
IBM
®

DB2
®

Spatial Extender

User’s Guide and Reference
Version 7

SC27-0701-00

���

IBM
®

DB2
®

Spatial Extender

User’s Guide and Reference
Version 7

SC27-0701-00

���

Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 311.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1998, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this book xi
Who should read this book xi
Conventions xi
How to send your comments xi

Part 1. Using DB2 Spatial Extender 1

Chapter 1. About DB2 Spatial Extender . . 3
The purpose of DB2 Spatial Extender 3
Data that represents geographic features . . . 4

How data represents geographic features. . 4
The nature of spatial data 5
Where spatial data comes from 6

How to create and use a DB2 Spatial Extender
GIS 8

Interfaces to DB2 Spatial Extender and
associated functionality 8
Tasks you perform to create and use a DB2
Spatial Extender GIS 9
Scenario: An insurance company updates
its GIS 11

Chapter 2. Installing DB2 Spatial Extender 15
DB2 Spatial Extender configuration 15
System requirements 15

Supported operating systems 16
Required database software 16
Disk space requirements 16

Installing DB2 Spatial Extender 17
Before you begin 17
Installing DB2 Spatial Extender on
Windows NT systems 17
Installing DB2 Spatial Extender on AIX
systems 17

Verifying the installation 18
Post-installation considerations. 19

Downloading ArcExplorer 19
Running the DB2 instance update utility
(db2iupdt) 19

What’s next? 20

Chapter 3. Setting up resources 21
Inventory of resources 21

Reference data 21
Resources that enable a database for
spatial operations 21

Enabling a database for spatial operations . . 22
Creating a spatial reference system 23

About coordinate and spatial reference
systems 23
Creating a spatial reference system from
the Control Center 26

Chapter 4. Defining spatial columns,
registering them as layers, and enabling a
geocoder to maintain them 31
About spatial data types 31

Data types for single-unit features . . . 32
Data types for multi-unit features 33
A data type for all features 33

Defining a spatial column for a table,
registering this column as a layer, and
enabling a geocoder to maintain it 34
Registering a view column as a layer . . . 36

Chapter 5. Populating spatial columns . . 37
Using geocoders 37

About geocoding 37
Running the geocoder in batch mode . . 39

Importing and exporting data 41
About importing and exporting 41
Importing data to a new or existing table 41
Importing data to an existing table . . . 43
Exporting data to a shape file 45

Chapter 6. Creating spatial indexes . . . 47
Using the Control Center to create a spatial
index 47
Determining grid cell sizes 48

Chapter 7. Retrieving and analyzing spatial
information 49
Methods of performing spatial analysis . . . 49
Building a spatial query 49

Spatial functions and SQL 49
Spatial predicates and SQL 50

© Copyright IBM Corp. 1998, 2000 iii

Chapter 8. Writing applications for DB2
Spatial Extender 53
Using the sample program 53
The sample program steps 53

Part 2. Reference material 61

Chapter 9. Stored procedures 63
db2gse.gse_disable_autogc 66
db2gse.gse_disable_db 68
db2gse.gse_disable_sref 69
db2gse.gse_enable_autogc 70
db2gse.gse_enable_db 73
db2gse.gse_enable_idx 74
db2gse.gse_enable_sref 76
db2gse.gse_export_shape. 78
db2gse.gse_import_sde 80
db2gse.gse_import_shape 82
db2gse.gse_register_gc 84
db2gse.gse_register_layer 86
db2gse.gse_run_gc 92
db2gse.gse_unregist_gc 94
db2gse.gse_unregist_layer 95

Chapter 10. Messages 97

Chapter 11. Catalog views 105
DB2GSE.COORD_REF_SYS 105
DB2GSE.GEOMETRY_COLUMNS 106
DB2GSE.SPATIAL_GEOCODER 106
DB2GSE.SPATIAL_REF_SYS 107

Chapter 12. Spatial indexes 109
A sample program fragment 109
B tree indexes 110
Ways to create a spatial index 110
How a spatial index is generated. 111
Guidelines on using a spatial index 115

Selecting the grid cell size 116
Selecting the number of levels 116

Chapter 13. Geometries and associated
spatial functions. 119
About geometries 119
Properties of geometries and associated
functions. 121

Class 122
X and Y coordinates 122
Z coordinates 122

Measures 122
Interior, boundary, and exterior 123
Simple or non-simple 123
Empty or not empty 123
Envelope. 123
Dimension 124
Spatial reference system identifier . . . 124

Instantiable geometries and associated
functions. 125

Points. 125
Linestrings 126
Polygons. 127
Multipoints 129
Multilinestrings 129
Multipolygons 130

Functions that show relationships and
comparisons, generate geometries, and
convert values’ formats 131

Functions that show relationships or
comparisons between geographic features. 132
Functions that generate new geometries
from existing ones 144
Functions that convert the format of a
geometry’s values. 149

Chapter 14. Spatial functions for SQL
queries 155
AsBinaryShape. 156
GeometryFromShape. 157
EnvelopesIntersect 158
Is3d 160
IsMeasured 161
LineFromShape 162
LocateAlong 164
LocateBetween 166
M 168
MLine FromShape 169
MPointFromShape 171
MPolyFromShape 172
PointFromShape 173
PolyFromShape 174
ShapeToSQL 176
ST_Area 178
ST_AsBinary 180
ST_AsText 181
ST_Boundary 182
ST_Buffer 184
ST_Centroid 186
ST_Contains 187
ST_ConvexHull 189

iv DB2 Spatial Extender User’s Guide and Reference

ST_CoordDim 191
ST_Crosses 193
ST_Difference 195
ST_Dimension 196
ST_Disjoint 198
ST_Distance. 200
ST_Endpoint 201
ST_Envelope 202
ST_Equals 204
ST_ExteriorRing 205
ST_GeometryFromText 207
ST_GeomFromWKB 209
ST_GeometryN. 211
ST_GeometryType 212
ST_InteriorRingN 214
ST_Intersection. 219
ST_Intersects 221
ST_IsClosed. 222
ST_IsEmpty 224
ST_IsRing 226
ST_IsSimple. 227
ST_IsValid 228
ST_Length 230
ST_LineFromText 232
ST_LineFromWKB 233
ST_MLineFromText 235
ST_MLineFromWKB 236
ST_MPointFromText 238
ST_MPointFromWKB 239
ST_MPolyFromText 240
ST_MPolyFromWKB 241
ST_NumGeometries 242
ST_NumInteriorRing 243
ST_NumPoints 244
ST_OrderingEquals 245
ST_Overlaps 246
ST_Perimeter 248
ST_PointFromText. 249
ST_PointFromWKB 250
ST_Point 251
ST_PointN 252
ST_PointOnSurface 253
ST_PolyFromText 254
ST_PolyFromWKB 255
ST_Polygon 257
ST_Relate 258
ST_SRID 260
ST_StartPoint 261
ST_SymmetricDiff. 262
ST_Touches 264

ST_Transform 265
ST_Union 266
ST_Within 267
ST_WKBToSQL 268
ST_WKTToSQL 270
ST_X 271
ST_Y 272
Z 273

Chapter 15. Coordinate systems 275
Overview of coordinate systems 275
Supported linear units 277
Supported angular units 277
Supported spheroids 278
Supported geodetic datums 279
Supported prime meridians 281
Supported map projections. 282
Conic projections 282
Azimuthal or planar projections 283
Map projection parameters. 283

Chapter 16. File formats for spatial data 285
The OGC well-known text representations 285
The OGC well-known binary (WKB)
representations. 290

Numeric type definitions 291
XDR (Big Endian) encoding of numeric
types 291
NDR (Little Endian) encoding of numeric
types 291
Conversion between NDR and XDR . . 291
Description of WKBGeometry byte
streams 292
Assertions for the WKB representation 293

The ESRI shape representations 294
Shape types in XY space 295
Measured shape types in XY space . . . 299
Shape types in XYZ space 303

Part 3. Appendixes 309

Notices 311
Trademarks 314

Index 317

Contacting IBM 323
Product Information 323

Contents v

vi DB2 Spatial Extender User’s Guide and Reference

Figures

1. Table row that represents a geographic
feature; table row whose address data
represents a geographic feature 4

2. Tables with spatial columns added 5
3. Tables that include spatial data derived

from source data 7
4. Table that includes new spatial data

derived from existing spatial data . . . 7
5. Client-server setup 15
6. Hierarchy of spatial data types 32
7. Application of a 10.0e0 grid level 112
8. Effect of adding grid levels 30.0e0 and

60.0e0 114
9. Hierarchy of geometries supported by

DB2 Spatial Extender 120
10. Linestring objects 127
11. Polygons 128
12. Multilinestrings 130
13. Multipolygons 131
14. ST_Equals 134
15. ST_Disjoint 135
16. ST_Touches 137
17. ST_Overlaps. 138
18. Within. 141
19. ST_Contains 142
20. Minimum distance between two cities 143
21. ST_Intersection 145
22. ST_Difference 146
23. ST_Union. 146
24. ST_Buffer. 147
25. LocateAlong. 148
26. LocateBetween 149
27. ST_ConvexHull. 149
28. Using area to find a building footprint 179

29. A buffer with a five-mile radius is
applied to a point 185

30. Using ST_Contains to ensure that all
buildings are contained within their
lots 188

31. Using ST_Crosses to find the
waterways that pass through a
hazardous waste area. 194

32. Using ST_Disjoint to find the buildings
that do not lie within (intersect) any
hazardous waste area. 199

33. Using ST_ExteriorRing to determine
the length of an island shore line . . . 206

34. Using ST_InteriorRingN to determine
the length of the lakeshores within
each island 214

35. Using ST_Intersection to determine
how large an area in each of the
buildings might be affected by
hazardous waste 220

36. Using ST_Length to determine the total
length of the waterways in a county. . 231

37. Using ST_Overlaps to determine the
buildings that are at least partially
within of a hazardous waste area. . . 247

38. Using ST_SymmetricDiff to determine
the hazardous waste areas that do not
contain sensitive areas (inhabited
buildings) 263

39. Representation in NDR format 293
40. A polygon with a hole and eight

vertices 298
41. Contents of the polygon byte stream 298

© Copyright IBM Corp. 1998, 2000 vii

viii DB2 Spatial Extender User’s Guide and Reference

Tables

1. Minimum software requirements 16
2. Disk space requirements 16
3. Spatial functions and operations . . . 49
4. Rules for index exploitation 51
5. DB2 Spatial Extender sample program 54
6. Input parameters for the

db2gse.gse_disable_autogc stored
procedure. 66

7. Output parameters for the
db2gse.gse_disable_autogc stored
procedure. 67

8. Output parameters for the
db2gse.gse_disable_db stored procedure. 68

9. Input parameter for the
db2gse.gse_disable_sref stored
procedure. 69

10. Output parameters for the
db2gse.gse_disable_sref stored
procedure. 69

11. Input parameters for the
db2gse.gse_enable_autogc stored
procedure. 70

12. Output parameters for the
db2gse.gse_enable_autogc stored
procedure. 72

13. Output parameters for the
db2gse.gse_enable_db stored procedure. . 73

14. Input parameters for the
db2gse.gse_enable_idx stored procedure. 74

15. Output parameters for the
db2gse.gse_enable_idx stored procedure. 75

16. Input parameters for the
db2gse.gse_enable_sref stored
procedure. 76

17. Output parameters for the
db2gse.gse_enable_sref stored
procedure. 77

18. Input parameters for the
db2gse.gse_export_shape stored
procedure. 78

19. Output parameters for the
db2gse.gse_export_shape stored
procedure. 79

20. Input parameters for the
db2gse.gse_import_sde stored
procedure. 80

21. Output parameters for the
db2gse.gse_import_sde stored
procedure. 81

22. Input parameters for the
db2gse.gse_import_shape stored
procedure. 82

23. Output parameters for the
db2gse.gse_import_shape stored
procedure. 83

24. Input parameters for the
db2gse.gse_register_gc stored procedure. 84

25. Output parameters for the
db2gse.gse_register_gc stored procedure. 85

26. Input parameters for the
db2gse.gse_register_layer stored
procedure. 86

27. Output parameters for the
db2gse.gse_register_layer stored
procedure. 91

28. Input parameters for the
db2gse.gse_run_gc stored procedure. . . 92

29. Output parameters for the
db2gse.gse_run_gc stored procedure. . . 93

30. Input parameter for the
db2gse.gse_unregist_gc stored
procedure. 94

31. Output parameters for the
db2gse.gse_unregist_gc stored
procedure. 94

32. Input parameters for the
db2gse.gse_unregist_layer stored
procedure. 95

33. Output parameters for the
db2gse.gse_unregist_layer stored
procedure. 96

34. Columns in the
DB2GSE.COORD_REF_SYS catalog
view 105

35. Columns in the
DB2GSE.GEOMETRY_COLUMNS
catalog view. 106

© Copyright IBM Corp. 1998, 2000 ix

36. Columns in the
DB2GSE.SPATIAL_GEOCODER catalog
view 106

37. Columns in the
DB2GSE.SPATIAL_REF_SYS catalog
view 107

38. The 10.0e0 grid cell entries for the
example geometries 112

39. The intersections of the geometries in
the three-tiered index 114

40. Matrix for ST_Within 133
41. Matrix for equality 134
42. Matrix for ST_Disjoint 136
43. Matrix for ST_Intersects (1) 136
44. Matrix for ST_Intersects (2) 136
45. Matrix for ST_Intersects (3) 136
46. Matrix for ST_Intersects (4) 137
47. Matrix for ST_Touches (1) 137
48. Matrix for ST_Touches (2) 138
49. Matrix for ST_Touches (3) 138
50. Matrix for ST_Overlaps (1) 138
51. Matrix for ST_Overlaps (2) 139
52. Matrix for ST_Crosses (1) 140
53. Matrix for ST_Crosses (2) 140
54. Matrix for ST_Within 141

55. Matrix for ST_Contains 143
56. Equals pattern matrix 258
57. Supported linear units 277
58. Supported angular units. 277
59. Supported spheroids 278
60. Supported geodetic datums 279
61. Supported prime meridians 281
62. Supported map projections 282
63. Conic projections 282
64. Map projection parameters 283
65. Geometry types and their text

representations 288
66. Point byte stream contents 295
67. MultiPoint byte stream contents 295
68. PolyLine byte stream contents 296
69. Polygon byte stream contents 298
70. PointM byte stream contents 299
71. MultiPointM byte stream contents 300
72. PolyLineM byte stream contents 301
73. PolygonM byte stream contents 302
74. PointZ byte stream contents 303
75. MultiPointZ byte stream contents 303
76. PolyLineZ byte stream contents 305
77. PolygonZ byte stream contents 306

x DB2 Spatial Extender User’s Guide and Reference

About this book

This book is divided into two parts. The first part contains conceptual
information about DB2 Spatial Extender and explains how to install,
configure, administer, and program for DB2 Spatial Extender on Windows NT
and AIX systems. The second part consists of reference information about
stored procedures, geometries, functions, messages, and catalog views that
you use with DB2 Spatial Extender.

Who should read this book

This book is for administrators setting up the spatial environment and for
application programmers developing applications with spatial data.

Conventions

This book uses these highlighting conventions:

Boldface type
Indicates commands and graphical user interface (GUI) controls (for
example, names of fields, names of folders, menu choices).

Monospace type
Indicates examples of coding or of text that you type.

Italic type
Indicates variables that you should replace with a value. Italic type
also indicates book titles and emphasizes words.

UPPERCASE TYPE
Indicates SQL keywords and names of objects (for example, tables,
views, and servers).

How to send your comments

Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 documentation. You
can use any of the following methods to provide comments:
v Send your comments from the Web. You can access the IBM Data

Management online readers’ comment form at
http://www.ibm.com/software/data/rcf

v Send your comments by e-mail to comments@vnet.ibm.com. Be sure to
include the name of the product, the version number of the product, and
the name and part number of the book (if applicable). If you are

© Copyright IBM Corp. 1998, 2000 xi

commenting on specific text, please include the location of the text (for
example, a chapter and section title, a table number, a page number, or a
help topic title).

xii DB2 Spatial Extender User’s Guide and Reference

Part 1. Using DB2 Spatial Extender

© Copyright IBM Corp. 1998, 2000 1

2 DB2 Spatial Extender User’s Guide and Reference

Chapter 1. About DB2 Spatial Extender

This chapter introduces DB2 Spatial Extender by explaining its purpose,
discussing the data that it processes, and illustrating how to use it. The
chapter concludes with a quick guide to the rest of this book.

The purpose of DB2 Spatial Extender

You use DB2 Spatial Extender to create a geographic information system (GIS): a
complex of objects, data, and applications that allows you to generate and
analyze spatial information about geographic features. Geographic features
include the objects that comprise the earth’s surface and the objects that
occupy it. They make up both the natural environment (examples are rivers,
forests, hills, and deserts) and the cultural environment (cities, residences,
office buildings, landmarks, and so on).

Spatial information includes facts such as:
v The location of geographic features with respect to their surroundings (for

example, points within a city where hospitals and clinics are located, or the
proximity of the city’s residences to local earthquake zones)

v Ways in which geographic features are related to each other (for example,
information that a certain river system is enclosed within a specific region,
or that certain bridges in that region cross over the river system’s
tributaries)

v Measurements that apply to one or more geographic features (for example,
the distance between an office building and its lot line, or the length of a
bird preserve’s perimeter)

Spatial information, either by itself or in combination with traditional
relational database management system (RDBMS) output, can help you to
design projects and make business and policy decisions. For example, suppose
that the manager of a county welfare district needs to verify which welfare
applicants and recipients actually live within the area that the district services.
DB2 Spatial Extender can derive this information from the serviced area’s
location and from the addresses of the applicants and recipients.

Or suppose that the owner of a restaurant chain wants to do business in
nearby cities. To determine where to open new restaurants, the owner needs
answers to such questions as: Where in these cities are concentrations of
clientele who typically frequent my restaurants? Where are the major
highways? Where is the crime rate lowest? Where are the competition’s
restaurants located? DB2 Spatial Extender can produce spatial information in

© Copyright IBM Corp. 1998, 2000 3

visual displays to answer these questions, and the underlying RDBMS can
generate labels and text to explain the displays.

Several other examples of the uses of DB2 Spatial Extender appear in this
book, especially in “Chapter 7. Retrieving and analyzing spatial information”
on page 49, “Chapter 8. Writing applications for DB2 Spatial Extender” on
page 53, and “Chapter 14. Spatial functions for SQL queries” on page 155.

Data that represents geographic features

This section provides an overview of the data that you generate, store, and
manipulate to obtain spatial information. The topics covered are:
v How data represents geographic features
v The nature of spatial data
v Ways to produce spatial data

How data represents geographic features
In DB2 Spatial Extender, a geographic feature can be represented by a row in
a table or view, or by a portion of such a row. For example, consider two of
the geographic features mentioned in “The purpose of DB2 Spatial Extender”
on page 3, office buildings and residences. In Figure 1, each row of the
BRANCHES table represents a branch office of a bank. As a variation, each
row of the CUSTOMERS table in Figure 1, taken as a whole, represents a
customer of the bank. However, part of each row—specifically, the cells that
contain a customer’s address—can be regarded as representing the customer’s
residence.

The tables in Figure 1 contain data that identifies and describes the bank’s
branches and customers. Such data is called attribute data.

Figure 1. Table row that represents a geographic feature; table row whose address data represents
a geographic feature. The row of data in the BRANCHES table represents a branch office of a
bank. The cells for address data in the CUSTOMERS table represent the residence of a customer.
The names and addresses in both tables are fictional.

4 DB2 Spatial Extender User’s Guide and Reference

A subset of the attribute data—the values that denote the branches’ and
customers’ addresses—can be translated into values that yield spatial
information. For example, as shown in Figure 1 on page 4, one branch office’s
address is 92467 Airzone Blvd., San Jose CA 95141. A customer’s address is 9
Concourt Circle, San Jose CA 95141. DB2 Spatial Extender can translate these
addresses into values that indicate where the branch and the customer’s home
are situated with respect to their surroundings. Figure 2 shows the
BRANCHES and CUSTOMERS tables with new columns that are designated
to contain such values.

When addresses and similar identifiers are used as the starting point for
spatial information, they are called source data. Because the values derived
from them yield spatial information, these derived values are called spatial
data. The next section describes spatial data and introduces its associated data
types.

The nature of spatial data
Much spatial data is made up of coordinates. A coordinate is a number that
denotes a position that is relative to a point of reference. For example,
latitudes are coordinates that denote positions relative to the equator.
Longitudes are coordinates that denote positions relative to the Greenwich
meridian. Thus, the position of Yellowstone National Park is defined by its
latitude (44.45 degrees north of the equator) and its longitude (110.40 degrees
west of the Greenwich meridian).

Latitudes, longitudes, their points of reference, and other associated
parameters are referred to collectively as a coordinate system. Coordinate
systems based on values other than latitude and longitude also exist. These
coordinate systems have their own measures of position, points of reference,
and additional distinguishing parameters.

Figure 2. Tables with spatial columns added. In each table, the LOCATION column will contain
coordinates that correspond to the addresses.

Chapter 1. About DB2 Spatial Extender 5

The simplest spatial data item consists of two coordinates that define the
position of a single geographic feature. (A data item is the value or values that
occupy a cell of a relational table.) A more extensive spatial data item consists
of several coordinates that define a linear path such as a road or river might
form. A third kind consists of coordinates that define the perimeter of an area;
for example, the rim of a land parcel or flood plain. These and other kinds of
spatial data items that DB2 Spatial Extender supports are described more fully
in “Chapter 13. Geometries and associated spatial functions” on page 119.

Each spatial data item is an instance of a spatial data type. The data type for
two coordinates that mark a location is ST_Point; the data type for coordinates
that define linear paths is ST_LineString; and the data type for coordinates
that define perimeters is ST_Polygon. These types, together with the other
data types for spatial data, are structured types that belong to a single
hierarchy. For an overview of the hierarchy, see “About spatial data types” on
page 31.

Where spatial data comes from
You can obtain spatial data by:
v Deriving it from attribute data
v Deriving it from other spatial data
v Importing it

Using attribute data as source data
DB2 Spatial Extender can derive spatial data from attribute data, such as
addresses (as mentioned in “How data represents geographic features” on
page 4). This process is called geocoding. To see the sequence involved,
consider Figure 2 on page 5 as a “before” picture and Figure 3 on page 7 as an
“after” picture. Figure 2 on page 5 shows that the BRANCHES table and the
CUSTOMERS table both have an empty column designated for spatial data.
Suppose that DB2 Spatial Extender geocodes the addresses in these tables to
obtain coordinates that correspond to the addresses, and places the
coordinates into the columns. Figure 3 on page 7 illustrates this result.

6 DB2 Spatial Extender User’s Guide and Reference

DB2 Spatial Extender uses a function, called a geocoder, to translate attribute
data into spatial data and to place this spatial data into table columns. For
more information about geocoders, see “About geocoding” on page 37.

Using other spatial data as source data
Spatial data can be generated not only from attribute data, but also from other
spatial data. For example, suppose that the bank whose branches are defined
in the BRANCHES table wants to know how many customers are located
within five miles of each branch. Before the bank can obtain this information
from the database, it must supply the database with the definition of the zone
that lies within a five-mile radius around each branch. A DB2 Spatial Extender
function, ST_Buffer, can create such a definition. Using the coordinates of each
branch as input, ST_Buffer can generate the coordinates that demarcate the
perimeters of the desired zones. Figure 4 shows the BRANCHES table with
information that is supplied by ST_Buffer.

In addition to ST_Buffer, DB2 Spatial Extender provides several other
functions that derive new spatial data from existing spatial data. For

Figure 3. Tables that include spatial data derived from source data. The LOCATION column in the
CUSTOMERS table contains coordinates that a geocoder derived from the address in the
ADDRESS, CITY, STATE, and ZIP columns. Similarly, the LOCATION column in the BRANCHES
table contains coordinates that the geocoder derived from the address in this table’s ADDRESS,
CITY, STATE, and ZIP columns. This example is fictional; simulated coordinates, not actual ones,
are shown.

Figure 4. Table that includes new spatial data derived from existing spatial data. The coordinates in
the SALES_AREA column were derived by the ST_Buffer function from the coordinates in the
LOCATION column. Like the coordinates in the LOCATION column, those in the SALES_AREA
column are simulated; they are not actual.

Chapter 1. About DB2 Spatial Extender 7

descriptions of ST_Buffer and these other functions, see “Functions that
generate new geometries from existing ones” on page 144.

Importing spatial data
A third way to obtain spatial data is to import it from files that are in one of
the formats that DB2 Spatial Extender supports. For descriptions of these
formats, see “Chapter 16. File formats for spatial data” on page 285. These files
contain data that is usually applied to maps: census tracks, flood plains,
earthquake faults, and so on. By using such data in combination with spatial
data that you produce, you can augment the geographic information available
to you. For example, if a public works department needs to determine what
hazards a residential community is vulnerable to, it could use ST_Buffer to
define a zone around the community. The public works department could
then import data on flood plains and earthquake faults to see which of these
problem areas overlap the zone.

How to create and use a DB2 Spatial Extender GIS

You create a DB2 Spatial Extender GIS by setting up DB2 Spatial Extender
and developing GIS projects within the combined environments of DB2
Spatial Extender and its underlying DB2 RDBMS. You use the GIS by
implementing these projects; that is, by generating and analyzing the
information—both spatial and traditional—that they are designed to provide.
The entire effort involves performing several sets of tasks. This section
introduces the interfaces with which you can perform these tasks, provides an
overview of the tasks, and presents a scenario to illustrate them.

Interfaces to DB2 Spatial Extender and associated functionality
This section surveys the interfaces by means of which you can create a DB2
Spatial Extender GIS (that is, set up resources for it, obtain spatial data, and
so on) and use it (that is, generate and analyze information about geographic
features).

You can create a DB2 Spatial Extender GIS by:
v Using the DB2 Control Center’s DB2 Spatial Extender windows and menu

choices. For instructions, see:
– “Chapter 3. Setting up resources” on page 21
– “Chapter 4. Defining spatial columns, registering them as layers, and

enabling a geocoder to maintain them” on page 31
– “Chapter 5. Populating spatial columns” on page 37
– “Chapter 6. Creating spatial indexes” on page 47

v Running an application program that calls DB2 Spatial Extender stored
procedures. For guidelines on developing such a program, see “Chapter 8.
Writing applications for DB2 Spatial Extender” on page 53.

8 DB2 Spatial Extender User’s Guide and Reference

v Using both the Control Center and an application program. For example,
you can use the Control Center to invoke the default geocoder. If, in
addition, you want to use another geocoder, you must first register it to
DB2 Spatial Extender by invoking the db2gse.gse_register_gc stored
procedure in an application program. (For information about non-default
geocoders, see “About geocoding” on page 37. For information about the
db2gse.gse_register_gc stored procedure, see “db2gse.gse_register_gc” on
page 84.)

v Using the Control Center, an application program, or both, in combination
with other interfaces. For example, to create a table to hold data that is to
be generated by a spatial function, such as a geocoder, you could use either
the Command Line Processor or the Control Center interfaces.

You can use a DB2 Spatial Extender GIS by:
v Rendering information graphically with a geobrowser; for example,

ArcExplorer, which is offered by the Environmental Systems Research
Institute (ESRI)

v Submitting SQL queries explicitly from the DB2 Control Center or
Command Line Processor

v Submitting SQL queries from an application program

Tasks you perform to create and use a DB2 Spatial Extender GIS
This section provides an overview of the tasks through which you create and
use a DB2 Spatial Extender GIS. The tasks through which you create the GIS
involve setting up DB2 Spatial Extender and developing GIS projects. The
tasks through which you use the GIS involve implementing the projects. This
overview begins with setting up DB2 Spatial Extender, and then moves on to
developing and implementing a GIS project. The section concludes by
indicating how the tasks described in the overview can vary in actual practice.

Setting up DB2 Spatial Extender
To set up DB2 Spatial Extender:

1. Plan and make preparations (decide what GIS projects to develop, decide
what database to enable for DB2 Spatial Extender, select personnel to
administer DB2 Spatial Extender and develop the projects, and so on).

2. Install DB2 Spatial Extender.
3. Put resources in place to support GIS projects; for example:

Resources supplied by DB2 Spatial Extender
These include a system catalog, spatial data types, spatial
functions (including a default geocoder), and so on. The task of
setting up these resources is referred to as enabling the database for
spatial operations.

Geocoders developed by users, vendors, or both.
The default geocoder translates United States addresses into

Chapter 1. About DB2 Spatial Extender 9

spatial data. Your organization and others can provide geocoders
that translate foreign addresses and other kinds of attribute data
into spatial data.

For instructions on installing DB2 Spatial Extender, see “Chapter 2. Installing
DB2 Spatial Extender” on page 15. For instructions on using the Control
Center to put resources in place, see “Chapter 3. Setting up resources” on
page 21. For guidelines on using an application program for this purpose, see
“Chapter 8. Writing applications for DB2 Spatial Extender” on page 53. For a
scenario that illustrates the overall effort of setting up DB2 Spatial Extender,
see “A system to integrate spatial and traditional data” on page 12.

Developing and implementing a GIS project
To develop and implement a GIS project:

1. Plan and make preparations (set goals for the project, decide what tables
and data you need, determine what coordinate system or systems to use,
and so on).

2. Decide what spatial reference system or systems to use. Coordinate values
typically include positive integers, negative numbers, and decimal
numbers. DB2 Spatial Extender, however, must store all coordinate values
in the form of positive integers. A spatial reference system is a set of
parameters that defines how negative and decimal numbers in a specific
coordinate system are to be converted into positive integers, so that DB2
Spatial Extender can store them. After you decide what coordinate system
to use for a spatial column, you need to specify the spatial reference
system by which the necessary conversion can take place for that column.
If an existing spatial reference system meets your requirements, you can
use it; otherwise, you can create one.

3. Define one or more columns to contain spatial data, register them to DB2
Spatial Extender, and enable a geocoder to maintain them automatically.
Registering a spatial column involves recording it in the DB2 Spatial
Extender catalog. From the time that you register it, it is called a layer,
because information generated from it will add a stratum, or layer, to the
virtual geographic landscape that your GIS creates for you. After you
register it, you can perform spatial operations on it; for example, you can
populate it and define a spatial index on it.

4. Populate spatial columns:
v For a project that requires a geocoder, set parameters for the geocoder.

Then, run it so that, in a single operation, it geocodes all available
source data and loads the resulting coordinates into a layer.

v For a project that requires spatial data to be imported, import the data.
5. Facilitate access to spatial columns. Specifically, this involves defining

indexes that enable DB2 to access spatial data quickly, and defining views
that enable users to retrieve interrelated data efficiently. After you define
such a view, you need to register its spatial columns as layers.

10 DB2 Spatial Extender User’s Guide and Reference

6. Generate and analyze spatial information and related business
information. This involves querying spatial columns and related attribute
columns. In such queries, you can include DB2 Spatial Extender functions
that return a wide variety of information; for example, the minimum
distance between two geographic features, or coordinates that define an
area that surrounds a geographic feature. For information about the
function that returns such coordinates, ST_Buffer, see “Using other spatial
data as source data” on page 7 and “ST_Buffer” on page 184. For examples
of queries that use spatial functions, see “Chapter 7. Retrieving and
analyzing spatial information” on page 49 and “Chapter 14. Spatial
functions for SQL queries” on page 155.

For instructions on using the Control Center to perform the tasks involved in
developing a GIS project, see:
v “Chapter 3. Setting up resources” on page 21
v “Chapter 4. Defining spatial columns, registering them as layers, and

enabling a geocoder to maintain them” on page 31
v “Chapter 5. Populating spatial columns” on page 37
v “Chapter 6. Creating spatial indexes” on page 47

For guidelines on using the Control Center to implement a GIS project, see
“Chapter 7. Retrieving and analyzing spatial information” on page 49.

For guidelines on using an application program to develop and implement a
GIS project, see “Chapter 8. Writing applications for DB2 Spatial Extender” on
page 53.

For a scenario that illustrates the overall effort, see “A project to establish
offices and adjust premiums” on page 12.

How the sets of tasks can vary
The sets of tasks that you perform to create and use a DB2 Spatial Extender
GIS can vary in content and sequence, depending on your requirements and
on the interfaces that you use. For example, consider the tasks of defining
columns to contain spatial data, registering them as layers, and enabling a
geocoder to maintain them automatically. With the Control Center, you can
perform these tasks together, from a single window. If you are invoking stored
procedures from a program, however, you can perform these tasks separately,
and you can time them at your discretion.

Scenario: An insurance company updates its GIS
This section presents a scenario to illustrate the sets of tasks that are described
in the preceding section.

The Safe Harbor Real Estate Insurance Company’s information systems
environment includes a DB2 Universal Database system and a separate GIS

Chapter 1. About DB2 Spatial Extender 11

database management system. To an extent, queries can retrieve combinations
of data from the two systems. For example, a DB2 table stores information
about revenue, and a GIS table stores the locations of the company’s branch
offices. Therefore, it is possible to find out the locations of offices that bring in
revenues of specified amounts. But data from the two systems cannot be
integrated (for example, users cannot join DB2 columns with GIS columns)
and DB2 services such as query optimization are unavailable to the GIS. To
overcome these disadvantages, Safe Harbor acquires DB2 Spatial Extender and
establishes a new GIS development department. The following sections
describe how the department sets up DB2 Spatial Extender and carries out its
first project.

A system to integrate spatial and traditional data
To set up DB2 Spatial Extender, Safe Harbor’s GIS development department
proceeds as follows:
1. The department prepares to include DB2 Spatial Extender in its DB2

environment. For example:
a. The department’s management team appoints a spatial administration

team to install and implement DB2 Spatial Extender, and a spatial
analysis team to generate and analyze spatial information.

b. Because Safe Harbor’s business decisions are driven primarily by
customers’ requirements, the management team decides to install DB2
Spatial Extender in the database that contains information about its
customers. Most of this information is stored in a table called
CUSTOMERS.
As a convenient way to refer to the selected database, the members of
the GIS development department call it a GIS database. They are aware,
however, that it is not reserved for GIS projects only; non-spatial
applications can continue to use it, as before.

2. The spatial administration team installs DB2 Spatial Extender.
3. The spatial administration team sets up resources that GIS projects will

require:
v The team uses the Control Center to supply the resources that enable

the GIS database for spatial operations. These resources include the DB2
Spatial Extender catalog, spatial data types, spatial functions, and so on.

v Because Safe Harbor is starting to extend its business into Canada, the
spatial administration team begins soliciting Canadian vendors for
geocoders that translate Canadian addresses into spatial data.

A project to establish offices and adjust premiums
To carry out its first GIS project under DB2 Spatial Extender, the GIS
development department proceeds as follows:
1. The department prepares to develop the project; for example:

v The management team sets goals for the project:

12 DB2 Spatial Extender User’s Guide and Reference

– To determine where to establish new branch offices.
– To adjust premiums on the basis of customers’ proximity to

hazardous areas (areas with high rates of traffic accidents, areas with
high rates of crime, flood zones, earthquake faults, and so on).

v The GIS project will be concerned with customers and offices in the
United States. Therefore, the spatial administration team decides to:
– Use coordinate systems that accurately define locations in the parts of

the United States in which Safe Harbor does business.
– Use the default geocoder, because it is designed to geocode United

States addresses.
v The spatial administration team decides what data is needed to meet the

project’s goals and what tables will contain this data.
2. Using the Control Center, the spatial administration team creates two

spatial reference systems. One determines how coordinates that define
offices’ locations are to be converted to data items that DB2 Spatial
Extender can store. The other determines how coordinates that define
locations of customers’ residences are to be converted to data items that
DB2 Spatial Extender can store.

3. Using the Control Center, the spatial administration team defines columns
to contain spatial data, registers them as layers, and enables a geocoder to
maintain them automatically:
v The team adds a LOCATION column to the CUSTOMERS table. The

table already contains customers’ addresses. The default geocoder will
translate them into spatial data and load this data into the LOCATION
column.

v The team creates an OFFICES table to contain the data that is now
stored in the separate GIS. This data includes the addresses of Safe
Harbor’s branch offices, spatial data that was derived from these
addresses by a geocoder, and spatial data that defines a zone within a
five-mile radius around each office. The data generated by the geocoder
will go into a LOCATION column. The data that defines the zones will
go into a SALES_AREA column.

v The team registers the two LOCATION columns and the SALES_AREA
columns as layers.

v The team enables the default geocoder to automatically maintain the
two LOCATION columns.

4. The spatial administration team populates the CUSTOMER table’s
LOCATION column, the entire OFFICES table, and a new
HAZARD_ZONES table:
v The team uses the Control Center to populate the CUSTOMER table’s

LOCATION column:

Chapter 1. About DB2 Spatial Extender 13

a. The team instructs the geocoder to insert spatial data for an address
into the LOCATION column only under the following condition: a
match between the address and its counterpart in the United States
Census Bureau’s records must be 100 percent accurate. (A file of
addresses that are supplied by the Census Bureau is shipped with
DB2 Spatial Extender. Before the geocoder can translate an address
in the source data into spatial data, the geocoder must try to match
this address with a counterpart in the file. Users specify what
percentage of the match must be accurate in order for the spatial
data to be placed in a table. This percentage is called a precision.)

b. The team runs the geocoder in batch mode, so that it can geocode all
the addresses in the table in one operation. To the team’s dismay, the
geocoder rejects about one out of every ten addresses!

c. The team surmises that the rejects must be new addresses that have
no exact matches in the Census Bureau’s records. To resolve the
problem, the team reduces the precision to 85.

d. The team runs the geocoder in batch mode again. The rate at which
addresses are rejected falls to an acceptable level.

v Using a utility that is provided by the separate GIS, the team loads the
office data into a file. Then the team uses the Control Center to import
this data from the file to the new OFFICES table.

v Using the Control Center, the team creates a HAZARD ZONES table,
registers its spatial columns as layers, and imports data to it. The data
comes from a file supplied by a map vendor.

5. Using the Control Center, the spatial administration team facilitates access
to the new layers:
v The team creates indexes for them.
v The team creates a view that joins columns from the CUSTOMERS and

HAZARD ZONES tables. The team then registers the views’ spatial
columns as layers.

6. The spatial analysis team runs queries to obtain information that will help
it meet the original objectives: to determine where to establish new branch
offices, and to adjust premiums on the basis of customers’ proximity to
hazard areas.

14 DB2 Spatial Extender User’s Guide and Reference

Chapter 2. Installing DB2 Spatial Extender

This chapter provides instructions for installing DB2 Spatial Extender. The
following topics are discussed:
v “DB2 Spatial Extender configuration”
v “System requirements”
v “Installing DB2 Spatial Extender” on page 17
v “Verifying the installation” on page 18
v “Post-installation considerations” on page 19
v “What’s next?” on page 20

DB2 Spatial Extender configuration

A DB2 Spatial Extender system consists of DB2 Universal Database, DB2
Spatial Extender, and a geobrowser (for example, ArcExplorer). Typically, a
database that is enabled for spatial operations is located on the server. You
use client applications to access spatial data through the DB2 Spatial Extender
stored procedures and spatial queries. In addition, you can view spatial data
with a geobrowser.

Figure 5 illustrates the architecture of DB2 Spatial Extender.

System requirements

This section explains the software and hardware requirements for DB2 Spatial
Extender.

Figure 5. Client-server setup

© Copyright IBM Corp. 1998, 2000 15

Supported operating systems
DB2 Spatial Extender can be installed on the following operating systems:
v AIX 4.2 or later
v Windows NT 4.0 or later with Service Pack 5

Required database software
Before you install DB2 Spatial Extender, you must have DB2 software installed
and configured on your system. Table 1 lists the database software
requirements for both the DB2 Spatial Extender client component and the DB2
Spatial Extender server component.

Table 1. Minimum software requirements

Component Software

Client DB2 Administration Client, Version 7.11

Server Either:

v DB2 Universal Database Enterprise Edition, Version 7.1

v DB2 Universal Database Enterprise – Extended Edition,
Version 7.12

Notes:

1. If you are not planning to use the DB2 Control Center, a
geobrowser to access spatial data, or the DB2 Spatial
Extender sample program, you can use a down-level
version of DB2 Administration Client.

2. Although you can use DB2 Spatial Extender with the
DB2 Universal Database Enterprise - Extended Edition,
the spatial index cannot be partitioned across multiple
nodes as in the massive parallel processing (MPP)
environment.

Disk space requirements
Table 2 lists the recommended disk space requirements for DB2 Spatial
Extender.

Table 2. Disk space requirements

DB2 Spatial Extender component Disk space

DB2 Spatial Extender server library (includes DB2 Spatial
Extender server library, geocoder reference data, and
documentation)

600 MB

DB2 Spatial Extender client support (includes the sample
program data)

15 MB

16 DB2 Spatial Extender User’s Guide and Reference

Installing DB2 Spatial Extender

This section provides the information you need to install DB2 Spatial Extender
on Windows NT and AIX operating systems.

Before you begin
If you did not already do so, install DB2 Administration Client
(administration tools including the Control Center and the run-time client) on
the client workstation, and install DB2 Universal Database Enterprise Edition
or DB2 Universal Database Enterprise - Extended Edition. Instructions for
doing so are in the appropriate Quick Beginnings book.

Installing DB2 Spatial Extender on Windows NT systems
To install DB2 Spatial Extender on a Windows NT system:

1. Log on to the system with a user name that has the required
administration permissions.

2. Shut down any other programs.
3. Insert the CD-ROM into the drive. The installation launchpad opens.
4. Optional: Click Release Notes to check the DB2 Spatial Extender Release

Notes for any changes to the installation process, then return to the DB2
Spatial Extender launchpad.

5. Click Install.
6. Respond to the setup program’s prompts. Online help is available to guide

you through the remaining steps. To invoke online help, click Help or
press the F1 key.

When the installation is complete, DB2 Spatial Extender is installed under the
directory %DB2PATH% (for example, c:\sqllib).

Installing DB2 Spatial Extender on AIX systems
To install DB2 Spatial Extender on an AIX system:

1. Log in as root.
2. Insert the CD-ROM into the drive.
3. Mount the CD-ROM on your AIX system. For information on mounting a

CD-ROM refer to the IBM DB2 Universal Database for UNIX Quick
Beginnings.

4. Change to the directory where the CD-ROM is mounted by entering the
following command:
cd /cdrom

where cdrom is the mount point of the CD-ROM drive on AIX.
5. Enter the db2setup command to start the DB2 installer program. The

Install DB2 Spatial Extender window opens.

Chapter 2. Installing DB2 Spatial Extender 17

Note: The DB2 installer program will start slowly because it scans your
system for information.

6. From the product list of the Install DB2 Spatial Extender window, select
the products that you want to install and click OK.
For more information or assistance when installing DB2 Spatial Extender,
click Help.

When the installation is complete, DB2 Spatial Extender is installed in the
/usr/lpp/db2_07_01 directory.

Verifying the installation

After you install DB2 Spatial Extender, you can verify its installation by using
the DB2 Spatial Extender sample program. Before you can run the sample
program, you must create a SAMPLE database and make the sample program
executable.

Note: Be sure to use the compiler specified in the DB2 Spatial Extender
makefile.

To compile and run the sample program for Windows NT:

1. Log in with the user ID that has administrator privileges.
2. From a command line prompt, enter db2sampl to create the DB2 SAMPLE

database.
3. From a command line prompt, enter the following command:

cd %DB2PATH%\samples\spatial

Note: In order to perform step 3 and continue verifying the installation, you
must own the default DB2 instance (DB2–DB2).

4. Enter make rungsedemo.
5. Enter rungsedemo.exe.
6. Check the error and completion messages that are displayed as the

program is running.

To compile and run the sample program for AIX:

1. Log in as root.
2. Create or update a DB2 instance.
3. From a command line prompt, enter db2sampl to create the DB2 SAMPLE

database.
4. From a command line prompt, enter the following command:

cd $DB2INSTANCE/sqllib/samples/spatial

Note: In order to perform step 4 and continue verifying the installation, you
must own the DB2 instance that you created or updated.

18 DB2 Spatial Extender User’s Guide and Reference

5. Enter make rungsedemo.
6. Enter rungsedemo.
7. Check the error and completion messages that appear as the program is

running.

For information about the sample programs, see “Chapter 8. Writing
applications for DB2 Spatial Extender” on page 53.

Post-installation considerations

After you successfully install DB2 Spatial Extender, you need to consider:
v Downloading ArcExplorer
v Running the DB2 instance update utility

Downloading ArcExplorer
IBM distributes ArcExplorer Java 3.0 as a sample program or you can obtain it
from the ESRI Web site at http://www.esri.com.

For more information on installing and using ArcExplorer, refer to the Using
ArcExplorer book, which is also available on the ESRI Web site.

ArcExplorer requires Java® 2 Runtime Environment (Standard Edition or
Enterprise Edition), V1.2.2 available at no charge from the Sun Web site at
http://java.sun.com.

Important: DB2 Universal Database V7.1 is shipped with IBM JDK 1.1.8.
When you install JRE 1.2.2 for ArcExplorer, place it in a separate
directory from DB2. Remember to set the CLASSPATH
environment variable appropriately.

Running the DB2 instance update utility (db2iupdt)
The db2iupdt utility updates a specified DB2 instance to:
v Enable the instance to acquire a new system configuration.
v Enable the instance to access a function associated with installing or

removing certain product options.

On AIX, this utility is located in /usr/lpp/db2_07_01. If you need help, type
db2iupdt -h on the command line to open a help menu. On the Windows NT
operating system, db2iupdt is located in the \sqllib\bin directory. Change to
that directory to type the command. For a complete description of this
command, refer to the IBM DB2 Universal Database Command Reference.

Chapter 2. Installing DB2 Spatial Extender 19

What’s next?

After DB2 Spatial Extender is installed, you can use the DB2 Control Center to
set-up the GIS environment and start to work with spatial information.

To invoke DB2 Spatial Extender from the Control Center:

1. From the Control Center window, expand the object tree until you find the
Databases folder under the server where you want DB2 Spatial Extender
to run.

2. Click the Databases folder. The databases are displayed in the contents
pane on the right side of the window.

3. Right-click the database that you want to work with, and click the spatial
operation in the pop-up menu that you want to perform.

For more information about using DB2 Spatial Extender from the Control
Center, refer to:
v “Chapter 3. Setting up resources” on page 21
v “Chapter 4. Defining spatial columns, registering them as layers, and

enabling a geocoder to maintain them” on page 31
v “Chapter 5. Populating spatial columns” on page 37
v “Chapter 6. Creating spatial indexes” on page 47

20 DB2 Spatial Extender User’s Guide and Reference

Chapter 3. Setting up resources

After you install DB2 Spatial Extender, you are ready to supply your database
with resources that you need when you create spatial columns and
manipulate spatial data. This chapter summarizes these resources and
describes two of the tasks through which you make them available: enabling
your database for spatial operations and creating spatial reference systems.

Inventory of resources

The resources that you draw on to create spatial columns and manipulate
spatial data include:
v Reference data: addresses that DB2 Spatial Extender checks to verify

addresses that you want to geocode
v Resources that enable a database for spatial operations: stored procedures,

spatial functions, and others
v Non-default geocoders that are provided by users and vendors
v Spatial reference systems

This section discusses reference data and resources that enable a database for
spatial operations. For information about non-default geocoders, see “About
geocoding” on page 37. For information about spatial reference systems, see
“About coordinate and spatial reference systems” on page 23.

Reference data
Reference data consists of the most recent addresses in the United States that
the United States Census Bureau has collected. Before the default geocoder
can translate an address in your database into coordinates, it must first match
part or all of the address to an address in the reference data.

Reference data becomes available to you when you install DB2 Spatial
Extender. For the amount of disk space that this data requires, see “Disk space
requirements” on page 16. To verify on AIX that the data was loaded properly,
look for it in the $DB2INSTANCE/sqllib/gse/refdata/ directory. To verify on
Windows NT that the data was loaded properly, look for it in the
%DB2PATH%\gse\refdata\ directory.

Resources that enable a database for spatial operations
The first task you perform after installing DB2 Spatial Extender is to enable
your database for spatial operations. This involves initiating an action that
causes DB2 Spatial Extender to load the database with the following
resources:

© Copyright IBM Corp. 1998, 2000 21

v Stored procedures. When you request an action from the Control Center,
DB2 Spatial Extender invokes one of these stored procedures to execute the
action.

v Spatial data types. You must assign a spatial data type to each table or view
column in which spatial data is to be stored. For more information, see
“About spatial data types” on page 31.

v DB2 Spatial Extender’s catalog tables and views. Certain operations depend
on the DB2 Spatial Extender catalog. For example, before a column with a
spatial data type can be populated, it must be registered in the catalog as a
layer. For information about layers, see “Developing and implementing a
GIS project” on page 10.

v A spatial index type. It allows you to define indexes for layers.
v Spatial functions. You use these to work with spatial data in a number of

ways; for example, to determine relationships between geographic features
and to generate more spatial data. One of these functions is a default
geocoder. It translates addresses in the United States into coordinates, and
then inserts these coordinates into spatial columns. For more information
about spatial functions, see “Chapter 13. Geometries and associated spatial
functions” on page 119 and “Chapter 14. Spatial functions for SQL queries”
on page 155. For more information about the default geocoder, see “About
geocoding” on page 37.

v A schema, called DB2GSE, that contains the objects just listed.

For instructions on how to use the Control Center to initiate the loading of
these resources, see “Enabling a database for spatial operations”. For
guidelines on using a routine in an application program to perform the same
task, see “Chapter 8. Writing applications for DB2 Spatial Extender” on
page 53.

Enabling a database for spatial operations

To find out what authorization is required to enable a database for spatial
operations, see “Authorization” on page 73.

To enable a database for spatial operations from the Control Center:

1. From the Control Center window, expand the object tree until you find the
Databases folder under the server where you want DB2 Spatial Extender
to run.

2. Click the Databases folder. The databases are displayed in the contents
pane on the right side of the window.

3. Right-click the database that you want, and click Spatial Extender —>
Enable in the pop-up menu. DB2 Spatial Extender supplies the database
with the resources that allow you to create and work with spatial columns
and data.

22 DB2 Spatial Extender User’s Guide and Reference

Reminder: Before you can enable a database for spatial operations, DB2
Spatial Extender must be installed on the server where the
database resides.

Creating a spatial reference system

This section describes the relationship between spatial reference systems and
coordinate systems, and explains how to create a spatial reference system
from the Control Center.

About coordinate and spatial reference systems
This section continues the discussion of coordinate systems that was begun in
“The nature of spatial data” on page 5. Then it expands on the definition of
spatial reference systems that is provided in “Developing and implementing a
GIS project” on page 10. It also provides guidelines for determining what
values to assign to a spatial reference system’s parameters.

Coordinate systems, coordinates, and measures
You can think of a coordinate system in terms of an imaginary grid that
covers a specific geographic area. Examples include a grid that covers the
earth, a grid that covers a nation, or a grid that covers a region in a state.
Each geographic feature in the area is situated at the intersection of an
east-west gridline and a north-south gridline. A value, called an X coordinate,
indicates where the location lies on the east-west gridline. Another value, a Y
coordinate, indicates where the location lies on the north-south gridline. Both
values reference the location to the grid’s center, or origin.

The X and Y coordinates at the origin are both zero. From the origin eastward,
X coordinates are positive; from the origin westward, they are negative.
Similarly, from the origin northward, Y coordinates are positive; from the
origin southward, they are negative. For an illustration of this distribution,
consider the following generalized example: Coordinate system A includes a
grid that covers a large metropolitan area. An X coordinate of 7 would denote
a position that is seven units of measurement eastward from the origin of this
grid. An X coordinate of -9.5 would denote a position that is nine and a half
units of measurement westward from the origin.

Each data item in a spatial column includes either (1) an X coordinate and a Y
coordinate that define the location of a geographic feature or (2) multiple X
and Y coordinates that define the locations of the parts of a feature, or that
define the area that a feature covers. Two other kinds of values—a Z coordinate
and a measure—can also be included. Unlike X and Y coordinates, Z
coordinates and measures are not used in DB2 Spatial Extender to define
locations or areas. Rather, they simply convey information required by a GIS
application. A Z coordinate typically indicates the height or depth of a
geographic feature. Z coordinates above the origin are positive; Z coordinates

Chapter 3. Setting up resources 23

below it are negative. A measure is numeric; it can convey any sort of
information. For example, suppose that you are representing oil wells in your
GIS. If you require your applications to process values that denote shot point
IDs for seismic data, you could store these values as measures.

Spatial reference systems, offsets, and scale factors
As indicated in “Coordinate systems, coordinates, and measures” on page 23,
coordinates can be negative and expressed in decimals. The same is true for
measures. However, to reduce storage overhead, DB2 Spatial Extender stores
each coordinate and measure as a non-negative integer (that is, as a positive
integer or as zero). Therefore, actual negative and decimal coordinates and
measures must be converted to non-negative integers, so that DB2 Spatial
Extender can store them. Furthermore, you need to tell DB2 Spatial Extender
how to make the conversion. You do this by setting certain parameters.
Parameter settings that are to be used to convert coordinates and measures
within a specific geographic area are collectively called a spatial reference
system.

You can create a spatial reference system by:
v Determining the lowest negative coordinates and measures for the features

that you are representing. (The further from zero a negative value is, the
lower it is. An X coordinate of –10 is lower than an X coordinate of –5; a
measure of –100 is lower than a measure of –50.)

v Specifying offset factors (or offsets, for short): values that, when subtracted
from negative coordinates and measures, leave non-negative numbers.

v Specifying scale factors: values that, when multiplied by decimal coordinates
and measures, yield integers whose precision is at least the same as that of
the coordinates or measures. For example, consider a coordinate with a
precision of four: 92.77. You could multiply it by a scale factor of 100 to
obtain an integer with a precision of four: 9277.

Determining the lowest negative coordinates and measures
Before you set parameters for a spatial reference system, you need to
determine the lowest negative X coordinate, Y coordinate, Z coordinate, and
measure in the geographic area that contains the features that you want
information about. You can find out what these values are by answering the
following questions:
v Of the features that you are representing, do any lie west of the origin of

the coordinate system that you are using? If so, what X coordinate indicates
the location or western edge of the westernmost feature? (The answer will
be the lowest of the negative X coordinates that you are dealing with.) For
example, if you are representing oil wells, and some of them lie to the west
of the origin, what X coordinate indicates the location of the oil well that is
furthest west?

24 DB2 Spatial Extender User’s Guide and Reference

v Do any features lie south of the origin? If so, what Y coordinate indicates
the location or southern edge of the southernmost feature? (The answer will
be the lowest of the negative Y coordinates that you are dealing with.) For
example, if you are representing oil wells, and some of them lie to the
south of the origin, what Y coordinate indicates the location of the oil well
that is furthest south?

v If you are going to use Z coordinates to define depth, which feature is the
deepest, and which Z coordinate represents this feature’s lowest point? (The
answer will be the lowest of the negative Z coordinates that you are dealing
with.)

v If you are going to include measures in your spatial data, will any be
negative? If so, what is the lowest of the negative measures?

Having ascertained the lowest negative coordinates and measures, add to each
one an amount equal to five to ten percent of its value. For example, if the
lowest negative X coordinate is –100, you could add –5 to it. This book calls
the resulting figure an augmented value.

Specifying offset factors
Next, specify what offset factors DB2 Spatial Extender should use to convert
negative coordinates and measures to non-negative ones:
v After you decide what you want your augmented X value to be, specify an

offset that, when subtracted from this value, leaves zero. DB2 Spatial
Extender will then subtract this number from all negative X coordinates to
arrive at a positive value. DB2 Spatial Extender will subtract this number
from all other X coordinates as well.
For example, if the augmented X value is –105, you need to subtract –105
from it to get 0. DB2 Spatial Extender will then subtract –105 from all X
coordinates that are associated with the features that you are representing.
Because none of these coordinates is greater than –100, all the values that
result from the subtraction will be positive.

v Similarly, specify offsets that leave 0 when subtracted from the augmented
Y value, the augmented Z value, and the augmented measure.

The offset subtracted from X coordinates is called a false X. The offsets
subtracted from Y coordinates, Z coordinates, and measures are called false Y,
false Z, and false M, respectively. For instructions on specifying these
parameters from the Control Center, see “Creating a spatial reference system
from the Control Center” on page 26.

Specifying scale factors
Next, specify what scale factors DB2 Spatial Extender should use to convert
decimal coordinates and measures to integers:
v Specify a scale factor that, when multiplied by a decimal X coordinate or a

decimal Y coordinate, yields a 32-bit integer. It is advisable to make this
scale factor a factor of 10: 10 to the first power (10), 10 to the second power

Chapter 3. Setting up resources 25

(100), 10 to the third power (1000), or, if necessary, a larger factor. To decide
what factor of 10 the scale factor should be:
1. Determine which X and Y coordinates are, or are likely to be, decimal

numbers. For example, suppose that of the various X and Y coordinates
that you will be dealing with, you determine that three of them are
decimal numbers: 1.23, 5.1235, and 6.789.

2. Take the decimal coordinate that has the longest decimal precision. Then
determine by what factor of ten this coordinate can be multiplied in
order to yield an integer of equal precision. To illustrate: of the three
decimal coordinates in the current example, 5.1235 has the longest
decimal precision. Multiplying it by ten to the fourth power (10000)
would yield the integer, 51235.

3. Determine whether the integer produced by the multiplication that was
just described is too long to store as a 32-bit data item. 51235 is not too
long. But suppose that in addition to 1.23, 5.11235, and 6.789, your range
of X and Y coordinates includes a fourth decimal value, 10006.789876.
Because this coordinate’s decimal precision is longer than that of the
other three, you would multiply this coordinate—not 5.1235—by a factor
of 10. To convert it to an integer, you could multiply it by 10 to the sixth
power (1000000). But the resulting value, 10006789876, is too long to
store as a 32-bit data item. If DB2 Spatial Extender tried to store it, the
results would be unpredictable.
To avoid this problem, select a factor of 10 that, when multiplied by the
original coordinate, yields a decimal number that DB2 Spatial Extender
can truncate to a storable integer, with minimum loss of precision. In
this case, you could select 10 to the fourth power (10000). Multiplying
10000 by 10006.789876 yields 100067898.76. DB2 Spatial Extender would
truncate this number to 100067898, reducing its accuracy by a virtually
insignificant amount.

v If the features that you are representing have decimal Z coordinates, follow
the foregoing procedure to ascertain a scale factor for these coordinates. If
the features are associated with decimal measures, follow this same
procedure to ascertain a scale factor for these measures.

The scale factor for X and Y coordinates is called an XY unit. The scale factors
for Z coordinates and measures are called Z units and M units, respectively.
For instructions on specifying these parameters from the Control Center, see
“Creating a spatial reference system from the Control Center”.

Creating a spatial reference system from the Control Center
This section gives an overview of the steps to create a spatial reference system
from the Control Center. The overview is followed by details of how to
complete each step.

No authorization is required to perform these steps.

26 DB2 Spatial Extender User’s Guide and Reference

Overview of steps to create a spatial reference system from the Control
Center:

1. Open the Create Spatial Reference window.
2. Indicate which coordinate system you want to use.
3. Specify identifiers for the spatial reference system that you want to create.
4. Determine what ranges of coordinates and measures apply to the

geographic features that you want information about.
5. Specify values that can be used to convert negative or decimal coordinates

and measures into data items that DB2 Spatial Extender can store.
6. Tell DB2 Spatial Extender to create the spatial reference system that you

want.

Detailed steps to create a spatial reference system from the Control Center:

1. Open the Create Spatial Reference window.
a. From the Control Center window, expand the object tree until you find

the Databases folder under the server where you want DB2 Spatial
Extender to run.

b. Click the Databases folder. The databases are displayed in the contents
pane on the right side of the window.

c. Right-click the database that you enabled for spatial data, and click
Spatial Extender —> Spatial References in the pop-up menu. The
Spatial References window opens.

d. From the Spatial References window, click Create. The Create Spatial
Reference window opens.

2. From the Create Spatial Reference window, use the Coordinate system
field to indicate what coordinate system you want to use.

3. Specify identifiers for the spatial reference system that you want to create.
v In the Name field, type a 1- to 64-character name for the system.

Restriction: Do not specify the name of another spatial reference
system. No two spatial reference systems in the database
can have the same name.

v In the ID field, type a numerical identifier. It must be an integer.

Restriction: Do not specify the ID of another spatial reference system.
No two spatial reference systems in the database can have
the same ID.

4. Using a medium outside the Control Center—for example, paper or a
white board—determine the lowest negative coordinates and measures
that apply to the geographic features that you are representing. For
guidelines on how to do this, see “Determining the lowest negative
coordinates and measures” on page 24.

Chapter 3. Setting up resources 27

5. From the Create Spatial Reference window, specify values to convert
negative or decimal coordinates and measures into data items that DB2
Spatial Extender supports—that is, into 32-bit non-negative integers.
a. Specify values to convert negative or decimal X coordinates into

non-negative integers:
v In the Offset column, in the field nearest to the X, specify a false X:

– If any values within the range of X coordinates that you identified
in step 4 on page 27 are negative, type a false X that, when
subtracted from the lowest negative coordinate, leaves a positive
number. For guidelines, see “Specifying offset factors” on page 25.

– If all the X coordinates are non-negative, type a false X of 0.
v In the Scale factor column, specify an XY unit in the field to the far

right of the X. This XY unit should be one that, when multiplied by
any decimal X coordinate or decimal Y coordinate, yields a whole
number that can be stored as a 32-bit data item, with minimum loss
of precision. For guidelines, see “Specifying scale factors” on page 25.
After you specify the XY unit in the field to the far right of the X, it
will appear also in the field to the far right of the Y.

b. Specify a false Y that will allow DB2 Spatial Extender to convert
negative Y coordinates into positive values. You do this in the Offset
column, in the field nearest to the Y:
v If any values within the range of Y coordinates that you identified in

step 4 on page 27 are negative, type a false Y that, when subtracted
from the lowest negative coordinate, leaves a positive number. For
guidelines, see “Specifying offset factors” on page 25.

v If all the Y coordinates are positive, type a false Y of 0.
c. If you are going to include Z coordinates in your spatial data, specify

values to convert negative or decimal Z coordinates into non-negative
integers:
v In the Offset column, in the field nearest to the Z, type a false Z:

– If any values within the range of Z coordinates that you identified
in step 4 on page 27 are negative, type a false Z that, when
subtracted from the lowest negative coordinate, leaves a positive
number. For guidelines, see “Specifying offset factors” on page 25.

– If all the Z coordinates are non-negative, type a false Z of 0.
v In the Scale factor column, specify a Z unit in the field to the far

right of the Z. This Z unit should be one that, when multiplied by
any decimal Z coordinate, yields a whole number that can be stored
as 32-bit data item, with minimum loss of precision. For guidelines,
see “Specifying scale factors” on page 25.

d. If you are going to include measures in your spatial data, specify
values to convert negative or decimal measures into positive integers:

28 DB2 Spatial Extender User’s Guide and Reference

v In the Offset column, in the field nearest to the Linear label, type a
false M:
– If any values within the range of measures that you identified in

step 4 on page 27 are negative, type a false M that, when
subtracted from the lowest negative measure, leaves a positive
number. For guidelines, see “Specifying offset factors” on page 25.

– If all the measures are positive, type a false M of 0.
v In the Scale factor column, specify an M unit in the field to the far

right of the Linear label. This M unit should be one that, when
multiplied by any decimal measure, yields a whole number that can
be stored as 32-bit data item, with minimum loss of precision. For
guidelines, see “Specifying scale factors” on page 25.

6. Click OK to create the spatial reference system that you want.

Chapter 3. Setting up resources 29

30 DB2 Spatial Extender User’s Guide and Reference

Chapter 4. Defining spatial columns, registering them as
layers, and enabling a geocoder to maintain them

After you set up resources for your DB2 Spatial Extender GIS, you are ready
to create objects that will contain spatial data. For example, if you need new
tables to contain spatial data, you can define them, assigning spatial data
types to the columns that you want the data to go into. If you need to add
spatial columns to existing tables, you can do that also.

When you provide a new or existing table with a spatial column, you need to
register this column as a layer. In addition, if you plan to have a geocoder
populate the column, you can, at the time that you register the column as a
layer, enable the geocoder to maintain it automatically. This enablement
occurs in the following way: DB2 Spatial Extender defines triggers that are
coded to invoke the geocoder whenever the spatial column’s corresponding
attribute column (or columns) receive new or updated data. When invoked,
the geocoder translates the new or updated data into spatial data, and places
this spatial data into the spatial column.

After you define a spatial column for a table, you can, if you choose, create a
view column over this table column. You must register the view column as a
layer after you register the table column as a layer.

This chapter discusses the nature and use of the data types that you can
assign to spatial column. Next, the chapter explains how to use the Control
Center to define a spatial column for a table, to register this column as a layer,
and to enable a geocoder to maintain it. Finally, the chapter explains how to
use the Control Center to register a view column as a layer.

About spatial data types

This section introduces the data types that are required for spatial columns
and provides guidelines for choosing what a spatial column’s data type
should be.

When you enable a database for spatial operations, DB2 Spatial Extender
supplies the database with a hierarchy of structured data types. Figure 6 on
page 32 presents this hierarchy. In this figure, the instantiable types have a
white background; the uninstantiable types have a shaded background.

© Copyright IBM Corp. 1998, 2000 31

The hierarchy in Figure 6 includes:
v Data types for geographic features that can be perceived as forming a single

unit; for example, individual residences and isolated lakes.
v Data types for geographic features that are made up of multiple units or

components; for example, highway systems and mountain ranges.
v A data type for geographic features of all kinds.

Data types for single-unit features
Use ST_Point, ST_Linestring, and ST_Polygon to store coordinates that define
the space occupied by features that can be perceived as forming a single unit:
v Use ST_Point when you want to indicate the point in space that is occupied

by a discrete geographic feature. The feature might be a very small one,
such as a water well; a very large one, such as a city; or one of intermediate
size, such as a building complex or park. In each case, the point in space
can be located at the intersection of an east-west coordinate line (for
example, a parallel) and a north-south coordinate line (for example, a
meridian). An ST_Point data item includes values—an X coordinate and a Y
coordinate—that define such an intersection. The X coordinate indicates
where the intersection lies on the east-west line; the Y coordinate indicates
where the intersection lies on the north-south line.

v Use ST_Linestring for coordinates that define the space that is occupied by
linear features; for example, streets, canals, and pipelines.

v Use ST_Polygon when you want to indicate the extent of space covered by
a multi-sided feature; for example, a welfare district, a forest, or a wildlife
habitat. An ST_Polygon data item consists of the coordinates that define the
perimeter of such a feature.

Figure 6. Hierarchy of spatial data types. Data types named in white boxes are instantiable. Data
types named in shaded boxes are uninstantiable.

32 DB2 Spatial Extender User’s Guide and Reference

In some cases, ST_Polygon and ST_Point can be used for the same feature.
For example, suppose that you need spatial information about several
apartment complexes. If you want to represent the point in space where
each complex is located, you would use ST_Point to store the X and Y
coordinates that define each such point. On the other hand, if you want to
represent the area that each complex covers, you would use ST_Polygon to
store the coordinates that define the perimeter of each such area.

Data types for multi-unit features
Use ST_MultiPoint, ST_MultiLineString, and ST_MultiPolygon to store
coordinates that define spaces occupied by features that are made up of
multiple units:
v Use ST_MultiPoint when you want to represent features made up of

discrete units, and you want to indicate the point in space occupied by each
component. An ST_MultiPoint data item includes the pairs of X and Y
coordinates that define the location of each component of such a feature.
For example, consider a table whose rows represent island chains and
whose columns include an ST_MultiPoint column. Each data item in this
column includes the pairs of X and Y coordinates that define the locations
of the islands in each chain.

v Use ST_MultiLineString when you want to represent features made up of
linear units, and you want information about the space occupied by each
unit. An ST_MultiLineString data item consists of the coordinates that
define such spaces. For example, consider a table whose rows represent
river systems and whose columns include an ST_MultiLineString column.
Each data item in this column includes the sets of coordinates that define
the paths of the rivers in each system.

v Use ST_MultiPolygon when you want to represent features made up of
multi-sided units, and you want information about the space occupied by
each unit. For example, consider a table whose rows represent midwestern
counties and whose columns include an ST_MultiPolygon column. This
column contains information about farmlands. Specifically, each data item
in the column includes the sets of coordinates that define the perimeters of
the farmlands in a particular county.

A data type for all features
You can use ST_Geometry when you are not sure which of the other data
types to use. Because ST_Geometry is the root of the hierarchy to which the
other data types belong, an ST_Geometry column can store any or all of the
values that can be stored in columns to which the other data types are
assigned.

Attention: The default geocoder can translate addresses into ST_Point or
ST_Geometry data items. Therefore, if you plan to use this
geocoder to populate a spatial column, you must assign either the
ST_Point or the ST_Geometry data type to this column.

Chapter 4. Defining spatial columns, registering them as layers, and enabling a geocoder to maintain them 33

Defining a spatial column for a table, registering this column as a layer, and
enabling a geocoder to maintain it

This section gives an overview of the steps to define a spatial column for a
table, register this column as a layer, and enable a geocoder to maintain it.
The overview is followed by details of how to complete each step.

To find out what authorization you need to register a table column as a layer,
see “Authorization” on page 86. To find out what authorization you need to
enable a geocoder to maintain this column, see “Authorization” on page 70.

Overview of steps to define a spatial column for a table, register this column
as a layer, and enable a geocoder to maintain it:

1. If the spatial column is to be part of a new table, create this table.
2. Open the Create Spatial Layer window.
3. Either add a spatial column to a table, and indicate that you want to

register this column as a layer; or indicate that you want to register an
existing column as a layer.

4. Indicate which spatial reference system is to be used for the layer.
5. If the layer is to contain imported data, or data that is generated from

another spatial column, tell DB2 Spatial Extender to create the layer.
6. If the layer is to contain data derived from attribute data:

a. Specify which column or columns contain this attribute data.
b. Indicate that you want to enable a geocoder to maintain the layer.
c. Tell DB2 Spatial Extender to create the layer.

Detailed steps to define a spatial column for a table, register this column as a
layer, and enable a geocoder to maintain it:

1. If the spatial column is to be part of a new table, create this table:
v Use an interface of your choice (for example, the Control Center or the

Command Line Processor) to create the table.
v If you plan to use a geocoder, include one to ten columns for the

geocoder to operate on. A geocoder cannot take more than ten columns
of data as input.

v Either include the spatial column that you will be registering as a layer,
or define this column in step 3 on page 35.

If you want to use an existing table, go on to the next step.
2. Open the Create Spatial Layer window.

a. From the Control Center window, expand the object tree until you find
the Tables folder for the tables in the database that you use for spatial
operations.

34 DB2 Spatial Extender User’s Guide and Reference

b. Click the Tables folder. The tables are displayed in the contents pane
on the right side of the window.

c. Right-click the table that you want and click Spatial Extender —>
Spatial Layers in the pop-up menu. The Spatial Layers window opens.

d. From the Spatial Layers window, click Create. The Create Spatial Layer
window opens.

3. From the Create Spatial Layer window, either add a spatial column to a
table, and indicate that you want to register this column as a layer; or
indicate that you want to register an existing column as a layer.
v If you want to add a spatial column to a table and define this column as

a layer:
a. In the Layer column field, type a name for the column.
b. In the Column type field, select or type the data type that you want

the column to have. For a discussion of allowable data types, see
“About spatial data types” on page 31.

v If you want to define an existing column as a layer, select it in the Layer
column field.

Restriction: Do not select a column that has already been defined as a
layer.

4. In the Spatial reference name field, specify the name of the spatial
reference system to be used for the layer.

5. If you want the layer to contain imported data, or data that is generated
from another spatial column, click OK to register it.

6. If you want the layer to contain data that is derived from attribute data:
a. Specify which column or columns contain this attribute data:

1) Select the column or columns in the Available columns box. You
can select up to ten columns.

2) Click the > push button, the >> push button, or both, to list the
selected column or columns in the Selected columns box.

b. If you want to enable a geocoder to maintain the layer:
1) Select the Enable automatic geocoder check box.
2) In the Name field, select the name of the geocoder that you want to

use.
3) In the Precision level field, specify, in terms of percentage, the

degree to which input records must match corresponding records in
the reference data in order to be processed. This percentage is
called a precision. For example, suppose that the geocoder reads an
input record that contains the address, 557 Bailey, San Jose 94120. If
the precision is 100, and if the match between this address and its
counterpart in the reference data is not 100 percent accurate, the
geocoder will reject it. If the precision is 75, and the match between

Chapter 4. Defining spatial columns, registering them as layers, and enabling a geocoder to maintain them 35

the record and its reference data counterpart is at least 75 percent
accurate, the geocoder will process it.

4) If the geocoder was supplied by a vendor, use the Properties box to
specify any vendor-supplied geocoding parameters that you want
to use.

c. Click OK to register the selected column as a layer and, if you
requested it, to enable the geocoder to maintain the column.

Registering a view column as a layer

To find out what authorization you need to register a view column as a layer,
see “Authorization” on page 86.

To register a view column as a layer:

1. Open the Create Spatial Layer window.
a. From the Control Center window, expand the object tree until you find

the Views folder for the views in the database that you use for spatial
operations.

b. Click the Views folder. The views are displayed in the contents pane
on the right side of the window.

c. Right-click the view that you want and click Spatial Extender —>
Spatial Layers in the pop-up menu. The Spatial Layers window opens.

d. From the Spatial Layers window, click Create. The Create Spatial Layer
window opens.

2. Use the Layer column box to specify the column that you want to register
as a layer.

3. In the Underlying spatial layer field, specify the name of the table
column on which the selected view column is based. This table column
must already be registered as a layer.

4. Click OK to register the specified view column as a layer.

36 DB2 Spatial Extender User’s Guide and Reference

Chapter 5. Populating spatial columns

After you register spatial columns as layers, you are ready to supply them
with spatial data. As noted in “Where spatial data comes from” on page 6,
there are three ways to supply this data: use a function, called a geocoder, to
derive it from attribute data; use other functions to derive it from other spatial
data; or import it from files. This chapter:
v Talks about geocoding and explains how to use the Control Center to

geocode attribute data in batch mode
v Discusses importing and exporting data and explains how to use the

Control Center to import data to your GIS and export it from your GIS

For information about functions that can derive new spatial data from existing
spatial data, see “Functions that generate new geometries from existing ones”
on page 144.

Using geocoders

This section describes the process of geocoding and explains how to run a
geocoder in batch mode from the Control Center.

About geocoding
This section distinguishes basic differences between geocoders and their
sources. It also describes the two modes in which a geocoder can operate, and
introduces factors to consider when you plan to use a geocoder.

With DB2 Spatial Extender, you can:
v Use the default geocoder that is supplied with DB2 Spatial Extender.
v Plug in geocoders that are developed by third-party vendors.
v Plug in your own geocoders.

The default geocoder geocodes United States addresses, and can translate
them into either ST_Point data or ST_Geometry data. If you need to store data
of other spatial data types, you could plug in a geocoder to generate such
data. If you need spatial data that represents sites outside the United States,
or sites that have no addresses—for example, farmlands that vary in soil
content—you could plug in a geocoder to meet that need as well.

Before a plug-in geocoder can be used, it must be registered. Users and
vendors can register it with the db2gse.gse_register_gc stored procedure. It
cannot be registered from the Control Center. For information about
db2gse.gse_register_gc, see “db2gse.gse_register_gc” on page 84. For general

© Copyright IBM Corp. 1998, 2000 37

information about using the DB2 Spatial Extender stored procedures, see
“Chapter 9. Stored procedures” on page 63.

A geocoder operates in two modes:
v In batch mode, it attempts, in a single operation, to translate all existing

source data for a spatial column into spatial data, and to populate the
column with that data. You can initiate this operation from the Run
Geocoder window. Alternatively, you can initiate it in an application
program, by coding the program to call the db2gse.gse_run_gc stored
procedure.

v In incremental mode, a geocoder translates data when it is inserted or
updated in a table, placing the resulting spatial values in a column in order
to keep the column current. It is activated by insert and update triggers that
you can request from the Create Spatial Layer window. Alternatively, you
can request them in an application program, by coding the program to call
the db2gse.gse_enable_autogc stored procedure.
Incremental geocoding is referred to also as automatic geocoding.

When planning to use a geocoder, you might consider the following factors:
1. When you use the Control Center, you typically use the Create Spatial

Layers window before you use the Run Geocoder window. This means
that you can have DB2 Spatial Extender set up triggers for incremental
geocoding before you initiate batch geocoding. Therefore, it is possible for
incremental geocoding to precede batch geocoding. Processing all source
data in batch mode, the geocoder will geocode the same data that it
operated on in incremental mode. This redundancy will not cause
duplications (when spatial data is produced twice, the second yield of data
will override the first). However, it can degrade performance. One way to
avoid it is to defer setting up the triggers until after batch geocoding is
done.

2. If the triggers are in place when you are ready to geocode in batch mode,
it is advisable to deactivate them until the batch geocoding is over. You
can deactivate them either from the Run Geocoder window or in an
application program, by coding the program to call the
db2gse.gse_disable_autogc stored procedure. If you use the Run Geocoder
window, DB2 Spatial Extender reactivates them automatically when the
geocoding is over. If you use the db2gse.gse_disable_autogc stored
procedure, you can reactivate them by calling the
db2gse.gse_enable_autogc stored procedure.

3. If you want to run a geocoder in batch mode to populate a spatial column
that has an index, disable or drop the index first. Otherwise, if the index
remains operable while the geocoder runs, performance will be degraded
severely. If you are using the Control Center, you can disable the index
from the Run Geocoder window. DB2 Spatial Extender re-enables the
index automatically when the geocoding is over. If you are using an

38 DB2 Spatial Extender User’s Guide and Reference

application program, you can drop the index with the SQL DROP
statement. If you do this, be sure to keep a note of the index’s parameters,
so that you can recreate it after the batch geocoding is over.

4. When the geocoder reads a record of source data, it tries to match that
record with a counterpart in the reference data. The match must be
accurate to a certain degree (called a precision) in order for the geocoder to
process the record. For example, a precision of 85 means that the match
between a source record and its counterpart in the reference data must be
at least 85 percent accurate in order for the source record to be processed.
You specify what the precision should be. Be aware that you might need
to adjust it. For example, suppose that the precision is 100. If many source
records contain addresses that are more recent than the reference data,
matches of 100 percent accuracy between these records and the reference
data will be impossible. As a result, the geocoder will reject these records.
On the whole, if a geocoder produces spatial data that seems insufficient
or largely inaccurate, you might be able to resolve this problem by
changing the precision and running the geocoder again.

Running the geocoder in batch mode
This section gives an overview of the steps to run a geocoder in batch mode
from the Control Center. The overview is followed by details of how to
complete each step.

To find out what authorization you need to run a geocoder in batch mode, see
“Authorization” on page 92.

Overview of steps to run a geocoder in batch mode:

1. Open the Run Geocoder window.
2. Indicate which geocoder you want to use.
3. Disable objects that could impede the performance of the geocoder.
4. Specify how many records to geocode before DB2 issues a commit.
5. Indicate how you want the geocoder to operate.
6. Tell DB2 Spatial Extender to run the geocoder.

Detailed steps to run a geocoder in batch mode:

1. Open the Run Geocoder window.
a. From the Control Center window, expand the object tree until you find

the Tables folder in your spatially-enabled database.
b. Click the Tables folder. The tables are displayed in the contents pane

on the right side of the window.
c. Right-click the table that you want in the contents pane and click

Spatial layers in the pop-up menu. The Spatial Layers window opens.
d. From the Spatial Layers window:

Chapter 5. Populating spatial columns 39

1) Select the layer that is defined on the column that you want to
populate.

2) Click the Run Geocoder push button. The Run Geocoder window
opens.

2. If you want to use the default geocoder, leave the Name box, which
displays the name of this default, as is. Otherwise, use the box to select
the geocoder that you want.

3. Disable objects that could impede the performance of the geocoder:
v If the column that you want to populate has an index, select the

Temporarily disable spatial indexes during geocoding process check
box.

v If triggers have been set to activate incremental geocoding for this
column, select the Temporarily disable spatial triggers during
geocoding process check box.
The index and triggers will be re-enabled automatically when you click
OK on the Run Geocoder window.

4. Use the Commit scope spin button to specify how many records to
geocode before DB2 issues a commit. For example, if you want DB2 to
commit 100 geocoded records at a time, specify the number, 100.

Tip: If you want DB2 to issue a commit only after all records are
processed, specify zero.

5. Use the fields in the Geocoder parameters group box to indicate how you
want the geocoder to operate:
v Use the Precision level spin button to specify, in terms of a percentage,

how accurate the match between source records and their reference data
counterparts should be. For more information about precision, see
“About geocoding” on page 37.

v If you are using a vendor-supplied geocoder, and want to use properties
that it supports, use the Properties box to set these properties.

v If you want to geocode only a subset of rows in the table that you
selected, use the WHERE clause box to code a SELECT WHERE clause
that will specify the criteria for the rows that you want. This clause can
reference any columns in the table.
Type the criteria only. Omit the keyword WHERE. For example, if the
table has a STATE column, and you want to geocode only those rows
that contain the value MA in this column, type:
STATE=’MA’

6. Click OK to run the geocoder.

40 DB2 Spatial Extender User’s Guide and Reference

Importing and exporting data

This section describes the processes of importing and exporting data, and
explains how to use the Control Center to:
v Import data from a data exchange file to a new or existing table
v Import data from a data exchange file to an existing table
v Export data from a table to a data exchange file

About importing and exporting
This section lists reasons for importing and exporting spatial data. It also
discusses the data exchange files that serve as interfaces between sources of
the export and targets of the import.

You can use DB2 Spatial Extender to import spatial data from, and export it
to, data exchange files. Consider these scenarios:
v Your GIS contains spatial data that represents your offices, customers, and

other business concerns. You want to supplement this data with spatial data
that represents your organization’s cultural environment—cities, streets,
points of interest, and so on. The data that you want is available from a
map vendor. You can use DB2 Spatial Extender to import it from a data
exchange file that the vendor supplies.

v You want to migrate spatial data from an Oracle system to your DB2
Spatial Extender GIS. You proceed by using an Oracle utility to load the
data into a data exchange file. You then use DB2 Spatial Extender to import
the data from this file to the database that you have enabled for spatial
operations.

v You want to use a GIS browser to show visual presentations of spatial
information to customers. The browser needs only files to work from; it
does not need to be connected to a database. You could use DB2 Spatial
Extender to export the data to a data exchange file, and then use a browser
utility to load the data into the browser.

The Control Center supports two kinds of data exchange files for DB2 Spatial
Extender: shape files and ESRI_SDE transfer files. Shape files are often used
for importing data that originates in file systems and for exporting data to
files that are to be loaded into file systems. ESRI_SDE transfer files are often
used for importing data that originates in ESRI databases.

Importing data to a new or existing table
This section gives an overview of the steps to import data from a shape or
ESRI_SDE transfer file to a new or existing table. The overview is followed by
details of how to complete each step.

To find out what authorization is required for importing shape data, see
“Authorization” on page 82. To find out what authorization is required for
importing ESRI_SDE data, see “Authorization” on page 80.

Chapter 5. Populating spatial columns 41

Overview of steps to import data to a new or existing table:

1. Open the Import Spatial Data window.
2. Specify the path, name, and format of the file that contains the data to be

imported.
3. Specify how many records to import before each commit.
4. If you want to import spatial data to a table that is to be created, supply a

name for this table and a name for the column that the data is intended
for. If importing spatial data to an existing table, indicate which column
the data is intended for.

5. Specify which spatial reference system is to be associated with the data.
6. Designate a file to collect the records that fail the import.
7. Tell DB2 Spatial Extender to import the data and, if you defined a table

from this window, to create the table and to register the column for which
the data is intended as a layer.

Details of steps to import data to a new or existing table:

1. Open the Import Spatial Data window.
a. From the Control Center window, expand the object tree until you find

the Databases folder under the server where you are running DB2
Spatial Extender.

b. Click Databases folder. The databases are displayed in the contents
pane on the right side of the window.

c. Right-click the database to which you want to import data and click
Spatial Extender —> Import Spatial Data in the pop-up menu. The
Import Spatial Data window opens.

2. Specify the path, name, and format of the file that contains the data to be
imported:
a. Use the File name field to specify the path and name.
b. Use the File format box to specify the format. The format can be:

Shape This is the default.

ESRI_SDE
If you specify this format, the Spatial reference name field
defaults to the name of the spatial reference system that is
associated with this format.

3. Use the Commit scope field to specify the number of records that you
want imported before each commit. For example, to require DB2 to
commit 100 records at a time, specify the number 100.

Tip: If you want DB2 to issue a commit only after all records are
processed, specify zero.

4. Specify the table and column that the data is intended for.

42 DB2 Spatial Extender User’s Guide and Reference

a. Use the Layer schema box to specify the schema for the table to which
data is to be imported.

b. Specify the table and the column:
v If the table does not yet exist:

1) In the Layer table field, type a name for the table.
2) In the Layer column field, type a name for the column that is to

contain the imported data. DB2 Spatial Extender will
automatically register this column as a layer.

v If the table already exists:
1) In the Layer table field, specify the table. It must already contain

the column that you want the imported data to go into. In
addition, this column must already be registered as a layer.

2) In the Layer column field, specify the name of the column that
the imported data is intended for.

5. In the Spatial reference name field, type or select the spatial reference
system that is to be associated with this data. (If the data is to come from
an ESRI_SDE transfer file, the name of the associated spatial reference
system is displayed in the field automatically.)

6. In the Exception file field, specify the path and name for a new file into
which records that fail the import can be collected. Later, you can fix these
records and import them from this file.
DB2 Spatial Extender will create this file; do not specify one that already
exists.

7. Click OK to import the data. Also, if you supplied a name for a table that
does not exist yet, this table will be created and the column for which the
data is intended will be registered as a layer. In addition, the exception file
that you specified will be created.

Importing data to an existing table
This section gives an overview of the steps to import data from a shape file or
ESRI_SDE transfer file to an existing table. The overview is followed by
details of how to complete each step.

To find out what authorization is required for importing shape data, see
“Authorization” on page 82. To find out what authorization is required for
importing ESRI_SDE data, see “Authorization” on page 80.

Overview of steps to import data to an existing table:

1. Open the Import Spatial Data window.
2. Specify the path and name of the file that contains the data to be

imported.
3. Specify how many records to import before each commit.

Chapter 5. Populating spatial columns 43

4. Specify the column that is to contain the spatial data that you are
importing.

5. Specify which spatial reference system is to be associated with this data.
6. Designate a file to collect records that fail the import.
7. Tell DB2 Spatial Extender to import the data and, if you specified a

column that has not been created yet, to create this column and to register
it as a layer.

Details of steps to import data to an existing table:

1. Open the Import Spatial Data window.
a. From the Control Center window, expand the object tree until you find

the Tables folder for the database that you want to import data to.
b. Click the Tables folder. The tables are displayed in the contents pane

on the right side of the window.
c. Right-click the table to which you are importing data and click Spatial

Extender —> Import Spatial Data in the pop-up menu. The Import
Spatial Data window opens.

2. In the File name box, specify the path and name of the file that contains
the data to be imported.

3. Use the Commit scope box to specify the number of records that you want
imported before each commit. For example, to require DB2 to commit 100
records at a time, specify the number 100.

Tip: If you want DB2 to issue a commit only after all records are
processed, specify zero.

4. Specify the column that is to contain the spatial data that you are
importing.
v If the column does not yet exist in the table, use the Layer column box

to type a name for the column.
v If the column already exists, use the Layer column box to select or type

the name of the column.
5. Use the Spatial reference name box to specify which spatial reference

system is to be associated with the imported data.
v If you are adding a column to a table, type or select the name of the

spatial reference system.
v If the imported data is intended for an existing column, leave the

Spatial reference name box as is. It displays the name of the default
spatial reference system.

6. In the Exception file field, specify the path and name for a new file into
which records that fail the import can be collected. Later, you can fix these
records and import them from this file.

44 DB2 Spatial Extender User’s Guide and Reference

DB2 Spatial Extender will create this file; do not specify one that already
exists.

7. Click OK to import the data. Also, if you specified a column that does not
exist yet, this column will be created and registered as a layer. In addition,
the exception file that you specified will be created.

Exporting data to a shape file
This section gives an overview of the steps to export data to a shape file. The
overview is followed by details of how to complete each step.

To find out what authorization is required for performing these steps, see
“Authorization” on page 78.

Overview of steps to export data from a shape file:

1. Open the Export Spatial Data window.
2. Specify the column that contains the spatial data to be exported.
3. If you want to export a subset of rows of data, identify this subset to DB2

Spatial Extender.
4. Specify the path and name of the file that you are exporting data to.
5. Tell DB2 Spatial Extender to export the data.

Detail of steps to export data to a shape file:

1. Open the Export Spatial Data window.
a. From the Control Center window, expand the object tree until you find

the Tables or Views folder in the database that contains spatial data:
b. Click the Tables or Views folder. Tables or views are displayed in the

contents pane on the right side of the window.
c. Right-click the table or view that contains the data to be exported and

click Spatial Extender —> Export Spatial Data in the pop-up menu.
The Export Spatial Data window opens.

2. In the Layer column field, specify the name of the column that contains
the spatial data to be exported.

3. If you want to export a subset of table rows, use the WHERE clause box
to type a WHERE clause that specifies the criteria for the rows that you
want. In this clause, you can reference only columns in the table or view
that you are exporting data from.
Type the criteria only. Omit the keyword WHERE. For example, if the
table or view has a STATE column, and you want to geocode only those
rows that contain the value MA in this column, type:
STATE=’MA’

4. In the File name field, specify the path and name of the file that you are
exporting data to.

5. Click OK to export the data.

Chapter 5. Populating spatial columns 45

46 DB2 Spatial Extender User’s Guide and Reference

Chapter 6. Creating spatial indexes

This chapter explains how to use the Control Center to create an index for
your spatial data.

After you populate spatial columns with your data, you are ready to create a
spatial index. Typical indexing structures, such as a B-tree, perform linear,
one-dimensional sorts on table data. Table data that has been enabled for
spatial operations is not stored as a single entry, but is two-dimensional. For
example, spatial geometries such as a polygon consists of several coordinate
values in one spatial column or layer. Because a B-tree index cannot handle
spatial data types, DB2 Spatial Extender created a proprietary indexing
technology known as a grid index. The grid index is based on the B-tree index,
which was enhanced to handle two-dimensional data and perform indexing
on spatial columns.The grid index supports three layers and is designed to
provide good performance over a wide range of objects, sizes, and
distributions of data. For more information about spatial indexes, see
“Chapter 12. Spatial indexes” on page 109.

To find out what authorization is required for creating a spatial index, see
“Authorization” on page 74.

Using the Control Center to create a spatial index

To create a spatial index using the Control Center:

1. In the object tree, select the Tables folder. All existing tables are displayed
in the contents pane.

2. From the contents pane, right-click the table that you want to create an
index for, and click Spatial Extender —> Spatial Indexes in the pop-up
menu. The Spatial Indexes window opens.

3. From the Spatial Indexes window, click Create. The Create Spatial Index
window opens.

4. In the Name field, type the name of the new spatial index that you want
to create.

Note: You do not need to specify a schema. DB2 Spatial Extender will
automatically add the schema and create a fully qualified name for
you.

5. In the Layer column field, select the layer that you are creating an index
for.
A layer is a spatial column defined or registered to DB2 Spatial Extender.

© Copyright IBM Corp. 1998, 2000 47

6. In the Grid size fields, type the grid size value that you want to assign to
each field.
The grid levels, Finest, Middle, and Coarsest, are entered by increasing
the cell size. Thus, the second level must have a larger cell size than the
first, and the third larger than the second.

Determining grid cell sizes

Determining the correct grid size is done through a process of trial and error.
It is recommended that you set your grid size in relationship to the
approximate size of the object that you are indexing. Grid sizes that are set
too small or too large can result in slowed performance. Sizes that are set too
small affect the key/object ratio during an index search. In this case, too many
keys are created and a large number of candidates is returned. For grid sizes
that are set too large, the initial index search returns a small number of
candidates, but the performance might be slowed during the final table scan.

For more information about selecting grid cell sizes and the number of grid
levels, see “Selecting the grid cell size” on page 116.

48 DB2 Spatial Extender User’s Guide and Reference

Chapter 7. Retrieving and analyzing spatial information

After you construct the spatial indexes, the spatial tables are ready for use.
This chapter discusses issues related to retrieving and analyzing spatial data.
It contains an overview of various retrieval methods and provides examples
of table queries that utilize spatial functions.

Methods of performing spatial analysis

You can perform spatial analysis by using SQL and spatial functions with any
of the following programming environments:
v A geobrowser (for example, ESRI’s ArcExplorer).

For more information about using the ArcExplorer, refer to Using
ArcExplorer, which is available on the ESRI Web site at
http://www.esri.com.

v Interactive SQL statements.
v User-developed applications (for example, ODBC, JDBC, and embedded

SQL).

Applications can be launched from the DB2 Command Center, the DB2
Command Window, or the command line processor.

Building a spatial query

This section discusses building spatial queries that utilize spatial functions
and predicates.

Spatial functions and SQL
DB2 Spatial Extender includes functions that perform various operations on
spatial data. The examples in this section show you how to use spatial
functions to build your own spatial queries.

Table 3 provides a list of spatial functions and the types of operations they can
perform.

Table 3. Spatial functions and operations

Function type Operation example

Calculation Calculate the distance between two points

Comparison Find all customers located within a flood zone

Data exchange Convert data into supported formats

Transformation Add a five-mile radius to a point

© Copyright IBM Corp. 1998, 2000 49

For more information about spatial functions, see “Chapter 13. Geometries
and associated spatial functions” on page 119 and “Chapter 14. Spatial
functions for SQL queries” on page 155.

Example 1: Comparison
The following query finds the average customer distance from each
department store. The spatial functions used in this example are ST_Distance
and ST_Within.
SELECT s.id, AVG(db2gse.ST_Distance(c.location,s.location))
FROM customers c, stores s
WHERE db2gse.ST_Within(c.location,s.zone)=1
GROUP BY s.id

Example 2: Data exchange
The following query finds the customer locations for those who live in the
San Francisco Bay Area. The spatial functions used in this example are
ST_AsText (data exchange) and ST_Within. ST_AsText converts the spatial
data in the c.location column into the OGC TEXT format.
SELECT db2gse.ST_AsText(c.location,cordref(1))
FROM customers c
WHERE db2gse.ST_Within(c.location,:BayArea)=1

Example 3: Calculation
The following query finds all streets longer than 10.5 miles. The spatial
function used in this example is ST_Length.
SELECT s.name,s.id
FROM street s
WHERE db2gse.ST_Length(s.path) > 10.5

Example 4: Transformation
This query finds the customers who live within the flood zone or within 2
miles from the boundary of the flood zone. The spatial functions used in this
example are ST_Buffer (transformation) and ST_Within.
SELECT c.name,c.phoneNo,c.address
FROM customers c
WHERE db2gse.ST_Within(c.location,ST_Buffer(:floodzone,2))=1

Spatial predicates and SQL
A specialized group of spatial functions that are called spatial predicates can
improve query performance. Spatial predicates, such as ST_Overlaps, which
compares two polygons to see if they overlap, can be expensive to execute for
both time and memory requirements. Therefore, optimization techniques to
minimize execution cost are very important. The DB2 query optimizer uses
the spatial index to improve query performance when you use the spatial
predicates according to the rules described later in this section. For more
information about spatial predicates, see “Predicate functions” on page 132.
The spatial predicates used to exploit the spatial index are:

50 DB2 Spatial Extender User’s Guide and Reference

v ST_Contains
v ST_Crosses
v ST_Disjoint
v ST_Distance
v ST_Envelope
v ST_Equals
v ST_Intersects
v ST_Overlaps
v ST_Touches
v ST_Within

For a complete list of all spatial functions and predicates, see “Chapter 14.
Spatial functions for SQL queries” on page 155.

Rules for index exploitation
The following rules apply if you want to optimize spatial queries using spatial
predicates:
v The predicate must be used in the WHERE clause.
v The predicate must be on left-hand side of the comparison. For example:

WHERE db2gse.ST_Within(c.location,:BayArea)=1

v Equality comparisons must use the integer constant 1.
WHERE db2gse.ST_Within(c.location,:BayArea)=1

v There must be a spatial column used in the predicate as the search target,
and there must be a spatial index created on that column.

Examples of index exploitation
Table 4 shows the correct and incorrect ways of creating spatial queries to
exploit the spatial index.

Table 4. Rules for index exploitation

Spatial query Rule violated

SELECT *
FROM customers c
WHERE db2gse.ST_Within(c.location,:BayArea)=1

No condition is violated in this
example.

SELECT *
FROM customers c
WHERE db2gse.ST_Distance(c.location,:SanJose)<10

No condition is violated in this
example.

SELECT *
FROM customers c
WHERE db2gse.ST_Length(c.location)>10

The predicate must be used in the
WHERE clause. (ST_Length is a spatial
function, but not a predicate.)

Chapter 7. Retrieving and analyzing spatial information 51

Table 4. Rules for index exploitation (continued)

Spatial query Rule violated

SELECT *
FROM customers c
WHERE 1=db2gse.ST_Within(c.location,:BayArea)

The predicate must be on the left-hand
side of the comparison.

SELECT *
FROM customers c
WHERE db2gse.ST_Within(c.location,:BayArea)=2

Equality comparisons must use the
integer constant 1.

SELECT *
FROM customers c
WHERE db2gse.ST_Within(:SanJose,:BayArea)=1

There must be a spatial column used
in the predicate as the search target,
and there must be a spatial index
created on that column. (SanJose and
BayArea are not spatial columns and
therefore, cannot have a spatial index
associated with them.)

52 DB2 Spatial Extender User’s Guide and Reference

Chapter 8. Writing applications for DB2 Spatial Extender

This chapter explains how to use the DB2 Spatial Extender sample program to
write applications to work with and customize spatial information. The
following topics are included:
v Using the sample program
v The sample program steps

Using the sample program

The DB2 Spatial Extender sample program makes application programming
easier. With the sample program, you can:
v Automate routine spatial procedures
v Cut and paste sample code into your own applications
v Understand the steps typically required to create and maintain a spatially

enabled database

Use the sample program to code complex tasks for DB2 Spatial Extender, for
example to write an application that uses the database interface to call DB2
Spatial Extender stored procedures. From the sample program, you can copy
and customize your applications. If you are unfamiliar with the programming
steps for DB2 Spatial Extender, you can run the sample program, which
shows you each step in detail. First, however, you must create the sample
program. You do this with the sample makefile. For instructions on creating
and running the sample program, see “Verifying the installation” on page 18.

The sample program steps

Table 5 on page 54 shows the sample program steps, the associated stored
procedures, and a description of each step. The C functions for invoking the
stored procedures is displayed in the Action column of Table 5 on page 54 and
is enclosed in parentheses. For more information about the stored procedures,
see “Chapter 9. Stored procedures” on page 63. The sample program is based
on scenarios that are introduced in “Scenario: An insurance company updates
its GIS” on page 11.

© Copyright IBM Corp. 1998, 2000 53

Table 5. DB2 Spatial Extender sample program

Sample program
steps

Action Description

Enable/disable
spatial database

1. Enable the spatial database
(gseEnableDB)

2. Disable the spatial database
(gseDisableDB)

3. Enable the spatial database
(gseEnableDB)

1. This is the first step needed to use DB2
Spatial Extender. A database that has been
enabled for spatial operations has a set of
spatial types, a set of spatial functions, a
set of spatial predicates, a new index type,
and a set of administration tables and
views.

2. This step is usually performed when you
have enabled spatial capabilities for the
wrong database. When you disable a
spatial database, you remove a set of
spatial types, a set of spatial functions, a
set of spatial predicates, a new index type,
and a set of administration tables and
views.
Note: The disable database will fail if there
are objects created that depend on the
objects created by the enable database
procedure. For example, creating a table
with a spatial column of the type ST_Point
will cause the disable database to fail. This
occurs because the table depends on the
type ST_Point which is intended to be
dropped by the disable database
procedure.

3. Same as 1.

54 DB2 Spatial Extender User’s Guide and Reference

Table 5. DB2 Spatial Extender sample program (continued)

Sample program
steps

Action Description

Register spatial
reference systems

1. Register the spatial reference
system for the LOCATION
column of the CUSTOMERS
table (gseEnableSref)

2. Register the spatial reference
system for the LOCATION
column of OFFICES table
(gseEnableSref)

3. Unregister the spatial reference
system for the LOCATION
column of OFFICES table
(gseDisableSref)

4. Re-register the spatial reference
system for the ZONE columns
of the OFFICES table
(gseEnableSref)

1. This step defines a new spatial reference
system (SRS) intended to be used to
interpret the spatial data of the
CUSTOMERS table. A spatial reference
system includes geometry data in a form
that can be stored in a column of a
spatially enabled database. After the SRS is
registered to a specific layer, the
coordinates applicable to that layer can be
stored in the associated CUSTOMERS table
column.

2. This step defines a new spatial reference
system (SRS) intended to be used to
interpret the spatial data of the OFFICES
layer. Each table layer must have an SRS
defined to it. The OFFICES table layers
might require a different associated SRS
than the CUSTOMERS table layer.

3. This step is performed if you specify the
wrong SRS parameters to the layer or
spatial column. When you unregister an
SRS for the OFFICES table layer, you
remove the definition with its associated
parameters.

4. This step defines a new spatial reference
system (SRS) intended to be used to
interpret the spatial data of the OFFICES
layer.

Chapter 8. Writing applications for DB2 Spatial Extender 55

Table 5. DB2 Spatial Extender sample program (continued)

Sample program
steps

Action Description

Create the spatial
tables

1. Alter the CUSTOMERS table by
adding the LOCATION column
(gseSetupTables)

2. Create the OFFICES table
(gseSetupTables)

1. The CUSTOMERS table represents business
data that has been stored in the database
for several years. The ALTER TABLE
statement adds a new column
(LOCATION) of type ST_Point. This
column will be populated by geocoding
the address columns in a subsequent step.

2. The OFFICES table represents, among
other data, the sales zone for each office of
an insurance company. The entire table
will be populated with the attribute data
from a non-DB2 database in a subsequent
step. This step involves importing attribute
data into the OFFICES table from a SHAPE
file.

Register the spatial
layers

1. Register the LOCATION
column in the CUSTOMERS
table as a layer
(gseRegisterLayer)

2. Register the ZONE column of
the OFFICES table as a layer
(gseRegisterLayer)

These steps register the LOCATION and
ZONE columns as layers to DB2 Spatial
Extender. Before a spatial column can be
populated or accessed by the DB2 Spatial
Extender utilities (for example, the geocoder),
you need to register it as a layer.

Populate the
spatial layers

1. Geocode the addresses data for
the LOCATION column of
CUSTOMERS table (gseRunGC)

2. Load the OFFICES table using
append mode (gseImportShape)

3. Load the HAZARD_ZONE
table using create mode
(gseImportShape)

1. This step performs batch geocoding by
invoking the geocoder utility. Batch
geocoding is usually performed when a
significant portion of the table needs to be
geocoded or re-geocoded.

2. This step loads the OFFICES table with
spatial data existing in the form of a
SHAPE file. Because the OFFICES table
exists and the OFFICES/ZONE layer is
registered, the load utility will append the
new records to an existing table.

3. This step loads the HAZARD_ZONE layer
with spatial data existing in the form of a
SHAPE file. Because the table and layer do
not exist, the load utility will create the
table and register the layer before the data
is loaded.

56 DB2 Spatial Extender User’s Guide and Reference

Table 5. DB2 Spatial Extender sample program (continued)

Sample program
steps

Action Description

Enable spatial
indexes

1. Enable the spatial index for the
LOCATION column of the
CUSTOMERS table
(gseEnableIdx)

2. Enable the spatial index for the
ZONE column of the OFFICES
table (gseEnableIdx)

3. Enable the spatial index for the
LOCATION column of the
OFFICES table (gseEnableIdx)

4. Enable the spatial index for the
BOUNDRY column of the
HAZARD_ZONE table
(gseEnableIdx)

These steps enable the spatial index for the
CUSTOMERS, OFFICES and HAZARD_ZONE
table.

Enable automatic
geocoding

1. Enable automatic geocoding for
the LOCATION and ADDRESS
columns of CUSTOMERS table
(gseEnableAutoGC)

This step turns on the automatic invocation of
the geocoder. Using automatic geocoding
causes the LOCATION and ADDRESS
columns of the CUSTOMERS table to be
synchronized with each other for subsequent
insert and update operations.

Insert/update the
CUSTOMERS table

1. Insert some records with a
different street (gseInsDelUpd)

2. Update some records with a
new address (gseInsDelUpd)

These steps demonstrate an insert and update
on the LOCATION column of the
CUSTOMERS table. Once the automatic
geocoding is enabled, information from the
ADDRESS column is automatically geocoded
when it is inserted or updated in the
LOCATION column. This process was enabled
in the previous step.

Disable the
automatic
geocoding

1. Disable the automatic
geocoding for the CUSTOMERS
layer (gseDisableAutoGC)

2. Disable the spatial index for the
CUSTOMERS layer
(gseDisableIdxCustomersLayer)

These steps disable the automatic invocation
of the geocoder and the spatial index in
preparation for the next step (the next step
involves the re-geocoding of the entire
CUSTOMERS table). If you are loading a large
amount of geodata, it is recommend that you
disable the spatial index before you load the
data and then enable it after the load is
complete.

Chapter 8. Writing applications for DB2 Spatial Extender 57

Table 5. DB2 Spatial Extender sample program (continued)

Sample program
steps

Action Description

Re-geocode the
CUSTOMERS table

1. Geocode the CUSTOMERS
layer again with a lower
precision level – 90% instead of
100% (gseRunGC)

2. Re-enable the spatial index for
the CUSTOMERS layer
(gseEnableIdx)

3. Re-enable the automatic
geocoding with a lower
precision level – 90% instead of
100% (gseEnableAutoGC)

These steps runs the geocoder in batch mode
again, re-enable the automatic geocoding with
a new precision level, and re-enable the spatial
index and the automatic geocoding. This
action is recommended when the spatial
administrator notices a high failure rate in the
geocoding process. If the precision level is set
to 100%, it may fail to geocode an address
because it cannot find a matching address in
the reference data. By reducing the precision
level, the geocoder has a better chance of
finding matching data. After the table is
re-geocoded in batch mode, both the
automatic geocoding and the spatial index are
enabled again to facilitate the incremental
maintenance of the spatial index and the
spatial column for subsequent inserts and
updates.

Create a view and
register its spatial
columns as view
layers

1. Create a view,
HIGHRISK_CUSTOMERS,
based on the join of the
CUSTOMERS table and the
HAZARD_ZONE table
(gseCreateView)

2. Register the view’s spatial
columns as view layers
(gseRegisterLayer)

These steps create a view and register its
spatial columns as view layers.

58 DB2 Spatial Extender User’s Guide and Reference

Table 5. DB2 Spatial Extender sample program (continued)

Sample program
steps

Action Description

Perform spatial
analysis

1. Find the average customer
distance from each office
(ST_Within, ST_Distance)

2. Find the average customer
income and premium for each
office (ST_Within)

3. Find customers who are not
covered by any existing office
(ST_Within)

4. Find the number of hazards
zones that each office zone
overlaps (ST_Overlaps)

5. Find the nearest office from a
particular customer location
assuming that the office is
located in the centriod of the
office zone (ST_Distance,
ST_Centroid)

6. Find the customers whose
location is close to the boundry
of a particular hazard zone
(ST_Buffer, ST_Overlaps)

7. Find those high risk customers
who are covered by a particular
office

(All steps utilize
gseRunSpatialQueries)

These steps perform spatial analysis using the
spatial predicates and functions in DB2 SQL
language. The DB2 query optimizer exploits
the spatial index on the spatial columns to
improve the query performance whenever
possible.

Export spatial
layers into files

Export the highRiskCustomers
layer (gseExportShape)

The step shows an example of exporting the
results of your query to a SHAPE file.
Exporting query results to another file format
allows the information to be used by a third
party tool (for example, ESRI ArcInfo).

Chapter 8. Writing applications for DB2 Spatial Extender 59

60 DB2 Spatial Extender User’s Guide and Reference

Part 2. Reference material

© Copyright IBM Corp. 1998, 2000 61

62 DB2 Spatial Extender User’s Guide and Reference

Chapter 9. Stored procedures

This chapter documents the stored procedures that allow you to build a
geographic information system with DB2 Spatial Extender. When you enable
and use DB2 Spatial Extender from the Control Center, you invoke these
stored procedures implicitly. For example, when you click OK from a DB2
Spatial Extender window, DB2 calls the stored procedure or stored procedures
associated with that window for you. Alternatively, you can invoke the stored
procedures explicitly in an application program. It is advisable to include the
header file, db2gse.h, in such a program. This file contains the macro
definitions for the constants that you assign to the stored procedures’
parameters. On AIX, it is stored in the $DB2INSTANCE/sqllib/include/
directory. On Windows NT, it is stored in the %DB2PATH%\include\
directory.

Attention:
All character string constants for stored procedures’ input parameters are
case-sensitive. To find out which parameters require these constants, see
the tables in this chapter.

Before you can invoke a stored procedure, either implicitly or explicitly, you
must be connected to the database in which DB2 Spatial Extender is installed.
The first stored procedure that you use is db2gse.gse_enable_db. It enables the
database for spatial operations. You can use the other stored procedures only
after the database has been enabled.

The implementations of the stored procedures are archived in the db2gse
library on the DB2 Spatial Extender server.

You can use the following lists to look up the stored procedures either by
their names or by the tasks that they carry out. The first list presents the
names:
v “db2gse.gse_disable_autogc” on page 66
v “db2gse.gse_disable_db” on page 68
v “db2gse.gse_disable_sref” on page 69
v “db2gse.gse_enable_autogc” on page 70
v “db2gse.gse_enable_db” on page 73
v “db2gse.gse_enable_idx” on page 74
v “db2gse.gse_enable_sref” on page 76

© Copyright IBM Corp. 1998, 2000 63

v “db2gse.gse_export_shape” on page 78
v “db2gse.gse_import_sde” on page 80
v “db2gse.gse_import_shape” on page 82
v “db2gse.gse_register_gc” on page 84
v “db2gse.gse_register_layer” on page 86
v “db2gse.gse_run_gc” on page 92
v “db2gse.gse_unregist_gc” on page 94
v “db2gse.gse_unregist_layer” on page 95

The next list presents the tasks that the stored procedures carry out.
v Creating an index for a spatial column (see “db2gse.gse_enable_idx” on

page 74).
v Creating a spatial reference system (see “db2gse.gse_enable_sref” on

page 76).
v Disabling a geocoder so that it cannot automatically keep spatial columns

synchronized with their corresponding attribute columns (see
“db2gse.gse_disable_autogc” on page 66).

v Disabling support for spatial operations in a database (see
“db2gse.gse_disable_db” on page 68).

v Dropping a spatial reference system (see “db2gse.gse_disable_sref” on
page 69).

v Enabling a database to support spatial operations (see
“db2gse.gse_enable_db” on page 73).

v Enabling a geocoder to automatically keep spatial columns synchronized
with their corresponding attribute columns (see “db2gse.gse_enable_autogc”
on page 70).

v Exporting a layer and its associated table to a shape file (see
“db2gse.gse_export_shape” on page 78).

v Importing a layer and its associated table from an ESRI_SDE transfer file
(see “db2gse.gse_import_sde” on page 80).

v Importing a layer and its associated table from a shape file (see
“db2gse.gse_import_shape” on page 82).

v Registering a geocoder other than the default geocoder (see
“db2gse.gse_register_gc” on page 84).

v Registering a spatial column as a layer (see “db2gse.gse_register_layer” on
page 86).

v Running a geocoder in batch mode (see “db2gse.gse_unregist_gc” on
page 94).

v Unregistering a geocoder other than the default geocoder (see
“db2gse.gse_unregist_layer” on page 95).

v Unregistering a layer (see “db2gse.gse_unregist_layer” on page 95).

64 DB2 Spatial Extender User’s Guide and Reference

For information about the sequences in which you can perform these tasks,
see “Chapter 1. About DB2 Spatial Extender” on page 3 and “Chapter 8.
Writing applications for DB2 Spatial Extender” on page 53.

Chapter 9. Stored procedures 65

db2gse.gse_disable_autogc

Use this stored procedure to drop or temporarily disable triggers that keep a
spatial column synchronized with its associated attribute column or columns.
For example, it is advisable to disable the triggers while you geocode the
values in the attribute column or columns in batch mode. For more on this,
see “About geocoding” on page 37.

For an example of the code for invoking this stored procedure, see the C
function gseDisableAutoGc in the sample program. For information about this
program, see “Chapter 8. Writing applications for DB2 Spatial Extender” on
page 53.

Authorization
The user ID under which this stored procedure is invoked must have
authorization in the form of an authority, privilege, or set of privileges;
specifically:
v SYSADM or DBADM authority on the database the contains the table on

which the triggers that are being dropped or temporarily disabled are
defined.

v The CONTROL privilege on this table.
v The ALTER, SELECT, and UPDATE privileges on this table.

Input parameters

Table 6. Input parameters for the db2gse.gse_disable_autogc stored procedure.

Name Data type Description

operMode SMALLINT Indicates whether the triggers are to be dropped
or temporarily disabled.

This parameter is not nullable.

Comment: To drop triggers, use the
GSE_AUTOGC_DROP macro. To temporarily
disable them, use the
GSE_AUTOGC_INVALIDATE macro. To find out
what values are associated with these macros,
consult the db2gse.h file. On AIX, this file is
stored in the $DB2INSTANCE/sqllib/include/
directory. On Windows NT, it is stored in the
%DB2PATH%\include\ directory.

66 DB2 Spatial Extender User’s Guide and Reference

Table 6. Input parameters for the db2gse.gse_disable_autogc stored
procedure. (continued)

Name Data type Description

layerSchema VARCHAR(30) Name of the schema to which the table or view
specified in the layerTable parameter belongs.

This parameter is nullable.

Comment: If you do not supply a value for the
layerSchema parameter, it will default to the user
ID under which the db2gse.gse_disable_autogc
stored procedure is invoked.

layerTable VARCHAR(128) Name of the table on which the triggers you
want dropped or temporarily disabled are
defined.

This parameter is not nullable.

layerColumn VARCHAR(128) Name of the spatially-enabled column that is
maintained by the triggers that you want
dropped or temporarily disabled.

This parameter is not nullable.

Output parameters

Table 7. Output parameters for the db2gse.gse_disable_autogc stored procedure.

Name Data type Description

msgCode INTEGER Code associated with the messages that the caller
of this stored procedure can return.

Reserved VARCHAR(1024) Complete error message, as constructed at the
DB2 Spatial Extender server.

Chapter 9. Stored procedures 67

db2gse.gse_disable_db

Use this stored procedure to remove resources that allow DB2 Spatial
Extender to store spatial data and to support operations performed on this
data.

The purpose of this stored procedure is to help you resolve problems or issues
that arise after you enable your database for spatial operations, but before you
add any spatial table columns or data to it. For example, if, after you enable a
database for spatial operations, it is decided to use DB2 Spatial Extender for
another database instead. As long as you have not defined any spatial
columns or imported any spatial data, you could invoke this stored procedure
to remove all spatial resources from the first database.

For an example of the code for invoking this stored procedure, see the C
function gseDisableDB in the sample program. For information about this
program, see “Chapter 8. Writing applications for DB2 Spatial Extender” on
page 53.

Authorization
The user ID under which this stored procedure is invoked must have either
SYSADM or DBADM authority on the database from which DB2 Spatial
Extender resources are to be removed.

Output parameters

Table 8. Output parameters for the db2gse.gse_disable_db stored procedure.

Name Data type Description

msgCode INTEGER Code associated with the messages that the caller
of this stored procedure can return.

Reserved VARCHAR(1024) Complete error message, as constructed at the
DB2 Spatial Extender server.

68 DB2 Spatial Extender User’s Guide and Reference

db2gse.gse_disable_sref

Use this stored procedure to drop a spatial reference system. When this stored
procedure is processed, information about the spatial reference system is
removed from the DB2GSE.SPATIAL_REF_SYS catalog view. For information
about this view, see “DB2GSE.SPATIAL_REF_SYS” on page 107.

For an example of the code for invoking this stored procedure, see the C
function gseDisableSref in the sample program. For information about this
program, see “Chapter 8. Writing applications for DB2 Spatial Extender” on
page 53.

Authorization
None required.

Input parameter

Table 9. Input parameter for the db2gse.gse_disable_sref stored procedure.

Name Data type Description

srId INTEGER Numeric identifier of the spatial reference system
that is to be dropped.

This parameter is not nullable.

Output parameters

Table 10. Output parameters for the db2gse.gse_disable_sref stored procedure.

Name Data type Description

msgCode INTEGER Code associated with the messages that the caller
of this stored procedure can return.

Reserved VARCHAR(1024) Complete error message, as constructed at the
DB2 Spatial Extender server.

Restriction
Before you can drop a spatial reference system, you must unregister any
layers that use it. If such layers remain unregistered, the request to drop the
spatial reference system will be rejected.

Chapter 9. Stored procedures 69

db2gse.gse_enable_autogc

Use this stored procedure to:
v Create triggers that will keep a spatial column synchronized with its

associated attribute column or columns. Each time values are inserted into,
or updated in, the attribute column or columns, a trigger will call a
registered geocoder to geocode the inserted or updated values and place
the resulting data in the spatial column.

v Reactivate the triggers after they have been temporarily disabled.
v Establish which function will be used to geocode the inserted and updated

values.

For an example of the code for invoking this stored procedure, see the C
function gseEnableAutoGC in the sample program. For information about this
program, see “Chapter 8. Writing applications for DB2 Spatial Extender” on
page 53.

Authorization
The user ID under which this stored procedure is invoked must have
authorization in the form of an authority, privilege, or set of privileges;
specifically:
v SYSADM or DBADM authority on the database that contains the table on

which the triggers created by this stored procedure are defined.
v The CONTROL privilege on this table.
v The ALTER, SELECT, and UPDATE privileges on this table.

Input parameters

Table 11. Input parameters for the db2gse.gse_enable_autogc stored procedure.

Name Data type Description

operMode SMALLINT Value that indicates whether the triggers that
initiate the geocoding are to be created for the
first time or to be reactivated after being
temporarily disabled.

This parameter is not nullable.

Comment: To create the triggers, use the
GSE_AUTOGC_CREATE macro. To reactivate
them, use the GSE_AUTOGC_RECREATE macro.
To find out what values are associated with these
macros, consult the db2gse.h file. On AIX, this
file is stored in the
$DB2INSTANCE/sqllib/include/ directory. On
Windows NT, it is stored in the
%DB2PATH%\include\ directory.

70 DB2 Spatial Extender User’s Guide and Reference

Table 11. Input parameters for the db2gse.gse_enable_autogc stored
procedure. (continued)

Name Data type Description

layerSchema VARCHAR(30) Name of the schema to which the table specified
in the layerTable parameter belongs.

This parameter is nullable.

Comment: If you do not supply a value for the
layerSchema parameter, it will default to the user
ID under which the db2gse.gse_enable_autogc
stored procedure is invoked.

layerTable VARCHAR(128) Name of the table that the triggers created or
reactivated by this stored procedure are to
operate on.

This parameter is not nullable.

layerColumn VARCHAR(128) Name of the spatial column that is to be
maintained by the triggers that this stored
procedure creates or reactivates.

This parameter is not nullable.

gcId INTEGER Identifier of the geocoder that will be invoked by
the insert and update triggers that this stored
procedure creates or reactivates.

This parameter is not nullable if the operMode
parameter is set to GSE_AUTOGC_CREATE. It is
nullable if operMode is set to
GSE_AUTOGC_RECREATE.

precisionLevel INTEGER The degree to which source data must match
corresponding reference data in order for the
geocoder to process the source data successfully.

This parameter is not nullable if the operMode
parameter is set to GSE_AUTOGC_CREATE. It is
nullable if operMode is set to
GSE_AUTOGC_RECREATE.

Comment: The precision level can range from 1
to 100 percent.

Chapter 9. Stored procedures 71

Table 11. Input parameters for the db2gse.gse_enable_autogc stored
procedure. (continued)

Name Data type Description

vendorSpecific VARCHAR(256) Technical information provided by the vendor;
for example, the path and name of a file that the
vendor uses to set parameters.

This parameter is not nullable if the operMode
parameter is set to GSE_AUTOGC_CREATE. It is
nullable if operMode is set to
GSE_AUTOGC_RECREATE.

Output parameters

Table 12. Output parameters for the db2gse.gse_enable_autogc stored procedure.

Name Data type Description

msgCode INTEGER Code associated with the messages that the caller
of this stored procedure can return.

Reserved VARCHAR(1024) Complete error message, as constructed at the
DB2 Spatial Extender server.

Restrictions
v The layerColumn parameter must reference a column that has been

registered as a table layer.
v If the operMode parameter is set to GSE_AUTOGC_CREATE, you must

assign an identifier of a registered geocoder to the gcId parameter.

72 DB2 Spatial Extender User’s Guide and Reference

db2gse.gse_enable_db

Use this stored procedure to supply a database with the resources that it
needs to store spatial data and to support operations. These resources include
spatial data types, a spatial index type, catalog tables and views, supplied
functions, and other stored procedures.

For an example of the code for invoking this stored procedure, see the C
function gseEnableDB in the sample program. For information about this
program, see “Chapter 8. Writing applications for DB2 Spatial Extender” on
page 53.

Authorization
The user ID under which the stored procedure is invoked must have either
SYSADM or DBADM authority on the database that is being enabled.

Output parameters

Table 13. Output parameters for the db2gse.gse_enable_db stored procedure.

Name Data type Description

msgCode INTEGER Code associated with the messages that the caller
of this stored procedure can return.

Reserved VARCHAR(1024) Complete error message, as constructed at the
DB2 Spatial Extender server.

Chapter 9. Stored procedures 73

db2gse.gse_enable_idx

Use this stored procedure to create an index for a spatial column.

For an example of the code for invoking this stored procedure, see the C
function gseEnableIdx in the sample program. For information about this
program, see “Chapter 8. Writing applications for DB2 Spatial Extender” on
page 53.

Authorization
The user ID under which this stored procedure is invoked must hold one of
the following authorities or privileges:
v SYSADM or DBADM authority on the database that contains the table for

which the enabled index is to be used.
v The CONTROL or INDEX privilege on this table.

Input parameters

Table 14. Input parameters for the db2gse.gse_enable_idx stored procedure.

Name Data type Description

layerSchema VARCHAR(30) Name of the schema to which the table specified
in the layerTable parameter belongs.

This parameter is nullable.

Comment: If you do not supply a value for the
layerSchema parameter, it will default to the user
ID under which the db2gse.gse_enable_idx stored
procedure is invoked.

layerTable VARCHAR(128) Name of the table on which the index that you
are creating is to be defined.

This parameter is not nullable.

layerColumn VARCHAR(128) Name of the spatially enabled column that is to
be searched with the aid of the index that you
are creating.

This parameter is not nullable.

indexName VARCHAR(128) Name of the index that is to be created.

This parameter is not nullable.

Comment: Do not specify a schema name. DB2
Spatial Extender automatically assigns the index
to the schema referenced by the layerSchema
parameter.

74 DB2 Spatial Extender User’s Guide and Reference

Table 14. Input parameters for the db2gse.gse_enable_idx stored
procedure. (continued)

Name Data type Description

gridSize1 DOUBLE Number that indicates what the granularity of
the finest index grid should be.

This parameter is not nullable.

gridSize2 DOUBLE Number that denotes either (1) that there is to be
no second grid for this index or (2) what the
granularity of the second grid should be.

This parameter is nullable.

Comment: If there is to be no second grid,
specify 0. If you want a second grid, it must be
less granular than the grid denoted by gridSize1.

gridSize3 DOUBLE Number that denotes either (1) that there is to be
no third grid for this index or (2) what the
granularity of the third grid should be.

This parameter is nullable.

Comment: If there is to be no third grid, specify
0. If you want a third grid, it must be less
granular than the grid denoted by gridSize2.

Output parameters

Table 15. Output parameters for the db2gse.gse_enable_idx stored procedure.

Name Data type Description

msgCode INTEGER Code associated with the messages that the caller
of this stored procedure can return.

Reserved VARCHAR(1024) Complete error message, as constructed at the
DB2 Spatial Extender server.

Chapter 9. Stored procedures 75

db2gse.gse_enable_sref

Use this stored procedure to specify how negative and decimal numbers in a
specific coordinate system are to be converted into positive integers, so that
DB2 Spatial Extender can store them. Your specifications are collectively called
a spatial reference system. When this stored procedure is processed, information
about the spatial reference system is added to the DB2GSE.SPATIAL_REF_SYS
catalog view. For information about this view, see
“DB2GSE.SPATIAL_REF_SYS” on page 107.

For an example of the code for invoking this stored procedure, see the C
function gseEnableSref in the sample program. For information about this
program, see “Chapter 8. Writing applications for DB2 Spatial Extender” on
page 53.

Authorization
None required.

Input parameters

Table 16. Input parameters for the db2gse.gse_enable_sref stored procedure.

Name Data type Description

srId INTEGER A numeric identifier for the spatial reference
system.

This parameter is not nullable.

Comment: This identifier must be unique within
your spatially-enabled database.

srName VARCHAR(64) Short description of the spatial reference system.

This parameter is not nullable.

Comment: This description must be unique
within your spatially-enabled database.

falsex DOUBLE A number that, when subtracted from a negative
X coordinate value, leaves a non-negative
number (that is, a positive number or a zero).

This parameter is not nullable.

falsey DOUBLE A number that, when subtracted from a negative
Y coordinate value, leaves a non-negative
number (that is, a positive number or a zero).

This parameter is not nullable.

76 DB2 Spatial Extender User’s Guide and Reference

Table 16. Input parameters for the db2gse.gse_enable_sref stored
procedure. (continued)

Name Data type Description

xyunits DOUBLE A number that, when multiplied by a decimal X
coordinate or a decimal Y coordinate, yields an
integer that can be stored as a 32-bit data item.

This parameter is not nullable.

falsez DOUBLE A number that, when subtracted from a negative
Z coordinate value, leaves a non-negative
number (that is, a positive number or a zero).

This parameter is not nullable.

zunits DOUBLE A number that, when multiplied by a decimal Z
coordinate, yields an integer that can be stored as
a 32-bit data item.

This parameter is not nullable.

falsem DOUBLE A number that, when subtracted from a negative
measure, leaves a non-negative number (that is, a
positive number or a zero).

This parameter is not nullable.

munits DOUBLE A number that, when multiplied by a decimal
measure, yields an integer that can be stored as a
32-bit data item.

This parameter is not nullable.

scId INTEGER Numeric identifier of the coordinate system from
which the spatial reference system is being
derived. To find out what a coordinate system’s
numeric identifier is, consult the
DB2GSE.COORD_REF_SYS catalog view
“DB2GSE.COORD_REF_SYS” on page 105.

This parameter is not nullable.

Output parameters

Table 17. Output parameters for the db2gse.gse_enable_sref stored procedure.

Name Data type Description

msgCode INTEGER Code associated with the messages that the caller
of this stored procedure can return.

Reserved VARCHAR(1024) Complete error message, as constructed at the
DB2 Spatial Extender server.

Chapter 9. Stored procedures 77

db2gse.gse_export_shape

Use this stored procedure to export a layer and its associated table to a shape
file, or to create a new shape file and export a layer and its associated table to
this new file.

For an example of the code for invoking this stored procedure, see the C
function gseExportShape in the sample program. For information about this
program, see “Chapter 8. Writing applications for DB2 Spatial Extender” on
page 53.

Authorization
The user ID under which this stored procedure is invoked must hold the
SELECT privilege on the table that is to be exported.

Input parameters

Table 18. Input parameters for the db2gse.gse_export_shape stored procedure.

Name Data type Description

layerSchema VARCHAR(30) Name of the schema to which the table specified
in the layerTable parameter belongs.

This parameter is nullable.

Comment: If you do not supply a value for the
layerSchema parameter, it will default to the user
ID under which the db2gse.gse_export_shape
stored procedure is invoked.

layerTable VARCHAR(128) Name of the table that you are exporting.

This parameter is not nullable.

layerColumn VARCHAR(30) Name of the column that has been registered as
the layer that you are exporting.

This parameter is not nullable.

fileName VARCHAR(128) Name of the shape file to which the specified
layer is to be exported.

This parameter is not nullable.

whereClause VARCHAR(1024) The body of the SQL WHERE clause. It defines a
restriction on the set of records to be geocoded.
The clause can reference any attribute column in
the table that you are exporting.

This parameter is nullable.

78 DB2 Spatial Extender User’s Guide and Reference

Output parameters

Table 19. Output parameters for the db2gse.gse_export_shape stored procedure.

Name Data type Description

msgCode INTEGER Code associated with the messages that the caller
of this stored procedure can return.

Reserved VARCHAR(1024) Complete error message, as constructed at the
DB2 Spatial Extender server.

Restriction
You can export only one layer at a time.

Chapter 9. Stored procedures 79

db2gse.gse_import_sde

Use this stored procedure to import an SDE transfer file to a database that has
been enabled for spatial operations. The stored procedure can operate in
either of two ways:
v If the SDE transfer file is targeted for an existing table that has a registered

layer column, DB2 Spatial Extender will load the table with the file’s data.
v Otherwise, DB2 Spatial Extender will create a table that has a spatial

column, register this column as a layer, and load the layer and the table’s
other columns with the file’s data.

The spatial reference system specified in the SDE transfer file will be
compared with the spatial reference systems that are registered to DB2 Spatial
Extender. If the specified system matches a registered system, the negative
and decimal values in the transfer data will, when loaded, be modified in the
way prescribed by the registered system. If the specified system matches none
of the registered systems, DB2 Spatial Extender will create a new spatial
reference system to prescribe the modifications.

Authorization
When you import data to an existing table, the user ID under which this
stored procedure is invoked must hold one of the following authorities or
privileges:
v SYSADM or DBADM authority on the database that contains the table to

which data is to be imported.
v The CONTROL privilege on this table.

When the table to which you want to import data must be created, the user
ID under which this stored procedure is invoked must hold one of the
following authorities or privileges:
v SYSADM or DBADM authority on the database that contains the table that

is to be created.

Input parameters

Table 20. Input parameters for the db2gse.gse_import_sde stored procedure.

Name Data type Description

layerSchema VARCHAR(30) Name of the schema to which the table or view
specified in the layerTable parameter belongs.

This parameter is nullable.

Comment: If you do not supply a value for the
layerSchema parameter, it will default to the user
ID under which the db2gse.gse_import_sde
stored procedure is invoked.

80 DB2 Spatial Extender User’s Guide and Reference

Table 20. Input parameters for the db2gse.gse_import_sde stored
procedure. (continued)

Name Data type Description

layerTable VARCHAR(128) Name of the table into which the SDE transfer
data is to be loaded.

This parameter is not nullable.

layerColumn VARCHAR(30) Name of the column that has been registered as
the layer into which the SDE transfer file’s spatial
data is to be loaded.

This parameter is not nullable.

fileName VARCHAR(128) Name of the SDE transfer file that is to be
imported.

This parameter is not nullable.

commitScope INTEGER Number of records per checkpoint.

This parameter is nullable.

Output parameters

Table 21. Output parameters for the db2gse.gse_import_sde stored procedure.

Name Data type Description

msgCode INTEGER Code associated with the messages that the caller
of this stored procedure can return.

Reserved VARCHAR(1024) Complete error message, as constructed at the
DB2 Spatial Extender server.

Chapter 9. Stored procedures 81

db2gse.gse_import_shape

Use this stored procedure to import a shape file to a database that has been
enabled for spatial operations. The stored procedure can operate in either of
two ways:
v If the shape file is targeted for an existing table that has a registered layer

column, DB2 Spatial Extender will load the table with the file’s data.
v Otherwise, DB2 Spatial Extender will create a table that has a spatial

column, register this column as a layer, and load the layer and the table’s
other columns with the file’s data.

For an example of the code for invoking this stored procedure, see the C
function gseImportShape in the sample program. For information about this
program, see “Chapter 8. Writing applications for DB2 Spatial Extender” on
page 53.

Authorization
The user ID under which this stored procedure is invoked must hold one of
the following authorities or privileges:
v SYSADM or DBADM authority on the database that contains the table into

which imported shape data is to be loaded.
v The CONTROL privilege on this table.

Input parameters

Table 22. Input parameters for the db2gse.gse_import_shape stored procedure.

Name Data type Description

layerSchema VARCHAR(30) Name of the schema to which the table or view
specified in the layerTable parameter belongs.

This parameter is nullable.

Comment: If you do not supply a value for the
layerSchema parameter, it will default to the user
ID under which the db2gse.gse_import_shape
stored procedure is invoked.

layerTable VARCHAR(128) Name of the table into which the imported shape
file is to be loaded.

This parameter is not nullable.

layerColumn VARCHAR(30) Name of the column that has been registered as
the layer into which shape data is to be loaded.

This parameter is not nullable.

82 DB2 Spatial Extender User’s Guide and Reference

Table 22. Input parameters for the db2gse.gse_import_shape stored
procedure. (continued)

Name Data type Description

fileName VARCHAR(128) Name of the shape file that is to be imported.

This parameter is not nullable.

exceptionFile VARCHAR(128) Path and name of the file in which the shapes
that could not be imported are stored. This is a
new file that will be created when the
db2gse.gse_import_shape stored procedure is
run.

This parameter is not nullable.

srId INTEGER Identifier of the spatial reference system to be
used for the layer into which shape data is to be
loaded.

This parameter is nullable.

Comment: If this identifier is not specified, the
internal transformation will be set to the
maximum resolution possible resolution for the
shape file.

commitScope INTEGER Number of records per checkpoint.

This parameter is nullable.

Output parameters

Table 23. Output parameters for the db2gse.gse_import_shape stored procedure.

Name Data type Description

msgCode INTEGER Code associated with the messages that the caller
of this stored procedure can return.

Reserved VARCHAR(1024) Complete error message, as constructed at the
DB2 Spatial Extender server.

Chapter 9. Stored procedures 83

db2gse.gse_register_gc

Use this stored procedure to register a geocoder other than the default. To
find out whether a geocoder has already been registered, consult the
DB2GSE.SPATIAL_GEOCODER catalog view (described in
“DB2GSE.SPATIAL_GEOCODER” on page 106).

Authorization
The user ID under which this stored procedure is invoked must hold either
SYSADM or DBADM authority on the database that contains the geocoder
that this stored procedure registers.

Input parameters

Table 24. Input parameters for the db2gse.gse_register_gc stored procedure.

Name Data type Description

gcId INTEGER Numeric identifier of the geocoder that you are
registering.

This parameter is not nullable.

Comment: This identifier must be unique within
the database.

gcName VARCHAR(64) Short description of the gecoder that you are
registering.

This parameter is not nullable.

Comment: This description must be a unique
character string within the database.

vendorName VARCHAR(64) Name of vendor that supplied the geocoder that
you are registering.

This parameter is not nullable.

primaryUDF VARCHAR(256) Fully-qualified name of the geocoder that you are
registering.

This parameter is not nullable.

precisionLevel INTEGER The degree to which source data must match
corresponding reference data in order for the
geocoder to process the source data successfully.

This parameter is not nullable.

Comment: The precision level can range from 1
to 100 percent.

84 DB2 Spatial Extender User’s Guide and Reference

Table 24. Input parameters for the db2gse.gse_register_gc stored
procedure. (continued)

Name Data type Description

vendorSpecific VARCHAR(256) Technical information provided by the vendor;
for example, the path and name of a file that the
vendor uses to set parameters.

This parameter is nullable.

geoArea VARCHAR(256) Geographical area to be geocoded.

This parameter is nullable.

description VARCHAR(256) Remarks provided by the vendor

This parameter is nullable.

Output parameters

Table 25. Output parameters for the db2gse.gse_register_gc stored procedure.

Name Data type Description

msgCode INTEGER Code associated with the messages that the caller
of this stored procedure can return.

Reserved VARCHAR(1024) Complete error message, as constructed at the
DB2 Spatial Extender server.

Chapter 9. Stored procedures 85

db2gse.gse_register_layer

Use this stored procedure to register a spatial column as a layer. When this
stored procedure is processed, information about the layer being registered is
added to the DB2GSE.GEOMETRY_COLUMNS catalog view. For information
about this view, see “DB2GSE.GEOMETRY_COLUMNS” on page 106.

For an example of the code for invoking this stored procedure, see the C
function gseRegisterLayer in the sample program. For information about this
program, see “Chapter 8. Writing applications for DB2 Spatial Extender” on
page 53.

Authorization
The user ID under which this stored procedure is invoked must hold one of
the following authorities or privileges:
v For a table layer:

– SYSADM or DBADM authority on the database that contains the table to
which this layer belongs.

– The CONTROL or ALTER privilege on this table.
v For a view layer:

– The SELECT privilege on the base table or tables that contain (1) the
address data that is to be geocoded for this layer and (2) the spatial data
that results from the geocoding.

Input parameters

Table 26. Input parameters for the db2gse.gse_register_layer stored procedure.

Name Data type Description

layerSchema INTEGER(30) Name of the schema to which the table or view
specified in the layerTable parameter belongs.

This parameter is nullable.

Comment: If you do not supply a value for the
layerSchema parameter, it will default to the user
ID under which the db2gse.gse_register_layer
stored procedure is invoked.

layerTable VARCHAR(128) Name of the table or view that contains the
column that is being registered as a layer.

This parameter is not nullable.

layerColumn VARCHAR(128) Name of the column that is being registered as a
layer. If the column does not exist, DB2 Spatial
Extender will create it.

This parameter is not nullable.

86 DB2 Spatial Extender User’s Guide and Reference

Table 26. Input parameters for the db2gse.gse_register_layer stored
procedure. (continued)

Name Data type Description

layerTypeName VARCHAR(64) Data type of the column that is being registered
as a layer. You must specify the data type in
uppercase; for example:

ST_POINT

This parameter is not nullable if the column is a
table column that is to be created when this
stored procedure is processed. Otherwise, if the
column is an existing column within a table or
view, this parameter is nullable.

srId INTEGER Identifier of the spatial reference system used for
this layer.

This parameter is not nullable for a table layer.
DB2 Spatial Extender ignores this parameter
when you register a view layer.

geoSchema VARCHAR(30) Applies when you register a view column as a
layer. The geoSchema parameter is the schema of
the table that underlies the view to which the
column belongs.

This parameter is nullable when you register a
view column as a layer. DB2 Spatial Extender
ignores this parameter when you register a table
column as a layer.

Comment: If you do not supply a value for the
geoSchema parameter, it will default to the value
of the layerSchema parameter.

geoTable VARCHAR(128) Applies when you register a view column as a
layer. The geoTable parameter is the name of the
table that underlies the view to which the
column belongs.

This parameter is not nullable when you register
a view column as a layer. DB2 Spatial Extender
ignores this parameter when you register a table
column as a layer.

Chapter 9. Stored procedures 87

Table 26. Input parameters for the db2gse.gse_register_layer stored
procedure. (continued)

Name Data type Description

geoColumn VARCHAR(128) Applies when you register a view column as a
layer. The geoColumn parameter is the name of
the table column that underlies this view column.

This parameter is not nullable when you register
a view column as a layer. DB2 Spatial Extender
ignores this parameter when you register a table
column as a layer.

nAttributes SMALLINT Number of columns that contain the source data
that is to be geocoded for this layer.

This parameter is nullable when you register a
table column as a layer. DB2 Spatial Extender
ignores this parameter when you register a view
column as a layer.

attr1Name VARCHAR(128) Name of the first column that contains source
data that is to be geocoded for this layer.

This parameter is nullable when you register a
table column as a layer. DB2 Spatial Extender
ignores this parameter when you register a view
column as a layer.

If you intend to use the default geocoder, you
need to store street addresses in the attr1Name
column.

attr2Name VARCHAR(128) Name of the second column that contains source
data that is to be geocoded for this layer.

This parameter is nullable when you register a
table column as a layer. DB2 Spatial Extender
ignores this parameter when you register a view
column as a layer.

If you intend to use the default geocoder, you
need to store names of cities in the attr2Name
column.

88 DB2 Spatial Extender User’s Guide and Reference

Table 26. Input parameters for the db2gse.gse_register_layer stored
procedure. (continued)

Name Data type Description

attr3Name VARCHAR(128) Name of the third column that contains source
data that is to be geocoded for this layer.

This parameter is nullable when you register a
table column as a layer. DB2 Spatial Extender
ignores this parameter when you register a view
column as a layer.

If you intend to use the default geocoder, you
need to store names or abbreviations of states in
the attr3Name column.

attr4Name VARCHAR(128) Name of the fourth column that contains source
data that is to be geocoded for this layer.

This parameter is nullable when you register a
table column as a layer. DB2 Spatial Extender
ignores this parameter when you register a view
column as a layer.

If you intend to use the default geocoder, you
need to store zip codes in the attr4Name column.

attr5Name VARCHAR(128) Name of the fifth column that contains source
data that is to be geocoded for this layer.

This parameter is nullable when you register a
table column as a layer. DB2 Spatial Extender
ignores this parameter when you register a view
column as a layer.

The default gecoder ignores the Attr5Name
column.

attr6Name VARCHAR(128) Name of the sixth column that contains source
data that is to be geocoded for this layer.

This parameter is nullable when you register a
table column as a layer. DB2 Spatial Extender
ignores this parameter when you register a view
column as a layer.

The default gecoder ignores the Attr6Name
column.

Chapter 9. Stored procedures 89

Table 26. Input parameters for the db2gse.gse_register_layer stored
procedure. (continued)

Name Data type Description

attr7Name VARCHAR(128) Name of the seventh column that contains source
data that is to be geocoded for this layer.

This parameter is nullable when you register a
table column as a layer. DB2 Spatial Extender
ignores this parameter when you register a view
column as a layer.

The default gecoder ignores the Attr7Name
column.

attr8Name VARCHAR(128) Name of the eighth column that contains source
data that is to be geocoded for this layer.

This parameter is nullable when you register a
table column as a layer. DB2 Spatial Extender
ignores this parameter when you register a view
column as a layer.

The default gecoder ignores the Attr8Name
column.

attr9Name VARCHAR(128) Name of the ninth column that contains source
data that is to be geocoded for this layer.

This parameter is nullable when you register a
table column as a layer. DB2 Spatial Extender
ignores this parameter when you register a view
column as a layer.

The default gecoder ignores the Attr9Name
column.

attr10Name VARCHAR(128) Name of the tenth column that contains source
data that is to be geocoded for this layer.

This parameter is nullable when you register a
table column as a layer. DB2 Spatial Extender
ignores this parameter when you register a view
column as a layer.

The default gecoder ignores the Attr10Name
column.

90 DB2 Spatial Extender User’s Guide and Reference

Output parameters

Table 27. Output parameters for the db2gse.gse_register_layer stored procedure.

Name Data type Description

msgCode INTEGER Code associated with the messages that the caller
of this stored procedure can return.

Reserved VARCHAR(1024) Complete error message, as constructed at the
DB2 Spatial Extender server.

Restrictions
v If you are registering a view column as a layer, it must be based on a table

column that has already been registered as a layer.
v No more than ten attribute columns can contain the data that is to be

geocoded for the layer that you are registering.

Chapter 9. Stored procedures 91

db2gse.gse_run_gc

Use this stored procedure to run a geocoder in batch mode. For information
about this task, see “Running the geocoder in batch mode” on page 39.

For an example of the code for invoking this stored procedure, see the C
function gseRunGC in the sample program. For information about this
program, see “Chapter 8. Writing applications for DB2 Spatial Extender” on
page 53.

Authorization
The user ID under which this stored procedure is invoked must hold one of
the following authorities or privileges:
v SYSADM or DBADM authority on the database that contains the table on

which the specified geocoder is to operate.
v The CONTROL or UPDATE privilege on this table.

Input parameters

Table 28. Input parameters for the db2gse.gse_run_gc stored procedure.

Name Data type Description

layerSchema VARCHAR(30) Name of the schema to which the table or view
specified in the layerTable parameter belongs.

This parameter is nullable.

Comment: If you do not supply a value for the
layerSchema parameter, it will default to the user
ID under which the db2gse.gse_run_gc is
invoked.

layerTable VARCHAR(128) Name of the table that contains the column into
which the geocoded data is to be inserted.

This parameter is not nullable.

layerColumn VARCHAR(128) Name of the column into which the geocoded
data is to be inserted.

This parameter is not nullable.

gcId INTEGER Identifier of the geocoder that you want to run.

This parameter is nullable.

To find out the identifiers of registered
geocoders, consult the
DB2GSE.SPATIAL_GEOCODER catalog view.

92 DB2 Spatial Extender User’s Guide and Reference

Table 28. Input parameters for the db2gse.gse_run_gc stored procedure. (continued)

Name Data type Description

precisionLevel INTEGER The degree to which source data must match
corresponding reference data in order for the
geocoder to process the source data successfully.

This parameter is nullable.

Comment: The precision level can range from 1
to 100 percent.

vendorSpecific VARCHAR(256) Technical information provided by the vendor;
for example, the path and name of a file that the
vendor uses to set parameters.

This parameter is nullable.

whereClause VARCHAR(256) The body of the WHERE clause. It defines a
restriction on the set of records to be geocoded.
The clause can reference any attribute column in
the table that the geocoder is to operate on.

This parameter is nullable.

commitScope INTEGER Number of records per checkpoint.

This parameter is nullable.

Output parameters

Table 29. Output parameters for the db2gse.gse_run_gc stored procedure.

Name Data type Description

msgCode INTEGER Code associated with the messages that the caller
of this stored procedure can return.

Reserved VARCHAR(1024) Complete error message, as constructed at the
DB2 Spatial Extender server.

Chapter 9. Stored procedures 93

db2gse.gse_unregist_gc

Use this stored procedure to unregister a geocoder other than the default
geocoder.

To find information about the geocoder that you want to unregister, consult
the DB2GSE.SPATIAL_GEOCODER catalog view;
see“DB2GSE.SPATIAL_GEOCODER” on page 106.

Authorization
The user ID under which this stored procedure is invoked must hold either
SYSADM or DBADM authority on the database that contains the geocoder
that is to be unregistered.

Input parameter

Table 30. Input parameter for the db2gse.gse_unregist_gc stored procedure.

Name Data type Description

gcId INTEGER The identifier of the geocoder that is to be
unregistered.

This parameter is not nullable.

Output parameters

Table 31. Output parameters for the db2gse.gse_unregist_gc stored procedure.

Name Data type Description

msgCode INTEGER Code associated with the messages that the caller
of this stored procedure can return.

Reserved VARCHAR(1024) Complete error message, as constructed at the
DB2 Spatial Extender server.

94 DB2 Spatial Extender User’s Guide and Reference

db2gse.gse_unregist_layer

Use this stored procedure to unregister a layer. The stored procedure does this
by:
v Removing the definition of the layer from DB2 Spatial Extender catalog

tables.
v Deleting the check constraint that DB2 Spatial Extender placed on this

layer’s base table to ensure that the layer’s spatial data conforms to the
requirements of the layer’s spatial reference system.

v Dropping the triggers that are used to update the spatial column whenever
address data is added, changed, or removed.

When the stored procedure is processed, information about the layer is
removed from the DB2GSE.GEOMETRY_COLUMNS meta view. For
information about this view, see “DB2GSE.GEOMETRY_COLUMNS” on
page 106.

Authorization
The user ID under which this stored procedure is invoked must hold one of
the following authorities or privileges:
v For a table layer:

– SYSADM or DBADM authority on the database that contains this layer’s
base table.

– The CONTROL or ALTER privilege on this table.
v For a view layer:

– The SELECT privilege on the base table or tables that contain (1) the
address data that is geocoded for this layer and (2) the spatial data that
results from the geocoding.

Input parameters

Table 32. Input parameters for the db2gse.gse_unregist_layer stored procedure.

Name Data type Description

layerSchema VARCHAR(30) Name of the schema to which the table specified
in the layerTable parameter belongs.

This parameter is nullable.

Comment: If you do not supply a value for the
layerSchema parameter, it will default to the user
ID under which the db2gse.gse_unregister_layer
stored procedure is invoked.

layerTable VARCHAR(128) Name of the table that contains the column
specified in the layerColumn parameter.

This parameter is not nullable.

Chapter 9. Stored procedures 95

Table 32. Input parameters for the db2gse.gse_unregist_layer stored
procedure. (continued)

Name Data type Description

layerColumn VARCHAR(128) Name of the spatial column that has been
defined as the layer that you want to unregister.

This parameter is not nullable.

Output parameters

Table 33. Output parameters for the db2gse.gse_unregist_layer stored procedure.

Name Data type Description

msgCode INTEGER Code associated with the messages that the caller
of this stored procedure can return.

Reserved VARCHAR(1024) Complete error message, as constructed at the
DB2 Spatial Extender server.

Restriction
If a view column that has been defined as a view layer is based on a table
column that has been defined as a table layer, you cannot unregister this table
layer until you unregister the view layer.

96 DB2 Spatial Extender User’s Guide and Reference

Chapter 10. Messages

This chapter documents messages that DB2 Spatial Extender returns to users.
Each message has an identifier. Identifiers that end in the letter E are for error
messages; those that end in W are for warnings; and those that end in I are
for general information.

DBA7200E More than 10 columns are selected
as input to a geocoder

Explanation: Up to 10 columns can be selected
as input to a geocoder.

User Reponse: Move column names from the
Selected columns box to the Available columns
box until the Selected Columns box lists ten
names or fewer.

DBA7201E The database is not enabled for
Spatial Extender operation.

Explanation: The database must be enabled for
Spatial Extender before you can use Spatial
Extender.

User Reponse: Right-click the database and
select Spatial Extender —> Enable from the
menus.

GSE0000I The operation is completed
successfully.

GSE0001E Spatial Extender could not
perform the requested operation
(“<operation-name>”) under user
ID “<user-id>”.

Explanation: You requested this operation
under a user ID that does not hold the privilege
or authority to perform the operation.

User Reponse: Consult the documentation to
find out what the proper authorization is or
obtain it from a Spatial Extender administrator.

GSE0002E “<value>” is not a valid value for
the “<argument-name>”
argument.

Explanation: The value that you entered was
incorrect or misspelled.

User Reponse: Consult the documentation or a
Spatial Extender administrator to find out what
value or range of values you need to specify.

GSE0003E Spatial Extender could not
perform the requested operation
because argument
“<argument-name>” was not
specified.

Explanation: You did not specify an argument
that is required for this operation.

User Reponse: Specify argument
“<argument-name>” with the value that you
want; then request the operation again.

GSE0004W The argument
“<argument-name>” was not
evaluated.

Explanation: The operation you requested does
not use argument “<argument-name>”.

User Reponse: None required.

GSE0005E Spatial Extender could not process
your request to create an object
named “<object-name>”.

Explanation: Either object “<object-name>”
already exists, or you do not have the proper
permission to create it. It could be a table,

© Copyright IBM Corp. 1998, 2000 97

column, trigger, index, file, or other kind of
object.

User Reponse: If “<object-name>” is the object
that you want, do nothing. Otherwise, specify
the name correctly and verify that you have the
right permission to create the object.

GSE0006E Spatial Extender could not
perform the requested operation
on an enabled or registered object
named “<object-name>”.

Explanation: Object “<object-name>” is already
enabled or registered, or it already exists. It
could be a layer, index, spatial reference system,
coordinate system, geocoder, or other kind of
object.

User Reponse: Make sure that object
“<object-name>” exists and resubmit your
request.

GSE0007E Spatial Extender could not
perform the requested operation
on “<object-name>”, an object
that has not yet been enabled or
registered.

Explanation: Object “<object-name>” has not
been enabled or registered. It could be a layer,
index, spatial reference system, spatial coordinate
system, geocoder, or other kind of object.

User Reponse: Enable or register object
“<object-name>”. Then resubmit your request.

GSE0008E An unexpected SQL error
(“<sql-error-message>”) has
occurred.

User Reponse: Look up detailed message
associated with SQLCODE in the SQL error
message “<sql-error-message>”. If necessary,
contact your IBM service representative.

GSE0009E The requested operation could not
be performed on an object named
“<object-name>” that already
exists.

Explanation: “<object-name>” already exists in
the database or the operating system. It could be
a file, table, view, column, index, trigger, or other
kind of object.

User Reponse: Make sure that you specify the
object correctly when you try to access it. If
necessary, delete the object.

GSE0010E The requested operation could not
be performed on an object named
“<object-name>” that might not
exist.

Explanation: “<object-name>” does not exist in
the database or in the operating system. It could
be a file, table, view, column, index, trigger, file,
or other kind of object.

User Reponse: Make sure that you have the
right permission to access the object. If you have
this permission and the object does not exist,
then you need to create it.

GSE0011E Spatial Extender could not disable
or unregister object
“<object-name>”.

Explanation: “<object-name>” is dependent on
another object. “<object-name>” could be a
spatial reference system, layer, geocoder, or other
kind of object.

User Reponse: Consult the documentation to
find what kinds of objects “<object-name>” can
be dependent on. Then remove the specific object
that “<object-name>” is dependent on.

98 DB2 Spatial Extender User’s Guide and Reference

GSE0012E Spatial Extender could not process
your request because the fully
qualified spatial column
“<layer-schema.layer-name.layer-
column>” is not registered as a
table layer.

Explanation: The fully qualified spatial column
“<layer-schema.layer-name.layer-column>” must
be registered as a table layer before you can
perform certain operations associated with it (for
example, enabling its index, enabling a geocoder
to populate it in batch mode or to update it
automatically).

User Reponse: Make sure that the fully
qualified spatial column “<layer-schema.layer-
name.layer-column>” is registered as a table
layer by checking the
DB2GSE.GEOMETRY_COLUMNS view in the
Spatial Extender catalog. Also make sure that the
table that contains this column also includes
valid corresponding attribute columns.

GSE0013E The database is not enabled for
spatial operations.

Explanation: The database is not enabled for
spatial operations. Therefore, the Spatial
Extender catalog does not exist.

User Reponse: Enable the database for spatial
operations.

GSE0014E The database has already been
enabled for spatial operations.

Explanation: The database has already been
enabled for spatial operations.

User Reponse: Verify that the database has been
enabled as you expected. If necessary, disable the
database.

GSE0498E The following error occurred:
“<error-message>”.

GSE0499W Spatial Extender issued the
following warning:
“<warning-message>”.

GSE0500E The operation mode that you
specified (“<operation-mode>”) is
invalid.

Explanation: The specified mode is not
supported by the operation that you requested.

User Reponse: Consult the documentation to
find out what modes are supported by the
operation.

GSE1001E Spatial Extender was unable to
register a view layer that is named
“<schema-name.view-
name.column-name>” and that is
based on spatial column
“<schema-name.table-
name.column-name>”.

Explanation: The spatial column that you
specified (“<schema-name.table-name.column-
name>”) has not been registered as a table layer.

User Reponse: Register column
“<schema-name.table-name.column-name>” as a
table layer.

GSE1002E Spatial Extender was unable to
register a view layer that is named
“<schema-name.view-
name.column-name>” and that is
based on table
“<schema-name.table-name>”.

Explanation: The table that you specified
(“<schema-name.table-name>”) does not underlie
view “<schema-name.view-name.column-
name>”, either directly or indirectly.

User Reponse: Find out what the base table for
view “<schema-name.view-name.column-name>”
is, and specify this table.

GSE1003E Spatial Extender was unable to
access a column named
“<column-name>” in a table or
view named “<schema-
name.object-name>”.

Explanation: Table or view
“<schema-name.object-name>” does not have a

Chapter 10. Messages 99

column named “<column-name>”.

User Reponse: Check the definition of table or
view “<schema-name.object-name>” to find out
the proper name of the column that you want.

GSE1004E Spatial Extender was unable to
register the fully qualified spatial
column “<schema-name.table-
name.column-name>” as a table
layer.

Explanation: Column “<schema-name.table-
name.column-name>” does not have a spatial
data type, or is not associated with a base table.

User Reponse: Define a spatial data type for
column “<schema-name.table-name.column-
name>”, or make sure that this column is part of
a local base table.

GSE1005E The spatial reference system
(“<view-layer-spatial-reference-
id>”) that you specified for a view
layer differs from the spatial
reference system
(“<table-layer-spatial-reference-
id>”) that is used for this layer’s
underlying table layer.

Explanation: A view layer’s spatial reference
system must be the same as the underlying table
layer’s spatial reference system.

User Reponse: Specify the underlying table
layer’s spatial reference system for the view
layer.

GSE1006E Because “<spatial-reference-id>”
is an invalid spatial reference
system ID, Spatial Extender was
unable to register the layer that
you requested.

Explanation: The spatial reference system that
you specified (“<spatial-reference-id>”) has not
been enabled or registered.

User Reponse: Enable or register the spatial
reference system. Then resubmit your request to
register the layer.

GSE1007E An SQL error (SQLSTATE
“<sqlstate>”) might have occurred
when Spatial Extender tried
unsuccessfully to add a spatial
column (“<column-name>”) to
table “<schema-name.table-
name>”.

User Reponse: Look up the message associated
with SQLSTATE “<sqlstate>”.

GSE1008E DB2 Spatial Extender was unable
to register a view
layer“<layer-schema.layer-
name.layer-column>” because the
spatial data type
“<layer-column-type>” of the
view layer does not match the
spatial data type
“<geo-column-type>” of the
underlying table layer
“<geo-schema.geo-name.geo-
column>”.

Explanation: The spatial data type of a view
layer “<layer-schema.layer-name.layer-column>”
must match the spatial data type of the layer’s
underlying table layer “<geo-schema.geo-
name.geo-column>”. The inconsistency between
these two data types causes ambiguity when
spatial data is processed.

User Reponse: Make sure that the spatial data
types of the view layer and its underlying table
layer are the same.

GSE1020E “<’spatial-reference-id>” is an
invalid spatial reference system
ID.

Explanation: A spatial reference system with an
identifier of “<’spatial-reference-id>” has not
been enabled.

User Reponse: Make sure that the specified
spatial reference has been enabled.

100 DB2 Spatial Extender User’s Guide and Reference

GSE1021E Spatial Extender could not enable
spatial reference system
“<spatial-reference-id>” because
the corresponding spatial
coordinate system ID
“<spatial-coordinate-id>” is
invalid.

Explanation: A coordinate system with an
identifier of “<spatial-coordinate-id>” is not
defined in the Spatial Extender catalog.

User Reponse: Verify the coordinate system
identifier “<spatial-coordinate-id>” by checking
the DB2GSE.COORD_REF_SYS view in the
Spatial Extender catalog.

GSE1030E Because “<schema-name.table-
name>” is not a base table,
Spatial Extender could not enable
a geocoder for it.

Explanation: The object that contains the source
data that you want geocoded must be a base
table.

User Reponse: Be sure that the columns that
contain the source data that you want geocoded
are part of a base table.

GSE1031E Spatial Extender could not enable
geocoder “<geocoder-id>” to
operate automatically in create
mode for layer
“<layer-schema.layer-name.layer-
column>”.

Explanation: Possible explanations are:

v The geocoder is already enabled to update
layer “<layer-schema.layer-name.layer-
column>” automatically.

v The geocoder has been temporarily invalidated
for this layer.

v No columns for source data have been defined
for this layer.

User Reponse: If the geocoder has been
temporarily invalidated, enable it to operate
automatically in ″Recreate″ mode.

GSE1032E Spatial Extender could not enable
geocoder “<geocoder-id>” to
operate automatically in recreate
mode for layer
“<layer-schema.layer-name.layer-
column>”.

Explanation: Possible explanations are:

v The geocoder is already enabled to update
layer “<layer-schema.layer-name.layer-
column>” automatically.

v The geocoder was not previously invalidated
for this layer.

v No columns for source data have been defined
for this layer.

User Reponse: If the geocoder was previously
disabled in drop mode, or if it was never defined
for this layer, enable it to operate automatically
in ″Create″ mode.

GSE1033E An SQL error occurred when
Spatial Extender tried to add
triggers to a table that contains
the column for layer
“<layer-schema.layer-name.layer-
column>” (SQLSTATE
“<sqlstate>”).

Explanation: The purpose of the triggers is to
maintain data integrity between the attribute
columns that the geocoder’s input comes from
and the spatial column that its output goes into.
The SQL error occurred when DB2 tried to create
these triggers.

User Reponse: Look up the message associated
with SQLSTATE “<sqlstate>”.

GSE1034E Spatial Extender could not disable
geocoder “<geocoder-id>” in drop
mode for layer
“<layer-schema.layer-name.layer-
column>”.

Explanation: Possible explanations are:

v The geocoder has never been enabled to
update layer “<layer-schema.layer-name.layer-
column>” automatically.

v The geocoder has been disabled in drop mode.

Chapter 10. Messages 101

User Reponse: Determine the state of the
geocoder before you tried to disable it. For
example, was it registered? was it enabled? Then
decide whether it needs to be disabled in drop
mode. For example, if it was never enabled, there
would be no need to disable it at all.

GSE1035E Spatial Extender could not disable
geocoder “<geocoder-id>” in
invalidate mode for layer
“<layer-schema.layer-name.layer-
column>”.

Explanation: Possible explanations are:

v The geocoder has never been enabled to
update layer “<layer-schema.layer-name.layer-
column>” automatically.

v The geocoder has been disabled in invalidated
mode or in drop mode.

User Reponse: Determine the state of the
geocoder before you tried to disable it. For
example, was it registered? Was it enabled? Then
decide whether it needs to be disabled in
invalidate mode. For example, if it was already
disabled in invalidate mode, there would be no
need to disable it in this mode a second time.

GSE1036E An SQL error occurred when
Spatial Extender tried to drop
triggers from a table that contains
the column for layer
“<layer-schema.layer-name.layer-
column>” (SQLSTATE
“<sqlstate>”).

Explanation: The triggers were created to
maintain data integrity between the attribute
columns that the geocoder’s input comes from
and the spatial column that its output goes into.
The SQL error occurred when DB2 tried to drop
these triggers.

User Reponse: Look up the message associated
with SQLSTATE “<sqlstate>”.

GSE1037E Spatial Extender could not
geocode source data for table
layer “<layer-schema.layer-
name.layer-column>”, possibly
because an incorrect value
“<number-of-attributes>” was
assigned to the argument that
specifies how many attribute
columns are to provide source
data for this layer.

Explanation: The number of attribute columns
associated with this layer was specified
incorrectly, or the name of one or more of these
columns was specified incorrectly.

User Reponse: Make sure that this layer is
registered with the correct number and names of
associated attribute columns, or verify the
correctness of input and output data for the
geocoder.

GSE1038E An SQL error occurred when
Spatial Extender tried to geocode
source data for table layer
“<layer-schema.layer-name.layer-
column>” in batch mode
(SQLSTATE “<sqlstate>”).

User Reponse:

v Look up the message associated with
SQLSTATE “<sqlstate>”.

v Make sure that the content and the
primaryUDF argument of this layer are
defined correctly.

GSE1050E The grid size that you specified
(“<grid-size>”) is invalid for the
first grid level.

Explanation: You specified zero or a negative
number as the grid size for the first grid level.

User Reponse: Specify a positive number as the
grid size.

102 DB2 Spatial Extender User’s Guide and Reference

GSE1051E The grid size that you specified
(“<grid-size>”) is invalid for the
second and third grid levels.

Explanation: You specified a negative number
as the grid size for the second or the third grid
level.

User Reponse: Specify zero or a positive
number as the grid size.

GSE1052E An SQL error occurred when the
Spatial Extender tried to create
spatial index “<index-
schema.index-column>” for a
table layer “<layer-schema.layer-
name.layer-column>” (SQLSTATE
“<sqlstate>”).

User Reponse:

v Make sure that the spatial index is specified
correctly and that the spatial column has no
associated index.

v Look up the message that is associated with
SQLSTATE “<sqlstate>”.

GSE1500I Source record “<record-number>”
was successfully geocoded.

Explanation: A record containing attribute data
was successfully geocoded.

GSE1501W Source record “<record-number>”
was not geocoded.

Explanation: The precision level was too high.

User Reponse: Geocode with a lower precision
level.

GSE1502W Source record “<record-number>”
was not found.

User Reponse: Determine whether the record
exists in the database.

GSE2001E The specified transfer file
(“<filename>”) is not valid.

User Reponse: Verify that the specified file is an
SDE transfer file, and that the pathname is
properly specified.

GSE2002E The supplied SQL WHERE clause
(“<SQL-where-clause>”) is not
valid.

User Reponse: Check the WHERE clause for
proper SQL syntax, spelling errors, and invalid
column names.

GSE2003E The supplied shape value is not
legal.

User Reponse: Check to be sure that the
supplied shape matches the specified type of the
spatial column. If the types match, or are
compatible, then the form of the geometry is
illegal. Check for overlapping polygons, single
point arcs, etc.

GSE2004E The transfer file schema is
incompatible with the schema of
the specified layer.

User Reponse: Check to be sure that the
schema and layer names are properly specified.
If the schemas do not match, load the data as a
new table and resolve the schema differences.

GSE2005E The transfer file geometry type is
incompatible with the geometry
type of the specified layer.

User Reponse: Check to be sure that the
schema and layer names are properly specified.

GSE2006E An I/O error for a file named
“<filename>” has occurred.

User Reponse: Verify that the file exists, that
you have the appropriate access to the file, and
that the file is not in use by another user.

Chapter 10. Messages 103

GSE2007E An attribute conversion error has
occurred.

User Reponse: Check to be sure that all
attribute types in the table are supported - for
example, BLOB data is not supported in shape
files. Also check for out-of-range data values, or
illegal data values such as bad dates.

GSE2008E The import/export function has
run out of memory.

User Reponse: Verify that you adequate
memory available.

104 DB2 Spatial Extender User’s Guide and Reference

Chapter 11. Catalog views

DB2 Spatial Extender’s catalog views contain metadata on:
v Coordinate systems that you can use. For information such as these

systems’ identifiers and annotation texts, see “DB2GSE.COORD_REF_SYS”.
v Spatial columns that have been registered as layers. For information such as

these columns’ names, data types, and associated spatial reference systems,
see “DB2GSE.GEOMETRY_COLUMNS” on page 106.

v Geocoders that you can use. For information such as these geocoders’
identifiers and the regions that contain the locations that the geocoders
process, see “DB2GSE.SPATIAL_GEOCODER” on page 106.

v Spatial reference systems that you can use. For information such as their
identifiers and descriptions of them, see “DB2GSE.SPATIAL_REF_SYS” on
page 107.

DB2GSE.COORD_REF_SYS

When you enable a database for spatial operations, DB2 Spatial Extender
registers the coordinate systems that you can use in a catalog table. Selected
columns from this table comprise the DB2GSE.COORD_REF_SYS catalog view,
which is described in Table 34.

Table 34. Columns in the DB2GSE.COORD_REF_SYS catalog view

Name Data Type Nullable? Content

SCID INTEGER No Unique numeric identifier for this coordinate
system.

SC_NAME VARCHAR(64) No Name of this coordinate system.

AUTH_NAME VARCHAR(256) Yes Name of the organization that compiled this
coordinate system adheres to; for example,
the European Petroleum Survey Group
(EPSG).

AUTH_SRID INTEGER Yes A numeric identifier assigned to this
coordinate system by the organization
specified in the AUTH_NAME column.

DESC VARCHAR(256) Yes Description of this coordinate system.

SRTEXT VARCHAR(2048) No Annotation text for this coordinate system.

© Copyright IBM Corp. 1998, 2000 105

DB2GSE.GEOMETRY_COLUMNS

When you create a layer, DB2 Spatial Extender registers it by recording its
identifier and information relating to it in a catalog table. Selected columns
from this table comprise the DB2GSE.GEOMETRY_COLUMNS catalog view,
which is described in Table 35.

Table 35. Columns in the DB2GSE.GEOMETRY_COLUMNS catalog view

Name Data Type Nullable? Content

LAYER_CATALOG VARCHAR(30) Yes Fully-qualified name of this layer.

LAYER_SCHEMA VARCHAR(30) No Schema of the table or view that contains the
column that was registered as this layer.

LAYER_NAME VARCHAR(128) No Name of the table or view that contains the
column that was registered as this layer.

LAYER_COLUMN VARCHAR(30) No Name of the column that was registered as
this layer.

GEOMETRY_TYPE INTEGER No Data type of the column that was registered
as this layer.

SRID INTEGER No Identifier of the spatial reference system used
for the values in the column that was
registered as this layer.

STORAGE_TYPE INTEGER Yes Information as to how DB2 stores the values
in the column that was registered as this
layer. For example, data in STORAGE_TYPE
might indicate that the values are stored as
large objects (LOBs) or as instances of abstract
data types (ADTs).

DB2GSE.SPATIAL_GEOCODER

Available geocoders are registered in a catalog table. Selected columns from
this table comprise the DB2GSE.SPATIAL_GEOCODER catalog view, which is
described in Table 36.

Table 36. Columns in the DB2GSE.SPATIAL_GEOCODER catalog view

Name Data Type Nullable? Content

GCID INTEGER No Numeric identifier of this geocoder.

GC_NAME VARCHAR(64) No Short description of this geocoder.

VENDOR_NAME VARCHAR(128) No Name of the vendor that provided this
geocoder.

PRIMARY_UDF VARCHAR(256) No Fully qualified name of this geocoder.

106 DB2 Spatial Extender User’s Guide and Reference

Table 36. Columns in the DB2GSE.SPATIAL_GEOCODER catalog view (continued)

Name Data Type Nullable? Content

PRECISION_LEVEL INTEGER No The degree to which source data must match
corresponding reference data in order to be
processed successfully by the geocoder.

VENDOR_SPECIFIC VARCHAR(256) Yes Path to, and name of, a file that a vendor can
use to set any special parameters that this
geocoder supports.

GEO_AREA VARCHAR(256) Yes Geographical area that contains the locations
to be geocoded.

DESCRIPTION VARCHAR(256) Yes Remarks provided by the vendor.

DB2GSE.SPATIAL_REF_SYS

When you create a spatial reference system, DB2 Spatial Extender registers it
by recording its identifier and information related to it in a catalog table.
Selected columns from this table comprise the DB2GSE.SPATIAL_REF_SYS
catalog view, which is described in Table 37.

Table 37. Columns in the DB2GSE.SPATIAL_REF_SYS catalog view

Name Data Type Nullable? Content

SRID INTEGER No User-defined identifier for this spatial
reference system.

SR_NAME VARCHAR(64) No Name of this spatial reference system.

SCID INTEGER No Numeric identifier for the coordinate system
that underlies this spatial reference system.

SC_NAME VARCHAR(64) No Name of the coordinate system that underlies
this spatial reference system.

AUTH_NAME VARCHAR(256) Yes Name of the organization that sets the
standards for this spatial reference system.

AUTH_SRID INTEGER Yes The identifier that the organization specified
in the AUTH_NAME column assigns to this
spatial reference system.

SRTEXT VARCHAR(2048) No Annotation text for this spatial reference
system.

Chapter 11. Catalog views 107

108 DB2 Spatial Extender User’s Guide and Reference

Chapter 12. Spatial indexes

Because spatial columns contain two-dimensional geographic data,
applications querying those columns require an index strategy that quickly
identifies all geometries that lie within a given extent. For this reason, DB2
Spatial Extender provides the three-tiered spatial index based on a grid.

This chapter describes this kind of index and provides guidelines on using it.
The topics covered are:
v “A sample program fragment”
v “B tree indexes” on page 110
v “Ways to create a spatial index” on page 110
v “How a spatial index is generated” on page 111
v “Guidelines on using a spatial index” on page 115

A sample program fragment

Consider the following example of how an index is created and used in SQL.
You can refer to the SQL Reference for more information about the CREATE
INDEX and CREATE INDEX EXTENSION commands. Notice that after the
index is created, you can then issue standard DDL and DML statements that
use the spatial functions and predicates.
create table customers (cid int, addr varchar(40), ..., loc db2gse.ST_Point)
create table stores (sid int, addr varchar(40), ..., loc db2gse.ST_Point,
zone db2gse.ST_Polygon)

create index customersx1 on customers(loc) extend using spatial_index(10e0,
100e0, 1000e0)
create index storesx1 on stores(loc) extend using spatial_index(10e0, 100e0,
1000e0)
create index storesx2 on stores(zone) extend using spatial_index(10e0, 100e0,
1000e0)

insert into customers (cid, addr, loc) values
(:cid, :addr, sdeFromBinary(:loc))
insert into customers (cid, addr, loc) values
(:cid, :addr, geocode(:addr))
insert into stores (sid, addr, loc) values
(:sid, :addr, sdeFromBinary(:loc))

update stores set zone = db2gse.ST_Buffer (loc, 2)

select cid, loc from customers
where db2gse.ST_Within(loc, :polygon) = 1

© Copyright IBM Corp. 1998, 2000 109

select cid, loc from customers
where db2gse.ST_Within(loc, :circle1) = 1 OR

db2gse.ST_Within(loc, :circle2) = 1

select c.cid, loc from customers c, stores s
where db2gse.ST_Contains(s.zone, c.loc) = 1 selectivity 0.01

select avg(c.income) from customers c
where not exist (select * from stores s

where db2gse.ST_Distance(c.loc, s.loc) < 10)

B tree indexes

Spatial indexing technology is based on the traditional hierarchical B tree
index, but is significantly different. The spatial index utilizes grid indexing
which is designed to index two-dimensional spatial columns. The B tree index
can only handle one-dimensional data and cannot be used with GIS
information. This section describes how a B tree index is structured and used.

The top level of a B tree index, called the root node, contains one key for each
node at the next level. The value of each key is the largest existing key value
for the corresponding node at the next level. Depending on the number of
values in the base table, several intermediate nodes may be needed. These
nodes form a bridge between the root node and the leaf nodes that hold the
actual base table row IDs.

The database manager searches a B tree index starting at the root node. It then
continues through the intermediate nodes until it reaches the leaf node with
the row ID of the base table.

The B tree index cannot be applied to a spatial column because the
two-dimensional characteristic of the spatial column requires the structure of a
spatial index. For the same reason, you cannot apply a spatial index to a
non-spatial column. Further, a spatial index cannot be applied to a composite
column of any kind.

Ways to create a spatial index

There are several ways to create a spatial index:
v Define one from the Create Spatial Index window. For instructions, see

“Chapter 6. Creating spatial indexes” on page 47.
v Invoke the db2gse.gse_enable_idx stored procedure in an application

program. For information about this stored procedure, see “Chapter 9.
Stored procedures” on page 63.

v Issue the db2 create index command with the spatial_index function in the
USING clause. For example:

110 DB2 Spatial Extender User’s Guide and Reference

create index storesx1 on customers (loc) using spatial_index(10e0,
100e0, 1000e0)

The nature of spatial data requires that the database designer understand its
relative size distribution. The designer must determine the optimum size and
number of grid levels with which to create the spatial index.

The grid levels, <grid level 1>, <grid level 2>, and <grid level 3>, are entered
by increasing the cell size. Thus, the second level must have a larger cell size
than the first, and the third larger than the second. The first grid level is
mandatory, but you can disable the second and third with a double precision
zero value (0.0e0).

How a spatial index is generated

A spatial index is generated using envelopes. The envelope is a geometry itself
and represents the minimum and maximum X and Y extent of a geometry. For
most geometries, the envelope is a box, but for horizontal and vertical
linestrings the envelope is a two-point linestring. For points, the envelope is
the point itself. For more information about envelopes, see “Envelope” on
page 123.

The spatial index is constructed on a spatial column by making one or more
entries for the intersections of each geometry’s envelope with the grid. An
intersection is recorded as the internal ID of the geometry and minimum X
and Y coordinates of the grid cell intersected. For example, the polygon in
Figure 7 on page 112 intersects the grid on coordinates (20,30), (30,30), (40,30),
(20,40), (30,40), (40,40), (20,50), (30,50), and (40,50). See Table 38 on page 112 for
minimum X and Y coordinates for all the geometries in Figure 7 on page 112.

If multiple grid levels exist, DB2 Spatial Extender attempts to use the lowest
grid level possible. When a geometry has intersected four or more grid cells at
a given level, it is promoted to the next higher level. Therefore, a spatial index
that has the three grid levels of 10.0e0, 100.0e0, and 1000.0e0, DB2 Spatial
Extender will first intersect each geometry with the level 10.0e0 grid. If a
geometry intersects with four or more 10.0e0 grid cells, it is promoted and
intersected with the level 100.0e0 grid. If four or more intersections result at
the 100.0e0 level, the geometry is promoted to the 1000.0e0 level. At the
1000.0e0 level, the intersections must be entered into the spatial index because
this is the highest possible level.

Figure 7 on page 112 illustrates how four different types of geometries
intersect a 10.0e grid. All 23 intersections for the four geometries are recorded
in the spatial index.

Chapter 12. Spatial indexes 111

Table 38 lists the geometries and their corresponding grid intersections. The
envelopes of four different geometries types intersect the 10.0e grid. The
minimum X and Y coordinate of each grid cell that it intersects are entered
into the spatial index.

Table 38. The 10.0e0 grid cell entries for the example geometries

Geometry Grid X Grid Y

Polygon 20.0 30.0

Polygon 30.0 30.0

Polygon 40.0 30.0

Polygon 20.0 40.0

Polygon 30.0 40.0

Polygon 40.0 40.0

Polygon 20.0 50.0

Polygon 30.0 50.0

Polygon 40.0 50.0

Figure 7. Application of a 10.0e0 grid level

112 DB2 Spatial Extender User’s Guide and Reference

Table 38. The 10.0e0 grid cell entries for the example geometries (continued)

Geometry Grid X Grid Y

Vertical linestring 50.0 30.0

Vertical linestring 50.0 40.0

Vertical linestring 50.0 50.0

Point 20.0 20.0

Horizontal linestring 20.0 20.0

Horizontal linestring 30.0 20.0

Horizontal linestring 40.0 20.0

Horizontal linestring 50.0 20.0

Horizontal linestring 60.0 20.0

Horizontal linestring 20.0 30.0

Horizontal linestring 30.0 30.0

Horizontal linestring 40.0 30.0

Horizontal linestring 50.0 30.0

Horizontal linestring 60.0 30.0

Figure 8 on page 114 displays how the number of intersections is greatly
reduced to eight by the addition of grid levels 30.0e0 and 60.0e0. In this case,
the polygon identified as geometry 1 is promoted to grid level 30.0e0 and the
linestring identified as geometry 4 is promoted to grid level 60.0e0. Instead of
the nine and ten intersections that geometries had at the 10.0e0 level, they
have only two after promotion.

Chapter 12. Spatial indexes 113

DB2 Spatial Extender takes the grid level parameters specified in the CREATE
INDEX statement and checks each spatial object to determine the coordinates
and number of grid blocks in which the object exists. In Figure 8, the grid
levels 10.0e0, 30.0e0, and 60.0e0 are displayed with ever-increasing line
weights and different shades of gray. The vertical linestring and the point
envelope cell intersections are entered into the index at the 10.0e0 grid level,
because both generate less than four intersections. The polygon intersects nine
10.0e0 grid cells, and is therefore promoted to the 30.0e0 grid level. At this
level, the polygon intersects two grid cells, which are entered into the index.
The linestring identified as geometry 4 intersects ten 10.0e0 grid cells, and is
therefore promoted to the 30.0e0 grid level. Yet at this level, it intersects six
grid cells, so it is again promoted to the 60.0e0 grid level, where it generates
two intersections. The linestring 60.0e0 grid intersections are then entered into
the index. If the linestring had generated four or more intersections at this
level, they still would have been entered into the index because this is the
highest level at which a geometry can be promoted.

Figure 8. Effect of adding grid levels 30.0e0 and 60.0e0. The envelope of the polygon identified as
geometry 1 intersects nine grid cells. The envelope of the vertical linestring identified as geometry
2 intersects three grid cells. The envelope of the point identified as geometry 3 intersects just one
grid cell. The envelope of the linestring identified as geometry 4 intersects ten grid cells.

114 DB2 Spatial Extender User’s Guide and Reference

Table 39. The intersections of the geometries in the three-tiered index

Geometry Grid X Grid Y

The intersections between the vertical linestring and the point in the level 1 (10.0e0 grid size)

2 50.0 30.0

2 50.0 40.0

2 50.0 50.0

3 20.0 20.0

The intersections of the polygon in the level 2 (30.0e0 grid size)

1 0.0 30.0

1 30.0 30.0

The intersections of the linestring in the level 3 (60.0e0 grid size)

4 0.0 0.0

4 60.0 0.0

DB2 Spatial Extender does not actually create a polygon grid structure of any
kind. DB2 Spatial Extender manifests each grid level parametrically by
defining the origin at the X,Y offset of the columns’ spatial reference system. It
then extends the grid into positive coordinate space. Using a parametric grid,
DB2 Spatial Extender generates the intersections mathematically.

Guidelines on using a spatial index

DB2 Spatial Extender works with a spatial index to improve the performance
of a spatial query. Consider the most basic and probably most popular spatial
query, the box query. This query asks DB2 Spatial Extender to return all
geometries that are either fully or partially within a user-defined box. If an
index does not exist, DB2 Spatial Extender must compare all of the geometries
with the box. However, with an index, DB2 Spatial Extender can locate all the
index entries that have a lower left-hand coordinate greater than or equal the
box’s and an upper right-hand coordinate less than or equal to the box’s.
Because the index is ordered by this coordinate system, DB2 Spatial Extender
is able to quickly obtain a list of candidate geometries. The process just
described is referred to as the first pass.

A second pass determines if each candidate’s envelope intersects the box. A
geometry that qualifies for first pass because its grid cells’ envelope intersects
the box may itself have an envelope that does not.

A third pass compares the actual coordinates of the candidate with the box to
determine if any part of the geometry is actually within the box. This last and

Chapter 12. Spatial indexes 115

rather complex process of comparison operates on a list of candidates
composed of a subset of the total population, which is significantly reduced
by the first two passes.

All spatial queries perform the three passes except for the EnvelopesIntersect
function. It performs only the first two passes. The EnvelopesIntersect
function was designed for display operations that often employ their own
built-in clipping routines and don’t require the granularity of the third pass.

Selecting the grid cell size
The irregular shape of the geometry envelopes complicates the selection of the
grid cell size. Because of this irregularity, some geometry envelopes intersect
several grids, while others fit inside a single grid cell. Conversely, depending
on the spatial distribution of the data, some grid cells intersect many
geometry envelopes.

For a spatial index to function well, it is essential that the correct number and
size of grids are selected. Consider a spatial column containing uniformly
sized geometry. In this case, a single grid level will suffice. Start with a grid
cell size that encompasses the average geometry envelope. While testing your
application, you might find that increasing the grid cell size improves the
performance of your queries. This is because each grid cell contains more
geometries, and the first pass is able to discard non-qualifying geometries
faster. However, you will find that as you continue to increase the cell size,
performance will begin to deteriorate. This because eventually the second pass
will have to contend with more candidates.

Selecting the number of levels
If the objects that you want to index are about the same relative size, you can
use a single grid level. Although this is true, not all columns will contain
geometry of the same relative size. Usually geometries of spatial columns can
be grouped into several size intervals. For example, consider a road network
in which the geometries are divided into streets, major roads, and highways.
The streets are all about the same length and can be grouped in one size
interval. This is also true for the major roads and highways. Therefore, the
streets, representing one size interval, could be grouped into the first grid
level, the road networks into the second, and the major highways into the
third grid level. Another example includes a county-parcel column that
contains clusters of small urban parcels surrounded by larger rural parcels. In
this instance, there are two size intervals and two grid levels, one for the
small urban parcels, and another for the larger rural parcels. These situations
are very common and require the use of a multilevel grid.

To select the cell size of each grid level, select grid cell sizes that are slightly
larger than each size interval. Test the index by performing queries against the
spatial column.

116 DB2 Spatial Extender User’s Guide and Reference

Each additional level requires an extra index scan. Try adjusting the grid sizes
up or down slightly to determine if an appreciable improvement in
performance can be obtained.

Chapter 12. Spatial indexes 117

118 DB2 Spatial Extender User’s Guide and Reference

Chapter 13. Geometries and associated spatial functions

This chapter discusses units of information, called geometries, that consist of
coordinates and symbolize geographic features. The chapter also introduces
spatial functions that take geometries as input and return results that help
you to analyze geographic features and to move spatial data between
geographic information systems. The topics covered are:
v The nature of geometries
v Geometries’ properties; functions that return information related to these

properties
v Instantiable geometries; functions that operate on them
v Functions that:

– Show relationships and comparisons between geographic features
– Generate geometries
– Convert geometry values into importable and exportable formats

About geometries

The Oxford American Dictionary defines geometry as “the branch of
mathematics dealing with the properties of and relations of lines, angles,
surfaces and solids.” On August 11, 1997, the Open GIS Consortium Inc.
(OGC) in its publication, Open GIS Features for ODBC (SQL) Implementation
Specification, coined another definition for the term. The word geometry was
selected to denote the geometric features that, for the past millennium or
more, cartographers have used to map the world. A very abstract definition of
this new meaning of geometry might be “a point or aggregate of points
symbolizing a feature on the ground.”

In DB2 Spatial Extender, an operational definition of geometry might be “a
model of a geographic feature.” The model can be expressed in terms of the
feature’s coordinates and also, in some cases, in terms of a visual symbol. The
model conveys information; for example, the coordinates identify the position
of the feature with respect to fixed points of reference, and the symbol
outlines its form. Also, the model can be used to produce information; for
example, the ST_Overlaps function can take the coordinates of two proximate
regions as input and return information as to whether the regions overlap or
not.

The coordinates of a feature that a geometry symbolizes are regarded as
properties of the geometry. Several kinds of geometries have other properties as
well; for example:

© Copyright IBM Corp. 1998, 2000 119

v An interior represents the content of the feature that the geometry
symbolizes.

v An exterior represents the space around the feature.
v A boundary represents the demarcation where the content ends and the

surrounding space begins.

These and additional properties are discussed in “Properties of geometries
and associated functions” on page 121.

The geometries supported by DB2 Spatial Extender form a hierarchy, shown
in Figure 9. Six members of the hierarchy are instantiable; they can be
expressed as visual symbols, which are also shown in the figure.

As Figure 9 indicates, a superclass called geometry is the root of the hierarchy.
The subclasses are divided into two categories: the base geometry subclasses,
and the homogeneous collection subclasses. The base geometries include:
v Points, which symbolize discrete features that are perceived as occupying

the locus where an east-west coordinate line (such as a parallel) intersects a
north-south coordinate line (such as a meridian). For example, suppose that

Figure 9. Hierarchy of geometries supported by DB2 Spatial Extender. Instantiable geometries can
be expressed as visual symbols. These symbols are shown under the names of these geometries.

120 DB2 Spatial Extender User’s Guide and Reference

the notation on a large-scale map shows that each city on the map is
located at the intersection of a parallel and a meridian. On this scale, each
city could be symbolized by a point.

v Linestrings, which symbolize linear geographic features (for example, streets,
canals, and pipelines).

v Polygons, which symbolize multisided geographic features (for example,
welfare districts, forests, and wildlife habitats).

The homogeneous collections include:
v Multipoints, which symbolize multipart features whose components are each

located at the intersection of an east-west coordinate line and a north-south
coordinate line (for example, an island chain whose members are each
situated at an intersection of a parallel and meridian).

v Multilinestrings, which symbolize multipart features made up of linear units
or components (for example, river systems and highway systems).

v Multipolygons, which symbolize multipart features made up of multisided
units or components (for example, the collective farmlands in a specific
region, or a system of lakes).

As their names imply, the homogeneous collections are collections of base
geometries. In addition to sharing base geometry properties, homogeneous
collections have some of their own properties as well.

The spatial data types supported by DB2 Spatial Extender are
implementations of the geometries shown in Figure 9 on page 120. For a
description of these data types, see “About spatial data types” on page 31.

Properties of geometries and associated functions

This section describes geometries’ properties and the spatial functions that are
associated with these properties. The section begins with core properties:
v What class a geometry belongs to
v X and Y coordinates

This section also explains:
v Z coordinates
v Measures
v A geometry’s interior, boundary, and exterior
v The quality of being simple or non-simple
v The quality of being empty or not empty
v A geometry’s envelope
v Dimension
v The identifier of a geometry’s associated spatial reference system

Chapter 13. Geometries and associated spatial functions 121

Class
Each geometry belongs to a class in the hierarchy shown in Figure 9 on
page 120. As indicated in “About geometries” on page 119, six subclasses in
the hierarchy—points, linestrings, polygons, multipoints, multilinestrings, and
multipolygons—are instantiable. The superclass and other subclasses are not
instantiable.

The ST_GeometryType function takes a geometry and returns the instantiable
subclass in the form of a character string. For more information, see
“ST_GeometryType” on page 212.

The ST_IsValid function takes a geometry that has been assigned to an
ST_Geometry data type. The function returns 1 (TRUE) if the geometry is
valid and 0 (FALSE) if the geometry is not valid. For more information, see
“ST_IsValid” on page 228.

X and Y coordinates
An X coordinate value denotes a location that is relative to a point of reference
to the east or west. A Y coordinate value denotes a location that is relative to a
point of reference to the north or south. For further information, see “The
nature of spatial data” on page 5 and “About coordinate and spatial reference
systems” on page 23.

Z coordinates
Some geometries have an associated altitude or depth. Each of the points that
form the geometry of a feature can include an optional Z coordinate that
represents an altitude or depth normal to the earth’s surface.

The Is3d predicate function takes a geometry and returns 1 (TRUE) if the
function has Z coordinates and 0 (FALSE) otherwise. For more information,
see “Is3d” on page 160.

Measures
A measure is a value that conveys information about a geographic feature and
that is stored together with the coordinates that define the feature’s location.
For example, suppose that you are representing transportation systems in
your GIS. If you want your application to process values that denote linear
distances or mileposts, you can store these values along with the coordinates
that define the locations of the systems. Measures are stored as double
precision numbers.

The IsMeasured predicate takes a geometry and returns a 1 (TRUE) if it
contains measures and 0 (FALSE) otherwise. For more information, see
“IsMeasured” on page 161.

122 DB2 Spatial Extender User’s Guide and Reference

Interior, boundary, and exterior
All geometries occupy a position in space defined by their interior, boundary,
and exterior. The exterior of a geometry is all space not occupied by the
geometry. The boundary of a geometry serves as the interface between its
interior and exterior. The interior is the space occupied by the geometry.
Subclasses inherit the interior and exterior properties directly, yet the
boundary property differs for each.

The ST_Boundary function takes a geometry and returns a geometry that
represents the source geometry’s boundary. For more information, see
“ST_Boundary” on page 182.

Simple or non-simple
Some subclasses of geometry (linestrings, multipoints, and multilinestrings)
are either simple or non-simple. A subclass is simple if it obeys all the
topological rules imposed on the subclass, and non-simple if it doesn’t. A
linestring is simple if it does not intersect its interior. A multipoint is simple if
none of its elements occupy the same coordinate space. A multilinestring is
simple if none of its element’s interiors are intersected by its own interior.

The ST_IsSimple predicate function takes a geometry and returns 1 (TRUE) if
the geometry is simple and 0 (FALSE) otherwise. For more information, see
“ST_IsSimple” on page 227.

Empty or not empty
A geometry is empty if it does not have any points. The envelope, boundary,
interior, and exterior of an empty geometry are NULL. An empty geometry is
always simple and can have Z coordinates or measures. Empty linestrings and
multilinestrings have a 0 length. Empty polygons and multipolygons have a 0
area.

The ST_IsEmpty predicate function takes a geometry and returns 1 (TRUE) if
the geometry is empty and 0 (FALSE) otherwise. For more information, see
“ST_IsEmpty” on page 224.

Envelope
The envelope of a geometry is the bounding geometry formed by the
minimum and maximum (X,Y) coordinates. With the following exceptions, the
envelopes of most geometries form a boundary rectangle:
v The envelope of a point is the point itself, because its minimum and

maximum coordinates are the same.
v The envelope of a horizontal or vertical linestring is a linestring represented

by the boundary (the endpoints) of the source linestring.

Chapter 13. Geometries and associated spatial functions 123

The ST_Envelope function takes a geometry and returns a bounding geometry,
which represents its envelope. For more information, see “ST_Envelope” on
page 202.

Dimension
A geometry can have a dimension of 0, 1, or 2. The dimensions are listed as
follows:

0 Has neither length nor area

1 Has a length

2 Contains area

The point and multipoint subclasses have a dimension of zero. Points
represent dimensional features that can be modeled with a single coordinate,
while multipoint subclasses represent data that must be modeled with a
cluster of disconnected coordinates.

The subclasses linestring and multilinestring have a dimension of one. They
store road segments, branching river systems and any other features that are
linear in nature.

Polygon and multipolygon subclasses have a dimension of two. Features
whose perimeter encloses a definable area, such as forests, parcels of land,
and water bodies can be rendered by either the polygon or multipolygon data
type.

Dimension is important not only as a property of the subclass, but it also
plays a part in determining the spatial relationship of two features. The
dimension of the resulting feature or features determines whether or not the
operation was successful. DB2 Spatial Extender examines the dimension of the
features to determine how they should be compared.

The ST_Dimension function takes a geometry and returns its dimension as an
integer. For more information, see “ST_Dimension” on page 196.

Spatial reference system identifier
The spatial reference system identifies the coordinate transformation for each
geometry.

All spatial reference systems known to the database can be accessed through
the DB2GSE.SPATIAL_REF_SYS catalog view. For information about this view,
see “Chapter 11. Catalog views” on page 105.

The ST_SRID function takes a geometry and returns its spatial reference
identifier as an integer. For more information, see “ST_SRID” on page 260.

124 DB2 Spatial Extender User’s Guide and Reference

The ST_Transform function assigns a geometry to a spatial reference system
other than the spatial reference system to which the geometry is currently
assigned. For more information, see “ST_Transform” on page 265.

Instantiable geometries and associated functions

This section profiles the six subclasses of instantiable geometries and describes
the functions that operate on them. The subclasses are:
v Points
v Linestrings
v Polygons
v Multipoints
v Multilinestrings
v Multipolygons

For illustrations of the hierarchy to which these subclasses belong and of the
visual symbols associated with them, see Figure 9 on page 120.

Points
A point is a zero-dimensional geometry that occupies a single location in
coordinate space. A point includes an X coordinate and a Y coordinate that
define this location. It can also include a Z coordinate and a measure.

A point is simple and has a NULL boundary. Points are often used to define
features such as oil wells, landmarks, and elevations.

Functions that operate solely on the point subclass:

ST_Point
Takes an X coordinate, its associated Y coordinate, and the identifier
of the spatial reference system to which these coordinates belong, and
returns the point that the coordinates define. For more information,
see “ST_Point” on page 251.

ST_CoordDim
Returns a value that denotes what coordinates a point contains, and
whether it also contains a measure. This value is called a coordinate
dimension. Possible coordinate dimensions are:

2 The point consists of an X coordinate and a Y coordinate.

3 The point consists of an X coordinate, a Y coordinate, and a Z
coordinate.

4 The point consists of an X coordinate, a Y coordinate, a Z
coordinate, and a measure.

For more information, see “ST_CoordDim” on page 191.

Chapter 13. Geometries and associated spatial functions 125

ST_PointFromText
Takes an OGC well-known text (WKT) representation of a point and
returns the point. For more information, see “ST_PointFromText” on
page 249.

ST_X Returns an ST_Point data type’s X coordinate value as a double
precision number. For more information, see “ST_X” on page 271.

ST_Y Returns an ST_Point data type’s Y coordinate value as a double
precision number. For more information, see “ST_Y” on page 272.

Z Returns an ST_Point data type’s Z coordinate value as a double
precision number. For more information, see “Z” on page 273.

M Returns an ST_Point data type’s measure as a double precision
number. For more information, see “M” on page 168.

Linestrings
A linestring is a one-dimensional object stored as a sequence of points
defining a linear interpolated path. The linestring is simple if it does not
intersect its interior. The endpoints (the boundary) of a closed linestring
occupy the same point in space. A linestring is a ring if it is closed and if its
interior does not intersect itself. In addition to the other properties inherited
from the superclass geometry, linestrings have length. Linestrings are often
used to define linear features such as roads, rivers, and power lines.

A simple linestring whose startpoint and endpoint are the same is called a
ring.

The endpoints normally form the boundary of a linestring unless the
linestring is closed in which case the boundary is NULL. The interior of a
linestring is the connected path that lies between the endpoints, unless it is
closed in which case the interior is continuous.

Functions that operate on linestrings:

ST_StartPoint
Takes a linestring and returns its first point. For more information, see
“ST_StartPoint” on page 261.

ST_EndPoint
Takes a linestring and returns its last point. For more information, see
“ST_Endpoint” on page 201.

ST_PointN
Takes a linestring and an index to nth point and returns that point.
For more information, see “ST_PointN” on page 252.

126 DB2 Spatial Extender User’s Guide and Reference

ST_Length
Takes a linestring and returns its length as a double precision number.
For more information, see “ST_Length” on page 230.

ST_NumPoints
Takes a linestring and returns the number of points in its sequence as
an integer. For more information, see “ST_NumPoints” on page 244.

ST_IsRing
Takes a linestring and returns 1 (TRUE) if the linestring is a ring and
0 (FALSE) otherwise. For more information, see “ST_IsRing” on
page 226.

ST_IsClosed
Takes a linestring and returns 1 (TRUE) if the linestring is closed and
0 (FALSE) otherwise. For more information, see “ST_IsClosed” on
page 222.

Polygons
A polygon is a two-dimensional surface stored as a sequence of points
defining its exterior bounding ring and 0 or more interior rings. A polygon’s
rings cannot overlap. Therefore, by definition, polygons are always simple.
Most often they define parcels of land, water bodies, and other features that
have a spatial extent.

Figure 10. Linestring objects.
1. A simple non-closed linestring.

2. A non-simple non-closed linestring.

3. A closed simple linestring and therefore a ring.

4. A closed non-simple linestring. It is not a ring.

Chapter 13. Geometries and associated spatial functions 127

The exterior and any interior rings define the boundary of a polygon, and the
space enclosed between the rings defines the polygon’s interior. The rings of a
polygon can intersect at a tangent point but never cross. In addition to the
other properties inherited from the superclass geometry, polygons have area.

Functions that operate on polygons:

ST_Area
Takes a polygon and returns its area as a double precision number.
For more information, see “ST_Area” on page 178.

ST_ExteriorRing
Takes a polygon and returns its exterior ring as a linestring. For more
information, see “ST_ExteriorRing” on page 205.

ST_NumInteriorRing
Takes a polygon and returns the number of interior rings that it
contains. For more information, see “ST_NumInteriorRing” on
page 243.

ST_InteriorRingN
Takes a polygon and an index and returns the nth interior ring as a
linestring. For more information, see “ST_InteriorRingN” on page 214.

ST_Centroid
Takes a polygon and returns a point that is the center of the polygon’s
extent. For more information, see “ST_Centroid” on page 186.

ST_PointOnSurface
Takes a polygon and returns a point that is guaranteed to be on the
surface of the polygon. For more information, see
“ST_PointOnSurface” on page 253.

ST_Perimeter
Takes a polygon and returns the perimeter of its surface. For more
information, see “ST_Perimeter” on page 248.

Figure 11. Polygons.
1. A polygon whose boundary is defined by an exterior ring.

2. A polygon whose boundary is defined by an exterior ring and two interior rings. The area
inside the interior rings is part of the polygons exterior.

3. A legal polygon because the rings intersect at a single tangent point.

128 DB2 Spatial Extender User’s Guide and Reference

Multipoints
A multipoint is a collection of points, and like its elements, it has a dimension
of 0. A multipoint is simple if none of its elements occupy the same
coordinate space. The boundary of a multipoint is NULL. Multipoints may be
used to define phenomena such as aerial broadcast patterns and incidents of
an epidemic outbreak.

Functions that operate on multipoints:

ST_NumGeometries
Takes a homogeneous collection and returns the number of base
geometry elements it contains. For more information, see
“ST_NumGeometries” on page 242.

ST_GeometryN
Takes a homogeneous collection and an index and returns the nth
base geometry. For more information, see “ST_GeometryN” on
page 211.

Multilinestrings
A multilinestring is a collection of linestrings. Multilinestrings are simple if
they intersect only at the endpoints of the linestring elements. Multilinestrings
are non-simple if the interiors of the linestring elements intersect.

The boundary of a multilinestring is the non-intersected endpoints of the
linestring elements. The multilinestring is closed if all of its linestring
elements are closed. The boundary of a multilinestring is NULL if all of the
endpoints of all of the elements are intersected. In addition to the other
properties inherited from the superclass geometry, multilinestrings have
length. Multilinestrings are used to define streams or road networks.

Functions that operate on multilinestrings:

ST_Length
Takes a multilinestring and returns the cumulative length of all its
linestring elements as a double precision number. For more
information, see “ST_Length” on page 230.

ST_IsClosed
Takes a multilinestring and returns 1 (TRUE) if the multilinestring is
closed and 0 (FALSE) otherwise. For more information, see
“ST_IsClosed” on page 222.

ST_NumGeometries
Takes a homogeneous collection and returns the number of base
geometry elements it contains. For more information, see
“ST_NumGeometries” on page 242.

Chapter 13. Geometries and associated spatial functions 129

ST_GeometryN
Takes a homogeneous collection and an index and returns the nth
base geometry. For more information, see “ST_GeometryN” on
page 211.

Multipolygons
The boundary of a multipolygon is the cumulative length of its element’s
exterior and interior rings. The interior of a multipolygon is defined as the
cumulative interiors of its element polygons. The boundary of a
multipolygon’s elements can intersect only at a tangent point. In addition to
the other properties inherited from the superclass geometry, multipolygons
have area. Multipolygons define features such as a forest stratum or a
non-contiguous parcel of land such as an island chain.

Figure 12. Multilinestrings.
1. A simple multilinestring whose boundary is defined by the four endpoints of its two

linestring elements.

2. A simple multilinestring because only the endpoints of the linestring elements intersect. The
boundary is defined by the two non-intersecting endpoints.

3. A non-simple linestring because the interior of one of its linestring elements is intersected. The
boundary of this multilinestring is defined by the four endpoints, including the intersecting
point.

4. A simple non-closed multilinestring. It is not closed because its element linestrings are not
closed. It is simple because none of the interiors of any of the element linestrings are
intersected.

5. A simple closed multilinestring. It is closed because all of its elements are closed. It is simple
because none of its elements are intersected at the interiors.

130 DB2 Spatial Extender User’s Guide and Reference

Functions that operate on multipolygons:

ST_Area
Takes a multipolygon and returns the cumulative area of its polygon
elements as a double precision number. For more information, see
“ST_Area” on page 178.

ST_Centroid
Takes a multipolygon and returns a point that is its
geometric-weighted center. For more information, see “ST_Centroid”
on page 186.

ST_NumGeometries
Takes a homogeneous collection and returns the number of base
geometry elements it contains. For more information, see
“ST_NumGeometries” on page 242.

ST_GeometryN
Takes a homogeneous collection and an index and returns the nth
base geometry. For more information, see “ST_GeometryN” on
page 211.

Functions that show relationships and comparisons, generate geometries, and
convert values’ formats

The preceding sections introduced three categories of spatial functions:
v Functions associated with geometries’ properties
v Functions associated with specific geometries

This section introduces three more categories:
v Functions that determine ways in which geographic features relate or

compare
v Functions that generate new geometries

Figure 13. Multipolygons.
1. A multipolygon with two polygon elements. The boundary is defined by the two exterior

rings and the three interior rings.

2. A multipolygon with two polygon elements. The boundary is defined by the two exterior
rings and the two interior rings. The two polygon elements intersect at a tangent point.

Chapter 13. Geometries and associated spatial functions 131

v Functions that convert the values of a geometry into a format that can be
imported or exported

Functions that show relationships or comparisons between geographic
features

Several spatial functions return information about ways in which geographic
features relate to one another or compare with one another. Most of these
functions, called predicates, are boolean functions. This section describes the
predicates in general and then discusses each function individually.

Predicate functions
Predicate functions return 1 (TRUE) if a comparison meets the function’s
criteria, or 0 (FALSE) if the comparison fails. Predicates that test for a spatial
relationship compare pairs of geometries that can be a different type or
dimension.

Predicates compare the X and Y coordinates of the submitted geometries. The
Z coordinates and the measure (if they exist) are ignored. This allows
geometries that have Z coordinates or measure to be compared with those
that do not.

The Dimensionally Extended 9 Intersection Model (DE-9IM) 1is a mathematical
approach that defines the pair-wise spatial relationship between geometries of
different types and dimensions. This model expresses spatial relationships
between all types of geometries as pair-wise intersections of their interior,
boundary and exterior, with consideration for the dimension of the resulting
intersections.

Given geometries a and b: I(a), B(a), and E(a) represent the interior,
boundary, and exterior of a. And, I(b), B(b), and E(b) represent the interior,
boundary, and exterior of b. The intersections of I(a), B(a), and E(a) with I(b),
B(b), and E(b) produces a 3 by 3 matrix. Each intersection can result in
geometries of different dimensions. For example, the intersection of the
boundaries of two polygons consists of a point and a linestring, in which case
the dim function would return the maximum dimension of 1.

The dim function returns a value of 1, 0, 1 or 2. The 1 corresponds to the null
set or dim(null), which is returned when no intersection was found.

1. The DE-91M was developed by Clementini and Felice, who dimensionally extended the 9 Intersection Model of
Egenhofer and Herring. DE-91M is collaboration of four authors, Clementini, Eliseo, Di Felice, and van Osstrom.
They published the model in ″A Small Set of Formal Topological Relationships Suitable for End-User Interaction,″
D. Abel and B.C. Ooi (Ed.), Advances in Spatial Database—Third International Symposium. SSD ’93. LNCS 692. Pp.
277-295. The 9 Intersection model by Springer-Verlag Singapore (1993) Egenhofer M.J. and Herring, J., was
published in ″Categorizing binary topological relationships between regions, lines, and points in geographic
databases,″ Tech. Report, Department of Surveying Engineering, University of Maine, Orono, ME 1991.

132 DB2 Spatial Extender User’s Guide and Reference

Interior Boundary Exterior
Interior dim(I(a) � I(b)) dim(I(a) � B(b)) dim(I(a) � E(b))

Boundary dim(B(a) � I(b)) dim(B(a) � B(b)) dim(B(a) � E(b))
Exterior dim(E(a) � I(b)) dim(E(a) � B(b)) dim(E(a) � E(b))

The results of the spatial relationship predicates can be understood or verified
by comparing the results of the predicate with a pattern matrix that represents
the acceptable values for the DE-9IM.

The pattern matrix contains the acceptable values for each of the intersection
matrix cells. The possible pattern values are:

T An intersection must exist, dim = 0, 1, or 2.

F An intersection must not exist, dim = -1.

* It does not matter if an intersection exists, dim = -1, 0, 1, or 2.

0 An intersection must exist and its maximum dimension must be 0,
dim = 0.

1 An intersection must exist and its maximum dimension must be 1,
dim = 1.

2 An intersection must exist and its maximum dimension must be 2,
dim = 2.

For example, the following pattern matrix for the ST_Within predicate
includes the values T, F, and *.

Table 40. Matrix for ST_Within. The pattern matrix of the ST_Within predicate for
geometry combinations.

b
Interior Boundary Exterior

a Interior T * F
Boundary * * F

Exterior * * *

The ST_Within predicate returns TRUE when the interiors of both geometries
intersect and when the interior and boundary of a does not intersect the
exterior of b. All other conditions do not matter.

Each predicate has at least one pattern matrix, but some require more than
one to describe the relationships of various geometry type combinations.

Chapter 13. Geometries and associated spatial functions 133

ST_Equals
ST_Equals returns 1 (TRUE) if two geometries of the same type have identical
X,Y coordinate values.

Table 41. Matrix for equality. The DE-9IM pattern matrix for equality ensures that the
interiors intersect and that no part interior or boundary of either geometry intersects the
exterior of the other.

b
Interior Boundary Exterior

a Interior T * F
Boundary * * F

Exterior F F *

For more information, see “ST_Equals” on page 204.

Figure 14. ST_Equals. Geometries are equal if they have matching X,Y coordinates.

134 DB2 Spatial Extender User’s Guide and Reference

ST_OrderingEquals
ST_OrderingEquals compares two geometries and returns 1 (TRUE) if the
geometries are equal and the coordinates are in the same order; otherwise, it
returns 0 (FALSE). For more information, see “ST_OrderingEquals” on
page 245.

ST_Disjoint
ST_Disjoint returns 1 (TRUE) if the intersection of the two geometries is an
empty set.

Figure 15. ST_Disjoint. Geometries are disjoint if they do not intersect one another in any way.

Chapter 13. Geometries and associated spatial functions 135

Table 42. Matrix for ST_Disjoint. The ST_Disjoint predicate’s pattern matrix simple
states that neither the interiors nor the boundaries of either geometry intersect.

b
Interior Boundary Exterior

a Interior F F *
Boundary F F *

Exterior * * *

For more information, see “ST_Disjoint” on page 198.

ST_Intersects
ST_Intersects returns 1 (TRUE) if the intersection does not result in an empty
set. Intersects returns the exact opposite result of ST_Disjoint.

The ST_Intersects predicate returns TRUE if the conditions of any of the
following pattern matrices returns TRUE.

Table 43. Matrix for ST_Intersects (1). The ST_Intersects predicate returns TRUE if the
interiors of both geometries intersect.

b
Interior Boundary Exterior

a Interior T * *
Boundary * * *

Exterior * * *

Table 44. Matrix for ST_Intersects (2). The ST_Intersects predicate returns TRUE if the
boundary of the first geometry intersects the boundary of the second geometry.

b
Interior Boundary Exterior

a Interior * T *
Boundary * * *

Exterior * * *

Table 45. Matrix for ST_Intersects (3). The ST_Intersects predicate returns TRUE if the
boundary of the first geometry intersects the interior of the second.

b
Interior Boundary Exterior

a Interior * * *
Boundary T * *

Exterior * * *

136 DB2 Spatial Extender User’s Guide and Reference

Table 46. Matrix for ST_Intersects (4). The ST_Intersects predicate returns TRUE if the
boundaries of either geometry intersect.

b
Interior Boundary Exterior

a Interior * * *
Boundary * T *

Exterior * * *

For more information, see “ST_Intersects” on page 221.

EnvelopesIntersect
This function returns 1 (TRUE) if the envelopes of two geometries intersect. It
is a convenience function that efficiently implements ST_Intersects
(ST_Envelope(g1),ST_Envelope(g2)). For more information, see
“EnvelopesIntersect” on page 158.

ST_Touches
ST_Touches returns 1 (TRUE) if none of the points common to both
geometries intersect the interiors of both geometries. At least one geometry
must be a linestring, polygon, multilinestring or multipolygon.

The pattern matrices show that the ST_Touches predicate returns TRUE when
the interiors of the geometry do not intersect, and the boundary of either
geometry intersects the other’s interior or its boundary.

Figure 16. ST_Touches

Chapter 13. Geometries and associated spatial functions 137

Table 47. Matrix for ST_Touches (1)
b
Interior Boundary Exterior

a Interior F T *
Boundary * * *

Exterior * * *

Table 48. Matrix for ST_Touches (2)
b
Interior Boundary Exterior

a Interior F * *
Boundary T * *

Exterior * * *

Table 49. Matrix for ST_Touches (3)
b
Interior Boundary Exterior

a Interior F * *
Boundary * T *

Exterior * * *

For more information, see “ST_Touches” on page 264.

ST_Overlaps
ST_Overlaps compares two geometries of the same dimension. It returns 1
(TRUE) if their intersection set results in a geometry different from both, but
that has the same dimension.

The pattern matrix in Table 50 on page 139 applies to polygon/polygon,
multipoint/multipoint and multipolygon/multipolygon overlays. For these
combinations the overlay predicate returns TRUE if the interior of both
geometries intersect the others interior and exterior.

Figure 17. ST_Overlaps

138 DB2 Spatial Extender User’s Guide and Reference

Table 50. Matrix for ST_Overlaps (1)
b
Interior Boundary Exterior

a Interior T * T
Boundary * * *

Exterior T * *

The pattern matrix in Table 51 applies to linestring/linestring and
multilinestring/multilinestring overlays. In this case the intersection of the
geometries must result in a geometry that has a dimension of 1 (another
linestring). If the dimension of the intersection of the interiors is 1, the
ST_Overlaps predicate would return FALSE, however the ST_Crosses
predicate would return TRUE.

Table 51. Matrix for ST_Overlaps (2)
b
Interior Boundary Exterior

a Interior 1 * T
Boundary * * *

Exterior T * *

For more information, see “ST_Overlaps” on page 246.

ST_Crosses
ST_Crosses returns 1 (TRUE) if the intersection results in a geometry whose
dimension is one less than the maximum dimension of the two source
geometries and the intersection set is interior to both source geometries.
ST_Crosses returns 1 (TRUE) for only multipoint/polygon,
multipoint/linestring, linestring/linestring, linestring/polygon, and
linestring/multipolygon comparisons.

Chapter 13. Geometries and associated spatial functions 139

The pattern matrix in Table 52 applies to multipoint/linestring,
multipoint/multilinestring, multipoint/polygon, multipoint/multipolygon,
linestring/polygon, linestring/multipolygon. The matrix states that the
interiors must intersect and that the interior of the primary (geometry a)
must intersect the exterior of the secondary (geometry b).

Table 52. Matrix for ST_Crosses (1)
b
Interior Boundary Exterior

a Interior T * T
Boundary * * *

Exterior * * *

The pattern matrix in Table 53 applies to the linestring/linestring,
linestring/multilinestring and multilinestring/multilinestring. The matrix
states that the dimension of the intersection of the interiors must be 0
(intersect at a point). If the dimension of this intersection is 1 (intersect at a
linestring), the ST_Crosses predicate returns FALSE; however, the ST_Overlaps
predicate returns TRUE.

Table 53. Matrix for ST_Crosses (2)
b
Interior Boundary Exterior

a Interior 0 * *
Boundary * * *

Exterior * * *

140 DB2 Spatial Extender User’s Guide and Reference

For more information, see “ST_Crosses” on page 193.

ST_Within
ST_Within returns 1 (TRUE) if the first geometry is completely within the
second geometry. ST_Within returns the exact opposite result of ST_Contains.

The ST_Within predicate pattern matrix states that the interiors of both
geometries must intersect, and that the interior and boundary of the primary
geometry (geometry a) must not intersect the exterior of the secondary
(geometry b).

Figure 18. Within

Chapter 13. Geometries and associated spatial functions 141

Table 54. Matrix for ST_Within
b
Interior Boundary Exterior

a Interior T * F
Boundary * * F

Exterior * * *

For more information, see “ST_Within” on page 267.

ST_Contains
ST_Contains returns 1 (TRUE) if the second geometry is completely contained
by the first geometry. The ST_Contains predicate returns the exact opposite
result of the ST_Within predicate.

Figure 19. ST_Contains

142 DB2 Spatial Extender User’s Guide and Reference

The pattern matrix of the ST_Contains predicate states that the interiors of
both geometries must intersect and that the interior and boundary of the
secondary (geometry b) must not intersect the exterior of the primary
(geometry a).

Table 55. Matrix for ST_Contains
b
Interior Boundary Exterior

a Interior T * *
Boundary * * *

Exterior F F *

For more information, see “ST_Contains” on page 187.

ST_Relate
The ST_Relate function compares two geometries and returns 1 (TRUE) if the
geometries meet the conditions specified by the DE-91M pattern matrix string;
otherwise, the function returns 0 (FALSE). For more information, see
“ST_Relate” on page 258.

ST_Distance
The ST_Distance function reports the minimum distance separating two
disjoint features. If the features are not disjoint, the function will report a 0
minimum distance.

For example, ST_Distance could report the shortest distance an aircraft must
travel between two locations. Figure 20 illustrates this information.

For more information, see “ST_Distance” on page 200.

Figure 20. Minimum distance between two cities. ST_Distance can take the coordinates for the
locations of Los Angeles and Chicago as input, and return a value denoting the minimum distance
between these locations.

Chapter 13. Geometries and associated spatial functions 143

Functions that generate new geometries from existing ones
DB2 Spatial Extender provides predicates and transformation functions that
generate new geometries from existing ones.

ST_Intersection
The ST_Intersection function returns the intersection set of two geometries.
The intersection set is always returned as a collection that is the minimum
dimension of the source geometries. For example, for a linestring that
intersects a polygon, the intersection function returns a multilinestring
comprised of that portion of the linestring common to the interior and
boundary of the polygon. The multilinestring contains more than one
linestring if the source linestring intersects the polygon with two or more
discontinuous segments. If the geometries do not intersect or if the
intersection results in a dimension less that both of the source geometries, an
empty geometry is returned.

144 DB2 Spatial Extender User’s Guide and Reference

For more information, see “ST_Intersection” on page 219.

ST_Difference
The ST_Difference function returns the portion of the primary geometry that
is not intersected by the secondary geometry. This is the logical AND NOT of
space. The ST_Difference function operates only on geometries of like
dimension and returns a collection that has the same dimension as the source
geometries. In the event that the source geometries are equal, an empty
geometry is returned.

Figure 21. ST_Intersection. Examples of the ST_Intersection function.

Chapter 13. Geometries and associated spatial functions 145

For more information, see “ST_Difference” on page 195.

ST_Union
The ST_Union function returns the union set of two geometries. This is the
logical OR of space. The source geometries must be of like dimension.
ST_Union always returns the result as a collection.

For more information, see “ST_Union” on page 266.

ST_Buffer
The ST_Buffer function generates a geometry by encircling a geometry at a
specified distance. A polygon results when a primary geometry is buffered or
whenever the elements of a collection are close enough such that all of the
buffer polygons overlap. However, when there is enough separation between

Figure 22. ST_Difference

Figure 23. ST_Union

146 DB2 Spatial Extender User’s Guide and Reference

the elements of a buffered collection, individual buffer polygons will result, in
which case the ST_Buffer function returns a multipolygon.

The ST_Buffer function accepts both positive and negative distance, however,
only geometries with a dimension of two (polygons and multipolygons) apply
a negative buffer. The absolute value of the buffer distance is used whenever
the dimension of the source geometry is less than 2 (all geometries that are
not polygon or multipolygon).

In general, for exterior rings, positive buffer distances generate polygon rings
that are away from the center of the source geometry; negative buffer
distances generate polygon or multipolygon rings toward the center. For
interior rings of a polygon or multipolygon, a positive buffer distance
generates a buffer ring toward the center, and a negative buffer distance
generates a buffer ring away from the center.

The buffering process merges polygons that overlap. Negative distances
greater than one half the maximum interior width of a polygon result in an
empty geometry.

For more information, see “ST_Buffer” on page 184.

Figure 24. ST_Buffer

Chapter 13. Geometries and associated spatial functions 147

LocateAlong
For geometries that have measures, the location of a particular measure can be
found with the LocateAlong function. LocateAlong returns the location as a
multipoint. If the source geometry’s dimension is 0 (for example, a point and
a multipoint), an exact match is required, and those points having a matching
measure value are returned as a multipoint. However, for source geometries
whose dimension is greater than 0, the location is interpolated. For example, if
the measure value entered is 5.5 and the measures on vertices of a linestring
are a respective 3, 4, 5, 6, and 7, the interpolated point that falls exactly
halfway between the vertices with measure values 5 and 6 is returned.

For more information, see “LocateAlong” on page 164.

LocateBetween
The LocateBetween function returns either the set of paths or locations that lie
between two measure values from a source geometry that has measures. If the
source geometry’s dimension is 0, LocateBetween returns a multipoint
containing all points whose measures lie between the two source measures.
For source geometries whose dimension is greater than 0, LocateBetween
returns a multilinestring if a path can be interpolated; otherwise
LocateBetween returns a multipoint containing the point locations. An empty
point is returned whenever LocateBetween cannot interpolate a path or find a
location between the measures. LocateBetween performs an inclusive search of
the geometries; therefore the geometries’ measures must be greater than or
equal to the from measure and less than or equal to the to measure.

Figure 25. LocateAlong

148 DB2 Spatial Extender User’s Guide and Reference

For more information, see “LocateBetween” on page 166.

ST_ConvexHull
The ST_ConvexHull function returns the convex hull polygon of any
geometry that has at least three vertices forming a convex. If vertices of the
geometry do not form a convex, ST_ConvexHull returns a null.
ST_ConvexHull is often the first step in tessellation used to create a TIN
network from a set of points.

For more information, see “ST_ConvexHull” on page 189.

ST_Polygon
Generates a polygon from a linestring. For more information, see
“ST_Polygon” on page 257.

Functions that convert the format of a geometry’s values
DB2 Spatial Extender supports three GIS data exchange formats:
v Well-known text representation
v Well-known binary representation
v ESRI binary shape representation

Well-known text representation
DB2 Spatial Extender has several functions that generate geometries from text
descriptions.

ST_WKTToSQL
Creates a geometry from a text representation of any geometry type.
No spatial reference system identifier should be specified. For more
information, see “ST_WKTToSQL” on page 270.

Figure 26. LocateBetween

Figure 27. ST_ConvexHull

Chapter 13. Geometries and associated spatial functions 149

ST_GeomFromText
Creates a geometry from a text representation of any geometry type.
A spatial reference system identifier must be specified. For more
information, see “ST_GeometryFromText” on page 207.

ST_PointFromText
Creates a point from a point text representation. For more
information, see “ST_PointFromText” on page 249.

ST_LineFromText
Creates a linestring from a linestring text representation. For more
information, see “ST_LineFromText” on page 232.

ST_PolyFromText
Creates a polygon from a polygon text representation. For more
information, see “ST_PolyFromText” on page 254.

ST_MPointFromText
Creates a multipoint from a multipoint representation. For more
information, see “ST_MPointFromText” on page 238.

ST_MLineFromText
Creates a multilinestring from a multilinestring representation. For
more information, see “ST_MLineFromText” on page 235.

ST_MPolyFromText
Creates a multipolygon from a multipolygon representation. For more
information, see “ST_MPolyFromText” on page 240.

The text representation is an ASCII string. It permits geometry to be
exchanged in ASCII text form. These functions do not require the definition of
any special program structures to map a binary representation. So, they can be
used in either a 3GL or 4GL program.

The ST_AsText function converts an existing geometry value into text
representation. For more information, see “ST_AsText” on page 181.

For a detailed description of well-known text representations, see “The OGC
well-known text representations” on page 285.

Well-known binary representation
The DB2 Spatial Extender has several functions that generate geometries from
well-known binary (WKB) representations.

ST_WKBToSQL
Creates a geometry from a well-known binary representation of any
geometry type. No spatial reference system identifier should be
specified. For more information, see “ST_WKBToSQL” on page 268.

150 DB2 Spatial Extender User’s Guide and Reference

ST_GeomFromWKB
Creates a geometry from a well-known binary representation of any
geometry type. A spatial reference system identifier must be specified.
For more information, see “ST_GeomFromWKB” on page 209.

ST_PointFromWKB
Creates a point from a well-known binary representation of a point.
For more information, see “ST_PointFromWKB” on page 250.

ST_LineFromWKB
Creates a linestring from a well-known binary representation of a
linestring. For more information, see “ST_LineFromWKB” on page 233.

ST_PolyFromWKB
Creates a polygon from a well-known binary representation of a
polygon. For more information, see “ST_PolyFromWKB” on page 255.

ST_MPointFromWKB
Creates a multipoint from a well-known binary representation of a
multipoint. For more information, see “ST_MPointFromWKB” on
page 239.

ST_MLineFromWKB
Creates a multilinestring from a well-known binary representation of a
multilinestring. For more information, see “ST_MLineFromWKB” on
page 236.

ST_MPolyFromWKB
Creates a multipolygon from a well-known binary representation of a
multipolygon. For more information, see “ST_MPolyFromWKB” on
page 241.

The well-known binary representation is a contiguous stream of bytes. It
permits geometry to be exchanged between an ODBC client and an SQL
database in binary form. These geometry functions require the definition of C
structures to map the binary representation. So, they are intended for use
within a 3GL program, and are not suited to a 4GL environment.

The ST_AsBinary function converts an existing geometry value into
well-known binary representation. For more information, see “ST_AsBinary”
on page 180.

For a detailed description of well-known binary representations, see “The
OGC well-known binary (WKB) representations” on page 290.

ESRI shape representation
DB2 Spatial Extender has several functions that generate geometries from an
ESRI shape representation. The ESRI shape representation supports Z

Chapter 13. Geometries and associated spatial functions 151

coordinates and measures in addition to the two-dimensional representations
supported by the text and well-known binary representations.

ShapeToSQL
Creates a geometry from a shape of any geometry type. No spatial
reference system identifier should be specified. For more information,
see “ShapeToSQL” on page 176.

GeometryFromShape
Creates a geometry from a shape of any geometry type. A spatial
reference system identifier must be specified. For more information,
see “GeometryFromShape” on page 157.

PointFromShape
Creates a point from a point shape. For more information, see
“PointFromShape” on page 173.

LineFromShape
Creates a linestring from a polyline shape. For more information, see
“LineFromShape” on page 162.

PolyFromShape
Creates a polygon from a polyline shape. For more information, see
“PolyFromShape” on page 174.

MPointFromShape
Creates a multipoint from a multipoint shape. For more information,
see “MPointFromShape” on page 171.

MLineFromShape
Creates a multilinestring from a multipart polyline shape. For more
information, see “MLine FromShape” on page 169.

MPolyFromShape
Creates a multipolygon from a multipart polygon shape. For more
information, see “MPolyFromShape” on page 172.

The general syntax of these functions is the same. The first argument is the
shape representation that is entered as a BLOB data type. The second
argument is the spatial reference identifier that will be assigned to the
geometry. For example, the GeometryFromShape function has the following
syntax:
GeometryFromShape(shapegeometry, SRID)

To map the binary representation, these shape functions require the definition
of a C structures. So, they are intended for use within a 3GL program, and are
not suited to a 4GL environment.

The AsBinaryShape function converts a geometry value into an ESRI shape
representation. For more information, see “AsBinaryShape” on page 156.

152 DB2 Spatial Extender User’s Guide and Reference

For a detailed description of shape representations, see “The ESRI shape
representations” on page 294.

Chapter 13. Geometries and associated spatial functions 153

154 DB2 Spatial Extender User’s Guide and Reference

Chapter 14. Spatial functions for SQL queries

This chapter lists the available functions that you can invoke when you query
spatial data. Each function is described in a section that shows you the syntax,
return type, and code examples. Some of the examples in this chapter include
a CREATE TABLE statement in which one or more columns are defined as
spatial columns.

The following considerations apply to spatial functions:
v The examples in this chapter are qualified with the library name db2gse.

Instead of explicitly qualifying each spatial function and type with db2gse,
you can set the function path to include db2gse.

v Before you can insert data into a spatial column:
– You might need to increase the udf_mem_sz parameter. The suggested

initial setting is 2048. If 2048 is inadequate, increase the udf_mem_sz
parameter in increments of 256.

– You must register it as a layer. For more information about registering a
spatial column as a layer, see “Chapter 4. Defining spatial columns,
registering them as layers, and enabling a geocoder to maintain them” on
page 31.

© Copyright IBM Corp. 1998, 2000 155

AsBinaryShape
AsBinaryShape takes a geometry object and returns a BLOB.

Syntax
db2gse.AsBinaryShape(g db2gse.ST_Geometry)

Return type
BLOB(1m)

Examples
The following code fragment illustrates how the AsBinaryShape function
converts the zone polygons of the SENSITIVE_AREAS table into shape
polygons. These shape polygons are passed to the application’s draw_polygon
function for display.
/* Create the SQL expression. */
strcpy(sqlstmt, "select db2gse.AsBinaryShape (zone) from SENSITIVE_AREAS
where db2gse.EnvelopesIntersect(zone, db2gse.PolyFromShape(cast(? as blob(1m)),
db2gse.coordref()..srid(0)))");

/* Prepare the SQL statement. */
SQLPrepare(hstmt, (UCHAR *)sqlstmt, SQL_NTS);

/* Set the pcbvalue1 length of the shape. */
pcbvalue1 = blob_len;

/* Bind the shape parameter */
SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_BLOB, blob_len,
0, shape, blob_len, &pcbvalue1);

/* Execute the query */
rc = SQLExecute(hstmt);

/* Assign the results of the query (the Zone polygons) to the
fetched_binary variable. */

SQLBindCol (hstmt, 1, SQL_C_Binary, fetched_binary, 100000, &ind_blob);

/* Fetch each polygon within the display window and display it. */

while(SQL_SUCCESS == (rc = SQLFetch(hstmt)))
draw_polygon(fetched_binary);

156 DB2 Spatial Extender User’s Guide and Reference

GeometryFromShape
GeometryFromShape takes a shape and a spatial reference system identity to
return a geometry object.

Syntax
db2gse.GeometryFromShape(ShapeGeometry Blob(1M), cr db2gse.coordref)

Return type
db2gse.ST_Geometry

Examples
The following C code fragment contains ODBC functions embedded with DB2
Spatial Extender SQL functions that insert data into the LOTS table.

The LOTS table was created with two columns: the LOT_ID column, which
uniquely identifies each lot, and the LOT polygon column, which contains the
geometry of each lot.
CREATE TABLE LOTS (lot_id integer,

lot db2gse.ST_MultiPolygon);

The GeometryFromShape function converts shapes into DB2 Spatial Extender
geometry. The entire INSERT statement is copied into shp_sql. The INSERT
statement contains parameter markers to accept the LOT_ID data and the LOT
data dynamically.
/* Create the SQL insert statement to populate the lot id and the

lot multipolygon. The question marks are parameter markers that
indicate the lot_id and lot values that will be retrieved at
runtime. */

strcpy (shp_sql,"insert into LOTS (lot_id, lot) values (?,
db2gse.GeometryFromShape (cast(? as blob(1m)), db2gse.coordref()..srid(0)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)shp_sql, SQL_NTS);

/* Bind the integer key value to the first parameter. */
pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,

SQL_INTEGER, 0, 0, &lot_id, 0, &pcbvalue1);

/* Bind the shape to the second parameter. */
pcbvalue2 = blob_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,

SQL_BLOB, blob_len, 0, shape_blob, blob_len, &pcbvalue2);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

Chapter 14. Spatial functions for SQL queries 157

EnvelopesIntersect
EnvelopesIntersect returns 1 (TRUE) if the envelopes of two geometries
intersect; otherwise it returns 0 (FALSE).

Syntax
db2gse.EnvelopesIntersect(g1 db2gse.ST_Geometry, g2 db2gse.ST_Geometry)

Return type
Integer

Examples
The get_window function retrieves the display window’s coordinates from the
application. The window parameter is actually a polygon shape structure
containing a string of coordinates that represent the display polygon. The
PolyFromShape function converts the display window shape into a DB2
Spatial Extender polygon that the EnvelopesIntersect function uses as its
intersection envelope. All SENSITIVE_AREAS zone polygons that intersect the
interior or boundary of the display window are returned. Each polygon is
fetched from the result set and passed to the draw_polygon function.
/* Get the display window coordinates as a polygon shape.
get_window(&window)

/* Create the SQL expression. The db2gse.EnvelopesIntersect function
will be used to limit the result set to only those zone polygons
that intersect the envelope of the display window. */

strcpy(sqlstmt, "select db2gse.AsBinaryShape(zone) from SENSITIVE_AREAS where
db2gse.EnvelopesIntersect (zone, db2gse.PolyFromShape(cast(? as blob(1m)),
db2gse.coordref()..srid(0)))");

/* Set blob_len to the byte length of a 5 point shape polygon. */
blob_len = 128;

/* Prepare the SQL statement. */
SQLPrepare(hstmt, (UCHAR *)sqlstmt, SQL_NTS);

/* Set the pcbvalue1 to the window shape */
pcbvalue1 = blob_len;

/* Bind the shape parameter */
SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_BLOB,
blob_len,0, window, blob_len, &pcbvalue1);

/* Execute the query */
rc = SQLExecute(hstmt);

/* Assign the results of the query, (the Zone polygons) to the
fetched_binary variable. */

SQLBindCol (hstmt, 1, SQL_C_Binary, fetched_binary, 100000, &ind_blob);

158 DB2 Spatial Extender User’s Guide and Reference

/* Fetch each polygon within the display window and display it. */
while(SQL_SUCCESS == (rc = SQLFetch(hstmt))

draw_polygon(fetched_binary);

Chapter 14. Spatial functions for SQL queries 159

Is3d
Is3d takes a geometry object and returns 1 (TRUE) if the object has 3D
coordinates; otherwise, it returns 0 (FALSE).

Syntax
db2gse.Is3d(g db2gse.ST_Geometry)

Return type
Integer

Examples
The following CREATE TABLE statement creates the THREED_TEST table,
which has two columns: the GID column of type integer and the G1 geometry
column.
CREATE TABLE THREED_TEST (gid smallint, g1 db2gse.ST_Geometry)

The INSERT statements insert two points into the THREED_TEST table. The
first point does not contain Z coordinates, while the second does.
INSERT INTO THREED_TEST
VALUES(1, db2gse.ST_PointFromText('point (10 10)', db2gse.coordref()..srid(0)))

INSERT INTO THREED_TEST
VALUES (2, db2gse.ST_PointFromText('point z (10.92 10.12 5)',
db2gse.coordref()..srid(0)))

The following SELECT statement lists the contents of the GID column with
the results of the Is3d function. The function returns a 0 for the first row,
which does not have Z coordinates, and a 1 for the second row, which does
have Z coordinates.
SELECT gid, db2gse.Is3d (g1) "Is it 3d?" FROM THREED_TEST

The following result set is returned.
gid Is it 3d?
------ ----------

1 0
2 1

160 DB2 Spatial Extender User’s Guide and Reference

IsMeasured
IsMeasured takes a geometry object and returns 1 (TRUE) if the object has
measures; otherwise it returns 0 (FALSE).

Syntax
db2gse.IsMeasured(g db2gse.ST_Geometry)

Return type
Integer

Examples
The following CREATE TABLE statement creates the MEASURE_TEST table,
which has two columns. The GID column uniquely identifies the rows, and
the G1 column stores the point geometries.
CREATE TABLE MEASURE_TEST (gid smallint, g1 db2gse.ST_Geometry)

The following INSERT statements insert two records into the
MEASURE_TEST table. The first record stores a point that does not have a
measure. The second record’s point does have a measure.
INSERT INTO MEASURE_TEST
VALUES(1, db2gse.ST_PointFromText('point (10 10)', db2gse.coordref()..srid(0)))

INSERT INTO MEASURE_TEST
VALUES (2, db2gse.ST_PointFromText('point m (10.92 10.12 5)',

db2gse.coordref()..srid(0)))

The following SELECT statement and corresponding result set show the GID
column along with the results of the IsMeasured function. The IsMeasured
function returns a 0 for the first row because the point does not have a
measure. It returns a 1 for the second row because the point does have
measures.
SELECT gid, db2gse.IsMeasured (g1) "Has measures?" FROM MEASURE_TEST
gid Has measures
------ ----------

1 0
2 1

Chapter 14. Spatial functions for SQL queries 161

LineFromShape
LineFromShape takes a shape of type point and a spatial reference system
identity and returns a linestring.

Syntax
db2gse.Line FromShape(ShapeLineString Blob(1M), cr db2gse.coordref)

Return type
db2gse.ST_LineString

Examples
The following code fragment populates the SEWERLINES table with the
unique id, size class, and geometry of each sewer line.

The CREATE TABLE statement creates the SEWERLINES table, which has
three columns. The first column, SEWER_ID, uniquely identifies each sewer
line. The second column, CLASS, of type integer identifies the type of sewer
line, which is generally associated with a line’s capacity. The third column,
SEWER, of type linestring stores the sewer line’s geometry.
CREATE TABLE SEWERLINES (sewer_id integer, class integer,

sewer db2gse.ST_LineString);

/* Create the SQL insert statement to populate the sewer_id, size class and
the sewer linestring. The question marks are parameter markers that
indicate the sewer_id, class and sewer geometry values that will be
retrieved at runtime. */

strcpy (shp_sql,"insert into sewerlines (sewer_id,class,sewer)
values (?,?, db2gse.Line FromShape (cast(? as blob(1m)),
db2gse.coordref()..srid(0)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)shp_sql, SQL_NTS);

/* Bind the integer key value to the first parameter. */
pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,

SQL_INTEGER, 0, 0, &sewer_id, 0, &pcbvalue1);

/* Bind the integer class value to the second parameter. */
pcbvalue2 = 0;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_SLONG,

SQL_INTEGER, 0, 0, &sewer_class, 0, &pcbvalue2);;

/* Bind the shape to the third parameter. */
pcbvalue3 = blob_len;
rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,

162 DB2 Spatial Extender User’s Guide and Reference

SQL_BLOB, blob_len, 0, sewer_shape, blob_len, &pcbvalue3);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

Chapter 14. Spatial functions for SQL queries 163

LocateAlong
LocateAlong takes a geometry object and a measure to return as a multipoint
the set of points found at the measure.

Syntax
db2gse.LocateAlong(g db2gse.ST_Geometry, adistance Double)

Return type
db2gse.ST_Geometry

Examples
The following CREATE TABLE statement creates the LOCATEALONG_TEST
table. LOCATEALONG_TEST has two columns: the GID column, which
uniquely identifies each row, and the G1 geometry column, which stores
sample geometry.
CREATE TABLE LOCATEALONG_TEST (gid integer, g1 db2gse.ST_Geometry)

The following INSERT statements insert two rows. The first is a
multilinestring; the second is a multipoint.
INSERT INTO db2gse.LOCATEALONG_TEST VALUES(
1, db2gse.ST_MLineFromText('multilinestring m ((10.29 19.23 5,23.82 20.29 6,

30.19 18.47 7,
45.98 20.74 8), (23.82 20.29 6,30.98 23.98 7,42.92 25.98 8))',

db2gse.coordref()..srid(0)))

INSERT INTO db2gse.LocateAlong_TEST VALUES(
2, db2gse.ST_MPointFromText('multipoint m (10.29 19.23 5,23.82 20.29 6,
30.19 18.47 7,45.98 20.74 8,23.82 20.29 6,30.98 23.98 7,42.92 25.98)',

db2gse.coordref()..srid(0)))

In the following SELECT statement and the corresponding result set, the
LocateAlong function is directed to find points whose measure is 6.5. The first
row returns a multipoint containing two points. However, the second row
returned an empty point. For linear features (geometry with a dimension
greater than 0), LocateAlong can interpolate the point; however, for
multipoints, the target measure must match exactly.
SELECT gid, CAST(db2gse.ST_AsText(db2gse.LocateAlong (g1,6.5)) AS
varchar(96))
"Geometry"
FROM LOCATEALONG_TEST

GID Geometry
----------- --

1 MULTIPOINT M (27.01000000 19.38000000 6.50000000, 27.40000000
22.14000000 6.50000000)

2 POINT EMPTY

2 record(s) selected.

164 DB2 Spatial Extender User’s Guide and Reference

In the following SELECT statement and the corresponding result set, the
LocateAlong function returns multipoints for both rows. The target measure
of 7 matches the measures in both the multilinestring and multipoint source
data.
SELECT gid,CAST(db2gse.ST_AsText(db2gse.LocateAlong (g1,7)) AS varchar(96))

"Geometry"
FROM LOCATEALONG_TEST

GID Geometry

----------- --
1 MULTIPOINT M (30.19000000 18.47000000 7.00000000, 30.98000000

23.98000000 7.00000000)
2 MULTIPOINT M (30.19000000 18.47000000 7.00000000, 30.98000000

23.98000000 7.00000000)

2 record(s) selected.

Chapter 14. Spatial functions for SQL queries 165

LocateBetween
LocateBetween takes a geometry object and two measure locations and returns
a geometry that represents the set of disconnected paths between the two
measure locations.

Syntax
db2gse.LocateBetween(g db2gse.ST_Geometry, adistance Double,
anotherdistance Double)

Return type
db2gse.ST_Geometry

Examples
The following CREATE TABLE statement creates the
LOCATEBETWEEN_TEST table. LOCATEBETWEEN_TEST has two columns:
the GID column, which uniquely identifies each row, and the G1
multilinestring column, which stores the sample geometry.
CREATE TABLE LOCATEBETWEEN_TEST (gid integer, g1 db2gse.ST_Geometry)

The following INSERT statements insert two rows into the
LOCATEBETWEEN_TEST table. The first row is a multilinestring, and the
second is a multipoint.
INSERT INTO db2gse.LOCATEBETWEEN_TEST
VALUES(1,db2gse.ST_MLineFromText('multilinestring m ((10.29 19.23 5,

23.82 20.29 6, 30.19 18.47 7,45.98 20.74 8),
(23.82 20.29 6,30.98 23.98 7,
42.92 25.98 8))',

db2gse.coordref()..srid(0)))

INSERT INTO db2gse.LOCATEBETWEEN_TEST
VALUES(2, db2gse.ST_MPointFromText('multipoint m (10.29 19.23 5,23.82 20.29 6,
30.19 18.47 7,45.98 20.74 8,23.82 20.29 6,
30.98 23.98 7,42.92 25.98 8)',

db2gse.coordref()..srid(0)))

The following SELECT statement and corresponding result set show how the
LocateBetween function locates measures lying between measures 6.5 and 7.5
inclusive. The first row returns a multilinestring containing several linestrings.
The second row returns a multipoint because the source data was multipoint.
When the source data has a dimension of 0 (point or multipoint), an exact
match is required.
SELECT gid, CAST(db2gse.ST_AsText(db2gse.LocateBetween (g1,6.5,7.5))

AS varchar(96)) "Geometry"
FROM LOCATEBETWEEN_TEST

GID Geometry
----------- ---

1 MULTILINESTRING M (27.01000000 19.38000000 6.50000000, 31.19000000
18.47000000 7.00000000,38.09000000 19.61000000 7.50000000),(27.40000000 22.1400

166 DB2 Spatial Extender User’s Guide and Reference

0000 6.50000000, 30.98000000 23.98000000 7.00000000,36.95000000 24.98000000 7.5
0000000)

2 MULTIPOINT M (30.19000000 18.47000000 7.00000000, 30.98000000 23.9
8000000 7.00000000)

2 record(s) selected.

Chapter 14. Spatial functions for SQL queries 167

M
M takes a point and returns its measure.

Syntax
db2gse.M(p db2gse.ST_Point)

Return type
Double

Examples
The following CREATE TABLE statement creates the M_TEST table. M_TEST
has two columns: the GID integer column, which uniquely identifies the row,
and the PT1 point column, which stores the sample geometry.
CREATE TABLE M_TEST (gid integer, pt1 db2gse.ST_Point)

The following INSERT statements insert a row that contains a point with
measures and row that contains a point without measures.
INSERT INTO db2gse.M_TEST
VALUES(1, db2gse.ST_PointFromText('point (10.02 20.01)',
db2gse.coordref()..srid(0)))

INSERT INTO db2gse.M_TEST
VALUES(2, db2gse.ST_PointFromText('point zm(10.02 20.01 5.0 7.0)',
db2gse.coordref()..srid(0)))

In the following SELECT statement and the corresponding result set, the M
function lists the measure values of the points. Because the first point does
not have measures, the M function returns a NULL.
SELECT gid, db2gse.M (pt1) "The measure" FROM M_TEST

GID The measure
----------- ------------------------

1 −
2 +7.00000000000000E+000

2 record(s) selected.

168 DB2 Spatial Extender User’s Guide and Reference

MLine FromShape
MLine FromShape takes a shape of type multilinestring and a spatial reference
system identity and returns a multilinestring.

Syntax
db2gse.MLineFromShape(ShapeMultiLineString Blob(1M), cr db2gse.coordref)

Return type
db2gse.ST_MultiLineString

Examples
The following code fragment populates the WATERWAYS table with a unique
id, a name, and a water multilinestring.

The WATERWAYS table is created with the ID and NAME columns that
identify each stream and river system stored in the table. The WATER column
is a multilinestring because the river and stream systems are often an
aggregate of several linestrings.
CREATE TABLE WATERWAYS (id integer,

name varchar(128),
water db2gse.ST_MultiLineString);

/* Create the SQL insert statement to populate the id, name and
multilinestring. The question marks are parameter markers that
indicate the id, name and water values that will be retrieved at
runtime. */

strcpy (shp_sql,"insert into WATERWAYS (id,name,water)
values (?,?, db2gse.MLineFromShape (cast(? as blob(1m)),
db2gse.coordref()..srid(0)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)shp_sql, SQL_NTS);

/* Bind the integer id value to the first parameter. */

pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,

SQL_INTEGER, 0, 0, &id, 0, &pcbvalue1);
/* Bind the varchar name value to the second parameter. */

pcbvalue2 = name_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_CHAR, name_len, 0, &name, name_len, &pcbvalue2);

/* Bind the shape to the third parameter. */
pcbvalue3 = blob_len;
rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,

Chapter 14. Spatial functions for SQL queries 169

SQL_BLOB, blob_len, 0, water_shape, blob_len, &pcbvalue3);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

170 DB2 Spatial Extender User’s Guide and Reference

MPointFromShape
MPointFromShape takes a shape of type multipoint and a spatial reference
system identity to return a multipoint.

Syntax
db2gse.MPointFromShape(ShapeMultiPoint (1M), srs db2gse.coordref)

Return type
db2gse.ST_MultiPoint

Examples
This code fragment populates a biologist’s SPECIES_SITINGS table.

The SPECIES_SITINGS table is created with three columns. The species and
genus columns uniquely identify each row while the sitings multipoint stores
the locations of the species sitings.
CREATE TABLE SPECIES_SITINGS (species varchar(32),

genus varchar(32),
sitings db2gse.ST_MultiPoint);

/* Create the SQL insert statement to populate the species, genus and
sitings. The question marks are parameter markers that indicate the
name and water values that will be retrieved at runtime. */

strcpy (shp_sql,"insert into SPECIES_SITINGS (species,genus,sitings)
values (?,?, db2gse.MPointFromShape (cast(? as blob(1m)),
db2gse.coordref()..srid(0)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)shp_sql, SQL_NTS);

/* Bind the varchar species value to the first parameter. */
pcbvalue1 = species_len;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_CHAR, species_len, 0, species, species_len, &pcbvalue1);

/* Bind the varchar genus value to the second parameter. */
pcbvalue2 = genus_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_CHAR, genus_len, 0, name, genus_len, &pcbvalue2);

/* Bind the shape to the third parameter. */
pcbvalue3 = blob_len;
rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,

SQL_BLOB, sitings_len, 0, sitings_shape, sitings_len, &pcbvalue3);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

Chapter 14. Spatial functions for SQL queries 171

MPolyFromShape
MPolyFromShape takes a shape of type multipolygon and a spatial reference
system identity to return a multipolygon.

Syntax
db2gse.MPolyFromShape(ShapeMultiPolygon Blob(1m), srs db2gse.coordref)

Return type
db2gse.ST_MultiPolygon

Examples
This code fragment populates the LOTS table.

The LOTS table stores the lot_id which uniquely identifies each lot, and the
lot multipolygon that contains the lot line geometry.
CREATE TABLE LOTS (lot_id integer, lot db2gse.ST_MultiPolygon);

/* Create the SQL insert statement to populate the lot_id and lot. The
question marks are parameter markers that indicate the lot_id and lot
values that will be retrieved at runtime. */

strcpy (shp_sql,"insert into LOTS (lot_id,lot)
values (?, db2gse.MPolyFromShape (cast(? as blob(1m)),
db2gse.coordref()..srid(0)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)shp_sql, SQL_NTS);

/* Bind the lot_id integer value to the first parameter. */
pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_INTEGER,

SQL_INTEGER, 0, 0, &lot_id, 0, &pcbvalue1);

/* Bind the lot shape to the second parameter. */
pcbvalue2 = lot_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,

SQL_BLOB, lot_len, 0, lot_shape, lot_len, &pcbvalue2);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

172 DB2 Spatial Extender User’s Guide and Reference

PointFromShape
PointFromShape takes a shape of type point and a spatial reference system
identity to return a point.

Syntax
db2gse.PointFromShape(db2gse.ShapePoint blob(1M), srs db2gse.coordref)

Return type
db2gse.ST_Point

Examples
The program fragment populates the HAZARDOUS_SITES table.

The hazardous sites are stored in the HAZARDOUS_SITES table created with
the CREATE TABLE statement that follows. The location column, defined as a
point, stores a location that is the geographic center of each hazardous site.
CREATE TABLE HAZARDOUS_SITES (site_id integer,

name varchar(128),
location db2gse.ST_Point);

/* Create the SQL insert statement to populate the site_id, name and
location. The question marks are parameter markers that indicate the
site_id, name and location values that will be retrieved at runtime. */

strcpy (shp_sql,"insert into HAZARDOUS_SITES (site_id, name, location)
values (?,?, db2gse.PointFromShape (cast(? as blob(1m)),
db2gse.coordref()..srid(0)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)shp_sql, SQL_NTS);

/* Bind the site_id integer value to the first parameter. */
pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_INTEGER,

SQL_INTEGER, 0, 0, &site_id, 0, &pcbvalue1);

/* Bind the name varchar value to the second parameter. */
pcbvalue2 = name_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_CHAR, 0, 0, name, 0, &pcbvalue2);

/* Bind the location shape to the third parameter. */
pcbvalue3 = location_len;
rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,

SQL_BLOB, location_len, 0, location_shape, location_len, &pcbvalue3);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

Chapter 14. Spatial functions for SQL queries 173

PolyFromShape
PolyFromShape takes a shape of type polygon and a spatial reference system
identity to return a polygon.

Syntax
db2gse.PolyFromShape (ShapePolygon Blob(1M), srs db2gse.coordref)

Return type
db2gse.ST_Polygon

Examples
The program fragment populates the SENSITIVE_AREAS table. The question
marks represent parameter markers for the id, name, size, type and zone
values that will be retrieved at runtime.

The SENSITIVE_AREAS table contains several columns that describe the
threatened institutions in addition to the zone column which stores the
institution’s polygon geometry.
CREATE TABLE SENSITIVE_AREAS (id integer,

name varchar(128),
size float,
type varchar(10),
zone db2gse.ST_Polygon);

/* Create the SQL insert statement to populate the id, name, size, type and
zone. The question marks are parameter markers that indicate the
id, name, size, type and zone values that will be retrieved at runtime. */

strcpy (shp_sql,"insert into SENSITIVE_AREAS (id, name, size, type, zone)
values (?,?,?,?, db2gse.PolyFromShape (cast(? as blob(1m)),
db2gse.coordref()..srid(0)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)shp_sql, SQL_NTS);

/* Bind the id integer value to the first parameter. */
pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_INTEGER,

SQL_INTEGER, 0, 0, &site_id, 0, &pcbvalue1);
/* Bind the name varchar value to the second parameter. */
pcbvalue2 = name_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_CHAR, 0, 0, name, 0, &pcbvalue2);

/* Bind the size float to the third parameter. */
pcbvalue3 = 0;
rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_FLOAT,

SQL_REAL, 0, 0, &size, 0, &pcbvalue3);

174 DB2 Spatial Extender User’s Guide and Reference

/* Bind the type varchar to the fourth parameter. */
pcbvalue4 = type_len;
rc = SQLBindParameter (hstmt, 4, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_VARCHAR, type_len, 0, type, type_len, &pcbvalue4);

/* Bind the zone polygon to the fifth parameter. */
pcbvalue5 = zone_len;
rc = SQLBindParameter (hstmt, 5, SQL_PARAM_INPUT, SQL_C_BINARY,

SQL_BLOB, zone_len, 0, zone_shp, zone_len, &pcbvalue5);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

Chapter 14. Spatial functions for SQL queries 175

ShapeToSQL
ShapeToSQL constructs a db2gse.ST_Geometry value given it’s well-known
binary representation. The SRID value of 0 is automatically used.

Syntax
db2gse.ST_ShapeToSQL(ShapeGeometry blob(1M))

Return type
db2gse.ST_Geometry

Examples
The following C code fragment contains ODBC functions embedded with DB2
Spatial Extender SQL functions that insert data into the LOTS table. The LOTS
table was created with two columns: the lot_id, which uniquely identifies each
lot, and the and the lot multipolygon column, which contains the geometry of
each lot.
CREATE TABLE lots (lot_id integer,

lot db2gse.ST_MultiPolygon);

The ShapeToSQL function converts shapes into DB2 Spatial Extender
geometry. The entire INSERT statement is copied into shp_sql. The INSERT
statement contains parameter markers to accept the LOT_id and the lot data,
dynamically.
/* Create the SQL insert statement to populate the lot id and the

lot multipolygon. The question marks are parameter markers that
indicate the lot_id and lot values that will be retrieved at
run time. */

strcpy (shp_sql,"insert into lots (lot_id, lot) values(?,
db2gse.ShapeToSQL(cast(? as blob(1m))))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */

rc = SQLPrepare (hstmt, (unsigned char *)shp_sql, SQL_NTS);

/* Bind the integer key value to the first parameter. */

pcbvalue1 = 0;

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
SQL_INTEGER, 0, 0, &lot_id, 0, &pcbvalue1);

/* Bind the shape to the second parameter. */

pcbvalue2 = blob_len;

176 DB2 Spatial Extender User’s Guide and Reference

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_BLOB, blob_len, 0, shape_blob, blob_len, &pcbvalue2);

/* Execute the insert statement. */

rc = SQLExecute (hstmt);

Chapter 14. Spatial functions for SQL queries 177

ST_Area
ST_Area takes a polygon or multipolygon and returns its area.

Syntax

db2gse.ST_Area(s db2gse.ST_Surface)

Return type
Double

Examples
The city engineer needs a list of building areas. To obtain the list, a GIS
technician selects the building ID and area of each building’s footprint.

The building footprints are stored in the BUILDINGFOOTPRINTS table that
was created with the following CREATE TABLE statement:
CREATE TABLE BUILDINGFOOTPRINTS (building_id integer,

lot_id integer,
footprint db2gse.ST_MultiPolygon);

To satisfy the city engineer’s request, the technician uses the following
SELECT statement to select the unique key, the building_id, and the area of
each building footprint from the BUILDINGFOOTPRINTS table:
SELECT building_id, db2gse.ST_Area (footprint) "Area"

FROM BUILDINGFOOTPRINTS;

The SELECT statement returns the following result set:
building_id Area
------------ ------------------------

506 +1.40768000000000E+003
1208 +2.55759000000000E+003
543 +1.80786000000000E+003
178 +2.08671000000000E+003
.
.
.

178 DB2 Spatial Extender User’s Guide and Reference

Figure 28. Using area to find a building footprint. Four of the building footprints labeled with their
building ID numbers are displayed along side their adjacent street.

Chapter 14. Spatial functions for SQL queries 179

ST_AsBinary
ST_AsBinary takes a geometry object and returns its well-known binary
representation.

Syntax
db2gse.ST_AsBinary(g db2gse.ST_Geometry)

Return type
BLOB(1m)

Examples
The following code fragment illustrates how the ST_AsBinary function
converts the footprint multipolygons of the BUILDINGFOOTPRINTS table
into WKB multipolygons. These multipolygons are passed to the application’s
draw_polygon function for display.
/* Create the SQL expression. */
strcpy(sqlstmt, "select db2gse.ST_AsBinary (footprint) from BUILDINGFOOTPRINTS
where db2gse.EnvelopesIntersect(footprint, db2gse.ST_PolyFromWKB
(cast(? as blob(1m)),
db2gse.coordref()..srid(0)))");

/* Prepare the SQL statement. */
SQLPrepare(hstmt, (UCHAR *)sqlstmt, SQL_NTS);

/* Set the pcbvalue1 length of the shape. */
pcbvalue1 = blob_len;

/* Bind the shape parameter */
SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_BLOB, blob_len,
0, shape, blob_len, &pcbvalue1);

/* Execute the query */
rc = SQLExecute(hstmt);

/* Assign the results of the query (the Zone polygons) to the
fetched_binary variable.
*/
SQLBindCol (hstmt, 1, SQL_C_Binary, fetched_binary, 100000, &ind_blob);

/* Fetch each polygon within the display window and display it. */
while(SQL_SUCCESS == (rc = SQLFetch(hstmt)))

draw_polygon(fetched_binary);

180 DB2 Spatial Extender User’s Guide and Reference

ST_AsText
db2gse.ST_AsText takes a geometry object and returns its well-known text
representation.

Syntax
db2gse.ST_AsText(g db2gse.ST_Geometry)

Return type
Varchar(4000)

Examples
In the scenario that follows, the db2gse.ST_AsText function converts the
HAZARDOUS_SITES location point into its text description:
CREATE TABLE HAZARDOUS_SITES (site_id integer,

name varchar(40),
location db2gse.ST_Point);

INSERT INTO HAZARDOUS_SITES
VALUES (102,

'W. H. Kleenare Chemical Repository',
db2gse.ST_PointFromText('point (1020.12 324.02)',

db2gse.coordref()..srid(0)));

SELECT site_id, name, cast(db2gse.ST_AsText(location) as varchar(40))
"Location"

FROM HAZARDOUS_SITES;

The SELECT statement returns the following result set:
SITE_ID Name Location
------- ------------------------------------ ----------------------------------

102 W. H. Kleenare Chemical Repository POINT (1020.00000000 324.00000000)

Chapter 14. Spatial functions for SQL queries 181

ST_Boundary
ST_Boundary takes a geometry object and returns its combined boundary as a
geometry object.

Syntax
db2gse.ST_Boundary(g db2gse.ST_Geometry)

Return type
db2gse.ST_Geometry

Examples
In the following code fragment, a table named BOUNDARY_TEST is created.
BOUNDARY_TEST has two columns: GEOTYPE, which is defined as a
varchar, and G1, which is defined as the superclass geometry. The INSERT
statements that follow insert each one of the subclass geometries. The
ST_Boundary function retrieves the boundary of each subclass that is stored in
the G1 geometry column. Note that the dimension of the resulting geometry is
always one less than the input geometry. Points and multipoints always result
in a boundary that is an empty geometry, dimension 1. Linestrings and
multilinestring return a multipoint boundary, dimension 0. A polygon or
multipolygon always return a multilinestring boundary, dimension 1.
CREATE TABLE BOUNDARY_TEST (GEOTYPE varchar(20), G1 db2gse.ST_Geometry)

INSERT INTO BOUNDARY_TEST
VALUES('Point',

db2gse.ST_PointFromText('point (10.02 20.01)',
db2gse.coordref()..srid(0)))

INSERT INTO BOUNDARY_TEST
VALUES('Linestring',

db2gse.ST_LineFromText('linestring (10.02 20.01,10.32 23.98,
11.92 25.64)', db2gse.coordref()..srid(0)))

INSERT INTO BOUNDARY_TEST
VALUES('Polygon',

db2gse.ST_PolyFromText('polygon ((10.02 20.01,11.92 35.64,25.02 34.15,
19.15 33.94, 10.02 20.01))',

db2gse.coordref()..srid(0)))

INSERT INTO BOUNDARY_TEST
VALUES('Multipoint',

db2gse.ST_MPointFromText('multipoint (10.02 20.01,10.32 23.98,
11.92 25.64)', db2gse.coordref()..srid(0)))

INSERT INTO BOUNDARY_TEST
VALUES('Multilinestring',

db2gse.ST_MLineFromText('multilinestring ((10.02 20.01,10.32 23.98,
11.92 25.64), (9.55 23.75,15.36 30.11))',

db2gse.coordref()..srid(0)))

INSERT INTO BOUNDARY_TEST

182 DB2 Spatial Extender User’s Guide and Reference

VALUES('Multipolygon',
db2gse.ST_MPolyFromText('multipolygon (((10.02 20.01,11.92 35.64,

25.02 34.15, 19.15 33.94,10.02 20.01)),
((51.71 21.73,73.36 27.04,71.52 32.87,

52.43 31.90,51.71 21.73)))',
db2gse.coordref()..srid(0)))

SELECT GEOTYPE,
CAST(db2gse.ST_AsText(db2gse.ST_Boundary (G1)) as varchar(280))
"The boundary"

FROM BOUNDARY_TEST

GEOTYPE The boundary
-------------------- --
Point POINT EMPTY
Linestring MULTIPOINT (10.02000000 20.01000000, 11.92000000
25.64000000)
Polygon MULTILINESTRING ((10.02000000 20.01000000, 19.15000000
33.94000000, 25.02000000 34.15000000, 11.92000000 35.64000000, 10.02000000
20.01000000))
Multipoint POINT EMPTY
Multilinestring MULTIPOINT (9.55000000 23.75000000, 10.02000000
20.01000000, 11.92000000 25.64000000, 15.36000000 30.11000000)
Multipolygon MULTILINESTRING ((51.71000000 21.73000000, 73.36000000
27.04000000, 71.52000000 32.87000000, 52.43000000 31.90000000, 51.71000000
21.73000000),(10.02000000 20.01000000, 19.15000000 33.94000000, 25.02000000
34.15000000, 11.92000000 35.64000000, 10.02000000 20.01000000))

6 record(s) selected.

Chapter 14. Spatial functions for SQL queries 183

ST_Buffer
ST_Buffer takes a geometry object and distance and returns the geometry
object that surrounds the source object.

Syntax
db2gse.ST_Buffer(g db2gse.ST_Geometry , adistance Double)

Return type
db2gse.ST_Geometry

Examples
The County Supervisor needs a list of hazardous sites whose five-mile radius
overlaps sensitive areas such as schools, hospitals, and nursing homes. The
sensitive areas are stored in the table SENSITIVE_AREAS that is created with
the following CREATE TABLE statement. The ZONE column is defined as a
polygon, which is stored as the outline of each sensitive area.
CREATE TABLE SENSITIVE_AREAS (id integer,

name varchar(128),
size float,
type varchar(10),
zone db2gse.ST_Polygon);

The hazardous sites are stored in the HAZARDOUS_SITES table that is
created with the following CREATE TABLE statement. The LOCATION
column, defined as a point, stores a location that is the geographic center of
each hazardous site.
CREATE TABLE HAZARDOUS_SITES (site_id integer,

name varchar(128),
location db2gse.ST_Point);

The SENSITIVE_AREAS and HAZARDOUS_SITES tables are joined by the
db2gse.ST_Overlaps function. The function returns 1 (TRUE) for all
SENSITIVE_AREAS rows whose zone polygons overlap the buffered five-mile
radius of the HAZARDOUS_SITES location point.
SELECT sa.name "Sensitive Areas", hs.name "Hazardous Sites"
FROM SENSITIVE_AREAS sa, HAZARDOUS_SITES hs
WHERE db2gse.ST_Overlaps(sa.zone, db2gse.ST_Buffer (hs.location,(5 * 5280)))
= 1;

In Figure 29 on page 185, some of the sensitive areas in this administrative
district lie within the five-mile buffer of the hazardous site locations. Both of
the five-mile buffers intersect the hospital, and one of them intersects the
school. However the nursing home lies safely outside both radii.

184 DB2 Spatial Extender User’s Guide and Reference

Figure 29. A buffer with a five-mile radius is applied to a point

Chapter 14. Spatial functions for SQL queries 185

ST_Centroid
ST_Centroid takes a polygon or multipolygon and returns its geometric center
as a point.

Syntax

db2gse.ST_Centroid(s db2gse.ST_Surface)
db2gse.ST_Centroid(ms db2gse.ST_MultiSurface)

Return type

For surface: db2gse.ST_Point

Examples
The city GIS technician wants to display the multipolygons of the building
footprints as single points in a building density graphic.

The building footprints are stored in the BUILDINGFOOTPRINTS table that
was created with the following CREATE TABLE statement.
CREATE TABLE BUILDINGFOOTPRINTS (building_id integer,

lot_id integer,
footprint db2gse.ST_MultiPolygon);

The ST_Centroid function returns the centroid of each building footprint
multipolygon. The AsBinaryShape function converts centroid point into a
shape, the external representation that is recognized by the application.
SELECT building_id,

CAST(db2gse.AsBinaryShape(db2gse.ST_Centroid (footprint)) as blob(1m))
"Centroid"
FROM BUILDINGFOOTPRINTS;

186 DB2 Spatial Extender User’s Guide and Reference

ST_Contains
ST_Contains takes two geometry objects and returns 1 (TRUE) if the first
object completely contains the second; otherwise it returns 0 (FALSE).

Syntax
db2gse.ST_Contains(g1 db2gse.ST_Geometry, g2 db2gse.ST_Geometry)

Return type
Integer

Examples
In the example below two tables are created. One table contains a city’s
building footprints, while the other table contains its lots. The city engineer
wants to make sure that all the building footprints are completely inside their
lots.

In both tables the multipolygon data type stores the geometry of the building
footprints and the lots. The database designer selected multipolygons for both
features. The designer realized that the lots can be disjointed by natural
features, such as a river, and that the building footprints can often be made of
several buildings.
CREATE TABLE BUILDINGFOOTPRINTS (building_id integer,

lot_id integer,
footprint db2gse.ST_MultiPolygon);

CREATE TABLE LOTS (lot_id integer, lot db2gse.ST_MultiPolygon);

The city engineer first selects the buildings that are not completely contained
within one lot.
SELECT building_id
FROM BUILDINGFOOTPRINTS, LOTS
WHERE db2gse.ST_Contains(lot,footprint) = 0;

The city engineer realizes that the first query will return a list of all building
IDs that have footprints outside of a lot polygon. But the city engineer also
knows that this information will not indicate whether the other buildings
have the correct lot ID assigned to them. This second query performs a data
integrity check on the lot_id column of the BUILDINGFOOTPRINTS table.
SELECT bf.building_id "building id", bf.lot_id "buildings lot_id",

LOTS.lot_id "LOTS lot_id"
FROM BUILDINGFOOTPRINTS bf, LOTS
WHERE db2gse.ST_Contains(lot,footprint) = 1 AND LOTS.lot_id <> bf.lot_id;

In Figure 30 on page 188, the building footprints labeled with their building
IDs lie inside their lots. The lot lines are illustrated with dotted lines.

Chapter 14. Spatial functions for SQL queries 187

Although not shown, these lines extend to the street centerline and completely
encompass the lots and the building footprints within them.

Figure 30. Using ST_Contains to ensure that all buildings are contained within their lots

188 DB2 Spatial Extender User’s Guide and Reference

ST_ConvexHull
ST_ConvexHull takes a geometry object and returns the convex hull.

Syntax
db2gse.ST_ConvexHull(g db2gse.ST_Geometry)

Return type
db2gse.ST_Geometry

Examples
The example creates the CONVEXHULL_TEST table that has two columns:
GEOTYPE and G1. The GEOTYPE column, a varchar(20), will store the name
of the subclass of geometry that is stored in G1, which is defined as a
geometry.
CREATE TABLE CONVEXHULL_TEST (geotype varchar(20), g1 db2gse.ST_Geometry)

Each INSERT statement inserts a geometry of each subclass type into the
CONVEXHULL_TEST table.
INSERT INTO CONVEXHULL_TEST
VALUES('Point',

db2gse.ST_PointFromText('point (10.02 20.01)',
db2gse.coordref()..srid(0)))

INSERT INTO CONVEXHULL_TEST
VALUES('Linestring',

db2gse.ST_LineFromText('linestring (10.02 20.01,10.32 23.98,
11.92 25.64)', db2gse.coordref()..srid(0)))

INSERT INTO CONVEXHULL_TEST
VALUES('Polygon',

db2gse.ST_PolyFromText('polygon ((10.02 20.01,11.92 35.64,25.02 34.15,
19.15 33.94,10.02 20.01))',

db2gse.coordref()..srid(0)))

INSERT INTO CONVEXHULL_TEST
VALUES('Multipoint',

db2gse.ST_MPointFromText('multipoint (10.02 20.01,10.32 23.98,
11.92 25.64)', db2gse.coordref()..srid(0)))

INSERT INTO CONVEXHULL_TEST
VALUES('Multilinestring',

db2gse.ST_MLineFromText('multilinestring ((10.02 20.01,10.32 23.98,
11.92 25.64),(9.55 23.75,15.36 30.11))',

db2gse.coordref()..srid(0)))

INSERT INTO CONVEXHULL_TEST
VALUES('Multipolygon',

db2gse.ST_MPolyFromText('multipolygon (((10.02 20.01,11.92 35.64,
25.02 34.15, 19.15 33.94,10.02 20.01)),

Chapter 14. Spatial functions for SQL queries 189

((51.71 21.73,73.36 27.04,71.52 32.87,
52.43 31.90,51.71 21.73)))',

db2gse.coordref()..srid(0)))

The following SELECT statement lists the subclass name stored in the
GEOTYPE column and the convex hull. The convexhull generated by the
ST_ConvexHull function is converted to text by the ST_AsText function. It is
then cast to a varchar(256) because the default output of ST_AsText is
varchar(4000).
SELECT GEOTYPE, CAST(db2gse.ST_AsText(db2gse.ST_ConvexHull(G1)))
as varchar(256) "The convexhull"
FROM CONVEXHULL_TEST

190 DB2 Spatial Extender User’s Guide and Reference

ST_CoordDim
ST_CoordDim returns the coordinate dimensions of the ST_Geometry value.
For an explanation of coordinate dimensions, see “Points” on page 125.

Syntax
db2gse.ST_CoordDim(g1 db2gse.ST_Geometry)

Return type
Integer

Examples
The coorddim_test table is created with the columns geotype and g1. The
geotype column stores the name of the geometry subclass stored in the g1
geometry column.
CREATE TABLE coorddim_test (geotype varchar(20), g1 db2gse.ST_Geometry)

The INSERT statements insert a sample subclass into the coorddim_test table.
INSERT INTO coorddim_test VALUES(

'Point', db2gse.ST_PointFromText('point (10.02 20.01)',
db2gse.coordref()..srid(0))
)

INSERT INTO coorddim_test VALUES(
'Linestring',
db2gse.ST_LineFromText('linestring (10.02 20.01,10.32 23.98,11.92 25.64)',
db2gse.coordref()..srid(0))
)

INSERT INTO coorddim_test VALUES(
'Polygon', db2gse.ST_PolyFromText('polygon ((10.02 20.01,11.92 35.64,
25.02 34.15, 19.15 33.94,10.02 20.01))', db2gse.coordref()..srid(0))
)

INSERT INTO coorddim_test VALUES(
'Multipoint', db2gse.ST_MPointFromText('multipoint (10.02 20.01,10.32 23.98,
11.92 25.64)', db2gse.coordref()..srid(0))
)

INSERT INTO coorddim_test VALUES(
'Multilinestring', db2gse.ST_MLineFromText('multilinestring ((10.02 20.01,
10.32 23.98,11.92 25.64),(9.55 23.75,15.36 30.11))', db2gse.coordref()..srid(0))
)

INSERT INTO coorddim_test VALUES(
'Multipolygon',
MPolyFromText('multipolygon (((10.02 20.01,11.92 35.64,25.02 34.15,
19.15 33.94,10.02 20.01)),((51.71 21.73,73.36 27.04,71.52 32.87,
52.43 31.90,51.71 21.73)))', db2gse.coordref()..srid(0))
)

Chapter 14. Spatial functions for SQL queries 191

The SELECT statement lists the subclass name stored in the geotype column
with the coordinate dimension of that geotype.
SELECT geotype, db2gse.ST_coordDim(g1)' coordinate_dimension'
FROM coorddim_test

GEOTYPE coordinate_dimension
-------------------- --------------------------
ST_Point 2
ST_Linestring 2
ST_Polygon 2
ST_Multipoint 2
ST_Multilinestring 2
ST_Multipolygon 2

6 record(s) selected.

192 DB2 Spatial Extender User’s Guide and Reference

ST_Crosses
ST_Crosses takes two geometry objects and returns 1 (TRUE) if their
intersection results in a geometry object whose dimension is one less than the
maximum dimension of the source objects. The intersection object contains
points that are interior to both source geometries and is not equal to either of
the source objects. Otherwise it returns 0 (FALSE).

Syntax
db2gse.ST_Crosses(g1 db2gse.ST_Geometry, g2 db2gse.ST_Geometry)

Return type
Integer

Examples
The county government is considering a new regulation that states that all
hazardous waste storage facilities within the county cannot be within five
miles of any waterway. The county GIS manager has an accurate
representation of rivers and streams, which are stored as multilinestrings in
the WATERWAYS table. But, the GIS manager has only a single point location
for each of the hazardous waste storage facilities.
CREATE TABLE WATERWAYS (id integer,

name varchar(128),
water db2gse.ST_MultiLineString);

CREATE TABLE HAZARDOUS_SITES (site_id integer,
name varchar(128),
location db2gse.ST_Point);

To determine if the county supervisor needs to be alerted to facilities that
violate the proposed regulation, the GIS manager should buffer the hazardous
site locations and see if any rivers or streams cross the buffer polygon. The
ST_Crosses predicate compares the buffered HAZARDOUS_SITES with
WATERWAYS. So, only those records in which the waterway crosses over the
county’s proposed regulated radius are returned.
SELECT ww.name "River or stream", hs.name "Hazardous site"
FROM WATERWAYS ww, HAZARDOUS_SITES hs
WHERE db2gse.ST_Crosses(db2gse.ST_Buffer(hs.location,(5 * 5280)),ww.water)
= 1;

In Figure 31 on page 194, the five-mile buffer of the hazardous waste sites
crosses the stream network that runs through the county’s administrative
district. The stream network has been defined as a multilinestring. So, the
result set includes all linestring segments that are part of those segments that
cross the radius.

Chapter 14. Spatial functions for SQL queries 193

Figure 31. Using ST_Crosses to find the waterways that pass through a hazardous waste area

194 DB2 Spatial Extender User’s Guide and Reference

ST_Difference
ST_Difference takes two geometry objects and returns a geometry object that
is the difference of the source objects.

Syntax
db2gse.ST_Difference(g1 db2gse.ST_Geometry, g2 db2gse.ST_Geometry)

Return type
db2gse.ST_Geometry

Examples
The city engineer needs to know the total area of the city’s lot area not
covered by a building. That is, the city engineer wants the sum of the lot area
after the building area has been removed.
CREATE TABLE BUILDINGFOOTPRINTS (building_id integer,

lot_id integer,
footprint db2gse.ST_MultiPolygon);

CREATE TABLE LOTS (lot_id integer,
lot db2gse.ST_MultiPolygon);

The city engineer equijoins the BUILDINGFOOTPRINTS and LOTS table on
the lot_id. The engineer then takes the sum of the area of the difference of the
lots, minus the building footprints.
SELECT SUM(db2gse.ST_Area(db2gse.ST_Difference(lot,footprint)))
FROM BUILDINGFOOTPRINTS bf, LOTS
WHERE bf.lot_id = LOTS.lot_id;

Chapter 14. Spatial functions for SQL queries 195

ST_Dimension
ST_Dimension takes a geometry object and returns its dimension.

Syntax
db2gse.ST_Dimension(g1 db2gse.ST_Geometry)

Return type
Integer

Examples
The DIMENSION_TEST table is created with the columns GEOTYPE and G1.
The GEOTYPE column stores the name of the geometry subclass that is stored
in the G1 geometry column.
CREATE TABLE DIMENSION_TEST (geotype varchar(20), g1 db2gse.ST_Geometry)

The INSERT statements insert a sample subclass into the DIMENSION_TEST
table.
INSERT INTO DIMENSION_TEST
VALUES('Point',

db2gse.ST_PointFromText('point (10.02 20.01)',
db2gse.coordref()..srid(0)))

INSERT INTO DIMENSION_TEST
VALUES('Linestring',

db2gse.ST_LineFromText('linestring (10.02 20.01,10.32 23.98,
11.92 25.64)', db2gse.coordref()..srid(0)))

INSERT INTO DIMENSION_TEST
VALUES('Polygon',

db2gse.ST_PolyFromText('polygon ((10.02 20.01,11.92 35.64,25.02 34.15,
19.15 33.94,10.02 20.01))',

db2gse.coordref()..srid(0)))

INSERT INTO DIMENSION_TEST
VALUES('Multipoint',

db2gse.ST_MPointFromText('multipoint (10.02 20.01,10.32 23.98,
11.92 25.64)', db2gse.coordref()..srid(0)))

INSERT INTO DIMENSION_TEST
VALUES('Multilinestring',

db2gse.ST_MLineFromText('multilinestring ((10.02 20.01,10.32 23.98,
11.92 25.64),(9.55 23.75,15.36 30.11))',

db2gse.coordref()..srid(0)))

INSERT INTO DIMENSION_TEST
VALUES('Multipolygon',

db2gse.ST_MPolyFromText('multipolygon (((10.02 20.01,11.92 35.64,
25.02 34.15,19.15 33.94,10.02 20.01)),
((51.71 21.73,73.36 27.04,71.52 32.87,
52.43 31.90,51.71 21.73)))',

db2gse.coordref)..srid(0)))

196 DB2 Spatial Extender User’s Guide and Reference

The following SELECT statement lists the subclass name stored in the
GEOTYPE column with the dimension of that geotype.
SELECT geotype, db2gse.ST_Dimension(g1) "The dimension"
FROM DIMENSION_TEST

The following result set is returned.
GEOTYPE The dimension
-------------------- -------------
ST_Point 0
ST_Linestring 1
ST_Polygon 2
ST_Multipoint 0
ST_Multilinestring 1
ST_Multipolygon 2

6 record(s) selected.

Chapter 14. Spatial functions for SQL queries 197

ST_Disjoint
ST_Disjoint takes two geometries and returns 1 (TRUE) if the intersection of
two geometries produces an empty set; otherwise it returns 0 (FALSE).

Syntax
db2gse.ST_Disjoint(g1 db2gse.ST_Geometry, g2 db2gse.ST_Geometry)

Return type
Integer

Examples
An insurance company needs to assess the insurance coverage for a town’s
hospital, nursing homes, and schools. Part of this process includes
determining the threat that the hazardous waste sites pose to each institution.
The insurance company wants to consider only those institutions that are not
at risk of contamination. The GIS consultant hired by the insurance company
has been commissioned to locate all institutions that are not within a five-mile
radius of a hazardous waste site.

The SENSITIVE_AREAS table contains several columns that describe the
threatened institutions in addition to the ZONE column, which stores the
institution’s polygon geometry.
CREATE TABLE SENSITIVE_AREAS (id integer,

name varchar(128),
size float,
type varchar(10),
zone db2gse.ST_Polygon);

The HAZARDOUS_SITES table stores the identity of the sites in the SITE_ID
and NAME columns, while the actual geographic location of each site is
stored in the LOCATION column.
CREATE TABLE HAZARDOUS_SITES (site_id integer,

name varchar(128),
location db2gse.ST_Point);

The following SELECT statement lists the names of all sensitive areas that are
not within the 5- mile radius of a hazardous waste site. The ST_Intersects
function could replace the ST_Disjoint function in this query if the result of
the function is set equal to 0 instead of 1. This is because ST_Intersects and
ST_Disjoint return the exact opposite result.
SELECT sa.name
FROM SENSITIVE_AREAS sa, HAZARDOUS_SITES hs
WHERE db2gse.ST_Disjoint(db2gse.ST_Buffer(hs.location,(5 * 5280)),sa.zone) = 1;

In Figure 32 on page 199, sensitive are sites are compared to the five-mile
radius of the hazardous waste sites. The nursing home is the only sensitive

198 DB2 Spatial Extender User’s Guide and Reference

area where the ST_Disjoint function will return 1 (TRUE). The ST_Disjoint
function returns 1 whenever two geometries do not intersect in any way.

Figure 32. Using ST_Disjoint to find the buildings that do not lie within (intersect) any hazardous
waste area

Chapter 14. Spatial functions for SQL queries 199

ST_Distance
ST_Distance takes two geometries and returns the closest distance separating
them.

Syntax
db2gse.ST_Distance(g1 db2gse.ST_Geometry, g2 db2gse.ST_Geometry)

Return type
Double

Examples
The city engineer needs a list of all buildings that are within one foot of any
lot line.

The BUILDING_ID column of the BUILDINGFOOTPRINTS table uniquely
identifies each building. The LOT_ID column identifies the lot each building
belongs to. The footprint multipolygon stores the geometry of each building’s
footprint.
CREATE TABLE BUILDINGFOOTPRINTS (building_id integer,

lot_id integer,
footprint db2gse.ST_MultiPolygon);

The LOTS table stores the lot ID that uniquely identifies each lot, and the lot
multipolygon that contains the lot line geometry.
CREATE TABLE LOTS (lot_id integer,

lot db2gse.ST_MultiPolygon);

The query returns a list of building IDs that are within one foot of their lot
lines. The ST_Distance function performs a spatial join between the footprints
and the boundary of the lot multipolygons. However, the equijoin between
the bf.lot_id and LOTS.lot_id ensures that only the multipolygons belonging
to the same lot are compared by the ST_Distance function.
SELECT bf.building_id

FROM BUILDINGFOOTPRINTS bf, LOTS
WHERE bf.lot_id = LOTS.lot_id AND

db2gse.ST_Distance(bf.footprint, db2gse.ST_Boundary(LOTS.lot)) <= 1.0;

200 DB2 Spatial Extender User’s Guide and Reference

ST_Endpoint
ST_Endpoint takes a linestring and returns a point that is the linestring’s last
point.

Syntax
db2gse.ST_Endpoint(c db2gse.ST_Curve)

Return type
db2gse.ST_Point

Examples
The ENDPOINT_TEST table stores the GID integer column that uniquely
identifies each row and the LN1 linestring column that stores linestrings.
CREATE TABLE ENDPOINT_TEST (gid integer, ln1 db2gse.ST_LineString)

The INSERT statements insert linestrings into the ENDPOINT_TEST table. The
first one does not have Z coordinates or measures; the second one does.
INSERT INTO ENDPOINT_TEST
VALUES(1,

db2gse.ST_LineFromText('linestring (10.02 20.01,23.73 21.92,
30.10 40.23)', db2gse.coordref()..srid(0)))

INSERT INTO ENDPOINT_TEST
VALUES(2,

db2gse.ST_LineFromText('linestring zm (10.02 20.01 5.0 7.0,
23.73 21.92 6.5 7.1, 30.10 40.23 6.9 7.2)',

db2gse.coordref()..srid(0)))

The following SELECT statement lists the GID column with the output of the
ST_Endpoint function. The ST_Endpoint function generates a point geometry
that is converted to text by the ST_AsText function. The CAST function is
used to shorten the default varchar(4000) value of the ST_AsText function to a
varchar(60).
SELECT gid, CAST(db2gse.ST_AsText(db2gse.ST_Endpoint(ln1)) AS varchar(60))
"Endpoint"
FROM ENDPOINT_TEST

The following result set is returned.
GID Endpoint
----------- --

1 POINT (30.10000000 40.23000000)
2 POINT ZM (30.10000000 40.23000000 7.00000000 7.20000000)

2 record(s) selected.

Chapter 14. Spatial functions for SQL queries 201

ST_Envelope
ST_Envelope takes a geometry object and returns its bounding box as a
geometry.

Syntax
db2gse.ST_Envelope(g db2gse.ST_Geometry)

Return type
db2gse.ST_Geometry

Examples
The GEOTYPE column in the ENVELOPE_TEST table stores the name of the
geometry subclass stored in the G1 geometry column.
CREATE TABLE ENVELOPE_TEST (geotype varchar(20), g1 db2gse.ST_Geometry)

The following INSERT statements insert each geometry subclass into the
ENVELOPE_TEST table.
INSERT INTO ENVELOPE_TEST
VALUES('Point',

db2gse.ST_PointFromText('point (10.02 20.01)',
db2gse.coordref()..srid(0)))

INSERT INTO ENVELOPE_TEST
VALUES ('Linestring',

db2gse.ST_LineFromText('linestring (10.01 20.01, 10.01 30.01,
10.01 40.01)', db2gse.coordref()..srid(0)))

INSERT INTO ENVELOPE_TEST
VALUES('Linestring',

db2gse.ST_LineFromText('linestring (10.02 20.01,10.32 23.98,11.92 25.64)',
db2gse.coordref()..srid(0)))

INSERT INTO ENVELOPE_TEST
VALUES('Polygon',

db2gse.ST_PolyFromText('polygon ((10.02 20.01,11.92 35.64,25.02 34.15,
19.15 33.94,10.02 20.01))',

db2gse.coordref()..srid(0)))

INSERT INTO ENVELOPE_TEST
VALUES('Multipoint',

db2gse.ST_MPointFromText('multipoint (10.02 20.01,10.32 23.98,11.92 25.64)',
db2gse.coordref()..srid(0)))

INSERT INTO ENVELOPE_TEST
VALUES('Multilinestring',

db2gse.ST_MLineFromText('multilinestring ((10.01 20.01,20.01 20.01,
30.01 20.01), (30.01 20.01,40.01 20.01,50.01 20.01))',

db2gse.coordref()..srid(0)))

INSERT INTO ENVELOPE_TEST
VALUES('Multilinestring',

202 DB2 Spatial Extender User’s Guide and Reference

db2gse.ST_MLineFromText('multilinestring ((10.02 20.01,10.32 23.98,
11.92 25.64), (9.55 23.75,15.36 30.11))',

db2gse.coordref()..srid(0)))

INSERT INTO ENVELOPE_TEST
VALUES('Multipolygon',

db2gse.ST_MPolyFromText('multipolygon (((10.02 20.01,11.92 35.64,
25.02 34.15, 19.15 33.94,10.02 20.01)),

((51.71 21.73,73.36 27.04,71.52 32.87,
52.43 31.90,51.71 21.73)))',

db2gse.coordref()..srid(0)))

The following SELECT statement lists the subclass name next to its envelope.
Because the ST_Envelope function returns either a point, linestring, or
polygon, its output is converted to text with the ST_AsText function. The
CAST function converts the default varchar(4000) result of the ST_AsText
function to a varchar(280).
SELECT GEOTYPE, CAST(db2gse.ST_AsText(db2gse.ST_Envelope(g1)) AS varchar(280))
"The envelope"
FROM ENVELOPE_TEST

The following result set is returned.
GEOTYPE The envelope
-------------------- --
Point POINT (10.02000000 20.01000000)
Linestring LINESTRING (10.01000000 20.01000000, 10.01000000
40.01000000)
Linestring POLYGON ((10.02000000 20.01000000, 11.92000000
20.01000000, 11.92000000 25.64000000, 10.02000000 25.64000000, 10.02000000
20.01000000))
Polygon POLYGON ((10.02000000 20.01000000, 25.02000000
20.01000000, 25.02000000 35.64000000, 10.02000000 35.64000000, 10.02000000
20.01000000))
Multipoint POLYGON ((10.02000000 20.01000000, 11.92000000
20.01000000, 11.92000000 25.64000000, 10.02000000 25.64000000, 10.02000000
20.01000000))
Multilinestring LINESTRING (10.01000000 20.01000000, 50.01000000
20.01000000)
Multilinestring POLYGON ((9.55000000 20.01000000, 15.36000000
20.01000000, 15.36000000 30.11000000, 9.55000000 30.11000000, 9.55000000
20.01000000))
Multipolygon POLYGON ((10.02000000 20.01000000, 73.36000000
20.01000000, 73.36000000 35.64000000, 10.02000000 35.64000000, 10.02000000
20.01000000))

8 record(s) selected.

Chapter 14. Spatial functions for SQL queries 203

ST_Equals
ST_Equals compares two geometries and returns 1 (TRUE) if the geometries
are identical; otherwise it returns 0 (FALSE).

Syntax
db2gse.ST_Equals(g1 db2gse.ST_Geometry, g2 db2gse.ST_Geometry)

Return type
Integer

Examples
The city GIS technician suspects that some of the data in the
BUILDINGFOOTPRINTS table was somehow duplicated. The technician
queries the table to determine if any of the footprint’s multipolygons are
equal.

The BUILDINGFOOTPRINTS table is created with the following statement.
The BUILDING_ID column uniquely identifies the buildings; the LOT_ID
column identifies the building’s lot; and the FOOTPRINT column stores the
building’s geometry.
CREATE TABLE BUILDINGFOOTPRINTS (building_id integer,

lot_id integer,
footprint db2gse.ST_MultiPolygon);

The BUILDINGFOOTPRINTS table is spatially joined to itself by the
ST_Equals predicate, which returns 1 whenever it finds two of the
multipolygons that are equal. The bf1.building_id <> bf2.building_id
condition is required to eliminate the comparison of the same geometry.
SELECT bf1.building_id, bf2.building_id
FROM BUILDINGFOOTPRINTS bf1, BUILDINGFOOTPRINTS bf2
WHERE db2gse.ST_Equals(bf1.footprint,bf2.footprint) = 1

and bf1.building_id <> bf2.building_id;

204 DB2 Spatial Extender User’s Guide and Reference

ST_ExteriorRing
ST_ExteriorRing takes a polygon and returns its exterior ring as a linestring.

Syntax
db2gse.ST_ExteriorRing(s db2gse.ST_Polygon)

Return type
db2gse.ST_LineString

Examples
An ornithologist who is studying the bird population on several south sea
islands, knows that the feeding zone of a particular bird species is restricted
to the shoreline. To calculate of the island’s carrying capacity, the ornithologist
requires the island’s perimeter. Although some of the islands have several
ponds on them, the shorelines of the ponds are inhabited exclusively by
another more aggressive bird species. Therefore, the ornithologist requires the
perimeter of the exterior ring of the islands.

The ID and NAME columns of the ISLANDS table identify each island, and
the LAND column of type ST_Polygon stores the geometry of each.
CREATE TABLE ISLANDS (id integer,

name varchar(32),
land db2gse.ST_Polygon);

The ST_ExteriorRing function extracts the exterior ring from each island
polygon as a linestring. The length of the linestring is established by the
length function. The linestring lengths are summarized by the SUM function.
SELECT SUM(db2gse.ST_length(db2gse.ST_ExteriorRing (land))) FROM ISLANDS;

In Figure 33 on page 206, the exterior rings of the islands represent the
ecological interface that each island shares with the sea. Some of the islands
have lakes, which are represented by the interior rings of the polygons.

Chapter 14. Spatial functions for SQL queries 205

Figure 33. Using ST_ExteriorRing to determine the length of an island shore line

206 DB2 Spatial Extender User’s Guide and Reference

ST_GeometryFromText
ST_GeometryFromText takes a well-known text representation and a spatial
reference system identity and returns a geometry object.

Syntax
db2gse.ST_GeometryFromText(geometryTaggedText Varchar(4000), cr
db2gse.coordref)

Return type
db2gse.ST_Geometry

Examples
The GEOMETRY_TEST table contains the integer GID column, which
uniquely identifies each row, and the G1 column, which stores the geometry.
CREATE TABLE GEOMETRY_TEST (gid smallint, g1 db2gse.ST_Geometry)

The INSERT statements inserts the data into the GID and G1 columns of the
GEOMETRY_TEST table. The ST_GeometryFromText function converts the
text representation of each geometry into its corresponding DB2 Spatial
Extender instantiable subclass.
INSERT INTO GEOMETRY_TEST
VALUES(1, db2gse.ST_GeometryFromText('point (10.02 20.01)',

db2gse.coordref()..srid(0)))

INSERT INTO GEOMETRY_TEST
VALUES (2,

db2gse.ST_GeometryFromText('linestring (10.01 20.01, 10.01 30.01,
10.01 40.01)', db2gse.coordref()..srid(0)))

INSERT INTO GEOMETRY_TEST
VALUES(3,

db2gse.ST_GeometryFromText('polygon ((10.02 20.01,11.92 35.64,25.02 34.15,
19.15 33.94,10.02 20.01))',

db2gse.coordref()..srid(0)))

INSERT INTO GEOMETRY_TEST
VALUES(4,

db2gse.ST_GeometryFromText('multipoint (10.02 20.01,10.32 23.98,
11.92 25.64)', db2gse.coordref()..srid(0)))

INSERT INTO GEOMETRY_TEST
VALUES(5,

db2gse.ST_GeometryFromText('multilinestring ((10.02 20.01,10.32 23.98,
11.92 25.64),

(9.55 23.75,15.36 30.11))',
db2gse.coordref()..srid(0)))

INSERT INTO GEOMETRY_TEST
VALUES(6,

db2gse.ST_GeometryFromText('multipolygon (((10.02 20.01,11.92 35.64,
25.02 34.15, 19.15 33.94,10.02 20.01)),

Chapter 14. Spatial functions for SQL queries 207

((51.71 21.73,73.36 27.04,71.52 32.87,
52.43 31.90,51.71 21.73)))',

db2gse.coordref()..srid(0)))

208 DB2 Spatial Extender User’s Guide and Reference

ST_GeomFromWKB
ST_GeomFromWKB takes a well-known binary representation and a spatial
reference system identity and returns a geometry object.

Syntax
db2gse.ST_GeomFromWKB(WKBGeometry Blob(1M), cr db2gse.coordref)

Return type
db2gse.ST_Geometry

Examples
The following C code fragment contains ODBC functions embedded with DB2
Spatial Extender SQL functions that insert data into the LOTS table.

The LOTS table was created with two columns: the LOT_ID column, which
uniquely identifies each lot, and the LOT multipolygon column, which
contains the geometry of each lot.
CREATE TABLE LOTS (lot_id integer,

lot db2gse.ST_MultiPolygon);

The ST_GeomFromWKB function converts WKB representations into DB2
Spatial Extender geometry. The entire INSERT statement is copied into
wkb_sql char string. The INSERT statement contains parameter markers to
accept the LOT_ID data and the LOT data dynamically.
/* Create the SQL insert statement to populate the lot id and the

lot multipolygon. The question marks are parameter markers that
indicate the lot_id and lot values that will be retrieved at
runtime. */

strcpy (wkb_sql,"insert into LOTS (lot_id, lot) values (?,
db2gse.ST_GeomFromWKB

(cast(? as blob(1m)), db2gse.coordref()..srid(0)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)wkb_sql, SQL_NTS);

/* Bind the integer key value to the first parameter. */
pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,

SQL_INTEGER, 0, 0, &lot_id, 0, &pcbvalue1);

/* Bind the shape to the second parameter. */
pcbvalue2 = blob_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,

Chapter 14. Spatial functions for SQL queries 209

SQL_BLOB, blob_len, 0, shape_blob, blob_len, &pcbvalue2);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

210 DB2 Spatial Extender User’s Guide and Reference

ST_GeometryN
ST_GeometryN takes a collection and an integer index and returns the nth
geometry object in the collection.

Syntax

db2gse.ST GeometryN(g db2gse.ST_GeomCollection, n Integer)

Return type
db2gse.ST_Geometry

Examples
The city engineer needs to know if the building footprints are all inside the
first polygon of the lot’s multipolygon.

The BUILDING_ID column uniquely identifies each row of the
BUILDINGFOOTPRINTS table. The LOT_ID column identifies the building’s
lot. The FOOTPRINT column stores the building’s geometry.
CREATE TABLE BUILDINGFOOTPRINTS (building_id integer,

lot_id integer,
footprint db2gse.ST_MultiPolygon);

CREATE TABLE LOTS (lot_id integer,
lot db2gse.ST_MultiPolygon);

The query lists the BUILDINGFOOTPRINTS building_id and lot_id for all
building footprints that are all within the first lot polygon. The
ST_GeometryN function returns a first lot polygon in the multipolygon array.
SELECT bf.building_id,bf.lot_id
FROM BUILDINGFOOTPRINTS bf,LOTS
WHERE db2gse.ST_Within(footprint, db2gse.ST_GeometryN (lot,1)) = 1

AND bf.lot_id = LOTS.lot_id;

Chapter 14. Spatial functions for SQL queries 211

ST_GeometryType
ST_GeometryType takes a ST_Geometry object and returns its geometry type
as a string.

Syntax
db2gse.ST_GeometryType (g db2gse.ST_Geometry)

Return type
Varchar(4000)

Examples
The GEOMETRYTYPE_TEST table contains the G1 geometry column.
CREATE TABLE GEOMETRYTYPE_TEST(g1 db2gse.ST_Geometry)

The following INSERT statements insert each geometry subclass into the G1
column.
INSERT INTO GEOMETRYTYPE_TEST
VALUES(db2gse.ST_GeometryFromText('point (10.02 20.01)',

db2gse.coordref()..srid(0)))

INSERT INTO GEOMETRYTYPE_TEST
VALUES (db2gse.ST_GeometryFromText('linestring (10.01 20.01, 10.01 30.01,

10.01 40.01)', db2gse.coordref()..srid(0)))

INSERT INTO GEOMETRYTYPE_TEST
VALUES(db2gse.ST_Geometrytype_test values(db2gse.ST_GeomFromText('polygon

((10.02 20.01,11.92 35.64,25.02 34.15,19.15 33.94, 10.02 20.01))',
db2gse.coordref()..srid(0))))

INSERT INTO GEOMETRYTYPE_TEST
VALUES(db2gse.ST_GeometryFromText('multipoint (10.02
20.01,10.32 23.98,

11.92 25.64)', db2gse.coordref()..srid(0)))

INSERT INTO GEOMETRYTYPE_TEST
VALUES(db2gse.ST_GeometryFromText('multilinestring ((10.02 20.01,10.32 23.98,

11.92 25.64),
(9.55 23.75,15.36 30.11))',

db2gse.coordref()..srid(0)))

INSERT INTO GEOMETRYTYPE_TEST
VALUES(db2gse.ST_GeometryFromText('multipolygon (((10.02 20.01,11.92 35.64,

25.02 34.15, 19.15 33.94,10.02 20.01)),
((51.71 21.73,73.36 27.04,71.52 32.87,

52.43 31.90,51.71 21.73)))',
db2gse.coordref()..srid(0)))

The following SELECT statement lists the geometry type of each subclass that
is stored in the G1 geometry column.
SELECT db2gse.ST_GeometryType(g1) "Geometry type" FROM GEOMETRYTYPE_TEST

212 DB2 Spatial Extender User’s Guide and Reference

The following result set is returned.
Geometry type

ST_Point
ST_LineString
ST_Polygon
ST_MultiPoint
ST_MultiLineString
ST_MultiPolygon

6 record(s) selected.

Chapter 14. Spatial functions for SQL queries 213

ST_InteriorRingN
Returns the nth interior ring of a polygon as a linestring. The rings are not
organized by geometric orientation. They are organized according to the rules
defined by the internal geometry verification routines. So, the order of the
rings cannot be predefined.

Syntax
ST_InteriorRingN(p ST_Polygon, n Integer)

Return type
db2gse.ST_LineString

Examples
An ornithologist who is studying the bird population on several south sea
islands knows that the feeding zone of a particular passive species is
restricted to the seashore. Some of the islands have several lakes on them. The
shorelines of the lakes are inhabited exclusively by another more aggressive
species. The ornithologist knows that for each island, if the perimeter of the
lakes exceeds a certain threshold, the aggressive species will become so
numerous that it will threaten the passive seashore species. Therefore, the
ornithologist requires the aggregated perimeter of the interior rings of the
islands.

In Figure 34, the exterior rings of the islands represent the ecological interface
that each island shares with the sea. Some of the islands have lakes, which are
represented by the interior rings of the polygons.

Figure 34. Using ST_InteriorRingN to determine the length of the lakeshores within each island

214 DB2 Spatial Extender User’s Guide and Reference

The ID and name columns of the ISLANDS table identify each island, while
the land polygon column stores the island’s geometry.
CREATE TABLE ISLANDS (id integer,

name varchar(32),
land db2gse.ST_Polygon);

The following ODBC program uses the ST_InteriorRingN function to extract
the interior ring (lake) from each island polygon as a linestring. The perimeter
of the linestring that is returned by the length function is totaled and
displayed along with the island’s ID.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#include "sg.h"
#include "sgerr.h"
#include "sqlcli1.h"

/*** ***
*** Change these constants ***
*** ***/

#define USER_NAME "sdetest" /* your user name */
#define USER_PASS "acid.rain" /* your user password */
#define DB_NAME "mydb" /* database to connect to */

static void check_sql_err (SQLHDBC handle,
SQLHSTMT hstmt,
LONG rc,
CHAR *str);

void main(argc, argv)
int argc;
char *argv[];
{

SQLHDBC handle;
SQLHENV henv;
CHAR sql_stmt[256];
LONG rc,

total_perimeter,
num_lakes,
lake_number,
island_id,
lake_perimeter;

SQLHSTMT island_cursor,
lake_cursor;

SDWORD pcbvalue,
id_ind,
lake_ind,
length_ind;

/* Allocate memory for the ODBC environment handle henv and initialize

Chapter 14. Spatial functions for SQL queries 215

the application. */

rc = SQLAllocEnv (&henv);
if (rc != SQL_SUCCESS)
{

printf ("SQLAllocEnv failed with %d\n", rc);
exit(0);

}

/* Allocate memory for a connection handle within the henv environment. */

rc = SQLAllocConnect (henv, &handle);
if (rc != SQL_SUCCESS)
{

printf ("SQLAllocConnect failed with %d\n", rc);
exit(0);

}

/* Load the ODBC driver and connect to the data source identified by the database,
user, and password.*/

rc = SQLConnect (handle,
(UCHAR *)DB_NAME,
SQL_NTS,
(UCHAR *)USER_NAME,
SQL_NTS,
(UCHAR *)USER_PASS,
SQL_NTS);

check_sql_err (handle, NULL, rc, "SQLConnect");

/* Allocate memory to the SQL statement handle island_cursor. */

rc = SQLAllocStmt (handle, &island_cursor);
check_sql_err (handle, NULL, rc, "SQLAllocStmt");

/* Prepare and execute the query to get the island IDs and number of
lakes (interior rings) */

strcpy (sql_stmt, "select id, db2gse.ST_NumInteriorRings(land) from ISLANDS");

rc = SQLExecDirect (island_cursor, (UCHAR *)sql_stmt, SQL_NTS);
check_sql_err (NULL, island_cursor, rc, "SQLExecDirect");

/* Bind the island table's ID column to the variable island_id */

rc = SQLBindCol (island_cursor, 1, SQL_C_SLONG, &island_id, 0, &id_ind);
check_sql_err (NULL, island_cursor, rc, "SQLBindCol");

/* Bind the result of numinteriorrings(land) to the num_lakes variable. */

rc = SQLBindCol (island_cursor, 2, SQL_C_SLONG, &num_lakes, 0, &lake_ind);
check_sql_err (NULL, island_cursor, rc, "SQLBindCol");

/* Allocate memory to the SQL statement handle lake_cursor. */

216 DB2 Spatial Extender User’s Guide and Reference

rc = SQLAllocStmt (handle, &lake_cursor);
check_sql_err (handle, NULL, rc, "SQLAllocStmt");

/* Prepare the query to get the length of an interior ring. */

strcpy (sql_stmt,
"select Length(db2gse.ST_InteriorRingN(land, cast (? as
integer))) from ISLANDS where id = ?");

rc = SQLPrepare (lake_cursor, (UCHAR *)sql_stmt, SQL_NTS);
check_sql_err (NULL, lake_cursor, rc, "SQLPrepare");

/* Bind the lake_number variable as the first input parameter */

pcbvalue = 0;
rc = SQLBindParameter (lake_cursor, 1, SQL_PARAM_INPUT, SQL_C_LONG,

SQL_INTEGER, 0, 0, &lake_number, 0, &pcbvalue);
check_sql_err (NULL, lake_cursor, rc, "SQLBindParameter");

/* Bind the island_id as the second input parameter */

pcbvalue = 0;
rc = SQLBindParameter (lake_cursor, 2, SQL_PARAM_INPUT, SQL_C_LONG,

SQL_INTEGER, 0, 0, &island_id, 0, &pcbvalue);
check_sql_err (NULL, lake_cursor, rc, "SQLBindParameter");

/* Bind the result of the Length(db2gse.ST_InteriorRingN(land, cast
(? as integer))) to the variable lake_perimeter */

rc = SQLBindCol (lake_cursor, 1, SQL_C_SLONG, &lake_perimeter, 0,
&length_ind);

check_sql_err (NULL, island_cursor, rc, "SQLBindCol");

/* Outer loop, get the island ids and the number of lakes
(interior rings) */

while (SQL_SUCCESS == rc)
{

/* Fetch an island */

rc = SQLFetch (island_cursor);

if (rc != SQL_NO_DATA)
{

check_sql_err (NULL, island_cursor, rc, "SQLFetch");

/* Inner loop, for this island, get the perimeter of all of
its lakes (interior rings) */

for (total_perimeter = 0,lake_number = 1;
lake_number <= num_lakes;
lake_number++)

{
rc = SQLExecute (lake_cursor);

Chapter 14. Spatial functions for SQL queries 217

check_sql_err (NULL, lake_cursor, rc, "SQLExecute");

rc = SQLFetch (lake_cursor);
check_sql_err (NULL, lake_cursor, rc, "SQLFetch");

total_perimeter += lake_perimeter;

SQLFreeStmt (lake_cursor, SQL_CLOSE);
}

}

/* Display the Island id and the total perimeter of its lakes. */

printf ("Island ID = %d, Total lake perimeter = %d\n",
island_id,total_perimeter);

}

SQLFreeStmt (lake_cursor, SQL_DROP);
SQLFreeStmt (island_cursor, SQL_DROP);
SQLDisconnect (handle);
SQLFreeConnect (handle);
SQLFreeEnv (henv);

printf("\nTest Complete ...\n");

}

static void check_sql_err (SQLHDBC handle, SQLHSTMT hstmt, LONG rc,
CHAR *str)

{

SDWORD dbms_err = 0;
SWORD length;
UCHAR err_msg[SQL_MAX_MESSAGE_LENGTH], state[6];

if (rc != SQL_SUCCESS)
{

SQLError (SQL_NULL_HENV, handle, hstmt, state, &dbms_err,
err_msg, SQL_MAX_MESSAGE_LENGTH − 1, &length);

printf ("%s ERROR (%d): DBMS code:%d, SQL state: %s, message:
\n %s\n", str, rc, dbms_err, state, err_msg);

if (handle)
{

SQLDisconnect (handle);
SQLFreeConnect (handle);

}
exit(1);

}
}

218 DB2 Spatial Extender User’s Guide and Reference

ST_Intersection
ST_Intersection takes two geometry objects and returns the intersection set as
a geometry object.

Syntax
db2gse.ST_Intersection(g1 db2gse.ST_Geometry, g2 db2gse.ST_Geometry)

Return type
db2gse.ST_Geometry

Examples
The fire marshall must obtain the areas of the hospitals, schools, and nursing
homes that are intersected by the radius of a possible hazardous waste
contamination.

The sensitive areas are stored in the table SENSITIVE_AREAS that is created
with the following CREATE TABLE statement. The ZONE column is defined
as a polygon that stores the outline of each of the sensitive areas.
CREATE TABLE SENSITIVE_AREAS (id integer,

name varchar(128),
size float,
type varchar(10),
zone db2gse.ST_Polygon);

The hazardous sites are stored in the HAZARDOUS_SITES table that is
created with the following CREATE TABLE statement. The LOCATION
column, defined as a point, stores a location that is the geographic center of
each hazardous site.
CREATE TABLE HAZARDOUS_SITES (site_id integer,

name varchar(128),
location db2gse.ST_Point);

The buffer function generates a five-mile buffer that surrounds the hazardous
waste site locations. The ST_Intersection function generates polygons from the
intersection of the buffered hazardous waste site polygons and the sensitive
areas. The ST_Area function returns the intersection polygon’s area, which is
summarized for each hazardous site by the SUM function. The GROUP BY
clause directs the query to aggregate the intersected areas by the hazardous
waste site_ID.
SELECT hs.name,SUM(db2gse.ST_Area(db2gse.ST_Intersection (sa.zone,
db2gse.ST_buffer hs.location,(5 * 5280))))
FROM SENSITIVE_AREAS sa, HAZARDOUS_SITES hs
GROUP BY hs.site_id;

In Figure 35 on page 220, the circles represent the buffered polygons that
surround the hazardous waste sites. The intersection of these buffer polygons
with the sensitive area polygons produces three other polygons. The hospital

Chapter 14. Spatial functions for SQL queries 219

in the upper left hand corner is intersected twice, while the school in the
lower right hand corner is intersected only once.

Figure 35. Using ST_Intersection to determine how large an area in each of the buildings might be
affected by hazardous waste

220 DB2 Spatial Extender User’s Guide and Reference

ST_Intersects
ST_Intersects takes two geometries and returns 1 (TRUE), if the intersection of
two geometries does not result in an empty set. Otherwise, it returns 0
(FALSE).

Syntax
db2gse.ST_Intersects(g1 db2gse.ST_Geometry, g2 db2gse.ST_Geometry)

Return type
Integer

Examples
The fire marshall needs a list of all sensitive areas within a five-mile radius of
a hazardous waste site.

The sensitive areas are stored in the table SENSITIVE_AREAS that is created
with the following CREATE TABLE statement. The ZONE column is defined
as a polygon that stores the outline of each of the sensitive areas.
CREATE TABLE SENSITIVE_AREAS (id integer,

name varchar(128),
size float,
type varchar(10),
zone db2gse.ST_Polygon);

The hazardous sites are stored in the HAZARDOUS_SITES table created with
the following CREATE TABLE statement. The LOCATION column, defined as
a point, stores a location that is the geographic center of each hazardous site.
CREATE TABLE HAZARDOUS_SITES (site_id integer,

name varchar(128),
location db2gse.ST_Point);

The query returns a list of sensitive areas and hazardous site names for
sensitive areas that intersect the five-mile buffer of the hazardous sites.
SELECT sa.name, hs.name
FROM SENSITIVE_AREAS sa, HAZARDOUS_SITES hs
WHERE db2gse.ST_Intersects(db2gse.ST_Buffer(hs.location,(5 * 5280)),sa.zone)
= 1;

Chapter 14. Spatial functions for SQL queries 221

ST_IsClosed
ST_IsClosed takes a linestring or multilinestring and returns 1 (TRUE) if it is
closed; otherwise it returns 0 (FALSE).

Syntax

db2gse.ST_IsClosed(c db2gse.ST_Curve)
db2gse.ST_IsClosed(mc db2gse.ST_MultiCurve)

Return type
Integer

Examples
The following CREATE TABLE statement creates the CLOSED_LINESTRING
table, which has a single linestring column.
CREATE TABLE CLOSED_LINESTRING (ln1 db2gse.ST_LineString)

The following INSERT statements insert two records into the
CLOSED_LINESTRING table. The first record is not a closed linestring, while
the second is.
INSERT INTO CLOSED_LINESTRING
VALUES(db2gse.ST_LineFromText('linestring (10.02 20.01,10.32 23.98,

11.92 25.64)', db2gse.coordref()..srid(0)))

INSERT INTO CLOSED_LINESTRING
VALUES(db2gse.ST_LineFromText('linestring (10.02 20.01,11.92 35.64,

25.02 34.15, 19.15 33.94,10.02 20.01)',
db2gse.coordref()..srid(0)))

The following SELECT statement and the corresponding result set shows the
results of the ST_IsClosed function. The first row returns a 0 because the
linestring is not closed, while the second row returns a 1 because the
linestring is closed.
SELECT db2gse.ST_IsClosed(ln1) "Is it closed" FROM CLOSED_LINESTRING

Is it closed

0
1

2 record(s) selected.

The following CREATE TABLE statement creates the
CLOSED_MULTILINESTRING table, which has a single multilinestring
column.
CREATE TABLE CLOSED_MULTILINESTRING (mln1 db2gse.ST_MultiLineString)

222 DB2 Spatial Extender User’s Guide and Reference

The following INSERT statements insert two records into
CLOSED_MULTILINESTRING, a multilinestring record that is not closed and
another that is.
INSERT INTO CLOSED_MULTILINESTRING
VALUES(db2gse.ST_MLineFromText('multilinestring ((10.02 20.01,10.32 23.98,

11.92 25.64), (9.55 23.75,15.36 30.11))',
db2gse.coordref()..srid(0)))

INSERT INTO CLOSED_MULTILINESTRING
VALUES(db2gse.ST_MLineFromText('multilinestring ((10.02 20.01,11.92 35.64,

25.02 34.15, 19.15 33.94,10.02 20.01),
(51.71 21.73,73.36 27.04,71.52 32.87,
52.43 31.90,51.71 21.73))',

db2gse.coordref()..srid(0)))

The following SELECT statement and the corresponding result set shows the
results of the ST_IsClosed function. The first row returns 0 because the
multilinestring is not closed, while the second row returns 1 because the
multilinestring is closed. A multilinestring is closed if all of its linestring
elements are closed.
SELECT db2gse.ST_IsClosed(mln1) "Is it closed" FROM CLOSED_MULTILINESTRING

Is it closed

0
1

2 record(s) selected.

Chapter 14. Spatial functions for SQL queries 223

ST_IsEmpty
ST_IsEmpty takes a geometry object and returns 1 (TRUE) if it is empty;
otherwise it returns 0 (FALSE).

Syntax
db2gse.ST_IsEmpty(g db2gse.ST_Geometry)

Return type
Integer

Examples
The following CREATE TABLE statement creates the EMPTY_TEST table with
two columns. The GEOTYPE column stores the data type of the subclasses
that are stored in the G1 geometry column.
CREATE TABLE EMPTY_TEST (geotype varchar(20), g1 db2gse.ST_Geometry)

The following INSERT statements insert two records for the geometry
subclasses point, linestring, and polygon. One record is empty and one is not.
INSERT INTO EMPTY_TEST
VALUES('Point', db2gse.ST_PointFromText('point (10.02 20.01)',
db2gse.coordref()..srid(0)))

INSERT INTO EMPTY_TEST
VALUES('Point', db2gse.ST_PointFromText('point empty',
db2gse.coordref()..srid(0)))

INSERT INTO EMPTY_TEST
VALUES('Linestring', db2gse.ST_LineFromText('linestring (10.02 20.01,

10.32 23.98, 11.92 25.64)',
db2gse.coordref()..srid(0)))

INSERT INTO EMPTY_TEST
VALUES('Linestring', db2gse.ST_LineFromText('linestring empty',
db2gse.coordref()..srid(0)))

INSERT INTO EMPTY_TEST
VALUES('Polygon', db2gse.ST_PolyFromText('polygon ((10.02 20.01,11.92 35.64,
25.02 34.15,19.15 33.94,10.02 20.01))',

db2gse.coordref()..srid(0)))

INSERT INTO EMPTY_TEST
VALUES('Polygon', db2gse.ST_PolyFromText('polygon empty',
db2gse.coordref()..srid(0)))

The following SELECT statement and corresponding result set show the
geometry type from the GEOTYPE column and the results of the ST_IsEmpty
function.
SELECT geotype, db2gse.ST_IsEmpty(g1) "It is empty" FROM EMPTY_TEST

GEOTYPE It is empty

224 DB2 Spatial Extender User’s Guide and Reference

-------------------- -----------
ST_Point 0
ST_Point 1
ST_Linestring 0
ST_Linestring 1
ST_Polygon 0
ST_Polygon 1

6 record(s) selected.

Chapter 14. Spatial functions for SQL queries 225

ST_IsRing
ST_IsRing takes a linestring and returns 1 (TRUE) if it is a ring (namely, the
linestring is closed and simple); otherwise, it returns 0 (FALSE).

Syntax
db2gse.ST_IsRing(c db2gse.ST_Curve)

Return type
Integer

Examples
The following CREATE TABLE statement creates the RING_LINESTRING
table, which has a single linestring column that is called LN1.
CREATE TABLE RING_LINESTRING (ln1 db2gse.ST_LineString)

The following INSERT statements insert three linestrings into the LN1
column. The first row contains a linestring that is not closed and therefore is
not a ring. The second row contains a linestring that is closed and is simple
and therefore is a ring. The third row contains a linestring that is closed but is
not simple because it intersects its own interior, and therefore is not a ring.
INSERT INTO RING_LINESTRING
VALUES(db2gse.ST_LineFromText('linestring (10.02 20.01,10.32 23.98,

11.92 25.64)', db2gse.coordref()..srid(0)))

INSERT INTO RING_LINESTRING
VALUES(db2gse.ST_LineFromText('linestring (10.02 20.01,11.92 35.64,25.02 34.15,

19.15 33.94, 10.02 20.01)',
db2gse.coordref()..srid(0)))

INSERT INTO RING_LINESTRING
VALUES(db2gse.ST_LineFromText('linestring (15.47 30.12,20.73 22.12,10.83 14.13,

16.45 17.24,21.56 13.37,11.23 22.56,
19.11 26.78,15.47 30.12)',

db2gse.coordref()..srid(0)))

The following SELECT statement and the corresponding result set shows the
results of the ST_IsRing function. The first and third rows return a 0. This is
because the linestrings are not rings, while the second row returns a 1 because
it is a ring.
SELECT db2gse.ST_IsRing(ln1) "Is it ring" FROM RING_LINESTRING

Is it ring

0
1
0

3 record(s) selected.

226 DB2 Spatial Extender User’s Guide and Reference

ST_IsSimple
ST_IsSimple takes a geometry object and returns 1 (TRUE) if the object is
simple; otherwise, it returns 0 (FALSE).

Syntax
db2gse.ST_IsSimple(g db2gse.ST_Geometry)

Return type
Integer

Examples
The following CREATE TABLE statement creates the ISSIMPLE_TEST table,
which has two columns. The PID column, which is a smallint, contains the
unique identifier for each row. The G1 geometry column stores the simple and
non-simple geometry samples.
CREATE TABLE ISSIMPLE_TEST (pid smallint, g1 db2gse.ST_Geometry)

The following INSERT statements insert two records into the ISSIMPLE_TEST
table. The first is simple because it is a linestring that does not intersect its
interior. The second is non-simple because it does intersect its interior.
INSERT INTO ISSIMPLE_TEST
VALUES (1, db2gse.ST_LineFromText('linestring (10 10, 20 20, 30 30)',
db2gse.coordref()..srid(0)))

INSERT INTO ISSIMPLE_TEST
VALUES (2, db2gse.ST_LineFromText('linestring (10 10, 20 20,20 30,10 30,10 20,
20 10)', db2gse.coordref()..srid(0)))

The following SELECT statement and the corresponding result set shows the
results of the ST_IsSimple function. The first record returns a 1 because the
linestring is simple, while the second record returns a 0 because the linestring
is not simple.
SELECT ST_IsSimple(g1)
FROM ISSIMPLE_TEST

g1

1
0

Chapter 14. Spatial functions for SQL queries 227

ST_IsValid
ST_IsValid takes an ST_Geometry and returns 1 (TRUE) if it is valid,
otherwise it returns 0 (FALSE). A geometry inserted into a DB2 database will
always be valid because the DB2 Spatial Extender always validates its spatial
data before accepting it. However, other DBMS vendors may not validate the
input, but instead require that the application do so.

Syntax
db2gse.ST_IsValid(g db2gse.ST_Geometry)

Return type
Integer

Examples
The valid_test table is created with the columns geotype and g1. The geotype
column stores the name of the geometry subclass stored in the g1 geometry
column.
CREATE TABLE valid_test (geotype varchar(20), g1 db2gse.ST_Geometry)

The INSERT statements inserts a sample subclass into the valid_test table.
INSERT INTO valid_test VALUES(

'Point', db2gse.ST_PointFromText('point (10.02 20.01)',
db2gse.coordref()..srid(0))

)

INSERT INTO valid_test VALUES(
'Linestring',
db2gse.ST_LineFromText('linestring (10.02 20.01,10.32 23.98,11.92 25.64)',
db2gse.coordref()..srid(0))
)

INSERT INTO valid_test VALUES(
'Polygon', db2gse.ST_PolyFromText('polygon ((10.02 20.01,11.92 35.64,

25.02 34.15, 19.15 33.94,10.02 20.01))', db2gse.coordref()..srid(0))
)

INSERT INTO valid_test VALUES(
'Multipoint', db2gse.ST_MPointFromText('multipoint (10.02 20.01,10.32 23.98,
11.92 25.64)', db2gse.coordref()..srid(0))
)

INSERT INTO valid_test VALUES(
'Multilinestring', db2gse.ST_MLineFromText('multilinestring ((10.02 20.01,
10.32 23.98,11.92 25.64),(9.55 23.75,15.36 30.11))',
db2gse.coordref()..srid(0))
)

INSERT INTO valid_test VALUES(
'Multipolygon',

228 DB2 Spatial Extender User’s Guide and Reference

db2gse.ST_MPolyFromText('multipolygon (((10.02 20.01,11.92 35.64,
25.02 34.15,19.15 33.94,10.02 20.01)),((51.71 21.73,73.36 27.04,71.52 32.87,
52.43 31.90,51.71 21.73)))', db2gse.coordref()..srid(0))
)

The SELECT statement lists the subclass name stored in the geotype column
with the dimension of that geotype.
SELECT geotype, db2gse.ST_IsValid(g1) Valid FROM valid_test

GEOTYPE Valid
-------------------- -------------
ST_Point 1
ST_Linestring 1
ST_Polygon 1
ST_Multipoint 1
ST_Multilinestring 1
ST_Multipolygon 1

6 record(s) selected.

Chapter 14. Spatial functions for SQL queries 229

ST_Length
ST_Length takes a linestring or multilinestring and returns its length.

Syntax

db2gse.ST_Length(c db2gse.ST_Curve)
db2gse.ST_Length(mc db2gse.ST_MultiCurve)

Return type
Double

Examples
A local ecologist is studying the migratory patterns of the salmon population
in the county’s waterways. The ecologist wants to obtain the length of all
stream and river systems running through the county.

The following CREATE TABLE statement creates the WATERWAYS table. The
ID and NAME columns identify each stream and river system that is stored in
the table. The WATER column is a multilinestring because the river and
stream systems are often an aggregate of several linestrings.
CREATE TABLE WATERWAYS (id integer, name varchar(128),
water db2gse.ST_MultiLineString);

The following SELECT statement uses the ST_Length function to return the
name and length of each waterway within the county.
SELECT name, db2gse.ST_Length(water) "Length"
FROM WATERWAYS;

Figure 36 on page 231 displays a the river and stream systems that lie within
the county boundary.

230 DB2 Spatial Extender User’s Guide and Reference

Figure 36. Using ST_Length to determine the total length of the waterways in a county

Chapter 14. Spatial functions for SQL queries 231

ST_LineFromText
ST_LineFromText takes a well-known text representation of type linestring
and a spatial reference system identity and returns a linestring.

Syntax
db2gse.ST_LineFromText(lineStringTaggedText Varchar(4000), cr
db2gse.coordref)

Return type
db2gse.ST_LineString

Examples
The following CREATE TABLE statement creates the LINESTRING_TEST
table, which has a single LN1 linestring column.
CREATE TABLE LINESTRING_TEST (ln1 db2gse.ST_LineString)

The following INSERT statement inserts a linestring into the LN1 column by
using the ST_LineFromText function.
INSERT INTO LINESTRING_TEST
VALUES (db2gse.ST_LineFromText('linestring(10.01 20.03,20.94 21.34,

35.93 19.04)', db2gse.coordref()..srid(0)))

232 DB2 Spatial Extender User’s Guide and Reference

ST_LineFromWKB
ST_LineFromWKB takes a well-known binary representation of the type
linestring and a spatial reference system identity, and returns a linestring.

Syntax
db2gse.ST_LineFromWKB(WKBLineString Blob(1M), cr db2gse.coordref)

Return type
db2gse.ST_LineString

Examples
The following code fragment populates the SEWERLINES table with the
unique id, size class, and geometry of each sewer line.

The SEWERLINES table is created with three columns. The first column,
SEWER_ID, uniquely identifies each sewer line. The second column, CLASS,
of type integer identifies the type of sewer line, which is generally associated
with the line’s capacity. The third column, SEWER, of type linestring stores
the sewer line’s geometry.
CREATE TABLE SEWERLINES (sewer_id integer,

class integer,
sewer db2gse.ST_LineString);

/* Create the SQL insert statement to populate the sewer_id, size class
and the sewer linestring. The question marks are parameter markers that
indicate the sewer_id, class and sewer geometry values that will be
retrieved at runtime. */

strcpy (wkb_sql,"insert into sewerlines (sewer_id,class,sewer)
values (?,?, db2gse.ST_LineFromWKB (cast(? as blob(1m)),

db2gse.coordref()..srid(0)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)wkb_sql, SQL_NTS);

/* Bind the integer sewer_id value to the first parameter. */
pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,

SQL_INTEGER, 0, 0, &sewer_id, 0, &pcbvalue1);

/* Bind the integer class value to the second parameter. */
pcbvalue2 = 0;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_SLONG,

SQL_INTEGER, 0, 0, &sewer_class, 0, &pcbvalue2);

/* Bind the shape to the third parameter. */
pcbvalue3 = blob_len;
rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,

Chapter 14. Spatial functions for SQL queries 233

SQL_BLOB, blob_len, 0, sewer_wkb, blob_len, &pcbvalue3);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

234 DB2 Spatial Extender User’s Guide and Reference

ST_MLineFromText
ST_MLineFromText takes a well-known text representation of type
multilinestring and a spatial reference system identity and returns a
multilinestring.

Syntax
db2gse.ST_MLineFromText(multiLineStringTaggedText String, cr
db2gse.coordref)

Return type
db2gse.ST_MultiLineString

Examples
The following CREATE TABLE statement creates the MLINESTRING_TEST
table. MLINESTRING_TEST has two columns: the GID smallint column,
which uniquely identifies the row, and the ML1 multilinestring column.
CREATE TABLE ST_MLINESTRING_TEST (gid smallint, ml1 db2gse.ST_MultiLineString)

The following INSERT statement inserts the multilinestring with the
ST_MLineFromText function.
INSERT INTO MLINESTRING_TEST
VALUES (1, db2gse.ST_MLineFromText('multilinestring((10.01 20.03,10.52 40.11,

30.29 41.56,31.78 10.74),
(20.93 20.81, 21.52 40.10))',

db2gse.coordref()..srid(0)))

Chapter 14. Spatial functions for SQL queries 235

ST_MLineFromWKB
ST_MLineFromWKB takes a well-known binary representation of type
multilinestring and a spatial reference system identity and returns a
multilinestring.

Syntax
db2gse.ST_MLineFromWKB(WKBMultiLineString Blob(1M), cr
db2gse.coordref)

Return type
db2gse.ST_MultiLineString

Examples
The following code fragment populates the WATERWAYS table with a unique
id, a name, and a water multilinestring.

The WATERWAYS table is created with the ID and NAME columns, which
identify each stream and river system stored in the table. The WATER column
is a multilinestring because the river and stream systems are often an
aggregate of several linestrings.
CREATE TABLE WATERWAYS (id integer,

name varchar(128),
water db2gse.ST_MultiLineString);

/* Create the SQL insert statement to populate the id, name and
multilinestring. The question marks are parameter markers that
indicate the id, name and water values that will be retrieved at
runtime. */

strcpy (shp_sql,"insert into WATERWAYS (id,name,water)
values (?,?, db2gse.ST_MLineFromWKB (cast(? as blob(1m)),
db2gse.coordref()..srid(0)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)shp_sql, SQL_NTS);

/* Bind the integer id value to the first parameter. */
pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,

SQL_INTEGER, 0, 0, &id, 0, &pcbvalue1);

/* Bind the varchar name value to the second parameter. */
pcbvalue2 = name_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_CHAR, name_len, 0, &name, name_len, &pcbvalue2);

/* Bind the shape to the third parameter. */
pcbvalue3 = blob_len;

236 DB2 Spatial Extender User’s Guide and Reference

rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_BLOB, blob_len, 0, water_shape, blob_len, &pcbvalue3);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

Chapter 14. Spatial functions for SQL queries 237

ST_MPointFromText
ST_MPointFromText takes a well-known text representation of type multipoint
and a spatial reference system identity and returns a multipoint.

Syntax
db2gse.ST_MPointFromText(multiPointTaggedText Varchar(4000), cr
db2gse.coordref)

Return type
db2gse.ST_MultiPoint

Examples
The following CREATE TABLE statement creates the MULTIPOINT_TEST
table with a single multipoint column, MPT1.
CREATE TABLE MULTIPOINT_TEST (mpt1 db2gse.ST_MultiPoint)

The following INSERT statement inserts a multipoint into the MPT1 column
by using the ST_MPointFromText column.
INSERT INTO MULTIPOINT_TEST
VALUES (1, db2gse.ST_MPointFromText('multipoint(10.01 20.03,10.52 40.11,

30.29 41.56,31.78 10.74)',
db2gse.coordref()..srid(0)))

238 DB2 Spatial Extender User’s Guide and Reference

ST_MPointFromWKB
ST_MPointFromWKB takes a well-known binary representation of type
multipoint and a spatial reference system identity to return a multipoint.

Syntax
db2gse.ST_MPointFromWKB(WKBMultiPoint Blob(1M), cr db2gse.coordref)

Return type
db2gse.ST_MultiPoint

Examples
The following code fragment populates the SPECIES_SITINGS table.

The SPECIES_SITINGS table is created with three columns. The SPECIES and
GENUS columns uniquely identify each row, while the SITINGS multipoint
column stores the locations of the species sitings.
CREATE TABLE SPECIES_SITINGS (species varchar(32),

genus varchar(32),
sitings db2gse.ST_MultiPoint);

/* Create the SQL insert statement to populate the species, genus and
sitings. The question marks are parameter markers that
indicate the species, genus and sitings values that will be retrieved at
runtime. */

strcpy (wkb_sql,"insert into SPECIES_SITINGS (species,genus,sitings)
values (?,?, db2gse.ST_MPointFromWKB (cast(? as blob(1m)),
db2gse.coordref()..srid(0)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)wkb_sql, SQL_NTS);

/* Bind the varchar species value to the first parameter. */
pcbvalue1 = species_len;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_CHAR, species_len, 0, &species, species_len, &pcbvalue1);
/* Bind the varchar genus value to the second parameter. */
pcbvalue2 = genus_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_CHAR, genus_len, 0, &name, genus_len, &pcbvalue2);

/* Bind the shape to the third parameter. */
pcbvalue3 = sitings_len;
rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,

SQL_BLOB, sitings_len, 0, sitings_wkb, sitings_len, &pcbvalue3);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

Chapter 14. Spatial functions for SQL queries 239

ST_MPolyFromText
ST_MPolyFromText takes a well-known text representation of type
multipolygon and a spatial reference system identity and returns a
multipolygon.

Syntax
db2gse.ST_MPolyFromText(multiPolygonTaggedText Varchar(4000), cr
db2gse.coordref)

Return type
db2gse.ST_MultiPolygon

Examples
The following CREATE TABLE statement creates the MULTIPOLYGON_TEST
table, which has a single multipolygon column, MPL1.
CREATE TABLE MULTIPOLYGON_TEST (mpl1 db2gse.ST_MultiPolygon)

The following INSERT statement inserts the a multipolygon into the MPL1
column using the ST_MPolyFromText function.
INSERT INTO MULTIPOLYGON_TEST VALUES (
db2gse.ST_MPolyFromText('multipolygon(((10.01 20.03,10.52 40.11,
30.29 41.56,31.78 10.74,10.01 20.03),(21.23 15.74,21.34 35.21,28.94 35.35,
29.02 16.83, 21.23 15.74)),((40.91 10.92,40.56 20.19,
50.01 21.12,51.34 9.81, 40.91 10.92)))',
db2gse.coordref()..srid(0)))

240 DB2 Spatial Extender User’s Guide and Reference

ST_MPolyFromWKB
ST_MPolyFromWKB takes a well-known binary representation of type
multipolygon and a spatial reference system identity and returns a
multipolygon.

Syntax
db2gse.ST_MPolyFromWKB(WKBMultiPolygon Blob(1M), cr db2gse.coordref)

Return type
db2gse.ST_MultiPolygon

Examples
The following code fragment populates the LOTS table.

The LOTS table stores the LOT_ID, which uniquely identifies each lot, and the
LOT multipolygon, which contains the lot line geometry.
CREATE TABLE LOTS (lot_id integer, lot db2gse.ST_MultiPolygon);

/* Create the SQL insert statement to populate the lot_id, and lot. The
question marks are parameter markers that indicate the lot_id, and lot
values that will be retrieved at runtime. */

strcpy (wkb_sql,"insert into LOTS (lot_id,lot)
values (?, db2gse.ST_MPolyFromWKB (cast(? as blob(1m)),
db2gse.coordref()..srid(0)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)wkb_sql, SQL_NTS);

/* Bind the lot_id integer value to the first parameter. */
pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_INTEGER,

SQL_INTEGER, 0, 0, &lot_id, 0, &pcbvalue1);

/* Bind the lot shape to the second parameter. */
pcbvalue2 = lot_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,

SQL_BLOB, lot_len, 0, lot_wkb, lot_len, &pcbvalue2);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

Chapter 14. Spatial functions for SQL queries 241

ST_NumGeometries
ST_NumGeometries takes a collection and returns the number of geometries
in the collection.

Syntax
db2gse.ST_NumGeometries(g db2gse.ST_GeomCollection)

Return type
Integer

Examples
The city engineer needs to know the actual number of distinct buildings
associated with each building footprint.

The building footprints are stored in the BUILDINGFOOTPRINTS table that
was created with the following CREATE TABLE statement.
CREATE TABLE BUILDINGFOOTPRINTS (building_id integer,

lot_id integer,
footprint db2gse.ST_MultiPolygon);

The following SELECT statement uses the ST_NumGeometries function to list
the BUILDING_ID that uniquely identifies each building and the number of
buildings in each footprint.
SELECT building_id, db2gse.ST_NumGeometries (footprint) "Number of buildings"
FROM BUILDINGFOOTPRINTS;

242 DB2 Spatial Extender User’s Guide and Reference

ST_NumInteriorRing
ST_NumInteriorRing takes a polygon and returns the number of its interior
rings.

Syntax
db2gse.NumInteriorRing(p db2gse.ST_Polygon)

Return type
Integer

Examples
An ornithologist, wishing to study a bird population on several south sea
islands, knows that the feeding zone of a particular species is restricted to
islands containing fresh water lakes. Therefore, she wants to know which
islands contain one or more lakes.

The following CREATE TABLE statement creates the ISLANDS table. The ID
and NAME columns of the ISLANDS table identify each island, and the
LAND polygon column stores the island’s geometry.
CREATE TABLE ISLANDS (id integer, name varchar(32), land db2gse.ST_Polygon);

Because interior rings represent the lakes, the ST_NumInteriorRing function is
used to list only those islands that have at least one interior ring.
SELECT name FROM ISLANDS WHERE db2gse.ST_NumInteriorRing(land) > 0;

Chapter 14. Spatial functions for SQL queries 243

ST_NumPoints
ST_NumPoints takes a linestring and returns its number of points.

Syntax
db2gse.ST_NumPoints(l db2gse.ST_LineString)

Return type
Integer

Examples
The following CREATE TABLE statement creates the NUMPOINTS_TEST
table. The GEOTYPE column contains the geometry type stored in the G1
geometry column.
CREATE TABLE NUMPOINTS_TEST (geotype varchar(12), g1 db2gse.ST_Geometry)

The following INSERT statement inserts a linestring.
INSERT INTO NUMPOINTS_TEST VALUES(linestring,
db2gse.ST_LineFromText('linestring (10.02 20.01, 23.73 21.92)',
db2gse.coordref()..srid(0)))

The following SELECT statement and the corresponding result set lists the
geometry type and the number of points contained within each.
SELECT geotype, db2gse.ST_NumPoints(g1)
FROM NUMPOINTS_TEST

GEOTYPE Number of points
------------ ----------------
ST_linestring 2

1 record(s) selected.

244 DB2 Spatial Extender User’s Guide and Reference

ST_OrderingEquals
ST_OrderingEquals compares two geometries and returns 1 (TRUE) if the
geometries are equal and the coordinates are in the same order; otherwise it
returns 0 (FALSE).

Syntax
db2gse.ST_OrderingEquals(g1 db2gse.ST_Geometry, g2 db2gse.ST_Geometry)

Return type
Integer

Examples
The following CREATE TABLE statement creates the LINESTRING_TEST
table, which has two linestring columns, L1 and L2.
CREATE TABLE LINESTRING_TEST (lid integer, l1 db2gse.ST_LineString,
l2 db2gse.ST_LineString);

The following INSERT statement inserts two linestrings into L1 and L2 that
are equal and have the same coordinate ordering.
INSERT INTO linestring_test VALUES (1,
db2gse.LineFromText('linestring (10.01 20.02, 21.50 12.10)',

db2gse.coordref()..srid(0)),
db2gse.LineFromText('linestring (10.01 20.02, 21.50 12.10)',

db2gse.coordref()..srid(0)));

The following INSERT statement inserts two linestrings into L1 and L2 that
are equal but do not have the same coordinate ordering.
INSERT INTO linestring_test VALUES (2,
db2gse.LineFromText('linestring (10.01 20.02, 21.50 12.10)',

db2gse.coordref()..srid(0)),
db2gse.LineFromText('linestring (21.50 12.10,10.01 20.02)',

db2gse.coordref()..srid(0)));

The following SELECT statement and corresponding result set shows how the
ST_Equals function returns 1 (TRUE) regardless of the order of the
coordinates. The ST_OrderingEquals function returns 0 (FALSE) if the
geometries are not both equal and have the same coordinate ordering.
SELECT lid, db2gse.ST_Equals(l1,l2) equals, db2gse.ST_OrderingEquals(l1,l2)
OrderingEquals
FROM linestring_test

lid equals OrderingEquals
--- ------ -----------
1 1 1
2 1 0

Chapter 14. Spatial functions for SQL queries 245

ST_Overlaps
ST_Overlaps takes two geometry objects and returns 1 (TRUE) if the
intersection of the objects results in a geometry object of the same dimension
but not equal to either source objects; otherwise it returns 0 (FALSE).

Syntax
db2gse.ST_Overlaps(g1 db2gse.ST_Geometry, g2 db2gse.ST_Geometry)

Return type
Integer

Examples
The county supervisor needs a list of hazardous waste sites whose five-mile
radius overlaps sensitive areas.

The following CREATE TABLE statement creates the SENSITIVE_AREAS
table. The SENSITIVE_AREAS table contains several columns that describe the
threatened institutions in addition to the ZONE column, which stores the
institution’s polygon geometry.
CREATE TABLE SENSITIVE_AREAS (id integer,

name varchar(128),
size float,
type varchar(10),
zone db2gse.ST_Polygon);

The HAZARDOUS_SITES table stores the identity of the sites in the SITE_ID
and NAME columns, while the actual geographic location of each site is
stored in the LOCATION point column.
CREATE TABLE HAZARDOUS_SITES (site_id integer,

name varchar(128),
location db2gse.ST_Point);

In the following SELECT statement, the SENSITIVE_AREAS and
HAZARDOUS_SITES tables are joined by the ST_Overlaps function. It returns
1 (TRUE) for all rows in the SENSITIVE_AREAS table whose zone polygons
overlap the buffered five-mile radius of the HAZARDOUS_SITES location
point.
SELECT hs.name
FROM HAZARDOUS_SITES hs, SENSITIVE_AREAS sa
WHERE db2gse.ST_Overlaps (buffer(hs.location,(5 * 5280)),sa.zone) = 1;

In Figure 37 on page 247, the hospital and the school overlap the five-mile
radius of the county’s two hazardous waste sites, while the nursing home
does not.

246 DB2 Spatial Extender User’s Guide and Reference

Figure 37. Using ST_Overlaps to determine the buildings that are at least partially within of a
hazardous waste area

Chapter 14. Spatial functions for SQL queries 247

ST_Perimeter
ST_Perimeter returns the perimeter of an ST_Surface.

Syntax

db2gse.ST_Perimeter(s db2gse.ST_Surface)
db2gse.ST_Perimeter(ms db2gse.ST_MultiSurface)

Return type

Double

Examples
An ecologist studying shoreline birds needs to determine the shoreline for the
lakes within a particular area. The lakes are stored as multipolygons in the
WATERBODIES table that was created with the following CREATE TABLE
statement.
CREATE TABLE WATERBODIES (wbid integer,

waterbody db2gse.ST_MultiPolygon);

In the following SELECT statement, the ST_Perimeter function returns the
perimeter surrounding each body of water, while the SUM function
aggregates the perimeters to return their total.
SELECT SUM(db2gse.ST_Perimeter(waterbody))
FROM waterbodies;

248 DB2 Spatial Extender User’s Guide and Reference

ST_PointFromText
ST_PointFromText takes a well-known text representation of type point and a
spatial reference system identity and returns a point.

Syntax
db2gse.ST_PointFromText(pointTaggedText Varchar(4000), cr db2gse.coordref)

Return type
db2gse.ST_Point

Examples
The following CREATE TABLE statement creates the POINT_TEST table,
which has a single point column, PT1.
CREATE TABLE POINT_TEST (pt1 db2gse.ST_Point)

Before the INSERT statement inserts the point into the PT1 column, the
ST_PointFromText function converts the point text coordinates to the point
format.
INSERT INTO POINT_TEST VALUES (

db2gse.ST_PointFromText ('point(10.01 20.03)',
db2gse.coordref()..srid(0)))

Chapter 14. Spatial functions for SQL queries 249

ST_PointFromWKB
ST_PointFromWKB takes a well-known binary representation of type point
and a spatial reference system identity to return a point.

Syntax
db2gse.ST_PointFromWKB(WKBPoint Blob(1M), srs SRID)

Return type
db2gse.ST_Point

Examples
The following code fragment populates the HAZARDOUS_SITES table.

The hazardous sites are stored in the HAZARDOUS_SITES table created with
the following CREATE TABLE statement. The LOCATION column, defined as
a point, stores a location that is the geographic center of each hazardous site.
CREATE TABLE HAZARDOUS_SITES (site_id integer,

name varchar(128),
location db2gse.ST_Point);

/* Create the SQL insert statement to populate the site_id, name and
location. The question marks are parameter markers that indicate the
site_id, name and location values that will be retrieved at runtime. */

strcpy (wkb_sql,"insert into HAZARDOUS_SITES (site_id, name, location)
values (?,?, db2gse.ST_PointFromWKB(cast(? as blob(1m)),
db2gse.coordref()..srid(0)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)wkb_sql, SQL_NTS);

/* Bind the site_id integer value to the first parameter. */
pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_INTEGER,

SQL_INTEGER, 0, 0, &site_id, 0, &pcbvalue1);

/* Bind the name varchar value to the second parameter. */
pcbvalue2 = name_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_CHAR, 0, 0, name, 0, &pcbvalue2);

/* Bind the location shape to the third parameter. */
pcbvalue3 = location_len;
rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,

SQL_BLOB, location_len, 0, location_wkb, location_len, &pcbvalue3);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

250 DB2 Spatial Extender User’s Guide and Reference

ST_Point
ST_Point returns an ST_Point, given an x-coordinate, y-coordinate, and spatial
reference.

Syntax
db2gse.ST_Point(X Double, Y Double, srs SRID)

Return type
db2gse.ST_Point

Examples
The following CREATE TABLE statement creates the POINT_TEST table,
which has a single point column, PT1.
CREATE TABLE POINT_TEST (pt1 db2gse.ST_Point)

The ST_Point function converts the point coordinates into a point geometry
before the INSERT statement inserts it into the PT1 column.
INSERT INTO point_test VALUES(

db2gse.ST_Point(10.01,20.03, db2gse.coordref()..srid(0))
)

Chapter 14. Spatial functions for SQL queries 251

ST_PointN
ST_PointN takes a linestring and an integer index and returns a point that is
the nth vertice in the linestring’s path.

Syntax
db2gse.ST_PointN(l db2gse.ST_Curve, n Integer)

Return type
db2gse.ST_Point

Examples
The following CREATE TABLE statement creates the POINTN_TEST table,
which has two columns: the GID column, which uniquely identifies each row,
and the LN1 linestring column.
CREATE TABLE POINTN_TEST (gid integer, ln1 db2gse.ST_LineString)

The following INSERT statements insert two linestring values. The first
linestring does not have Z coordinates or measures, while the second
linestring has both.
INSERT INTO POINTN_TEST VALUES(1,
db2gse.ST_LineFromText('linestring (10.02 20.01,23.73 21.92,30.10 40.23)',
db2gse.coordref()..srid(0)))

INSERT INTO POINTN_TEST VALUES(2,
db2gse.ST_LineFromText('linestring zm (10.02 20.01 5.0 7.0,23.73 21.92 6.5 7.1,

30.10 40.23 6.9 7.2)', db2gse.coordref()..srid(0)))

The following SELECT statement and the corresponding result set lists the
GID column and the second vertice of each linestring. The first row results in
a point without a Z coordinate or measure, while the second row results in a
point with a Z coordinate and a measure. The ST_PointN function returns
points with a Z coordinate or a measure if they exist in the source linestring.
SELECT gid, CAST(db2gse.ST_AsText(db2gse.ST_PointN(ln1,2)) AS varchar(60))
"The 2nd vertice"
FROM POINTN_TEST

GID The 2nd vertice
----------- --

1 POINT (23.73000000 21.92000000)
2 POINT ZM (23.73000000 21.92000000 7.00000000 7.10000000)

2 record(s) selected.

252 DB2 Spatial Extender User’s Guide and Reference

ST_PointOnSurface
ST_PointOnSurface takes both a polygon or a multipolygon and a returns an
ST_Point.

Syntax

db2gse.ST_PointOnSurface(s db2gse.ST_Surface)
db2gse.ST_PointOnSurface(ms db2gse.ST_MultiSurface)

Return type
db2gse.ST_Point

Examples
The city engineer needs to create a label point for each of the building
footprints.

The building footprints are stored in the BUILDINGFOOTPRINTS table that
was created with the following CREATE TABLE statement.
CREATE TABLE BUILDINGFOOTPRINTS (building_id integer,

lot_id integer,
footprint db2gse.ST_MultiPolygon);

The ST_PointOnSurface function generates a point that is guaranteed to be on
the surface of the building footprints. The ST_PointOnSurface function returns
a point that the AsBinaryShape function converts to a shape casted to a 1
megabyte character string for use by the application.
SELECT CAST(db2gse.AsBinaryShape(db2gse.ST_PointOnSurface(footprint)) as

blob(1m))
FROM BUILDINGFOOTPRINTS;

Chapter 14. Spatial functions for SQL queries 253

ST_PolyFromText
ST_PolyFromText takes a well-known text representation of type polygon and
a spatial reference system identity and returns a polygon.

Syntax
db2gse.ST_PolyFromText(polygonTaggedText Varchar(4000), cr
db2gse.coordref)

Return type
db2gse.ST_Polygon

Examples
The following CREATE TABLE statement creates the POLYGON_TEST table
with the single polygon column.
CREATE TABLE POLYGON_TEST (pl1 db2gse.ST_Polygon)

The following INSERT statement inserts a polygon into the polygon column
by using the ST_PolyFromText function.
INSERT INTO POLYGON_TEST VALUES (1,
db2gse.ST_PolyFromText('polygon((10.01 20.03,10.52 40.11,30.29 41.56,

31.78 10.74,10.01 20.03))',
db2gse.coordref()..srid(0)))

254 DB2 Spatial Extender User’s Guide and Reference

ST_PolyFromWKB
ST_PolyFromWKB takes a well-known binary representation of type polygon
and a spatial reference system identity to return a polygon.

Syntax
db2gse.ST_PolyFromWKB(WKBPolygon Blob(1M), SRID Integer)

Return type
db2gse.ST_Polygon

Examples
The following code fragment populates the SENSITIVE_AREAS table.

The SENSITIVE_AREAS table contains several columns that describe the
threatened institutions in addition to the zone column, which stores the
institution’s polygon geometry.
CREATE TABLE SENSITIVE_AREAS (id integer,

name varchar(128),
size float,
type varchar(10),
zone db2gse.ST_Polygon);

/* Create the SQL insert statement to populate the id, name, size, type and
zone. The question marks are parameter markers that indicate the id,name,
size, type and zone values that will be retrieved at runtime. */

strcpy (shp_wkb,"insert into SENSITIVE_AREAS (id, name, size, type, zone)
values (?,?,?,?, db2gse.ST_PolyFromWKB (cast(? as blob(1m)),
db2gse.coordref()..srid(0)))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)wkb_sql, SQL_NTS);

/* Bind the id integer value to the first parameter. */
pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_INTEGER,

SQL_INTEGER, 0, 0, &id, 0, &pcbvalue1);

/* Bind the name varchar value to the second parameter. */
pcbvalue2 = name_len;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_CHAR, 0, 0, name, 0, &pcbvalue2);

/* Bind the size float to the third parameter. */
pcbvalue3 = 0;
rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_FLOAT,

SQL_REAL, 0, 0, &size, 0, &pcbvalue3);

Chapter 14. Spatial functions for SQL queries 255

/* Bind the type varchar to the fourth parameter. */
pcbvalue4 = type_len;
rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_VARCHAR, type_len, 0, type, type_len, &pcbvalue4);

/* Bind the zone polygon to the fifth parameter. */
pcbvalue5 = zone_len;
rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,

SQL_BLOB, zone_len, 0, zone_wkb, zone_len, &pcbvalue5);

/* Execute the insert statement. */
rc = SQLExecute (hstmt);

256 DB2 Spatial Extender User’s Guide and Reference

ST_Polygon
ST_Polygon generates an ST_Polygon from an ST_LineString and a spatial
reference system identifier.

Syntax
db2gse.ST_Polygon(l db2gse.ST_LineString, cr db2gse.coordref)

Return type
db2gse.ST_Polygon

Examples
The following CREATE TABLE statement creates the POLYGON_TEST table,
which has a single column, P1.
CREATE TABLE POLYGON_TEST (p1 db2gse.ST_polygon)

The following INSERT statement converts a ring (a linestring that is both
closed and simple) into a polygon and inserts it into the P1 column using the
ST_LineFromText function within the ST_Polygon function.
INSERT INTO POLYGON_TEST VALUES (
db2gse.ST_Polygon(db2gse.ST_LineFromText('linestring(10.01 20.03,20.94
21.34,35.93 10.04,10.01 20.03)', db2gse.coordref()..srid(0))),
db2gse.coordref()..srid(0)))
)

Chapter 14. Spatial functions for SQL queries 257

ST_Relate
ST_Relate compares two geometries and returns 1 (TRUE) if the geometries
meet the conditions specified by the DE-9IM pattern matrix string; otherwise,
0 (FALSE) is returned. For information about DE-9IM pattern matrices, see
“Predicate functions” on page 132.

Syntax
db2gse.ST_Relate(g1 db2gse.ST_Geometry, g2 db2gse.ST_Geometry,
patternMatrix String)

Return type
Integer

Examples
A DE-9IM pattern matrix is a device for comparing geometries. There are
several types of such matrices. For example, the equals pattern matrix will tell
you if any two geometries are equal.

In this example, an equals pattern matrix, shown in Table 56, is read left to
right and top to bottom into a string (“T*F**FFF*”).

Table 56. Equals pattern matrix
b

Interior Boundary Exterior
Interior T * F

a Boundary * * F
Exterior F F *

Next, the table RELATE_TEST is created with the following CREATE TABLE
statement.
CREATE TABLE RELATE_TEST (rid integer, g1 db2gse.ST_Geometry,
g2 db2gse.ST_Geometry, g3 db2gse.ST_Geometry);

The following INSERT statements insert a sample subclass into the
RELATE_TEST table.
INSERT INTO RELATE_TEST VALUES(

1,
db2gse.ST_PointFromText('point (10.02 20.01)',

db2gse.coordref()..srid(0),
db2gse.ST_PointFromText('point (10.02 20.01)',

db2gse.coordref()..srid(0),
db2gse.ST_PointFromText('point (30.01 20.01)',

db2gse.coordref()..srid(0)
)

258 DB2 Spatial Extender User’s Guide and Reference

The following SELECT statement and the corresponding result set lists the
subclass name stored in the GEOTYPE column with the dimension of that
geotype.
SELECT rid, relate(g1,g2) equals, relate(g1,g3) not_equals
FROM relate_test

RID equals not_equals
-------- ----------- -----------------
1 1 0

1 record(s) selected.

Chapter 14. Spatial functions for SQL queries 259

ST_SRID
ST_SRID takes a geometry object and returns its spatial reference system
identity.

Syntax
db2gse.ST_SRID(g1 db2gse.ST_Geometry)

Return type
Integer

Examples
During the installation of the DB2 Spatial Extender the
SPATIAL_REFERENCES table is created. When a geometry is created, the
SRID of that geometry is entered into the SPATIAL_REFERENCES table. The
ST_SRID function returns the value of that entry.

For example, a geometry type is used in a CREATE TABLE statement:
CREATE TABLE SRID_TEST(g1 db2gse.ST_Geometry)

In the following INSERT statement, a point geometry located at coordinate
10.01,50.76 is inserted into the geometry column G1. When the point geometry
was created by the ST_PointFromText function, it was assigned the srid value
of 1.
INSERT INTO SRID_TEST
VALUES (db2gse.ST_PointFromText('point(10.01 50.76)',

db2gse.coordref()..srid(0)))

The ST_SRID function returns the spatial reference system identity of the
geometry just entered, as illustrated by the following SELECT statement and
the corresponding result set.
SELECT db2gse.ST_SRID(g1) FROM SRID_TEST

g1

1

260 DB2 Spatial Extender User’s Guide and Reference

ST_StartPoint
ST_StartPoint takes a linestring and returns a point that is the linestrings first
point.

Syntax
db2gse.ST_StartPoint(c db2gse.ST_Curve)

Return type
db2gse.ST_Point

Examples
The following CREATE TABLE statement creates the STARTPOINT_TEST
table. STARTPOINT_TEST has two columns: the GID integer column, which
uniquely identifies the rows of the table, and the LN1 linestring column.
CREATE TABLE STARTPOINT_TEST (gid integer, ln1 db2gse.ST_LineString)

The following INSERT statements insert the linestrings into the LN1 column.
The first linestring does not have Z coordinates or measures, while the second
linestring has both.
INSERT INTO STARTPOINT_TEST VALUES(1,
db2gse.ST_LineFromText('linestring (10.02 20.01,23.73
21.92,30.10 40.23)', db2gse.coordref()..srid(0)))

INSERT INTO STARTPOINT_TEST VALUES(2,
db2gse.ST_LineFromText('linestring zm (10.02 20.01 5.0 7.0,

23.73 21.92 6.5 7.1,30.10 40.23 6.9 7.2)',
db2gse.coordref()..srid(0)))

The following SELECT statement and the corresponding result set shows how
the ST_StartPoint function extracts the first point of each linestring. The
ST_AsText function converts the point to its text format. The first point in the
list does not have a Z coordinate or a measure, while the second point has
both because the source linestring did.
SELECT gid, CAST(db2gse.ST_AsText(db2gse.ST_StartPoint (ln1)) as varchar(60))
"Startpoint"
FROM STARTPOINT_TEST

GID Startpoint
----------- --

1 POINT (10.02000000 20.01000000)
2 POINT ZM (10.02000000 20.01000000 5.00000000 7.00000000)

2 record(s) selected.

Chapter 14. Spatial functions for SQL queries 261

ST_SymmetricDiff
ST_SymmetricDiff takes two geometry objects and returns a geometry object
that is the symmetrical difference of the source objects.

Syntax
db2gse.ST_SymmetricDiff(g1 db2gse.ST_Geometry, g2 db2gse.ST_Geometry)

Return type
db2gse.ST_Geometry

Examples
The county supervisor must determine the area of sensitive areas and
five-mile hazardous site radius that is not intersected.

The following CREATE TABLE statement creates the SENSITIVE_AREAS
table, which contains several columns that describe the threatened institutions.
The SENSITIVE_AREAS table also contains the ZONE column, which stores
the institution’s polygon geometry.
CREATE TABLE SENSITIVE_AREAS (id integer,

name varchar(128),
size float,
type varchar(10),
zone db2gse.ST_Polygon);

The following CREATE TABLE statement creates the the HAZARDOUS_SITES
table, which stores the identity of the sites in the SITE_ID and NAME
columns, while the actual geographic location of each site is stored in the
LOCATION point column.
CREATE TABLE HAZARDOUS_SITES (site_id integer,

name varchar(128),
location point);

The ST_Buffer function generates a five-mile buffer surrounding the
hazardous waste site locations. The ST_SymmetricDiff function generates
polygons from the intersection of the buffered hazardous waste site polygons
and the sensitive areas. The ST_Area function returns the intersection
polygon’s area for each hazardous site.
SELECT sa.name, hs.name,

db2gse.ST_Area(db2gse.ST_SymmetricDiff (db2gse.ST_Buffer(hs.location,
(5 * 5280)),sa.zone))
FROM HAZARDOUS_SITES hs, SENSITIVE_AREAS sa

262 DB2 Spatial Extender User’s Guide and Reference

In Figure 38, the symmetric difference of the hazardous waste sites and the
sensitive areas results in the subtraction of the intersected areas.

Figure 38. Using ST_SymmetricDiff to determine the hazardous waste areas that do not contain
sensitive areas (inhabited buildings)

Chapter 14. Spatial functions for SQL queries 263

ST_Touches
ST_Touches returns 1 (TRUE) if none of the points common to both
geometries intersect the interiors of both geometries; otherwise, it returns 0
(FALSE). At least one geometry must be a linestring, polygon, multilinestring,
or multipolygon.

Syntax
db2gse.ST_Touches(g1 db2gse.ST_Geometry, g2 db2gse.ST_Geometry)

Return type
Integer

Examples
The GIS technician needs to provide a list of all sewer lines whose endpoints
intersect another sewerline.

The following CREATE TABLE statement creates the SEWERLINES table,
which has three columns. The first column, SEWER_ID, uniquely identifies
each sewer line. The second column, CLASS, of type integer identifies the
type of sewer line, which is generally associated with the line’s capacity. The
third column, SEWER, of type linestring stores the sewer line’s geometry.
CREATE TABLE SEWERLINES (sewer_id integer, class integer, sewer

db2gse.ST_LineString);

The following SELECT statement returns an ordered list of SEWER_IDS that
touch one another.
SELECT s1.sewer_id, s2.sewer_id
FROM sewerlines s1, sewerlines s2
WHERE db2gse.ST_Touches (s1.sewer, s2.sewer) = 1,
ORDER BY 1,2;

264 DB2 Spatial Extender User’s Guide and Reference

ST_Transform
ST_Transform assigns a geometry to a spatial reference system other than the
spatial reference system to which the geometry is currently assigned.

Syntax
db2gse.ST_Transform(g db2gse.ST_Geometry, cr db2gse.coordref)

Return type
db2gse.ST_Geometry

Examples
The following CREATE TABLE statement creates the TRANSFORM_TEST
table, which has two linestring columns, L1 and L2.
CREATE TABLE TRANSFORM_TEST (tid integer, l1 db2gse.ST_LineString,
l2 db2gse.ST_LineString)

The following INSERT statement inserts a linestring into l1 with an SRID of
102.
INSERT INTO TRANSFORM_TEST VALUES (1, db2gse.ST_LineFromText('linestring

(10.01 40.43, 92.32 29.89)',
db2gse.coordref()..srid(102)),NULL)

The ST_Transform function converts the linestring of L1 from the coordinate
reference assigned to SRID 102 to the coordinate reference assigned to SRID
105. The following UPDATE statement stores the transformed linestring in
column l2.
UPDATE TRANSFORM_TEST SET l2 = db2gse.ST_Transform(l1,

db2gse.coordref()..srid(105))

Chapter 14. Spatial functions for SQL queries 265

ST_Union
ST_Union takes two geometry objects and returns a geometry object that is
the union of the source objects.

Syntax
db2gse.ST_Union(g1 db2gse.ST_Geometry, g2 db2gse.ST_Geometry)

Return type
db2gse.ST_Geometry

Examples
The following CREATE TABLE statement creates the SENSITIVE_AREAS
table, which contains several columns that describe the threatened institutions.
The SENSITIVE_AREAS table also contains the ZONE column, which stores
the institution’s polygon geometry.
CREATE TABLE SENSITIVE_AREAS (id integer,

name varchar(128),
size float,
type varchar(10),
zone db2gse.ST_Polygon);

The following CREATE TABLE statement creates the HAZARDOUS_SITES
table, which stores the identity of the sites in the SITE_ID and NAME
columns. The actual geographic location of each site is stored in the
LOCATION point column.
CREATE TABLE HAZARDOUS_SITES (site_id integer, name varchar(128),
location db2gse.ST_Point);

The following SELECT statement uses the ST_Buffer function to generate a
five-mile buffer surrounding the hazardous waste site locations. The ST_Union
function generates polygons from the union of the buffered hazardous waste
site polygons and the sensitive areas. The ST_Area function returns the union
of polygon’s area.
SELECT sa.name, hs.name,

db2gse.ST_Area(db2gse.ST_Union(db2gse.ST_Buffer(hs.location,
(5 * 5280)),sa.zone))
FROM HAZARDOUS_SITES hs, SENSITIVE_AREAS sa;

266 DB2 Spatial Extender User’s Guide and Reference

ST_Within
ST_Within takes two geometry objects and returns 1 (TRUE) if the first object
is completely within the second; otherwise it returns 0 (FALSE).

Syntax
db2gse.ST_Within(g1 db2gse.ST_Geometry, g2 db2gse.ST_Geometry)

Return type
Integer

Examples
In the example below, two tables are created. The first table,
BUILDINGFOOTPRINTS, contains a city’s building footprints. The second
table, LOTS, contains the city’s lots. The city engineer wants to make sure that
all the building footprints are completely inside their lots.

In both tables, the multipolygon data type stores the geometry of the building
footprints and the lots. The database designer selected multipolygons for both
features because lots can be disjointed by natural features, such as a river, and
building footprints can often be made up of several buildings.
CREATE TABLE BUILDINGFOOTPRINTS (building_id integer,

lot_id integer,
footprint db2gse.ST_MultiPolygon);

CREATE TABLE LOTS (lot_id integer, lot db2gse.ST_MultiPolygon);

Using the following SELECT statement, the city engineer first selects the
buildings that are not completely within a lot.
SELECT building_id

FROM BUILDINGFOOTPRINTS, LOTS
WHERE db2gse.ST_Within(footprint,lot) = 0;

Although the first query will provide a list of all BUILDING_IDs that have
footprints outside of a lot polygon, it will not determine whether the rest have
the correct lot_id assigned to them. This second SELECT statement performs a
data integrity check on the LOT_ID column of the BUILDINGFOOTPRINTS
table.
SELECT bf.building_id "building id",

bf.lot_id "buildings lot_id",
LOTS.lot_id "LOTS lot_id"

FROM BUILDINGFOOTPRINTS bf, LOTS
WHERE db2gse.ST_Within(footprint,lot) = 1 AND

LOTS.lot_id <> bf.lot_id;

Chapter 14. Spatial functions for SQL queries 267

ST_WKBToSQL
ST_WKBToSQL constructs a ST_Geometry value given its well-known binary
representation. An SRID value of 0 is automatically used.

Syntax
db2gse.ST_WKBToSQL(WKBGeometry Blob(1M))

Return type
db2gse.ST_Geometry

Examples
The following CREATE TABLE statement creates the LOTS table, which has
two columns: the LOT_ID column, which uniquely identifies each lot, and the
LOT multipolygon column, which contains the geometry of each lot.
CREATE TABLE lots (lot_id integer,

lot db2gse.ST_MultiPolygon);

The following C code fragment contains ODBC functions embedded with DB2
Spatial Extender SQL functions that insert data into the LOTS table.

The ST_WKBToSQL function converts WKB representations into DB2 Spatial
Extender geometry. The entire INSERT statement is copied into a wkb_sql
char string. The INSERT statement contains parameter markers to accept the
LOT_ID data and the LOT data, dynamically.
/* Create the SQL insert statement to populate the lot id and the

lot multipolygon. The question marks are parameter markers that
indicate the lot_id and lot values that will be retrieved at
run time. */

strcpy (wkb_sql,"insert into lots (lot_id, lot)
values(?, db2gse.ST_WKBToSQL(cast(? as blob(1m))))");

/* Allocate memory for the SQL statement handle and associate the
statement handle with the connection handle. */

rc = SQLAllocStmt (handle, &hstmt);

/* Prepare the SQL statement for execution. */

rc = SQLPrepare (hstmt, (unsigned char *)wkb_sql, SQL_NTS);

/* Bind the integer key value to the first parameter. */

pcbvalue1 = 0;
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,

SQL_INTEGER, 0, 0, &lot_id, 0, &pcbvalue1);

/* Bind the shape to the second parameter. */

pcbvalue2 = blob_len;

268 DB2 Spatial Extender User’s Guide and Reference

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_BLOB, blob_len, 0, shape_blob, blob_len, &pcbvalue2);

/* Execute the insert statement. */

rc = SQLExecute (hstmt);

Chapter 14. Spatial functions for SQL queries 269

ST_WKTToSQL
ST_WKTToSQL constructs a ST_Geometry value given its well-known textual
representation. An SRID value of 0 is automatically used.

Syntax
db2gse.ST_WKTToSQL(geometryTaggedText Varchar(4000))

Return type
db2gse.ST_Geometry

Examples
The following CREATE TABLE statement creates the GEOMETRY_TEST table,
which contains two columns: the GID column of type integer, which uniquely
identifies each row, and the G1 column, which stores the geometry.
CREATE TABLE GEOMETRY_TEST (gid smallint, g1 db2gse.ST_Geometry)

The following INSERT statements insert the data into the GID and G1
columns of the GEOMETRY_TEST table. The ST_WKTToSQL function
converts the text representation of each geometry into its corresponding DB2
Spatial Extender instantiable subclass.
INSERT INTO GEOMETRY_TEST VALUES(
1, db2gse.ST_WKTToSQL ('point (10.02 20.01)')
)

INSERT INTO GEOMETRY_TEST VALUES(
2, db2gse.ST_WKTToSQL('linestring (10.01 20.01, 10.01 30.01, 10.01 40.01)')
)

INSERT INTO GEOMETRY_TEST VALUES(
3, db2gse.ST_WKTToSQL('polygon ((10.02 20.01, 11.92 35.64, 25.02 34.15,
19.15 33.94, 10.02 20.01))')
)

INSERT INTO GEOMETRY_TEST VALUES(
4, db2gse.ST_WKTToSQL('multipoint (10.02 20.01,10.32 23.98,11.92 25.64)')
)

INSERT INTO GEOMETRY_TEST VALUES(
5, db2gse.ST_WKTToSQL('multilinestring ((10.02 20.01, 10.32 23.98,
11.92 25.64),(9.55 23.75,15.36 30.11))')
)

INSERT INTO GEOMETRY_TEST VALUES(
6, db2gse.ST_WKTToSQL('multipolygon (((10.02 20.01, 11.92 35.64,
25.02 34.15, 19.15 33.94,10.02 20.01)),
((51.71 21.73, 73.36 27.04, 71.52 32.87, 52.43 31.90, 51.71 21.73)))')
)

270 DB2 Spatial Extender User’s Guide and Reference

ST_X
ST_X takes a point and returns its X coordinate.

Syntax
ST_X(p ST_Point)

Return type
Double

Examples
The following CREATE TABLE statement creates the X_TEST table, which has
two columns: the GID column, which uniquely identifies the row, and the PT1
point column.
CREATE TABLE X_TEST (gid integer, pt1 db2gse.ST_Point)

The following INSERT statements insert two rows. One is a point without a Z
coordinate or a measure. The other column has both a Z coordinate and a
measure.
INSERT INTO X_TEST VALUES(1,
db2gse.ST_PointFromText('point (10.02 20.01)', db2gse.coordref()..srid(0)))

INSERT INTO X_TEST VALUES(2,
db2gse.ST_PointFromText('point zm (10.02 20.01 5.0 7.0)',

db2gse.coordref()..srid(0)))

The following SELECT statement and the corresponding result set lists the
GID column and the Double X coordinate of the points.
SELECT gid, db2gse.ST_X(pt1) "The X coordinate" FROM X_TEST

GID The X coordinate
----------- ------------------------

1 +1.00200000000000E+001
2 +1.00200000000000E+001

2 record(s) selected.

Chapter 14. Spatial functions for SQL queries 271

ST_Y
ST_Y takes a point and returns its Y coordinate.

Syntax
db2gse.ST_Y(p db2gse.ST_Point)

Return type
Double

Examples
The following CREATE TABLE statement creates the Y_TEST table, which has
two columns: the GID column, which uniquely identifies the row, and the PT1
point column.
CREATE TABLE Y_TEST (gid integer, pt1 db2gse.ST_Point)

The INSERT statements insert two rows. One is a point without a Z
coordinate or a measure. The other column has both a Z coordinate and a
measure.
INSERT INTO Y_TEST VALUES(1,
db2gse.ST_PointFromText('point (10.02 20.01)', db2gse.coordref()..srid(0)))

INSERT INTO Y_TEST VALUES(2,
db2gse.ST_PointFromText('point zm (10.02 20.01 5.0 7.0)',

db2gse.coordref()..srid(0)))

The following SELECT statement and the corresponding result set lists the
GID column and the Double Y coordinate of the points.
SELECT gid, db2gse.ST_Y(pt1) "The Y coordinate" FROM Y_TEST

GID The Y coordinate
----------- ------------------------

1 +2.00100000000000E+001
2 +2.00100000000000E+001

2 record(s) selected.

272 DB2 Spatial Extender User’s Guide and Reference

Z
Z takes a point and returns its Z coordinate.

Syntax
Z(p db2gse.ST_Point)

Return type
Double

Examples
The following CREATE TABLE statement creates the Z_TEST table is created
with two columns: the GID column uniquely identifies the row, and the PT1
point column.
CREATE TABLE Z_TEST (gid integer, pt1 db2gse.ST_Point)

The following INSERT statements insert two rows. One is a point without a Z
coordinate or a measure. The other column has both a Z coordinate and a
measure.
INSERT INTO Z_TEST VALUES(1,
db2gse.ST_PointFromText('point (10.02 20.01)', db2gse.coordref()..srid(0)))

INSERT INTO Z_TEST VALUES(2,
db2gse.ST_PointFromText('point zm (10.02 20.01 5.0 7.0)',

db2gse.coordref()..srid(0)))

The following SELECT statement and the corresponding result set lists the
GID column and the Double Z coordinate of the points. The first row is
NULL because the point does not have a Z coordinate.
SELECT gid, db2gse.Z(pt1) "The Z coordinate" FROM Z_TEST

GID The Z coordinate
----------- ------------------------

1 -
2 +5.00000000000000E+000

2 record(s) selected.

Chapter 14. Spatial functions for SQL queries 273

274 DB2 Spatial Extender User’s Guide and Reference

Chapter 15. Coordinate systems

The chapter provides reference information about the spatial reference system
(SRS) and the coordinate values used to interpret spatial data.
v “Overview of coordinate systems”
v “Supported linear units” on page 277
v “Supported angular units” on page 277
v “Supported spheroids” on page 278
v “Supported geodetic datums” on page 279
v “Supported prime meridians” on page 281
v “Supported map projections” on page 282
v “Conic projections” on page 282
v “Azimuthal or planar projections” on page 283
v “Map projection parameters” on page 283

Overview of coordinate systems

The well-known text representation of spatial reference systems provides a
standard textual representation for spatial reference system information. The
definitions of the well-known text representation is modeled after the
POSC/EPSG coordinate system data model.

A spatial reference system is a geographic (latitude-longitude), a projected
(X,Y), or a geocentric (X,Y,Z) coordinate system. The coordinate system is
composed of several objects. Each object has a keyword in uppercase (for
example, DATUM or UNIT) followed by the comma-delimited defining
parameters of the object in brackets. Some objects are composed of other
objects, so the result is a nested structure.

Note: Implementations are free to substitute standard brackets () for square
brackets [] and should be prepared to read both forms of brackets.

The EBNF (Extended Backus Naur Form) definition for the string
representation of a coordinate system using square brackets is as follows (see
note above regarding the use of brackets):
<coordinate system> = <projected cs> | <geographic cs> | <geocentric cs>
<projected cs> = PROJCS["<name>", <geographic cs>, <projection>, {<parameter>,}*

<linear unit>]
<projection> = PROJECTION["<name>"]
<parameter> = PARAMETER["<name>", <value>]
<value> = <number>

© Copyright IBM Corp. 1998, 2000 275

A data set’s coordinate system is identified by the PROJCS keyword if the
data is in projected coordinates (by GEOGCS if in geographic coordinates, or
by GEOCCS if in geocentric coordinates). The PROJCS keyword is followed
by all of the ″pieces″ that define the projected coordinate system. The first
piece of any object is always the name. Several objects follow the projected
coordinate system name: The geographic coordinate system, the map
projection, one or more parameters, and the linear unit of measure. All
projected coordinate systems is based upon a geographic coordinate system,
so this section describes the pieces specific to a projected coordinate system
first. For example, UTM zone 10N on the NAD83 datum is defined:
PROJCS["NAD_1983_UTM_Zone_10N",
<geographic cs>,
PROJECTION["Transverse_Mercator"],
PARAMETER["False_Easting",500000.0],
PARAMETER["False_Northing",0.0],
PARAMETER["Central_Meridian",−123.0],
PARAMETER["Scale_Factor",0.9996],
PARAMETER["Latitude_of_Origin",0.0],
UNIT["Meter",1.0]]

The name and several objects define the geographic coordinate system object
in turn: the datum, the prime meridian, and the angular unit of measure.
<geographic cs> = GEOGCS["<name>", <datum>, <prime meridian>, <angular unit>]
<datum> = DATUM["<name>", <spheroid>]
<spheroid> = SPHEROID["<name>", <semi-major axis>, <inverse flattening>]
<semi-major axis> = <number>

(semi-major axis is measured in meters and must be > 0.)
<inverse flattening> = <number>
<prime meridian> = PRIMEM["<name>", <longitude>]
<longitude> = <number>

The geographic coordinate system string for UTM zone 10 on NAD83:
GEOGCS["GCS_North_American_1983",
DATUM["D_North_American_1983",
SPHEROID["GRS_1980",6378137,298.257222101]],
PRIMEM["Greenwich",0],
UNIT["Degree",0.0174532925199433]]

The UNIT object can represent angular or linear unit of measures:
<angular unit> = <unit>
<linear unit> = <unit>
<unit> = UNIT["<name>", <conversion factor>]
<conversion factor> = <number>

The conversion factor specifies number of meters (for a linear unit) or number
of radians (for an angular unit) per unit and must be greater than zero.

So the full string representation of UTM Zone 10N is as follows:

276 DB2 Spatial Extender User’s Guide and Reference

PROJCS["NAD_1983_UTM_Zone_10N",
GEOGCS["GCS_North_American_1983",
DATUM["D_North_American_1983",SPHEROID["GRS_1980",6378137,298.257222101]],
PRIMEM["Greenwich",0],UNIT["Degree",0.0174532925199433]],
PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],
PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",−123.0],
PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_of_Origin",0.0],
UNIT["Meter",1.0]]

A geocentric coordinate system is quite similar to a geographic coordinate
system:
<geocentric cs> = GEOCCS["<name>", <datum>, <prime meridian>, <linear unit>]

Supported linear units

Table 57. Supported linear units

Unit Conversion factor

Meter 1.0

Foot (International) 0.3048

U.S. Foot 12/39.37

Modified American Foot 12.0004584/39.37

Clarke’s Foot 12/39.370432

Indian Foot 12/39.370141

Link 7.92/39.370432

Link (Benoit) 7.92/39.370113

Link (Sears) 7.92/39.370147

Chain (Benoit) 792/39.370113

Chain (Sears) 792/39.370147

Yard (Indian) 36/39.370141

Yard (Sears) 36/39.370147

Fathom 1.8288

Nautical Mile 1852.0

Supported angular units

Table 58. Supported angular units

Unit Conversion factor

Radian 1.0

Decimal Degree p/180

Chapter 15. Coordinate systems 277

Table 58. Supported angular units (continued)

Unit Conversion factor

Decimal Minute (p/180)/60

Decimal Second (p/180)/36000

Gon p/200

Grad p/200

Supported spheroids

Table 59. Supported spheroids

Name Semi-major axis Inverse flattening

Airy 6377563.396 299.3249646

Modified Airy 6377340.189 299.3249646

Australian 6378160 298.25

Bessel 6377397.155 299.1528128

Modified Bessel 6377492.018 299.1528128

Bessel (Namibia) 6377483.865 299.1528128

Clarke 1866 6378206.4 294.9786982

Clarke 1866 (Michigan) 6378693.704 294.978684677

Clarke 1880 6378249.145 293.465

Clarke 1880 (Arc) 6378249.145 293.466307656

Clarke 1880 (Benoit) 6378300.79 293.466234571

Clarke 1880 (IGN) 6378249.2 293.46602

Clarke 1880 (RGS) 6378249.145 293.465

Clarke 1880 (SGA) 6378249.2 293.46598

Everest 1830 6377276.345 300.8017

Everest 1975 6377301.243 300.8017

Everest (Sarawak and
Sabah)

6377298.556 300.8017

Modified Everest 1948 6377304.063 300.8017

Fischer 1960 6378166 298.3

Fischer 1968 6378150 298.3

Modified Fischer (1960) 6378155 298.3

GEM10C 6378137 298.257222101

GRS 1980 6378137 298.257222101

278 DB2 Spatial Extender User’s Guide and Reference

Table 59. Supported spheroids (continued)

Name Semi-major axis Inverse flattening

Hayford 1909 6378388 297.0

Helmert 1906 6378200 298.3

Hough 6378270 297.0

International 1909 6378388 297.0

International 1924 6378388 297.0

New International 1967 6378157.5 298.2496

Krasovsky 6378245 298.3

Mercury 1960 6378166 298.3

Modified Mercury 1968 6378150 298.3

NWL9D 6378145 298.25

OSU_86F 6378136.2 298.25722

OSU_91A 6378136.3 298.25722

Plessis 1817 6376523 308.64

South American 1969 6378160 298.25

Southeast Asia 6378155 298.3

Sphere (radius = 1.0) 1 0

Sphere (radius = 6371000
m)

6371000 0

Sphere (radius =6370997 m) 6370997 0

Struve 1860 6378297 294.73

Walbeck 6376896 302.78

War Office 6378300.583 296

WGS 1960 6378165 298.3

WGS 1966 6378145 298.25

WGS 1972 6378135 298.26

WGS 1984 6378137 298.257223563

Supported geodetic datums

Table 60. Supported geodetic datums

Adindan Lisbon

Afgooye Loma Quintana

Agadez Lome

Chapter 15. Coordinate systems 279

Table 60. Supported geodetic datums (continued)

Australian Geodetic Datum 1966 Luzon 1911

Australian Geodetic Datum 1984 Mahe 1971

Ain el Abd 1970 Makassar

Amersfoort Malongo 1987

Aratu Manoca

Arc 1950 Massawa

Arc 1960 Merchich

Ancienne Triangulation Francaise Militar-Geographische Institute

Barbados Mhast

Batavia Minna

Beduaram Monte Mario

Beijing 1954 M’poraloko

Reseau National Belge 1950 NAD Michigan

Reseau National Belge 1972 North American Datum 1927

Bermuda 1957 North American Datum 1983

Bern 1898 Nahrwan 1967

Bern 1938 Naparima 1972

Bogota Nord de Guerre

Bukit Rimpah NGO 1948

Camacupa Nord Sahara 1959

Campo Inchauspe NSWC 9Z-2

Cape Nouvelle Triangulation Francaise

Carthage New Zealand Geodetic Datum 1949

Chua OS (SN) 1980

Conakry 1905 OSGB 1936

Corrego Alegre OSGB 1970 (SN)

Cote d’Ivoire Padang 1884

Datum 73 Palestine 1923

Deir ez Zor Pointe Noire

Deutsche Hauptdreiecksnetz Provisional South American Datum 1956

Douala Pulkovo 1942

European Datum 1950 Qatar

European Datum 1987 Qatar 1948

280 DB2 Spatial Extender User’s Guide and Reference

Table 60. Supported geodetic datums (continued)

Egypt 1907 Qornoq

European Reference System 1989 RT38

Fahud South American Datum 1969

Gandajika 1970 Sapper Hill 1943

Garoua Schwarzeck

Geocentric Datum of Australia 1994 Segora

Guyane Francaise Serindung

Herat North Stockholm 1938

Hito XVIII 1963 Sudan

Hu Tzu Shan Tananarive 1925

Hungarian Datum 1972 Timbalai 1948

Indian 1954 TM65

Indian 1975 TM75

Indonesian Datum 1974 Tokyo

Jamaica 1875 Trinidad 1903

Jamaica 1969 Trucial Coast 1948

Kalianpur Voirol 1875

Kandawala Voirol Unifie 1960

Kertau WGS 1972

Kuwait Oil Company WGS 1972 Transit Broadcast Ephemeris

La Canoa WGS 1984

Lake Yacare

Leigon Yoff

Liberia 1964 Zanderij

Supported prime meridians

Table 61. Supported prime meridians

Location Coordinates

Greenwich 0° 0' 0"

Bern 7° 26' 22.5" E

Bogota 74° 4' 51.3" W

Brussels 4° 22' 4.71" E

Chapter 15. Coordinate systems 281

Table 61. Supported prime meridians (continued)

Location Coordinates

Ferro 17° 40' 0" W

Jakarta 106° 48' 27.79" E

Lisbon 9° 7' 54.862" W

Madrid 3° 41' 16.58" W

Paris 2° 20' 14.025" E

Rome 12° 27' 8.4" E

Stockholm 18° 3' 29" E

Supported map projections

Table 62. Supported map projections

Cylindrical projections Pseudocylindrical projections

Behrmann Craster parabolic

Cassini Eckert I

Cylindrical equal area Eckert II

Equirectangular Eckert III

Gall’s stereographic Eckert IV

Gauss-Kruger Eckert V

Mercator Eckert VI

Miller cylindrical McBryde-Thomas flat polar quartic

Oblique Mercator (Hotine) Mollweide

Plate-Carée Robinson

Times Sinusoidal (Sansom-Flamsteed)

Transverse Mercator Winkel I

Conic projections

Table 63. Conic projections

Albers conic equal-area Chamberlin trimetric

Bipolar oblique conformal conic Two-point equidistant

Bonne Hammer-Aitoff equal-area

Equidistant conic Van der Grinten I

282 DB2 Spatial Extender User’s Guide and Reference

Table 63. Conic projections (continued)

Lambert conformal conic Miscellaneous

Polyconic Alaska series E

Simple conic Alaska Grid (Modified-Stereographic by
Snyder)

Azimuthal or planar projections

v Azimuthal equidistant
v General vertical near-side perspective
v Gnomonic
v Lambert Azimuthal equal-area
v Orthographic
v Polar-Stereographic
v Stereographic

Map projection parameters

Table 64. Map projection parameters

Parameter Description

central_meridian The line of longitude chosen as the origin
of x-coordinates.

scale_factor Used generally to reduce the amount of
distortion in a map projection.

standard_parallel_1 A line of latitude that has no distortion
generally. Also used for ″latitude of true
scale.″

standard_parallel_2 A line of latitude that has no distortion
generally.

longitude_of_center The longitude that defines the center point
of the map projection.

latitude_of_center The latitude that defines the center point
of the map projection.

latitude_of_origin The latitude chosen as the origin of
y-coordinates.

false_easting Added to x-coordinates. Used to give
positive values.

false_northing Added to y-coordinates. Used to give
positive values.

Chapter 15. Coordinate systems 283

Table 64. Map projection parameters (continued)

Parameter Description

azimuth The angle east of north that defines the
center line of an oblique projection.

longitude_of_point_1 The longitude of the first point needed for
a map projection.

latitude_of_point_1 The latitude of the first point needed for a
map projection.

longitude_of_point_2 The longitude of the second point needed
for a map projection.

latitude_of_point_2 The latitude of the second point needed
for a map projection.

longitude_of_point_3 The longitude of the third point needed
for a map projection.

latitude_of_point_3 The latitude of the third point needed for
a map projection.

landsat_number The number of a Landsat satellite.

path_number The orbital path number for a particular
satellite.

perspective_point_height The height above the earth of the
perspective point of the map projection.

fipszone State Plane Coordinate System zone
number.

zone UTM zone number.

284 DB2 Spatial Extender User’s Guide and Reference

Chapter 16. File formats for spatial data

This chapter documents the DB2 Spatial Extender well-known representations.
The representations are described as well-known because they are provided by
ESRI and are not specific to DB2 Spatial Extender. Three kinds of spatial
values are important to understand for the importing and exporting of spatial
data:
v The Open GIS Consortium (OGC) well-known text representations
v The OGC well-known binary (WKB) representations
v The ESRI shape representations

The OGC well-known text representations

DB2 Spatial Extender has several functions that generate geometries from text
descriptions:

ST_GeomFromText
Creates a geometry from a text representation of any geometry type.

ST_PointFromText
Creates a point from a point text representation.

ST_LineFromText
Creates a linestring from a linestring text representation.

ST_PolyFromText
Creates a polygon from a polygon text representation.

ST_MPointFromText
Creates a multipoint from a multipoint text representations.

ST_MLineFromText
Creates a multilinestring from a multilinestring text representation.

ST_MPolyFromText
Creates a multipolygon from a multipolygon text representation.

The text representation is an ASCII text format string that allows geometry to
be exchanged in ASCII text form. You can use these functions in a third- or
fourth-generation language (3GL or 4GL) program because they don’t require
the definitions of any special program structures. The ST_AsText function
converts an existing geometry into a text representation.

© Copyright IBM Corp. 1998, 2000 285

Each geometry type has a well-known text representation, which can be used
both to construct new instances of the type and to convert existing instances
to textual form for alphanumeric display.

The well-known text representation of a geometry is defined as follows: the
notation {}* denotes 0 or more repetitions of the tokens within the braces; the
braces do not appear in the output token list.
<Geometry Tagged Text> :=
| <Point Tagged Text>
| <LineString Tagged Text>
| <Polygon Tagged Text>
| <MultiPoint Tagged Text>
| <MultiLineString Tagged Text>
| <MultiPolygon Tagged Text>

<Point Tagged Text> :=
POINT <Point Text>

<LineString Tagged Text> :=
LINESTRING <LineString Text>

<Polygon Tagged Text> :=
POLYGON <Polygon Text>

<MultiPoint Tagged Text> :=
MULTIPOINT <Multipoint Text>

<MultiLineString Tagged Text> :=
MULTILINESTRING <MultiLineString Text>

<MultiPolygon Tagged Text> :=
MULTIPOLYGON <MultiPolygon Text>

<Point Text> := EMPTY
| <Point>
| Z <PointZ>
| M <PointM>
| ZM <PointZM>

<Point> := <x> <y>
<x> := double precision literal
<y> := double precision literal
<PointZ> := <x> <y> <z>
<x> := double precision literal
<y> := double precision literal
<z> := double precision literal
<PointM> := <x> <y> <m>
<x> := double precision literal
<y> := double precision literal
<m> := double precision literal
<PointZM> := <x> <y> <z> <m>
<x> := double precision literal
<y> := double precision literal

286 DB2 Spatial Extender User’s Guide and Reference

<z> := double precision literal
<m> := double precision literal

<LineString Text> := EMPTY
| (<Point Text > {, <Point Text> }*)
| Z (<PointZ Text > {, <PointZ Text> }*)
| M (<PointM Text > {, <PointM Text> }*)
| ZM (<PointZM Text > {, <PointZM Text> }*)

<Polygon Text> := EMPTY
| (<LineString Text > {,< LineString Text > }*)

<Multipoint Text> := EMPTY
| (<Point Text > {, <Point Text > }*)

<MultiLineString Text> := EMPTY
| (<LineString Text > {,< LineString Text>}*)

<MultiPolygon Text> := EMPTY
| (< Polygon Text > {, < Polygon Text > }*)

The basic function syntax is:
function (<text description>,<SRID>)

The SRID, the spatial reference identifier, and primary key to the
SPATIAL_REFERENCES table, identifies the geometry’s spatial reference
system that is stored in the SPATIAL_REFERENCES table. Before a geometry
is inserted into a spatial column, its SRID must match the SRID of the spatial
column.

The text description is made up of three basic components that are enclosed in
single quotation marks, for example:
<'geometry type'> ['coordinate type'] [''coordinate list']

where:

geometry type
Is one of the following: point, linestring, polygon, multipoint,
multilinestring, or multipolygon.

coordinate type
Specifies whether or not the geometry has Z coordinates or measures.
Leave this argument blank if the geometry has neither. Otherwise, set
the coordinate type to Z for geometries containing Z coordinates, M
for geometries with measures, and ZM for geometries that have both.

coordinate list
Defines the vertices of the geometry. Coordinate lists are comma
delimited and enclosed by parentheses. Geometries with multiple

Chapter 16. File formats for spatial data 287

components require sets of parentheses to enclose each component
part. If the geometry is empty, the EMPTY keyword replaces the
coordinate.

Table 65 shows a complete list of examples of all possible text representations.

Table 65. Geometry types and their text representations

Geometry type Text Description Comment

point point empty empty point

point point z empty empty point with z
coordinate

point point m empty empty point with measure

point point zm empty empty point with z
coordinate and measure

point point (10.05 10.28) point

point point z (10.05 10.28 2.51) point with z coordinate

point point m (10.05 10.28 4.72) point with measure

point point zm (10.05 10.28 2.51
4.72)

point with z coordinate and
measure

linestring linestring empty empty linestring

linestring linestring z empty empty linestring with z
coordinates

linestring linestring m empty empty linestring with
measures

linestring linestring zm empty empty linestring with z
coordinates and measures

linestring linestring (10.05 10.28 ,
20.95 20.89)

linestring

linestring linestring z (10.05 10.28
3.09, 20.95 31.98 4.72, 21.98
29.80 3.51)

linestring with z
coordinates

linestring linestring m (10.05 10.28
5.84, 20.95 31.98 9.01, 21.98
29.80 12.84)

linestring with measures

linestring linestring zm () linestring with z
coordinates and measures

polygon polygon empty empty polygon

polygon polygon z empty empty polygon with z
coordinates

288 DB2 Spatial Extender User’s Guide and Reference

Table 65. Geometry types and their text representations (continued)

Geometry type Text Description Comment

polygon polygon m empty empty polygon with
measures

polygon polygon zm empty empty polygon with z
coordinates and measures

polygon polygon ((10 10, 10 20, 20
20, 20 15, 10 10))

polygon

polygon polygon z (()) polygon with z coordinates

polygon polygon m (()) polygon with measures

polygon polygon zm (()) polygon with z coordinates
and measures

multipoint multipoint empty empty multipoint

multipoint multipoint z empty empty multipoint with z
coordinates

multipoint multipoint m empty empty multipoint with
measures

multipoint multipoint zm empty empty multipoint with z
coordinates with measures

multipoint multipoint empty empty multipoint

multipoint multipoint (10 10, 20 20) multipoint with two points

multipoint multipoint z (10 10 2, 20 20
3)

multipoint with z
coordinates

multipoint multipoint m (10 10 4, 20 20
5)

multipoint with measures

multipoint multipoint zm (10 10 2 4, 20
20 3 5)

multipoint with z
coordinates and measures

multilinestring multilinestring empty empty multilinestring

multilinestring multilinestring z empty empty multilinestring with
z coordinates

multilinestring multilinestring m empty empty multilinestring with
measures

multilinestring multilinestring zm empty empty multilinestring with
z coordinates and measures

multilinestring multilinestring (()) multilinestring

multilinestring multilinestring z (()) multilinestring with z
coordinates

multilinestring multilinestring m (()) multilinestring with
measures

Chapter 16. File formats for spatial data 289

Table 65. Geometry types and their text representations (continued)

Geometry type Text Description Comment

multilinestring multilinestring zm (()) multilinestring with z
coordinates and measures

multipolygon multipolygon empty empty multipolygon

multipolygon multipolygon z empty empty multipolygon with z
coordinates

multipolygon multipolygon m empty empty multipolygon with
measures

multipolygon multipolygon z empty multipolygon with z
coordinates and measures

multipolygon multipolygon ((())) multipolygon

multipolygon multipolygon z ((())) multipolygon with z
coordinates

multipolygon multipolygon m (((10 10 2,
10 20 3, 20 20 4, 20 15 5, 10
10 2), (50 40 7, 50 50 3, 60
50 4, 60 40 5, 50 40 7)))

multipolygon with
measures

multipolygon multipolygon zm ((())) multipolygon with z
coordinates and measures

The OGC well-known binary (WKB) representations

DB2 Spatial Extender has several functions that generate geometries from
binary representations:

ST_GeomFromWKB
Creates a geometry from a WKB representation of any geometry type.

ST_PointFromWKB
Creates a point from a point WKB representation.

ST_LineFromWKB
Creates a linestring from a linestring WKB representation.

ST_PolyFromWKB
Creates a polygon from a polygon WKB representation.

ST_MPointFromWKB
Creates a multipoint from a multipoint WKB representation.

ST_MLineFromWKB
Creates a multilinestring from a multilinestring WKB representation.

ST_MPolyFromWKB
Creates a multipolygon from a multipolygon WKB reprsentation.

290 DB2 Spatial Extender User’s Guide and Reference

The well-known binary representation is a contiguous stream of bytes. It
permits geometry to be exchanged between an ODBC client and an SQL
database in binary form. Because these geometry functions require the
definition of C programming language structures to map the binary
representation, they are intended for use within a third generation language
(3GL) program. They are not suited for a fourth generation language (4GL)
environment. The ST_AsBinary function converts an existing geometry value
into a well-known binary representation.

The well-known binary representation for geometry is obtained by serializing
a geometry instance as a sequence of numeric types. These types are drawn
from the set (unsigned integer, double), and then each numeric type is
serialized as a sequence of bytes. The types are serialized using one of two
well-defined, standard, binary representations for numeric types (NDR, XDR).
A one-byte tag that precedes the serialized bytes describes the specific binary
encoding (NDR or XDR) used for a geometry byte stream. The only difference
between the two encoding of geometry is one of byte order: The XDR
encoding is Big Endian; the NDR encoding is Little Endian.

Numeric type definitions
An unsigned integer is a 32 bit (4 byte) data type that encodes a non-negative
integer in the range [0, 4294967295].

A double is a 64 bit (8 byte) double precision data type that encodes a double
precision number using the IEEE 754 double precision format.

These definitions are common to both XDR and NDR.

XDR (Big Endian) encoding of numeric types
The XDR representation of an unsigned integer is Big Endian (most significant
byte first).

The XDR representation of a double is Big Endian (sign bit is first byte).

NDR (Little Endian) encoding of numeric types
The NDR representation of an unsigned integer is Little Endian (least
significant byte first).

The NDR representation of a double is Little Endian (sign bit is last byte).

Conversion between NDR and XDR
Conversion between the NDR and XDR data types for unsigned integers and
doubles is a simple operation. It involving reversing the order of bytes within
each unsigned integer or double in the byte stream.

Chapter 16. File formats for spatial data 291

Description of WKBGeometry byte streams
This section describes the well-known binary representation for geometry. The
basic building block is the byte stream for a point, which consists of two
doubles. The byte streams for other geometries are built using the byte
streams for geometries that are already defined.
// Basic Type definitions
// byte : 1 byte
// uint32 : 32 bit unsigned integer (4 bytes)
// double : double precision number (8 bytes)

// Building Blocks : Point, LinearRing

Point {
double x;
double y;

};
LinearRing {

uint32 numPoints;
Point points[numPoints];

};
enum wkbGeometryType {

wkbPoint = 1,
wkbLineString = 2,
wkbPolygon = 3,
wkbMultiPoint = 4,
wkbMultiLineString = 5,
wkbMultiPolygon = 6,

};
enum wkbByteOrder {

wkbXDR = 0, // Big Endian
wkbNDR = 1 // Little Endian

};
WKBPoint {

byte byteOrder;
uint32 wkbType; // 1
Point point;

};
WKBLineString {

byte byteOrder;
uint32 wkbType; // 2
uint32 numPoints;
Point points[numPoints];

}

WKBPolygon {
byte byteOrder;
uint32 wkbType; // 3
uint32 numRings;
LinearRing rings[numRings];

}
WKBMultiPoint {

byte byteOrder;
uint32 wkbType; // 4
uint32 num_wkbPoints;

292 DB2 Spatial Extender User’s Guide and Reference

WKBPoint WKBPoints[num_wkbPoints];
}
WKBMultiLineString {

byte byteOrder;
uint32 wkbType; // 5
uint32 num_wkbLineStrings;
WKBLineString WKBLineStrings[num_wkbLineStrings];

}

wkbMultiPolygon {
byte byteOrder;
uint32 wkbType; // 6
uint32 num_wkbPolygons;
WKBPolygon wkbPolygons[num_wkbPolygons];

}

WKBGeometry {
union {

WKBPoint point;
WKBLineString linestring;
WKBPolygon polygon;
WKBMultiPoint mpoint;
WKBMultiLineString mlinestring;
WKBMultiPolygon mpolygon;

}
};

The following figure shows an NDR representation.

Assertions for the WKB representation
The well-known binary representation for geometry is designed to represent
instances of the geometry types described in the Geometry Object Model and
in the OpenGIS Abstract Specification.

These assertions imply the following for rings, polygons, and multipolygons:

Linear rings
Rings are simple and closed, which means that linear rings cannot self
intersect.

Figure 39. Representation in NDR format. (B=1) of type polygon (T=3) with 2 linears (NR=2), each
ring having 3 points (NP=3).

Chapter 16. File formats for spatial data 293

Polygons
No two linear rings in the boundary of a polygon can cross each
other. The linear rings in the boundary of a polygon can intersect at
most at a single point, but only as a tangent.

Multipolygons
The interiors of two polygons that are elements of a multipolygon
cannot intersect. The boundaries of any two polygons that are
elements of a multipolygon can touch at only a finite number of
points.

The ESRI shape representations

DB2 Spatial Extender has several functions that generate geometries from
ESRI shape representations. In addition to the two-dimensional representation
supported by the open GIS well-known binary representation, the ESRI shape
representation also supports optional Z coordinates and measures. The
following functions generate geometry from an ESRI shape:

ST_GeometryFromShape
Creates a geometry from a shape representation of any geometry type.

ST_PointFromShape
Creates a point from a point shape representation.

ST_LineFromShape
Creates a linestring from a linestring shape representation.

ST_PolyFromShape
Creates a polygon from a polygon shape representation.

ST_MPointFromShape
Creates a multipoint from a multipoint shape representation.

ST_MLineFromShape
Creates a multilinestring from a multilinestring shape representation.

ST_MPolyFromShape
Creates a multipolygon from a multipolygon shape representation.

The general syntax of these functions is the same. The first argument is the
shape representation entered as a binary large object (BLOB) data type. The
second argument is the spatial reference identifier integer to assign to the
geometry. The GeometryFromShape function has the following syntax:
db2gse.GeometryFromShape(ShapeGeometry Blob(1M), cr db2gse.coordref)

Because these shape functions require the definition of C programming
language structures to map the binary representation, they are intended for

294 DB2 Spatial Extender User’s Guide and Reference

use within a 3GL program and are not suited to a 4GL environment. The
AsShape function converts the geometry value into an ESRI shape
representation.

A shape type of 0 indicates a null shape, with no geometric data for the
shape.

Value Shape Type

0 Null Shape

1 Point

3* PolyLine

5 Polygon

8 MultiPoint

11 PointZ

13 PolyLineZ

15 PolygonZ

18 MultiPointZ

21 PointM

23 PolyLineM

25 PolygonM

28 MultiPointM

Note: * Shape types that are not specified above (2, 4, 6, and so forth) are
reserved for future use.

Shape types in XY space

Point
A point consists of a pair of double precision coordinates in the order X, Y.

Table 66. Point byte stream contents

Position Field Value Type Number Order

Byte 0 Shape Type 1 Integer 1 Little

Byte 4 X X Double 1 Little

Byte 12 Y Y Double 1 Little

MultiPoint
A MultiPoint consists of a collection of points. The bounding box is stored in
the order Xmin, Ymin, Xmax, Ymax.

Chapter 16. File formats for spatial data 295

Table 67. MultiPoint byte stream contents

Position Field Value Type Number Order

Byte 0 Shape Type 8 Integer 1 Little

Byte 4 Box Box Double 4 Little

Byte 36 NumPoints NumPoints Integer 1 Little

Byte 40 Points Points Point NumPoints Little

PolyLine
A PolyLine is an ordered set of vertices that consists of one or more parts. A
part is a connected sequence of two or more points. Points might or might not
be connected to each other. Parts might or might not intersect each other.

Because this specification does not forbid consecutive points with identical
coordinates, shapefile readers must handle such cases. On the other hand, the
degenerate, zero length parts that might result are not allowed.

The fields for a PolyLine are:

Box The bounding box for the PolyLine stored in the order Xmin, Ymin,
Xmax, Ymax.

NumParts
The number of parts in the PolyLine.

NumPoints
The total number of points for all parts.

Parts An array of length NumParts. Each PolyLine stores the index of its
first point in the points array. Array indexes are with respect to 0.

Points An array of length NumPoints. The points for each part in the
PolyLine are stored end to end. The points for part 2 follow the points
for part 1, and so on. The parts array holds the array index of the
starting point for each part. There is no delimiter in the points array
between parts.

Table 68. PolyLine byte stream contents

Position Field Value Type Number Order

Byte 0 Shape Type 3 Integer 1 Little

Byte 4 Box Box Double 4 Little

Byte 36 NumParts NumParts Integer 1 Little

Byte 40 NumPoints NumPoints Integer 1 Little

Byte 44 Parts Parts Integer NumParts Little

Byte X Points Points Point NumPoints Little

296 DB2 Spatial Extender User’s Guide and Reference

Note: X = 44 + 4 * NumParts.

Polygon
A polygon consists of one or more rings. A ring is a connected sequence of
four or more points that forms a closed, non-self-intersecting loop. A polygon
can contain multiple outer rings. The order of vertices or orientation for a ring
indicates which side of the ring is the interior of the polygon. The
neighborhood to the right of an observer walking along the ring in vertex
order is the neighborhood inside the polygon. Vertices of rings that define
holes in polygons are in a counter-clockwise direction. Vertices for a single,
ringed polygon are, therefore, always in clockwise order. The rings of a
polygon are called parts.

Because this specification does not forbid consecutive points with identical
coordinates, shapefile readers must handle such cases. On the other hand, the
degenerate, zero length, or zero area parts that might result are not allowed.

The fields for a polygon are:

Box The bounding box for the polygon stored in the order Xmin, Ymin,
Xmax, Ymax.

NumParts
The number of rings in the polygon.

NumPoints
The total number of points for all rings.

Parts An array of length NumParts. Stores, for each ring, the index of its
first point in the points array. Array indexes are with respect to 0.

Points An array of length NumPoints. The points for each ring in the
polygon are stored end to end. The points for Ring 2 follow the points
for Ring 1, and so on. The parts array holds the array index of the
starting point for each ring. There is no delimiter in the points array
between rings.

Important notes about Polygon shapes:

v The rings are closed (the first and last vertex of a ring MUST be the
same).

v The order of rings in the points array is not significant.
v Polygons stored in a shapefile must be clean. A clean polygon is

one that:
– Has no self-intersections. This means that a segment belonging to

one ring can not intersect a segment belonging to another ring.

Chapter 16. File formats for spatial data 297

The rings of a polygon can touch each other at vertices but not
along segments. Colinear segments are considered intersecting.

– Has the inside of the polygon on the ″correct″ side of the line
that defines it. The neighborhood to the right of an observer
walking along the ring in vertex order is the inside of the
polygon. Vertices for a single, ringed polygon is, therefore,
always in clockwise order. Rings defining holes in these
polygons have a counterclockwise orientation.

″Dirty″ polygons occur when the rings that define holes in the
polygon also go clockwise, which causes overlapping interiors.

An Example Polygon Instance:

Table 69. Polygon byte stream contents

Position Field Value Type Number Order

Byte 0 Shape Type 5 Integer 1 Little

Byte 4 Box Box Double 4 Little

Byte 36 NumParts NumParts Integer 1 Little

Figure 40. A polygon with a hole and eight vertices

Figure 41. Contents of the polygon byte stream. NumParts equals 2 and NumPoints equals 10.
Note that the order of the points for the donut (hole) polygon are reversed.

298 DB2 Spatial Extender User’s Guide and Reference

Table 69. Polygon byte stream contents (continued)

Position Field Value Type Number Order

Byte 40 NumPoints NumPoints Integer 1 Little

Byte 44 Parts Parts Integer NumParts Little

Byte X Points Points Point NumPoints Little

Note: X = 44 + 4 * NumParts.

Measured shape types in XY space

PointM
A PointM consists of a pair of double precision coordinates in the order X, Y,
plus a measure M.

Table 70. PointM byte stream contents

Position Field Value Type Number Order

Byte 0 Shape Type 21 Integer 1 Little

Byte 4 X X Double 1 Little

Byte 12 Y Y Double 1 Little

Byte 20 M M Double 1 Little

MultiPointM
The fields for a MultiPointM are:

Box The bounding box for the MultiPointM stored in the order Xmin,
Ymin, Xmax, Ymax.

NumPoints
The number of Points.

Points An array of Points of length NumPoints.

NumMs
The number of Measures that follow. NumMs can only have two
values zero if no Measures follow this field; or equal to NumPoints if
Measures are present.

M Range
The minimum and maximum measures for the MultiPointM stored in
the order Mmin, Mmax.

M Array
An array of Measures of length NumPoints.

Chapter 16. File formats for spatial data 299

Table 71. MultiPointM byte stream contents

Position Field Value Type Number Order

Byte 0 Shape Type 28 Integer 1 Little

Byte 4 Box Box Double 4 Little

Byte 36 NumPoints NumPoints Integer 1 Little

Byte 40 Points Points Point NumPoints Little

Byte X NumMs NumMs Integer 1 Little

Byte X+4* Mmin Mmin Double 1 Little

Byte X+12* Mmax Mmax Double 1 Little

Byte X+20* Marray Marray Double NumPoints Little

Notes:

1. X = 40 + (16 * NumPoints)
2. * optional

PolyLineM
A shapefile PolyLineM consists of one or more parts. A part is a connected
sequence of two or more points. Parts might or might not be connected to
each other. Parts might or might not intersect one another.

The fields for a PolyLineM are:

Box The bounding box for the PolyLineM stored in the order Xmin, Ymin,
Xmax, Ymax.

NumParts
The number of parts in the PolyLineM.

NumPoints
The total number of points for all parts.

Parts An array of length NumParts. Stores, for each part, the index of its
first point in the points array. Array indexes are with respect to 0.

Points An array of length NumPoints. The points for each part in the
PolyLineM are stored end to end. The points for part 2 follow the
points for part 1, and so on. The parts array holds the array index of
the starting point for each part. There is no delimiter in the points
array between parts.

NumMs
The number of Measures that follow. NumMs can only have two
values zero if no Measures follow this field; or equal to NumPoints if
Measures are present.

300 DB2 Spatial Extender User’s Guide and Reference

M Range
The minimum and maximum measures for the PolyLineM stored in
the order Mmin, Mmax.

M Array
An array of length NumPoints. The measures for each part in the
PolyLineM are stored end to end. The measures for part 2 follow the
measures for part 1, and so on. The parts array holds the array index
of the starting point for each part. There is no delimiter in the
measure array between parts.

Table 72. PolyLineM byte stream contents

Position Field Value Type Number Order

Byte 0 Shape Type 13 Integer 1 Little

Byte 4 Box Box Double 4 Little

Byte 36 NumParts NumParts Integer 1 Little

Byte 40 NumPoints NumPoints Integer 1 Little

Byte 44 Parts Parts Integer NumParts Little

Byte X Points Points Point NumPoints Little

Byte Y NumMs NumMs Integer 1 Little

Byte Y+4* Mmin Mmin Double 1 Little

Byte Y+12* Mmax Mmax Double 1 Little

Byte Y+20* Marray Marray Double NumPoints Little

Notes:

1. X = 44 + (4 * NumParts), Y = X + (16 * NumPoints).
2. * optional

PolygonM
A PolygonM consists of a number of rings. A ring is a closed,
non-self-intersecting loop. Note that intersections are calculated in XY space,
not in XYM space. A PolygonM can contain multiple outer rings. The rings of
a PolygonM are called parts.

The fields for a PolygonM are:

Box The bounding box for the PolygonM stored in the order Xmin, Ymin,
Xmax, Ymax.

NumParts
The number of rings in the PolygonM.

NumPoints
The total number of points for all rings.

Chapter 16. File formats for spatial data 301

Parts An array of length NumParts. Stores, for each ring, the index of its
first point in the points array. Array indexes are with respect to 0.

Points An array of length NumPoints. The points for each ring in the
PolygonM are stored end to end. The points for Ring 2 follow the
points for Ring 1, and so on. The parts array holds the array index of
the starting point for each ring. There is no delimiter in the points
array between rings.

NumMs
The number of Measures that follow. NumMs can have only two zero
values if no Measures follow this field, or equal to NumPoints if
Measures are present.

M Range
The minimum and maximum measures for the PolygonM stored in
the order Mmin, Mmax.

M Array
An array of length NumPoints. The measures for each ring in the
PolygonM are stored end to end. The measures for Ring 2 follow the
measures for Ring 1, and so on. The parts array holds the array index
of the starting measure for each ring. There is no delimiter in the
measure array between rings.

Important notes about PolygonM shapes:

v The rings are closed (the first and last vertex of a ring must be the
same).

v The order of rings in the points array is not significant.

Table 73. PolygonM byte stream contents

Position Field Value Type Number Order

Byte 0 Shape Type 15 Integer 1 Little

Byte 4 Box Box Double 4 Little

Byte 36 NumParts NumParts Integer 1 Little

Byte 40 NumPoints NumPoints Integer 1 Little

Byte 44 Parts Parts Integer NumParts Little

Byte X Points Points Point NumPoints Little

Byte Y NumMs NumMs Integer 1 Little

Byte Y+4* Mmin Mmin Double 1 Little

Byte Y+12* Mmax Mmax Double 1 Little

Byte Y+20* Marray Marray Double NumPoints Little

302 DB2 Spatial Extender User’s Guide and Reference

Notes:

1. X = 44 + (4 * NumParts), Y = X + (16 * NumPoints).
2. * optional

Shape types in XYZ space

PointZ
A PointZ consists of triplet, double precision coordinates in the order X, Y, Z
plus a measure.

Table 74. PointZ byte stream contents

Position Field Value Type Number Order

Byte 0 Shape Type 11 Integer 1 Little

Byte 4 X X Double 1 Little

Byte 12 Y Y Double 1 Little

Byte 20 Z Z Double 1 Little

Byte 28 Measure M Double 1 Little

MultiPointZ
A MultiPointZ represents a set of PointZs, as follows:
v The bounding box is stored in the order Xmin, Ymin, Xmax, Ymax.
v The bounding Z range is stored in the order Zmin, Zmax. Bounding M

Range is stored in the order Mmin, Mmax.

Table 75. MultiPointZ byte stream contents

Position Field Value Type Number Order

Byte 0 Shape Type 18 Integer 1 Little

Byte 4 Box Box Double 4 Little

Byte 36 NumPoints NumPoints Integer 1 Little

Byte 40 Points Points Point NumPoints Little

Byte X Zmin Zmin Double 1 Little

Byte X+8 Zmax Zmax Double 1 Little

Byte X+16 Zarray Zarray Double NumPoints Little

Byte Y NumMs NumMs Integer 1 Little

Byte Y+4* Mmin Mmin Double 1 Little

Byte Y+12* Mmax Mmax Double 1 Little

Byte Y+20* Marray Marray Double NumPoints Little

Chapter 16. File formats for spatial data 303

Notes:

1. X = 40 + (16 * NumPoints); Y = X + 16 + (8 * NumPoints)
2. * optional

PolyLineZ
A PolyLineZ consists of one or more parts. A part is a connected sequence of
two or more points. Parts might or might not be connected to each other.
Parts might or might not intersect one another.

The fields for a PolyLineZ are:

Box The bounding box for the PolyLineZ stored in the order Xmin, Ymin,
Xmax, Ymax.

NumParts
The number of parts in the PolyLineZ.

NumPoints
The total number of points for all parts.

Parts An array of length NumParts. Stores, for each part, the index of its
first point in the points array. Array indexes are with respect to 0.

Points An array of length NumPoints. The points for each part in the
PolyLineZ are stored end to end. The points for part 2 follow the
points for part 1, and so on. The parts array holds the array index of
the starting point for each part. There is no delimiter in the points
array between parts.

Z Range
The minimum and maximum Z values for the PolyLineZ stored in the
order Zmin, Zmax.

Z Array
An array of length NumPoints. The Z values for each part in the
PolyLineZ are stored end to end. The Z values for part 2 follow the Z
values for part 1, and so on. The parts array holds the array index of
the starting point for each part. There is no delimiter in the Z array
between parts.

NumMs
The number of Measures that follow. NumMs can only have two
values zero if no Measures follow this field; or equal to NumPoints if
Measures are present.

M Range
The minimum and maximum measures for the PolyLineZ stored in
the order Mmin, Mmax.

M Array
An array of length NumPoints. The measures for each part in the

304 DB2 Spatial Extender User’s Guide and Reference

PolyLineZ are stored end to end. The measures for part 2 follow the
measures for part 1, and so on. The parts array holds the array index
of the starting measure for each part. There is no delimiter in the
measure array between parts.

Table 76. PolyLineZ byte stream contents

Position Field Value Type Number Order

Byte 0 Shape Type 13 Integer 1 Little

Byte 4 Box Box Double 4 Little

Byte 36 NumParts NumParts Integer 1 Little

Byte 40 NumPoints NumPoints Integer 1 Little

Byte 44 Parts Parts Integer NumParts Little

Byte X Points Points Point NumPoints Little

Byte Y Zmin Zmin Double 1 Little

Byte Y+8 Zmax Zmax Double 1 Little

Byte Y+16 Zarray Zarray Double NumPoints Little

Byte Z NumMs NumMs Integer 1 Little

Byte Z+4* Mmin Mmin Double 1 Little

Byte Z+12* Mmax Mmax Double 1 Little

Byte Z+20* Marray Marray Double NumPoints Little

Notes:

1. X = 44 + (4 * NumParts), Y = X + (16 * NumPoints), Z = Y + 16 + (8 *
NumPoints)

2. * optional

PolygonZ
A PolygonZ consists of a number of rings. A ring is a closed,
non-self-intersecting loop. A PolygonZ can contain multiple outer rings. The
rings of a PolygonZ are called parts.

The fields for a PolygonZ are:

Box The bounding box for the PolygonZ stored in the order Xmin, Ymin,
Xmax, Ymax.

NumParts
The number of rings in the PolygonZ.

NumPoints
The total number of points for all rings.

Chapter 16. File formats for spatial data 305

Parts An array of length NumParts. Stores, for each ring, the index of its
first point in the points array. Array indexes are with respect to 0.

Points An array of length NumPoints. The points for each ring in the
PolygonZ are stored end to end. The points for Ring 2 follow the
points for Ring 1, and so on. The parts array holds the array index of
the starting point for each ring. There is no delimiter in the points
array between rings.

Z Range
The minimum and maximum Z values for the arc stored in the order
Zmin, Zmax.

Z Array
An array of length NumPoints. The Z values for each ring in the
PolygonZ are stored end to end. The Z values for Ring 2 follow the Z
values for Ring 1, and so on. The parts array holds the array index of
the starting Z value for each ring. There is no delimiter in the Z value
array between rings.

NumMs
The number of Measures that follow. NumMs can only have two
values zero if no Measures follow this field; or equal to NumPoints if
Measures are present.

M Range
The minimum and maximum measures for the PolygonZ stored in the
order Mmin, Mmax.

M Array
An array of length NumPoints. The measures for each ring in the
PolygonZ are stored end to end. The measures for Ring 2 follow the
measures for Ring 1, and so on. The parts array holds the array index
of the starting measure for each ring. There is no delimiter in the
measure array between rings.

Important notes about PolygonZ shapes:

v The rings are closed (the first and last vertex of a ring MUST be the
same).

v The order of rings in the points array is not significant.

Table 77. PolygonZ byte stream contents

Position Field Value Type Number Order

Byte 0 Shape Type 15 Integer 1 Little

Byte 4 Box Box Double 4 Little

Byte 36 NumParts NumParts Integer 1 Little

Byte 40 NumPoints NumPoints Integer 1 Little

306 DB2 Spatial Extender User’s Guide and Reference

Table 77. PolygonZ byte stream contents (continued)

Position Field Value Type Number Order

Byte 44 Parts Parts Integer NumParts Little

Byte X Points Points Point NumPoints Little

Byte Y Zmin Zmin Double 1 Little

Byte Y+8 Zmax Zmax Double 1 Little

Byte Y+16 Zarray Zarray Double NumPoints Little

Byte Z NumMs NumMs Integer 1 Little

Byte Z+4* Mmin Mmin Double 1 Little

Byte Z+12* Mmax Mmax Double 1 Little

Byte Z+20* Marray Marray Double NumPoints Little

Chapter 16. File formats for spatial data 307

308 DB2 Spatial Extender User’s Guide and Reference

Part 3. Appendixes

© Copyright IBM Corp. 1998, 2000 309

310 DB2 Spatial Extender User’s Guide and Reference

Notices

IBM may not offer the products, services, or features discussed in this
document in all countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 1998, 2000 311

improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
1150 Eglinton Ave. East
North York, Ontario
M3C 1H7
CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

312 DB2 Spatial Extender User’s Guide and Reference

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source
language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using,
marketing or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All
rights reserved.

Notices 313

Trademarks

The following terms, which may be denoted by an asterisk(*), are trademarks
of International Business Machines Corporation in the United States, other
countries, or both.

ACF/VTAM
AISPO
AIX
AIX/6000
AIXwindows
AnyNet
APPN
AS/400
BookManager
CICS
C Set++
C/370
DATABASE 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Extenders
DB2 OLAP Server
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
eNetwork
Extended Services
FFST
First Failure Support Technology

IBM
IMS
IMS/ESA
LAN DistanceMVS
MVS/ESA
MVS/XA
Net.Data
OS/2
OS/390
OS/400
PowerPC
QBIC
QMF
RACF
RISC System/6000
RS/6000
S/370
SP
SQL/DS
SQL/400
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WebExplorer
WIN-OS/2

The following terms are trademarks or registered trademarks of other
companies:

Microsoft, Windows, and Windows NT are trademarks or registered
trademarks of Microsoft Corporation.

Java or all Java-based trademarks and logos, and Solaris are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States,
other countries, or both.

314 DB2 Spatial Extender User’s Guide and Reference

UNIX is a registered trademark in the United States, other countries or both
and is licensed exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a
double asterisk(**) may be trademarks or service marks of others.

Notices 315

316 DB2 Spatial Extender User’s Guide and Reference

Index

A
AIX

installing DB2 Spatial
Extender 17

where macro definitions for
constants are stored 63

where reference data is
stored 21

angular units 277
applications

guidelines for writing 53
stored procedures 63

ArcExplorer
downloading 19
using as interface 9, 49

AsBinaryShape 152, 156
attribute data 4
automatic geocoding 38
azimuthal projections 283

B
B tree indexes 110
batch geocoding 38
boundary 120, 123

C
catalog views

DB2GSE.COORD_REF_SYS 105
DB2GSE.GEOMETRY_

COLUMNS 106
DB2GSE.SPATIAL_

GEOCODER 106
DB2GSE.SPATIAL_REF_SYS 107

class 122
conic projections 282
coordinate systems 275

DB2GSE.COORD_REF_SYS
catalog view 105

deriving spatial reference systems
from 24

description 5, 23
coordinates

description 5
X coordinates

description 23
properties of geometries 122

Y coordinates
description 23
properties of geometries 122

coordinates (continued)
Z coordinates

description 23
properties of geometries 122

Create Spatial Index window 47
Create Spatial Layer window

for registering a table column as
a layer 34

for registering a view column as
a layer 36

Create Spatial Reference
window 27, 28

D
data items 6
databases

disabling support for spatial
operations

db2gse.gse_disable_db 68
sample program 54

enabling for spatial operations
DB2 Control Center menu

choices 22
db2gse.gse_enable_db 73
discussion 21
sample program 54

DB2 Control Center
Create Spatial Index window 47
Create Spatial Layer window

for registering a table column
as a layer 34

for registering a view column
as a layer 36

Create Spatial Reference
window 27, 28

Export Spatial Data window 45
Import Spatial Data window 42,

43, 44
invoking DB2 Spatial Extender

from 20
Run Geocoder window 39, 40

DB2 instance update utility
(db2iupdt) 19

DB2 Spatial Extender
applications

guidelines for writing 53
stored procedures 63

catalog views 105
configuration 15

DB2 Spatial Extender (continued)
error, warning, and informational

messages 97
installing

hardware and software
requirements 15

on AIX 17
on Windows NT 17
verification 18

interfaces to 8
invoking from DB2 Control

Center 20
purpose 3
resources

for spatial operations 21
reference data 21
summary 21

sample program
compiling and running 18
description 53

spatial functions 155
stored procedures 63
tasks, summaries of

carried out by stored
procedures 64

overview 9
sample program 53
scenario 11

DB2GSE.COORD_REF_SYS 105
DB2GSE.GEOMETRY_COLUMNS 106
db2gse.gse_disable_autogc 66
db2gse.gse_disable_db 68
db2gse.gse_disable_sref 69
db2gse.gse_enable_autogc 70
db2gse.gse_enable_db 73
db2gse.gse_enable_idx 74
db2gse.gse_enable_sref 76
db2gse.gse_export_shape 78
db2gse.gse_import_sde 80
db2gse.gse_import_shape 82
db2gse.gse_register_gc 84
db2gse.gse_register_layer 86
db2gse.gse_run_gc 92
db2gse.gse_unregist_gc 94
db2gse.gse_unregist_layer 95
DB2GSE.SPATIAL_GEOCODER 106
DB2GSE.SPATIAL_REF_SYS 107
db2iupdt (DB2 instance update

utility) 19

© Copyright IBM Corp. 1998, 2000 317

default geocoder 37
dimension 124
disk space requirements 16

E
EBNF (Extended Backus Naur) 275
empty or not empty 123
enabling databases for spatial

operations
DB2 Control Center menu

choices 22
description 9
discussion 21

envelope 111, 123
EnvelopesIntersect 137, 158
error messages 97
ESRI shape representations

associated spatial functions 151
discussion 294

Export Spatial Data window 45
exterior 120, 123

F
false M

specifying 25, 29
false X

specifying 25, 28
false Y

specifying 25, 28
false Z

specifying 25, 28

G
geocentric coordinate system 277
geocoders

DB2GSE.SPATIAL_ GEOCODER
catalog view 106

default geocoder 37
disabling automatic geocoding

db2gse.gse_disable_autogc 66
Run Geocoder window 40
sample program 57

enabling automatic geocoding
Create Spatial Layer

window 34
db2gse.gse_enable_autogc 70
discussion 31, 38
sample program 57

non-default geocoders
discussion 37
using db2gse.gse_register_gc

to register 84
using db2gse.gse_unregist_gc

to unregister 94
running in batch mode

db2gse.gse_run_gc 92

geocoders (continued)
running in batch mode

(continued)
discussion 38
Run Geocoder window 39
sample program 56, 57

geocoding
batch 38
description 6
discussion 37
incremental 38
precision 14

geodetic datums 279
GEOGCS keyword 276
geographic features

associated data types 32
description 3
represented by data 4

geographic information system (GIS)
creating 9
description 3
using 11

geometries
correspondence with spatial data

types 121
discussion 119
linestrings 121, 126
multilinestrings 121, 129
multipoints 121, 129
multipolygons 121, 130
points 120, 125
polygons 121, 127
properties

boundary 120, 123
class 122
dimension 124
empty or not empty 123
envelope 111, 123
exterior 120, 123
interior 120, 123
measures 122
simple or non-simple 123
spatial reference system

identifier (SRID) 124
X coordinates 122
Y coordinates 122
Z coordinates 122

spatial index grids 111
GeometryFromShape 152, 157
grid indexes 47

I
Import Spatial Data window 42, 43,

44
incremental geocoding 38
informational messages 97

installing DB2 Spatial Extender
hardware and software

requirements 15
on AIX 17
on Windows NT 17
verification 18

interfaces to DB2 Spatial
Extender 8

interior 120, 123
Is3d 122, 160
IsMeasured 122, 161

J
Java 2 Runtime Environment (JRE)

v1.2.2 19

L
layers

DB2GSE.GEOMETRY_
COLUMNS catalog view 106

description 11
registering table columns as

Create Spatial Layer
window 34

db2gse.gse_register_layer 86
sample program 56

registering view columns as
Create Spatial Layer

window 36
db2gse.gse_register_layer 86
sample program 58

using db2gse.gse_unregist_layer
to unregister 95

linear rings 293
linear units 277
LineFromShape 152, 162
linestrings 121, 126
LocateAlong 148, 164
LocateBetween 148, 166

M
M 126, 168
M units

specifying 26, 29
map projection parameters 283
map projections 282
Measured shape types in XY

spaces 299
measures

description 23, 122
properties of geometries 122

messages 97
MLine FromShape 169
MLineFromShape 152
MPointFromShape 152, 171
MPolyFromShape 152, 172

318 DB2 Spatial Extender User’s Guide and Reference

multilinestrings 121, 129
MultiPoint byte stream

contents 295
MultiPointM byte stream

contents 299, 300
multipoints 121, 129
MultiPointZ byte stream

contents 303
multipolygons 121, 130

N
NDR encoding 291

O
offset factors

specifying 25, 28

P
pattern matrices 133
planar projections 283
Point byte stream contentse 295
PointFromShape 152, 173
PointM byte stream contentse 299
points 120, 125
PointZ byte stream contents 303
PolyFromShape 152, 174
Polygon byte stream contents 298
PolygonM byte stream contents 302
polygons 121, 127
PolygonZ byte stream contents 306
PolyLine byte stream contents 296
PolyLineM byte stream

contents 301
PolyLineZ byte stream contents 305
POSC/EPSB coordinate system

model 275
precision

geocoding 14, 39
preserving for spatial reference

systems 24
prime meridians 281
PROJCS keyword 276
projections

azimuthal 283
conic 282
map

parameters 283
types 282

planar 283

Q
queries

exploiting spatial indexes 51
interfaces for submitting 9, 49
sample program 58

queries (continued)
types of spatial functions to

use 49
using spatial predicate

functions 50

R
reference data 21
Run Geocoder window 39, 40

S
sample program

compiling and running 18
description 53

scale factors
specifying 25, 28

scenario of tasks 11
shapes

in XY space 295
in XYZ space 303

ShapeToSQL 152, 176
simple or non-simple 123
software requirements 16
source data 5
spatial columns 37
spatial data

derived from attribute data 6
derived from other spatial data

discussion 7
spatial functions that derive

the data 144
exporting

db2gse.gse_export_shape 78
discussion 41
Export Spatial Data

window 45
sample program 59

file formats
ESRI shape

representations 151, 294
WKB (well-known binary)

representations 150, 290
WKT (well-known text)

representations 149, 285
importing

db2gse.gse_import_sde 80
db2gse.gse_import_shape 82
discussion 8, 41
Import Spatial Data

window 41, 43
sample program 56

nature of 5
spatial data types 31

correspondence with
geometries 121

description 31

spatial functions

.ST_Area 178
AsBinaryShape 152, 156
categorized by operations

performed 49
EnvelopesIntersect 137, 158
GeometryFromShape 152
Is3d 122, 160
IsMeasured 122, 161
LineFromShape 152, 162
LocateAlong 148, 164
LocateBetween 148, 166
M 126, 168
MLine FromShape 169
MLineFromShape 152
MPointFromShape 152, 171
MPolyFromShape 152, 172
PointFromShape 152, 173
PolyFromShape 152, 174
predicates 50
ShapeToSQL 152, 176
ST_Area 128, 131
ST_AsBinary 151, 180
ST_AsText 150, 181
ST_Boundary 123, 182
ST_Buffer 146, 184
ST_Centroid 128, 131, 186
ST_Contains 142, 187
ST_Convexhull 189
ST_ConvexHull 149
ST_CoordDim 125, 191
ST_Crosses 139, 193
ST_Difference 145, 195
ST_Dimension 124, 196
ST_Disjoint 135, 198
ST_Distance 143, 200
ST_Endpoint 126, 201
ST_Envelope 124, 202
ST_Equals 134, 204
ST_ExteriorRing 128, 205
ST_GeometryFromText 207
ST_GeometryN 129, 211
ST_GeometryType 122, 212
ST_GeomFromText 150, 285
ST_GeomFromWKB 151, 209,

290
ST_InteriorRingN 128, 214
ST_Intersection 144, 219
ST_Intersects 136, 221
ST_IsClosed 127, 129, 222
ST_IsEmpty 123, 224
ST_IsRing 127, 226
ST_IsSimple 123, 227
ST_IsValid 122, 228
ST_Length 127, 129, 230

Index 319

spatial functions (continued)
ST_LineFromText 150, 232, 285
ST_LineFromWKB 151, 233, 290
ST_MLineFromText 150, 235,

285
ST_MLineFromWKB 151, 236,

290
ST_MPointFromText 150, 238,

285
ST_MPointFromWKB 151, 239,

290
ST_MPolyFromText 150, 240,

285
ST_MPolyFromWKB 151, 241,

290
ST_NumGeometries 129, 242
ST_NumInteriorRing 128, 243
ST_NumPoints 127, 244
ST_OrderingEquals 135, 245
ST_Overlaps 138, 246
ST_Perimeter 128, 248
ST_Point 125, 251
ST_PointFromText 126, 249, 285
ST_PointFromWKB 151, 250,

290
ST_PointN 126, 252
ST_PointOnSurface 128, 253
ST_PolyFromText 150, 254, 285
ST_PolyFromWKB 151, 255, 290
ST_Polygon 149, 257
ST_Relate 143, 258
ST_SRID 124, 260
ST_StartPoint 126, 261
ST_SymmetricDiff 262
ST_Touches 137, 264
ST_Transform 125, 265
ST_Union 146, 266
ST_Within 141, 267
ST_WKBToSQL 150, 268
ST_WKTToSQL 149, 270
ST_X 126, 271
ST_Y 126, 272
types

associated with instantiable
geometries 125

associated with properties of
geometries 121

data exchange 149
functions that compare

geometries 132
functions that generate

geometries 144
functions that show

relationships between
geometries 132

spatial functions (continued)
types (continued)

predicate functions 132
using to exploit spatial

indexes 51
Z 126

spatial indexes 109
creating

Create Spatial Index
window 47

db2gse.gse_enable_idx 74
determining grid size 48, 116
sample program 56

exploiting 51
grid indexes 47
how they are generated 111
using 115

spatial information
description 3
retrieving and analyzing

exploiting spatial indexes 51
interfaces to use 9, 49
sample program 58
types of spatial functions to

use 49
using spatial predicate

functions 50
spatial reference system identifier

(SRID) 124
spatial reference systems

creating
Create Spatial Reference

window 26
db2gse.gse_enable_sref 76
discussion 23
sample program 54

DB2GSE.SPATIAL_REF_SYS
catalog view 107

description 10
dropping

db2gse.gse_disable_sref 69
sample program 54

specifying parameters
false M 25, 29
false X 25, 28
false Y 25, 28
false Z 25, 28
M units 26, 29
offset factors 25, 28
scale factors 25, 28
XY units 25, 28
Z units 26, 28

spheroids 278
SRID (spatial reference system

identifier) 287

ST_Area 128, 131, 178
ST_AsBinary 151, 180
ST_AsText 150, 181
ST_Boundary 123, 182
ST_Buffer 146, 184
ST_Centroid 128, 131, 186
ST_Contains 142, 187
ST_Convexhull 189
ST_ConvexHull 149
ST_CoordDim 125, 191
ST_Crosses 139, 193
ST_Difference 145, 195
ST_Dimension 124, 196
ST_Disjoint 135, 198
ST_Distance 143, 200
ST_Endpoint 126, 201
ST_Envelope 124, 202
ST_Equals 134, 204
ST_ExteriorRing 128, 205
ST_GeometryFromText 207
ST_GeometryN 129, 211
ST_GeometryType 122, 212
ST_GeomFromText 150, 285
ST_GeomFromWKB 151, 209, 290
ST_InteriorRingN 128, 214
ST_Intersection 144, 219
ST_Intersects 136, 221
ST_IsClosed 127, 129, 222
ST_IsEmpty 123, 224
ST_IsRing 127, 226
ST_IsSimple 123, 227
ST_IsValid 122, 228
ST_Length 127, 129, 230
ST_LineFromText 150, 232, 285
ST_LineFromWKB 151, 233, 290
ST_MLineFromText 150, 235, 285
ST_MLineFromWKB 151, 236, 290
ST_MPointFromText 150, 238, 285
ST_MPointFromWKB 151, 239, 290
ST_MPolyFromText 150, 240, 285
ST_MPolyFromWKB 151, 241, 290
ST_NumGeometries 129, 242
ST_NumInteriorRing 128, 243
ST_NumPoints 127, 244
ST_OrderingEquals 135, 245
ST_Overlaps 138, 246
ST_Perimeter 128, 248
ST_Point 125, 251
ST_PointFromText 126, 249, 285
ST_PointFromWKB 151, 250, 290
ST_PointN 126, 252
ST_PointOnSurface 128, 253
ST_PolyFromText 150, 254, 285
ST_PolyFromWKB 151, 255, 290
ST_Polygon 149, 257

320 DB2 Spatial Extender User’s Guide and Reference

ST_Relate 143, 258
ST_SRID 124, 260
ST_StartPoint 126, 261
ST_SymmetricDiff 262
ST_Touches 137, 264
ST_Transform 125, 265
ST_Union 146, 266
ST_Within 141, 267
ST_WKBToSQL 150, 268
ST_WKTToSQL 149, 270
ST_X 126, 271
ST_Y 126, 272
stored procedures

db2gse.gse_disable_autogc 66
db2gse.gse_disable_db 68
db2gse.gse_disable_sref 69
db2gse.gse_enable_autogc 70
db2gse.gse_enable_db 73
db2gse.gse_enable_idx 74
db2gse.gse_enable_sref 76
db2gse.gse_export_shape 78
db2gse.gse_import_sde 80
db2gse.gse_import_shape 82
db2gse.gse_register_gc 84
db2gse.gse_register_layer 86
db2gse.gse_run_gc 92
db2gse.gse_unregist_gc 94
db2gse.gse_unregist_layer 95

T
tessellation 149
triggers

disabling automatic geocoding
db2gse.gse_disable_autogc 66

enabling automatic geocoding
db2gse.gse_enable_autogc 70

using to invoke geocoder 31, 38

U
UNIT keyword 276

W
warning messages 97
Windows NT

installing DB2 Spatial
Extender 17

where macro definitions for
constants are stored 63

where reference data is
stored 21

WKB (well-known binary)
representations

associated spatial functions 150
discussion 290

WKBGeometry 292
WKBGeometry byte streams 292

WKT (well-known text)
representations

associated spatial functions 149
discussion 285

X
X coordinates

description 23
property of geometries 122

XDR encoding 291

XY units

specifying 25, 28

Y
Y coordinates

description 23
property of geometries 122

Z
Z 126

Z coordinates

description 23
property of geometries 122

Z units

specifying 26, 28

Index 321

322 DB2 Spatial Extender User’s Guide and Reference

Contacting IBM

If you have a technical problem, please review and carry out the actions
suggested by the Troubleshooting Guide before contacting DB2 Customer
Support. This guide suggests information that you can gather to help DB2
Customer Support to serve you better.

For information or to order any of the DB2 Universal Database products
contact an IBM representative at a local branch office or contact any
authorized IBM software remarketer.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-237-5511 for customer support
v 1-888-426-4343 to learn about available service options

Product Information

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) or 1-800-3IBM-OS2 (1-800-342-6672) to

order products or get general information.
v 1-800-879-2755 to order publications.

http://www.ibm.com/software/data/
The DB2 World Wide Web pages provide current DB2 information
about news, product descriptions, education schedules, and more.

http://www.ibm.com/software/data/db2/library/
The DB2 Product and Service Technical Library provides access to
frequently asked questions, fixes, books, and up-to-date DB2 technical
information.

Note: This information may be in English only.

http://www.elink.ibmlink.ibm.com/pbl/pbl/
The International Publications ordering Web site provides information
on how to order books.

http://www.ibm.com/education/certify/
The Professional Certification Program from the IBM Web site
provides certification test information for a variety of IBM products,
including DB2.

© Copyright IBM Corp. 1998, 2000 323

ftp.software.ibm.com
Log on as anonymous. In the directory /ps/products/db2, you can
find demos, fixes, information, and tools relating to DB2 and many
other products.

comp.databases.ibm-db2, bit.listserv.db2-l
These Internet newsgroups are available for users to discuss their
experiences with DB2 products.

On Compuserve: GO IBMDB2
Enter this command to access the IBM DB2 Family forums. All DB2
products are supported through these forums.

For information on how to contact IBM outside of the United States, refer to
Appendix A of the IBM Software Support Handbook. To access this document,
go to the following Web page: http://www.ibm.com/support/, and then
select the IBM Software Support Handbook link near the bottom of the page.

Note: In some countries, IBM-authorized dealers should contact their dealer
support structure instead of the IBM Support Center.

324 DB2 Spatial Extender User’s Guide and Reference

����

Part Number: CT7C0NA

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC27-0701-00

(1
P)

P/
N:

CT
7C

0N
A

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
IB

M
®

D
B

2®

Sp
at

ia
lE

xt
en

de
r

D
B

2
Sp

at
ia

lE
xt

en
de

r
U

se
r’

s
G

ui
de

an
d

R
ef

er
en

ce
Ve

rs
io

n
7

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	Conventions
	How to send your comments

	Part 1. Using DB2 Spatial Extender
	Chapter 1. About DB2 Spatial Extender
	The purpose of DB2 Spatial Extender
	Data that represents geographic features
	How data represents geographic features
	The nature of spatial data
	Where spatial data comes from
	Using attribute data as source data
	Using other spatial data as source data
	Importing spatial data

	How to create and use a DB2 Spatial Extender GIS
	Interfaces to DB2 Spatial Extender and associated functionality
	Tasks you perform to create and use a DB2 Spatial Extender GIS
	Setting up DB2 Spatial Extender
	Developing and implementing a GIS project
	How the sets of tasks can vary

	Scenario: An insurance company updates its GIS
	A system to integrate spatial and traditional data
	A project to establish offices and adjust premiums

	Chapter 2. Installing DB2 Spatial Extender
	DB2 Spatial Extender configuration
	System requirements
	Supported operating systems
	Required database software
	Disk space requirements

	Installing DB2 Spatial Extender
	Before you begin
	Installing DB2 Spatial Extender on Windows NT systems
	Installing DB2 Spatial Extender on AIX systems

	Verifying the installation
	Post-installation considerations
	Downloading ArcExplorer
	Running the DB2 instance update utility (db2iupdt)

	What's next?

	Chapter 3. Setting up resources
	Inventory of resources
	Reference data
	Resources that enable a database for spatial operations

	Enabling a database for spatial operations
	Creating a spatial reference system
	About coordinate and spatial reference systems
	Coordinate systems, coordinates, and measures
	Spatial reference systems, offsets, and scale factors
	Determining the lowest negative coordinates and measures
	Specifying offset factors
	Specifying scale factors

	Creating a spatial reference system from the Control Center

	Chapter 4. Defining spatial columns, registering them aslayers, and enabling a geocoder to maintain them
	About spatial data types
	Data types for single-unit features
	Data types for multi-unit features
	A data type for all features

	Defining a spatial column for a table, registering this column as a layer, andenabling a geocoder to maintain it
	Registering a view column as a layer

	Chapter 5. Populating spatial columns
	Using geocoders
	About geocoding
	Running the geocoder in batch mode

	Importing and exporting data
	About importing and exporting
	Importing data to a new or existing table
	Importing data to an existing table
	Exporting data to a shape file

	Chapter 6. Creating spatial indexes
	Using the Control Center to create a spatial index
	Determining grid cell sizes

	Chapter 7. Retrieving and analyzing spatial information
	Methods of performing spatial analysis
	Building a spatial query
	Spatial functions and SQL
	Example 1: Comparison
	Example 2: Data exchange
	Example 3: Calculation
	Example 4: Transformation

	Spatial predicates and SQL
	Rules for index exploitation
	Examples of index exploitation

	Chapter 8. Writing applications for DB2 Spatial Extender
	Using the sample program
	The sample program steps

	Part 2. Reference material
	Chapter 9. Stored procedures
	db2gse.gse_disable_autogc
	db2gse.gse_disable_db
	db2gse.gse_disable_sref
	db2gse.gse_enable_autogc
	db2gse.gse_enable_db
	db2gse.gse_enable_idx
	db2gse.gse_enable_sref
	db2gse.gse_export_shape
	db2gse.gse_import_sde
	db2gse.gse_import_shape
	db2gse.gse_register_gc
	db2gse.gse_register_layer
	db2gse.gse_run_gc
	db2gse.gse_unregist_gc
	db2gse.gse_unregist_layer

	Chapter 10. Messages
	Chapter 11. Catalog views
	DB2GSE.COORD_REF_SYS
	DB2GSE.GEOMETRY_COLUMNS
	DB2GSE.SPATIAL_GEOCODER
	DB2GSE.SPATIAL_REF_SYS

	Chapter 12. Spatial indexes
	A sample program fragment
	B tree indexes
	Ways to create a spatial index
	How a spatial index is generated
	Guidelines on using a spatial index
	Selecting the grid cell size
	Selecting the number of levels

	Chapter 13. Geometries and associated spatial functions
	About geometries
	Properties of geometries and associated functions
	Class
	X and Y coordinates
	Z coordinates
	Measures
	Interior, boundary, and exterior
	Simple or non-simple
	Empty or not empty
	Envelope
	Dimension
	Spatial reference system identifier

	Instantiable geometries and associated functions
	Points
	Linestrings
	Polygons
	Multipoints
	Multilinestrings
	Multipolygons

	Functions that show relationships and comparisons, generate geometries, andconvert values' formats
	Functions that show relationships or comparisons between geographicfeatures
	Predicate functions
	ST_Equals
	ST_OrderingEquals
	ST_Disjoint
	ST_Intersects
	EnvelopesIntersect
	ST_Touches
	ST_Overlaps
	ST_Crosses
	ST_Within
	ST_Contains
	ST_Relate
	ST_Distance

	Functions that generate new geometries from existing ones
	ST_Intersection
	ST_Difference
	ST_Union
	ST_Buffer
	LocateAlong
	LocateBetween
	ST_ConvexHull
	ST_Polygon

	Functions that convert the format of a geometry's values
	Well-known text representation
	Well-known binary representation
	ESRI shape representation

	Chapter 14. Spatial functions for SQL queries
	AsBinaryShape
	GeometryFromShape
	EnvelopesIntersect
	Is3d
	IsMeasured
	LineFromShape
	LocateAlong
	LocateBetween
	M
	MLine FromShape
	MPointFromShape
	MPolyFromShape
	PointFromShape
	PolyFromShape
	ShapeToSQL
	ST_Area
	ST_AsBinary
	ST_AsText
	ST_Boundary
	ST_Buffer
	ST_Centroid
	ST_Contains
	ST_ConvexHull
	ST_CoordDim
	ST_Crosses
	ST_Difference
	ST_Dimension
	ST_Disjoint
	ST_Distance
	ST_Endpoint
	ST_Envelope
	ST_Equals
	ST_ExteriorRing
	ST_GeometryFromText
	ST_GeomFromWKB
	ST_GeometryN
	ST_GeometryType
	ST_InteriorRingN
	ST_Intersection
	ST_Intersects
	ST_IsClosed
	ST_IsEmpty
	ST_IsRing
	ST_IsSimple
	ST_IsValid
	ST_Length
	ST_LineFromText
	ST_LineFromWKB
	ST_MLineFromText
	ST_MLineFromWKB
	ST_MPointFromText
	ST_MPointFromWKB
	ST_MPolyFromText
	ST_MPolyFromWKB
	ST_NumGeometries
	ST_NumInteriorRing
	ST_NumPoints
	ST_OrderingEquals
	ST_Overlaps
	ST_Perimeter
	ST_PointFromText
	ST_PointFromWKB
	ST_Point
	ST_PointN
	ST_PointOnSurface
	ST_PolyFromText
	ST_PolyFromWKB
	ST_Polygon
	ST_Relate
	ST_SRID
	ST_StartPoint
	ST_SymmetricDiff
	ST_Touches
	ST_Transform
	ST_Union
	ST_Within
	ST_WKBToSQL
	ST_WKTToSQL
	ST_X
	ST_Y
	Z

	Chapter 15. Coordinate systems
	Overview of coordinate systems
	Supported linear units
	Supported angular units
	Supported spheroids
	Supported geodetic datums
	Supported prime meridians
	Supported map projections
	Conic projections
	Azimuthal or planar projections
	Map projection parameters

	Chapter 16. File formats for spatial data
	The OGC well-known text representations
	The OGC well-known binary (WKB) representations
	Numeric type definitions
	XDR (Big Endian) encoding of numeric types
	NDR (Little Endian) encoding of numeric types
	Conversion between NDR and XDR
	Description of WKBGeometry byte streams
	Assertions for the WKB representation

	The ESRI shape representations
	Shape types in XY space
	Point
	MultiPoint
	PolyLine
	Polygon

	Measured shape types in XY space
	PointM
	MultiPointM
	PolyLineM
	PolygonM

	Shape types in XYZ space
	PointZ
	MultiPointZ
	PolyLineZ
	PolygonZ

	Part 3. Appendixes
	Notices
	Trademarks

	Index
	Contacting IBM
	Product Information

