedure

237

gse_disable_db

stored

procedure

239

gse_disable_sref

spatial

deprecated

stored

procedure

523

gse_disable_sref

stored

procedure

242

gse_enable_autogc

deprecated

spatial

stored

procedure

523

gse_enable_autogc

stored

procedure

243

gse_enable_db

deprecated

spatial

stored

procedure

523

gse_enable_db

stored

procedure

245

gse_enable_idx

deprecated

spatial

stored

procedure

523

gse_enable_sref

deprecated

spatial

stored

procedure

523

gse_enable_sref

stored

procedure

231

GSE_export_sde

stored

procedure

220

gse_export_shape

247

gse_import_sde

stored

procedure

222

GSE_import_sde

stored

procedure

222

gse_import_shape

deprecated

spatial

stored

procedure

523

gse_import_shape

stored

procedure

250

gse_register_gc

deprecated

spatial

stored

procedure

523

gse_register_gc

stored

procedure

258

gse_register_layer

deprecated

spatial

stored

procedure

523

gse_register_layer

stored

procedure

262

gse_run_gc

deprecated

spatial

stored

procedure

523

gse_run_gc

stored

procedure

265

gse_unregist_gc

deprecated

spatial

stored

procedure

523

gse_unregist_gc

stored

procedure

271

gse_unregist_layer

deprecated

spatial

stored

procedures

523

gse_unregist_layer

stored

procedure

273

gseidx

command
analyzing

spatial

index

statistics

108

determining

grid

sizes

106

H
h

header

file

129

hardware

requirements
Spatial

Extender

24

header

file,

including

DB2

Spatial

Extender

129

hemispheres
polygons

representing

193

HP-UX
installing

DB2

Spatial

Extender

28

Index

566

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

I
importing

SDE

transfer

data

85

shape

data

84

Index

Advisor
analyzing

spatial

index

statistics

108

determining

grid

sizes

106

GET

GEOMETRY

command

to

invoke

112

purpose

96,

106

when

to

use

98

index

information

for

geometries

324

indexes
analyzing

spatial

index

statistics

108

CREATE

INDEX

statement

for

geodetic

Voronoi

176

CREATE

INDEX

statement

for

spatial

grid

104

creating

a

geodetic

Voronoi

174

creating

a

spatial

grid

102

determining

grid

sizes

106

geodetic

Voronoi

cell

structure

173

Index

Advisor

command

112

spatial

grid

index

96

installing
DB2

Spatial

Extender
AIX

27

hardware

and

software

requirements

24

HP-UX

28

Linux

and

Linux

390

32

Solaris

Operating

Environment

30

verifying

36

Windows

25

instances,

creating

34

Spatial

Extender

23

instances
creating

34

interfaces
creating

a

spatial

reference

system

69

DB2

Spatial

Extender

15

Is3d,

deprecated

spatial

function

549

IsMeasured,

deprecated

spatial

function

549

L
latitude,

geodetic
definition

of

155

license
for

Geodetic

Extender

161

linear

units
coordinate

systems

513

LineFromShape,

deprecated

spatial

function

549

linestrings

9

LocateAlong

deprecated

spatial

function

549

LocateBetween

deprecated

spatial

function

549

LOGFILSIZ

configuration

parameter

45

LOGPRIMARY

configuration

parameter

45

logs
diagnostic

149

LOGSECOND

configuration

parameter
tuning

45

longitude,

geodetic
definition

of

155

M
M,

deprecated

spatial

function

549

map

projections
coordinate

systems

513

maps,

geographic
samples

provided

with

product

40

measure

information,

obtaining

309

meridian

155

messages
Control

Center

146

functions

143

migration

information

145

shape

information

145

Spatial

Extender
CLP

145

parts

of

139

stored

procedures

141

migrate_v82

command
description

42

migration
Spatial

Extender

41,

42

minimum

bounding

circle

(MBC)
definition

171

spatial

functions

results

202

ST_Geometry

attributes

193

minimum

bounding

rectangle

(MBR)
definition

11

Minimum

bounding

rectangle

(MBR)
use

in

spatial

grid

indexes

96

MLineFromShape,

deprecated

spatial

function

549

MPointFromShape,deprecated

spatial

function

549

MPolyFromShape,

deprecated

spatial

function

549

multilinestrings,

Spatial

Extender

homogeneous

collection

9

multipliers

to

improve

performance
processing

coordinates

68

multipoints,

Spatial

Extender

homogeneous

collection

9

multipolygons,

Spatial

Extender

homogeneous

collection

9

N
NAD27_

SRS_1002
spatial

reference

system

66

NAD83_

SRS_1
spatial

reference

system

66

O
offset

values
calculating

for

new

spatial

reference

system

69

overview

68

P
performance

coordinate-data

conversions

68

PointFromShape,

deprecated

spatial

function

549

points

9

poles
polygons

enclosing

193

polygons
defining

geodetic

regions

157

geometry

type

9

prime

meridian

155

prime

meridians
coordinate

systems

513

programming

considerations
Spatial

Extender

sample

program

129

projected

coordinate

system

55

projected

coordinate

systems

60

properties

of

geometries
overview

11

spatial

functions

for

309

boundary

information

313

configuration

information

314

coordinate

and

measure

information

309

data-type

information

309

dimensional

information

314

geometries

within

a

geometry

311

spatial

reference

system

315

Q
queries

spatial

functions

to

perform

117

spatial

indexes,

exploiting

118

spatial,

interfaces

to

submit

117

R
reference

data
DB2

Spatial

Extender

50

setting

up

access

51

geocoders

38

registering
geocoders

51

spatial

columns

80

rings
defining

geodetic

regions

157

description

11

S
sample

data
Spatial

Extender

40

samples
Spatial

Extender

131

scale

factors
calculating

for

new

spatial

reference

system

69

overview

68

scenarios
Spatial

Extender

setup

15

SDE

transfer

files
exporting

data

to

87

Index

Index

567

SDE

transfer

files

(continued)
importing

data

from

85

setting

up
DB2

Spatial

Extender

23

settings
automatic

geocoding

92

geocoding

operation

90

shape

data,

importing

84

shape

files
exporting

data

to

87

shape

representation,

data

format

510

ShapeToSQL,

deprecated

spatial

function

549

software

requirements
Spatial

Extender

24

Solaris

Operating

Environment
installing

DB2

Spatial

Extender

30

spatial

applications
including

header

files

129

stored

procedures
calling

from

applications

130

spatial

catalog

views
supported

by

Geodetic

Extender

207

spatial

catalog

views,

deprecated
COORD_REF_SYS

545

GEOMETRY_COLUMNS

545

SPATIAL_GEOCODER

545

SPATIAL_REF_SYS

545

spatial

columns
creating

79

geocoding

88

populating

with

geodetic

data

169

registering

with

spatial

reference

system

80

using

views

to

access

115

spatial

data
columns

77

data

types

77

description

3,

4

exporting

83

geocoding

88

importing

83

retrieving

and

analyzing
exploiting

indexes

118

functions

117

interfaces

117

ST_GEOMETRY_

COLUMNS

276

transferring

from

client

to

server

497

using

8

Spatial

Extender
enabling

50

installation

32

reference

data

50

setting

up

access

51

spatial

reference

systems

supplied

with

66

when

to

use

154

spatial

extent
definition

63

spatial

functions
associated

data

types

325

comparisons

of

geometries
container

relationships

298

DE-9IM

pattern

matrix

string

308

geometry

envelopes

306

identical

geometries

306

spatial

functions

(continued)
comparisons

of

geometries

(continued)
intersections

301,

307

overview

295

considerations

325

converting

geometries

287

data

conversions

between

coordinate

systems

324

data-exchange

format

conversions
ESRI

shape

representation

294

Geography

Markup

Language

(GML)

representation

294

overview

288

well-known

binary

representation

293

well-known

text

representation

291

deprecated

549

distance

information

323

EnvelopesIntersect

329

examples

117

generating

new

geometries
based

on

existing

measures

321

conversion

of

one

to

another

316

modified

forms

322

new

space

configurations

316

one

from

many

320

overview

315

geodetic

difference

in

behavior

202

index

information

324

MBR

aggregate

331

overview

287

properties

of

geometries

309

boundary

information

313

configuration

information

314

coordinate

and

measure

information

309

data-type

information

309

dimensional

information

314

geometries

within

a

geometry

311

spatial

reference

system

315

ST_AppendPoint

333

ST_Area

334

ST_AsBinary

337

ST_AsGML

339

ST_AsShape

340

ST_AsText

341

ST_Boundary

342

ST_Buffer

343

ST_Centroid

346

ST_ChangePoint

347

ST_Contains

349

ST_ConvexHull

350

ST_CoordDim

352

ST_Crosses

353

ST_Difference

354

ST_Dimension

356

ST_Disjoint

357

ST_Distance

359

ST_Edge_GC_USA

362

ST_Endpoint

366

ST_Envelope

367

ST_EnvIntersects

368

ST_EqualCoordsys

369

ST_Equals

370

ST_EqualSRS

372

ST_ExteriorRing

373

spatial

functions

(continued)
ST_FindMeasure

ST_LocateAlong

374

ST_Generalize

375

ST_GeomCollection

377

ST_GeomCollFromTxt

379

ST_GeomCollFromWKB

380

ST_Geometry

382

ST_GeometryN

383

ST_GeometryType

385

ST_GeomFromText

385

ST_GeomFromWKB

387

ST_GetIndexParms

388

ST_InteriorRingN

390

ST_Intersection

391

ST_Intersects

393

ST_Is3d

395

ST_IsClosed

396

ST_IsEmpty

397

ST_IsMeasured

398

ST_IsRing

399

ST_IsSimple

400

ST_IsValid

402

ST_Length

403

ST_LineFromText

404

ST_LineFromWKB

405

ST_LineString

407

ST_LineStringN

408

ST_LocateAlong
ST_FindMeasure

374

ST_LocateBetween
ST_MeasureBetween

420

ST_M

409

ST_MaxM

411

ST_MaxX

412

ST_MaxY

414

ST_MaxZ

415

ST_MBR

417

ST_MBRIntersects

418

ST_MeasureBetween
ST_LocateBetween

420

ST_MidPoint

421

ST_MinM

422

ST_MinX

424

ST_MinY

425

ST_MinZ

426

ST_MLineFromText

428

ST_MLineFromWKB

429

ST_MPointFromText

431

ST_MPointFromWKB

432

ST_MPolyFromText

434

ST_MPolyFromWKB

435

ST_MultiLineString

437

ST_MultiPoint

439

ST_MultiPolygon

440

ST_NumGeometries

442

ST_NumInteriorRing

443

ST_NumLineStrings

444

ST_NumPoints

445

ST_NumPolygons

446

ST_Overlaps

447

ST_Perimeter

449

ST_PerpPoints

450

ST_Point

452

ST_PointFromText

455

ST_PointFromWKB

456

ST_PointN

458

Index

568

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

spatial

functions

(continued)
ST_PointOnSurface

459

ST_PolyFromText

460

ST_PolyFromWKB

461

ST_Polygon

462

ST_PolygonN

465

ST_Relate

466

ST_RemovePoint

467

ST_SRID
ST_SrsId

468

ST_SrsID
ST_SRID

468

ST_SrsName

469

ST_StartPoint

470

ST_SymDifference

471

ST_ToGeomColl

474

ST_ToLineString

475

ST_ToMultiLine

476

ST_ToMultiPoint

477

ST_ToMultiPolygon

478

ST_ToPoint

479

ST_ToPolygon

480

ST_Touches

481

ST_Transform

482

ST_Union

484

ST_Within

486

ST_WKBToSQL

487

ST_WKTToSQL

489

ST_X

490

ST_Y

491

ST_Z

492

that

use

geodetic

Voronoi

indexes

171,

176

Union

aggregate

494

using

to

exploit

spatial

indexes

118

spatial

grid

index
analyzing

spatial

index

statistics

108

CREATE

INDEX

statement

104

determining

grid

sizes

106

Index

Advisor

command

112

spatial

functions

that

use

104

SQL

statements

that

use

104

spatial

grid

indexes
compared

to

geodetic

Voronoi

indexes

95

creating

102

exploiting

118

grid

levels

and

sizes

96,

98

spatial

indexes
geodetic

Voronoi

171

types

of

95

spatial

reference

system

identifier

(SRID)
for

geodetic

153,

154

spatial

reference

systems
creating

69,

231

defaults

64

description

63

supplied

with

DB2

Spatial

Extender

66

spatial

stored

procedures
deprecated

523

supported

by

Geodetic

Extender

207

SPATIAL_GEOCODER,

deprecated

spatial

catalog

view

545

SPATIAL_REF_SYS,

deprecated

spatial

catalog

view

545

spheroids
coordinate

systems

513

definition

154

in

coordinate

system

definition

216

SQL

statements
that

use

geodetic

Voronoi

indexes

176

ST_alter_coordsys

stored

procedure

224

ST_alter_srs

226

ST_COORDINATE_

SYSTEMS

275

ST_create_coordsys

stored

procedure

229

ST_create_srs

231

ST_disable_autogeocoding

237

ST_disable_db

stored

procedure

239

ST_Distance

359

ST_drop_coordsys

stored

procedure

240

ST_drop_srs

242

ST_enable_autogeocoding

stored

procedure

243

ST_enable_db

stored

procedure

245

ST_export_shape

stored

procedure

247

ST_GEOCODER_

PARAMETERS

277

ST_GEOCODERS

279

ST_GEOCODING

279

ST_GEOCODING_

PARAMETERS

280

ST_Geometry

attributes
geodetic

differences

193

ST_GEOMETRY_

COLUMNS

276

ST_GeomFromText,

deprecated

spatial

function

549

ST_GeomFromWKB,

deprecated

spatial

function

549

ST_import_shape

stored

procedure

250

ST_LineFromText,

deprecated

spatial

function

549

ST_LineFromWKB,

deprecated

spatial

functions

549

ST_MLineFromText,

deprecated

spatial

functions

549

ST_MLineFromWKB,

deprecated

spatial

function

549

ST_MPointFromText,

deprecated

spatial

function

549

ST_MPointFromWKB,

deprecated

spatial

function

549

ST_MPolyFromText,

deprecated

spatial

function

549

ST_MPolyFromWKB,

deprecated

spatial

function

549

ST_OrderingEquals,

deprecated

spatial

function

549

ST_Point,

deprecated

spatial

function

549

ST_PointFromText,

deprecated

spatial

function

549

ST_PolyFromText,

deprecated

spatial

function

549

ST_PolyFromWKB,

deprecated

spatial

function

549

ST_register_geocoder

stored

procedure

258

ST_register_spatial_column

stored

procedure

262

ST_remove_geocoding_setup

stored

procedure

263

ST_run_geocoding

stored

procedure

265

ST_setup_geocoding

stored

procedure

268

ST_SIZINGS

282

ST_SPATIAL_

REFERENCE_SYSTEMS

283

ST_SymmetricDiff,

deprecated

spatial

function

549

ST_Transform,

deprecated

spatial

function

549

ST_UNITS_OF_

MEASURE

285

ST_UNITS_OF_

MEASURE

catalog

view

285

ST_unregister_geocoder

stored

procedure

271

ST_unregister_spatial_column

stored

procedure

273

stored

procedures
calling

spatial

applications

129

calling

from

spatial

applications

130

GSE_export_sde

220

GSE_import_sde

222

problems

141

ST_alter_coordsys

224

ST_alter_srs

226

ST_create_coordsys

229

ST_create_srs

231

ST_disable_autogeocoding

237

ST_disable_db

239

ST_drop_coordsys

240

ST_drop_srs

242

ST_enable_autogeocoding

243

ST_enable_db

245

ST_export_shape

247

ST_import_shape

250

ST_register_geocoder

258

ST_register_spatial_column

262

ST_remove_geocoding_

setup

263

ST_run_geocoding

265

ST_setup_geocoding

268

ST_unregister_geocoder

271

ST_unregister_spatial_

column

273

system

requirements
for

Geodetic

Extender

161

T
tables

importing

shape

data

84

spatial

columns

79

tasks
Spatial

Extender

setup

15

tracing

events

to

isolate

problems

148

transform

groups
overview

497

troubleshooting
administration

notification

log

149

functions

143

migration

messages

145

shape

information

messages

145

Spatial

Extender
messages

139

sample

program

37

stored

procedures

141

tracing

148

using

runGseDemo

37

true-direction

projections

60

Index

Index

569

tuning

grid

indexes
using

Index

Advisor

106

tuning

spatial

grid

indexes
with

Index

Advisor

106

U
union

aggregate

functions

494

units

for

offset

values

and

scale

factors

68

V
verifying

Spatial

Extender

installation

36

views
DB2

Spatial

Extender
access

spatial

columns

115

Voronoi

cell

structures
description

172

selecting

alternate

for

index

173

Voronoi

tessellation

172

W
well-known

binary

(WKB)

representation,

data

format

508

well-known

text

(WKT)

representation,

data

format

503

WGS84_

SRS_1003
spatial

reference

system

66

whole

earth
representing

193

Windows
installing

DB2

Spatial

Extender

25

World

population

density
Voronoi

cell

structure

172

Z
Z,

deprecated

spatial

function

549

Index

570

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Contacting

IBM

In

the

United

States,

call

one

of

the

following

numbers

to

contact

IBM:

v

1-800-IBM-SERV

(1-800-426-7378)

for

customer

service

v

1-888-426-4343

to

learn

about

available

service

options

v

1-800-IBM-4YOU

(426-4968)

for

DB2

marketing

and

sales

In

Canada,

call

one

of

the

following

numbers

to

contact

IBM:

v

1-800-IBM-SERV

(1-800-426-7378)

for

customer

service

v

1-800-465-9600

to

learn

about

available

service

options

v

1-800-IBM-4YOU

(1-800-426-4968)

for

DB2

marketing

and

sales

To

locate

an

IBM

office

in

your

country

or

region,

check

IBM’s

Directory

of

Worldwide

Contacts

on

the

web

at

http://www.ibm.com/planetwide

Product

information

Information

regarding

DB2

Universal

Database

products

is

available

by

telephone

or

by

the

World

Wide

Web

at

http://www.ibm.com/software/data/db2/udb

This

site

contains

the

latest

information

on

the

technical

library,

ordering

books,

product

downloads,

newsgroups,

FixPaks,

news,

and

links

to

web

resources.

If

you

live

in

the

U.S.A.,

then

you

can

call

one

of

the

following

numbers:

v

1-800-IBM-CALL

(1-800-426-2255)

to

order

products

or

to

obtain

general

information.

v

1-800-879-2755

to

order

publications.

For

information

on

how

to

contact

IBM

outside

of

the

United

States,

go

to

the

IBM

Worldwide

page

at

www.ibm.com/planetwide

©

Copyright

IBM

Corp.

1998,

2004

571

http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

572

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

����

Printed

in

USA

SC27-1226-01

Sp
in
e

in
fo
rm
at
io
n:

 �
�

�

IB
M

®

D
B

2®

Sp
at

ia
l

E
xt

en
de

r

an
d

G
eo

de
tic

E
xt

en
de

r

D
B

2

Sp
at

ia
l

E
xt

en
de

r

an
d

G
eo

de
tic

E
xt

en
de

r

U
se

r’
s

G
ui

de

an
d

R
ef

er
en

ce

Ve
rs

io
n

8.
2

	Contents
	Part 1. Introduction
	Chapter 1. About DB2 Spatial Extender
	The purpose of DB2 Spatial Extender
	Spatial and geodetic data
	How data represents geographic features
	The nature of spatial data
	The nature of geodetic data
	Where spatial data comes from
	Using business data as source data
	Using functions to generate spatial data
	Importing spatial data

	How features, spatial information, spatial data, and geometries fit together

	Chapter 2. About geometries
	Geometries
	Properties of geometries
	Type
	Geometry coordinates
	X and Y coordinates
	Z coordinates
	M coordinates
	Interior, boundary, and exterior
	Simple or non-simple
	Closed
	Empty or not empty
	Minimum bounding rectangle (MBR)
	Dimension
	Spatial reference system identifier

	Chapter 3. How to use DB2 Spatial Extender
	How to use DB2 Spatial Extender
	Interfaces to DB2 Spatial Extender and associated functionality
	Tasks that you perform to set up DB2 Spatial Extender and create projects

	Part 2. Setting up DB2 Spatial Extender
	Chapter 4. Getting started with DB2 Spatial Extender
	Setting up and installing Spatial Extender—Steps
	Setting up and installing Spatial Extender
	System requirements for installing Spatial Extender
	Installing DB2 Spatial Extender for Windows
	Installing DB2 Spatial Extender for AIX
	Installing DB2 Spatial Extender for HP-UX
	Installing DB2 Spatial Extender for Solaris Operating Environment
	Installing DB2 Spatial Extender for Linux
	Creating the DB2 Spatial Extender instance environment
	Verifying the Spatial Extender installation
	Troubleshooting installation problems

	Post-Installation considerations
	Downloading ArcExplorer for DB2
	Accessing geocoder reference data
	CDs for DB2 Spatial Extender data and maps

	Chapter 5. Migrating the Spatial Extender environment to DB2 Universal Database Version 8
	Migrating a spatially-enabled database
	Migration messages

	The db2se migrate_v82 command

	Chapter 6. Setting up a database
	Configuring a database to accommodate spatial data
	Tuning the database configuration parameters
	Tuning transaction log characteristics
	Tuning the application heap size
	Tuning the application control heap size

	Chapter 7. Setting up spatial resources for a database
	How to set up resources in your database
	Inventory of resources supplied for your database
	Enabling a database for spatial operations

	How to work with reference data
	Reference data
	Setting up access to reference data
	Registering a geocoder

	Part 3. Creating projects that use spatial data
	Chapter 8. Setting up spatial resources for a project
	How to use coordinate systems
	Coordinate systems
	Geographic coordinate system
	Projected coordinate systems
	Selecting or creating coordinate systems

	How to set up spatial reference systems
	Spatial reference systems
	Deciding whether to use a default spatial reference system or create a new system
	Spatial reference systems supplied with DB2 Spatial Extender
	Conversion factors that transform coordinate data into integers
	Offset values
	Scale factors
	Units for offset values and scale factors

	Creating a spatial reference system
	Calculating scale factors
	Determining minimum and maximum coordinates and measures
	Calculating offset values

	Chapter 9. Setting up spatial columns
	Spatial columns
	Spatial columns with viewable content
	Spatial data types
	Data types for single-unit features
	Data types for multi-unit features
	A data type for all features

	Creating spatial columns
	Registering spatial columns

	Chapter 10. Populating spatial columns
	How to import and export spatial data
	About importing and exporting spatial data
	Importing spatial data
	Importing shape data to a new or existing table
	Importing SDE transfer data to a new or existing table

	Exporting spatial data
	Exporting data to a shapefile
	Exporting data to an SDE transfer file

	How to use a geocoder
	Geocoders and geocoding
	Setting up geocoding operations
	Setting up a geocoder to run automatically
	Running a geocoder in batch mode

	Chapter 11. Using indexes and views to access spatial data
	Types of spatial indexes
	Spatial grid indexes
	Generation of spatial grid indexes
	Use of spatial functions in a query
	How a query uses a spatial grid index

	Considerations for number of index levels and grid sizes
	Number of grid levels
	Grid cell sizes

	Creating spatial grid indexes
	CREATE INDEX statement for a spatial grid index
	Tuning spatial grid indexes with the Index Advisor
	Tuning spatial grid indexes with the Index Advisor—Overview
	Determining grid sizes for a spatial grid index
	Analyzing spatial grid index statistics

	The gseidx command
	Using views to access spatial columns

	Chapter 12. Analyzing and Generating spatial information
	Environments for performing spatial analysis
	Examples of how spatial functions operate
	Functions that use indexes to optimize queries

	Chapter 13. DB2 Spatial Extender commands
	Invoking commands for setting up DB2 Spatial Extender and developing projects

	Chapter 14. Writing applications and using the sample program
	Writing applications for DB2 Spatial Extender
	Including the DB2 Spatial Extender header file in spatial applications
	Calling DB2 Spatial Extender stored procedures from an application
	The DB2 Spatial Extender sample program

	Chapter 15. Identifying DB2 Spatial Extender problems
	How to interpret DB2 Spatial Extender messages
	DB2 Spatial Extender stored procedure output parameters
	DB2 Spatial Extender function messages
	DB2 Spatial Extender CLP messages
	DB2 Control Center messages
	Tracing DB2 Spatial Extender problems with the db2trc command
	The administration notification file

	Part 4. Using DB2 Geodetic Extender
	Chapter 16. DB2 Geodetic Extender
	DB2 Geodetic Extender
	When to use DB2 Geodetic Extender and when to use DB2 Spatial Extender
	Geodetic datums
	Geodetic latitude and longitude
	Geodesic distances
	Geodetic regions

	Chapter 17. Setting up DB2 Geodetic Extender
	Setting up and enabling DB2 Geodetic Extender
	Migrating from Informix Geodetic DataBlade to DB2 Geodetic Extender
	Populating spatial columns with geodetic data

	Chapter 18. Geodetic Indexes
	Geodetic Voronoi indexes
	Voronoi cell structures
	Considerations for selecting an alternate Voronoi cell structure
	Creating geodetic Voronoi indexes
	CREATE INDEX statement for a geodetic Voronoi index
	Voronoi cell structures supplied with DB2 Geodetic Extender
	World, based on population density (Voronoi ID: 1)
	United States (Voronoi ID: 2)
	Canada (Voronoi ID: 3)
	India (Voronoi ID: 4)
	Japan (Voronoi ID: 5)
	Africa (Voronoi ID: 6)
	Australia (Voronoi ID: 7)
	Europe (Voronoi ID: 8)
	North America (Voronoi ID: 9)
	South America (Voronoi ID: 10)
	Mediterranean (Voronoi ID: 11)
	World, uniform data distribution, medium resolution – dodeca04 (Voronoi ID: 12)
	World, industrial nations – G7 nations (Voronoi ID: 13)
	World, uniform data distribution, low resolution – isotype (Voronoi ID: 14)

	Chapter 19. Differences in using geodetic and spatial data
	Minimum and maximum x and y attributes
	Differences in working with flat-Earth and round-Earth representations
	Line segments that cross the 180th meridian
	Polygons that straddle the 180th meridian
	Polygons that enclose a pole
	Polygons that represent hemispheres, equatorial belts, and the whole Earth

	Spatial functions supported by DB2 Geodetic Extender
	DB2 Geodetic Extender stored procedures and catalog views
	Datums supported by DB2 Geodetic Extender
	Geodetic spheroids

	Part 5. Reference material
	Chapter 20. Stored procedures
	GSE_export_sde
	GSE_import_sde
	ST_alter_coordsys
	ST_alter_srs
	ST_create_coordsys
	ST_create_srs
	ST_disable_autogeocoding
	ST_disable_db
	ST_drop_coordsys
	ST_drop_srs
	ST_enable_autogeocoding
	ST_enable_db
	ST_export_shape
	ST_import_shape
	ST_register_geocoder
	ST_register_spatial_column
	ST_remove_geocoding_setup
	ST_run_geocoding
	ST_setup_geocoding
	ST_unregister_geocoder
	ST_unregister_spatial_column

	Chapter 21. Catalog views
	The DB2GSE.ST_COORDINATE_SYSTEMS catalog view
	The DB2GSE.ST_GEOMETRY_COLUMNS catalog view
	The DB2GSE.ST_GEOCODER_PARAMETERS catalog view
	The DB2GSE.ST_GEOCODERS catalog view
	The DB2GSE.ST_GEOCODING catalog view
	The DB2GSE.ST_GEOCODING_PARAMETERS catalog view
	The DB2GSE.ST_SIZINGS catalog view
	The DB2GSE.ST_SPATIAL_REFERENCE_SYSTEMS catalog view
	The DB2GSE.ST_UNITS_OF_MEASURE catalog view

	Chapter 22. Spatial functions: categories and uses
	Spatial functions
	Spatial functions that convert geometry values to data exchange formats
	Constructor functions overview
	Functions that operate on data exchange formats
	A function that creates geometries from coordinates
	Examples

	Conversion to well-known text (WKT) representation
	Conversion to well-known binary (WKB) representation
	Conversion to ESRI shape representation
	Conversion to Geography Markup Language (GML) representation
	Functions that compare geographic features
	Comparison functions overview
	List of functions

	Functions that check whether one geometry contains another
	ST_Contains
	ST_Within

	Functions that check intersections between geometries
	ST_Intersects
	ST_Crosses
	ST_Overlaps
	ST_Touches

	Functions that compare geometries' envelopes
	ST_EnvIntersects
	ST_MBRIntersects

	Functions that check whether two things are identical
	ST_EqualCoordsys
	ST_Equals
	ST_EqualSRS

	Function that checks for no intersection between two geometries
	Function that compares geometries to the DE-9IM pattern matrix string
	Functions that return information about properties of geometries
	Function that returns data-type information
	Functions that return coordinate and measure information
	ST_CoordDim
	ST_IsMeasured
	ST_IsValid
	ST_Is3D
	ST_M
	ST_MaxM
	ST_MaxX
	ST_MaxY
	ST_MaxZ
	ST_MinM
	ST_MinX
	ST_MinY
	ST_MinZ
	ST_X
	ST_Y
	ST_Z

	Functions that return information about geometries within a geometry
	ST_Centroid
	ST_EndPoint
	ST_GeometryN
	ST_LineStringN
	ST_MidPoint
	ST_NumGeometries
	ST_NumLineStrings
	ST_NumPoints
	ST_NumPolygons
	ST_PointN
	ST_PolygonN
	ST_StartPoint

	Functions that show information about boundaries, envelopes, and rings
	ST_Boundary
	ST_Envelope
	ST_EnvIntersects
	ST_ExteriorRing
	ST_InteriorRingN
	ST_MBR
	ST_MBRIntersects
	ST_NumInteriorRing
	ST_Perimeter

	Functions that return information about a geometry's dimensions
	ST_Area
	ST_Dimension
	ST_Length

	Functions that reveal whether a geometry is closed, empty, or simple
	ST_IsClosed
	ST_IsEmpty
	ST_IsSimple

	Functions that identify a geometry's spatial reference system
	ST_SrsId (also called ST_SRID)
	ST_SrsName

	Functions that generate new geometries from existing geometries
	Functions that convert one geometry to another
	ST_Polygon
	ST_ToGeomColl
	ST_ToLineString
	ST_ToMultiLine
	ST_ToMultiPoint
	ST_ToMultiPolygon
	ST_ToPoint
	ST_ToPolygon

	Functions that create new geometries with different space configurations
	ST_Buffer
	ST_ConvexHull
	ST_Difference
	ST_Intersection
	ST_SymDifference

	Functions that derive one geometry from many
	MBR Aggregate
	ST_Union
	Union Aggregate

	Functions that derive new geometries based on measures
	ST_FindMeasure (also called ST_LocateAlong)
	ST_MeasureBetween (also called ST_LocateBetween)

	Functions that create modified forms of existing geometries
	ST_AppendPoint
	ST_ChangePoint
	ST_Generalize
	ST_M
	ST_PerpPoints
	ST_RemovePoint
	ST_X
	ST_Y
	ST_Z

	Function that returns distance information
	Function that returns index information
	Conversions between coordinate systems

	Chapter 23. Spatial functions: syntax and parameters
	Spatial functions: considerations and associated data types
	Factors to consider
	Treating values of ST_Geometry as values of a subtype
	Spatial functions listed according to input type

	EnvelopesIntersect
	MBR Aggregate
	ST_AppendPoint
	ST_Area
	ST_AsBinary
	ST_AsGML
	ST_AsShape
	ST_AsText
	ST_Boundary
	ST_Buffer
	ST_Centroid
	ST_ChangePoint
	ST_Contains
	ST_ConvexHull
	ST_CoordDim
	ST_Crosses
	ST_Difference
	ST_Dimension
	ST_Disjoint
	ST_Distance
	ST_Edge_GC_USA
	ST_Endpoint
	ST_Envelope
	ST_EnvIntersects
	ST_EqualCoordsys
	ST_Equals
	ST_EqualSRS
	ST_ExteriorRing
	ST_FindMeasure or ST_LocateAlong
	ST_Generalize
	ST_GeomCollection
	ST_GeomCollFromTxt
	ST_GeomCollFromWKB
	ST_Geometry
	ST_GeometryN
	ST_GeometryType
	ST_GeomFromText
	ST_GeomFromWKB
	ST_GetIndexParms
	ST_InteriorRingN
	ST_Intersection
	ST_Intersects
	ST_Is3d
	ST_IsClosed
	ST_IsEmpty
	ST_IsMeasured
	ST_IsRing
	ST_IsSimple
	ST_IsValid
	ST_Length
	ST_LineFromText
	ST_LineFromWKB
	ST_LineString
	ST_LineStringN
	ST_M
	ST_MaxM
	ST_MaxX
	ST_MaxY
	ST_MaxZ
	ST_MBR
	ST_MBRIntersects
	ST_MeasureBetween, ST_LocateBetween
	ST_MidPoint
	ST_MinM
	ST_MinX
	ST_MinY
	ST_MinZ
	ST_MLineFromText
	ST_MLineFromWKB
	ST_MPointFromText
	ST_MPointFromWKB
	ST_MPolyFromText
	ST_MPolyFromWKB
	ST_MultiLineString
	ST_MultiPoint
	ST_MultiPolygon
	ST_NumGeometries
	ST_NumInteriorRing
	ST_NumLineStrings
	ST_NumPoints
	ST_NumPolygons
	ST_Overlaps
	ST_Perimeter
	ST_PerpPoints
	ST_Point
	ST_PointFromText
	ST_PointFromWKB
	ST_PointN
	ST_PointOnSurface
	ST_PolyFromText
	ST_PolyFromWKB
	ST_Polygon
	ST_PolygonN
	ST_Relate
	ST_RemovePoint
	ST_SrsId, ST_SRID
	ST_SrsName
	ST_StartPoint
	ST_SymDifference
	ST_ToGeomColl
	ST_ToLineString
	ST_ToMultiLine
	ST_ToMultiPoint
	ST_ToMultiPolygon
	ST_ToPoint
	ST_ToPolygon
	ST_Touches
	ST_Transform
	ST_Union
	ST_Within
	ST_WKBToSQL
	ST_WKTToSQL
	ST_X
	ST_Y
	ST_Z
	Union aggregate

	Chapter 24. Transform groups
	Transform groups
	ST_WellKnownText transform group
	ST_WellKnownBinary transform group
	ST_Shape transform group
	ST_GML transform group

	Chapter 25. Supported data formats
	Well-known text (WKT) representation
	Well-known binary (WKB) representation
	Shape representation
	Geography Markup Language (GML) representation

	Chapter 26. Supported coordinate systems
	Supported coordinate systems
	Coordinate systems syntax
	Supported linear units

	Supported angular units
	Supported spheroids
	Supported geodetic datums
	Supported prime meridians
	Supported map projections

	Appendix A. Deprecated stored procedures
	db2gse.gse_enable_autogc
	db2gse.gse_enable_db
	db2gse.gse_enable_idx
	db2gse.gse_enable_sref
	db2gse.gse_export_shape
	db2gse.gse_disable_autogc
	db2gse.gse_disable_db
	db2gse.gse_disable_sref
	db2gse.gse_import_shape
	db2gse.gse_register_gc
	db2gse.gse_register_layer
	db2gse.gse_run_gc
	db2gse.gse_unregist_gc
	db2gse.gse_unregist_layer

	Appendix B. Deprecated catalog views
	DB2GSE.COORD_REF_SYS
	DB2GSE.GEOMETRY_COLUMNS
	DB2GSE.SPATIAL_GEOCODER
	DB2GSE.SPATIAL_REF_SYS

	Appendix C. Deprecated spatial functions
	AsShape
	GeometryFromShape
	Is3d
	IsMeasured
	LineFromShape
	LocateAlong
	LocateBetween
	M
	MLine FromShape
	MPointFromShape
	MPolyFromShape
	PointFromShape
	PolyFromShape
	ShapeToSQL
	ST_GeomFromText
	ST_GeomFromWKB
	ST_LineFromText
	ST_LineFromWKB
	ST_MLineFromText
	ST_MLineFromWKB
	ST_MPointFromText
	ST_MPointFromWKB
	ST_MPolyFromText
	ST_MPolyFromWKB
	ST_OrderingEquals
	ST_Point
	ST_PointFromText
	ST_PolyFromText
	ST_PolyFromWKB
	ST_Transform
	ST_SymmetricDiff
	Z

	Notices
	Trademarks

	Index
	Contacting IBM
	Product information

