<|lI!

DB2 Server for VSE & VM

Database Administration

Version 7 Release 1

SC09-2888-00

<|lI!

DB2 Server for VSE & VM

Database Administration

Version 7 Release 1

SC09-2888-00

Note!

Before using this information and the product it supports, be sure to read the general information under

First Edition (September 2000)

This edition applies to Version 7 Release 1 Modification 0 of the IBM® DATABASE 2™ Server for VSE & VM
Program, (product number 5697-F42) and to all subsequent releases and modifications until otherwise indicated in
new editions.

This edition replaces SC09-2654-00 and SC09-2655-00.

© Copyright International Business Machines Corporation 1987, 2000. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Manual

Some Terminology . .
Components of the Relatlonal Database
Management System .

Organization

Prerequisite IBM Publ1cat10ns

Highlighting Conventions.

How to Send Your Comments
Syntax Notation Conventions .
SQL Reserved Words .

Summary of Changes .

Summary of Changes for DB2 Version 7 Release 1

Enhancements, New Functions, and New
Capabilities .

Reliability, Avarlabrlrty and Servrceabllrty
Improvements . .o
Library Enhancements .

Chapter 1. Designing a Database .
Sample Tables .
Entities, Properties, and Occurrences

Step 1: Select the Data to Record in the Database .
Step 2: Define Tables for Each Type of Relationship

One-to-One Relationships .

One-to-Many and Many-to-One Relatronshrps

Many-to-Many Relationships . .
Step 3: Provide Column Definitions for Tables .

. Vil

. vii

. vid

. xi
. Xi

. Xiii

. XV

. XiX

. XXi
XX1

. xxi

. Xxiii
. Xxxiii

B W WNN R - -,

Step 4: Identify One or More Columns as a Primary

Key

e~

Step 5: Ensure that Equal Values Represent the Same

Entity.
Step 6: Plan for Referentral lntegrrty
Elements of Referential Integrity .

DELETE, INSERT, and UPDATE Cons1derat1ons

Step 7: Normalize Your Tables
First Normal Form
Second Normal Form
Third Normal Form
Fourth Normal Form
Step 8: Considerations for Drstnbuted Data
Definitions. S
Application Programming
System Operations .
Distributing Existing Data

Chapter 2. Implementing Your Design

Storage Concepts .
How Information is Stored in Dbspaces .

Database Generation

Defining Dbspaces .

© Copyright IBM Corp. 1987, 2000

.13
. 14
.15
. 16

17
.17
.19
.20
.20

Identifying Dbspace Requirements.
Adding Dbspaces to the Database .
Acquiring Dbspaces .
Retrieving Information about Dbspace
Parameters
Restrictions on the ACQUIRE DBSPACE
Statement .

Creating Tables .
Controlling Who Creates Tables
How to Create Tables .
Naming Tables
Choosing Columns .
Specifying Columns
Specifying Data Types .
Specifying a PRIMARY KEY .
Specifying a UNIQUE Constraint .

Considerations for Referential Integrity when

Creating Tables . .
Placing Tables in Dbspaces
Creating Views . .
Reasons for Using Vrews
Creating a View on a Table .
Creating a View from Several Tables .
Things You Cannot Do with a View
Materializing a View
Creating Indexes.
Index Key . .
UNIQUE Indexes
The PCTFREE Clause . .
Clustering Rows of a Table on an Index

Some Things to Remember When Defining Keys
General Performance Considerations on the Use

of Indexes .
Migration Consrderatrons for Indexes
Using the Catalog in Database Design

Retrieving Catalog Information about a Table .
Retrieving Catalog Information about Columns
Retrieving Catalog Information about Indexes .

Retrieving Catalog Information about Views
Retrieving Catalog Information about
Authorization

The COMMENT ON Statement

Chapter 3. Maintaining Your Database

Maintaining Tables . .
Loading Data into Tables .
Copying Tables .
Moving Tables from One Dbspace to Another
Merging Data from Multiple Tables
Altering the Design of a Table .
Altering Referential and Unique Constrarnts
Enforcing Referential Constraints .

Moving Data from One Application Server to

Another .
Removing Tables

. 20
.21
.22

. 26

.27
.27
.27
.27
. 28
.29
. 30
.31
. 37
. 38

. 38
. 40
.42
. 42
. 43
.43
. 44
. 46
. 47
. 47
. 48
. 48

. 48
50

. 51
. 52
. 52
.52

53

. 53
. 54

. 54
. 54

57
.59
. 59
. 62
. 62
. 63
. 64
. 65
. 68

.71
.72

iii

Maintaining Dbspaces . .
Altering the Design of a Dbspace .
Reorganizing a Dbspace to Free Storage Pool
Pages
Removing Dbspaces
VSAM Restrictions .

Reorganizing Indexes on the Catalog Tables

Chapter 4. Supporting Your Users .
Adding a New User .
Setting Up New ISQL Users
Authorizing Access . .
Specifying a Default Appllcat1or1 Server in VM
Loading Initial Tables . e
Training New Users
Removing Users from an Appl1cat1on Server
Example

Chapter 5. Providing Secunty
Authorities
Types of Authorltles
Granting Authorities
Revoking Authorities .
Privileges . .
Privileges of Ownersh1p . .o
Granting Privileges to Other Users
Revoking Privileges
Monitoring Privileges .
Privileges on Application Programs
Connecting to an Application Server in VM
Establishing a Default Application Server
Connecting to the Application Server Implicitly
Connecting to the Application Server Explicitly
Connecting to an Application Server in VSE
Establishing a Default Application Server

.73
.73

.74
.75
. 76
. 76

. 79

.79
. 80
. 82

82
. 83
. 83
. 83
. 83

. 87

. 87
. 87
.90
.92
.92
. 93
. 93
. 94
. 94
. 94
. 95
. 95

95

97
. 98
.99

Connecting to the Application Server in Different

VSE Environments . . .
User IDs for Remote CICS/ VSE Transact1or1s
Connecting to an Application Server in Special
Circumstances .
Resolving Remote Server Name to Target Database
(CICS).
Resolving Remote Server Name to Target Database
(VSE Batch) . .
Restricting Access Using V1ews
Example . . .
Changing User Passwords .
Example .
Securing the Database Catalog Tables
Example 1
Example 2
Example 3
Security Auditing .
Auditing Security Using the Catalog Tables
Auditing Security Using Tracing .

Chapter 6. Recovering from Failures
Overview of Recovery Concepts .

Logical Units of Work

CMS Work Units .

1V Database Administration

.99
102

. 103

. 104

. 105
. 106
. 106
. 107
. 107
. 107
. 108
. 108
. 108
. 108
. 109
. 109

119

. 119
. 119
. 120

Atomic Operations . 120
Dynamic Application Backout . 120
Restart Processing . . . 121
Recovery from Application Fa1lures . 121
Application Program Recovery in VM . . 124
Dropping the DB2 Server for VM Resource
Adapter Code . . 124
Batch and VSE/ICCF Appl1cat1on Recovery . 124
Online Application Recovery . . . 125
ISQL Sessions .o . 126
DBS Utility Processing . 126
Preprocessor. . . 127
Recovery from User Log1c Errors . 127
Dynamic Recovery from User Errors . 128
Selective Recovery from User Data Errors . . 131
Database Recovery from User Logic Errors . 133
Chapter 7. Customizing the HELP Text
and Messages Text . . 137
The SYSLANGUAGE Table. . . 137
The SYSTEXT1 and SYSTEXT2 Tables . 139
Adding Topics to HELP Text Tables . . 141
Adding a HELP Topic to the HELP Text
Supplied by IBM . . . 141
Creating Your Own HELP Text Tables . . 142
Making the HELPTEXT Dbspace Larger . 143
Moving the HELP Text to Another Dbspace . . 145
Printing the HELP Text Using the DBS Utility . 145
Printing the HELP Text Using ISQL . . 146
Chapter 8. Application Design
Considerations. . . 147
Application Implementation Capab111t1es . 147
Batch/Interactive Capabilities . . 147
Online (CICS) Transaction Processing
Capabilities . . 148
Query Capabilities. . 149
Report Writing Capab111t1es . . 153
Programmed Application Capabllltles . . 155
EXECs that Use DB2 Server for VM Facilities 155
Application Development Capabilities . . 159
Application Database Considerations . 162
Database Support for Application Development 162
Database Support for Query/Report Writing 163
Application Implementation Considerations . . 164
VSE Batch/Interactive Application
Considerations . . 165
Online CICS/VSE Transact1or1 Consrderat1ons 167
Application Development Considerations . . 168
Loading Data into Test Dbspaces . . 168
Use of Synonyms in Application Development 169
Testing SQL Statements . . . 169
Checking Application Code . 170
Query/Report Writing Considerations . . . 171
User Identifiers (Userids) for Query Users. . 171
Application Independence with CMS Work Units 171
Application Maintenance Considerations . . 172
Data Administration Support . 172
Data Independence Support 172
Arithmetic Operations . 174

Data Access Changes .
Hypothetical Change Support

Chapter 9. DB2 Server for VM
Database Configurations
DB2 Server for VM Concepts . . .
Operating Modes for the Database Machme .
Example Configurations .
One Database Machine with One Database
One Database Machine with Two Databases .
Several Database Machines with Many
Databases
Multiple Database Machmes on Drfferent
Processors .
Accessing a Database from a Processor that
Does Not Have One .
Performance Considerations wrth Multrple
Databases
VSE Guest Sharmg (On VM / ESA Systems Only)

Chapter 10. Usage Environments in
VSE

Batch/Interactive Application Processing .
Online (CICS) Transaction Processing
Application Development .
Query/Report Writing

Chapter 11. Stored Procedures .
Stored Procedure Concepts .
Stored Procedure Servers
The Stored Procedure Server
The Stored Procedure Handler.
Stored Procedure Server Groups .
Setting up a Stored Procedure Server
Managing Stored Procedure Servers .
Stored Procedure Server Allocation .
States of a Stored Procedure Server .

Altering or Dropping a Stored Procedure Server

Definition
Stored Procedures .

Preparing a Stored Procedure to Run

Dropping or Altering a Stored Procedure .
Initialization Parameters Affecting Stored
Procedure Execution .

PTIMEOUT Parameter

PROCMXAB Parameter . .
Summary of Environment Interactrons .

Appendix A. Estlmatmg Your Dbspace
Requirements .
Estimating Dbspace Size.

General Guidelines .

Estimating Storage for a Table

. 183
. 186

. 187
. 187
. 188
. 188
. 188
. 189

. 190
. 191
. 193

. 194

195

. 197
. 197
. 198
. 200
. 201

. 203
. 203
. 203
. 203
. 204
. 204
. 204
. 207
. 207

. 209

. 211
. 211
. 211
. 212

. 212
. 212
. 212
. 213

. 215

. 215
. 215
. 216

Estimating the Number of Header Pages .
Estimating the Number of Data Pages .
Estimating the Number of Index Pages .

Estimating Internal Dbspace Size and DASD Needs

... ... 230
. 231
. 231

for Sort Operations
When Do We Sort? .
Internal Dbspace Characterrstrcs .
Calculating Internal Dbspace Size Requlrements
Calculating Total Internal Dbspace and DASD
Needs .

Appendix B. CMS EXECs
SQLINIT EXEC. .
Initializing a User Machme.
SQLGLOB EXEC .
SQLCIREO EXEC .
SQLDBID EXEC
SQLRMEND EXEC
Example . .
ARISDBHD EXEC.
ARISDBLD EXEC .
SQLLEVEL EXEC .

Appendix C. Querying the Status of
an Application (VM Only)

Example .

Appendix D. Maximums .
ISQL Maximums

Appendix E. SQLGLOB Parameters

(VSE Only)

Transactions for Updating SQLGLOB Parameters
DSQG - Update global SQLGLOB Parm
Transaction . .
DSQU - Update user SQLGLOB Parm
Transaction . . .
DSQQ - Query SQLGLOB Parrn Transactron .
DSQD - Delete user SQLGLOB Parm
Transaction .

Batch Program to Update / Query the SQLGLOB

File. .

Using Online and Batch Resource Adapter Tracmg
Online Trace File JCL. Lo
Batch Trace File JCL .

Formatting the Online or Batch Trace Frle

Notices .
Trademarks .

Bibliography.

Index .

. 218
. 219

. 227

232

. 234

. 235
. 235
. 235
. 244
. 249
. 251
. 251
. 253
. 254
. 255
. 256

. 259
. 260

. 263
. 263

. 265

267

. 268

. 268
. 269

. 270

. 270
272

. 272
. 272
. 272

. 275
. 277

. 279

. 283

Contents V

Vi Database Administration

About This Manual

This book describes the tasks for planning and administering an application server
in the following environments:

1. Virtual Storage Extended (VSE/ESA), 2.3.1 or above.
2. Virtual Machine/Enterprise Systems Architecture (VM/ESA), 2.3.0 or above

3. VM/ESA with Virtual Storage Extended (VSE) running as a guest under VM
and accessing a VM application server.

The planning and administration of a DB2 Server for VSE & VM application server
consists of designing, implementing, securing, and maintaining a database. To
accomplish these tasks, you must know about:

¢ Database design

 Table design

* Index creation

e Structured Query Language (SQL)

* Relational concepts.

The first three areas are described in this book. For a description of the other
topics, refer to the IDB2 Serner for VSE & VM SQI Referencd manual, SC09-2989, and

the IDB2 Server for VSE & VM Database Sernices ltilit} manual, SC09-2983.
Note: The IDB2 Server for VSE & VM Performance Tuning Handhook, GC09-2987,

contains information on database design techniques that you must know
before you start to design your database. This information was previously in
this manual under the chapter describing advanced database design and
performance techniques.

Some Terminology

Throughout this book, the Customer Information Control System (CICS) refers to
CICS/VSE Version 2 Release 3 or CICS Transaction Server Version 1 Release 1 or
later for online support and for ISQL. DB2 Server for VSE & VM refers to
DATABASE 2 Server for IBM VSE & VM Systems Version 7 Release 1, unless
otherwise noted.

Components of the Relational Database Management System
Eigure 1 on page viil depicts a typical configuration with one database and two

users.

Eigure 2 on page i depicts a typical configuration with one database, one batch

partition user, and a CICS” partition with several interactive users.

© Copyright IBM Corp. 1987, 2000 vii

viii

Communication Link

(lucv, APPC/VM or TCP/IP)

Database
Machine

Data System Control

Relational Data System|

Database Storage
Subsystem

Database Manager

Service

o |

Production

log Disk

Database |

Directory

Storage
Pool

User
Machine

>
]
T
o
2
o
=}
by
[y
Q
c
[}
[
A
@
2

Interactive SQL

Preprocessors

Applications

1
1
1
1
1
:

User
Machine

Resource Adapter

Application Requester

Interactive SQL

Preprocessors

DBS Utility

Applications

Application Server

Database Administration

Figure 1. Basic Components of the RDBMS in VM/ESA

1 1
Online Resource Adapter [1
1

L
I Application Requester I

Interactive SQL

CICS Application

Dbextent

Applications Stgg%?e

CICS Partition D o
. Batch Resource Adapter : Application
I Application Requester I Preram Directory

Log
VSE Batch
Partition Database |
. e
| Data System Control VSAM

1

)

:
=] Database for VSE

Partition Library

Database Manager I

VSE Application Server

Figure 2. Basic Components of the RDBMS in VSE/ESA

The database is composed of :

* A collection of data contained in one or more storage pools, each of which in turn
is composed of one or more database extents (dbextents). A dbextent is a VM
minidisk or a VSE VSAM cluster.

A directory that identifies data locations in the storage pools. There is only one
directory per database.

* A log that contains a record of operations performed on the database. A database
can have either one or two logs.

The database manager is the program that provides access to the data in the
database. In VM it is loaded into the database virtual machine from the production
disk. In VSE it is loaded into the database partition from the DB2 Server for VSE
library.

The application server is the facility that responds to requests for information from
and updates to the database. It is composed of the database and the database
manager.

The application requester is the facility that transforms a request from an
application into a form suitable for communication with an application server.

Note: General references to the database management system are assumed to

apply to the database under discussion, any unique or specific references to
other database systems will be explicitly made.

About This Manual ~ iX

Organization

Bummary of Changes.

This section summarizes the technical and library changes made to the DB2 Server
for VSE & VM product for Version 7 Release 1.

5 o

To store information in a database, you must first convert it into tables while
maintaining any relationships that exist within it. This chapter outlines the steps
for effective design of a database.

5 P sy e oo

This chapter describes how to estimate your storage requirements, use SQL
commands to create objects (dbspaces, tables, views, and indexes) that support
your design, and query the catalog tables.

5 VPR

After a database is implemented, it must be maintained. This chapter describes
how to load data into tables, alter tables, and alter the design of dbspaces.

Chapter 4 Supporting Your Userd.

This chapter describes activities that database administrators must consider to
support users. The tasks described include adding, deleting, authorizing, and
training users.

s SRR

This chapter describes several security mechanisms that can help you protect your
data from unauthorized access.

This chapter describes facilities you can use to recover from failures and maintain
the integrity of your data.

rhapfpr 7 _Customizing the HEI.P Text and Messages Texd

This chapter discusses national languages used with the database manager.

T ST —T—]

This chapter provides an overview of the ways that your data can be accessed, and
discusses topics that you should consider when developing your applications.

5 S e D Coiei

Information can be stored in one or more DB2 Server for VM application server,
and these application servers may be on one CPU or distributed among many.
Furthermore, users can access an application server on the VM/ESA system from a
VSE guest (this is called VSE Guest Sharing). This chapter describes these various
types of configurations.

X Database Administration

rhapfpr 10 Uqagp Environments in VSH

This chapter provides an overview of five possible usage environments for which
you can set up your DB2 Server for VSE system.

Chapter 11 Stored Procedured.

This chapter provides an overview of what stored procedures are, and how to use
them.

I A TivenD "]

Dbspaces, which hold tables, must have sufficient storage capacities to meet the
storage requirements of their tables. This appendix describes how to estimate the
amount of storage the tables require, so that you acquire dbspaces with sufficient
capacity.

Wppendix B CMS EXECY,

This appendix describes the EXECs provided for use in user VM/ESA virtual
machines.

I TNy E YT

This appendix describes the CMS SQLQRY command available in your VM/ESA
system.

This appendix describes the logical data and ISQL maximums.
Appendix B SQIL.GI OR Parameters (VSE Only].

This appendix describes the SQLGLOB VSAM file available in your VSE/ESA
system.

Prerequisite IBM Publications

All readers of this book should be familiar with the content of the following
manuals:

e DB2 Server for VSE & VM Overivew, GC09-2995

« [DB2 Server for VSE & VM SQL Referencd, SC09-2989

o IDB2 Server fmf VSE & VM Pm‘fnrmnwnp ﬂlwiwg T—anr]hnn]dl GC09-2987.

Highlighting Conventions

This manual uses the following text highlighting conventions:

Italics Ttalic type is used for command variables, parameter values and their
symbolic equivalents, titles of stand-alone manuals, strings of characters to
be used exactly as they appear, and important terms that are being
defined.

Boldface
Bold type is used for emphasis.

About This Manual ~ Xi

Monospace
Monospace type indicates material that is entered at a display station, or
displayed, coded, or printed on a computer printing device.

Xxil Database Administration

How to Send Your Comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any other

DB2 Server for VSE & VM documentation:

* Visit our home page at:

http://www-4.ibm.com/software/data/dbh2/vse-vm/

A form for readers’ comments is provided at the back of this publication. If the
form has been removed, address your comments to:

IBM CANADA LTD.

DB2 Server for VSE & VM
25/240/1150/TOR

1150 Eglinton Ave. East
North York, Ontario
Canada M3C 1H7

Send your comments by electronic mail to one of the following addresses:

Format Address

Internet torrcf@ca.ibm.com

Facsimile (416) 448-6161 (Attention RCF
Coordinator)

Be sure to include the name of the book, the form number (including the suffix),
and the page, section title, or topic you are commenting on.

If you choose to respond through the Internet, please include either your entire
Internet network address, or a postal address.

Fill out the form at the back of this book and return it by mail, by fax, or by
giving it to an IBM representative.

© Copyright IBM Corp. 1987, 2000 xiii

X1V Database Administration

Syntax Notation Conventions

Throughout this manual, syntax is described using the structure defined below.

* Read the syntax diagrams from left to right and from top to bottom, following
the path of the line.

The »—— symbol indicates the beginning of a statement or command.

The — symbol indicates that the statement syntax is continued on the next
line.

The »— symbol indicates that a statement is continued from the previous line.
The —><« symbol indicates the end of a statement.

Diagrams of syntactical units that are not complete statements start with the
»— symbol and end with the — symbol.

* Some SQL statements, Interactive SQL (ISQL) commands, or database services
utility (DBS Utility) commands can stand alone. For example:

»»>—SAVE ><

Others must be followed by one or more keywords or variables. For example:

»—SET AUTOCOMMIT OFF ><

* Keywords may have parameters associated with them which represent
user-supplied names or values. These names or values can be specified as either
constants or as user-defined variables called host_variables (host_variables can only
be used in programs).

»»—DROP SYNONYM—synonym

v
A

* Keywords appear in either uppercase (for example, SAVE) or mixed case (for
example, CHARacter). All uppercase characters in keywords must be present;
you can omit those in lowercase.

* Parameters appear in lowercase and in italics (for example, synonym).

e If such symbols as punctuation marks, parentheses, or arithmetic operators are
shown, you must use them as indicated by the syntax diagram.

+ All items (parameters and keywords) must be separated by one or more blanks.

* Required items appear on the same horizontal line (the main path). For example,
the parameter integer is a required item in the following command:

»>—SHOW DBSPACE—integer

A\
A

This command might appear as:

© Copyright IBM Corp. 1987, 2000 Xv

xvi

SHOW DBSPACE 1

¢ Optional items appear below the main path. For example:

»>—CREATE

A\
A

INDEX
|—UNIQUEJ

This statement could appear as either:
CREATE INDEX

or
CREATE UNIQUE INDEX
If you can choose from two or more items, they appear vertically in a stack.

If you must choose one of the items, one item appears on the main path. For
example:

»»>—SHOW LOCK DBSPACE—[ALL ><
integerJ

Here, the command could be either:
SHOW LOCK DBSPACE ALL

or
SHOW LOCK DBSPACE 1

If choosing one of the items is optional, the entire stack appears below the main
path. For example:

Y
A

integer—

»>—BACKWARD |:
MAX

Here, the command could be:
BACKWARD

or
BACKWARD 2

or
BACKWARD MAX

* The repeat symbol indicates that an item can be repeated. For example:

—

»>—ERASE—Y—name ><

Database Administration

This statement could appear as:
ERASE NAME1

or
ERASE NAME1 NAME2

A repeat symbol above a stack indicates that you can make more than one
choice from the stacked items, or repeat a choice. For example:

»»—VALUES— (—Y——constant)
host_variable_list—
NULL
special_register—

A\
A

* If an item is above the main line, it represents a default, which means that it will
be used if no other item is specified. In the following example, the ASC keyword
appears above the line in a stack with DESC. If neither of these values is
specified, the command would be processed with option ASC.

ASC
> |_ _| »<
|—DESC—|

* When an optional keyword is followed on the same path by an optional default
parameter, the default parameter is assumed if the keyword is not entered.
However, if this keyword is entered, one of its associated optional parameters
must also be specified.

In the following example, if you enter the optional keyword PCTFREE =, you
also have to specify one of its associated optional parameters. If you do not
enter PCTFREE =, the database manager will set it to the default value of 10.

10

PCTFREE
|_

[N
>

|—PCTFREE = integer—

* Words that are only used for readability and have no effect on the execution of
the statement are shown as a single uppercase default. For example:

PRIVILEGES
»»—REVOKE ALL |_ _|

A\
A

Here, specifying either REVOKE ALL or REVOKE ALL PRIVILEGES means the
same thing.

Syntax Notation Conventions xvii

xviii

* Sometimes a single parameter represents a fragment of syntax that is expanded
below. In the following example, fieldproc_block is such a fragment and it is
expanded following the syntax diagram containing it.

>>- i fieldproc_block i >

|—NOT NULL |: |

UNIQUE
PRIMARY KEY—

fieldproc_block:

|—FIELDPROC—program_name }

(—Y—constant——)

Database Administration

SQL Reserved Words

The following words are reserved in the SQL language. They cannot be used in
SQL statements except for their defined meaning in the SQL syntax or as host
variables, preceded by a colon.

In particular, they cannot be used as names for tables, indexes, columns, views, or

dbspaces unless they are enclosed in double quotation marks ().

ACQUIRE GRANT RESOURCE
ADD GRAPHIC REVOKE
ALL GROUP ROLLBACK
ALTER ROW
AND HAVING RUN
ANY
AS IDENTIFIED SCHEDULE
ASC IN SELECT
AVG INDEX SET

INSERT SHARE
BETWEEN INTO SOME
BY IS STATISTICS

STORPOOL

CALL LIKE SUM
CHAR LOCK SYNONYM
CHARACTER LONG
COLUMN TABLE
COMMENT MAX TO
COMMIT MIN
CONCAT MODE UNION
CONNECT UNIQUE
COUNT NAMED UPDATE
CREATE NHEADER USER
CURRENT NOT

NULL VALUES
DBA VIEW
DBSPACE OF
DELETE ON WHERE
DESC OPTION WITH
DISTINCT OR WORK
DOUBLE ORDER
DROP

PACKAGE
EXCLUSIVE PAGE
EXECUTE PAGES
EXISTS PCTFREE
EXPLAIN PCTINDEX

PRIVATE
FIELDPROC PRIVILEGES
FOR PROGRAM
FROM PUBLIC

© Copyright IBM Corp. 1987, 2000

Xix

XX Database Administration

Summary of Changes

This is a summary of the technical changes to the DB2 Server for VSE & VM
database management system for this edition of the book. All manuals are affected
by some or all of the changes discussed here. For your convenience, the changes
made in this edition are identified in the text by a vertical bar (1) in the left
margin. This edition may also include minor corrections and editorial changes that
are not identified.

This summary does not list incompatibilities between releases of the DB2 Server
for VSE & VM product; see either the IDB2 Seruer for VSE & VM SQL Rpfprpwr‘A bB_j
Berver for VM System Administration or the IDR2 Qprnprfnr VSE Suyste

manuals for a discussion of incompatibilities.

Summary of Changes for DB2 Version 7 Release 1

Version 7 Release 1 of the DB2 Server for VSE & VM database management
system is intended to run on the Virtual Machine/Enterprise Systems Architecture
(VM/ESA®) Version 2 Release 3 or later environment and on the Virtual Storage
Extended/Enterprise Systems Architecture (VSE/ ESA™) Version 2 Release 3
Modification 1 or later environment.

Enhancements, New Functions, and New Capabilities

TCP/IP Support for DB2 Server for VSE
TCP/IP support allows:

¢ VSE online and batch application programs to access remote application servers
which support IBM’s implementation of the DRDA architecture over TCP/IP.

* Remote application requesters which support IBM’s implementation of the
DRDA architecture to access the DB2 for VSE application server over TCP/IP.
For more information, see the following DB2 Server for VSE & VM documentation:
- IDR?2 Server for VSE & VM Database Administration

o IDB2 Server for VSE System Administration
 |DB2 Server for VSE Program Directori]

DRDA RUOW Application Requester for VSE (Batch)
DRDA Remote Unit of Work Application Requester provides read and update
capability in one location in a single unit of work.

This support provides VSE batch application programs with the ability to execute
SQL statements to access and manipulate data managed by any remote application
server that supports IBM’s implementation of the DRDA architecture.

VSE batch application programs can access only one remote application server per
unit of work, and must use TCP/IP communications.

For more information, see the following DB2 Server for VSE & VM documentation:

. D i UoE S —

o IDB2 Server fnr VSE & VM Database Administratiod

. D e — —

© Copyright IBM Corp. 1987, 2000 xxi

xxii

» IDB2 Server for VSE Program Directori)

Stored Procedures Application Requester

A stored procedure is a user-written application program compiled and stored at
the server. Stored procedures allow logic to be encapsulated in a procedure that is
local to the database manager. The ability to use stored procedures provides
distributed solutions that let more people access data faster. SQL statements and
replies flowing across the network are reduced and performance is improved.

This support provides VM and VSE (online and batch) application programs with
the ability to invoke stored procedures from any remote application servers that
support IBM’s implementation of the DRDA architecture. It also allows processing
of result sets if supported by the remote DRDA application server.

For more information, see the following DB2 Server for VSE & VM documentation:

. D o U U i T —

o IDB2 Server for VSE & VM SQI Rpfpwwr‘pl

Simplified DB2 Server for VSE Installation/Migration

A REXX procedure Job Manager is supplied to assist in the DB2 Server for VSE
Installation/Migration process. It controls the overall job flow based on the
contents of the job list control tables and the parameter table (supplied as Z-type
members). The job manager selects the job control member from the job list file (a
Z-type member), extracts the member from the Installation Library, modifies the
JCL, submits the job, evaluates the execution, posts the results, and then repeats
the process as required. The users are required to modify the parameter table,
according to their environment.

This support simplifies the process of installation and migration by reducing user
intervention - the Job Manager submits the prepared jobs.

See the IDB2 Server for VSF Program Directory) for further details.

New Code Page and Euro Symbol Code Page Support
The following CCSIDs are now supported:

e 1137: Hindi

* 1142: E-Danish/Norweigan
* 1143: E-Finnish/Swedish

* 1145: E-Spanish.

Additional support has been added for conversions from Unicode (UTF-8) to host
CCSIDs.

For a complete list of CCSIDs supported, refer to the [DB2 Server for VM Q"vaml
and DB2 Serper fmf VSE Quch)m Administration manuals

Control Center for VM Enhancements
The following is a list of enhancements that have been made to the Control Center

for VM:

+ QME" Tools: allow the user to list QMF objects, view and unload QMF queries
and PROCS, schedule QMF PROCS to execute, and run explain on QMF queries.

e Table Create Tool: allows the user to create new tables.
* Search List improvements.

* Referential Integrity Report tool: A referential integrity map report can now be
generated directly from the CMS command interface.

Database Administration

* PL/I prerequisite removal.
* New and improved tape hopper support.

* High density tape drive support: support for high density (non-CMS density)
tape drives.

Control Center for VSE Enhancements
The following enhancements have been provided for Control Center for VSE:

 Additional Operator Command Support
* Installation of IBM-provided Stored Procedures.

QMF for VSE & VM Optional Feature
The following enhancements have been provided for QMF for VSE & VM:

* Application Requester support for VSE QMF users
* Command enhancements to default to object type
* Fast path to the QMF home screen

* Cross-platform install capability

» DB2 for AS/400 database access.

QMF for Windows® Optional Feature

The following enhancements have been provided for QMF for Windows :
* Java-based Query

* Aggregating, grouping and formatting directly within query results and
automatic Form creation

* Personal portal user interface that launches centrally shared queries and reports,
and sends results to spreadsheets, desktop databases, and browsers

e Procedures with REXX.

Reliability, Availability, and Serviceability Improvements

DBNAME Directory Restructuring

ARISDIRD has been restructured to improve readability and flexibility. Each
DBNAME entry is now defined explicitly by its type (Local, Remote or Host VM
(Guest Sharing)). CICS AXE Transaction TPNs (Transaction Program Names) are
still included in the directory as a type of 'LOCALAXE’. The DBNAME Directory
Builder program, ARICBDID has been rewritten as a REXX/VSE procedure with
extensive error and dependency checking. Support for TCP/IP information is
added and “alias” DBNAMEs are supported. ALL DBNAMEs must be specified in
the new DBNAME Directory, including the Product Default DBNAME "SQLDS". A
migration REXX/VSE procedure, ARICCDID, is provided to assist in migrating to

the new format. See the DB2 Server for VSE Systems Adwministration and [DB2 Sexved
for VSE Pragram Directary for additional information.

Migration Considerations
Migration is supported from SQL/DS"" Version 3 and DB2 Server for VSE & VM

Versions 5 and 6. Migration from SQL/DS Version 2 Release 2 or earlier releases is
not supported. Refer to the [DB2_Server Fnr VM Sustem Administration or IDB2 Served

for VSE System Administration manual for migration considerations.

Library Enhancements

Some general library enhancements include:

* The following books have been removed from the library:
— DB2 Server for VM Application Programming
— DB2 Server for VSE Application Programming

Summary of Changes ~ XXiii

DB2 Server for VM Database Administration

DB2 Server for VSE Database Administration

DB2 Server for VSE Installation

DB2 REXX SQL Interface Installation

DB2 REXX SQL Reference

DB2 Server for VM Diagnosis Guide and Reference
DB2 Server for VSE Diagnosis Guide and Reference
DB2 VM Data Spaces Support

Note: Information from this book can now be found in the DB2 Server for VSB

DB2 Server for VM Master Index and Glossary
DB2 Server for VSE Master Index and Glossary.

* The following books have been added to the library:

[DR2 Serner for VSE & VM Databgse Administration

[DR2 Serner for VSE & VM Application Prn(c‘rrnmmiw’g'
DB2_ REXX_SQL for VM/ESA Installation and Referencd
[DR2 Serner for VSE & VM Digenosis Guide gnd Rpfprpnr'pl
DR2 QPVﬂPrfnr VSE & VM Master Index and Clnqcmfjlj

Refer to the new DB2 Server for VSE & VM Overivew for a better understanding of
the benefits DB2 Server for VSE & VM can provide.

XX1V Database Administration

Chapter 1. Designing a Database

This chapter describes the conceptual process of database design. The
implementation of the design, that is, the actual creation of a set of objects, is
discussed in L i ign”

Sample Tables

The DB2 Server for VSE & VM database contains sample tables that are referenced
throughout this book and are used to demonstrate various concepts and
procedures.

Entities, Properties, and Occurrences

Some basic terms for database design are defined below. There is no universally
accepted terminology for database design; these terms may be used differently
elsewhere.

* An entity is anything about which information can be stored. In the sample
database, some of the entities are employees, departments, and projects.

* Properties are types of information categories associated with an entity. In the
sample table EMPLOYEE, the entity employee has properties, such as, employee
number, job held, birth date, and salary amount, which appear as columns
EMPNO, JOB, BIRTHDATE, and SALARY.

* The occurrence of an entity consists of the values in all the columns for that
entity. In the sample table EMPLOYEE, each employee has a unique employee
number; therefore, each value in the EMPNO column is unique and can be used
to identify a particular occurrence.

Entities and properties are represented as columns, and occurrences are
represented as values in the columns, as shown in

Table 1. Occurrences and Properties of an Entity

ENTITY PROPERTIES
Employee EMPNO JOB BIRTHDATE SALARY
Sally Kwan 000030 Manager 1941-05-11 38250
William Jones 000210 Designer 1953-02-23 18270

Step 1: Select the Data to Record in the Database

To be effective, your database must be designed specifically to meet the data
storage and retrieval needs of your organization.

The first step in designing an effective database is to identify the collection of
information that it will contain. You must then organize this information into
tables, with each column of a row related in some way to all other columns of that
row. This approach will enable you to identify the relationships that exist between
the different entities.

For example, the following data relationships are expressed in the sample tables:
¢ Employees are assigned to departments, for example:

© Copyright IBM Corp. 1987, 2000 1

Dolores Quintana is assigned to Department CO1.
Heather Nicholls is assigned to Department CO01.

¢ Employees earn money, for example:
Dolores earns $23,800 per year.
Heather earns $28,420 per year.

* Departments report to other departments, for example:
Department CO1 reports to Department AQO.
Department D01 reports to Department A0O.

* Employees work on projects, for example:
Dolores works on project IF1000.
Heather works on projects IF1000 and IF2000.

* Employees manage departments, for example:
Sally Kwan manages Department CO1.

Before you desiﬁn Eour tables, you must understand entities and their

relationships. shows an example.

Table 2. Relationships in the Sample Database

ENTITY RELATIONSHIP ENTITY
Employees are assigned to departments
Employees earn money
Departments report to departments
Employees work on projects
Employees manage departments

The relationship between the columns in a table is the same in each row of the
table. For example, in [Lable 1 on page 1, the relationship between each entry in the
Employee column and its corresponding entry in the Salary column is the same,
because the Salary column describes the amount the employee earns.

Step 2: Define Tables for Each Type of Relationship

In a relational database, you can express several types of entity relationships.
Consider the relationship between employees and departments. A given employee
can work in only one department, so this relationship is single-valued for
employees. On the other hand, one department can have many employees, so this
relationship is multivalued for departments. Accordingly, this constitutes a
one-to-many relationship. Relationships can be:

* One-to-one

* One-to-many

* Many-to-one

* Many-to-many.

If each employee can belong to several departments, the employees/departments
relationship would be many-to-many.

You must define separate tables for different types of relationships.

One-to-One Relationships

One-to-one relationships are single-valued in both directions. A manager manages
one department; a department has only one manager. The questions “Who is the
manager of Department C01?” and “What department does Sally Kwan manage?”
both have single answers. The relationship could be assigned to either the

2 Database Administration

department table or the employee table. Because all departments have managers,
but not all employees are managers, it would be logical to add the manager to the
department table, as shown in

DEPARTMENT Table

Employee manages department
one to one

—» DEPTNO ADMRDEPT MGRNO

Figure 3. Assigning One-to-One Facts to a Table

One-to-Many and Many-to-One Relationships
To define tables for each one-to-many and many-to-one relationship, you must:
* Group all the relationships for which the “many” side of the relationship is the

same entity.
* Define a separate table for each group.

In [able 3, the “many” side of the first and second relationships is “employees”, so
we defined an employee table (EMPLOYEE). In Eigure 4, “departments” is the
“many” side, so we defined a department table (DEPARTMENT).

Table 3. Many-to-One Relationships

ENTITY RELATIONSHIP ENTITY
1. Employees are assigned to departments
2. Employees earn money
3. Departments report to (administrative) departments
Employees assigned to departments DEPARTMENT Table
many to one
EMPNO WORKDEPT SALARY
Employees eam money
many to one
DEPARTMENT Table
Departments report departments
many to one —» DEPTNO ADMRDEPT

Figure 4. Assigning Many-to-One Facts to Tables

Many-to-Many Relationships

A relationship that is multivalued in both directions is many-to-many. An
employee might work on more than one project, and a project might have more
than one employee assigned to it. The questions “What does Dolores Quintana
work on?” and “Who works on project IF1000?” both yield multiple answers. A
many-to-many relationship can be expressed in a table with a column for each
entity (“employees” and “projects”), as shown in [

Chapter 1. Designing a Database 3

Employees
many

EMP_ACT Table
work on projects
to many > EMPNO PROJNO

Figure 5. Assigning Many-to-Many Facts to a Table

Step 3: Provide Column Definitions for Tables

Defining a column in a table consists of:

* Choosing a name for the column
Each column in a table must have a name that is unique within the table. For
detailed information, see L ”

* Specifying the data type that is valid for the column
The data type of a column indicates the length of the values in the column
and the kind of data that is valid for it. For detailed information, see

7 ”

* Specifying the columns that can contain null values
Some columns cannot contain meaningful values in all rows because some
values may not be known at a particular time. For example, you may know a
new employee’s name but not his or her birth date. For detailed information,

4 ”

see

Step 4: Identify One or More Columns as a Primary Key

If every row in a table represents relationships for a unique entity, the table should
have a primary key: one column (or a set of columns) that provides a unique
identifier for the rows of the table. A unique index of the columns of the primary
key is created when the primary key is created. You can create the primary key
when you create the table using the CREATE TABLE statement (see m
[ables” on page 27) or, if the table already exists, by using the ALTER TABLE
statement (see L i ' -). A primary key must
not contain a nullable column or a long field.

Note: Long fields include the following data types: VARCHAR(n) with n>254,
VARGRAPHIC(n) with n>127, LONG VARCHAR, or LONG VARGRAPHIC.

The primary keys of some of the sample tables are:

Table Key Column
EMPLOYEE table EMPNO
DEPARTMENT table DEPTNO
PROJECT table PROJNO

w shows part of the PROJECT table with the primary key column indicated.

4 Database Administration

PRIzARY KEY COLUMN

PROJECT Table
PROJNO PROJNAME DEPTNO
MA2100 WELD LINE AUTOMATION D01
MA2110 W L PROGRAMMING D11

Figure 6. A Primary Key on a Table

w shows a primary key consisting of more than one column; it is a
multicolumn key.

PRIMARY KEY COLUMNS
‘ PROJ_ACT Table

v v v

PROJNO ACTNO ACSTAFF ACSTDATE
MA2100 10 0.5 82-01-01
MA2100 20 1.0 82-01-01
MA2110 10 1.0 82-01-01

Figure 7. A Multicolumn Primary Key. The three columns PROJNO, ACTNO, and ACSTDATE are all parts of the
primary key.

If you have more than one candidate for a primary key, you can define a UNIQUE
constraint on the column (or set of columns) that you do not select as the primary
key. A column with a UNIQUE constraint is similar to a primary key in that a
unique index on the column is created. It differs in that you can create more than
one UNIQUE constraint on a table, and no foreign keys can reference a UNIQUE

constraint (see I'Fareign Key” an page 7).
Step 5: Ensure that Equal Values Represent the Same Entity

You can have more than one table describing properties of the same set of entities.
For example, one table could give employees’ job and salary information, as in the
EMPLOYEE table, and another each employee’s home address. To retrieve both
sets of properties at once, you can join the tables on any set of matching columns,
as shown in [Eigure 8 on page d. If there are two employees named Sally Kwan, a
join on employee name may not match the correct rows. Similarly, if one person has
more than one authorization ID, a join on ID may not produce the correct match.
Thus, for the purpose of retrieving information about an entity from more than one
table, an equal value in each of those tables should represent that entity. This type
of join is an equijoin.

w shows a join between the DEPARTMENT and EMPLOYEE tables on
columns of department numbers.

Chapter 1. Designing a Database 5

DEPARTMENT Table

DEPTNO DEPTNAME MGRNO ADMRDEPT
E21 SOFTWARE SUPPORT 000100 EO1
A
(join path)
A
EMPNO FIRSTNME LASTNAME WORKDEPT SALARY
000090 EILEEN HENDERSON E11 29750.00

EMPLOYEE Table

Figure 8. A Join Path between Two Tables

PROJECT Table

The connecting columns must be of the same data type. They can have different
names (such as WORKDEPT and DEPTNO in ﬁ), or the same name (such as
the two columns called DEPTNO in the DEPARTMENT and PROJECT tables). The
latter case is illustrated in

PROJNO PROJNAME

MA2100 WELD LINE AUTOMATION DO1
MA2110 W L PROGRAMMING

MA2111 W L PROGRAM DESIGN D11

DEPARTMENT Table
DEPTNO DEPTNO DEPTNAME
D11 MANUFACTURING SYSTEMS
D11 D21 ADMINISTRATION SYSTEMS
EA21 SOFTWARE SUPPORT
(join path)

Figure 9. A Join Path on Columns with the Same Name

Step 6: Plan for Referential Integrity

A table can serve as a complete list of all occurrences of a single entity. In the
sample database, the EMPLOYEE table serves that purpose for employees: only the
numbers that appear in this table are valid employee numbers. Similarly, the
DEPARTMENT table provides a master list of all valid department numbers, and
the PROJECT table provides a master list of valid projects. When a table refers to
an entity for which there is a master list, it should identify an occurrence of the
entity that appears in the master list; otherwise, either the reference is incorrect or
the master list is incomplete.

When all references from one table to another are valid, this condition is called
referential integrity. Having referential integrity does not necessarily mean the data
is correct. That the EMPLOYEE table shows every employee assigned to a valid
department number is one thing; whether it shows every employee in the correct
department is quite another.

Elements of Referential Integrity

You must consider many different elements to ensure referential integrity. The

concepts of a primary key and a unique constraint were described in LStep4: Identifyl
i “ . Other elements to consider

when dealing with referential integrity are described in the following sections.

6 Database Administration

Foreign Key

A column or set of columns that refers to the primary key of another table is a
foreign key. For example, the column Work Department (WORKDEPT) of the
EMPLOYEE table is a foreign key; it refers to DEPTNO, the primary key of the
DEPARTMENT table. The combination of the project number (PROJNO), activity
number (ACTNO), and activity starting date (EMSTDATE) columns in the
EMP_ACT table is a foreign keys; it refers to the primary key of the PROJ_ACT
table.

Referential Constraint

A referential constraint is a relationship between a primary key and a foreign key
with certain deletion and update rules that define how the relationship is
maintained. Refer to I‘DEL ETE _INSERT and TIPDATE Considerations for

information on deletion and update rules.

Parent and Dependent Tables

Establishing a referential constraint defines a relationship between two tables. The
table containing the primary key is the parent table, and the one containing the
foreign key is the dependent table. In a multilevel, hierarchical chain of dependent
tables, a descendent table is any table below the top level. Such a table is a
descendent of all the tables above it in the hierarchy.

A referential cycle is a set of referential constraints in which each table in the set is a
descendent of itself. A table can be a parent of many tables, and it can also be a
dependent or descendent of many parents.

Self-Referencing Table

A self-referencing table is one that contains both the primary key and the foreign
key of a referential constraint. Conceptually, a self-referencing table is both the
parent and the dependent table in a relationship. DB2 Server for VSE & VM does
not support self-referencing.

DELETE, INSERT, and UPDATE Considerations
DELETE Rules

For Parent Tables: When an employee retires, you remove that person’s
EMPLOYEE record. The deletion affects the information in the PROJECT,
DEPARTMENT, and EMP_ACT tables. For any particular relationship, one of the
following deletion rules is enforced:
* RESTRICT
You cannot delete any rows of the parent table that have dependent rows. In the
DEPARTMENT-PROJECT relationship, using RESTRICT means that you cannot
remove a department if any of its employees are assigned to a project.
¢ SET NULL
When you delete a row of the parent table, the corresponding values of the
foreign key in any dependent rows are set to NULL. This rule is used in the
DEPARTMENT-EMPLOYEE relationship: when you delete a department record,
the WORKDEPT column of dependent rows in the employee table is set to
NULL, indicating that the employee is not assigned to a department.

* CASCADE

When you delete a row of the parent table, any dependent rows in the
dependent table are also deleted. This rule is useful when a row in the

Chapter 1. Designing a Database 7

dependent table is useless without a row in the parent table. For example, if you
delete an employee there is no reason to maintain the associated EMP_ACT
record.

Multiple levels of CASCADE are supported; that is, a delete operation on a
parent table deletes all dependent rows in its dependent tables if the dependent
tables are enforced by the CASCADE delete rule of referential constraint. If any
of these dependent tables are also parent tables, the delete rule of referential
constraint in turn applies between them and their dependent tables. All
applicable delete rules are used to determine the result of a delete operation. A
delete operation is subject to rollback, if the parent row has a dependent row in a
referential constraint with a delete rule of RESTRICT, or if the deletion cascades
to any descendent that has a dependent row in a referential constraint with a
delete rule of RESTRICT.

For Dependent Tables: You may, at any time, delete rows from a dependent table
without taking any action on the parent table. For example, you may no longer
need EMP_ACT records after the project is completed. You can delete the record
without affecting the EMPLOYEE or PROJ_ACT tables.

Restrictions When Using the DELETE Statement: To ensure referential integrity,
the table specified in the subquery must not be affected by the delete on the object
table of the DELETE statement.

For example, if B is the object table of a DELETE statement, and A is a table that is

referenced in the FROM clause of a subquery of that statement, then the following

rules apply:

* Table A cannot also be an object table of the deletion.

* Table A cannot be a dependent of table B in a relationship with a delete rule of
CASCADE or SET NULL.

* Table A cannot be a dependent of any other table (for example, table C) in a
relationship with a delete rule of CASCADE or SET NULL, if deletions from
table B cascade to table C.

For more information on delete-connected tables, refer to I'Restrictions on Keys and

INSERT Rules

For Parent Tables: You can insert a row at any time into a parent table without
taking any action in the dependent table. For example, you can create a new
department in the DEPARTMENT table without making any change to the
EMPLOYEE table. For the insertion to be successful, the new primary key or
unique key values must be unique.

For Dependent Tables: You cannot insert a row into a dependent table unless a
row in the parent table contains a primary key value equal to the foreign key value
you want to insert. If a foreign key has a null value, it can be inserted into a
dependent table, but no logical connection exists.

UPDATE Rules

For Parent Tables: You cannot change a value in a primary key column if the
associated row has a dependent row. For example, if a department number
changes, the DEPTNO value in the DEPARTMENT table cannot be changed if
there are employees in the EMPLOYEE table who are members of that department.

8 Database Administration

For Dependent Tables: You cannot change a value in a foreign key column of a
dependent table unless the new foreign key value already exists in the primary key
of the parent table. For example, when an employee transfers from one department
to another, the department number must change. The new value must be the
number of an existing department, or null.

Step 7: Normalize Your Tables

Normalization is the method of reducing data stored in tables so that the tables
contain unique keys, each identifying a single entity. Each of these keys has an
associated row of values that describes each entity. Complete normalization is not
required for using the database manager.

The topic of normalizing tables draws much attention in database design. This
section briefly reviews the rules for first, second, third, and fourth normal forms of
tables, and describes some reasons why they should or should not be followed.

First Normal Form

Any relational table satisfies the requirement of first normal form: at each
row-and-column position in the table, there exists only one value, never a set of
values.

Second Normal Form

A table is in second normal form if each column not in the key provides a fact that
depends on the entire key.

Second normal form is violated when a non-key column is a fact about a subset of
a composite key, as in w An inventory table records quantities of specific
parts stored at particular warehouses; its columns are shown below.

KEY

E—

PART WAREHOUSE QUANTITY WAREHOUSE-ADDRESS

Figure 10. Key Violates Second Normal Form

The key here consists of the PART and the WAREHOUSE columns together.

Because the column WAREHOUSE-ADDRESS depends only on the value of

WAREHOUESE, the table violates the rule for second normal form. The problems

with this design are:

¢ The warehouse address is repeated in every record for a part stored in that
warehouse.

* If the address of the warehouse changes, every row referring to a part stored in
that warehouse must be updated.

* Because of the redundancy, the data could become inconsistent, with different
records showing different addresses for the same warehouse.

* If at some time there are no parts stored in the warehouse, there may be no row
in which to record the warehouse address.

Chapter 1. Designing a Database 9

To satisfy second normal form, the information shown in Eigure 10 on page 94 must
be in two tables, as in .

KEY KEY

PART WAREHOUSE QUANTITY WAREHOUSE WAREHOUSE-ADDRESS

Figure 11. Two Tables Satisfy Second Normal Form

There is a performance disadvantage in having the two tables in second normal
form, because programs that produce reports on the location of parts have to join
both tables to retrieve the relevant information.

For further information on performance considerations, refer to !‘Considerations for
M : ”

Normalization” on page 2d

Third Normal Form

A table is in third normal form if each non-key column provides a fact that
depends only on the key.

Third normal form is violated when a non-key column is a fact about another
non-key column. For example, the first table in w contains the columns
EMPNO and WORKDEPT. Suppose a column DEPTNAME is added. The new
column depends on WORKDEPT, whereas the primary key is the column EMPNO;
thus, the table now violates third normal form.

Changing DEPTNAME for a single employee, John Parker, does not change the

department name for other employees in that department. The inconsistency that
results is shown in the updated version of the table in

EMPLOYEE-DEPARTMENT Table (EMPDEPT) Before Update

EMPNO FIRSTNME LASTNAME WORKDEPT DEPTNAME

000290 JOHN PARKER EN OPERATIONS

000320 RAMLAL MEHTA E21 SOFTWARE SERVICES
000310 MAUDE SETRIGHT EN OPERATIONS

EMPLOYEE-DEPARTMENT Table (EMPDEPT) After Update

EMPNO FIRSTNME LASTNAME WORKDEPT DEPTNAME

000290 JOHN PARKER E11 INSTALLATION MGMT
000320 RAMLAL MEHTA E21 SOFTWARE SERVICES
000310 MAUDE SETRIGHT E11 OPERATIONS

Figure 12. Update of an Unnormalized Table. Information in the table has become inconsistent.

10 Database Administration

The table can be normalized by providing a new table, with columns for
WORKDEPT and DEPTNAME. In that situation, updating a department name is
much easier as it only has to be made to the new table. But an SQL query that
shows the department name with the employee name is more complex to write: it
requires joining the two tables. It also takes longer to run than the query of a
single table. As well, the entire arrangement takes more storage space, because the
WORKDEPT column must appear in both tables.

Fourth Normal Form

A table is in fourth normal form if no row contains two or more independent
multivalued facts about an entity.

Consider facts about employees, skills, and languages, where an employee may
have several skills and know several languages. There are two relationships, one
between employees and skills, and one between employees and languages. A table
is not in fourth normal form if it represents both relationships, as in ﬁ@

EMPLOYEE SKILL LANGUAGE

Figure 13. A Table That Violates Fourth Normal Form

Instead, the relationships should be represented in two tables, as in Eigure 14.

KEY KEY
EMPLOYEE SKILL EMPLOYEE LANGUAGE

Figure 14. Tables in Fourth Normal Form

If, however, the facts are interdependent (that is, the employee applies certain
languages only to certain skills), then the table should not be split.

Any data can be put into fourth normal form. A good rule when designing a
database is to arrange all data in tables in fourth normal form, and then decide
whether the result will give you an acceptable level of performance. If it will not,
you are at liberty to undo the normalization of your design.

Step 8: Considerations for Distributed Data

Two types of access to DB2 Server for VSE & VM data are available. They are
remote unit of work and distributed unit of work.

Remote unit of work, implemented in SQL/DS V3.3, for VM, and SQL/DS V34,
for VSE, lets a user or application program on a Distributed Relational Database
Architecture (DRDA) application requester to read or update data stored in a DB2
Server for VSE & VM DRDA application server. With remote unit of work, a user

Chapter 1. Designing a Database 11

or application program can have many SQL statements within a unit of work;
accessing one database management system with each SQL statement; and
accessing one database management system within a unit of work.

Distributed unit of work, implemented in DB2 Server for VSE & VM Version 5
Release 1 lets a user or application program on a Distributed Relational Database
Architecture (DRDA) application requester to read or update data stored in
multiple locations, where the DB2 Server for VSE & VM DRDA application server
is one of the multiple sites where data is read or updated within a single unit of
work. With distributed unit of work, a user or application program can have many
SQL statements within a unit of work; accessing one database management system
with each SQL statement; and accessing many database management systems
within a unit of work. Commit and rollback are coordinated at all locations so that
if a failure occurs anywhere in the system, data integrity is preserved. This type of
coordinated approach is called two phase commit processing and is done by a
Sync Point Manager. In phase one, the coordinating RDBMS (generally the
requesting RDBMS) polls each participating RDBMS to vote to commit or rollback
the transaction. In phase two, the coordinator directs the RDBMSs to commit or
rollback based on the preceeding vote.

Access to DB2 Server for VSE & VM DRDA application servers by DRDA
application requesters is possible only if the DRDA facility is installed on the DB2
Server for VSE & VM application server.

DB2 Server for VM implements the application server and application requester
support for DRDA remote unit of work, and the application server support for
DRDA distributed unit of work. VM application requesters can participate in
remote unit of work activity but cannot participate in distributed unit of work
activity.

Access to non-DB2 Server for VM application servers by DB2 Server for VM
application requester is possible only if the DRDA facility has been installed on the
DB2 Server for VM application requester and if the non-DB2 Server for VM
application servers support IBM’s implementation of the DRDA protocol.

DB2 Server for VSE implements the application requester support for DRDA
remote and distributed unit of work for CICS/VSE online applications. VSE online
application requesters can participate in remote and distributed unit of work
activity. With distributed unit of work, a CICS/VSE online application is limited to
accessing a single DRDA application server within one LUW. However, it can
update another CICS resource, in addition to the remote DRDA application server
it is accessing, within one LUW, provided both the DRDA application server and
the CICS resource participates in two-phase commits.

DB2 Server for VSE implements the application requester support for DRDA
remote unit of work for Batch applications. VSE batch application requesters can
participate in remote unit of work activity, but cannot participate in distributed
unit of work activity.

Access to remote application servers by a DB2 Server for VSE application requester
is possible only if the DRDA facility has been installed on the DB2 Server for VSE
application requester and if the remote application server supports IBM’s
implementation of the DRDA protocol.

12 Database Administration

Designing a distributed database management system involves making decisions
about where to put the data, how to manage security and accounting, and how to
handle problems, backup, recovery, and change control.

For general guidance on making these decisions, refer to the following manuals:
* Planning for Distributed Relational Database,

* DB2 Connectivity Supplement,

* Connect Enterprise Edition Quick Beginnings,

e DB2 UDB Quick Beginnings, and

» |DB2 Server for VM System Administration or DB2 Server for VSE Systeul

The decision to access distributed data has implications for many activities:
application programming, data recovery, and authorization. This section introduces
some of these considerations. Refer to the appropriate manual for information on
particular tasks.

Definitions

The application requester is the component that accepts a request from an application
and passes it to an application server. The application server is the component that
receives and processes requests issued by the application requester.

In VSE an application server is local if it resides in the same VSE machine as the
DB2 Server for VSE application requester. This can also be a DB2 Server for VM
application server accessed through VSE guest sharing. This DB2 Server for VM
server can be either on the same VM machine as the VSE guest, or on another VM
machine accessed remotely through AVS or TSAF. A remote application server can
be a DB2 Server for VSE application server not residing in the same VSE machine
as the application program connecting to it, or a non-DB2 Server for VSE
application server.

In VM, a system is local if the application requester and the application server
reside on the same processor, and is remote if they reside on different processors.
Remote does not necessarily mean at a distance; the application server and
application requester may be at the same user site.

Two relational database systems are like if both the application requester and the
application server are the same product (for example, both are DB2 Server for VSE
or both are DB2 Server for VM). They are unlike if different products are involved
(for example, a DB2 Server for VM application requester and a DB2 Server for VSE
application server).

A DB2 Server for VM application requester can communicate with a like system,
either local or remote, through the SQLDS protocol or the DRDA protocol. It can
communicate with an unlike system through the DRDA protocol, if the Relational
Database Management System (RDBMS) of the unlike system supports the
protocol.

A DB2 Server for VSE application requester can communicate with a local DB2
Server for VSE application server through the SQLDS protocol or a DB2 Server for
VM application server which is accessed using Guest Sharing through the SQLDS
protocol. A DB2 Server for VSE application requester can communicate with a

Chapter 1. Designing a Database 13

remote application server through the DRDA protocol, if the Relational Database
Management System (RDMS) of the remote application server supports the
protocol.

Application Programming

Several categories of application programming considerations are:
¢ Character conversion

Data and statements are converted if the connected systems are using different
coded character set identifiers (CCSIDs). For example, an SQL statement
originating in an ASCII environment that is sent to an EBCDIC environment
must be converted for the DB2 Server for VSE & VM application server to
process it. This conversion ensures that the application server correctly interprets
the statement and the data, and displays the results using the appropriate
character sets. For more information on character conversion, refer to either the
DR eruer fo WY emi Adwministratiod or the

It is important that the application server and application requester have the
same CCSID value, unless there is a specific reason for them to be different.
When the application server and application requester have different CCSID
values, character conversion cannot be avoided. This conversion has an
associated performance overhead, and causes performance degradation. For
more information on performance, see the IDB2 Server for VSE & VM Performancd

uning Handhood manual.

e Access limitations

The limitations that exist for local multiple database applications apply to
remote database applications with remote unit of work support. You cannot:

— Access more than one application server in a single logical unit of work
(LUW).

— Join tables from multiple application servers.

— Define referential constraints across application servers.

These limitations also apply to remote database applications with distributed

unit of work support. One exception though, is that with DUOW you can access
more than one application server in a single logical unit of work (LUW).

For the DRDA protocol restrictions, see the DB2 Server for VSE & VM SQI
manual.

¢ Performance considerations

An obvious consideration for an SQL query that is transmitted to a remote
application server is that the query and its reply must both be transmitted over
an SNA or TCP/IP network, in VSE, or in VM, over a TSAF collection, VTAM
network or TCP/IP network, conceivably as far as halfway around the world.
This can increase the amount of processing and degrade the performance of the
application in comparison with the same query run on your local application
server. If the DRDA protocol is used, the DB2 Server for VSE & VM application
requester has the option of increasing the block size used to return data. This
can improve the performance of some applications. For more information in VM,

see L z , in VSE, see ’Appendix E_ SQIGI OH
If the connected systems use different CCSIDs, performance can also be

adversely affected, because additional processing is required to convert the data
and statements.

* Cross-system differences.

14 Database Administration

Different relational database management systems use the SQL language, and
strive to provide a consistent interface for applications. There are, however, some
inconsistencies between systems. For example, the database manager does not
support self-referencing constraints (a referential constraint in which both the
primary key and the foreign key of the constraint are in the same table). On the
other hand, it provides an EXPLAIN function, useful in tuning SQL statement
performance, which is not provided by some RDBMS. These differences affect
the portability of database designs and applications from system to system.

System Operations

Several commands for monitoring the operations of the DB2 Server for VSE & VM
application server provide detailed information to the database administrator about
users and their systems. For more information on these commands, see the

iord manual.

You cannot effectively administer a remote application server from your local
system, and sometimes must coordinate operations by means external to your local
system. Both the application requester and application server must be defined in
an SNA or TCP/IP network.

In VSE using SNA networks, Transaction Program Names (TPNs) can be used by
remote application requesters to identify local DB2 Server for VSE application
servers to which they want to connect on the local VSE system. These TPNs must
be identified in the local DBNAME Directory and mapped to the appropriate
server APPLID. Likewise, Remote Transaction Program Names (REMTPNs) can be
used by the local system to identify the remote DRDA application server to which
the local DB2 Server for VSE online (CICS) application requester wants to connect
(Batch applications must use TCP/IP). These REMTPNs must be identified in the
local VSE DBNAME Directory and mapped to the appropriate remote server SNA
System ID (SYSID).

In VSE using TCP/IP networks, remote DRDA application requesters must know
the local VSE TCP/IP Server’s IP Address (or Host Name) and the local DB2
application server’s Listener Port Number to access the local DB2 Server for VSE
DRDA application server. Likewise, local VSE DRDA application requesters must
know the remote DRDA application server’s IP address (or Host Name) and
Listener Port Number, which are identified in the local VSE DBNAME Directory.

For additional information on the VSE DBNAME Directory, refer to the [DB2 Sered

for VSE System Administrationl manual.

In VM, all access to remote application servers through VTAM or TCP/IP require a
CMS Communication Directory for the application requester. You must plan for
creating and maintaining this directory on each VM system where the application
requester resides. See the VM/ESA: Connectivity Planning, Administration, and
Operation manual.

Similar considerations apply to users accessing other (non-DB2 Server for VSE &
VM) application servers. Because each application server controls access to its own
data, you must arrange to have valid user IDs on the other systems. As well, you
must arrange for users to have proper authority and privileges on those
application servers. Traces (used for problem determination) must also be
coordinated with administrators at other sites, because traces must come from the
system on which the data resides.

Chapter 1. Designing a Database 15

Distributing Existing Data

Although you can use the approaches previously described to distribute existing
data, it is not a task to be undertaken lightly. Existing applications should only be
distributed as part of an application redesign.

The best way to distribute data is the way used when the database was designed.

However, the extent to which the preferred distribution method will affect existing
applications must be considered in determining whether the preferred distribution
should be implemented fully, partially, or at all.

16 Database Administration

Chapter 2. Implementing Your Design

After determining the design of your database, you can create objects to implement
your design. These objects include dbspaces, tables, views, and indexes.

This chapter discusses the following topics:
1. Database Storage Concepts

This section provides an overview of the physical database and explains the
relationships between objects, dbspaces, and storage pools.

2. Database Generation

When you create a database, its potential storage capacity is defined. You must
do some planning to ensure that the database satisfies your data storage
requirements.

3. Defining Dbspaces
The task of defining dbspaces, which contain tables, views, and indexes,
involves reserving logical space in the database, assigning the dbspace to a
storage pool, and setting usage parameters. You must understand what these
parameters are and how to select them so that the dbspace will best
accommodate the data to be stored in it.

4. Creating Tables

Information is stored in a database by placing it in tables. You must know how
to create tables and how to define referential constraints.

5. Creating Views

After you create tables, you can create views. A view is a logical, or virtual,
table that is derived from one or more tables or other views. Using views can
be advantageous in applications that have specific requirements for data tables.

6. Creating Indexes

Indexes are optional: they improve the speed with which table rows are
accessed.

7. Using the Catalog in Database Design

The catalog tables contain information about the existing structure of the
database, which can be helpful in database design.

Storage Concepts

A DB2 Server for VSE & VM database is a collection of user data objects (tables
and indexes) and supporting information maintained by the database manager for
that data. The supporting information includes control information (such as how
each data table is formatted and where each is located), and data recovery
information (restoring data to an earlier state). The database is composed of:

* A Directory: In VM this is a minidisk that contains database control information.
In VSE it is a VSAM data set. It includes mappings of the dbspaces to their
addresses on the DASD (that is, it relates the logical database image to the
physical storage used).

* One or two Logs: In VM, these are minidisks and in VSE, these are VSAM data
sets. These contain information about the changes made to the data. If any
changes must be “undone” or “redone”, logs can be used to restore the data to
its proper state.

© Copyright IBM Corp. 1987, 2000 17

* One or more Storage Pools: In VSE these are collections of VSAM data sets, and
in VM these are collections of minidisks. Each is called a database extent or
dbextent.

A dbextent is an allocation of actual DASD space. Storage pools are composed of
one or more dbextents. The size of the storage pool can be increased or reduced
by:

* adding more dbextents

* deleting existing dbextents

* In VM/ESA, moving dbextents to other devices.

Note: In VSE, each dbextent is the primary allocation of a VSAM data set
(CLUSTER).

Storage pools can be defined to be either recoverable or nonrecoverable. The default is
for them to be recoverable, whereby every change made to the pool is logged. For
nonrecoverable storage pools, there is limited recovery; the database manager does
not log updates, but takes a checkpoint for each logical unit of work (LUW) to
ensure that the LUW’s changes are written to DASD.

To maintain referential integrity, both tables in any referential constraint must be in

either recoverable or in nonrecoverable storage pools: they cannot be spread across

both types. This restriction is necessary because the portion of the relationship in

the nonrecoverable pool might be lost, possibly invalidating the information

remaining in the recoverable one. For more information about storage pools, refer

to either the [DB2 Serner for VM System Administrationd or [DB2 Serper for VSE Systen
manual.

When a table is created, it must be assigned to a logical allocation of storage called
a dbspace. The table creator can either do this assignment explicitly, or let the
database manager use a default assignment. Any indexes created on that table will
be stored in the same dbspace.

shows how tables are stored in the database. It includes two
tables and their indexes in dbspace A, two tables and their indexes in dbspace B,
and one table with three indexes in dbspace C.

18 Database Administration

11

I
‘ TAB 4 15 I
TAB 5 16 TAB 6 19

‘ TAB 1 ‘ 12
TAB 2 13
Tables (TAB) and
Idexes (I) are
stored in
DBSPACEs
DBSPACE A DBSPACE B DBSPACE C

Each DBSPACE is
assigned to a
STORAGE Pool

STORAGE POOL 5

STORAGE POOL 7

l

i

DBEXTENT 5

DBEXTENT 9

Figure 15. Table Storage in a Database

STORAGE pools are
comprised of one
or more DBEXTENTSs

DBEXTENT 7

How Information is Stored in Dbspaces

A dbspace is not a real allocation of DASD space: it is a logical allocation of page
map tables in the directory that relates logical dbspace pages to DASD locations. It
holds data in 4096-byte blocks called pages, and can hold up to 255 tables, and
their indexes. As dbspaces are assigned to the storage pool and their pages are
filled, the physical DASD pages used are taken from the dbextents of the storage

pool.

The database manager dynamically allocates real DASD storage space to support
dbspace pages on a demand basis. Unused pages of a dbspace do not occupy
DASD space. The potential capacity of a dbspace is fixed when it is defined.

The dbspace used to hold a table is determined when the table is created. A table
cannot span (reside in) multiple dbspaces. However, two or more tables in a
referential relationship may reside in separate dbspaces.

w shows how information is stored in a dbspace.

Chapter 2. Implementing Your Design 19

Header Data Index
Pages Pages (tables) Pages

Figure 16. Table and Index Storage in a Dbspace

At the front of every dbspace are one to eight header pages, which contain control
information about the tables and indexes stored in it. After the header pages are
the data pages, which is where the rows of a table are stored. Index entries are
stored in index pages at the back.

When you store multiple tables in the same dbspace, the database manager might
store rows from different tables on the same data pages; however, it never puts
index entries from different indexes on the same page.

Database Generation

This book does not describe how to create a database. That is the task of the
system administrator, and is discussed in the DB2 Server for VM Q"Qfﬂwl
Wdministratiod and hR? Server fnr VSE System Ar]mmmfrnhm/] manuals Because
initial DASD allocations are a551gned and the potential capacity for the database is
established during that process, it is important that you analyze your storage
requirements and inform the person responsible for generating the database. The
information you provide should include the:

* Number of tables and views (objects) you intend to create

* Structure of those objects (such as number of columns, data type)

 Storage required for your objects.

Defining Dbspaces

Before defining a new dbspace, check to see if there are any already available
having the properties that you require; if there are, you do not need to define a
new one.

If you need to define one or more dbspaces, do the following:
1. Identify your requirements.

Identify the data that the dbspace will contain and the way that it will be used.
2. Add the dbspace to the database.

Add the dbspace to the database directory (if this has not already been done),
using either the SQLADBSP EXEC in VM, or the ADD DBSPACE statement in
VSE.

3. Acquire the dbspace.

After a dbspace is established, enter the ACQUIRE DBSPACE statement to
acquire it for your use.

Identifying Dbspace Requirements

To identify dbspace requirements, consider the tables that are to be stored and the
way they will be used. If performance is a requirement, you can define a dbspace

to support only one table and its indexes; often, however, dbspaces are defined to

support several tables. Tables that have common requirements can be stored in the
same dbspace.

20 Database Administration

Magging Tables to Dbspaces
shows the approach you should use for determining the way to map tables
to dbspaces.

Table 4. General Approach to Mapping Tables to Dbspaces

Table Access Type of Dbspace Type of Data

Private tables PRIVATE dbspaces (one per user, |End user data
or user-application area) Application development data
Data prototyping tables

Shared tables PUBLIC dbspaces (one per user Common end user data
group, or table group) Application testing data
Production application data

Dbspaces come in two types: PRIVATE and PUBLIC.

For private data, reserve one PRIVATE dbspace for each user. Private data is
always locked at the dbspace level to eliminate unnecessary locking overhead
when users are accessing their own private data.

Data kept in a PRIVATE dbspace can be shared, and concurrent read-only access to
the data is possible.

For most users, one PRIVATE dbspace is sufficient; however, people doing
application or data design for different application areas might want one for each
area. Others might request additional storage as their data requirements grow. For
these users, you can reserve additional PRIVATE dbspaces as needed.

For data that is to be shared, use PUBLIC dbspaces. These can be locked either at
the row, page, or dbspace level. Thus, several users can access data at the same

time. (See 'Determining the Tack Size (LQCK)” on page 24.)

PUBLIC dbspaces support tables shared by a group of users. For example, a group
of query users may have to share data. Rather than having each user keep a copy
of the data, the extracted data could be directed to tables in a PUBLIC dbspace,
where it could be accessed by all users.

For production application data, you should define one or more PUBLIC dbspaces,
depending on logical groupings of tables. For further information on placing tables
into dbspaces, refer to the DR2 Serper for VSE & VM Performance Tuning HandbooH

manual.

Adding Dbspaces to the Database

To add a dbspace to a database you must reserve page tables in the directory,
assign the dbspace to a storage pool, and specify the dbspace’s type. These
functions are described in the IDB2 Serner fnr VSE_ Sustem Administratiod and IDB2
hprwprfnr VM System Administrationl manuals.

Do not use SYS as the first three characters of a dbspace name; SYS denotes a
dbspace reserved for database manager use.

Note: When you add dbspaces, you must be in single user mode.

Chapter 2. Implementing Your Design 21

Acquiring Dbspaces

After you have identified the mapping of tables to dbspaces, and the dbspaces
have been added to the database, you can acquire them for use. Begin this process
by identifying the parameters to be established for each dbspace.

summarizes these parameters; they are discussed in detail below.

Table 5. Derivation of Dbspace Parameters

Parameter Derivation

Type PUBLIC or PRIVATE, based on expected usage of tables.

SIZE (PAGES) |Sum of the potential sizes of each of the tables, plus the sum of the index
size requirements, plus free space considerations.

STORPOOL Consider device utilization of other dbspaces in the same pool and the
availability of space in the pool. Also consider using nonrecoverable
storage pools for read-only data.

NHEADER Set based on the number of tables and indexes to be put in the dbspace.

PCTFREE Set based on growth potential of the tables to be put in the dbspace.

PCTINDEX Set based on the potential indexes to be created and their estimated sizes.

LOCK Set based on the size of tables and the extent of their use.

Use the ACQUIRE DBSPACE statement to specify the parameters in [able 3. When
acquiring a dbspace, you must specify whether it is to be PUBLIC or PRIVATE,
and you can optionally set the number of pages in it, the level of recovery, the
percentage of space to be reserved for updates and indexes, and the amount to be
locked when accessed by users. See the [DB2 Server fnr VSE & VM SQIL Rpfprper
manual for more information on the ACQUIRE DBSPACE statement.

Determining Dbspace Type (PUBLIC or PRIVATE)

If any table is to be accessed by multiple users at the same time, and any one of
the users will be doing UPDATEs, INSERTs, or DELETEs, then it should be placed
in a PUBLIC dbspace. You need Database Administrator (DBA) authority to
acquire a PUBLIC dbspace.

Only users with DBA or RESOURCE authority can create objects in PUBLIC
dbspaces.

To acquire a PUBLIC dbspace, enter the ACQUIRE DBSPACE statement specifying
your requirements. For example, to acquire a PUBLIC dbspace named payroll and
using the defaults, enter:

ACQUIRE PUBLIC DBSPACE NAMED PAYROLL
You need DBA or RESOURCE authority to acquire a PRIVATE dbspace.

Only the owner of the PRIVATE dbspace, or a user with DBA authority, can create
objects in the dbspace.

Every PRIVATE dbspace has an owner. To acquire the PRIVATE dbspace
PERSONAL for user JOHN, enter the following:

ACQUIRE PRIVATE DBSPACE NAMED JOHN.PERSONAL

You cannot use the ALTER DBSPACE statement to change the type of a dbspace
after you acquire it.

22 Database Administration

Determining the Size of the Dbspace (PAGES)
You need to ensure that the dbspace contains enough pages to hold the tables and
associated indexes to be stored there.

The size of the dbspace should be based on the estimated current size of the tables
and their indexes, plus an allowance for their expected growth. A dbspace cannot
contain less than 128 pages. You must allocate pages in multiples of 128, otherwise
the number is rounded up to the next highest multiple of 128. Algorithms for
determining the number of pages needed are described in I@%m

1

Because you cannot extend a dbspace after it is defined, you should overestimate
the required number of pages. Unused pages are not stored, so the cost of
overestimating is nominal. In contrast, the cost of underestimating pages can be
quite expensive because of the reorganization activities required to re-establish the
data in a larger dbspace later.

Note: Two directory blocks of 512 bytes each are used for every 128 data pages
defined.

Determining the Storage Pool (STORPOOL)

Storage pools come in two types: recoverable and nonrecoverable.

Consider assigning a dbspace to a nonrecoverable storage pool if the data in it will
be read-only. Changes made to data in a nonrecoverable storage pool are not
logged, which offers the advantages of requiring less log space, elapsed time, and
CPU time. (There should be an alternative method of recovery available, such as
reloading the storage pool.) The disadvantage is that data cannot be recovered
when media failures occur (which may be acceptable for read-only data).

If you are using referential integrity, you must use recoverable storage pools. For
nonrecoverable storage pools, ROLLBACK is not performed and no logging is in
effect, so that some operations can be neither completed successfully nor rolled
back. Each operation containing a referential constraint is verified when it occurs.
If a row of a multi-row operation violates the referential constraint, the operation
terminates. The rows that were affected prior to the termination cannot be rolled
back.

For example, in a multi-row delete of a parent table, if 15 rows are candidates for
deletion and the ninth row violates the DELETE RESTRICT rule, then the first
eight rows would be deleted and the operation would cease with the ninth row.
The integrity of the table would be maintained but the operation would be only
partially completed.

Because a unit of work modifying both recoverable and nonrecoverable pools can
only ROLLBACK the recoverable pool, referential constraints cannot be created

between the two types of pools.

You cannot use the ALTER DBSPACE statement to change the storage pool of a
dbspace after you acquire it.

If you do not specify the STORPOOL parameter, a dbspace of the correct size and
type will be acquired from any recoverable storage pool.

Storage Device Considerations: The storage pool you select should be chosen to:
* Balance device utilization

Chapter 2. Implementing Your Design 23

* Exploit device characteristics for data in the dbspace.

A table resides on the devices used to support the storage pool to which the table’s
dbspace is assigned. Consider storing different tables on different devices based on
device characteristics and table usage. To do this, you need multiple storage pools
and multiple dbspaces.

For example, if you have two tables that are highly active, you can reduce
potential device contention by storing them in different dbspaces that are assigned
to different storage pools. The dbextents defined for the two storage pools would
be on different devices.

You could use a similar technique for storing selected tables on higher or lower
speed devices as appropriate.

For more information about storage pools, refer to either the IDB2 Seruer for VM

Bystew Administratiod or the [DB2 Server for VSE System Administratiod manual.
Determining the Number of Header Pages (NHEADER)

Header pages contain control information on the tables and indexes stored in the
dbspace.

The number of header pages required depends on the number of objects to be
stored in the dbspace. Generally, taking the default (8 pages) is recommended, as
this gives you the most flexibility at nominal cost. However, if you plan to have
few tables or indexes in the dbspace, you may allocate fewer. You must allocate at
least one.

To estimate B/our needs, see Appendix A Estimating Your Dhspace Requirements’]

You cannot change the NHEADER parameter with the ALTER DBSPACE
statement; after you set it, the only way to change it is to move all the data in the
current dbspace to another dbspace having the required NHEADER value (see

Determining the Percent Free Space Desired (PCTFREE)

The PCTFREE parameter refers to the percentage of each page that is to be
reserved for updates that make the changed row longer than it was before. This
free space is not used for inserts. You can reclaim the free space by reducing the
PCTEREE value through an ALTER DBSPACE statement.

The PCTFREE value you choose will depend on the type of activity being carried

out on the data in the dbspace:

* High Insert/Low Update Activity
This is the situation where there will be few updates, or all columns are fixed
and non-nullable in the tables. Here, you would set PCTFREE to a high value
before loading the data; then lower it to a low value. The difference between the
original value and the final value can then be used by insert activity.

* Low Insert/High Update Activity
In this situation, PCTFREE should be set to a high value. The space saved by
PCTFREE will be used by the update activity only if the update increases the
size of the row and the free space will accommodate the new row.

* Low Insert/Low Update Activity Or Read-Only Data

24 Database Administration

Read-only data is data that is loaded into a dbspace and then never modified or
updated, only retrieved using query statements. In this situation, set PCTFREE
to a low value or zero.

* High Insert/High Update Activity

In this situation, set PCTFREE to a high value and then lower it. This would
allow space for use by both update and insert activities.

Note: Updating refers to the replacement of a row of data into the same location
in a page of a dbspace, unless the row can no longer fit because of an
increase in the size of one or more columns. The replacement row is placed
on the same page of the dbspace if there is still sufficient space available in
the area set aside using PCTFREE.

In situations where there is high insert activity, consider using a clustering index.
The first index created on a table is always considered the clustering index. A
clustering index determines the placement of rows in pages of a dbspace to
minimize DASD I/Os when the table rows are accessed in the index sequence. For

more information, see 'Clustering Rows of a Table on an Index” on page 48,

Note: Clustering refers to the grouping or gathering of items; in the above case,
the grouping of table rows is done according to the indexes.

If an updated row no longer fits on its original page, its contents are moved to the
next available page with enough room to accommodate it. Continual movement of
row contents to new pages as a result of this overflow may lead to a decrease in
performance as the database manager must make one additional page reference
before locating a row’s contents.

The database manager typically reserves more space than you specify. For an
explanation of free space management design, see the [DB2 Serper for VSF & VM

Diagnosis Guide and Referencd manual. Calculate PCTFREE using the following

formula:
PCTFREE = (FREEBYTES - AVGROWLEN) / 40

where FREEBYTES is the number of bytes you want reserved on each page, and
AVGROWLEN is the average row length for tables in the dbspace. If you have
modeled the tables to be stored in the dbspace, you can obtain a value for
AVGROWLEN for each of the tables from SYSTEM.SYSCATALOG.

For normal processing, set PCTFREE somewhere between:
[AVGROWLEN / 40] and [50 - (AVGROWLEN / 40)].

Setting it below the lower limit would mean the unused bytes could not be used
(the average row would not fit) and the space set aside for updates would be
wasted, while setting it greater than the upper limit may restrict you unnecessarily
to one row per page.

For more information on how the PCTFREE parameter determines actual reserved

bytes, see 'Appendix A_Estimating Your Dbspace Requirements” on page 2185,
Determining the Percentage for Index Pages (PCTINDEX)

When you acquire a dbspace, you must reserve some portion of it for holding
indexes on the tables in the dbspace. PCTINDEX reserves the amount of space in
the directory to be formatted for this purpose. Under most circumstances, you
should let this value default to 33 percent. With this default, there are

Chapter 2. Implementing Your Design 25

approximately twice as many data pages for holding table rows as there are index
pages for holding indexes on the tables. You can create or drop indexes at any time
(these functions can be performed online); so do not constrain the potential
indexing you might want to do by specifying a lower value for PCTINDEX. There
are two cases when you might want to consider overriding the default:

* Read-only data

Some data is used exclusively, or primarily, for read-only (SELECT) access. You
can create a more than one index on such data to improve the performance of a
wide variety of user queries. The indexes are created after the data is loaded and
are referenced as required by a query. Because the data is not subject to update
operations, you do not have to worry about the performance implications of
index maintenance. Thus, you should consider specifying a high value for
PCTINDEX. To do this, estimate the number of index pages that would be
required for various indexes that might be created on these tables in the

dbspace. See ‘Estimating the Number of Index Pages” on page 227.

* Highly tuned operational data

This is data that is subject to frequent updates, and the performance
requirements limit the amount of indexing you want to do on the tables.
Determine the set of indexes you require for the data and set the PCTINDEX
parameter accordingly.

You establish the PCTINDEX parameter with the ACQUIRE DBSPACE statement.
You cannot change the PCTINDEX parameter with the ALTER DBSPACE
statement; after you set it, the only way to change it is to move all the data in the
current dbspace to another dbspace having the required PCTINDEX value (see

UAltering the Design of a Dhspace” on page 73).

Determining the Lock Size (LOCK)

When you acquire a PUBLIC dbspace you can specify three levels of locking:
DBSPACE, PAGE, or ROW. You can change the lock size later with the ALTER
DBSPACE statement.

The lock size can be set for PUBLIC dbspaces only. (PRIVATE dbspaces are always
locked at the DBSPACE level.)

The default lock size is PAGE. Select ROW if the dbspace is to contain a small
table that will fit on a small number of pages, and it is expected that this table will
be frequently updated by multiple users.

Locking the dbspace at the row level also causes indexes in it to be locked at the
key level. (Usually indexes are locked at the page level.) Key-level locking for
indexes, like row-level locking for tables, reduces contention but adds overhead.

Retrieving Information about Dbspace Parameters

Information about the dbspace parameters is maintained in the
SYSTEM.SYSDBSPACES catalog table.

Example
Use the following query to retrieve information about dbspace MYDB:
SELECT DBSPACENO, DBSPACETYPE, POOL, NPAGES,
NRHEADER, PCTINDX, FREEPCT, LOCKMODE
FROM SYSTEM.SYSDBSPACES
WHERE DBSPACENAME = 'MYDB'

26 Database Administration

To see how many header, data, and index pages are being used in a given dbspace,
issue the SHOW DBSPACE operator statement from either the database console or
from ISQL. (Its format is described in the [DB2 Server for VSE & VM Operation
manual.) This information may be helpful, especially before attempting to load
large amounts of data into a dbspace.

Restrictions on the ACQUIRE DBSPACE Statement

To acquire a dbspace, it must have already been added to the database. When you
issue the ACQUIRE DBSPACE statement, the database manager searches for a
dbspace with the appropriate size (number of PAGES), storage pool assignment,
and type (PUBLIC or PRIVATE). If one of the requested size cannot be found, the
next largest suitable one will be used. (This could result in a very large dbspace
being used to contain a small amount of data.) If no existing dbspace satisfies the
requirements, then the ACQUIRE DBSPACE statement will fail, and you will have
to add additional dbspaces to the database.

The SYSDBSPACES system catalog table contains information about dbspaces. You
can issue an ISQL query to retrieve this information.

The following query yields information on the type and size of all available
dbspaces (those that have been added but not yet acquired):
SELECT DBSPACETYPE, NPAGES

FROM SYSTEM.SYSDBSPACES
WHERE DBSPACENAME=""

The value of DBSPACETYPE is 1 for PUBLIC dbspaces and 2 for PRIVATE ones.

Creating Tables

Relational databases use tables to store information. This section explains how to
create tables and how to define referential and unique constraints in the DB2
Server for VSE & VM environment.

Controlling Who Creates Tables

Designing tables to be used by many applications is a critical task. Although you
can add columns and use views to mask certain changes, generally you cannot
change the design of a table after it has been implemented without disrupting
applications. Table design is difficult because there are many ways to represent the
same information, and often you have to decide between the conflicting objectives
of logical design and physical design. (One example of such a conflict is
normalization, discussed in I'Step 7: Normalize Your Tables” on page 9.)

If you have DBA authority, you will probably want to keep the responsibility for
creating tables, and then pass the authorization for their use on to the application
developers. However, you can grant authority for creating tables to others; or, if
some users want to use the application server with minimum assistance or control,
you can acquire PRIVATE dbspaces for them and authorize them to create
whatever data objects they need, including tables.

How to Create Tables

After designing a table, issue the CREATE TABLE statement. Creating a table
involves:

* Naming it

* Naming the columns within it

* Defining the appropriate data type for each column

Chapter 2. Implementing Your Design 27

* Defining primary keys
* Defining the relationships between tables
* Defining unique constraints.

To create a table, the connected user must have the proper authority (see

LCha.p.ter_S_Enmudm.g_Secm.t%an_pa.ge.ﬂ) Whoever issues the CREATE TABLE

statement has complete authority over the table.

When you create a table, a definition of it is recorded in the catalog; no application
data is stored. (For a description of how to put data into the table, see EE@

Datainto Toblos” 3d)

w shows the statement used to create the sample EMPLOYEE table.

CREATE TABLE JOHN.EMPLOYEE

(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
MIDINIT CHAR(1) NOT NULL
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3),

PHONENO CHAR(4),

HIREDATE DATE,

JOB CHAR(8),
EDLEVEL ~ SMALLINT NOT NULL,
SEX CHAR(2),

BIRTHDATE DATE,

SALARY DECIMAL(9,2),

BONUS DECIMAL(9,2),

COMM DECIMAL(9,2),

PRIMARY KEY (EMPNO),

FOREIGN KEY EMPFKEY (WORKDEPT)

REFERENCES DEPARTMENT ON DELETE SET NULL)

IN PUBLIC.SAMPLE

Figure 17. Example of CREATE TABLE. A foreign key cannot be defined unless the
corresponding primary key already exists.

This example creates a table called EMPLOYEE, which has 14 columns, by a
creator with the ID JOHN. The table uses the column EMPNO as the primary key,
and the column WORKDEPT as a foreign key called EMPFKEY, which references
WORKDEPT in the DEPARTMENT table. The delete rule is SET NULL, and the
table resides in the “PUBLIC”.SAMPLE dbspace.

Naming Tables

A table name can be up to 18 characters long (18 bytes). Table names that are not
explicitly qualified by the creator name in the CREATE TABLE statement are
qualified by the database manager. For example, assume that a user with an ID of
SMITH is entering SQL statements interactively. If SMITH creates a table named
ABC, with no qualifier, the table name becomes SMITH.ABC. SMITH can own only
one table, view, or synonym called ABC. A different user ID, JONES, can create
another table, view, or synonym called ABC, which will become JONES.ABC.

If the DBCS option is enabled, you can use DBCS characters in table names (the
18-byte length restriction still applies). Enabling the DBCS option is discussed in
the DB2 Server for VM System Administratiod and

manuals.

28 Database Administration

Choosing Columns

You implement your database design primarily by choosing the columns that make
up each table. Almost inevitably, there is some conflict between the theoretical
design and the most practical implementation, as described in the following
sections.

s” on page 9 normalization was discussed only
from the v1ewp01nt of 10g1ca1 database de51gn without considering performance.
Consider the example there of the column that contains the addresses of
warehouses. The column is first shown as part of a table that contains information
about parts and warehouses; then, to further normalize the design, it is removed
from that table and defined as part of a table that contains information only about
warehouses. The other possible design (in which the column is part of both tables)
was not considered.

Some applications might require information about both parts and warehouses,
including the addresses of warehouses. With normalization, information can be
retrieved by joining tables. The problem is that a join operation can be very
time-consuming, even for only two tables, and as the number of tables increases
the access costs can increase enormously, depending on the size of the tables and
the available indexes. If indexes are not available, the join of many large tables can
take hours. Furthermore, the number of tables that can be joined is at most 15 and,
depending on the complexity of the statement, can be significantly less. Thus, an
unnormalized design may be absolutely necessary.

Consider making both tables have a column that contains the addresses of
warehouses. If this design makes join operations unnecessary, it could be a
worthwhile redundancy. Warehouse addresses do not change often, and if one does
change, DB2 Server for VSE & VM makes it easy to update all occurrences.

Considerations for Row Size

Rows are stored within pages. A single row cannot occupy more than one page,
and you cannot create a table with a maximum row size that is greater than the
page size. One exception is that columns of type LONG VARCHAR or LONG
VARGRAPHIC can be longer than one page; therefore, the rows that contain them
can occupy more than one page. There is no other absolute limit, but if you ignore
row size in favor of implementing a good theoretical design, you may waste
storage.

Row Length—TFixed or Varying: Table rows may be of fixed or varying lengths.
Two considerations apply:

* The presence of any columns with varying-length data types will result in a
varying-length row.

e If the rightmost columns of the row are defined as allowing nulls, and if no
values for those columns are supplied when a row is inserted, storage is not
allocated for those columns. If those columns in the inserted row are
subsequently updated, the row length will be increased to accommodate the
non-null column values.

The disadvantage of varying-length rows is that if the row length is increased, the
row may have to be repositioned. If the row is repositioned and there is not
enough free space on the current page to accommodate the row, then the row will
be moved to another page. In this case, whenever that moved row is accessed, an
additional page reference is required.

Chapter 2. Implementing Your Design 29

Row Lengths and Pages: Along with the bytes of actual data, each row has:
e A 6-byte prefix

* A 2-byte slot for each row stored in the page

* 1 additional byte for each column that may contain null values

* 1 additional byte for each varying-length column.

In addition, every data page has a 16-byte header.

This overhead affects the amount of data that can be stored on each page in your
dbspace. In designing your table, consider your design needs while looking for
ways to store your data as efficiently as possible.

Some Space-Wasting Designs: Space is wasted in a dbspace if all its rows are
slightly longer than half a page, because then only one row can fit in each page. If
you can reduce the row lengths to just under half a page, you will need only half
as many pages. Similar considerations apply to rows that are just over a third of a
page, a quarter of a page, and so on.

It is particularly important to minimize the number of pages in a dbspace because
if an index is not used, the database manager will read every active page of the
dbspace.

For example, suppose you design a table to hold a large array of floating-point
numbers. If you define each column as FLOAT and use the maximum number of
columns (255), the row length is 2048 and only one row fits on each page. If you
use 240 columns, two rows could fit on each page, and a page would contain 480
floating-point numbers, rather than only 255.

Specifying Columns
A column contains all occurrences of one of the entities in a table. (You can think
of it as a field in a row.) In Eigure 17 on page 28, the lines immediately following
the table name contain the names of the columns within the table. In the sample
EMPLOYEE table, the HIREDATE column contains all the hire dates for all
employees represented by EMPNO. You cannot redefine or overlap columns and,
after you have implemented the design of your database, you usually cannot
change a column definition without disrupting applications. Therefore, consider
carefully the decisions you make about column definitions. (However, you can add

columns to an existing table. See LAlten.n.g_thP_DEﬂgn_o.f_alablP_(m_pa.gP_ﬁél)

For each column, you must specify a name and a data type.

For each column, you may specify:

* A length (of values in the column, not the number of values) and whether null
values are permitted. For a column containing character data _you can also
spec1fV the subtype. For further information, refer to L

”

* A CCSID for a column with character or graphic data, if you want to override

the default CCSID. For further information, refer to L'Specifying a CCSID” orl

* Whether you plan to run a user-written exit routine whenever a program enters
or retrieves data in the column. This type of routine, called a field procedure, can
be used, for example, to alter the sorting sequence of values entered in the
column. Field procedures are assigned to specific columns when the table is
created or altered. For further information on field procedures, see

[EIELDPROC” on page 34,

30 Database Administration

Column Names
Column names must be unique within a table, but you can use the same name in
different tables. The maximum length is 18 bytes.

If the DBCS option is enabled, yvou can use DBCS characters in the column names.

See the WL&WM&M r IDB2 Server for VSE Systend
Wdsministratiol

manual.

Nulls
As mentioned under 'Step 3: Provide Column Definitions for Tables” on page d,

some columns cannot have a meaningful value in every row.

A special value indicator, called the null value, represents an unknown or missing
value. It should not be confused with a zero value, a blank, or an empty string: it
is a special value interpreted by the database manager to mean that no data has
been supplied.

Unless you specify otherwise, any column you define can contain null values, and
rows can be created in the table without providing a value for the column. Avoid
using nulls for columns that will be used as indexes. To disallow null values, use
the NOT NULL clause, and provide a non-null value for that column whenever
you store data. Columns that will be referenced in a primary key or unique
constraint must be defined as NOT NULL.

If you add a column to an existing table, it contains no data and so cannot be
defined as NOT NULL.

In the example in [Eigure 17 an page 24, nulls are acceptable for certain columns
and prohibited for others.

Before you decide whether to allow nulls for unknown values in a column, be
aware of how nulls can affect the result of a query.

* Nulls in predicates

Nulls do not satisfy any condition in an SQL statement other than the special
NULL predicate. Null values do not act like other values. For instance, if you try
to determine whether a null value is larger or smaller than a given known value,
you get an answer of UNKNOWN.

* Nulls in quantified predicates

If either the left side or the subselect list of a quantified predicate is null, the
quantified predicate is residual. Residual predicates require more processing
because of the communication between the Relational Data System (RDS) and

the Database Storage Subsystem (DBSS). Predicate processing is described in the
[DBR2_Server F/W VSE & VM Pprfnvmnwfv 7_'1/1/111/10 T—Tﬂwrﬂfmn];] manual.

¢ Nulls with Field Procedures

If you allow nulls in a column with a field procedure, that field procedure is not
invoked when you access a null value: the database manager returns the null
value.

Specifying Data Types
You must give a data type for each column of a table, to specify the type of data
the column will contain and the length of the data field.

The first thing you must decide when defining a column is what kind of data the
column will contain—string, numeric, or date/time. The decision is often obvious

Chapter 2. Implementing Your Design 31

because only a string column can contain letters or special characters. If the data
consists solely of digits, however, you have to decide whether to specify it as string
or numeric data. And if the values represent dates, times, or timestamps, you will
want to consider the data types DATE, TIME, and TIMESTAMP.

Numeric Data Types

The data types for numbers are shown in [Cable d

Table 6. Numeric Data Types

Data Type

Denotes a column of...

SMALLINT

Small integers. A small integer is an IBM
System /370* halfword signed binary
integer of 16 bits; the range is -32,768 to
+32,767.

INTEGER or INT

Large integers. A large integer is an IBM
System /370 fullword signed binary
integer of 32 bits; the range is
-2,147,483,648 to +2,147,483,647.

REAL or FLOAT(n)

Single precision floating-point numbers.
n must be in the range 1 through 21.
There is no default; if you omit n when
declaring a data type of FLOAT, the
column has double precision. A single
precision floating-point number is an
IBM System /370 short floating-point
number of 32 bits.

FLOAT, FLOAT(n), or DOUBLE PRECISION

Double precision floating-point
numbers. 7 must be in the range 22
through 53; its default is 53. A double
precision floating-point number is an
IBM System /370 long floating-point
number of 64 bits. The range of
magnitudes for floating-point numbers
of either type is approximately +5.4E-79
to +7.2E+75.

DECIMAL(p,s), DEC(p,s) or NUMERIC (p,s)

IBM System /370 packed decimal
numbers with precision p and scale s.
The precision p, which is the total
number of digits, must be greater than 0
and less than 32. The scale s, which is
the number of digits in the fractional
part of the number, must be greater than
or equal to 0 and less than or equal to
the precision. s may be omitted; its
default is 0. And if s is omitted, p may
also be omitted; its default is 5. The
range of decimal values is 31 digits, and
these values can be positive or negative.
NUMERIC and DEC are synonymous
with DECIMAL.

For integer values, SMALLINT or INTEGER (depending on the range of the
values) are preferable to DECIMAL or FLOAT.

For real numbers with a small precision and scale, DECIMAL is preferable to

FLOAT.

32 Database Administration

For numeric data, use numeric rather than string columns for the following
reasons:

* They require less space.

* They permit arithmetic operations.

¢ They are accessed more efficiently. For example, if numbers are represented as
strings, when the database manager calculates a range, the optimizer takes into
consideration all possible bit patterns and cannot calculate an appropriate filter

factor. Because of this, a much higher number of rows is returned. For further
information on filter factors, refer to the [DB2 Seruer for VSE & VM Performancd

uning Haudboold manual.

String Data Types
The data types for strings are shown in Mable 4

Table 7. String Data Types

Data Type Denotes a column of...

CHAR(n) or CHARACTER(n) Fixed-length character strings with a
length of n bytes. n must be greater than
0 and less than 255.

VARCHAR(n) Varying-length character strings with a
maximum length of n bytes. n must be
greater than 0. If # is greater than 254,
certain restrictions apply to the use of
the columns in SQL statements. The
upper limit on the value of n is 16,383.

LONG VARCHAR Varying-length character strings with a
maximum length of 32,767 bytes. The
restrictions that apply to VARCHAR
columns where n>254 also apply to
LONG VARCHAR columns.

GRAPHIC(n) Fixed-length graphic strings containing
n double-byte characters. n must be
greater than 0 and less than 128.

VARGRAPHIC(n) Varying-length graphic strings. The
maximum length, n, must be greater
than 0. If n is greater than 127, certain
restrictions apply to the use of the
column in SQL statements. The upper
limit on the value of n is 16,383.

LONG VARGRAPHIC Varying length graphic strings with a
maximum length of 16,383 bytes. The
restrictions that apply to the use of a
VARGRAPHIC column where n>127
also apply to a LONG VARGRAPHIC
column.

If you want to use a field procedure with a column, the column must have a short
string data type. You can also use string columns to specify binary (bit) data or
character data for exchange with other application servers.

Choosing Fixed-Length or Varying-Length Data Types: VARCHAR saves DASD
space. The saving is at the cost of a 1-byte overhead for each value and the

additional processing required for varying-length rows. Thus, CHAR is preferable
to VARCHAR, unless the space saved by the use of VARCHAR is significant. The

Chapter 2. Implementing Your Design 33

saving is not significant if the maximum length is small or the lengths of the
values do not have a significant variation.

If you use VARCHAR, do not specify a maximum length greater than necessary. In
particular, note the restrictions on columns of strings longer than 254 bytes; for
example, they cannot be indexed.

The database manager will not use index-only access to retrieve the data if the
index is created on a VARCHAR column. For information on index-only access,
refer to the IDB2 Server for VSE & VM Performance Tuning Handbooll manual.

Do not use LONG VARCHAR unless you really want the maximum row length to
be as large as possible, because there is a higher cost associated with accessing
long fields.

In most cases, the content of the data intended for a column dictates the data type
you choose. For example, the data type selected for the department name
(DEPTNAME) of the DEPARTMENT table is VARCHAR(36). Because department
names normally vary considerably in length, the choice of a varying-length data
type seems appropriate. Choosing a data type of CHAR(36), for example, would
result in much wasted space, because all department names, regardless of their
length, would be assigned the same amount of space (36 bytes).

The foregoing considerations about CHAR, VARCHAR, and LONG VARCHAR
columns apply in the same way to GRAPHIC, VARGRAPHIC, and LONG
VARGRAPHIC columns. The one exception is that the length (1) of a GRAPHIC or
VARGRAPHIC column is given as a number of double-byte characters; hence, the
length in bytes is twice n.

Specifying SBCS, Mixed, or Bit Subtypes: The use of subtypes applies only to
character data such as CHAR, VARCHAR, and LONG VARCHAR. A default
subtype for character columns is set at installation time. You can override this
default for any column in a table when the table is created (or when a column is
added to an existing table).

Choose the SBCS subtype when the data in the column is single-byte character
data and the default is not.

Choosing FOR MIXED DATA lets you store (and to have the column flagged as
storing) both single- and double-byte characters. The database manager ensures the
integrity of valid mixed data during truncation.

For columns that contain binary data that should not be modified when moved
between different environments (such as from ASCII to EBCDIC), specify FOR BIT
DATA.

Note: When specifying a subtype, you are also implicitly specifying the CCSID for
the subtype.

Specifying a CCSID: Default CCSID values for character and graphic data are
specified during installation. To override the CCSID used for a column containing
any of these data types, specify one of your own.

Each CCSID is associated with either graphic data or a specific subtype of

character data. Query the SYSTEM.SYSCCSIDS system catalog table to determine
the CCSID values for each of these.

34 Database Administration

If you compare data from two columns or move data between two columns having
different CCSIDs, and if a conversion selection table exists, the data in one of the
columns is converted to ensure a consistent comparison. Query the
SYSTEM.SYSSTRINGS catalog table for a list of valid conversion selection tables.
(In VM you can also look at the ARISSTR MACRO on the production minidisk for
a list of valid conversion selection tables.) Consider your users” environments and
needs when specifying a CCSID for a particular column. When you override the
default CCSID for a column of data, you can minimize the amount of converting
done on tables that are accessed primarily by users requiring different CCSIDs.

Note: Converting from one CCSID to another, then another, and then returning to
the original CCSID, can result in the misinterpretation of data if there is not
a one-to-one correspondence between the two sets of characters.

See the IDB2 Server for VM System Administratiod or
Bdministration

manual for more information about specifying CCSIDs.

Specifying a FIELDPROC: A field procedure (FIELDPROC) is a user-written exit
routine used to encode and decode values in a character string. Field procedures
can only be used on short character strings (CHAR, VARCHAR, GRAPHIC, and
VARGRAPHIC).

A field procedure can be used to alter the sorting sequences of a short character
string column. It is assigned to a column during execution of the CREATE TABLE
or ALTER TABLE statement, and is called whenever values in the column are
changed, inserted, or retrieved. To specify that a column use a field procedure, use
the FIELDPROC option followed by the program name of the procedure and,
optionally, a list of parameters.

For example, to specify a field procedure for the column LASTNAME of the
EMPLOYEE sample table, change one line of [Figure 17 on page 28 to look like this:
LASTNAME VARCHAR(15) NOT NULL FIELDPROC MYPROG (4, 3, 7),

In the example, the name of the field procedure is chosen as MYPROG. The
parameters 4, 3, and 7 are passed to the procedure when it is invoked by the
CREATE TABLE or ALTER TABLE statement.

For more information about field procedures, see the IDB2 Server for VM Systen
Wdministration or [DB2 Server for VSE System Administratiod manual.

Data Types for Dates, Times, and Timestamps
The data types for dates, times, and timestamps are shown in

Table 8. Date, Time, and Timestamp Data Types

Data Type Denotes a column of...

DATE Dates. A date is a three-part value representing a year, month, and
day in the range 0001-01-01 to 9999-12-31.

TIME Times. A time is a three-part value representing a time of day in
hours, minutes, and seconds, in the range 00.00.00 to 24.00.00.

TIMESTAMP Timestamps. A timestamp is a seven-part value representing a date
and time by year, month, day, hour, minute, second, and
microsecond, in the range 0001-01-01-00.00.00.000000 to
9999-12-31-24.00.00.000000.

Chapter 2. Implementing Your Design 35

For a detailed description of Date/Time characteristics, see the [DB2 Server for VSH
(& VM SQI. Referencd manual.

Advantages of Date/Time Data Types

Numbers representing dates and times can, of course, be stored in columns with
numeric data types; if they include special characters as separators, they can be
stored in string columns. But neither of these options provides the advantages of
the DATE, TIME, and TIMESTAMP data types, as described below.

Variable Input and Output Format: Date/time values are stored in a special
internal format, which is freely convertible on output or input to or from any of

the formats in m

Table 9. Date Formats

Format Name Abbreviation Typical Date Typical Time
International Standards Organization ISO 1992-12-25 13.30.05

IBM USA standard USA 12/25/1992 1:30 PM

IBM European standard EUR 25.12.1992 13.30.05
Japanese Industrial Standard (Christian JIS 1992-12-25 13:30:05

Era)

You also have the option of supplying an exit routine to make conversions to and
from any local standard. For instructions about writing and using a date or time
exit routine, see the [DB2_Server fnr VM chzfpm Administratiod or [DBR2_Server fnr VSH

jord manual.

When loading date or time values from an outside source, the database manager
accepts any of these formats, and convert valid input values to the internal format.
For retrieval, there is a default format that you select at the time of installation.
You can change the default at any time by updating the SYSOPTIONS catalog; you
can override it for every statement in a program by a precompiler option, or for
particular instances by the CHAR scalar function. For example, whatever your
local default, the following statement displays employees’ birth dates in IBM USA
standard form:

SELECT EMPNO, CHAR(BIRTHDATE, USA) FROM EMPLOYEE

Date/Time Arithmetic and Durations
Date/time arithmetic involves intervals of time that are represented by numbers

called durations. A duration is an interpretation of a number, not a data type.

A labeled duration is any number of years, months, days, hours, minutes, seconds,
or microseconds. A date duration is a number of years, months, and days. A time
duration is a number of hours, minutes, or seconds. A timestamp duration is a
number of years, months, days, hours, minutes, seconds, and microseconds. For a
further discussion of durations, see 'Date/Time Arithmetic” on page 176, or the
DB2 Server for VSE & VM SQI. Referencd manual.

The only arithmetic operators that can be applied to date/time values are addition
and subtraction. If a date/time value is the operand of addition, the other operand
must be a duration.

For example, the following statement lists employees who have been hired after
the age of 40:

36 Database Administration

SELECT * FROM EMPLOYEE
WHERE HIREDATE > BIRTHDATE + 40 YEARS

This statement lists employees who have been hired in the last 3 months:

SELECT * FROM EMPLOYEE
WHERE HIREDATE > CURRENT DATE - 3 MONTHS

Date/Time Functions: There are functions to extract the years, months, days,
hours, minutes, seconds, and microseconds of dates, times, and timestamps. For
example, this statement lists all employees who have a service anniversary on June
21:

SELECT = FROM EMPLOYEE
WHERE MONTH(HIREDATE) = 6 AND DAY (HIREDATE) = 21

There are also functions to convert dates, times, and timestamps to character or
integer representations.

String Representations of Date/Time Values: In the following example,
07/28/1971 is interpreted as a date because it is compared to a date; in other
contexts (a SELECT list, for example) 07/28/1971 is merely a character string.

SELECT * FROM EMPLOYEE
WHERE HIREDATE = '07/28/1971'

Date/Time Comparisons: All comparison operators are allowed. The statement
below lists all employees hired after October 31, 1979. To show another of the
recognized date formats, we have arbitrarily chosen to write the date in the IBM
European standard.

SELECT * FROM EMPLOYEE
WHERE HIREDATE > '31.10.1979'

Comparing Data Types
You can compare values of different types and lengths provided that both values
are numeric, both are character strings, or both are graphic strings.

Date and time comparisons cannot be made with values of different types: a date
can be compared only with a date, a time with a time, and a timestamp with a
timestamp (or, in each case, with a valid string representation of a date, time, or
timestamp).

If a column uses a field procedure, values to be compared to it are first encoded by
the field procedure. If a column with a field procedure is compared to another
column, both columns must have the same field procedure and data type.

Columns do not have to have the same CCSID to be compared. When two

columns with differing CCSIDs are compared, and a conversion selection table

exists, the data in one of the columns is converted to ensure a consistent

comparison. For further information, refer to the IDB2 Server for VSE & VM SQI
manual.

Specifying a PRIMARY KEY

The primary key of a table, if one has been created, consists of one or more
columns that uniquely identify each row in the table. In the example in

, the employee number is the primary key of the employee table, and
the PRIMARY KEY clause identifies the column of employee numbers (EMPNO).

Chapter 2. Implementing Your Design 37

A table that is to be a parent of dependent tables must have a primary key—the
foreign keys of the dependent tables refer to it. Otherwise, a prlmary key is
optional. If you are defining referential constraints, read [

Referential Integrity when Creating Tables”] before creating or altering any of the

tables involved.

If you specify a primary key, a unique index is automatically defined on the same
set of columns, in the same order as those columns. The primary key values must
then be unique and cannot be null. Their uniqueness cannot depend upon trailing
blanks in columns containing VARCHAR or VARGRAPHIC data. Automatic
enforcement of these restrictions can be useful even if the table is not involved in
referential constraints. If each row of your table does relate to a unique occurrence
of some entity, then consider creating a primary key.

If the primary key is created on a VARCHAR or VARGRAPHIC column,
index-only access is not used to retrieve the data. For information on index-only

access, refer to the DB2 Sexuer for VSE & VM Performance Tuning Handbooll manual.
Specifying a UNIQUE Constraint

The unique constraints on a table ensure the uniqueness of values in columns
making up each constraint. Although functionally similar to a unique index, a
unique constraint can be defined when the table is created, deactivated, and then
reactivated to enforce the uniqueness of values in its key. This simplifies
administration when you load data or perform operations that could temporarily
violate the unique constraint. For this reason, unique constraints are preferable to
unique indexes, which must be individually and explicitly dropped and recreated
to suspend or enforce uniqueness.

A unique constraint is also similar to a primary key in that:

* It consists of one or more columns

* The columns are not nullable

* The database manager enforces uniqueness by creating a unique index.

It differs from a primary key in that:

* It cannot be referenced by a foreign key

* You can define more than one on any table
* It can be given a name.

Considerations in Defining Unique Constraints
* The columns in a unique constraint cannot allow null values.
* You cannot duplicate a unique constraint on a table.

* The columns of a unique constraint should not be the same as columns in a
primary key. The converse is also true.

* A unique constraint can be added after the table is created through the ALTER
TABLE statement.
* Like primary keys and unique indexes, the uniqueness of values in a unique

constraint cannot depend upon trailing blanks in columns with VARCHAR or
VARGRAPHIC data.

Considerations for Referential Integrity when Creating Tables

For any table, you can define one primary key using the primary key clause, and

any number of foreign keys using the referential constraint clauses. In a referential
constraint, the table that has the foreign key definition is the dependent table and

the table that is referenced by the foreign key is the parent.

38 Database Administration

The constraint-name identifies the key being specified. It is optional. The database
manager generates a constraint-name if one is not provided; however, you should
create your own for foreign keys. Constraint-names should be symbolic and
indicate the parent and foreign key names, which will make working with the keys

much easier. Working with keys is discussed in EZAltering Referential and Uniqud

A referential constraint is defined by creating or altering tables to have a
parent/dependent relationship between them. A referential constraint can span
dbspaces. A referential structure is a set of tables that are related to each other by
referential constraints. A dbspace may have more than one referential structure but
that is generally not desirable.

Primary Key Index

When a primary key is defined, a unique index is created automatically to enforce
its uniqueness. If you have not specified information such as index order and
percent free space on the key definition, the index is created using default values.

When a primary key is defined by the CREATE TABLE statement, the
CLUSTERING index is the one associated with the primary key. If you want to
have this index on columns other than those comprising the primary key, create
the table without a primary key, then create an index on the desired columns, and
then use the ALTER TABLE statement to add the primary key.

If the primary key is dropped, either implicitly (when the table or dbspace is
dropped) or explicitly (with the ALTER TABLE statement), the system-generated
index is automatically dropped. You cannot use the DROP INDEX statement to
explicitly drop an index that was created to support a primary key.

Use the ALTER TABLE ACTIVATE PRIMARY KEY statement to reorganize the
primary key index if the primary key is active, or to recreate the index if the
primary key is inactive. For more information about this statement, see

”

Usage Notes:

¢ The primary key columns must not allow null values, and the primary key
clause must not be used more than once.

* Corresponding columns in primary and foreign keys of the same referential
constraint must have the same data type.

* The columns in a key must exist in the table, and may not be used more than
once.

* If the same referential constraint is defined more than once, a warning is issued,
and a new foreign key is added.

¢ The parent table referenced by a foreign key must already exist. It must not be a
view, and it must have an active primary key.

* The delete rule, if specified, must be one of RESTRICT, SET NULL, or
CASCADE.

» IF SET NULL is used, at least one foreign key column must be nullable.

* When defining foreign keys, you must have REFERENCES privilege on the
parent table and ALTER privilege on the dependent table.

* When defining referential constraints, if a primary key has a field procedure,
then the foreign key must have the same field procedure.

Restrictions on Keys and Referential Constraints::

Chapter 2. Implementing Your Design 39

* Keys cannot be added to or dropped from the system catalog tables, and a
system catalog cannot be referenced in any referential constraint.

* No table in a referential cycle with two or more tables may be delete-connected
to itself. This ensures that the result of a delete from a table does not depend
upon the sequence when the database manager accesses the table. In a
referential cycle of two tables, neither delete rule can be CASCADE. For a
referential cycle of more than two tables, two or more delete rules must not be
CASCADE.

A table is delete-connected to another table if deletion of rows from one table
affects the other table. The implications are:

— A dependent table is always delete-connected to its parents, whatever the
delete rule is.

— A descendent table is delete-connected to a table higher than it in the
hierarchy if a delete of rows in the higher-level table can cause a delete of
rows in the descendent’s parent table.

* For a descendent table to be delete-connected to the same higher-level table
through more than one path, all delete rules on each path must be CASCADE,
except possibly the delete rule between the descendent and its immediate parent
on each path. The delete rules of the descendent with its parent table on each
path must be the same and must not be SET NULL. This ensures that the order
in which the delete rules are applied has no effect on the result of an operation.

For further information on tables that are delete-connected through multiple
paths, refer to the DB2_Serner fnr VSE & VM SOL Referencd manual.

* Self-referencing tables are not supported.

For further information on referential integrity, refer to Elements of Referential

[n.tegﬂ.féLﬂn_p.a%&d' ” N

Integrity Rules for DELETE: There are no rules for the deletion of rows from
dependent tables. The deletion rule specified in the referential constraint clause
defines what action should be taken by the database manager when a row in the
parent table is to be deleted. See Y'DELETE Rules” on page 7

Integrity Rules for INSERT: Insert rules always apply when primary and foreign
keys are defined. See 'INSERT Rules” on page §

Integrity Rules for UPDATE: Update rules always apply when primary and
foreign keys are defined. See L

Note: If a table is a parent in one relationship and a dependent in another,
integrity rules for DELETE, INSERT, or UPDATE must be satisfied for both
relationships.

To determine the delete rule of an existing foreign key, access the SYSKEYS catalog
table as follows:

SELECT KEYTYPE, KEYNAME, DELETERULE FROM SYSTEM.SYSKEYS
WHERE TNAME='table-name'

Placing Tables in Dbspaces

When creating a table, you can specify the dbspace in which it is to reside. If you
do not, it is put in the creator’s PRIVATE dbspace. If the creator does not have a
PRIVATE dbspace, then the CREATE TABLE statement fails.

40 Database Administration

If you specify the name of the dbspace but not the name of the owner, the
database manager searches for a PRIVATE dbspace of the specified name that is
owned by the creator of the table. If this does not exist, the database manager then
looks for a PUBLIC dbspace with the specified name. If that does not exist, then
the CREATE TABLE statement fails. Refer to the DB2 Seruer for VSE & VM SQI
manual for more information about the CREATE TABLE statement.

Table Elacement under the various possible default conditions is illustrated in

Connected Table Dbspace Result of the
User Is Specified Specified Create Table
DBA named DD CC.TT BB.XX CC.TT in BB.XX
CC.TT PUBLIC.XX CC.TT in PUBLIC.XX
CC.TT XX CC.TT in CC.XX
or PUBLIC.XX
CC.TT none CC.TT in CC.Z%Z
TT BB.XX DD.TT in BB.XX
TT PUBLIC.XX DD.TT in PUBLIC.XX
TT XX DD.TT in DD.XX
or PUBLIC.XX
TT none DD.TT in DD.YY
RR with RESOURCE CC.TT BB.XX ERROR
AUTHORITY CC.TT PUBLIC.XX ERROR
CC.TT XX ERROR
CC.TT none ERROR
TT BB.XX ERROR
TT PUBLIC.XX RR.TT in PUBLIC.XX
TT XX RR.TT in RR.XX
or PUBLIC.XX
TT none RR.TT in RR.SS

Figure 18. Default Placement of Tables in Dbspaces

Notes for w:

* A user with DBA authority can create tables for any user in any dbspace.

* Users with RESOURCE authority can create tables for themselves only, and then
only in their own dbspaces or in any PUBLIC dbspaces.

¢ If the dbspace name is specified but not qualified (just XX), the database
manager first looks for a PRIVATE dbspace owned by the creator. If this is not
found, then the database manager looks for PUBLIC.XX.

* If the dbspace is defaulted, the required default PRIVATE DBSPACE (CC.ZZ,
DD.YY, or RR.SS) must exist.

* If you omit the dbspace name, the database manager will not select a dbspace
that resides in a nonrecoverable storage pool. If you want to create a table in a
nonrecoverable dbspace, you must specify the dbspace name.

You can easily avoid confusion by fully qualifying both the table name and the
dbspace name.

Chapter 2. Implementing Your Design 41

Creating Views

Some of your users may find that no single table contains all the data they need;
rather, the data might be scattered among several tables. Or one table might
contain more data than they want to see or are authorized to see. For those
situations, you can create views. A view is an alternative way of describing data
that exists in one or more tables.

You can create a view any time after creating the underlying tables. The owner of a
set of tables implicitly has the authority to create a view on them, and someone
with DBA authority can create a view for any owner on any set of tables.

Use the CREATE VIEW statement to define a view and give it a name. Unless you
specifically list different column names after the view name, the column names of
the view will be the same as those of the underlying table. (Tahle 11 on page 43
shows an example of this.) When creating different column names for your view,
remember the naming conventions you established when designing the database.

As [[ahle 11 on page 47 illustrates, the information in the view is described by a
SELECT statement. This statement can name other views as well as tables, and can
use WHERE, WITH CHECK OPTION, GROUP BY, and HAVING clauses. It cannot
use ORDER BY, name a host variable, or contain the UNION operator.

By specifying a WHERE clause in the subquery of a view definition, you can limit
the rows addressed through a view. If an application (or user) deals with a specific
set of rows in a table, you can create a view to limit the rows addressed to only
those required. If a view is created using the WHERE and WITH CHECK OPTION
clauses, all subsequent UPDATEs and INSERTs will prevent changes to rows that
fall outside the set of rows defined by the view. Refer to the [DB2 Server for VSE &
VM SQI. Referencd manual for more information about creating views.

Reasons for Using Views

Some reasons you might want to use views are:
* To provide a customized table for a specific user

Some tables may have a large number of columns, not all of which are of
interest to all users or are named or ordered appropriately. You can, in effect,
create a smaller table for certain users by defining a view that contains only the
columns of interest. You can rename columns and reorder the column sequence
to tailor the view to the user’s needs.

e To limit access to certain kinds of data

You can create a view containing only selected columns and rows from a table
or tables. Users with the SELECT privilege on the view see only the information
you describe. For example, a view could be defined that showed only the
FIRSTNME, LASTNAME, WORKDEPT, and EDLEVEL columns for employees
in Department D11.

* To alter tables without affecting application programs

For example, a program that uses an INSERT into T1 without a specified list of
column names will cause an error after you add a column to table T1. The error
is generated because the number of values being inserted into the table is
different than the number of columns in the table. If T1 is a view, you will be
protected from that error because adding a column to the table does not affect
the view definition and, therefore, does not affect the program.

42 Database Administration

Creating a View on a Table

The example below illustrates creating a view on a single table, the DEPARTMENT
table. Of the four columns in the table, only three are required for the view:
DEPTNO, DEPTNAME, and MGRNO. The order of the columns in the SELECT
clause is the order in which they appear in the view.

CREATE VIEW VDEPT3 AS

SELECT DEPTNO,DEPTNAME,MGRNO
FROM DEPARTMENT

In this example, no column list follows the view name, VDEPT3. Hence, the
columns of the view have the same names as those of the table on which it is
based (DEPTNO, DEPTNAME, MGRNO). m shows the result of executing
the following SQL statement:

SELECT * FROM VDEPT3
Table 10. View of a Table

DEPTNO DEPTNAME MGRNO
A00 SPIFFY COMPUTER SERVICE DIV. 000010
B01 PLANNING 000020
C01 INFORMATION CENTER 000030
D01 DEVELOPMENT CENTER ?

D11 MANUFACTURING SYSTEMS 000060
D21 ADMINISTRATION SYSTEMS 000070
EO01 SUPPORT SERVICES 000050
E11 OPERATIONS 000090
E21 SOFTWARE SUPPORT 000100

Creating a View from Several Tables
Name more than one table in the FROM clause to create a view that combines
information from two or more tables. This operation is called a join, and is shown
in the following example, which includes the manager’s name (from the
EMPLOYEE table) and information from the DEPARTMENT table.

CREATE VIEW SMITH.VDEPTM AS
SELECT DEPTNO, MGRNO, LASTNAME, ADMRDEPT
FROM DEPARTMENT, EMPLOYEE
WHERE EMPLOYEE.EMPNO = DEPARTMENT.MGRNO

[Cable 11 shows the result of executing the following SQL statement:
SELECT » FROM SMITH.VDEPTM

Table 11. View of Two Tables

DEPTNO MGRNO LASTNAME ADMRDEPT
A00 000010 HAAS AQ00
B01 000020 THOMPSON A00
Co1 000030 KWAN AQ00
D11 000060 STERN D01
D21 000070 PULASKI D01
EO1 000050 GEYER A00
E11 000090 HENDERSON EO01

Chapter 2. Implementing Your Design 43

Table 11. View of Two Tables (continued)

DEPTNO MGRNO LASTNAME ADMRDEPT

E21 000100 SPENSER E01

Now, suppose you want to create a similar view that includes only the
departments that report administratively to Department A00. Suppose also that
you want a different set of column names. The appropriate CREATE statement is
as follows:
CREATE VIEW SMITH.VDEPTMAQO

(DEPT, MGR, NAME, REPORTTO)

AS

SELECT DEPTNO, MGRNO, LASTNAME, ADMRDEPT

FROM EMPLOYEE, DEPARTMENT

WHERE EMPLOYEE.EMPNO = DEPARTMENT.MGRNO

AND ADMRDEPT = 'A0O'

[Cable 12 shows the result of executing the following SQL statement:
SELECT = FROM SMITH.VDEPTMAQO

Table 12. View Created with New Column Names

DEPT MGR NAME REPORTTO
AQ0 000010 HAAS A00
BO1 000020 THOMPSON A00
Co1 000030 KWAN A00
EO01 000050 GEYER A00

Things You Cannot Do with a View
When designing views, consider the following restrictions:

* You cannot update, insert, or delete through a view if it involves any of the
following:
— SQL column functions (SUM, MAX, MIN, AVG, COUNT)
— Elimination of duplicate rows (DISTINCT)
— Grouping (GROUP BY), or HAVING clause
— A FROM clause that uses more than one table (that is, a join).

In the above cases, you can retrieve data from the views by means of the SQL
SELECT statement, but you cannot use INSERT, UPDATE, or DELETE
statements.

* You cannot insert a row through a view if the view has a column derived from
an arithmetic or string expression, a scalar function, or a constant.

* You cannot update a column of a view that is derived from an arithmetic or
string expression, a scalar function, or a constant (for example, a column that is
defined as 1.6 x SALARY).

For more detailed information about view restrictions, see the DB2 Seruer for V. SB
I VM SOI Rpfpwwrpl manual.

You can make changes to a table through a view when the view does not contain
the same number of columns or the same number of rows as the table on which it

is based. [lahle 13 on page 43 summarizes the restrictions on accessing views.

44 Database Administration

Table 13. Restrictions on View Access

STATEMENT

RESTRICTIONS

UPDATE

You cannot update a view defined as the join of multiple
tables. This includes views defined on views defined as
the join of multiple tables.

You cannot update a view that is defined using
DISTINCT, GROUP BY, or column functions.

You cannot update rows of a view that is defined using
WITH CHECK OPTION, if the updated rows fall outside
the set of rows defined by the view.

You cannot update virtual columns. (A virtual column is
a column on a view that is not derived directly from a
column of a stored table. For example, view columns
defined by expressions such as MAX(SALARY),
SALARY+BONUS, or AVG(PRSTAFF) are all virtual
columns).

INSERT

You cannot insert into a view defined as the join of
multiple tables. This includes views defined on views
defined as the join of multiple tables.

You cannot insert into a view that contains a column of
the underlying table which allows nulls.

You cannot insert into a view that is defined using
DISTINCT, GROUP BY, or column functions.

You cannot insert into a view that is defined using WITH
CHECK OPTION, if the inserted rows fall outside the set
of rows defined by the view.

You cannot insert into the virtual columns of a view.

DELETE

You cannot delete from a view defined as the join of
multiple tables. This includes views defined on views
defined as the join of multiple tables.

You cannot delete from a view that is defined using
DISTINCT, GROUP BY, column functions.

INDEX

You cannot create an index on a view.

ALTER

You cannot alter a view (for example, add columns, or
keys).

DBS UNLOAD

Unloading a view will sequence the unloaded rows in an
arbitrary order chosen by the database manager. Rows
may not be in sequence of any index on an underlying
table.

DBS RELOAD

RELOADing through a view will not drop and recreate
indexes on the underlying table. You must do this
yourself using SQL statements that precede and follow
the RELOAD statement.

The INSERT restrictions shown above also apply.

DBS DATALOAD, ISQL INPUT, SQL PUT

The INSERT restrictions shown above also apply.

Chapter 2. Implementing Your Design 45

Materializing a View

When designing views, you should be aware of the view-processing techniques
used by the database manager and the circumstances in which each is used. Two
view-processing techniques are used: view merge and view materialization. This
section describes the circumstances in which a view is materialized.

When a view is referenced in an SQL statement, the view definition is merged with
the SQL statement and a new statement is created that references only base tables
and columns and that contains only added or modified WHERE predicates, and an
added or modified GROUP BY clause. The new statement is then processed. This
process is view merge. Some view-referencing statements cannot be processed using
the view merge technique. The database manager uses the view materialization
technique to process these statements.

With view materialization, a temporary table is created internally and a view (that
could not otherwise be accessed) is materialized into the table at run time. The
database manager then performs the statement on the materialized view. A
materialized view is read-only, because queries on the view are on a temporary
table. Each view that is materialized in an SQL statement is materialized in a
temporary dbspace.

Because view merge is more efficient than view materialization, view
materialization is used only if view merge cannot be used.

A view is materialized if it is created with:

* A GROUP BY or HAVING clause, and is accessed by a statement that requires
the view to be joined or that specifies column functions on the view

¢ Column functions, and is accessed by a statement that requires the view to be
joined

¢ One or more DISTINCT columns, and is accessed by a statement that requires
the view to be joined

* Multiple DISTINCT columns, and is accessed by a statement that specifies
column functions on the view

* One DISTINCT column, and is accessed by a statement that specifies multiple
column functions on the view

e A column defined with column functions, and that column is accessed by a
statement that specifies column functions

* One or more DISTINCT columns, and a DISTINCT column is accessed by a
statement that includes arithmetic expressions with column functions

* Multiple DISTINCT columns, and is accessed by a statement that does not
specify all columns in the select-list of the SELECT statement

* A column defined with built-in functions, expressions, or literals, and that
column is referenced in the GROUP BY or HAVING clause of a SELECT
statement accessing the view

* A column function with a DISTINCT specification, and is accessed by a SELECT
statement with a DISTINCT specification

¢ A column defined with a column function, and that column is referenced in the
WHERE clause of a statement accessing the view

* A column derived from an expression, function or constant, and that column is
accessed by a statement containing a WHERE clause with a LIKE predicate

e A virtual column, and that column is referenced in a DISTINCT column function
of statement accessing the view.

46 Database Administration

Note: If the SELECT list of the view definition statement contains a long field, the
view cannot be materialized because of long-field restrictions.

For information on determining if V1ew materialization occurs, refer to the ID DB
manual.

Creating Indexes

The purpose of nonunique indexes is to provide efficient access to data. Unique
indexes have the additional purpose of ensuring that key values are unique.

Even when present, the index is not always used: the database manager selects an
access path to the data based on a combination of factors. To see whether an index
is used in processing a particular SQL statement, use the EXPLAIN statement. For
information on using the EXPLAIN statement and on explanation tables, refer to
the DR2 prmrfnr VSE & VM Pm’fnrmﬂnrp Tuning Handhoolt manual.

Indexes can improve performance of table access; however, this is at the expense of
the DASD storage required for them, and the performance of INSERT, UPDATE,
and DELETE operations. Thus, while you will want to create indexes on your
tables, some judgement is advised. For information about the storage required by

an index, see I'Estimating the Number of Index Pages” an page 227.

To create an index on a table, use the SQL CREATE INDEX statement. You must
have DBA authority or the INDEX privilege on the table. An index may be defined
on 1 to 16 columns.

Index Key

The columns identified in the CREATE INDEX statement build a key. An index key
is a column or an ordered collection of columns on which an index is defined. A
multicolumn key is a key built on two or more columns.

The usefulness of an index depends on its key. Columns that you use frequently in
performing selection, join, pro]echon groupmg, and ordering operatlons are good
candidates for use as keys. See I

for information on calculating the size of index keys. For columns with a
field procedure, use the number of bytes in the encoded field, not the number in
the decoded column.

For information about restrictions on key length, see the description of the
CREATE INDEX statement in the [DB2 Server for VSE & VM SQI. Referencd manual.

The ordering of the columns specified in the CREATE INDEX statement is
important to the definition of the key sequence. The major order determinant
columns must be specified first. For example, an index on the PROJ_ACT table,
defined over the PROJNO, ACTNO, and ACSTDATE columns sequences activity
numbers within project numbers, and estimated activity start date within activity
numbers, if the columns are specified in this order for the index.

For each column participating in the key, you can specify whether its order in the
key sequence is ascending or descending. The default is ascending. When creating
a unique index, the uniqueness of each value in the index key cannot depend upon
trailing blanks. The database manager also ignores trailing blanks when
sequencing indexes made up of VARCHAR or VARGRAPHIC values.

Chapter 2. Implementing Your Design 47

UNIQUE Indexes

You can enter duplicate values in a key. If you do not want duplicate values, use
CREATE UNIQUE INDEX.

For example, in the sample database, it is important that there be no duplicate
activity keywords in the ACTIVITY table. Creating a unique index, as in the
following example, prevents duplicates.

CREATE UNIQUE INDEX XACT1
ON ACTIVITY (ACTKWD)

The index name is XACT1 and the indexed column is ACTKWD.

If you are planning to use referential integrity or unique constraints, described in

“ , it may be unnecessary to explicitly create unique
indexes. When using the primary key or unique constraint clause, the database
manager automatically creates a unique index on the table. However, you may
want additional indexes for other columns and foreign keys.

The PCTFREE Clause

The PCTFREE clause specifies how much space is to be reserved for future index
entries, which allows index maintenance to take place without splitting of index
pages. Its default is 10 percent, which is a good value for most purposes. If you
expect much insert or update activity after the creation of the index, you might
want to override the default by setting PCTFREE to a higher value. If you expect
no insert or update activity after the creation of the index, you might want to
override the default by setting PCTFREE to zero.

Usually, a low PCTFREE value, 5-10 percent, is a good choice when creating an
index, as it provides enough room to accommodate a low level of maintenance. It
also provides extra room at localized key ranges where high update activity is
taking place by splitting a full index page into two half-empty pages when an
insertion or update must go into that page.

Clustering Rows of a Table on an Index

A CLUSTERING index is used by the database manager to determine placement of
rows in pages of a dbspace. The first index created on a table is, by default, the
CLUSTERING index. The database manager tries to place rows with the same or
similar keys on the same dbspace page.

A CLUSTERED index is an index whose sequence of key values corresponds closely
to the sequence in which the table rows are actually stored in the database. It can
be effectively used to minimize DASD input/output whenever the table rows are
accessed in the index sequence of a CLUSTERED index. A CLUSTERING index
should always be made a CLUSTERED index. This is done by loading the table
rows in the key sequence of the CLUSTERING index.

To establish a CLUSTERING index that also has the property of being a
CLUSTERED index, do the following:

1. Load the table in the index sequence (key sequence) of the CLUSTERING
index.

This establishes the initial clustering of rows with similar keys. For the load
operation, set PCTFREE for the dbspace to a high enough value to allow space
on pages for future clustered insertion of rows.

2. Create the indexes on the table.

48 Database Administration

After loading the table, create the indexes on the table. The first index you
create will be the CLUSTERING index. Any index having an order that matches
the load sequence of the rows will be marked as a CLUSTERED index.

The CLUSTERING index will be a CLUSTERED index because you have
loaded the table rows in the sequence of this index. In the SYSINDEXES catalog
table, the CLUSTER column value for this index is F, indicating that it is the
first index created by the table, and that it is currently a CLUSTERED index. If,
after many INSERTs of new rows into the table, the order in which the rows
are stored in the database no longer closely match the index key sequence, the
CLUSTER column value is changed to W (the next time UPDATE STATISTICS
is performed). This indicates that the index is the first index created on the
table, and it is currently not a CLUSTERED index. You can reorganize the table.
Refer to the [DB2 Server fnr VSE & VM pmfnrwmwr‘p 'T'11w1'1/1g Haudboold manual for
information on reorganizing tables. The database manager will continue to use
this index to decide where new rows should be stored, because it is still the
CLUSTERING index for the table.

One or more of the other indexes created on the table may also happen to have
an index sequence that closely matches the sequence in which the table rows
are stored. Although this is fortuitous and cannot be directly controlled by the
user, the database manager will record these indexes as CLUSTERED by setting
their CLUSTER column in SYSINDEXES to C. Such indexes can be exploited as
efficient access paths by the database manager. When one of these indexes is no
longer CLUSTERED, its CLUSTER column is changed to N the next time
UPDATE STATISTICS is performed.

3. Reduce the PCTFREE value for the dbspace.

This is necessary to make the free space reserved during the load operation
available for use on normal INSERT activity. On an INSERT or ISQL INPUT,
the database manager attempts to place the inserted row on the same page as a
row with the same or similar key.

You can define the key ordering of the CLUSTERING index to be any you wish.
However, the primary considerations would be frequently used table orderings
(that is, frequently used ORDER BYs) and joins.

If you cluster a table on an index that has a key ordering that matches the most
common ORDER BY clauses for queries against the table, you can avoid internal
sorting of the query results. A related consideration is the size of an ordered query
result. Internal sorting of a small query result is not expensive. However, if you
have a large, ordered query result (for a batch job or a comprehensive report), the
internal sort could be quite time-consuming. You should consider clustering a table
to support your most frequent, large sequential access orderings.

If you have a table that is frequently referenced by a join on a particular column
(or set of columns), you may want to consider clustering it on an index on the join
column(s). For example, between the DEPARTMENT and EMPLOYEE tables there
are two likely join candidates (referential constraints are defined): one between the
EMPNO column in EMPLOYEE and the MGRNO column in DEPARTMENT, and
the other between the DEPTNO column in DEPARTMENT and the WORKDEPT
column in EMPLOYEE. In this case you could choose to cluster both tables on
either employee numbers or department numbers, depending on which join is
expected more frequently.

Note: You can change the clustering that you initially define for a table. Refer to

the [DB2 Server for VSE & VM Performance Tuning Handboold manual for

information on reorganizing tables.

Chapter 2. Implementing Your Design 49

Figure 1d illustrates both clustered and nonclustered indexes.

CLUSTERED
INDEX 25 61 Root
{ { X Pages
8 18 . 33 45 7% . 86 E{f@%{at@
L[]] R A =
e S R o v N
> > > o > o > E“ZZLS
27 17NN\
L] L] . A Data
D D E E Pages
[] [] L] [L] [
NON-CLUSTERED
INDEX o5 61 Root
{ Pages
Inter-
1" il Rl
W v S R N
—» —» - R o o o e %ZZ{;S
Y] L UNC L 2N
D D D D Datta
] [] [] [] Pages
[] []] [] [

Figure 19. Clustered and Nonclustered Indexes

Some Things to Remember When Defining Keys

Column updates require index updates. Define as few indexes as possible on a
column that is updated frequently, because every change must be reflected in each

50 Database Administration

index. For more information about potential problems with indexes and
performance, refer to the IDB2 Server for VSE & VM Performance Tuning Handbool
manual.

A multicolumn key may be more useful than a key on a single column when the
comparison is for equality. A single multicolumn index is more efficient when the
comparison is for equality and the initial columns are provided. For example, if an
index is composed of columns A, B, and C, a SELECT statement with a WHERE
clause of the form WHERE A = value AND B = value may be processed more
efficiently than if there are separate indexes on A and on B. Additional columns
may also improve performance by allowing index-only access scanning. Refer to

the [DB2 Serer for VSE & VM Performance Tuning Handbooll manual for information

on index-only access scanning.

Indexes are important tools for improving performance. Suggestions for using
indexes effectively are in the '
manual.

An index cannot be defined over multiple tables. Furthermore, an index key
cannot include any columns defined as long fields. Avoid using VARCHAR or
VARGRAPHIC columns in an index. Fixed-length indexes perform better than
variable-length indexes. Data pages as well as index pages must be read when
VARCHAR or VARGRAPHIC columns are included in an index. The
variable-length fields have trailing blanks removed before being put into the index.
This may result in the data page values differing from the index page values, and
necessitates that both index and data pages be read when using the index as an
access path for data retrieved.

Note: Long fields include the following data types: VARCHAR(n) with n>254,
VARGRAPHIC(n) with n>127, LONG VARCHAR, or LONG VARGRAPHIC.

General Performance Considerations on the Use of Indexes

It is good practice to create a unique index on the column or set of columns that
uniquely define each record in the table (its key). A unique index can easily be
created by specifying a primary key or a unique constraint when you create the
table. A primary key can be used as an index even if automatic referential integrity
is not being used. Using a unique constraint or primary key helps data integrity
because the database manager enforces this uniqueness.

Consider creating additional indexes on other columns based on how often you
expect the column to be used in search criteria. Once you have identified all the
desired indexes, decide which column is apt to be used most often in search
criteria. Then load the table in that column’s sequence, thus making the column’s
corresponding index a CLUSTERED index.

If the table is to have a CLUSTERING index, be sure to create that index first after
initial table loading. You should do this because the database manager tries to
place inserted records so that the physical sequence of the table’s records is the
same as the sequence defined by the first index created on that table.

It is more efficient to first load a table and then create the indexes on it, rather than
the other way around.

Usually, each table should have at least one index. Part of the decision of whether
to create an index on a specific column should be based on the trade-off between

Chapter 2. Implementing Your Design 51

the faster access achieved, versus the index maintenance processing that the
database manager must do whenever that column is modified. A column is an
ideal candidate for being indexed if it is likely to be a frequent search argument on
SQL statements, but not likely to be changed. Avoid creating indexes on frequently
updated columns.

Indexes can be created and dropped. If high query activity is anticipated,
temporarily create indexes on the columns that are likely access paths for those
queries.

Migration Considerations for Indexes

The SQL/DS Version 2 Release 2 product introduced a new index structure for
nonunique indexes. This format requires more space than in earlier releases, but it
allows nonunique indexes to perform almost as well as unique ones.

The new format requires more space. The number of additional bytes required for
each nonunique index in the new format is:

4 x (number of index pages) - 4

If you are migrating from Version 2 Release 1 or earlier, some of your dbspaces
may not have room for indexes in the new format. Before deleting the old indexes,
determine if there are sufficient index pages available to create the index in the
new format. Nonunique indexes created before Version 2 Release 2 can coexist with
the new type of nonunique index, so you do not have to drop and re-create
indexes.

Note: You cannot migrate from Version 2 directly to Version 7. You must migrate
to Version 3 first and then migrate from Version 3 to Version 7.

Using the Catalog in Database Design

The catalog tables contain information that can be helpful in designing your
database. The [DB2 Server for VSE & VM SQI. Referencd manual lists these tables and
what is stored in them.

You can also use the catalog to verify the accuracy of your database definition
process. After you have created the objects in your database, display selected
information from the catalog to check that there were no errors in your CREATE
statements, and to verify that you have the correct tables in each dbspace.

The information in the catalog is vital to normal database system operation. As the
following examples show, you can retrieve catalog information, but changing it
could have serious consequences. Thus, you cannot process INSERT or DELETE
statements against the catalog, and you can update only a few of the columns in
selected catalog tables.

To run the following examples, you need at least the SELECT privilege on the
appropriate catalog tables. Be careful with your own examples: querying the
catalog can result in a long dbspace scan.

Retrieving Catalog Information about a Table

The SYSTEM.SYSCATALOG table contains a row for each table and view in your
database. For each, it tells you whether the object is a table or view, its name, who
created it, what dbspace contains it, and other information. It also has a REMARKS

52 Database Administration

column in which you can store your own information about the table in question.
See [‘The COMMENT ON Statement” on page 54 for information about how to do
this.

Enter the following statement to display all the information for the project activity
sample table:
SELECT =
FROM SYSTEM.SYSCATALOG

WHERE TNAME = 'PROJ_ACT'
AND CREATOR = 'SQLDBA'

Retrieving Catalog Information about Columns

The SYSTEM.SYSCOLUMNS table has one row for each column of each table and
view. You can query it, for example, if you cannot remember a particular column
name.

The following statement retrieves information about columns in the sample
department table:
SELECT CNAME, TNAME, COLTYPE, LENGTH, NULLS
FROM SYSTEM.SYSCOLUMNS

WHERE TNAME='DEPARTMENT'
AND CREATOR = 'SQLDBA'

As shown in [able 14, for each column it displays:
¢ The column name

¢ The name of the table that contains it

* Its data type

* Its length attribute

* Whether or not it allows nulls.

Table 14. Retrieving Information about Columns from SYSCOLUMNS

CNAME TNAME COLTYPE LENGTH NULLS
DEPTNO DEPARTMENT CHAR 3 N
DEPTNAME | DEPARTMENT VARCHAR 36 N
MGRNO DEPARTMENT CHAR 6 Y
ADMRDEPT | DEPARTMENT CHAR 3 N

Retrieving Catalog Information about Indexes

The SYSTEM.SYSINDEXES table contains a row for each index, including indexes
on catalog tables.

The following query retrieves information about the index XEMPL2:

SELECT =
FROM SYSTEM.SYSINDEXES
WHERE INAME = 'XEMPL2'
AND ICREATOR = 'SQLDBA'

A table can have more than one index. The following query retrieves information
about all the indexes of a table:

SELECT =
FROM SYSTEM.SYSINDEXES
WHERE TNAME = 'EMPLOYEE'
AND CREATOR = 'SQLDBA'

Chapter 2. Implementing Your Design 53

Retrieving Catalog Information about Views
The SYSTEM.SYSVIEWS table contains a row for each view.

The following query retrieves information about the view SYSUSERLIST:

SELECT =
FROM SYSTEM.SYSVIEWS
WHERE VIEWNAME = 'SYSUSERLIST'
AND VCREATOR = 'SQLDBA'

Retrieving Catalog Information about Authorization

The following 4 tables contain information about the privileges held over tables
and views:

* SYSCOLAUTH

Contains information regarding grants of the UPDATE privilege on columns of
tables or views.

¢ SYSPROGAUTH
Details privileges regarding who can run packages.
* SYSTABAUTH

Contains information about the privileges held by authorization IDs and
packages on tables and views.

* SYSUSERAUTH

Records special privileges held by authorization IDs (for example, DBA,
CONNECT authority).

Only users with DBA authority can access SYSUSERAUTH. Other users can access
this information using a view called SYSUSERLIST, which contains all the columns
of SYSUSERAUTH except the PASSWORD column.

Query these tables to learn who can access data in your application server. For
example, the following query retrieves the names of all users who have been
granted access to the SQLDBA.DEPARTMENT table, as well as any views on that
table:
SELECT GRANTEE
FROM SYSTEM.SYSTABAUTH

WHERE TTNAME = 'DEPARTMENT' AND GRANTEETYPE = ' '
AND TCREATOR = 'SQLDBA'

GRANTEE is the name of the column that contains authorization IDs and package
names for users of tables. TTNAME and TCREATOR specify the
SQLDBA.DEPARTMENT table. The clause GRANTEETYPE = " ” ensures that you
retrieve the names only of users (not packages) that have authority to access the
table.

The COMMENT ON Statement

After you create a table or view, you can provide explanatory information about it
for future reference—for example, the purpose of the table, who uses it, and
anything unusual about it. To do this, use the COMMENT ON statement. You can
both store comments about the table or view as a whole, and include one for each
column. A comment must not exceed 254 bytes.

Comments are especially useful if your names do not clearly indicate the contents
of columns or tables.

54 Database Administration

Below are two examples of COMMENT ON:

COMMENT ON TABLE SQLDBA.EMPLOYEE IS
"Employee table. Each row in this table represents one
employee of the company.'

COMMENT ON COLUMN SQLDBA.PROJECT.PRSTDATE IS
'Estimated project start date. The format is DATE.'

Retrieving Comments

When you process a COMMENT ON statement, your comments are stored in the
REMARKS column of SYSTEM.SYSCATALOG or SYSTEM.SYSCOLUMNS. Any
comment already present in the row is replaced by the new one. The following
queries retrieve the comments added by the two COMMENT ON statements
above:

SELECT REMARKS
FROM SYSTEM.SYSCATALOG
WHERE TNAME = 'EMPLOYEE'
AND CREATOR = 'SQLDBA'

SELECT REMARKS
FROM SYSTEM.SYSCOLUMNS
WHERE CNAME = 'PRSTDATE' AND TNAME = 'PROJECT'
AND CREATOR = 'SQLDBA'

Chapter 2. Implementing Your Design 55

56 Database Administration

Chapter 3. Maintaining Your Database

The previous chapter described how to implement your database design. This
chapter deals with the various maintenance tasks you may need to perform to
maintain tables and dbspaces. The following tasks are discussed:

Maintaining Tables
* Loading information into tables

There is considerable flexibility in how data can be entered.
» Copying a table

When information is being shared, the owner of a table may choose to have
other users copy it, so that they can make changes to their own copy of the table
without affecting the original.

* Moving tables from one dbspace to another
You may want to move tables to another dbspace to:
— Improve concurrent access to tables

If a table resides in a PRIVATE dbspace and many users need to update that
table at the same time, you should move it into a PUBLIC dbspace, which
allows concurrent access.

— Recover dbspaces

You may want to move a table from a nonrecoverable dbspace to a
recoverable one, or a recoverable dbspace to a nonrecoverable one.

— Get more space for a table

The amount of information that you can store in a table depends on the size
of the dbspace it is in, and the storage requirements of the other tables there.
If a table requires more space for data or indexes, you should consider
moving it to a larger dbspace.

* Merging data from multiple tables

It may be necessary to combine all the columns or a subset of the columns from
different tables into a new table.

* Altering the design of a table

You may want to change the design of a table after it has been created: for
example, add or delete columns, change the data type of a column, or change
the name of the table.

¢ Altering referential constraints on a table
You may wish to add referential integrity to tables that do not have it.
* Enforcing referential constraints

You may want to enforce the referential constraints when your tables are
created, or defer enforcement until you have performed other activities.

* Moving data from one application server to another

The second application server can be a DB2 Server for VSE & VM application
server, or another application server supporting IBM’s implementation of the
Distributed Relational Database Architecture (DRDA) protocol.

* Removing tables
If tables are no longer required, you can remove them.

© Copyright IBM Corp. 1987, 2000 57

Maintaining Dbspaces

Altering the design of a dbspace

When you created a dbspace, you specified the following parameters for it: its
potential size (in pages), its type (PUBLIC or PRIVATE), its storage pool
assignment (STORPOOL), the number of pages for its header (NHEADER), the
percentage of each page reserved for updates that cannot be placed in the
original location (PCTFREE), the number of pages reserved for indexes
(PCTINDEX), and the size of the locks (LOCK).

As requirements change, you may need to change some of these settings. You
can change the PCTFREE and LOCK parameters with the ALTER DBSPACE
statement. If any of the other parameters need to be changed, you will have to
acquire a new dbspace (which satisfies your new requirements), and move all
the tables from the old dbspace to the new one.

Reorganizing a dbspace to free storage pool pages

As part of maintaining your dbspaces, you may have to reorganize it to release
pages back to a storage pool.

Removing dbspaces

If a dbspace is no longer required, you can remove it and its contents by using
the DROP DBSPACE statement.

Using VSAM (VSE only)

There are VSAM restrictions when managing storage.

Reorganizing Catalog Table Indexes

The catalog tables have indexes to improve the speed of access. Occasionally, you
should reorganize these indexes. See iz

58 Database Administration

Maintaining Tables

After designing and creating a table, you may have to load data into it, copy it,
move it from one dbspace to another, move data in it from one application server
to another, change an aspect of its design, or remove it from the database.

Loading Data into Tables

This section reviews the possible ways to load data into tables. Many of these
methods use the Database Services Utility commands: for more information on
these commands, refer to the IDB2 Server fnr VSE & VM Database Services ITHIHLI

manual.

Loading Data in VM Using the DBS Utility

Interactively: You can load data into tables interactively through the DBS Utility.
To do this, invoke the utility so the terminal controls file input (SYSIN). You can
then either enter multiple INSERT statements, or execute the DBS Utility
DATALOAD TABLE command using the INFILE (*) subcommand.

From a CMS File: The DBS Utility DATALOAD TABLE command will accept
input data records in a user-created CMS file. One or more tables can be loaded
during a single pass of the data records. The existing data in the tables loaded with
this method are not affected. Rows are added to a table through the PREPARE,
OPEN, PUT, and CLOSE facilities of SQL.

From a Virtual Reader File: The DBS Utility DATALOAD TABLE command will
also accept input data records in a CMS virtual reader file with no header. One or
more tables can be loaded during a single pass of the data records. The existing
data in the tables loaded with this method are not affected. Rows are added to a
table through INSERT statements executed using the PREPARE and EXECUTE
facilities of SQL.

Refer to the IDB2 Server for VSE & VM Database Services Ltilitd manual for more
information.

Loading Data Using the DBS Utility in VSE/ICCF
To load data into a table from data records entered from a terminal, as an
alternative to entering multiple INSERT statements, users can use the DBS Utility
under VSE/ICCF in conversational mode. To initiate this, enter the following
VSE/ICCF control statements:

/LOAD ARIDBS

/OPTION GETVIS=AUTO
/DATA INCON

In response to the prompt to ENTER DATA, the appropriate series of SQL
statements or DBS Utility DATALOAD TABLE commands must be entered. After a
DATALOAD TABLE command the user must enter the INFILE (*) subcommand to
initiate input data record processing and the ENDDATA subcommand to end it. An
outline of the interactive terminal input is:

CONNECT userid IDENTIFIED BY password;

DATALOAD TABLE (table-name)

column-namel 1-5
column-name2 6-7

INFILE (%)
data record

Chapter 3. Maintaining Your Database 59

data record

ENDDATA

These commands are described in the DBR2_Server fnr VSE & VM Database Seruiced
manual.

Each record (row) is entered in a fixed format as defined by the column
specifications in your DATALOAD command. In this example, the user enters
column 1 data into typing positions 1-5 of the command line, column 2 data into
positions 6-7, and so on.

Do not put quotation marks around character data, and do not use commas to
separate data values. Such punctuation can be used outside the data positions of
the command line defined by the column specifications of the DATALOAD
command.

As an alternative to entering each input data record interactively, the user can
embed DBS Utility commands and data records in the VSE/ICCF control
statements. An outline of loading a table under VSE/ICCF in a nonconversational
manner is:
/LOAD ARIDBS
/OPTION GETVIS=AUTO
/DATA
CONNECT userid IDENTIFIED BY password;
DATALOAD TABLE (table-name)
column-namel 1-5
column-name2 6-7

INFILE (%)
data record

ENDDATA

Loading Data from a Terminal Using ISQL INPUT

The ISQL INPUT statement enables a user to enter multiple rows of data into a
table. The table name and (optionally) the column names need to be entered only
once. The column names, along with their data types, are then displayed in the
order that the data must be entered, and the user can then enter data one row at a
time.

For data that is similar, the user can use the PF12 RETRIEVE function. That is, the
user can retrieve the previous data row entered, and then type over the fields that
are different. This can save keystrokes.

Data entered with an INPUT statement is not stored in the table until the INPUT
statement is ended by an END statement. ISQL will issue an INSERT statement for
every row entered, using the PREPARE and EXECUTE facilities of SQL. However,
before the INPUT statement is ended, the data can be committed or backed out by
the statement:
SAVE — Stores all data entered since the last SAVE statement. If no SAVE
statement has been issued, it commits all the data since the start of the INPUT
statement.

60 Database Administration

BACKOUT — Deletes all data entered since the last SAVE statement. If no
SAVE statement has been issued, it deletes all the data since the start of the
INPUT statement.

CANCEL — Performs a BACKOUT and also ends the INPUT statement.

Remember that the AUTOCOMMIT mode affects the processing of the SAVE,
BACKOUT, and CANCEL statements. For additional information on the ISQL

INPUT, SAVE, and BACKOUT statements, refer to the [DB2 Server for VSE & VM
M@L.&uﬁ&mik@&wd manual.

Loading Data from Sequential Files in VSE

The DBS Utility DATALOAD TABLE command accepts SYSIPT data records or
data records contained in a user-created sequential file. One or more tables can be
loaded during a single pass of the data records. The existing data in the tables
loaded with this method is not affected. The DATALOAD TABLE processing adds
rows to a table through the PREPARE, OPEN, PUT, and CLOSE facilities of SQL.

Loading Data from VSAM Files
A VSAM file can be converted to either of the following:

* a sequential (SAM) file using the VSE/VSAM Access Methods Services REPRO
command

* a CMS or tape file through the VM VSE/VSAM Access Methods Services
(AMSERV command) using the REPRO control statement.

This sequential file can then be identified as the input data file to DBS Utility
DATALOAD TABLE processing.

Note: The VSAM REPRO command should never be used to copy the DB2
database itself.

Loading Data from Other Tables

Data can be copied into a table from other tables by using the following methods:

* An INSERT with Subselect statement executed through ISQL, the DBS Utility, or
a user program. An INSERT with Subselect copies one or more rows which are
selected or computed from other tables into a table.

* The execution of a DBS UNLOAD and RELOAD command series. This
technique allows data to be copied from tables in the same or different databases
but only a complete replacement of the data in the target table is possible.

¢ The execution of a DBS DATAUNLOAD and DATALOAD command series. This
technique allows data to be copied from tables in the same or different
application servers, and allows more selectivity than the UNLOAD/RELOAD
sequence. This is useful when you want to copy only parts of tables.

All of these techniques allow the source of the data to be copied to be identified by
a view that is defined on one or more tables. A view can be used to identify the
target table if the view definition meets the requirements defined for inserting
rows into a view.

If referential constraints are in place on tables in which you wish to load data, you
should consider whether you would like to enforce constraints while the data is
loading or after it is loaded. See L i ints” for
more information.

Chapter 3. Maintaining Your Database 61

Copying Tables

To make a copy of an existing table, use the DBS Utility UNLOAD and RELOAD
commands.

Example
A user with the user ID SMITH has the SELECT privilege on the
SQLDBA.EMPLOYEE table. To make a copy of this table, to be called
SMITH.EMPLOYEE, in the PRIVATE dbspace SMITHDB, enter the following
commands either in a CMS file called CONTROL DBSINPUT A or in the
appropriate job control:

CONNECT SMITH IDENTIFIED BY SMITHPW;

UNLOAD TABLE (SQLDBA.EMPLOYEE) OUTFILE(TEMPFIL);

RELOAD TABLE (EMPLOYEE) NEW (SMITHDB)
INTABLE (SQLDBA.EMPLOYEE) INFILE(TEMPFIL);

To execute these commands in VM, invoke the DBS Utility, as follows:

FILEDEF TEMPFIL DISK MYDATA MYFILE A4 (RECFM VBS BLOCK 800
SQLDBSU SYSIN(CONTROL DBSINPUT A) SYSPRINT(LIST DBSLIST A)

The RELOAD statement creates tables without const raints, losing all referential
constraints on the table you are copying. You must reinstate referential constraints

later with the ALTER TABLE statement. See [’Altering Referential and TIniqud

The RELOAD statement with the 'NEW’ parameter recreates the table without field
procedures. Instead of reloading the table using the 'NEW’ parameter, recreate the
table to include field procedures and reload the table using the "'PURGE’
parameter.

Moving Tables from One Dbspace to Another

To move a table from one dbspace to another, you must first unload it using the
DBS UNLOAD command, drop it from the database, then reload it into the new
dbspace. When a table is dropped, all indexes, privileges, views, primary and
foreign keys, and unique constraints for it are removed, and must be
re-established.

As well, if a table has field procedures associated with it, the table should be
dropped and recreated to include the field procedures and reloaded using the
"PURGE’ parameter.

Example
User SMITH has a table (called SMITH.MYTABLE) that he wishes to move from
the SMITH.PERSONAL dbspace to the SMITH.SECRET dbspace.

Enter the following commands in either a CMS file called CONTROL DBSINPUT
A, or inside the appropriate job control:

CONNECT SMITH IDENTIFIED BY SMITHPW;

UNLOAD TABLE (SMITH.MYTABLE) OUTFILE(TEMPFIL);

DROP TABLE SMITH.MYTABLE;

RELOAD TABLE (SMITH.MYTABLE)
NEW (SMITH.SECRET) INFILE(TEMPFIL);

In VM you run these commands by invoking the DBS Ultility, as follows:

FILEDEF TEMPFIL DISK MYDATA MYFILE A4 (RECFM VBS BLOCK 800
SQLDBSU SYSIN(CONTROL DBSINPUT A) SYSPRINT(LIST DBSLIST A)

62 Database Administration

Merging Data from Multiple Tables

It may be necessary to combine all columns or a subset of the columns from
different tables into a new table. You can do this through ISQL or the DBS Utility
using the following procedure:

1. Create the new table with a CREATE TABLE statement.

2. Insert rows into the new table by selecting columns from the source tables with
an INSERT with Subselect statement.

Execute an UPDATE STATISTICS statement against the new table.

Create the required indexes for the new table with CREATE INDEX statements.
Create the required views on the new table.

Grant the required authorizations on the new table and views.

N oo~

If necessary, redefine the views on the old tables to eliminate access to the
columns merged into the new table.

To identify authorizations and views on the old tables, you can query the system
catalog with a SELECT statement entered through ISQL or the DBS Utility. The
following tables contain information pertinent to this task:

¢ SYSTEM.SYSUSAGE identifies the base table on which a view is defined
e SYSTEM.SYSVIEWS identifies the view definitions

* SYSTEM.SYSTABAUTH identifies the users who have privileges to access tables
and views.

Example
To identify the base tables for the view ORGANIZATION, enter the following
query:
SELECT BNAME FROM SYSTEM.SYSUSAGE
WHERE DNAME = 'ORGANIZATION'

To identify the view definitions, enter the following query:

SELECT VIEWTEXT FROM SYSTEM.SYSVIEWS
WHERE VIEWNAME = 'ORGANIZATION'

To identify the users who have privileges to access the view or its base tables,
enter the following query:

SELECT GRANTEE, STNAME FROM SYSTEM.SYSTABAUTH
WHERE TTNAME = 'ORGANIZATION'

If a view is defined for all the columns required in the new table, steps 1, 2, and 3
(needed to merge data from multiple tables) can be replaced by the following:

1. Enter the DBS Utility UNLOAD command to unload the view.
2. Enter the DBS Utility RELOAD command to create and load the new table.
3. Process an UPDATE STATISTICS statement for the new table, if necessary. By

default, this statement is performed for each table loaded during RELOAD
TABLE command processing. For more information, see the bB.Z.Semaqfa.uZSH

\& VM Database Services Ltiliti} manual.

Examples
In VM: Include the following SQL statements and DBS Utility commands within
your DBS Utility control file to perform the above task:

CONNECT userid IDENTIFIED BY userpw;

UNLOAD TABLE creator.viewname OUTFILE(DUMPFIL);
RELOAD TABLE creator.newtablename NEW INFILE(DUMPFIL);

Chapter 3. Maintaining Your Database 63

Invoke the DBS Utility, as usual, to process the above statements and commands.

In VSE: Use the following job control commands, SQL statements, and DBS Utility
commands to perform the above task:

// JOB MERGE DATA

// EXEC PROC=DBNAMEO1
// ASSGN SYS005,...
// ASSGN SYS004,...
// TLBL DUMPFIL,...

CONNECT userid IDENTIFIED BY userpw;

UNLOAD TABLE creator.viewname OUTFILE(DUMPFIL)

RELOAD TABLE creator.newtablename NEW INFILE(DUMPFIL)
/&

See the [DR2_Serner fnr VSE & VM Datahase Services ”fﬂif}] manual for details.

Altering the Design of a Table

If you want to change the design of a table after it has been created, use the SQL
ALTER TABLE statement. This will not change the data in the table; only its
specifications. You can:

e Add a column to a table

e Add or drop a primary key, a foreign key, or a unique constraint.

When you alter a table, information in the system catalog about it is also changed.
For example, when you add a new column to a table, SYSTEM.SYSCOLUMNS is
changed to record it, and the field in there that records the number of columns is
increased by one.

Authorization

To alter a table, you must have the ALTER privilege on it, and if the operation
involves a primary key you must have the ALTER privilege on all dependent
tables as well. If the operation involves a foreign key, you must have the
REFERENCES privilege on the parent table.

You can alter any table if you have DBA authority.

You cannot delete a column, change the name of a column, change the data type of
a column, or add or change a field procedure for a column for existing tables using
the ALTER TABLE statement. To do these operations, you must drop the existing
table and re-create it.

Example
There are two ways to change the data type of the DEPTNAME column of the

DEPARTMENT table from VARCHAR(36) to VARCHAR(40):
* Create a new table (DEPT) with the required column definitions, and copy data

to it.
CREATE TABLE DEPT
(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(40) NOT NULL,
MGRNO CHAR(6) .
ADMRDEPT CHAR(3) NOT NULL,
PRIMARY KEY (DEPTNO))

INSERT INTO DEPT SELECT = FROM DEPARTMENT

64 Database Administration

Indexes, views, and privileges have to be reestablished for the new table DEPT;
only the data is copied from the DEPARTMENT table. Also, all applications that
used the original table must be changed to reflect the new table name, then
re-preprocessed.

¢ DATAUNLOAD the contents of the DEPARTMENT table to a flat file, drop the
table, re-create it with the new data type definition of the DEPTNAME column,
then DATALOAD the contents of the flat file back into the DEPARTMENT table.
For details on DATAUNLOAD and DATALOAD, see the [DB2 Server for VSE &

VM Database Services Lltiliti} manual.

Adding a New Column
When you add a column to an existing table, it is placed on the far right.

The physical records are not actually changed until users insert values in the new
column, so access time to the table is not affected immediately. After values are
inserted, however, this could impact performance by forcing rows onto another
physical page. To avoid that situation, define enough free space on each page
ahead of time.

You cannot define the new column as NOT NULL; it must allow NULL values.

Example
Add a new column to the table DEPARTMENT, containing a location code for the

department. The column name is LOCNCODE, and its data type is CHAR (4).

ALTER TABLE DEPARTMENT
ADD LOCNCODE CHAR (4)

[Cable 19 shows part of the original table.
Table 15. Before Adding a New Column to a Table

DEPTNO DEPTNAME MGRNO ADMRDEPT
A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00
B01 PLANNING 000020 A00
Co1 INFORMATION CENTER 000030 A00

[Cable 14 shows the table after adding the new column and updating a location
code in the third row.

Table 16. After Adding a New Column to a Table and Updating a Row

DEPTNO |DEPTNAME MGRNO |ADMRDEPT |LOCNCODE
A00 SPIFFY COMPUTER SERVICE | 000010 AQ0 ?
DIV.
B01 PLANNING 000020 A00 ?
Co1 INFORMATION CENTER 000030 A00 B126

Altering Referential and Unique Constraints

If you plan to let the database manager enforce referential integrity in a set of
tables, see I'Considerations for Referential Integrity when Frquing Tahles” on

l:ma.ge_ﬂﬁand LSpem.@m:.g_a_UNlQLLE_Cm:sttam.t_nn_pa.ge_Sﬂ’ ifyi int” A

The following terms are used in the discussion of the ALTER TABLE statement:

Inactive Key or Constraint A primary key, a foreign key, or a unique

Chapter 3. Maintaining Your Database ~ 65

constraint that has been made inoperable by the
ALTER TABLE ... DEACTIVATE statement. Neither
referential nor unique constraints are enforced until
the related keys are activated.

Implicitly Inactive Key A foreign key that is not explicitly inactive, but
references a table with an inactive primary key. A
referential constraint is not enforced until the
related primary key is activated.

Inactive Table A table that contains an inactive or implicitly
inactive key, or contains an active primary key
referenced by an inactive foreign key. This limits
access to the table to the creator or a DBA, and
allows deferred constraint enforcement.

Dependently Inactive Table A dependent table or foreign key that has been
flagged as inactive because the primary key of its
parent table has been deactivated.

Cable 14 is a summary of the authorization required to alter referential constraints.

Table 17. Authorization Required when Altering Referential Constraints

Statement Parent Table Dependent Table
ADD

Primary Key A

Foreign Key R A
DROP

Primary Key A, R(1) A

Foreign Key R A
ACTIVATE

Primary Key A, R(1) A

Foreign Key R A

All A, R(1) A
DEACTIVATE

Primary Key A, R(1) A

Foreign Key R A

All A, R(1) A
Note: ALTER privilege is required when A appears. REFERENCES privilege is required
when R appears, and (1) applies when a dependent table exists.

Considerations When Adding Keys or Constraints
The following restrictions apply when you add a primary key, a foreign key, or a
unique constraint to an existing table:

* The columns named for the key being added must exist.
* If adding a primary key, there should be no existing primary key on the table.

 If adding a primary key or a unique constraint there must not be duplicate
values in the specified columns.

* When adding a foreign key:
— The constraint name must not already exist.

— If the key columns are identical to those of another foreign key that references
the same parent table, a warning is issued and the foreign key is created.

* You can use only one FOREIGN KEY clause in each ALTER TABLE statement; if
you want to add two foreign keys to a table, you must execute two statements.

66 Database Administration

e If you add a foreign key, the primary key of the parent table must already exist.

* To add a foreign key, you must have REFERENCES privilege on the parent table
and ALTER privilege on the dependent table.

* If adding a foreign key, the foreign key must not cause a table to be
delete-connected to another table through multiple paths with different delete
rules or with a delete rule of SET NULL.

* A referential cycle with two or more tables must not cause a table to be
delete-connected to itself. For further information on delete-connected tables,
refer to i i ints:”

For further information on referential integrity, refer to 'Elements of Referential

tniegni%gn—pa%e-d‘ ” 5

Considerations When Dropping a Primary or Foreign Key
The following restrictions apply when you drop a primary key or a foreign key
from an existing table:

* When you drop a foreign key, the corresponding referential relationship is also

dropped.

* To drop a foreign key, you must have REFERENCES privilege on the parent
table and ALTER privilege on the dependent table.

* When you drop a primary key, all the referential relationships in which the table
is a parent are also dropped.

* You must have ALTER privilege on any dependent tables.
* The dependent tables no longer have foreign keys.

* The unique index (created to enforce uniqueness in the primary key) is dropped.

In both situations, you should consider carefully the effects on your application
programs of dropping keys. The primary key of a table is intended to serve as a
permanent, unique identifier of the occurrences of the entities it describes, and
quite likely some of your programs depend on that. The foreign key defines a
referential relationship and a delete rule, and without it your programs must
enforce the constraints.

Considerations When Activating Keys and Constraints

Primary Key: To activate a primary key you must have ALTER privilege on the
parent and dependent tables and REFERENCES privilege on all dependent tables.

If any dependent foreign keys were deactivated implicitly when the primary key
was made inactive, they will be verified against the primary key. If the primary
key index can be created successfully and the dependent foreign key values are
found in the parent table’s primary key, then the primary key and the dependent
foreign keys will be activated. If any of these processes fail, none of the keys will
be activated.

Activating the primary key will neither verify nor affect the status of any
dependent foreign keys that were deactivated explicitly with the ALTER TABLE
table-name DEACTIVATE FOREIGN KEY statement.

Foreign Key: To activate a foreign key you must have ALTER privilege on the
dependent table and REFERENCES privilege on the parent table.

If a foreign key is already active, attempts to activate it are ignored. If the primary
key of the parent table referenced by this foreign key is inactive, the foreign key

Chapter 3. Maintaining Your Database 67

cannot be activated. Otherwise, the inactive foreign key will have its values
verified against its parent table. If all values can be found in the parent’s primary
key, the foreign key will be activated.

Unique Constraint: To activate a unique constraint you must have ALTER
privilege on the table. The unique constraint will be activated only if all values in
its key are unique. If there are duplicate values you must change them to be
unique before the constraint can be activated.

All: To activate the primary key, each unique constraint, and each explicitly
inactive foreign key in a table, use the ACTIVATE ALL option. You must have the
required ALTER and REFERENCES privileges.

Implications of Activating a Primary Key or Unique Constraint: Activating a
primary key or unique constraint that is already active causes the unique index
associated with the key or constraint to be reorganized. This is more efficient than
deactivating the key or constraint (which would drop the underlying index), and
then activating the key or constraint (which would re-create the underlying index).
For more information on the benefits of reorganizing an index, see the

Jl"nr VSE & VM Diagnosis Guide and Rpfprpwrpl manual.

Considerations When Deactivating Keys and Constraints

Primary Key: Deactivating a primary key drops the primary key index from the
parent table and implicitly deactivates all active dependent foreign keys. This
limits the access to all inactive dependent tables to the creator or a DBA, and allow
deferred constraint enforcement. For information on deferred constraint

enforcement see 'Enfarcing Referential Constraints’]

To deactivate a primary key you must have ALTER and REFERENCES privileges
on the parent table, and ALTER privilege on all dependent tables.

Foreign Key: To deactivate a referential constraint that is active, you must have
ALTER privilege on the dependent table and REFERENCES privilege on the parent
table.

If a foreign key has been explicitly deactivated already, attempts to deactivate it
again are ignored.

Deactivating a foreign key will make the two tables in the relationship inactive.
Access to the inactive table is limited to the creator or a DBA. For information on

the effects of deactivating a foreign key, see ’Advantages and Disadvantages of

Unique Constraints: Deactivating a unique constraint drops the unique index
associated with the constraint, causing the table to become inactive. This will limit
access to the table to its creator or a DBA.

Enforcing Referential Constraints
Two forms of enforcement are possible:
* Immediate Constraint Enforcement.

After the referential constraints have been defined, the enforcement of the
referential constraint is immediate. That is, the insert, update, and delete rules
are enforced when the INSERT, UPDATE, and DELETE statements are issued.
During immediate constraint enforcement, keys and tables are in the active state.

68 Database Administration

e Deferred Constraint Enforcement.

A table can be made inactive by deactivating its primary key, any of its foreign
keys, any of its unique constraints, or a dependent foreign key, by using the
ALTER TABLE statement. A referential relationship is between two keys in
different tables. If either a primary or foreign key is deactivated, both tables
become inactive.

When a table is in an inactive state, only the owner or someone with DBA
authority can issue Data Manipulation Language (DML) statements against it.
No one can issue DML statements (for example, SELECT or UPDATE
statements) against any table that would result in implicit access of an inactive
table to enforce referential constraints.

When the keys are activated, the constraints will be verified automatically and
the tables become active again.

Advantages and Disadvantages of Deferred Constraint
Enforcement

You may want to deactivate the enforcement of referential integrity among tables
to improve performance when you are loading data into a table.

When referential integrity is active between two tables, each INSERT statement on
a dependent table causes a check to be issued against the parent table. This check
verifies that the foreign key value being inserted has a matching primary key value
in the parent table. When data is being loaded into a dependent table, each
inserted row causes a check of the parent table; if many rows are being loaded, the
overhead of this checking becomes significant. In this case, you may improve your
overall performance of the load by deactivating any referential constraints. When
the load completes, you then reactivate them to validate the data.

If referential integrity is in effect at the beginning of an LUW, and the constraints
are deactivated, the data loaded and the constraints re-activated all within the
same LUW, then referential integrity exists at the end of the LUW as well.
However, within that LUW, referential constraints are not enforced. You could load
rows into the dependent table that had no parents when loaded. Since the database
can be in an inconsistent state during an LUW, but not at its completion, you can
use a more flexible sequence of statements within an LUW. At some point you
must load parent rows for the dependent rows into the parent table. Otherwise,
you would be unable to reactivate the referential constraint. There are some
disadvantages to deactivating a referential constraint between tables:

* Only users with DBA authority and the owner of a table can use DML
statements on that table, or tables referenced by it through an inactive referential
constraint. This is to prevent people from inserting, deleting, or updating data in
a table that they may believe to have an active referential constraint.

* When referential constraints are deactivated, any indexes created to enforce the
constraints are dropped. Dropping these indexes will invalidate any packages
that require the use of the indexes. Three major costs will be incurred on
reactivating the referential constraints:

— The underlying indexes are re-created
— Any dependent rows are checked against the referential constraints

— All invalidated packages are automatically re-preprocessed when they are first
used.

If a relatively small number of rows are added to the table by the load process,

then the costs of reactivating the referential constraints may exceed the savings
realized by deferring referential constraint enforcement on each row loaded.

Chapter 3. Maintaining Your Database 69

You should deactivate the referential constraints between tables only when large
amounts of data are to be loaded, or when a significant amount of data is to be
loaded in an order that violates the referential constraint at some point during
the data-loading operation. For example, you can load new rows into a
dependent table before loading matching rows into the parent table only while
the referential constraint is inactive.

Repairing Rows that Violate Referential Constraints
If you deactivate a referential constraint in order to load data, then receive an error
when you try to reactivate it, it could be for one of the following reasons:

* You activated a foreign key that references an inactive primary key. You must
first activate the inactive primary key.

* One or more rows in one of the tables violates the referential constraint, and you
must fix these rows. This error condition may also arise when you are creating a
referential constraint.

Note: When the above error occurs, SQLCODE -667 (SQLSTATE 22519) and the
name of the constraint in error are returned as a message token in SQLCA.

Isolating Duplicate Primary Key Values: To find duplicate primary key values,
use the statement shown below. In the example, the name of the table is P1, and
the primary key is represented by the columns PKCOL1, PKCOL2, and so on, for
all columns that form the primary key:

SELECT PKCOL1, PKCOL2, ... FROM P1

GROUP BY PKCOL1, PKCOLZ, ...
HAVING COUNT(x) > 1

You could then eliminate the duplicate values with UPDATE and DELETE
statements, or move them to a special table if you do not want to eliminate them
immediately.

To move the rows to a special table (called an EXCEPTION table in this
explanation), create a table with the same column definitions as the original table
(but with no key definitions). If there are many duplicate values, you may want to
create a nonunique index for the duplicate primary key columns in the
EXCEPTION table to improve performance.

Use the statements shown below to copy the rows with duplicate primary key
values into the EXCEPTION table (called E1 in this example):

INSERT INTO E1
SELECT = FROM P1 A WHERE EXISTS

(SELECT PKCOL1, PKCOL2, ... FROM P1 B

GROUP BY PKCOL1, PKCOLZ, ...
HAVING COUNT(x) > 1
AND B.PKCOL1
AND B.PKCOL2

)

A.PKCOL1
A.PKCOL2

To remove these rows from P1, use this statement:

DELETE FROM P1 A WHERE EXISTS
(SELECT 1 FROM E1
WHERE E1.PKCOL1
AND E1.PKCOL2
)

A.PKCOL1
A.PKCOL2

Isolating Nonmatching Foreign Key Values: Foreign key values may not match
primary key values because either of them may be wrong. This example shows
you how to move the nonmatching foreign keys to a separate table. Then, you can

70 Database Administration

determine whether the foreign or the primary keys are wrong, and fix them with
INSERT, UPDATE, or DELETE statements.

This statement retrieves nonmatching foreign key values. In the example, P1 is the
parent table; C1 is the dependent table; PKCOL1, PKCOL2, and so on form the
primary key; and FKCOL1, FKCOL2, and so on form the foreign key.

SELECT FKCOL1, FKCOL2, ... FROM C1 A
WHERE (FKCOL1 IS NOT NULL AND
FKCOL2 IS NOT NULL AND

cel)
AND NOT EXISTS
(SELECT 1 FROM P1 B
WHERE B.PKCOL1
B.PKCOL2
)

A.FKCOL1 AND
A.FKCOL2 AND

To move the rows to a special table (called an EXCEPTION table in this
explanation), create a table with the same column definitions as the dependent
table (but with no key definitions). If there are many duplicate values, you may
want to create a nonunique index for the foreign key columns in the EXCEPTION
table to improve performance. To copy the rows with nonmatching foreign keys to
the EXCEPTION table (E1 in this example), use the following statement:

INSERT INTO E1

SELECT * FROM C1 A
WHERE (FKCOL1 IS NOT NULL AND
FKCOL2 IS NOT NULL AND

)

AND NOT EXISTS
(SELECT 1 FROM P1 B
WHERE B.PKCOL1
B.PKCOL2
)

A.FKCOL1 AND
A.FKCOL2 AND

To remove the rows from C1, use the following statement:

DELETE FROM C1 A WHERE EXISTS
(SELECT 1 FROM E1
WHERE E1.FKCOL1
AND E1.FKCOL2
o)

A.FKCOL1
A.FKCOL2

Moving Data from One Application Server to Another

You can use the DBS Utility to move data from one application server to another.

Moving data from a DB2 Server for VSE & VM application server to a remote
DRDA application server requires unloading the data from the DB2 Server for VSE
& VM application server using the DBS Utility DATAUNLOAD command and
reloading the data into the other application server using the DBS Utility
DATALOAD command. Moving data from one DB2 Server for VSE & VM
application server to another local DB2 Server for VSE & VM application server
can be done as above, or by using the DBS Utility UNLOAD and RELOAD
commands.

For more information about DBS Utility commands, refer to the DBLSauzegfauls.El

& VM Database Services Utilit) manual.

Notes:

1. When moving data between two application servers, ensure that the
appropriate coded character set identifier (CCSID) conversion is done to
maintain the correct interpretation of the data.

Chapter 3. Maintaining Your Database 71

For example, an application server uses a CHARNAME value of ENGLISH (or
the CCSID equivalent), and another application server uses a CHARNAME
value of GERMAN (or the CCSID equivalent). Issue the SQLINIT EXEC (in
VM), the transaction DSQU (in CICS), or the VSE batch program ARIRBGUD
(JCL: ARISBGUD.Z) and specify a CHARNAME for the application requester
corresponding to the CHARNAME of one of the application servers (either
ENGLISH or GERMAN). Then, to ensure the integrity of the data when
moving it between these two application servers, specify the same
CHARNAME value for the application requester for both the DATAUNLOAD
(or UNLOAD) and DATALOAD (or RELOAD) operations. If ENGLISH is the
CHARNAME value specified for the application requester for the data unload
operation, then it must also be set to ENGLISH for the data load operation. You
can then perform the data unloading and reloading operations.

For more information on CCSID conversion, see the IDB2 Server for VSE Systend
manual.

If you want to move data from one DB2 Server for VSE application server to a
DB2 Server for VM application server (not using Guest Sharing), or vice versa,
using the DBS Utility UNLOAD command, you can only do so when using a
tape.

Removing Tables

To
to

remove tables from the database, use the DROP TABLE statement. For example,
remove a table called PROJECT, enter:

DROP TABLE PROJECT

Only the table’s creator or a user with DBA authority can remove the table. If you

ha

ve DBA authority, include the user ID of the owner to remove a table. For

example, to remove SMITH’s table called PROJECT, enter:

DROP TABLE SMITH.PROJECT

When a table is dropped, the row in the SYSTEM.SYSCATALOG catalog table that
contains information about it is deleted. Any other objects that depend on that
table are also dropped. As a result:

The column names of the table are dropped from SYSTEM.SYSCOLUMNS.
Any views based on the table are dropped.

Application plans using the table are invalidated.

Synonyms for the table are dropped from SYSTEM.SYSSYNONYMS.
Indexes created on any columns of the table are dropped.

Unique constraints on any columns of the table are dropped.

Referential constraints that involve the table are dropped. In the case of the
PROJECT table, it is no longer a dependent of the DEPARTMENT and
EMPLOYEE tables, nor a parent of the PROJ_ACT table.

Authorization information kept in the authorization tables is updated to reflect
the dropping of the table. Users who were previously authorized to use the
table, or views on it, no longer have those privileges.

You must commit the DROP statement on a table before you can re-create a table

of
as

72 Database Administration

the same name, or before you can create any new indexes with the same name
an index on the table being dropped.

Maintaining Dbspaces

Altering the Design of a Dbspace

You may need to change the parameters of a dbspace for any of the following
reasons:

Storage capacity (PAGES).

You may have underestimated the storage required by the tables in the dbspace,
and need to increase its potential size (in pages).

Storage pool assignment (STORPOOL).

You may want to change the storage pool assignment, which determines
whether a dbspace is recoverable or nonrecoverable.

Type (PUBLIC or PRIVATE).

If the tables in a PRIVATE dbspace are to be shared by many users, then you
should consider making it PUBLIC.

Header Space (NHEADER).

At the front of every dbspace are one to eight header pages, which contain
control information on the tables and indexes stored there. You may need to
increase the number of these pages.

Index Space (PCTINDEX).

If your dbspace contains more indexes than expected, you may need to increase
the index space to accommodate them.

Free Space (PCTFREE).

You may want to change the percentage of each data page reserved for updates
of rows resulting in larger rows that cannot be placed in the original locations in
the page.

Lock Size (LOCK).

For PUBLIC dbspaces, you may change the locking level. A lower lock level
allows more users to access the same table at the same time; however, there is a
cost because of lock acquisitions, an increased possibility of lock escalations. If
lock escalation occurs frequently, you may want to increase the locking level.
Refer to the IDB2_Server for VSE & VM T)iagnnqiq Guide and Referencd manual. for
more information about lock escalations.

For a review of these parameters, see [!/Acquiring Dbspaces” on page 2.

Changing the PAGES, STORPOOL, DBSPACE Type, NHEADER,
or PCTINDEX

There is no statement to change these five parameters of a dbspace. If you need to
change any of them, you must move all the data in the current dbspace to another
dbspace that has the required characteristics. To do this:

A s

©oN®

UNLOAD the current dbspace.

DROP the current dbspace.

ACQUIRE a new dbspace with the required characteristics.

RELOAD the new dbspace.

Drop the table with field procedures, recreate it to include the field procedures,
and reload the table using the 'PURGE’ parameter.

CREATE all indexes for the tables involved.

Recreate all referential constraints.

GRANT all authorizations for the tables involved.

CREATE all views relating to the tables involved.

Chapter 3. Maintaining Your Database 73

To identify the tables, views, authorizations, and referential constraints related to
the dbspace, query the system catalog.

To identify the tables with field procedures, query the SYSFILEDS and
SYSFPARMS tables.

Example: To increase the storage capacity of a PRIVATE dbspace called
SMITH.SAMPLE to 2 048 pages with defaults for the other dbspace parameters,
use the following SQL statements and DBS Utility commands:

CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;

UNLOAD DBSPACE (SMITH.SAMPLE) OUTFILE (TEMPFIL);

DROP DBSPACE SMITH.SAMPLE;

ACQUIRE PRIVATE DBSPACE NAMED (SMITH.SAMPLE) (PAGES=2048);

RELOAD DBSPACE (SMITH.SAMPLE) NEW INFILE(TEMPFIL);

Invoke the DBS Utility, as usual, to process the above statements and commands
(see the manual for details).

Indexes, views, authorizations, and referential constraints must be recreated for all
the tables in the dbspace.

Changing the PCTFREE and LOCK Parameters
To change these parameters, use the ALTER DBSPACE statement. You must have

DBA authority or (in the case of a PRIVATE dbspace) be the owner of the dbspace.

Example: Change the PCTFREE parameter to 10 for the dbspace called
MYDBSPACE. type:

ALTER DBSPACE MYDBSPACE (PCTFREE = 10)

To change both the PCTFREE and the LOCK parameters at the same time, type:
ALTER DBSPACE MYDBSPACE (PCTFREE = 10, LOCK = PAGE)

Reorganizing a Dbspace to Free Storage Pool Pages

Reorganizing a dbspace releases pages in it back to its storage pool. There are two
reasons why you might want to do this:

* You are unable to drop a table in a dbspace when you issue a DROP TABLE
statement and you receive a message that the storage pool is full. This occurs
because there are not enough shadow pages in the storage pool to allow the
database manager to remove all the rows for that table from the dbspace. For
information on shadow pages, see the IDB2 Server for VSE & VM Diagnosis Guidd

manual.

After the database has been restarted (with STARTUP=W), there will be a row in
the catalog table SYSDROP for the dropped table. Any subsequent DROP TABLE
statements will cause SYSDROP to be processed. When the database manager
processes the row for the dropped table, it will end and issue a message
indicating that the storage pool is full unless you take other steps to provide
sufficient pages in the storage pool for shadow pages. You can provide sufficient
pages in the storage pool by adding dbextents to the storage pool, or by
reorganizing the dbspace where the table resides.

If reorganizing the dbspace does not provide sufficient shadow pages to allow
you to drop the table, then you must add dbextents to the storage pool. For
information on adding dbextents, see the IDB2 Server for VM Systent
Administration or [DB2_Server fnr VSE System Admmmtw:fmnl manual.

* You want to release unused pages back to the storage pool.

74 Database Administration

Once a page is allocated to a dbspace, it remains allocated until you drop the
dbspace. This can cause the storage pool that contains the dbspace to become
short on storage. For example, if a large table occupied a dbspace, and has been
dropped, all pages used to store the rows for that table are still allocated to the
dbspace. To determine whether many empty pages are allocated to a dbspace,
enter the SHOW DBSPACE operator command.

To reorganize a dbspace, follow these steps:

Unload all tables in the dbspace, except those that should be dropped.
Drop the dbspace (see note 1 below).

Reacquire the dbspace.

Reload the tables (see note 2 and 4 below).

Re-create all indexes and unique constraints for all tables.

Grant all authorizations for the tables again.

Re-create all referential constraints for tables (see note 3 below).
Re-create all views that reference the tables.

ONOOAOND =

Notes:

1. Before dropping the dbspace, obtain the information necessary to perform steps
5, 6,7, 8, and note 4 below from the catalog tables.

2. The RELOAD TABLE commands create all tables by default with the user ID of
the person who enters the commands, usually the DBA. If you want a table to
retain the user ID of its original owner, specify this user ID in the table
parameter of the RELOAD TABLE command. When performing this procedure,
use the NEW option on the RELOAD TABLE and RELOAD DBSPACE

commands. See the IDB2 Server for VSF & VM Datahase Sernices 1tilityf manual

for more details.

3. If a table has referential constraints, these will be lost when the table is
unloaded and reloaded. To re-create any foreign keys, primary keys, unique
constraints, or primary keys that have dependent foreign keys in tables that
reside in other dbspaces, use the ALTER TABLE statement.

4. If a table has field procedures, they will be lost when the table is reloaded

using the 'NEW’ option. To include the field procedures, drop the table,
recreate it, and reload the table using the 'PURGE’ option.

Removing Dbspaces

To drop the contents of a dbspace and return it to the available state, issue the
DROP DBSPACE statement. Dbspaces that are available can then be reacquired,
using the ACQUIRE DBSPACE statement.

When a dbspace is dropped, all tables in it are also dropped. When a table is
dropped, all authorizations, views, referential constraints, unique constraints, and
field procedures relating to it are dropped.

If a dbspace contains only one table, it is more efficient to drop and then reacquire
the entire dbspace later, than to drop the table.

The DROP DBSPACE statement may be carried out on both PUBLIC and PRIVATE
dbspaces. You must have DBA authority to delete a dbspace or (in the case of a
PRIVATE dbspace) be the owner. No user, not even one with DBA authority, can
delete the dbspace that contains the system catalog.

Example
To remove your own PRIVATE dbspace named MYDBSPACE, type:

DROP DBSPACE MYDBSPACE

Chapter 3. Maintaining Your Database 75

VSAM Restrictions
VSAM defines storage for DB2 Server for VSE databases but it does not manage
this storage. VSAM commands such as EXPORT, IMPORT, REPRO, and VERIFY
should never be used on the DB2 Server for VSE database. If you receive an error
message indicating an OPEN error (RC=74), ignore it and do not run VERIFY.

Reorganizing Indexes on the Catalog Tables

The catalog indexes need to be reorganized when indexes on the catalog tables
become fragmented, and the database manager can no longer insert entries into the
catalog dbspace.

Index fragmentation often happens in an application development environment.
Application development requires frequent preprocessing; and each time a
program is preprocessed, many entries are added to the catalog tables. It may not
be possible to plan properly for the range of index keys that might be created.

Index fragmentation can lead to the inefficient use of the index pages of the catalog
dbspace (SYS0001). If most of the index pages in your catalog dbspace are
occupied, fragmentation is a likely cause. To determine the number of index pages
occupied in the catalog dbspace, enter the SHOW DBSPACE command. (The
number of this catalog dbspace is 1; so you type SHOW DBSPACE 1.) If there is a
high percentage of occupied pages, consider running the catalog index
reorganization utility, which optimizes the indexes as they exist on the catalog
tables.

To run the catalog index reorganization utility in a VSE environment, start the
database in single user mode with STARTUP=I specified. w shows an
example of the job control statements.

// JOB REORG

// EXEC PROC=ARIS71SL

// EXEC PROC=DBNAMEO1

// EXEC PGM=ARISQLDS,SIZE=AUTO,PARM="'SYSMODE=S,STARTUP=I,PARMID=name"
/*

/&

Figure 20. Example Job Control to Reorganize the Catalog Indexes

Notes:

1. For ARIS71SL, substitute your procedure or job control that identifies the DB2
Server for VSE service libraries. The catalog index reorganization utility uses
the ARISCAT source member.

2. For DBNAMEQ1, substitute your procedure or job control that identifies the
database whose catalog indexes you wish to reorganize.

3. The initialization parameters SYSMODE=S and STARTUP=I are required. You
can also supply any of the following initialization parameters (PARMID is
included in the example in L):

PARMID=name
DBPSWD=password
NPAGBUF=n
NDIRBUF=n
NCSCANS=n
LOGMODE=YIAILIN
CHKINTVL=n

76 Database Administration

SLOGCUSH=n
ARCHPCT=n
SOSLEVEL=n
CHARNAME=name
DSPLYDEV=LICIB
DUMPTYPE=PI|FIN
TRACDBSS=nnnnnnnnnnn
TRACRDS=nnnnnn
TRACCONV=n
TRACDSC=nn
TRACBUF=n
TRACSTG=n
LTIMEOUT=n
SYNCPNT=YIN

See the IDB2 Server for VSE System Administratiod manual for a description of

initialization parameters.

To avoid the processing involved in switching log modes, use the same
LOGMODE that you normally use.

To run the catalog index reorganization utility in a VM environment:
1. Log on to the virtual machine that owns the database.
2. Get read access to the service minidisk (ACCESS 193 V).

3. Invoke the SQLCIREO EXEC. This EXEC resides on the service minidisk. It
invokes the DB2 Server for VM application server in single-user mode with
STARTUP=I. See 'SQLCIREQ EXEC” an page 249 for its syntax.

Because the catalog index reorganization utility runs in single user mode, the only
way to trace it is with the TRACRDS, TRACDBSS, TRACDSC, and TRACCONV
initialization parameters. The TRACE operator command cannot be used in single
user mode.

Chapter 3. Maintaining Your Database 77

78 Database Administration

Chapter 4. Supporting Your Users

As the database administrator, you provide the support that users need to gain
access to your DB2 Server for VSE & VM application server and the data it
manages.

This chapter describes the tasks involved in supporting new users, and removing
the data and access of those who have left.

Adding a New User
To a DB2 Server for VSE & VM Application Server:

The following are the steps involved in adding new users to DB2 Server for VSE &
VM application servers.

New users need CONNECT authority on the application server (alternatively, this
may be granted to ALLUSERS). To add a new user to the system, perform the
following tasks:

1. In VM, define the user’s virtual machine as a DB2 Server for VM user machine.
This involves making VM directory changes and is discussed in the

ffor VM System Administratiod manual.

2. Setup the user as a new ISQL user.

3. Grant the user an appropriate level of authority to access data and use
resources.

4. Specify the default application server.
5. If required, load initial tables.

6. Ensure that the new user obtains adequate system training.
To a Non-DB2 Server for VSE & VM Application Server:

To enable a user to access a non-DB2 Server for VSE & VM application server
perform the following tasks:
Notes:

1. In VM, if the user is not already a DB2 Server for VM user, define the user’s
virtual machine as a DB2 Server for VM user machine. This involves making

VM directorﬁ changes and is discussed in the DB2 Sexwer for VM Systeul

manual.

2. Arrange system-level sign-on authority with the system administrator of each
remote application server.
Note: A new user ID and password may be required at some of the remote
application servers, depending on the LU 6.2 security level that is required for
the connection. See the Distributed Relational Database Connectivity Guide manual.
3. In VM, setup a new entry in the CMS Communication Directory (COMDIR) for

the remote application server (if it has not already been done), and make the
COMDIR accessible to the user.

In VSE, set up a new entry in the DBNAME Directory for the remote
application server (if it has not already been done).

© Copyright IBM Corp. 1987, 2000 79

4. If the user will be accessing an application server through ISQL, then setup the
user as a new ISQL user. Make sure that ISQL has been installed on the remote
application server.

5. Grant the user (or arrange to have granted) the appropriate level of authority
to access data and use resources at each of the remote application servers.

6. Specify the default application server.

N

If required, load initial tables.

8. Ensure that the new user obtains adequate training on the remote application
server and on how to access it from the local DB2 Server for VSE & VM
application requester.

Setting Up New ISQL Users

To set up a new ISQL user to access the resources of an application server, run the
SQLDBA.ARINEWUS routine supplied by IBM and previously loaded into the
SQLDBA.ROUTINE table during database generation.

Note: The ARINEWUS routine is intended for DB2 Server for VSE & VM
application servers only. If you need to add a new ISQL user to a non-DB2
Server for VSE & VM application server create your own routine using
ARINEWUS as a sample. This routine uses a CONNECT statement
containing an IDENTIFIED BY clause, as well as a GRANT CONNECT
statement. These statements are unique to DB2 Server for VSE & VM
application servers and may not be supported by non-DB2 Server for VSE &
VM application servers.

Start ISQL and connect as SQLDBA (or some other user ID with DBA authority),
then type:

RUN SQLDBA.ARINEWUS (newuser newuserpw)

For newuser, specify:
* In VM, the CP LOGON user ID (the name of the user’s virtual machine) or,
e In VSE, the user’s CICS sign-on ID.

For newuserpw, specify a password for the new user.

The ARINEWUS routine does the following;:
e Issues an ISQL SET RUNMODE CANCEL command.
e Issues an ISQL SET AUTOCOMMIT OFF command.

* Grants CONNECT authority to the new user. The routine parameters newuser
and newuserpw are used on the CONNECT statement.

* Creates a copy of a set of sample tables for the user, and grants him or her full
authority on them. These tables are named:
newuser. DEPARTMENT
newuser EMPLOYEE
newuser PROJECT
newuser. ACTIVITY
newuser. PROJ_ACT
newuser. EMP_ACT
newuser.CL_SCHED
newuser IN_TRAY

80 Database Administration

* Copies data from the sample tables owned by user ID SQLDBA into the new
user’s sample tables. (Only the rows needed to duplicate the examples shown in
the DB2 Server for VSE & VM Interactive SQI. Guide and Referencd manual are
copied.)

* Creates indexes on the sample tables.

* Creates and loads an ISQL routine table (newuser.ROUTINE), which includes an
ISQL PROFILE routine, as follows:

NAME SEQNO COMMAND REMARKS
PROFILE 10 SET VARCHAR 35 NULL
PROFILE 20 SET CASE UPPER NULL

* Creates an index on the routine table.
* Issues an ISQL SET AUTOCOMMIT ON command.

When you run ARINEWUS, you will be prompted to enter either COMMIT or
ROLLBACK. If no errors occurred, enter COMMIT; otherwise, enter ROLLBACK.

The ARINEWUS routine sets up the new user only in the application server that
you are connected to when you invoke the routine. If a user is to have access to
more than one application server, connect to these other application servers and
run ARINEWUS again for each one.

Example

A new user with a user ID of ALEX and a password of ALEXPW is defined. Alex
does application development work and needs access to two application servers:
PROD and TEST.

Do the following in a VM system:
1. Log on to your own user machine, and IPL CMS.

2. Issue SQLINIT DBNAME(PROD). (Assume that the PROD application server is
currently being accessed by some database machine in multiple user mode.)

3. Start the ISQL program.

4. Connect to the PROD application server under a user ID with DBA authority.
In the example below, the user ID is SQLDBA. The step is optional if you
already have DBA authority. Enter:

CONNECT SQLDBA IDENTIFIED BY sqldbapw

Assume you know the password of the SQLDBA user ID for both application
servers

5. Start the ARINEWUS routine:
RUN SQLDBA.ARINEWUS (ALEX ALEXPW)

6. Connect to the TEST application server under a user ID with DBA authority:
CONNECT SQLDBA IDENTIFIED BY sqldbapw TO TEST

7. Start the ARINEWUS routine:
RUN SQLDBA.ARINEWUS (ALEX ALEXPW)

8. Exit from the ISQL program.

Do the following in a VSE system:

1. Ensure that the application servers PROD and TEST have been started with the
DLBL and LIBDEF statements required for accessing the application servers.
Also ensure that the CICS system has been started and initialized for DB2
Server for VSE on-line access to both PROD and TEST.

Chapter 4. Supporting Your Users 81

2. Start the ISQL program.

3. Connect to the PROD application server under a user ID with DBA authority.
In the example below, the user ID is SQLDBA. The step is optional if you
already have DBA authority. Enter:

CONNECT SQLDBA IDENTIFIED BY sqldbapw TO PROD

Assume you know the password of the SQLDBA user ID for both application
servers

4. Start the ARINEWUS routine:
RUN SQLDBA.ARINEWUS (ALEX ALEXPW)

5. Connect to the TEST application server as SQLDBA (or with any ID that has
DBA authority).

CONNECT SQLDBA IDENTIFIED BY sqldbapw TO TEST
6. Start the ARINEWUS routine:

RUN SQLDBA.ARINEWUS (ALEX ALEXPW)
7. Exit from the ISQL program.

Alex is now set up to use both application servers.

If you want to review the contents of the ARINEWUS routine before you invoke it,
issue the following SELECT statement on either application server:

SELECT COMMAND FROM SQLDBA.ROUTINE WHERE NAME = 'ARINEWUS'

Authorizing Access

Once you have run ARINEWUS, your new user has CONNECT authority to the
application server. This is the lowest level of authority. To decide if this is the

appropriate level for this user, and to change it if not, see !‘Chapter 5 Providing

After providing new users with CONNECT authority, you can do any of the
following:

* Acquire PRIVATE dbspaces for them so that they can create their own tables
* Grant them RESOURCE authority

* Grant them DBA authority

* Ensure that they are granted privileges on other users’ tables and views

* Create new views on tables to restrict their access to data that is appropriate for
them to see.

Specifying a Default Application Server in VM

Before VM users can access an application server, a default application server
needs to be established. Users must process the SQLINIT EXEC to specify the
application server they intend to access. For example, if the user intends to access
the TEST application server, he or she must enter:

SQLINIT DBNAME(TEST)

Users only need to re-process the SQLINIT EXEC if they want to explicitly change
the current SQLINIT options. The most current SQLINIT information is stored on
each user’s A-disk. For more information, see L ”

82 Database Administration

Loading Initial Tables

New users likely have existing files of data that they want to store in the database.
If the files are short, the data they contain can be typed in at the terminal using
ISQL statements. This method, however, is not suitable for large files. Here, you
can use the DBS Utility to transfer data into a database. For information on how to
use the DBS Utility, see L i i z

Training New Users

It is your responsibility to assist new users with the DB2 Server for VSE & VM
database manager, and to deal with their questions and problems. Ensuring new
users are adequately trained will reduce your problem-solving duties.

Removing Users from an Application Server

When users leave your area, both their access to the application server and any
unwanted data should be removed. You should try to get people to remove their
own data before they leave; however, you will often have to do so yourself.

The following steps describe how to remove a user’s access to an application
server. If a user was using multiple application servers, you must perform this
process for each server. You must have DBA authority to perform these steps.

If you have DBA authority, you can revoke a user’s authority to access the
application server at any time by issuing the REVOKE CONNECT statement listing
the user(s) affected. For example:

REVOKE CONNECT FROM JOHN,KAREN,ALICE

Revoking a user’s CONNECT authority prevents that user ID from accessing the
application server. This action only removes the user IDs from the
SYSTEM.SYSUSERAUTH catalog table; it does not affect any objects (for example,
tables) in the database which those users may have created, nor does it affect any
privileges that may have been granted to them.

Example

An employee whose user ID was SMITH has left the company. To remove
SMITH’s database objects, do the following:

1. Determine the names of PRIVATE dbspaces owned by SMITH. Type:

SELECT DBSPACENAME FROM SYSTEM.SYSDBSPACES
WHERE OWNER='SMITH'

2. Determine the names of tables owned by SMITH. Type:

SELECT TNAME,DBSPACENAME FROM SYSTEM.SYSCATALOG
WHERE CREATOR='SMITH'
AND TABLETYPE='R'

This command displays the names of the tables that SMITH created, and the
dbspaces where they were created. The TABLETYPE="R’ (R stands for real
table) indicates that you want to see only the tables at this point; you do not
yet want to see any views that SMITH defined. Record those tables that are in
PUBLIC dbspaces for later use in step 8.

3. Determine whether any of SMITH’s tables participate in a referential structure
that is not wholly owned by SMITH.

SELECT TNAME, TCREATOR, REFTNAME, REFTCREATOR FROM SYSTEM.SYSKEYS
WHERE ~ (TCREATOR -= 'SMITH' AND REFTCREATOR = 'SMITH')
OR (TCREATOR = 'SMITH' AND REFTCREATOR -= 'SMITH')

Chapter 4. Supporting Your Users 83

10.

11.

84 Database Administration

This command displays tables created by others that reference tables created
by SMITH, as well as tables created by SMITH that reference tables created by
others. Make note of the tables you want to save.

Determine if the PRIVATE dbspace owned by SMITH contains any tables that
were created by other users. Remember that when you drop a dbspace, you
drop all tables that exist in it, whether they were created by the owner or by
other users.

For each PRIVATE dbspace owned by SMITH, type:

SELECT TNAME,CREATOR FROM SYSTEM.SYSCATALOG
WHERE CREATOR-='SMITH'
AND DBSPACENAME='dbspacename'
AND TABLETYPE='R'

This command lists the names of all tables in dbspacename that SMITH did not
create, along with the names of who created them. The TABLETYPE="R" (R
stands for real table) indicates that you want to see only the tables at this
point, not views.

Based on the information you acquired in the last three steps, transfer any
tables that you want to save. If any of these tables participate in referential
structures, the referential constraints must be rebuilt to reflect the changed
ownership of the tables.

There are many ways to transfer (copy) tables to another dbspace. One way is
to first create a new table with the same format in a different dbspace; then
use an INSERT with Subselect statement to retrieve data from the original
table and insert it into the new table.

There are more sophisticated techniques available using the DBS Utilitﬁ For

information, refer to Maintaining Tables” on page 59 or to the
W/SE & VM Database Services 11tilit)} manual.

Copy any programs that you want to save that currently reside in SMITH's
PRIVATE dbspaces into another dbspace.

Drop the PRIVATE dbspaces owned by SMITH, which you determined in step
1, by issuing the DROP statement:

DROP DBSPACE SMITH.dbspacename
Drop any of SMITH’s tables you no longer need, as determined in step 2. All
associated indexes and views are also dropped.

DROP TABLE SMITH.tablename
Drop any of SMITH's views that were defined on other users’ objects in
PUBLIC dbspaces or in other users’ PRIVATE dbspaces. To get the names of
those views from the catalog tables, type:

SELECT VIEWNAME FROM SYSTEM.SYSVIEWS
WHERE VCREATOR='SMITH'

DROP VIEW SMITH.viewname

Drop any of SMITH’s indexes that were defined on other users’ objects in
PUBLIC dbspaces or in other users’ PRIVATE dbspaces. To get the names of
those indexes from the catalog tables, type:

SELECT INAME FROM SYSTEM.SYSINDEXES
WHERE ICREATOR='SMITH'
DROP INDEX SMITH.indexname

Drop any of the packages created by SMITH. To display the names of those
packages from the catalog tables, type:

12.

13.

14.

15.

16.

SELECT TNAME FROM SYSTEM.SYSACCESS
WHERE CREATOR='SMITH'

DROP PACKAGE SMITH.packagename
Delete any synonyms created by SMITH:
DELETE FROM SYSTEM.SYSSYNONYMS
WHERE USERID='SMITH'
Delete any ISQL stored queries created by SMITH.
To determine these queries, type:

SELECT STMTNAME FROM SQLDBA."STORED QUERIES"
WHERE CREATOR='SMITH'

Then issue a single DELETE statement:

DELETE FROM SQLDBA."STORED QUERIES"
WHERE CREATOR='SMITH'

It is helpful if departing employees remove their own data from the database.
Only someone with DBA authority can delete stored queries in the above
manner; others use the ISQL ERASE command. For example, to delete a
stored query called MYQUERY, SMITH would start ISQL and type:

ERASE MYQUERY
Revoke any privileges granted to SMITH. To get the names of all users who
granted privileges to SMITH, type:

SELECT * FROM SYSTEM.SYSTABAUTH
WHERE GRANTEE='SMITH'

SELECT * FROM SYSTEM.SYSPROGAUTH
WHERE GRANTEE='SMITH'

Contact these users and have them revoke all of SMITH’s privileges. Or, if a
user is not available, you can explicitly connect with his or her password to
revoke them yourself.

In VM, remove any IUCV links.

If SMITH’s VM directory contains IUCV entries or the MAXCONN OPTION
for the database resources, these entries should be removed, as well as access
to the 195 production disk.

Remove Access from VSE guests.

If SMITH accessed a DB2 Server for VM application server from a VSE guest,
and used the CICS system, you should remove the transaction IDs used by
SMITH in the CICS system. For more information on transaction IDs, see the
IDB2 Server for VM System Administratiod manual.

Chapter 4. Supporting Your Users 85

86 Database Administration

Chapter 5. Providing Security

The database manager controls security with authorities and privileges granted to
users (identified by their user IDs). Authorities limit people’s use of DB2 resources
(for example, whether they can create tables in PUBLIC dbspaces or acquire
PRIVATE dbspaces), while privileges provide security for existing objects in the
database (tables, views, indexes, and packages).

All privileges and authorities held within an application server are recorded in the
catalog tables.

To access and perform SQL requests for an application server, users (ISQL users,
DBS Utility users, and application programs) must be allowed to CONNECT to the
application server implicitly (without a user ID or password), or explicitly (with a
user ID and its password). With either type of connecting, the user can work with
utilities, programs, and the data in the database based on pre-established
authorities. Connecting is much the same as logging on to the VM or VSE system.

This chapter discusses the following topics:
1. Authorities.

This section discusses the four types of authorities and how they can be given
(granted) to or taken away (revoked) from users.

2. User Privileges.

This section describes how privileges can be used to share or restrict access to
the data in tables or views.

3. Connecting to an Application Server

This section discusses how a user can connect to an application server. Users
must connect to an application server before they can use it.

4. Restricting Access Using Views.
This section discusses the use of views to restrict access to tables.
5. Changing User Passwords.

This section describes how you can change the password of your DB2 Server
for VSE & VM users.

6. Securing the Database Catalog Tables.
This section discusses how you can limit access to the catalog tables.
7. Security Audit Trace.

This section describes the two ways that you can audit security: by querying
the catalog tables or by having the database manager do a security audit trace.

Authorities

When a database is initially generated, there is only one user ID defined for it:
SQLDBA. This user ID belongs to the database administrator (DBA). Only a DBA
can grant or revoke authorities to other users.

Types of Authorities

There are four types of authority: CONNECT, RESOURCE, SCHEDULE, and DBA.

© Copyright IBM Corp. 1987, 2000 87

Authorities are hierarchical, with DBA the highest, RESOURCE and SCHEDULE
the next, and finally CONNECT. If you have a higher authority, then you also have
the authority below it. For example, if you are given DBA authority, you have
RESOURCE, SCHEDULE, and CONNECT authority as well. If you are given
RESOURCE authority, you also have CONNECT authority but not SCHEDULE or
DBA authority.

CONNECT Authority
This authority enables a user to access a particular application server, and to
exercise all privileges that have been granted to PUBLIC. These privileges are

discussed in detail in LEum.l.egesLan_pa.geﬁd

A user with CONNECT authority can access data in one of two ways:

* By owning a PRIVATE dbspace, in which he or she can create tables and load
and access them. A user with DBA authority must acquire the dbspace for this
user.

* By receiving access privileges (such as SELECT, INSERT, and UPDATE) for

tables created by other users. See L]Zmuleges_an_pa.ge_‘).ﬂ

RESOURCE Authority
Users with this authority can acquire PRIVATE dbspaces for themselves, and create

tables both there and in PUBLIC dbspaces.

A DBA automatically possesses RESOURCE authority and the ability to grant it to
users. You can give it to just a few users to exercise tight control, or you can
extend it to any number. If you want to allow someone to create tables and you
must also control how much resources are used, acquire a PRIVATE dbspace for
that user rather than granting him or her RESOURCE authority. Because you
acquire this dbspace yourself, you control its size and the amount of resources
used. This technique is sometimes called “CREATE TABLE authority”, but this
term is misleading because there is no GRANT CREATE TABLE statement.

SCHEDULE Authority
The function associated with SCHEDULE authority is not available in the SQL

statement set. Therefore, DB2 Server for VSE & VM users cannot use it and
SCHEDULE authority is of no direct benefit to DB2 Server for VSE & VM users.

SCHEDULE authority is useful only to online resource managers that manage
subsystems of multiple second-level users. The only current example is the DB2
Server for VSE online resource adapter that manages secondary users through the
CICS subsystem. The CICS subsystem is a first-level user of the database manager.
The use of SCHEDULE authority in a CICS subsystem is discussed here.

The online resource adapter resides in each CICS partition. It initializes the
communication links between the CICS partition and the local DB2 Server for VSE
database manager, or the DB2 Server for VM database manager accessed through
guest sharing, when the operator executes the CICS CIRB transaction or the CICS
CIRA transaction. It also does a CONNECT on each link, specifying DBDCCICS as
the user ID and SQLDBAPW as the password This user ID and password can be
overridden. Refer to - for details.

The online resource adapter in each CICS partition can connect to many

application servers. The DBNAME parameter of the CIRB or CIRA transaction

specifies the application server to which you want to connect. If DBNAME is not

spec1f1ed on the CIRB transactlon the default application server is used. Refer to
” for information on

88 Database Administration

DBNAME default rules. All online applications in a CICS partition can access the
application servers connected with the online resource adapter.

The schedule function comes into play when a CICS transaction uses SQL
statements without preceding them with a CONNECT statement’ on a local
application server or on a VM application server accessed through guest sharing.
When this occurs, the resource adapter sends a schedule request to the database
manager. This request travels on the link being used by the transaction. A schedule
request is similar to a CONNECT, but 1t has no password The resource adapter
determines the user ID as described in Z

The schedule function allows dynamic changing of the current user ID on a link to
the database manager without requiring a password. For this to occur, the initial
user of the link must have SCHEDULE authority. For a CICS session, the initial
user of the link is the unique application name (APPLID) assigned to the CICS
partition in the DFHSIT table. The default APPLID name is DBDCCICS. This user
ID represents the entire CICS subsystem. The database administrator must grant
each APPLID SCHEDULE authority on the application server so that the links to
the database manager can be shared implicitly by multiple transactions. If a CICS
partition is to connect to more than one local application server, the APPLID for
the partition must be granted SCHEDULE authority on each application server.

Transactions that do not issue CONNECT statements' receive their connection to
the database manager implicitly through the CICS subsystem. The assumption is
made that the CICS subsystem checked the user’s identification and password
when the user began the CICS session, so the database manager does not need to
do further checking. On the other hand, each transaction is subject to all the other
security controls. The user ID received by the database manager with the schedule
request is the basis for this transaction user’s authorization.

Because CONNECT authority is not needed for CICS transactions, the user IDs
that they use need not appear in the SYSTEM.SYSUSERAUTH catalog table. This
catalog table does not necessarily have an entry for every user. Second-level users
can access all PUBLIC data and may be granted access to PRIVATE data as well.
Although a user may not be given CONNECT authority explicitly, that user can be
granted RESOURCE authority or SCHEDULE authority and will receive
CONNECT authority as a result.

Note: This discussion applies only to transactions that do not issue a CONNECT
statement. When a transaction does issue a CONNECT statement!, it
appears as an ordinary user, and the schedule function is not used.

A user possessing DBA authority possesses SCHEDULE authority and the ability
to grant SCHEDULE authority to other users.

To grant SCHEDULE authority, use a statement such as:
GRANT SCHEDULE TO dbdccics IDENTIFIED BY password

If the user’s password has been entered previously and is not to be changed, you
can omit the “IDENTIFIED BY password” portion of the GRANT statement. Refer

to L'CICS Transaction Environment” on page 101 for details.

1. The CONNECT statement with the following format: CONNECT userid IDENTIFIED BY password.

Chapter 5. Providing Security 89

DBA Authority

Authorization mechanisms do not apply to users with this authority. They can
perform all operations on all tables, can run all programs, and are the only ones
who have the following privileges:

* Grant and revoke SCHEDULE, CONNECT, RESOURCE, and DBA authority
to/from other users. All DBAs at a site have equal authority, and can grant and
revoke DBA authorities to each other. Because no user may revoke his or her
own authority, there will always be at least one DBA (not necessarily the original
one).

* Acquire a PUBLIC dbspace.

* Alter or drop any PUBLIC dbspace except for system dbspaces (those whose
names begin with “SYS”).

* Acquire, alter, or drop a PRIVATE dbspace or create, alter, or drop a table, index,
synonym or view, in the name of another user.

* Drop a package belonging to another user.

¢ Lock another user’s PRIVATE dbspace or any PUBLIC dbspace (except system
dbspaces).

* Lock another user’s table (except the catalog tables).
* Issue a COMMENT statement on a table or field owned by another user.
* Create a table in a system dbspace.

* Issue Data Manipulation Language statements directly against an inactive table.
See L i i intg”

* Modify the contents of a catalog table with a regular UPDATE statement. Rows
cannot be INSERTed or DELETEd. Because all access to the data in the database
depends on the correctness of the catalog tables, manual updating of catalog
tables should be done only under extraordinary circumstances. Only a small set
of catalog table columns can be updated. These are listed in the m
WVSE & VM SQI Rpfprpnrd manual.

* For Extended Dynamic Statements:

— Drop another user’s program (package) or drop a statement from that
package.

— Use PREPARE, DESCRIBE, EXECUTE, or DECLARE CURSOR for a statement
residing in another user’s package.

No user, including those with DBA authority, can drop a catalog table.

As DBA, you may perform certain operations that are otherwise unauthorized, but
may not grant or revoke these operations. For example, you may update a
particular table that you do not own explicitly, but you may not grant or revoke
this privilege to others.

The functions enabled by DBA authority are potentially quite dangerous to the
integrity of the database if applied by an untrained user. Therefore, you should
carefully control who receives this authority, as well as being very cautious in the
use of this special authority yourself.

Granting Authorities

To grant any authority (SCHEDULE, CONNECT, RESOURCE, or DBA) to other
users of an application server, issue the GRANT statement. You must have DBA

authority on that application server. For information on the syntax of this
statement, see the DB2_Serner fmf VSE & VM SQIL Rpfpvaml manual.

90 Database Administration

Granting someone a higher authority automatically gives them the lower authority
as well, regardless of whether these are specified on the GRANT statement. Thus, a
user who is granted RESOURCE authority will also have CONNECT authority;
one who has DBA authority also has CONNECT, RESOURCE, and SCHEDULE
authority.

If you are granting authority to a user at a remote system, the authorization-name
specified in the GRANT statement must be the authorized user ID of the user on
the system where the authority is being granted, not that on the system where the
request originates.

Examples

Granting authority to a single user: To give the user ID MIKE CONNECT
authority to the application server, enter:

GRANT CONNECT TO MIKE IDENTIFIED BY mikespwd

If the user MIKE intends to connect to the application server implicitly, you can
omit his password:

GRANT CONNECT TO MIKE

Granting authority to many users: To give the user IDs MIKE and JOHN
RESOURCE authority to the application server, enter:

GRANT RESOURCE TO MIKE,JOHN IDENTIFIED BY mikespwd,johnspwd

If MIKE intends to connect to the application server implicitly, you may omit his
password and just enter:

GRANT RESOURCE TO JOHN IDENTIFIED BY johnspwd
GRANT RESOURCE TO MIKE

Granting CONNECT authority to all users: The following statement enables all
users to connect to the application server implicitly:

GRANT CONNECT TO ALLUSERS

Users who wish to connect explicitly to the application server must be given
CONNECT authority with a password. In VM, the ability to communicate with a
DB2 Server for VM database manager depends on VM directory statements and is
discussed in the [DB2_Server for VM System Administratiod manual.

Granting Access to VSE Guests
When VSE/AF runs as a guest operating system under the VM/ESA operating

systems, VSE users and programs can optionally access a DB2 Server for VM
application server. A VSE guest who wishes to do this must obtain authorization.
On the GRANT statement, specify a VM user ID that is authorized to run the VSE
subsystem.

The subsystemid follows the same general rules for naming data objects as the user
ID, and cannot contain lowercase characters, special characters, or DBCS

characters.

Example: To give the CICS subsystem MYCICS SCHEDULE authority, enter:
GRANT SCHEDULE TO MYCICS IDENTIFIED BY cicspw

where cicspw is the current password set for the subsystem.

Chapter 5. Providing Security 91

Revoking Authorities

To revoke authorities previously granted to users, issue the REVOKE statement.
You must have DBA authority. For information on the syntax of this statement, see

the IDB2 Sexver for VSE & VM SQI Referencd manual.

Revoking a user’s CONNECT authority does not automatically cause any objects
owned by that user to be dropped, nor does it revoke any pr1v1leges the user has
on those ob]ects For information on how to drop objects, see

7

If a user’s CONNECT authority is revoked, all other authorities are lost. For
example, if you are a DBA and another DBA revokes your CONNECT authority,
then you will lose your RESOURCE, SCHEDULE, and DBA authorities as well.

A user who loses RESOURCE authority will still have CONNECT authority. You
cannot revoke RESOURCE authority from a user with DBA authority.

A user who loses SCHEDULE authority will still have CONNECT authority. You
cannot revoke SCHEDULE authority from a user with DBA authority.

A user who loses DBA authority will also lose RESOURCE and SCHEDULE
authority, but will retain CONNECT authority.

When revoking remote users, the authorization-name specified in the REVOKE
statement must be the authorized user ID of the user on the remote system where
the authority is being revoked, not that on the system where the request originates.

Examples
To revoke JOHN’s CONNECT authority, enter:

REVOKE CONNECT FROM JOHN

To revoke JOHN and ALICE’s DBA authority, enter:
REVOKE DBA FROM JOHN,ALICE

To revoke JOHN and ALICE’s SCHEDULE authority, enter:
REVOKE SCHEDULE FROM JOHN,ALICE

Revoking Access from VSE Guests
Use the REVOKE SCHEDULE statement to revoke remote access by a VSE

subsystem.

To revoke the SCHEDULE authority of the CICS subsystem called MYCICS, enter:
REVOKE SCHEDULE FROM MYCICS

Privileges

The DBA grants authorities to the users of the application server. Within the
framework set up by the DBA, individual users can grant to each other the
privileges they need to access specific data. To grant or revoke privileges on an
object, a user must hold GRANT authority on those privileges, and be connected to
the application server where the object resides.

The following are the privileges that can be held on a table (or view) in the

database:
SELECT To read from a table

92 Database Administration

INSERT To add rows to a table

DELETE To delete rows from a table

UPDATE Can apply to individual columns

ALTER To add new columns, primary keys or foreign keys to a table, or to
activate or deactivate existing keys

INDEX To create or manipulate indexes on a table

REFERENCES To add, drop, activate, or deactivate a foreign key relationship
The first four privileges in this list apply to views as well as to tables.

The holder of a privilege may exercise it directly through a user mechanism such
as ISQL, or by compiling and running programs that entail using it.

Privileges of Ownership

When an object is created, its ownership is established. If the object name is not
qualified (for example, EMPLOYEE), the owner is the connected user. If the object
is qualified (for example, JESSICA.EMPLOYEE), the owner is the individual whose
user ID is specified. The owner of an object automatically has full privileges on it.

Once the ownership of a table or view is established, there is no way to change it
or to revoke the privileges that accompany ownership. If either of these is
necessary, you must drop the object, which deletes all privileges on it, and then
re-create it with a new owner.

Granting Privileges to Other Users

The owner of an object possesses the GRANT option on each privilege, meaning
the ability to grant individual privileges, or any combination of them, to other
users. When a privilege is granted, the GRANT option (the ability for the recipient
to in turn make further grants) may or may not be included.

Privileges can be granted to other users using the GRANT statement described in
the IDB2_Server for VSE. & VM SOIL Rpfprpnrpl manual.

* Issuing GRANT ALL or GRANT ALL PRIVILEGES grants the recipient all the
privileges possessed by the grantor on that object (which may of course not
include all possible ones). If GRANT ALL is issued on a view, only the
privileges on the view, not those on the base tables, are granted.

* Issuing GRANT REFERENCES enables the recipient to reference the parent table
when a foreign key is added, dropped, activated, or deactivated through the
CREATE TABLE or ALTER TABLE statements.

* Issuing GRANT ALTER enables the recipient to add a new column or to add,
drop, activate, or deactivate a primary or foreign key. To alter a primary key, the
ALTER privilege is required on the parent table and all dependent tables. To
alter a foreign key, the ALTER privilege is required on the dependent table, and
the REFERENCES privilege is required on the parent.

Withholding these privileges restricts the ability of the recipient to change the
state of referential constraints. If the owner of a parent table grants the
REFERENCES privilege on it to another user, and the recipient then creates a
foreign key relationship with the parent’s primary key but does not grant
ALTER privilege on the dependent table back to the owner of the parent table,
the owner cannot drop the primary key. (He or she may, of course, drop the
entire table.)

* The UPDATE privilege can apply to specific columns. For example, the
following statement will allow CINDY to update the address (ADDR) and phone
number columns (PHONE) of the EMPDATA table:

Chapter 5. Providing Security 93

GRANT UPDATE (ADDR,PHONE) ON EMPDATA TO CINDY

If you are granting a user privileges at a remote system, the authorization-name
specified in the GRANT statement must be the same as the name that the grantee
uses to access the database manager system on the remote system.

Revoking Privileges

A user who grants another user a privilege may later revoke it, by issuing the
REVOKE statement described in the [DB2 Server for VSE & VM SQL Referencd
manual. If a user loses a privilege, all other users to whom that user granted it
automatically lose it too by the cascading effect, unless they have another
independent source for it. Issuing REVOKE ALL or REVOKE ALL PRIVILEGES
takes away all privileges that were granted.

If you are revoking a user’s privileges at a remote system, the authorization-name
specified in the REVOKE statement must be the name that the user specifies to
access the database manager system on the remote system.

Monitoring Privileges
All the privileges held by users on tables and views are listed in the catalog tables
SYSTEM.SYSTABAUTH and SYSTEM.SYSCOLAUTH. Users can check which
privileges they hold and which they have granted to others, by querying these
tables.

Examples
To determine the privileges that you hold, enter:

SELECT * FROM SYSTEM.SYSTABAUTH
WHERE GRANTEE = user

To determine the privileges that you have granted to other users, enter:

SELECT * FROM SYSTEM.SYSTABAUTH
WHERE GRANTOR = user

AND GRANTEE <> user

AND GRANTEETYPE = ' '

For descriptions of the catalog tables, see the IDB2 Server for VSE & VM SQI|
manual.

Privileges on Application Programs

DB2 Server for VSE & VM application programs must be preprocessed before they
are compiled or assembled. In VM and VSE batch environments, successful
preprocessing of an application program results in the creation or replacement of a
package in the database. In VSE, successful preprocessing and/or CBNDing of an
application program results in the creation or replacement of a package in the
database. The contents of the package are instructions used to satisfy database
requests at run time.

When a package is created, a level of EXECUTE privilege is granted to its creator.
This level is dependent on several factors, such as the preprocessed SQL
statements, the existence and ownership of the referenced objects (tables, indexes,
and dbspaces), and the creator’s authorization level (DBA, RESOURCE, or
CONNECT). The creator’s EXECUTE privilege follows rules and conditions that
are discussed in the IDBR2_Server fmf VSE & VM Ar);nlif*nfinn Prngwlmminé] manual.

94 Database Administration

Connecting to an Application Server in VM

A VM user must have CONNECT authority and be connected to an application
server in order to perform SQL requests on it.

All VM users must connect to an application server explicitly or implicitly
regardless of whether they are accessing it in multiple user mode or single user
mode. If a user does not have a DB2 Server for VM authorization ID and
password, the user must connect implicitly. A user with a DB2 Server for VM
authorization ID and password can connect either implicitly or explicitly.

Establishing a Default Application Server

In order to run a preprocessor, the DBS Utility, any application program, or ISQL,
VM users must establish a default application server. This is done by invoking the
SQLINIT EXEC, and needs to be done only once.

Example
To establish the SQLDBA application server as the default, enter:

SQLINIT DBNAME(SQLDBA)

Information about the default application server chosen is stored on the VM user’s
minidisk (A-disk) in the ARISRMBT module and the LASTING GLOBALYV file. If
the VM user wants to establish another application server as the default or to
change any of the options, he or she would have to re-run the SQLINIT EXEC. For

more information see SQLINIT EXEC” on page 234,
Connecting to the Application Server Implicitly

Connecting to the application server implicitly means to connect to it without
providing an authorization ID and password explicitly. If a VM user does not
provide a CONNECT statement, then the first time that he or she tries to run an
SQL statement, the VM application requester connects to the application server
implicitly. The database manager checks its catalog tables to see whether that
user’s ID, the VM logon ID (established in the CP LOGON procedure), has been
granted CONNECT authority. (It does not compare the user’s CP LOGON
password with the DB2 Server for VM application server password, as it can be
assumed that a password that has been verified by the CP LOGON procedure is
valid.)

Most VM users will want to connect to the application server implicitly, so when
you grant them CONNECT authority, use their CP LOGON user IDs.

The implicit connect support works the same for VM application programs, for
ISQL, for the DBS Utility, and for remote application servers; however, each has its
own considerations, as discussed below.

Note: When working in an environment that includes several application servers
that can be accessed from several different application requesters, there is
the need for unique authorization IDs. The database manager does not
recognize the same authorization ID from two (or more) different
application requesters as being different. It is the administrator’s
responsibility to ensure that the authorization IDs in this situation are
unique.

Chapter 5. Providing Security 95

How Implicit CONNECT Applies to VM Programs

For application programs that contain SQL statements, a distinction is made
between the creator and the runner of the program.

* The creator is the VM user who submits the program to one of the language
preprocessors. This individual’s authorization ID, which is specified in the
USERID parameter passed to the preprocessor, is used to perform all
authorization checking for the functions performed against data managed by
DB2 Server for VSE & VM, and is the default owner of all objects (tables or
views) created by the program. This authorization ID automatically has the
EXECUTE privilege for the program.

When not coded explicitly, the authorization ID is derived from the CP LOGON.

¢ The runner is the VM user who runs (executes) the program. This individual’s
authorization ID is either that specified in the CONNECT statement run by the
program, or is the authorization ID that is connected implicitly. The runner may
be the creator, or may be someone to whom the creator has granted the
EXECUTE privilege.
When coded explicitly, the authorization ID and password for the CONNECT
statement are derived from host variables in the program. The values for these
variables should be acquired at run time from control cards by the executing
program. If they are constants fixed in the program, anyone can run the
program.

When not coded explicitly, the authorization ID is derived from the CP LOGON.

Refer to the DB2_Serper fmf VSE & VM A‘n’nlirafinn ngmmming' manual for more
information about how implicit CONNECT applies to application programs.

How Implicit CONNECT Applies to ISQL (VM)

To start ISQL, a VM user invokes the ISQL EXEC. The database manager always
initially does an implicit connect for ISQL users, so this EXEC does not accept an
authorization ID. The authorization ID is derived from the ID of the user’s virtual
machine, as described on page b3.

The user can issue explicit CONNECT statements to override any previous explicit
or implicit connection established for the ISQL session.

Refer to the DRB2_Server for VSE. & VM Interactive SOL Guide and Referencd manual
for more information.

How Implicit CONNECT Applies to the DBS Utility (VM)
When the DBS Utility begins processing an input control file, it expects a

CONNECT statement before any other DBS Utility or SQL statements. If none is
supplied, the database manager will use the ID of the user’s virtual machine.

If the utility is invoked from an application that has already issued a CONNECT
statement (implicitly or explicitly), then another one is not expected. Here, the
authorization ID that was in effect when the program first invoked the utility is
used.

The user can issue explicit CONNECT statements to override any previous explicit
or implicit connection.

Refer to the DB2 Server fmf VSE & VM Database Services ”HHHJJ manual for more
information.

96 Database Administration

How Implicit CONNECT Applies to Remote Application Servers

When a VM user implicitly connects to a remote application server, the
authorization ID passed by the requester or received by the server may be different
than the VM logon user ID. It will depend on how the CMS Communication
Directory has been set up for the requester, and whether the server performs user
ID translation. Refer to the Distributed Relational Database Connectivity Guide manual
for more information about security levels specified in the CMS Communication
Directory when implicitly connecting to a remote application server.

How Implicit CONNECT Applies to TCP/IP

When a VM user implicitly connects to an application server using TCP/IP as the
communications protocol, an explicit connect is performed by the resource adapter
using the authorization ID and password found in the CMS Communications
Directory. There is no implicit connect when TCP/IP is being used.

Connecting to the Application Server Explicitly

VM users may want to connect to an application server other than the default one,
switch to another application server, or connect to an application server as a
different authorization ID. These situations entail making an explicit connection.

Switching to Another Application Server
After connecting to an application server, a VM user may want to switch to a

different one. The user issues an SQL CONNECT statement to switch to this
second application server.

Example - Without Specifying an Authorization ID and Password: To switch to
the DB01 application server, enter:

CONNECT TO DBO1

Since the authorization ID and password are not specified on the CONNECT
statement, they will be taken from the VM communications directory file if it is
used and if it contains an entry for the DB01 application server. If the file is not
used, if it does not exist, or if it does not contain an entry for the DB01 application
server, the VM logon user ID will be used in an implicit connect.

If this statement fails, the VM user will not remain connected to the original
application server and no other SQL statements will be accepted. The VM user will
have to issue a new CONNECT statement.

When the VM user issues the first SQL statement to be processed on the second
application server, the database manager will try to implicitly connect him or her
to that application server, using the VM logon user ID as the authorization ID. VM
users can avoid the implicit connect by connecting as another user (discussed next)
while switching application servers.

Example - Specifying an Authorization ID and Password: To switch to the DB01
application server under an authorization ID JOHN with a password of johnpw,
enter:

CONNECT JOHN IDENTIFIED BY johnpw TO DBO1

Note: CONNECT userid IDENTIFIED BY password is not supported for the
Distributed Relational Database Architecture (DRDA) protocol.

If this statement fails, the VM user will not remain connected to the original
application server and no other SQL statements will be accepted. The user will

have to issue a new CONNECT statement.

Chapter 5. Providing Security 97

Connecting under Another Authorization ID
A VM user connects under another authorization ID to the currently established

application server by issuing an SQL CONNECT statement. If the user is not
currently connected to an application server, if the previous connection has been
released, or if the user switched to a new CMS Work Unit in VM/ESA, then the
default application server, established by the SQLINIT EXEC, will be used.

Example: To connect to the currently established application server under the
authorization ID JOHN with a password of johnpw, enter:

CONNECT JOHN IDENTIFIED BY johnpw

Note: CONNECT userid IDENTIFIED BY password is not supported for the DRDA
protocol.

If this statement fails, the VM user will remain connected to the application server
as the original authorization ID.

A previous connection could be released for the following reasons:
* A COMMIT RELEASE or ROLLBACK RELEASE statement was issued.

* The previous logical unit of work (LUW) was canceled by the user (using
SQLHX or ISQL CANCEL) or by the operator (using the FORCE statement). The
cancelation releases the connection.

* The previous connection was disabled by the operator (using FORCE DISABLE)
or by other errors such as the database machine not being ready or
communications problems.

* In the VM environment, the previous connection was disabled by the operator
using a FORCE without the DISABLE option.

Determining the Currently Established Application Server

If a user issues an SQL CONNECT statement without any parameters, the database

manager will return the following information:

* The currently connected user ID

* The application server name

¢ The product ID which can be "ARI ” or "ARI7010” depending on when the
CONNECT was issued.

Refer to the DB2 Server for VSE & VM SQI. Referencd manual for more information
about the CONNECT statement.

Connecting to an Application Server in VSE

To control access to the data managed by the database manager, it is necessary to:

* Tell the database manager the users that are authorized to use the DB2 Server
for VSE database and protect their access by means of passwords.

* Inform the database manager when a particular user wants to begin accessing
the DB2 Server for VSE database.

The authority to use a DB2 Server for VSE database is established by granting a
user CONNECT authority. The CONNECT authority carries with it a DB2 Server
for VSE password, which is that user’s key to the application server. After a user
has received CONNECT authority (been assigned an authorization ID and
password), the user can begin to use an application server through the CONNECT
function. After users have received their authorization IDs and passwords, they
can change their own passwords at any time.

98 Database Administration

All VSE users must connect to an application server explicitly or implicitly:

* Batch users must have a DB2 Server for VSE authorization ID and password,
and must connect explicitly.

* Online users who do not have a DB2 Server for VSE authorization ID and
password must connect implicitly. Other online users can use either method.

The CONNECT function can also be used either directly (through the CONNECT
statement with the “userid IDENTIFIED BY password” clause) or indirectly (through
a subsystem logon procedure). The procedure for connecting to an application
server is slightly different for each user environment. The following sections
describe these situations.

Establishing a Default Application Server
You may identify the desired application server by specifying the DBNAME
parameter at system startup, on the CICS CIRB or CICS CIRC transaction, on the
CONNECT statement, when preprocessing, or when CBNDing. If you do not
specify a server name, these DBNAME default rules apply:
* The partition default DBNAME is used if it is specified in the PARTDEF field of
the DBNAME Directory.

* If a partition default is not specified, the system default DBNAME is used if it is
specified in the SYSDEEF field of the DBENAME Directory.

¢ If neither a partition nor a system default is specified, the default DBNAME is
SQLDS and the default APPLID is SYSARIOO.

Note: SQLDS must still be identified in the DBNAME Directory.

For further information on the DBNAME Directory, refer to the [DBR2 Serper for VSH

Bystem Administratiod manual.

Connecting to the Application Server in Different VSE
Environments

DB2 Server for VSE users can connect to the application server in the following
environments:

CICS/VSE Online Environment

In a CICS/VSE online environment, online users can connect to the application
server implicitly and explicitly. If online users do not explicitly issue a CONNECT
statement specifying the authorization ID and the password, then the first time
they try to process an SQL statement, the CICS/VSE user is connected to the
application server implicitly.

A CONNECT...TO statement is supported in this environment and can be used to
switch to a different application server between logical units of work For further
information on switching, refer to L z

If the first SQL statement in a CICS/VSE application is not a CONNECT statement
with the TO clause, the default application server is connected. On subsequent
CONNECTs performed by that application, if the TO parameter is not specified,
then the connection to the previously connected server will be maintained. For

further 1r1format10r1 on default application servers, refer to IEstablishing a Defaulf

Chapter 5. Providing Security 99

Batch/Interactive Environment

In a VSE batch or VSE/ICCF environment, an explicit CONNECT must be the first
statement entered by the batch user to access the application server. This statement
is described in the [DB2 Server for VSE & VM Application Programming manual.
Explicit connection is required for all user programs. This connection identifies the
authorization ID, and optionally the name of the application server on which the
program will run.

A CONNECT..TO statement is supported in this environment and can be used to
switch to a different application server between logical units of work. For further

information on switching, refer to t/Switching to Another Application Server” onl

If the first SQL statement in an application is a CONNECT statement in which the
TO server_name clause is not specified, or if this clause is not specified as part of
the CONNECT statement following a COMMIT RELEASE or ROLLBACK
RELEASE statement, the default application server is connected. If the TO
server_name clause is not specified as part of the CONNECT statement following a
COMMIT or ROLLBACK statement, the connection to the previously connected
server will be maintained. For further information on default application servers,

refer to Establishing a Default Application Server” on page 99,

In this environment, there is a distinction between the user who preprocesses a
program that contains SQL statements, and the user who later runs that program.

* The creator of a program is the VSE user who submits the program to one of the
language preprocessors. The user ID specified in the USERID= parameter passed
to the preprocessor is the basis for all authorization checking for the functions
performed against data managed by the system as well as the default owner of
all objects (tables or views) created by the program. This user ID receives RUN
authority when the program is successfully preprocessed.

* The runner of a program is the VSE user who runs (executes) a program that
contains SQL statements. The user ID specified in the CONNECT statement run
by the program must be either the creator or a user ID to whom the creator has
granted the RUN privilege for this program.

The user ID and password for the CONNECT statement are derived from host
variables in the program. Their values should be acquired at run time from
control cards by the executing program. If they are constants fixed in the
program, anyone can run the program.

The runner of a program gets the privilege of accessing the application server
from the creator of the program.

ISQL Environment

When CICS users start ISQL, they are prompted for a user ID, password, and
target database. If the user enters the user ID and password only, ISQL does an
explicit CONNECT to the default target database for the user. If the user does not
enter a user ID, password or target database, ISQL does a CONNECT to the
default target database as a default user ID for the user; this defaulting is called an
implicit CONNECT. If the ISQL user enters a target database only, a CONNECT
would be made to that target database using a default user ID. If the user enters
the user ID, password and target database, ISQL does an explicit CONNECT to the
target database.

In the ISQL environment, you can access any of the application servers connected

with the online resource adapter. If the online resource adapter is not connected to
an application server, you cannot access the ISQL environment.

100 Database Administration

Note: The ISQL environment is a specific case of the CICS transaction
environment, which is discussed in the next section. An ISQL user can enter
explicit CONNECT statements to change the connection and override any
previous explicit or implicit connection established for the ISQL terminal
session.

Refer to the WLMM@L.&@L@MM or the
manual for additional details.

CICS Transaction Environment

Online transactions need not enter a CONNECT command to establish the user ID
within the database manager. If a CONNECT command? is not entered, the online
support establishes the authorization ID for the transaction. The implicit
CONNECT is carried out by a SCHEDULE call in the case where the online
transaction is connecting to a local application server.

This implicit CONNECT capability is useful if your installation requires terminal
users to sign on CICS. For many transactions, your installation might consider the
sign-on verification sufficient. It may also be useful if your installation has just
installed the database manager, and finds it convenient to have all users identified
by one name (for example, TESTUSER).

The online support establishes a user ID for CICS transactions connecting to a local
DB2 Server for VSE application server as follows:

1. If the local transaction issues a CONNECT command? the user ID is established
explicitly for the application.

2. If the transaction does not issue a CONNECT command,? the online support
establishes the user ID as follows:

a. If the transaction had a user ID established from a previous local logical
unit of work (LUW) and that LUW did not specify the RELEASE option for
COMMIT WORK or ROLLBACK WORK, that user ID is used. The CICS
communication link to the application server is freed every time an LUW
ends, and a new link is established for each LUW in the transaction.

b. If the transaction has a valid CICS sign on userid and is associated with a
terminal, the CICS signon userid is used for the user ID.

c. If a user ID was specified as an input parameter to the CIRB or CIRA
transaction that established connections to the application server, that user
ID is used. The person who invoked CIRB or CIRA will know what the user
ID is.

d. If a user ID was not specified in the CIRB or CIRA transaction that
established connections to the application server, the default user ID
CICSUSER is established for your transaction.

After the user ID is determined as described above for cases b, ¢, and d, one more
requirement must be met to successfully complete the connection to the application
server: CONNECT authority must be granted to either the specific authorization ID
or “ALLUSERS”. ALLUSERS is a special authorization ID that permits any user ID
to be implicitly connected without having been specifically granted CONNECT
authority, and can be used by the database administrator to turn on or turn off the
implicit CONNECT capability. During database generation, ALLUSERS is granted
CONNECT authority by default.

2. The CONNECT statement with the following format: CONNECT userid IDENTIFIED BY password.

Chapter 5. Providing Security 101

At many installations, the CICS user need not be aware of DB2 Server for VSE
authorization ID or authorization capabilities. Here, the CICS implicit connect
support can be very useful.

Suppose you code a transaction called STAT that displays the inventory status of a
given part. Banes and Smith are to be the users of the application.

You define Banes and Smith to the CICS signon process.

You must then authorize BANES and SMITH to run your program. Of course, you
must have the RUN privilege with the GRANT option on your program. For this
example, assume that the program was preprocessed with the name INVSTAT:

GRANT RUN ON INVSTAT TO BANES, SMITH

Note: BANES and SMITH do not need CONNECT authority. It is connected
through internal mechanisms of the DB2 Server for VSE online support.

You must also establish the security key when you define the inventory program
to CICS.

To use the STAT transaction, Banes and Smith merely sign on to the CICS
subsystem by entering, for example:

CESN BANES, XXXX

After signed on, they need only enter the transaction identifier STAT, which causes
the INVSTAT program to be loaded and invoked. Since there is no CONNECT
statement in the program, the user ID established is the signed-on user ID
(BANES). Because BANES was granted RUN authority on INVSTAT, the database
manager allows the program to process.

Online applications can access any of the application servers connected with the
online resource adapter. The online resource adapter can connect to many
application servers using the CIRA or CIRB transactions.

Refer to the DB2_Server for VSE & VM A‘nlnlimfinn Prngmmminé manual for
additional information on this environment.

User IDs for Remote CICS/VSE Transactions

For online DB2 Server for VSE transactions which are accessing a remote server
and which issued an SQL CONNECT statement with the “userid IDENTIFIED BY
password” clause to establish the user ID within the database manager, the user ID
is established explicitly for the transaction.

For online DB2 Server for VSE transactions which are accessing a remote server
and which did not issue an SQL CONNECT statement with the “userid
IDENTIFIED BY password” clause to establish the user ID within the database
manager, the Online Resource Adapter will attempt to establish the user ID for the
transaction implicitly as follows:

1. If the transaction had a user ID established for a previous remote logical unit of
work, and the previous logical unit of work did not specify the RELEASE
option for COMMIT WORK or ROLLBACK WORK, and the transaction did not
switch to another application server, that user ID and its corresponding
password are used. (Remember that every time a logical unit of work ends
with RELEASE or the transaction switched to another application server, and
you enter another SQL statement, you are implicitly connected as the CICS

102 Database Administration

signon userid. Therefore, the user ID has to be re-established if the transaction
has more than one logical unit of work ending with RELEASE or if the
transaction is switching application servers.)

2. The user ID returned by the CICS ASSIGN command is used for the user ID.

Connecting to an Application Server in Special Circumstances

VSE users can connect to an application server other than the default one, or
connect to an application server as a different authorization ID. VSE batch users
can switch from an application server to another. These situations require making
an explicit connection. VSE online users can also switch from an application server
to another, by issuing an SQL CONNECT statement with the TO parameter,
provided that the online resource adapter has established connections to the
application server.

Switching to Another Application Server

After connecting to an application server, a VSE user can switch to another one by
issuing an SQL CONNECT statement. The switch occurs between logical units of
work.

Example - Without Specifying an Authorization ID and Password
To switch to the DB01 application server, enter:

CONNECT TO DBO1

Because the user ID and password are not specified on the CONNECT statement,
the user ID and password used is determined according to the rules described in
'CICS Transaction Environment” on page 101 and llser IDs far Remate CICS/VSH

ions” . For VSE batch users, the user ID and password used in
the previous LUW are used if the LUW ends with a COMMIT WORK or
ROLLBACK WORK statement. However, if the LUW ends with a COMMIT
RELEASE or ROLLBACK RELEASE statement, the next SQL statement after the
CONNECT statement is unsuccessful.

If the CONNECT statement is not successful, the VSE batch user does not remain
connected to the original application server, and no other SQL statements are
accepted. The batch user has to enter a new CONNECT statement.

When the VSE user enters the first SQL statement to be processed on the second
application server, the batch resource adapter or the online resource adapter
connects the user to that application server using user ID and password previously
established. A VSE user can switch to another application server as different ID by
connecting as another user, as discussed in the next section.

Example - Specifying an Authorization ID and Password
To switch to the DB01 application server under an authorization ID JOHN with a
password of johnpw, enter:

CONNECT JOHN IDENTIFIED BY johnpw TO DBO1

If this statement is not successful, the VSE batch user does not remain connected to
the original application server and no other SQL statements are accepted. The
batch user will have to enter a new CONNECT statement.

Connecting under Another Authorization ID

A VSE user connects under another authorization ID to the established application
server by issuing an SQL CONNECT statement. If the user is not connected to an
application server, the default application server is accessed. For batch users, if the
previous connection has been released, the default application server is accessed.

Chapter 5. Providing Security 103

Example
To connect to the currently established application server under the authorization
ID JOHN with a password of johnpw, enter:

CONNECT JOHN IDENTIFIED BY johnpw

If this statement fails, the VSE user will remain connected to the application server
as the original authorization ID.

A previous connection could be released for the following reasons:
e A COMMIT RELEASE or ROLLBACK RELEASE statement is entered.

* The previous LUW is canceled by a local user entering the FORCE DISABLE
statement, or a remote user entering the FORCE statement. Canceling an LUW
in this manner releases the connection.

* The previous connection is ended by the operator (using FORCE DISABLE) or
by other errors, for example, communications problems.

¢ The CICS transaction switched from a local to a remote server, from a remote to
a local server, from one remote server to another remote server.

Determining the Current User ID and Application Server

If a user enters an SQL CONNECT statement without any parameters, or after the

successful execution of a CONNECT statement, the database manager returns the

following information in the SQLCA:

* Currently connected user ID

* Application server name

* Product ID, which can be ‘ARI " or “ARI7010" depending on when the
CONNECT was issued.

Refer to the DB2 Server for VSE & VM SQI Referencd manual for more information
about the CONNECT statement.

Resolving Remote Server Name to Target Database (CICS)

1. If the CICS/VSE transaction issues an SQL CONNECT statement with the “TO
server name” clause, the server name is established explicitly for the transaction
and the Online Resource Adapter will use the DBNAME Directory to resolve
the server name to the target database.

If the specified application server is remote and the Communication Protocol
specified by the connected user is not TCP/IP, the AR will issue a GDS
ALLOCATE command to acquire a session to the remote system where the
server runs. The SYSID used in this ALLOCATE command will be the SYSID
value from the matching DBNAME Directory entry (and must match a CEDA
DEF CONNECTION definition). The AR will then issue a GDS CONNECT
PROCESS command to initiate an APPC basic conversation with the remote
server. The PROCNAME used in this CONNECT PROCESS command will be
the REMTPN value from the matching DBNAME Directory entry.

If the specified application server is remote and the Communication Protocol
specified by the user is TCP/IP, the AR will acquire a TCP/IP socket. Then the
AR will use this socket to originate a connection request to initiate a TCP/IP
communication with the remote server. In this case, the TCPPORT and the
TCPHOST or the IPADDR from the matching DBNAME Directory entry are
required for issuing the connect request.

2. If the CICS/VSE transaction did not issue an SQL CONNECT statement with
the “TO server name” clause, the Online Resource Adapter will attempt to
connect to the default application server.

104 Database Administration

If the default application server is remote and the Communication Protocol
specifed by the connected user is not TCP/IP, the AR will issue a GDS
ALLOCATE command to acquire a session to the remote system where the
default application server runs. The SYSID used in this ALLOCATE command
will be the SYSID value of the default server (and must match a CEDA DEF
CONNECTION definition). The AR will then issue a GDS CONNECT
PROCESS command to initiate an APPC basic conversation with the remote
server. The PROCNAME used in this CONNECT PROCESS command will be
the REMTPN value of the default server.

If the default application server is a remote server and the Communication
Protocol specified by the user is TCP/IP, the AR will acquire a TCP/IP socket.
Then the AR will use this socket to originate a connection request to initiate a
TCP/IP communication with the remote server. In this case, the TCPPORT and
the TCPHOST or the IPADDR from the default server’'s DBNAME Directory
entry are required for issuing the connect request.

The default application server is determined when the CIRB transaction was
invoked and can be changed subsequently by a CIRC transaction. For more
information on establishing a default application server, see

Resolving Remote Server Name to Target Database (VSE Batch)

If the Batch application issues an SQL CONNECT statement with the "TO server
name” clause, the server name is established explicitly for the transaction and the
Batch Resource Adapter uses the DBNAME Directory to resolve the server name to
the target database.

If the specified application server is a local or host VM (Guest Sharing) server,
communications is done using XPCC as it is currently done. If the application
server is remote and TCP/IP information is present in the matching DBNAME
Directory entry, communications is done using TCP/IP. If TCP/IP information is
not present, an error is returned in the SQLCA: SQLCODE -841, SQLSTATE 57040,
with a reason code in SQLERRD2.

If the Batch Application issues an SQL CONNECT statement without the "TO
server name” clause, the actions taken by the Batch Resource Adapter depend on
the previous connection state. If the previous state was established with a
COMMIT or ROLLBACK, then the Batch Resource Adapter connects back to the
previous Server name. If the previous state was established with a COMMIT or
ROLLBACK with the RELEASE option, then the Batch Resource Adapter attempts
to connect to the default application server.

If the default application server is a local or host VM (Guest Sharing) server,
communications is done using XPCC as it is currently done. If the application
server is remote and TCP/IP information is present in the matching DBNAME
Directory entry, communications is done using TCP/IP. If TCP/IP information is
not present, an error is returned in the SQLCA: SQLCODE -841, SQLSTATE 57040,
with a reason code in SQLERRD2.

The default application server is determined from the DBNAME Directory as is
Currentlv done. For more information on establishing a default application server,

ee U'Establishing a Default Application Server” on page 9d. Note that Batch

apphcatlons cannot access a Remote server via SNA, only via TCP/IP.

Chapter 5. Providing Security 105

Views control who has access to what data. They can be set up to allow access to a

Restricting Access Using Views

subset of the columns or the rows of a table.

Example

To show how a view can be used to restrict access to information, consider the

information presented in

Table 18. Employee Information (EMP_INFO) Table

NAME DEPT SALARY PHONENO
SMITH 100 25750 3978
BANES 200 15051 3476
ADAMSON 105 33075 4738
PARKER 200 26250 6789
KWAN 100 22260 7831
WALKER 105 23840 5498

Many different people may require access to information in this table for different

reasons.

Examples

1.

The personnel department needs to be able to update and look at the entire
table.

This requirement is met by granting users in the personnel department SELECT
and UPDATE privileges on this table, as follows:
GRANT SELECT,UPDATE ON EMP_INFO TO PERSONNL
Individual department managers need to look at the salary information for
their employees.
This requirement is met by creating a view for each manager. For example, the
following view (called EMP100) can be created for JANE, the manager of
department 100:
CREATE VIEW EMP100
AS SELECT NAME,SALARY,PHONENO

FROM EMP_INFO
WHERE DEPT=100

GRANT SELECT ON EMP100 TO JANE

JANE (and any others who have SELECT privilege on this view) would query
it as they would an ordinary table. It would appear as the following:

Table 19. EMP100 View

NAME SALARY PHONENO
SMITH 25750 3978
KWAN 22260 7831

3. All users require access to telephone number information.

This requirement is met by creating a view (called PHONE) on the NAME and
PHONENO columns:

106 Database Administration

CREATE VIEW PHONE
AS SELECT NAME,PHONENO
FROM EMP_INFO

GRANT SELECT ON PHONE TO PUBLIC

The keyword PUBLIC grants the privileges on the PHONE view to all users.
Users who access it will see the following table:

Table 20. PHONE View

NAME PHONENO
SMITH 3978
BANES 3476
ADAMSON 4738
PARKER 6789
KWAN 7831
WALKER 5498

Changing User Passwords

All users’ passwords are recorded in the SYSTEM.SYSUSERAUTH catalog table. As
a DBA, you can change any user’s password at any time. To do this, use a GRANT
CONNECT statement.

Example
GRANT CONNECT TO JOHN IDENTIFIED BY xyzabc

Users can also change their own passwords at any time, by issuing a GRANT
CONNECT statement to themselves. To change a user’s password verified by the
CICS subsystem, or some other subsystem, follow the procedure for that
subsystem.

You should change all passwords on a periodic basis; for example, every four
months.

Securing the Database Catalog Tables

During database generation, the SELECT privilege is granted to PUBLIC on the
catalog tables. In most cases this presents no security problem, but for very
sensitive data it may be undesirable. These tables describe every object in the
database, thus, while users would not know what specific items of data are stored,
they would be able to tell what kind of data existed. Conceivably, a malicious
individual could make destructive use of this knowledge.

Before revoking general access to the tables, however, you must weigh the
advantages of securing the information in them against the disadvantages of users
being unable to retrieve the information they require. The catalog tables are an
active dictionary facility, and help to maintain definitions, control information, and
general information on data. For example, users can query them to find out what
tables they have created, the names and data types of the columns in each of those
tables, and any synonyms they have defined.

Chapter 5. Providing Security 107

You might consider revoking PUBLIC access to only the SYSCOLSTATS table,
which records the first- and second-most frequent values in the first column used
by every index on every table in the database.

If you do decide to secure all the catalog tables, the easiest way to do this is to
revoke the SELECT privilege from PUBLIC on them. You must be connected as
user ID SQLDBA and have DBA authority. You can then grant authority on specific
tables to specific users.

Example 1
To revoke the SELECT privilege from PUBLIC on SYSTEM.SYSCATALOG, enter:
REVOKE SELECT ON SYSTEM.SYSCATALOG FROM PUBLIC

Before you revoke SELECT privileges from PUBLIC, you should also consider
what impact there might be on existing applications. In particular, some
applications may need to read a catalog table, so will fail if this authority is
revoked. Naturally, in these cases you must grant the SELECT privilege to the
creator of the program.

Note also that if the creator (the person who preprocessed the program) is not its
sole runner, you must also specify the WITH GRANT OPTION clause for this
person, in order to enable him or her to grant authority to other users to run the
program.

Example 2

User JULIE has created a program that accesses SYSTEM.SYSCATALOG, and she
grants RUN authority to KATHY and BILL. If you revoke the SELECT privilege
from PUBLIC, you can preserve KATHY’s and BILL's authority to run JULIE’s
program by issuing:

GRANT SELECT ON SYSTEM.SYSCATALOG TO JULIE WITH GRANT OPTION

If you revoke the SELECT privilege from PUBLIC on a catalog table, and later
wish to completely restore it, you should also specify the WITH GRANT OPTION

clause.

Example 3
To restore authority to PUBLIC on SYSTEM.SYSACCESS, enter:
GRANT SELECT ON SYSTEM.SYSACCESS TO PUBLIC WITH GRANT OPTION

Refer to the IDB2 Server for VSE & VM SOL. Referencd manual for a description of
the catalog tables.

Security Auditing

There are two ways to audit security: by querying the catalog tables, or by having
the database manager do a security audit trace.

If you simply want to know what security structures exist, the first method is
sufficient. The catalog tables maintain a record of authorization privileges: who has
what authority and from whom they received it. But they do not record
information about the use of these privileges: for example, the number of
unsuccessful attempts to access a resource, the number of accesses based strictly on
DBA authority, or similar authorization use information. For this type of
information, you must use a security audit trace.

108 Database Administration

Both ways of auditing security are discussed below.

Auditing Security Using the Catalog Tables

The following are examples of queries you might enter against the catalog tables in

security auditing:

1. What users are permitted to connect directly to the DB2 Server for VSE & VM
application server? (DBA authority is required for this query.)

SELECT NAME FROM SYSTEM.SYSUSERAUTH
WHERE AUTHOR=' '

The WHERE clause serves to eliminate any entries in SYSTEM.SYSUSERAUTH
for program dependencies from the query result.

2. How many users have been granted RUN authority on WALTERS.PAYROLL by
user BENNETT? (User WALTERS is the creator of the program; the creator is
determined by the USERID parameter when the program is preprocessed.)

SELECT COUNT(*) FROM SYSTEM.SYSPROGAUTH
WHERE CREATOR = 'WALTERS'

AND PROGNAME = 'PAYROLL'
AND GRANTOR = 'BENNETT'

This query only counts user BENNETT’s first-level grantees (those who
received their authority directly from user BENNETT).

3. Who are all the users who have received RUN authority on PAYROLL from
someone other than WALTERS?

SELECT COUNT(*) FROM SYSTEM.SYSPROGAUTH
WHERE CREATOR = 'WALTERS'
AND PROGNAME = 'PAYROLL'
AND GRANTOR <> 'WALTERS'

4. How many users have RESOURCE authority but not DBA authority?

SELECT COUNT(*) FROM SQLDBA.SYSUSERLIST
WHERE RESOURCEAUTH = 'Y!
AND DBAAUTH <> 'Y!
AND AUTHOR = ' '

5. How many secondary authorizations (those that originated from other than the
creator) exist for the JOHNSON.EMPLOYEE table created by user JOHNSON?
SELECT COUNT(*) FROM SYSTEM.SYSTABAUTH
WHERE TCREATOR = 'JOHNSON'
AND TTNAME = 'EMPLOYEE'

AND GRANTOR <> 'JONES'
AND GRANTEETYPE = ' '

Here, the GRANTEETYPE = ' ' portion of the WHERE clause eliminates
entries for programs.

6. Which users have been granted SELECT authority on the
PERSONNL.EMPLOYEE table by user LAPIS?
SELECT * FROM SYSTEM.SYSTABAUTH

WHERE TCREATOR = 'PERSONNL'
AND TTNAME = 'EMPLOYEE'
AND SELECTAUTH = 'Y'
AND GRANTEETYPE = ' '
AND GRANTOR = 'LAPIS'

ORDER BY TIMESTAMP

Auditing Security Using Tracing
Security audit tracing is one of the functions that can be performed using the trace
facility. A security audit trace is unique in that it is not necessarily done for

Chapter 5. Providing Security 109

problem determination. Start a trace of the security audit function of the RDS
component by using the TRACRDS initialization parameter. Alternatively, you can
start it by issuing the TRACE command from the operator’s console after the
application server has been started.

For descriptions of the TRACRDS parameter, the TRACE operator command, the
trace output records, and the utility that formats these records into readable
output, see the [DB2 Server for VSE & VM Qperation manual.

In VM, you can direct the trace output to tape, to a CMS file, or to a memory area
known as a trace buffer. However, if your installation uses the security audit trace
frequently, you may want to direct the output to a CMS file. To do this, you must
enter a CMS FILEDEF command before starting the application server, and supply
particular responses to the prompts that come up when tracing is started. For
descriptions of the FILEDEF command and the appropriate message responses, see
the IDB2 Serer for VSE & VM Qperatiod manual.

As with other traces, you can get two levels of information. Level 1 traces and

records the following information:

 All unsuccessful attempts to obtain access to a resource

* Access that is based strictly on DBA authority

* All CONNECTs to the application server

* All grants of special privileges (DBA, CONNECT, SCHEDULE, or RESOURCE
authorities)

* All grants of RUN authority.

Level 2 keeps track of all DB2 Server for VSE & VM authorization checks.

[Cable 211 shows each type of authorization verification that the database manager
does, and which results are traced.

Table 21. Information Recorded by a Security Audit Trace

Type of Authorization Check Result Traced at Result Traced at
Level 2 Level 1
CONNECT YIN YILN
RUN G,YDN,P DN
SELECT, INSERT, UPDATE, G,Y,D,N,P DN
DELETE, ALTER, and INDEX
RESOURCE YN N
REFERENCES YN DN
DBA DN DN
Grants of Special Privileges DN GN
(DBA, CONNECT,
RESOURCE, and SCHEDULE)
Grants of RUN Authority G,N
Y Yes, the user is authorized.
N No, the user is not authorized.
G Yes, the user is authorized to use and grant this privilege.
P The resource is PUBLIC, and thus all users are authorized.
D The user is authorized based only on DBA authority (that is, does not have

specific privileges).
CONNECT on special link without password verification (scheduled).

[

110 Database Administration

For each result of an authorization check that is traced, the database manager
creates a trace record in the same format as other kinds of trace records. These
records are identical in format for all levels and types of authorization, and are
written to the same (VSE) trace output file, or (VM) trace tape (or CMS file).

If a value does not apply for a specific occurrence, the database manager sets it to
blanks. For example, a trace record for CONNECT does not contain the name of a
resource (that is, a table name).

Each trace record contains (where applicable):
* Date and time of verification.
* The user ID for which the verification is being done.

* Resource 1 (for example, the name of a table to be accessed or the name of a
program to be run).

* Resource 2 (for example, the name of a particular column to be updated).
* The creator of the resource.

* The type of authorization requested (as listed in Lable 21 on page 110).

* The result of the authorization check (Y, N, G, P, D, I).

* The external logical unit of work identifier (EXTLUWID) of the connection,
which uniquely identifies an LU6.2 conversation. Its value is
netid.luname.instance_number.sequence_number, where netid and luname are up to 8
characters long, instance_number is 12 characters long, and sequence_number is 4
characters long. The EXTLUWID is only used for conversations that use the
DRDA protocol.

The Resource 2 field shows the column (where applicable) on checks of UPDATE
authority. It can also contain a description of the reason that the database manager
is checking a certain authority. For example, it might contain “ALTER PUB
DBSPACE” on a check for the DBA authority needed to alter a PUBLIC dbspace. In
this case, DBA would be the type of authorization being checked, while the
Resource 2 field provides more information about why this authority is required.

When analyzing trace records, remember that many operations on views are
restricted. These restrictions are reflected in the trace records generated during
CREATE VIEW processing. When the database manager creates a view, it checks
the user’s authority on the base tables to determine what authority to give that
user on the view. It also checks the view itself to see what operations cannot be
performed on it. For example, because deletions are not allowed in views that
involve a join, the authorization check for DELETE would return an N. The N
shows that deletions are not allowed against the view; it does not necessarily
imply that the creator is not authorized to delete from the base table.

Authorization checks during CREATE VIEW processing are traced, but only at
level 2. The result field of the trace record indicates whether an authorization check
is a result of CREATE VIEW processing. The CREATE VIEW indicator is the letter
V following the usual result indicator. For example, a successful verification of
SELECT authority on a base table produces a result value of YV — yes during
view creation. You can use this indicator to distinguish between normal
authorization checks and those done during view creation.

Note: Tracing occurs during preprocessing and execution of programs, and during
the dynamic execution of statements in ISQL or DBS Ultility.

Chapter 5. Providing Security ~ 111

Authorization traces for data manipulation operations in programs occur
during preprocessing, not during execution.

Loading Security Audit Information into Tables

You can use the DBS Utility to load security audit trace records into a table. When
the trace information is in a table, you can use SQL statements to answer questions
such as:

* Who was denied access to a resource?

* Who used DBA authority to access a resource?

* When was RUN authority on a particular program granted to additional users?

Eigure 21 on page 113 shows a DB2 Server for VSE example DBS Utility job to
create a security table and load trace records into it. In the example, the trace

output file is on tape.

112 Database Administration

// JOB DATALOAD SECURITY AUDIT TRACE

// EXEC=PROC=DBNAMEO1

// EXEC=PROC=ARIS71PL

// TLBL ARITRAC

// EXEC ARISQLDS,SIZE=AUTO,PARM="'SYSMODE=S,LOGMODE=Y,PROGNAME=ARIDBS'

COMMENT ' !
COMMENT ' *kxkkkkkhkkhkkhkkhkhkhhkhkrkhrhhkkhrs !
COMMENT ' = DATALOAD SECURITY AUDIT TRACE = !
COMMENT ' s,k xkkkkkdkkkkkhkdkhkhkhhkhkrhrhhkkhrs !
COMMENT ' !
COMMENT ' ACQUIRE A DBSPACE(PRIVATE) !
COMMENT ' NAMED SECURITY
COMMENT ' !
ACQUIRE PRIVATE DBSPACE NAMED SECURITY;
COMMENT !
COMMENT ' CREATE A TABLE IN THE PRIVATE DBSPACE '
COMMENT !
CREATE TABLE AUDIT TAB(TRPOINT SMALLINT,

YEAR CHAR(2) ,

MONTH CHAR(2) ,

DAY CHAR(2),

TIME CHAR(8),

USERID CHAR(8),
GRANTEE CHAR(8),
RESOURCE1 CHAR(18)
RESOURCE2 CHAR(18)
OWNER CHAR(8),
AUTHTYPE CHAR(8),
RESULT CHAR(2),
EXTLUWID CHAR(35))
IN SECURITY;

COMMENT !
COMMENT ' LOAD DATA - (NOTE _ YOU MAY !
COMMENT ' WISH TO INTERCHANGE DAY/MONTH) !
COMMENT !
DATALOAD TABLE (AUDIT_TAB) IF POS (11-14)=-220659706
TRPOINT 7-8 FIXED
EXTLUWID 41-75 CHAR
YEAR 124-125 CHAR
MONTH 118-119 CHAR
DAY 121-122 CHAR
TIME 143-150 CHAR
USERID 168-175 CHAR
GRANTEE 193-200 CHAR
RESOURCE1 218-235 CHAR
RESOURCE2 253-270 CHAR
OWNER 288-295 CHAR
AUTHTYPE 313-320 CHAR
RESULT 338-339 CHAR

INFILE(ARITRAC PDEV(TAPE) BLKSZ(4096) RECFM(VB) RECSZ(384))

Figure 21. Loading Security Audit Records into a Table - DB2 Server for VSE

shows a DB2 Server for VM example of running the DBS
Utility. The utility reads a CMS file (SECTAB DATA A), which contains statements
to create a security audit table and load trace records into it. Before invoking the
utility, ensure that the appropriate trace tape is mounted on virtual device 182.

Chapter 5. Providing Security 113

Command to Invoke the DBS Utility:

FILEDEF TRACEL TAP2 SL (RECFM VB BLOCK 4096 LRECL 384
EXEC SQLDBSU ID(SQLDBA) IN(SECTAB DATA A) PR(TERMINAL)

SECTAB DATA A Contains:
CONNECT user IDENTIFIED BY password;

COMMENT !
COMMENT ' **kkkkkkkhkhkhhkrkhrkhhkhrkhrkrkhrkx !
COMMENT ' * DATALOAD SECURITY AUDIT TRACE =* '
COMMENT ' **kkkxkkkkkhkhhrkhrxhhkkhrkhrkhhkkhrkhr® !
COMMENT ' !
COMMENT ' ACQUIRE A DBSPACE(PRIVATE) !
COMMENT ' NAMED SECURITY
COMMENT ' !
ACQUIRE PRIVATE DBSPACE NAMED SECURITY;
COMMENT ' !
COMMENT ' CREATE A TABLE IN THE PRIVATE DBSPACE '
COMMENT ' !
CREATE TABLE AUDIT TAB(TRPOINT SMALLINT,

YEAR CHAR(2),

MONTH CHAR(2),

DAY CHAR(2),

TIME CHAR(8),

USERID CHAR(8),

GRANTEE CHAR(8),

RESOURCE1 CHAR(18),

RESOURCE2 CHAR(18),

OWNER CHAR(8),

AUTHTYPE CHAR(8),

RESULT CHAR(2),

EXTLUWID CHAR(35))

IN SECURITY;

COMMENT

COMMENT ' LOAD DATA - (NOTE _ YOU MAY '

COMMENT WISH TO INTERCHANGE DAY/MONTH)

COMMENT '

DATALOAD TABLE (AUDIT TAB) IF POS (11-14) = -220659706
TRPOINT 7-8 FIXED
EXTLUWID 41-75 CHAR
YEAR 124-125 CHAR
MONTH 118-119 CHAR
DAY 121-122 CHAR
TIME 143-150 CHAR
USERID 168-175 CHAR
GRANTEE 193-200 CHAR
RESOURCE1 218-235 CHAR
RESOURCE2 253-270 CHAR
OWNER 288-295 CHAR
AUTHTYPE 313-320 CHAR
RESULT 338-339 CHAR

INFILE (TRACE1)

Figure 22. Loading Security Audit Records into a Table - DB2 Server for VM

Note: The external logical unit of work identifier (EXTLUWID) is only used for
conversations that use the DRDA protocol.

If you have other trace functions active while you are tracing a security audit,
include an input-record-id clause (IF POS (11-14) = -220659706) on the
DATALOAD command to identify that only security audit trace records are to be
loaded. This is necessary because the trace records from other functions are
interspersed with those of the security audit trace.

114 Database Administration

When doing a security audit trace, it is usually to your advantage to trace the
parser component at the same time. When you trace this component at level 1, the
resultant trace records describe the SQL statement entered into the database
manager. By using the timestamp in the trace records, you can correlate the input
to the security audit trace records produced.

If you plan to load the security audit trace records into a table, you may want to
print the parser trace records by using the trace formatter. If you are printing the
security audit records, you may want to also print the parser records by specifying
both the parser and security audit components for the trace formatter. An example

producing such a listing is shown in [Lable 22 on page 114 and [Lable 23 on page 117,

In VM, if you directed the trace output to a CMS file (by issuing a CMS FILEDEF
command), you can still use the DBS Utility to load the trace data into tables. To
do this, enter the following CMS FILEDEF command before invoking the
SQLDBSU EXEC:

FILEDEF ddname DISK filename filetype filemode (RECFM VB LRECL 384 BLOCK 4096

Notes:

1. The ddname on the FILEDEF command must match that used in the DBS
Utility INFILE parameter of the DATALOAD command.

2. You must enter the RECFM, LRECL, and BLOCK values shown.

In VESE, if, when starting the application server, you directed the trace output to
disk, you must change the INFILE statement to:

INFILE(ARITRAC PDEV(DASD) BLKSZ(4088) RECFM(VB) RECSZ(384))

In addition, you must change the job control to identify the DASD SAM trace

output file. For example:

e For a DASD file that is not managed by the VSE/VSAM Space Management for
SAM Feature, you might specify:

// DLBL ARITRAC,'TRACE.FILE1'
// EXTENT ,VSER01,1,0,301,120
// ASSGN SYS006,195

* For one that is, you might specify:
// DLBL ARITRAC,'TRACE.FILE1',0,VSAM,DISP=(,DELETE)

When DISP=(,DELETE), the VSAM file is deleted after it is read. If you do not
want the file to be deleted, specify DISP=(,KEEP) or omit the DISP parameter.

The above examples would replace the TLBL statement in [Figure 21 on page 113,

Once you have loaded the security audit trace records into a table, you can enter
SQL statements against them. This method may make viewing the records easier,
but has a disadvantage in that any user who has DBA authority can change the
table, and any tampering may make the data incorrect. You should always print
the trace records and protect the trace tape to ensure that there is always a valid

copy.

shows examples of typical security audit queries. Some of
the records traced appear only at level 2; level 2 can generate a significant number
of trace records. These queries are shown as they might appear as input to the DBS
Utility.

Chapter 5. Providing Security 115

COMMENT "*xkkkkkhkhkkhkhkhhkkhrkhhkhkhrkkhkhkhrkhrkhrhkx '
COMMENT ' SELECT ALL RECORDS FROM AUDIT TABLE !
COMMENT ' WHERE AUTHORIZATION WAS DENIED
COMMENT "#x%kkkkkkkkkhkhhkkhrkhrkkhrkhrkkrkhrdhkhkkkkkkx
SELECT * FROM AUDIT TAB WHERE RESULT='N';

COMMENT "*xkkkkkkkhkkhkkhkhhkhkhkkhkhkhhkhkhrkkhkrhrsx '
COMMENT ' SELECT RECORDS FROM AUDIT TABLE !
COMMENT ' RECORDED BETWEEN 8 A.M. AND 12:30 P.M. '
COMMENT ' ON JUNE 29 !
COMMENT "*xkkkkkkkhkkkkhkhkkhkhkkhkhkhhkhkhkkhkkhrrkx '
SELECT * FROM AUDIT_TAB WHERE MONTH = '06'

AND DAY = '29' AND TIME BETWEEN '08:00:00' AND '12:30:00';
COMMENT "*xkkkkkhkhkkhkhkhhkhrkhkkhkhkkhkhkhrkkhrkhrsx '
COMMENT ' SELECT RECORDS FROM AUDIT TABLE !
COMMENT ' RECORDED BETWEEN 12:30 P.M. AND 4:00 P.M.'
COMMENT ' ON JUNE 29 AND AUTHORIZED DUE TO DBAAUTH.'
COMMENT "*xkkkkkkkhkkkkkhkhkkhkhkkhkhkkhkhkhkhhrkhrrkx '
SELECT * FROM AUDIT_TAB WHERE MONTH = '06'

AND DAY = '29' AND TIME BETWEEN '12:30:00'

AND '16:00:00' AND RESULT = 'D';

COMMENT '"#*%kkkkkkkkkhkhhkkhkhhhhkkhkhkkhkhkkkkhrxrsxx '
COMMENT ' SELECT CHECKS OF UPDATE AUTHORITY !
COMMENT ' AGAINST TABLE USER1.TAB1

COMMENT ' RECORDED BETWEEN 08:00 P.M. AND 4:00 P.M.'
COMMENT ' ON JUNE 29 NOT DUE TO VIEW CREATION. !
COMMENT ' (update checks traced at level 2) !
COMMENT "*xkkkkkhkhkkhkhkhhkhrkhkkhkhrkhhkhkhrkkhkrhrhx '
SELECT = FROM AUDIT_TAB WHERE MONTH = '06'

AND DAY = '29' AND TIME BETWEEN '08:00:00'

AND '16:00:00' AND OWNER = 'USER1'

AND RESOURCE1 = 'TAB1' AND AUTHTYPE = 'UPDATE'

AND RESULT NOT LIKE '%V';

COMMENT "*xkkkkkkkdkhkkkhkdkkkhkhhdkhkhrkhrkhrhrdhhrkhrdkx '
COMMENT ' SELECT CHECKS OF UPDATE AUTHORITY '
COMMENT ' AGAINST TABLE USER1.TAB1

COMMENT ' RECORDED BETWEEN 08:00 P.M. AND 4:00 P.M.'
COMMENT ' ON JUNE 29 DUE TO DBAAUTH

COMMENT ' (DBA activity traced at level 1 or 2) '
COMMENT "*xkkkkkhkkkkhkkhkhhkhrkhkkhkhkhhkhkhrkkhrkhrsx '
SELECT * FROM AUDIT_TAB WHERE MONTH = '06' AND

DAY = '29' AND TIME BETWEEN '08:00:00'

AND '16:00:00' AND OWNER = 'USER1'

AND RESOURCE1 = 'TAB1' AND AUTHTYPE = 'UPDATE'

AND RESULT = 'D';

COMMENT "*xkkkkkkkdkkkkkhkhkkhkhkkhkhkkhkhkhkkkkhrskx '
COMMENT ' SELECT ALL GRANTS OF RUN AUTH ON !
COMMENT ' PROGRAMS USER1.DBD1 AND USER1.DBD3. '
COMMENT "*xkkkkkhkhkhkhkhkhhkkhkhhkkhkhkkhkhkhrkkhrhrhkx '
SELECT = FROM AUDIT_TAB WHERE AUTHTYPE = 'RUN' AND
OWNER = 'USER1' AND RESOURCEl = 'DBD1' OR
RESOURCE1 = 'DBD3';

Figure 23. Example Security Audit Queries

Printing Security Audit Information from the Trace File

A security audit trace, especially a level 2 one, can generate a large amount of
information, and even more information is generated if you are tracing other
components or functions at the same time. All of these records are placed in a
single trace file. To print them selectively, you need to use the trace formatting
utility.

116 Database Administration

This utility accepts control statements, which in VM, it reads from a CMS file. As it
does not access the database manager, the latter does not have to be running for
the trace formatter to work.

[Cable 24 shows an example of invoking the DB2 Server for VSE trace formatter.
The control statements print out all security audit trace records and all parser trace
records. The example also restricts the output by date and time and is only for
USERT.

Table 22. Printing Security Audit Records from the Trace File

// JOB RUN TRACE FORMATTER

// TLBL ARITRAC,file-id <-- File-id of trace tape (optional)
// ASSGN SYS004,cuu <-- Address of tape unit

// EXEC ARIMTRA,SIZE=AUTO

SUBCOMP AU PA

USERID USER1

DATE 06/29/85

TIME 12:00:00 23:00:00

/*

/&

Notes:

1. The tape should be mounted on the physical device specified by cuu before
running the job.

2. The tape file-id must be the same file-id as was specified on the TLBL
statement when the tape was created.

3. The IDB2 Server for VSE & VM Qperatiod manual contains examples of running
the trace formatter to process a trace file that resides on DASD.

[Cable 23 shows an example of invoking the DB2 Server for VM trace formatter. The
interactive SQLTRFMT EXEC supplied by IBM resides on the production minidisk
(Q-disk) and invokes XEDIT to edit a CMS file called SQLTRFMT TRACE A. Use
this exec to type in the control statements. When you file SQLTRFMT SQLTRACE
A, the SQLTRFMT EXEC then asks where you want its output directed.

The control statements shown in [able 23 print all security audit (AU) trace records
and all parser (PA) trace records. They also restrict the output to those records
generated for a specific date (06/29/85), time (12:00:00 to 23:00:00), and user
(USER1).

Table 23. Printing Security Audit Records from the Trace File

Invoking the Trace Formatter:

SQLTRFMT

Example Control Statements

SUBCOMP AU PA
USERID USER1
DATE 06/29/85
TIME 12:00:00 23:00:00

If you are directing your trace output to tape, then before invoking the trace
formatter, ensure that the appropriate tape is mounted on virtual device 182. If you
are directing it to a CMS file, you must enter a CMS FILEDEF command for the
file before invoking SQLTRFMT. Use the same FILEDEF that you issued before you

Chapter 5. Providing Security 117

invoked SQLSTART (and initiated the trace). See the IDB2 Server for VSE & VM
manual for the command format.

Complete instructions for using the utility are in the DB2 Server for VSE & VM
manual.

118 Database Administration

Chapter 6. Recovering from Failures

A variety of problems can occur in a relational database management system,
leading to inaccuracies or loss of data. A power failure can bring the computer to a
halt; the disk used to store information could become damaged; users can make
errors such as dropping the wrong table or dbspace. Database recovery refers to
the processing needed to correct the data when something goes wrong.

The problems that can occur fall into the following categories. This chapter

explains how to recover from those that fall into the first two categories. For

information on how to recover from the other types, see the [DB2 Server for V. M
or IDB2_Seruer fnr VSE System Administratiod manual

* Application Failure

A single application (for example, an ISQL command or routine, or a DBS Utility
command) fails to complete successfully.

* User Logic Errors

The system or application does the requested function, but the request itself was
in error: that is, the user (or application program) did not specify the correct
function.

* System Failure

The operating system, CICS subsystem, or the database manager can end
abnormally because of error conditions or a power failure.

¢ DASD Failure

The system may be unable to read data from or write it to the DASD device on
which it is stored because the storage medium is unreadable or damaged. Such
an error could occur on the log or the storage pool.

* Subsystem Failures (VM Only)

With VSE Guest Sharing, whereby users on VSE are accessing a DB2 Server for
VM application server, any of the subsystems involved (the database manager,
VM/ESA operating system, VSE, or the CICS subsystem) may end abnormally.

Overview of Recovery Concepts

Logical Units of Work

When a user or an application program has made a change or a group of related
changes to the database, and if the application in question completed successfully,
the user or program issues an SQL COMMIT WORK statement to the application
server, to commit these changes to the database. If the application did not complete
successfully, the user instead issues an SQL ROLLBACK WORK statement, which
undoes all the changes made up to the point of the error since the last COMMIT
WORK statement, or since the start of the program or session.

A group of SQL statements is called a logical unit of work (LUW). An LUW can be
as small as one statement, or as large as an entire application execution (or ISQL
session). All SQL statements are processed within an LUW. If no LUW exists when
a statement is issued, then the database manager creates one.

© Copyright IBM Corp. 1987, 2000 119

CMS Work Units

VM users can take advantage of CMS work units which allow them to maintain
more than one logical unit of work (LUW) at a time. With separate CMS work
units, application programs can be independent of one another. For example, a
user can run a program, and in the middle of an LUW, have that program call a
second program which runs in a separate CMS work unit. When work is
committed in the second program, it does not affect the active LUW in the first
program.

Note: CMS work units require extra processing overhead, so should only be used
when necessary. If an application does not need this support, set the
WORKUNIT option of the SQLINIT command to NO.

Atomic Operations

An operation is atomic if within a logical unit of work (LUW), it can succeed or
fail on its own; that is, it does not affect other operations as long as they do not
depend on it. The DB2 Server for VSE & VM database manager considers all
operations are atomic except those that occur in dbspaces residing in
nonrecoverable storage pools, and those that occur when LOGMODE=N (running
with the no-log option).

Example:

Suppose you have an application program that performs the following operations
within one LUW: a DELETE, an UPDATE, and an INSERT statement. Assume the
DELETE statement will process successfully; then, the UPDATE statement will
change the values in the table as specified. If, at the end of statement processing,
any duplicates exist in the primary key, the UPDATE operation is rolled back.
Because the failure of the UPDATE statement does not affect the DELETE
statement (both operations are atomic), you can let the program proceed and
perform the INSERT. Alternatively, you could COMMIT the successful DELETE or
ROLLBACK the LUW.

For a further discussion of atomic operations, see [‘Backouts Initiated hyl
Ié I s I 3 I Z r” E] :2! l

Dynamic Application Backout

This process reverses the changes made by a logical unit of work (LUW) that ends
abnormally. It is performed while the system is online and processing other
applications. It is supported for the following:

* DB2 Server for VM

* DB2 Server for VSE

« ISQL

» DBS Utility

* Ppreprocessor operations
* Batch

* VSE/ICCF, and

¢ the CICS subsystem

The DB2 Server for VSE dynamic application backout facilities are also coordinated
with the Dynamic Transaction Backout facilities of the CICS subsystem. A backout
initiated by the DB2 Server for VSE database manager initiates a CICS transaction

120 Database Administration

backout for the affected transaction. Similarly, a transaction backout initiated by the
CICS subsystem initiates a DB2 Server for VSE backout, if the transaction was
doing any SQL processing.

Restart Processing

If the system or the database manager ends abnormally, this process reverses any
database changes made by applications that were in progress within an LUW at
the time of the failure. It also ensures commitment of all changes made by those
applications that completed successfully.

Recovery from Application Failures

To take advantage of the DB2 Server for VSE & VM recovery support, applications
should be designed so that all SQL requests that constitute one logical change to
the database are properly grouped into logical units of work (LUWSs). For example,
if an application transfers funds from one account to another, which entails an
update to two different rows in the database, the updates should be done in the
same LUW. Thus, if the application should fail, the database would be left in one
of two consistent states: either the transfer was done completely (both rows
updated), or it was not done at all (neither row updated). If the updates were in
different LUWSs, an application failure could result in only half of the transfer
being performed (only one row updated).

Designing an application properly requires an understanding of when an LUW
begins and ends. When it ends, the changes made within the LUW are either
committed to the database, or backed out. %gm:e_&m_pa.gﬂlﬂ shows the general
rules for DB2 Server for VSE LUWs. shows the general rules for VM users
and [[able 25 on page 123 shows the general rules for VSE guest users accessing an
application server on a VM/ESA system. There are, however, variations and
special considerations that depend on the application environment and application

implementation techniques. These variations are discussed in the following
sections.

Chapter 6. Recovering from Failures 121

WHEN A LOGICAL
UNIT OF WORK

WHEN A LOGICAL UNIT OF WORK ENDS

-AUTOCOMMIT
OFF

DBS Jobs

-AUTOCOMMIT ON

-AUTOCOMMIT
OFF

Preprocessor
Jobs

First Command

Command entry

First Command

Start of job
setp

ing
-COMMIT WORK for
multiple row

update

-COMMIT WORK

-After successful
command process-
ing

-COMMIT WORK
-Normal end of
program

-Normal end of
job step

BEGINS COMMITTED BACKED OUT
Programs
First SQL -COMMIT WORK -ROLLBACK WORK
-Batch/ICCF statement
-Normal end -Abnormal end
-Impilicit rollback
-Statement error
First SQL -COMMIT WORK -ROLLBACK WORK
-cies statement -SYNCPOINT -SYNCPOINT ROLLBACK
-Normal end -Abnormal end
-Implicit rollback
ISQL Sessions
Command -After successful -CANCEL
-AUTOCOMMIT ON entry command process- -Command Error

-ROLLBACK WORK
-Implicit rollback

-ROLLBACK WORK
-Abnormal end
-CANCEL
-Command Error
-Implicit rollback

-Command error
-Abnormal end

-Command error
-ROLLBACK WORK
-Abnormal end

of program

-Abnormal end of
job step

Figure 24. General Rules for DB2 Server for VSE Logical Units of Work

Notes to w

¢ Note that DBS ERRORMODE processing may change the DBS AUTOCOMMIT
mode. Refer to the [DBR2_Server fnr VSE & VM Database Services ITHIH-LI manual for

details.

e When AUTOCOMMIT is on, ISQL issues a COMMIT WORK when the statement
completes successfully. The exception is for UPDATE, DELETE, and INSERT
statements that affect more than one row. For that case, you are prompted before
ISQL issues a COMMIT WORK.

Table 24. General Rules for DB2 Server for VM Logical Units of Work

LOGICAL All ISQL Sessions DBS Utility Pre-
&I\CI)IIIKOF Emgra‘gv[5 | AUTOCOMMIT AUTOCOMMIT AUTOCOMMIT AUTOCOMMIT) Processers
nder ON OFF ON OFF
BEGINS First SQL Each SQL First SQL Command First command | Start of CMS
statement statement entry | statement entry command
ENDS COMMIT After successful | COMMIT After successful | COMMIT Normal end
COMMITTED |WORK SQL statement | WORK command WORK of CMS
processing, processing command
Normal end | COMMIT Normal end
of CMS WORK for of CMS Implicit
command multi-row command rollback
updates
SQLHX

122 Database Administration

Table 24. General Rules for DB2 Server for VM Logical Units of Work (continued)

LOGICAL All ISQL Sessions DBS Utility Pre-
Ul\gT OF P 1ogTans | AUTOCOMMIT AUTOCOMMIT AUTOCOMMIT AUTOCOMMIT Pro¢essers
WORK Under CMS | 5y OFF ON OFF
ENDS ROLLBACK |CANCEL ROLLBACK Abnormal Command Abnormal end
BACKED OUT |WORK WORK end error of CMS
Statement command
Abnormal error Abnormal Command ROLLBACK
end of CMS end error WORK
command ROLLBACK
WORK CANCEL SQLHX Abnormal
Implicit end of CMS
rollback Implicit Implicit Implicit command
rollback rollback rollback
SQLHX Implicit
rollback
Statement
error SQLHX
Notes to [able 24 on page 122

1. If a DB2 application program (including preprocessors and utilities) is not
invoked from an EXEC, it is considered to be a command, and the COMMIT
and ROLLBACK rules apply. If the program is issued from an EXEC (as is
almost always the case), then it is considered to be a subcommand. For EXECs,

end-of-command COMMIT and ROLLBACK processing does not occur until

the EXEC completes.

DBS ERRORMODE processing may change the DBS AUTOCOMMIT mode.

Refer to the [DBR2 Server fnr VSE & VM Database Services Iffﬂifyl manual for
details.

When AUTOCOMMIT is on, ISQL issues a COMMIT WORK when the

statement completes successfully (as shown in [Table 24 on page 122). The

exception is for UPDATE, DELETE, and INSERT statements that affect more
than one row. For that case, you are prompted before ISQL issues a COMMIT
WORK.

For the normal end situation, the database manager will attempt to commit

LUWs. The commit may fail if a deadlock occurs, a log full condition is
encountered, or some other system condition occurs that causes the program to
end.

Table 25. General Rules for DB2 Server for VM Logical Units of Work from VSE Guests

LOGICAL UNIT OF PROGRAMS Preprocessor Jobs

WORK cIcs Batch/ICCF

BEGINS First SQL Statement First SQL Statement Start of job step

ENDS COMMITTED COMMIT WORK COMMIT WORK Normal end of job step
Normal end SYNCPOINT

Normal end

Chapter 6. Recovering from Failures

123

Table 25. General Rules for DB2 Server for VM Logical Units of Work from VSE Guests (continued)

LOGICAL UNIT OF PROGRAMS Preprocessor Jobs
WORK cics Batch/ICCF
ENDS BACKED OUT ROLLBACK WORK ROLLBACK WORK Abnormal end of job
step
Abnormal end SYNCPOINT ROLLBACK
Implicit rollback Abnormal end
Statement error Implicit rollback

Application Program Recovery in VM

An application is considered to have ended normally when it returns to CMS. In
single user mode, an application ends normally when it returns to the DB2 Server
for VM calling routine. All other types of termination (such as HX, CMS abend,
program check, or any user machine termination) are considered abnormal.

Note: In single user mode, an application’s Register 15 return code protocol is not
part of the definition of termination, and is not used by the application
server to determine whether it should proceed with normal or abnormal
termination processing. The application server establishes a CMS ABNEXIT
exit in the database machine. The exit attempts recovery and dumps
important diagnostic information when the recovery attempt is not
successful. If a single user mode application establishes an abnormal end
exit (for example, by way of ABNEXIT, STAE, SPIE, STXIT), the DB2 Server
for VM abend exit is overridden.

Some compilers provide a mechanism that handles program interrupts during the
execution of a program and before control returns to CMS. Consequently, the
application server may not be aware that the program termination is abnormal,
and will perform an implicit COMMIT rather than an implicit ROLLBACK. See the

DRB2 Serer for VSE & VM Application Programming manual for more information

about program interrupts.

Users should be aware of how CMS handles multiple abnormal end exits, and
should clear any that have been set by the application program before returning to
the DB2 Server for VM application server, or else unpredictable results may occur
when later CMS commands are issued. Also, the user should reset the abnormal
exit before returning to the CMS abnormal termination routine after handling an
abnormal end condition.

Dropping the DB2 Server for VM Resource Adapter Code

When users switch from one program to another, the SQLRMEND EXEC enables
application programs to free the storage used by the resource adapter code. This
EXEC can also be used to perform COMMIT/ROLLBACK processing on
outstanding work before running the next program.

For more information, see L'SQIRMEND EXEC” on page 251,

Batch and VSE/ICCF Application Recovery

If a batch application executing in multiple user mode ends without freeing its link
to the DB2 Server for VSE & VM application server, the operating system informs
the application server whether the application ended normally or abnormally. The

124 Database Administration

indication is normal if the application ends with the EOJ macro and the high-order
bit of general purpose register 15 is set to 0. Other conditions indicate an abnormal
end. The database manager automatically commits updates if the termination is
normal, or does a rollback if it is abnormal.

The DB2 Server for VSE application server establishes an STXIT AB exit in the
database partition. The exit attempts recovery and dumps important diagnostic
information if the recovery attempt is not successful. If an application is running
with the TRAP(ON) run-time option of LE/VSE and it did not issue an STXIT AB
MACRO, LE/VSE and DB2 Server for VSE will keep track of calls to and returns
from DB2 Server for VSE. If an abend occurrs while the application is running, the
LE/VSE condition manager is informed whether the problem occurred in the
application or in DB2 Server for VSE. If the abend occurs in DB2 Server for VSE,
the LE/VSE condition handler passes the condition back to DB2 Server for VSE.
For information on condition handling with LE/VSE see the DB2 Server for VSE &

icati iug manual. Furthermore, if a single user mode
application issues an STXIT AB macro, the DB2 Server for VSE abend exit is
overridden. Similarly, if the application issues an STXIT PC, then the DB2 Server
for VSE abend exit is overridden for program check conditions. Other abend
conditions are still processed by the application server.

Online Application Recovery

DB2 Server for VSE & VM recovery from failures of online (CICS) transaction is
coordinated with CICS recovery processing.

Consistency among multiple application servers is ensured at CICS synchronization
points, when related data across multiple application servers is kept in a consistent
state. Synchronization points (syncpoints) are points, during the processing of a
transaction, at which updates or modifications to the transaction’s resources are
logically complete and error-free. To take advantage of the CICS syncpoints, the
database manager online support runs as a CICS resource adapter, using the CICS
Application Program interface and User Exit interface. For more information, refer
to the CICS/VSE Customization Guide.

Syncpoints occur during the execution of an application under any of the following
circumstances:

* An application explicitly issues a request for a syncpoint: either the statement
EXEC CICS SYNCPOINT to request a COMMIT of all updates, or EXEC CICS
SYNCPOINT ROLLBACK to request a ROLLBACK. For further information,
refer to the CICS/VSE Application Programming Reference.

* Any termination of a CICS transaction calls the CICS syncpoint manager.
Normal termination results in COMMIT. Abnormal termination results in
ROLLBACK.

* The SQL COMMIT WORK statement causes the DB2 Server for VSE online
support to issue a CICS SYNCPOINT (COMMIT). The SQL ROLLBACK WORK
statement causes a CICS SYNCPOINT (ROLLBACK).

Additionally, when the DB2 Server for VSE online support detects an internal
ROLLBACK of a unit of work, it issues CICS SYNCPOINT (ROLLBACK). (Such

an internal rollback could happen, for example, if the system operator entered
the FORCE command to ROLLBACK an LUW).

As a performance note, it is more efficient for applications to use a CICS syncpoint.
The SQL COMMIT or ROLLBACK calls are less efficient, because they result in a

Chapter 6. Recovering from Failures 125

longer path. A CICS syncpoint is also easier to understand : when it is time to
commit, the application program calls the global synchronization function (CICS
SYNCPOINT [ROLLBACK]).

The assumptions are that individual application programs do not plan to do their
own recovery, and that updates are not to be committed unless normal termination
occurs or the application program explicitly requests a commit.

Notes:

An installation must explicitly request the CICS subsystem to start the syncpoint
protocol by:

1. Generating CICS System Initialization Table (DFHSIT) with DBP=YES. If this is
not done, the CICS process at synchronization points attempts to commit all
updates. Alternatively, DBP=xx may be specified if a suffixed version of the
CICS Dynamic Transaction Backout Program is being used.

2. Ensuring that each online application program that accesses an application
server has Dynamic Transaction Backout set to YES. Do this by specifying
INDOUBT=BACKOUT when defining the transaction.

ISQL Sessions

If an ISQL session ends abnormally, the database manager attempts to notify the
user about the abnormal condition, and leaves the database in a consistent state. In
VM, the database manager issues a ROLLBACK WORK and the session ends.
Control returns to CMS. In VSE or in a VSE Guest Sharing environment, the CICS
syncpoint manager issues a ROLLBACK WORK. All CICS temporary storage for
routines is deleted, and both the ISQL transaction and the CISQ transaction are
terminated, if possible. If the CICS syncpoint manager is in control when the CISQ
transaction abnormal termination occurs, the ISQL transaction abends with the
abend code GCBE. For more information on GCBE, see the [DB2 Server for VSH

Messages and Coded manual.
DBS Utility Processing

If the DBS Utility fails to complete the processing of all commands supplied in the
command input, or if it terminates with a return code equal to or greater than §,
then before the Utility can be restarted the DBS message file listing must be
analyzed to determine the commands that were processed and the error that
occurred. If there are no error messages here that describe the reason for the
failure, then the database machine console messages must be analyzed. After the
error has been corrected, restart the Utility as described below:

¢ If the DBS command input that failed was processing without any of the
following commands:

SET AUTOCOMMIT ON
SET ERRORMODE OFF
SET ERRORMODE CONTINUE
COMMITCOUNT parameter on an INFILE subcommand
COMMITCOUNT parameter on an INMOD subcommand (VSE Only)
SQL COMMIT WORK statements,

just restart the Utility.

* If it was processing with any of the above commands:
1. Correct any command syntax errors.
2. Remove all commands that were successfully processed and committed.
3. Restart the Utility.

126 Database Administration

If the Utility ends with a return code of 4, this means that all the commands
supplied in the command input were processed successfully but a DBS program
termination error occurred. The Utility does not need to be rerun.

For full descriptions of DBS Utility return codes and error processing, see the

Berver for VSE & VM Database Services Lltilit manual.
Preprocessor

If the preprocessor fails to complete the processing of all source statements
supplied as input, or if it terminates with a return code equal to or greater than §,
then before running it again you must analyze the source statement listing
produced to determine the errors that occurred. If there are no error messages
there that describe the error condition(s), look at the console messages. After all
source statements and any other errors are corrected, rerun the preprocessor from
the beginning.

If the preprocessor ends with a return code of 1 while the program is being
preprocessed with the BLOCK option, this means that one or more SQL statements
are disqualified for blocking. For further information on blocking, refer to the

1 manual.

If it ends with a return code of 4, then one or more preprocessor warning messages
are contained in the source statement listing. The preprocessor does not have to be
rerun; however, the source statement listing should be checked to insure that the
warning conditions involve objects known to be nonexistent at the time the
preprocessor was run.

If it ends with a return code of 0 and no package was created, then the source
statements read by the preprocessor contained no SQL statements. Here, the
preprocessor must be rerun if the incorrect input source statements were supplied
as input.

Recovery from User Logic Errors

User logic errors are those where the application server carries out the functions as
requested, but the user (or program) determines that the change(s) requested
should not have been made — for example, the wrong table or dbspace may have
been dropped.

Recovery from a user logic error depends on when the error is detected. If it is
detected before the changes have been committed, the application server supports
user (or program) invoked dynamic application backout. A user or program can
take certain actions to back out these changes, depending on the way in which the
application server is being used. ISQL users accomplish this by issuing either the
SQL ROLLBACK WORK statement or the ISQL CANCEL command, or by
responding to ISQL prompts for CANCEL or ROLLBACK. The error handling logic
in application programs can accomplish this by issuing a ROLLBACK WORK
statement. In addition, in VM the invoker of the program can enter either the HX
or SQLHX immediate command (HX causes a rollback and ends the CMS
command; SQLHX causes a rollback, but does not end the CMS command.) If you
have coded your own interactive program to process SQL statements dynamically,
you can also code a cancel exit. This would allow a user of your program to
perform a function similar to the ISQL CANCEL command.

Chapter 6. Recovering from Failures 127

For

more information on cancel exits, refer to the [DB2 Server for VM Syster

Wdministratiod or [DB2 Server for VSE System Administrationl manual. For user errors
that are detected after changes have been committed, the user has three choices:

1.

Manually reverse the effects of the changes.

This involves issuing the INSERTs, PUTs, UPDATEs, and DELETEs necessary to
cancel all changes. If the committed changes involved definitional change
statements (CREATE, DROP, or ALTER), these too must be manually backed
out, which can be quite a chore since definitional statements do not always
have straightforward cancellation operations. For example, a DROP TABLE
statement would have dropped views and authorizations along with the table;
thus, to reverse its effects would include re-creating the views and regranting
the authorizations.

Reset the data and reenter valid changes.

If a back-up copy of the data exists, it may be simplest to just revert to this
version and then reenter any valid changes made to the data since the copy
was made. Reentering the valid changes can, of course, be as involved as the
effort to back out invalid ones; however, it has the advantage in that it can be
done by reexecuting applications.

The DBS Utility UNLOAD facilities can be used to create back-up copies of
data, and the RELOAD facilities can be used to reset data to a previous state.
The DB2 Server for VSE & VM database archiving support can also be used to
create back-up copies of the entire database and reset it.

Use filtered log recovery to bypass the changes.

Filtered log recovery lets you rollback a committed logical unit of work (LUW).
It sounds like an easy solution, but it must be exercised with extreme care.
When you undo past errors, other database changes may be altered as well:
rows that users thought they had deleted may unexpectedly reappear; the
values in updated rows may change.

If you are using referential integrity, then on completion of the filtered log
recovery you should deactivate and activate your primary and foreign keys to
have the database manager automatically recheck the referential constraints. See

Dynamic

a ”

Filtered log recovery can be used to bypass the operations recorded in the log.
The smallest set of operations you can bypass is all the work done in a single
LUW. You tell the application server which logical units of work to bypass by
supplying EXTEND input file commands. Because you want to bypass work
that has already been committed, you would use the ROLLBACK
COMMITTED WORK command. All the EXTEND input file commands are
described in the DB2 Server for VSE & VM Diagnosis Guide and Referencd
manual.

Recovery from User Errors

To dynamically recover from user errors, users should take advantage of the

faci

lities that are provided for detecting error situations and for backing out

changes that should not have been committed.

Ba
Wh
acti

cking Out Data During an ISQL Session
en using ISQL, there will be times when you will want to backout an invalid
on: for example, if AUTOCOMMIT is OFF and you entered an SQL statement

that resulted in a negative SQLCODE, or changes to a table that proved to be
incorrect.

Note: You cannot backout changes in a nonrecoverable storage pool.

128 Database Administration

If you detect an error before a change is committed, you can backout the change.
How many changes you can backout depends on whether AUTOCOMMIT is ON
or OFF.

If it is ON, every statement is its own logical unit of work (LUW), and ISQL will
immediately issue a COMMIT WORK after processing the statement. The only
exception is for INSERT, UPDATE, and DELETE statements that affect more than
one row: in that case, ISQL displays a message that gives you the option of
backing out. For all other statements, you can backout the changes before the
statement completes its processing, by:

* Answering CANCEL, ROLLBACK, or NO (based on the reply prompt) to an
ISQL message requesting a reply

* Entering the ISQL CANCEL command when you are informed that the terminal
is free (VSE Only)

* Entering CANCEL if you are prompted to clear the screen or enter CANCEL.
(VSE Only)

* Entering CANCEL or SQLHX if you are prompted to clear the screen (clear the
screen after entering CANCEL). (VM Only)

When using the INPUT command, you can enter the BACKOUT command after an
invalid data row is entered. This deletes all data rows entered since INPUT was
issued, or since the last SAVE command was entered.

If AUTOCOMMIT is OFF, you have control over what is an LUW and when
changes are to be made. When you backout a change, this undoes all changes
made since the beginning of the LUW. You can backout a change by any of these
methods:

* Entering a CANCEL or an SQL ROLLBACK WORK statement

* Answering CANCEL to any ISQL message requesting a reply (and then
answering YES to message ARI7041D)

* Entering the ISQL CANCEL command when you are informed that the terminal
is free (VSE Only)

* Entering CANCEL if you are prompted to clear the screen or enter CANCEL.
(VSE Only)

* Entering CANCEL or SQLHX if you are prompted to clear the screen (clear the
screen after entering CANCEL). (VM Only)

Note: In VM, when you enter a CANCEL command, ISQL does ROLLBACK
WORK RELEASE processing. Any explicit connection you have made will
be released. You should reissue the CONNECT statement if you want to
explicitly connect to ISQL again.

Backouts Initiated by Application Programs

An application program may begin a backout if the application server shows that
there is an error, or if the program detects something wrong internally. To detect
and handle errors, the program should have the WHENEVER statement coded into
it. It can then determine whether to continue or to stop execution when an error
occurs.

All operations against recoverable storage pools are atomic, except in SUM
NOLOG mode. That is, either the operation will be completed successfully, or any
changes made by the operation will be reversed automatically. Changes made by
previous operations in the same LUW are not affected. The application is free to
either continue working within the same LUW, to COMMIT the changes made so

Chapter 6. Recovering from Failures 129

far, or to ROLLBACK the LUW. Some errors, such as deadlock, still require the
entire LUW to be rolled back. The status of the LUW is indicated in SQLWARNS®6 in
the SQLCA.

When running with LOGMODE=N, atomicity of operations is enforced by rolling
back the current LUW to avoid partial completion of an operation. For operations
on data in nonrecoverable storage pools, there is no support for atomicity of
operations.

Note: When blocking, the database manager does not insert rows into the database
until the block is full and it does not notify your program of an insert error
until the PUT that fills a block is run. To determine when (or if) rows are
actually inserted into the database, your program should examine
SQLERRD(3) in the SQLCA when doing PUTs.

To rollback work when an SQL error is encountered, code a ROLLBACK WORK
statement in the program, and use a WHENEVER SQLERROR GO TO statement to
cause a branch to the ROLLBACK statement when there is an SQL error. After the
program issues a ROLLBACK WORK, it may continue processing more SQL
statements without the previous error affecting their outcome.

If the application programmers do not wish to worry about setting up
error-recovery logic in their programs, they can enable them to stop executing
when an SQL error is detected. This is done by coding WHENEVER SQLERROR
STOP (COBOL, COBOL 1I, PL/I) or WHENEVER SQLERROR GOTO. When this is
coded, the database manager will issue either a CANCEL (in VSE) or a CMS
DMSABN macro (in VM) for the application when any command results in a
negative SQLCODE, which results in a ROLLBACK WORK for any outstanding
LUW within the application program. Alternatively, the application programmer
could code a WHENEVER SQLERROR GOTO and branch to a label or routine to
perform the ROLLBACK WORK and end the program.

If the program detects an internal error and wishes to discontinue processing, it is
probably best to issue a ROLLBACK WORK (if possible) before terminating it. This
can be done by coding a ROLLBACK WORK statement in the application and
branching to it when an internal program error is detected. After the ROLLBACK
WORK statement is run, the program can stop, or continue if desired.

In VM, once a program is running, you can stop it by using the immediate
commands HX or SQLHX, both of which cause a ROLLBACK WORK for the
current LUW. You might want to do this if, for example, you start the program and
then realize you have provided the wrong inputs. The difference between the two
commands is that HX causes an end to the CMS command, while SQLHX does
not. Thus, the choice of command is a matter of convenience. For example, issuing
HX from ISQL both rolls back the current LUW and ends the ISQL session, so the
user must reinitialize ISQL to continue processing; issuing SQLHX causes the LUW
to be rolled back but the ISQL session continues.

Note: The ISQL CANCEL command and the more general SQLHX command have
equivalent functions. The CANCEL command, however, does not work for
user programs. In addition, CANCEL, SQLHX, and HX do not work if you
have processed the SQLINIT command with the SYNCHRONOUS(YES)
option.

130 Database Administration

Selective Recovery from User Data Errors

It is a good idea to maintain backup copies of specific tables or dbspaces, so that
they can be reset in case of major errors.

Periodic Backup of Critical Data
Individual tables or entire dbspaces should be periodically unloaded to either a

SAM tape or DASD file (in VSE), or to a tape or CMS minidisk file (in VM) with
the DBS Utility UNLOAD command.

Multiple UNLOAD commands can be put in a single DBS SYSIPT (VSE), or SYSIN
(VM), input file. You might establish one such job stream for periodic back-up of
users’ PRIVATE dbspaces, and others for periodic back-up of selected application
production data. Different types of data would typically have different back-up
schedules. For example, production data would probably be backed up more
frequently than query user data. Some DB2 Server for VSE data, such as certain
data extracted from DL/I, would not require back-up; that is, the DL/I copy of the
data is sufficient back-up.

Note: You cannot use the DBS Utility UNLOAD facilities to back up data in the
system dbspaces (SYS000n). The catalog tables and packages cannot be reset
by DBS RELOAD processing.

Resetting Data Using DBS RELOAD Processing

When data is backed up, you can recall the backup copy if necessary. Data that
was backed up with the UNLOAD TABLE command is recalled with the RELOAD
TABLE command; data that was backed up with the UNLOAD DBSPACE
command can be recalled with either RELOAD DBSPACE (to reset the entire
dbspace) or with RELOAD TABLE (to recall selected tables in the dbspace). Often,
user data errors that have been introduced into the database are isolated to just a
few tables; thus, even if the data had been unloaded with an UNLOAD DBSPACE
command, you would use RELOAD TABLE to reset it.

When a table is RELOADed with the NEW option, a new table is created and data
reloaded. None of the primary keys, indexes, unique constraints, referential
constraints or field procedures are reproduced in the new table.

When you use the RELOAD command with the PURGE option to replace the
contents of a table, the DBS Utility does the following to the table being replaced:
Drops the CLUSTERING index (if one exists).

Deactivates the active primary key (if one exists).

Deactivates all active foreign keys.

Deactivates all unique constraints.

Drops all other indexes.

Deletes all rows from the table.

Reloads data.

Recreates the CLUSTERING index previously dropped.

Activates the primary key previously de-activated.

Activates the unique constraints previously de-activated.

Recreates any remaining indexes previously dropped.

SO0 NOOTAWN -

—_ -

As a result, the CLUSTERING index will be preserved, as well as the primary key,
foreign keys, unique constraints, and indexes existing on the table at the time of
the RELOAD/PURGE command. If no CLUSTERING index exists, then the
primary key becomes the CLUSTERING index. There is no requirement to order
the reloading of tables, because all referential constraints are inactive while the
data is inserted.

Chapter 6. Recovering from Failures 131

Consider running the DBS Utility in single user mode with LOGMODE=N when
resetting data through RELOAD DBSPACE or RELOAD TABLE processing. This
will eliminate any log overflow conditions that result from the table row deletes
and inserts performed by RELOAD processing with the PURGE option. If you use
log archiving, however, remember that switching the log mode disrupts the
continuity of the log.

Running the DBS Utility with LOGMODE=N is shown in [Eigure 29 and Eigure 24.
If the data resides in a nonrecoverable storage pool, there is no need to use
LOGMODE=N, because logging is automatically suppressed for nonrecoverable
data.

// JOB RESTORE DBSPACE

// EXEC PROC=DBNAMEO1

// EXEC PROC=ARIS71PL

// TLBL DUMPTAP,.........

// ASSGN SYS004,.........

// EXEC ARISQLDS,SIZE=AUTO,PARM="'STARTUP=L,SYSMODE=S,LOGMODE=N,DUALLOG=Y"
// EXEC ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,LOGMODE=N,PROGNAME=ARIDBS'
CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;

RELOAD DBSPACE (SQLDBA.EXAMPLE) PURGE INFILE(DUMPTAP PDEV(TAPE)

/&

Figure 25. Resetting a DB2 Server for VSE DBSPACE from a Back-up Copy

Notes:

1. The job control here assumes that the DB2 Server for VSE database was last
shut down with the ARCHIVE, UARCHIVE, or LARCHIVE option (depending
on whether you use LOGMODE=A or LOGMODE=L).

2. The first execution of the ARISQLDS exec starts the DB2 Server for VSE system
in single user mode (SYSMODE=S), and does a COLDLOG (STARTUP=L) to
redefine the log data sets. This step switches from LOGMODE=A or
LOGMODE=L to LOGMODE=N, and is not needed unless you run with
LOGMODE A or L. Omit the parameter DUALLOG=Y if you are not using
dual logging.

3. The second execution of the ARISQLDS exec runs the DBS Utility with the
input shown. This step RELOADs all the table data into the DBSPACE named
SQLDBA.EXAMPLE from a tape file (filename=DUMPTAP) created by the DBS
Utility UNLOAD DBSPACE command.

For further information about switching log modes, see the [DB2 Server for VSH

(System Administratiod manual.

EXEC SQLLOG DB(dbname)

FILEDEF DUMPTAP TAPn (RECFM VBS BLOCK 800

EXEC SQLDBSU DB(dbname) IN(TERM) LOGMODE(N)

CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;

RELOAD DBSPACE (SQLDBA.EXAMPLE) PURGE INFILE(DUMPTAP)
COMMIT WORK RELEASE;

Figure 26. Resetting a DB2 Server for VM Dbspace from a Back-up Copy

Notes:

1. The CMS commands here assume that the application server was last shut
down with the ARCHIVE, UARCHIVE, or LARCHIVE option (depending on
whether you use LOGMODE=A or LOGMODE-=L). This ensures that you will
be able to restore the database if a DASD fails.

132 Database Administration

2. The first run of the DB2 Server for VM program (by way of the SQLLOG
EXEC) does a COLDLOG, which is necessary to switch from LOGMODE=A or
L to LOGMODE=N. If you do not run with LOGMODE=A or L, you do not
need to run SQLLOG to do a COLDLOG.

3. Respond N for NO to message ARI0688D, which asks whether you want to
FORMAT and RESERVE the log minidisk(s).

4. The second run processes the DBS Utility with the input shown, to RELOAD
all the table data in the dbspace named SQLDBA.EXAMPLE from a tape file
(ddname=DUMPTAP) created by DBS Utility UNLOAD DBSPACE command
processing. CMS FILEDEF commands direct the DBS input to the terminal and
DUMPTAP to the tape.

5. After reloading the table, switch back to LOGMODE=A or L and create another
database archive.

Database Recovery from User Logic Errors

To protect the entire database from user logic errors, use the archiving and
COLDLOG facilities of the database manager. These facilities are required to
protect the system catalog tables and the package dbspaces. Backup copies of the
system dbspaces (SYS0001) made by DBS Utility UNLOAD command cannot be
used to reset catalog tables or packages to a previous state.

Creating a Proper Back-up Copy of the Database
The back-up copy of the database can be either a database archive or a database
archive and subsequent log archives.

You can create the database archive by using a variety of facilities. You must,
however, create the archive when no user is accessing the database. Create the
archive by using either the SQLEND ARCHIVE or SQLEND UARCHIVE
command. Because no user is accessing the database when the database archive is
taken, no incomplete changes are recorded in the database archive.

If you use log archiving, you can think of the last back-up copy as being the last
database archive plus all subsequent log archives. Log archives do not record
changes by incomplete logical units of work.

Note: If you are using the CICS subsystem and it ends abnormally, or the
connections from the online resource adapter to the application server are
ended by a CIRR QUICK, or the online adapter is ended by a CIRT QUICK
or CIRR QUICK command, an exception can occur: that is, incomplete
changes can be in the archive copy of the database if there are CICS
transactions that are left in-doubt when the SQLEND archive is taken. To
avoid this condition, enter a SHOW ACTIVE command to see if there are
any LUWs that are marked as being in-doubt. If there are, enter the
necessary FORCE commands to complete them before you enter the
SQLEND ARCHIVE command.

You can create a proper back-up copy even if you have been running the database
manager with LOGMODE=Y. However, if you create a database archive by using
SQLEND parameters when LOGMODE=Y, you must follow the steps outlined in
the IDB2 Serzer for VM Systews Administratiod or

manual to restart the database manager with LOGMODE=Y, because
the log mode will automatically change to A when taking the database archive.

Chapter 6. Recovering from Failures 133

Resetting the Database to a Previous Copy
If you are restoring from a database archive without using subsequent log archives,

you can reset the database to any previous database archive copy, not just the
latest one.

To reset a DB2 Server for VSE database to a previous copy generated by an
SQLEND command, run COLDLOG before restoring the database from the archive
copy. This reformats the log so that changes since the archive was taken are not
applied again.

To reset a DB2 Server for VM database, run the SQLLOG EXEC (omitting the
LOG1 and LOG2 parameters) to reformat the log with a COLDLOG. Respond
“NO” to message ARI0688D (for single logging) or ARI6129D (for dual logging).
When you respond NO, the database manager reformats the log such that changes
since the archive was taken are not applied again.

If you are restoring from a database archive and subsequent log archives, no
COLDLOG is required. When the database is restored, the logs are restored in
sequence. You are prompted to continue the log restore before processing each log
archive. You can end the restore process at any log archive by responding “END
RESTORE” to the appropriate prompt.

When resetting the database to a back-level copy, even if you are using subsequent
log archives, you should be aware of the following:

* The database archive copy includes a copy of the database directory, but the
database manager does not recognize any ADD DBSPACE and ADD DBEXTENT
operations which were done after the database archive. To reestablish these
dbspaces and dbextents in a VSE system, you must rerun the appropriate ADD
DBSPACE and ADD DBEXTENT operations. You can determine how many
dbextents exist in the restored back-level database by using the SHOW
DBEXTENT operator command. (Add the values in the NO._OF_EXTENTS
column.) You can determine the numbers of public and private dbspaces in the
restored database by querying the SYSTEM.SYSDBSPACES catalog table. For
more information on the catalog tables, see the IDB2 Server for VSE_Systend
manual or the [DB2_Server for VM Sustem Administratiod manual. In
VM, if you want to reestablish the dbspaces added after the database archive
was created, you must rerun the SQLADBSP EXEC. For more information, see
the DB2_Server for VM. Sustem Administration manual.

Any dbextents added to the database (by an ADD DBEXTENT operation) after
the database archive was created do not exist in the archive copy of the
database. In VM, the CP LINK and CMS FILEDEF commands for these
dbextents are present in the resid SQLFDEF file (on the DB2 Server for VM
production minidisk) for the database. To redefine these dbextents in the DB2
Server for VM database, perform the following procedure:
1. Create an ADD DBEXTENT card image input CMS file with a line entry for
each added dbextent. Each entry should contain the dbextent number and
the storage pool number for the dbextent.

Note: The SHOW DBEXTENT operator command tells you how many
dbextents are defined in the database.

2. Enter a CMS FILEDEF command with ddname SYSIN for the CMS input file:
FILEDEF SYSIN DISK fn ft fm

3. Run the SQLSTART EXEC with PARM(SYSMODE=S,STARTUP=E...) to
redefine the dbextents in the database.

134 Database Administration

¢ The database archive of the directory shows the DUALLOG value in effect when
the database archive was created. The database archive also shows the size of
the logs when the archive was taken. You can reset the DUALLOG value and
the size of the logs by doing a COLDLOG operation to reformat the logs after
the database is restored.

In VSE, do a COLDLOG by specifying STARTUP=L and the DUALLOG value
that you want. For more information about DUALLOG, see the
12 joid manual.

In VM, do a COLDLOG by running the SQLLOG EXEC without the LOG1 and
LOG2 parameters. In this situation, the log minidisk is already reserved and
formatted; only the directory needs to be updated. Respond “NO” to message
ARI0688D (for single logging) or ARI6129D (for dual logging), which prompts
you to FORMAT and RESERVE the log minidisk (or minidisks).

This final consideration applies when you restore a database archive without
applying subsequent log archives:

* All data (including the catalog table information) is reset to the database archive
copy. Any preprocessing, data definitions, grants, revokes, and stored queries or
routines established after the database archive was created are lost. The database
may not be consistent with other facilities on your system. In particular, it may
not be consistent with your CICS or DL/I data, and the packages may not reflect
the SQL application programs you installed on your system after the database
archive was created.

Resetting the Database without Reformatting the DB2 Server for

VSE Data Sets
A database restore (STARTUP=R) reformats the VSAM database data sets before

the data is reloaded. Reformatting the data sets is necessary after a data set is
replaced (for example, when restoring because of a media failure or database

reconfiguration). Reformatting the data sets is not necessary when none of the
database data sets is being replaced.

When restoring the database to a previous level to recover from a user logic error,
you usually do not change the data sets. To save processing time, use STARTUP=F
(fast restore) when you have not replaced any of the database data sets. The
STARTUP=F processing does not format the VSAM data sets: it loads the data.
Eliminating the formatting of the data sets significantly reduces the restore time.

Chapter 6. Recovering from Failures 135

136 Database Administration

Chapter 7. Customizing the HELP Text and Messages Text

The DB2 Server for VSE & VM messages and HELP texts are stored in tables,
meaning that they can be retrieved and manipulated just like any other data. You
can modify the information to suit local needs in the following ways:

* Adding or deleting topics

¢ Changing the information in existing topics

* Adding HELP text supplied by IBM in supported languages

* Adding your own HELP text in supported languages.

Note: A HELP command causes ISQL to issue a SELECT statement on the tables.

w shows the relationships between the tables used by the application server
for HELP text support.

SYSTEXT1 SYSLANGUAGE

ITEM TOPIC LANGUAGE | LANGKEY | REMARKS| LANGID

%

ITEM [SEQNO |SQL/DS HELP |LANGKEY)|

SYSTEXT 2

Figure 27. Relationships between SYSLANGUAGE, SYSTEXT1, and SYSTEXT2

The relationships between the tables are maintained through the following sets of
matching columns:

* LANGKEY in both SYSLANGUAGE and SYSTEXT2

* ITEM in both SYSTEXT1 and SYSTEXT2.

These tables are explained in more detail below.

The SYSLANGUAGE Table

HELP and messages texts are provided in several national languages. During
installation, one language is established as the default; it can be changed after
installation. In addition, you can make more than one language available to ISQL
users.

The SYSLANGUAGE table is created as part of the installation process. It lists all
national languages that are currently supported on the application server, meaning
that both HELP text and messages text are available in these languages. Its primary
purpose is for use with the message repository, which is a mandatory part of the
product installation. Installing the HELP text is optional.

Each entry in this table has the following fields:

1. LANGUAGE — the name of the language. There can be more than one entry to
describe the same language: for example, FRANCAIS, FRENCH, and FR can all
be LANGUAGE field values for French.

© Copyright IBM Corp. 1987, 2000 137

2. LANGKEY — the language key. This is a four-character code that uniquely
identifies each language, regardless of what name labels it in the LANGUAGE
field.

3. REMARKS — a description of the entry.
4. LANGID — the language identifier.

To view all the columns of the SYSLANGUAGE table, enter the following query:
SELECT * FROM SQLDBA.SYSLANGUAGE

w shows a sample SYSLANGUAGE table.

LANGUAGE LANGKEY REMARKS LANGID
ENGLISH S001 AMERICAN ENGLISH VERSION OF HELP TEXT AMENG
ENGLISH S002 ENGLISH UPPER CASE VERSION OF HELP TEXT UCENG
FRENCH S003 FRENCH VERSION OF HELP TEXT FRANC
FRANCAIS S003 TEXTE D'AIDE FRANCAIS FRANC

Figure 28. Sample SQLDBA.SYSLANGUAGE Table

The language key (LANGKEY) can be one of those listed in Mable 24
Table 26. Language Keys

Language Key Description Language ID
S001 American mixed case AMENG

5002 English upper case UCENG

5003 French FRANC

5004 German GER

D001 Japanese KANJI

D003 Simplified Chinese HANZI

Note: IBM has reserved the following language key ranges for use by future
languages supplied by IBM:

* S000 to S500 for single-byte character set (SBCS) or EBCDIC languages

» D000 to D500 for double-byte character set (DBCS) languages.

In VM, the default language is established by the language currently set in CMS. If
this language is not supported by the application server, then the default language
defined during installation is used.

In VSE, the default language is established by the following;:

* ISQL — from either a parameter in the CIRB transaction (LANGID), or a
language supplied by IBM.

* DBSU — link-edited with the default language (messages only)
e PREP — link-edited with the default language (messages only).

* DSQG, DSQU, DSQQ and DSQD — from a parameter in the CIRB transaction
(LANGID).

* CBND — from a parameter in the CIRB transaction (LANGID).

* SQLGLOB File Batch Update/Query Program — link-edited with the default
language (messages only).

138 Database Administration

The SYSTEXT1 and SYSTEXT2 Tables
The HELP text tables are normally loaded during the installation process. The DBS

Utility accomplishes this task by creating the HELP text tables SYSTEXT1 and
SYSTEXT?2 for the user SQLDBA, loading data into both tables (through
DATALOAD), and creating an index on each.

w shows the formats of these tables, but not the actual tables.

SYSTEXT1

CREATE VIEW

DROP VIEW

ITEM
5260
5330
5920
5260
5330
5920

5260

5330

SYSTEXT2

ITEM SEQNO "SQL/DS HELP" LANGKEY
5260 10 TOPIC NAME: CREATE VIEW S001
5260 110 CREATE VIEW is an SQL ... S001
5260 120 more tables. You can ... S001
5260 1070 DELIVERY_TIME was less ... S001
5260 1080 Se01
5260 10 RUBRIQUE : CREATE VIEW S003
5260 100 CREATE VIEW est une ... S003
5260 110 d'une ou plusieurs ... S003
5260 1110 FAB, ART et JOURS) ... S003
5260 1120 S003
5330 10 TOPIC NAME: DROP VIEW Se01
5330 90 DROP VIEW is an SQL ... S001

5330 100 SQL/DS also automatically ... S001

Figure 29. Formats of the Tables SYSTEXT1 and SYSTEXT2

The following SQL statements are used during the loading process to create
SYSTEXT1 and SYSTEXT2:
CREATE TABLE SQLDBA.SYSTEXT1 (TOPIC CHAR(20) FOR BIT DATA NOT NULL,

ITEM SMALLINT NOT NULL)
IN "PUBLIC"."HELPTEXT"

CREATE TABLE SQLDBA.SYSTEXT2 (ITEM SMALLINT NOT NULL,
SEQNO SMALLINT NOT NULL,
"SQL/DS HELP" CHAR(60) FOR BIT DATA NOT NULL,
LANGKEY CHAR(4) NOT NULL)
IN "PUBLIC"."HELPTEXT"

When a user enters a HELP command, a query like this is processed:

SELECT "SQL/DS HELP"
FROM SQLDBA.SYSTEXT1, SQLDBA.SYSTEXTZ

WHERE TOPIC = 'topicname'
AND SQLDBA.SYSTEXT1.ITEM = SQLDBA.SYSTEXT2.ITEM
AND LANGKEY = 'XXXX'

Chapter 7. Customizing the HELP Text and Messages Text

139

where XXXX is the four-character language key that indicates a specific HELP text
language from among those currently installed on the DB2 Server for VSE & VM
application server.

When the support for languages is installed, HELP text may or may not be
available depending on your site’s requirements. Each ISQL user can select from
among the languages currently installed on the application server. To view which
languages are currently installed, a user enters the following query:

SELECT LANGUAGE FROM SQLDBA.SYSLANGUAGE

The user can then change the default language with the ISQL SET LANGUAGE
command.

The topic that the user supplies is substituted in topicname. An ORDER BY clause is
not used in the query because these indexes are defined on the tables:

CREATE INDEX SQLDBA.SYSTEXT1INDEX
ON SQLDBA.SYSTEXT1(TOPIC,ITEM)

CREATE INDEX SQLDBA.SYSTEXT2INDEX
ON SQLDBA.SYSTEXT2(ITEM,SEQNO,LANGKEY)

CREATE INDEX SQLDBA.SYSLANGINDEX
ON SQLDBA.SYSLANGUAGE (LANGUAGE)

CREATE INDEX SQLDBA.SYSLANGINDEX
ON SQLDBA.SYSLANGUAGE (LANGID)

A HELP command uses SYSTEXT1 as a pointer to SYSTEXT2. Suppose an ISQL
user enters:

help 'view'

The parameter ‘view’ is converted to uppercase. The database manager finds all
occurrences of the character string “VIEW” in the TOPIC column of SYSTEXT1 for
the HELP text of the current language. See

SYSTEXT1

TOPIC ITEM
_______ > VIEW 5260
_______ > VIEW 5330
_______ > VIEW 5920

CREATE VIEW 5260
CREATE V 5260
DROP VIEW 5330
VIEW QUERY 5030
VIEW MODS 5040

Figure 30. Use of the SYSTEXT1 Table

Figure 3d shows three occurrences of the string VIEW. Each has an item number
associated with it (5260, 5330, 5920). These numbers and the language key are used
as pointers (through the query join) to the ITEM numbers and language key in
table SYSTEXT2. The rows in SYSTEXT2 having those ITEM numbers and

140 Database Administration

language key are retrieved in order, primarily by ITEM number and the language
key, and secondarily by sequence number (SEQNO). Thus, three unique topics are
returned when HELP ‘VIEW’ is entered.

Note that other rows in SYSTEXT1 have identical ITEM numbers but different
names (TOPIC). These rows enable retrieval of each of the four topics separately.
For example, the command HELP ‘CREATE VIEW’ retrieves only the topic having
ITEM number 5260. Similarly, the ‘CREATE V’ entry in table SYSTEXT1 is an alias
for ‘CREATE VIEW’; it also points to ITEM 5260.

This cross-referencing scheme has three forms:

* Duplicate topic names pointing to more than one actual topic (for example,
HELP ‘"VIEW’).

* Multiple topic names pointing to the same topic (for example, HELP ‘CREATE
VIEW’ and HELP ‘CREATE V’).

* A unique topic name pointing to one topic (for example, HELP ‘“VIEW MODS’).

Adding Topics to HELP Text Tables

You can add new topics to the HELP text tables supplied by IBM, or create your
own HELP text table. As modifying the HELP text supplied by IBM greatly
increases the amount of administrative work required if you must later reinstall the
HELP text, a much better method is to set up your own independent HELP text

tables in some other PUBLIC dbspace. This method is described in
Dwn HEI P Text Tabhles” on page 142

Adding a HELP Topic to the HELP Text Supplied by IBM

Parts of this task require DBA authority (or at least INSERT authority on the
SYSTEXT1 and SYSTEXT2 tables). If you plan to add much new material to the
HELP text, see I’M;\king the HET PTEXT Dhspace Targer” an page 143 and
I’aning the HEI P Text to Another T)hqpar‘p” on page 144,

To add your own topic to the tables, follow these steps:

1. Pick a TOPIC name, up to a maximum of 20 characters. This name must be
unique among all TOPIC names in table SYSTEXT1. An easy way to check this
is to enter the query:

SELECT * FROM SQLDBA.SYSTEXT1 WHERE TOPIC = 'candidate name'

If rows are returned, that TOPIC name already exists, and you must choose and
test another.

2. Choose an ITEM number less than 5 000 for the new topic. Numbers of 5 000
and above are reserved for topics supplied by IBM.

3. Insert a row into SYSTEXT1 for the new TOPIC name and its ITEM number.
For example:
INSERT INTO SQLDBA.SYSTEXT1 VALUES ('HOURS',1000)
4. Insert rows into SYSTEXT2 for the information to be displayed when a user

requests HELP on this new topic. This information must include the values to
be used in the four columns of table SYSTEXT2. For example:
INSERT INTO SQLDBA.SYSTEXT2
VALUES(1000,10, 'HOURS OF USE:','S001"')
INSERT INTO SQLDBA.SYSTEXT2
VALUES(1000,20,'8 AM TO 6 PM','S001")

Chapter 7. Customizing the HELP Text and Messages Text 141

where “S001” is the English language key. You can repeat this type of INSERT
for every other language.

Note: The “SQL/DS HELP” column has a length of 60 characters.

When adding HELP text to the SYSTEXT2 table, a language key must be specified.
A list of valid language keys is found in [able 26 on page 13. You should use
installation procedures supplied by IBM.

Creating Your Own HELP Text Tables

You should consider using the SYSTEXT1 and SYSTEXT?2 tables as the basis for
creating your own HELP text tables. SYSLANGUAGE must still exist for the HELP
command to work, unless you establish HELP text tables and query those tables as
shown in

w shows example SQL commands to set up your own local HELP text.

CREATE TABLE SQLDBA.LTEXT1 (TOPIC CHAR(20) FOR BIT DATA NOT NULL,
ITEM SMALLINT NOT NULL)
IN "PUBLIC".LOCAL

CREATE TABLE SQLDBA.LTEXT2 (ITEM SMALLINT NOT NULL,
SEQNO SMALLINT NOT NULL,
"LOCAL HELP" CHAR(60) FOR BIT DATA NOT NULL,
LANGKEY CHAR(4) NOT NULL)
IN "PUBLIC".LOCAL

CREATE INDEX SQLDBA.LTEXT1INDEX
ON SQLDBA.LTEXT1(TOPIC,ITEM)

CREATE INDEX SQLDBA.LTEXTZ2INDEX
ON SQLDBA.LTEXT2(ITEM,SEQNO,LANGKEY)

SELECT "LOCAL HELP"
FROM SQLDBA.LTEXT1, SQLDBA.LTEXT2

WHERE TOPIC = 'topicname'

AND SQLDBA.LTEXT1.ITEM = SQLDBA.LTEXT2.ITEM
AND LANGKEY="'XXXX"'

Figure 31. Implementing Your Own HELP Text Tables

XXXX in the LANGKEY column represents the language key.

In this example, two tables, SQLDBA.LTEXT1 and SQLDBA.LTEXT2, are created in
a PUBLIC dbspace called LOCAL. Appropriate indexes are also defined. Once the
tables are created, you can add topics in a way similar to that described previously
for the tables of HELP text supplied by IBM. Replace the names supplied by IBM
for the HELP text tables, dbspace, and column names with your own names.

Users can then access the new HELP text with an ISQL routine that contains a
SELECT statement (see the example in [Eigure 31). The ISQL stored routines
supplied by IBM for accessing the original HELP text may not work for the new
tables, so it may be necessary to set up new ones. The SELECT authority must be
granted to all users on the table containing the routine and on the HELP text
tables.

142 Database Administration

Making the HELPTEXT Dbspace Larger

The size of the original HELPTEXT dbspace is 8192 pages, which is sufficient to
hold the HELP text supplied by IBM and four or five languages. If you plan to add
extensively to the text or to add more than five languages, it may be necessary to
increase the size of this dbspace.

To see how many pages are currently active in the HELPTEXT dbspace, issue the
following query through ISQL or the DBS Utility:
SELECT DBSPACENAME,NACTIVE

FROM SYSTEM.SYSDBSPACES
WHERE DBSPACENAME='HELPTEXT'

If the NACTIVE (number of active data pages) value is close to 4646 (8192 minus
the index pages allowance), consider making the HELPTEXT dbspace larger. To
estimate how many pages are needed in the dbspace for the modified HELP text,
seo [. —a— - >

If the estimated number of pages (for both current and future estimated usage) is
greater than or close to 8192, increase the size of the dbspace. To do this, you must
drop and re-create the dbspace, as follows:

1. UNLOAD the “PUBLIC”.”HELPTEXT” dbspace using the DBS Utility.
2. DROP the “PUBLIC”.”HELPTEXT” dbspace.

3. ACQUIRE a new “PUBLIC”.”HELPTEXT” dbspace with the new required
number of pages.

RELOAD the dbspace using the DBS Utility.

Reinstate the required indexes and authorities.

Reinstate any user-defined indexes, views, or authorities.
Proceed with the updates to the HELP text.

N oo~

and [Figure 33 show examples of increasing the size of the
“PUBLIC”.“HELPTEXT” dbspace to 8448 pages. A tape is used in this example to
temporarily hold the HELP information that is on your database.

Chapter 7. Customizing the HELP Text and Messages Text 143

// JOB UNLOAD HELP TEXT
// EXEC PROC=DBNAMEO1
// EXEC PROC=ARIS71PL
// TLBL HELPTAP,
// ASSGN SYS005,
// EXEC ARISQLDS,SIZE=AUTO,PARM="'SYSMODE=S,LOGMODE=N,PROGNAME=ARIDBS'

.......

CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;

UNLOAD DBSPACE ("PUBLIC"."HELPTEXT") OUTFILE(HELPTAP);
DROP DBSPACE "PUBLIC"."HELPTEXT";

ACQUIRE PUBLIC DBSPACE NAMED "HELPTEXT" (PAGES=8448);
RELOAD DBSPACE ("PUBLIC"."HELPTEXT") NEW INFILE(HELPTAP);

CREATE INDEX
CREATE INDEX
GRANT SELECT
GRANT SELECT

COMMENT ' ==

%

CREATE VIEW

/&