<|lI!

DB2 Server for VSE & VM

Application Programming

Version 7 Release 1

SC09-2889-00

<|lI!

DB2 Server for VSE & VM

Application Programming

Version 7 Release 1

SC09-2889-00

Note!

Before using this information and the product it supports, be sure to read the general information under

First Edition (September 2000)

This edition applies to Version 7, Release 1, Modification 0 of the IBM® DATABASE 2™ Server for VSE & VM
Program, (product number 5697-F42) and to all subsequent releases and modifications until otherwise indicated in
new editions.

This edition replaces SC09-2661-00 and SC09-2662-00.

© Copyright International Business Machines Corporation 1987, 2000. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Manual Vi

Audience and Purpose of This Book vii
Organization of This Book viii
Related Publications . . B 0'¢
How to Send Your Comments R 014
Syntax Notation Conventions.X
SQL Reserved WordsLoxdid
Conventions for Representing DBCS Characters .. Xxiv
Components of the Relational Database

Management SystemXV

Summary of Changes. Xxvii
Summary of Changes for DB2 Version 7 Release 1 xvii
Enhancements, New Functions, and New

Capabilities Xvil
Reliability, Avallablhty, and Serv1ceab111ty

Improvements Lxix
Library Enhancements xix

-—h

Chapter 1. Getting Started . ..
What is the DB2 Server for VSE & VM Product? . .2

What is SQL?3
Embedding SQL Statements in Host Language
Programs e .4

Writing a Program 4

Chapter 2. Designing a Program 7

Defining the Main Parts of a Program8
Creating the Prolog8
Creating the Body12
Creating the Epilog.15

Using Logical Units of Work.18
Defining the Logical Unit of Work.18
Beginning a Logical Unit of Work18
Considering the CICS/VSE Logical Unit of Work
(DB2 Server for VSEOnly)18
Ending a Logical Unit of Work19

Summary20

Using Host- Dependent Sample Appllcatlons |

Chapter 3. Coding the Body of a

Program -25
Defining Static SQL Statements Lo .27
Naming Conventions27
Coding SQL Statements to Retrleve and Manlpulate
Data. . . . e 27
Retrieving Data e e oo oo 28
Defining an SQL Query28
Retrieving or Inserting Multlple Rows N)
Retrieving Single Rows40
Constructing Search Conditions41
Performing Arithmetic Operations.41
Using Null Values42
Using the Predicates of a Search Condltlon . .43

© Copyright IBM Corp. 1987, 2000

Using Functions . .
Using Column Functlons
Using Scalar Functions
Using Data Types .
Assigning Data Types When the Column Is
Created. e
Using Long Strrngs .
Using Datetime Data Types . .
Using Character Subtypes and CCSIDs .
Converting Data. .
Truncating Data .
Using a Double-Byte Character Set (DBCS)
Using Expressions . . S
Using Arithmetic Operators .
Using Special Registers

Concatenating Character and Graphlc Strmgs .

Using Host Variables .
Using Host Structures .
Using Constants . .
Using Indicator Variables .

Using Views .
Creating a View . .
Querying Tables through a V1ew
Using Views to Manipulate Data
Dropping a View

Joining Tables .
Joining Tables Using the Database Manager
Performing a Simple Join Query
Joining Another User’s Tables
Analyzing How a Join Works

Using VARCHAR and VARGRAPHIC w1th1n]om
... . .70
.70

Conditions.
Using Nulls within]orn Condrtrons .
Joining a Table to Itself Using a Correlation
Name
Imposing L1m1ts on]om Querles
Using SELECT * In a Join.

Grouping the Rows of a Table .

Using VARCHAR and VARGRAPHIC w1th1n

Groups . . .

Using Nulls w1th1n Groups . .

Using Select-Lists in Grouped Querres

Using a WHERE Clause with a GROUP BY

Clause . e

Using the HAVING Clause .

Combining Joins. .

Nlustrating Grouping with an Exercrse
Nesting Queries . .

Using the IN Predlcate w1th a Subquery

Considering Other Subquery Issues

Executing Subqueries Repeatedly: Correlatlon

Writing a Correlated Subquery .

How the Database Manager Does Correlatron .

Mlustrating a Correlated Subquery .

Using a Subquery to Test for the Existence of a

Row .

. 45
. 45
. 45
. 46

. 46
. 47
. 47
. 48
. 50
. 51
. 52
. 54
. 54
. 55
. 56
. 56
. 57
. 57
. 61
. 63
. 63
. 65
. 65
. 67
. 68
. 68
. 68
. 69

. 69

. 70
.72
.72
.72

.73
.73
. 74

. 74
.74
.75
.75
.77
. 81
. 81
. 82
. 83
. 84
. 85

.90

iii

Table Designation Rule for Correlated Subqueries 90
Combining Queries into a Single Query: UNION 91

SQL Comments within Static SQL Statements . . . 94

Using Stored Procedures9%
Writing Stored Procedures 9%
Returning Information from the SQLCA .. .97
Language Environment® (LE) Considerations . . 98
Preparing to Run a Stored Procedure.98
Calling Stored Procedures98
Authorization9
AUTHIDs L. .99
Stored Procedure Parameters100
Datatype Compatibility 101
Conventions for Passing Stored Procedure
Parameters101
Coding Examples103
Special Considerations forC 103
Special Considerations for PL/I 103
Result Sets 103
Using the DESCRIBE PROCEDURE SQL
Statement . . . 107

Using the DESCRIBE CURSOR SQL Statement 108

Chapter 4. Preprocessing and
Running a DB2 Server for VM

Program 113
Defining the Steps to Execute the Program .. 114
Comparing Single User Mode to Multiple User
Mode . . . R i 1
Using 31-Bit Addressrng e N
Initializing the User Machine 115
Using VM Implicit Connect. 115
Preprocessing the Program 116
Using the SQLPREP EXEC Procedure 116
Preprocessing with an Unlike Application Server 133
Using the Preprocessor Option File 133
Using the Flagger at Preprocessor Time. . . . 133
Improving Performance Using Preprocessing
Parameters 134
Using the INCLUDE Statement B 1 |
Compiling the Program . . . Lo 142
Link-Editing and Loading the Program .o . 143
Link-Editing the Program with DB2 Server for
VM TEXT Files. 143
Including the TEXT Frle in the L1nk Edrtmg .. 144
Creating a Load Module Using the CMS
GENMOD Command14
Running the Program 145
Using a Consistency Token. 145
Loading the Package and Reb1nd1ng P)
Using Multiple User Mode 146
Using Single User Mode. . . . 146

Specifying User Parameters in Smgle User Mode 147
Distributing Packages across Like and Unlike
Systems148

Chapter 5. Preprocessing and

Running a DB2 Server for VSE

Program 149
Defining the Steps to Execute the Program .. . 150

iv Application Programming

Using 31-Bit Addressing. 150

How DB2 Establishes User IDs for CICS / VSE

Transactions. . . . 151
User IDs for Remote CICS/ VSE Transactlons 152
Using Batch for Remote CICS/VSE Transactions 152

Preprocessing the Program152
Preprocessing by Mode A 7
Defining the Preprocessing Parameters .. . 156
Using the Preprocessor Option Member . . . 166
Using the Flagger at Preprocessor Time. . . . 166
Using the CICS/VSE Translator 167
Improving Performance Using Preprocessmg
Parameters 168
Using the INCLUDE Statement 175

Compiling the Program . . . N V()

Link-Editing and Loading the Program . . 176
Link-Editing the Program with Supplementary
Information 176

Running the Program178
Using a Consistency Token. . . B V£
Loading the Package and Rebmdmg ... 178
Running by Mode. . . A V4
Running under CICS/VSE Support 180
Accessing Other DB2 Family Application
Servers . . . 180

Installing Apphcatlons that Access the Database

Manager 0180
Installing a Batch Apphcatlon . .. 180
Installing an Online CICS/VSE Apphcatron .. 181
Distributing Packages across Like and Unlike
Systems183
Creating a Package Usrng CBND B £.Z

Chapter 6. Testing and Debugging 191

Doing Your Own Testing . . . 192
Checking Warnings and Errors at Preprocessor
Time . . . B Y
Testing SQL Statements o .. 193

Using the Automatic Error-Handling Fac111t1es . . 193
Using the SQLCA19
Examining Errors . . . R P

Handling Errors in a Select- L1st208
Handling Arithmetic Errors.203
Handling Numeric Conversion Errors ... 204
Handling CCSID Conversion Errors. 205

Chapter 7. Using Dynamic Statements 207

Dynamically Defining SQL Statements 208

Comparing Non-Query Statements to Query

Statements . . . L. o.208

Using Non-Query Statements A .. . 208
Executing Non-Parameterized Statements .. . 208
Executing Parameterized Statements. 210

Using Query Statements. 212

Executing a Non-Parameterized Select Statement 212
Executing a Parameterized SELECT Statement 219
Executing a Parameterized Non-Query Statement 222
Generating a SELECT Statement 222
Using an Alternative to a Scanning Routine . . . 223

Ensuring Data Type Equivalence in a Dynamically

Defined Query . . . 224
Summarizing the Fields of the SQLDA . 226
Using the SQLN Field . 228
Using the SQLD Field in the SQLDA . 228
Using the PREPARE Statement . 229
SQL Functions Not Supported in Dynam1c
Statements . S . 230
Chapter 8. Using Extended Dynamlc
Statements . 233
Contents . . 233
Using Extended Dynamrc Statements to
Maintain Packages. . 234
Mlustrating the Use of Extended Dynamlc
Statements . 238
Grouping Extended Dynamlc Statements in an
LUW . 244
Mapping Extended Dynamic Statements to
Static and Dynamic Statements . 247
SQL Functions Not Supported in Extended
Dynamic Statements . o . 248
Chapter 9. Maintaining Objects Used
by a Program . 249
Managing Dbspaces . . 250
Defining Dbspaces. . . 250
Modifying the Size of Dbspaces . . 253
Automatically Locking Dbspaces . . 254
Overriding Automatic Locking . 254
Deleting the Contents of Dbspaces . 255
Other Data Definition Statements. . 256
Using Tables, Indexes, Statistics, Synonyms
Comments, and Labels . . . 256
Using Stored Procedures and PSERVERS . . 259
Chapter 10. Assigning Authorlty and
Privileges . . 263
Defining User Access to the Database . . 264
Defining Authority Types for the Database . 264
Granting Authority to Users . . 264
Revoking Authority from Users . 265
Defining Privileges . . 265
Defining Privileges on Tables and V1ews . 266
Defining Privileges on Packages . . 267
Chapter 11. Special Topics. . 271
Using Datetime Values with Durations . . 272
Using Durations . 272
Resolving Peculiarities of Date Arlthmetlc . 272
Using Field Procedures . . 275
Assigning Field Procedures to Columns . 276
Understanding Field Procedure Rules . . 277
Using CMS Work Units (DB2 Server for VM). . 280
Using Work Units in Application Programs . . 281
How Locking Works with CMS Work Units . . 282
Environmental Considerations. .o . 283
Ensuring Data Integrity . . 283
Ensuring Entity Integrity . 283

Using Unique Constraints 284
When Creating a View284
Ensuring Referential Integrity 284
Switching Application Servers.29
Identifying Switching Options. . . . 296
Comparing Switching to Other Methods (DBZ
Server for VM) 296
How to Switch Servers (DB2 Server for VSE) 297
Accessing a New Application Server 298
[lustrating Sample Code 2299
Preprocessing the Program on Mult1ple
Application Servers . . . 300
Condition Handling with LE/ VSE (DBZ Server for
VSE) o.o.30

Appendix A. Using SQL in Assembler

Language . . 303
Using ARIS6ASD, an Assembler Language Sample
Program (DB2 Server for VSE Only). . . . 304
Using ARIS6ASC, an Assembler Language Sample
Program (DB2 Server for VM Only) 304
Acquiring the SQLDSECT Area 304
Imposing Usage Restrictions on the SQLDSECT
Area 306
Rules for Using SQL Statements in Assembler
Language.308
Identifying Rules for Case G 0]
Declaring Host Variables 308
Embedding SQL Statements 310
Using the INCLUDE Statement 31
Using Host Variables in SQL Statements ...
Using DBCS Characters in Assembler Language 311
Handling SQL Errors. . . . 312
Using Dynamic SQL Statements in Assembler
Language. . . . 312
Defining DB2 Server for VSE & VM Data Types for
Assembler Language 313
Using Reentrant Assembler Language Programs 315
Using Stored Procedures320
Appendix B. Using SQL in C. . . 325
A C Sample Program.326
Rules for Using SQLin C 326
Placing and Continuing SQL Statements .. . 326
Delimiting SQL Statements. 327
Identifying Rules for Case 327
Identifying Rules for Character Constants .. 327
Using the INCLUDE Statement . . . 327
Using the CONNECT Statement (DB2 Server for
VSE)328
Using the C Comp1ler Preprocessor 328
Declaring Host Variables 328
Using Host Variables in SQL Statements .. . 333
Using the Pointer Type Attribute. 333
Using Host Variables as Function Parameters 335
Using C Variables in SQL: Data Conversion
Considerations 336
Using C NUL- Termrnated Str1ngs and
Truncation336
Calculating Dates336

Contents V

Using Trigraphs
Using DBCS Characters in C

Considering Preprocessor-Generated Statements

Handling SQL Errors .
Using Dynamic SQL Statements in C

C

Defining DB2 Server for VSE & VM Data Types for

Using Reentrant C Programs .
Using Stored Procedures

Appendix C. Using SQL in COBOL
A Sample COBOL Program. .
Rules for Using SQL in COBOL .

Placing and Continuing SQL Statements
Delimiting SQL Statements .

Identifying Rules for Case .

Declaring Host Variables .

Using Host Variables in SQL Statements
Using Long VARCHAR Host Variables (DBZ
Server for VSE). e .
Using Preprocessor Options

Handling SQL Errors .

Using Dynamic SQL Statements in COBOL
Defining DB2 Server for VSE & VM Data Types
for COBOL . . o
Using Reentrant COBOL Programs .

Using the DYNAM Compiler Optron

Using Stored Procedures

Appendix D. Using SQL in FORTRAN
A FORTRAN Sample Program. . .
Rules for Using SQL in FORTRAN .

vi

Placing and Continuing SQL Statements
Placing Data Statements .

Using FORTRAN Common Areas (DBZ Server
for VSE) . .
Identifying Rules for Case .

Declaring Host Variables

Embedding SQL Statements

Using Host Variables in SQL Statements
Using Variable Length Character Strings
Using DBCS Characters in FORTRAN .
Using the INCLUDE Statement .
Using FORTRAN Variables in SQL: Data
Conversion Considerations . ..

Application Programming

. 337

. 337
337

. 340

. 341

. 342
. 344
. 344

347

. 348
. 348
. 348
. 349
. 349
. 350
. 353

. 353
. 353
. 357
. 358

. 360
. 362
. 363
. 363

365

. 366
. 366
. 366
. 367

. 367
. 367
. 367
. 369
. 369
. 369
. 370
. 371

. 371

Handling SQL Errors . .

Handling Program Interrupts . .

Using Dynamic SQL Statements in FORTRAN
Restrictions When Using the FORTRAN
Preprocessor.

Defining DB2 Server for VSE & VM Data Types for

FORTRAN

Appendix E. Using SQL in PL/I .
Using PL/I Sample Programs .
Rules for Using SQL in PL/T .
Placing and Continuing SQL Statements
Delimiting SQL Statements .
Using the INCLUDE Statement
Declaring Static External Variables
Identifying Rules for Case .
Declaring Host Variables .
Using Host Variables in SQL Statements

Using PL/I Variables in SQL: Data Conversion

Considerations . . .
Using DBCS Characters in PL / I. .
Using SQL Statements in PL/I Subroutines

Coding the SIZE Parameter in VSE JCL (DBZ

Server for VSE).
Handling SQL Errors . .
Handling Program Interrupts . .
Using Dynamic SQL Statements in PL/ I

Defining DB2 Server for VSE & VM Data Types for

PL/I .
Using Stored Procedures

Appendix F. Decision Tables to Grant
Privileges on Packages .

How to Use the Decision Tables .

Decision Tables.

Notices . C e e e
Programming Interface Informatlon
Trademarks .

Bibliography.

Index .

. 371
. 372
. 372

. 373

. 374

. 377
. 378
. 378
. 378
. 378
. 379
. 379
. 379
. 379
. 382

. 382
. 382
. 383

. 384
. 384
. 385

. 385

. 387
. 388

. 391
. 392
. 393

. 401
. 403
. 403
. 405

. 409

About This Manual

This preface:

* Identifies the book’s audience and purpose

* Describes the book’s organization

* Lists related publications

* Explains how to read the syntax diagrams

¢ Presents the conventions for describing MIXED data values.

Audience and Purpose of This Book

This book is for application programmers writing programs in assembler language,
C, COBOL,' FORTRAN, or PL/I. Throughout the book, the term host languages
will often be used to refer to any or all of these particular languages.

This book assumes that you can write programs in one of these host languages for
a Virtual Storage Extended/Enterprise Systems Architecture (VSE/ESA) operating
system, or a Virtual Machine/Enterprise Systems Architecture (VM/ESA)
environment. You may also find it useful to know how to use CICS® and ICCF (or
equivalent products) for a VSE/ESA system, and the conversational monitor
system (CMS) for VM/ESA system.

The purpose of the book is to explain how to write application programs that use
the Structured Query Language (SQL) to access data stored in DATABASE 2
Server for Virtual Machine/Enterprise Systems Architecture (DB2 Server for VM)
and in DATABASE 2 Server for Virtual Storage Extended/Enterprise Systems
Architecture (DB2 Server for VSE) tables. To achieve its purpose, the book:

* Introduces basic concepts
¢ Provides in-depth discussion of complex areas
* Offers tips of what to do and what not to do

* Focuses more on the Data Manipulation Language of SQL than on the Data
Definition Language or the Data Control Language. (The details of the latter two
components of SQL are of greater interest to the database administrator than to
the application programmer.)

* Describes the host language interfaces and the preprocessor process
* Supplements the material with examples

* Acts as a reference pointer to the appropriate chapters of the IDB2 Server for VSH
& VM SQI Referencd manual for details on such technical facts as naming

conventions, rules, and syntax.

The REXX Interface to the DB2 Server for VM product (DB2 Server RXSQL) is a
separately priced feature of this product. For information on this interface, see the
1 manual.

Programmers writing in APL2 should refer to the APL2 Programming: Using
Structured Query Language manual.

1. Throughout this book, COBOL is used to represent either OS/VS COBOL, VS COBOL II, IBM COBOL for MVS and VM, or IBM
COBOL for VSE; except where noted otherwise.

© Copyright IBM Corp. 1987, 2000 vii

Organization of This Book

viii

The following information provides a brief description of each chapter and
appendix in the book.

This preface identifies the audience, the purpose, and the use of the book.

Bummary of Changed describes the new features of DB2 Server for VSE & VM
Version 7 Release 1.

'Chapter 1 Getting Started” on page 1 provides an overview of the application

server, the SQL language that accesses the application server, and the host
application languages that embed the SQL language.

7 . . ”

describes the basic framework for
designing a DB2 Server for VSE & VM application based on its three main parts:
the prolog, body, and epilog.

['Chapter 3 Coding the Bady of a Program” on page 23 describes the coding

entered in the program body to retrieve and manipulate DB2 Server for VSE & VM
data. Data retrieval is described in terms of tables, associated views, and the
various means of accessing and selecting table data. Data manipulation focuses on
inserting, updating, and deleting data.

page 11 ﬂ and t Chzhfpr) Prpnrnrpefqmo and Rnnnmcr a DB2 Server for VSH
Btogram_on_pa.gﬂ_A._q prov1de mformatlon on the steps you take to preprocess and
run an application program. These steps include initial preparation of the system,

as well as preprocessing, compiling, link-editing, loading, and running the
program.

7 : : ”

shows you how to test a new
program, process program errors, and monitor program execution.

[C hapfpr 7 Using Dynamic Statements” on page 207 describes how to dynamically
process SQL statements that are specified at run time.

7 . . ”

explains how
extended dynamic SQL statements can be used to create and maintain packages of
SQL statements. The SQL statements that create and maintain the packages are
available only in an application written in the assembler language.

% . o . 7

discusses the
management of DB2 Server for VSE & VM objects. First it describes the database
space (dbspace); then it discusses the data objects used to manage the data itself,
including tables, indexes, synonyms, comments, and labels.

" . . . P 17

explains the
techniques used to control user access to, and user manipulation of, the data. A
section on user access discusses granting and revoking database authority, while a
section on privileges describes assigning of user privileges for tables, views and
packages.

4 : . 7

covers various special topics, such as
ensuring data integrity, that supplement the material in the preceding chapters.

Application Programming

Appendixes A through E describe information specific to each application host
language.

Appendix F contains decision tables used by the system to grant privileges on
packages.

The Bibliography lists the full titles and order numbers of related publications. It is
followed by the Index.

Related Publications

DB?2 Server for VSE & VM Ouverivew
IDB2 Server for VSE & VM Interactive SQL Guide and RpfpwnrJ

[DR2_Server for VSE & VM Database Seruvices ITHHfL‘
[DB2 _Server for VSE & VM Qui

IDB2 Server for VSE & VM SQL Referencd
[DB2_Server for VSE Messages and Coded
[DB2_Server fnr VM Mpccngpc and Coded

You will need to consult the IRB2_Serner fmf VSE & VM SQIL Rpfprpnr*pl manual
extensively for technical details and the sample tables while working with this
book. The sample tables are used for many of the examples in this book.

How to Send Your Comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any other
DB2 Server for VSE & VM documentation:

Visit our home page at:
http://www-4.ibm.com/software/data/dbh2/vse-vm/

A form for readers’ comments is provided at the back of this publication. If the
form has been removed, address your comments to:

IBM CANADA LTD.

DB2 Server for VSE & VM
25/240/1150/TOR

1150 Eglinton Ave. East
North York, Ontario
Canada M3C 1H7

Send your comments by electronic mail to one of the following addresses:

Format Address

Internet torrcf@ca.ibm.com

Facsimile (416) 448-6161 (Attention RCF
Coordinator)

Be sure to include the name of the book, the form number (including the suffix),
and the page, section title, or topic you are commenting on.

If you choose to respond through the Internet, please include either your entire
Internet network address, or a postal address.

Fill out the form at the back of this book and return it by mail, by fax, or by
giving it to an IBM representative.

About This Manual ~ iX

|
Syntax Notation Conventions

Throughout this manual, syntax is described using the structure defined below.

* Read the syntax diagrams from left to right and from top to bottom, following
the path of the line.

The »—— symbol indicates the beginning of a statement or command.

The — symbol indicates that the statement syntax is continued on the next
line.

The »—— symbol indicates that a statement is continued from the previous line.
The —>< symbol indicates the end of a statement.

Diagrams of syntactical units that are not complete statements start with the
»— symbol and end with the — symbol.

* Some SQL statements, Interactive SQL (ISQL) commands, or database services
utility (DBS Utility) commands can stand alone. For example:

»>—SAVE e

Others must be followed by one or more keywords or variables. For example:

»—SET AUTOCOMMIT OFF ><

* Keywords may have parameters associated with them which represent
user-supplied names or values. These names or values can be specified as either
constants or as user-defined variables called host_variables (host_variables can only
be used in programs).

»»—DROP SYNONYM—synonym ><

* Keywords appear in either uppercase (for example, SAVE) or mixed case (for
example, CHARacter). All uppercase characters in keywords must be present;
you can omit those in lowercase.

* Parameters appear in lowercase and in italics (for example, synonym).

* If such symbols as punctuation marks, parentheses, or arithmetic operators are
shown, you must use them as indicated by the syntax diagram.

* All items (parameters and keywords) must be separated by one or more blanks.

* Required items appear on the same horizontal line (the main path). For example,
the parameter integer is a required item in the following command:

»»—SHOW DBSPACE—integer ><

This command might appear as:
SHOW DBSPACE 1

X Application Programming

¢ Optional items appear below the main path. For example:

»>—CREATE INDEX ><

|—UNIQUEJ

This statement could appear as either:
CREATE INDEX

or
CREATE UNIQUE INDEX
 If you can choose from two or more items, they appear vertically in a stack.

If you must choose one of the items, one item appears on the main path. For
example:

»»—SHOW LOCK DBSPACE ALL _| ><
integer

Here, the command could be either:
SHOW LOCK DBSPACE ALL

or
SHOW LOCK DBSPACE 1

If choosing one of the items is optional, the entire stack appears below the main
path. For example:

»>—BACKWARD >«
i:integer—
MAX

Here, the command could be:
BACKWARD

or
BACKWARD 2

or
BACKWARD MAX

* The repeat symbol indicates that an item can be repeated. For example:

»>—ERASE—Y—name

A\
A

This statement could appear as:

About This Manual ~ Xi

ERASE NAME1

or
ERASE NAME1 NAME2

A repeat symbol above a stack indicates that you can make more than one
choice from the stacked items, or repeat a choice. For example:

»>—VALUES—(—Y——constant) >
host_variable_list—
NULL————
special_register——

 If an item is above the main line, it represents a default, which means that it will
be used if no other item is specified. In the following example, the ASC keyword
appears above the line in a stack with DESC. If neither of these values is
specified, the command would be processed with option ASC.

|—ASC—|
- |—DESC—|)

* When an optional keyword is followed on the same path by an optional default
parameter, the default parameter is assumed if the keyword is not entered.
However, if this keyword is entered, one of its associated optional parameters
must also be specified.

In the following example, if you enter the optional keyword PCTFREE =, you
also have to specify one of its associated optional parameters. If you do not
enter PCTFREE =, the database manager will set it to the default value of 10.

10

PCTFREE
|_

>>-

|—PCTFREE = integer—

* Words that are only used for readability and have no effect on the execution of
the statement are shown as a single uppercase default. For example:

PRIVILEGES
»—REVOKE ALL |_ _| ><

Here, specifying either REVOKE ALL or REVOKE ALL PRIVILEGES means the
same thing.

xii Application Programming

* Sometimes a single parameter represents a fragment of syntax that is expanded
below. In the following example, fieldproc_block is such a fragment and it is
expanded following the syntax diagram containing it.

>>-

i fieldproc_block i >

UNIQUE
PRIMARY KEY—

|—NOT NULL |: |

fieldproc_block:

|—FIELDPROC—program_name \\ J }
(—Y—constant——)

SQL Reserved Words

The following words are reserved in the SQL language. They cannot be used in
SQL statements except for their defined meaning in the SQL syntax or as host
variables, preceded by a colon.

In particular, they cannot be used as names for tables, indexes, columns, views, or
dbspaces unless they are enclosed in double quotation marks (").

About This Manual ~ Xxiii

ACQUIRE GRANT RESOURCE

ADD GRAPHIC REVOKE
ALL GROUP ROLLBACK
ALTER ROW
AND HAVING RUN
ANY
AS IDENTIFIED SCHEDULE
ASC IN SELECT
AVG INDEX SET
INSERT SHARE
BETWEEN INTO SOME
BY IS STATISTICS
STORPOOL
CALL LIKE SUM
CHAR LOCK SYNONYM
CHARACTER LONG
COLUMN TABLE
COMMENT MAX TO
COMMIT MIN
CONCAT MODE UNION
CONNECT UNIQUE
COUNT NAMED UPDATE
CREATE NHEADER USER
CURRENT NOT
NULL VALUES
DBA VIEW
DBSPACE OF
DELETE ON WHERE
DESC OPTION WITH
DISTINCT OR WORK
DOUBLE ORDER
DROP
PACKAGE
EXCLUSIVE PAGE
EXECUTE PAGES
EXISTS PCTFREE
EXPLAIN PCTINDEX
PRIVATE
FIELDPROC PRIVILEGES
FOR PROGRAM
FROM PUBLIC

Conventions for Representing DBCS Characters

When MIXED data values are shown in examples then the following conventions
are used:

Convention =~ Meaning

< Represents the DBCS delimiter character X '0E'.

> Represents the DBCS delimiter character X 'OF'.

X Represents an SBCS character (x can be any lowercase letter).
3 Represents a DBCS character (8§ can be any double-byte

uppercase letter).

xiv Application Programming

Components of the Relational Database Management System

Figure 1l depicts a typical configuration with one database and two users.

Eigure 2 on page xard depicts a typical configuration with one database, one batch

partition user, and a CICS partition with several interactive users.

Communication Link (IUCV, APPC/VM or TCP/IP)

Database User _
Machine Machine
| —— T |
| :
Service |

!
Relational Data System| IAppIIcatlon Requester

Interactive SQL

Database Storage Mbisk
Subsystem

1 1

1 1

' :

Database Manager Pr - : Preprocessors :
oductio i DBS Utility |

1

// \ ‘\\\ N I Applications I

User
Machine

>
'

1
1
1
1
1
> ‘ -
1 I Resource Adapter
1 [}
1
1
1
1
1
1
1

1
1
1
IAppIication Requesterl

i 1

D\recfor\’ : Interactive SQL !

log Dpisk |]
! Preprocessors |

Storage I |

Pool i DBS Utility |

______ |

Database | | Applications |

Application Server

Figure 1. Basic Components of the RDBMS in VM/ESA

About This Manual

XV

xvi

1 1
Online Resource Adapter [1
1

Application Requester I

Interactive SQL

CICS Application

1
1
1
1
1
1
I Applications

CICS Partition

Dbextent

Log

Database |

Storage
Pool

Directory

DB2
for VSE

] Batch Resource Adapter : Application
1
I Application Requester I Program
VSE Batch
Partition
| Data Syst Control
I | ata System Control : VSAM
- :
= -
1 ubsystem | D
atabase
I Database Manager I Partition
VSE

Library

Application Server

Figure 2. Basic Components of the RDBMS in VSE/ESA

The database is composed of :

* A collection of data contained in one or more storage pools, each of which in turn

is composed of one or more database extents (dbextents). A dbextent is a VM
minidisk or a VSE VSAM cluster.
A directory that identifies data locations in the storage pools. There is only one
directory per database.

* A log that contains a record of operations performed on the database. A database

can have either one or two logs.

The database manager is the program that provides access to the data in the

database. In VM it is loaded into the database virtual machine from the production

disk. In VSE it is loaded into the database partition from the DB2 Server for VSE

library.

The application server is the facility that responds to requests for information from

and updates to the database. It is composed of the database and the database
manager.

The application requester is the facility that transforms a request from an
application into a form suitable for communication with an application server.

Application Programming

Summary of Changes

This is a summary of the technical changes to the DB2 Server for VSE & VM
database management system for this edition of the book. All manuals are affected
by some or all of the changes discussed here. For your convenience, the changes
made in this edition are identified in the text by a vertical bar (1) in the left
margin. This edition may also include minor corrections and editorial changes that
are not identified.

This summary does not list incompatibilities between releases of the DB2 Server
for VSE & VM product; see either the IDB2 Seruer for VSE & VM SQL Rpfprpwr‘A bB_j
Berver for VM System Administration or the IDR2 Qprnprfnr VSE Suyste

manuals for a discussion of incompatibilities.

Summary of Changes for DB2 Version 7 Release 1

Version 7 Release 1 of the DB2 Server for VSE & VM database management
system is intended to run on the Virtual Machine/Enterprise Systems Architecture
(VM/ESA®) Version 2 Release 3 or later environment and on the Virtual Storage
Extended/Enterprise Systems Architecture (VSE/ ESA™) Version 2 Release 3
Modification 1 or later environment.

Enhancements, New Functions, and New Capabilities

TCP/IP Support for DB2 Server for VSE
TCP/IP support allows:

¢ VSE online and batch application programs to access remote application servers
which support IBM’s implementation of the DRDA architecture over TCP/IP.

* Remote application requesters which support IBM’s implementation of the
DRDA architecture to access the DB2 for VSE application server over TCP/IP.
For more information, see the following DB2 Server for VSE & VM documentation:
- IDR?2 Server for VSE & VM Database Administration

o IDB2 Server for VSE System Administration
 |DB2 Server for VSE Program Directori]

DRDA RUOW Application Requester for VSE (Batch)
DRDA Remote Unit of Work Application Requester provides read and update
capability in one location in a single unit of work.

This support provides VSE batch application programs with the ability to execute
SQL statements to access and manipulate data managed by any remote application
server that supports IBM’s implementation of the DRDA architecture.

VSE batch application programs can access only one remote application server per
unit of work, and must use TCP/IP communications.

For more information, see the following DB2 Server for VSE & VM documentation:

. D i UoE S —

o IDB2 Server fnr VSE & VM Database Administratiod

. D e — —

© Copyright IBM Corp. 1987, 2000 xvii

xviii

» IDB2 Server for VSE Program Directori)

Stored Procedures Application Requester

A stored procedure is a user-written application program compiled and stored at
the server. Stored procedures allow logic to be encapsulated in a procedure that is
local to the database manager. The ability to use stored procedures provides
distributed solutions that let more people access data faster. SQL statements and
replies flowing across the network are reduced and performance is improved.

This support provides VM and VSE (online and batch) application programs with
the ability to invoke stored procedures from any remote application servers that
support IBM’s implementation of the DRDA architecture. It also allows processing
of result sets if supported by the remote DRDA application server.

For more information, see the following DB2 Server for VSE & VM documentation:

. D o U U i T —

o IDB2 Server for VSE & VM SQI Rpfpwwr‘pl

Simplified DB2 Server for VSE Installation/Migration

A REXX procedure Job Manager is supplied to assist in the DB2 Server for VSE
Installation/Migration process. It controls the overall job flow based on the
contents of the job list control tables and the parameter table (supplied as Z-type
members). The job manager selects the job control member from the job list file (a
Z-type member), extracts the member from the Installation Library, modifies the
JCL, submits the job, evaluates the execution, posts the results, and then repeats
the process as required. The users are required to modify the parameter table,
according to their environment.

This support simplifies the process of installation and migration by reducing user
intervention - the Job Manager submits the prepared jobs.

See the IDB2 Server for VSF Program Directory) for further details.

New Code Page and Euro Symbol Code Page Support
The following CCSIDs are now supported:

e 1137: Hindi

* 1142: E-Danish/Norweigan
* 1143: E-Finnish/Swedish

* 1145: E-Spanish.

Additional support has been added for conversions from Unicode (UTF-8) to host
CCSIDs.

For a complete list of CCSIDs supported, refer to the [DB2 Server for VM Q"vaml
and DB2 Serper fmf VSE Quch)m Administration manuals

Control Center for VM Enhancements
The following is a list of enhancements that have been made to the Control Center

for VM:

+ QME" Tools: allow the user to list QMF objects, view and unload QMF queries
and PROCS, schedule QMF PROCS to execute, and run explain on QMF queries.

e Table Create Tool: allows the user to create new tables.
* Search List improvements.

* Referential Integrity Report tool: A referential integrity map report can now be
generated directly from the CMS command interface.

Application Programming

* PL/I prerequisite removal.
* New and improved tape hopper support.

* High density tape drive support: support for high density (non-CMS density)
tape drives.

Control Center for VSE Enhancements
The following enhancements have been provided for Control Center for VSE:

 Additional Operator Command Support
* Installation of IBM-provided Stored Procedures.

QMF for VSE & VM Optional Feature
The following enhancements have been provided for QMF for VSE & VM:

* Application Requester support for VSE QMF users
* Command enhancements to default to object type
* Fast path to the QMF home screen

* Cross-platform install capability

» DB2 for AS/400 database access.

QMF for Windows® Optional Feature

The following enhancements have been provided for QMF for Windows :
* Java-based Query

* Aggregating, grouping and formatting directly within query results and
automatic Form creation

* Personal portal user interface that launches centrally shared queries and reports,
and sends results to spreadsheets, desktop databases, and browsers

e Procedures with REXX.

Reliability, Availability, and Serviceability Improvements

DBNAME Directory Restructuring

ARISDIRD has been restructured to improve readability and flexibility. Each
DBNAME entry is now defined explicitly by its type (Local, Remote or Host VM
(Guest Sharing)). CICS AXE Transaction TPNs (Transaction Program Names) are
still included in the directory as a type of 'LOCALAXE’. The DBNAME Directory
Builder program, ARICBDID has been rewritten as a REXX/VSE procedure with
extensive error and dependency checking. Support for TCP/IP information is
added and “alias” DBNAMEs are supported. ALL DBNAMEs must be specified in
the new DBNAME Directory, including the Product Default DBNAME "SQLDS". A
migration REXX/VSE procedure, ARICCDID, is provided to assist in migrating to

the new format. See the DB2 Server for VSE Systems Adwministration and [DB2 Sexved
for VSE Pragram Directary for additional information.

Migration Considerations
Migration is supported from SQL/DS"" Version 3 and DB2 Server for VSE & VM

Versions 5 and 6. Migration from SQL/DS Version 2 Release 2 or earlier releases is
not supported. Refer to the [DB2_Server Fnr VM Sustem Administration or IDB2 Served

for VSE System Administration manual for migration considerations.

Library Enhancements

Some general library enhancements include:

* The following books have been removed from the library:
— DB2 Server for VM Application Programming
— DB2 Server for VSE Application Programming

Summary of Changes ~ XiX

DB2 Server for VM Database Administration

DB2 Server for VSE Database Administration

DB2 Server for VSE Installation

DB2 REXX SQL Interface Installation

DB2 REXX SQL Reference

DB2 Server for VM Diagnosis Guide and Reference
DB2 Server for VSE Diagnosis Guide and Reference
DB2 VM Data Spaces Support

Note: Information from this book can now be found in the DB2 Server for VSB

DB2 Server for VM Master Index and Glossary
DB2 Server for VSE Master Index and Glossary.

* The following books have been added to the library:

[DR2 Serner for VSE & VM Databgse Administration

[DR2 Serner for VSE & VM Application Prn(c‘rrnmmiw’g'
DB2_ REXX_SQL for VM/ESA Installation and Referencd
[DR2 Serner for VSE & VM Digenosis Guide gnd Rpfprpnr'pl
DR2 QPVﬂPrfnr VSE & VM Master Index and Clnqcmfjlj

Refer to the new DB2 Server for VSE & VM Overivew for a better understanding of
the benefits DB2 Server for VSE & VM can provide.

XX Application Programming

Chapter 1. Getting Started

What is the DB2 Server for VSE & VM Product?
Whatis SQL?

Embedding SQL Statements in Host Language

Programs

© Copyright IBM Corp. 1987, 2000

N

Using DB2 Server RXSQL (DB2 Server for VM
Only) . e
Writing a Program

.4
.4

What is the DB2 Server for VSE & VM Product?

The DB2 Server for VSE & VM product is a database management system that uses
the relational data model. You can think of a relational data model as a collection
of ordinary two-dimensional tables, where each table has a specific number of
columns, unordered rows, and a specific item of data at the intersection of every
column and row. You access data by performing operations on tables. All you need
to know are the names of tables and of the columns that contain the desired data.

The sample tables in Appendix G of the IDBR2_Server fnr VSE & VM SOL Rtffprpnr‘pl
manual are used in examples throughout this manual. In [Cable 1 the
DEPARTMENT table has columns DEPTNO, DEPTNAME, MGRNO, and

ADMRDEPT.
Table 1. DEPARTMENT Table Contents
DEPTNO DEPTNAME MGRNO ADMRDEPT
A00 SPIFFY COMPUTER SERVICE 000010 A00
DIV.
BO1 PLANNING 000020 A00
Co1 INFORMATION CENTER 000030 A00
D01 DEVELOPMENT CENTER ? A00
D11 MANUFACTURING SYSTEMS 000060 D01
D21 ADMINISTRATION SYSTEMS 000070 Do1
EO1 SUPPORT SERVICES 000050 A00
El11 OPERATIONS 000090 EO1
E21 SOFTWARE SUPPORT 000100 EO1

Suppose, for example, you want a list of all the different departments
(DEPTNAME) in your company. You could get this information simply by
knowing the name of the table DEPARTMENT and of the column DEPTNAME
that the data is in, and coding this in an appropriate SQL statement.

2 Application Programming

— DB2 Server for VSE
You can use the database management system under any supported Virtual
Storage Extended (VSE) operating system. Application programs running
under VSE can be:

* Online programs operating in CICS partitions, controlled by the Customer
Information Control System/Virtual Storage Extended (CICS/VSE)

¢ Batch programs operating in interactive partitions controlled by the IBM
Interactive Communications and Control Facility (ICCF).

* DPure batch programs.

Under the VSE operating system, you can write batch or online programs to
access one or more DB2 Server for VSE application servers, or application
servers using VSE Guest Sharing. In addition, you can write online programs
to access one or more DB2 family application servers using DRDA Remote
Unit of Work (RUOW). The application server is the facility that receives and
processes requests to access data.

Access to multiple application servers is not available for CICS application
programs; however, CICS programs running in different CICS partitions can
access different application servers.

— DB2 Server for VM
You can use the DB2 Server for VM database management system under any
supported Virtual Machine (VM) operating system. Application programs
running under VM can be:

* Online programs that operate in virtual machines and are controlled by the
conversational monitor system (CMS).

* Noninteractive programs that operate in virtual machines in VM.

You can also write distributed applications that can access multiple
application servers, as well as application servers other than DB2 Server for
VSE & VM such as DB2 for MVS. The DB2 Server for VM application server
is the facility that receives and processes requests to access data.

For a discussion of terms and concepts, such as application server, that are
used _throughout this manual, refer to the DB2 Server for VSE & VM Overivew,
the IDB2_Serper fnr VSE & VM SOI Rpfprpnnl, and the DRDA: Every Manager's
Guide manuals.

What is SQL?

DB2 Server for VSE & VM data is handled by the Structured Query Language
(SQL), which contains statements that retrieve, delete, insert, and update tables in a
DB2 Server for VSE & VM database. You can embed these statements in
application programs written in any of the following host languages: assembler
language, C, COBOL, FORTRAN, PL/I, or REXX (for DB2 Server for VM).

These SQL statements do all data handling, thereby decreasing the data handling
done by the programs themselves. Programs that access DB2 Server for VSE & VM
data can also access data from other sources, such DL/I databases (for VSE) and
CMS files (for VM).

Chapter 1. Getting Started 3

Embedding SQL Statements in Host Language Programs

Programs that use the DB2 Server for VSE & VM database management system are
host programs because they act as hosts for SQL. How you embed SQL statements
varies for each of the supported host languages.

The core of SQL is the same for each host language. For this reason, the SQL
statements are presented throughout this book in basic form unless otherwise noted:
that is, without any of the language-dependent delimiters.

In this book, examples that have combinations of SQL statements and host
language statements are shown in a language-independent form called pseudocode.
Pseudocode shows program logic but must be recoded in a specific programming
language before it can be used. When SQL statements are shown in pseudocode
examples, they are preceded by the words EXEC SQL to help you distinguish them
from the pseudocode. When shown by themselves, they are not preceded by these
words.

To use SQL statements in a programming language, you must be familiar with the
rules for embedding them in that language. These rules are discussed in Appendix
section of this manual (one for each language).

You should browse through the appropriate appendix before you continue reading,
and refer to it as needed when you are ready to code your first DB2 Server for
VSE & VM application. You can also refer to Chapter 6 of the [DB2 Server for VSE &

M SQI Referencd manual for information on SQL statements.

Using DB2 Server RXSQL (DB2 Server for VM Only)

The REXX Interface Installation (DB2 Server RXSQL) extends the support of the
database manager to include REXX as a host language. SQL statements are
supported in DB2 Server RXSQL by DB2 Server RXSQL requests that are imbedded
in REXX programs. Because REXX is an interpretive language, DB2 Server RXSQL
requests do not need to be preprocessed or compiled before they are run. You can
compile REXX programs, but this has no effect on the DB2 Server RXSQL requests.
You can use DB2 Server RXSQL to:

* Make prototypes and test application programs

* Write application programs for production environment

* Write interpretive as well as compiled code.

For a discussion of application programming using REXX, refer to the [DB2 REXX
BQL for VM/ESA Installation and Referencd manual.

Writing a Program

Writing a program that accesses DB2 Server for VSE & VM data consists of the
following steps: Designing the program entails determining what tasks the
program must perform, and then creating a plan for the program to perform these
tasks. The structure of the program should be based on its three main parts:
prolog, body, and epilog. Coding the program entails using SQL statements and
tools to manipulate DB2 Server for VSE & VM data. The operations on the data
must conform to the design of the program. Preparing the program for execution
entails preprocessing, compiling, link-editing, and loading it. Testing and
debugging the program entails:

* Executing the program using test data

¢ Checking the results

* Identifying errors created in the previous steps

 Correcting the errors.

4 Application Programming

Releasing the program entails putting it into production (that is, making it
available to its intended users). In this step, you control who will be allowed to
run the program and to work with the data that it accesses.

Chapter 1. Getting Started 5

6 Application Programming

Chapter 2. Designing a Program

Defining the Main Parts of a Program .
Creating the Prolog . .
Declaring Variables That Interact wrth the
Database Manager
Handling Errors with the SQL
Communications Area .
Using Additional Nonexecutable Statements
Creating the Body . . .
Connecting to the Appllcatlon Server
Defining Objects.
Manipulating Objects . .
Controlling Application Server Resources
Granting Authorities and Privileges

© Copyright IBM Corp. 1987, 2000

.8
.8

. 8

.11

12

.12
.12
. 14
. 14
. 14
. 14

Creating the Epilog.
Ending the Program
Using Logical Units of Work.
Defining the Logical Unit of Work.
Beginning a Logical Unit of Work .
Considering the CICS/VSE Logical Unit of Work
(DB2 Server for VSE Only) .o
Ending a Logical Unit of Work .
Using the COMMIT Statement .
Using the ROLLBACK Statement .
Summary .
Using Host- Dependent Sample Apphcatlons

.15
.15
. 18
. 18

.18

. 18
.19
.19
.19
. 20
.21

Defining the Main Parts of a Program

A DB2 Server for VSE & VM application program contains three main parts: the
prolog, the body, and the epilog. Certain SQL statements must appear at the
beginning and end of the program to handle the transition from the host language
to the embedded SQL statements.

The prolog is at the beginning of every program and must contain:

* SQL statements that provide for error handling by setting up the SQL
communications area or by declaring an SQLCODE variable.

* Declarations of all variables that the database manager uses to interact with the
host program.

The body contains the SQL statements that will enable you to access and manage
data. Among the statements included in this section are:

e The CONNECT statement, which establishes a connection to an application
server

¢ Data manipulation statements (for example, the select-statement)
* Data definition statements (for example, the CREATE statement)

* Data control statements (for example, the GRANT statement).

The epilog is at the end of the application program, and contains SQL statements
that:

* Save (commit) or do not use (rollback) changes made to data.

* Release the program’s connection to the application server.

Creating the Prolog

Declaring Variables That Interact with the Database Manager

All host program variables that interact with the database manager must be
declared in an SQL declare section. A program may contain multiple SQL declare
sections. An SQL declare section is a group of host program variable declarations
that are preceded by the SQL statement BEGIN DECLARE SECTION and followed by
the SQL statement END DECLARE SECTION. Host program variables declared in an
SQL declare section are host variables and can be used in host-variable references
in SQL statements.

The attributes of each host variable depend on how the variable is used in the SQL
statement. For example, variables that receive data from or store data in DB2
Server for VSE & VM tables must have data type and length attributes compatible
with the column being accessed. To determine the data type for each variable, you
must be familiar with DB2 Server for VSE & VM data types, shown in w

. Each column of every table is assigned a data type when the table is
created.

Relating Host Variables to an SQL Statement: Host variables can be used to
receive data from the database manager or to transfer data from the host program
to the database manager. Host variables that receive data from the database
manager are output host variables. Host variables that transfer data from the host
program to the database manager are input host variables.

Consider the following SELECT INTO statement:

8 Application Programming

SELECT HIREDATE, EDLEVEL
INTO :HDATE, :LVL

FROM EMPLOYEE

WHERE EMPNO = :IDNO

It contains two output host variables, HDATE and LVL, and one input host
variable, IDNO. The database manager uses the data stored in the host variable
IDNO to determine the EMPNO of the row that is retrieved from the EMPLOYEE
table If a row that meets the search criteria is found, HDATE and LVL receive the
data stored in the columns HIREDATE and EDLEVEL respectively. This statement
illustrates an interaction between the host program and the database manager
using columns of the EMPLOYEE table.

Each column of a table is assigned a data type and each data type can be related to
a host language data type. For example, the INTEGER data type is a 31-bit binary
integer. This is equivalent to the following data description entries in each of the
host languages, respectively:

COBOL:
01 variable-name PICTURE S9(9) COMPUTATIONAL.

Assembler:

variable-name DS F

C:

long variable-name;

FORTRAN
INTEGER variable-name

PL/I:
DCL variable-name BINARY FIXED(31);

All the host language equivalents for a particular DB2 Server for VSE & VM data
type are listed at the end of each host language appendix.

After you determine which column a host variable interacts with, you need to find
out what DB2 Server for VSE & VM data type that column has. Do this by
querying the DB2 Server for VSE & VM catalog, which is a set of tables containing
information about all tables created in the database. This catalog is described in the
DB?2 Server for VSE & VM SQI. Referencd manual.

After you have determined the data types, you can refer to the conversion charts at
the end of the host language appendixes, and code the appropriate declarations.
shows the declarations in each host language.

Chapter 2. Designing a Program 9

Table 2. Examples of Declarations and Embedded SQL Statements

Assembler Col. 1 Col. 16 Col. 72

EXEC SQL BEGIN DECLARE SECTION
HDATE DS CL10
LvL DS H
IDNO DS CL6
EXEC SQL END DECLARE SECTION
EXEC SQL INCLUDE SQLCA
EXEC SQL WHENEVER SQLERROR GOTO ERRCHK

EXEC SQL SELECT HIREDATE, EDLEVEL *
INTO :HDATE, :LVL *
FROM EMPLOYEE *

WHERE EMPNO = :IDNO

ERRCHK

C EXEC SQL BEGIN DECLARE SECTION;
char HDATE[11];
short LVL;
char IDNO[7];
EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA;
EXEC SQL WHENEVER SQLERROR GOTO ERRCHK;
EXEC SQL SELECT HIREDATE, EDLEVEL
INTO :HDATE, :LVL
FROM EMPLOYEE
WHERE EMPNO = :IDNO;

ERRCHK: errout();

COBOL Cols. 8 12

DATA DIVISION.
FILE SECTION.

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 HDATE PICTURE X(10).
01 LVL PICTURE S9(4) COMPUTATIONAL.
01 IDNO PICTURE X(6).

EXEC SQL END DECLARE SECTION END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.
EXEC SQL WHENEVER SQLERROR GOTO ERRCHK END-EXEC.
EXEC SQL SELECT HIREDATE, EDLEVEL
INTO :HDATE, :LVL
FROM EMPLOYEE
WHERE EMPNO = :IDNO END-EXEC.

ERRCHK.

10 Application Programming

Table 2. Examples of Declarations and Embedded SQL Statements (continued)
FORTRAN Col. 7

EXEC SQL BEGIN DECLARE SECTION
CHARACTER*10 HDATE

INTEGER*2 LVL

CHARACTER=6 IDNO

EXEC SQL END DECLARE SECTION

EXEC SQL INCLUDE SQLCA

EXEC SQL WHENEVER SQLERROR GOTO 4000
EXEC SQL SELECT HIREDATE, EDLEVEL

* INTO :HDATE, :LVL
* FROM EMPLOYEE
* WHERE EMPNO = :IDNO

4000 CONTINUE
PL/1 Col. 2

EXEC SQL BEGIN DECLARE SECTION;
DCL HDATE CHARACTER(10);
DCL LVL BINARY FIXED(15);
DCL IDNO CHARACTER(6);
EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA;
EXEC SQL WHENEVER SQLERROR GOTO ERRCHK;

EXEC SQL SELECT HIREDATE, EDLEVEL
INTO :HDATE, :LVL
FROM EMPLOYEE
WHERE EMPNO = :IDNO;

ERRCHK:

[lable d also shows the BEGIN and END DECLARE SECTION statements for DB2
Server for VSE. Observe how the delimiters for SQL statements differ for each
language. For the exact rules of placement, continuation, and delimiting of these
statements, see the appendixes of this book.

Handling Errors with the SQL Communications Area
The SQL Communications Area (SQLCA) is discussed in detail in

i = i ilities” . This section presents an
overview. To declare the SQLCA, code this statement in your program:

INCLUDE SQLCA

When you preprocess your program, the database manager inserts host language
variable declarations in place of the INCLUDE SQLCA statement. The system
communicates with your program using the variables for warning flags, error
codes, and diagnostic information.

The system returns a return code in SQLCODE after executing each SQL statement.
The SQLCODE is an integer value that summarizes the execution of the statement.
Refer to the DB2 Server for VSE & VM SQIL Referencd manual for a detailed

description of the SQLCODE field. Refer to the IDB2 Serper for VM Messages and
Coded or the DB2 Server for VSE Messages and Coded manuals for information about

specific SQLCODEs.

Chapter 2. Designing a Program 11

A return code is also returned in SQLSTATE after each SQL statement is executed.
SQLSTATE is a character field that provides common error codes across IBM'’s
relational database products. SQLSTATE values comply with the SQL92 standard.
For a discussion of SQLSTATE, refer to the [DB2 Server for VSE & VM SQI. Referencd
manual. For more information about specific SQLSTATEs, refer to the IDB2 Serued

for VM Messages and Coded or the IDB2 Server for VSE Messages aud Coded manuals.

When a statement is executed successfully, SQLCODE is set to 0 (SQLSTATE is
'00000"). A negative SQLCODE indicates an error condition. Positive SQLCODES
indicate that a statement has executed successfully but a warning code may be
issued which means that you must verify whether the SQL statement was executed
without unexpected results.

The system supports the use of a stand-alone SQLCODE. If you request this
support, do not include the SQLCA definition in your program. However, you
must provide the 1nteger Varlable SQLCODE (SOLCOD in FORTRAN) For a
detailed discussion, see = -

If you want the system to control error checking after each SQL statement, use the
WHENEVER statement. The following WHENEVER statement indicates to the
system what to do when it encounters a negative SQLCODE:

WHENEVER SQLERROR GO TO errchk

That is, whenever an SQL error (SQLERROR) occurs, program control is
transferred to code that follows a specific label, such as ERRCHK. This code
should include logic to analyze the error indicators in the SQLCA. Depending
upon the ERRCHK definition, action may be taken to execute the next sequential
program instruction, to perform some special functions, or, as in most situations, to
roll back the current logical unit of work (LUW) and terminate the program. See

[1lsing T ogical TInits of Work” on page 18 for more information on LUWs.

Using Additional Nonexecutable Statements

Generally, other nonexecutable SQL statements are also part of the prolog. These are
discussed later in this manual, and in the IDB2 Server for VSE & VM SQI. Referenca
manual. Examples of other nonexecutable statements are:

* INCLUDE text_file_name

» INCLUDE SQLDA

Creating the Body
Connecting to the Application Server
Your program must establish a connection to the application server before it can
run any executable SQL statements. This connection identifies the authorization ID

of the user who is running the program, and the name of the application server on
which the program will be run.

12 Application Programming

— DB2 Server for VM
The program can establish the connection in two ways:

¢ Issue the CONNECT statement to explicitly request the connection.
You can then specify the authorization ID and the name of the target

application server. See the [DB2 Seruer for VSE & VM SQL Referencd manual

for a detailed discussion of the CONNECT statement. Not all forms of the
CONNECT statement are available when you are using DRDA protocol.

* Allow the application requester to connect implicitly, using the VM logon
ID established by the SQLINIT command.

— DB2 Server for VSE
VSE non-interactive (batch) and ICCF application programs must establish the
connection by explicitly issuing the CONNECT statement. You can enter the
authorization ID and the name of the target application server. See the
Berver for VSE & VM SQL Referencd manual for a detailed discussion of the
CONNECT statement.

The CONNECT statement must be the first SQL statement executed in the
batch application. If you release the connection in any logical unit of work
other than the last one, issue a new CONNECT statement to reestablish the
connection. If the first SQL statement is a CONNECT statement without the
TO clause, the default application server is connected. For more information
about the defaults that determine which application server is accessed, refer
to the DR2 Qwarfnr VSE qblcfpm Administratiod manual. CICS online

applications can establish the connection in two ways:

* Issue the CONNECT statement to explicitly request the connection. You can
then specify the authorization ID and the name of the target application
server. See the [DB2 Server fnv VSE & VM SQL Rp_'fpvamj manual for a

detailed discussion of the CONNECT statement.

* Allow the application to connect implicitly, allowing the user ID and
password checking to be performed by the interactive system.

Unless the TO parameter is specified by a CICS/VSE application on a
CONNECT statement, the CICS/VSE application will first establish
connections to the default application server. On subsequent CONNECTs
performed by that application, if the TO parameter is not specified then the
connection to the previously connected server will be maintained. For more
information about the defaults that determine which application server is
accessed, refer to the IDB2 Qpr"nprfnr VSE System Administratiod manual.

The authorization ID established by the connection must have been granted both
the privilege to execute the program’s package and CONNECT authority for the
target application server. For DB2 Server for VM, the package has authority to
perform the actions specified in the statements in the program if the owner of the
package has the authority. For DB2 Server for VSE, the package has the authority
to access database resources specified in the SQL statements in the program if the
owner of the package has the authority.

Chapter 2. Designing a Program 13

— DB2 Server for VSE

After the connection has been established, your program can issue SQL
statements that manipulate data, define and maintain database objects, and
begin control operations, such as, granting user authority, and committing
changes to the database. See the

manual for a more detailed discussion of the CONNECT statement.

Defining Objects
The following are some of the statements that you can use to create and drop
database objects such as tables, indexes, and synonyms. (These statements are

dlscussed in 'Chapter 9 Maintaining Obijects Ilsed by a Program” on page 249.)

CREATE TABLE
DROP TABLE
ALTER TABLE
CREATE INDEX
DROP INDEX
CREATE VIEW
DROP VIEW
CREATE SYNONYM
DROP SYNONYM
CREATE PROCEDURE
ALTER PROCEDURE
DROP PROCEDURE
CREATE PSERVER
ALTER PSERVER
DROP PSERVER

Manipulating Objects
The following are some of the statements that you can use to manipulate database
objects:

SELECT
INSERT
UPDATE
DELETE

These statements are discussed in detail in !Chapter 3 Coding the Body of a

Note: Refer to the [DB2 _Server fnr VSE & VM SQI Rpfprpwrpl manual for a

description of select-statements.

Controlling Application Server Resources
The following are some of the statements that you can use to manage logical units
of work, dbspaces, and locks:

CONNECT
ACQUIRE DBSPACE
DROP DBSPACE
ALTER DBSPACE
UPDATE STATISTICS

Granting Authorities and Privileges
There are two statements to use to assign and withdraw privileges on objects or
authorities to user IDs:

GRANT
REVOKE

14 Application Programming

Thel% are discussed in detail in [!Chapter 10. Assigning Authority and Privileges’]

Creating the Epilog

Ending the Program
The application epilog is the logical end of your DB2 Server for VSE & VM

application program. To properly end your program:

1. End the current logical unit of work (if one is in progress) by explicitly issuing
either a COMMIT statement if you want the changes to be committed (saved in
the database), or a ROLLBACK statement if you do not want them to be saved.

2. Release your connection to the application server.

DB2 Server for VSE
The two tasks are accomplished differently for VSE batch or ICCF
applications, and for CICS/VSE transactions.

Chapter 2. Designing a Program 15

— DB2 Server for VM
Although an implicit COMMIT or ROLLBACK statement is automatic for any
application that accesses an application server, you should still issue an
explicit COMMIT or ROLLBACK statement. For DB2 Server for VM
application programs that are not executed through an EXEC, implicit
COMMIIT or ROLLBACK processing occurs when the application program is
completed. For those that are executed through an EXEC, this processing does
not occur until the EXEC is completed. To sever the connection and cause the
COMMIT or ROLLBACK to take effect from an EXEC, the SQOLRMEND EXEC
must be invoked. See L

for limitations on the use of SQLRMEND, and the IDB2 Sexuer for VSE & VM
Database Administratiod manual for more information on this EXEC.

”

When an implicit COMMIT or ROLLBACK is invoked, the logical unit of
work will be committed if the termination was normal, or rolled back if the
termination was abnormal. An application is terminated normally when it
returns to CMS or, in single virtual machine mode, to the DB2 Server for VM
calling routine. Any other kind of termination, such as HX, CMS abend,
program check, or any user machine termination, is abnormal.

In the VM environment, user-written interactive SQL applications are
provided with an inherent facility to cancel an SQL statement without
terminating the running application. This cancelation facility is invoked with
the SQLHX immediate command established by the DB2 application
requester. The only special processing ability required of the application is
that it be sensitive to the -914 SQLCODE (SQLSTATE '57014"). If the user ID
and password were established with an explicit SQL CONNECT, you must
reissue the CONNECT statement. If you do not, the user ID password and
application server revert to the value established by the implicit CONNECT.

The application can modify the basic cancel facility by defining additional
names for the DB2 Server for VM-defined SOLHX command or by requesting
the system to remove the SQLHX command and the exit it invokes. Use the
ARIRCAN macro to do these modifications. For more details on the
ARIRCAN macro interface (RMXC) and the SQLHX command, see the ID

Berver for VM System Administration manual.

For more information on CMS, consult the VM/ESA: CMS Command Reference
or the VM/ESA: CMS User’s Guide manuals.

Ending the Program for VSE Batch or ICCF Applications (DB2 Server for VSE
Only): You can enter either

COMMIT RELEASE

to end the current logical unit of work and commit the changes to the database, or
ROLLBACK RELEASE

to end the current logical unit of work and restore the changes made to the
database. The RELEASE keyword is optional; it releases your connection to the
application server. You should always explicitly end your logical unit of work;
however, you should release the connection only when ending the last logical unit
of work (if your program has more than one) or when changing your authorization
ID or the connected application server. If you release the connection in any logical

16 Application Programming

unit of work other than the last logical unit of work, enter a new CONNECT
statement to reestablish the connection. You should not release and reestablish the
connection unnecessarily because this may degrade the performance of your
program. Begin subsequent logical units of work with an explicit CONNECT
statement if the previous logical unit of work was terminated using the RELEASE
option.

If you do not code a RELEASE as described above, the system issues one implicitly
for you upon task/program termination. Not coding the RELEASE when ending
the last logical unit of work is inefficient, however; DB2 Server for VSE resources
are held until the application terminates even though you may not be using them.

Note: If you forget to end your logical unit of work, the system interrogates a VSE
flag to determine whether the program connection (to the application server)
terminated normally or abnormally. If the program terminated normally, the
system issues a COMMIT statement on behalf of the program. If the
program terminated abnormally, the system issues a ROLLBACK statement.

Once again, to avoid confusion, always explicitly end your logical units of work.

Ending the Program for CICS/VSE Transactions (DB2 Server for VSE Only):
You can enter

COMMIT

to end the current logical unit of work and commit the changes to the database, or
ROLLBACK

to end the current logical unit of work and restore the changes made to the
database. You do not have to explicitly release your connection to the application
server (although you can, if you wish). DB2 Server for VSE online support
automatically releases the connection for use by other CICS/VSE transactions
when the current logical unit of work is committed or rolled back.

If your transaction contains more than one logical unit of work, however, it is not
necessary to re-<CONNECT to the application server every time you want to start a
logical unit of work. When the connection to the database manager is implicitly
dropped, DB2 Server for VSE online support remembers the user ID, password,
and server-name established in the transaction’s original CONNECT. The next time
a logical unit of work is begun in that same transaction, online support implicitly
issues a CONNECT for you. The re-connection is transparent to the transaction.

You do not have to explicitly issue a COMMIT if that is how you want to end the
logical unit of work. A normal transaction termination causes a COMMIT
statement to be issued on behalf of the transaction.

A CICS/VSE syncpoint or syncpoint rollback also causes the system to issue a
COMMIIT or ROLLBACK on behalf of the transaction. Conversely, a DB2 Server for
VSE COMMIT or ROLLBACK statement causes a CICS/VSE syncpoint to be taken.
If your application is using multiple resources, however, you should issue the
SYNCPOINT statement or SYNCPOINT ROLLBACK statement instead of the DB2
Server for VSE COMMIT statement or ROLLBACK statement. Internally,
SYNCPOINT statements are always more efficient than the corresponding SQL
statements.

Under the CICS/VSE system, an interactive transaction can establish a user exit
that will get control at points where an SQL program might be canceled. Control is

Chapter 2. Designing a Program 17

transferred when the online resource manager is about to wait either for an SQL
statement to complete? or for a cross partition link to become available. The user
exit can be used to cause the current SQL statement to be canceled. The cancel will
cause a -914 SQLCODE (SQLSTATE '57014") to be returned to the transaction and a
ROLLBACK to be performed on the logical unit of work. A macro (ARIRCAN) is
available to establish the user exit. (The ARIRCAN macro can also be used to set
user data for the CIRD transaction.) For more details on the ARTIRCAN macro
interface and the coding of the exit, see CANCEL Exit in the DB2 Seruer for VSE &

WA Diaguosis Guide and Referencd manual.

Using Logical Units of Work
Defining the Logical Unit of Work

A logical unit of work (LUW) is a sequence of SQL statements (possibly with
intervening host language code) that the database manager treats as a whole.

The system ensures the consistency of data at the LUW level, by ensuring that
either all operations within an LUW are completed, or none are completed.
Suppose, for example, that money is to be deducted from one account and added
to another. If both these updates are placed in a single LUW, and if a system
failure occurs while they are in progress, then when the system is restarted, the
data is automatically restored to the state it was in before the LUW began. If a
program error occurs, all changes made by the statement in error are restored.
Work done in the LUW prior to execution of the statement in error is not undone,
unless you specifically roll it back. To determine whether the LUW terminated
automatically, you should check the value of SQOLWARNSG in the SQLCA. See

[lsing the Automatic Frrar-Handling Facilities” on page 193 for more information.

Beginning a Logical Unit of Work

An LUW is begun implicitly with the first executable SQL statement and is ended
by either a COMMIT or a ROLLBACK statement, or when the program ends.

The following are examples of statements that do not start a logical unit of work:

BEGIN DECLARE SECTION INCLUDE SQLCA
END DECLARE SECTION INCLUDE SQLDA
WHENEVER

An executable SQL statement always occurs within an LUW. If such a statement is
encountered after you end an LUW, it automatically starts another.

Considering the CICS/VSE Logical Unit of Work (DB2 Server
for VSE Only)

For logical unit of work processing to function as described in this manual, ALL
CICS/VSE INSTALLATIONS MUST DO THE FOLLOWING:

1. The CICS System Initialization Table (DFHSIT) must be generated with
DBP=YES.

If this is not done, the CICS/VSE system attempts to commit all changes,
regardless of whether a rollback was intended. (Alternatively, DBP=xx can be
specified if a suffixed version of the CICS/VSE Dynamic Backout Program is
being used.)

2. This exit is not available when a transaction is using the DRDA protocol to access remote application servers.

18 Application Programming

2. In addition, each online application that has access to the application server
must have Dynamic Transaction Backout set to YES. You can do this by
specifying DTB=YES in the resource definition online (RDO) facility (or
DFHCSDUP).

Your installation can specify DTB=YES on the initial DFHCSDUP statement, or
DTB=YES on each entry DFHCSDUP statement for applications having access
to the database manager.

Note: DTB=NO is not supported in RDO. All transactions defined in the macro
with DTB=NO are handled in RDO as if DTB=YES had been specified.
For more information, see the CICS/VSE Resource Definition (Online)
manual.

For more information, refer to the CICS/VSE System Programming Reference or the
CICS/VSE Resource Definition (Macro) manuals.

Ending a Logical Unit of Work

When you end an LUW, you can use either the COMMIT statement to save its
changes, or the ROLLBACK statement to ensure that these changes are not saved.

Using the COMMIT Statement

This statement ends the current LUW, and commits any changes made during it.

Changes should be committed as soon as application requirements permit. In
particular, programs should be written so that uncommitted changes are not held
over a terminal read request, which can result in locks and other resources being
held for a long time.

Each application program must explicitly end its LUW before terminating. If you
do not end it explicitly, the system automatically commits (upon successful
termination of the program) all changes made by the program during its pending
LUW unless one of the following conditions occurs:

* A log full condition is encountered.

* Some other system condition occurs that causes database manager processing to
end.

 Control is not returned to CMS (DB2 Server for VM only). For a discussion of
this subject, see the section on the SQLRMEND EXEC in the DB2 Server for VSH
& VM Database Administratiod manual.

See [‘Creating the Fpilog” on page 15 and [Using the Automatic Error-Handling
Eacilities” on page 193 for more information about program termination.

Note: The COMMIT statement has no effect on the contents of host variables.

Using the ROLLBACK Statement

This statement ends the current LUW, and restores the data to the state it was in
prior to the LUW beginning.

Note: The ROLLBACK statement has no effect on the contents of host variables.

Under some c1rcumstances the system automatically backs out of an LUW. Refer
to L “ for more information.

Chapter 2. Designing a Program 19

Note: If you use a ROLLBACK statement in a routine that was entered because of
an error or warning and you use the SQL WHENEVER statement, specify
WHENEVER SQLERROR CONTINUE and WHENEVER SQLWARNING
CONTINUE before the ROLLBACK. This avoids a program loop if the

ROLLBACK fails with an error or warning.

The ROLLBACK statement should not be issued if a severe error occurs (indicated
by an S in the SQLWARNO field of the SQLCA). The only statement that can be
issued after a severe error is a CONNECT statement.

Summary

Eigure 3 on page 20 summarizes the general framework for a DB2 Server for VSE
& VM application in pseudocode format. This framework works for VSE batch or
ICCF applications, and for CICS/VSE transactions. This framework must, of

course, be tailored to suit your own program.

Start Program

EXEC SQL BEGIN DECLARE SECTION
DECLARE USERID FIXED CHARACTER (8)
DECLARE PW FIXED CHARACTER (8)

(other host variable declarations)

EXEC SQL END DECLARE SECTION

EXEC SQL INCLUDE SQLCA

EXEC SQL WHENEVER SQLERROR GOTO ERRCHK
READ FROM SYSIPT USERID, PW

EXEC SQL CONNECT . . .
EXEC SQL SELECT ...
EXEC SQL INSERT .. .
EXEC SQL DELETE . ..
EXEC SQL UPDATE . ..

EXEC SQL COMMIT RELEASE
ERRCHK

End Program

Application
Prolog

Application
Body (SQL
statements)

Application
Epilog

Figure 3. Pseudocode Framework for Coding Programs

20 Application Programming

Using Host-Dependent Sample Applications

Some host-dependent sample application programs and the DB2 Server for VSE
JCL streams the DB2 Server for VM EXECs that can be used to preprocess,
compile, link or edit, and run them are shipped with this product. These programs
manipulate data in the tables by using embedded SQL statements and printing the
results. You may want to model your initial programs from these sample
applications. See Table d for DB2 Server for VM information on these samples.

for DB2 Server for VSE information on these samples.

Table 3. Sample Application Programs - DB2 Server for VM

Language Program Name EXEC Appendix
Assembler ARIS6ASC SQLASMC A
C ARIS6CC SQLC B
COBOL ARIS6CBC SQLCBLC C
FORTRAN ARIS6FTC SQLFTN D
PL/I1 ARIS6PLC SQLPLI E

Table 4. Sample Application Programs - DB2 Server for VSE

Language Program Name JCL (Z type member) | Appendix
Assembler ARIS6ASD ARIS6ASD A
C ARIS6CD ARIS6CD B
COBOL ARIS6CBD ARIS6CBD C
COBOL I ARIS6CBD ARIS6C2D C
FORTRAN ARIS6FTD ARIS6FTD D
PL/I ARIS6PLD ARIS6PLD E

DB2 Server for VM
As an example, to preprocess, compile, link edit, and run the sample COBOL
program from a DB2 Server for VM user machine enter:

SQLCBLC

Chapter 2. Designing a Program 21

— DB2 Server for VSE
Generalized job control to invoke the VSE programs is shown in [Figure 4 orl

The sample programs and job control were written for the compiler levels
stated in the prolog of the sample programs. If you want to run the sample
applications on a different level compiler, refer to the appropriate compiler
manual.

Each of the above applications assumes that the user SQLDBA has a
password of SQLDBAPW. If the samples are run with a userid other than
SQLDBA, or if the password has been changed, the parameters in the
generalized JCL must also be changed. Along with these changes, the host
variables used by the CONNECT statement in the sample programs must also
be modified to reflect a new user ID or password.

The DB2 Server for VM sample programs and EXECs were written for the
compiler levels stated in the prolog of these programs. If you wish to run them on
a different level compiler, refer to the appropriate compiler manual.

22 Application Programming

* Ok X X

// JOB ARISSAMP PREPROCESS SAMPLE PROGRAM

// EXEC PROC=ARIS71PL

// DLBL SQLGLOB,...... ,DISP=(OLD, KEEP)
// ASSGN SYS089,SYSPCH

// DLBL IJSYSPH,'PREPROCESSOR.OUTPUT',0

B e e o e T T T R R R S R R S L e 2 R R L R L L 2 e

*% GENERALIZED JCL TO PREPROCESS, COMPILE, LINKEDIT AND *k
x* EXECUTE THE SAMPLE PROGRAMS ON VSE SYSTEMS. id

EE R R R R e e R S R T T R R T R R R T T R T S L T L L L

*-- DB2 for VSE Library ID PROC
*-- SQLGLOB Parameter file
*-- Save SYSPCH assignment
*-- PREPROCESSOR output//10

// EXTENT SYSPCH,.......
ASSGN SYSPCH, ...

ET

K=

Assign to disk

// EXEC PGM=ARIPRPx,SIZE=AUTO,PARM="'USERID=SQLDBA/SQLDBAPW, *

PREPNAME=ARIS6XxxX'
READ MEMBER ARIS6xxx.A

O
-
/*
CLOSE SYSPCH,SYS089
// DLBL IJSYSIN,'PREPROCESSOR.OUTPUT',0 *--
// EXTENT SYSIPT,......
ASSGN SYSIPT,...

~
~

OPTION CATAL
PHASE ARIS6xxx,*
EXEC compiler
INCLUDE ARIPRDID

/

~

INCLUDE

ENTRY ARIS6xxx

EXEC LNKEDT

CLOSE SYSIPT,SYSRDR

// ASSGN

// EXEC PGM=ARIS6xxx,SIZE=(....)
data input to sample program

/

~

/*
/&

Invoke DB2 for VSE PREPROCESSOR
sample program name

Close & Assign SYSPCH

Input File

Same as SYSPCH in
preprocess step

Link Edit (catalog)

Name of executable phase
Compile

DB2 for VSE Batch Resource
Adapter stub

Include runtime routines

Link Edit

Reset SYSIPT
Program assignments
Execute Phase

Input data

DB2 Server for VSE
Notes:

1. JCL must be changed to specify the correct device address, DASD extents, compiler references.
2. Replace ARIPRPx with the preprocessor name.

% . ”

See

for a list of the preprocessor names.

Replace ARIS6xxx with sample program name.
See [Prepracessing by Maode” on page 154 for a list of preprocessor work files.

See [Link-

ook w

standard label subarea.

”

for a complete list of modules to be included.

The SQLGLOB DLBL statement must be added in the JCL if it has not been added to the system

Figure 4. Generalized Execution JCL for Sample Programs (Multiple User Mode) - DB2 Server for VSE

Chapter 2. Designing a Program

23

24 Application Programming

Chapter 3. Coding the Body of a Program

Defining Static SQL Statements .
Naming Conventions .
Coding SQL Statements to Retrreve and Manrpulate
Data. . .
Retrieving Data .
Defining an SQL Query
Using the SELECT Clause
Using the FROM Clause .
Using the WHERE Clause
Using the GROUP BY Clause
Using the HAVING Clause .
Using the ORDER BY Clause
Using the FOR UPDATE OF Clause
Using the WITH Clause .
Retrieving or Inserting Multiple Rows
Using the Cursor with a Select-Statement
Declaring a Cursor . .
Using a Cursor in an Applrcatron Program
Manipulating the Cursor . .
Ilustrating the Use of the Query Cursor
Retrieving Single Rows .o
Constructing Search Conditions
Performing Arithmetic Operations.
Using Null Values .
Using the Predicates of a Search Condrtron
Evaluating Predicates .
Using Additional Types of Predrcates
Using Functions . S
Using Column Functrons
Using Scalar Functions
Using Data Types
Assigning Data Types When the Column Is
Created. oo
Using Long Strmgs
Defining Long Strings . .
Performing Operations on Long Strrngs .
Programming Tip .
Using Datetime Data Types . .
Using Character Subtypes and CCSIDs .
Determining Default Subtypes and CCSIDs.
Assigning Subtypes and CCSIDs When a
Column Is Created .
Assigning Subtypes and CCSIDs to Data in a
Program .
Converting Data.
Summarizing Data Converswn
Truncating Data .
Using a Double-Byte Character Set (DBCS)
Using Expressions . . .o
Using Arithmetic Operators .
Using Special Registers .
Concatenating Character and Graphrc Strmgs .
Using Host Variables .
Using Host Structures .
Using Constants . .
Using Numeric Constants

© Copyright IBM Corp. 1987, 2000

. 27

. 27

.27
. 28
. 28
. 30
.31
.32
.32
.32
. 33
. 34
. 34
. 35
. 35
. 35
. 35
. 36
. 39
. 40
.41
.41
.42
. 43
. 44
. 44
. 45
. 45
. 45
. 46

. 46
. 47
. 47
. 47
. 47
. 47
. 48
. 49

. 49

.49
. 50
. 51
. 51
. 52
. 54
. 54
. 55
. 56
. 56
. 57
. 57
. 58

Using Character Constants
Using Graphic Constants .
Using Date and Time Constants
Using Indicator Variables .
Notes Common to Both Input and Output
Indicator Variables . .o
Notes on Input Indicator Varrables
Notes on Output Indicator Variables .

Using Views .

Creating a View . .
Querying Tables through a V1ew
Using Views to Manipulate Data
Dropping a View

Joining Tables

Joining Tables Using the Database Manager
Performing a Simple Join Query

Joining Another User’s Tables

Analyzing How a Join Works

Conditions.
Using Nulls within]orn Cond1t10ns .
Joining a Table to Itself Using a Correlation
Name .

Rules for Table Des1gnat10n .
Imposing Limits on Join Queries
Using SELECT * In a Join.

Grouping the Rows of a Table .

Using VARCHAR and VARGRAPHIC w1th1n
Groups . . e
Using Nulls wrthrn Groups .

Using Select-Lists in Grouped Quer1es

Using a WHERE Clause with a GROUP BY
Clause . o
Using the HAVING Clause .

Combining Joins.

[lustrating Grouping wrth an Exercrse

Nesting Queries .

Using the IN Pred1cate w1th a Subquery
Considering Other Subquery Issues
Executing Subqueries Repeatedly: Correlatron
Writing a Correlated Subquery . .
How the Database Manager Does Correlatron
Illustrating a Correlated Subquery .
Using a Subquery to Test for the Existence of a
Row .
Table Des1gnat10n Rule for Correlated Subquer1es
Combining Queries into a Srngle Query UNION
String Columns .
Numeric Columns . .
Datetime /Timestamp Colurnns

SQL Comments within Static SQL Statements .
Using Stored Procedures .

Writing Stored Procedures .

Returning Information from the SQLCA
Language Environment® (LE) Considerations .
Preparing to Run a Stored Procedure .

. 58
. 59
. 60
. 61

. 61
. 61
. 62
. 63
. 63
. 65
. 65
. 67
. 68
. 68
. 68
. 69
. 69
Using VARCHAR and VARGRAPHIC wrthrn]o1n

... . .70
.70

.70
.71
.72
.72
.72

.73
.73
. 74

.74
. 74
.75
.75
.77
.81
.81
. 82
. 83
. 84
. 85

. 90

90
91

. 93
. 93
. 94

. 94
. 96
. 97
. 98
. 98

25

Calling Stored Procedures98 Special Considerations forC 103

Authorization9 Special Considerations for PL/I 103
AUTHIDs L. ... 099 Result Sets 103
Stored Procedure Parameterslo0 | Coding Client Programs to Process Results
Datatype Compatibilityo.o.101 Sets104
Conventions for Passing Stored Procedure | Result Set Processmg 105
Parameterso 101 | Using the DESCRIBE PROCEDURE SQL

The GENERAL Lmkage Conventlon ..o 101 Statement . . . 107

The GENERAL WITH NULLS Lmkage | Using the DESCRIBE CURSOR SQL Statement 108

Conventiono 102 Coding Summary to Process Result Sets . . 109
Coding Examples103

26 Application Programming

Defining Static SQL Statements

This chapter describes how to code SQL statements directly into a program for
subsequent preprocessing. These statements which are known before running the
program are called static SQL statements. Those that are not known until the
program is actually run, and have to be built dynamically at run time from input
by the user, are called dynamic and extended dynamic SQL statements. Refer to

. i i ” for a detailed description of

dynamic statements and, L i ”
m for a detailed description of extended dynamic statements.

Naming Conventions

The following is a list of the identifiers that must conform in general to specific
naming rules:

* Authorization names
* Column names

* Constraint names

e Correlation names

* Cursor names

* Dbspace names

* Descriptor names

* Host variable names
* Index names

* Package names

* Passwords

* Procedure names

* Server names

e Statement names

* Synonyms

e Table names

* View names.

For a description of the naming rules, refer to the [DB2 Server for VSE & VM SQI
manual.

You can access a data object (table, view, dbspace, or package) owned by someone
else if you know the owner’s authorization-name and have the appropriate DB2
Server for VSE & VM privileges. You need to qualify references to the object by
prefixing its name with the owner’s authorization-name followed by a period. For
example, to access the table called EMPLOYEE which is owned by SMITH, enter
SMITH.EMPLOYEE.

When you specify the owner along with an object name, you have fully qualified the
object and uniquely identified the table. For example, you cannot have two
SMITH.EMPLOYEE tables at the same time.

To avoid confusion and errors, use fully qualified object names. This is especially
true if you are coding programs that will be preprocessed by another user.

Coding SQL Statements to Retrieve and Manipulate Data

The DB2 Server for VSE & VM product provides application programmers with
statements for retrieving and manipulating data; the coding task consists of
embedding these statements into the host language code. This chapter shows how
to code statements that will retrieve and manipulate data for one or more rows of

Chapter 3. Coding the Body of a Program 27

data in DB2 Server for VSE & VM tables. (It does not go into the details of the
different host languages. For exact rules of placement, continuation, and delimiting
SQL statements, see the host language appendixes.)

Retrieving Data

One of the most common tasks of an SQL application programmer is to retrieve
data. This is done using the select-statement, which is a form of query that searches
for rows of tables in the database that meet specified search conditions. If such
rows exist, the data is retrieved and put into specified variables in the host
program, where it can be used for whatever it was designed to do.

After you have written a select-statement, you code the SQL statements that define
how information will be passed to your application.

You can think of the result of a select-statement as being a table having rows and
columns, much like a table in the database. If only one row is returned, you can
deliver the results directly into host variables specified by the SELECT INTO
statement. For example, the following statement will deliver the salary of the
employee with the last name of 'HAAS' into the host variable EMPSAL:

SELECT SALARY

INTO :EMPSAL

FROM EMPLOYEE
WHERE LASTNAME="'HAAS'

If more than one row is returned, you must use a cursor to fetch them one at a
time. A cursor is a named control structure used by an application program to
point to a specific row within an ordered set of rows.

Writing select-statements, defining cursors, and using the SELECT INTO statement
are discussed in the next few sections. For a detailed definition of queries, refer to
the IDB2 Server fnr VSFE & VM SQI. Referencd manual.

Defining an SQL Query

This section discusses the three forms of a query: the subselect, the fullselect, and the
select-statement.

w shows the most basic form, the subselect query.

<

»>+-select-clause from-clause }
1— |_| I |—| where-clause |J |—| group-by-clause |J |—| having-clause |J

Figure 5. Format of the Subselect

The subselect query retrieves the columns specified in the SELECT clause from the
tables specified in the FROM clause, applies whatever restrictions the optional
clauses; (WHERE, GROUP BY, and HAVING) might put on the scope of the rows
selected; and presents the results in a result table, which will be called R. The rows
of R are unordered. Only the SELECT clause and the FROM clause are mandatory.

An example of a subselect query is:

SELECT EMPNO, LASTNAME
FROM EMPLOYEE
WHERE WORKDEPT = 'E11'

28 Application Programming

Figure d shows the fullselect query.

| union |

»'—Esubselect 7
(fullselect)

union:

' UNION |
| |
UNION ALL—|

Figure 6. Format of the Fullselect

The fullselect query is a merge of two result tables (R1 and R2) from two subselects
into one final result table (R). The merging is done by the UNION operator. The
rows of R are unordered. (For a description of the UNION operation, see

LCambmm.g_Queues;ni@_a_Sm.glg_Query_LMON_gn_pageﬂ)

An example of a fullselect is:

SELECT EMPNO, WORKDEPT, 'EDUCATION'
FROM EMPLOYEE

WHERE EDLEVEL > 16

UNION ALL

SELECT RESPEMP, DEPTNO, 'STAFFING'
FROM PROJECT

WHERE PRSTAFF > 5

By using the literal 'EDUCATION' in the first subselect and 'STAFFING' in the
second, you will be able to tell from R which row was included as a result of
which criterion (or query).

w shows the select-statement.

A\
A

»»—fullselect

order-by-clause |—
:l update-clause |—

LI with-cTause ’J

Figure 7. Format of the Select-statement

The select-statement can optionally put the rows of R from the fullselect in order by
the values of the columns identified in the ORDER BY clause. Alternatively, the
select-statement can allow the rows of R to be subsequently updated in the
application program, under the restriction that this only be done to those columns
listed in the update-clause (FOR UPDATE OF). (This explanation excludes
consideration of the preprocessor NOFOR support, which is discussed in the next
chapter.) Also, the with-clause may be used to select which isolation level that is to
be used by the query. This overrides any other isolation level specification.

An example of a select-statement is:

Chapter 3. Coding the Body of a Program 29

SELECT EMPNO, FIRSTNME, LASTNAME, HIREDATE
FROM EMPLOYEE
ORDER BY HIREDATE, LASTNAME

Note: In this example, the UNION operator and some of the optional clauses in
the fullselect are not used.

The distinction among these three forms of query is often quite subtle and
academic. It can be useful, however, when other SQL statements specify the form
of query that is allowed as part of the statement. For example, CREATE VIEW and
INSERT are two statements that use the subselect. This tells you that you cannot
incorporate UNION or ORDER BY in the query component of those statements.

Using the SELECT Clause

ALL
»»—SELECT |_ * »><

|—DISTINCT— ’7,

expression
table_name. *
view_name.
correlation_name. *—

Figure 8. Format of the SELECT clause

This clause is the first part of a subselect query. It consists of the keyword SELECT
followed by a select-list, which usually consists of one or more expressions.
(Expressions are discussed later in this chapter.)

The following are examples of select-lists that can occur in queries to the sample
tables:
SELECT EMPNO, FIRSTNME, LASTNAME

SELECT EMPNO, BONUS + COMM
SELECT SALARY = 1.10
SELECT 250

SELECT HIREDATE + 1 YEAR
If you specify DISTINCT immediately after SELECT, the system eliminates

duplicates from the query-result. (You can use DISTINCT only once in any query.)
For example, the following SELECT clause returns the set of different departments:

SELECT DISTINCT WORKDEPT

WORKDEPT

ACD < DB manager retumns
AQD <« only one of these

COo1
D11

Similarly, the following SELECT clause returns the set of different departments and
jobs:

30 Application Programming

SELECT DISTINCT WORKDEPT, JOB

WORKDEPT JOB

E21 MANAGER

E21 FILEREP <—— DB manager
E21 FILEREP <«—— refumnsonly
E21 FILEREP <«—— one of these

ALL indicates that duplicates are not to be eliminated. This is the default.

SQL provides a special shorthand notation for selecting all the columns of a table:
SELECT =

For example, the following statement returns the entire row from the
DEPARTMENT table for manager number 000010:
SELECT =

INTO :DEPART, :NAME, :MGR, :EMPDEPT
FROM DEPARTMENT WHERE MGRNO = '000010'

As a good programming practice, however, you should explicitly specify every
column you want to be returned by your query. This will avoid programming
errors when, for example, a new column is added to a table but your program is
using SELECT * and making no provision to store the extra column value.

If you specify a constant as a select-list expression, that constant occurs in every
row returned by the query. For example, the following figure shows a query that
returns a constant:

SELECT 'NAME IS', LASTNAME EXPRESSION 1 LASTNAME
FROM EMPLOYEE
WHERE EMPNO='000140' NAME IS NICHOLLS

An alphabetic constant, such as 'NAME IS/, is always enclosed within single
quotation marks (') when used in an SQL statement. A numeric constant should
not be enclosed this way.

Using the FROM Clause

»—FROM—[v table _name ><
vi ew_nameJ I—corre lat z'on_name—|

Figure 9. Format of the FROM Clause

This clause specifies the name of the table from which you want to retrieve data. If
you are authorized, you can access a table that is owned by someone else, by
adding the name of the owner before the table_name with a period. For example, to
specify the table EMPLOYEE owned by user SMITH:

Chapter 3. Coding the Body of a Program 31

FROM SMITH.EMPLOYEE

Because any number of users can define a table with the same name, you should
always use fully qualified table names. This avoids confusion if you are writing a
program that someone else will preprocess.

As Eigure 9 on page 31l indicates, multiple table names are possible, and some or

all of these names can have corresponding correlation names. These aspects of the
FROM clause are discussed later in this chapter.

Using the WHERE Clause

»»—WHERE—search_condition

\4
A

Figure 10. Format of the WHERE Clause

This clause specifies your search conditions. If you do not include it, all the rows
of the table will be used to calculate the expressions in the select-list. Here are some
examples of WHERE clauses:

WHERE SALARY > 30000
WHERE EMPNO = :X

WHERE SALARY < :R1 AND EDLEVEL = :Y

Search conditions are discussed in l!Constructing Search Conditions” on page 41,
Using the GROUP BY Clause

»»—GROUP BY—Y—column_name ><

Figure 11. Format of the GROUP BY Clause

This clause lets you group rows with matching values in one or more columns.
Here is an example of the use of the GROUP BY clause:

SELECT WORKDEPT, SUM(SALARY)
FROM EMPLOYEE
GROUP BY WORKDEPT

For more information, see IGrouping the Raws of a Tahle” an page 72,
Using the HAVING Clause

»>—HAVING—search_condition >

Figure 12. Format of the HAVING Clause

This clause specifies the conditions that must be satisfied by the group. Here is an
example:
SELECT WORKDEPT, SUM(SALARY)

FROM EMPLOYEE
GROUP BY WORKDEPT HAVING WORKDEPT <> 'A0O'

32 Application Programming

For more information, see !Grouping the Rows of a Table” on page 72.
Using the ORDER BY Clause

ASC

»»—O0RDER BY—[v column_name <
z'nteger4 |—DESC—|

Figure 13. Format of the ORDER BY Clause

This clause delivers the rows of the result table in the order specified. You can
indicate order by specifying a list of column names or integers that refer to
select-list items. For example, ORDER BY 3,5 denotes ordering primarily by the
third item and secondarily by the fifth item in the select-list. By using integers in
the ORDER BY clause, you can order the query result by a selected expression that
is not a simple column name.

The following query returns results ordered by the expression SALARY + COMM:

SELECT EMPNO, SALARY+COMM
FROM EMPLOYEE

WHERE WORKDEPT='D11'
ORDER BY 2

You cannot specify ordering by a column that is not in the select-list. For example,
the following statement would fail because FIRSTNME is not in the select-list:

SELECT SALARY, LASTNAME
FROM EMPLOYEE
ORDER BY FIRSTNAME <« Incorrect

The optional word ASC indicates ascending order, and is the default. DESC
indicates descending order. ORDER BY 2,5 DESC indicates ascending order on
item 2 and descending order on item 5. Character data is ordered alphabetically,
numeric data algebraically, and datetime data chronologically. Null values are
sorted first in descending order, and last in ascending order. If you do not specify
an ORDER BY clause, rows will be delivered in an order determined by the
system.

By default, string data is sorted based on the System/390® collating sequence.
However, the collating sequence required for certain alphabets is different from the
default System /390 collating sequence. Users expect that sorted data will match
the order that is culturally correct for them, and that searches on data will return
the result that is correct for the sorting sequence of their language. They are at ease
with only one sort order, the one used in their dictionaries, telephone directories,
book indexes, and so on.

A way to accommodate special sorting requirements is to use Field Procedures.
Field Procedures can be used to encode data being inserted into a column. The
encoding effectively alters the collating sequence for the data in the column,
enabling the special sorting requ1rements to be met by the Svstem/ 390 collating
sequence. For more information, see

Trailing blanks in variable string (VARCHAR and VARGRAPHIC) columns do not
affect the relative order of rows delivered by the ORDER BY clause. Because the

Chapter 3. Coding the Body of a Program 33

system does not use the trailing blanks when it compares VARCHAR or
VARGRAPHIC rows, two columns that differ only by their number of trailing
blanks may not maintain their relative positions.

Using the FOR UPDATE OF Clause

»»—FOR UPDATE OF—Y—column_name ><

Figure 14. Format of the UPDATE clause

This clause is optional for static SQL if NOFOR support is specified at preprocessor
time.

The update-clause (FOR UPDATE OF) tells the system that you might want to
update some columns of the result table. To update with a cursor, use the WHERE
CURRENT OF clause in an UPDATE statement. (See Manipulating the Cursor” onl
.) You can update only those columns that you list in the update-clause. A
column can be in the update-clause without being in the select-list; therefore, you can
update columns that are not explicitly retrieved by the cursor. The update-clause is
not required for deletion of the current row of a cursor. Deletion with a cursor is
done using the WHERE CURRENT OF clause in a DELETE statement. For an
explanation of the DELETE statement, see the [DB2 Seruer for VSE & VM SQI
manual.

Note: If you do not want to be bound by the above restriction on which columns
can be updated, you simply invoke NOFOR support at preprocessor time
and omit the update-clause. In this situation, the preprocessor will assist you
by issuing warning or error messages if your program tries to update
columns that are not in the current database. If the conditions identified by
the warning messages are not corrected, unexpected error messages can
subsequently occur at program run time.

Using the WITH Clause

The WITH clause specifies the isolation level for the query, which overrides any
other isolation level specification. For example, a statement specifying WITH UR in
a package prepped with ISOL(CS) will use an isolation level of uncommitted read.

For more information on isolation levels, see l'Selecting the Isolation Ievel to L.ock

Data” on page 134 (DB2 Server for VM) or r’QP]p("ring the Isolation Level to T.ocld

Data” on page 168 (DB2 Server for VSE).
»—WITH RR <
EC S:‘
UR

Figure 15. Format of the WITH clause

34 Application Programming

Retrieving or Inserting Multiple Rows

Using the Cursor with a Select-Statement

The previous section showed how to use a select-statement to create an SQL query.
You can now use that query to retrieve values into an application program from
multiple rows in a table.

To do so, you must first declare an SQL cursor, which is a control structure that
points to a row in a table. The rows returned by the query are called the result table
of the cursor.

A cursor can be in an open or a closed state. In the open state, it maintains a
position in its result table on a certain row (called the current row). If you delete the
current row, the cursor will be positioned between the two rows that surrounded
the deleted rows. If you request the next row and receive a message that there are
no more rows (SQLCODE 100 and SQLSTATE '02000"), the cursor will be
positioned after the last row. Before you OPEN the cursor, it is said to be
positioned before the first row.

Declaring a Cursor

insert-statement ’—

»»—DECLARE—cursor_name—CURSOR FOR~H select-statement | ><
statement_name

Figure 16. Format of the DECLARE CURSOR statement

Use the DECLARE CURSOR statement to define a cursor. This statement associates
a cursor_name with a specified select-statement, insert-statement, or statement-name.
For example:

DECLARE C1 CURSOR FOR SELECT LASTNAME, FIRSTNME
FROM EMPLOYEE WHERE SALARY>:AMT

DECLARE C2 CURSOR FOR INSERT INTO ACTIVITY
(ACTNO, ACTKWD, ACTDESC)
VALUES (:ACT, :KEYWORD, :DESC)

Note: Statement-name is only used with dynamic SQL. For an explanation of its
use, see I"Rph‘ipving the Query Result” on page 214

The select-statement or insert-statement is a part of the DECLARE CURSOR
statement, so you must not place EXEC SQL in front of SELECT or INSERT
(however, do place it in front of the DECLARE).

Using a Cursor in an Application Program

Your program may contain many DECLARE CURSOR statements that define
different cursors and associate them with different queries. During the processing
of a program, several cursors may be in the open state at one time. It is possible to
define more than one cursor that operates on the same data within the same
logical unit of work. It is also possible to open a cursor and then operate on the
same data with a non-cursor operation such as a Searched DELETE. However,
mixing these operations should be avoided, because the result of one operation can
adversely affect another. For example, do not update a row using a Positioned
UPDATE and subsequently delete it with another cursor operation or with a
Searched DELETE.

Chapter 3. Coding the Body of a Program 35

The DECLARE CURSOR statement that defines a cursor must occur earlier in the
program than any statement operating on that cursor. It does not result in any
processing when the program is executed (that is, it does not automatically open
the cursor).

The scope of a cursor-definition is an entire program. Therefore, cursor names must
be unique within a program. You cannot have two DECLARE CURSOR statements
in the same program that use the same cursor-name, even if they are in different
blocks or procedures.

For additional detail on the DECLARE CURSOR statement, see the W

WSE & VM SQI Referencd manual.

Manipulating the Cursor
After you define a cursor, you can manipulate it using the SQL statements shown
in . (See the [DB2_Seruer fnv VSE & VM SQL Rpfpwwml manual for a Comp]ete

description of these statements.)

Table 5. SQL Statements for Manipulating Cursors

Statements for Statements for Statements for
Manipulating Query and Manipulating Query Manipulating Insert
Insert Cursors Cursors Cursors
OPEN FETCH PUT
CLOSE Positioned DELETE

Positioned UPDATE

The OPEN Statement:

Partial Format:

A\
A

»>—0PEN—cursor_name

If you are opening a query-cursor (a cursor defined in terms of a select-statement),
this statement examines the input host variables (if any) used in the definition of
the cursor, determines the result table for the cursor, and leaves it in the open
state. When the system executes an OPEN statement for a query-cursor, it positions
the cursor before the first row of the result table. After the query-cursor is opened,
the system does not reexamine its input variables until you close and reopen the
cursor. No rows in the result table are fetched to the host program until a FETCH
statement is executed. Always open the cursor before issuing the first FETCH or
PUT statement.

If you are opening an insert-cursor and your program is blocking, this statement
prepares the system to block the rows that are to be inserted. With an insert-cursor,
you can change the values of the input host variables between inserts; you do not
have to close and reopen the cursor.

36 Application Programming

The FETCH Statement:

Partial Format:

v
A

»>—FETCH—cursor_name—INTO————host_variable_list

This statement can be executed only when the indicated cursor is in the open state.
The position of the cursor is advanced to the next row of the result table, and the
selected columns of this row are delivered into the output host variables referenced
in the host_variable_list.

The following is an example of the FETCH statement:

DECLARE QUERY1 CURSOR FOR
SELECT EMPNO, BONUS*1.10
FROM EMPLOYEE

WHERE WORKDEPT="D11"

OPEN QUERY1 The values are
FETCH QUERY1 INTO :E1, :B1 €| retunedinthese

host variables.

A cursor can move forward only when it is in its result table; the system cannot
return to rows that have already been fetched (other than closing the cursor and
reopening it).

If the result table of the cursor is empty, or if all its rows have already been
fetched, the system returns the not found return code (SQLCODE=100 and
SQLSTATE='02000") and the cursor is positioned after the last row of the result
table. To perform further operations with the cursor, you must close and reopen it.

It is possible for two or more rows in the result table to have exactly the same
values. (For example, many rows of the EMPLOYEE table may have the same
WORKDEPT, and you might define a cursor that selects only WORKDEPT from
the table.) These duplicate values are not eliminated from the result table unless
you specify DISTINCT in the SELECT clause of the DECLARE CURSOR statement.

You can use indicator variables in the INTO clause. (For a detailed discussion of
indicator variables, see ['lsing Indicator Variables” on page 61l) Each main
variable in the INTO clause may, at your option, have an associated indicator
variable. If a null value is returned, and you haven’t provided an indicator
variable, a negative SQLCODE is returned to your program and execution of the
statement is halted.

The PUT Statement:

Partial Format:

A\
A

»>—PUT—cursor_name

Chapter 3. Coding the Body of a Program 37

This statement can be executed only when the indicated cursor is in the open state.
The PUT statement inserts one row of data as defined by a cursor. The contents of
input host variables referenced in the host_variable_list (defined in the VALUES
clause of the DECLARE CURSOR statement for insert) are delivered to the
database.

For instance, the following statements insert a new row of data into the
EMPLOYEE table:
DECLARE CC CURSOR FOR

INSERT INTO EMPLOYEE (EMPNO, FIRSTNME, MIDINIT, LASTNAME, EDLEVEL)
VALUES (:EMP, :FIRST, :MID, :LAST, :ED)

OPEN CC
PUT CC
CLOSE CC

The values represented by the host variables :EMP, :FIRST, :MID, :LAST, and :ED
are placed into the corresponding columns of the new row. The other columns are
assigned the null value.

After the PUT statement is executed, you can assign different values to the input
host variables to add another row. Alternatively, you can place constants in the
VALUES clause of the DECLARE CURSOR statement instead of host variables.
This causes identical values to be inserted into the related columns for each PUT.

The PUT statement is used mostly for inserting multiple rows of data into a table
in groups or blocks (although, it also works with non-blocked inserts). Blocked
inserts are specified with the BLOCK preprocessor parameter. If blocking is in
effect, rows are not inserted until the block is full, or until a CLOSE statement is
issued. For information on preprocessing your program with the BLOCK option
specified, see I'Preprocessing the Program” on page 114 (DB2 Server for VM) or

! i ” (DB2 Server for VSE). For information on
using the BLOCK option in DRDA protocol for DB2 Server for VM see

”

The Positioned DELETE Statement:

Partial Format:

»—DELETE FROM—table_name—WHERE CURRENT OF—cursor_name ><

This statement can be executed only when the indicated cursor is in the open state
and positioned on a row of the result table. It deletes that particular row from the
table. The cursor itself remains where it was; it is considered to be in the between
position and, cannot be used for further deletions or updates until it is
repositioned by a FETCH statement.

From the example under the FETCH statement, you could delete a row from the
EMPLOYEE table after doing a FETCH, by issuing;:

DELETE FROM EMPLOYEE
WHERE CURRENT OF QUERY1

38 Application Programming

The Positioned UPDATE Statement:

Partial Format:

»>—UPDATE—table_name—set_clause—WHERE CURRENT OF—cursor_name >

This statement is similar to the DELETE statement, except that it updates the row
of the table on which the cursor is positioned rather than deleting it, leaving the
position of the cursor unchanged. When using this statement, you must specify the
update-clause in the select-statement.

The following example updates the SALARY column of each fetched row of the
EMPLOYEE table:

DECLARE QUERY2 CURSOR FOR

SELECT LASTNAME, FIRSTNAME, MIDINITT
FROM EMPLOYEE

WHERE WORKDEPT = 'D21'

FOR UPDATE OF SALARY

OPEN QUERYZ2

FETCH QUERY2 INTO :LAST, :FIRST, :MID
UPDATE EMPLOYEE

SET SALARY = SALARY + :DELTA

WHERE CURRENT OF QUERY2

CLOSE QUERY2

The CLOSE Statement:

Format:

»>—CLOSE—cursor_variable >

The indicated cursor leaves the open state, and its result table becomes undefined.
No FETCH or PUT statement can be executed on the cursor, and no DELETE or
UPDATE statement can refer to its current position until the cursor is reopened by
an OPEN statement. The CLOSE statement permits the resources associated with
maintaining an open cursor to be released. It should be placed in your program so
that it is executed as soon as the program is finished using a cursor.

If your program is blocking, you can close an insert-cursor with an incomplete
block to insert the remaining rows.

Always close a cursor before committing changes. If changes are committed before
an insert cursor (that is being blocked) is closed, an error occurs.

lllustrating the Use of the Query Cursor
Ei , which shows a fragment of pseudocode, illustrates the use of
a query cursor C1. It finds the employees of all the rows of the EMPLOYEE table

whose department number matches host variable DEPT. The FETCH statements

Chapter 3. Coding the Body of a Program 39

retrieve the selected columns successively into host variables EMP, FNAME, and
LNAME. After the results are retrieved, they are displayed on the console.

Initialize DEPT (the
DEPT ='D11" <« input host variable).

EXEC SQL DECLARE C1 CURSOR FOR
SELECT EMPNO, FIRSTNME, LASTNAME <— Declare cursor C1.
FROM EMPLOYEE
WHERE WORKDEPT=:DEPT
ORDER BY EMPNO

EXEC SQL OPEN C1 < Open the cursor.

EXEC SQL FETCH C1 INTO :EMP, :FNAME, : LNAME

DO WHILE (SQLCODE=0) Fetch the next row of
DISPLAY (EMP, FNAME, LNAME) the result table into
EXEC SQL FETCH C1 INTO :EMP, :FNAME, :LNAME <— the oupuf host

END-DO variables and display

them.

DISPLAY (END OF LIST) When the result table

A

EXEC SQL CLOSE C1 is empty, close the

cursor.

Figure 17. Using a Cursor

Recall that SQLCODE is set to +100 (SQLSTATE '02000") when there are no rows
remaining to be fetched.

Retrieving Single Rows

The SELECT INTO statement finds the only row of the table specified in the
FROM clause that satisfies the given search condition. From this row, the system
selects the columns that you supplied in the select-list. The results are inserted in
the host variables that you specified in the INTO clause. The data type and length
attributes of the host variables must be compatible with the data type and length
attributes of the expressions in the select-list. If specified, the WITH clause specifies
the isolation level to be used on the query and overrides any other isolation level
specification.

B

»>— select-clause |—INTO'—host_variable_Z ist

>ﬂ from-clause i <
|—‘ where-clause ’J |—‘ with-clause ’J

Figure 18. Format of the SELECT INTO statement

v

40 Application Programming

For example, the following statement selects the employee number, last name, and
yearly salary from the EMPLOYEE table where the employee number is '000130'. It
places the result in the host variables EMP, NAME, and PAY:

SELECT EMPNO, LASTNAME, SALARY

INTO :EMP, :NAME, :PAY

FROM EMPLOYEE

WHERE EMPNO = '000130'

If the number of expressions in the select-list is greater than the number of output
host variables in the INTO clause, a warning flag (called SOLWARN3) in the
SQLCA is set to W. Also, if more than one row satisfies the search condition in a
SELECT INTO statement, an error condition occurs, and the values of the host
variables are unpredictable.

Constructing Search Conditions

One of the most common operations in SQL is to search through a table, choosing
certain rows for processing. A search condition is the criterion for choosing rows.

In the following select-statement example, CODE = 'A" AND PART='B' AND
TYPE="X" constitute the search condition:

SELECT * FROM T1
WHERE CODE = 'A' AND PART='B' AND TYPE='X'

When you are constructing search conditions, be careful to perform arithmetical
operations only on numeric data types, and to make comparisons only among
compatible data types. Graphic data types are compatible only with other graphic
data types. If you use a host variable in an expression, its host language data type
must be compatible with the rest of the expression.

Performing Arithmetic Operations

Whenever an arithmetic or comparison operator has operands of two different
types, the database manager evaluates it in the greater of the two types: FLOAT
takes precedence over DECIMAL, which takes precedence over INTEGER, which
takes precedence over SMALLINT. For example, if the PRICE column is of type
INTEGER and has the value 25, the expression PRICE*.5 will evaluate to 12.5, a
decimal value. The predicate PRICE*.5=12 is false, because the decimal value forces
the predicate to be evaluated in decimal. (Decimal values are stored in
System/390" packed decimal format.)

The system computes all floating-point values in normalized form, as described in
the ESA/390 Principles of Operation manual. When a floating-point value is stored in
a table, it may not be stored exactly as entered. For example, an SQL INSERT
statement could specifically insert the constant 3E0Q into a column. Internally,
however, the value might actually be stored as 2.9999. Floating-point values may
become even more imprecise when arithmetic operations are performed on them.
You should use the BETWEEN predicate (described later) when comparing
floating-point values.

If the operands of an arithmetic or comparison operator are both single-precision
and double-precision floating-point data, the former is converted to the latter
before any comparison is made or any arithmetic operation performed. If the
equals (=) comparison operator compares these two types of data, the result of the
comparison may not be what you expected. In the following examples, column C1
is defined to contain single-precision floating-point data and column C2 is defined
to contain double-precision floating-point data:

Chapter 3. Coding the Body of a Program 41

INSERT INTO T1 (C1, C2) VALUES (10.95, 10.95)

SELECT *~ FROM T1
WHERE C1 = 10.95

SELECT * FROM T1
WHERE C2 = 10.95

SELECT * FROM T1
WHERE C1 = C2

The first and second select statements here will return rows that contain the value
10.95. The third select will not return any rows. This is because the 10.95 cannot be
exactly expressed as a floating-point value. The double-precision floating-point
representation has more significant bits than the single-precision floating-point
representation. When the single-precision floating-point value is converted to
double-precision float, X'00’s are added to the last four bytes of the
double-precision equivalent. The single-precision float data is therefore not equal to
the double-precision float data and hence the search condition in the last select
above is not satisfied.

Decimal numbers have a maximum precision of up to 31 digits. In contrast, a
double-precision floating point number preserves up to approximately 17 digits. So
when a decimal number with precision greater than 17 is promoted to a
floating-point number, digits are lost. Because floating-point numbers can have a
larger magnitude than decimal numbers, the float data type is higher than the
decimal in the data type promotion scheme. The following example shows how
this can cause unexpected results:

SELECT * FROM DEPARTMENT WHERE 1EO + 12345678901234567890.1
= 12345678901234567890.1;

You would expect this statement to return no rows, because adding one to a
constant makes it unequal to itself. To execute this statement, the system promotes
the two decimal numbers to floating-point values. When this is done, all but the
first 17 digits are lost. When "1EQ’ is added to the first decimal number, > it is not
large enough to change the converted decimal value. The end result is that both
sides of the expression evaluate as being equal. It is therefore important to be
careful when combining floating-point and decimal data types in expressions.

Arithmetic operations between two items of type SMALLINT produce a result of
type INTEGER, in order to avoid possible overflow problems (as might easily
occur in multiplication). When INTEGER or SMALLINT values are used in a
division computation, the result is of type INTEGER, and any remainder is

dropped. (See EConverting Data” on page 50 for conversion information.)
Using Null Values

The system allows nulls in values in a table. A null is a nonexistent value; that is,
it represents a value that is undefined. You can think of a null value as an empty
space, or as a space reserved for later insertion of data.

When null values occur within expressions, the value of the expression is also null.
For example, in the following predicate both SALARY and COMM may be a null
value:

42 Application Programming

SALARY + COMM < 100

expression| expression2

If either SALARY or COMM is null, expressionl above is null.

Using the Predicates of a Search Condition

A search condition is a collection of one or more predicates. Each predicate specifies
a test that is applied to the rows of the table. You can connect predicates with the
logical operators AND and OR. For example:

predicatel AND predicate2 OR predicate3

The keyword NOT can be used to negate a predicate:
predicatel AND NOT predicate2

The precedence rule among the keywords is as follows:
1. NOT is applied

2. AND is applied

3. ORis applied.

Use parentheses to override this precedence rule if necessary. For example, the
search condition in w contains three predicates; it is used to find the rows
of the EMPLOYEE table pertaining to an employee from department D11 who also
has 17 or 18 years of education.

Search Condition:
WORKDEPT=D11' AND (EDLEVEL = 17 OR EDLEVEL = 18)

—» Predicate 3
» Predicate 2
» Predicate 1

Predicate 1:
WORKDEPT D11

L—» expression
comparison operator
» expression

Figure 19. Breakdown of Search Conditions and Predicates

Eigure 1d also shows that the format of a predicate is a comparison between two
values or expressions. This format is represented as follows:

expression comparison-operator expression

A comparison-operator may be any of the following;:

Chapter 3. Coding the Body of a Program 43

= "equal to"

-= "not equal to"
< "not equal to"
"greater than"
>= "greater than or equal to"
< "Tess than"
<= "less than or equal to"

The above symbols are the only comparison operators that you can use in SQL
statements. For example, the system does nof recognize # even if it is supported in
the host language. The correct representation of inequality is == or <>.

For a detailed description of search conditions, see the [DB2 Server for VSE & VM
manual.

Evaluating Predicates
The following rules apply when the system evaluates predicates:
1. When two character strings are compared, EBCDIC alphabetic ordering is used.
For example:
1 A 1 < ! B 1
'A' < 'ABLE'
1 Z 1 < 1 35 1
1 Al 1 < 1 B 1
1 a 1 < IA 1
2. When two short strings are compared, trailing blanks are not significant. For
example, if the NAME column of a table is of type CHAR(10), you can write
NAME='SMITH' in your search condition, and the condition will be satisfied by
the database value:

'SMITH "

Trailing blanks are significant in the LIKE predicate; see the IDB2 Server for VSH
& VM SQI. Referencd manual.

3. In performing an arithmetic operation, if either of the operands is null, the
result of the operation is null.

4. In performing a comparison operation, if either of the expressions is null, the
result of the comparison is unknown, and the row being evaluated does not
qualify for inclusion in the result table.

5. No predicates are permitted on long host variables. Except for LIKE, predicates
are not permitted on long columns.

6. When decimal numbers of different scales are compared, the shorter scale is
extended with trailing zeros sufficient to match the scale of the larger number.
For example, 25.45 is equal to 25.4500.

7. When two graphic strings are compared, the value of the respective data
columns is compared in a manner similar to that used for character data types.
The single character sequencing is generally of no value for graphic ordering.
However, you can specify the sorting sequence of graphic characters in a
graphic column by associating the column with a field procedure. For more

information on field procedures refer to [‘Using Field Pracedures” on page 275,

8. If a query is executed against an empty table, the database manager may not,
for performance reasons, carry out all validation checks. For example, an
invalid date string in a host variable is not flagged as an error unless a row is
being evaluated.

Using Additional Types of Predicates
In addition to the basic predicates that compare two expressions, the system
provides the predicates listed below, which you can use either alone or with other

44 Application Programming

predicates by including the keywords AND, OR, and NOT to form a search
condition. For detailed information on the rules and use of these predicates, see the
DB2 Server for VSE & VM SQI. Referencd manual.

* BETWEEN

« IN

* LIKE

* NULL

* EXISTS

* Quantified (SOME, ALL).

Using Functions

There are two types of functions. Column functions apply the function to a group of
values in a column and produce one result value. Scalar functions apply the
function to one or more values in each row and produce a result value for each
row.

Using Column Functions
The column functions are:
AVG MAX MIN SUM COUNT

The argument of a column function is an expression containing a column name
(optionally preceded by DISTINCT or ALL— ALL is the default). The argument
follows the function and must be enclosed in parentheses.

DISTINCT indicates that duplicate values are to be eliminated before the function
is applied. The following example counts the number of different projects that
satisfy the search condition:

SELECT COUNT(DISTINCT PROJNO)

For a detailed discussion of each of the column functions, see the m
SE & VM SQI. Referencd manual.

Using Scalar Functions

The scalar functions are:

CHAR FLOAT MINUTE TIMESTAMP
DATE HEX MONTH TRANSLATE
DAY HOUR SECOND VALUE

DAYS INTEGER STRIP VARGRAPHIC
DECIMAL LENGTH SUBSTR YEAR

DIGITS MICROSECOND TIME

You can use scalar functions wherever an expression can be used. The first or only
argument of each scalar function is an expression. If the value of any expression is
a null value, the result will be a null value as well, except for the VALUE function.

For a detailed discussion of each of the scalar functions, see the IDB2 Serzer for V. SH
e VM SOI Rpfpwwrpl manual.

Chapter 3. Coding the Body of a Program 45

Using Data Types

Assigning Data Types When the Column Is Created

Table 6. SQL Data Types

Each column of every DB2 Server for VSE & VM table is given an SQL data type
when the column is created.
internally.

shows the data types and how they are stored

SQL Data Type

How Stored

INTEGER or INT

Stored as a signed 31-bit binary integer

SMALLINT

Stored as a signed 15-bit binary integer

DECIMAL[(p[,s])] or
DEC[(p[,sD] #, 5

Stored as a packed decimal number of precision p and scale s. Precision is the total
number of digits; scale is the number of digits to the right of the decimal point. For
example, 251.66 fits in a DECIMAL(5,2) data area. When precision and scale are
calculated, if the precision is greater than 31, leading zeros will be removed until it is
equal to 31. Trailing zeros are not removed. The default scale is 0 and the default
precision is 5.

FLOAT(n) !

Stored as a single-precision (4-byte) floating-point number in short System /390
floating-point format, or as a double-precision (8-byte) floating-point number in long
System /390 floating-point format.

CHARACTER([(n)] or
CHAR[(n)] 3

Stored as a character string of fixed length 1, where = 254. The default length is 1.

VARCHAR(®n) 2, 3

Stored as a varying-length character string of maximum length 7, where n = 32767. If
254 < n = 32767, VARCHAR(n) is considered a long string.

LONG VARCHAR 3

Stored as a varying-length character string of maximum length 32767.

GRAPHIC[(n)]

Stored as a string of double-byte character set (DBCS) characters of fixed length n,
where n = 127. The default length is one DBCS character.

VARGRAPHIC(n) 2

Stored as a varying-length string of DBCS characters of maximum length 7, where n =
16383. If 127 < n = 16383, VARGRAPHIC(n) is considered a long string.

LONG VARGRAPHIC

Stored as a varying-length string of DBCS characters of maximum length 16383.

DATE

Stored as a string of 4 bytes. Each byte is two packed decimal digits. The first two
bytes are the year, the next is the month, and the last is the day.

TIME Stored as a string of 3 bytes. Each byte is two packed decimal digits. The first byte is
the hour, the next is the minute, and the last is the second.
TIMESTAMP Stored as a string of 10 bytes. Each byte is two packed decimal digits. The first 4

bytes are the date, the next 3 are the time, and the last 3 are the microsecond.

46 Application Programming

Notes:

1.

The FLOAT data type refers to either single-precision floating-point data (4
bytes) or double-precision floating point-data (8 bytes).

REAL and FLOAT(n), where 7 is from 1 to 21, are synonyms. They are both
stored as 4 bytes.

FLOAT, DOUBLE PRECISION, and FLOAT(n), where n is from 22 to 53, are
synonyms. They are all stored as 8 bytes.

When single- and double-precision floating-point data are compared to one
another, the result of the comparison may not be what you expected. See

These data types have some special considerations to watch out for.

For the CREATE TABLE and ALTER TABLE statements, when VARCHAR(n)
or VARGRAPHIC(#n) has “n” greater than 254 or 127 respectively, the

Using

Using

database manager treats the column as a long string when storing and
retrieving data. Long strings are discussed in the next section.

The column is treated as VARCHAR or VARGRAPHIC, however, in two

respects:

— The value stored in the LENGTH and SYSLENGTH columns of
SYSTEM.SYSCOLUMNS is “n”.

— The value returned to the user in the SQLLEN field of the SQLDA is “n”.

When 7 is less than 255 (VARCHAR) or 128 (VARGRAPHIC) on these
statements, the treatment of the column is unchanged.

* Trailing blanks are not considered relevant in comparisons of VARCHAR or
VARGRAPHIC values, unless these values are either concatenated, returned
to the application program, or used in a scalar function.

For example, if string X1 = "STRING " and string X2 = "STRING" and X3 =
X1 CONCAT X2 then X3 will be equal to "STRING STRING". However, X1 is
considered equal to X2 in a compare statement such as a SELECT... WHERE.

3. Columns defined with these data types can contain MIXED or BIT data.

4. NUMERIC is a synonym for DECIMAL, and may be used when creating or
altering tables. In such cases, however, the CREATE or ALTER function will
establish the column (or columns) as DECIMAL.

5. C application programs can use the decimal data type so that host variables can
match table definitions and do not have to do C numeric conversions for table
columns that are defined as decimal.

Long Strings

Defining Long Strings

A long string column is either a LONG VARCHAR, LONG VARGRAPHIC,
VARCHAR(n) (where 254 < n = 32 767), or VARGRAPHIC(n) (where 127 < n = 16
383). Long strings are intended for storage of unstructured data such as text
strings, images, and drawings. For a list of restrictions on the use of long strings,
refer to the section on data types in the [DB2 Server for VSE & VM SQI. Referencd
manual.

Performing Operations on Long Strings
The only operations permitted on long strings are:

e SELECT in an outer-level query (not in a subquery).
* INSERT into the database from an input host variable (not from a constant or
from a subquery). You can, however, insert null values into long strings with the

usual INSERT statement mechanisms. (That is, you are not restricted to host
variables when inserting nulls.)

* UPDATE from an input host variable or UPDATE to the null value. (SET
LONGFIELD=:X and SET LONGFIELD=NULL are permitted, but SET
LONGFIELD="HELLO’" and SET LONGFIELD=OTHERFIELD are not permitted.)

* DELETE of rows containing long strings.

Programming Tip
The restrictions on the use of long strings can usually be avoided by the
appropriate use of the SUBSTR function.

Datetime Data Types

Datetime is a collective DB2 Server for VSE & VM term that includes date, time,
and timestamp. Although datetime values can be used in certain arithmetic

Chapter 3. Coding the Body of a Program 47

operations and are compatible with certain strings, they are neither strings nor
numbers. Conversely, strings and numbers are not datetime values. A datetime
value is either:

A DATE, TIME, or TIMESTAMP column value
* A value returned by the DATE, TIME, or TIMESTAMP scalar functions

e A value returned by the CURRENT DATE, CURRENT TIME, or CURRENT
TIMESTAMP special registers.

Datetime values of the same type can be subtracted. If datel and date2 are DATE
columns, datel - date2 is a valid expression. Datel - '01/01/2000' is also a valid
expression because '01/01/2000' is a valid string representation of a date. However,
'01/01/2000" - "12/20/1999' is not valid because strings cannot be subtracted and a
string is interpreted as a date only if the other operand is a value of data type
DATE. Scalar functions are provided to explicitly convert strings to datetime
values. The following expression is valid: DATE('01/01/2000") - '12/20/1999".

For detailed information on the components and valid formats and lengths of the

date, time, and timestamp data types and the assignment of these data types to

host variables or CHAR-type columns, see the [DB2 Server for VSE & VM SQI
manual.

Using Character Subtypes and CCSIDs

Character subtypes and coded character set identifiers (CCSIDs) provide a means
of identifying the character data representation scheme to be used for character
and graphic data in your system. For example, by using a certain CCSID, you can
specify that all character data in your system is single-byte EBCDIC data.

Subtypes are a way of specifying that you want to use the application server
system default CCSID associated with that subtype. CCSIDs apply to both
character and graphic data, while subtypes apply only to character data.

For a detailed description of coded character sets and CCSIDs, see the [DB2 Served
for VSE & VM SQI. Referencd manual.

For most applications, you do not need to specify subtypes or CCSIDs, because the
system defaults can usually meet your character data representation requirements.

If this is not the case, you may have to become familiar with Character Data
Representation Architecture (CDRA). Refer to the section about data integrity
concerns in the Character Data Representation Architecture Reference and Registry
manual for a discussion of using CDRA to meet your requirements.

The following are examples of problems that can be solved by the specification of
CCSIDs or subtypes. The solutions to these problems are discussed in
” and EAssi
WM' ,’ 8
* A column is required in a table to contain mixed data (that is, data that can
contain both double-byte and single-byte characters), but the system default
specifies that all newly created columns will be used to contain single-byte
character set data only.

* A table creation program is required that is to be used at multiple sites, all of
which can use different system default subtype and CCSID values. The tables to
be created must have the ability to store data of a particular CCSID.

48 Application Programming

* An application program written in assembler language must insert data into a
graphic column, but variables with a graphic data type are not supported.

Determining Default Subtypes and CCSIDs

Refer to the SYSTEM.SYSOPTIONS catalog table to determine the application
server system defaults. The rows containing the following values in the
SQLOPTION column are important: CHARSUB, CCSIDSBCS, CCSIDMIXED,
CCSIDGRAPHIC, and CHARNAME.

— DB2 Server for VM
For the application requester system defaults, invoke the SQLINIT EXEC
using the QUERY option. The fields that contain important information are
CCSIDSBCS, CCSIDMIXED, CCSIDGRAPHIC, and CHARNAME. (For a
discussion of the SQLINIT EXEC, refer to the hR? Server for VSE & V. M
Database Administratiod manual.)

Examples of items that assume application requester system defaults are input and
output SQLDA elements (the default can be overridden), and host variables.

The following are examples of items that assume application server system
defaults:

* Columns (default can be overridden)

* Special registers.

The following are examples of items that assume application requester system
defaults:

* Input and output SQLDA elements (default can be overridden)

¢ Host variables.

For information on setting system defaults, refer to the [DB2 Server for VM chfpwl
or the [DR2 Server fnr VSE q?j/cfpm Adwministration manual.

Assigning Subtypes and CCSIDs When a Column Is Created

There are three ways to assign subtypes or CCSIDs to a column:
* Use the application server system defaults.

* Use the preprocessor parameters CHARSUB, CCSIDSBCS, CCSIDMIXED, and
CCSIDGRAPHIC to override the system default for columns created by the

CREATE TABLE and ALTER TABLE statements in the package. (See
(DB2 Server for VM)

‘Preprocessing the Praogram” on page 114
the Program” on page 152 (DB2 Server for VSE) for information on these
parameters.)

* Use the subtype or CCSID clause in a column’s definition within the CREATE
TABLE or ALTER TABLE statement to override the application server system
default or the preprocessor default. (For more information on these statements,
refer to the IDB2_Server for VSE. & VM SQIL RpfprpnrA manual.)

Assigning Subtypes and CCSIDs to Data in a Program

There are two ways to assign subtypes or CCSIDs to the data items in a program:
* Use application requester system defaults

* Execute the SQL statement using dynamic SQL so that the data items can be
described in a user-defined SQLDA. A CCSID can be assigned to each data item
in the SQLDA.

Chapter 3. Coding the Body of a Program 49

For examples of how to build an SQLDA that contains CCSID information, see
‘ i i ” . For a more detailed
discussion on using the SQLDA, refer to the IDB2 Server for VSE & VM SQI

manual.

Converting Data

For the database manager, the operands in an assignment or comparison operation
must be compatible. For example, a character string cannot be compared to a
numeric string, a graphic string cannot be compared to a character string, and an
arithmetic operation cannot contain a character string operand. Refer to the
manual for more details about compatible data

types.

Operands that are compatible but are not identical in data types, lengths, datetime
formats, or CCSIDs, can be used in assignment and comparison operations but
require data conversion as follows:

* For assignment operations, conversion is done before the data is assigned. For
example, if a host variable is defined as a SMALLINT field and a column is
defined as INTEGER, a SELECT INTO operation converts the INTEGER column
to SMALLINT before it is assigned to the host variable. In this situation,
overflow may occur if the value is too large to fit into a SMALLINT field.
Depending on the data types and the host language, some data may be lost. The
[DR2 Serper for VSE & VM SQI R@Fprﬁwr’d manual discusses potential data loss in
the assignment of COBOL integers.

To retrieve a datetime value, (that is, a DATE, TIME, or TIMESTAMP), it must
be assigned to a character string host variable. The assignment operation
converts the datetime value to a character string representation. Whenever a
string representation of a datetime value is used in any other operation with a
datetime value, the operation is performed with a temporary copy of the string
that has been converted to the data type of the datetime value.

If a conversion error occurs when the database manager assigns a value to a
host variable in the INTO clause of a SELECT or FETCH statement, and if you
have provided an indicator variable for the affected host variable, the system
returns the following:

— A value of -2 in the indicator variable
— An undefined value in the host variable

— Warning values in both SQLCODE and SQLSTATE that are appropriate for
the condition.

If you have not provided an indicator variable, both SQLCODE and SQLSTATE
return error codes (a negative value for SQLCODE, and a data exception for
SQLSTATE).

* For comparison operations, one field may be converted if necessary to match the
data type, length, or CCSID of another. For example, if two character strings in a
comparison operation have different CCSIDs (one is an SBCS string and the
other is a mixed string), a temporary copy of the SBCS data is converted to the
mixed data CCSID before the data is compared.

For more information about data conversion and conversion errors, see the
discussion about assignments and comparisons in the [DB2 Server for VSE & VM
manual.

50 Application Programming

Summarizing Data Conversion

Data conversion is summarized in tabular form in the [DB2 Server for VSE & VM
manual. Overflow (loss on the left) or truncation (loss on the right)
may occur on some conversion attempts.

Truncating Data

Truncations are handled differently for numeric, character, and datetime data.

Numeric data

Character data

Table 7. Truncation Types

Truncation of zeros on the left, or of the fractional
part of decimal or floating-point values
(single-precision or double-precision) takes place
without error or warning. Any other loss of data
on conversion is an overflow error. If overflow
occurs in an outer select and an indicator variable
is supplied for the host variable, the indicator
variable is set to —2 and a positive SQLCODE is
returned; otherwise, a negative SQLCODE is
returned.

When output from the database manager does not
fit into a host variable, a warning is returned.
SQLWARN!I is set to indicate truncation. In this
case, if you provide an indicator variable, the value
within it denotes the actual length of the variable
in characters before truncation.

When an input character string value does not fit
into a DB2 Server for VSE & VM column, an error
results.

Whenever truncation occurs, it follows specific
rules depending on the character subtype involved.
Also, padding may occur when a string is assigned
to either a fixed-length host variable or to a
fixed-length column and the source string is
shorter than the length of the target. Padding, like
truncation, follows rules depending on subtype.
These rules are in the IDB2 Server for VSE & VM
manual.

SBCS and mixed are the only two types of
character data truncation. In mixed truncation, the
integrity of target data is ensured. For example, if
'ab< >cd' is truncated to a length of 6, the
result with mixed truncation is 'ab< >'. The
system counts to byte 6. Because this would split a
double-byte character, the number of bytes is
rounded to the next lowest whole number. It also
always ensures that the < and > characters
correctly identify the double-byte characters.

[able 4 shows the type of truncation that occurs
depending on the subtype of the source and target
data.

Subtype of Source

Subtype of Target

Result

Mixed

Mixed

Mixed truncation

Chapter 3. Coding the Body of a Program 51

Table 7. Truncation Types (continued)

Subtype of Source Subtype of Target Result

SBCS SBCS SBCS truncation

Mixed SBCS SBCS truncation'

SBCS Mixed SBCS truncation'

Note:

1. If the source data contains DBCS data, a conversion error occurs during SBCS
truncation.

able d shows the results of SBCS and mixed
truncation when selecting 'ab< [{§i]33 >fg' into
various host variables:

Table 8. Examples of Mixed Data Truncation and SBCS Truncation

Target Host Variable SBCS Truncation Mixed Truncation
CHAR(6) "ab<CCD' "ab< [>'
CHAR(?) "ab<CCDD' "ab< >b!
VARCHAR(?7) "ab<CCDD' "ab< >!

Note: For mixed data, the only difference between
the second and the third example is the
length of the resulting VARCHAR string. A
blank is added to the fixed string.

TIME data When the seconds part of a retrieved ISO, JIS, or
EUR format TIME value is truncated, SQLWARN1
is set to indicate that truncation has occurred. The
seconds that are truncated are placed in the

indicator variable if one is provided.

TIMESTAMP data On output, any portion of the microseconds part of
a TIMESTAMP may be truncated (including the
decimal point). However, no warning is given
(SQLWARNT1 is not set). If an indicator variable is

provided, it is unchanged.

For more information about how computations are performed internally or how
overflows can occur, refer to the section about arithmetic operations in the [DBA

Berwer for VSE & VM Database Administratiod manual.

Using a Double-Byte Character Set (DBCS)

DBCS characters can be used in identifiers, constants, and data in DB2 Server for
VSE & VM programs. Strings containing DBCS characters are formatted as

< R4S >, where < represents the shift-out character, and > represents the shift-in
character. Each XX represents one double-byte character set character. The <>
delimiters are single-byte character set (SBCS) characters.

In identifiers, characters constants, and character data, the delimiters are significant
so redundant delimiter pairs are not removed. For example, the following strings
of DBCS characters are not equivalent:

ol /A58 Ead CCDD EQEULIRY AABBCCDD kg

52 Application Programming

In graphic data and constants, the delimiters are not significant.

Each DBCS character requires 2 bytes for its representation; therefore, an even
number of bytes must be between the < and >. The number of bytes used to
represent a string of DBCS characters is equal to:

2 * the number of DBCS characters + 2 (for mixed data)

2 * the number of DBCS characters (for graphic data)

Strings of DBCS characters cannot span lines, whereas mixed strings containing
strings of DBCS and SBCS characters can span lines if each string of DBCS
characters in the mixed string is on one input record. For a discussion of the rules

for using DBCS characters in constants, see I‘Using Character Constants” ol

and 4 ”

To use DBCS characters in application programs, you must know the following:

* To use host identifiers that contain DBCS characters in DB2 Server for VM, your
compiler must support DBCS and the application requester must have the DBCS
option set to YES. To check whether this setting is correct, do an SQLINITQRY; if
you need to change this setting, issue an SQLINIT with the DBCS option set to
YES. (For a detailed discussion of the SQLINIT EXEC, see the IDB2 Server for V. SH
& VM Database Administratiod manual.)

* To use host identifiers in DB2 Server for VSE, the DBCS option in the
SYSTEM.SYSOPTIONS catalog must be set to yes. Your compiler must also
support DBCS.

* To use SQL identifiers that contain DBCS characters, the application server must
support DBCS characters and mixed data. To verify this for the application
server, make sure that in the SYSTEM.SYSOPTIONS catalog table the
CHARNAME setting identifies a mixed character set and the DBCS setting is
YES. In addition, DBCS characters must be permitted in the particular identifier.
For a discussion of rules for using DBCS characters in identifiers, refer to the
IDB2_Server for VSE. & VM SQIL. Referencd manual.

* To use host variables with graphic data type, the preprocessor must allow a
graphic data type for the host language of the source program. This is true for
COBOL and PL/I only in DB2 Server for VSE. The DB2 Server for VM
preprocessors that allow graphic data type are COBOL and PL/I. If you need
this facility when using another language, see the appendix for that language for
a discussion of alternative actions.

* To use graphic and mixed constants (that is, character constants that contain
DBCS characters) in an application program, the DB2 Server for VM application
server and application requester or DB2 Server for VSE application server must
support mixed data. To verify this for the application server, make sure that the
CHARNAME setting in the SYSTEM.SYSOPTIONS catalog table identifies a
mixed character set. To verify this for for the DB2 Server for VM application
requester, issue an SQLINIT command with the QRY option. The CHARNAME
value returned identifies a mixed character set. For a discussion of character sets,
refer to > the IDB2 Seruer for VM System Administratiod or the [DB2 Seruer for VSH
Systews Adwministratiod manual. If the DB2 Server for VM application requester
does not support DBCS characters, you can obtain this support by using the
SQLPREP GRaphic option (available to COBOL and PL/I only).

Chapter 3. Coding the Body of a Program 53

Using Expressions

An expression refers to a column, a constant, a host variable, an SQL special register
(for example, the USER special register), the SQL keyword NULL, a column
function, a scalar function, an arithmetic expression, or any of these that can be
connected by the concatenation operator. (The concatenation operator is discussed
later in this chapter.) Using expressions, you can do calculations on data as part of
a query. The calculations are performed before the data is returned to your
program.

[Cable d shows a simple arithmetic expression:

Table 9. Breakdown of an Arithmetic Expression

Expression
(BONUS - :MARKDOWN * .80)

*

» constant
» host variable
» Column name

Using Arithmetic Operators

There are four arithmetic operators that you can use:
* multiplication
/ division
+ addition
- subtraction

Usually, the system reads an arithmetic expression from left to right, first applying
any negations, then any multiplication or division operations, and then finally any
additions and subtractions. For example, in the following expression:

BONUS - :MARKDOWN * .80

The system would take the value of the host variable MARKDOWN, multiply it by
.80, and then subtract the result from the bonus.

You can change this order-of-precedence by using parentheses. For instance, if the
above example were coded:

(BONUS - :MARKDOWN) =* .80

The system would first subtract MARKDOWN from BONUS, and then multiply
the result by .80. The two results would probably end up being quite different.

Host variables can be used in arithmetic expressions. For example:
PRICE * :QUANTITY + 1.44

As mentioned earlier, you must precede the names of host variables by a colon (:)
to distinguish them from column names. That is, the following is interpreted as a
host variable:

:PROJNO

The following, however, is interpreted as a column name:
PROJNO

54 Application Programming

Numeric constants can stand alone or be used in arithmetic combination with other
constants or host variables or column names to form expressions. All three of the
following are valid expressions:

200 -798.9768 PRICE » :QUANTITY + 1.44

Character constants cannot be used in arithmetic combinations, except when a
character string representing a datetime value is used in datetime arithmetic. The
following expression is valid:

HIRE_DATE - '2000-01-01'

The following expression is not valid:
'FUDGE " *"'GUMDROP ' +"LEMON'

If you attempt to combine two pieces of data that do not have compatible data
types with arithmetic operators, an error code is returned. The system performs
data conversion on different types of data that are compatible.

Using Special Registers
Any of the following special registers can be used wherever an expression of the
appropriate data type is used:
» CURRENT DATE (defined as DATE)
* CURRENT SERVER (defined as CHAR(18))
* CURRENT TIME (defined as TIME)
¢ CURRENT TIMESTAMP (defined as TIMESTAMP)
¢ CURRENT TIMEZONE (defined as DECIMAL(6,0))
* USER (defined as CHAR(8))

Using CURRENT DATE, TIME, and TIMESTAMP: The values of all datetime
special registers in the same statement are based on the same time-of-day (TOD)
clock reading.

In the examples below, one uses the select-statement and the other uses the
UPDATE statement.

SELECT CURRENT DATE, PRSTDATE
FROM PROJECT
ORDER BY PRSTDATE

UPDATE PROJECT SET PRSTDATE = CURRENT DATE,
PRENDATE = '2000-01-20"'
WHERE PROJNAME = 'OPERATION'

Using CURRENT TIMEZONE: The CURRENT TIMEZONE is a signed
time-duration containing the local time zone value. A negative value represents
differentials west of the Greenwich-Mean-Time (GMT). A positive value represents
differentials east of the GMT. CURRENT TIMEZONE can be used to convert local
time into GMT by subtracting CURRENT TIMEZONE from local time. CURRENT
TIMEZONE can be subtracted from a TIME or TIMESTAMP data type.

The following example shows a query that involves CURRENT TIMEZONE.
SELECT RECEIVED - CURRENT TIMEZONE
FROM IN_TRAY

Using CURRENT SERVER: This special register holds the server name of the
application server currently connected. It has a CHAR(18) data type.

Chapter 3. Coding the Body of a Program 55

The following example shows a query that includes the CURRENT SERVER special

register:
SELECT ID, INDATE, INTIME
FROM SAMP1

WHERE INRDB=CURRENT SERVER

Using USER: This special register is evaluated as the currently connected userid
that is, the user ID of the person who is running the program, regardless of who
preprocessed it. USER behaves exactly like a fixed-length character string constant
of length 8, with trailing blanks if the user ID has fewer than eight characters.

Notes:
1. You cannot use this keyword in an arithmetic expression (for example,
USER+3).

2. You can use it in a predicate where you compare it to a character string (for
example, USER = JIM').

3. You can use it in the LIKE predicate, where it is treated as a pattern.

4. You can, with some restrictions, use it in the SET clause of an UPDATE
statement, or in the VALUES clause of an INSERT statement. In both cases, the
data in the target column must be character data type (CHAR or VARCHAR).

The following is a valid expression that includes the USER special register:

SELECT =
FROM SYSTEM.SYSCATALOG
WHERE CREATOR = USER

Concatenating Character and Graphic Strings

You can use the concatenation operator (CONCAT) to concatenate character strings
or graphic strings. Long strings cannot be used with the concatenation operator.

The following example shows the concatenation of employees’ last names and jobs,
separated by a hyphen:

SELECT LASTNAME CONCAT '-' CONCAT JOB FROM EMPLOYEE

For a full description of this operation, including rules for character subtypes and
CCSIDs, see the IDB2_Seruer fnr VSE & VM SOI. Referencd manual.

Note: The | | symbol is a synonym for CONCAT. Because the | symbol is not in a
consistent position in all code pages, the use of | | could impair code
portability.

Using Host Variables

As previously stated, host variables are host program variables that are declared in
an SQL declare section. The host program can use these variables to interact with
the database manager.

You can use host variables to pass data to or receive data from the database
manager. Host variables used to contain column data or data used to evaluate an
expression are called main variables. The data type and length attributes of a main
variable depend on the data type and length of the column or expression to which
the variable relates.

You can also use host variables to communicate information to and from the
database manager about the contents of the main variable. If a host variable is
used in this context, it is an indicator variable. Only use host variables that are

56 Application Programming

declared with a data type equivalent to 15-bit integer as indicator variables. Refer
to [Usi i i ! for a description of their use.

7

Several SQL statements permit the use of host variables. Refer to the [DB2 Server foil

WSE & VM SQI Referencd manual for the syntax of these SQL statements. The

syntax diagrams indicate whether host variables are permitted or required.

For a description of how to declare host variables, refer to the appropriate host
language appendix.

Using Host Structures

A host structure is a special form of host variable. It is any two-level structure or

substructure declared in an SQL declare section. Host structures can replace all or
part of a host_variable_list. A host_variable_list can contain references to more than

one host structure.

The elements of the host structure comprise the list of main variables in the
host_variable_list. To provide indicator variable support for the elements of the host
structure, you must use an indicator array. An indicator array of n elements
provides indicator variable support for the first n elements of the host structure.

The elements of host structures and structures that contain host structures can
replace scalar host variables in an SQL statement. You can qualify the element
name with the names of parent structures and substructures. The following syntax
diagram shows the format of a structure element reference.

A\
A

> |_ element_name
struct_name.

It is only necessary to qualify a structure or element name where failure to do so
would result in an ambiguous reference.

Elements of indicator arrays cannot be used as host variables and host structures
(or structures that contain host structures) cannot be declared as arrays or contain
arrays.

Refer to the appropriate host language appendix for rules on the declaration of
host structures and indicator arrays. Refer to the DB2 Server for VSE & VM SQI

manual for more information on the use of host structures and indicator
arrays in SQL statements.

Using Constants

Constants (also called literals) can be numeric or character data. They are fixed
values that can be coded into SQL statements. Like host variables, they are used in
various clauses in a number of different SQL statements.

The following example shows a character string constant coded in a WHERE
clause:

DECLARE C CURSOR FOR

SELECT =

FROM EMPLOYEE
WHERE LASTNAME = 'PEREZ'

Chapter 3. Coding the Body of a Program 57

Constants can be used in the SELECT clause to set up a new column in the result
table, which has the specified constant in each of its occurrences. For example, the
statement:

DECLARE C CURSOR FOR

SELECT LASTNAME, 'WOW', 100.0

FROM EMPLOYEE
WHERE COMM > 3200

would have the following result table:

LASTNAME EXPRESSION 1 EXPRESSION 2
LUCCHESI WOW 100.0
HAAS WOW 100.0
THOMPSON WOW 100.0
GEYER WOW 100.0

Using Numeric Constants

Integer constants consist of a number with an optional sign, such as -56, 103, or
+786. (If you do not include a sign, the system assumes that the number is
positive.) All integer constants are 4 bytes long; that is, there are no constants with
a data type of SMALLINT.

Decimal constants consist of a number with a decimal point, such as 78.9687,
-.00132, 64570., or +1672.80. If you do not supply a decimal point, the constant is
interpreted as an integer. In storage, the number occupies a maximum of 16 bytes.
Precision p, where 1 = p =31, is the total number of digits. Scale s, where 0 = s =p,
is the number of those digits that are to the right of the decimal point. Leading
and trailing zeros are included in both precision and scale. When the precision and
scale are calculated, if the precision is greater than 31, leading zeros are removed
until the precision is equal to 31. Trailing zeros are never removed. When decimal
data values are multiplied or divided, an overflow condition may occur.

Consider the following:
a string of thirty one 9’s. * 1.0

The string of 9’s is treated as DECIMAL(31,0) and 1.0 as DECIMAL(2,1). The
precision and scale of the product will then be 31 and 1 (DECIMAL(31,1)),
respectively. This will result in a decimal overflow and an arithmetic exception will
occur.

This decimal overflow, can be prevented by changing the constant '1.0' to '1." This
would define this constant as DECIMAL (1,0) and the resulting product as
DECIMAL (31,0) instead of DECIMAL (31,1). If an expression contains decimal
constants, you can influence its precision and scale by adding leading or trailing
zeros to those constants.

A floating-point constant is an integer or a decimal constant followed by an
exponent marked by the letter E. The E must be followed by an exponent. The 1E0
is acceptable and evaluates to 1. All these are permissible floating-point constants:
-2E5, 2.2E-1, .2E6, +5E+2 or 4EQ0. All floating-point constants are double-precision in
the system.

Using Character Constants

Character string constants are coded within quotation marks, and are
varying-length character strings of letters, digits, or special characters, such as

58 Application Programming

'SMITH’, '52', or 'k@r -5B'. A character constant implicitly assumes either a FOR
SBCS DATA or a FOR MIXED DATA attribute. You cannot assign the FOR BIT
DATA attribute to a character constant. The constant is assumed to have a subtype
of SBCS unless the following conditions are true. If the following conditions are
true, the constant is assigned a subtype of mixed.

* The application server supports mixed data.

* The constant contains mixed data.

Mixed data is composed of a mix of SBCS and DBCS characters in one string. The
DBCS portions of the string must be correctly formatted strings of DBCS
characters. (For a discussion of the format and rules for using strings of DBCS

characters, see ‘Using a Double-Byte Character Set (DBCS)” on page 52) An

example of mixed data is:

*abe< LY >hi < XL >nop'

where abc, hi, and nop represent SBCS characters, and [and [represent
DBCS characters.

To obtain a single quotation mark in a string of SBCS characters, you must code
two consecutive single quotation marks. For example, the constant 'DON''T GO' is
interpreted as DON'T GO. To obtain a single quotation mark in a string of DBCS
characters, you only need to code a single quotation mark. Refer to the

for VSE & VM SQI Referencd manual for more information on mixed strings of
SBCS and DBCS characters.

You can also code a character constant using its hexadecimal representation.
Hexadecimal constants are treated like regular character constants. In DB2 Server
for VM, hexadecimal constants are converted from the application requester default
CCSID to the application server default CCSID before they are used.

The hexadecimal representation of a constant value must be enclosed within single
quotation marks and preceded by an X. For example:

X'2D' X'C1C2C3C4' X'4256457D"

Each pair of hexadecimal numbers (0-9, A-F) represents a single byte. (Either
uppercase or lowercase letters can be used.) Therefore, the number of hexadecimal
numbers must be even and, when representing a DBCS character in a mixed
constant, it must be a multiple of 4 (each DBCS character occupies 2 bytes in
storage).

You can use hexadecimal constants to represent SBCS and mixed character data
only. The maximum size for hexadecimal constants is 254 hexadecimal digits (that
is, 127 SBCS characters or 63 DBCS characters).

The following is a valid expression using a hexadecimal constant:
LASTNAME CONCAT X'FF' CONCAT FIRSTNME

Using Graphic Constants

Graphic string constants are fully supported in COBOL and PL/I programs, but
with different formats. The system supports three formats of the graphic constant:
the SQL format and two PL/I formats.

The SQL format of the graphic constant is:

R Xxxx kg
Note: N is a synonym for G.

Chapter 3. Coding the Body of a Program 59

The G identifies the constant that follows as graphic; the < > is any valid
string of DBCS characters, and the single quotation marks delimit the constant. You
do not need to double the quotation marks in a graphic constant to obtain a single
quotation mark. Use this format of the graphic constant in all situations except
static SQL statements in PL/I programs.

The PL/I formats of the graphic constant are:

1. '<padeg>'G
AR © ' XXXX@' GG |

Note: N is a synonym for G.

Again, the G indicates that the constant is a graphic constant, and that the string
bound by < and > must be a valid string of DBCS characters. In the second format,
the single quotation marks and the G are within the string of DBCS characters;
they are the DBCS format of the quotation mark and the G. In the second format,
to obtain a single DBCS quotation mark, double the occurrence of the DBCS
quotation mark within the string of DBCS characters. Use either of these formats of
the graphic constant in static SQL statements in PL/I programs.

The PL/I preprocessor converts PL/I format graphic constants into SQL format
graphic constants (G'< >') when they appear in SQL statements. This is done
before passing the SQL statement to the application server for processing.
Therefore, some DB2 Server for VSE & VM messages for incorrect syntax may refer
to the SQL format of the constant, even though a PL/I format constant was coded
in your program.

Graphic constants assume the default graphic CCSID. Subtypes do not apply to
graphic data. For example, you cannot assign the FOR BIT DATA attribute to a
graphic constant. For detailed information on CCSIDs and subtypes, see
Character Subtypes and CCSINS” on page 48

For information on the rules for the format and use of strings of DBCS characters
with DB2 Server for VM, see [I Isinga Double-Byte Character Set (DBCS)” onl

Using Date and Time Constants
A datetime constant is a character string constant or a decimal constant in a
datetime context, as shown in the following examples:

END_DATE - '1999-09-13'

END_DATE - 10000101.

In the first example, '1999-09-13'" is a datetime character string constant; in the
second, 10000101. is a decimal constant. A datetime decimal constant is a date
duration, a time duration, or a timestamp duration. A date duration represents a
number of years, months, and days, and is expressed as a DEC(8,0) number. A
time duration represents a number of hours, minutes, and seconds, and is
expressed as a DEC(6,0) number. A timestamp duration represents a number of
years, months, days, hours, minutes, seconds, and microseconds, and is expressed
as a DEC (20,6) number.

For more detailed information on date and time values, as well as durations, see

60 Application Programming

Using Indicator Variables

Using indicator variables is optional in a host-variable reference. In static SQL
statements, indicator variables can be used to indicate that the corresponding host
variables should be treated as null values or truncated values. Output indicator
variables appear in the INTO clause of a SELECT or FETCH statement, and are
associated with output that is passed from the database to the application
program. Input indicator variables appear in the predicates of WHERE and
HAVING clauses, in the SET clause of an UPDATE statement, with VALUES in an
INSERT statement or in the SELECT clause, and are associated with input that is
passed from the application program to the database.

Output indicator variables should always be used wherever null values are
allowed in the database. Input indicator variables can be used to put null values
into the database. They should, however, not be used in predicates unless there is a
very good reason for doing so, because there may be a significant cost in
performance.

Refer to the DR2_Serner fmf VSE & VM SOL Rf:FP‘VPWFA manual for a description of
the format of a host-variable reference that contains an indicator variable.

The following example illustrates the use of indicator variables.

SELECT FIRSTNME, LASTNAME
INTO :FNME:FNMEIND, :LNME :LNMEIND
FROM EMPLOYEE WHERE WORKDEPT = 'A0O'

In this example, the indicator variable FNMEIND provides indicator variable
support for the main variable FNME. The indicator variable LNMEIND provides
indicator variable support for the main variable LNME.

The following notes on the use of indicator variables are grouped according to the
type of indicator variable to which they apply.

Notes Common to Both Input and Output Indicator Variables

1. The indicator variable must be of a host language data type equivalent to an
SQL SMALLINT.

2. A negative indicator variable indicates a null value for its main variable.

Notes on Input Indicator Variables
When using input indicator variables, be aware of the following:

1. Input indicator variables can be used to indicate that a column value is to be
set to null (when the indicator variable is negative). If you provide an input
indicator variable and assign it a negative value, the null value is inserted in
the column value for the row. If the indicator variable is zero or a positive
value, the main variable is inserted. Truncation does not apply to input
variables.

2. A negative indicator variable can be used in static SQL for any of the following
predicates:
* The basic comparison ones (such as = or >)

BETWEEN

« IN

* LIKE

¢ The quantified ones (ANY, ALL)

See the DB2 Serner fm‘ VSE & VM SQIL Rpfpwme manual for the different sets of
rules for truth values for these predicates.

Chapter 3. Coding the Body of a Program 61

3.

Do not use input indicator variables in search conditions (WHERE or HAVING
clauses) to test for null values. The correct way to test for nulls is with the
NULL predicate (described earlier):

WHERE MGRNO IS NULL Correct

This will return every row where MGRNO is null.

WHERE MGRNO = :MGR:MGRIND Incorrect

No

If MGRIND has been set negative to make MGR null, the truth value is
“UNKNOWN?”, and nothing will be returned.

On the other hand, there are cases where setting up a negative input indicator
variable in the predicate can prove useful and efficient. For example, if an
application prompts the user to interactively supply information that will
identify an employee (by either number or name), you can design the program
to use only one select-statement to extract the indicated employee data from the
database.

Here is the pseudocode:

get either empno or Tastname from user

if empno is entered then empnoind = 0, else empnoind = -1
if lastname is entered then nameind = 0, else nameind = -1
SELECT * FROM EMPLOYEE

WHERE EMPNO = :EMPNO:EMPNOIND

OR LASTNAME = :NAME:NAMEIND

tes on Output Indicator Variables

When using output indicator variables, be aware of the following:

1.

2.

The value returned in an output indicator variable is coded as shown in

Output indicator variables are optional. If a null value is returned, however,

and you have not provided an indicator variable, a negative SQLCODE and an

error SQLSTATE are returned to your program. If your data is truncated and

there is no indicator variable, no error condition results. See fiCansLer.bn.g_Da.tad
for more information about truncation.

Table 10. Values Returned in Output Indicator Variables

Value Returned Meaning

0

Denotes that a non-null value that has been returned in the
associated host variable is not null.

<0

Denotes that the value associated with the host variable is null,
and should be treated exactly the same way as null column
values. A -1 denotes that the null value resulted from a normal
operation. A -2 denotes that the null value resulted from either a
conversion error or an error while evaluating an arithmetic
expression in an outer-select clause.

62 Application Programming

Table 10. Values Returned in Output Indicator Variables (continued)

Value Returned Meaning

>0 Denotes that the system truncated the returned value in the
associated host variable because the host variable was not of
sufficient length.

In addition, if the truncated item was a DBCS character or a string
of DBCS characters, the indicator variable contains the length in
characters before truncation. If the truncated item was a TIME
value, truncated at its seconds part, the indicator variable contains
the seconds. The SQLWARN1 warning flag in the SQLCA is set to
‘W' whenever truncation occurs.

Using Views

Views allow multiple users to see different presentations of the same data. For
example, several users may be operating on a table of data about employees. One
may see data about some employees but not others; another may see data about all
employees but none of their salaries; and a third may see data about employees
joined together with some data from another table. Each of these users is operating
on a view that is derived from the real table of data about employees. Each view
appears to be a table and has a name of its own.

You can create views with authorization statements to control access to sensitive
data. For example, you might create a view based on a GROUP BY query that
gives certain users access to the average salary of employees in each department,
but prevents them from seeing any individual salaries.

A view is a dynamic “window” on tables. When you update a real table, you can
see the updates through a view; when you update a view, the real table underlying
the view is updated. There are, however, restrictions on modifying tables through a
view.

Because a view is not physically stored, you cannot create an index on it. However,
if you create an index on the real table underlying a view, you may improve the
performance of queries on the view.

Creating a View

»>—CREATE VIEW—view_name =

(—Y—column_name——)

»—AS—subselect >«
|—WITH CHECK OPTION—I

In the following example, a view is created from the EMPLOYEE table:

CREATE VIEW PHONEBOOK (FNAME, LNAME, NUMBER, DEPART, JOBTITLE) AS
SELECT FIRSTNME, LASTNAME, PHONENO, WORKDEPT, JOB
FROM EMPLOYEE WHERE JOB <> 'PRES' WITH CHECK OPTION

Chapter 3. Coding the Body of a Program 63

The CREATE VIEW statement causes the indicated select-statement to be stored as
the definition of a new view, and gives a name to the view and (optionally) to each
column in it. If you do not specify the column names, the columns of the view
inherit the names of the columns from which they are derived.

You must specify a name for any view column that is not derived directly from a
single table column (for example, if a view column is defined as AVG(SALARY) or
SALARY+COMMISSION). Columns derived in this manner are often called virtual
columns, (and contain virtual data). You must also specify new column names if the
selected columns of the view do not have unique names (for example, if the view
is a join of two tables, each of which has a column named PROJNO).

In general, the data types of the columns of the view are inherited from the
columns on which they are defined. If a view column is defined on a function, the
data type of the view column will be the data type of the function result. (For
more details on functions, refer to the DBR2_Serner fnr VSE & VM SQI Rpfprpﬂml
manual.)

If you want to prevent the execution of subsequent inserts or updates to the view
that involve data that is outside the domain of the view’s definition (as specified in
the WHERE clause of its subselect), you can add the WITH CHECK OPTION
clause. This clause, however, is not allowed for updateable views that are built on
subqueries. The checking that is performed at insert or update time is performed
according to a set of rules that cover the situation in which a view is dependent on
other views. See the [DB2_Serper for VSE & VM SQI Referencd manual for these
rules.

Some other considerations when creating views are:

* Internal database manager limitations restrict a view to approximately 140
columns. The number of referenced tables, lengths of column names, and
WHERE clauses all further reduce this number.

e If the subselect in a view definition has a “SELECT *” clause, the view has as
many columns as the underlying table. If columns are later added to the
underlying table by ALTER statements, the new columns will not appear in the
view (unless you drop and re-create the view).

* The name of the view must be unique among all the tables, views, and
synonyms that you have already created. You can refer to another user’s views,
if so authorized, by using the owner-name as a prefix (for example,
SMITH.PHONEBOOK).

* You can define a view in terms of another view: that is, the subselect that defines
a view may refer to one or more other views. In this case, follow the rules listed

under Elsing Views to Manipulate Data” on page 63.

e There is no ORDER BY clause in a subselect; therefore, like a table, a view has no
intrinsic order. (Of course, you can specify an ORDER BY clause when you write
queries against the view.)

* Host variables are not permitted in a CREATE VIEW statement. (For example,
predicates such as PRICE = :X are not permitted.)

e The owner of the view is considered to be the authorization ID under which the
program is preprocessed.

* When you define a new view, you receive the same privileges that you have on
the underlying table. If you possess these privileges with the GRANT option,
you can grant privileges on your view to other users. (See

igni i ivi Z for information on the GRANT
option.) If the view is derived from more than one underlying table, you receive

64 Application Programming

the SELECT privilege, provided that you have this privilege on all the tables
from which it is derived. (If you have no privileges on the underlying tables, the
CREATE VIEW statement returns an error code.) Only the SELECT privilege is
possible, because multi-table views do not permit insertion, deletion, or update.

* Primary keys and foreign keys (discussed in IEnsuring Data Integrity” onl

) cannot be defined on a view.

* If you defined your view on a table that has a primary key, and you make
changes to that view, the view should contain all the columns of the key.

e The subselect is not executed when the view is created, which means that
semantic errors (for example, specifying "WHERE COL = 10" when COL is a
decimal column) are not detected until the view is used. To determine whether a
statement contains semantic errors, you can enter 'SELECT *' against the view
after creating it.

Querying Tables through a View

You can write queries (select-statements) against views exactly as if they were real
tables. When you make a query against a view, the query is combined with the
definition of the view to produce a new query against real stored tables. This
query is then processed in the usual way. For example, the following query might
be written against the view PHONEBOOK that was defined under FLECJ;E@

”

SELECT FNAME, LNAME
FROM PHONEBOOK
WHERE DEPART = 'D11'
ORDER BY 2

The system combines the query with the definition of PHONEBOOK, and
processes the resulting internal query:

SELECT FIRSTNME, LASTNAME

FROM EMPLOYEE

WHERE JOB <> 'PRES'

AND WORKDEPT = 'D11'
ORDER BY 2

During the processing of a query on a view, the system may detect and report
errors (by a negative SQLCODE) in either of two phases:

* The combination of the query with the view-definition (for example, attempting
to add together two strings of character-type)

* The execution of the resulting query on real tables (for example, attempting to
fetch a null value when no indicator variable is provided).

Note: If a view materialization is required to process the view, this view must not
contain any LONG VARCHAR columns in the view definition. For a
detailed description of view materialization, refer to the [DB2 Server for V. SH

\& VM Database Adwinistratiod manual.

Using Views to Manipulate Data

Like select-statements, INSERT, DELETE, and UPDATE statements can be applied
to a view just as though it were a real stored table. The SQL statement that
operates on the view is combined with the definition of the view to form a new
SQL statement that operates on a stored table. Any data modification made by
such a statement is visible to users of the view, the underlying table, or other
views defined on the same table (if the views “overlap” in the modified area).

Chapter 3. Coding the Body of a Program 65

The following is an example of an update applied to the view PHONEBOOK,
showing how the update can be modified to operate on the real table EMPLOYEE:

View Definition for PHONEBOOK:

CREATE VIEW PHONEBOOK (FNAME, LNAME, NUMBER, DEPART, JOBTITLE) AS
SELECT FIRSTNME, LASTNAME, PHONENO, WORKDEPT, JOB
FROM EMPLOYEE WHERE JOB <> 'PRES' WITH CHECK OPTION

UPDATE PHONEBOOK

SET NUMBER = '9111'
WHERE LNAME = 'SMITH'
AND FNAME = 'DANIEL'

becomes:

UPDATE EMPLOYEE

SET PHONENO = '9111'
WHERE LASTNAME = 'SMITH'
AND FIRSTNME = 'DANIEL'
AND JOB <> 'PRES'

Note: Because of the WITH CHECK OPTION, the following update will not be
allowed when Sally takes over as president:
UPDATE PHONEBOOK
SET JOBTITLE = 'PRES'

WHERE LNAME = 'KWAN'
AND FNAME = 'SALLY'

You must observe the following rules when modifying tables through a view:

1. INSERT, DELETE, and UPDATE of the view are not permitted if the view
involves any of the following operations: join, GROUP BY, DISTINCT, or any
column function such as AVG.

2. A column of a view can be updated only if it is derived directly from a column
of a single stored table. Columns defined by expressions such as SALARY +
BONUS or SALARY * 1.25 cannot be updated. (These columns are sometimes
called virtual columns.) If a view is defined containing one or more such
columns, the owner does not receive the UPDATE privilege on these columns.
INSERT statements are not permitted on views containing such columns, but
DELETE statements are.

3. The ALTER TABLE, CREATE INDEX, and UPDATE STATISTICS statements
cannot be applied to a view.

You can use an INSERT statement on a view that does not contain all the columns
of the stored table on which it is based. For example, consider the EMPLOYEE
table with none of the columns defined as NOT NULL. You could insert rows into
the view PHONEBOOK even though it does not contain the MIDINIT, EDLEVEL
or any other columns of the underlying table EMPLOYEE.

You can insert or update rows of a view in such a way that they do not satisfy the
definition of the view. For example, the view PHONEBOOK is defined by the
condition JOB <> 'PRES’. It would be possible to insert rows into PHONEBOOK
having a value equal to "PRES’ in the JOB column. This insertion takes effect on
the underlying table, EMPLOYEE, but the resulting rows are not visible in the
view PHONEBOOK, because they do not satisfy the definition of PHONEBOOK.
In fact, an update to PHONEBOOK that sets JOB="PRES’ causes a row to “vanish”
from PHONEBOOK (a cursor positioned on the row retains its position, but later

66 Application Programming

scans through PHONEBOOK do not see this row). If you want to ensure that all
rows inserted or updated are subsequently visible in the view, then define your
view with 'WITH CHECK OPTION'.

However, the EMPLOYEE table does have columns defined as NOT NULL, and
two of them (MIDINIT and EDLEVEL) are not available through the PHONE view.
If you try to insert a row through the view, the system attempts to insert NULL
values into all the EMPLOYEE columns that are “invisible” through the view.
Because the MIDINIT and the EDLEVEL columns are not included in the view, and
do not permit null values, the system does not permit the insertion through the
view.

Be extremely careful when updating tables through views that may contain
duplicate rows. For example, suppose a view JOBS is defined on the EMPLOYEE
table containing only the columns WORKDEPT and JOB. Because EMPNO is not
included in the view, and many employees may have the same job description, a
user of the view cannot tell which EMPNO corresponds to a given row of the
view. If the user positions a cursor on a row where JOB = 'CLERK’, and then
updates the current row of this cursor, a row of the stored EMPLOYEE table is
updated. However, because there may be many clerks in the EMPLOYEE table,
and the unique qualifier EMPNO is not part of the view, the user cannot control
which employee is updated.

Dropping a View

Format

»>—DROP VIEW—view_name ><

The DROP VIEW statement drops the definition of the indicated view from the

database. When you drop a view, the system also:

* Drops all other views defined in terms of the indicated view. (The underlying
tables on which the views are defined are not affected.)

* Deletes all privileges on the dropped views from the authorization catalog
tables.

* Marks invalid all packages that refer to the dropped views.
The invalid packages remain in the database until they are explicitly dropped by
a DROP PACKAGE statement. When an invalid package is next invoked, the
system attempts to regenerate it and restore its validity. However, if the program
contains any SQL statement that refers to a dbspace, table, or view that has been
dropped, that SQL statement returns an error code at run time.

If a DROP VIEW statement attempts to drop a view that is currently in use by

another running logical unit of work, the statement is queued until that LUW
ends.

Chapter 3. Coding the Body of a Program 67

Joining Tables

With joins, you can write a query against the combined data of two or more tables.
(You can also join views.)

To join tables, follow these steps:
1. In the FROM clause, list all the tables you want to join.

2. In the WHERE clause, specify a join condition to express a relationship between
the tables to be joined.

Note: The data types of the columns involved in the join condition do not have
to be identical; however, they must be compatible. The join condition is
evaluated the same way as any other search condition, and the same
rules for comparisons apply. (These rules are discussed under

Expressions” on page 54)

Joining Tables Using the Database Manager

The system forms all combinations of rows from the indicated tables. For each
combination, it tests the join condition. If you do not specify a join condition, all
combinations of rows from tables listed in the FROM clause are returned, even
though the rows may be completely unrelated.

Performing a Simple Join Query

The join query in w finds the project number and the last name of the
employees in department D11:

DECLARE C1 CURSOR FOR
SELECT PROJNO, LASTNAME
FROM EMPLOYEE, EMP ACT ,
WHERE EMPLOYEE.EMPNO = EMP ACTEMPNO <1 Join

AND WORKDEPT = D171' - Condition

ORDER BY PROJNO, LASTNAME

OPEN C1
FETCH C1 INTO :X, 1Y
CLOSE C1

Figure 20. A Simple Join

The WHERE clause above expresses a join condition. If a row from one of the
participating tables does not satisfy the join condition, that row does not appear in
the result of the join. So, if a EMPNO in the EMPLOYEE table has no matching
EMPNO in the EMP_ACT table (or if EMPNO in the EMP_ACT table has no
matching EMPNO in the EMPLOYEE table), that row does not appear in your
result.

Note: More than one table in a join may have a common column name. To identify
exactly which column you are referring to, you must use the table name as a
prefix, as in the example above. Unique column names do not require a

table name prefix.

Here is the query result (based on the example tables):

68 Application Programming

PROJNO LASTNAME

MA2111 BROWN
MA2111 BROWN
MA2111 LUTZ
MA2112 ADAMSON
MA2112 ADAMSON
MA2112 WALKER
MA2112 WALKER
MA2112 YOSHIMURA
MA2112 YOSHIMURA
MA2113 JONES
MA2113 JONES
MA2113 PIANKA
MA2113 SCOUTTEN
MA2113 YOSHIMURA

Joining Another User’s Tables
If you are referring to another user’s table, you must prefix the table name with
the owner-name. If, for example, the tables in the query above belonged to JONES,
you would write:

DECLARE CT CURSOR FOR
SELECT PROJNO, LASTNAME
FROM JONES.EMPLOYEE, JONES.EMPACT

WHERE JONES.EMPLOYEE.EMPNO = JONES . EMP_ ACT . EMPNO
AND WORKDEPT = D11'
ORDER BY PROJNO, LASTNAME

L » column
> table name

» owner

OPEN C1
FETCH C1 INTO :X, 1Y
CLOSE C1

Analyzing How a Join Works

When writing a join query, it is often helpful to mentally go through the query to
see how SQL develops a JOIN.

For example, look at the previous select-statement. It refers to the EMPLOYEE and
EMP_ACT tables. Joining the two tables will produce one table that contains all the
columns in both tables.

Each EMPNO in the EMPLOYEE table is compared to every EMPNO in the
EMP_ACT table. When the EMPNO column of both tables matches, a row is
formed that contains the combined columns of the “matching” rows. Notice that
the only column name that is common to both tables is EMPNO. If the name of
this EMPNO column were different in each table, the EMPNO column of the result
could have been called either name. This is because of the equality expressed in
the join condition. In fact, the select-list could have specified EMPLOYEE.EMPNO
instead of EMP_ACT.EMPNO, and identical results would have been produced.

Chapter 3. Coding the Body of a Program 69

Now consider what happens when the second part of the WHERE clause (AND
WORKDEPT="D11") is applied.

The result is further reduced so that only the rows with a department name of D11
remain. The entire search condition is now satisfied. The system strips off the
columns not specified in the select-list. This produces the query result previously
shown.

Using VARCHAR and VARGRAPHIC within Join Conditions

If you are joining VARCHAR or VARGRAPHIC columns, trailing blanks are not
used. For example, "JONES" and "JONES " match. If they were from two different
EMPLOYEE tables joined on the LASTNAME column, they would form one row.

Using Nulls within Join Conditions

Like other predicates, a join condition is never satisfied by a null value. For
example, if a row in the EMPLOYEE table and a row in the EMP_ACT table both
have a null EMPNO, neither row will appear in the result of the join.

Joining a Table to Itself Using a Correlation Name

You can write a query in which you join a table to itself, by repeating the table
name two or more times in the FROM clause. This tells the system that the join
consists of combinations of rows from the same table. When you repeat the table
name in the FROM clause, it is no longer unique. You must give one or both table
names in the FROM clause a unique correlation_name to correctly designate the
tables.

You use the correlation names to resolve column name ambiguities in the select-list
and the WHERE clause. Rules for table designation are given at the end of this
section.

For example, the following query finds the total of the values from the ACSTAFF
column (PROJ_ACT table) for activities 60 and 70 for any project that contains both
these activities:

DECLARE C1 CURSOR FOR
SELECT PA1.PROJNO, PA1.ACSTAFF + PA2.ACSTAFF
FROM PROJ_ACT PA1l, PROJ_ACT PA2
WHERE PA1.PROJNO = PA2.PROJNO AND

PA1.ACTNO = 60 AND PA2.ACTNO = 70
ORDER BY 1

OPEN C1

FETCH C1 INTO
:PRONUM, :TOTAL

CLOSE C1

This type of join query can also be easily visualized. Each PROJNO in the
PROJ_ACT table is compared to every other PROJNO in the PROJ_ACT table.
When two rows with the same PROJNO are found, a row is formed. The new row
contains the combined columns of the “matching” rows.

Now consider what happens when the second part of the WHERE clause
(PA1.ACTNO = 60 AND PA2.ACTNO = 70) is applied.

70 Application Programming

The result is further reduced to only the rows with an ACTNO of 60 in the first
ACTNO column and with an ACTNO of 70 in the second ACTNO column.

Finally, the system sorts the query by PROJNO and strips off the columns not
specified in the select-list. This produces:
If the table is owned by another user, the table name must be qualified in the usual

PROJNO EXPRESSION 1 PROJNO EXPRESSION 1
AD3111 2.30 AD3113 2.00
AD3111 1.30 AD3113 1.25
AD3111 2.00 AD3113 1.75
AD3111 1.00 AD3113 1.50
AD3112 1.50 AD3113 1.75
AD3112 1.25 AD3113 2.25
AD3112 1.75 AD3113 1.50
AD3112 1.00 AD3113 2.00
AD3112 1.25 AD3113 1.75
AD3112 1.00 AD3113 2.00
AD3112 1.50 AD3113 1.50
AD3112 0.75 AD3113 0.75
AD3112 1.50 AD3113 1.25
AD3112 1.25 AD3113 1.00
AD3112 1.75 AD3113 1.25
AD3112 1.00 MA2112 3.00
AD3112 1.75 MA2112 3.50
AD3112 1.50 MA2112 3.00
AD3112 2.00 MA2113 3.00
AD3112 1.25 MA2113 3.00

fashion. For example, here is how to write the above query if the owner of the
PROJ_ACT table is SCOTT:

DECLARE C1 CURSOR FOR
SELECT PA1.PROJNO, PA1.ACSTAFF + PA2.ACSTAFF
FROM SCOTT.PROJ_ACT PA1, SCOTT.PROJ_ACT PA2
WHERE PA1.PROJNO = PA2.PROJNO AND
PA1.ACTNO = 60 AND PA2.ACTNO = 70

ORDER BY 1
OPEN C1
FETCH C1 INTO

:PRONUM, :TOTAL
CLOSE C1

Rules for Table Designation

1.

Only exposed table names and correlation names in the FROM clause can be
referenced in other clauses.

An exposed table name is one that is not followed by a correlation_name (for
example, PROJECT). A nonexposed table name is a table name which is
followed by a correlation_name (for example, PROJECT P). In the latter example,
PROJECT has no scope in the query and cannot be referenced; the table
designator in this case is P.

Exposed table names in the FROM clause must be different from each other.

Correlation names in the FROM clause must be different from each other and
different from any exposed table names.

Chapter 3. Coding the Body of a Program 71

These rules are illustrated here:

SELECT EMPLOYEE.LASTNAME FROM EMPLOYEE E

The above query is not allowed. EMPLOYEE is a nonexposed table name and
cannot be used to qualify column LASTNAME.

SELECT EMPLOYEE.LASTNAME FROM EMPLOYEE E, EMPLOYEE

The above query is allowed. The second table in the FROM clause can be
designated by the exposed table name EMPLOYEE. There is no ambiguity or
conflict with the table name EMPLOYEE in the first table of the FROM clause,
because that is a nonexposed table name.

Imposing Limits on Join Queries
The example of a simple join query in Figure 20 on page 68 had only one join
condition relating the values of EMPNO in two tables. The following limits exist
with respect to joins:

* You can join up to 16 tables in a query

* The maximum number of join columns in a query is 40. Note, however, that this
limit is evaluated after the Optimizer does query transformation internally, and
that this transformation may affect the number of join columns in the query.

For more information on these limits, see the section on 'SQL Limits' in the @
Kerver frw VSE & VM SQIL Rpfpvpnrpl manual.

Using SELECT * In a Join

The notation SELECT * in a join query means “select all the columns of the first
table, followed by all the columns of the second table, and so on.” You can also use
the notation SELECT T1.*. to select all the columns of the table T1. However, it is
not recommended that you use either SELECT * or SELECT T1.* for join queries
written in programs because if someone adds a new column to the first table in the
join (by an ALTER TABLE statement), the columns of the second table are no
longer delivered into the correct host variables. To avoid this problem, use a
select-list in which all the columns are specifically listed.

Grouping the Rows of a Table

The DB2 Serper for VSE & VM SQI Referencd manual shows how to apply the

column functions (SUM, AVG, MIN, MAX, and COUNT) to a table. However, you

can apply these functions only to particular columns in rows that satisfy a search

condition. For example, the following statement finds the average number of

employees for all occurrences of project number AD3111 in the PROJ_ACT table:
SELECT AVG(ACSTAFF)

FROM PROJ_ACT
WHERE PROJNO = 'AD3111'

72 Application Programming

In contrast, the grouping feature of the database manager permits you to
conceptually divide a table into groups of rows with matching values