
IBM
®

DB2
®

Universal Database

Administration Guide: Planning
Version 7

SC09-2946-00

���

IBM
®

DB2
®

Universal Database

Administration Guide: Planning
Version 7

SC09-2946-00

���

Before using this information and the product it supports, be sure to read the general information under “Appendix F.
Notices” on page 421.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book ix
Who Should Use This book x
How This Book is Structured. x
A Brief Overview of the Other Volumes of the
Administration Guide xi

Administration Guide: Implementation . . xi
Administration Guide: Performance . . . xiii

Part 1. The World of DB2 Universal
Database 1

Chapter 1. Administering DB2 Universal
Database 3

Part 2. Database Concepts 5

Chapter 2. Basic Relational Database
Concepts 7
Overview of Database Objects 7

Instances 8
Databases 9
Nodegroups 9
Tables 9
Views 9
Indexes 10
Schemas 11
System Catalog Tables. 11

Overview of Recovery Objects 12
Recovery Log Files 12
Recovery History File 13

Overview of Storage Objects 13
Table Spaces 13
Containers 16
Buffer Pool 17

Overview of System Objects 18
Configuration Parameters 18

Business Rules for Data 20
Recovering a Database 24

Overview of Recovery 24
Factors Affecting Recovery 30
Disaster Recovery Considerations 44
Reducing the Impact of Media Failure . . 45
Reducing the Impact of Transaction Failure 47

System Clock Synchronization in a
Partitioned Database System 47

Reorganizing Tables in a Database 49
Overview of DB2 Security 49

Authentication 49
Authorization 51
Federated Database Authentication and
Authorization Overview 52

Chapter 3. Federated Systems 53
Enabling a Federated System 56

Chapter 4. Parallel Database Systems . . 57
Nodegroups and Data Partitioning 57
Types of Parallelism 59

I/O Parallelism 59
Query Parallelism 59
Utility Parallelism 62

Hardware Environments 62
Single Partition on a Single Processor . . 63
Single Partition with Multiple Processors 64
Multiple Partition Configurations 65
Summary of Parallelism Best Suited to
Each Hardware Environment 70

Chapter 5. About Data Warehousing . . . 73
What is Data Warehousing? 73

Subject Areas. 74
Warehouse Sources. 74
Warehouse Targets 74
Warehouse Agents and Agent Sites . . . 74
Steps and Processes 75

Warehousing Tasks. 76

Chapter 6. About Spatial Extender 79
The Purpose of Spatial Extender 79
Data that Represents Geographic Features . . 80

How Data Represents Geographic Features 80
The Nature of Spatial Data 81
Where Spatial Data Comes From 82

Part 3. Database Design 85

Chapter 7. Logical Database Design . . . 87

© Copyright IBM Corp. 1993, 2000 iii

Decide What Data to Record in the Database 87
Define Tables for Each Type of Relationship 89

One-to-Many and Many-to-One
Relationships. 89
Many-to-Many Relationships 90
One-to-One Relationships 91

Provide Column Definitions for All Tables . . 91
Identify One or More Columns as the
Primary Key 94

Identifying Candidate Key Columns . . . 95
Defining Identity Columns 96

Ensure that Equal Values Represent the Same
Entity 97
Consider Normalizing Your Tables 98

First Normal Form 98
Second Normal Form 99
Third Normal Form 100
Fourth Normal Form. 102

Planning for Constraints Enforcement . . . 103
Unique Constraints 103
Referential Integrity 104
Table Check Constraints 109
Triggers 109

Other Database Design Considerations . . . 110

Chapter 8. Physical Database Design . . 113
Database Directories 113

Database Files 114
Estimating Space Requirements for Tables 115

System Catalog Tables 117
User Table Data 117
Long Field Data 119
Large Object (LOB) Data 119
Index Space 120

Additional Space Requirements 123
Log File Space 123
Temporary Work Space 124

Designing Nodegroups 124
Nodegroup Design Considerations . . . 126

Designing and Choosing Table Spaces . . . 132
System Managed Space 135
Database Managed Space Table Space . . 139
Table Space Design Considerations . . . 141

Federated Database Design Considerations 153

Chapter 9. Designing Distributed
Databases 155
Using a Single Database in a Transaction . . 156
Using Multiple Databases in a Single
Transaction 157

Updating a Single Database 157
Updating Multiple Databases 158

Other Configuration Considerations. . . . 162
Host or AS/400 Applications Accessing a
LAN Based DB2 Universal Database
Server in a Multisite Update 163

Understanding the Two-Phase Commit
Process 165
Recovering from Problems During
Two-Phase Commit 168

Resynchronizing Indoubt Transactions if
AUTORESTART=OFF 170

Chapter 10. Designing for Transaction
Managers 171
X/Open Distributed Transaction Processing
Model 172

Application Program (AP) 172
Transaction Manager (TM) 174
Resource Managers (RM) 175

Setting Up a Database as a Resource
Manager 176

xa_open and xa_close Strings Usage . . 176
New xa_open String Format for DB2
Version 7. 176
TPM and TP_MON_NAME Values . . . 178
xa_open String Format for Earlier
Versions of DB2 181
Updating Host or AS/400 Database
Servers 181
Database Connection Considerations . . 182
Making a Heuristic Decision 182
Security Considerations 185
Configuration Considerations 186
XA Function Supported 187
XA Interface Problem Determination . . 189

Configuring XA Transaction Managers to
Use DB2 UDB 190

Configuring IBM TXSeries CICS 190
Configuring IBM TXSeries Encina . . . 190
Configuring BEA Tuxedo 193
Configuring Microsoft Transaction Server 195

Chapter 11. Designing for High
Availability. 203
Hot Standby 204

Examples 204
Mutual Takeover 207

Examples 207
Reconnecting after a Failover 210

iv Administration Guide: Planning

Resources 210

Part 4. High Availability 211

Chapter 12. High Availability Cluster
Multi-processing, Enhanced Scalability
(HACMP ES) for AIX 213
Cluster Configuration 214

Configuring a DB2 Database Partition . . 218
Example of a Hot Standby Configuration 220
Example of a Mutual Takeover
Configuration 220
Configuration of an NFS Server Node . . 220
Example of an NFS Server Takeover
Configuration 222
Considerations When Configuring the SP
Switch 222
DB2 HACMP Configuration Examples 223
DB2 HACMP Startup Recommendations 232

HACMP ES Event Monitoring and
User-defined Events 233

HACMP ES Script Files 237
DB2 Recovery Script Operations with
HACMP ES 239
Other Script Utilities 241

Monitoring HACMP Clusters 242
DB2 SP HACMP ES Installation 243

DB2 SP HACMP ES New Installation . . 243
DB2 SP HACMP ES Migration 245
DB2 SP HACMP ES Worksheets 246

Chapter 13. High Availability in the
Windows NT Environment 257
Failover Configurations 258

Hot Standby Configuration 258
Mutual Takeover Configuration 259

Using the DB2MSCS Utility 260
Specifying the DB2MSCS.CFG File . . . 261
Setting up Failover for a Single-Partition
Database System 265
Setting up a Mutual Takeover
Configuration for Two Single-Partition
Database Systems 266
Setting up Multiple MSCS Clusters for a
Partitioned Database System 267

Maintaining the MSCS System 268
Fallback Considerations 269
Registering Database Drive Mapping for
Mutual Takeover Configurations in a
Partitioned Database Environment 269

Reconciling the Database Drive Mapping 271
Example - Setting up Two Single-Partition
Instances for Mutual Takeover 272

Preliminary Tasks 272
Run the DB2MSCS Utility 273

Example - Setting up a Four-Node
Partitioned Database System for Mutual
Takeover 274

Preliminary Tasks 275
Run the DB2MSCS Utility 276
Register the Database Drive Mapping for
ClusterA 277
Register the Database Drive Mapping for
ClusterB 277

Administering DB2 in an MSCS
Environment 278

Starting and Stopping DB2 Resources . . 278
Running Scripts 279
Database Considerations 283
User and Group Support 283
Communications Considerations 284
System Time Considerations 284
Administration Server and Control Center
Considerations in a Partitioned Database
Environment 285
Limitations and Restrictions 287

Chapter 14. DB2 and High Availability on
Sun Cluster 2.2 289
High Availability 289

Fault Tolerance and Continuous
Availability 291

Sun Cluster 2.2. 292
Supported Systems 292
Agents 292
Logical Hosts 294
Logical Network Interfaces. 294
Disk Groups and File Systems 295
Control Methods 298
Disk and File System Configuration. . . 298
HA-NFS 299
The cconsole and ctelnet Utilities . . . 299
Campus Clustering and Continental
Clustering 299
Common Problems 300

DB2 Considerations 300
Applications Connecting to an HA
Instance 300
Disk Layout for EE and EEE Instances 302

Contents v

Home Directory Layout for EE and EEE
Instances. 303
Logical Hosts and DB2 UDB EEE . . . 304
DB2 Installation Location and Options 305
Database and Database Manager
Configuration Parameters 305
Crash Recovery 306
High Availability through Data
Replication 306

The DB2 High Availability Agent 306
Registering the hadb2 Service 306
The hadb2tab File 307
Control Methods 308
User Scripts 309
Other Considerations 311
Fault Monitor 312
EEE Considerations 312
The HA.config File 314
How Control Methods Run DB2
Commands 315

Setup 316
Common Installation Steps. 316
Setup on DB2 UDB Enterprise Edition 316
Setup on DB2 UDB Enterprise - Extended
Edition 316
The hadb2_setup Command 317

Failover Time 321
Troubleshooting 323

Part 5. Appendixes 329

Appendix A. Using the DB2 Library . . . 331
DB2 PDF Files and Printed Books 331

DB2 Information 331
Printing the PDF Books 340
Ordering the Printed Books 341

DB2 Online Documentation 342
Accessing Online Help 342
Viewing Information Online 344
Using DB2 Wizards 346
Setting Up a Document Server 347
Searching Information Online 348

Appendix B. Naming Rules 349
Database Names 349
Database and Database Alias Names . . . 349
User IDs and Passwords 350
Schema Names. 351
Group and User Names. 351
Object Names 352

Federated Database Object Names 353
How Case-Sensitive Values Are Preserved
in a Federated System 354

Appendix C. Planning Database Migration 357
Migration Considerations 357

Migration Restrictions 358
Security and Authorization 358
Storage Requirements 358
Release-to-Release Incompatibilities . . . 358
Migrating a Database 359

Appendix D. Incompatibilities Between
Releases 361
DB2 Universal Database Planned
Incompatibilities 362

Read-only Views in a Future Version of
DB2 Universal Database 362
PK_COLNAMES and FK_COLNAMES in
a Future Version of DB2 Universal
Database 362
COLNAMES No Longer Available in a
Future Version of DB2 Universal Database 363

DB2 Universal Database Version 7
Incompatibilities 363

Application Programming 363
SQL 365
Utilities and Tools. 367
Connectivity and Coexistence 367

DB2 Universal Database Version 6
Incompatibilities 367

System Catalog Views 368
Application Programming 374
SQL 378
Database Security and Tuning. 380
Utilities and Tools. 381
Connectivity and Coexistence 382
Configuration Parameters 382

Appendix E. National Language Support
(NLS) 383
Country Code and Code Page Support. . . 383
Deriving Code Page Values 398
Character Sets 399

Character Set for Identifiers 399
Coding SQL Statements 400
Bidirectional CCSID Support 400
Collating Sequences 404
Datetime Values 406

vi Administration Guide: Planning

Unicode/UCS-2 and UTF-8 Support in DB2
UDB 412

Introduction 412
UCS-2/UTF-8 Implementation in DB2
UDB 414

Appendix F. Notices 421

Trademarks 424

Index 427

Contacting IBM 435
Product Information 435

Contents vii

viii Administration Guide: Planning

About This Book

The Administration Guide in its three volumes provides information necessary
to use and administer the year 2000 ready, DB2* relational database
management system (RDBMS) products, and includes:
v Information about database design (found in Administration Guide: Planning)
v Information about implementing and managing databases (found in

Administration Guide: Implementation)
v Information about configuring and tuning your database environment to

improve performance (found in Administration Guide: Performance).

Many of the tasks described in this book can be performed using different
interfaces:
v The Command Processor, which allows you to access and manipulate

databases from a graphical interface. From this interface, you can also
execute SQL statements and DB2 utility functions. Most examples in this
book illustrate the use of this interface. For more information about using
the command processor, see the Command Reference.

v The application programming interface, which allows you to execute DB2
utility functions within an application program. For more information about
using the application programming interface, see the Administrative API
Reference.

v The Control Center, which allows you to graphically perform
administrative tasks such as configuring the system, managing directories,
backing up and recovering the system, scheduling jobs, and managing
media. The Control Center also contains Replication Administration to
graphically set up the replication of data between systems. Further, the
Control Center allows you to execute DB2 utility functions through a
graphical user interface. There are different methods to invoke the Control
Center depending on your platform. For example, use the db2cc command
on a command line, (on OS/2) select the Control Center icon from the DB2
folder, or use start panels on Windows platforms. For introductory help,
select Getting started from the Help pull-down of the Control Center
window. The Visual Explain and Performance Monitor tools are invoked
from the Control Center.

There are other tools that you can use to perform administration tasks. They
include:
v The Script Center to store small applications called scripts. These scripts

may contain SQL statements, DB2 commands, as well as operating system
commands.

© Copyright IBM Corp. 1993, 2000 ix

v The Alert Center to monitor the messages that result from other DB2
operations.

v The Tool Settings to change the settings for the Control Center, Alert
Center, and Replication.

v The Journal to schedule jobs that are to run unattended.
v The Data Warehouse Center to manage warehouse objects.

Who Should Use This book

This book is intended primarily for database administrators, system
administrators, security administrators and system operators who need to
design, implement and maintain a database to be accessed by local or remote
clients. It can also be used by programmers and other users who require an
understanding of the administration and operation of the DB2 relational
database management system.

How This Book is Structured

This book contains information about the following major topics:

The World of DB2 Universal Database

v Chapter 1. Administering DB2 Universal Database, presents an introduction
to, and overview of, DB2 Universal Database.

Database Concepts

v Chapter 2. Basic Relational Database Concepts, presents an overview of
database objects, including recovery objects, storage objects, and system
objects.

v Chapter 3. Federated Systems, discusses federated systems, which are
database management systems (DBMSs) that support applications and users
submitting SQL statements referencing two or more DBMSs or databases in
a single statement.

v Chapter 4. Parallel Database Systems, provides an introduction to the types
of parallelism available with DB2.

v Chapter 5. About Data Warehousing, provides an overview of data
warehousing and data warehousing tasks.

v Chapter 6. About Spatial Extender, introduces Spatial Extender by
explaining its purpose and discussing the data that it processes.

Database Design

v Chapter 7. Logical Database Design, discusses the concepts and guidelines
for logical database design.

x Administration Guide: Planning

v Chapter 8. Physical Database Design, discusses the guidelines for physical
database design, including considerations related to data storage.

v Chapter 9. Designing Distributed Databases, discusses how you can access
multiple databases in a single transaction.

v Chapter 10. Designing for Transaction Managers, discusses how you can use
your databases in a distributed transaction processing environment, such as
CICS.

v Chapter 11. Designing for High Availability, presents an overview of the
high availability failover support that is provided by DB2.

High Availability Systems

v Chapter 12. High Availability Cluster Multi-processing, Enhanced Scalability
(HACMP ES) for AIX, discusses DB2 support for high availability failover
recovery on AIX.

v Chapter 13. High Availability in the Windows NT Environment, discusses
DB2 support for high availability failover recovery on Windows NT.

v Chapter 14. DB2 and High Availability on Sun Cluster 2.2, discusses DB2
support for high availability failover recovery on the Sun Solaris operating
system.

Appendixes

v Appendix A. Using the DB2 Library, provides information about the
structure of the DB2 library, including wizards, online help, messages, and
books.

v Appendix B. Naming Rules, presents the rules to follow when naming
databases and objects.

v Appendix C. Planning Database Migration, provides information about
migrating databases to Version 7.

v Appendix D. Incompatibilities Between Releases, presents the
incompatibilities introduced from release to release up to, and including,
Version 7.

v Appendix E. National Language Support (NLS), introduces DB2 National
Language Support, including information about countries, languages, and
code pages.

A Brief Overview of the Other Volumes of the Administration Guide

Administration Guide: Implementation
The Administration Guide: Implementation is concerned with the implementation
of your database design. The specific chapters and appendixes in that volume
are briefly described here:

Administering Using the Control Center

About This Book xi

v ″Administering DB2 Using GUI Tools″ introduces the Graphical User
Interface (GUI) tools used to administer the database.

Implementing Your Design

v ″Before Creating a Database″ discusses the prerequisites before you create a
database.

v ″Creating a Database″ presents those tasks associated with the creation of a
database and related database objects.

v ″Altering a Database″ discusses what must be done before altering a
database and those tasks associated with the modifying or dropping of a
database or related database objects.

Database Security

v ″Controlling Database Access″ describes how you can control access to your
database’s resources.

v ″Auditing DB2 Activities″ describes how you can detect and monitor
unwanted or unanticipated access to data.

Moving Data

v ″Utilities for Moving Data″ is a one-page introduction to the different ways
to move data and to direct you to the Data Movement Utilities Guide and
Reference book.

Recovery

v ″Recovering a Database″ discusses factors to consider when choosing
database and table space recovery methods, including backing up and
restoring a database or table space, and using the roll-forward recovery
method.

Appendixes

v ″Using Distributed Computing Environment (DCE) Directory Services″
provides information about how you can use DCE Directory Services.

v ″User Exit for Database Recovery″ discusses how user exit programs can be
used with database log files, and describes some sample user exit programs.

v ″Issuing Commands to Multiple Database Partition Servers″ discusses the
use of the db2_all and rah shell scripts to send commands to all partitions in
a partitioned database environment.

v ″How DB2 for Windows NT Works with Windows NT Security″ describes
how DB2 works with Windows NT security.

v ″Using the Windows NT Performance Monitor″ provides information about
registering DB2 with the Windows NT Performance Monitor, and using the
performance information.

xii Administration Guide: Planning

v ″Working with Windows NT or Windows 2000 Database Partition Servers″
provides information about the utilities available to work with database
partition servers on Windows NT or Windows 2000.

v ″Configuring Multiple Logical Nodes″ describes how to configure multiple
logical nodes in a partitioned database environment.

v ″High Speed Inter-node Communications″ describes how to enable Virtual
Interface Architecture for use with DB2 Universal Database.

v ″Lightweight Directory Access Protocol (LDAP) Directory Services″
provides information about how you can use LDAP Directory Services.

v ″Extending the Control Center″ provides information about how you can
extend the Control Center by adding new tool bar buttons including new
actions, adding new object definitions, and adding new action definitions.

Administration Guide: Performance
The Administration Guide: Performance is concerned with performance issues;
that is, those topics and issues concerned with establishing, testing, and
improving the performance of your application, and that of the DB2 Universal
Database product itself. The specific chapters and appendixes in that volume
are briefly described here:

Introduction to Performance

v ″Elements of Performance″ introduces concepts and considerations for
managing and improving DB2 UDB performance.

v ″Architecture and Processing Overview″ introduces underlying DB2
Universal Database architecture and processes.

Tuning Application Performance

v ″Application Considerations″ describes some techniques for improving
database performance when designing your applications.

v ″Environmental Considerations″ describes some techniques for improving
database performance when setting up your database environment.

v ″System Catalog Statistics″ describes how statistics about your data can be
collected and used to ensure optimal performance.

v ″Understanding the SQL Compiler″ describes what happens to an SQL
statement when it is compiled using the SQL compiler.

v ″SQL Explain Facility″ describes the Explain facility, which allows you to
examine the choices the SQL compiler has made to access your data.

Tuning and Configuring Your System

v ″Operational Performance″ provides an overview of how the database
manager uses memory and other considerations that affect run-time
performance.

About This Book xiii

v ″Using the Governor″ provides an introduction to the use of a governor to
control some aspects of database management.

v ″Scaling Your Configuration″ introduces some considerations and tasks
associated with increasing the size of your database systems.

v ″Redistributing Data Across Database Partitions″ discusses the tasks
required in a partitioned database environment to redistribute data across
partitions.

v ″Benchmark Testing″ provides an overview of benchmark testing and how
to perform benchmark testing.

v ″Configuring DB2″ discusses the database manager and database
configuration files and the values for the configuration parameters.

Appendixes

v ″DB2 Registry and Environment Variables″ presents profile registry values
and environment variables.

v ″Explain Tables and Definitions″ provides information about the tables used
by the DB2 Explain facility and how to create those tables.

v ″SQL Explain Tools″ provides information on using the DB2 explain tools:
db2expln and dynexpln.

v ″db2exfmt — Explain Table Format Tool″ provides information on using the
DB2 explain tool to format the explain table data.

xiv Administration Guide: Planning

Part 1. The World of DB2 Universal Database

© Copyright IBM Corp. 1993, 2000 1

2 Administration Guide: Planning

Chapter 1. Administering DB2 Universal Database

DB2 provides the flexibility for you to run a wide range of hardware
configurations. It allows you to choose how to best match your hardware and
application requirements with a specific DB2 product configuration.

DB2 also supports many different levels of complexity in database
environments, and there are considerations and tasks specific to each
environment. These are discussed in detail in both the Administration Guide
and other books in the DB2 library (see “Appendix A. Using the DB2 Library”
on page 331). In some cases, entire sections of these books are only
appropriate for a specific environment. After reading the preface to this book
(″About This Book″), you will understand which chapters in this and the
other volumes of the Administration Guide (the Administration Guide:
Implementation, and the Administration Guide: Performance) are appropriate for
your business needs.

If you are new to relational database management systems (RDBMSs), or to
DB2, you will find the section entitled ″Basic Relational Database Concepts″
helpful. If you are familiar with these concepts, or do not need to review
them, you can skip this section and move directly to the sections detailing
more advanced topics, such as:
v Federated systems. This sections discusses database management systems

(DBMSs) that support applications and users submitting SQL statements
referencing two or more DBMSs or databases in a single statement.

v Parallel database systems. This section provides an introduction to the types
of parallelism available with DB2. Components of a task, such as a database
query, can be run in parallel to dramatically enhance performance.

v Distributed transaction processing. This section discusses how you can
access multiple databases in a single transaction, and how you can use your
databases in a distributed transaction processing environment.

v High availability systems. This section presents an overview of the high
availability failover support that is provided by DB2. Failover capability
allows for the automatic transfer of workload from one processor to another
when there is hardware failure.

DB2 can address your most specialized data management needs, such as:
v Replication, which allows you to copy data on a regular basis to multiple

remote databases. If you need updates from a master database to be copied
automatically to other databases, you can use the replication features of
DB2 to specify what data should be copied, which database tables the data

© Copyright IBM Corp. 1993, 2000 3

should be copied to, and how often the updates should be copied. If you
want to use the replication features of DB2, refer to the Replication Guide and
Reference. It introduces the concepts of DB2 data replication, and it describes
how to plan, configure, and administer a replication environment.

v Data warehousing, in which you can create stores of ″informational data″, or
data that is extracted from operational data and then transformed for
end-user decision making. For example, a data warehousing tool might
copy all the sales data from the operational database, perform calculations
to summarize the data, and write the summarized data to a target in a
separate database. You can query the separate database (the warehouse)
without impacting the operational databases. For detailed information
about data warehousing, refer to the Data Warehouse Center Administration
Guide.

v A geographic information system (GIS), which can be created through Spatial
Extender. A GIS is a complex of objects, data, and applications that allows
you to generate and analyze spatial information about geographic features.
In Spatial Extender, a geographic feature can be represented by a row in a
table or view, or by a portion of such a row. For detailed information about
using Spatial Extender, refer to the Spatial Extender User’s Guide and
Reference.

The Administration Guide: Planning also covers database design, including
logical database design and physical database design considerations for DB2.
Other planning issues, such as planning database migration, identifying
incompatibilities that might impact your applications (an incompatibility is a
part of DB2 Universal Database that works differently than it did in a
previous release of DB2; if used in an existing application, it will produce an
unexpected result, necessitate a change to the application, or reduce
performance), and exploiting national language support (NLS), are also
discussed.

The Administration Guide: Implementation covers the details of implementing
your database design. Topics include creating and altering a database,
database security, database recovery, and administering DB2 using the Control
Center, a DB2 graphical user interface.

The Administration Guide: Performance covers topics and issues concerned with
establishing, testing, and improving the performance of your application and
of DB2 itself.

4 Administration Guide: Planning

Part 2. Database Concepts

© Copyright IBM Corp. 1993, 2000 5

6 Administration Guide: Planning

Chapter 2. Basic Relational Database Concepts

This section covers the following topics:
v “Overview of Database Objects”
v “Overview of Recovery Objects” on page 12
v “Overview of Storage Objects” on page 13
v “Overview of System Objects” on page 18
v “Business Rules for Data” on page 20
v “Recovering a Database” on page 24
v “Reorganizing Tables in a Database” on page 49
v “Overview of DB2 Security” on page 49

Overview of Database Objects

This section provides an overview of the following key database objects:
v Instances
v Databases
v Nodegroups
v Tables
v Views
v Indexes
v Schemas
v System catalog tables

Figure 1 on page 8 illustrates the relationship among some of these objects. It
also shows that tables, indexes, and long data are stored in table spaces.

© Copyright IBM Corp. 1993, 2000 7

Instances
An instance (sometimes called a database manager) is DB2 code that manages
data. It controls what can be done to the data, and manages system resources
assigned to it. Each instance is a complete environment. It contains all the
database partitions defined for a given parallel database system (see
“Chapter 4. Parallel Database Systems” on page 57). An instance has its own
databases (which other instances cannot access), and all its database partitions

System

Instance(s)

Database(s)

tables

Table space

index(es)

long data

Nodegroup(s)

Figure 1. Relationships Among Some Database Objects

8 Administration Guide: Planning

share the same system directories. It also has separate security from other
instances on the same machine (system).

Databases
A relational database presents data as a collection of tables. A table consists of a
defined number of columns and any number of rows. Each database includes
a set of system catalog tables that describe the logical and physical structure
of the data, a configuration file containing the parameter values allocated for
the database, and a recovery log with ongoing transactions and archivable
transactions.

Nodegroups
A nodegroup is a set of one or more database partitions. When you want to
create tables for the database, you first create the nodegroup where the table
spaces will be stored, then you create the table space where the tables will be
stored. See “Nodegroups and Data Partitioning” on page 57 for more
information about nodegroups. See “Chapter 4. Parallel Database Systems” on
page 57 for the definition of a database partition. See “Table Spaces” on
page 13 for more information about table spaces.

Tables
A relational database presents data as a collection of tables. A table consists of
data logically arranged in columns and rows. All database and table data is
assigned to table spaces. See “Table Spaces” on page 13 for more information
about table spaces. The data in the table is logically related, and relationships
can be defined between tables. Data can be viewed and manipulated based on
mathematical principles and operations called relations.

Table data is accessed through Structured Query Language (SQL, see the SQL
Reference), a standardized language for defining and manipulating data in a
relational database. A query is used in applications or by users to retrieve data
from a database. The query uses SQL to create a statement in the form of

SELECT <data_name> FROM <table_name>

Views
A view is an efficient way of representing data without needing to maintain it.
A view is not an actual table and requires no permanent storage. A ″virtual
table″ is created and used.

A view can include all or some of the columns or rows contained in the tables
on which it is based. For example, you can join a department table and an
employee table in a view, so that you can list all employees in a particular
department.

Figure 2 on page 10 shows the relationship between tables and views.

Chapter 2. Basic Relational Database Concepts 9

Indexes
An index is a set of keys, each pointing to rows in a table. For example, table
A in Figure 3 on page 11 has an index based on the employee numbers in the
table. This key value provides a pointer to the rows in the table: employee
number 19 points to employee KMP. An index allows more efficient access to
rows in a table by creating a direct path to the data through pointers.

The SQL optimizer automatically chooses the most efficient way to access data
in tables. The optimizer takes indexes into consideration when determining
the fastest access path to data.

Unique indexes can be created to ensure uniqueness of the index key. An
index key is a column or an ordered collection of columns on which an index
is defined. Using a unique index will ensure that the value of each index key

Database

Table A Table B

View A View AB

CREATE VIEW_A
AS SELECT...

FROM TABLE_A
WHERE...

CREATE VIEW_AB
AS SELECT...
FROM TABLE_A, TABLE_B
WHERE...

47Row

Column

ABC

17 QRS

85 FCP

81 MLI

93 CJP

87 DJS

19 KMP

{

{

Figure 2. Relationship Between Tables and Views

10 Administration Guide: Planning

in the indexed column or columns is unique. “Business Rules for Data” on
page 20 describes keys and indexes in more detail.

Figure 3 shows the relationship between an index and a table.

Schemas
A schema is an identifier, such as a user ID, that helps group tables and other
database objects. A schema can be owned by an individual, and the owner can
control access to the data and the objects within it.

A schema is also an object in the database. It may be created automatically
when the first object in a schema is created. Such an object can be anything
that can be qualified by a schema name, such as a table, index, view, package,
distinct type, function, or trigger. You must have IMPLICIT_SCHEMA
authority if the schema is to be created automatically, or you can create the
schema explicitly.

A schema name is used as the first part of a two-part object name. When an
object is created, you can assign it to a specific schema. If you do not specify a
schema, it is assigned to the default schema, which is usually the user ID of
the person who created the object. The second part of the name is the name of
the object. For example, a user named Smith might have a table named
SMITH.PAYROLL.

System Catalog Tables
Each database includes a set of system catalog tables, which describe the logical
and physical structure of the data. DB2 creates and maintains an extensive set

Database

Index Table A

A
17 47Row

Column

ABC

19 17 QRS

47 85 FCP

81 81 MLI

85 93 CJP

87 87 DJS

93 19 KMP

{

{

Figure 3. Relationship Between an Index and a Table

Chapter 2. Basic Relational Database Concepts 11

of system catalog tables for each database. These tables contain information
about the definitions of database objects such as user tables, views, and
indexes, as well as security information about the authority that users have on
these objects. They are created when the database is created, and are updated
during the course of normal operation. You cannot explicitly create or drop
them, but you can query and view their contents using the catalog views.

Overview of Recovery Objects

Log files and the recovery history file are created automatically when a
database is created (Figure 4). You cannot directly modify a log file or the
recovery history file; however, they are important should you need to use
your database backup image to recover data that is lost or damaged.

Recovery Log Files
Each database includes recovery logs, which are used to recover from
application or system errors. In combination with the database backups, they

Database Object/Concept Equivalent Physical Object

System

Instance(s)

Database(s)

Log
Files

Recovery
History
File

Figure 4. Log Files and the Recovery History File

12 Administration Guide: Planning

are used to recover the consistency of the database right up to the point in
time when the error occurred. Database recovery is discussed in more detail
in “Recovering a Database” on page 24.

Recovery History File
The recovery history file contains a summary of the backup information that
can be used in case all or part of the database must be recovered to a given
point in time. It is used to track recovery-related events such as backup,
restore, and load operations. The procedure for backing up and restoring a
database is described in “Recovering a Database” on page 24. The load utility
is described in the Data Movement Utilities Guide and Reference.

Overview of Storage Objects

The following database objects let you define how data will be stored on your
system, and how performance (related to accessing the data) can be improved:
v Table space
v Container
v Buffer pool

Table Spaces
A database is organized into parts called table spaces. A table space is a place
to store tables. When creating a table, you can decide to have certain objects
such as indexes and large object (LOB) data kept separately from the rest of
the table data. A table space can also be spread over one or more physical
storage devices. The following diagram shows some of the flexibility you have
in spreading data over table spaces:

Chapter 2. Basic Relational Database Concepts 13

Table spaces reside in nodegroups (see “Nodegroups” on page 9). Table space
definitions and attributes are recorded in the database system catalog (see
“System Catalog Tables” on page 11).

Containers are assigned to table spaces. A container is an allocation of physical
storage (such as a file or a device).

A table space can be either system managed space (SMS), or database
managed space (DMS). For an SMS table space, each container is a directory
in the file space of the operating system, and the operating system’s file
manager controls the storage space. For a DMS table space, each container is
either a fixed size pre-allocated file, or a physical device such as a disk, and
the database manager controls the storage space.

Table space 1 Table space 2

Table 1
Table 1
index

Table space 3

Table 2 Table 3

Table space 4

Table 2
index

Table 3
index

LOB data for Table 2

LOB

LOB

Table space 5 Table space 6

Space for temporary tables.

System catalog tables for definitions of
views, packages, functions, datatypes,
triggers, etc.

Figure 5. Table Spaces

14 Administration Guide: Planning

Figure 6 illustrates the relationship between tables, table spaces, and the two
types of space. It also shows that tables, indexes, and long data are stored in
table spaces.

Figure 7 on page 16 shows the three table space types: regular, temporary, and
long.

Tables containing user data exist in regular table spaces. The default user table
space is called USERSPACE1. Indexes are also stored in regular table spaces.
The system catalog tables exist in a regular table space. The default system
catalog table space is called SYSCATSPACE.

Tables containing long field data or long object data, such as multi-media
objects, exist in long table spaces.

Database Object/Concept Equivalent Physical Object

Each container
is a directory
in the file space
of the operating
system.

Each container is a
fixed, pre-allocated
file or a physical
device such as a disk.

Table spaces are where tables are stored:

SMS DMSor

System

Instance(s)

Database(s)

tables
Table space

index(es)

long data

Figure 6. Table Spaces and Tables

Chapter 2. Basic Relational Database Concepts 15

Temporary table spaces are classified as either system or user. System temporary
table spaces are used to store internal temporary data required during SQL
operations such as sorting, reorganizing tables, creating indexes, and joining
tables. Although you can create any number of system temporary table spaces,
it is recommended that you create only one, using the page size that the
majority of your tables use. The default system temporary table space is called
TEMPSPACE1. User temporary table spaces are used to store declared global
temporary tables that store application temporary data. User temporary table
spaces are not created by default at database creation time.

Containers
A container is a physical storage device. It can be identified by a directory
name, a device name, or a file name.

A container is assigned to a table space. A single table space can span many
containers, but each container can belong to only one table space.

Database

Type of table space(s):

REGULAR

Table(s):

User data and
database
objects such
as indexes are
stored here.

Type of table space(s):

TEMPORARY

Type of table space(s):

(optional)
LONG

Figure 7. Three Table Space Types

16 Administration Guide: Planning

Figure 8 illustrates the relationship between tables and a table space within a
database, and the associated containers and disks.

The EMPLOYEE, DEPARTMENT, and PROJECT tables are in the
HUMANRES table space which spans containers 0, 1, 2, 3, and 4. This
example shows each container existing on a separate disk.

Data for any table will be stored on all containers in a table space in a
round-robin fashion. This balances the data across the containers that belong
to a given table space. The number of pages that the database manager writes
to one container before using a different one is called the extent size.

Buffer Pool
A buffer pool is the amount of main memory allocated to cache table and index
data pages as they are being read from disk, or being modified. The purpose
of the buffer pool is to improve system performance. Data can be accessed
much faster from memory than from disk; therefore, the fewer times the
database manager needs to read from or write to a disk (I/O), the better the
performance. (You can create more than one buffer pool, although for most
situations only one is required.)

Figure 8. Table Spaces and Tables Within a Database

Chapter 2. Basic Relational Database Concepts 17

The configuration of the buffer pool is the single most important tuning area,
because you can reduce the delay caused by slow I/O.

Figure 9 illustrates the relationship between a buffer pool and containers.

Overview of System Objects

When a DB2 instance or a database is created, a corresponding configuration
file is created with default parameter values. You can modify these parameter
values to improve performance.

Configuration Parameters
Configuration files contain parameters that define values such as the resources
allocated to the DB2 products and to individual databases, and the diagnostic
level. There are two types of configuration files: the database manager
configuration file for each DB2 instance, and the database configuration file
for each individual database (see Figure 10 on page 20).

Reserved

System

Instance(s)

Database(s)

Database Object/Concept Equivalent Physical Object

Buffer Pool
(A chunk of reserved memory
created in a database and
assigned to one or more
table spaces)

Directory
Container(s)

Device

File
Table

space(s)

Figure 9. Buffer Pool and Containers

18 Administration Guide: Planning

The database manager configuration file is created when a DB2 instance is
created. The parameters it contains affect system resources at the instance
level, independent of any one database that is part of that instance. Values for
many of these parameters can be changed from the system default values to
improve performance or increase capacity, depending on your system’s
configuration.

There is one database manager configuration file for each client installation as
well. This file contains information about the client enabler for a specific
workstation. A subset of the parameters available for a server are applicable to
the client.

A database configuration file is created when a database is created, and resides
where that database resides. There is one configuration file per database. Its
parameters specify, among other things, the amount of resource to be
allocated to that database. Values for many of the parameters can be changed
to improve performance or increase capacity. Different changes may be
required, depending on the type of activity in a specific database.

Chapter 2. Basic Relational Database Concepts 19

Business Rules for Data

Within any business, data must often adhere to certain restrictions or rules.
For example, an employee number must be unique. DB2 provides constraints
as a way to enforce such rules.

DB2 provides the following types of constraints:
v NOT NULL constraint
v Unique constraint
v Primary key constraint
v Foreign key constraint
v Check constraint

Database Object/Concept Equivalent Physical Object

Database
Manager
Configuration
Parameters

Operating
System
Configuration
File

Database
Configuration
Parameters

System

Instance(s)

Database(s)

Figure 10. Configuration Parameter Files

20 Administration Guide: Planning

NOT NULL constraint
NOT NULL constraints prevent null values from being entered into a
column.

unique constraint
Unique constraints ensure that the values in a set of columns are
unique and not null for all rows in the table. For example, a typical
unique constraint in a DEPARTMENT table might be that the
department number is unique and not null.

The database manager enforces the constraint during insert and
update operations, ensuring data integrity.

primary key constraint
Each table can have one primary key. A primary key is a column or
combination of columns that has the same properties as a unique
constraint. You can use a primary key and foreign key constraints to
define relationships between tables.

Because the primary key is used to identify a row in a table, it should
be unique and have very few additions or deletions. A table cannot
have more than one primary key, but it can have multiple unique
keys. Primary keys are optional, and can be defined when a table is
created or altered. They are also beneficial, because they order the
data when data is exported or reorganized.

In the following tables, DEPTNO and EMPNO are the primary keys
for the DEPARTMENT and EMPLOYEE tables.

Table 1. DEPARTMENT Table

DEPTNO (Primary Key) DEPTNAME MGRNO

A00 Spiffy Computer Service
Division

000010

Invalid Record
001

002

003

004

005

Dept.
No.

003

Figure 11. Unique Constraints Prevent Duplicate Data

Chapter 2. Basic Relational Database Concepts 21

Table 1. DEPARTMENT Table (continued)

DEPTNO (Primary Key) DEPTNAME MGRNO

B01 Planning 000020

C01 Information Center 000030

D11 Manufacturing Systems 000060

Table 2. EMPLOYEE Table

EMPNO
(Primary Key)

FIRSTNAME LASTNAME WORKDEPT
(Foreign Key)

PHONENO

000010 Christine Haas A00 3978

000030 Sally Kwan C01 4738

000060 Irving Stern D11 6423

000120 Sean O’Connell A00 2167

000140 Heather Nicholls C01 1793

000170 Masatoshi Yoshimura D11 2890

foreign key constraint
Foreign key constraints (also known as referential integrity
constraints) enable you to define required relationships between and
within tables.

For example, a typical foreign key constraint might state that every
employee in the EMPLOYEE table must be a member of an existing
department, as defined in the DEPARTMENT table.

To establish this relationship, you would define the department
number in the EMPLOYEE table as the foreign key, and the
department number in the DEPARTMENT table as the primary key.

22 Administration Guide: Planning

check constraint
A check constraint is a database rule that specifies the values allowed
in one or more columns of every row of a table.

For example, in an EMPLOYEE table, you can define the Type of Job
column to be ″Sales″, ″Manager″, or ″Clerk″. With this constraint, any
record with a different value in the Type of Job column is not valid,
and would be rejected, enforcing rules about the type of data allowed
in the table.

You can also use triggers in your database. Triggers are more complex and
potentially more powerful than constraints. They define a set of actions that
are executed in conjunction with, or triggered by, an INSERT, UPDATE, or
DELETE clause on a specified base table. You can use triggers to support
general forms of integrity or business rules. For example, a trigger can check a
customer’s credit limit before an order is accepted, or be used in a banking

Dept.
No.

Dept.
No.

Employee Name

Department Name

John Doe

Jane Doe

Program Development

Invalid Record

Sales

Barb Smith

Training

Fred Vickers

Communications

015

Department Table

Employee Table

Foreign Key

Primary Key

001

001

002

002

003

003 027

Figure 12. Foreign and Primary Key Constraints Define Relationships and Protect Data

Chapter 2. Basic Relational Database Concepts 23

application to raise an alert if a withdrawal from an account did not fit a
customer’s standard withdrawal patterns. For more information about
triggers, refer to the Application Development Guide.

Recovering a Database

A database can become unusable because of hardware or software failure (or
both), and different failure scenarios may require different recovery actions.
You should have a rehearsed strategy in place to protect your database
against the possibility of failure.

This section discusses different recovery methods, and shows you how to
determine which recovery method is best suited to your business
environment. The following topics are covered:
v “Overview of Recovery”
v “Factors Affecting Recovery” on page 30
v “Disaster Recovery Considerations” on page 44
v “Reducing the Impact of Media Failure” on page 45
v “Reducing the Impact of Transaction Failure” on page 47
v “System Clock Synchronization in a Partitioned Database System” on

page 47

Overview of Recovery
You need to know the strategies available to you when there are problems
with the database. These include problems with media and storage, power
interruptions, and application failures. You can back up your database, or
individual table spaces, and then rebuild them should they be damaged or
corrupted in some way. The concept of a database backup is the same as any
other data backup: taking a copy of the data and storing it on a different
medium in case of failure or damage to the original. The simplest case of a
backup involves shutting down the database to ensure that no further
transactions occur, and then simply backing it up.

The rebuilding of the database is called recovery. Crash recovery automatically
attempts to recover the database after a failure. There are two ways to recover
a damaged database: version recovery and roll-forward recovery.

Non-recoverable databases have both the logretain and the userexit database
configuration parameter disabled. This means that the only logs that are kept
are those required for crash recovery. These logs are known as active logs, and
they contain current transaction data. Version recovery using offline backups is
the primary means of recovery for a non-recoverable database. (An offline
backup means that no other application can use the database when the
backup operation is in progress.) Such a database can only be restored offline.
It is restored to the state it was in when the backup image was taken.

24 Administration Guide: Planning

Recoverable databases have either the logretain database configuration
parameter set to ″RECOVERY″, the userexit database configuration parameter
enabled, or both. Active logs are still available for crash recovery, but you also
have the archived logs, which contain committed transaction data. Such a
database can only be restored offline. It is restored to the state it was in when
the backup image was taken. However, with roll-forward recovery, you can
roll the database forward (that is, past the time when the backup image was
taken) by using the active and archived logs to either a specific point in time,
or to the end of the active logs.

Recoverable database backup operations can be performed either offline or
online (online meaning that other applications can connect to the database
during the backup operation). The database restore and roll-forward
operations must always be performed offline. During an online backup
operation, roll-forward recovery ensures that all table changes are captured
and reapplied if that backup is restored.

If you have a recoverable database, you can back up, restore, and roll forward
individual table spaces, rather than the entire database. When you back up a
table space online, it is still available for use, and simultaneous updates are
recorded in the logs. When you perform an online restore or roll-forward
operation on a table space, the table space itself is not available for use until
the operation completes, but users are not prevented from accessing tables in
other table spaces.

Crash recovery protects a database from being left in an inconsistent, or
unusable, state. Transactions (or units of work) against the database can be
interrupted unexpectedly. If a failure occurs before all of the changes that are
part of the unit of work are completed and committed, the database is left in
an inconsistent and unusable state.

The database then needs to be moved to a consistent and usable state. This is
done by rolling back incomplete transactions and completing committed
transactions that were still in memory when the crash occurred (Figure 13 on
page 26).

Chapter 2. Basic Relational Database Concepts 25

When a database is in a consistent and usable state, it has attained what is
known as a ″point of consistency″. An offline database backup represents a
point of consistency. When a point of consistency is reached, all transactions
have been resolved and the data is available to other users or applications.

You can move to a point of consistency following a crash by invoking the
RESTART DATABASE command (refer to the Command Reference). If you want
this done in every case of a failure, you should consider the use of the
automatic restart enable (autorestart) configuration parameter. The default
behavior for this database configuration parameter is to invoke the RESTART
DATABASE command whenever it is needed. When autorestart is enabled, the
next connect request to the database after a failure causes the RESTART
DATABASE command to be invoked.

Crash recovery moves the database to a consistent and usable state. If,
however, crash recovery is applied to a database that is enabled for forward
recovery (that is, the logretain configuration parameter is set to ″RECOVERY″,
or the userexit configuration parameter is enabled), and an error occurs during
crash recovery that is attributable to an individual table space, that table space
must be taken offline, and cannot be accessed until it is repaired. Crash
recovery continues. At the completion of crash recovery, the other table spaces
in the database are still usable, and connections to the database can be
established. (There are exceptions involving the table spaces that have
temporary tables or the system catalog tables. These are discussed under
roll-forward recovery.)

As mentioned earlier, DB2 provides two methods to recover a damaged
database:

1

2

3

4

rollback

rollback

rollback

rollback

Units of work

Crash
All four rolled back

TIME

Figure 13. Rolling Back Units of Work

26 Administration Guide: Planning

v Version recovery is the restoration of a previous version of the database,
using an image that was created during a backup operation.
A database restore operation will rebuild the entire database using a backup
of the database made earlier. A backup of the database allows you to
restore a database to a state identical to the one at the time that the backup
was made. Every unit of work from the time of the backup to the time of
the failure is lost (see Figure 14).
Using the version recovery method, you must schedule and perform full
backups of the database on a regular basis.
In a partitioned database environment, the database is located across many
database partition servers (or nodes). You must restore all partitions, and
the backup images that you use for the restore database operation must all
have been taken at the same time. (Each database partition is backed up
and restored separately.) A backup of each database partition taken at the
same time is known as a version backup.

v To use the roll-forward recovery method, you must have taken a backup of
the database, and archived the logs (by enabling either the logretain or the
userexit database configuration parameters, or both. For information on the
decisions that you must make regarding the logging procedure that you
use, see “Database Logs” on page 31.) Restoring the database and specifying
the WITHOUT ROLLING FORWARD option is equivalent to using the
version recovery method. The database is restored to a state identical to the
one at the time that the offline backup image was made. If you restore the
database and do not specify the WITHOUT ROLLING FORWARD option

BACKUP
database

image

BACKUP
database

TIME

create

RESTORE
database

1

2

3

4

Units of work

Figure 14. Restoring a Database

Chapter 2. Basic Relational Database Concepts 27

for the restore database operation, the database will be in roll-forward
pending state at the end of the restore operation. This allows roll-forward
recovery to take place.
The two types of roll-forward recovery to consider are:
– Database roll-forward recovery. In this type of roll-forward recovery,

transactions recorded in database logs are applied following the database
restore operation (see Figure 15). The database logs record all changes
made to the database. This method completes the recovery of the
database to its state at a particular point in time, or to its state
immediately before the failure (that is, to the end of the active logs.)
In a partitioned database environment, the database is located across
many database partitions. If you are performing point-in-time
roll-forward recovery, all database partitions must be rolled forward to
ensure that all partitions are at the same level. If you need to restore a
single database partition, you can perform roll-forward recovery to the
end of the logs to bring it up to the same level as the other partitions in
the database.

– Table space restore and roll forward. If the database is enabled for forward
recovery, it is also possible to back up, restore, and roll forward table
spaces. To perform a table space restore and roll-forward operation, you
need a backup image of either the entire database (that is, all of the table
spaces), or one or more individual table spaces. You also need the log

BACKUP
database

image

TIME

create

BACKUP
database

RESTORE
databaseUnits of work

ROLLFORWARD

changes in logs

n archived logs
active logs

Figure 15. Database Roll-forward Recovery

28 Administration Guide: Planning

records that affect the table spaces that are to be recovered. You can roll
forward through the logs to one of two points:
- The end of the logs; or,
- A particular point in time (called point-in-time recovery).

Notes:

1. Table spaces that are not selected at the time of the backup operation
will not be in the same state as those that were restored.

2. When using the roll-forward recovery method with table spaces, you
must identify ″key″ table spaces in the database to be recovered, as
well as schedule and perform a backup of the database (or the ″key″
table spaces) on a regular basis.

Table space roll-forward recovery can be used in the following two
situations:
– After a table space restore operation, the table space is always in

roll-forward pending state, and it must be rolled forward. Invoke the
ROLLFORWARD DATABASE command (refer to the Command Reference)
to apply the logs against the table spaces to either a point in time, or to
the end of the logs.

– If one or more table spaces are in roll-forward pending state after crash
recovery, first correct the problem with the table space. In some cases,
correcting the problem with the table space does not involve performing
a restore database operation. For example, a power loss could leave the
table space in roll-forward pending state. If the problem is corrected
before crash recovery, crash recovery may be sufficient to take the
database to a consistent, usable state. A restore database operation is not
required in this case. Once the problem with the table space is corrected,
you can use the ROLLFORWARD DATABASE command to apply the
logs against the table spaces to either a point in time, or to the end of the
logs.

Note: If the table space in error contains the system catalog tables, you
will not be able to start the database. You must restore the
SYSCATSPACE table space, then perform roll-forward recovery to
the end of the logs.

In a partitioned database environment, if you are rolling forward a table
space to a point in time, you do not have to supply the list of nodes
(database partitions) on which the table space resides. DB2 submits the
roll-forward request to all partitions. This means the table space must be
restored on all database partitions on which the table space resides.

In a partitioned database environment, if you are rolling forward a table
space to the end of the logs, you must supply the list of database partitions if

Chapter 2. Basic Relational Database Concepts 29

you do not want to roll the table space forward on all partitions. If you
want to roll forward all table spaces on all partitions that are in
roll-forward pending state to the end of the logs, you do not have to supply
the list of database partitions. By default, the database roll-forward request
is sent to all partitions.

Factors Affecting Recovery
To decide which database recovery method to use, you must consider the
following key factors:
v Will the database be recoverable or non-recoverable?
v How near to the time of failure will you need to recover the database (the

point of recovery)?
v How much time can be spent recovering the database? This would include:

– Time between backups (will affect roll-forward recovery)
– Time the database is usable or accessible (backing up online or offline

based on data availability needs)
v How much storage space can be allocated for backup copies and archived

logs?
v Will you be using table space level or full database level backups?

In general, a database maintenance and recovery strategy should ensure that
all information is available when it is required for database recovery. The
strategy should include a regular schedule for taking database backups, as
well as scheduled backups when a database is created, or in the case of a
partitioned database system, when the system is scaled by adding or
dropping database partition servers (nodes). In addition to these basic
requirements, a good strategy will include elements that reduce the likelihood
and impact of database failure.

The following topics provide additional information:
v “Recoverable and Non-Recoverable Databases” on page 31
v “Database Logs” on page 31
v “Reducing Logging on Work Tables” on page 36
v “Point of Recovery” on page 37
v “Frequency of Backups and Time Required” on page 37
v “Recovery Time Required” on page 39
v “Storage Considerations” on page 39
v “Keeping Related Data Together” on page 40
v “Restrictions on Using Different Operating Systems” on page 41
v “Damaged Table Space Recovery” on page 41
v “Recovery Performance Considerations” on page 43.

30 Administration Guide: Planning

While the general focus of this section is on the database, your overall
recovery planning should also include recovering:
v The operating system and DB2 executables
v Applications, UDFs, and stored procedure code in operating system

libraries
v Commands for creating DB2 instances and non-DB2 resources
v Operating system security
v Load copies from a load operation (if you specify COPY YES on the LOAD

command)

Recoverable and Non-Recoverable Databases
If you can recreate data easily, the database holding that data can be a
non-recoverable database. For example:
v Tables that hold data from an outside source that is used for read-only

applications (and the data is not mixed with existing data) should be
considered for placement within a non-recoverable database.

v Tables with small amounts of data. Here recovery is not a problem. Rather,
there is just not enough logging done for the data to justify the added
complexity of managing log files and rolling forward after a restore.

v Large tables where small numbers of rows are periodically added. Again,
there is not enough volatility to justify managing log files and rolling
forward after a restore operation.

If you cannot recreate data easily, the database holding that data should be a
recoverable database. The following are examples of data that should be part
of a recoverable database:
v Data that you cannot recreate. This includes data whose source is destroyed

after the data is loaded, and data that is manually entered into tables.
v Data that is modified by application programs or workstation users after it

is loaded into the database.

Database Logs
All databases have logs associated with them. These logs keep records of
database changes. If a database needs to be restored to a point beyond the last
full, offline backup, then logs are required to roll the data forward to the point
of failure.

There are two types of DB2 logging: circular and archive, each providing a
different level of recovery capability.

Circular logging is the default behavior when a new database is created. With
this type of logging, only full, offline backups of the database are valid. As the
name suggests, circular logging uses a ″ring″ of online logs to provide
recovery from transaction failures and system crashes. The logs are used and

Chapter 2. Basic Relational Database Concepts 31

retained only to the point of ensuring the integrity of current transactions.
Circular logging does not allow you to roll forward a database through prior
transactions from the last full backup. Recovery from media failures and
disasters is done by restoring from a full, offline backup. All changes since the
last backup are lost. The database must be offline (inaccessible to users) when
a full backup is taken. Since this type of restore recovers your data to the
specific point in time of the full backup, it is called version recovery.

Figure 16 shows that the active log uses a ring of log files when circular
logging is active.
Active logs are used during crash recovery to prevent a failure (system power

or application error) from leaving a database in an inconsistent state. The
RESTART DATABASE command uses the active logs, if needed, to move the
database to a consistent and usable state. During crash recovery, changes
recorded in these logs that were not committed because of the failure are
rolled back. Changes that were committed but were not physically written
from memory (buffer pool) to disk (database containers) are redone. These
actions ensure the integrity of the database. The ROLLFORWARD DATABASE
command may also use the active logs, if needed, during a point-in-time
recovery, or a recovery to the end of the logs. Active logs are located in the
database log path directory.

Archived logs are used specifically for roll-forward recovery. They can be:

DB2 server

Database Log Path

Transaction

Active Log Files

Circular Logs

Active

Log File

Figure 16. Circular Logging

32 Administration Guide: Planning

online archived logs
When changes in the active log are no longer needed for
normal processing, the log is closed, and becomes an archived
log. An archived log is said to be online when it is stored in
the database log path directory (see Figure 17).

offline archived logs
An archived log is said to be offline when it is no longer found
in the database log path directory (see Figure 18 on page 34).
You can also store archived logs in a location other than the
database log path directory by using a user exit program. (For
additional information, see ″User Exit for Database Recovery″
in the Administration Guide: Implementation.)

Database Log Path

Transaction

DB2 server

Active

Log

Files

Log

Files

Log Retain

Online Archived

Figure 17. Archive Logging

Chapter 2. Basic Relational Database Concepts 33

Roll-forward recovery can use both archived logs and active logs to rebuild a
database either to the end of the logs, or to a specific point in time. The
roll-forward function achieves this by reapplying committed changes found in
the archived and active logs to the restored database.

Roll-forward recovery can also use logs to rebuild a table space by
re-applying committed updates in both archived and active logs. You can
recover a table space to the end of the logs, or to a specific point in time.

During an online backup, all activities against the database are logged. When
an online backup is restored, the logs must be rolled forward at least to the
point in time at which the backup was completed. For this to happen, you
must archive the logs and make them available when the database is to be
restored. The log file used at backup time may continue to be open long after
the backup operation completes. The FLUSH LOG option for online backup
on the BACKUP DATABASE command will close the active log when an

Database Log Path

Transaction

DB2 server

Log

Files

Active

Log

Files

User

Exit

Offline Archived

Figure 18. Offline Archived Logs

34 Administration Guide: Planning

online backup completes. This will allow the active log to be archived, so that
you will have a complete backup, as well as all of the logs required for the
restoration of that backup.

Two database configuration parameters allow you to change where archived
logs are stored: The newlogpath parameter, and the userexit parameter.
Changing the newlogpath parameter also affects where active logs are stored.
Refer to Administration Guide: Performance for more information about these
configuration parameters.

To determine which log extents (see “Containers” on page 16) in the database
log path directory are archived logs, check the value of the loghead database
configuration parameter. This parameter indicates the lowest numbered log
that is active. Those logs with sequence numbers less than loghead are
archived logs and can be moved. You can check the value of this parameter
by using the Control Center; or, by using the command line processor and the
GET DATABASE CONFIGURATION command to view the ″First active log
file″. Refer to Administration Guide: Performance for more information about
this configuration parameter.

Notes:

1. If you erase an active log, the database becomes unusable and must be
restored before it can be used again. You will be able to roll forward only
up to the first log that was erased.

2. If you are concerned that your active logs may be damaged (as a result of
a disk crash), you should consider mirroring the volumes on which the
logs are stored.

TIME

Units of work Units of work

update update

Logs are used between backups to track the changes to the databases.

BACKUP
database

n archived logs
1 active log

n archived logs
1 active log

Figure 19. Active and Archived Database Logs in Roll-forward Recovery

Chapter 2. Basic Relational Database Concepts 35

Reducing Logging on Work Tables
If your application creates and populates work tables from master tables, and
you are not concerned about the recoverability of these work tables because
they can be easily recreated from the master tables, you may want to create
the work tables specifying the NOT LOGGED INITIALLY parameter on the
CREATE TABLE statement. The advantage of using the NOT LOGGED
INITIALLY parameter is that any changes made on the table (including insert,
delete, update, or create index operations) in the same unit of work that
creates the table will not be logged. This not only reduces the logging that is
done, but may also increase the performance of your application. You can
achieve the same result for existing tables by using the ALTER TABLE
statement with the NOT LOGGED INITIALLY parameter.

Notes:

1. You can create more than one table with the NOT LOGGED INITIALLY
parameter in the same unit of work.

2. Changes to the catalog tables and other user tables are still logged.

Because changes to the table are not logged, you should consider the
following when deciding to use the NOT LOGGED INITIALLY parameter:
v All changes to the table must be flushed out to disk at commit time. This

means that the commit may take longer.
v An error returned for any operation in a unit of work in which the table is

created will result in the rollback of the entire unit of work (SQLCODE
-1476, SQLSTATE 40506).

v You cannot recover these tables when rolling forward. If the roll-forward
operation encounters a table that was created with the NOT LOGGED
INITIALLY option, the table is marked as unavailable. After the database is
recovered, any attempt to access the table returns SQL1477N.

Note: When a table is created, row locks are held on the catalog tables until
a COMMIT is done. To take advantage of the no logging behavior,
you must populate the table in the same unit of work in which it is
created. This has implications for concurrency. For more information,
refer to ″Concurrency″ in the Administration Guide: Performance.

For more information about creating tables, refer to the SQL Reference.

If you plan to use declared temporary tables as work tables, note the
following:
v Declared temporary tables are not created in the catalogs; therefore locks

are not held.
v Logging is not performed against declared temporary tables, even after the

first COMMIT.

36 Administration Guide: Planning

v Use the ON COMMIT PRESERVE option to keep the rows in the table after
a COMMIT; otherwise, all rows will be deleted.

v Only the application that creates the declared temporary table can access
that instance of the table.

v The table is implicitly dropped when the application connection to the
database is dropped.

v Errors in operation during a unit of work using a declared temporary table
do not cause the unit of work to be completely rolled back. However, an
error in operation in a statement changing the contents of a declared
temporary table will delete all the rows in that table. A rollback of the unit
of work (or a savepoint) will delete all rows in declared temporary tables
that were modified in that unit of work (or savepoint).

For more information about declared temporary tables and their limitations,
refer to the DECLARE GLOBAL TEMPORARY TABLE statement in the SQL
Reference.

Point of Recovery
The version and roll-forward recovery methods provide different points of
recovery. The version method involves making an offline, full database
backup copy of the database at scheduled times. With this method, the
recovered database is only as current as the backup copy that was restored.
For instance, if you make a backup copy at the end of each day, and you lose
the database midway through the next day, you will lose a half-day of
changes.

In the roll-forward recovery method, changes made to the database are
retained in logs. With this method, you first restore the database or table
spaces using a backup copy; then you use the logs to reapply changes that
were made to the database since the backup copy was created.

With roll-forward recovery enabled, you can take advantage of online backup
and table space level backup. For full database and table space roll-forward
recovery, you can choose to recover to the end of the logs, or to a specified
point in time. For instance, if an application corrupted the database, you
could start with a restored copy of the database, and roll forward changes up
to just before that application started. No units of work written to the logs
after the time specified are reapplied.

You can also roll forward table spaces to the end of the logs, or to a specific
point in time.

Frequency of Backups and Time Required
Your recovery plan should allow for regularly scheduled backups, since
backing up a database requires time and system resources.

Chapter 2. Basic Relational Database Concepts 37

You should take full database backups regularly, even if you archive the logs
(which allows for roll-forward recovery). If your recovery strategy includes
roll-forward recovery, a recent full database backup will mean that there are
fewer archived logs to apply to the database, which reduces the amount of
time required by the ROLLFORWARD utility to recover the database.

You should also consider not overwriting backups and logs, saving more than
one full database backup and its associated logs as an extra precaution.

If the amount of time needed to apply archived logs when recovering and
rolling forward a very active database is a major concern, consider the cost of
backing up the database more frequently. This reduces the number of archived
logs you need to apply when rolling forward.

You can perform a backup while the database is either online or offline. If it is
online, other applications or processes can continue to connect to the database,
as well as read and modify data while the backup operation is running. If the
backup is performed offline, only the backup operation can be connected to
the database; the rest of your organization cannot connect to the database
while the backup task is running.

To reduce the amount of time that the database is not available, consider
using online backups. Online backups are supported only if roll-forward
recovery is enabled. If roll-forward recovery is enabled and you have a
complete set of logs, you can rebuild the database, should the need arise.

Notes:

1. You can only use an online backup if you have the database log (or logs)
that span the time taken for the backup operation.

2. Offline backups are faster than online backups.

If a database contains large amounts of long field and LOB data, backing up
the database could be very time-consuming. The BACKUP command provides
the capability of backing up selected table spaces. If you use DMS table
spaces, you can store different types of data in their own table spaces to
reduce the time required for backup operations. You can keep table data in
one table space, long field and LOB data in another table space, and indexes
in another table space. By storing long field and LOB data in separate table
spaces, the time required to complete the backup can be reduced by choosing
not to back up the table spaces containing the long field and LOB data. If the
long field and LOB data is critical to your business, backing up these table
spaces should be considered against the time required to complete the restore
operation for these table spaces. If the LOB data can be reproduced from a
separate source, choose the NOT LOGGED option when creating or altering a
table to include LOB columns.

38 Administration Guide: Planning

If you reorganize a table, you should back up the affected table spaces after
the operation completes. If you have to restore the table spaces, you will not
have to roll forward through the data reorganization.

Note: If you back up a table space that does not contain all of the table data,
you cannot perform point-in-time roll-forward recovery on that table
space. All the table spaces that contain any type of data for a table
must be rolled forward simultaneously to the same point in time.

Recovery Time Required
The time required to recover a database is made up of two parts: the time
required to complete the restoration of the backup; and, if the database is
enabled for forward recovery, the time required to apply the logs during the
roll-forward operation. When formulating a recovery plan, you should take
these recovery costs and their impact on your business operations into
account. Testing your overall recovery plan will assist you in determining
whether the time required to recover the database is reasonable given your
business requirements. Following each test, you may want to increase the
frequency with which you take a backup. If roll-forward recovery is part of
your strategy, this will reduce the number of logs that are archived between
backups and, as a result, reduce the time required to roll forward the database
after a restore operation.

Note: The setting of the ″enable intra-partition parallelism″ (intra_parallel)
database manager configuration parameter does not affect the
performance of either backup or restore operations. Multiple processes
will be used for each of these operations, regardless of the setting of the
intra_parallel parameter.

Storage Considerations
When deciding which recovery method to use, consider the storage space
required.

The version recovery method requires space to hold the backup copy of the
database and the restored database. The roll-forward recovery method
requires space to hold the backup copy of the database or table spaces, the
restored database, and the archived database logs.

If a table contains long field or large object (LOB) columns, you should
consider placing this data into a separate table space. This will affect your
storage space considerations, as well as affect your plan for recovery. With a
separate table space for long field and LOB data, and knowing the time
required to back up long field and LOB data, you may decide to use a
recovery plan that only occasionally saves a backup of this table space. You
may also choose, when creating or altering a table to include LOB columns,

Chapter 2. Basic Relational Database Concepts 39

not to log changes to those columns. This will reduce the size of the required
log space and the corresponding log archive space.

The backup of an SMS table space that contains LOBs can be larger than the
size of the original table space. The backup can be as much as 40 per cent
larger, depending on the LOB data size in the table space. For example, if you
take a backup of a 1 GB SMS table space (with LOBs), you will need more
than 1 GB of disk space when you restore it. This only occurs on file systems
that support sparse allocation (for example, on UNIX based operating
systems).

To prevent media failure from destroying a database and your ability to
rebuild it, keep the database backup, the database logs, and the database itself
on different devices. For this reason, it is highly recommended that you use
the newlogpath configuration parameter to put database logs on a separate
device once the database is created. (This and other configuration parameters
related to logging are discussed in ″Rolling Forward Changes in a Database″
in the Administration Guide: Implementation.)

The database logs can use up a large amount of storage. If you plan to use the
roll-forward recovery method, you must decide how to manage the archived
logs. Your choices are the following:
v Dedicate enough space in the database log path directory to retain the logs.
v Manually copy the logs to a storage device or directory other than the

database log path directory after they are no longer in the active set of logs.
v Use a user exit program to copy these logs to another storage device in

your environment. (For more information, see ″User Exit for Database
Recovery″ in the Administration Guide: Implementation.)

Note: On OS/2, DB2 supports a user exit program to handle the storage of
both database backup images and database logs on standard and
non-standard devices. For more information, see ″User Exit for
Database Recovery″ in the Administration Guide: Implementation.

Keeping Related Data Together
As part of your database design, you will know the relationships that exist
between tables. These relationships can be expressed at the application level,
when transactions update more than one table, or at the database level, where
referential integrity exists between tables, or where triggers on one table affect
another table. You should consider these relationships when developing a
recovery plan. You will want to back up related sets of data together. Such
sets can be established at either the table space or the database level. By
keeping related sets of data together, you can recover to a point where all of
the data is consistent. This is especially important if you want to be able to
perform point-in-time roll-forward recovery on table spaces.

40 Administration Guide: Planning

Restrictions on Using Different Operating Systems
When working in an environment that has more than one operating system,
you must consider that the backup and recovery plans cannot be integrated.
That is, you may not use the BACKUP DATABASE command on one
operating system, and the RESTORE DATABASE command on another
operating system. You should keep the recovery plans for each operating
system separate and independent.

If you must move tables from one operating system to another, use the
db2move command, or use the EXPORT with the IMPORT or LOAD
commands. For more information, refer to the Data Movement Utilities Guide
and Reference.

Damaged Table Space Recovery
A damaged table space has one or more containers that cannot be accessed.
This is often caused by media problems that are either permanent (for
example, a bad disk), or temporary (for example, an offline disk, or an
unmounted file system).

If the damaged table space is the system catalog table space, the database
cannot be restarted. If the container problems cannot be fixed leaving the
original data intact, the only available options are:
v To restore the database; or,
v To restore the catalog table space.

Note: Table space restore is only valid for recoverable databases, since the
database must be rolled forward.

If the damaged table space is not the system catalog table space, DB2 attempts
to make as much of the database available as possible; success in this case
depends on the logging strategy.

If the damaged table space is a sole temporary table space, you should create
a new temporary table space as soon as a connection to the database is made.
Once created, the new temporary table space can be used, and normal
database operations requiring temporary table space can resume. You can, if
you wish, drop the offline temporary table space. There are special
considerations for table reorganization using a system temporary table space:
v If the database or database manager configuration parameter indexrec is set

to ″RESTART″, all invalid indexes must be rebuilt during database
activation; this includes indexes from reorganization that crashed during
the build phase.

v If there are incomplete reorganization requests in a damaged temporary
table space, you may have to set the indexrec configuration parameter to
″ACCESS″ to avoid restart failures.

Chapter 2. Basic Relational Database Concepts 41

Table Space Recovery for Recoverable Databases: The damaged table space
is put in offline and not accessible state, and in roll-forward pending state,
because crash recovery is necessary. The restart operation will succeed if there
is no additional problem. The damaged table space can be used again once
you:
v Fix the damaged containers without losing the original data, and then

complete a table space roll-forward operation. (The roll-forward operation
will first attempt to bring it from offline to normal state.)

v Perform a table space restore operation after fixing the damaged containers
(with or without losing the original data), and then a roll-forward
operation.

Table Space Recovery for Non-recoverable Databases: Since crash recovery
is necessary, and logs are not kept indefinitely, the restart operation can only
succeed if the user is willing to drop the damaged table spaces. (Successful
completion of recovery means that the log records necessary to recover the
damaged table spaces to a consistent state will be gone; therefore, the only
valid action against such table spaces is to drop them.)

You can do this by invoking an unqualified restart database operation. It will
succeed if there are no damaged table spaces. If it fails (SQL0290N), you can
look in the db2diag.log file for a complete list of table spaces that are
currently damaged.
v If you are willing to drop all of these table spaces once the restart database

operation is complete, you can initiate another restart database operation,
listing all of the damaged table spaces under the DROP PENDING
TABLESPACES option. If a damaged table space is included in the DROP
PENDING TABLESPACES list, the table space is put into drop pending
state, and your only option after recovery is to drop the table space. The
restart operation continues without recovering this table space. If a
damaged table space is not included in the DROP PENDING
TABLESPACES list, the restart database operation fails with SQL0290N.

v If you are unwilling to drop (and thus lose the data in) these table spaces,
your options are to:
– Wait and fix the damaged containers (without losing the original data),

and then try the restart database operation again
– Perform a database restore operation.

Note: Putting a table space name into the DROP PENDING TABLESPACES
list does not mean that the table space will be in drop pending state.
This will occur only if the table space is found to be damaged during
the restart operation. Once the restart operation is successful, you
should issue DROP TABLESPACE statements to drop each of the table
spaces that are in drop pending state (invoke the LIST TABLESPACES

42 Administration Guide: Planning

command to find out which table spaces are in this state). This way the
space can be reclaimed, or the table spaces can be recreated.

Recovery Performance Considerations
The following should be considered when thinking about recovery
performance:
v You can improve performance for databases that are frequently updated by

placing the logs on a separate device. In the case of an online transaction
processing (OLTP) environment, often more I/O is needed to write data to
the logs than to store a row of data. Placing the logs on a separate device
will minimize the disk arm movement that is required to move between a
log and the database files.
You should also consider what other files are on the disk. For example,
moving the logs to the disk used for system paging in a system that has
insufficient real memory will defeat your tuning efforts.

v To reduce the amount of time required to complete a restore operation:
– Adjust the restore buffer size. The buffer size must be a multiple of the

buffer size that was used during the backup operation.
– Increase the number of buffers.

If you use multiple buffers and I/O channels, you should use at least
twice as many buffers as channels to ensure that the channels do not
have to wait for data. The size of the buffers used will also contribute to
the performance of the restore operation. The ideal restore buffer size
should be a multiple of the extent size for the table spaces.
If you have multiple table spaces with different extent sizes, specify a
value that is a multiple of the largest extent size.
The minimum recommended number of buffers is the number of media
devices or containers plus the number specified for the PARALLELISM
option.

– Use multiple source devices.
– Set the PARALLELISM option for the restore operation to be at least one

(1) greater than the number of source devices.
v If a table contains large amounts of long field and LOB data, restoring it

could be very time consuming. If the database is enabled for roll-forward
recovery, the RESTORE command provides the capability to restore selected
table spaces. If the long field and LOB data is critical to your business,
restoring these table spaces should be considered against the time required
to complete the backup task for these table spaces. By storing long field and
LOB data in separate table spaces, the time required to complete the restore
operation can be reduced by choosing not to restore the table spaces
containing the long field and LOB data. If the LOB data can be reproduced
from a separate source, choose the NOT LOGGED option when creating or
altering a table to include LOB columns. If you choose not to restore the

Chapter 2. Basic Relational Database Concepts 43

table spaces that contain long field and LOB data, but you need to restore
the table spaces that contain the table, you must roll forward to the end of
the logs so that all table spaces that contain table data are consistent.

Note: If you back up a table space that contains table data without the
associated long or LOB fields, you cannot perform point-in-time
roll-forward recovery on that table space. All the table spaces for a
table must be rolled forward simultaneously to the same point in
time.

v The following apply for both backup and restore operations:
– Multiple I/O buffers and devices should be used.
– Allocate at least twice as many buffers as devices being used.
– Do not overload the I/O device controller bandwidth.
– Use more buffers of smaller size rather than a few large buffers.
– Tune the number and the size of the buffers according to the system

resources.

Disaster Recovery Considerations
The term disaster recovery is used to describe the activities that need to be
done to restore the database in the event of a fire, earthquake, vandalism, or
other catastrophic events. A plan for disaster recovery can include one or
more of the following:
v A site to be used in the event of an emergency
v A different machine on which to recover the database
v Off-site storage of database backups and archived logs.

If your plan for disaster recovery is to recover the entire database on another
machine, you require at least one full database backup and all the archived
logs for the database. You may choose to keep a standby database up to date
by applying the logs to it as they are archived. Or, you may choose to keep
the database backup and log archives in the standby site, and perform restore
and roll-forward operations only after a disaster has occurred. (In this case, a
recent database backup is clearly desirable.) With a disaster, however, it is
generally not possible to recover all of the transactions up to the time of the
disaster.

The usefulness of a table space backup for disaster recovery depends on the
scope of the failure. Typically, disaster recovery requires that you restore the
entire database; therefore, a full database backup should be kept at a standby
site. Even if you have a separate backup image of every table space, you
cannot use them to recover the database. If the disaster is a damaged disk, a
table space backup of each table space on that disk can be used to recover. If
you have lost access to a container because of a disk failure (or for any other

44 Administration Guide: Planning

reason), you can restore the container to a different location. For additional
information, see ″Redefining Table Space Containers During RESTORE″ in the
Administration Guide: Implementation.

Both table space backups and full database backups can have a role to play in
any disaster recovery plan. The DB2 facilities available for backing up,
restoring, and rolling forward data provide a foundation for a disaster
recovery plan. You should ensure that you have tested recovery procedures in
place to protect your business.

Reducing the Impact of Media Failure
To reduce the probability of media failure, and to simplify recovery from this
type of failure:
v Mirror or duplicate the disks that hold the data and logs for important

databases.
v In a partitioned database environment, set up a rigorous procedure for

handling the data and the logs on the catalog node. Because this node is
critical for maintaining the database:
– Ensure that it resides on a reliable disk
– Duplicate it
– Make frequent backups
– Do not put user data on it.

Protecting Against Disk Failure
If you are concerned about the possibility of damaged data or logs due to a
disk crash, consider the use of some form of disk fault tolerance. Generally,
this is accomplished through the use of a disk array. A disk array consists of a
collection of disk drives that appear as a single large disk drive to an
application.

Disk arrays involve disk striping, which is the distribution of a file across
multiple disks, the mirroring of disks, and data parity checks.

Disk arrays are sometimes referred to simply as RAID (Redundant Array of
Independent Disks). The specific term RAID generally applies only to
hardware disk arrays. Disk arrays can also be provided through software at
the operating system or application level. The point of distinction between
hardware and software disk arrays is how CPU processing of I/O requests is
handled. For hardware disk arrays, I/O activity is managed by disk
controllers; for software disk arrays, this is done by the operating system or
an application.

Hardware Disk Arrays (RAID): In a RAID disk array, multiple disks are
used and managed by a disk controller, complete with its own CPU. All of the

Chapter 2. Basic Relational Database Concepts 45

logic required to manage the disks forming this array is contained on the disk
controller; therefore, this implementation is operating system independent.

There are five types of RAID architecture, RAID-1 through RAID-5, and each
provides disk fault tolerance. Each varies in function and performance. In
general, RAID refers to a redundant array. RAID-0, which provides only data
striping (and not fault-tolerant redundancy), is excluded from this discussion.
Although the RAID specification defines five architectures, only RAID-1 and
RAID-5 are typically used today.

RAID-1 is also known as disk mirroring or duplexing. Disk mirroring
duplicates data (a complete file) from one disk onto a second disk, using a
single disk controller. Disk duplexing is the same as disk mirroring, except
that disks are attached to a second disk controller (like two SCSI adapters).
Data protection is good. Either disk can fail, and data is still accessible from
the other disk. With duplexing, a disk controller can also fail without
compromising data protection. Performance with RAID-1 is also good, but the
trade-off in this implementation is that the required disk capacity is twice that
of the actual amount of data, because data is duplicated on pairs of drives.

RAID-5 involves data and parity striping by sectors, across all disks. Parity is
interleaved with data information, rather than stored on a dedicated drive.
Data protection is good. If any disk fails, the data can still be accessed by
using the information from the other disks, along with the striped parity
information. Read performance is good, though write performance is
considerably worse than that of RAID-1 or normal disk. A RAID-5
configuration requires a minimum of three identical disks. The amount of
extra disk space required for overhead varies with the number of disks in the
array. In the case of a RAID-5 configuration of 5 disks, the space overhead is
20 percent.

When using a RAID (but not RAID-0) disk array, a failed disk will not
prevent you from accessing data on the array. When hot-pluggable or
hot-swappable disks are used in the array, a replacement disk can be swapped
with the failed disk while the array is in use. With RAID-5, if two disks fail at
the same time, all data is lost (but the probability of simultaneous disk
failures is very small).

You might consider using RAID-1 or software-mirrored disks (see “Software
Disk Arrays” on page 47) for your logs, because this provides for
recoverability to the point of failure, and offers good write performance,
which is important for logs. In cases where reliability is critical (time cannot
be lost recovering data following a disk failure), and write performance is not
so critical, consider using RAID-5 disks. Alternatively, if write performance is
critical, and you are willing to achieve this despite the cost of additional disk
space, consider RAID-1 for your data, as well as for the logs.

46 Administration Guide: Planning

Software Disk Arrays: A software disk array accomplishes much the same as
does a hardware disk array (see “Hardware Disk Arrays (RAID)” on page 45),
but the management of disk traffic is done by either an operating system task,
or an application program running on the server. Like other programs, the
software array must contend for CPU and system resources. This is not a
good option for a CPU-constrained system, and it should be remembered that
overall disk array performance is dependent on the server’s CPU load and
capacity.

A typical software disk array provides disk mirroring (see “Hardware Disk
Arrays (RAID)” on page 45). Although redundant disks are required, a
software disk array is comparatively inexpensive to implement, because costly
RAID disk controllers are not required.

Note: Having the operating system boot drive in the disk array prevents your
system from starting if that drive fails. If the drive fails before the disk
array is running, the disk array cannot allow access to the drive. A boot
drive should be separate from the disk array.

Reducing the Impact of Transaction Failure
To reduce the impact of a transaction failure, try to ensure:
v An uninterrupted power supply
v Adequate disk space for database logs
v Reliable communication links among the database partition servers in a

partitioned database environment
v Synchronization of the system clocks in a partitioned database environment

(see “System Clock Synchronization in a Partitioned Database System”).

System Clock Synchronization in a Partitioned Database System
You should maintain relatively synchronized system clocks across the
database partition servers to ensure smooth database operations and
unlimited forward recoverability. Time differences among the database
partition servers, plus any potential operational and communications delays
for a transaction should be less than the value specified for the max_time_diff
(maximum time difference among nodes) database manager configuration
parameter.

To ensure that the log record time stamps reflect the sequence of transactions
in a partitioned database system, DB2 uses the system clock on each machine
as the basis for the time stamps in the log records. If, however, the system
clock is set ahead, the log clock is automatically set ahead with it. Although
the system clock can be set back, the clock for the logs cannot, and remains at
the same advanced time until the system clock matches this time. The clocks

Chapter 2. Basic Relational Database Concepts 47

are then in synchrony. The implication of this is that a short term system clock
error on a database node can have a long lasting effect on the time stamps of
database logs.

For example, assume that the system clock on database partition server A is
mistakenly set to November 7, 1999 when the year is 1997, and assume that
the mistake is corrected after an update transaction is committed in the
partition at that database partition server. If the database is in continual use,
and is regularly updated over time, any point between November 7, 1997 and
November 7, 1999 is virtually unreachable through roll-forward recovery.
When the COMMIT on database partition server A completes, the time stamp
in the database log is set to 1999, and the log clock remains at November 7,
1999 until the system clock matches this time. If you attempt to roll forward
to a point in time within this time frame, the operation will stop at the first
time stamp that is beyond the specified stop point, which is November 7,
1997.

Although DB2 cannot control updates to the system clock, the max_time_diff
database manager configuration parameter reduces the chances of this type of
problem occurring:
v The configurable values for this parameter range from 1 minute to 24

hours. Refer to Administration Guide: Performance for more information about
setting max_time_diff.

v When the first connection request is made to a non-catalog node, the
database partition server sends its time to the catalog node for the database.
The catalog node then checks that the time on the node requesting the
connection, and its own time are within the range specified by the
max_time_diff parameter. If this range is exceeded, the connection is refused.

v An update transaction that involves more than two database partition
servers in the database must verify that the clocks on the participating
database partition servers are in synchrony before the update can be
committed. If two or more database partition servers have a time difference
that exceeds the limit allowed by max_time_diff, the transaction is rolled
back to prevent the incorrect time from being propagated to other database
partition servers.

To correct and prevent an incorrect time stamp in a database log from being
propagated further:
1. Adjust the system clock to the correct time.
2. Restore the database partition on the appropriate database partition server

with a backup that was taken before the time was incorrectly set.
3. Roll forward the changes to the end of the log for the database partition.
4. Take a backup copy of the database partition immediately after the

changes are rolled forward.

48 Administration Guide: Planning

After you complete these actions, the log time will be adjusted, the incorrect
time stamp will not be propagated, and you will be able to do point-in-time
recovery from the last backup taken on the database partition.

Reorganizing Tables in a Database

A table can become fragmented after many updates, causing performance to
deteriorate. If you collected statistics and did not notice a visible performance
improvement, reorganizing table data may help. When you reorganize table
data, you are rearranging the data into a physical sequence according to a
specified index, and removing the free space that is inherent in fragmented
data. This can provide faster access to the data, thereby improving
performance.

Before you reorganize tables, it is recommended that you invoke the
REORGCHK command, and collect statistics on the table. Running this
command will help you determine whether a reorganization of the table data
is appropriate. Refer to the Command Reference for information about the
REORGCHK command.

Overview of DB2 Security

To protect data and resources associated with a database server, DB2 uses a
combination of external security services and internal access control
information. To access a database server, you must pass some security checks
before you are given access to database data or resources. The first step in
database security is called authentication, where you must prove that you are
who you say you are. The second step is called authorization, where the
database manager decides if the validated user is allowed to perform the
requested action, or access the requested data.

Authentication
Authentication of a user is completed using a security facility outside of DB2.
The security facility can be part of the operating system, a separate product
or, in certain cases, may not exist at all. On UNIX based systems, the security
facility is in the operating system itself. DCE Security Services is a separate
product that provides the security facility for a distributed environment. There
are no security facilities on the Windows 95 or the Windows 3.1 operating
system.

The security facility requires two items to authenticate a user: a user ID and a
password. The user ID identifies the user to the security facility. By supplying
the correct password (information known only to the user and the security
facility) the user’s identity (corresponding to the user ID) is verified.

Once authenticated:

Chapter 2. Basic Relational Database Concepts 49

v The user must be identified to DB2 using an SQL authorization name or
authid. This name can be the same as the user ID, or a mapped value. For
example, on UNIX based systems, a DB2 authid is derived by transforming
to uppercase letters a UNIX user ID that follows DB2 naming conventions.
Within the DCE Security Services product, the DB2 authid is contained in
the DCE registry, and is extracted from there once authentication has
successfully completed.

v A list of groups to which the user belongs is obtained. Group membership
may be used when authorizing the user. Groups are security facility entities
that must also map to DB2 authorization names. This mapping is done in a
method similar to that used for user IDs.
DB2 will obtain a list of groups up to a maximum of 64 groups. If a user is
a member of more than 64 groups, only the first 64 that map to valid DB2
authorization names are added to the DB2 group list. No error is returned,
and any groups after the first 64 are ignored by DB2.

DB2 uses the security facility to authenticate users in one of two ways:
v DB2 uses a successful security system login as evidence of identity, and

allows:
– Use of local commands to access local data
– Use of remote connections where the server trusts the client

authentication.
v DB2 accepts a user ID and password combination. It uses successful

validation of this pair by the security facility as evidence of identity and
allows:
– Use of remote connections where the server requires proof of

authentication
– Use of operations where the user wants to run a command under an

identity other than the identity used for login.

DB2 administrators can allow others to change passwords on AIX and
Windows NT EEE systems through the profile registry variable
DB2CHGPWD_EEE. The default value for this variable is NOT SET (disabled).
DB2CHGPWD_EEE accepts the standard boolean values used by other DB2
profile variables.

The DB2 administrator is responsible for ensuring that the passwords for all
nodes are maintained centrally, using either a Windows NT Domain
Controller on Windows NT, or NIS on AIX.

Note: If the passwords are not maintained centrally, enabling the
DB2CHGPWD_EEE variable may result in passwords not being
consistent across all nodes. That is, if you use the ″change password″
feature, your password will only be changed at the node to which you
are connected.

50 Administration Guide: Planning

DB2 UDB on AIX can log failed password attempts with the operating system,
and detect when a client has exceeded the number of allowable login tries, as
specified by the LOGINRETRIES parameter.

For additional information about the system entry validation checking that is
particularly relevant if you have remote clients accessing the database, see
″Selecting an Authentication Method for Your Server″ in the Administration
Guide: Implementation.

Authorization
Authorization is the process whereby DB2 obtains information about an
authenticated DB2 user, indicating the database operations that user may
perform, and what data objects may be accessed. With each user request, there
may be more than one authorization check, depending on the objects and
operations involved.

Authorization is performed using DB2 facilities. DB2 tables and configuration
files are used to record the permissions associated with each authorization
name. The authorization name of an authenticated user, and those of groups
to which the user belongs, are compared with the recorded permissions. Based
on this comparison, DB2 decides whether to allow the requested access.

There are two types of permissions recorded by DB2: privileges and authority
levels. A privilege defines a single permission for an authorization name,
enabling a user to create or access database resources. Privileges are stored in
the database catalogs. Authority levels provide a method of grouping privileges
and control over higher-level database manager maintenance and utility
operations. Database-specific authorities are stored in the database catalogs;
system authorities are associated with group membership, and are stored in
the database manager configuration file for a given instance.

Groups provide a convenient means of performing authorization for a
collection of users without having to grant or revoke privileges for each user
individually. Unless otherwise specified, group authorization names can be
used anywhere that authorization names are used for authorization purposes.
In general, group membership is considered for dynamic SQL and
non-database object authorizations (such as instance level commands and
utilities), but is not considered for static SQL. The exception to this general
case occurs when privileges are granted to PUBLIC: these are considered
when static SQL is processed. Specific cases where group membership does
not apply are noted throughout the DB2 documentation, where applicable.

For more information, see ″Privileges, Authorities, and Authorization″ in the
Administration Guide: Implementation.

Chapter 2. Basic Relational Database Concepts 51

Federated Database Authentication and Authorization Overview
Because a DB2 federated database system can access information in multiple
database management systems, additional steps may be required to secure
your data.

When planning your approach to authentication, consider the fact that users
may need to pass authentication checks at data sources as well as at DB2. In a
federated system, authentication can take place at DB2 client workstations,
DB2 servers, data sources (DB2, DB2 for OS/390, other DRDA servers,
Oracle), or a combination of DB2 (client or DB2 server) and data sources.
Even in DCE environments, specific steps may be necessary if data sources
require a user ID and password. For more information, see ″Federated
Database Authentication Processing″ in the Administration Guide:
Implementation.

Similarly, users must pass authorization checking at data sources and at DB2.
Each data source (DB2, Oracle, DB2 for OS/390, and so on) maintains the
security of the objects under its control. When a user performs an operation
against a nickname, that user must pass authorization checking for the table
or view referenced by the nickname.

52 Administration Guide: Planning

Chapter 3. Federated Systems

A federated database system or federated system is a database management system
(DBMS) that supports applications and users submitting SQL statements
referencing two or more DBMSs or databases in a single statement. An
example is a join between tables in two different DB2 databases. This type of
statement is called a distributed request.

A DB2 Universal Database federated system provides support for distributed
requests across databases and DBMSs. You can, for example, perform a
UNION operation between a DB2 table and an Oracle view. Supported
DBMSs include DB2, members of the DB2 family (such as DB2 for OS/390
and DB2 for AS/400), and Oracle.

A DB2 federated system provides location transparency for database objects. If
information (in tables and views) is moved, references to that information
(called nicknames) can be updated without any changes to applications that
request the information. A DB2 federated system also provides compensation
for DBMSs that do not support all of the DB2 SQL dialect, or certain
optimization capabilities. Operations that cannot be performed under such a
DBMS (such as recursive SQL) are run under DB2.

A DB2 federated system functions in a semi-autonomous manner: DB2 queries
containing references to Oracle objects can be submitted while Oracle
applications are accessing the same server. A DB2 federated system does not
monopolize or restrict access (beyond integrity and locking constraints) to
Oracle or other DBMS objects.

A DB2 federated system consists of a DB2 UDB instance, a database that will
serve as the federated database, and one or more data sources. The federated
database contains catalog entries identifying data sources and their
characteristics. A data source consists of a DBMS and data. Applications
connect to the federated database just like any other DB2 database. See
Figure 20 on page 54 for a visual representation of a federated database
environment.

© Copyright IBM Corp. 1993, 2000 53

DB2 federated database catalog entries contain information about data source
objects: what they are called, what information they contain, and conditions
under which they can be used. Because this DB2 catalog stores information
about objects in many DBMSs, it is called a global catalog. Object attributes are
stored in the catalog. The actual DBMSs being referenced, modules used to
communicate with the data source, and DBMS data objects (such as tables)
that will be accessed are outside of the database. (One exception: a federated
database can be a data source for the federated system.) You can create
federated objects using the Control Center or SQL DDL statements. Required
federated database objects are:

Figure 20. A Federated Database System

54 Administration Guide: Planning

Wrappers
Identify the modules (DLL, library, and so on) used to access a
particular class or category of data source.

Servers
Define data sources. Server data includes the wrapper name, server
name, server type, server version, authorization information, and
server options.

Nicknames
Identifiers stored in the federated database that reference specific data
source objects (tables, aliases, views). Applications reference
nicknames in queries just like they reference tables and views.

Depending on your specific needs, you can create additional objects:
v User mappings, to address authentication issues
v Data type mappings, to customize the relationship between a data source

type and an DB2 type
v Function mappings, to map a local function to a data source function
v Index specifications, to improve performance.

After a federated system is set up, the information in data sources can be
accessed as though it were in one large database. Users and applications send
queries to one federated database, which then retrieves data from DB2 family
and Oracle systems as needed. User and applications specify nicknames in
queries; these nicknames provide references to tables and views located in
data sources. From an end-user perspective, nicknames are similar to aliases.

There are many factors affecting federated system performance. The most
critical factor is to ensure that accurate and up-to-date information about data
sources and their objects is stored in the federated database global catalog.
This information is used by the DB2 optimizer, and can affect decisions to
push down operations for evaluation at data sources. Refer to the
Administration Guide: Performance for additional information about federated
system performance.

A DB2 federated system operates under some restrictions. Distributed requests
are limited to read-only operations. In addition, you cannot execute utility
operations (LOAD, REORG, REORGCHK, IMPORT, RUNSTATS, and so on)
against nicknames.

You can, however, use a pass-through facility to submit DDL and DML
statements directly to database managers using the SQL dialect associated
with that data source.

Chapter 3. Federated Systems 55

Federated systems tolerate parallel environments. Performance gains are
limited by the extent to which a federated database query can be semantically
broken down into local object (table, view) references and nickname
references. Requests for nickname data are processed sequentially; local
objects can be processed in parallel. For example, given the query
SELECT * FROM A, B, C, D, where A and B are local tables, and C and D are
nicknames referencing tables at Oracle data sources, one possible plan would
join tables A and B with a parallel join. The results are then joined
sequentially with nicknames C and D.

Enabling a Federated System

DB2 Enterprise Edition (EE) and DB2 Enterprise - Extended Edition (EEE) can
support federated databases. To enable a federated system:
1. Select the Distributed Join for DB2 Databases installation option of DB2 EE

or EEE during installation.
2. If including Oracle databases in your federated system, install DB2

Relational Connect. For more information, refer to the Installation and
Configuration Supplement.

3. Set the database manager configuration parameter federated to ″YES″.
4. Create wrappers, servers, and nicknames (see ″Creating a Database″ in the

Administration Guide: Implementation for more information).
5. Create additional objects, or set options as required (see ″Implementing

Your Design″ in the Administration Guide: Implementation for more
information).

56 Administration Guide: Planning

Chapter 4. Parallel Database Systems

DB2 extends the database manager to the parallel, multi-node environment. A
database partition is a part of a database that consists of its own data, indexes,
configuration files, and transaction logs. A database partition is sometimes
called a node or a database node. (Node was the term used in the DB2
Parallel Edition for AIX Version 1 product.)

A single-partition database is a database having only one database partition. All
data in the database is stored in that partition. In this case nodegroups (see
“Nodegroups” on page 9), while present, provide no additional capability.

A partitioned database is a database with two or more database partitions.
Tables can be located in one or more database partitions. When a table is in a
nodegroup consisting of multiple partitions, some of its rows are stored in one
partition, and other rows are stored in other partitions.

Usually, a single database partition exists on each physical node, and the
processors on each system are used by the database manager at each database
partition to manage its part of the total data in the database.

Because data is divided across database partitions, you can use the power of
multiple processors on multiple physical nodes to satisfy requests for
information. Data retrieval and update requests are decomposed automatically
into sub-requests, and executed in parallel among the applicable database
partitions. The fact that databases are split across database partitions is
transparent to users issuing SQL statements.

User interaction occurs through one database partition, known as the
coordinator node for that user. The coordinator runs on the same database
partition as the application, or in the case of a remote application, the
database partition to which that application is connected. Any database
partition can be used as a coordinator node.

Nodegroups and Data Partitioning

You can define named subsets of one or more database partitions in a
database. Each subset you define is known as a nodegroup. Each subset that
contains more than one database partition is known as a multi-partition
nodegroup. Multi-partition nodegroups can only be defined with database
partitions that belong to the same instance.

© Copyright IBM Corp. 1993, 2000 57

Figure 21 shows an example of a database with five partitions in which:
v A nodegroup spans all but one of the database partitions (Nodegroup 1).
v A nodegroup contains one database partition (Nodegroup 2).
v A nodegroup contains two database partitions.
v The database partition within Nodegroup 2 is shared (and overlaps) with

Nodegroup 1.
v There is a single database partition within Nodegroup 3 that is shared (and

overlaps) with Nodegroup 1.

You create a new nodegroup using the CREATE NODEGROUP statement.
Refer to the SQL Reference for more information. Data is divided across all the
partitions in a nodegroup. If you are using a multi-partition nodegroup, you
must look at several nodegroup design considerations. For more information,
see “Designing Nodegroups” on page 124.

Nodegroup 3

Nodegroup 2

Nodegroup 1

Database

Database
Partition

Database
Partition

Database
Partition

Database
Partition

Database
Partition

Figure 21. Nodegroups in a Database

58 Administration Guide: Planning

Types of Parallelism

Components of a task, such as a database query, can be run in parallel to
dramatically enhance performance. The nature of the task, the database
configuration, and the hardware environment, all determine how DB2 will
perform a task in parallel. These considerations are interrelated, and should
be considered together when you work on the physical and logical design of a
database. This section describes the following types of parallelism that are
supported by DB2:
v I/O
v Query
v Utility

I/O Parallelism
When there are multiple containers for a table space, the database manager
can exploit parallel I/O. Parallel I/O refers to the process of writing to, or
reading from, two or more I/O devices simultaneously; it can result in
significant improvements in throughput.

I/O parallelism is a component of each hardware environment described in
“Hardware Environments” on page 62. Table 3 on page 70 lists the hardware
environments best suited to I/O parallelism.

Query Parallelism
There are two types of query parallelism: inter-query parallelism and
intra-query parallelism.

Inter-query parallelism refers to the ability of multiple applications to query a
database at the same time. Each query executes independently of the others,
but DB2 executes all of them at the same time. DB2 has always supported this
type of parallelism.

Intra-query parallelism refers to the simultaneous processing of parts of a single
query, using either intra-partition parallelism, inter-partition parallelism, or both.

The term query parallelism is used throughout this book.

Intra-partition Parallelism
Intra-partition parallelism refers to the ability to break up a query into multiple
parts. (Some of the utilities also perform this type of parallelism. See “Utility
Parallelism” on page 62.)

Intra-partition parallelism subdivides what is usually considered a single
database operation such as index creation, database loading, or SQL queries
into multiple parts, many or all of which can be run in parallel within a single
database partition.

Chapter 4. Parallel Database Systems 59

Figure 22 shows a query that is broken into four pieces that can be run in
parallel, with the results returned more quickly than if the query were run in
serial fashion. The pieces are copies of each other. To utilize intra-partition
parallelism, you must configure the database appropriately. You can choose
the degree of parallelism or let the system do it for you. The degree of
parallelism represents the number of pieces of a query running in parallel.

Table 3 on page 70 lists the hardware environments best suited for
intra-partition parallelism.

Inter-partition Parallelism
Inter-partition parallelism refers to the ability to break up a query into multiple
parts across multiple partitions of a partitioned database, on one machine or
multiple machines. The query is run in parallel. (Some of the utilities also
perform this type of parallelism. See “Utility Parallelism” on page 62.)

Inter-partition parallelism subdivides what is usually considered a single
database operation such as index creation, database loading, or SQL queries
into multiple parts, many or all of which can be run in parallel across multiple
partitions of a partitioned database on one machine or on multiple machines.

Figure 23 on page 61 shows a query that is broken into four pieces that can be
run in parallel, with the results returned more quickly than if the query were
run in serial fashion on a single partition.

The degree of parallelism is largely determined by the number of partitions
you create and how you define your nodegroups.

A query is divided
into parts, each being
executed in parallel.

Database Partition

Data

SELECT... FROM...

Figure 22. Intra-partition Parallelism

60 Administration Guide: Planning

Table 3 on page 70 lists the hardware environments best suited for
inter-partition parallelism.

Simultaneous Intra-partition and Inter-partition Parallelism
You can use intra-partition parallelism and inter-partition parallelism at the
same time. This combination provides two dimensions of parallelism,
resulting in an even more dramatic increase in the speed at which queries are
processed:

Database Partition Database Partition Database Partition Database Partition

A query is divided
into parts, each being
executed in parallel.

Data Data Data Data

SELECT... FROM...

Figure 23. Inter-partition Parallelism

Database PartitionDatabase Partition

A query is divided
into parts, each being
executed in parallel.

DataData

SELECT... FROM...

SELECT... FROM... SELECT... FROM...

Figure 24. Simultaneous Inter-partition and Intra-partition Parallelism

Chapter 4. Parallel Database Systems 61

Utility Parallelism
DB2 utilities can take advantage of intra-partition parallelism. They can also
take advantage of inter-partition parallelism; where multiple database
partitions exist, the utilities execute in each of the partitions in parallel.

The load utility can take advantage of intra-partition parallelism and I/O
parallelism. Loading data is a CPU-intensive task. The load utility takes
advantage of multiple processors for tasks such as parsing and formatting
data. It can also use parallel I/O servers to write the data to containers in
parallel. Refer to the Data Movement Utilities Guide and Reference for
information on how to enable parallelism for the load utility.

In a partitioned database environment, the AutoLoader utility takes advantage
of intra-partition, inter-partition, and I/O parallelism by parallel invocations
of the LOAD command at each database partition where the table resides.
Refer to the Data Movement Utilities Guide and Reference for more information
about the AutoLoader utility.

During index creation, the scanning and subsequent sorting of the data occurs
in parallel. DB2 exploits both I/O parallelism and intra-partition parallelism
when creating an index. This helps to speed up index creation when a
CREATE INDEX statement is issued, during restart (if an index is marked
invalid), and during the reorganization of data.

Backing up and restoring data are heavily I/O-bound tasks. DB2 exploits both
I/O parallelism and intra-partition parallelism when performing backup and
restore operations. Backup exploits I/O parallelism by reading from multiple
table space containers in parallel, and asynchronously writing to multiple
backup media in parallel. Refer to the BACKUP DATABASE command and
the RESTORE DATABASE command in the Command Reference for information
on how to enable parallelism for these utilities.

Hardware Environments

This section provides an overview of the following hardware environments:
v Single partition on a single processor (uniprocessor)
v Single partition with multiple processors (SMP)
v Multiple partition configurations

– Partitions with one processor (MPP)
– Partitions with multiple processors (cluster of SMPs)
– Logical database partitions (also known as Multiple Logical Nodes, or

MLN, in DB2 Parallel Edition for AIX Version 1)

62 Administration Guide: Planning

Capacity and scalability are discussed for each environment. Capacity refers to
the number of users and applications able to access the database. This is in
large part determined by memory, agents, locks, I/O, and storage
management. Scalability refers to the ability of a database to grow and
continue to exhibit the same operating characteristics and response times.

Single Partition on a Single Processor
This environment is made up of memory and disk, but contains only a single
CPU (see Figure 25). It is referred to by many different names, including
stand-alone database, client/server database, serial database, uniprocessor
system, and single node or non-parallel environment.

The database in this environment serves the needs of a department or small
office, where the data and system resources (including a single processor or
CPU) are managed by a single database manager.

Table 3 on page 70 lists the types of parallelism best suited to take advantage
of this hardware configuration.

Capacity and Scalability
In this environment you can add more disks. Having one or more I/O servers
for each disk allows for more than one I/O operation to take place at the
same time. You can also add more hard disk space to this environment.

CPU

Memory

Database Partition

Uniprocessor machine

Disks

Figure 25. Single Partition On a Single Processor

Chapter 4. Parallel Database Systems 63

A single-processor system is restricted by the amount of disk space the
processor can handle. However, as workload increases, a single CPU may not
be able to process user requests any faster, regardless of other components,
such as memory or disk, that you may add. If you have reached maximum
capacity or scalability, you can consider moving to a single partition system
with multiple processors.

Single Partition with Multiple Processors
This environment is typically made up of several equally powerful processors
within the same machine (see Figure 26 on page 65), and is called a symmetric
multi-processor (SMP) system. Resources, such as disk space and memory, are
shared.

With multiple processors available, different database operations can be
completed more quickly. DB2 can also divide the work of a single query
among available processors to improve processing speed. Other database
operations, such as loading data, backing up and restoring table spaces, and
creating indexes on existing data, can take advantage of multiple processors.

Table 3 on page 70 lists the types of parallelism best suited to take advantage
of this hardware configuration.

64 Administration Guide: Planning

Capacity and Scalability
In this environment you can add more processors. However, since the
different processors may attempt to access the same data, limitations with this
environment can appear as your business operations grow. With shared
memory and shared disks, you are effectively sharing all of the database data.

You can increase the I/O capacity of the database partition associated with
your processor by increasing the number of disks. You can establish I/O
servers to specifically deal with I/O requests. Having one or more I/O servers
for each disk allows for more than one I/O operation to take place at the
same time.

If you have reached maximum capacity or scalability, you can consider
moving to a system with multiple partitions.

Multiple Partition Configurations
You can divide a database into multiple partitions, each on its own machine.
Multiple machines with multiple database partitions can be grouped together.
This section describes the following partition configurations:

CPU CPU CPU CPU

Database Partition

Memory

SMP machine

Disks

Figure 26. Single Partition Database Symmetric Multiprocessor System

Chapter 4. Parallel Database Systems 65

v Partitions on systems with one processor
v Partitions on systems with multiple processors
v Logical database partitions

Partitions with One Processor
In this environment, there are many database partitions. Each partition resides
on its own machine, and has its own processor, memory, and disks (Figure 27
on page 67). All the machines are connected by a communications facility.
This environment is referred to by many different names, including cluster,
cluster of uniprocessors, massively parallel processing (MPP) environment,
and shared-nothing configuration. The latter name accurately reflects the
arrangement of resources in this environment. Unlike an SMP environment,
an MPP environment has no shared memory or disks. The MPP environment
removes the limitations introduced through the sharing of memory and disks.

A partitioned database environment allows a database to remain a logical
whole, despite being physically divided across more than one partition. The
fact that data is partitioned remains transparent to most users. Work can be
divided among the database managers; each database manager in each
partition works against its own part of the database.

Table 3 on page 70 lists the types of parallelism best suited to take advantage
of this hardware configuration.

66 Administration Guide: Planning

Capacity and Scalability: In this environment you can add more database
partitions (nodes) to your configuration. On some platforms, for example the
RS/6000 SP, the maximum number is 512 nodes. However, there may be
practical limits on managing a high number of machines and instances.

If you have reached maximum capacity or scalability, you can consider
moving to a system where each partition has multiple processors.

Partitions with Multiple Processors
An alternative to a configuration in which each partition has a single
processor, is a configuration in which a partition has multiple processors. This
is known as an SMP cluster (Figure 28 on page 68).

This configuration combines the advantages of SMP and MPP parallelism.
This means that a query can be performed in a single partition across multiple
processors. It also means that a query can be performed in parallel across
multiple partitions.

Table 3 on page 70 lists the types of parallelism best suited to take advantage
of this hardware configuration.

CPU CPU CPU CPU

Memory Memory Memory Memory

Communications Facility

Uniprocessor machineUniprocessor machine Uniprocessor machine Uniprocessor machine

Database Partition Database Partition Database Partition Database Partition

Disks Disks Disks Disks

Figure 27. Massively Parallel Processing System

Chapter 4. Parallel Database Systems 67

Capacity and Scalability: In this environment you can add more database
partitions, and you can add more processors to existing database partitions.

Logical Database Partitions
A logical database partition differs from a physical partition in that it is not
given control of an entire machine. Although the machine has shared
resources, database partitions do not share the resources. Processors are
shared but disks and memory are not.

Logical database partitions provide scalability. Multiple database managers
running on multiple logical partitions may make fuller use of available
resources than a single database manager could. Figure 29 on page 69
illustrates the fact that you may gain more scalability on an SMP machine by
adding more partitions; this is particularly true for machines with many
processors. By partitioning the database, you can administer and recover each
partition separately.

CPU CPUCPU CPUCPU CPUCPU CPU

Memory Memory

Database Partition

Communications Facility

Database Partition

SMP machine SMP machine

Disks Disks

Figure 28. Cluster of SMPs

68 Administration Guide: Planning

Figure 30 on page 70 illustrates the fact that you can multiply the
configuration shown in Figure 29 to increase processing power.

CPU CPUCPU CPU

Database Partition 1 Database Partition 2

Big SMP machine

Communications Facility

Memory Memory

DisksDisks

Figure 29. Partitioned Database, Symmetric Multiprocessor System

Chapter 4. Parallel Database Systems 69

Table 3 lists the types of parallelism best suited to take advantage of this
hardware environment.

Note: The ability to have two or more partitions coexist on the same machine
(regardless of the number of processors) allows greater flexibility in
designing high availability configurations and failover strategies. Upon
machine failure, a database partition can be automatically moved and
restarted on a second machine that already contains another partition of
the same database. For more information, see “Chapter 11. Designing
for High Availability” on page 203.

Summary of Parallelism Best Suited to Each Hardware Environment
The following table summarizes the types of parallelism best suited to take
advantage of the various hardware environments.

Table 3. Types of Parallelism Possible in Each Hardware Environment

Hardware Environment I/O Parallelism Intra-Query Parallelism

Intra- Partition
Parallelism

Inter- Partition
Parallelism

Single Partition, Single Processor Yes No(1) No

CPU CPUCPU CPUCPU CPUCPU CPU

Database
Partition 1

Database
Partition 3

Database
Partition 2

Database
Partition 4

Big SMP machine Big SMP machine

Communications Facility

Communications Facility Communications Facility

Memory MemoryMemory Memory

DisksDisks Disks Disks

Figure 30. Partitioned Database, Symmetric Multiprocessor Systems Clustered Together

70 Administration Guide: Planning

Table 3. Types of Parallelism Possible in Each Hardware Environment (continued)

Hardware Environment I/O Parallelism Intra-Query Parallelism

Intra- Partition
Parallelism

Inter- Partition
Parallelism

Single Partition, Multiple
Processors (SMP)

Yes Yes No

Multiple Partitions, One
Processor (MPP)

Yes No(1) Yes

Multiple Partitions, Multiple
Processors (cluster of SMPs)

Yes Yes Yes

Logical Database Partitions Yes Yes Yes

Note: (1) There may be an advantage to setting the degree of parallelism (using one
of the configuration parameters) to some value greater than one, even on a single
processor system, especially if the queries you execute are not fully utilizing the CPU
(for example if they are I/O bound).

Chapter 4. Parallel Database Systems 71

72 Administration Guide: Planning

Chapter 5. About Data Warehousing

DB2 Universal Database offers the Data Warehouse Center, a component that
automates data warehouse processing. You can use the Data Warehouse
Center to define the data to include in the warehouse. Then, you can use the
Data Warehouse Center to automatically schedule refreshes of the data in the
warehouse.

This section provides an overview of data warehousing and data warehousing
tasks. For more detailed information about warehousing, and for information
on using the Data Warehouse Center, refer to the Data Warehouse Center
Administration Guide and the Data Warehouse Center online help.

What is Data Warehousing?

The systems that contain operational data—the data that runs the daily
transactions of your business—contain information that is useful to business
analysts. For example, analysts can use information about which products
were sold in which regions at which time of year to look for anomalies or to
project future sales.

However, there are several problems with analysts accessing the operational
data directly:
v They might not have the expertise to query the operational database. For

example, querying IMS databases requires an application program that uses
a specialized type of data manipulation language. In general, those
programmers who have the expertise to query the operational database
have a full-time job in maintaining the database and its applications.

v Performance is critical for many operational databases, such as databases
for a bank. The system cannot handle users making ad hoc queries.

v The operational data generally is not in the best format for use by business
analysts. For example, sales data that is summarized by product, region,
and season is much more useful to analysts than the raw data.

Data warehousing solves these problems. In data warehousing, you create stores
of informational data—data that is extracted from the operational data, and
then transformed for end-user decision making. For example, a data
warehousing tool might copy all the sales data from the operational database,
perform calculations to summarize the data, and write the summarized data
to a target in a separate database from the operational data. End users can
query the separate database (the warehouse) without impacting the operational
databases.

© Copyright IBM Corp. 1993, 2000 73

The following sections describe the objects (subject areas, warehouse sources,
warehouse targets, agents, agent sites, steps, and processes) that you will use
to create and maintain your data warehouse.

Subject Areas
A subject area identifies and groups the processes that relate to a logical area of
the business. For example, if you are building a warehouse of marketing and
sales data, you can define a Sales subject area and a Marketing subject area.
You can then add the processes that relate to sales underneath the Sales
subject area. Similarly, you can add the definitions that relate to the marketing
data underneath the Marketing subject area.

Warehouse Sources
Warehouse sources identify the tables and files that will provide data to your
warehouse. The Data Warehouse Center uses the specifications in the
warehouse sources to access and select the data. The sources can be nearly
any relational or nonrelational source (table, view, or file) that has connectivity
to your warehouse.

Warehouse Targets
Warehouse targets are database tables or files that contain data that has been
transformed so that end users can use it. Like a warehouse source, warehouse
targets can also provide data to Data Warehouse Center steps.

Warehouse Agents and Agent Sites
Data Warehouse Center agents manage the flow of data between the data
sources and the target warehouses. Agents are available on the Windows NT,
AIX, OS/2, OS/390, OS/400, and SUN Solaris operating systems. The agents
use Open Database Connectivity (ODBC) drivers or DB2 CLI to communicate
with different databases.

Several agents can handle the transfer of data between sources and target
warehouses. The number of agents that you use depends on your existing
connectivity configuration and the volume of data that you plan to move
through your warehouse. Additional instances of an agent can be generated if
multiple processes that require the same agent are running simultaneously.

Agents can be local or remote. A local warehouse agent is an agent that is
installed on the same machine as the warehouse server. A remote warehouse
agent is an agent that is installed on another machine that has connectivity to
the warehouse server.

An agent site is a logical name for a workstation where agent software is
installed. The agent site name is not the same as the TCP/IP host name. A
single physical machine can have only one TCP/IP host name. However, you
can define multiple agent sites on a single machine. A logical name identifies
each agent site.

74 Administration Guide: Planning

The default agent site, named the Default VW AgentSite, is a local agent on
Windows NT that Data Warehouse Center defines during initialization of the
warehouse control database.

Steps and Processes
A step is a logical entity in the Data Warehouse Center that defines:
v The structure of the output table or file.
v The mechanism (either SQL or a program) for populating the output table

or file.
v The schedule by which the output table or file is populated.

Steps move data and transform data by using SQL statements or by calling
programs. When you run a step, the transfer of data between the warehouse
source and the warehouse target, and any transformation of that data, takes
place.

A process contains a series of steps that perform transformation and movement
tasks. In general, a process populates a warehouse target in a warehouse
database by extracting data from one or more warehouse sources, which can
be database tables or files. However, you can also define a process for
launching programs that does not specify any warehouse sources or targets.

You can run a step on demand, or you can schedule a step to run at a set
time. You can schedule a step to run one time only, or you can schedule it to
run repeatedly, such as every Friday. You can also schedule steps to run in
sequence, so that when one step finishes running, the next step begins
running. You can schedule steps to run upon (successful or unsuccessful)
completion of another step. If you schedule a process, the first step in the
process runs at the scheduled time.

When a step or a process runs, it can save data by:
v Replacing all the data in the warehouse target with new data.
v Appending the new data to the existing data.
v Appending a separate edition of data.

Suppose that you want Data Warehouse Center to perform the following
tasks:
1. Extract data from different databases.
2. Convert the data to a single format.
3. Write the data to a table in a data warehouse.

You would create a process that contained individual steps. Each step would
perform a separate task, such as extracting the data from the databases, or

Chapter 5. About Data Warehousing 75

converting it to the correct format. You would then use another step to
populate the target table, which contains the transformed data.

The following sections describe the various types of steps that you will find in
the Data Warehouse Center. For more information about steps, refer to the
Data Warehouse Center Administration Guide.

SQL Steps
An SQL step uses an SQL SELECT statement to extract data from a warehouse
source, and generates an INSERT statement to insert the data into the
warehouse target table.

Program Steps
There are several types of program steps: DB2 for AS/400 Programs, DB2 for
OS/390 Programs, DB2 for UDB Programs, Visual Warehouse 5.2 DB2
Programs, OLAP Server Programs, File Programs, and Replication. These
steps run predefined programs and utilities.

Transformer Steps
Transformer steps are stored procedures and user-defined functions that
specify statistical or warehouse transformers that you can use to transform
data. You can use transformers to clean, invert, and pivot data; generate
primary keys and period tables; and calculate various statistics.

In a transformer step, you specify one of the statistical or warehouse
transformers. When you run the process, the transformer step writes data to
one or more warehouse targets.

User-defined Program Steps
A user-defined program step is a logical entity within the Data Warehouse
Center that represents an application that you want the Data Warehouse
Center to start. A warehouse agent can start a user-defined program step:
v During the population of a warehouse target.
v After the population of a warehouse target.
v By itself.

For example, you can write a user-defined program that will perform the
following process:
1. Export data from a table.
2. Manipulate that data.
3. Write the data to an interim output resource or a warehouse target.

Warehousing Tasks

Creating a data warehouse involves the following tasks:

76 Administration Guide: Planning

v Defining a subject area that identifies and groups the processes that you
will use in your warehouse.

v Exploring the source data (or operational data), and defining warehouse
sources.

v Creating a database to use as the warehouse, and defining warehouse
targets.

v Specifying how to move and transform the source data into its format for
the warehouse database by defining a process.

v Testing the steps that you have defined, and scheduling them to run
automatically.

v Administering the warehouse by defining security, and monitoring database
usage.

v Creating an information catalog of the data in the warehouse, if you have
the DB2 Warehouse Manager package. An information catalog is a database
that contains business metadata. The metadata helps users identify and
locate data and information available to them in the organization. End users
of the warehouse can search the catalog to determine which tables to query.

v Defining a star schema model for the data in the warehouse. A star schema
is a specialized design that consists of multiple dimension tables (which
describe aspects of a business) and one fact table (which contains the facts
about the business). For example, if you manufacture soft-drinks, some
dimension tables are products, markets, and time. The fact table contains
transaction information about the products that are ordered in each region
by season.

v Joining the fact table and dimension tables to combine details from the
dimension tables with the order information. For example, you could join
the product dimension with the fact table to add information about how
each product was packaged to the orders.

You can learn more about these tasks and others by using the Business
Intelligence Tutorial, viewing the DB2 Universal Database Quick Tour, or reading
the Data Warehouse Center Administration Guide.

Chapter 5. About Data Warehousing 77

78 Administration Guide: Planning

Chapter 6. About Spatial Extender

This section introduces Spatial Extender by explaining its purpose and
discussing the data that it processes. For detailed information about using
Spatial Extender, refer to the Spatial Extender User’s Guide and Reference.

The Purpose of Spatial Extender

Use Spatial Extender to create a geographic information system (GIS): a complex
of objects, data, and applications that allows you to generate and analyze
spatial information about geographic features. Geographic features include the
objects that form the surface of the earth and the objects that occupy it. They
make up both the natural environment (examples are rivers, forests, hills, and
deserts) and the cultural environment (cities, residences, office buildings,
landmarks, and so on).

Spatial information includes facts such as:
v The location of geographic features with respect to their surroundings (for

example, points within a city where hospitals and clinics are located, or the
proximity of the city’s residences to local earthquake zones)

v Ways in which geographic features are related to each other (for example,
information that a certain river system is enclosed within a specific region,
or that certain bridges in that region cross over the river system’s
tributaries)

v Measurements that apply to one or more geographic features (for example,
the distance between an office building and its lot line, or the length of a
bird preserve’s perimeter)

Spatial information, either by itself or in combination with traditional
database output, can help you to design projects and make business and
policy decisions. For example, suppose that a welfare district manager needs
to verify which welfare applicants and recipients actually live within the area
that the district services. Spatial Extender can derive this information from the
serviced area’s location and from the addresses of the applicants and
recipients.

Or suppose that the owner of a restaurant chain wants to do business in
nearby cities. To determine where to open new restaurants, the owner needs
answers to such questions as: Where in these cities are there concentrations of
the type of people who would frequent my restaurants? Where are the major
highways? Where is the crime rate lowest? Where are my competitor’s
restaurants located? Spatial Extender can produce spatial information in visual

© Copyright IBM Corp. 1993, 2000 79

displays to answer such questions, and the underlying database management
system can generate labels and text to explain the displays.

Data that Represents Geographic Features

This section provides an overview of the data that you generate, store, and
operate upon to obtain spatial information. The topics covered are:
v How data represents geographic features
v The nature of spatial data
v Ways to produce spatial data

How Data Represents Geographic Features
In Spatial Extender, a geographic feature can be represented by a row in a
table or view, or by a portion of such a row. For example, consider the
following two geographic features: office buildings and residences. In
Figure 31, each row of the BRANCHES table represents a branch office of a
bank. As a variation, each row of the CUSTOMERS table, taken as a whole,
represents a customer of the bank; but part of each row—specifically, the cells
that contain a customer’s address—can be viewed as representing the
customer’s residence.
These tables contain data that identifies and describes the bank’s branches and

customers. Such data is called attribute data.

A subset of the attribute data (the values that represent branch and customer
addresses) can be translated into values that yield spatial information. For
example, as shown in the figure, one branch office address is 92467 Airzone
Blvd., San Jose CA 95141. A customer address is 9 Concourt Circle, San Jose
CA 95141. Spatial Extender can translate these addresses into values that
indicate where the branch and the customer’s home are situated with respect

Figure 31. Table row that represents a geographic feature; table row whose address data
represents a geographic feature. The row of data in the BRANCHES table represents a branch
office of a bank. The cells for address data in the CUSTOMERS table represent the residence of a
customer.

80 Administration Guide: Planning

to their respective surroundings. Figure 32 shows the BRANCHES and
CUSTOMERS tables with new columns that contain such values.

When addresses and similar identifiers are used as the starting point for
spatial information, they are called source data. Because the values derived
from them yield spatial information, these derived values are called spatial
data. The next section describes spatial data and introduces its associated data
types.

The Nature of Spatial Data
Much spatial data is made up of coordinates. A coordinate is a number that
denotes a position that is relative to a point of reference. For example,
latitudes are coordinates that denote positions relative to the equator.
Longitudes are coordinates that denote positions relative to the Greenwich
meridian. Thus, the position of Yellowstone National Park is defined by its
latitude (44.45 degrees north of the equator) and its longitude (110.40 degrees
west of the Greenwich meridian).

Latitudes, longitudes, their points of reference, and other associated
parameters are referred to collectively as a coordinate system. Coordinate
systems based on values other than latitude and longitude also exist. These
coordinate systems have their own measures of position, points of reference,
and additional distinguishing parameters.

The simplest spatial data item consists of two coordinates that define the
position of a single geographic feature. The term data item refers to the value
or values that occupy a cell in a relational table. A more extensive spatial data
item consists of several coordinates that define a linear path, such as a road or
a river. A third kind consists of coordinates that define the perimeter of an
area, such as the rim of a land parcel or flood plain.

Figure 32. Tables with spatial columns added. In each table, the LOCATION column will contain
coordinates that correspond to the addresses.

Chapter 6. About Spatial Extender 81

Each spatial data item is an instance of a spatial data type. The data type for
two coordinates that mark a location is ST_Point; the data type for coordinates
that define linear paths is ST_LineString; and the data type for coordinates
that define perimeters is ST_Polygon. These types, together with the other
data types for spatial data, are structured types that belong to a single
hierarchy.

Where Spatial Data Comes From
You can obtain spatial data by:
v Deriving it from attribute data
v Deriving it from other spatial data
v Importing it

Using Attribute Data as Source Data
Deriving spatial data from attribute data (such as addresses) is called
geocoding. Figure 32 on page 81 shows two columns, one in the BRANCHES
table and one in the CUSTOMERS table, designated for spatial data. Imagine
that Spatial Extender geocodes the addresses in these tables and places the
resulting output (coordinates that correspond to the addresses) into the
columns. Figure 33 illustrates this result.

Spatial Extender uses a function, called a geocoder, to geocode attribute data
and place the resulting spatial data into columns.

Using Other Spatial Data as Source Data
Spatial data can be generated not only from attribute data, but also from other
spatial data. For example, suppose that the bank whose branches are defined
in the BRANCHES table wants to know how many customers are located
within five miles of each branch. Before the bank can obtain this information
from the database, it must supply the database with the definition of a zone

Figure 33. Tables that include spatial data derived from source data. The LOCATION column in the
CUSTOMERS table contains coordinates that a geocoder derived from the address in the
ADDRESS, CITY, STATE, and ZIP columns. Similarly, the LOCATION column in the BRANCHES
table contains coordinates that the geocoder derived from the address in this table’s ADDRESS,
CITY, STATE, and ZIP columns.

82 Administration Guide: Planning

that lies within a five-mile radius around each branch. A Spatial Extender
function, ST_Buffer, can create such a definition. Using the coordinates of each
branch as input, this function can generate the coordinates that demarcate the
perimeters of the desired zones. Figure 34 shows the BRANCHES table with
information supplied by ST_Buffer.

In addition to ST_Buffer, Spatial Extender provides several other functions
that derive new spatial data from existing spatial data.

Importing Spatial Data
A third way to obtain spatial data is to import it from files that are in one of
the formats that Spatial Extender supports. These files contain data that is
usually applied to maps: census tracks, flood plains, earthquake faults, and so
on. By using such data in combination with spatial data that you produce,
you can augment the geographic information available to you. For example, if
a public works department needs to determine the hazards to which a
residential community is vulnerable, it could use ST_Buffer to define a zone
around the community, and then import data on flood plains and earthquake
faults to see which of these problem areas overlap the zone.

Figure 34. Table that includes new spatial data derived from existing spatial data. The coordinates
in the SALES_AREA column were derived by the ST_Buffer function from the coordinates in the
LOCATION column.

Chapter 6. About Spatial Extender 83

84 Administration Guide: Planning

Part 3. Database Design

© Copyright IBM Corp. 1993, 2000 85

86 Administration Guide: Planning

Chapter 7. Logical Database Design

This section describes the following steps in database design:
v “Decide What Data to Record in the Database”
v “Define Tables for Each Type of Relationship” on page 89
v “Provide Column Definitions for All Tables” on page 91
v “Identify One or More Columns as the Primary Key” on page 94
v “Ensure that Equal Values Represent the Same Entity” on page 97
v “Consider Normalizing Your Tables” on page 98
v “Planning for Constraints Enforcement” on page 103
v “Other Database Design Considerations” on page 110.

Your goal in designing a database is to produce a representation of your
environment that is easy to understand and that will serve as a basis for
expansion. In addition, you want a database design that will help you
maintain consistency and integrity of your data. You can do this by producing
a design that will reduce redundancy and eliminate anomalies that can occur
during the updating of your database.

These steps are part of logical database design. Database design is not a linear
process; you will probably have to redo steps as you work out the design.

The physical implementation of the database design is described in “Chapter 8.
Physical Database Design” on page 113, and in ″Implementing Your Design″ in
the Administration Guide: Implementation.

Decide What Data to Record in the Database

The first step in developing a database design is to identify the types of data
to be stored in database tables. A database includes information about the
entities in an organization or business, and their relationships to each other. In
a relational database, entities are represented as tables.

An entity is a person, object, or concept about which you want to store
information. Some of the entities described in the sample tables are
employees, departments, and projects. (For a description of the sample
database, refer to the SQL Reference.)

In the sample employee table, the entity ″employee″ has attributes, or
properties, such as employee number, name, work department, and salary

© Copyright IBM Corp. 1993, 2000 87

amount. Those properties appear as the columns EMPNO, FIRSTNME,
LASTNAME, WORKDEPT, and SALARY.

An occurrence of the entity ″employee″ consists of the values in all of the
columns for one employee. Each employee has a unique employee number
(EMPNO) that can be used to identify an occurrence of the entity ″employee″.
Each row in a table represents an occurrence of an entity or relationship. For
example, in the following table the values in the first row describe an
employee named Haas.

Table 4. Occurrences of Employee Entities and their Attributes

EMPNO FIRSTNME LASTNAME WORKDEPT JOB

000010 Christine Haas A00 President

000020 Michael Thompson B01 Manager

000120 Sean O’Connell A00 Clerk

000130 Dolores Quintana C01 Analyst

000030 Sally Kwan C01 Manager

000140 Heather Nicholls C01 Analyst

000170 Masatoshi Yoshimura D11 Designer

There is a growing need to support non-traditional database applications such
as multimedia. You may want to consider attributes to support multimedia
objects such as documents, video or mixed media, image, and voice.

Within a table, each column of a row is related in some way to all the other
columns of that row. Some of the relationships expressed in the sample tables
are:
v Employees are assigned to departments

– Dolores Quintana is assigned to Department C01
v Employees perform a job

– Dolores works as an Analyst
v Departments report to other departments

– Department C01 reports to Department A00
– Department B01 reports to Department A00

v Employees work on projects
– Dolores and Heather both work on project IF1000

v Employees manage departments
– Sally manages department C01.

″Employee″ and ″department″ are entities; Sally Kwan is part of an occurrence
of ″employee,″ and C01 is part of an occurrence of ″department″. The same

88 Administration Guide: Planning

relationship applies to the same columns in every row of a table. For example,
one row of a table expresses the relationship that Sally Kwan manages
Department C01; another, the relationship that Sean O’Connell is a clerk in
Department A00.

The information contained within a table depends on the relationships to be
expressed, the amount of flexibility needed, and the data retrieval speed
desired.

In addition to identifying the entity relationships within your enterprise, you
also need to identify other types of information, such as the business rules
that apply to that data.

Define Tables for Each Type of Relationship

Several types of relationships can be defined in a database. Consider the
possible relationships between employees and departments. An employee can
work in only one department; this relationship is single-valued for employees.
On the other hand, one department can have many employees; this
relationship is multi-valued for departments. The relationship between
employees (single-valued) and departments (multi-valued) is a one-to-many
relationship. The following types of relationships are discussed in this section:
v “One-to-Many and Many-to-One Relationships”
v “Many-to-Many Relationships” on page 90
v “One-to-One Relationships” on page 91

One-to-Many and Many-to-One Relationships
To define tables for each one-to-many and each many-to-one relationship:
1. Group all the relationships for which the ″many″ side of the relationship is

the same entity.
2. Define a single table for all the relationships in the group.

In the following example, the ″many″ side of the first and second
relationships is ″employees″ so we define an employee table, EMPLOYEE.

Table 5. Many-to-One Relationships

Entity Relationship Entity

Employees are assigned to departments

Employees work at jobs

Departments report to (administrative) departments

In the third relationship, ″departments″ is on the ″many″ side, so we define a
department table, DEPARTMENT.

Chapter 7. Logical Database Design 89

The following shows how these relationships are represented in tables:

The EMPLOYEE table:

EMPNO WORKDEPT JOB

000010 A00 President

000020 B01 Manager

000120 A00 Clerk

000130 C01 Analyst

000030 C01 Manager

000140 C01 Analyst

000170 D11 Designer

The DEPARTMENT table:

DEPTNO ADMRDEPT

C01 A00

D01 A00

D11 D01

Many-to-Many Relationships
A relationship that is multi-valued in both directions is a many-to-many
relationship. An employee can work on more than one project, and a project
can have more than one employee. The questions ″What does Dolores
Quintana work on?″, and ″Who works on project IF1000?″ both yield multiple
answers. A many-to-many relationship can be expressed in a table with a
column for each entity (″employees″ and ″projects″), as shown in the
following example.

The following shows how a many-to-many relationship (an employee can
work on many projects, and a project can have many employees working on
it) is represented in a table:

90 Administration Guide: Planning

The employee activity (EMP_ACT) table:

EMPNO PROJNO

000030 IF1000

000030 IF2000

000130 IF1000

000140 IF2000

000250 AD3112

One-to-One Relationships
One-to-one relationships are single-valued in both directions. A manager
manages one department; a department has only one manager. The questions,
″Who is the manager of Department C01?″, and ″What department does Sally
Kwan manage?″ both have single answers. The relationship can be assigned to
either the DEPARTMENT table or the EMPLOYEE table. Because all
departments have managers, but not all employees are managers, it is most
logical to add the manager to the DEPARTMENT table, as shown in the
following example.

The following shows how a one-to-one relationship is represented in a table:

The DEPARTMENT table:

DEPTNO MGRNO

A00 000010

B01 000020

D11 000060

Provide Column Definitions for All Tables

To define a column in a relational table:
1. Choose a name for the column.

Each column in a table must have a name that is unique for that table.
Selecting column names is described in detail in “Appendix B. Naming
Rules” on page 349.

2. State what kind of data is valid for the column.
The data type and length specify the type of data and the maximum length
that are valid for the column. Data types may be chosen from those
provided by the database manager or you may choose to create your own
user-defined types. For information about the data types provided by DB2,
and about user-defined types, refer to the SQL Reference.

Chapter 7. Logical Database Design 91

Examples of data type categories are: numeric, character string,
double-byte (or graphic) character string, date-time, and binary string.
Large object (LOB) data types support multi-media objects such as
documents, video, image and voice. These objects are implemented using
the following data types:
v A binary large object (BLOB) string. Examples of BLOBs are photographs

of employees, voice, and video.
v A character large object (CLOB) string, where the sequence of characters

can be either single- or multi-byte characters, or a combination of both.
An example of a CLOB is an employee’s resume.

v A double-byte character large object (DBCLOB) string, where the sequence
of characters is double-byte characters. An example of a DBCLOB is a
Japanese resume.

For a better understanding of large object support, refer to the SQL
Reference.

A user-defined type (UDT), is a type that is derived from an existing type.
You may need to define types that are derived from and share
characteristics with existing types, but that are nevertheless considered to
be separate and incompatible.

A structured type is a user-defined type whose structure is defined in the
database. It contains a sequence of named attributes, each of which has a
data type. A structured type may be defined as a subtype of another
structured type, called its supertype. A subtype inherits all the attributes of
its supertype and may have additional attributes defined. The set of
structured types that are related to a common supertype is called a type
hierarchy, and the supertype that does not have any supertype is called the
root type of the type hierarchy.

A structured type may be used as the type of a table or a view. The names
and data types of the attributes of the structured types, together with the
object identifier, become the names and data types of the columns of this
typed table or typed view. Rows of the typed table or typed view can be
thought of as a representation of instances of the structured type.

A structured type cannot be used as the data type of a column of a table
or a view. There is also no support for retrieving a whole structured type
instance into a host variable in an application program.

A reference type is a companion type to the structured type. Similar to a
distinct type, a reference type is a scalar type that shares a common
representation with one of the built-in data types. This same representation
is shared for all types in the type hierarchy. The reference type

92 Administration Guide: Planning

representation is defined when the root type of a type hierarchy is created.
When using a reference type, a structured type is specified as a parameter
of the type. This parameter is called the target type of the reference.

The target of a reference is always a row in a typed table or view. When a
reference type is used, it may have a scope defined. The scope identifies a
table (called the target table) or view (called the target view) that contains
the target row of a reference value. The target table or view must have the
same type as the target type of the reference type. An instance of a scoped
reference type uniquely identifies a row in a typed table or typed view,
called its target row.

A user-defined function (UDF) can be used for a number of reasons,
including invoking routines that allow comparison or conversion between
user-defined types. UDFs extend and add to the support provided by
built-in SQL functions, and can be used wherever a built-in function can
be used. There are two types of UDFs:
v An external function, which is written in a programming language
v A sourced function, which will be used to invoke other UDFs

For example, two numeric data types are European Shoe Size and
American Shoe Size. Both types represent shoe size, but they are
incompatible, because the measurement base is different and cannot be
compared. A user-defined function can be invoked to convert one shoe
size to another.

For a better understanding of user-defined types, structured types,
reference types, and user-defined functions, refer to the SQL Reference.

3. State which columns might need default values.
Some columns cannot have meaningful values in all rows because:
v A column value is not applicable to the row.

For example, a column containing an employee’s middle initial is not
applicable to an employee who has no middle initial.

v A value is applicable, but is not yet known.
For example, the MGRNO column might not contain a valid manager
number because the previous manager of the department has been
transferred, and a new manager has not been appointed yet.

In both situations, you can choose between allowing a NULL value (a
special value indicating that the column value is unknown or not
applicable), or allowing a non-NULL default value to be assigned by the
database manager or by the application.

Chapter 7. Logical Database Design 93

NULL values and default values are described in detail in the SQL
Reference.

Identify One or More Columns as the Primary Key

A key is a set of columns that can be used to identify or access a particular
row or rows. The key is identified in the description of a table, index, or
referential constraint. The same column can be part of more than one key.

A unique key is a key that is constrained so that no two of its values are equal.
The columns of a unique key cannot contain NULL values. For example, an
employee number column can be defined as a unique key, because each value
in the column identifies only one employee. No two employees can have the
same employee number.

The mechanism used to enforce the uniqueness of the key is called a unique
index. The unique index of a table is a column, or an ordered collection of
columns, for which each value identifies (functionally determines) a unique
row. A unique index can contain NULL values.

The primary key is one of the unique keys defined on a table, but is selected to
be the key of first importance. There can be only one primary key on a table.

A primary index is automatically created for the primary key. The primary
index is used by the database manager for efficient access to table rows, and
allows the database manager to enforce the uniqueness of the primary key.
(You can also define indexes on non-primary key columns to efficiently access
data when processing queries.)

If a table does not have a ″natural″ unique key, or if arrival sequence is the
method used to distinguish unique rows, using a time stamp as part of the
key can be helpful. (See also “Defining Identity Columns” on page 96.)

Primary keys for some of the sample tables are:

Table Key Column

Employee table EMPNO

Department table DEPTNO

Project table PROJNO

The following example shows part of the PROJECT table, including its
primary key column.

94 Administration Guide: Planning

Table 6. A Primary Key on the PROJECT Table

PROJNO (Primary Key) PROJNAME DEPTNO

MA2100 Weld Line Automation D01

MA2110 Weld Line Programming D11

If every column in a table contains duplicate values, you cannot define a
primary key with only one column. A key with more than one column is a
composite key. The combination of column values should define a unique
entity. If a composite key cannot be easily defined, you may consider creating
a new column that has unique values.

The following example shows a primary key containing more than one
column (a composite key):

Table 7. A Composite Primary Key on the EMP_ACT Table

EMPNO
(Primary Key)

PROJNO
(Primary Key)

ACTNO
(Primary Key)

EMPTIME EMSTDATE
(Primary Key)

000250 AD3112 60 1.0 1982-01-01

000250 AD3112 60 .5 1982-02-01

000250 AD3112 70 .5 1982-02-01

Identifying Candidate Key Columns
To identify candidate keys, select the smallest number of columns that define
a unique entity. There may be more than one candidate key. In Table 2 on
page 22, there appear to be many candidate keys. The EMPNO, the
PHONENO, and the LASTNAME columns each uniquely identify the
employee.

The criteria for selecting a primary key from a pool of candidate keys should
be persistence, uniqueness, and stability:
v Persistence means that a primary key value for each row always exists.
v Uniqueness means that the key value for each row is different from all the

others.
v Stability means that primary key values never change.

Of the three candidate keys in the example, only EMPNO satisfies all of these
criteria. An employee may not have a phone number when joining a
company. Last names can change, and, although they may be unique at one
point, are not guaranteed to be so. The employee number column is the best
choice for the primary key. An employee is assigned a unique number only
once, and that number is generally not updated as long as the employee
remains with the company. Since each employee must have a number, values
in the employee number column are persistent.

Chapter 7. Logical Database Design 95

Defining Identity Columns
An identity column provides a way for DB2 to automatically generate a unique
numeric value for each row in a table. A table can have a single column that
is defined with the identity attribute. Examples of an identity column include
order number, employee number, stock number, and incident number.

Values for an identity column can be generated always or by default.
v An identity column that is defined as generated always is guaranteed to be

unique by DB2. Its values are always generated by DB2; applications are
not allowed to provide an explicit value.

v An identity column that is defined as generated by default gives applications
a way to explicitly provide a value for the identity column. If a value is not
given, DB2 generates one, but cannot guarantee the uniqueness of the value
in this case. DB2 guarantees uniqueness only for the set of values that it
generates. Generated by default is meant to be used for data propagation,
in which the contents of an existing table are copied, or for the unloading
and reloading of a table.

Identity columns are ideally suited to the task of generating unique primary
key values. Applications can use identity columns to avoid the concurrency
and performance problems that can result when an application generates its
own unique counter outside of the database. For example, one common
application-level implementation is to maintain a 1-row table containing a
counter. Each transaction locks this table, increments the number, and then
commits; that is, only one transaction at a time can increment the counter. In
contrast, if the counter is maintained through an identity column, much
higher levels of concurrency can be achieved because the counter is not locked
by transactions. One uncommitted transaction that has incremented the
counter will not prevent subsequent transactions from also incrementing the
counter.

The counter for the identity column is incremented (or decremented)
independently of the transaction. If a given transaction increments an identity
counter two times, that transaction may see a gap in the two numbers that are
generated because there may be other transactions concurrently incrementing
the same identity counter (that is, inserting rows into the same table). If an
application must have a consecutive range of numbers, that application
should take an exclusive lock on the table that has the identity column. This
decision must be weighed against the resulting loss of concurrency.
Furthermore, it is possible that a given identity column can appear to have
generated gaps in the number, because a transaction that generated a value
for the identity column has rolled back, or the database that has cached a
range of values has been deactivated before all of the cached values were
assigned.

96 Administration Guide: Planning

The sequential numbers that are generated by the identity column have the
following additional properties:
v The values can be of any exact numeric data type with a scale of zero; that

is, SMALLINT, INTEGER, BIGINT, or DECIMAL with a scale of zero.
(Single and double precision floating point are considered to be
approximate numeric data types.)

v Consecutive values can differ by any specified integer increment. The
default increment is 1.

v The counter value for the identity column is recoverable. If a failure occurs,
the counter value is reconstructed from the logs, thereby guaranteeing that
unique values continue to be generated.

v Identity column values can be cached to give better performance.

Ensure that Equal Values Represent the Same Entity

You can have more than one table describing the attributes of the same set of
entities. For example, the EMPLOYEE table shows the number of the
department to which an employee is assigned, and the DEPARTMENT table
shows which manager is assigned to each department number. To retrieve
both sets of attributes simultaneously, you can join the two tables on the
matching columns, as shown in the following example. The values in
WORKDEPT and DEPTNO represent the same entity, and represent a join path
between the DEPARTMENT and EMPLOYEE tables.

The DEPARTMENT table:

DEPTNO DEPTNAME MGRNO ADMRDEPT

D21 Administration
Support

000070 D01

The EMPLOYEE table:

EMPNO FIRSTNAME LASTNAME WORKDEPT JOB

000250 Daniel Smith D21 Clerk

When you retrieve information about an entity from more than one table,
ensure that equal values represent the same entity. The connecting columns
can have different names (like WORKDEPT and DEPTNO in the previous
example), or they can have the same name (like the columns called DEPTNO
in the department and project tables).

Chapter 7. Logical Database Design 97

Consider Normalizing Your Tables

Normalization helps eliminate redundancies and inconsistencies in table data. It
is the process of reducing tables to a set of columns where all the non-key
columns depend on the primary key column. If this is not the case, the data
can become inconsistent during updates.

This section briefly reviews the rules for first, second, third, and fourth
normal form. The fifth normal form of a table, which is covered in many
books on database design, is not described here.

Form Description

First At each row and column position in the table, there exists one value,
never a set of values (see “First Normal Form”).

Second Each column that is not part of the key is dependent upon the key
(see “Second Normal Form” on page 99).

Third Each non-key column is independent of other non-key columns, and
is dependent only upon the key (see “Third Normal Form” on
page 100).

Fourth No row contains two or more independent multi-valued facts about
an entity (see “Fourth Normal Form” on page 102).

First Normal Form
A table is in first normal form if there is only one value, never a set of values,
in each cell. A table that is in first normal form does not necessarily satisfy the
criteria for higher normal forms.

For example, the following table violates first normal form because the
WAREHOUSE column contains several values for each occurrence of PART.

Table 8. Table Violating First Normal Form

PART (Primary Key) WAREHOUSE

P0010 Warehouse A, Warehouse B, Warehouse C

P0020 Warehouse B, Warehouse D

The following example shows the same table in first normal form.

Table 9. Table Conforming to First Normal Form

PART (Primary Key) WAREHOUSE (Primary
Key)

QUANTITY

P0010 Warehouse A 400

P0010 Warehouse B 543

98 Administration Guide: Planning

Table 9. Table Conforming to First Normal Form (continued)

PART (Primary Key) WAREHOUSE (Primary
Key)

QUANTITY

P0010 Warehouse C 329

P0020 Warehouse B 200

P0020 Warehouse D 278

Second Normal Form
A table is in second normal form if each column that is not part of the key is
dependent upon the entire key.

Second normal form is violated when a non-key column is dependent upon
part of a composite key, as in the following example:

Table 10. Table Violating Second Normal Form

PART (Primary
Key)

WAREHOUSE
(Primary Key)

QUANTITY WAREHOUSE_ADDRESS

P0010 Warehouse A 400 1608 New Field Road

P0010 Warehouse B 543 4141 Greenway Drive

P0010 Warehouse C 329 171 Pine Lane

P0020 Warehouse B 200 4141 Greenway Drive

P0020 Warehouse D 278 800 Massey Street

The primary key is a composite key, consisting of the PART and the
WAREHOUSE columns together. Because the WAREHOUSE_ADDRESS
column depends only on the value of WAREHOUSE, the table violates the
rule for second normal form.

The problems with this design are:
v The warehouse address is repeated in every record for a part stored in that

warehouse.
v If the address of a warehouse changes, every row referring to a part stored

in that warehouse must be updated.
v Because of this redundancy, the data might become inconsistent, with

different records showing different addresses for the same warehouse.
v If at some time there are no parts stored in a warehouse, there might not be

a row in which to record the warehouse address.

Chapter 7. Logical Database Design 99

The solution is to split the table into the following two tables:

Table 11. PART_STOCK Table Conforming to Second Normal Form

PART (Primary Key) WAREHOUSE (Primary
Key)

QUANTITY

P0010 Warehouse A 400

P0010 Warehouse B 543

P0010 Warehouse C 329

P0020 Warehouse B 200

P0020 Warehouse D 278

Table 12. WAREHOUSE Table Conforms to Second Normal Form

WAREHOUSE (Primary Key) WAREHOUSE_ADDRESS

Warehouse A 1608 New Field Road

Warehouse B 4141 Greenway Drive

Warehouse C 171 Pine Lane

Warehouse D 800 Massey Street

There is a performance consideration in having the two tables in second
normal form. Applications that produce reports on the location of parts must
join both tables to retrieve the relevant information.

To better understand performance considerations, refer to ″Tuning Application
Performance″ in the Administration Guide: Performance.

Third Normal Form
A table is in third normal form if each non-key column is independent of
other non-key columns, and is dependent only on the key.

The first table in the following example contains the columns EMPNO and
WORKDEPT. Suppose a column DEPTNAME is added (see Table 14 on
page 101). The new column depends on WORKDEPT, but the primary key is
EMPNO. The table now violates third normal form. Changing DEPTNAME
for a single employee, John Parker, does not change the department name for
other employees in that department. Note that there are now two different
department names used for department number E11. The inconsistency that
results is shown in the updated version of the table.

100 Administration Guide: Planning

Table 13. Unnormalized EMPLOYEE_DEPARTMENT Table Before Update

EMPNO
(Primary Key)

FIRSTNAME LASTNAME WORKDEPT DEPTNAME

000290 John Parker E11 Operations

000320 Ramlal Mehta E21 Software
Support

000310 Maude Setright E11 Operations

Table 14. Unnormalized EMPLOYEE_DEPARTMENT Table After Update. Information
in the table has become inconsistent.

EMPNO
(Primary Key)

FIRSTNAME LASTNAME WORKDEPT DEPTNAME

000290 John Parker E11 Installation
Mgmt

000320 Ramlal Mehta E21 Software
Support

000310 Maude Setright E11 Operations

The table can be normalized by creating a new table, with columns for
WORKDEPT and DEPTNAME. An update like changing a department name
is now much easier; only the new table needs to be updated.

An SQL query that returns the department name along with the employee
name is more complex to write, because it requires joining the two tables. It
will probably also take longer to run than a query on a single table.
Additional storage space is required, because the WORKDEPT column must
appear in both tables.

The following tables are defined as a result of normalization:

Table 15. EMPLOYEE Table After Normalizing the EMPLOYEE_DEPARTMENT Table

EMPNO (Primary
Key)

FIRSTNAME LASTNAME WORKDEPT

000290 John Parker E11

000320 Ramlal Mehta E21

000310 Maude Setright E11

Chapter 7. Logical Database Design 101

Table 16. DEPARTMENT Table After Normalizing the EMPLOYEE_DEPARTMENT
Table

DEPTNO (Primary Key) DEPTNAME

E11 Operations

E21 Software Support

Fourth Normal Form
A table is in fourth normal form if no row contains two or more independent
multi-valued facts about an entity.

Consider these entities: employees, skills, and languages. An employee can
have several skills and know several languages. There are two relationships,
one between employees and skills, and one between employees and
languages. A table is not in fourth normal form if it represents both
relationships, as in the following example:

Table 17. Table Violating Fourth Normal Form

EMPNO (Primary Key) SKILL (Primary Key) LANGUAGE (Primary
Key)

000130 Data Modelling English

000130 Database Design English

000130 Application Design English

000130 Data Modelling Spanish

000130 Database Design Spanish

000130 Application Design Spanish

Instead, the relationships should be represented in two tables:

Table 18. EMPLOYEE_SKILL Table Conforming to Fourth Normal Form

EMPNO (Primary Key) SKILL (Primary Key)

000130 Data Modelling

000130 Database Design

000130 Application Design

Table 19. EMPLOYEE_LANGUAGE Table Conforming to Fourth Normal Form

EMPNO (Primary Key) LANGUAGE (Primary Key)

000130 English

000130 Spanish

102 Administration Guide: Planning

If, however, the attributes are interdependent (that is, the employee applies
certain languages only to certain skills), the table should not be split.

A good strategy when designing a database is to arrange all data in tables
that are in fourth normal form, and then to decide whether the results give
you an acceptable level of performance. If they do not, you can rearrange the
data in tables that are in third normal form, and then reassess performance.

Planning for Constraints Enforcement

A constraint is a rule that the database manager enforces. Four types of
constraints handling are covered in this section:

Unique Constraints Ensure that key values in a table are unique.
Any changes to the columns that make up the
primary key are checked for uniqueness.

Referential Integrity Enforces referential constraints on insert,
update, and delete operations. It is the state of
a database in which all values of all foreign
keys are valid.

Table Check Constraints Verify that changed data does not violate
conditions specified when a table was created
or altered.

Triggers Define a set of actions that are to be taken
when called by an update, delete, or insert
operation on a specified table.

Unique Constraints
A unique constraint is the rule that ensures that key values are unique within
the table. Each column making up the key in a unique constraint must be
defined as NOT NULL. Unique constraints are defined in the CREATE TABLE
or the ALTER TABLE statement, using the PRIMARY KEY clause or the
UNIQUE clause.

A table can have any number of unique constraints; however, you can only
define one unique constraint as the primary key for a table. Moreover, a table
cannot have more than one unique constraint on the same set of columns.

When a unique constraint is defined, the database manager creates a unique
index (if needed), and designates it as either a primary or a unique
system-required index. The constraint is enforced through the unique index.
Once a unique constraint has been established on a column, the check for
uniqueness during multiple row updates is deferred until the end of the
update.

Chapter 7. Logical Database Design 103

A unique constraint can also be used as the parent key in a referential
constraint.

Referential Integrity
The database manager maintains referential integrity through referential
constraints, which require that all values for a given attribute or table column
also exist in some other table or column. For example, a referential constraint
might require that every employee in the EMPLOYEE table be in a
department that exists in the DEPARTMENT table. No employee can be in a
department that does not exist.

You can build referential constraints into a database to ensure that referential
integrity is maintained, and to allow the optimizer to exploit knowledge of
these special relationships to process queries more efficiently. When planning
for referential integrity, identify all of the relationships between database
tables. You can identify a relationship by defining a primary key and
referential constraints.

Consider the following related tables:

Table 20. DEPARTMENT Table

DEPTNO (Primary Key) DEPTNAME MGRNO

A00 Spiffy Computer Service
Div.

000010

B01 Planning 000020

C01 Information Center 000030

D11 Manufacturing Systems 000060

Table 21. EMPLOYEE Table

EMPNO
(Primary Key)

FIRSTNAME LASTNAME WORKDEPT
(Foreign Key)

PHONENO

000010 Christine Haas A00 3978

000030 Sally Kwan C01 4738

000060 Irving Stern D11 6423

000120 Sean O’Connell A00 2167

000140 Heather Nicholls C01 1793

000170 Masatoshi Yoshimura D11 2890

Many of the following concepts, useful for understanding referential integrity,
are discussed in relation to these tables.

104 Administration Guide: Planning

A unique key is a column or a set of columns where no values in a row are
duplicated in any other row. You can define one unique key as the primary
key for the table. The unique key may also be known as a parent key when
referenced by a foreign key.

A primary key is a unique key that is part of the definition of the table. Each
table can have only one primary key. In the preceding tables, DEPTNO and
EMPNO are the primary keys of the DEPARTMENT and EMPLOYEE tables,
respectively.

A foreign key is a column or a set of columns in a table that refer to a unique
key or the primary key of the same or another table. A foreign key is used to
establish a relationship with a unique key or the primary key to enforce
referential integrity among tables. The column WORKDEPT in the
EMPLOYEE table is a foreign key because it refers to the primary key,
DEPTNO, in the DEPARTMENT table.

A composite key is a key that has more than one column. Both primary and
foreign keys can be composite keys. For example, if departments were
uniquely identified by the combination of division number and department
number, two columns would be needed to create the key for the
DEPARTMENT table.

A parent key is a primary key or a unique key of a referential constraint. The
primary key constraint is the default parent key of a referential constraint when
a set of parent key columns is not specified.

A parent table is a table containing a parent key that is related to at least one
foreign key in the same or another table. A table can be a parent in an
arbitrary number of relationships. For example, the DEPARTMENT table,
which has a primary key of DEPTNO, is a parent of the EMPLOYEE table,
which contains the foreign key WORKDEPT.

A parent row is a row of a parent table whose parent key value matches at
least one foreign key value in a dependent table. A row in a parent table is
not necessarily a parent row. The fourth row (D11) of the DEPARTMENT table
is the parent row of the third and sixth rows in the EMPLOYEE table. The
second row (B01) of the DEPARTMENT table is not the parent of any other
row.

A dependent table is a table containing one or more foreign keys. A dependent
table can also be a parent table. A table can be a dependent table in an
arbitrary number of relationships. The EMPLOYEE table contains the foreign
key WORKDEPT, and is dependent on the DEPARTMENT table, whose
primary key is DEPTNO.

Chapter 7. Logical Database Design 105

A dependent row is a row of a dependent table that has a non-NULL foreign
key value that matches a parent key value. The foreign key value represents a
reference from the dependent row to the parent row. Since foreign keys can
accept NULL values, a row in a dependent table is not necessarily a
dependent row.

A table is a descendent of a table if it is a dependent table, or if it is a
descendent of a dependent table. A descendent table contains a foreign key
that can be traced back to the parent key of some table.

A referential cycle is a path that connects a table to itself. When a table is
directly connected to itself, it is a self-referencing table. If the EMPLOYEE table
had another column called MGRID that contains the EMPNO of each
employee’s manager, the EMPLOYEE table would be a self-referencing table.
MGRID would be a foreign key for the EMPLOYEE table.

A self-referencing table is both a parent and a dependent in the same
relationship. A self-referencing row is a row that is both a parent and a
dependent of itself. The constraint that exists in this situation is called a
self-referencing constraint. For example, if the value for the foreign key in a
row of a self-referencing table matches the value of the unique key in that
row, the row is self-referencing.

A referential constraint is an assertion that non-NULL values of a designated
foreign key are valid only if they also appear as values for a unique key of a
designated table. The purpose of referential constraints is to guarantee that
database relationships are maintained, and that data entry rules are followed.

Implications for SQL Operations
Enforcement of referential constraints has special implications for some SQL
operations that depend on whether the table is a parent or a dependent. This
section describes the effects of maintaining referential integrity on SQL
INSERT, DELETE, UPDATE, and DROP operations.

DB2 does not automatically enforce referential constraints across systems.
Consequently, if you want to enforce referential constraints across systems,
your applications must contain the necessary logic.

The following topics are discussed:
v “INSERT Rules”
v “DELETE Rules” on page 107
v “UPDATE Rules” on page 108.

INSERT Rules: You can insert a row at any time into a parent table without
any action being taken in dependent tables. However, you cannot insert a row

106 Administration Guide: Planning

into a dependent table, unless there is a row in the parent table with a parent
key value equal to the foreign key value of the row that is being inserted,
unless that foreign key value is NULL. The value of a composite foreign key
is NULL if any component of the value is NULL.

This rule is implicit when a foreign key is specified.

If you try to insert a row into a table that has referential constraints, the
INSERT operation is not allowed if any of the non-NULL foreign key values
are not present in the parent key. If the INSERT operation fails for one row
during an attempt to insert more than one row, none of the rows are inserted.

DELETE Rules: When you delete a row from a parent table, DB2 checks if
there are any dependent rows in dependent tables with matching foreign key
values. If any dependent rows are found, several actions are possible. You can
determine which action will be taken by specifying a delete rule when you
create the dependent table.

The delete rules for a dependent table (the table containing the foreign key)
when a primary key is deleted are:

RESTRICT Prevents any row in the parent table from
being deleted if any dependent rows are
found. If you need to remove both parent and
dependent rows, delete dependent rows first.
Deleting the parent row first violates the
referential constraint, and is not allowed.

NO ACTION Enforces the presence of a parent row for
every child after all referential constraints are
applied.

CASCADE Implies that deleting a row in the parent table
automatically deletes any related rows in the
dependent table. This rule is useful when a
row in the dependent table has no significance
without a row in the parent table.

Deleting the parent row first automatically
deletes the dependent rows referencing a
primary key. The dependent rows do not need
to be deleted first. If some of these dependent
rows have dependents of their own, the delete
rule for those relationships is applied. DB2
manages cascading deletions.

SET NULL Ensures that deletion of a row in the parent
table sets the values of the foreign key in any

Chapter 7. Logical Database Design 107

dependent rows to NULL. Other parts of the
row remain unchanged.

If no delete rule is explicitly defined when the table is created, the NO
ACTION rule applies.

Any table that can be involved in a delete operation is said to be
delete-connected. The following restrictions apply to delete-connected
relationships.
v A table cannot be delete-connected to itself in a referential cycle of more

than one table.
v When a table is delete-connected to another table through more than one

dependent relationship, these relationships must have the same delete rule,
either CASCADE or NO ACTION.

v When a self-referencing table is a dependent of another table in a
CASCADE relationship, the delete rule for the self-referencing relationship
must also be CASCADE.

You can, at any time, delete rows from a dependent table without taking any
action against the parent table. In the department-employee relationship, for
example, an employee could retire and have his row deleted from the
employee table with no effect on the department table. (In the reverse
relationship of employee-department, the department manager ID is a foreign
key referring to the parent key of the employee table. If a manager retires,
there is an effect on the department table.)

UPDATE Rules: DB2 prevents the update of a unique key for a parent row.
When you update a foreign key in a dependent table, and that foreign key is
not NULL, it must match some value of the parent key for the parent table of
the relationship. If any referential constraint is violated by an UPDATE
operation, an error occurs and no rows are updated.

When a value in a column of the parent key is updated:
v If any row in the dependent table matches the original value of the key, the

update is rejected when the update rule is RESTRICT.
v If any row in the dependent table does not have a corresponding parent

key when the update statement is completed (except after triggers), the
update is rejected when the update rule is NO ACTION.

To update the value of a parent key that is in a parent row, you must first
remove the relationship to any child rows in the dependent tables by either:
v Deleting the child rows; or,
v Updating the foreign keys in dependent tables to include another valid key

value.

108 Administration Guide: Planning

If there is no dependency to the key value in the row, the row is no longer a
parent in a referential relationship and can be updated.

If part of a foreign key is being updated and no part of the foreign key value
is NULL, the new value of the foreign key must appear as a unique key value
in the parent table. If there is no foreign key dependent on a given unique
key; that is, the row containing the unique key is not a parent row, part of the
unique key may be updated. However, no more than one row can be selected
for update in this case, because you are working with a unique key, and
duplicate rows are not allowed.

Table Check Constraints
Business rules identified in your design can be enforced through table check
constraints. Table check constraints specify search conditions that are applied to
each row of a table. These constraints are automatically activated when an
update or insert statement is applied against the table. They are defined
through the CREATE TABLE or the ALTER TABLE statement.

A table check constraint can be used for validation. For example, values for a
department number must be within the range of 10 to 100; the job title of an
employee can only be ″Sales″, ″Manager″, or ″Clerk″; or an employee who has
been with the company for more than 8 years must earn more than $40,500.

Refer to the Data Movement Utilities Guide and Reference for information about
the impact of table check constraints on the IMPORT and LOAD commands.

Triggers
A trigger is a defined set of actions that are performed whenever a delete,
insert, or update operation is carried out against a specified table. Triggers can
be defined to help support business rules. Triggers can also be used to
automatically update summary or audit data. Because triggers are stored in
the database, you do not have to code the actions in every application
program. The trigger is coded once, stored in the database, and automatically
called by DB2, as required, when an application uses the database. This
ensures that the business rules related to the data are always enforced. If a
business rule changes, only the triggers need to be modified.

A user-defined function (UDF) can be called within a triggered SQL statement.
This allows the triggered action to perform a non-SQL operation when the
trigger is fired. For example, e-mail can be sent as an alert mechanism. For
more information about triggers, see ″Creating a Trigger″ in the Administration
Guide: Implementation and refer to the Application Development Guide.

Chapter 7. Logical Database Design 109

Other Database Design Considerations

When designing a database, it is important to consider which tables users
should be able to access. Access to tables is granted or revoked through
authorizations. The highest level of authority is system administration
authority (SYSADM). A user with SYSADM authority can assign other
authorizations, including database administrator authority (DBADM).

There are other issues that you may want to consider in your design, such as
audit activities, historical data, summary tables, security, data typing, and parallel
processing capability.

For audit purposes, you may have to record every update made to your data
for a specified period. For example, you may want to update an audit table
each time an employee’s salary is changed. Updates to this table could be
made automatically if an appropriate trigger is defined. Audit activities can
also be carried out through the DB2 audit facility. For more information, see
″Auditing DB2 Activities″ in the Administration Guide: Implementation.

For performance reasons, you may only want to access a selected amount of
data, while maintaining the base data as history. You should include within
your design, the requirements for maintaining this historical data, such as the
number of months or years of data that is required to be available before it
can be purged.

You may also want to make use of summary information. For example, you
may have a table that has all of your employee information in it. However,
you would like to have this information divided into separate tables by
division or department. In this case, a summary table for each division or
department based on the data in the original table would be helpful. For more
information about summary tables, see ″Creating a Summary Table″ in the
Administration Guide: Implementation.

Security implications should also be identified within your design. For
example, you may decide to support user access to certain types of data
through security tables. You can define access levels to various types of data,
and who can access this data. Confidential data, such as employee and payroll
data, would have stringent security restrictions. For more information about
security and authorizations, see ″Controlling Database Access″ in the
Administration Guide: Implementation.

You can create tables that have a structured type associated with them. With
such typed tables, you can establish a hierarchical structure with a defined
relationship between those tables called a type hierarchy. The type hierarchy is
made up of a single root type, supertypes, and subtypes.

110 Administration Guide: Planning

A reference type representation is defined when the root type of a type
hierarchy is created. The target of a reference is always a row in a typed table
or view.

For more information about implementing a design that includes typed rows
and tables, see ″Implementing Your Design″ in the Administration Guide:
Implementation. Refer to the Data Movement Utilities Guide and Reference for
information about moving data between typed tables that are in a hierarchical
structure.

As your business grows, you may need the additional capacity and
performance capability provided by DB2 Enterprise - Extended Edition. In this
environment, your database is partitioned across several machines or systems,
each responsible for the storage and retrieval of a portion of the overall
database. Each partition (or node) works in parallel to handle SQL or utility
operations.

Issues and considerations relating to parallel operations are included
throughout this book.

Chapter 7. Logical Database Design 111

112 Administration Guide: Planning

Chapter 8. Physical Database Design

After you have completed your logical database design (see “Chapter 7.
Logical Database Design” on page 87), there are a number of issues you
should consider about the physical environment in which your database and
tables will reside. These include understanding the files that will be created to
support and manage your database, understanding how much space will be
required to store your data, and determining how you should use the table
spaces that are required to store your data.

The following topics are covered:
v “Database Directories”
v “Estimating Space Requirements for Tables” on page 115
v “Additional Space Requirements” on page 123
v “Designing Nodegroups” on page 124
v “Designing and Choosing Table Spaces” on page 132
v “Federated Database Design Considerations” on page 153

Database Directories

When a database is created, DB2 creates a separate subdirectory to store
control files (such as log header files) and to allocate containers to default
table spaces. Objects associated with the database are not always stored in the
database directory; they can be stored in various locations, including devices.

The database is created in the instance that is defined by the DB2INSTANCE
environment variable, or in the instance to which you have explicitly attached
(using the ATTACH command). For an introduction to instances, see ″Using
Multiple Instances of the Database Manager″ in the Administration Guide:
Implementation.

The naming scheme used on UNIX based systems is:
specified_path/$DB2INSTANCE/NODEnnnn/SQL00001

The naming scheme used on OS/2 and the Windows operating systems:
D:\$DB2INSTANCE\NODEnnnn\SQL00001

where
v specified_path is the optional, user-specified location to install the

instance.

© Copyright IBM Corp. 1993, 2000 113

v NODEnnnn is the node identifier in a partitioned database environment. The
first node is NODE0000.

v ″D:″ is a ″drive letter″ identifying the volume on which the root directory is
located.

SQL00001 contains objects associated with the first database created, and
subsequent databases are given higher numbers: SQL00002, and so on.

The subdirectories are created in a directory with the same name as the
database manager instance to which you are attached when you create the
database. (On OS/2 and the Windows operating systems, the subdirectories
are created under the root directory for a volume that is identified by a ″drive
letter″.) These instance and database subdirectories are created within the path
specified on the CREATE DATABASE command, and the database manager
maintains them automatically. Depending on your platform, each instance
might be owned by an instance owner, who has system administrator
(SYSADM) authority over the databases belonging to that instance.

To avoid potential problems, do not create directories that use the same
naming scheme, and do not manipulate directories that have already been
created by the database manager.

Database Files
The following files are associated with a database:

File Name Description

SQLDBCON This file stores the tuning parameters and flags for the
database. Refer to Administration Guide: Performance for
information about changing database configuration
parameters.

SQLOGCTL.LFH
This file is used to help track and control all of the database
log files.

Syyyyyyy.LOG
Database log files, numbered from 0000000 to 9999999. The
number of these files is controlled by the logprimary and the
logsecond database configuration parameters. The size of the
individual files is controlled by the logfilsiz database
configuration parameter.

With circular logging, the files are reused and the same
numbers remain. With archive logging, the file numbers
increase in sequence as logs are archived and new logs are
allocated. When 9999999 is reached, the number wraps.

114 Administration Guide: Planning

By default, these log files are stored in a directory called
SQLOGDIR. SQLOGDIR is found in the SQLnnnnn
subdirectory.

SQLINSLK This file helps to ensure that a database is used by only one
instance of the database manager.

SQLTMPLK This file helps to ensure that a database is used by only one
instance of the database manager.

SQLSPCS.1 This file contains the definition and current state of all table
spaces in the database.

SQLSPCS.2 This file is a backup copy of SQLSPCS.1. Without one of these
files, you will not be able to access your database.

SQLBP.1 This file contains the definition of all buffer pools used in the
database.

SQLBP.2 This file is a backup copy of SQLBP.1. Without one of these
files, you will not be able to access your database.

DB2RHIST.ASC
This file is the database history file. It keeps a history of
administrative operations on the database, such as backup and
restore operations.

DB2RHIST.BAK
This file is a backup copy of DB2RHIST.ASC.

Notes:

1. Do not make any direct changes to these files. They can only be accessed
indirectly using the documented APIs and by tools that implement those
APIs, including the command line processor and the Control Center.

2. Do not move these files.
3. Do not remove these files.
4. The only supported means of backing up a database or a table space is

through the sqlubkp (Backup Database) API, including the command line
processor and Control Center implementations of that API.

Estimating Space Requirements for Tables

Estimating the size of database objects is an imprecise undertaking. Overhead
caused by disk fragmentation, free space, and the use of variable length
columns makes size estimation difficult, because there is such a wide range of
possibilities for column types and row lengths. After initially estimating your
database size, create a test database and populate it with representative data.

Chapter 8. Physical Database Design 115

From the Control Center, you can access a number of utilities that are
designed to assist you in determining the size requirements of various
database objects:
v You can select an object and then use the ″Estimate Size″ utility. This utility

can tell you the current size of an existing object, such as a table. You can
then change the object, and the utility will calculate new estimated values
for the object. The utility will help you approximate storage requirements,
taking future growth into account. It gives more than a single estimate of
the size of the object. It also provides possible size ranges for the object:
both the smallest size, based on current values, and the largest possible
size.

v You can determine the relationships between objects by using the ″Show
Related″ dialog.

v You can select any database object on the instance and request ″Generate
DDL″. This function uses the db2look utility to generate data definition
statements for the database. For information about this utility, refer to the
Command Reference.

In each of these cases, either the ″Show SQL″ or the ″Show Command″ button
is available to you. You can also save the resulting SQL statements or
commands in script files to be used later. All of these utilities have online help
to assist you.

Keep these utilities in mind as you work through the planning of your
physical database requirements.

When estimating the size of a database, the contribution of the following must
be considered:
v “System Catalog Tables” on page 117
v “User Table Data” on page 117
v “Long Field Data” on page 119
v “Large Object (LOB) Data” on page 119
v “Index Space” on page 120

Space requirements related to the following are not discussed:
v The local database directory file
v The system database directory file
v The file management overhead required by the operating system, including:

– file block size
– directory control space

116 Administration Guide: Planning

System Catalog Tables
System catalog tables are created when a database is created. The system
tables grow as database objects and privileges are added to the database.
Initially, they use approximately 3.5 MB of disk space.

The amount of space allocated for the catalog tables depends on the type of
table space, and the extent size of the table space containing the catalog tables.
For example, if a DMS table space with an extent size of 32 is used, the
catalog table space will initially be allocated 20 MB of space. For more
information, see “Designing and Choosing Table Spaces” on page 132.

Note: For databases with multiple partitions, the catalog tables reside only on
the partition from which the CREATE DATABASE command was
issued. Disk space for the catalog tables is only required for that
partition.

User Table Data
By default, table data is stored on 4 KB pages. Each page (regardless of page
size) contains 76 bytes of overhead for the database manager. This leaves 4020
bytes to hold user data (or rows), although no row on a 4 KB page can exceed
4005 bytes in length. A row will not span multiple pages. You can have a
maximum of 500 columns when using a 4 KB page size.

Table data pages do not contain the data for columns defined with LONG
VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, or DBCLOB data types. The
rows in a table data page do, however, contain a descriptor for these columns.
(See “Long Field Data” on page 119 and “Large Object (LOB) Data” on
page 119 for information about estimating the space requirements for table
objects that do contain these data types.)

Rows are usually inserted into a table in first-fit order. The file is searched
(using a free space map) for the first available space that is large enough to
hold the new row. When a row is updated, it is updated in place, unless there
is insufficient space left on the page to contain it. If this is the case, a record is
created in the original row location that points to the new location in the table
file of the updated row.

If the ALTER TABLE APPEND ON statement is invoked, data is always
appended, and information about any free space on the data pages is not
kept. For more information about this statement, refer to the SQL Reference.

The number of 4 KB pages for each user table in the database can be
estimated by calculating:

ROUND DOWN(4020/(average row size + 10)) = records_per_page

and then inserting the result into:

Chapter 8. Physical Database Design 117

(number_of_records/records_per_page) * 1.1 = number_of_pages

where the average row size is the sum of the average column sizes, (For
information about the size of each column, refer to the CREATE TABLE
statement in the SQL Reference.), and the factor of ″1.1″ is for overhead.

Note: This formula only provides an estimate. Accuracy of the estimate is
reduced if the record length varies because of fragmentation and
overflow records.

You also have the option to create buffer pools or table spaces that have an 8
KB, 16 KB, or 32 KB page size. All tables created within a table space of a
particular size have a matching page size. A single table or index object can be
as large as 512 GB, assuming a 32 KB page size. You can have a maximum of
1012 columns when using an 8 KB, 16 KB, or 32 KB page size. The maximum
number of columns is 500 for a 4 KB page size. Maximum row lengths also
vary, depending on page size:
v When the page size is 4 KB, the row length can be up to 4005 bytes.
v When the page size is 8 KB, the row length can be up to 8101 bytes.
v When the page size is 16 KB, the row length can be up to 16 293 bytes.
v When the page size is 32 KB, the row length can be up to 32 677 bytes.

Having a larger page size facilitates a reduction in the number of levels in any
index. If you are working with OLTP (online transaction processing)
applications, which perform random row reads and writes, a smaller page
size is better, because it wastes less buffer space with undesired rows. If you
are working with DSS (decision support system) applications, which access
large numbers of consecutive rows at a time, a larger page size is better,
because it reduces the number of I/O requests required to read a specific
number of rows. An exception occurs when the row size is smaller than the
page size divided by 255. In such a case, there is wasted space on each page.
(Recall that there can be a maximum of only 255 rows per page.) To reduce
this wasted space, a smaller page size may be more appropriate.

You cannot restore a backup to a different page size.

You cannot import IXF data files that represent more than 755 columns. For
more information about importing data into tables, and IXF data files, refer to
the Data Movement Utilities Guide and Reference.

Declared temporary tables can only be created in their own ″user temporary″
table space type. There is no default user temporary table space. Temporary
tables cannot have LONG data. The tables are dropped implicitly when an
application disconnects from the database, and estimates of their space
requirements should take this into account.

118 Administration Guide: Planning

Long Field Data
Long field data is stored in a separate table object that is structured differently
from other data types (see “User Table Data” on page 117 and “Large Object
(LOB) Data”).

Data is stored in 32 KB areas that are broken up into segments whose sizes
are ″powers of two″ times 512 bytes. (Hence these segments can be 512 bytes,
1024 bytes, 2048 bytes, and so on, up to 32 700 bytes.)

Long field data types (LONG VARCHAR or LONG VARGRAPHIC) are stored
in a way that enables free space to be reclaimed easily. Allocation and free
space information is stored in 4 KB allocation pages, which appear
infrequently throughout the object.

The amount of unused space in the object depends on the size of the long
field data, and whether this size is relatively constant across all occurrences of
the data. For data entries larger than 255 bytes, this unused space can be up
to 50 percent of the size of the long field data.

If character data is less than the page size, and it fits into the record along
with the rest of the data, the CHAR, GRAPHIC, VARCHAR, or
VARGRAPHIC data types should be used instead of LONG VARCHAR or
LONG VARGRAPHIC.

Large Object (LOB) Data
Large object (LOB) data is stored in two separate table objects that are
structured differently from other data types (see “User Table Data” on
page 117 and “Long Field Data”).

To estimate the space required by LOB data, you need to consider the two
table objects used to store data defined with these data types:
v LOB Data Objects

Data is stored in 64 MB areas that are broken up into segments whose sizes
are ″powers of two″ times 1024 bytes. (Hence these segments can be 1024
bytes, 2048 bytes, 4096 bytes, and so on, up to 64 MB.)
To reduce the amount of disk space used by LOB data, you can specify the
COMPACT option on the lob-options clause of the CREATE TABLE and the
ALTER TABLE statements. The COMPACT option minimizes the amount of
disk space required by allowing the LOB data to be split into smaller
segments. This process does not involve data compression, but simply uses
the minimum amount of space, to the nearest 1 KB boundary. Using the
COMPACT option may result in reduced performance when appending to
LOB values.

Chapter 8. Physical Database Design 119

The amount of free space contained in LOB data objects is influenced by
the amount of update and delete activity, as well as the size of the LOB
values being inserted.

v LOB Allocation Objects

Allocation and free space information is stored in 4 KB allocation pages that
are separated from the actual data. The number of these 4 KB pages is
dependent on the amount of data, including unused space, allocated for the
large object data. The overhead is calculated as follows: one 4 KB page for
every 64 GB, plus one 4 KB page for every 8 MB.

If character data is less than the page size, and it fits into the record along
with the rest of the data, the CHAR, GRAPHIC, VARCHAR, or
VARGRAPHIC data types should be used instead of BLOB, CLOB, or
DBCLOB.

Index Space
For each index, the space needed can be estimated as:

(average index key size + 8) * number of rows * 2

where:
v The ″average index key size″ is the byte count of each column in the index

key. Refer to the CREATE TABLE statement in the SQL Reference for
information on how to calculate the byte count for columns with different
data types. (When estimating the average column size for VARCHAR and
VARGRAPHIC columns, use an average of the current data size, plus one
byte. Do not use the maximum declared size.)

v The factor of ″2″ is for overhead, such as non-leaf pages and free space.

Note: For every column that allows NULLs, add one extra byte for the null
indicator.

Temporary space is required when creating the index. The maximum amount
of temporary space required during index creation can be estimated as:

(average index key size + 8) * number of rows * 3.2

where the factor of ″3.2″ is for index overhead, and space required for sorting
during index creation.

Note: In the case of non-unique indexes, only four bytes are required to store
duplicate key entries. The estimates shown above assume no
duplicates. The space required to store an index may be over-estimated
by the formula shown above.

120 Administration Guide: Planning

The following two formulas can be used to estimate the number of leaf pages
(the second provides a more accurate estimate). The accuracy of these
estimates depends largely on how well the averages reflect the actual data.

Note: For SMS, the minimum required space is 12 KB. For DMS, the
minimum is an extent.

v A rough estimate of the average number of keys per leaf page is:
(.9 * (U - (M*2))) * (D + 1)

K + 6 + (4 * D)

where:
– U, the usable space on a page, is approximately equal to the page size

minus 100. For a page size of 4096, U is 3996.
– M = U / (8 + minimumKeySize)
– D = average number of duplicates per key value
– K = averageKeySize

Remember that minimumKeySize and averageKeysize must have an extra byte
for each nullable key part, and an extra byte for the length of each variable
length key part.

If there are include columns, they should be accounted for in
minimumKeySize and averageKeySize.

The .9 can be replaced by any (100 - pctfree)/100 value, if a percent free
value other than the default value of ten percent was specified during index
creation.

v A more accurate estimate of the average number of keys per leaf page is:
L = number of leaf pages = X / (avg number of keys on leaf page)

where X is the total number of rows in the table.

You can estimate the original size of an index as:
(L + 2L/(average number of keys on leaf page)) * pagesize

For DMS table spaces, add together the sizes of all indexes on a table, and
round up to a multiple of the extent size for the table space on which the
index resides.

You should provide additional space for index growth due to
INSERT/UPDATE activity, which may result in page splits.

Chapter 8. Physical Database Design 121

Use the following calculations to obtain a more accurate estimate of the
original index size, as well as an estimate of the number of levels in the
index. (This may be of particular interest if include columns are being used
in the index definition.) The average number of keys per non-leaf page is
roughly:

(.9 * (U - (M*2))) * (D + 1)

K + 12 + (8 * D)

where:
– U, the usable space on a page, is approximately equal to the page size

minus 100. For a page size of 4096, U is 3996.
– D is the average number of duplicates per key value on non-leaf pages

(this will be much smaller than on leaf pages, and you may want to
simplify the calculation by setting the value to 0).

– M = U / (8 + minimumKeySize for non-leaf pages)
– K = averageKeySize for non-leaf pages

The minimumKeySize and the averageKeySize for non-leaf pages will be the
same as for leaf pages, except when there are include columns. Include
columns are not stored on non-leaf pages.

You should not replace .9 with (100 - pctfree)/100, unless this value is
greater than .9, because a maximum of 10 percent free space will be left on
non-leaf pages during index creation.

The number of non-leaf pages can be estimated as follows:
if L > 1 then {P++; Z++}
While (Y > 1)
{

P = P + Y
Y = Y / N
Z++

}

where:
– P is the number of pages (0 initially).
– L is the number of leaf pages.
– N is the number of keys for each non-leaf page.
– Y = L / N
– Z is the number of levels in the index tree (1 initially).

Total number of pages is:
T = (L + P + 2) * 1.0002

122 Administration Guide: Planning

The additional 0.02 percent is for overhead, including space map pages.

The amount of space required to create the index is estimated as:
T * pagesize

Additional Space Requirements

Additional space is also required for:
v “Log File Space”
v “Temporary Work Space” on page 124

Log File Space
The amount of space (in bytes) required for log files can range from:

(logprimary * (logfilsiz + 2) * 4096) + 8192

to:
((logprimary + logsecond) * (logfilsiz + 2) * 4096) + 8192

where:
v logprimary is the number of primary log files, defined in the database

configuration file
v logsecond is the number of secondary log files, defined in the database

configuration file
v logfilsiz is the number of pages in each log file, defined in the database

configuration file
v 2 is the number of header pages required for each log file
v 4096 is the number of bytes in one page
v 8192 is the size (in bytes) of the log control file.

Refer to the Administration Guide: Performance for more information about
these configuration parameters.

Note: The total active log space cannot exceed 32 GB.

The upper limit of log file space is dependent on the actual number of
secondary log files that the database manager requires at run time. This upper
limit may never be required, or may be needed only during occasional
periods of high volume activity.

If the database is enabled for roll-forward recovery, special log space
requirements should be taken into consideration:

Chapter 8. Physical Database Design 123

v With the logretain configuration parameter enabled, the log files will be
archived in the log path directory. The online disk space will eventually fill
up, unless you move the log files to a different location.

v With the userexit configuration parameter enabled, a user exit program
moves the archived log files to a different location. Extra log space is still
required to allow for:
– Online archived logs that are waiting to be moved by the user exit

program
– New log files being formatted for future use.

Temporary Work Space
Some SQL statements require temporary tables for processing (such as a work
file for sorting operations that cannot be done in memory). These temporary
tables require disk space; the amount of space required is dependent upon the
queries, and the size of returned tables, and cannot be estimated.

You can use the database system monitor and the query table space APIs to
track the amount of work space being used during the normal course of
operations.

Designing Nodegroups

A nodegroup is a named set of one or more nodes that are defined as
belonging to a database. Each database partition that is part of the database
system configuration must already be defined in a partition configuration file
called db2nodes.cfg. A nodegroup can contain as little as one database
partition, or as much as the entire set of database partitions defined for the
database system.

You create a new nodegroup using the CREATE NODEGROUP statement, and
can modify it using the ALTER NODEGROUP statement. You can add or drop
one or more database partitions from a nodegroup. The database partitions
must be defined in the db2nodes.cfg file before modifying the nodegroup.
Table spaces reside within nodegroups. Tables reside within table spaces.

When a nodegroup is created or modified, a partitioning map is associated
with it. A partitioning map, in conjunction with a partitioning key and a
hashing algorithm, is used by the database manager to determine which
database partition in the nodegroup will store a given row of data. For more
information about partitioning maps, see “Partitioning Maps” on page 127. For
more information about partitioning keys, see “Partitioning Keys” on
page 128.

In a non-partitioned database, no partitioning key or partitioning map is
required. There are no nodegroup design considerations if you are using a

124 Administration Guide: Planning

non-partitioned database. A database partition is a part of the database,
complete with user data, indexes, configuration files, and transaction logs.
Default nodegroups that were created when the database was created, are
used by the database manager. IBMCATGROUP is the default nodegroup for
the table space containing the system catalogs. IBMTEMPGROUP is the
default nodegroup for system temporary table spaces. IBMDEFAULTGROUP
is the default nodegroup for the table spaces containing the user defined
tables that you may choose to put there. A user temporary table space for a
declared temporary table can be created in IBMDEFAULTGROUP or any
user-created nodegroup, but not in IBMTEMPGROUP.

If you are using a multiple partition nodegroup, consider the following design
points:
v In a multiple partition nodegroup, you can only create a unique index if it

is a superset of the partitioning key.
v Depending on the number of database partitions in the database, you may

have one or more single-partition nodegroups, and one or more multiple
partition nodegroups present.

v Each database partition must be assigned a unique partition number. The
same database partition may be found in one or more nodegroups.

v To ensure fast recovery of the database partition containing system catalog
tables, avoid placing user tables on the same database partition. This is
accomplished by placing user tables in nodegroups that do not include the
database partition in the IBMCATGROUP nodegroup.

You should place small tables in single-partition nodegroups, except when
you want to take advantage of collocation with a larger table. Collocation is the
placement of rows from different tables that contain related data in the same
database partition. Collocated tables allow DB2 to utilize more efficient join
strategies. Collocated tables can reside in a single-partition nodegroup. Tables
are considered collocated if they reside in a multiple partition nodegroup,
have the same number of columns in the partitioning key, and if the data
types of the corresponding columns are partition compatible. Rows in
collocated tables with the same partitioning key value are placed on the same
database partition. Tables can be in separate table spaces in the same
nodegroup, and still be considered collocated.

You should avoid extending medium-sized tables across too many database
partitions. For example, a 100 MB table may perform better on a 16 partition
nodegroup than on a 32 partition nodegroup.

You can use nodegroups to separate online transaction processing (OLTP)
tables from decision support (DSS) tables, to ensure that the performance of
OLTP transactions is not adversely affected.

Chapter 8. Physical Database Design 125

Nodegroup Design Considerations
Your logical database design, and the amount of data to be processed, will
suggest whether your database needs to be partitioned. This section covers
the following topics related to database partitioning:
v “Data Partitioning”
v “Partitioning Maps” on page 127
v “Partitioning Keys” on page 128
v “Table Collocation” on page 130
v “Partition Compatibility” on page 131
v “Replicated Summary Tables” on page 131

Data Partitioning
DB2 supports a partitioned storage model that allows you to store data across
several database partitions in the database. This means that the data is
physically stored across more than one database partition, and yet can be
accessed as though it were located in the same place. Applications and users
accessing data in a partitioned database do not need to be aware of the
physical location of the data.

The data, while physically split, is used and managed as a logical whole.
Users can choose how to partition their data by declaring partitioning keys.
Users can also determine across which and how many database partitions
their table data can be spread, by selecting the table space and the associated
nodegroup in which the data should be stored. In addition, an updatable
partitioning map is used with a hashing algorithm to specify the mapping of
partitioning key values to database partitions, which determines the
placement and retrieval of each row of data. As a result, you can spread the
workload across a partitioned database for large tables, while allowing smaller
tables to be stored on one or more database partitions. Each database partition
has local indexes on the data it stores, resulting in increased performance for
local data access.

You are not restricted to having all tables divided across all database
partitions in the database. DB2 supports partial declustering, which means that
you can divide tables and their table spaces across a subset of database
partitions in the system (that is, a nodegroup).

An alternative to consider when you want tables to be positioned on each
database partition, is to use summary tables and then replicate those tables.
You can create a summary table containing the information that you need,
and then replicate it to each node. For more information, see “Replicated
Summary Tables” on page 131.

126 Administration Guide: Planning

Partitioning Maps
In a partitioned database environment, the database manager must have a
way of knowing which table rows are stored on which database partition. The
database manager must know where to find the data it needs, and uses a
map, called a partitioning map, to find the data.

A partitioning map is an internally generated array containing either 4 096
entries for multiple partition nodegroups, or a single entry for single-partition
nodegroups. For a single-partition nodegroup, the partitioning map has only
one entry containing the partition number of the database partition where all
the rows of a database table are stored. For multiple partition nodegroups, the
partition numbers of the nodegroup are specified in a round-robin fashion.
Just as a city map is organized into sections using a grid, the database
manager uses a partitioning key to determine the location (the database
partition) where the data is stored.

For example, assume that you have a database created on four database
partitions (numbered 0–3). The partitioning map for the IBMDEFAULTGROUP
nodegroup of this database would be:

0 1 2 3 0 1 2 ...

If a nodegroup had been created in the database using database partitions 1
and 2, the partitioning map for that nodegroup would be:

1 2 1 2 1 2 1 ...

If the partitioning key for a table to be loaded in the database is an integer
that has possible values between 1 and 500 000, the partitioning key is hashed
to a partition number between 0 and 4 095. That number is used as an index
into the partitioning map to select the database partition for that row.

Figure 35 on page 128 shows how the row with the partitioning key value (c1,
c2, c3) is mapped to partition 2, which, in turn, references database partition
n5.

Chapter 8. Physical Database Design 127

A partition map is a flexible way of controlling where data is stored in a
partitioned database. If you have a need at some future time to change the
data distribution across the database partitions in your database, you can use
the data redistribution utility. This utility allows you to rebalance or introduce
skew into the data distribution. For more information about this utility, refer
to ″Redistributing Data Across Database Partitions″ in the Administration
Guide: Performance.

You can use the Get Table Partitioning Information (sqlugtpi) API to obtain a
copy of a partitioning map that you can view. For more information about
this API, refer to the Administrative API Reference.

Partitioning Keys
A partitioning key is a column (or group of columns) that is used to determine
the partition in which a particular row of data is stored. A partitioning key is
defined on a table using the CREATE TABLE statement. If a partitioning key
is not defined for a table in a table space that is divided across more than one
database partition in a nodegroup, one is created by default from the first
column of the primary key. If no primary key is specified, the default
partitioning key is the first non-long field column defined on that table. (Long
includes all long data types and all large object (LOB) data types). If you are
creating a table in a table space associated with a single-partition nodegroup,
and you want to have a partitioning key, you must define the partitioning key
explicitly. One is not created by default.

If no columns satisfy the requirement for a default partitioning key, the table
is created without one. Tables without a partitioning key are only allowed in
single-partition nodegroups. You can add or drop partitioning keys at a later
time, using the ALTER TABLE statement. Altering the partition key can only
be done to a table whose table space is associated with a single-partition
nodegroup.

Row:

...

partitioning key

(..., c1, c2, c3, ...)

partitioning function maps (c1, c2, c3) to partition number 2

0 1 2 3 4 ... 4095

Partitioning Map: n0 n2 n5 n0 n6 ...

Figure 35. Data Distribution Using a Partition Map

128 Administration Guide: Planning

Choosing a good partitioning key is important. You should take into
consideration:
v How tables are to be accessed
v The nature of the query workload
v The join strategies employed by the database system.

If collocation is not a major consideration, a good partitioning key for a table
is one that spreads the data evenly across all database partitions in the
nodegroup. The partitioning key for each table in a table space that is
associated with a nodegroup determines if the tables are collocated. Tables are
considered collocated when:
v The tables are placed in table spaces that are in the same nodegroup
v The partition keys in each table have the same number of columns
v The data types of the corresponding columns are partition-compatible.

This ensures that rows of collocated tables with the same partitioning key
values are located on the same partition. For more information about
partition-compatibility, see “Partition Compatibility” on page 131. For more
information about table collocation, see “Table Collocation” on page 130.

An inappropriate partitioning key can cause uneven data distribution.
Columns with unevenly distributed data, and columns with a small number
of distinct values should not be chosen as a partitioning key. The number of
distinct values must be great enough to ensure an even distribution of rows
across all database partitions in the nodegroup. The cost of applying the
partitioning hash algorithm is proportional to the size of the partitioning key.
The partitioning key cannot be more than 16 columns, but fewer columns
result in better performance. Unnecessary columns should not be included in
the partitioning key.

The following points should be considered when defining partitioning keys:
v Creation of a multiple partition table that contains only long data types

(LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, or DBCLOB) is
not supported.

v The partition key definition cannot be altered.
v You cannot update the partitioning key column value for a row in the table.
v You can only delete or insert partitioning key column values.
v The partitioning key should include the most frequently joined columns.
v The partitioning key should be made up of columns that often participate

in a GROUP BY clause.
v Any unique key or primary key must contain all of the partitioning key

columns.

Chapter 8. Physical Database Design 129

v In an online transaction processing (OLTP) environment, all columns in the
partitioning key should participate in the transaction by using equal (=)
predicates with constants or host variables. For example, assume you have
an employee number, emp_no, that is often used in transactions such as:

UPDATE emp_table SET ... WHERE
emp_no = host-variable

In this case, the EMP_NO column would make a good single column
partitioning key for EMP_TABLE.

Hash partitioning is the method by which the placement of each row in the
partitioned table is determined. The method works as follows:
1. The hashing algorithm is applied to the value of the partitioning key, and

generates a partition number between zero and 4095.
2. The partitioning map is created when a nodegroup is created. Each of the

partition numbers is sequentially repeated in a round-robin fashion to fill
the partitioning map. For more information about partitioning maps, see
“Partitioning Maps” on page 127.

3. The partition number is used as an index into the partitioning map. The
number at that location in the partitioning map is the number of the
database partition where the row is stored.

Table Collocation
You may discover that two or more tables frequently contribute data in
response to certain queries. In this case, you will want related data from such
tables to be located as close together as possible. In an environment where the
database is physically divided among two or more database partitions, there
must be a way to keep the related pieces of the divided tables as close
together as possible. The ability to do this is called table collocation.

Tables are collocated when they are stored in the same nodegroup, and when
their partitioning keys are compatible. Placing both tables in the same
nodegroup ensures a common partitioning map. The tables may be in
different table spaces, but the table spaces must be associated with the same
nodegroup. The data types of the corresponding columns in each partitioning
key must be partition-compatible. For information about partition compatibility,
see “Partition Compatibility” on page 131.

DB2 has the ability to recognize, when accessing more than one table for a
join or a subquery, that the data to be joined is located at the same database
partition. When this happens, DB2 can choose to perform the join or subquery
at the database partition where the data is stored, instead of having to move
data between database partitions. This ability to carry out joins or subqueries
at the database partition has significant performance advantages. For more
information, refer to ″Collocated Joins″ in the Administration Guide:
Performance.

130 Administration Guide: Planning

Partition Compatibility
The base data types of corresponding columns of partitioning keys are
compared and can be declared partition compatible. Partition compatible data
types have the property that two variables, one of each type, with the same
value, are mapped to the same partition number by the same partitioning
algorithm.

Partition compatibility has the following characteristics:
v A base data type is compatible with another of the same base data type.
v Internal formats are used for DATE, TIME, and TIMESTAMP data types.

They are not compatible with each other, and none are compatible with
CHAR.

v Partition compatibility is not affected by columns with NOT NULL or FOR
BIT DATA definitions.

v NULL values of compatible data types are treated identically; those of
non-compatible data types may not be.

v Base data types of a user defined type are used to analyze partition
compatibility.

v Decimals of the same value in the partitioning key are treated identically,
even if their scale and precision differ.

v Trailing blanks in character strings (CHAR, VARCHAR, GRAPHIC, or
VARGRAPHIC) are ignored by the hashing algorithm.

v BIGINT, SMALLINT, and INTEGER are compatible data types.
v REAL and FLOAT are compatible data types.
v CHAR and VARCHAR of different lengths are compatible data types.
v GRAPHIC and VARGRAPHIC are compatible data types.
v Partition compatibility does not apply to LONG VARCHAR, LONG

VARGRAPHIC, CLOB, DBCLOB, and BLOB data types, because they are
not supported as partitioning keys.

Replicated Summary Tables
A summary table is a table that is defined by a query that is also used to
determine the data in the table. Summary tables can be used to improve the
performance of queries. If DB2 determines that a portion of a query could be
resolved using a summary table, the query may be rewritten by the database
manager to use the summary table.

In a partitioned database environment, you can replicate summary tables. You
can use replicated summary tables to improve query performance. A replicated
summary table is based on a table that may have been created in a
single-partition nodegroup, but that you want replicated across all of the
database partitions in the nodegroup. To create the replicated summary table,
invoke the CREATE TABLE statement with the REPLICATED keyword. The

Chapter 8. Physical Database Design 131

REPLICATED keyword can only be specified for a summary table that is
defined with the REFRESH DEFERRED option.

For more information about summary tables, see ″Creating a Summary Table″
in the Administration Guide: Implementation.

By using replicated summary tables, you can obtain collocation between tables
that are not typically collocated. Replicated summary tables are particularly
useful for joins in which you have a large fact table and small dimension
tables. To minimize the extra storage required, as well as the impact of having
to update every replica, tables that are to be replicated should be small and
infrequently updated.

Note: You should also consider replicating larger tables that are infrequently
updated: the one-time cost of replication is offset by the performance
benefits that can be obtained through collocation.

By specifying a suitable predicate in the subselect clause used to define the
replicated table, you can replicate selected columns, selected rows, or both.

For more information about replicated summary tables, refer to the CREATE
TABLE statement in the SQL Reference. For more information about collocated
joins, refer to ″Collocated Joins″ in the Administration Guide: Implementation.

Designing and Choosing Table Spaces

A table space is a storage model that provides a level of indirection between a
database and the tables stored within that database. Table spaces reside in
nodegroups. They allow you to assign the location of database and table data
directly onto containers. (A container can be a directory name, a device name,
or a file name.) This can provide improved performance, more flexible
configuration, and better integrity.

For information about creating or altering a table space, see ″Creating a Table
Space″, or ″Altering a Table Space″ in the Administration Guide: Implementation.

Since table spaces reside in nodegroups, the table space selected to hold a
table defines how the data for that table is distributed across the database
partitions in a nodegroup. A single table space can span several containers. It
is possible for multiple containers (from one or more table spaces) to be
created on the same physical disk (or drive). For improved performance, each
container should use a different disk. Figure 36 on page 133 illustrates the
relationship between tables and table spaces within a database, and the
containers associated with that database.

132 Administration Guide: Planning

The EMPLOYEE and DEPARTMENT tables are in the HUMANRES table
space, which spans containers 0, 1, 2 and 3. The PROJECT table is in the
SCHED table space in container 4. This example shows each container existing
on a separate disk.

The database manager attempts to balance the data load across containers. As
a result, all containers are used to store data. The number of pages that the
database manager writes to a container before using a different container is
called the extent size. The database manager does not always start storing table
data in the first container.

Figure 37 on page 134 shows the HUMANRES table space with an extent size
of two 4 KB pages, and four containers, each with a small number of allocated
extents. The DEPARTMENT and EMPLOYEE tables both have seven pages,
and span all four containers.

Database

SCHED
Table Space

HUMANRES
Table Space

DEPARTMENT
Table

Container
0

Container
1

Container
2

Container
3

Container
4

Nodegroup

PROJECT
Table

EMPLOYEE
Table

Figure 36. Table Spaces and Tables Within a Database

Chapter 8. Physical Database Design 133

A database must contain at least three table spaces:
v One catalog table space, which contains all of the system catalog tables for

the database. This table space is called SYSCATSPACE, and it cannot be
dropped. IBMCATGROUP is the default nodegroup for this table space.

v One or more user table spaces, which contain all user defined tables. By
default, one table space, USERSPACE1, is created. IBMDEFAULTGROUP is
the default nodegroup for this table space.
You should specify a table space name when you create a table, or the
results may not be what you intend. If you do not specify a table space
name, the table is placed according to the following rules: If user-created
table spaces exist, choose the one with the smallest page size large enough
for this table. Otherwise, use USERSPACE1 if it’s page size is large enough
for the table. If no table spaces with a large enough page size exist, the
table is not created.
A table’s page size is determined either by row size, or the number of
columns. The maximum allowable length for a row is dependent upon the
page size of the table space in which the table is created. Possible values for
page size are 4 KB (the default), 8 KB, 16 KB, and 32 KB. You can use a
table space with one page size for the base table, and a different table space
with a different page size for long or LOB data. (Recall that SMS does not
support tables that span table spaces, but that DMS does.) If the number of
columns or the row size exceeds the limits for a table space’s page size, an
error is returned (SQLSTATE 42997).

v One or more temporary table spaces, which contain temporary tables.
Temporary table spaces can be system temporary table spaces or user temporary

Container 0 Container 1 Container 2 Container 3

HUMANRES Table Space

Extent
Size

4KB
Page

EMPLOYEE DEPARTMENT DEPARTMENT DEPARTMENT

DEPARTMENT EMPLOYEE EMPLOYEEEMPLOYEE{
{

Figure 37. Containers and Extents

134 Administration Guide: Planning

table spaces. A database must have at least one system temporary table
space; by default, one system temporary table space called TEMPSPACE1 is
created at database creation time. IBMTEMPGROUP is the default
nodegroup for this table space. User temporary table spaces are not created
by default at database creation time.
If a database uses more than one temporary table space, temporary objects
are allocated among the temporary table spaces in a round-robin fashion.
If queries are running against tables in table spaces that are defined with a
page size larger than the 4 KB default (for example, an ORDER BY on 1012
columns), some of them may fail. This will occur if there are no temporary
table spaces defined with a larger page size. You may need to create a
temporary table space with a larger page size (8 KB, 16 KB, or 32 KB). Any
DML (Data Manipulation Language) statement could fail unless there exists
a temporary table space with the same page size as the largest page size in
the user table space.
You should define a single SMS temporary table space with a page size
equal to the page size used in the majority of your user table spaces. This
should be adequate for typical environments and workloads. See also
“Recommendations for Temporary Table Spaces” on page 147.

In a partitioned database environment, the catalog node will contain all three
default table spaces, and the other database partitions will each contain only
TEMPSPACE1 and USERSPACE1.

There are two types of table space, both of which can be used in a single
database:
v “System Managed Space”: The operating system’s file manager controls the

storage space.
v “Database Managed Space Table Space” on page 139: The database manager

controls the storage space.

System Managed Space
In an SMS (System Managed Space) table space, the operating system’s file
system manager allocates and manages the space where the table is stored.
The storage model typically consists of many files, representing table objects,
stored in the file system space. The user decides on the location of the files,
DB2 controls their names, and the file system is responsible for managing
them. By controlling the amount of data written to each file, the database
manager distributes the data evenly across the table space containers. An SMS
table space is the default table space.

Each table has at least one SMS physical file associated with it. See “SMS
Physical Files” on page 138 for a list of these files and a description of their
contents.

Chapter 8. Physical Database Design 135

In an SMS table space, a file is extended one page at a time as the object
grows. If you need improved insert performance, you can consider enabling
multipage file allocation. This allows the system to allocate or extend the file
by more than one page at a time. You must run db2empfa to enable
multipage file allocation. In a partitioned database environment, this utility
must be run on each database partition. Once multipage file allocation is
enabled, it cannot be disabled. For more information about db2empfa, refer to
the Command Reference.

You should explicitly define SMS table spaces using the MANAGED BY
SYSTEM option on the CREATE DATABASE command, or on the CREATE
TABLESPACE statement. You must consider two key factors when you design
your SMS table spaces:
v Containers for the table space.

You must specify the number of containers that you want to use for your
table space. It is very important to identify all the containers you want to
use, because you cannot add or delete containers after an SMS table space
is created. In a partitioned database environment, when a new partition is
added to the nodegroup for an SMS table space, the ALTER TABLESPACE
statement can be used to add containers for the new partition.
Each container used for an SMS table space identifies an absolute or relative
directory name. Each of these directories can be located on a different file
system (or physical disk). The maximum size of the table space can be
estimated by:

number of containers * (maximum file system size
supported by the operating system)

This formula assumes that there is a distinct file system mapped to each
container, and that each file system has the maximum amount of space
available. In practice, this may not be the case, and the maximum table
space size may be much smaller.

Note: Care must be taken when defining the containers. If there are
existing files or directories on the containers, an error (SQL0298N) is
returned.

v Extent size for the table space.
The extent size can only be specified when the table space is created.
Because it cannot be changed later, it is important to select an appropriate
value for the extent size. For more information, see “Choosing an Extent
Size” on page 146.
If you do not specify the extent size when creating a table space, the
database manager will create the table space using the default extent size,
defined by the dft_extent_sz database configuration parameter (refer to the
Administration Guide: Performance for more information about this

136 Administration Guide: Planning

parameter). This configuration parameter is initially set based on
information provided when the database is created. If the DFT_EXTENT_SZ
parameter is not specified on the CREATE DATABASE command, the
default extent size will be set to 32.

To choose appropriate values for the number of containers and the extent size
for the table space, you must understand:
v The limitation that your operating system imposes on the size of a logical

file system.
For example, some operating systems have a 2 GB limit. Therefore, if you
want a 64 GB table object, you will need at least 32 containers on this type
of system.
When you create the table space, you can specify containers that reside on
different file systems and as a result, increase the amount of data that can
be stored in the database.

v How the database manager manages the data files and containers
associated with a table space.
The first table data file (SQL00001.DAT) is created in the first container
specified for the table space, and this file is allowed to grow to the extent
size. After it reaches this size, the database manager writes data to
SQL00001.DAT in the next container. This process continues until all of the
containers contain SQL00001.DAT files, at which time the database manager
returns to the first container. This process (known as striping) continues
through the container directories until a container becomes full (SQL0289N),
or no more space can be allocated from the operating system (disk full
error). Striping is also used for index (SQLnnnnn.INX), long field
(SQLnnnnn.LF), and LOB (SQLnnnnn.LB and SQLnnnnn.LBA) files.

Note: The SMS table space is full as soon as any one of its containers is
full. Thus, it is important to allocate the same amount of space for
each container.

To help distribute data across the containers more evenly, the database
manager determines which container to use first by taking the table
identifier (1 in the above example) modulo the number of containers.
Containers are numbered sequentially, starting at 0.

For more information about the files used in an SMS table space, see “SMS
Physical Files” on page 138.

Chapter 8. Physical Database Design 137

SMS Physical Files
The following files are found within an SMS table space directory container:

File Name Description

SQLTAG.NAM
There is one of these files in each container subdirectory, and
they are used by the database manager when you connect to
the database to verify that the database is complete and
consistent.

SQLxxxxx.DAT
Table file. All table rows are stored here, with the exception of
LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, or
DBCLOB data.

SQLxxxxx.LF File containing LONG VARCHAR or LONG VARGRAPHIC
data (also called ″long field data″). This file is only created if
LONG VARCHAR or LONG VARGRAPHIC columns exist in
the table.

SQLxxxxx.LB Files containing BLOB, CLOB, or DBCLOB data (also called
″LOB data″). These files are only created if BLOB, CLOB, or
DBCLOB columns exist in the table.

SQLxxxxx.LBA
Files containing allocation and free space information about
the SQLxxxxx.LB files.

SQLxxxxx.INX
Index file for a table. All indexes for the corresponding table
are stored in this single file. It is only created if indexes have
been defined.

Note: When an index is dropped, the space is not physically
freed from the index (.INX) file until the index file is
deleted. The index file will be deleted if all the indexes
on the table are dropped (and committed), or if the
table is reorganized. If the index file is not deleted, the
space will be marked free once the drop has been
committed, and will be reused for future index creation
or index maintenance.

SQLxxxxx.DTR
Temporary data file for the reorganization of a DAT file.
When reorganizing a table, the reorg utility (through the
REORG TABLE command) creates a table in one of the system
temporary table spaces. These temporary table spaces can be
defined to use containers different from those used for the
user defined tables.

138 Administration Guide: Planning

SQLxxxxx.LFR
Temporary data file for the reorganization of an LF file. When
reorganizing a table, the reorg utility (through the REORG
TABLE command) creates a table in one of the system
temporary table spaces. These temporary table spaces can be
defined to use containers different from those used for the
user defined tables.

SQLxxxxx.RLB
Temporary data file for the reorganization of an LB file. When
reorganizing a table, the reorg utility (through the REORG
TABLE command) creates a table in one of the system
temporary table spaces. These temporary table spaces can be
defined to use containers different from those used for the
user defined tables.

SQLxxxxx.RBA
Temporary data file for the reorganization of an LBA file.
When reorganizing a table, the reorg utility (through the
REORG TABLE command) creates a table in one of the system
temporary table spaces. These temporary table spaces can be
defined to use containers different from those used for the
user defined tables.

Notes:

1. Do not make any direct changes to these files. They can only be accessed
indirectly using the documented APIs and by tools that implement those
APIs, including the command line processor and the Control Center.

2. Do not move these files.
3. Do not remove these files.
4. The only supported means of backing up a database or a table space is

through the sqlubkp (Backup Database) API, including the command line
processor and Control Center implementations of that API.

Database Managed Space Table Space
In a DMS (Database Managed Space) table space, the database manager
controls the storage space. The storage model consists of a limited number of
devices whose space is managed by DB2. The Administrator decides which
devices to use, and DB2 manages the space on those devices. The table space
is essentially an implementation of a special purpose file system designed to
best meet the needs of the database manager. The table space definition
includes a list of the devices or files that belong to the table space, and in
which data can be stored.

A DMS table space containing user defined tables and data can be defined as:
v A regular table space to store normal table and index data

Chapter 8. Physical Database Design 139

v A long table space to store long field or LOB data.

When designing your DMS table spaces and containers, you should consider
the following:
v The database manager uses striping to ensure an even distribution of data

across all containers.
v The maximum size of regular table spaces is 64 GB for 4 KB pages; 128 GB

for 8 KB pages; 256 GB for 16 KB pages; and 512 GB for 32 KB pages. The
maximum size of long table spaces is 2 TB.

v Unlike SMS table spaces, the containers that make up a DMS table space do
not need to be the same size; however, this is not normally recommended,
because it results in uneven striping across the containers, and sub-optimal
performance. If any container is full, DMS table spaces use available free
space from other containers.

v Because space is pre-allocated, it must be available before the table space
can be created. When using device containers, the device must also exist
with enough space for the definition of the container. Each device can have
only one container defined on it. To avoid wasted space, the size of the
device and the size of the container should be equivalent. If, for example,
the device is allocated with 5 000 pages, and the device container is defined
to allocate 3 000 pages, 2 000 pages on the device will not be usable.

v One page in every container is reserved for overhead, and the remaining
pages will be used one extent at a time. Only full extents are used, so for
optimal space management, you can use the following formula to
determine an appropriate size to use when allocating a container:

(extent_size * n) + 1

where extent_size is the size of each extent in the table space, and n is the
number of extents that you want to store in the container.

v Three extents in the table space are reserved for overhead.
v At least two extents are required to store any user table data. (These extents

are required for the regular data for one table, and not for any index, long
field or large object data, which require their own extents.)

v Device containers must use logical volumes with a ″character special
interface″, not physical volumes.

v You can use files instead of devices with DMS table spaces. No operational
difference exists between a file and a device; however, a file can be less
efficient because of the run-time overhead associated with the file system.
Files are useful when:
– Devices are not directly supported
– A device is not available
– Maximum performance is not required
– You do not want to set up devices.

140 Administration Guide: Planning

v If your workload involves LOBs or LONG VARCHAR data, you may derive
performance benefits from file system caching. Note that LOBs and LONG
VARCHARs are not buffered by DB2’s buffer pool.

v Some operating systems allow you to have physical devices greater than 2
GB in size. You should consider partitioning the physical device into
multiple logical devices, so that no container is larger than the size allowed
by the operating system.

Adding Containers to DMS Table Spaces
The ALTER TABLESPACE statement lets you add a container to an existing
table space to increase its storage capacity. The contents of the table space are
then rebalanced across all containers. Access to the table space is not restricted
during rebalancing. If you need to add more than one container, you should
add them at the same time, either in one ALTER TABLESPACE statement, or
within the same transaction, to prevent the database manager from having to
rebalance the containers more than once.

You should check how full the containers for a table space are by using the
LIST TABLESPACE CONTAINERS or the LIST TABLESPACES command.
Adding new containers should be done before the existing containers are
almost or completely full. The new space across all containers is not available
until rebalancing is complete.

Adding a container which is smaller than existing containers results in a
uneven distribution of data. This can cause parallel I/O operations, such as
prefetching data, to perform less efficiently than they otherwise could on
containers of equal size.

Table Space Design Considerations
This section covers the following topics:
v “Considerations for Table Space Input and Output (I/O)” on page 142
v “Mapping Table Spaces to Buffer Pools” on page 143
v “Mapping Table Spaces to Nodegroups” on page 144
v “Mapping Tables to Table Spaces” on page 144
v “Choosing an Extent Size” on page 146
v “Recommendations for Temporary Table Spaces” on page 147
v “Recommendations for Catalog Table Spaces” on page 148
v “Workload Considerations” on page 149
v “Choosing an SMS or DMS Table Space” on page 150
v “Optimizing Performance When Data is Placed on RAID Devices” on

page 151.

Chapter 8. Physical Database Design 141

Considerations for Table Space Input and Output (I/O)
The type and design of your table space determines the efficiency of the I/O
performed against that table space. Following are concepts that you should
understand before considering further the issues surrounding table space
design and use:

Big-block reads
A read where several pages (usually an extent) are retrieved
in a single request. Reading several pages at once is more
efficient than reading each page separately.

Prefetching The reading of pages in advance of those pages being
referenced by a query. The overall objective is to reduce
response time. This can be achieved if the prefetching of pages
can occur asynchronously to the execution of the query. The
best response time is achieved when either the CPU or the
I/O subsystem is operating at maximum capacity.

Page cleaning As pages are read and modified, they accumulate in the
database buffer pool. When a page is read in, it is read into a
buffer pool page. If the buffer pool is full of modified pages,
one of these modified pages must be written out to the disk
before the new page can be read in. To prevent the buffer pool
from becoming full, page cleaner agents write out modified
pages to guarantee the availability of buffer pool pages for
future read requests.

Whenever it is advantageous to do so, DB2 performs big-block reads. This
typically occurs when retrieving data that is sequential or partially sequential
in nature. The amount of data read in one read operation depends on the
extent size — the bigger the extent size, the more pages can be read at one
time.

How the extent is stored on disk affects I/O efficiency. In a DMS table space
using device containers, the data tends to be contiguous on disk, and can be
read with a minimum of seek time and disk latency. If files are being used,
however, the data may have been broken up by the file system and stored in
more than one location on disk. This occurs most often when using SMS table
spaces, where files are extended one page at a time, making fragmentation
more likely. A large file that has been pre-allocated for use by a DMS table
space tends to be contiguous on disk, especially if the file was allocated in a
clean file space.

You can control the degree of prefetching by tuning the PREFETCHSIZE
parameter on the CREATE TABLESPACE statement. (The default value for all
table spaces in the database is set by the dft_prefetch_sz database configuration
parameter.) The PREFETCHSIZE parameter tells DB2 how many pages to read
whenever a prefetch is triggered. By setting PREFETCHSIZE to be a multiple

142 Administration Guide: Planning

of the EXTENTSIZE parameter on the CREATE TABLESPACE statement, you
can cause multiple extents to be read in parallel. (The default value for all
table spaces in the database is set by the dft_extent_sz database configuration
parameter.) The EXTENTSIZE parameter specifies the number of 4 KB pages
that will be written to a container before skipping to the next container.

For example, suppose you had a table space that used three devices. If you set
the PREFETCHSIZE to be three times the EXTENTSIZE, DB2 can do a
big-block read from each device in parallel, thereby significantly increasing
I/O throughput. This assumes that each device is a separate physical device,
and that the controller has sufficient bandwidth to handle the data stream
from each device. Note that DB2 may have to dynamically adjust the prefetch
parameters at run time based on query speed, buffer pool utilization, and
other factors.

Some file systems use their own prefetching method (such as the Journaled
File System on AIX). In some cases, file system prefetching is set to be more
aggressive than DB2 prefetching. This may cause prefetching for SMS and
DMS table spaces with file containers to appear to outperform prefetching for
DMS table spaces with devices. This is misleading, because it is likely the
result of the additional level of prefetching that is occurring in the file system.
DMS table spaces should be able to outperform any equivalent configuration.

For prefetching (or even reading) to be efficient, a sufficient number of clean
buffer pool pages must exist. For example, there could be a parallel prefetch
request that reads three extents from a table space, and for each page being
read, one modified page is written out from the buffer pool. The prefetch
request may be slowed down to the point where it cannot keep up with the
query. Page cleaners should be configured in sufficient numbers to satisfy the
prefetch request. At least one page cleaner should be defined for each real
disk used by the database. For more information about these topics, refer to
the Administration Guide: Performance.

Mapping Table Spaces to Buffer Pools
Each table space is associated with a specific buffer pool. The default buffer
pool is IBMDEFAULTBP. If another buffer pool is to be associated with a table
space, the buffer pool must exist (it is defined with the CREATE
BUFFERPOOL statement), and the association is defined when the table space
is created (using the CREATE TABLESPACE statement). The association
between the table space and the buffer pool can be changed using the ALTER
TABLESPACE statement.

Having more than one buffer pool allows you to configure the memory used
by the database to improve overall performance. For table spaces with one or
more large tables that are accessed randomly by users, the size of the buffer
pool can be limited, because caching the data pages might not be beneficial.

Chapter 8. Physical Database Design 143

The table space for an online transaction application might be associated with
a larger buffer pool, so that the data pages used by the application can be
cached longer, resulting in faster response times. Care must be taken in
configuring new buffer pools. For more information on this topic, refer to
″Managing the Database Buffer Pool″ in the Administration Guide: Performance.

Note: If you have determined that a page size of 8 KB, 16 KB, or 32 KB is
required by your database, each table space with one of these page
sizes must be mapped to a buffer pool with the same page size.

The storage required for all the buffer pools must be available to the database
manager when the database is started. If DB2 is unable to obtain the required
storage, the database manager will start up with default buffer pools (one
each of 4 KB, 8 KB, 16 KB, and 32 KB page sizes), and issue a warning.

In a partitioned database environment, you can create a buffer pool of the
same size for all partitions in the database. You can also create buffer pools of
different sizes on different partitions. For more information about the CREATE
BUFFERPOOL statement, refer to the SQL Reference.

Mapping Table Spaces to Nodegroups
In a partitioned database environment, each table space is associated with a
specific nodegroup. This allows the characteristics of the table space to be
applied to each node in the nodegroup. The nodegroup must exist (it is
defined with the CREATE NODEGROUP statement), and the association
between the table space and the nodegroup is defined when the table space is
created using the CREATE TABLESPACE statement.

You cannot change the association between table space and nodegroup using
the ALTER TABLESPACE statement. You can only change the table space
specification for individual partitions within the nodegroup. In a
single-partition environment, each table space is associated with the default
nodegroup. The default nodegroup, when defining a table space, is
IBMDEFAULTGROUP, unless a system temporary table space is being
defined; then IBMTEMPGROUP is used. For more information about the
CREATE NODEGROUP statement, refer to the SQL Reference. For more
information about nodegroups and physical database design, see “Designing
Nodegroups” on page 124.

Mapping Tables to Table Spaces
When determining how to map tables to table spaces, you should consider:
v The partitioning of your tables.

At a minimum, you should ensure that the table space you choose is in a
nodegroup with the partitioning you want.

v The amount of data in the table.

144 Administration Guide: Planning

If you plan to store many small tables in a table space, consider using SMS
for that table space. The DMS advantages with I/O and space management
efficiency are not as important with small tables. The SMS advantages of
allocating space one page at a time, and only when needed, are more
attractive with smaller tables. If one of your tables is larger, or you need
faster access to the data in the tables, a DMS table space with a small extent
size should be considered.
You may wish to use a separate table space for each very large table, and
group all small tables together in a single table space. This separation also
allows you to select an appropriate extent size based on the table space
usage. (See “Choosing an Extent Size” on page 146 for additional
information.)

v The type of data in the table.
You may, for example, have tables containing historical data that is used
infrequently; the end-user may be willing to accept a longer response time
for queries executed against this data. In this situation, you could use a
different table space for the historical tables, and assign this table space to
less expensive physical devices that have slower access rates.
Alternatively, you may be able to identify some essential tables which
require high availability and fast response time. You may want to put these
tables into a table space assigned to a fast physical device that can help
support these important data requirements.
Using DMS table spaces, you can also distribute your table data across
three different table spaces: one for index data; one for LOB and long field
data; and one for regular table data. This allows you to choose the table
space characteristics and the physical devices supporting those table spaces
to best suit the data. For example, you could put your index data on the
fastest devices you have available, and as a result, obtain significant
performance improvements. If you split a table across DMS table spaces,
you should consider backing up and restoring all parts of the table together
if roll-forward recovery is enabled. SMS table spaces do not support this
type of data distribution across table spaces.

v Administrative issues.
Some administrative functions can be performed at the table space level
instead of the database or table level. For example, taking a backup of a
table space instead of a database can help you make better use of your time
and resources. It allows you to frequently back up table spaces with large
volumes of changes, while only occasionally backing up tables spaces with
very low volumes of changes.
You can restore a database or a table space. If unrelated tables do not share
table spaces, you have the option to restore a smaller portion of your
database and reduce costs.

Chapter 8. Physical Database Design 145

A good approach is to group related tables in a set of table spaces. These
tables could be related through referential constraints, or through other
defined business constraints.
If you need to drop and redefine a particular table often, you may want to
define the table in its own table space, because it is more efficient to drop a
DMS table space than it is to drop a table.

Choosing an Extent Size
The extent size for a table space represents the number of pages of table data
that will be written to a container before data will be written to the next
container. When selecting an extent size, you should consider:
v The size and type of tables in the table space.

Space in DMS table spaces is allocated to a table one extent at a time. As
the table is populated and an extent becomes full, a new extent is allocated.
A table is made up of the following separate table objects:
– A data object. This is where the regular column data is stored.
– An index object. This is where all indexes defined on the table are stored.
– A long field object. This is where long field data, if your table has one or

more LONG columns, is stored.
– Two LOB objects. If your table has one or more LOB columns, they are

stored in these two table objects:
- One table object for the LOB data
- A second table object for meta-data describing the LOB data.

Each table object is stored separately, and each object allocates new extents
as needed. Each table object is also paired with a meta-data object called an
extent map, which describes all of the extents in the table space that belong
to the table object. Space for extent maps is also allocated one extent at a
time.

The initial allocation of space for a table, therefore, is two extents for each
table object. If you have many small tables in a table space, you may have a
relatively large amount of space allocated to store a relatively small amount
of data. In such a case, you should specify a small extent size, or use an
SMS table space, which allocates pages one at a time.

If, on the other hand, you have a very large table that has a high growth
rate, and you are using a DMS table space with a small extent size, you
could have unnecessary overhead related to the frequent allocation of
additional extents.

v The type of access to the tables.
If access to the tables includes many queries or transactions that process
large quantities of data, prefetching data from the tables may provide

146 Administration Guide: Planning

significant performance benefits. (Refer to Administration Guide: Performance
for information about data prefetching and its relationship to the extent
size.)

v The minimum number of extents required.
If there is not enough space in the containers for five extents of the table
space, the table space will not be created.

Recommendations for Temporary Table Spaces
It is recommended that you define a single SMS temporary table space with a
page size equal to the page size used in the majority of your regular table
spaces. This should be suitable for typical environments and workloads.
However, it can be advantageous to experiment with different temporary table
space configurations and workloads. The following points should be
considered:
v Temporary tables are in most cases accessed in batches and sequentially.

That is, a batch of rows is inserted, or a batch of sequential rows is fetched.
Therefore, a larger page size typically results in better performance, because
fewer logical or physical page I/O requests are required to read a given
amount of data. This is not always the case when the average temporary
table row size is smaller than the page size divided by 255. A maximum of
255 rows can exist on any page, regardless of the page size. For example, a
query that requires a temporary table with 15-byte rows would be better
served by a 4 KB temporary table space page size, because 255 such rows
can all be contained within a 4 KB page. An 8 KB (or larger) page size
would result in at least 4 KB (or more) bytes of wasted space on each
temporary table page, and would not reduce the number of required I/O
requests.

v If more than fifty percent of the regular table spaces in your database use
the same page size, it can be advantageous to define your temporary table
spaces with the same page size. The reason for this is that this arrangement
enables your temporary table space to share the same buffer pool space
with most or all of your regular table spaces. This, in turn, simplifies buffer
pool tuning.

v When reorganizing a table using a temporary table space, the page size of
the temporary table space must match that of the table. For this reason, you
should ensure that there are temporary table spaces defined for each
different page size used by existing tables that you may reorganize using a
temporary table space.
You can also reorganize without a temporary table space by reorganizing
the table ″inplace″; that is, directly in the target table space. Of course, this
″inplace″ reorganization requires that there be extra space in the target table
space for the reorganization process. For additional information about table
reorganization, refer to Administration Guide: Performance.

Chapter 8. Physical Database Design 147

v In general, when temporary table spaces of differing page sizes exist, the
optimizer will most often choose the temporary table space with the largest
buffer pool. In such cases, it is often wise to assign an ample buffer pool to
one of the temporary table spaces, and leave any others with a smaller
buffer pool. Such a buffer pool assignment will help ensure efficient
utilization of main memory. For example, if your catalog table space uses 4
KB pages, and the remaining table spaces use 8 KB pages, the best
temporary table space configuration may be a single 8 KB temporary table
space with a large buffer pool, and a single 4 KB table space with a small
buffer pool.

Note: Catalog table spaces are restricted to using the 4 KB page size. As
such, the database manager always enforces the existence of a 4 KB
temporary table space to enable catalog table reorganizations.

v There is generally no advantage to defining more than one temporary table
space of any single page size.

v SMS is almost always a better choice than DMS for temporary table spaces
because:
– Disk space is allocated on demand in SMS, whereas it must be

pre-allocated in DMS. Pre-allocation can be difficult: Temporary table
spaces hold transient data that can have a very large peak storage
requirement, and a much smaller average storage requirement. With
DMS, the peak storage requirement must be pre-allocated, whereas with
SMS, the extra disk space can be used for other purposes during off-peak
hours.

– The database manager attempts to keep temporary table pages in
memory, rather than writing them out to disk. As a result, the
performance advantages of DMS are less significant.

– SMS containers can take advantage of file system buffering; DMS
containers cannot.

Recommendations for Catalog Table Spaces
An SMS table space is recommended for database catalogs, for the following
reasons:
v The database catalog consists of many tables of varying sizes. When using a

DMS table space, a minimum of two extents are allocated for each table
object. Depending on the extent size chosen, a significant amount of
allocated and unused space may result. When using a DMS table space, a
small extent size (two to four pages) should be chosen; otherwise, an SMS
table space should be used.

v There are large object (LOB) columns in the catalog tables. LOB data is not
kept in the buffer pool with other data, but is read from disk each time it is
needed. Reading LOBs from disk reduces performance. Since a file system
usually has its own place for storing (or caching) data, using an SMS table

148 Administration Guide: Planning

space, or a DMS table space built on file containers, makes avoidance of
I/O possible if the LOB has previously been referenced.

Given these considerations, an SMS table space is a somewhat better choice
for the catalogs.

Another factor to consider is whether you will need to enlarge the catalog
table space in the future. While some platforms have support for enlarging the
underlying storage for SMS containers, and while you can use redirected
restore to enlarge an SMS table space, the use of a DMS table space facilitates
the addition of new containers.

Workload Considerations
The primary type of workload being managed by DB2 in your environment
can affect your choice of what table space type to use, and what page size to
specify. An online transaction processing (OLTP) workload is characterized by
transactions that need random access to data and that usually return small
sets of data. Given that the access is random, and involves one or a few
pages, prefetching is not possible.

DMS table spaces using device containers perform best in this situation. DMS
table spaces with file containers, or SMS table spaces, are also reasonable
choices for OLTP workloads if maximum performance is not required. With
little or no sequential I/O expected, the settings for the EXTENTSIZE and the
PREFETCHSIZE parameters on the CREATE TABLESPACE statement are not
important for I/O efficiency.

A query workload is characterized by transactions that need sequential or
partially sequential access to data, and that usually return large sets of data. A
DMS table space using multiple device containers (where each container is on
a separate disk) offers the greatest potential for efficient parallel prefetching.
The value of the PREFETCHSIZE parameter on the CREATE TABLESPACE
statement should be set to the value of the EXTENTSIZE parameter,
multiplied by the number of device containers. This allows DB2 to prefetch
from all containers in parallel.

A reasonable alternative for a query workload is to use files, if the file system
has its own prefetching. The files can be either of DMS type using file
containers, or of SMS type. Note that if you use SMS, you need to have the
directory containers map to separate physical disks to achieve I/O
parallelism.

Your goal for a mixed workload is to make single I/O requests as efficient as
possible for OLTP workloads, and to maximize the efficiency of parallel I/O
for query workloads.

Chapter 8. Physical Database Design 149

The considerations for determining the page size for a table space are as
follows:
v For OLTP applications that perform random row read and write operations,

a smaller page size is usually preferable, because it wastes less buffer pool
space with unwanted rows.

v For DSS applications that access large numbers of consecutive rows at a
time, a larger page size is usually better, because it reduces the number of
I/O requests that are required to read a specific number of rows. There is,
however, an exception to this. If your row size is smaller than:

pagesize / 255

there will be wasted space on each page (there is a maximum of 255 rows
per page). In this situation, a smaller page size may be more appropriate.

v Larger page sizes may allow you to reduce the number of levels in the
index.

v Larger pages support rows of greater length.
v On default 4 KB pages, tables are restricted to 500 columns, while the larger

page sizes (8 KB, 16 KB, and 32 KB) support 1012 columns.
v The maximum size of the table space is proportional to the page size of the

table space. The limits are documented in the SQL Reference.

Choosing an SMS or DMS Table Space
There are a number of trade-offs to consider when determining which type of
table space you should use to store your data.

Advantages of an SMS Table Space:

v Space is not allocated by the system until it is required.
v Creating a database requires less initial work, because you do not have to

predefine the containers.

Advantages of a DMS Table Space:

v The size of a table space can be increased by adding containers, using the
ALTER TABLESPACE statement. Existing data is automatically rebalanced
across the new set of containers to retain optimal I/O efficiency.

v A table can be split across multiple table spaces, based on the type of data
being stored:
– Long field and LOB data
– Indexes
– Regular table data

You might want to separate your table data for performance reasons, or to
increase the amount of data stored for a table. For example, you could have
a table with 64 GB of regular table data, 64 GB of index data and 2 TB of

150 Administration Guide: Planning

long data. If you are using 8 KB pages, the table data and the index data
can be as much as 128 GB. If you are using 16 KB pages, it can be as much
as 256 GB. If you are using 32 KB pages, the table data and the index data
can be as much as 512 GB.

v The location of the data on the disk can be controlled, if this is allowed by
the operating system.

v If all table data is in a single table space, a table space can be dropped and
redefined with less overhead than dropping and redefining a table.

v In general, a well-tuned set of DMS table spaces will outperform SMS table
spaces.

Note: On Solaris and PTX (IBM NUMA-Q), DMS table spaces with raw
devices is strongly recommend for performance-critical workloads.

In general, small personal databases are easiest to manage with SMS table
spaces. On the other hand, for large, growing databases you will probably
only want to use SMS table spaces for the temporary table spaces, and
separate DMS table spaces, with multiple containers, for each table. In
addition, you will probably want to store long field data and indexes on their
own table spaces.

If you choose to use DMS table spaces with device containers, you must be
willing to tune and administer your environment. For more information, refer
to ″Performance Considerations for DMS Devices″ in the Administration Guide:
Performance.

Optimizing Performance When Data is Placed on RAID Devices
This section describes how to optimize performance when data is placed on
Redundant Array of Independent Disks (RAID) devices. In general, you
should do the following for each table space that uses a RAID device:
v Define a single container for the table space (using the RAID device).
v Make the EXTENTSIZE of the table space equal to, or a multiple of, the

RAID stripe size.
v Ensure that the PREFETCHSIZE of the table space is:

– the RAID stripe size multiplied by the number of RAID parallel devices
(or a whole multiple of this product), and

– a multiple of the EXTENTSIZE.
v Use the DB2_PARALLEL_IO registry variable (described below) to enable

parallel I/O for the table space.
v Use the DB2_STRIPED_CONTAINERS registry variable (described below)

to ensure extent boundaries are aligned in the table space.

Chapter 8. Physical Database Design 151

DB2_PARALLEL_IO

When reading data from, or writing data to table space containers, DB2 may
use parallel I/O if the number of containers in the database is greater than 1.
However, there are situations when it would be beneficial to have parallel I/O
enabled for single container table spaces. For example, if the container is
created on a single RAID device that is composed of more than one physical
disk, you may want to issue parallel read and write calls.

To force parallel I/O for a table space that has a single container, you can use
the DB2_PARALLEL_IO registry variable. This variable can be set to ″*″
(asterisk), meaning every table space, or it can be set to a list of table space
IDs separated by commas. For example:

db2set DB2_PARALLEL_IO=* {turn parallel I/O on for all table spaces}
db2set DB2_PARALLEL_IO=1,2,4,8 {turn parallel I/O on for table spaces 1, 2,

4, and 8}

After setting the registry variable, DB2 must be stopped (db2stop), and then
restarted (db2start), for the changes to take effect.

DB2_STRIPED_CONTAINERS

Currently, when creating a DMS table space container (device or file), a
one-page tag is stored at the beginning of the container. The remaining pages
are available for data storage by DB2, and are grouped into extent-sized
blocks.

When using RAID devices for table space containers, it is suggested that the
table space be created with an extent size that is equal to, or a multiple of, the
RAID stripe size. However, because of the one-page container tag, the extents
will not line up with the RAID stripes, and it may be necessary during an I/O
request to access more physical disks than would be optimal.

DMS table space containers can now be created in such a way that the tag
exists in its own (full) extent. This avoids the problem described above, but it
requires an extra extent of overhead within the container. To create containers
in this fashion, you must set the DB2 registry variable
DB2_STRIPED_CONTAINERS to ″ON″, and then stop and restart your
instance:

db2set DB2_STRIPED_CONTAINERS=ON
db2stop
db2start

Any DMS container that is created (with the CREATE TABLESPACE or the
ALTER TABLESPACE statement) will have tags taking up a full extent.
Existing containers will remain unchanged.

152 Administration Guide: Planning

To stop creating containers with this attribute, reset the variable, and then
stop and restart your instance:

db2set DB2_STRIPED_CONTAINERS=
db2stop
db2start

The Control Center and the LIST TABLESPACE CONTAINERS command do
not show whether a container has been created as a striped container. They
use the label ″file″ or ″device″, depending on how the container was created.
To verify that a container was created as a striped container, you can use the
/DTSF option of DB2DART to dump table space and container information,
and then look at the type field for the container in question. The query
container APIs (sqlbftcq and sqlbtcq), can be used to create a simple
application that will display the type.

Federated Database Design Considerations

When designing a federated database, consider the following design topics:
v Space requirements
v Network prioritization.

Typically, the data accessible from a federated database is not stored at that
database. References to data source tables and views are stored within the
system catalog, but the actual data is located at the data source. As such, a
federated database might need less storage space than a conventional
database. This general rule might not apply if your queries, due to collating
system differences or lack of function at a data source, must be executed
locally. In this case, tables are materialized at DB2 for processing.

Because the majority of federated system data is typically located at one or
more data sources located across a network, consider changing the resources
assigned to DB2 and your network system. You might see performance
increases after allocating more resources to the network at the DB2 system,
than to the database manager itself.

Chapter 8. Physical Database Design 153

154 Administration Guide: Planning

Chapter 9. Designing Distributed Databases

A transaction is commonly referred to in DB2 as a unit of work. A unit of work
is a recoverable sequence of operations within an application process. It is
used by the database manager to ensure that a database is in a consistent
state. Any reading from or writing to the database is done within a unit of
work.

For example, a bank transaction might involve the transfer of funds from a
savings account to a checking account. After the application subtracts an
amount from the savings account, the two accounts are inconsistent, and
remain so until the amount is added to the checking account. When both steps
are completed, a point of consistency is reached. The changes can be
committed and made available to other applications.

A unit of work starts when the first SQL statement is issued against the
database. The application must end the unit of work by issuing either a
COMMIT or a ROLLBACK statement. The COMMIT statement makes
permanent all changes made within a unit of work. The ROLLBACK
statement removes these changes from the database. If the application ends
normally without either of these statements being explicitly issued, the unit of
work is automatically committed. If it ends abnormally in the middle of a unit
of work, the unit of work is automatically rolled back. Once issued, a
COMMIT or a ROLLBACK cannot be stopped. With some multi-threaded
applications, or some operating systems (such as Windows), if the application
ends normally without either of these statements being explicitly issued, the
unit of work is automatically rolled back. It is recommended that your
applications always explicitly commit or roll back complete units of work. If
part of a unit of work does not complete successfully, the updates are rolled
back, leaving the participating tables as they were before the transaction
began. This ensures that requests are neither lost nor duplicated.

The following topics provide additional information:
v “Using a Single Database in a Transaction” on page 156
v “Using Multiple Databases in a Single Transaction” on page 157
v “Other Configuration Considerations” on page 162
v “Understanding the Two-Phase Commit Process” on page 165
v “Recovering from Problems During Two-Phase Commit” on page 168.

For information about creating applications that use distributed databases,
refer to the Application Development Guide and the CLI Guide and Reference.

© Copyright IBM Corp. 1993, 2000 155

Using a Single Database in a Transaction

The simplest form of transaction is to read from and write to only one
database within a single unit of work. This type of database access is called a
remote unit of work.

Figure 38 shows a database client running a funds transfer application that
accesses a database containing checking and savings account tables, as well as
a banking fee schedule. The application must:
v Accept the amount to transfer from the user interface
v Subtract the amount from the savings account, and determine the new

balance
v Read the fee schedule to determine the transaction fee for a savings account

with the given balance
v Subtract the transaction fee from the savings account
v Add the amount of the transfer to the checking account
v Commit the transaction (unit of work).

To set up such an application, you must:
1. Create the tables for the savings account, checking account and banking

fee schedule in the same database (see ″Implementing Your Design″ in the
Administration Guide: Implementation)

2. If physically remote, set up the database server to use the appropriate
communications protocol, as described in the Installation and Configuration
Supplement

3. If physically remote, catalog the node and the database to identify the
database on the database server, as described in the Quick Beginnings
books

4. Precompile your application program to specify a type 1 connection; that
is, specify CONNECT 1 (the default) on the PRECOMPILE PROGRAM
command, as described in the Application Development Guide.

Update

Update

Read

Database Client

Savings
Account

Checking
Account

Transaction
Fee

Figure 38. Using a Single Database in a Transaction

156 Administration Guide: Planning

Using Multiple Databases in a Single Transaction

When using multiple databases in a single transaction, the requirements for
setting up and administering your environment are different, depending on
the number of databases that are being updated in the transaction.

Updating a Single Database
If your data is distributed across multiple databases, you may wish to update
one database while reading from one or more other databases. This type of
access, which is called multisite update, or two-phase commit, can be performed
within a single unit of work (transaction). See “Updating Multiple Databases”
on page 158 for another example of a multisite update.

Figure 39 shows a database client running a funds transfer application that
accesses two database servers: one containing the checking and savings
accounts, and another containing the banking fee schedule. This example is
similar to the one shown in Figure 38 on page 156, except for the number of
databases, and the location of the tables.

To set up a funds transfer application for this environment, you must:
1. Create the necessary tables in the appropriate databases (see

″Implementing Your Design″ in the Administration Guide: Implementation)
2. If physically remote, set up the database servers to use the appropriate

communications protocols, as described in the Installation and Configuration
Supplement

Savings
Account

Update

Database Client

Read

Checking
Account

Transaction
Fee

Update

Figure 39. Using Multiple Databases in a Single Transaction

Chapter 9. Designing Distributed Databases 157

3. If physically remote, catalog the nodes and the databases to identify the
databases on the database servers, as described in the Quick Beginnings
books

4. Precompile your application program to specify a type 2 connection (that
is, specify CONNECT 2 on the PRECOMPILE PROGRAM command), and
one-phase commit (that is, specify SYNCPOINT ONEPHASE on the
PRECOMPILE PROGRAM command), as described in the Application
Development Guide.

If databases are located on a host or AS/400 database server, you require DB2
Connect for connectivity to these servers. For information about setup, refer to
one of the DB2 Connect Quick Beginnings books. For information about using
DB2 Connect, refer to the DB2 Connect User’s Guide.

Updating Multiple Databases
If your data is distributed across multiple databases, you may want to read
and update several databases in a single transaction. This type of database
access is called a multisite update.

Savings
Account

Update

Database Client

Read

Checking
Account

Transaction
Fee

Update

Figure 40. Updating Multiple Databases in a Single Transaction

158 Administration Guide: Planning

Figure 40 on page 158 shows a database client running a funds transfer
application that accesses three database servers: one containing the checking
account, another containing the savings account, and the third containing the
banking fee schedule.

To set up a funds transfer application for this environment, you must:
1. Create the necessary tables in the appropriate databases (see

″Implementing Your Design″ in the Administration Guide: Implementation)
2. If physically remote, set up the database servers to use the appropriate

communications protocols, as described in the Installation and Configuration
Supplement

3. If physically remote, catalog the nodes and the databases to identify the
databases on the database servers, as described in the Quick Beginnings
books

4. Precompile your application program to specify a type 2 connection (that
is, specify CONNECT 2 on the PRECOMPILE PROGRAM command), and
one-phase commit (that is, specify SYNCPOINT ONEPHASE on the
PRECOMPILE PROGRAM command), as described in the Application
Development Guide.

5. Configure the DB2 transaction manager (TM), as described in “Using the
DB2 Transaction Manager”.

Using the DB2 Transaction Manager
The database manager provides transaction manager functions that can be
used to coordinate the updating of several databases within a single unit of
work. The database client automatically coordinates the unit of work, and
uses a transaction manager database to register each transaction and track its
completion status.

If you are using an XA-compliant transaction manager, such as IBM TXSeries,
BEA Tuxedo, or Microsoft Transaction Server, see “Chapter 10. Designing for
Transaction Managers” on page 171 for integration instructions.

When using DB2 UDB for UNIX based systems, Windows operating systems,
or OS/2 to coordinate your transactions, you must fulfill certain configuration
requirements. If you use TCP/IP exclusively for communications, and DB2
UDB and DB2 for OS/390 are the only database servers involved in your
transactions, configuration is straightforward.

DB2 UDB and DB2 for OS/390 Using TCP/IP Connectivity: If each of the
following statements is true for your environment, the configuration steps for
multisite update are straightforward.
v All communications with remote database servers (including DB2 UDB for

OS/390) use TCP/IP exclusively.

Chapter 9. Designing Distributed Databases 159

v DB2 UDB for UNIX based systems, Windows operating systems, OS/2, or
OS/390 are the only database servers involved in the transaction.

v The DB2 Connect sync point manager (SPM) is not configured.
The DB2 Connect sync point manager is configured automatically at DB2
instance creation time, and is required when:
– SNA connectivity is used with host or AS/400 database servers for

multisite updates.
– An XA-compliant transaction manager (such as IBM TXSeries CICS) is

coordinating the two-phase commit.
This applies to both SNA and TCP/IP connectivity with host or AS/400
database servers. For detailed information, see “Chapter 10. Designing
for Transaction Managers” on page 171. If your environment does not
require the DB2 Connect sync point manager, you can turn it off by
issuing the command db2 update dbm cfg using spm_name NULL at
the DB2 Connect server. Then stop and restart DB2.

The database that will be used as the transaction manager database is
determined at the database client by the database manager configuration
parameter tm_database. For more information about this configuration
parameter, see ″Configuring DB2″ in the Administration Guide: Performance.
Consider the following factors when setting this configuration parameter:
v The transaction manager database can be:

– A DB2 UDB for UNIX based systems, Windows operating systems, or
OS/2 database

– A DB2 for OS/390 Version 5 or later database.
This is the recommended database server to use as the transaction
manager database. OS/390 systems are, generally, more secure than
workstation servers, reducing the possibility of accidental power downs,
reboots, and so on. Therefore the recovery logs, used in the event of
resynchronization, are more secure.

v If a value of 1ST_CONN is specified for the tm_database configuration
parameter, the first database to which an application connects is used as the
transaction manager database.
Care must be taken when using 1ST_CONN. You should only use this
configuration if it is easy to ensure that all involved databases are cataloged
correctly; that is, if:
– The database client initiating the transaction is in the same instance that

contains the participating databases, including the transaction manager
database.

– You are using DCE directory services to catalog and manage access to
your databases.

160 Administration Guide: Planning

Note that if your application attempts to disconnect from the database
being used as the transaction manager database, you will receive a warning
message, and the connection will be held until the unit of work is
committed.

Other Environments: If, in your environment:
v TCP/IP is not used exclusively for communications with remote database

servers (for example, NETBIOS is used)
v DB2 for MVS Version 3 or Version 4, DB2 for AS/400, or DB2 for VM&VSE

is accessed
v DB2 for OS/390 is accessed using SNA
v The DB2 Connect sync point manager is used to access host or AS/400

database servers

the configuration steps for multisite update are more involved.

The database that will be used as the transaction manager database is
determined at the database client by the database manager configuration
parameter tm_database. For more information about this configuration
parameter, see ″Configuring DB2″ in the Administration Guide: Performance.
Consider the following factors when setting this configuration parameter:
v The transaction manager database can be a DB2 UDB for UNIX based

systems, Windows operating systems, or OS/2 database.
v If a value of 1ST_CONN is specified for the tm_database configuration

parameter, the first database to which an application connects is used as the
transaction manager database.
Care must be taken when using 1ST_CONN. You should only use this
configuration if it is easy to ensure that all involved databases are cataloged
correctly; that is, if:
– The database client initiating the transaction is in the same instance that

contains the participating databases, including the transaction manager
database.

– You are using DCE directory services to catalog and manage access to
your databases.

Note that if your application attempts to disconnect from the database
being used as the transaction manager database, you will receive a warning
message, and the connection will be held until the unit of work is
committed.

Chapter 9. Designing Distributed Databases 161

Other Configuration Considerations

You should consider the following configuration parameters when you are
setting up your environment. For additional information about setting these
parameters, refer to the DB2 Connect User’s Guide.

Database Manager Configuration Parameters

v tm_database

This parameter identifies the name of the Transaction Manager (TM)
database for each DB2 instance.

v spm_name

This parameter identifies the name of the DB2 Connect sync point manager
instance to the database manager. For resynchronization to be successful,
the name must be unique across your network.

v resync_interval

This parameter identifies the time interval (in seconds) after which the DB2
Transaction Manager, the DB2 server database manager, and the DB2
Connect sync point manager or the DB2 UDB sync point manager should
retry the recovery of any outstanding indoubt transactions.

v spm_log_file_sz

This parameter specifies the size (in 4 KB pages) of the SPM log file.
v spm_max_resync

This parameter identifies the number of agents that can simultaneously
perform resynchronization operations.

Client
(CAE and application)

DB2 Connect

OS/390 mainframe

DB2 Server

Figure 41. Configuration Considerations

162 Administration Guide: Planning

v spm_log_path

This parameter identifies the log path for the SPM log files.

Database Configuration Parameters

v maxappls

This parameter specifies the maximum permitted number of active
applications. Its value must be equal to or greater than the sum of the
connected applications, plus the number of these applications that may be
concurrently in the process of completing a two-phase commit or rollback,
plus the anticipated number of indoubt transactions that might exist at any
one time. For more information about indoubt transactions, see “Recovering
from Problems During Two-Phase Commit” on page 168.

v autorestart

This database configuration parameter specifies whether the RESTART
DATABASE routine will be invoked automatically when needed. The
default value is YES (that is, enabled).
A database containing indoubt transactions requires a restart database
operation to start up. If autorestart is not enabled when the last connection
to the database is dropped, the next connection will fail and require an
explicit RESTART DATABASE invocation. This condition will exist until the
indoubt transactions have been removed, either by the transaction
manager’s resynchronization operation, or through a heuristic operation
initiated by the administrator. When the RESTART DATABASE command is
issued, a message is returned if there are any indoubt transactions in the
database. The administrator can then use the LIST INDOUBT
TRANSACTIONS command and other command line processor commands
to find get information about those indoubt transactions.

For more information about these configuration parameters, refer to the
Administration Guide: Performance.

Host or AS/400 Applications Accessing a LAN Based DB2 Universal
Database Server in a Multisite Update

DB2 Universal Database does not support multisite update from the host or
AS/400 database clients using TCP/IP connectivity. In this situation, only
SNA (Systems Network Architecture) connectivity is supported. The DB2 sync
point manager is required for multisite update. DB2 Connect is not used in
this scenario.

The database server that is being accessed from the host or the AS/400
database client does not have to be local to the workstation with the DB2 sync
point manager. The host or AS/400 database client could connect to a DB2
UDB server using the DB2 sync point manager workstation as an interim
gateway. This allows you to isolate the DB2 sync point manager workstation
in a secure environment, while the actual DB2 UDB servers are remote in your

Chapter 9. Designing Distributed Databases 163

organization. This also permits a DB2 common server Version 2 database to be
involved in multisite updates originating from the host or AS/400 database
clients.

The steps are as follows:
v On the workstation that will be directly accessed by the host or AS/400

application:
1. Install DB2 Universal Database Enterprise Edition, or Enterprise -

Extended Edition to provide multisite update support with the host or
AS/400 database clients.

2. Create a database instance on the same system. For example, you can
use the default instance, DB2, or use the following command to create a
new instance:

db2icrt myinstance

3. Supply licensing information, as required.
4. Ensure that the registry value DB2COMM includes the value APPC.
5. Configure SNA communications, as required. When the supported IBM

SNA products are used, the SNA profiles required for the DB2 sync
point manager are created automatically, based on the value of the
spm_name database manager configuration parameter. Any other
supported SNA stack will require manual configuration. For details,
refer to the Installation and Configuration Supplement.

6. Determine the value to be specified for the spm_name database
manager configuration parameter. This parameter is pre-configured at
DB2 instance creation time with a derivative of the TCP/IP host name
for the machine. If this is acceptable and unique within your
environment, do not change it.

7. If necessary, update spm_name on the DB2 Universal Database server,
using the UPDATE DATABASE MANAGER CONFIGURATION
command.

8. Configure communications required for this DB2 workstation to
connect to remote DB2 UDB servers, if any.

9. Configure communications required for remote DB2 UDB servers to
connect to this DB2 server.

10. Stop and restart the database manager on the DB2 Universal Database
server to start the SPM for the first time.
You should be able to connect to the remote DB2 UDB servers from
this DB2 UDB workstation.

v On each remote DB2 UDB server that will be accessed by the host or
AS/400 database client:

164 Administration Guide: Planning

1. Configure communications required for the remote DB2 UDB
workstation with the DB2 sync point manager to connect to this DB2
UDB server.

2. Stop and restart the database manager.

Understanding the Two-Phase Commit Process

Figure 42 on page 166 illustrates the steps involved in a multisite update.
Understanding how a transaction is managed will help you to resolve the
problem if an error occurs during the two-phase commit process.

Chapter 9. Designing Distributed Databases 165

�0� The application is prepared for two-phase commit. This can be
accomplished through precompilation options (refer to the Application

Savings
AccountClient

Connect

Select

Checking
Account

Transaction
Fee

Transaction
Manager

Connect 1

3

2

5

6

4

7

8

9

10

11

12

13

Update

Update
Connect

Connect

Commit

Update

Figure 42. Updating Multiple Databases

166 Administration Guide: Planning

Development Guide for details). This can also be accomplished through
DB2 CLI (Call Level Interface) configuration (refer to the CLI Guide
and Reference for details).

�1� When the database client wants to connect to the SAVINGS_DB
database, it first internally connects to the transaction manager (TM)
database. The TM database returns an acknowledgment to the
database client. If the database manager configuration parameter
tm_database is set to 1ST_CONN, SAVINGS_DB becomes the transaction
manager database for the duration of this application instance.

�2� The connection to the SAVINGS_DB database takes place and is
acknowledged.

�3� The database client begins the update to the SAVINGS_ACCOUNT
table. This begins the unit of work. The TM database responds to the
database client, providing a transaction ID for the unit of work. Note
that the registration of a unit of work occurs when the first SQL
statement in the unit of work is run, not during the establishment of a
connection.

�4� After receiving the transaction ID, the database client registers the unit
of work with the database containing the SAVINGS_ACCOUNT table.
A response is sent back to the client to indicate that the unit of work
has been registered successfully.

�5� SQL statements issued against the SAVINGS_DB database are handled
in the normal manner. The response to each statement is returned in
the SQLCA when working with SQL statements embedded in a
program. (The SQLCA is described in the Application Development
Guide and in the SQL Reference.)

�6� The transaction ID is registered at the FEE_DB database containing the
TRANSACTION_FEE table, during the first access to that database
within the unit of work.

�7� Any SQL statements against the FEE_DB database are handled in the
normal way.

�8� Additional SQL statements can be run against the SAVINGS_DB
database by setting the connection, as appropriate. Since the unit of
work has already been registered with the SAVINGS_DB database �4�,
the database client does not need to perform the registration step
again.

�9� Connecting to, and using the CHECKING_DB database follows the
same rules described in �6� and �7�.

�10� When the database client requests that the unit of work be committed,

Chapter 9. Designing Distributed Databases 167

a prepare message is sent to all databases participating in the unit of
work. Each database writes a ″PREPARED″ record to its log files, and
replies to the database client.

�11� After the database client receives a positive response from all of the
databases, it sends a message to the transaction manager database,
informing it that the unit of work is now ready to be committed
(PREPARED). The transaction manager database writes a
″PREPARED″ record to its log file, and sends a reply to inform the
client that the second phase of the commit process can be started.

�12� During the second phase of the commit process, the database client
sends a message to all participating databases to tell them to commit.
Each database writes a ″COMMITTED″ record to its log file, and
releases the locks that were held for this unit of work. When the
database has completed committing the changes, it sends a reply to
the client.

�13� After the database client receives a positive response from all
participating databases, it sends a message to the transaction manager
database, informing it that the unit of work has been completed. The
transaction manager database then writes a ″COMMITTED″ record to
its log file, indicating that the unit of work is complete, and replies to
the client, indicating that it has finished.

Recovering from Problems During Two-Phase Commit

Recovering from error conditions is a normal task associated with application
programming, system administration, database administration and system
operation. Distributing databases over several remote servers increases the
potential for error resulting from network or communications failures. To
ensure data integrity, the database manager provides the two-phase commit
process, which is illustrated in “Understanding the Two-Phase Commit
Process” on page 165 (points �10�, �11�, and �12�. The following explains how
the database manager handles errors during the two-phase commit process:
v First Phase Error

If a database communicates that it has failed to prepare to commit the unit
of work, the database client will roll back the unit of work during the
second phase of the commit process. A prepare message will not be sent to
the transaction manager database in this case.
During the second phase, the client sends a rollback message to all
participating databases that successfully prepared to commit during the
first phase. Each database then writes an ″ABORT″ record to its log file, and
releases the locks that were held for this unit of work.

168 Administration Guide: Planning

v Second Phase Error

Error handling at this stage is dependent upon whether the second phase
will commit or roll back the transaction. The second phase will only roll
back the transaction if the first phase encountered an error.
If one of the participating databases fails to commit the unit of work
(possibly due to a communications failure), the transaction manager
database will retry the commit on the failed database. The application,
however, will be informed that the commit was successful through the
SQLCA. DB2 will ensure that the uncommitted transaction in the database
server is committed. The database manager configuration parameter
resync_interval (see ″Configuring DB2″ in the Administration Guide:
Performance) is used to specify how long the transaction manager database
should wait between attempts to commit the unit of work. All locks are
held at the database server until the unit of work is committed.
If the transaction manager database fails, it will resynchronize the unit of
work when it is restarted. The resynchronization process will attempt to
complete all indoubt transactions; that is, those transactions that have
finished the first phase, but have not completed the second phase of the
commit process. The database manager associated with the transaction
manager database performs the resynchronization by:
1. Connecting to the databases that indicated they were ″PREPARED″ to

commit during the first phase of the commit process.
2. Attempting to commit the indoubt transactions at those databases. (If

the indoubt transactions cannot be found, the database manager
assumes that the database successfully committed the transactions
during the second phase of the commit process.)

3. Committing the indoubt transactions in the transaction manager
database, after all indoubt transactions have been committed in the
participating databases.

If one of the participating databases fails and is restarted, the database
manager for this database will query the transaction manager database for
the status of this transaction, to determine whether the transaction should
be rolled back. If the transaction is not found in the log, the database
manager assumes that the transaction was rolled back, and will roll back
the indoubt transaction in this database. Otherwise, the database waits for a
commit request from the transaction manager database.

If the transaction was coordinated by a transaction processing monitor
(XA-compliant transaction manager), the database will always depend on
the TP monitor to initiate the resynchronization.

If, for some reason, you cannot wait for the transaction manager to
automatically resolve indoubt transactions, there are actions you can take to
manually resolve them. This manual process is sometimes referred to as

Chapter 9. Designing Distributed Databases 169

″making a heuristic decision″. For more information about manual recovery of
indoubt transactions, see “Making a Heuristic Decision” on page 182.

Resynchronizing Indoubt Transactions if AUTORESTART=OFF
For configuration considerations in the DB2 Universal Database two-phase
commit environment, see “Other Configuration Considerations” on page 162.

In particular, if the autorestart database configuration parameter is set to OFF,
and there are indoubt transactions in either the TM or RM databases, the
RESTART DATABASE command is required to start the resynchronization
process. When issuing the RESTART DATABASE command from the
command line processor, use different sessions. If you restart a different
database from the same session, the connection established by the previous
invocation will be dropped, and must be restarted once again. Issue the
TERMINATE command to drop the connection after no more indoubt
transactions are returned by the LIST INDOUBT TRANSACTIONS command.

170 Administration Guide: Planning

Chapter 10. Designing for Transaction Managers

You may want to use your databases with an XA-compliant transaction
manager if you have resources other than DB2 databases that you want to
participate in a two-phase commit transaction. If your transactions only access
DB2 databases, you should use the DB2 transaction manager, described in
“Updating Multiple Databases” on page 158.

The following topics will assist you in using the database manager with an
XA-compliant transaction manager, such as IBM TXSeries CICS, IBM TXSeries
Encina, BEA Tuxedo, or Microsoft Transaction Server:
v “X/Open Distributed Transaction Processing Model” on page 172
v “Setting Up a Database as a Resource Manager” on page 176
v “xa_open and xa_close Strings Usage” on page 176
v “New xa_open String Format for DB2 Version 7” on page 176
v “TPM and TP_MON_NAME Values” on page 178
v “xa_open String Format for Earlier Versions of DB2” on page 181
v “Updating Host or AS/400 Database Servers” on page 181
v “Database Connection Considerations” on page 182
v “Making a Heuristic Decision” on page 182
v “Security Considerations” on page 185
v “Configuration Considerations” on page 186
v “XA Function Supported” on page 187
v “XA Interface Problem Determination” on page 189
v “Configuring XA Transaction Managers to Use DB2 UDB” on page 190
v “Configuring Microsoft Transaction Server” on page 195.

If you are using an XA-compliant transaction manager, or are implementing
one, more information is available from our technical support web site:

http://www.ibm.com/software/data/db2/library/

Once there, choose ″DB2 Universal Database″, then search the web site using
the keyword ″XA″ for the latest available information on XA-compliant
transaction managers.

© Copyright IBM Corp. 1993, 2000 171

X/Open Distributed Transaction Processing Model

The X/Open Distributed Transaction Processing (DTP) model includes three
interrelated components:
v “Application Program (AP)”
v “Transaction Manager (TM)” on page 174
v “Resource Managers (RM)” on page 175.

Figure 43 illustrates this model, and shows the relationship among these
components.

Application Program (AP)
The application program (AP) defines transaction boundaries, and defines the
application-specific actions that make up the transaction.

For example, a CICS* application program might want to access resource
managers (RMs), such as a database and a CICS Transient Data Queue, and
use programming logic to manipulate the data. Each access request is passed
to the appropriate resource managers through function calls specific to that
RM. In the case of DB2, these could be function calls generated by the DB2
precompiler for each SQL statement, or database calls coded directly by the
programmer using the APIs.

A transaction manager (TM) product usually includes a transaction processing
(TP) monitor to run the user application. The TP monitor provides APIs to
allow an application to start and end a transaction, and to perform application

Application Program (AP)

Transaction
Manager

(TM)
Resource
Managers

(RMs)

(1) AP uses
resources from

a set of RMs

(3) TM and RMs exchange transaction information

(2) AP defines
transaction boundaries

through TM
interfaces

Figure 43. X/Open Distributed Transaction Processing (DTP) Model

172 Administration Guide: Planning

scheduling and load balancing among the many users who want to run the
application. The application program in a distributed transaction processing
(DTP) environment is really a combination of the user application and the TP
monitor.

To facilitate an efficient online transaction processing (OLTP) environment, the
TP monitor pre-allocates a number of server processes at startup, and then
schedules and reuses them among the many user transactions. This conserves
system resources, by allowing more concurrent users to be supported with a
smaller number of server processes and their corresponding RM processes.
Reusing these processes also avoids the overhead of starting up a process in
the TM and RMs for each user transaction or program. (A program invokes
one or more transactions.) This also means that the server processes are the
actual ″user processes″ to the TM and the RMs. This has implications for
security administration and application programming. For details, see
“Security Considerations” on page 185.

The following types of transactions are possible from a TP monitor:
v Non-XA transactions

These transactions involve RMs that are not defined to the TM, and are
therefore not coordinated under the two-phase commit protocol of the TM.
This might be necessary if the application needs to access an RM that does
not support the XA interface. The TP monitor simply provides efficient
scheduling of applications and load balancing. Since the TM does not
explicitly ″open″ the RM for XA processing, the RM treats this application
as any other application that runs in a non-DTP environment.

v Global transactions
These transactions involve RMs that are defined to the TM, and are under
the TM’s two-phase commit control. A global transaction is a unit of work
that could involve one or more RMs. A transaction branch is the part of work
between a TM and an RM that supports the global transaction. A global
transaction could have multiple transaction branches when multiple RMs
are accessed through one or more application processes that are coordinated
by the TM.
Loosely coupled global transactions exist when each of a number of
application processes accesses the RMs as if they are in a separate global
transaction, but those applications are under the coordination of the TM.
Each application process will have its own transaction branch within an
RM. When a commit or rollback is requested by any one of the APs, TM, or
RMs, the transaction branches are completed altogether. It is the
application’s responsibility to ensure that resource deadlock does not occur
among the branches. (Note that the transaction coordination performed by
the DB2 transaction manager for applications prepared with the

Chapter 10. Designing for Transaction Managers 173

SYNCPOINT(TWOPHASE) option is roughly equivalent to these loosely
coupled global transactions. See “Updating Multiple Databases” on
page 158.)
Tightly coupled global transactions exist when multiple application
processes take turns to do work under the same transaction branch in an
RM. To the RM, the two application processes are a single entity. The RM
must ensure that resource deadlock does not occur within the transaction
branch.

Transaction Manager (TM)
The transaction manager (TM) assigns identifiers to transactions, monitors
their progress, and takes responsibility for transaction completion and failure.
The transaction branch identifiers (known as XIDs) are assigned by the TM to
identify both the global transaction, and the specific branch within an RM.
This is the correlation token between the log in a TM and the log in an RM.
The XID is needed for two-phase commit, or rollback, to perform the
resynchronization operation (also known as a resync) on system startup, or to
let the administrator perform a heuristic operation (also known as manual
intervention), if necessary.

After a TP monitor is started, it asks the TM to open all the RMs that a set of
application servers have defined. The TM passes xa_open calls to the RMs, so
that they can be initialized for DTP processing. As part of this startup
procedure, the TM performs a resync to recover all indoubt transactions. An
indoubt transaction is a global transaction that was left in an uncertain state.
This occurs when the TM (or at least one RM) becomes unavailable after
successfully completing the first phase (that is, the prepare phase) of the
two-phase commit protocol. The RM will not know whether to commit or roll
back its branch of the transaction until the TM can reconcile its own log with
the RM logs when they become available again. To perform the resync
operation, the TM issues a xa_recover call one or more times to each of the
RMs to identify all the indoubt transactions. The TM compares the replies
with the information in its own log to determine whether it should inform the
RMs to xa_commit or xa_rollback those transactions. If an RM has already
committed or rolled back its branch of an indoubt transaction through a
heuristic operation by its administrator, the TM issues an xa_forget call to that
RM to complete the resync operation.

When a user application requests a commit or a rollback, it must use the API
provided by the TP monitor or TM, so that the TM can coordinate the commit
and rollback among all the RMs involved. For example, when a CICS
application issues the CICS SYNCPOINT request to commit a transaction, the
CICS XA TM (implemented in the Encina Server) will in turn issue XA calls,
such as xa_end, xa_prepare, xa_commit, or xa_rollback to request the RM to

174 Administration Guide: Planning

commit or roll back the transaction. The TM could choose to use one-phase
instead of two-phase commit if only one RM is involved, or if an RM replies
that its branch is read-only.

Resource Managers (RM)
A resource manager (RM) provides access to shared resources, such as
databases.

DB2, as resource manager of a database, can participate in a global transaction
that is being coordinated by an XA-compliant TM. As required by the XA
interface, the database manager provides a db2xa_switch external C variable of
type xa_switch_t to return the XA switch structure to the TM. This data
structure contains the addresses of the various XA routines to be invoked by
the TM, and the operating characteristics of the RM. For more information
about XA functions supported by the database manager, see “XA Function
Supported” on page 187.

There are two methods by which the RM can register its participation in each
global transaction: static registration and dynamic registration:
v Static registration requires the TM to issue (for every transaction) the

xa_start, xa_end, and xa_prepare series of calls to all the RMs defined for
the server application, regardless of whether a given RM is used by the
transaction. This is inefficient if not every RM is involved in every
transaction, and the degree of inefficiency is proportional to the number of
defined RMs.

v Dynamic registration (used by DB2) is flexible and efficient. An RM
registers with the TM using an ax_reg call only when the RM receives a
request for its resource. Note that there is no performance disadvantage
with this method, even when there is only one RM defined, or when every
RM is used by every transaction, because the ax_reg and the xa_start calls
have similar paths in the TM.

The XA interface provides two-way communication between a TM and an
RM. It is a system-level interface between the two DTP software components,
not an ordinary application program interface to which an application
developer codes. However, application developers should be familiar with the
programming restrictions that the DTP software components impose. For
information about X/Open XA interface programming considerations, refer to
the Application Development Guide.

Although the XA interface is invariant, each XA-compliant TM may have
product-specific ways of integrating an RM. For information about integrating
your DB2 product as a resource manager with a specific transaction manager,
see the appropriate TM product documentation. Integration information
regarding the most popular TP monitors is provided in “Configuring XA
Transaction Managers to Use DB2 UDB” on page 190.

Chapter 10. Designing for Transaction Managers 175

Setting Up a Database as a Resource Manager

Each database is defined as a separate resource manager (RM) to the
transaction manager (TM), and the database must be identified with an
xa_open string. For a description of DB2’s xa_open string format, see
“xa_open and xa_close Strings Usage”.

xa_open and xa_close Strings Usage
The database manager xa_open string has two accepted formats. One format
is new to DB2 Version 7. The second format is used by earlier versions of
DB2, and remains for back-level compatibility. New implementations should
use the new format, and older implementations should be migrated to the
new format when possible. Future versions of DB2 may not support the older
xa_open string format. For information about the original xa_open string
format, see “xa_open String Format for Earlier Versions of DB2” on page 181.

When setting up a database as a resource manager, you do not need the
xa_close string. If provided, this string will be ignored by the database
manager.

New xa_open String Format for DB2 Version 7
The following xa_open string format is new to DB2 Version 7:

parm_id1 = <parm value>,parm_id2 = <parm value>, ...

It does not matter in what order these parameters are specified. Valid values
for parm_id are described in the following table.

Table 22. Valid Values for parm_id

Parameter
Name

Value Mandatory? Case Sensitive? Default Value

DB Database alias Yes No None

Database alias used by the application to access the database.

UID User ID No Yes None

User ID that has authority to connect to the database. Required if a password is
specified.

PWD Password No Yes None

A password that is associated with the user ID. Required if a user ID is specified.

TPM Transaction
processing
monitor name

No No None

Name of the TP monitor being used. For supported values, see “TPM and
TP_MON_NAME Values” on page 178. This parameter can be specified to allow
multiple TP monitors to use a single DB2 instance. The specified value will override
the value specified in the tp_mon_name database manager configuration parameter.

176 Administration Guide: Planning

Table 22. Valid Values for parm_id (continued)

Parameter
Name

Value Mandatory? Case Sensitive? Default Value

AXLIB Library that
contains the TP
monitor’s
ax_reg and
ax_unreg
functions.

No Yes None

This value is used by DB2 to obtain the addresses of the required ax_reg and
ax_unreg functions. It can be used to override assumed values based on the TPM
parameter, or it can be used by TP monitors that do not appear on the list for TPM.

CHAIN_END xa_end
chaining flag.
Valid values are
T, F, or no
value.

No No F

XA_END chaining is an optimization that can be used by DB2 to reduce network
flows. If the TP monitor environment is such that it can be guaranteed that
xa_prepare will be invoked within the same thread or process immediately following
the call to xa_end, and if CHAIN_END is on, the xa_end flag will be chained with
the xa_prepare command, thus elimintaing one network flow. A value of T means
that CHAIN_END is on; a value of F means that CHAIN_END is off; no specified
value means that CHAIN_END is on. This parameter can be used to override the
setting derived from a specified TPM value.

SUSPEND_
CURSOR

Specifies
whether cursors
are to be kept
when a
transaction
thread of
control is
suspended.
Valid values are
T, F, or no
value.

No No F

TP monitors that suspend a transaction branch can reuse the suspended thread or
process for other transactions. In these situations, cursors must be closed so that the
new transaction does not inherit them. When the suspended transaction is resumed,
the application must obtain the cursors again. If SUSPEND_CURSOR is on, any open
cursors are not closed, but the thread or process cannot be reused for other
transactions. Only the resumption of the suspended transaction is permitted. A value
of T means that SUSPEND_CURSOR is on; a value of F means that
SUSPEND_CURSOR is off; no specified value means that SUSPEND_CURSOR is on.
This parameter can be used to override the setting derived from a specified TPM
value.

Chapter 10. Designing for Transaction Managers 177

Table 22. Valid Values for parm_id (continued)

Parameter
Name

Value Mandatory? Case Sensitive? Default Value

HOLD_CURSOR Specifies
whether cursors
are held across
transaction
commits. Valid
values are T, F,
or no value.

No No F

TP monitors typically reuse threads or processes for multiple applications. To ensure
that a newly loaded application does not inherit cursors opened by a previous
application, cursors are closed after a commit. If HOLD_CURSOR is on, cursors are
held across transaction commits. A value of T means that HOLD_CURSOR is on; a
value of F means that HOLD_CURSOR is off; no specified value means that
HOLD_CURSOR is on. This parameter can be used to override the setting derived
from a specified TPM value.

TPM and TP_MON_NAME Values
The xa_open string TPM parameter and the tp_mon_name database manager
configuration parameter are used to indicate to DB2 which TP monitor is
being used. The tp_mon_name value applies to the entire DB2 instance. The
TPM parameter applies only to the specific XA resource manager. The TPM
value overrides the tp_mon_name parameter. Valid values for the TPM and
tp_mon_name parameters are as follows:

Table 23. Valid Values for TPM and tp_mon_name

TPM Value TP Monitor
Product

Internal Settings

CICS IBM TxSeries CICS AXLIB=libEncServer (for Windows)
=/usr/lpp/encina/lib/libEncServer

(for UNIX based systems)
HOLD_CURSOR=T
CHAIN_END=T
SUSPEND_CURSOR=F

ENCINA IBM TxSeries
Encina Monitor

AXLIB=libEncServer (for Windows)
=/usr/lpp/encina/lib/libEncServer

(for UNIX based systems)
HOLD_CURSOR=F
CHAIN_END=T
SUSPEND_CURSOR=F

178 Administration Guide: Planning

Table 23. Valid Values for TPM and tp_mon_name (continued)

TPM Value TP Monitor
Product

Internal Settings

MQ IBM MQSeries AXLIB=mqmax (for Windows)
=/usr/mqm/lib/libmqmax.a

(for AIX)
=/opt/mqm/lib/libmqmax.a

(for Solaris)
HOLD_CURSOR=F
CHAIN_END=F
SUSPEND_CURSOR=F

CB IBM Component
Broker

AXLIB=somtrx1i (for Windows)
=libsomtrx1

(for UNIX based systems)
HOLD_CURSOR=F
CHAIN_END=T
SUSPEND_CURSOR=F

SF IBM San Francisco AXLIB=ibmsfDB2
HOLD_CURSOR=F
CHAIN_END=T
SUSPEND_CURSOR=F

TUXEDO BEA Tuxedo AXLIB=libtux
HOLD_CURSOR=F
CHAIN_END=F
SUSPEND_CURSOR=F

MTS Microsoft
Transaction Server

It is not necessary
to configure DB2 for
MTS. MTS is
automatically
detected by DB2’s
ODBC driver.

JTA Java Transaction
API

It is not necessary
to configure DB2 for
Enterprise Java
Servers (EJS) such
as IBM WebSphere.
DB2’s JDBC driver
automatically
detects this
environment.

Examples
1. You are using IBM TxSeries CICS on WIndows NT. The TxSeries

documentation indicates that you need to configure tp_mon_name with a
value of libEncServer:C. This is still an acceptable format; however, with
DB2 UDB or DB2 Connect Version 7, you have the option of:

Chapter 10. Designing for Transaction Managers 179

v Specifying a tp_mon_name of CICS (recommended for this scenario):
db2 update dbm cfg using tp_mon_name CICS

For each database defined to CICS in the Region-> Resources->
Product-> XAD-> Resource manager initialization string, specify:

db=dbalias,uid=userid,pwd=password

v For each database defined to CICS in the Region-> Resources->
Product-> XAD-> Resource manager initialization string, specify:

db=dbalias,uid=userid,pwd=password,tpm=cics

2. You are using IBM MQSeries on Windows NT. The MQSeries
documentation indicates that you need to configure tp_mon_name with a
value of mqmax. This is still an acceptable format; however, with DB2 UDB
or DB2 Connect Version 7, you have the option of:
v Specifying a tp_mon_name of MQ (recommended for this scenario):

db2 update dbm cfg using tp_mon_name MQ

For each database defined to CICS in the Region-> Resources->
Product-> XAD-> Resource manager initialization string, specify:

uid=userid,db=dbalias,pwd=password

v For each database defined to CICS in the Region-> Resources->
Product-> XAD-> Resource manager initialization string, specify:

uid=userid,db=dbalias,pwd=password,tpm=mq

3. You are using both IBM TxSeries CICS and IBM MQSeries on WIndows
NT. A single DB2 instance is being used. In this scenario, you would
configure as follows:
a. For each database defined to CICS in the Region-> Resources->

Product-> XAD-> Resource manager initialization string, specify:
pwd=password,uid=userid,tpm=cics,db=dbalias

b. For each database defined as a resource in the queue manager
properties, specify an XaOpenString as:

db=dbalias,uid=userid,pwd=password,tpm=mq

4. You are developing your own XA-compliant transaction manager (XA TM)
on Windows NT, and you want to tell DB2 that library ″myaxlib″ has the
required functions ax_reg and ax_unreg. Library ″myaxlib″ is in a
directory specified in the PATH statement. You have the option of:
v Specifying a tp_mon_name of myaxlib:

db2 update dbm cfg using tp_mon_name myaxlib

and, for each database defined to the XA TM, specifying an xa_open
string:

db=dbalias,uid=userid,pwd=password

v For each database defined to the XA TM, specifying an xa_open string:

180 Administration Guide: Planning

db=dbalias,uid=userid,pwd=password,axlib=myaxlib

5. You are developing your own XA-compliant transaction manager (XA TM)
on Windows NT, and you want to tell DB2 that library ″myaxlib″ has the
required functions ax_reg and ax_unreg. Library ″myaxlib″ is in a
directory specified in the PATH statement. You also want to enable XA
END chaining. You have the option of:
v For each database defined to the XA TM, specifying an xa_open string:

db=dbalias,uid=userid,pwd=password,axlib=myaxlib,chain_end=T

v For each database defined to the XA TM, specifying an xa_open string:
db=dbalias,uid=userid,pwd=password,axlib=myaxlib,chain_end

xa_open String Format for Earlier Versions of DB2
Earlier versions of DB2 used the xa_open string format described here. This
format is still supported for compatibility reasons. Applications should be
migrated to the new format (see “New xa_open String Format for DB2
Version 7” on page 176) when possible.

Each database is defined as a separate resource manager (RM) to the
transaction manager (TM), and the database must be identified with an
xa_open string that has the following syntax:

"database_alias<,userid,password>"

The database_alias is required to specify the alias name of the database. The
alias name is the same as the database name unless you have explicitly
cataloged an alias name after you created the database. The user name and
password are optional and, depending on the authentication method, are used
to provide authentication information to the database.

When setting up a database as a resource manager, you do not need the
xa_close string. If provided, this string will be ignored by the database
manager.

Updating Host or AS/400 Database Servers
Host and AS/400 database servers may be updatable depending upon the
architecture of the XA Transaction Manager. To support commit sequences
from different processes, the DB2 Connect concentrator must be enabled. To
enable the DB2 Connect EE concentrator, set the database manager
configuration parameter max_logicagents to a value greater then maxagents.
Note that the DB2 Connect EE concentrator requires a DB2 Version 7.1 client
to support XA commit sequences from different processes. For information
about the SQL statements that are allowed in this environment, refer to the
Application Development Guide. For information about the concentrator, refer to
the DB2 Connect User’s Guide.

Chapter 10. Designing for Transaction Managers 181

If you will be updating host or AS/400 database servers, you will require DB2
Connect with the DB2 sync point manager (SPM) configured. Refer to one of
the Quick Beginnings books for instructions.

Database Connection Considerations
The following topics are covered in this section:
v “RELEASE Statement”
v “Transactions Accessing Partitioned Databases”

RELEASE Statement
If a RELEASE statement is used to release a connection to a database, a
CONNECT statement, rather than SET CONNECTION, should be used to
reconnect to that database.

Transactions Accessing Partitioned Databases
In a partitioned database environment, user data may be distributed across
database partitions. An application accessing the database connects and sends
requests to one of the database partitions (the coordinator node). Different
applications can connect to different database partitions, and the same
application can choose different database partitions for different connections.

For transactions against a database in a partitioned database environment, all
access must be through the same database partition. That is, the same database
partition must be used from the start of the transaction until (and including)
the time that the transaction is committed.

Any transaction against the partitioned database must be committed before
disconnecting.

Making a Heuristic Decision
An XA-compliant transaction manager (Transaction Processing Monitor) uses
a two-phase commit process similar to that used by the DB2 transaction
manager, described in “Understanding the Two-Phase Commit Process” on
page 165. The principal difference between the two environments is that the
TP monitor provides the function of logging and controlling the transaction,
instead of the DB2 transaction manager and the transaction manager database.

Errors similar to those discussed for the DB2 transaction manager (see
“Recovering from Problems During Two-Phase Commit” on page 168) can
occur when using an XA-compliant transaction manager. Similar to the DB2
transaction manager, an XA-compliant transaction manager will attempt to
resynchronize indoubt transactions.

182 Administration Guide: Planning

If, for some reason, you cannot wait for the transaction manager to
automatically resolve indoubt transactions, there are actions you can take to
manually resolve them. This manual process is sometimes referred to as
″making a heuristic decision″.

The LIST INDOUBT TRANSACTIONS command (using the WITH
PROMPTING option), or the related set of APIs, allows you to query, commit,
and roll back indoubt transactions. In addition, it also allows you to ″forget″
transactions that have been heuristically committed or rolled back, by
removing the log records and releasing the log space. To obtain indoubt
transaction information from DB2 UDB on UNIX based systems, the Windows
operating system, or OS/2, connect to the database and issue the LIST
INDOUBT TRANSACTIONS WITH PROMPTING command, or the
equivalent API. For information about this command or the related
administrative APIs, refer to the Command Reference or the Administrative API
Reference.

For indoubt transaction information with respect to host or AS/400 database
servers, you have two choices:
v You can obtain indoubt information directly from the host or AS/400 server.

To obtain indoubt information directly from DB2 for OS/390, invoke the
DISPLAY THREAD TYPE(INDOUBT) command. Use the RECOVER
command to make a heuristic decision. To obtain indoubt information
directly from DB2 for OS/400, invoke the wrkcmtdfn command.

v You can obtain indoubt information from the DB2 Connect server used to
access the host or AS/400 database server.
To obtain indoubt information from the DB2 Connect server, first connect to
the DB2 sync point manager by connecting to the DB2 instance represented
by the value of the spm_name database manager configuration parameter.
Then issue the LIST DRDA INDOUBT TRANSACTIONS WITH
PROMPTING command to display indoubt transactions and to make
heuristic decisions.

Use these commands (or related APIs) with extreme caution, and only as a last
resort. The best strategy is to wait for the transaction manager to drive the
resynchronization process. You could experience data integrity problems if
you manually commit or roll back a transaction in one of the participating
databases, and the opposite action is taken against another participating
database. Recovering from data integrity problems requires you to understand
the application logic, to identify the data that was changed or rolled back, and
then to perform a point-in-time recovery of the database, or manually undo or
reapply the changes.

If you cannot wait for the transaction manager to initiate the
resynchronization process, and you must release the resources tied up by an

Chapter 10. Designing for Transaction Managers 183

indoubt transaction, heuristic operations are necessary. This situation could
occur if the transaction manager will not be available for an extended period
of time to perform the resynchronization, and the indoubt transaction is tying
up resources that are urgently needed. An indoubt transaction ties up the
resources that were associated with this transaction before the transaction
manager or resource managers became unavailable. For the database manager,
these resources include locks on tables and indexes, log space, and storage
taken up by the transaction. Each indoubt transaction also decreases (by one)
the maximum number of concurrent transactions that can be handled by the
database.

Although there is no foolproof way to perform heuristic operations, the
following provides some general guidelines:
1. Connect to the database for which you require all transactions to be

complete.
2. Use the LIST INDOUBT TRANSACTIONS command to display the

indoubt transactions. The xid represents the global transaction ID, and is
identical to the xid used by the transaction manager and by other resource
managers participating in the transaction.

3. For each indoubt transaction, use your knowledge about the application
and the operating environment to determine the other participating
resource managers.

4. Determine if the transaction manager is available:
v If the transaction manager is available, and the indoubt transaction in a

resource manager was caused by the resource manager not being
available in the second commit phase, or for an earlier
resynchronization process, you should check the transaction manager’s
log to determine what action has been taken against the other resource
managers. You should then take the same action against the database;
that is, using the LIST INDOUBT TRANSACTIONS command, either
heuristically commit or heuristically roll back the transaction.

v If the transaction manager is not available, you will need to use the
status of the transaction in the other participating resource managers to
determine what action you should take:
– If at least one of the other resource managers has committed the

transaction, you should heuristically commit the transaction in all the
resource managers.

– If at least one of the other resource managers has rolled back the
transaction, you should heuristically roll back the transaction.

– If the transaction is in ″prepared″ (indoubt) state in all of the
participating resource managers, you should heuristically roll back
the transaction.

184 Administration Guide: Planning

– If one or more of the other resource managers is not available, you
should heuristically roll back the transaction.

Do not perform the heuristic forget function unless a heuristically committed
or rolled back transaction causes a log full condition, indicated in output from
the LIST INDOUBT TRANSACTIONS command. The heuristic forget function
releases the log space occupied by an indoubt transaction. The implication is
that if a transaction manager eventually performs a resynchronization
operation for this indoubt transaction, it could potentially make the wrong
decision to commit or roll back other resource managers, because there is no
log record for the transaction in this resource manager. In general a ″missing″
log record implies that the resource manager has rolled back the transaction.

Security Considerations
The TP monitor pre-allocates a set of server processes and runs the
transactions from different users under the IDs of the server processes. To the
database, each server process appears as a big application that has many units
of work, all being run under the same ID associated with the server process.

For example, in an AIX environment using CICS, when a TXSeries CICS
region is started, it is associated with the AIX user name under which it is
defined. All the CICS Application Server processes are also being run under
this TXSeries CICS ″master″ ID, which is usually defined as ″cics″. CICS users
can invoke CICS transactions under their DCE login ID, and while in CICS,
they can also change their ID using the CESN signon transaction. In either
case, the end user’s ID is not available to the RM. Consequently, a CICS
Application Process might be running transactions on behalf of many users,
but they appear to the RM as a single program with many units of work from
the same ″cics″ ID. Optionally, you can specify a user ID and password on the
xa_open string, and that user ID will be used, instead of the ″cics″ ID, to
connect to the database.

There is not much impact on static SQL statements, because the binder’s
privileges, not the end user’s privileges, are used to access the database. This
does mean, however, that the EXECUTE privilege of the database packages
must be granted to the server ID, and not to the end user ID.

For dynamic statements, which have their access authentication done at run
time, access privileges to the database objects must be granted to the server
ID and not to the actual user of those objects. Instead of relying on the
database to control the access of specific users, you must rely on the TP
monitor system to determine which users can run which programs. The server
ID must be granted all privileges that its SQL users require.

To determine who has accessed a database table or view, you can perform the
following steps:

Chapter 10. Designing for Transaction Managers 185

1. From the SYSCAT.PACKAGEDEP catalog view, obtain a list of all packages
that depend on the table or view.

2. Determine the names of the server programs (for example, CICS
programs) that correspond to these packages through the naming
convention used in your installation.

3. Determine the client programs (for example, CICS transaction IDs) that
could invoke these programs, and then use the TP monitor’s log (for
example, the CICS log) to determine who has run these transactions or
programs, and when.

Configuration Considerations
You should consider the following configuration parameters when you are
setting up your TP monitor environment:
v tp_mon_name

This database manager configuration parameter identifies the name of the
TP monitor product being used (″CICS″, or ″ENCINA″, for example).

v tpname

This database manager configuration parameter identifies the name of the
remote transaction program that the database client must use when issuing
an allocate request to the database server, using the APPC communications
protocol. The value is set in the configuration file at the server, and must be
the same as the transaction processor (TP) name configured in the SNA
transaction program. Refer to the Quick Beginnings manuals for more
information.

v tm_database

Because DB2 does not coordinate transactions in the XA environment, this
database manager configuration parameter is not used for XA-coordinated
transactions.

v maxappls

This database configuration parameter specifies the maximum number of
active applications allowed. The value of this parameter must be equal to or
greater than the sum of the connected applications, plus the number of
these applications that may be concurrently in the process of completing a
two-phase commit or rollback. This sum should then be increased by the
anticipated number of indoubt transactions that might exist at any one
time. For more information about indoubt transactions, see “Recovering
from Problems During Two-Phase Commit” on page 168.
For a TP monitor environment (for example, TXSeries CICS), you may need
to increase the value of the maxappls parameter. This would help to ensure
that all TP monitor processes can be accommodated.

186 Administration Guide: Planning

v autorestart

This database configuration parameter specifies whether the RESTART
DATABASE routine will be invoked automatically when needed. The
default value is YES (that is, enabled).
A database containing indoubt transactions requires a restart database
operation to start up. If autorestart is not enabled when the last connection
to the database is dropped, the next connection will fail and require an
explicit RESTART DATABASE invocation. This condition will exist until the
indoubt transactions have been removed, either by the transaction
manager’s resync operation, or through a heuristic operation initiated by
the administrator. When the RESTART DATABASE command is issued, a
message is returned if there are any indoubt transactions in the database.
The administrator can then use the LIST INDOUBT TRANSACTIONS
command and other command line processor commands to find get
information about those indoubt transactions.

XA Function Supported
DB2 Universal Database supports the XA91 specification defined in X/Open
CAE Specification Distributed Transaction Processing: The XA Specification, with
the following exceptions:
v Asynchronous services

The XA specification allows the interface to use asynchronous services, so
that the result of a request can be checked at a later time. The database
manager requires that the requests be invoked in synchronous mode.

v Static registration
The XA interface allows two ways to register an RM: static registration and
dynamic registration. DB2 Universal Database supports only dynamic
registration, which is more advanced and efficient. For more information
about these two methods, see “Resource Managers (RM)” on page 175.

v Association Migration
DB2 Universal Database does not support transaction migration between
threads of control.

For information about xa_open and xa_close strings usage, see “xa_open and
xa_close Strings Usage” on page 176.

XA Switch Usage and Location
As required by the XA interface, the database manager provides a
db2xa_switch external C variable of type xa_switch_t to return the XA switch
structure to the TM. Other than the addresses of various XA functions, the
following fields are returned:

Field Value

name The product name of the database manager. For example, DB2
for AIX.

Chapter 10. Designing for Transaction Managers 187

flags TMREGISTER | TMNOMIGRATE

Explicitly states that DB2 Universal Database uses dynamic
registration, and that the TM should not use association
migration. Implicitly states that asynchronous operation is not
supported.

version Must be zero.

Using the DB2 Universal Database XA Switch
The XA architecture requires that a Resource Manager (RM) provide a switch
that gives the XA Transaction Manager (TM) access to the RM’s xa_ routines.
An RM switch uses a structure called xa_switch_t. The switch contains the
RM’s name, non-NULL pointers to the RM’s XA entry points, a flag, and a
version number.

UNIX Based Systems and OS/2: DB2 UDB’s switch can be obtained through
either of the following two ways:
v Through one additional level of indirection. In a C program, this can be

accomplished by defining the macro:
#define db2xa_switch (*db2xa_switch)

prior to using db2xa_switch.
v By calling db2xacic

DB2 UDB provides this API, which returns the address of the db2xa_switch
structure. This function is prototyped as:

struct xa_switch_t * SQL_API_FN db2xacic()

With either method, you must link your application with libdb2 (on UNIX
based system) or db2api.lib (on OS/2).

Windows NT: The pointer to the xa_switch structure, db2xa_switch, is
exported as DLL data. This implies that a Windows NT application using this
structure must reference it in one of three ways:
v Through one additional level of indirection. In a C program, this can be

accomplished by defining the macro:
#define db2xa_switch (*db2xa_switch)

prior to using db2xa_switch.
v If using the Microsoft Visual C++ compiler, db2xa_switch can be defined as:

extern __declspec(dllimport) struct xa_switch_t db2xa_switch

v By calling db2xacic

DB2 UDB provides this API, which returns the address of the db2xa_switch
structure. This function is prototyped as:

struct xa_switch_t * SQL_API_FN db2xacic()

188 Administration Guide: Planning

With any of these methods, you must link your application with db2api.lib.

Example C Code: The following code illustrates the different ways in which
the db2xa_switch can be accessed via a C program on any DB2 UDB platform.
Be sure to link your application with the appropriate library.

#include <stdio.h>
#include <xa.h>

struct xa_switch_t * SQL_API_FN db2xacic();

#ifdef DECLSPEC_DEFN
extern __declspec(dllimport) struct xa_switch_t db2xa_switch;
#else
#define db2xa_switch (*db2xa_switch)
extern struct xa_switch_t db2xa_switch;
#endif

main()
{

struct xa_switch_t *foo;
printf ("%s \n", db2xa_switch.name);
foo = db2xacic();
printf ("%s \n", foo->name);
return ;

}

XA Interface Problem Determination
When an error is detected during an XA request from the TM, the application
program may not be able to get the error code from the TM. If your program
abends, or gets a cryptic return code from the TP monitor or the TM, you
should check the First Failure Service Log, which reports XA error information
when diagnostic level 3 or greater is in effect. For more information about the
First Failure Service Log, refer to the Troubleshooting Guide.

You should also consult the console message, TM error file, or other
product-specific information about the external transaction processing
software that you are using.

The database manager writes all XA-specific errors to the First Failure Service
Log with SQLCODE -998 (transaction or heuristic errors) and the appropriate
reason codes. Following are some of the more common errors:
v Invalid syntax in the xa_open string.
v Failure to connect to the database specified in the open string as a result of

one of the following:
– The database has not been cataloged.
– The database has not been started.
– The server application’s user name or password is not authorized to

connect to the database.

Chapter 10. Designing for Transaction Managers 189

v Communications error.

Following is an example of an error log for an xa_open error (due to a
missing xa_open string) generated on AIX:

Tue Apr 4 15:59:08 1995
toop pid(83378) process (xatest) XA DTP Support sqlxa_open Probe:101
DIA4701E Database "" could not be opened for distributed transaction
processing.
String Title : XA Interface SQLCA pid(83378)
SQLCODE = -998 REASON CODE: 4 SUBCODE: 1
Dump File : /u/toop/diagnostics/83378.dmp Data : SQLCA

Configuring XA Transaction Managers to Use DB2 UDB

Note that the information in this section supercedes the similar section in the
Administration Guide: Performance.

The sections that follow describe how to configure specific products to use
DB2 as a resource manager. You can use any of the following:
v “Configuring IBM TXSeries CICS”
v “Configuring IBM TXSeries Encina”
v “Configuring BEA Tuxedo” on page 193
v “Configuring Microsoft Transaction Server” on page 195.

Configuring IBM TXSeries CICS
For information about how to configure IBM TXSeries CICS to use DB2 as a
resource manager, refer to your IBM TXSeries CICS Administration Guide.
TXSeries documentation can be viewed online at
http://www.transarc.com/Library/documentation/websphere/WAS-
EE/en_US/html/.

Host and AS/400 database servers can participate in CICS-coordinated
transactions.

Configuring IBM TXSeries Encina
Following are the various APIs and configuration parameters required for the
integration of Encina Monitor and DB2 Universal Database servers, or DB2 for
MVS, DB2 for OS/390, DB2 for AS/400, or DB2 for VSE&VM when accessed
through DB2 Connect. TXSeries documentation can be viewed online at
http://www.transarc.com/Library/documentation/websphere/WAS-
EE/en_US/html/.

Host and AS/400 database servers can participate in Encina-coordinated
transactions.

190 Administration Guide: Planning

Configuring DB2
To configure DB2:
1. Each database name must be defined in the DB2 database directory. If the

database is a remote database, a node directory entry must also be
defined. You can perform the configuration using the Client Configuration
Assistant (CCA), or the DB2 command line processor (CLP). For example:

DB2 CATALOG DATABASE inventdb AS inventdb AT NODE host1 AUTH SERVER
DB2 CATALOG TCPIP NODE host1 REMOTE hostname1 SERVER svcname1

2. The DB2 client can optimize its internal processing for Encina if it knows
that it is dealing with Encina. You can specify this by setting the
tp_mon_name database manager configuration parameter to ENCINA. The
default behavior is no special optimization. If tp_mon_name is set, the
application must ensure that the thread that performs the unit of work
also immediately commits the work after ending it. No other unit of work
may be started. If this is not your environment, ensure that the
tp_mon_name value is NONE (or, through the CLP, that the value is set to
NULL). The parameter can be updated through the Control Center or the
CLP. The CLP command is:

db2 update dbm cfg using tp_mon_name ENCINA

Configuring Encina for Each Resource Manager
To configure Encina for each resource manager (RM), an administrator must
define the Open String, Close String, and Thread of Control Agreement for
each DB2 database as a resource manager before the resource manager can be
registered for transactions in an application. The configuration can be
performed using the Enconcole full screen interface, or the Encina command
line interface. For example:

monadmin create rm inventdb -open "db=inventdb,uid=user1,pwd=password1"

There is one resource manager configuration for each DB2 database, and each
resource manager configuration must have an rm name (″logical RM name″).
To simplify the situation, you should make it identical to the database name.

The xa_open string contains information that is required to establish a
connection to the database. The content of the string is RM-specific. The
xa_open string of DB2 UDB contains the alias name of the database to be
opened, and optionally, a user ID and password to be associated with the
connection. Note that the database name defined here must also be cataloged
into the regular database directory required for all database access. For
information about DB2’s xa_open string, see “Setting Up a Database as a
Resource Manager” on page 176.

The xa_close string is not used by DB2.

Chapter 10. Designing for Transaction Managers 191

The Thread of Control Agreement determines if an application agent thread
can handle more than one transaction at a time. DB2 UDB supports the
default of TMXA_SERIALIZE_ALL_OPERATIONS, where a thread can be
reused only after a transaction has completed.

If you are accessing DB2 for OS/390, DB2 for MVS, DB2 for AS/400, or DB2
for VSE&VM, you must use the DB2 Syncpoint Manager. Refer to the DB2
Connect Enterprise Edition for OS/2 and Windows Quick Beginnings manual for
configuration instructions.

Referencing a DB2 Database from an Encina Application
To reference a DB2 database from an Encina application:
1. Use the Encina Scheduling Policy API to specify how many application

agents can be run from a single TP monitor application process. For
example:

rc = mon_SetSchedulingPolicy (MON_EXCLUSIVE)

For DB2 (DB2 Universal Database, host, or AS/400 database servers), you
should use the default setting of MON_EXCLUSIVE. This ensures that:
v The application process is locked during the lifetime of the transaction.
v The application acts single-threaded.

Note: If you are using the ODBC or DB2 Call Level Interface, you must
disable multithread support. You can do this by setting the CLI
configuration parameter DISABLEMULTITHREAD = 1 (disables
multithreading). The default for DB2 Universal Database is
DISABLEMULTITHREAD = 0 (enables multithreading). Refer to the CLI
Guide and Reference for more information.

2. Use the Encina RM Registration API to provide the XA switch and the
logical RM name to be used by Encina when referencing the RM in an
application process. For example:

rc = mon_RegisterRmi (&db2xa_switch, /* xa switch */
"inventdb", /* logical RM name */
&rmiId); /* internal RM ID */

The XA switch contains the addresses of the XA routines in the RM that
the TM can call, and it also specifies the functionality that is provided by
the RM. The XA switch of DB2 Universal Database is db2xa_switch, and it
resides in the DB2 client library (db2app.dll on Windows operating
systems and OS/2, and libdb2 on UNIX based systems).

The logical RM name is the one used by Encina, and is not the actual
database name that is used by the SQL application that runs under Encina.

192 Administration Guide: Planning

The actual database name is specified in the xa_open string in the Encina
RM Registration API. The logical RM name is set to be the same as the
database name in this example.

The third parameter returns an internal identifier or handle that is used by
the TM to reference this connection.

Note: When using Encina for transaction processing with DB2 through the
TM-XA interface, note that Encina-nested transactions are not currently
supported by the DB2 XA interface. Avoid using these transactions, if
possible. If you cannot, ensure that SQL work is done in only one
member of the Encina transaction family.

Configuring BEA Tuxedo
To configure Tuxedo to use DB2 as a resource manager, perform the following
steps:
1. Install Tuxedo as specified in the documentation for that product. Ensure

that you perform all basic Tuxedo configuration, including the log files
and environment variables.
You also require a compiler and the DB2 Application Development Client.
Install these if necessary.

2. At the Tuxedo server ID, set the DB2INSTANCE environment variable to
reference the instance that contains the databases that you want Tuxedo to
use. Set the PATH variable to include the DB2 program directories.
Confirm that the Tuxedo server ID can connect to the DB2 databases.

3. Update the tp_mon_name database manager configuration parameter with
the value TUXEDO.

4. Add a definition for DB2 to the Tuxedo resource manager definition file.
In the examples that follow, UDB_XA is the locally-defined Tuxedo resource
manager name for DB2, and db2xa_switch is the DB2-defined name for a
structure of type xa_switch_t:
v For AIX. In the file ${TUXDIR}/udataobj/RM, add the definition:

DB2 UDB
UDB_XA:db2xa_switch:-L${DB2DIR} /lib -ldb2

where {TUXDIR} is the directory where you installed Tuxedo, and
{DB2DIR} is the DB2 instance directory.

v For Windows NT. In the file %TUXDIR%\udataobj\rm, add the definition:
DB2 UDB
UDB_XA;db2xa_switch;%DB2DIR%\lib\db2api.lib

where %TUXDIR% is the directory where you installed Tuxedo, and
%DB2DIR% is the DB2 instance directory.

5. Build the Tuxedo transaction monitor server program for DB2:

Chapter 10. Designing for Transaction Managers 193

v For AIX:
${TUXDIR}/bin/buildtms -r UDB_XA -o ${TUXDIR}/bin/TMS_UDB

where {TUXDIR} is the directory where you installed Tuxedo.
v For Windows NT:

%TUXDIR%\bin\buildtms -r UDB_XA -o %TUXDIR%\bin\TMS_UDB

6. Build the application servers. In the examples that follow, the -r option
specifies the resource manager name, the -f option (used one or more
times) specifies the files that contain the application services, the -s option
specifies the application service names for this server, and the -o option
specifies the output server file name:
v For AIX:

${TUXDIR}/bin/buildserver -r UDB_XA -f svcfile.o -s SVC1,SVC2
-o UDBserver

where {TUXDIR} is the directory where you installed Tuxedo.
v For Windows NT:

%TUXDIR%\bin\buildserver -r UDB_XA -f svcfile.o -s SVC1,SVC2
-o UDBserver

where %TUXDIR% is the directory where you installed Tuxedo.
7. Set up the Tuxedo configuration file to reference the DB2 server. In the

*GROUPS section of the UDBCONFIG file, add an entry similar to:
UDB_GRP LMID=simp GRPNO=3

TMSNAME=TMS_UDB TMSCOUNT=2
OPENINFO="UDB_XA:db=sample,uid=db2_user,pwd=db2_user_pwd"

where the TMSNAME parameter specifies the transaction monitor server
program that you built previously, and the OPENINFO parameter specifies
the resource manager name. This is followed by the database name, and
the DB2 user and password, which are used for authentication.

The application servers that you built previously are referenced in the
*SERVERS section of the Tuxedo configuration file.

8. If the application is accessing data residing on DB2 for OS/390, DB2 for
OS/400, or DB2 for VM&VSE, the DB2 Connect XA concentrator will be
required. For configuration details and limitations, refer to the DB2
Connect User’s Guide.

9. Start Tuxedo:
tmboot -y

After the command completes, Tuxedo messages should indicate that the
servers are started. In addition, if you issue the DB2 command LIST

194 Administration Guide: Planning

APPLICATIONS ALL, you should see two connections (in this situation,
specified by the TMSCOUNT parameter in the UDB group in the Tuxedo
configuration file, UDBCONFIG.

Configuring Microsoft Transaction Server
DB2 UDB V5.2 and later can be fully integrated with Microsoft Transaction
Server (MTS) Version 2.0. Applications running under MTS on Windows 32-bit
operating systems can use MTS to coordinate two-phase commit with multiple
DB2 UDB, host, and AS/400 database servers, as well as with other
MTS-compliant resource managers.

Enabling MTS Support in DB2
Microsoft Transaction Server support is automatically enabled. While you can
set the tp_mon_name database manager configuration parameter to MTS, it is
not necessary and will be ignored.

Note: Additional technical information may be provided on the IBM web site
to assist you with installation and configuration of DB2 MTS support.
Set your URL to http://www.ibm.com/software/data/db2/library/,
and search for a DB2 Universal Database ″Technote″ with the keyword
″MTS″.

MTS Software Prerequisites
MTS support requires the DB2 Client Application Enabler (CAE) Version 5.2,
or later, and MTS must be at Version 2.0 with Hotfix 0772 or later releases.

The installation of the DB2 ODBC driver on Windows 32-bit operating
systems will automatically add a new keyword into the registry:

HKEY_LOCAL_MACHINE\software\ODBC\odbcinit.ini\IBM DB2 ODBC Driver:
Keyword Value Name: CPTimeout
Data Type: REG_SZ
Value: 60

Installation and Configuration
Following is a summary of installation and configuration considerations for
MTS. To use DB2’s MTS support, you must:
1. Install MTS and the DB2 client on the same machine where the MTS

application runs.
2. If host or AS/400 database servers are to be involved in a multisite

update:
a. Install DB2 Connect Enterprise Edition (EE), either on your local

machine or on a remote machine. DB2 Connect EE allows host or
AS/400 database servers to participate in a multisite update
transaction.

Chapter 10. Designing for Transaction Managers 195

http://www.ibm.com/software/data/db2/library/

b. Ensure that your DB2 Connect EE server is enabled for multisite
update. For information about enabling DB2 Connect for multisite
updates, refer to the DB2 Connect Enterprise Edition Quick Beginnings
manual for your platform.

When running DB2 CLI/ODBC applications, the following configuration
keywords (as set in the db2cli.ini file) must not be changed from their
default values:
v CONNECTYPE keyword (default 1)
v MULTICONNECT keyword (default 1)
v DISABLEMULTITHREAD keyword (default 1)
v CONNECTIONPOOLING keyword (default 0)
v KEEPCONNECTION keyword (default 0)

DB2 CLI applications written to make use of MTS support must not change
the attribute values corresponding to the above keywords. In addition, the
applications must not change the default values of the following attributes:
v SQL_ATTR_CONNECT_TYPE attribute (default

SQL_CONCURRENT_TRANS)
v SQL_ATTR_CONNECTON_POOLING attribute (default SQL_CP_OFF)

Note: Additional technical information may be provided on the IBM web site
to assist you with installation and configuration of DB2 MTS support.
Set your URL to http://www.ibm.com/software/data/db2/library/,
and search for a DB2 Universal Database ″Technote″ with the keyword
″MTS″.

Verifying the Installation
1. Configure your DB2 client and DB2 Connect EE to access your DB2 UDB,

host, or AS/400 server.
2. Verify the connection from the DB2 CAE machine to the DB2 UDB

database servers.
3. Verify the connection from the DB2 Connect machine to your host or

AS/400 database server with DB2 CLP, and issue a few queries.
4. Verify the connection from the DB2 CAE machine through the DB2

Connect gateway to your host or AS/400 database server, and issue a few
queries.

Supported DB2 Database Servers
The following servers are supported for multisite update using
MTS-coordinated transactions:
v DB2 Universal Database Enterprise Edition Version 5.2
v DB2 Enterprise - Extended Edition Version 5.2

196 Administration Guide: Planning

http://www.ibm.com/software/data/db2/library/

v DB2 for OS/390
v DB2 for MVS
v DB2 for AS/400
v DB2 for VM&VSE
v DB2 Common Server for SCO, Version 2
v DB2 Universal Database for AIX with PTF U453782
v DB2 Universal Database for HP-UX with PTF U453784
v DB2 Universal Database Enterprise Edition for OS/2 with PTF WR09033
v DB2 Universal Database for SOLARIS with PTF U453783
v DB2 Universal Database Enterprise Edition for Windows NT with PTF

WR09034
v DB2 Universal Database Extended Enterprise Edition for UNIX or Windows

NT.

MTS Transaction Time-Out and DB2 Connection Behavior
You can set the transaction time-out value in the MTS Explorer tool. For more
information, refer to the online MTS Administrator Guide.

If a transaction takes longer than the transaction time-out value (default value
is 60 seconds), MTS will asynchronously issue an abort to all Resource
Managers involved, and the whole transaction is aborted.

For the connection to a DB2 server, the abort is translated into a DB2 rollback
request. Like any other database request, the rollback request is serialized on
the connection to guarantee the integrity of the data on the database server.

As a result:
v If the connection is idle, the rollback is executed immediately.
v If a long-running SQL statement is processing, the rollback request waits

until the SQL statement finishes.

Connection Pooling
Connection pooling enables an application to use a connection from a pool of
connections, so that the connection does not need to be re-established for each
use. Once a connection has been created and placed in a pool, an application
can reuse that connection without performing a complete connection process.
The connection is pooled when the application disconnects from the ODBC
data source, and will be given to a new connection whose attributes are the
same.

Connection pooling has been a feature of ODBC driver Manager 2.x. With the
latest ODBC driver manager (version 3.5) that was shipped with MTS,
connection pooling has some configuration changes and new behavior for

Chapter 10. Designing for Transaction Managers 197

ODBC connections of transactional MTS COM objects (see “Reusing ODBC
Connections Between COM Objects Participating in the Same Transaction” on
page 199).

ODBC driver Manager 3.5 requires that the ODBC driver register a new
keyword in the registry before it allows connection pooling to be activated.
The keyword is:

Key Name: SOFTWARE\ODBC\ODBCINST.INI\IBM DB2 ODBC DRIVER
Name: CPTimeout
Type: REG_SZ
Data: 60

The DB2 ODBC driver Version 6 and later for the 32-bit Windows operating
system fully supports connection pooling; therefore, this keyword is
registered. Version 5.2 clients must install FixPack 3 (WR09024) or later.

The default value of 60 means that the connection will be pooled for 60
seconds before it is disconnected.

In a busy environment, it is better to increase the CPTimeout value to a large
number (Microsoft sometimes suggests 10 minutes for certain environments)
to prevent too many physical connects and disconnects, because these
consume large amounts of system resource, including system memory and
communications stack resources.

In addition, to ensure that the same connection is used between objects in the
same transaction in a multiple processor machine, you must turn off ″multiple
pool per processor″ support. To do this, copy the following registry setting
into a file called odbcpool.reg, save it as a plain text file, and issue the
command odbcpool.reg. The Windows operating system will import these
registry settings.
REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Connection Pooling]
"NumberOfPools"="1"

Without this keyword set to 1, MTS may pool connections in different pools,
and hence will not reuse the same connection.

MTS Connection Pooling using ADO 2.1 and Later
If the MTS COM objects use ADO to access the database, you must turn off
the OLEDB resource pooling so that the Microsoft OLEDB provider for ODBC
(MSDASQL) will not interfere with ODBC connection pooling. This feature
was initialized to OFF in ADO 2.0, but is initialized to ON in ADO 2.1. To turn
OLEDB resource polling off, copy the following lines into a file called
oledb.reg, save it as a plain text file, and issue the command oledb.reg. The
Windows operating system will import this registry setting.

198 Administration Guide: Planning

REGEDIT4

[HKEY_CLASSES_ROOT\CLSID\{c8b522cb-5cf3-11ce-ade5-00aa0044773d}]
@="MSDASQL"
"OLEDB_SERVICES"=dword:fffffffc

Reusing ODBC Connections Between COM Objects Participating in the
Same Transaction
ODBC connections in MTS COM objects have connection pooling turned on
automatically (whether or not the COM object is transactional).

For multiple MTS COM objects participating in the same transaction, the
connection can be reused between two or more COM objects in the following
manner.

Suppose that there are two COM objects, COM1 and COM2, that connect to
the same ODBC data source and participate in the same transaction.

After COM1 connects and does its work, it disconnects, and the connection is
pooled. However, this connection will be reserved for the use of other COM
objects of the same transaction. It will be available to other transactions only
after the current transaction ends.

When COM2 is invoked in the same transaction, it is given the pooled
connection. MTS will ensure that the connection can only be given to the
COM objects that are participating in the same transaction.

On the other hand, if COM1 does not explicitly disconnect, it will tie up the
connection until the transaction ends. When COM2 is invoked in the same
transaction, a separate connection will be acquired. Subsequently, this
transaction ties up two connections instead of one.

This reuse of connection feature for COM objects participating in the same
transaction is preferable for the following reasons:
v It uses fewer resources in both the client and the server. Only one

connection is needed.
v It eliminates the possibility that two connections participating in the same

transaction (accessing the same database server and accessing the same
data) can lock one another, because DB2 servers treat different connections
from MTS COM objects as separate transactions.

Tuning TCP/IP Communications
If a small CPTimeout value is used in a high-workload environment where
too many physical connects and disconnects occur at the same time, the
TCP/IP stack may encounter resource constraints.

Chapter 10. Designing for Transaction Managers 199

To alleviate this problem, use the TCP/IP Registry Entries. These are
described in the Windows NT Resource Guide, Volume 1. The registry key
values are located in HKEY_LOCAL_MACHINE—> SYSTEM—>
CurrentControlSet—> Services—> TCPIP—> Parameters.

The default values and suggested settings are as follows:

Name Default Value Suggested Value

KeepAlive time 7200000 (2 hours) Same

KeepAlive interval 1000 (1 second) 10000 (10 seconds)

TcpKeepCnt 120 (2 minutes) 240 (4 minutes)

TcpKeepTries 20 (20 re-tries) Same

TcpMaxConnectAttempts 3 6

TcpMaxConnectRetransmission 3 6

TcpMaxDataRetransmission 5 8

TcpMaxRetransmissionAttempts 7 10

If the registry value is not defined, create it.

Testing DB2 With The MTS ″BANK″ Sample Application
You can use the ″BANK″ sample program that is shipped with MTS to test the
setup of the client products and MTS.

Follow these steps:
1. Change the file

\Program Files\Common Files\ODBC\Data Sources\MTSSamples.dsn so that
it looks like this:

[ODBC]
DRIVER=IBM DB2 ODBC DRIVER
UID=your_user_id
PWD=your_password
DSN=your_database_alias
Description=MTS Samples

where:
v your_user_idand your_password are the user ID and password used to

connect to the host.
v your_database_alias is the database alias used to connect to the database

server.
2. Go to ODBC Administration in the Control Panel, select the System DSN

tab, and then add the data source:
a. Select IBM ODBC Driver, and then select Finish.

200 Administration Guide: Planning

b. When presented with the list of database aliases, choose the one that
was specified previously.

c. Select OK.
3. Use DB2 CLP to connect to a DB2 database under the ID your_user_id, as

above.
a. Bind the db2cli.lst file:

db2 bind @C:\sqllib\bnd\db2cli.lst blocking all grant public

b. Bind the utilities.
If the server is a DRDA host server, bind ddcsmvs.lst, ddcs400.lst, or
ddcsvm.lst, depending on the host that you are connecting to (OS/390,
AS/400, or VSE&VM). For example:

db2 bind @C:\sqllib\bnd\@ddcsmvs.lst blocking all grant public

Otherwise, bind the db2ubind.lst file:
db2 bind @C:\sqllib\bnd\@db2ubind.lst blocking all grant public

c. Create the sample table and data for the MTS sample application, as
follows:

db2 create table account (accountno int, balance int)
db2 insert into account values(1, 1)

4. On the DB2 client, ensure that the database manager configuration
parameter tp_mon_name is set to MTS.

5. Run the ″BANK″ application. Select the Account button and the Visual
C++ option, then submit the request. Other options may use SQL that is
specific to SQL Server, and may not work.

Chapter 10. Designing for Transaction Managers 201

202 Administration Guide: Planning

Chapter 11. Designing for High Availability

DB2 Universal Database provides high availability failover support on many
platforms. Failover capability allows for the automatic transfer of workload
from one processor to another when there is hardware failure. For example,
on AIX, DB2 UDB supports failover through the capabilities of IBM High
Availability Cluster Multi-Processing (HACMP). Throughout this section,
examples from AIX are used to introduce the concepts associated with high
availability.

HACMP provides increased availability through clusters of processors that
share resources such as disks or network access. If a processor fails, another
processor in the cluster substitutes for it.

There are three modes of failover support:

Hot Standby
In this mode, one processor is used to run your DB2 instance, and the
second processor is in standby mode, ready to take over the instance
if there is an operating system or hardware failure involving the first
processor.

Mutual Takeover
In this mode:
v Both processors are used to run separate DB2 instances.
v One processor is used to run a DB2 instance, while the other one is

used to run DB2 applications.

If there is an operating system or hardware failure on one of the
processors, the other processor takes over the tasks of the failed
processor, eventually doing the work of both processors.

Concurrent Access
In this mode, multiple processors are used to scale to a single
database instance using the DB2 Universal Database Enterprise -
Extended Edition (EEE) product. This is done using a shared-nothing
model, partitioning the data such that one or more partitions are
running on each processor in the cluster. If an operating system or
hardware failure occurs on one of the processors, the other processor
takes over the partitions of the failing processor. DB2 UDB EEE does
not require a Concurrent Resource Manager to provide redundancy.
Redundancy is managed by using the hot standby or the mutual
takeover mode. The capabilities of the concurrent access mode are
only required by database managers with a shared architecture.

© Copyright IBM Corp. 1993, 2000 203

Each of these configurations can be used to failover one or more partitions of
a partitioned database. In addition, each can failover a complete instance of a
single partition installation.

Hot Standby

The hot standby capability can be used to failover the entire instance of a
single partition database or a partition of a partitioned database configuration.
If one processor fails, another processor in the cluster can substitute for the
failed processor by automatically transferring the instance. The database
instance and the actual database must be accessible to both the primary and
the failover processor.
v The DB2 installation path can be either on a path shared by both systems,

or on a non-shared file system. If using a non-shared file system, the
installation levels must be identical.

v The DB2 instance path can be either on a shared file system, or on a
manually mirrored file system.

v The database and associated containers must be on file systems (or devices)
accessible to both systems.

v During failover of a partition in a partitioned database configuration, the
partition is restarted on the second processor: the failover script changes the
db2nodes.cfg file to point to this partition on the new processor, and starts
the partition on that processor.

v When a failover occurs, the external communications addresses for
supported communications protocols are transparently transferred as part of
the failover procedure.

For detailed information about the actual installation requirements, and about
instance creation, refer to HACMP for AIX, Version 4.2: Installation Guide,
SC23-1940.

Examples
Each of the following examples has a sample script that is stored (on DB2 for
AIX installations) in sqllib/samples/hacmp.

Instance Failover
The following hot standby failover scenario consists of a two-processor
HACMP cluster running a single-partition database instance (Figure 44 on
page 205). For information about configuring your HACMP cluster, see
“Resources” on page 210.

204 Administration Guide: Planning

Both processors have access to the installation directory, the instance directory,
and the database directory. The database instance ″db2inst″ is being actively
executed on processor 1. Processor 2 is not active, and is being used as a hot
standby. A failure occurs on processor 1, and the instance is taken over by
processor 2. Once the failover is complete, both remote and local applications
can access the database within instance ″db2inst″. The database will have to
be manually restarted or, if AUTORESTART is on, the first connection to the
database will initiate a restart operation. In the sample script provided, it is
assumed that AUTORESTART is off, and that the failover script performs the
restart for the database. For more information about AUTORESTART, see
″Overview of Recovery″ in the Administration Guide: Implementation.

Sample script:
hacmp-s1.sh

Partition Failover
In the following hot standby failover scenario, we are using an instance
partition instead of the entire instance. The scenario includes a two processor
HACMP cluster as in the previous example, but the machine represents one of
the partitions of a partitioned database server. Processor 1 is running a single

Client
Workstation

Network: LAN

Network: RS232 LINKProcessor 1 Processor 2

Processor 1
LAN Connection

Processor 2
LAN Connection

Processor 1 Standby
LAN Connection

db2inst

Figure 44. Example of a Hot Standby Failover Configuration

Chapter 11. Designing for High Availability 205

partition of the overall configuration, and processor 2 is being used as the
failover processor. When processor 1 fails, the partition is restarted on the
second processor. The failover updates the db2nodes.cfg file, pointing to
processor 2’s host name and net name, and then restarts the partition on the
new processor.

Following is a portion of the db2nodes.cfg file, both before and after the
failover. In this example, node number 2 is running on processor 1 of the
HACMP machine, which has both a host name and a net name of ″node201″.
After the failover, node number 2 is running on processor 2 of the HACMP
machine, which has both a host name and a net name of ″node202″.
Before:

1 node101 0 node101
2 node201 0 node201 <= HACMP
3 node301 0 node301

db2start nodenum 2 restart hostname node202 port 0 netname node202

After:
1 node101 0 node101
2 node202 0 node202 <= HACMP
3 node301 0 node301

Sample script:
hacmp-s2.sh

Multiple Logical Node Failover
A more complex variation on the previous example involves the failover of
multiple logical nodes from one processor to another. Again, we are using the
same two processor HACMP cluster configuration as above. However, in this
scenario, processor 1 is running 3 logical partitions. The setup is the same as
that for the simple partition failover scenario, but in this case when processor
1 fails, each of the logical partitions must be started on processor 2. Each
logical partition must be started in the order that is defined in the
db2nodes.cfg file: the logical partition with port number 0 must always be
started first.

Following is a portion of the db2nodes.cfg file, both before and after the
failover. In this example, there are 3 logical partitions defined on processor 1
of a two-processor HACMP cluster.
Before:

1 node101 0 node101
2 node201 0 node201 <= HACMP
3 node201 1 node201 <= HACMP
4 node201 2 node201 <= HACMP
5 node301 0 node301

db2start nodenum 2 restart hostname node202 port 0 netname node202
db2start nodenum 3 restart hostname node202 port 1 netname node202

206 Administration Guide: Planning

db2start nodenum 4 restart hostname node202 port 2 netname node202

After:
1 node101 0 node101
2 node202 0 node202 <= HACMP
3 node202 1 node202 <= HACMP
4 node202 2 node202 <= HACMP
5 node301 0 node301

Sample script:
hacmp-s3.sh

Mutual Takeover

In mutual takeover mode, one processor can failover the single-partition
database instance, or the partitions of a partitioned database, while running
another instance or other partitions of a partitioned database configuration. As
with the hot standby configuration, the installation path, the instance
directory, and the database must be accessible to each processor that may be
involved in failover processing. The installation and instance paths can either
be on a shared file system, or mirrored on separate file systems.

When using the mutual takeover strategy for instance failover, the instances
must be defined in such a manner that both instances can be run
simultaneously on the same processor. For detailed information about the
actual installation requirements, and about instance creation, refer to HACMP
for AIX, Version 4.2: Installation Guide, SC23-1940.

Examples
Each of the following examples has a sample script that is stored (on DB2 for
AIX installations) in sqllib/samples/hacmp.

Mutual DB2 Instance Failover
The following mutual instance failover scenario consists of an HACMP system
with two processors known as ″node10″ and ″node20″.

Chapter 11. Designing for High Availability 207

Two instances, ″db2inst1″ and ″db2inst2″, are created from a single installation
path on a shared file system. Instance ″db2inst1″ is created on /u/db2inst1,
and instance ″db2inst2″ is created on /u/db2inst2. Both of these paths are on
a shared file system that is accessible to both processors. Each instance has a
single database, with a unique path, that is also on a shared resource
accessible to both processors.

Both instances are accessed via remote clients over the TCP/IP protocol:
″db2inst1″ uses the service name ″db2inst1_port″ (port number 5500), and
″db2inst2″ uses the service name ″db2inst2_port″ (port number 5550). Remote
clients accessing the ″db2inst1″ instance have this instance cataloged in their
node directory using ″node10″ as the host name. Remote clients accessing the
″db2inst2″ instance have this instance cataloged in their node directory using
″node20″ as the host name. Under normal operating conditions, ″db2inst1″ is
running on ″node10″, and ″db2inst2″ is running on ″node20″. If ″node10″ were
to fail, the failover script will start ″db2inst1″ on ″node20″, and the external IP
address associated with ″node10″ will be switched over to ″node20″. Once the
instance has been started by the failover script, and the database has been
restarted, the remote clients can connect to the database within this instance
as if it were running on ″node10″.

Client
Workstation

Network: LAN

Network: RS232 LINKNode 10 Node 20

Node 10 Standby
LAN Connection

Node 20 Standby
LAN Connection

Node 10
LAN Connection

Node 20
LAN Connection

db2inst 1 db2inst 2

Figure 45. Example of a Mutual Instance Failover Configuration

208 Administration Guide: Planning

Sample script:
hacmp-s4.sh

Mutual DB2 Partition Failover
Mutual failover of partitions in a partitioned database server environment
requires that the failover of the partition occur as a logical node on the
failover processor. For example, if we have two partitions of a partitioned
database server running on separate processors of a two-processor HACMP
cluster configured for mutual takeover, the partitions must failover as logical
nodes. The default partition at each node must be defined as logical node 0,
meaning that when a partition fails over from one processor to another, it will
start as a logical node having no direct remote communication protocol
listeners. Such a partition cannot be used as a coordinator node.

One other important consideration when configuring a system for mutual
partition takeover pertains to the local partition database path. When a
database is created in a partitioned database environment, it is created on a
root path that is not shared across the partitioned database servers. For
example, consider the following command:

CREATE DATABASE db_a1 ON /dbpath

This command is run under instance ″db2inst″, and creates the database
db_a1 on /dbpath. Each database partition is created on its local file system
under /dbpath/db2inst/nodexxxx, where xxxx represents the node number.
HACMP failover will attempt to mount the /dbpath file system, which is
already being used by the other processor. Therefore, the failover script must
mount the file system under a different logical point, and set up a symbolic
link from that file system to the appropriate /dpath/db2inst/nodexxxx path.

Following is a portion of the db2nodes.cfg file, both before and after the
failover. In this example, node number 2 is running on processor 1 of the
HACMP machine, which has both a host name and a net name of ″node201″.
Node number 3 is running on processor 2 of the HACMP machine, which has
both a host name and a net name of ″node202″.
Before:

1 node101 0 node101
2 node201 0 node201 <= HACMP
3 node202 0 node202 <= HACMP
4 node301 0 node301

db2start nodenum 2 restart hostname node202 port 1 netname node202

After:
1 node101 0 node101
2 node202 1 node202 <= HACMP
3 node202 0 node202 <= HACMP
4 node301 0 node301

Chapter 11. Designing for High Availability 209

After the failover, any remote clients trying to directly access node number 2
as the coordinator will have to recatalog the node entry for the database to
point to the failover node. Using a mutual failover scenario for coordinator
nodes is not recommended. If you require redundancy for your coordinator
node, use the hot standby configuration.

Sample script:
hacmp-s5.sh

Reconnecting after a Failover

If a client uses the SET CLIENT statement to connect to a specific node, and
that node moves to a different host during failover, the next connect request
from the client will fail. Issue db2stop, followed by db2start nodenum on the
node where the SET CLIENT statement was run, and then reissue the
statement so that both client and server detect the new physical location of
the target node.

Resources

For detailed information about HACMP concepts, installation, and
configuration, refer to the following books:
v HACMP for AIX, Version 4.2: Concepts and Facilities, SC23-1938
v HACMP for AIX, Version 4.2: Installation Guide, SC23-1940
v HACMP for AIX, Version 4.2: Planning Guide, SC23-1939.

210 Administration Guide: Planning

Part 4. High Availability

© Copyright IBM Corp. 1993, 2000 211

212 Administration Guide: Planning

Chapter 12. High Availability Cluster Multi-processing,
Enhanced Scalability (HACMP ES) for AIX

Enhanced scalability (ES) is a feature of High Availability Cluster
Multi-processing (HACMP) for AIX Version 4.2.2, which currently runs only
on RS/6000 SP nodes.

This feature provides the same failover recovery as HACMP, and has the same
event structure as previous HACMP versions (see HACMP for AIX, V4.2.2,
Enhanced Scalability Installation and Administration Guide). Enhanced scalability
also provides:
v Larger HACMP clusters, with scalability up to 16 nodes per cluster.
v Additional error coverage through user-defined events. Monitored areas can

trigger user-defined events, which can be as diverse as the death of a
process, or the fact that paging space is nearing capacity. Such events
include pre- and post-events that can be added to the failover recovery
process, if needed. Extra functions that are specific to the different
implementations can be placed within the HACMP pre- and post-event
streams.
A rules file (/usr/sbin/cluster/events/rules.hacmprd) contains the
HACMP events. User-defined events are added to this file. The script files
that are to be run when events occur are part of this definition.
For more information about user-defined events and the rules file, see
“HACMP ES Event Monitoring and User-defined Events” on page 233.

v HACMP client utilities for monitoring and detecting status changes (in one
or more clusters) from AIX physical nodes outside of the HACMP cluster.

The nodes in HACMP ES clusters exchange messages called heartbeats, or
keepalive packets, by which each node informs the other nodes about its
availability. A node that has stopped responding causes the remaining nodes
in the cluster to invoke recovery. The recovery process is called a node_down
event and may also be referred to as failover. The completion of the recovery
process is followed by the re-integration of the node into the cluster. This is
called a node_up event.

There are two types of events: standard events that are anticipated within the
operations of HACMP ES, and user-defined events that are associated with
the monitoring of parameters in hardware and software components.

One of the standard events is the node_down event. When planning what
should be done as part of the recovery process, HACMP allows two failover
options: hot (or idle) standby, and mutual takeover.

© Copyright IBM Corp. 1993, 2000 213

Cluster Configuration

In a hot standby configuration, the AIX processor node that is the takeover
node is not running any other workload. In a mutual takeover configuration,
the AIX processor node that is the takeover node is running other workloads.

Generally, DB2 Universal Database Enterprise - Extended Edition (UDB EEE)
runs in mutual takeover mode with partitions on each node. One exception is
a scenario in which the catalog node is part of a hot standby configuration.

When planning a large DB2 installation on an RS/6000 SP using HACMP ES,
you need to consider how to divide the nodes of the cluster within or
between the RS/6000 SP frames. Having a node and its backup in different SP
frames allows takeover in the event one frame goes down (that is, the frame
power/switch board fails). However, such failures are expected to be
exceedingly rare, because there are N+1 power supplies in each SP frame, and
each SP switch has redundant paths, along with N+1 fans and power. In the
case of a frame failure, manual intervention may be required to recover the
remaining frames. This recovery procedure is documented in the SP
Administration Guide. HACMP ES provides for recovery of SP node failures;
recovery of frame failures is dependent on the proper layout of clusters within
one or more SP frames.

Another planning consideration is how to manage big clusters. It is easier to
manage a small cluster than a big one; however, it is also easier to manage
one big cluster than many smaller ones. When planning, consider how your
applications will be used in your cluster environment. If there is a single,
large, homogeneous application running, for example, on 16 nodes, it is
probably easier to manage the configuration as a single cluster rather than as
eight two-node clusters. If the same 16 nodes contain many different
applications with different networks, disks, and node relationships, it is
probably better to group the nodes into smaller clusters. Keep in mind that
nodes integrate into an HACMP cluster one at a time; it will be faster to start
a configuration of multiple clusters rather than one large cluster. HACMP ES
supports both single and multiple clusters, as long as a node and its backup
are in the same cluster.

HACMP ES failover recovery allows pre-defined (also known as cascading)
assignment of a resource group to a physical node. The failover recovery
procedure also allows floating (or rotating) assignment of a resource group to
a physical node. IP addresses, and external disk volume groups, or file
systems, or NFS file systems, and application servers within each resource
group specify either an application or an application component, which can be
manipulated by HACMP ES between physical nodes by failover and

214 Administration Guide: Planning

reintegration. Failover and reintegration behavior is specified by the type of
resource group created, and by the number of nodes placed in the resource
group.

For example, consider a DB2 database partition (logical node). If its log and
table space containers were placed on external disks, and other nodes were
linked to those disks, it would be possible for those other nodes to access
these disks and to restart the database partition (on a takeover node). It is this
type of operation that is automated by HACMP. HACMP ES can also be used
to recover NFS file systems used by DB2 instance main user directories.

Read the HACMP ES documentation thoroughly as part of your planning for
recovery with DB2 UDB EEE. You should read the Concepts, Planning,
Installation, and Administration guides, then build the recovery architecture
for your environment. For each subsystem that you have identified for
recovery, based on known points of failure, identify the HACMP clusters that
you need, as well as the recovery nodes (either hot standby or mutual
takeover). This is a starting point for completing the HACMP worksheets that
are included in the documentation.

It is strongly recommended that both disks and adapters be mirrored in your
external disk configuration. For DB2 physical nodes that are configured for
HACMP, care is required to ensure that nodes on the volume group can vary
from the shared external disks. In a mutual takeover configuration, this
arrangement requires some additional planning, so that the paired nodes can
access each other’s volume groups without conflicts. For DB2 UDB EEE, this
means that all container names must be unique across all databases.

One way to achieve uniqueness is to include the partition number as part of
the name. You can specify a node expression for container string syntax when
creating either SMS or DMS containers. When you specify the expression, the
node number can be part of the container name or, if you specify additional
arguments, the results of those arguments can be part of the container name.
Use the argument ″ $N″ ([blank]$N) to indicate the node expression. The
argument must occur at the end of the container string, and can only be used
in one of the following forms:

Chapter 12. HACMP ES for AIX 215

Table 24. Arguments for Creating Containers. The node number is assumed to be
five.

Syntax Example Value

[blank]$N ″ $N″ 5

[blank]$N+[number] ″ $N+1011″ 1016

[blank]$N%[number] ″ $N%3″ 2

[blank]$N+[number]%[number]″ $N+12%13″ 4

[blank]$N%[number]+[number]″ $N%3+20″ 22

Notes:

1. % is modulus.

2. In all cases, the operators are evaluated from left to right.

Following are some examples of how to create containers using this special
argument:
v Creating containers for use on a two-node system.

CREATE TABLESPACE TS1 MANAGED BY DATABASE USING
(device '/dev/rcont $N' 20000)

The following containers would be used:
/dev/rcont0 - on Node 0
/dev/rcont1 - on Node 1

v Creating containers for use on a four-node system.
CREATE TABLESPACE TS2 MANAGED BY DATABASE USING

(file '/DB2/containers/TS2/container $N+100' 10000)

The following containers would be used:
/DB2/containers/TS2/container100 - on Node 0
/DB2/containers/TS2/container101 - on Node 1
/DB2/containers/TS2/container102 - on Node 2
/DB2/containers/TS2/container103 - on Node 3

v Creating containers for use on a two-node system.
CREATE TABLESPACE TS3 MANAGED BY SYSTEM USING

('/TS3/cont $N%2, '/TS3/cont $N%2+2')

The following containers would be used:
/TS3/cont0 - on Node 0
/TS3/cont2 - on Node 0
/TS3/cont1 - on Node 1
/TS3/cont3 - on Node 1

Figure 46 on page 217 and Figure 47 on page 218 show an example of a DB2
SSA I/O subsystem configuration, and some of the planning necessary to

216 Administration Guide: Planning

ensure both a highly available external disk configuration, and the ability to
access all volume groups without conflict.

DB2 SSA I/O Subsystem Configuration - No single point of failure

Disks
(1)

Disks
(1)

Disks
(2)

Disks
(2)

Disks
(1)

Disks
(1)

Disks
(2)

Disks
(2)

A1

A1

A2

A2

B1

B1

B2

B2

DB2-1

A1

A1

A2

A2

B1

B1

B2

B2

DB2-2 Disks are twintailed
between nodes.

Note:
Both adapters and
disks are mirrored.

(mirror copy)

Figure 46. No Single Point of Failure

Chapter 12. HACMP ES for AIX 217

Configuring a DB2 Database Partition
Once configured, each database partition in an instance is started by HACMP
ES, one physical node at a time. Multiple clusters are recommended for
starting parallel DB2 configurations that are larger than four nodes. Note that
in a 64-node parallel DB2 configuration, it is faster to start 32 two-node
HACMP clusters in parallel, than four 16-node clusters.

A script file, rc.db2pe, is packaged with DB2 UDB EEE (and installed on each
node in /usr/bin) to assist in configuring for HACMP ES failover or recovery
in either hot standby or mutual takeover nodes. In addition, DB2 buffer pool
sizes can be customized during failover in mutual takeover configurations
from within rc.db2pe. (Buffer pool sizes need to be configured to ensure
proper performance when two database partitions run on one physical node.)

DB2 SSA I/O Subsystem Configuration -
Volume group and logical volume setup

DB2-1 DB2-2 - keep vg, lv fs names unique
- set vgs not to vary on at ipl

db2 database testdata on filesystem /database instance name powertp

Volume group DB2vg1

- lv dbdlv11 (mountpoint
/database/powertp/NODE0001)
- lv dbd11log (jfslog)
- lv dbdlv12 (raw data)
- lv dbdlv13 (raw data)
(and so on.)

Volume group DB2vg2

- lv dbdlv21 (mountpoint
/database/powertp/NODE0002)
- lv dbd21log (jfslog)
- lv dbdlv22 (raw data)
- lv dbdlv23 (raw data)
(and so on.)

Figure 47. Volume Group and Logical Volume Setup

218 Administration Guide: Planning

When you create an application server in an HACMP configuration of a DB2
database partition, specify rc.db2pe as a start and stop script as follows:

/usr/bin/rc.db2pe <instance> <dpn> <secondary dpn> start <use switch>
/usr/bin/rc.db2pe <instance> <dpn> <secondary dpn> stop <use switch>

where:

<instance> is the instance name.
<dpn> is the database partition number.
<secondary dpn> is the "companion" database partition number in

mutual takeover configurations only; in hot standby configurations,
it is the same as <dpn>.

<use switch> is usually blank; when blank, it indicates that
the SP switch network is used for the hostname field
in the db2nodes.cfg file (all traffic for DB2 is routed over the SP switch);
if not blank, the name used is the host name of the SP node to be used.

The DB2 command LIST DATABASE DIRECTORY is used from within
rc.db2pe to find all databases configured for this database partition. The
script file then looks for the /usr/bin/reg.parms.DATABASE file and the
/usr/bin/failover.parms.DATABASE file, where DATABASE is each of the
databases configured for this database partition. In a mutual takeover
configuration, it is recommended that you create the parameter files
reg.parms.xxx and failover.parms.xxx. In the failover.parms.xxx file, the
settings for BUFFPAGE, DBHEAP, and any others affecting buffer pools,
should be adjusted to account for the possibility of more than one buffer pool.
Sample files reg.parms.SAMPLE and failover.parms.SAMPLE are provided for
your use.

One of the important parameters in this environment is the start_stop_time
database manager configuration parameter, which has a default value of 10
minutes. However, rc.db2pe sets this parameter to 2 minutes. You should set
this parameter through rc.db2pe to a value of 10 minutes, or slightly more. In
this context, the specified duration is the time interval between the failure of
the partition, and its recovery. If applications running on a partition are
issuing frequent COMMITs, 10 minutes following failure on a database
partition should be sufficient time to roll back uncommitted transactions and
to reach a point of consistency in the database on that partition. If your
workload is heavy, or you have many partitions, you may need to increase the
duration to decrease the probability of timeouts occurring before the rollback
operation completes.

Following is an example of a hot standby configuration and a mutual
takeover configuration. In both examples, the resource groups contain a
Service IP switch alias address. This switch alias address is used for:
v NFS access to a file server for the DB2 instance owner file systems

Chapter 12. HACMP ES for AIX 219

v Other client access that needs to be maintained in the case of a failover,
TSM (Tivoli Storage Manager, formerly ADSM) connection, or other similar
operation.

If your implementation does not require these aliases, they can be removed. If
removed, be sure to set the MOUNT_NFS parameter to NO in the rc.db2pe
script file.

Example of a Hot Standby Configuration
The assumption in this example is that a hot standby configuration exists
between physical nodes 1 and 2, and that the DB2 instance name is
POWERTP. The database partition is 1, and the database is TESTDATA,
residing on file system /database.

Resource group name: db2_dp_1
Node Relationship: cascading
Participating nodenames: node1_eth, node2_eth
Service_IP_label: nfs_switch_1 (<<< this is the switch alias address)
Filesystems: /database/powertp/NODE0001
Volume Groups: DB2vg1
Application Servers: db2_dp1_app
Application Server Start Script: /usr/bin/rc.db2pe powertp 1 1 start
Application Server Stop Script: /usr/bin/rc.db2pe powertp 1 1 stop

Example of a Mutual Takeover Configuration
The assumption in this example is that a mutual takeover configuration exists
between physical nodes 1 and 2, and that the DB2 instance name is
POWERTP. The database partitions are 1 and 2, and the database is
TESTDATA, residing on file system /database.

Resource group name: db2_dp_1
Node Relationship: cascading
Participating nodenames: node1_eth, node2_eth
Service_IP_label: nfs_switch_1 (<<< this is the switch alias address)
Filesystems: /database/powertp/NODE0001
Volume Groups: DB2vg1
Application Servers: db2_dp1_app
Application Server Start Script: /usr/bin/rc.db2pe powertp 1 2 start
Application Server Stop Script: /usr/bin/rc.db2pe powertp 1 2 stop

Resource group name: db2_pd_2
Node Relationship: cascading
Participating nodenames: node2_eth, node1_eth
Service_IP_label: nfs_switch_2 (<<< this is the switch alias address)
Filesystems: /database/powertp/NODE0002
Volume Groups: DB2vg2
Application Servers: db2_dp2_app
Application Server Start Script: /usr/bin/rc.db2pe powertp 2 1 start
Application Server Stop Script: /usr/bin/rc.db2pe powertp 2 1 stop

Configuration of an NFS Server Node
The rc.db2pe script can also be used to make available NFS-mounted
directories of DB2 parallel instance user directories. This can be accomplished

220 Administration Guide: Planning

by setting the MOUNT_NFS parameter to YES in the rc.db2pe script file, and
configuring the NFS failover server pair as follows:
v Configure the home directory and export it as ″root″ using /etc/exports

and the exportfs command to the IP address used on the nodes in the same
subnet as the NFS server’s IP address. Include both the HACMP boot and
service addresses. The NFS server’s IP address is the same address as the
service address in HACMP, and which can be taken over by a backup. The
home directory of the DB2 instance owner should be NFS-mounted directly,
not automounted. (The use of the automounter is not supported by the
scripts as a DB2 instance owner home directory.)

v Using SMIT or a bottom-line configuration, create a separate
/etc/filesystems entry for this file system, so that all nodes in the DB2
parallel grouping, including the file server, can mount using the NFS file
system command.
For example, an /nfshome JFS file system can be exported to all nodes as
/dbhome. Each node creates an NFS file system /dbname, which is
nfs_server:/nfshome. Therefore, the home directory of the DB2 instance
owner would be /dbhome/powertp if the instance name is ″powertp″.
Ensure that the NFS parameters for the mount in /etc/filesystems are
″hard″, ″bg″, ″intr″, and ″rw″.

v Ensure that the DB2 instance owner definitions associated with the home
directory /dbhome/powertp in /etc/passwd are the same on all nodes.
The user definitions in an SP environment are typically created on the
control workstation, and ″supper″ or ″pcp″ is used to distribute
/etc/passwd, /etc/security/passwd, /etc/security/user, and
/etc/security/group to all nodes.

v Do not configure the ″nfs_filesystems to export″ in HACMP resource groups
for the volume group and the file system that is exported. Instead,
configure it normally to NFS. The scripts for the NFS server will control the
exporting of the file systems.

v Ensure that the major number of the volume group where the file system
resides is the same on both the primary node and the takeover node. This is
accomplished by using importvg with the -V option.

v Verify that the MOUNT_NFS parameter is set to YES in the rc.db2pe script
file, and that each node has the NFS file system to mount in
/etc/filesystems. If this is not the case, rc.db2pe will not be able to mount
the file system and start DB2.

v If the DB2 instance owner was already created, and you are copying the
user’s directory structure to the file system you are creating, ensure that
you tar (-cvf) the directory. This ensures the preservation of symbolic links.

v Do not forget to mirror both the adapters and the disks for the logical
volumes, and the file system logs of the file system you are creating.

Chapter 12. HACMP ES for AIX 221

Example of an NFS Server Takeover Configuration
The assumption in this example is that there is an NFS server file system
/nfshome in the volume group nfsvg over the IP address ″nfs_server″. The
DB2 instance name is POWERTP, and the home directory is /dbhome/powertp.

Resource group name: nfs_server
Node Relationship: cascading
Participating nodenames: node1_eth, node2_eth
Service_IP_label: nfs_server (<<< this is the switch alias address)
Filesystems: /nfshome
Volume Groups: nfsvg
Application Servers: nfs_server_app
Application Server Start Script: /usr/bin/rc.db2pe powertp NFS SERVER start
Application Server Stop Script: /usr/bin/rc.db2pe powertp NFS SERVER stop

In this example:
v /etc/filesystems on all nodes would contain an entry for /dbhome as

mounting nfs_server:/nfshome. nfs_server is a Service IP switch alias
address.

v /etc/exports on the nfs_server node and the backup node would include
the boot and service addresses, and contain an entry for
/nfsfs -root=nfs_switch_1, nfs_switch_2,

Considerations When Configuring the SP Switch
When implementing HACMP ES with the SP switch, consider the following:
v There are ″base″ and ″alias″ addresses on the SP switch. The base addresses

are those defined in the SP System Data Repository (SDR), and are
configured by rc.switch when the system is ″booted″. The alias addresses
are IP addresses configured, in addition to the base address, into the css0
interface through the ifconfig command with an alias attribute. For
example:

ifconfig css0 inet alias sw_alias_1 up

v When configuring the DB2 db2nodes.cfg file, SP switch ″base″ IP address
names should be used for both the ″hostname″ and the ″netname″ field.
Switch IP address aliases are only used to maintain NFS connectivity. DB2
failover is achieved by restarting DB2 with the db2start (RESTART)
command (which updates db2nodes.cfg).

v Do not confuse the switch addresses with the etc/hosts aliases. Both the SP
switch addresses and the SP switch alias addresses are real in either
etc/hosts or DNS. The switch alias addresses are not another name for the
SP switch base address; each has its own separate address.

v The SP switch base addresses are always present on a node when it is up.
HACMP ES does not configure or move these addresses between nodes.

v If you intend to use SP switch alias addresses, configure these to HACMP
as boot and service addresses for ″heartbeating″ and IP address takeover. If
you do not intend to use SP switch alias addresses, configure the base SP

222 Administration Guide: Planning

switch address to HACMP as a service address for ″heartbeating″ only (no
IP address takeover). Do not, in any configuration, configure alias addresses
and the switch base address; this configuration is not supported by HACMP
ES.

v Only the SP switch alias addresses (and not the SP switch base addresses)
are moved between nodes for an IP takeover configuration.

v The need for SP switch aliases arises because there can only be one SP
switch adapter per node. Using alias addresses allows a node to take over
another node’s switch alias IP address without adding another switch
adapter. This is useful in nodes that are ″slot-constrained″. For more
information about handling recovery from SP switch adapter failures, see
the network failure section under “HACMP ES Script Files” on page 237.

v If you configure the SP switch for IP address takeover, you will need to
create two extra alias IP addresses per node: one as a boot address and one
as a service address.

v Do not forget to use ″HPS″ in the HACMP ES network name definition for
an SP switch base IP address or an SP switch alias IP address.

v rc.cluster in HACMP automatically ifconfigs in the SP switch boot
address when HACMP is started. No additional configuration is required,
other than creating the IP address and name, and defining them to
HACMP.

v The Eprimary node of the SP switch is the server that implements the
Estart, Efence, and Eunfence commands. The HACMP scripts attempt to
Eunfence or to Estart a node when HACMP is started, and make the switch
available if it is defined as one of its networks. For this reason, ensure that
the Eprimary node is available when you start HACMP. The HACMP code
waits up to 12 minutes for an Eprimary failover to complete before it exits
with an error.

v The Eprimary node of the SP switch is moved between nodes by the SP
Parallel System Support Program (PSSP), and not HACMP. If an Eprimary
node goes offline, the PSSP automatically has a backup node assume
responsibility as the Eprimary node. The switch network is unaffected by
this change and remains up.

DB2 HACMP Configuration Examples
The following examples illustrate different failover support configurations and
show what happens when failure occurs.

In the case of DB2 HACMP mutual takeover configurations (Figure 48 on
page 225, Figure 49 on page 226, and Figure 50 on page 227):
v HACMP adapters are defined for ethernet, and SP switch alias boot and

service aliases — base addresses are untouched. Remember to use an ″HPS″
string in the HACMP network name.

Chapter 12. HACMP ES for AIX 223

v The NFS_server/nfshome is mounted as /dbhome on all nodes through switch
aliases.

v The db2nodes.cfg file contains SP switch base addresses. The db2nodes.cfg
file is changed by the db2start (RESTART) command after a DB2 database
partition (logical node) failover.

v The SP switch alias boot addresses are not shown.
v Nodes can be in different SP frames.

224 Administration Guide: Planning

DB2 HACMP Mutual Takeover with NFS Failover - Normal

node87_sw (base)

nfs_server (alias)

SP Switch Adapter

node5_sw (base)

nfs_client5 (alias)

SP Switch Adapter

node88_sw (base)

nfs_backup (alias)

SP Switch Adapter

node6_sw (base)

nfs_client6 (alias)

SP Switch Adapter

SP

SWITCH

BOARD

node5_eth (ethernet - HACMP service addr)

node5_sw (switch base addr)

nfs_client5 (HACMP service addr)

Node 5:

node6_eth (ethernet - HACMP service addr)

node6_sw (switch base addr)

nfs_client6 (HACMP service addr)

Node 6:

node87_eth (ethernet - HACMP service addr)

node87_sw (switch base addr)

nfs_server (HACMP service addr)

Node 87:

node88_eth (ethernet - HACMP service addr)

node88_sw (switch base addr)

nfs_backup (HACMP service addr)

Node 88:

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
5 node6_sw 0 node6_sw
...

node 6
DB2 data
and logs

node 5
DB2 data
and logs

/nfshome
and log

Figure 48. Mutual Takeover with NFS Failover - Normal

Chapter 12. HACMP ES for AIX 225

node5_eth (ethernet - HACMP service addr)

node5_sw (switch base addr)

nfs_client5 (HACMP service addr)

DB2 HACMP Mutual Takeover with NFS Failover - NFS failover

node5_sw (base)

nfs_client5 (alias)

SP Switch Adapter

node88_sw (base)
nfs_backup (alias)
nfs_server (alias)

SP Switch Adapter

node6_sw (base)

nfs_client6 (alias)

SP Switch Adapter

SP

SWITCH

BOARD

Node 5:
node6_eth (ethernet - HACMP service addr)

node6_sw (switch base addr)

nfs_client6 (HACMP service addr)

Node 6:

node88_eth (ethernet - HACMP service addr)
node88_sw (switch base addr)
nfs_backup (HACMP service addr)
nfs_server (HACMP service addr)

Node 88:

- nfs_server SP Switch alias IP addr and nfs mounted /nfshome moved from node 87 to 88.

- SP switch arp code has functionality to update all switch arp caches with this move.

/nfshome

and log

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
5 node6_sw 0 node6_sw
...

node 6
DB2 data
and logs

node 5
DB2 data
and logs

Figure 49. Mutual Takeover with NFS Failover - NFS Failover

226 Administration Guide: Planning

In the case of DB2 HACMP hot standby configurations (Figure 51 on page 229
and Figure 52 on page 230):

DB2 HACMP Mutual Takeover with NFS Failover - DB2 failover

node87_sw (base)

nfs_server (alias)

SP Switch Adapter

node5_sw (base)
nfs_client5 (alias)
nfs_client6 (alias)

SP Switch Adapter

node88_sw (base)

nfs_backup (alias)

SP Switch Adapter

SP

SWITCH

BOARD

node5_eth (ethernet - HACMP service addr)
node5_sw (switch base addr)
nfs_client5 (HACMP service addr)
nfs_client6 (HACMP service addr)

Node 5:

node87_eth (ethernet - HACMP service addr)

node87_sw (switch base addr)

nfs_server (HACMP service addr)

Node 87:
node88_eth (ethernet - HACMP service addr)

node88_sw (switch base addr)

nfs_backup (HACMP service addr)

Node 88:

- switch IP address takeover allows other servers (like ADSM) to retain connectivity.

- Node 5 runs 2 logical nodes of DB2.

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
5 node5_sw 1 node5_sw
...

/nfshome

and log

node 6
DB2 data
and logs

node 5
DB2 data
and logs

Figure 50. Mutual Takeover with NFS Failover - DB2 Failover

Chapter 12. HACMP ES for AIX 227

v HACMP adapters are defined for ethernet, and SP switch alias boot and
service aliases — base addresses are untouched. Remember to use an ″HPS″
string in the HACMP network name.

v The NFS_server/nfshome is mounted as /dbhome on all nodes through switch
aliases.

v The db2nodes.cfg file contains SP switch base addresses. The db2nodes.cfg
file is changed by the db2start (RESTART) command after a DB2 database
partition (logical node) failover.

v The SP switch alias boot addresses are not shown.

228 Administration Guide: Planning

DB2 HACMP Hot Standby with NFS Failover - Normal

node87_sw (base)

nfs_server (alias)

SP Switch Adapter

node5_sw (base)

nfs_client5 (alias)

SP Switch Adapter

node88_sw (base)

nfs_backup (alias)

SP Switch Adapter

node6_sw (base)

nfs_client6 (alias)

SP Switch Adapter

SP

SWITCH

BOARD

node5_eth (ethernet - HACMP service addr)

node5_sw (switch base addr)

nfs_client5 (HACMP service addr)

Node 5:
node6_eth (ethernet - HACMP service addr)

node6_sw (switch base addr)

nfs_client6 (HACMP service addr)

Node 6:

node87_eth (ethernet - HACMP service addr)

node87_sw (switch base addr)

nfs_server (HACMP service addr)

Node 87:
node88_eth (ethernet - HACMP service addr)

node88_sw (switch base addr)

nfs_backup (HACMP service addr)

Node 88:

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
...

Note: Hot Standby node can back up more than one node, depending on disk cabling.

/nfshome

and log

node 5
DB2 data
and logs

Figure 51. Hot Standby with NFS Failover - Normal

Chapter 12. HACMP ES for AIX 229

In the case of DB2 HACMP mutual takeover without NFS failover
configurations (Figure 53 on page 231 and Figure 54 on page 232):
v HACMP adapters are defined for ethernet, and SP switch base addresses.

Remember that when base addresses are configured to HACMP as service

node87_sw (base)

nfs_server (alias)

SP Switch Adapter

DB2 HACMP Hot Standby with NFS Failover- DB2 Failover

SP

SWITCH

BOARD

Hot Standby node can back up more than one node, depending on disk cabling.

node88_sw (base)

nfs_backup (alias)

SP Switch Adapter

node6_sw (base)
nfs_client6 (alias)
nfs_client5 (alias)

SP Switch Adapter

Node 6:

node88_eth (ethernet - HACMP service addr)

node88_sw (switch base addr)

nfs_backup (HACMP service addr)

Node 88:

node6_eth (ethernet - HACMP service addr)
node6_sw (switch base addr)
nfs_client6 (HACMP service addr)
nfs_client5 (HACMP service addr)

node87_eth (ethernet - HACMP service addr)

node87_sw (switch base addr)

nfs_server (HACMP service addr)

Node 87:

(db2nodes.cfg)
...
4 node6_sw 0 node6_sw
...

Note:

node 5
DB2 data
and logs

/nfshome
and log

Figure 52. Hot Standby with NFS Failover - DB2 Failover

230 Administration Guide: Planning

addresses, there is no boot address (only a ″heartbeat″). Do not forget to use
an ″HPS″ string in the HACMP network name for the SP switch.

v The db2nodes.cfg file contains SP switch base addresses. The db2nodes.cfg
file is changed by the db2start (RESTART) command after a DB2 database
partition (logical node) failover.

v No NFS failover functions are shown.
v Nodes can be in different SP frames.

DB2 HACMP Mutual Takeover without NFS Failover - Normal

SP

SWITCH

BOARD

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
5 node6_sw 0 node6_sw
...

node5_eth (ethernet - HACMP service addr)

node5_sw (switch base addr - HACMP

service addr)

Node 5:
node6_eth (ethernet - HACMP service addr)

node6_sw (switch base addr - HACMP

service addr)

Node 6:

node5_sw (base)

SP Switch Adapter

node6_sw (base)

SP Switch Adapter

node 6
DB2 data
and logs

node 5
DB2 data
and logs

Figure 53. Mutual Takeover without NFS Failover - Normal

Chapter 12. HACMP ES for AIX 231

DB2 HACMP Startup Recommendations
It is recommended that you do not specify that HACMP is to be started at
boot time in /etc/inittab. HACMP should be started manually after the
nodes are booted. This allows for non-disruptive maintenance of a failed
node.

As an example of ″disruptive maintenance″, consider the case in which a node
has a hardware failure and crashes. Failover is initiated automatically by
HACMP, and recovery completes successfully. However, the failed node needs
to be fixed. If HACMP was configured in /etc/inittab to start on reboot, this
node will try to reintegrate after boot completion, which is not desirable in
this case.

For ″non-disruptive maintenance″, consider manually starting HACMP on
each node. In this way, failed nodes can be fixed and reintegrated without
affecting the other nodes. The ha_cmd script is provided for controlling
HACMP start and stop commands from the control workstation.

DB2 HACMP Mutual Takeover without NFS Failover - DB2 failover

SP

SWITCH

BOARD

- Node 5 runs 2 logical nodes of DB2.

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
5 node5_sw 1 node5_sw
...

node5_sw (base)

SP Switch Adapter

node5_eth (ethernet - HACMP service addr)

node5_sw (switch base addr)

Node 5:

node 6
DB2 data
and logs

node 5
DB2 data
and logs

Figure 54. Mutual Takeover without NFS Failover - DB2 Failover

232 Administration Guide: Planning

Note: When creating a DB2 instance for the first time, the following entry is
appended to the /etc/inittab file:

rcdb2:2:once:/etc/rc.db2 > /dev/console 2>&1 # Autostart DB2 Services

If HACMP or HACMP ES is enabled, update the /etc/inittab file by
placing the above line before the HACMP entry. Following is a sample
HACMP entry in the /etc/inittab file:

clinit:a:wait:touch /usr/sbin/cluster/.telinit # HACMP for AIX

The entry must be the last entry in the /etc/inittab file.

HACMP ES Event Monitoring and User-defined Events

Shutting down DB2 database partitions on an AIX physical node when paging
space reaches a certain percentage of fullness, and restarting a DB2 database
partition, or initiating a failover operation if a process dies on a given node,
are two examples of user-defined events. Examples that illustrate user-defined
events, such as shutting down a database partition and forcing a transaction
abort to free paging space, can be found in the samples subdirectory.

A rules file, /user/sbin/cluster/events/rules.hacmprd, contains HACMP
events. Each event description in this file has the following nine components:
v Event name, which must be unique.
v State, or qualifier for the event. The event name and state are the rule

triggers. HACMP ES Cluster Manager initiates recovery only if it finds a
rule with a trigger corresponding to the event name and state.

v Resource program path, a full-path specification of the xxx.rp file
containing the recovery program.

v Recovery type. This is reserved for future use.
v Recovery level. This is reserved for future use.
v Resource variable name, which is used for Event Manager events.
v Instance vector, which is used for Event Manager events. This is a set of

elements of the form ″name=value″. The values uniquely identify the copy
of the resource in the system and, by extension, the copy of the resource
variable.

v Predicate, which is used for Event Manager events. This is a relational
expression between a resource variable and other elements. When this
expression is true, the Event Management subsystem generates an event to
notify the Cluster Manager and the appropriate application.

v Rearm predicate, which is used for Event Manager events. This is a
predicate used to generate an event that alters the status of the primary

Chapter 12. HACMP ES for AIX 233

predicate. This predicate is typically the inverse of the primary predicate. It
can also be used with the event predicate to establish an upper and a lower
boundary for a condition of interest.

Each object requires one line in the event definition, even if the line is not
used. If these lines are removed, HACMP ES Cluster Manager cannot parse
the event definition properly, and this may cause the system to hang. Any line
beginning with ″#″ is treated as a comment line.

Note: The rules file requires exactly nine lines for each event definition, not
counting any comment lines. When adding a user-defined event at the
bottom of the rules file, it is important to remove the unnecessary
empty line at the end of the file, or the node will hang.

Following is an example of an event definition for node_up:
Beginning of the Event Definition: node_up
#
TE_JOIN_NODE
0
/usr/sbin/cluster/events/node_up.rp
2
0
6) Resource variable - only used for event management events

7) Instance vector - only used for event management events

8) Predicate - only used for event management events

9) Rearm predicate - only used for event management events

End of the Event Definition: node_up

This example is just one of the event definitions that can be found in the
rules.hacmprd file. In this example, the recovery program
/usr/sbin/cluster/events/node_up.rp is invoked when the node_up event
occurs. Values are specified for the state, recovery type, and recovery level.
There are four empty lines for resource variable, instance variable, predicate,
and rearm predicate.

You can define other events to react to non-standard HACMP ES events. For
example, to define the event that the /tmp file system is over 90 per cent full,
the rules.hacmprd file must be modified.

Many events are predefined in the IBM Parallel System Support Program
(PSSP). These events can be exploited (when used within user-defined events)
as follows:
1. Stop the cluster.

234 Administration Guide: Planning

2. Edit the rules.hacmprd file. Back up the file before modifying it. Add the
predefined PSSP event manually. If you need synchronizing points across
all nodes in the cluster, use the barrier command in the recovery program.
(Read more about the barrier command, and synchronization of recovery
programs in the HACMP Concepts, Installation, and Administration
Guides.)

3. Restart the cluster. The rules.hacmprd file is stored in memory when
Cluster Manager is started. To accurately implement the changes, restart
all the clusters. There should not be any inconsistent rules in a cluster.

4. Cluster Manager uses all events in the rules.hacmprd file.

HACMP ES uses PSSP event detection to treat user-defined events. The PSSP
Event Management subsystem provides comprehensive event detection by
monitoring various hardware and software resources.

Resource states are represented by resource variables. Resource conditions are
represented as expressions called predicates.

Event Management receives resource variables from the Resource Monitor,
which observes the state of specific system resources and transforms this state
into several resource variables. These variables are periodically passed to
Event Management. Event Management applies predicates that are specified
by the HACMP ES Cluster Manager in rules.hacmprd for each resource
variable. When the predicate is evaluated as being true, an event is generated
and sent to the Cluster Manager. Cluster Manager initiates the voting
protocol, and the recovery program file (xxx.rp) is run (according to event
priority) on a set of nodes specified by ″node sets″ in the recovery program.

The recovery program file (xxx.rp) is made up of one or more recovery
program lines. Each line is declared in the following format:

relationship command_to_run expected_status NULL

There must be at least one space between each value in the line.
″Relationship″ is a value used to decide which program should run on which
kind of node. Three types of relationship are supported:
v All. The specified command or program is run on all nodes of the current

HACMP cluster.
v Event. The specified command or program is run only on the nodes on

which the event occurred.
v Other. The specified command or program is run on all nodes on which the

event did not occur.

″Command_to_run″ is a quotation mark-delimited string, with or without a
full-path specification to an executable program. Only HACMP-delivered

Chapter 12. HACMP ES for AIX 235

event scripts can use a relative-path definition. Other scripts or programs
must use the full-path specification, even if they are located in the same
directory as the HACMP event scripts.

″Expected_states″ is the return code of the specified command or program. It
is either an integer value, or an ″x″. If ″x″ is used, Cluster Manager does not
care about the return code. All other codes must be equal to the expected
return code, otherwise Cluster Manager detects the event failure. The
handling of this event ″hangs″ the process until recovery (through manual
intervention) occurs. Without manual intervention, the node does not
synchronize with the other nodes. Synchronization across all nodes is required
for the Cluster Manager to control all the nodes.

″NULL″ is a field reserved for future use. The word ″NULL″ must appear at
the end of each line except the barrier line. If you specify multiple recovery
commands between two barrier commands, or before the first one, the
recovery commands are run in parallel on the node itself, and between the
nodes.

The barrier command is used to synchronize all the commands across all the
cluster nodes. When a node hits the barrier statement in the recovery
program, Cluster Manager initiates the barrier protocol on this node. Since the
barrier protocol is a two-phase protocol, all nodes are notified that both
phases have completed when all of the nodes have met the barrier in the
recovery program, and ″voted″ to approve the protocol.

The process can be summarized as follows:
1. Either Group Services/ES (for predefined events) or Event Management

(for user-defined events) notifies HACMP ES Cluster Manager of the
event.

2. Cluster Manager reads the rules.hacmprd file, and determines the recovery
program that is mapped to the event.

3. Cluster Manager runs the recovery program, which consists of a sequence
of recovery commands.

4. The recovery program executes the recovery commands, which may be
shell scripts or binary commands. (In HACMP for AIX, the recovery
commands are the same as the HACMP event scripts.)

5. Cluster Manager receives the return status from the recovery commands.
An unexpected status ″hangs″ the cluster until manual intervention (using
smit cm_rec_aids or the /usr/sbin/cluster/utilities/clruncmd
command) is carried out.

236 Administration Guide: Planning

HACMP ES Script Files
The following sample scripts for failover recovery and user-defined events are
included with DB2 UDB EEE. The script files are located in the
$INSTNAME/sqllib/samples/hacmp/es directory. The scripts will work ″as is″, or
you can customize the recovery action.
v DB2 database partition recovery script rc.db2pe. This is the script file used

to start and stop the HACMP configuration on a database partition. It also
works as an HACMP start and stop script for an NFS server of the DB2
instance owner.

v DB2-specific user-defined events for HACMP ES. Six default events are
included: one for process recovery, two for paging space, and three for NFS
and automounter recovery.

v DB2 instance NFS file server failover. This script provides failover recovery
of the file system server for a DB2 instance to a backup.

v Network failover. The scripts network_up_complete, network_back,
network_down_complete, and network_down allow SP DB2 database partitions
to failover if their SP switch adapter fails.

v Scripts to define monitoring events for the SP GUI Perspectives. Monitoring
of failover and user-defined recovery is possible through the Event and
Hardware Perspectives. Read the documentation for PSSP Administration to
find out more about Perspectives.

v Installation scripts to install and remove core scripts and events on the
HACMP ES nodes.

v Script files to create and remove the SP Perspectives problem management
(pman) resources for monitoring the HACMP and DB2 configuration.

The recovery scripts must be installed on each node that will run recovery
operations. The script files can be centrally installed from the SP control
workstation or other designated SP node:
1. Copy the scripts from the $INSTNAME/sqllib/samples/hacmp/es directory to

one of either the SP control workstation or another SP node that can run
the pcp and pexec commands. These commands are required for the
install operation.

2. Customize the reg.parms.SAMPLE and failover.parms.SAMPLE files for your
environment by setting key parameters (such as BUFFPAGE) for failover
configurations. Typically, for mutual takeover configurations, your failure
settings will be adjusted lower to one-half the size of your regular settings
or less. Also, you will use a copy of these files renamed with your own
name (instead of ″SAMPLE″).

3. Customize (as necessary) the five parameters NFS_RETRIES,
START_RETRIES, MOUNT_NFS, STOP_RETRIES, and FAILOVER in the
rc.db2pe file. The retry and failover settings should be adequate for most
implementations. The MOUNT_NFS setting should be configured,
depending on whether you will be using the package for NFS server

Chapter 12. HACMP ES for AIX 237

availability. You should specify this setting if you want rc.db2pe to mount
and verify the NFS home directory of the DB2 instance owner for you.
Setting the FAILOVER parameter to ″YES″ will invoke db2_proc_restart
and launch an attempt to restart a DB2 database partition. If the restart
operation is unsuccessful, HACMP will shut down with a failover.

4. Customize db2_paging_action, db2_proc_recovery, and nfs_auto_recovery
in the event file. Edit pwq to change this to the DB2 instance owner.
Customize db2_paging_action to specify which action is to be taken if
paging space becomes more that ninety percent full. (If this does occur, the
DB2 database partition is stopped.) Modify the script if additional recovery
actions are required.

5. Use db2_inst_ha to install the scripts and events on the nodes you specify.
(HACMP ES must be pre-installed on these nodes before you begin.) The
syntax of db2_inst_ha is:

db2_inst_ha $INSTNAME/sqllib/samples/hacmp/es <nodelist> <DATABASENAME>

where

$INSTNAME/sqllib/samples/hacmp/es is the directory in which the
scripts and the event are located

<nodelist> is the pcp or pexec style of the nodes; for example,
1-16 or 1,2,3,4

<DATABASENAME> is the name of the database for regular and
failover parameter files.

The reg.parms.SAMPLE and failover.parms.SAMPLE files will be copied to
each node and renamed reg.parms.DATABASENAME. db2_inst_ha copies files
to each node in /usr/bin, and updates the HACMP event files:

/usr/sbin/cluster/events/rules.hacmprd
/usr/sbin/cluster/events/network_up_complete
/usr/sbin/cluster/events/network_down_complete

6. Configure your system and scripts with HACMP.
7. Use the create_db2_events command to install the monitoring events for

problem management resources (pman) and the SP GUI Perspectives.
Additional configuration and customization in Perspectives is needed. For
more information about Perspectives, read the PSSP Administration Guide.

8. Use the ha_db2stop command to shutdown the database partitions without
HACMP ES failover recovery taking place. To use this command, copy the
file to the database user’s home directory and make sure permissions and
ownership are set for that user. To stop the database without failover
recovery, then as that user, type:

ha_db2stop

238 Administration Guide: Planning

Note: You must wait for the command to return. Exiting by using a
ctrl-C interrupt, or by killing the process, may re-enable failover
recovery prematurely, and some database partitions may not be
stopped.

DB2 Recovery Script Operations with HACMP ES
HACMP ES invokes the DB2 recovery scripts in the following way:
v node_up_local (starting a node)

HACMP runs the node_up sequence, acquiring volume groups, logical
volumes, file systems, and IP addresses specified in resource groups that
are owned (through cascading) or assigned (through rotating) to this node.
When node_up_local_complete is run, the application server definition that
contains rc.db2pe is initiated to start the database partition specified in the
application server definitions on this physical node.

Note: rc.db2pe, when running in start mode, adjusts the DB2 parameters
specified in reg.parms.DATABASE for each DATABASE in the database
directory that matches a parameter (parms) file.

Each node follows this sequence when starting. If you have multiple
HACMP clusters and start them in parallel, multiple nodes are brought up
at once.

v node_down_remote (failover)
HACMP acquires volume groups, logical volumes, file systems, and IP
addresses that are specified in the resource group on the designated
takeover node.
When node_down_remote_complete is run, HACMP will run rc.db2pe as the
application server start script specified in the resource group for this
database partition.

Note: rc.db2pe, when running in mutual takeover mode, stops the DB2
database partition running on it, adjusts the DB2 parameters
specified in failover.parms.DATABASE for each DATABASE in the
database directory that matches a parameter (parms) file, and then
starts both database partitions on the physical takeover node.

v node_up_remote (reintegration of a failed node - cascading mutual takeover
resource group)
When node_up_remote is run on the old takeover node, the application
server definition causes rc.db2pe to be run in stop mode.

Note: rc.db2pe, when running in a reintegration mode (mutual takeover),
stops both of the database partitions running on it, adjust the DB2
parameters specified in reg.parms.DATABASE for each DATABASE in

Chapter 12. HACMP ES for AIX 239

the database directory that matches a parameter (parms) file, and
then starts just the database partition to be kept on this physical
takeover node.

The old takeover node releases volume groups, logical volumes, file
systems, and IP addresses specified in resource groups that are to be owned
by the reintegrating node.

HACMP re-acquires volume groups, logical volumes, file systems, and IP
addresses specified in the resource group that is now owned by the
reintegrating node.

When node_up_local_complete is run, the application server definition that
contains rc.db2pe is initiated to start the DB2 database partition specified in
the application server definition on this reintegrating physical node.

Note: rc.db2pe, when running in start mode, adjusts the DB2 parameters
specified in reg.parms.DATABASE for each DATABASE in the database
directory that matches a parameter (parms) file.

v node_down_local (node stop or stop with takeover)
When node_down_local is run on the stopping node, the application server
definition causes rc.db2pe to be run in stop mode.

Note: rc.db2pe, when running in stop mode, adjusts the DB2 parameters
specified in failover.parms.DATABASE for each DATABASE in the
database directory that matches a parameter (parms) file, and then
stops the DB2 database partition (this is for takeover).

HACMP releases volume groups, logical volumes, file systems, and IP
addresses specified in resource groups that are now owned by the node.

v db2_proc_recovery (db2 process death)
All nodes run the db2_proc_restart script. The node on which the failure
occurred restarts the correct DB2 database partition.

v db2_paging_recovery (paging space recovery)
All nodes run the db2_paging_action script. If a node has more than 70
percent of paging space filled, a wall command is issued. If a node has
more than 90 percent of paging space filled, DB2 database partitions on this
physical node are stopped and then restarted.

v nfs_auto_recovery (nfs or automount process failure)
All nodes run the rc.db2pe script in NFS mode. If an NFS process stops
running, it is restarted. Similarly, if the automount process stops running, it
is restarted.

v network_down_complete (network failure - SP switch)

240 Administration Guide: Planning

The net_down script is called. This verifies the network as the SP switch
network, and verifies that it is down. If that is the case, it waits a
user-defined time interval. The default time interval is 100 seconds.
If the SP switch network comes back, as indicated by an
network_up_complete event, no recovery is effected.
If the time limit is reached, HACMP is stopped with failover.

Note: All events can be monitored through SP problem management and the
SP Perspectives GUI.

Other Script Utilities
Other script utilities are available for your use, including:
v ha_cmd, a command provided to start HACMP on SP nodes from the control

workstation. The syntax is:
ha_cmd <noderange> <START|STOP|TAKE|FORCE>

where

<noderange> is a pcp or pexec style of SP noderange.
For example, "ha_cmd 3-6 START" would start HACMP on nodes 3,4,5,6.

"ha_cmd 5 TAKE" would shut down HACMP on node 5
for mutual takeover.

v ha_mon, a command for monitoring HACMP hacmp_out files from the SP
control workstation. The syntax is:

ha_mon <node>

where

<node> is the SP node to be monitored.

ha_mon will "tail -f" the /tmp/hacmp.out file on the node you specify.

v db2_turnoff_recov, a command for temporarily disabling all HACMP
(non-failover) recovery, and designed for extremely rare situations. No DB2
process, paging, NFS, or automounter recovery is initiated. This function
removes the event stanzas for that recovery from the HACMP rules file.
HACMP must be stopped and restarted. The syntax is:

db2_turnoff_recov <nodelist>

v db2_turnon_recov, a command to re-enable HACMP (non-failover) recovery.
This command is used after db2_turnoff_recov to restore HACMP rules
files, so that user-defined event recovery can occur. HACMP must be
stopped and restarted. The syntax is:

db2_turnon_recov <nodelist>

Chapter 12. HACMP ES for AIX 241

Monitoring HACMP Clusters

Scripts are provided for creating SP problem management (pman) events to
monitor the DB2 HACMP ES configuration, in addition to those monitoring
utilities already present in HACMP ES. To monitor HACMP status from the
SP control workstation:
v Install the HACMP client code on the control workstation.
v Edit the /usr/sbin/cluster/etc/clhosts file, and include the SP ethernet IP

addresses of the nodes that you want to monitor.
v Invoke the command startsrc -s clinfo to start monitoring the clusters.

HACMP supplies an interface for monitoring the clusters
(/usr/sbin/cluster/clstat.

To use the problem management monitoring with SP Perspectives GUI for
HACMP RS and user-defined events:
1. Invoke create_db2_events <nodelist>, where nodelist contains pcp or

pexec style nodes. This script creates five pman events for monitoring by
Perspectives.

Note: The resource variables PSSP.pm.User_state12-16 are used in the
creation of these events. If these resource variables are already being
used for some other purpose, create_db2_events and
update_db2_events must be updated to use different resource
variables.

2. Start Perspectives on the control workstation. From the launch pad, choose
the event perspective. You should see five events: db2_hacmp_recovery,
db2_process_recovery, db2_paging_err, db2_nfs_err, and
Errlog_PERM_entry.

3. Double-click on each event. On the screen that appears, register (within
the Definition Table) a condition for the event. Click next to the down
arrow by Name: "unnamed", and select the same name as the event you
specify as the condition. Select the "Response Options" tab. Click on the
button at the top of the display (″Send Message to Perspectives event
session″). You can specify commands, errlog entries, as well as SNMP
traps for these event occurrences. The event log displays are maintained
only across Perspective sessions; therefore, you might want to create AIX
error log entries for each. Select OK, and close the window.

4. From the Perspectives launch pad, select the hardware Perspective.
5. When the hardware frame GUI appears, select ″View″ and then ″Monitor″.

You are provided with a list of events that can be monitored for your SP.
Scrolling to the bottom of the list, you will find two additional events: one
for HACMP DB2 recovery (db2_ha_ind), and the other for SP node PERM
errors (Errlog_PERM_mon. Select those that you want to monitor. (When an
event occurs, the node displays a red ″X″. If all monitored conditions are

242 Administration Guide: Planning

fine, the node display is green.) host_responds, switch_responds, and
node_power_LED are typically used. You can also monitor the DB2 HACMP
recovery, as well as PERM errors, on the node.

Note: The db2_hacmp_mon and db2_hacmp_recovery variables for pman and
Perspectives do not reflect HACMP cluster status. Rather, these
variables reflect the status of the rc.db2pe operation to start or stop
DB2. The ″real″ HACMP status is shown in the HACMP clstat
monitor, and reflects the HACMP cluster state. If you want
db2_hacmp_ind to reflect monitoring similar to HACMP status, add the
following line to your /etc/inittab file:

haind:2:wait:/usr/bin/db2_update_events HAIND OFF 2>&1 >/dev/null

If you are planning to use NetView for your implementation, consider using
HAVIEW (which is part of HACMP) for monitoring your configuration. For
information about configuring that product, refer to the NetView
documentation.

DB2 SP HACMP ES Installation

To help you plan for the installation of HACMP ES with DB2 Universal
Database, following is a step-by-step overview of the installation and
migration processes.

DB2 SP HACMP ES New Installation
To install HACMP ES:
1. Install the AIX operating system on each SP node, (refer to the SP

Installation and Administration Guides). Ensure that proper paging space
is available on both the control workstation, and each of the SP nodes.
Ensure that switch configuration has been considered and implemented,
along with any other modifiable configuration parameters. Put in place
the SP monitoring (Perspectives) that you want to use. Ensure that the SP
dsh, pcp, and pexec commands work.

2. Design your database layout. This should, at a minimum, include the
number of nodes to be used, the mapping of DB2 database partitions to
physical nodes, the disk requirements per node or partition, and table
space considerations. You should also consider who the main DB2
instance owner will be, and what access authorization this and other
users will require.

3. Plan your external SSA disk configuration, including redundant adapters,
mirrored disks, and the twin-tailing of disks.

4. Using your database layout and SSA configuration, complete the HACMP
worksheets located in the HACMP Planning, Installation, and
Administration Guides.

Chapter 12. HACMP ES for AIX 243

5. Implement your external SSA disk configuration. Ensure that microcode
levels are consistent across all drives, and use the Maymap utility to
validate and fill in any gaps in your worksheets.

6. Install DB2 UDB EEE on each SP node.
7. Install HACMP ES on each SP node.
8. Install the DB2 UDB EEE HACMP ES on SP Package, using the

db2_inst_ha command.
9. Create the main DB2 instance user, and ensure that it can access all

nodes. This is not a highly available user at this point. This can be
temporarily an SP user on the SP control workstation.

10. Create your DB2 instance and database. Ensure that it is operational by
invoking db2start, and then db2stop, before proceeding to the next step.

11. If you want to load the database before adding HACMP, do this now.
12. Configure HACMP ES on the SP nodes topology and resource groups

according to the HACMP worksheets and the information in this
document.

13. Beginning with your NFS server node for the main DB2 instance user,
change this user (by modifying /etc/security/user and /etc/passwd on
all nodes, in accordance with what is specified in this document. This
user will become a highly available NFS user; and this node and its
backup will update /etc/exports. All nodes will be able to mount this
directory using NFS (with an entry in /etc/filesystems on each node)
through the switch alias IP addresses.

14. ″Tar″ the home directory of the main instance user and ″un-tar″ the home
directory in the new location.

15. Create an NFS file system on each of the SP nodes to mount a new main
instance home directory.

16. Start HACMP on the NFS server node. Verify that it comes up
successfully by investigating /tmp/hacmp.out. The ha_mon command can
be used to monitor this file as it is written.

17. Bring up the other nodes one at a time, verifying each successful
completion by investigating /tmp/hacmp.out. The ha_mon command can
be used to monitor this file as it is written.

18. Set up the optional monitoring through Perspectives and Problem
Management.

19. Validate failover functionality on each node by simulating a concurrent
maintenance action on each node. The ha_cmd command (specifying the
TAKE option) can be used to stop HACMP gracefully with takeover.
Verify that the takeovers and the reintegrations are successful by
interrogating /tmp/hacmp.out and using your monitoring tools.

244 Administration Guide: Planning

DB2 SP HACMP ES Migration
If you are migrating from a non-HACMP installation to one with HACMP,
consider the following overview:
1. Convert your existing external disks to a highly available, twin-tailed,

mirrored configuration. Add any extra hardware and disks to achieve this
configuration, remembering that names of different logical volumes on
different nodes must be unique when they are twin-tailed. This applies to
volume groups, logical volumes, and file systems.

2. Complete the HACMP planning and the related worksheets, including
the worksheets in this document.

3. Implement your external SSA disk configuration changes. Ensure that
microcode levels are consistent across all drives, and use the Maymap
utility to validate and eliminate any gaps in the worksheets.

Note: SSA disks in a RAID5 configuration is supported. Two SSA
adapters in the same RAID loop is the only configuration
permitted. For an HACMP configuration with the RAID disks
twin-tailed, only one adapter per node is supported. In this
configuration, the adapter is a single point of failure for access to
the disks, and extra configuration is recommended to detect the
adapter outage and promote this to an HACMP failover event. AIX
error notification is the simplest way to configure a node for
failover, should the SSA adapter fail. Refer to HACMP for AIX,
V4.2.2, Enhanced Scalability Installation and Administration Guide for
more information about AIX error notification.

4. Install HACMP ES on each SP node.
5. Install the DB2 UDB EEE HACMP ES on SP Package, using the

db2_inst_ha command.
6. Configure HACMP ES on the SP nodes topology and resource groups

according to the HACMP worksheets and the information in this
document.

7. Beginning with your NFS server node for the main DB2 instance user,
change this user (by modifying /etc/security/user and /etc/passwd on
all nodes, in accordance with what is specified in this document. This
user will become a highly available NFS user; and this node and its
backup will update /etc/exports. All nodes will be able to mount this
directory using NFS (with an entry in /etc/filesystems on each node)
through the switch alias IP addresses.

8. ″Tar″ the home directory of the main instance user and ″un-tar″ the home
directory in the new location.

9. Create an NFS file system on each of the SP nodes to mount a new main
instance home directory.

Chapter 12. HACMP ES for AIX 245

10. Start HACMP on the NFS server node. Verify that it comes up
successfully by investigating /tmp/hacmp.out. The ha_mon command can
be used to monitor this file as it is written.

11. Bring up the other nodes one at a time, verifying each successful
completion by investigating /tmp/hacmp.out. The ha_mon command can
be used to monitor this file as it is written.

12. Set up the optional monitoring through Perspectives and Problem
Management.

13. Validate failover functionality on each node by simulating a concurrent
maintenance action on each node. The ha_cmd command (specifying the
TAKE option) can be used to stop HACMP gracefully with takeover.
Verify that the takeovers and the reintegrations are successful by
interrogating /tmp/hacmp.out and using your monitoring tools.

DB2 SP HACMP ES Worksheets
The following worksheets are designed to be used with HACMP worksheets
that should be completed in preparation for your external SSA disk
configuration (and that are located in the HACMP Planning, Installation, and
Administration Guides). In each case, both a completed example, and a blank
worksheet, are provided.

The database configuration on external disks documented in the first sample
worksheet is shown in the following figure. The statement used to create the
database is:

db2 create database pwq on /newdata

Both SSA external adapters and external SSA disks are mirrored and
twin-tailed for logical volumes with no single point of failure. The diagram
depicts a configuration that is similar to output from the maymap command.
Maymap is a utility (available through AIXTOOLS) that shows the external
SSA disk configuration, and should be used when planning your setup.

246 Administration Guide: Planning

Before you review the following table, you should read the HACMP
documentation regarding the quorum settings on volume groups, and
mirrored write consistency settings on logical volumes. The settings used for
both will directly affect your availability and performance. Ensure that you

Sample DB2 4-node Database External Disks Setup
- Showing twin-tailing for High Availability.

A1

A2

B1

B2

B2

B1

A2

A1

node 3

ssa0

ssa1

A1

A2

B1

B2

B2

B1

A2

A1

node 4

ssa0

ssa1

catalogue nfsserver

A1

A2

B1

B2

B2

B1

A2

A1

node 5

ssa0

ssa1

A1

A2

B1

B2

B2

B1

A2

A1

node 6

ssa0

ssa1

dbnode5 dbnode6

hdisk1

hdisk1

hdisk5

hdisk5

hdisk9

hdisk13

hdisk2

hdisk2

hdisk6

hdisk6

hdisk10

hdisk14

hdisk3

hdisk3

hdisk7

hdisk7

hdisk11

hdisk15

hdisk4

hdisk4

hdisk8

hdisk8

hdisk12

hdisk16

Figure 55. Sample DB2 4-node Database External Disks Setup

Chapter 12. HACMP ES for AIX 247

review these settings and understand their implications. The typical setting for
both ″quorum″ and ″mirrored write consistency″ is ″off″.

Table 25. HACMP Volume Groups, Logical Volumes, and File Systems

SP
Node

Volume
Group
Name

PP
Size
(MB)

Logical
Volume
Name

of
PPs

Copies
hdisk
List

File System
Mount

Point (MB)

File
System

Log
Logical
Volume

Node
Description
and Backup

User
Owner
of /dev
Logical
Device

3 havg3 8 hlv300 10 2 hdisk1
hdisk5

/newdata
/pwq
/NODE0003

hlog301 Catalognode
mount
point; node
4

root *

3 havg3 8 hlog301 1 2 hdisk1
hdisk5

N/A N/A Catalognode
jfslog; node
4

root *

3 havg3 8 hlv301 10 2 hdisk2
hdisk6

N/A N/A Catalognode
rawtemp
space; node
4

pwq **

4 havg4 8 hlv400 10 2 hdisk3
hdisk7

/dbmnt hlog401 nfsserver
pwq home;
node 3

root *

4 havg4 8 hlog401 1 2 hdisk3
hdisk7

N/A N/A nfsserver
jfslog; node
3

root *

5 havg5 8 hlv500 10 2 hdisk1
hdisk9

/newdata/
pwq/
NODE0005

HLOG501 Dbnode5
mount
point; node
6

root *

5 havg5 8 hlog501 1 2 hdisk1
hdisk9

N/A N/A Dbnode5
jfslog; node
6

root *

5 havg5 8 hlv501 10 2 hdisk2
hdisk10

N/A N/A Dbnode5
raw temp
space; node
6

pwq **

5 havg5 8 hlv502 100 2 hdisk2
hdisk10

N/A N/A Dbnode5
raw table
space; node
6

pwq **

5 havg5 8 halv503 100 2 hdisk3
hdisk11

N/A N/A Dbnode5
raw table
space; node
6

pwq **

248 Administration Guide: Planning

Table 25. HACMP Volume Groups, Logical Volumes, and File Systems (continued)

SP
Node

Volume
Group
Name

PP
Size
(MB)

Logical
Volume
Name

of
PPs

Copies
hdisk
List

File System
Mount

Point (MB)

File
System

Log
Logical
Volume

Node
Description
and Backup

User
Owner
of /dev
Logical
Device

5 havg5 8 halv504 100 2 hdisk3
hdisk11

N/A N/A Dbnode5
raw table
space; node
6

pwq **

5 havg5 8 halv505 100 2 hdisk4
hdisk12

/dbdata5 hlog501 Dbnode6
system table
space; node
6

root *

6 havg6 8 hlv600 10 2 hdisk5
hdisk13

/newdata/
pwq/
NODE0006

hlog601 Dbnode6
mount
point; node
5

root *

6 havg6 8 hlog601 1 2 hdisk5
hdisk13

N/A N/A Dbnode6
jfslog; node
5

root *

6 havg6 8 hlv601 10 2 hdisk6
hdisk14

N/A N/A Dbnode6
raw temp
space; node
5

pwq **

6 havg6 8 hlv602 100 2 hdisk6
hdisk14

N/A N/A Dbnode6
raw table
space; node
5

pwq **

6 havg6 8 hlv603 100 2 hdisk7
hdisk15

N/A N/A Dbnode6
raw table
space; node
5

pwq **

6 havg6 8 hlv604 100 2 hdisk7
hdisk15

N/A N/A Dbnode6
raw table
space; node
5

pwq **

6 havg6 8 hlv605 100 2 hdisk8
hdisk16

/dbdata6 hlog601 Dbnode6
system table
space; node
5

root *

Chapter 12. HACMP ES for AIX 249

Table 25. HACMP Volume Groups, Logical Volumes, and File Systems (continued)

SP
Node

Volume
Group
Name

PP
Size
(MB)

Logical
Volume
Name

of
PPs

Copies
hdisk
List

File System
Mount

Point (MB)

File
System

Log
Logical
Volume

Node
Description
and Backup

User
Owner
of /dev
Logical
Device

Notes:

1. * jfs file system logical volumes and logs keep root permissions.

2. ** raw database spaces get database user permissions on /dev raw file entries (/dev/rxxxx).

Table 26. HACMP Volume Groups, Logical Volumes, and File Systems - Blank

SP
Node

Volume
Group
Name

PP
Size
(MB)

Logical
Volume
Name

of
PPs

Copies
hdisk
List

File System
Mount

Point (MB)

File
System

Log
Logical
Volume

Node
Description
and Backup

User
Owner
of /dev
Logical
Device

250 Administration Guide: Planning

Table 26. HACMP Volume Groups, Logical Volumes, and File Systems - Blank (continued)

SP
Node

Volume
Group
Name

PP
Size
(MB)

Logical
Volume
Name

of
PPs

Copies
hdisk
List

File System
Mount

Point (MB)

File
System

Log
Logical
Volume

Node
Description
and Backup

User
Owner
of /dev
Logical
Device

Chapter 12. HACMP ES for AIX 251

Table 26. HACMP Volume Groups, Logical Volumes, and File Systems - Blank (continued)

SP
Node

Volume
Group
Name

PP
Size
(MB)

Logical
Volume
Name

of
PPs

Copies
hdisk
List

File System
Mount

Point (MB)

File
System

Log
Logical
Volume

Node
Description
and Backup

User
Owner
of /dev
Logical
Device

Table 27. Planning HACMP NFS Server

SP
Node

External File
System

Backup
Node

SP Switch Boot
and Service IP

Alias Pairs

File System to
Mount

(/etc/filesystems)

File System
to Specify as

Database
Home

Directory

Addresses to
which File

System is to be
Exported

(/etc/exports)

3 /dbmnt 4 nfs_boot_3
nfs_client_3

nfs_server:/
dbmnt as /dbi

/dbi/pwq nfs_boot_3
nfs_client_3
nfs_server_boot
nfs_server
nfs_boot_5
nfs_client_5
nfs_boot_6
nfs_client_6

252 Administration Guide: Planning

Table 27. Planning HACMP NFS Server (continued)

SP
Node

External File
System

Backup
Node

SP Switch Boot
and Service IP

Alias Pairs

File System to
Mount

(/etc/filesystems)

File System
to Specify as

Database
Home

Directory

Addresses to
which File

System is to be
Exported

(/etc/exports)

4 /dbmnt 3 nfs_server_boot
nfs_server

nfs_server:/
dbmnt as /dbi

/dbi/pwq nfs_boot_3
nfs_client_3
nfs_server_boot
nfs_server
nfs_boot_5
nfs_client_5
nfs_boot_6
nfs_client_6

5 N/A N/A nfs_boot_5
nfs_client_5

nfs_server:/
dbmnt as /dbi

/dbi/pwq N/A

6 N/A N/A nfs_boot_6
nfs_client_6

nfs_server:/
dbmnt as /dbi

/dbi/pwq N/A

Notes:

1. /etc/passwd must be the same on all nodes. This can be synchronized from the control workstation.

2. Ensure that the external file system has the permission of the database instance owner.

3. The /etc/filesystems must have the mount parameters: hard, bg, intr, and rw.

4. The /etc/exports will have

-root=ip1:ip2:ip3

only on the server and its backup.

Table 28. Planning HACMP NFS Server - Blank

SP
Node

External File
System

Backup
Node

SP Switch Boot
and Service IP

Alias Pairs

File System to
Mount

(/etc/filesystems)

File System
to Specify as

Database
Home

Directory

Addresses to
which File

System is to be
Exported

(/etc/exports)

Chapter 12. HACMP ES for AIX 253

Table 28. Planning HACMP NFS Server - Blank (continued)

SP
Node

External File
System

Backup
Node

SP Switch Boot
and Service IP

Alias Pairs

File System to
Mount

(/etc/filesystems)

File System
to Specify as

Database
Home

Directory

Addresses to
which File

System is to be
Exported

(/etc/exports)

254 Administration Guide: Planning

Table 28. Planning HACMP NFS Server - Blank (continued)

SP
Node

External File
System

Backup
Node

SP Switch Boot
and Service IP

Alias Pairs

File System to
Mount

(/etc/filesystems)

File System
to Specify as

Database
Home

Directory

Addresses to
which File

System is to be
Exported

(/etc/exports)

Chapter 12. HACMP ES for AIX 255

256 Administration Guide: Planning

Chapter 13. High Availability in the Windows NT
Environment

You can set up your database system so that if a machine fails, the database
server on the failed machine can run on another machine. On Windows NT,
failover support can be implemented with Microsoft Cluster Server (MSCS).
To use MSCS, you require Windows NT Version 4.0 Enterprise Edition with
the MSCS feature installed.

MSCS can perform both failure detection and the restarting of resources in a
clustered environment, such as failover support for physical disks and IP
addresses. (When the failed machine is online again, resources will not
automatically fall back to it, unless you previously configure them to do so.
For more information, see “Fallback Considerations” on page 269.)

Before you enable DB2 instances for failover support, perform the following
planning steps:
1. Decide which disks you want to use for data storage. Each database server

should be assigned at least one disk for its own use. The disk that you use
to store data must be attached to a shared disk subsystem, and must be
configured as an MSCS disk resource.

2. Ensure that you have one IP address for each database server that you
want to use to support remote requests.

When you set up failover support, it can be for an existing instance, or you
can create a new instance when you implement the failover support.

To enable failover support, perform the following steps:
1. Create an input file for the DB2MSCS utility.
2. Invoke the db2mscs command.
3. If you are using a partitioned database system, register database drive

mapping to enable mutual takeover. See “Registering Database Drive
Mapping for Mutual Takeover Configurations in a Partitioned Database
Environment” on page 269.

After you finish enabling the instance for failover support, your configuration
will resemble Figure 56 on page 258.

© Copyright IBM Corp. 1993, 2000 257

The following sections describe the different types of failover support, and
how to implement them. Before performing any of the steps described below,
you must already have the MSCS software installed on every machine that
you want to use in an MSCS cluster. In addition, you must also have DB2
installed on every machine.

Failover Configurations

Two types of configuration are available:
v Hot standby
v Mutual takeover

Currently, MSCS supports clusters of two machines.

In a partitioned database environment, the clusters do not all have to have the
same type of configuration. You can have some clusters that are set up to use
hot standby, and others that are set up for mutual takeover. For example, if
your DB2 instance consists of five workstations, you can have two machines
set up to use a mutual takeover configuration, two to use a hot standby
configuration, and one machine not configured for failover support.

Hot Standby Configuration
In a hot standby configuration, one machine in the MSCS cluster provides
dedicated failover support, and the other machine participates in the database
system. If the machine participating in the database system fails, the database
server on it will be started on the failover machine. If, in a partitioned

Machine A Machine B

C: C:

E:

F:

SQLLIB SQLLIB

(Each machine has DB2 code
installed on a local disk)

Quorum disk
used by MSCS

DB2 Group 0

DB2 Group 1

Cluster disks in a disk tower

D:

Figure 56. Example MSCS Configuration

258 Administration Guide: Planning

database system, you are running multiple logical nodes on a machine and it
fails, the logical nodes will be started on the failover machine. Figure 57
shows an example of a hot standby configuration.

Mutual Takeover Configuration
In a mutual takeover configuration, both workstations participate in the
database system (that is, each machine has at least one database server
running on it). If one of the workstations in the MSCS cluster fails, the
database server on the failing machine will be started to run on the other
machine. In a mutual takeover configuration, a database server on one
machine can fail independently of the database server on another machine.
Any database server can be active on any machine at any given point in time.
Figure 58 on page 260 shows an example of a mutual takeover configuration.

Workstation BWorkstation A

Cluster

Instance A Instance A

Figure 57. Hot Standby Configuration

Chapter 13. High Availability in the Windows NT Environment 259

Using the DB2MSCS Utility

Use the DB2MSCS utility to create the infrastructure for DB2 to support
failover in the Windows NT environment using MSCS support. You can use
this utility to enable failover in both single-partition and partitioned database
environments.

Invoke the db2mscs command once for each instance on its instance-owning
machine. If there is only one DB2 instance running on one machine in the
MSCS cluster, this sets up a hot-standby configuration. If you have an
instance running on each machine in the MSCS cluster, you would run
DB2MSCS once on each instance-owing machine to set up a mutual takeover
configuration.

The DB2MSCS utility:
1. Reads the required MSCS and DB2 parameters from an input file called

DB2MSCS.CFG. See “Specifying the DB2MSCS.CFG File” on page 261 for
information about the full set of input parameters.

2. Validates the parameters in the input file.
3. Registers the DB2 resource type.
4. Creates the MSCS group (or groups) to contain the MSCS and DB2

resources.
5. Creates the IP resource.
6. Creates the Network Name resource.
7. Moves MSCS disks to the group.

Workstation BWorkstation A

Cluster

Instance A

Instance B

Instance A

Instance B

Figure 58. Mutual Takeover Configuration

260 Administration Guide: Planning

8. Creates the DB2 resource (or resources).
9. Adds all required dependencies for the DB2 resource.

10. Converts the non-clustered DB2 instance into a clustered instance.
11. Brings all resources online.

The command syntax is as follows:

ZZ db2mscs
-f: input_file

Z[

Where:

-f:input_file
Specifies the DB2MSCS.CFG input file to be used by the MSCS utility. If
this parameter is not specified, the DB2MSCS utility reads the
DB2MSCS.CFG file that is in the current directory.

Specifying the DB2MSCS.CFG File
The DB2MSCS.CFG file is an ASCII text file that contains parameters that are
read by the DB2MSCS utility. You specify each input parameter on a separate
line using the following format: PARAMETER_KEYWORD=parameter_value.
For example:

CLUSTER_NAME=WOLFPACK
GROUP_NAME=DB2 Group
IP_ADDRESS=9.21.22.89

Two example configuration files are in the /CFG subdirectory of the /SQLLIB
directory. The first, DB2MSCS.EE, is an example for single-partition database
environments. The second, DB2MSCS.EEE, is an example for partitioned
database environments.

The parameters for the DB2MSCS.CFG file are as follows:

DB2_INSTANCE
The name of the DB2 instance. If the instance name is not specified,
the default instance (the value of the DB2INSTANCE environment
variable) is used.

This parameter has a global scope, and you specify it only once in the
DB2MSCS.CFG file.

This parameter is optional.

Example:
DB2_INSTANCE=DB2

Chapter 13. High Availability in the Windows NT Environment 261

The instance must already exist. For information about creating
instances, refer to the DB2 Enterprise - Extended Edition for Windows
Quick Beginnings book.

DB2_LOGON_USERNAME
The name of the logon account for the DB2 service.

This parameter has a global scope, and you specify it only once in the
DB2MSCS.CFG file.

This parameter is only required for DB2 Enterprise - Extended Edition
instances.

Example:
DB2_LOGON_USERNAME=db2user

DB2_LOGON_PASSWORD
The password of the logon account for the DB2 service. If the
DB2_LOGON_USERNAME parameter is provided, but the
DB2_LOGON_PASSWORD parameter is not, the DB2MSCS utility
prompts for the password. The password is not displayed when it is
typed at the command line.

This parameter has a global scope, and you specify it only once in the
DB2MSCS.CFG file.

This parameter is only required for DB2 Enterprise - Extended Edition
instances.

Example:
DB2_LOGON_PASSWORD=xxxxxx

CLUSTER_NAME
The name of the MSCS cluster. All the resources specified following
this line are created in this cluster until another CLUSTER_NAME tag
is specified.

Specify this parameter once for each cluster.

This parameter is optional. If not specified, the name of the MSCS
cluster on the local machine is used.

Example:
CLUSTER_NAME=WOLFPACK

GROUP_NAME
The name of the MSCS group. If this parameter is specified, a new
MSCS group is created if one does not exist. If the group already
exists, it is used as the target group. Any MSCS resource created
following this line is created in this group until another
GROUP_NAME keyword is specified.

262 Administration Guide: Planning

Specify this parameter once for each group.

This parameter is required.

Example:
GROUP_NAME=DB2 Group

DB2_NODE
The node number of the database partition server (node) to be
included in the current MSCS group. If multiple logical nodes exist on
the same machine, each node requires a separate DB2_NODE
keyword.

You specify this parameter after the GROUP_NAME parameter, so
that the DB2 resources are created in the correct MSCS group.

This parameter is only required for DB2 Enterprise - Extended Edition
instances.

Example:
DB2_NODE=0

IP_NAME
The name of the IP Address resource. The value for IP_NAME is
arbitrary, but must be unique. When this parameter is specified, an
MSCS resource of type IP Address is created.

This parameter is required for remote TCP/IP connections. You must
specify this parameter for the instance-owning machine in a
partitioned database environment. This parameter is optional in
single-partition database environments.

Example:
IP_NAME=IP Address for DB2

Note: DB2 clients should use the TCP/IP address of this IP resource
to catalog the TCP/IP node entry. By using the MSCS IP
address, when the database server fails over to the other
machine, DB2 clients can still connect to the database server,
because the IP address is available on the failover machine.

The attributes of the IP resource are as follows:

IP_ADDRESS
The TCP/IP address of the IP resource. Specify this keyword
to set the TCP/IP address for the preceding IP resource.

This parameter is required if the IP_NAME parameter is
specified.

Chapter 13. High Availability in the Windows NT Environment 263

Example:
IP_ADDRESS=9.21.22.34

IP_SUBNET
The subnet mask for the preceding IP resource.

This parameter is required if the IP_NAME parameter is
specified.

Example:
IP_SUBNET=255.255.255.0

IP_NETWORK
The name of the MSCS network to which the preceding IP
resource belongs. If this parameter is not specified, the first
MSCS network detected by the system is used.

This parameter is optional.

Example:
IP_NETWORK=Token Ring

NETNAME_NAME
The name of the Network Name resource. Specify this parameter to
create the Network Name resource.

This parameter is optional for single-partition database environments.
It is required for partitioned database environments.

Example:
NETNAME_NAME=Network name for DB2

The attributes of the Network Name resource are as follows:

NETNAME_VALUE
The value for the Network Name.

This parameter is required if the NETNAME_NAME
parameter is specified.

Example:
NETNAME_VALUE=DB2SRV

NETNAME_DEPENDENCY
The dependency list for the Network Name resource. Each
Network Name resource must have a dependency on an IP
Address resource. If this parameter is not specified, the
Network Name resource has a dependency on the first IP
resource in the group.

This parameter is optional.

264 Administration Guide: Planning

Example:
NETNAME_DEPENDENCY=IP Address for DB2

DISK_NAME
The name of the physical disk resources to be moved to the current
groups. Specify as many disk resources as you need.

Notes:

1. The disk resources must already exist.
2. When the DB2MSCS utility configures the DB2 instance for MSCS

support, the instance directory is copied to the first MSCS disk in
the group. To specify a different MSCS disk for the instance
directory, use the INSTPROF_DISK parameter.

Example:
DISK_NAME=Disk E:
DISK_NAME=Disk F:

INSTPROF_DISK
An optional parameter to specify an MSCS disk to contain the DB2
instance directory. If this parameter is not specified, the DB2MSCS
utility uses the first MSCS disk that belongs to the same group as the
instance directory.

The DB2 instance directory is created on the MSCS disk under the
X:\DB2PROFS directory (where X is the MSCS disk drive letter).

Example:
INSTPROF_DISK=Disk E:

TARGET_DRVMAP_DISK
An optional parameter to specify the target MSCS disk for database
drive mapping. If a database is created on an MSCS disk that does not
belong to the same group as the node, the target drive map disk is
used to contain the database partition. If this parameter is not
specified, the database drive mapping must be manually registered
using the DB2DRVMP utility.

Example:
TARGET_DRVMAP_DISK = Disk E:

Setting up Failover for a Single-Partition Database System
When you run the DB2MSCS utility against a single-partition database
system, one MSCS group contains DB2 and all the dependent MSCS resources
(the IP address, Network Name, and disks). For example, the contents of the
DB2MSCS.CFG file for a single-partition database system will look like the
following:

Chapter 13. High Availability in the Windows NT Environment 265

#
DB2MSCS.CFG for a single-partition database system
#
DB2_INSTANCE=DB2
CLUSTER_NAME=MSCS
GROUP_NAME=DB2 Group
IP_NAME=...
IP_ADDRESS=...
IP_SUBNET=...
IP_NETWORK=...
NETNAME_NAME=...
NETNAME_VALUE=...
DISK_NAME=Disk E:

Setting up a Mutual Takeover Configuration for Two Single-Partition
Database Systems

You can set up two single-partition database systems, each on a separate
machine, so that if the database system on any one machine fails, it is
restarted on the other MSCS node.

To set up failover support for this configuration, you need to run the
DB2MSCS utility once on each instance-owning machine. You must tailor the
configuration file for each database system.

Assume that the DB2 instances are called DB2A and DB2B. The DB2MSCS.CFG
file for the DB2A instance would be as follows:

#
DB2MSCS.CFG for first single-partition database system
#
DB2_INSTANCE=DB2A
CLUSTER_NAME=MSCS
GROUP_NAME=DB2A Group
IP_NAME=...
IP_ADDRESS=...
IP_SUBNET=...
IP_NETWORK=...
NETNAME_NAME=...
NETNAME_VALUE=...
DISK_NAME=Disk E:

The DB2MSCS.CFG file for the DB2A instance would be as follows:
#
DB2MSCS.CFG for second single-partition database system
#
DB2_INSTANCE=DB2B
CLUSTER_NAME=MSCS
GROUP_NAME=DB2B Group
IP_NAME=...
IP_ADDRESS=...
IP_SUBNET=...

266 Administration Guide: Planning

IP_NETWORK=...
NETNAME_NAME=...
NETNAME_VALUE=...
DISK_NAME=Disk F:

For a full example, see “Example - Setting up Two Single-Partition Instances
for Mutual Takeover” on page 272.

Setting up Multiple MSCS Clusters for a Partitioned Database System
When you run the DB2MSCS utility against a multi-partition database system,
one MSCS group is created for each physical machine that participates in the
system. The DB2MSCS.CFG file must contain multiple sections, and each section
must have a different value for the GROUP_NAME parameter, and for all the
required dependent resources for that group.

In addition, you must specify the DB2_NODE parameter for each database
partition server in each MSCS group. If you have multiple logical nodes, each
logical node requires a separate DB2_NODE keyword.

For example, assume that you have a multi-partition database system that
consists of four database partition servers on four machines, and you want to
configure two MSCS clusters using mutual takeover configuration. You would
set up the DB2MSCS.CFG configuration file as follows:

#
DB2MSCS.CFG for one partitioned database system with
multiple clusters
DB2_INSTANCE=DB2MPP
DB2_LOGON_USERNAME=db2user
DB2_LOGON_PASSWORD=xxxxxx
CLUSTER_NAME=MSCS1
Group 1
GROUP_NAME=DB2 Group 1
DB2_NODE=0
IP_NAME=...

...
Group 2
GROUP_NAME=DB2 Group 2
DB2_NODE=1
IP_NAME=...

...

CLUSTER_NAME=MSCS2
Group 3
GROUP_NAME=DB2 Group 3
DB2_NODE=2
IP_NAME=...

...
Group 4

Chapter 13. High Availability in the Windows NT Environment 267

GROUP_NAME=DB2 Group 4
DB2_NODE=3
IP_NAME=...

...

For a full example, see “Example - Setting up a Four-Node Partitioned
Database System for Mutual Takeover” on page 274.

Maintaining the MSCS System

When you run the DB2MSCS utility, it creates the infrastructure for failover
support for all machines in the MSCS cluster. To remove support from a
machine, use the db2iclus command with the ″drop″ option. To re-enable
support for a machine, use the ″add″ option.

The command syntax is as follows:

ZZ db2iclus add
drop /i: instance_name

/u: account_name,password Z

Z
/m: machine_name /c: cluster_name

Z[

Where:

add Enables failover support on the machine by
adding it to an MSCS cluster. The DB2
resource (database server) can then fail over to
this machine.

drop Removes failover support from the machine
by dropping it from an MSCS cluster.

/i: instance_name The name of the instance. (This parameter
overrides the setting of the DB2INSTANCE
environment variable.)

/u: account_name, password The domain account used as the logon
account name of the DB2 Service. For
example:

/u:domainA\db2nt,password

This parameter is only required with the
″add″ option.

/m:machine_name The computer name of the machine that you
want to add to, or drop from, an MSCS

268 Administration Guide: Planning

cluster. You must specify this option if you
run the command from a machine other than
the one for which you are modifying failover
support.

/c: cluster_name The name of the MSCS cluster as it is known
on the LAN. This name is specified when the
MSCS cluster is first created.

Fallback Considerations

By default, groups are set not to fall back to the original (failed) machine.
Unless you manually configure a DB2 group to fall back after failing over, it
continues to run on the alternative MSCS node after the cause of the failover
has been resolved.

If you configure a DB2 group to automatically fall back to the original
machine, all the resources in the DB2 group including the DB2 resource will
fall back as soon as the original machine is available. If, during the fall back, a
database connection exists, the DB2 resource cannot be brought offline, and
the fallback processing will fail.

If you want to force all database connections off the database during fallback
processing, set the DB2_FALLBACK registry variable to ON. This variable
must be set as follows:

db2set DB2_FALLBACK=ON

You do not have to reboot or restart the cluster service after setting this
registry variable.

Registering Database Drive Mapping for Mutual Takeover Configurations in a
Partitioned Database Environment

When you create a database in a partitioned database environment, you can
specify a drive letter to indicate where the database is to be created.

Note: You do not set database drive mapping for single-partition database
environments.

When the CREATE DATABASE command runs, it expects that the drive that
you specify will be simultaneously available to all of the machines that
participate in the instance. Because this is not possible, DB2 uses database
drive mapping to assign the same drive a different name for each machine.

For example, assume that a DB2 instance called DB2 contains two database
partition servers:

Chapter 13. High Availability in the Windows NT Environment 269

NODE0 is active on machine WOLF_NODE_0
NODE1 is active on machine WOLF_NODE_1

Assume also that the share disk E: belongs to the same group as NODE0, and
that the share disk F: belongs to the same group as NODE1.

To create a database on the share disk E:
db2 create database mppdb on e:

For the command to be successful, drive E: must be available to both
machines. In a mutual takeover configuration, each database partition server
may be active on a different machine, and the cluster disk E: is only available
to one machine. In this situation, the CREATE DATABASE command will
always fail.

To resolve this problem, the database drive should be mapped as follows:
For NODE0, the mapping is from drive F: to drive E:
For NODE1, the mapping is from drive E: to drive F:

Any database access for NODE0 to drive F: is then mapped to drive E:, and
any database access for NODE1 to drive E: is mapped to drive F:. Using drive
mapping, the CREATE DATABASE command will create database files on
drive E: for NODE0 and drive F: for NODE1.

Use the db2drvmp command to set up the drive mapping. The command
syntax is as follows:

ZZ db2drvmp add
drop
query
reconcile

node_number from_drive to_drive Z[

The parameters are as follows:

add Assigns a new database drive map.

drop Removes an existing database drive map.

query Queries a database map.

reconcile Repairs a database map drive when the registry contents are
damaged. See “Reconciling the Database Drive Mapping” on
page 271 for more information.

node_number The node number. This parameter is required for add and
drop operations.

270 Administration Guide: Planning

from_drive The drive letter from which to map. This parameter is
required for add and drop operations.

to_drive The drive letter to which to map. This parameter is required
for add operations. It is not applicable to other operations.

If you wanted to set up database drive mapping from F: to E: for NODE0,
you would use the following command:

db2drvmp add 0 F E

Note: Database drive mapping does not apply to table spaces, containers, or
any other database storage objects.

Similarly, to set up database drive mapping from E: to F: for NODE1, you
would issue the following command:

db2drvmp add 1 E F

Note: Any setup of, or changes to, the database drive mapping does not take
effect immediately. To activate the database drive mapping, use the
Cluster Administrator tool to bring the DB2 resource offline, then
online.

Using the TARGET_DRVMAP_DISK keyword in the DB2MSCS.CFG file
will enable the drive mapping to be done automatically.

Reconciling the Database Drive Mapping
When a database is created on a machine that has database drive mapping in
effect, the map is saved on the drive in a hidden file. This is to prevent the
database drive from being removed after the database is created. You will
want to reconcile the database drive mapping if, for example, you accidentally
drop the database drive map. To reconcile the map, run the db2drvmp
reconcile command for each database partition server that contains the
database. The command syntax is as follows:

ZZ db2drvmp reconcile
node_number drive

Z[

The parameters are as follows:

node_number The node number of the node to be repaired. If node_number is
not specified, the command reconciles the mapping for all
nodes.

drive The drive to reconcile. If a drive is not specified, the
command reconciles the mapping for all drives.

Chapter 13. High Availability in the Windows NT Environment 271

The db2drvmp command scans all drives on the machine for database
partitions that are managed by the database partition server, and reapplies the
database drive mapping to the registry as required.

Example - Setting up Two Single-Partition Instances for Mutual Takeover

The objective for this example is to set up two single-partition database
instances with failover support in a mutual takeover configuration. In this
example, four servers are configured into two MSCS clusters. By using the
mutual takeover configuration, when any of the machine fails, the database
server configured for that machine will fail over to the alternative machine, as
configured using the MSCS software, and run on the alternative machine.

There are two MSCS clusters in the resulting configuration. Each cluster has:
v Two servers, each with 64 MB of memory and one local SCSI disk of 2 GB
v One SCSI disk tower that has three shared SCSI disks of 2 GB each.

In addition, each machine has one 100X Ethernet Adapter card installed.

Each machine has the following software installed:
v Windows NT Version 4.0 Enterprise Edition with the MSCS feature installed
v DB2 Universal Database Enterprise Edition Version 7.

The resulting network configuration is as follows:

Server 1:

v Machine name:db2test1

v TCP/IP hostname:db2test1

v IP Address: 9.9.9.1

(subnet mask: 255.255.255.0

v MSCS cluster name: ClusterA

Server 2:

v Machine name:db2test2

v TCP/IP hostname:db2test2

v IP Address: 9.9.9.2

(subnet mask: 255.255.255.0

v MSCS cluster name: ClusterA

Both machines in the network are configured with TCP/IP and connected to a
private LAN using an Ethernet 100 T-base Hub. In the absence of a Domain
Name Server (DNS), all machines have a local TCP/IP hosts file, which
contains the following entries:

9.9.9.1 db2test1 # for Server 1
9.9.9.2 db2test2 # for Server 2
9.9.9.3 ClusterA # for MSCS ClusterA
9.9.9.4 db2tcp1 # for DB2 remote client connection to Server 1
9.9.9.5 db2tcp2 # for DB2 remote client connection to Server 2

Preliminary Tasks
Before you perform the following tasks, it is assumed that both machines
belong to the same domain, called DB2NTD:

272 Administration Guide: Planning

1. Create a domain account for DB2 that is a member of the local
Administrators group on those machines where DB2 is going to run. Use
the account for performing all tasks:
v Set the user name to db2nt.
v Set the password to db2nt.

2. Install the MSCS feature on machines db2test1 and db2test2:
v Name the MSCS cluster ClusterA.
v The cluster IP Address is 9.9.9.3.
v Share disk D: will be used by the MSCS software.
v Share disks E: and F: will be used by DB2.

3. Install DB2 Universal Database Enterprise Edition Version 7 on machine
db2test1. Install the software on C:\SQLLIB, which is a local drive.

4. Install DB2 Universal Database Enterprise Edition Version 7 on machine
db2test2. Install the software on C:\SQLLIB, which is a local drive.

The next step is to set up the DB2MSCS.CFG file for each instance, and run the
DB2MSCS utility for each instance.

Run the DB2MSCS Utility
To set up the db2test1 machine, perform the following tasks:
1. On machine db2test1, log on as user db2nt. The password is db2nt.
2. Create the DB2 instance DB2A, if it does not already exist. The command

to create the instance is:
db2icrt DB2A

3. Set up the DB2MSCS.CFG file for the DB2 instance on machine db2test1:
#
DB2MSCS.CFG for database system
on machine db2test1
DB2_INSTANCE=DB2A
CLUSTER_NAME=ClusterA
#
Group 1
GROUP_NAME=DB2A Group
IP_NAME=IP Address for DB2A
IP_ADDRESS=9.9.9.4
IP_SUBNET=255.255.255.0
IP_NETWORK=ClusterA
NETNAME_NAME=Network name for DB2A
NETNAME_VALUE=DB2SRV1
NETNAME_DEPENDENCY=IP Address for DB2A
DISK_NAME=Disk E:
INSTPROF_DISK=Disk E:

4. Run the DB2MSCS utility as follows:
db2mscs -f:DB2MSCS.CFG

5. Log out from the db2nt account.

Chapter 13. High Availability in the Windows NT Environment 273

6. On machine db2test2, log on as user db2nt, which belongs to the local
Administrators group. The password is db2nt.

7. Create the DB2 instance DB2B, if it does not already exist. The command
to create the instance is:

db2icrt DB2B

8. Set up the DB2MSCS.CFG file for the DB2 instance on machine db2test2:
#
DB2MSCS.CFG for database system
on machine db2test2
DB2_INSTANCE=DB2B
CLUSTER_NAME=ClusterA
#
Group 1
GROUP_NAME=DB2B Group
IP_NAME=IP Address for DB2B
IP_ADDRESS=9.9.9.5
IP_SUBNET=255.255.255.0
IP_NETWORK=ClusterA
NETNAME_NAME=Network name for DB2B
NETNAME_VALUE=DB2SRV2
NETNAME_DEPENDENCY=IP Address for DB2B
DISK_NAME=Disk F:
INSTPROF_DISK=Disk F:

9. Run the DB2MSCS utility as follows:
db2mscs -f:DB2MSCS.CFG

10. Log out from the db2nt account.

Example - Setting up a Four-Node Partitioned Database System for Mutual
Takeover

The objective for this example is to set up a four-node partitioned database
system with failover support in a mutual takeover configuration. In this
example, four servers are configured into two MSCS clusters. By using the
mutual takeover configuration, if any machine fails, the database partition
servers configured for that machine will fail over to the alternative machine,
as configured using the MSCS software, and run as a logical node on the
alternative machine.

There are two MSCS clusters in the resulting configuration. Each cluster has:
v Two servers, each with 64 MB of memory and one local SCSI disk of 2 GB
v One SCSI disk tower that has three shared SCSI disks of 2 GB each.

In addition, each machine has one 100X Ethernet Adapter card installed.

Each machine has the following software installed:
v Windows NT Version 4.0 Enterprise Edition with the MSCS feature installed

274 Administration Guide: Planning

v DB2 Universal Database Extended Enterprise Edition Version 7.

The resulting network configuration is as follows:

Server 1:

v Machine name:db2test1

v TCP/IP hostname:db2test1

v IP Address: 9.9.9.1

(subnet mask: 255.255.255.0

v MSCS cluster name: ClusterA

Server 2:

v Machine name:db2test2

v TCP/IP hostname:db2test2

v IP Address: 9.9.9.2

(subnet mask: 255.255.255.0

v MSCS cluster name: ClusterA

Server 3:

v Machine name:db2test3

v TCP/IP hostname:db2test3

v IP Address: 9.9.9.3

(subnet mask: 255.255.255.0

v MSCS cluster name: ClusterB

Server 4:

v Machine name:db2test4

v TCP/IP hostname:db2test4

v IP Address: 9.9.9.4

(subnet mask: 255.255.255.0

v MSCS cluster name: ClusterB

All machines in the network are configured with TCP/IP and connected to a
private LAN using an Ethernet 100 T-base Hub. In the absence of a Domain
Name Server (DNS), all machines have a local TCP/IP hosts file, which
contains the following entries:

9.9.9.1 db2test1 # for Server 1
9.9.9.2 db2test2 # for Server 2
9.9.9.3 db2test3 # for Server 3
9.9.9.4 db2test4 # for Server 4
9.9.9.5 ClusterA # for MSCS Cluster 1
9.9.9.6 ClusterB # for MSCS Cluster 2
9.9.9.7 db2tcp # for DB2 remote client connection

Preliminary Tasks
Before you perform the following tasks, it is assumed that all four machines
belong to the same domain, called DB2NTD:
1. Create a domain account for DB2 that is a member of the local

Administrators group on those machines where DB2 is going to run. Use
the account for performing all tasks:
v Set the user name to db2nt.
v Set the password to db2nt.

2. Create a second domain account with the ″password never expires″
characteristic. This account will be associated with DB2 services:
v Set the user name to db2mpp.
v Set the password to db2mpp.

3. Install the MSCS feature on machines db2test1 and db2test2:

Chapter 13. High Availability in the Windows NT Environment 275

v Name the MSCS cluster ClusterA.
v The cluster IP Address is 9.9.9.5.
v Share disk D: will be used by the MSCS software.
v Share disks E: and F: will be used by DB2.

4. Install the MSCS feature on machines db2test3 and db2test4:
v Name the MSCS cluster ClusterB.
v The cluster IP Address is 9.9.9.6.
v Share disk D: will be used by the MSCS software
v Share disks E: and F: will be used by DB2.

5. Install DB2 Enterprise - Extended Edition on machine db2test1:
v Select the ″This machine will be the instance-owning database partition

server″ option.
v The account for the DB2 service is db2mpp. The password is db2mpp.
v Install the software on C:\SQLLIB, which is a local drive.

6. Install DB2 Enterprise - Extended Edition on machines db2test2, db2test3,
and db2test4:
v Select the ″This machine will be a new node on an existing partitioned

database system″ option.
v Select db2test1 as the instance-owning machine.
v The account for the DB2 service is db2mpp. The password is db2mpp.
v Install the software on C:\SQLLIB, which is a local drive.

The next step is to set up the DB2MSCS.CFG file and run the DB2MSCS utility.

Run the DB2MSCS Utility
To set up the db2test1 machine, perform the following tasks:
1. Log on as user db2nt, which belongs to the local Administrators group.

The password is db2nt.
2. Set up the DB2MSCS.CFG file:

#
DB2MSCS.CFG for one partitioned database system with
multiple MSCS clusters
DB2_INSTANCE=DB2MPP
CLUSTER_NAME=ClusterA
DB2_LOGON_USERNAME=db2mpp
DB2_LOGON_PASSWORD=db2mpp
Group 1
for DB2 node 0
GROUP_NAME=DB2NODE0
DB2_NODE=0
IP_NAME=IP Address for DB2
IP_ADDRESS=9.9.9.7
IP_SUBNET=255.255.255.0
IP_NETWORK=Ethernet

276 Administration Guide: Planning

NETNAME_NAME=Network name for DB2
NETNAME_VALUE=DB2WOLF
NETNAME_DEPENDENCY=IP Address for DB2
DISK_NAME=Disk E:
INSTPROF_DISK=Disk E:
#

Group 2
for DB2 node 1
GROUP_NAME=DB2NODE1
DB2_NODE=1
DISK_NAME=Disk F:
#

CLUSTER_NAME=ClusterB
Group 3
for DB2 node 2
GROUP_NAME=DB2NODE2
DB2_NODE=2
DISK_NAME=Disk E:

#
Group 4
for DB2 node 3
GROUP_NAME=DB2NODE3
DB2_NODE=3
DISK_NAME=Disk F:

3. Run the DB2MSCS utility as follows:
db2mscs -f:DB2MSCS.CFG

4. Log out from the db2nt account.

The final steps are to register the database drive mapping for the two MSCS
clusters.

Register the Database Drive Mapping for ClusterA
To register the database drive mapping for MSCS cluster ClusterA, perform
the following tasks:
1. On machine db2test1, log on as user db2mpp, which is the account

associated with DB2 services. The password is db2mpp.
2. To register the database drive mapping, enter the following commands:

db2drvmp add 0 F E

db2drvmp add 1 E F

3. Bring all DB2 resources offline, then bring them online.

Register the Database Drive Mapping for ClusterB
To register the database drive mapping for MSCS cluster ClusterB, perform
the following tasks:
1. On machine db2test3, log on as user db2mpp, which is the account

associated with DB2 services. The password is db2mpp.
2. To register the database drive mapping, enter the following commands:

Chapter 13. High Availability in the Windows NT Environment 277

db2drvmp add 2 F E
db2drvmp add 3 E F

3. Bring all DB2 resources offline, then bring them online.

Administering DB2 in an MSCS Environment

If you are using MSCS clusters, your DB2 instance requires additional
planning with regards to daily operation, database deployment, and database
configuration. For DB2 to execute transparently on any MSCS node, additional
administrative tasks must be performed. All DB2 dependent operating system
resources must be available on all MSCS nodes. Some of these operating
system resources fall outside the scope of MSCS. That is, they cannot be
defined as an MSCS resource. You must ensure that each system is configured
such that the same operating system resources are available on all MSCS
nodes. The sections that follow describe the additional work that must be
done.

Starting and Stopping DB2 Resources
You must start and stop DB2 resources from the Cluster Administrator tool.
Several mechanisms are available to start a DB2 instance, such as the db2start
command, and the Services option from the Control Panel. However, if DB2 is
not started from the Cluster Administrator, the MSCS software will not be
aware of the state of the DB2 instance. If a DB2 instance is started using the
Cluster Administrator, and stopped using the db2stop command, the MSCS
software will interpret the db2stop command as a software failure, and
attempt to restart DB2. (The current MSCS interfaces do not support
notification of a resource state.)

Similarly, if you use db2start to start a DB2 instance, MSCS cannot detect that
the resource is online; if a database server fails, MSCS will not bring the DB2
resource online on the failover machine in the cluster.

Three operations can be applied to a DB2 instance:

Online
This operation is equivalent to using the db2start command. If DB2 is
already active, this operation can be used simply to notify MSCS that
DB2 is active. Any errors during this operation will be written to the
Windows NT Event Log.

Offline
This operation is equivalent to using the db2stop command. If there
are any active attachments to an instance, this operation will fail. This
is consistent with the behavior of db2stop.

Fail resource
This operation is equivalent to using the db2stop command with the

278 Administration Guide: Planning

force option specified. DB2 will disconnect all applications from the
DB2 system, and stop all database servers.

Running Scripts
You can run scripts both before and after a DB2 resource is brought online.
These scripts must reside in the instance profile directory that is specified for
the DB2INSTPROF environment variable. This directory is the directory path
that is specified by the ″-p″ parameter of the db2icrt command. You can
obtain this value by issuing the following command:

db2set -i:instance_name DB2INSTPROF

This file path must be on a clustered disk, so that the instance directory is
available on all cluster nodes.

These script files are not required, and are only run if they are found in the
instance directory. They are launched by the MSCS Cluster Service in the
background. The script files must redirect standard output to capture any
information returned from commands within the script files. The output is not
displayed to the screen.

In a partitioned database environment, by default, the same script will be
used by every database partition server in the instance. If you need to
distinguish among the different database partition servers in the instance, use
different assignments of the DB2NODE environment variable to target specific
node numbers (for example, use the IF statement in the db2cpre.bat and
db2cpost.bat files).

Running Scripts Before Bringing DB2 Resources Online
If you want to run a script before you bring a DB2 resource online, the script
must be named db2cpre.bat. DB2 calls functions that will launch this batch
file from the Windows NT command line processor (CLP) and wait for the
CLP to complete execution before the DB2 resource is brought online. You can
use this batch file for tasks such as modifying the DB2 database manager
configuration. You may want to change some database manager parameter
values if the failover system is constrained, and you must reduce the system
resources consumed by DB2.

The commands placed in the db2cpre.bat script should execute
synchronously. Otherwise, the DB2 resource may be brought online before all
tasks in the script are completed, which may result in unexpected behavior.
Specifically, db2cmd should not be invoked in the db2cpre.bat script, because
it, in turn, launches another command processor, which will run DB2
commands asynchronously to the db2cmd program.

If you want to use DB2 CLP commands in the db2cpre.bat script, the
commands should be placed in a file and run as a CLP batch file from within

Chapter 13. High Availability in the Windows NT Environment 279

a program that initializes the DB2 environment for the DB2 command line
processor, and then waits for the completion of the DB2 command line
processor. For example:
#include <windows.h>

int WINAPI DB2SetCLPEnv_api(DWORD pid);

void main (int argc, char *argv [])
{

STARTUPINFO startInfo = {0};
PROCESS_INFORMATION pidInfo = {0};
char title [32] = "Run Synchronously";
char runCmd [64] =

"DB2 -z c:\\run.out -tvf c:\\run.clp";
/* Invoke API to set up a CLP Environment */

if (DB2SetCLPEnv_api (GetCurrentProcessId ()) == 0) �1�
{

startInfo.cb = sizeof(STARTUPINFO);
startInfo.lpReserved = NULL;
startInfo.lpTitle = title;
startInfo.lpDesktop = NULL;
startInfo.dwX = 0;
startInfo.dwY = 0;
startInfo.dwXSize = 0;
startInfo.dwYSize = 0;
startInfo.dwFlags = 0L;
startInfo.wShowWindow = SW_HIDE;
startInfo.lpReserved2 = NULL;
startInfo.cbReserved2 = 0;

if (CreateProcessA(NULL,
runCmd, �2�
NULL,
NULL,
FALSE,
NORMAL_PRIORITY_CLASS CREATE_NEW_CONSOLE,
NULL,
NULL,
&startInfo,
&pidInfo))

{
WaitForSingleObject (pidInfo.hProcess, INFINITE);
CloseHandle (pidInfo.hProcess);
CloseHandle (pidInfo.hThread);

}
}
return;

}

�1� The API DB2SetCLPEnv_api is resolved by the import library
DB2API.LIB. This API sets an environment that allows CLP commands
to be invoked. If this program is invoked from the db2cpre.bat script,
the command processor will wait for the CLP commands to complete.

280 Administration Guide: Planning

�2� runCmd is the name of the script file that contains the DB2 CLP
commands.

A sample program called db2clpex.exe can be found in the MISC subdirectory
of the DB2 install path. This executable is similar to the example provided,
but accepts the DB2 CLP command as a command line argument. If you want
to use this sample program, copy it to the BIN subdirectory. You can use this
executable in the db2cpre.bat script as follows (INSTHOME is the instance
directory):

db2clpex "DB2 -Z INSTHOME\pre.log -tvf INSTHOME\pre.clp"

All DB2 ATTACH commands or CONNECT statements should explicitly
specify a user; otherwise, they will be executed under the user account
associated with the cluster service. CLP scripts should also complete with the
TERMINATE command to end the CLP background process.

Following is an example of a db2cpre.bat file:
db2cpre.bat : �1�

db2clpex "db2 -z INSTHOME\pre-%DB2NODE%.log -tvf INSTHOME\pre.clp" �2� - �5�

PRE.CLP �6�

update dbm cfg using MAXAGENTS 200;
get dbm cfg;
terminate;

�1� The db2cpre.bat script executes under the user account associated
with the Cluster Service. If DB2 actions are required, the user account
associated with the Cluster Service must be a valid SQL identifier, as
defined by DB2.

�2� INSTHOME is the instance directory.

�3� The name of the log file must be different for each node to avoid file
contention when both logical nodes are brought online at the same
time.

�4� db2clpex.exe is a sample program that uses a command line
argument to specify the CLP command that is to be invoked.

�5� The db2clpex.exe sample program must be made available on all
MSCS cluster nodes.

�6� The CLP commands in this example set a limit on the number of
agents.

Chapter 13. High Availability in the Windows NT Environment 281

Running Scripts After Bringing DB2 Resources Online
If you want to run a script after you bring a DB2 resource online, it must be
named db2cpost.bat. The script will be run asynchronously from MSCS after
the DB2 resource has been successfully brought online. The db2cmd command
can be used in this script to execute DB2 CLP script files. Use the ″-c″
parameter of the db2cmd command to specify that the utility should close all
windows on completion of the task. For example:

db2cmd -c db2 -tvf mycmds.clp

The ″-c″ parameter must be the first argument to the db2cmd command,
because it prevents orphaned command processors in the background.

The db2cpost.bat script is useful if you want to perform database activities
immediately after the DB2 resource fails over and becomes active. For
example, you can restart or activate databases in the instance so that they are
primed for user access.

Following is an example of a db2cpost.bat script:
db2cpost.bat �1�

db2cmd -c db2 -z INSTHOME\post-%DB2NODE%.log -tvf INSTHOME\post.clp �2� - �4�

POST.CLP �5�

restart database SAMPLE;
connect reset;
activate database SAMPLE;
terminate;

�1� The db2cpost.bat script runs under the user account associated with
the Cluster Service. If DB2 actions are required, the user account
associated with the Cluster Service must be a valid SQL identifier, as
defined by DB2.

�2� INSTHOME is the instance directory.

�3� The name of the log file must be different for each node to avoid file
contention when both logical nodes are brought online at the same
time.

�4� The db2cmd command can be used, because the db2cpost.bat script
can run asynchronously. The ″-c″ parameter must be used to terminate
the command processor.

�5� The CLP script in this example contains commands to restart and
activate the database. This script returns the database to an active
state immediately after the database manager is started. In a
partitioned database system, you should remove the ACTIVATE

282 Administration Guide: Planning

DATABASE command, because multiple DB2 resources are brought
online at the same time. The RESTART DATABASE command may
fail, because another node is activating the database. If this occurs,
rerun the script to ensure that the database is restarted correctly.

Database Considerations
When you create a database, ensure that the database path refers to a share
disk. This allows the database to be seen on all MSCS nodes. All logs and
other database files must also refer to clustered disks for DB2 to failover
successfully. If you do not perform these steps, a DB2 system failure will
occur, because it will seem to DB2 that files have been deleted or are
unavailable.

Ensure also that the database manager and database configuration parameters
are set so that the amount of system resources consumed by DB2 is supported
on either MSCS node. The autorestart database configuration parameter should
be set to ON, so that the first database connection on failover will bring the
database to a consistent state. (The default setting for autorestart is ON.) The
database can also be brought to a ready state by using the db2cpost.bat script
to restart and activate the database. This method is preferred, because there
will be no dependency on autorestart, and the database is brought to a ready
state independent of a user connection request.

User and Group Support
DB2 relies on Windows NT for user authentication and group support. For a
DB2 instance to fail over from one MSCS node to another in a seamless
fashion, each MSCS node must have access to the same Windows NT security
databases. You can achieve this by using Windows NT Domain Security.

Define all DB2 users and groups in a Domain Security database. The MSCS
nodes must be members of this Domain, or the Domain must be a Trusted
Domain. DB2 will then use the Domain Security database for authentication
and group support, independent of the MSCS node on which DB2 is running.

If you are using local accounts, the accounts must be replicated on each MSCS
node. This approach is not recommended, because it is error prone and
requires dual maintenance.

DCE Security is also a supported authentication mode, if all MSCS nodes are
clients in the same DCE cell.

You should associate the MSCS service with a user account that follows DB2
naming conventions. This allows the MSCS service to perform actions against
DB2 that may be required in the db2cpre.bat and db2cpost.bat scripts.

Chapter 13. High Availability in the Windows NT Environment 283

For more information about Windows NT user and group support, see ″User
Authentication with DB2 for Windows NT″ in the Administration Guide:
Implementation.

Communications Considerations
DB2 supports two LAN protocols in an MSCS Environment:
v TCP/IP
v NetBIOS

TCP/IP is supported because it is a supported cluster resource type. To enable
DB2 to use TCP/IP as a communications protocol for a partitioned database
system, create an IP Address resource and place it in the same group as the
DB2 resource that represents the database partition server that you want to
use as a coordinator node for remote applications. Then create a dependency,
using the Cluster Administrator tool, to ensure that the IP resource is online
before the DB2 resource is started. DB2 clients can then catalog TCP/IP node
directory entries to use this TCP/IP address.

The TCP/IP port associated with the svcename database manager configuration
parameter must be reserved for use by the DB2 instance on all machines that
participate in the instance. The service name associated with the port number
must also be the same in the services file on all machines.

Although NetBIOS is not a supported cluster resource, you can use NetBIOS
as a LAN protocol, because the protocol ensures that NetBIOS names are
unique on the LAN. When DB2 registers a NetBIOS name, NetBIOS ensures
that the name is not in use on the LAN. In a failover scenario, when DB2 is
moved from one system to another, the nname used by DB2 will be
deregistered from one partner machine in the MSCS cluster and registered on
the other machine.

DB2 NetBIOS support uses NetBIOS Frames (NBF). This protocol stack can be
associated with different logical adapter numbers (LANA). To ensure
consistent NetBIOS access to the server, the LANA associated with the NBF
protocol stack should be the same on all clustered nodes. You can configure
this by using the Networks option from the Control Panel. You should
associate NBF with LANA 0, because this is the default setting expected by
DB2.

System Time Considerations
DB2 uses the system time to time stamp certain operations. All MSCS nodes
that participate in DB2 failover must have the system time zone and system
time synchronized to ensure that DB2 behaves consistently on all machines.

Set the system time zone using the Date/Time option from the Control Panel
dialog. MSCS has a time service that synchronizes the date and time when the

284 Administration Guide: Planning

MSCS nodes join to form a cluster. The time service, however, only
synchronizes the time every 12 hours, which may result in problems if the
time is changed on one system, and DB2 fails over before the time is
synchronized.

If the time is changed on one of the MSCS cluster nodes, it should be
manually synchronized on the other cluster nodes using the command:

net time /set /y \\remote_node

Where remote_node is the machine name of the cluster node.

Administration Server and Control Center Considerations in a Partitioned
Database Environment

The DB2 Administration Server is (optionally) created during the installation
of DB2 Universal Database. It is not a partitioned database system. The
Control Center uses the services provided by the Administration Server to
administer DB2 instances and databases.

In a partitioned database system, a DB2 instance can reside on multiple MSCS
nodes. This implies that a DB2 instance must be cataloged on multiple
systems under the Control Center so that the instance remains accessible,
regardless of the MSCS node on which the DB2 instance is active.

The Administration Server instance directory is not shared. You must mirror
all user-defined files in the Administration Server directory to all MSCS nodes
to provide the same level of administration to all MSCS nodes. Specifically,
you must make user scripts and scheduled executables available on all nodes.
You must also ensure that scheduled activities are scheduled on all machines
in an MSCS cluster.

Alternatively, instead of duplicating the Administration Server on all
machines, you may want to have the Administration Server fail over. For the
purposes of the following example, assume that you have two MSCS nodes in
the cluster, and that they are called MACH0 and MACH1. MACH0 has access
to a cluster disk that will be used by the Administration Server. Assume also
that both MACH0 and MACH1 have an Administration Server. You would
perform the following steps to make the Administration Server highly
available:
1. Stop the Administration Server on both machines by invoking the

db2admin stop command on each machine.
2. On all administration client machines, uncatalog all references to the

Administration Servers on MACH0 and MACH1 using the UNCATALOG
NODE command. (You can use the LIST NODE DIRECTORY command on
the client machine to determine if any references to the Administration
Server exist.)

Chapter 13. High Availability in the Windows NT Environment 285

3. Drop the Administration Server from MACH1 by invoking the db2admin
drop command from MACH1. (You would only perform this step if you
had an Administration Server on both machines.)

4. Determine the name of the Administration Server by issuing the
db2admin command from MACH0. (The default name is DB2DAS00.)

5. Use the DB2MSCS utility to set up failover support for the Administration
Server. This entails creating a DB2 resource on MSCS named DB2DAS00 that
has dependencies on the IP and disk resources. (If you have a mutual
takeover configuration, you would put the resource in the group that
holds the DB2 resource for NODE0.) This resource will be used as the
MSCS resource that supports the Administration Server. The
DB2MSCS.ADMIN file would be as follows:

#
db2mscs.admin for Administration Server
run db2mscs -f:db2mscs.admin
#
DB2_INSTANCE=DB2DAS00
CLUSTER_NAME=CLUSTERA
DB2_LOGON_USERNAME=db2admin
DB2_LOGON_PASSWORD=db2admin
put Administration server in the same group as DB2 Node 0
GROUP_NAME=DB2NODE0 �1�
DISK_NAME=DISK E:
INSTPROF_DISK=DISK E:
IP_NAME= IP Address for Administration Server
IP_ADDRESS=9.9.9.8
IP_SUBNET=255.255.255.0
IP_NETWORK=Ethernet

�1� This group can be the same as the existing group. This way, you
do not require an additional disk for the instance profile directory.

6. On MACH1, invoke the following command to set DB2DAS00 as the
Administration Server:

db2set -g db2adminserver=DB2DAS00

7. On MACH0, modify the start-up properties of DB2DAS00 through the
Services program so that it is brought up manually and not automatically,
because DB2DAS00 is now controlled by MSCS.

When the Administration Server is enabled for failover, all remote access
should use an MSCS IP resource for communicating with the Administration
Server. The Administration Server will now have the following properties:
v The Administration Server instance directory will fail over with the

Administration Server.
v Clients will only catalog a single node to communicate with the

Administration Server, regardless of the MSCS node on which it is active.
v Jobs only need to be scheduled once against the Administration Server.

286 Administration Guide: Planning

v Local instances can only be controlled by the Administration Server when
the Administration Server is active on the same MSCS node as the local
instance.

v The Administration Server is not accessible if the Cluster Service is not
active.

Limitations and Restrictions
When you run DB2 in an MSCS environment:
v You cannot use physical I/O on shared disks, unless the shared disks have

the same physical disk number across both MSCS nodes. You can use
logical I/O, because the disk is accessed using a partition identifier.

v You must configure all DB2 resource for MSCS support. If you do not,
system errors will occur during DB2 run time (DB2 cannot properly operate
in the absence of system resources). For example, if the database logs are
not on an MSCS shared disk, DB2 cannot restart the database.

v You must manage a DB2 instance from the Cluster Administrator tool.
MSCS will view other mechanisms that are used to start and stop the
database manager as software inconsistencies. For example, if you use
MSCS to start DB2, and the db2stop command to stop DB2, MSCS will
detect this as a software failure, and will restart the instance. This also
means that you should not use the Control Center to start and stop DB2.

v To uninstall DB2, you must first stop MSCS.

Chapter 13. High Availability in the Windows NT Environment 287

288 Administration Guide: Planning

Chapter 14. DB2 and High Availability on Sun Cluster 2.2

This chapter describes in detail how DB2 works with Sun Cluster 2.x (SC2.x)
to achieve high availability, and includes a description of the high availability
agent, which acts as a mediator between the two software products (see
Figure 59).

High Availability

The computer systems that host data services contain many distinct
components, and each component has a ″mean time before failure″ (MTBF)
associated with it. The MTBF is the average time that a component will
remain usable. The MTBF for a quality hard drive is in the order of one
million hours (approximately 114 years). While this seems like a long time,
one out of 200 disks is likely to fail within a 6-month period.

Although there are a number of methods to increase availability for a data
service, the most common is an HA cluster. A cluster, when used for high
availability, consists of two or more machines, a set of private network
interfaces, one or more public network interfaces, and some shared disks. This
special configuration allows a data service to be moved from one machine to
another. By moving the data service to another machine in the cluster, it
should be able to continue providing access to its data. Moving a data service
from one machine to another is called a failover, as illustrated in Figure 60 on
page 290.

DB2 HA Agent SC2.x

Figure 59. DB2, Sun Cluster 2.x, and High Availability

© Copyright IBM Corp. 1993, 2000 289

The private network interfaces are used to send heartbeat messages, as well as
control messages, among the machines in the cluster. The public network
interfaces are used to communicate directly with clients of the HA cluster. The
disks in an HA cluster are connected to two or more machines in the cluster,
so that if one machine fails, another machine has access to them.

A data service running on an HA cluster has one or more logical public
network interfaces and a set of disks associated with it. The clients of an HA
data service connect via TCP/IP to the logical network interfaces of the data
service only. If a failover occurs, the data service, along with its logical
network interfaces and set of disks, are moved to another machine.

One of the benefits of an HA cluster is that a data service can recover without
the aid of support staff, and it can do so at any time. Another benefit is
redundancy. All of the parts in the cluster should be redundant, including the
machines themselves. The cluster should be able to survive any single point of
failure.

Switch

Data 1

Log1 : 2, 3
Log0 : HA-NFS, 0, 1

Log2: 4, 5

Log3: 6, 7

Mach A Mach B

Mach DMach C

Data 0 Data 3

Data 2

Figure 60. Failover

290 Administration Guide: Planning

Even though highly available data services can be very different in nature,
they have some common requirements. Clients of a highly available data
service expect the network address and host name of the data service to
remain the same, and expect to be able to make requests in the same way,
regardless of which machine the data service is on.

Consider a Web browser that is accessing a highly available Web server. The
request is issued with a URL (Uniform Resource Locator), which contains both
a host name, and the path to a file on the Web server. The browser expects
both the host name and the path to remain the same after a failover ofáthe
Web server. If the browser is downloading a file from the Web server, and the
server is failed over, the browser will need to reissue the request.

Availability of a data service is measured by the amount of time the data
service is available to its users. The most common unit of measurement for
availability is the percentage of ″up time″; this is often referred to as the
number of ″nines″:

99.99% => service is down for (at most) 52.6 minutes / yr
99.999% => service is down for (at most) 5.26 minutes / yr
99.9999% => service is down for (at most) 31.5 seconds / yr

When designing and testing an HA cluster:
1. Ensure that the administrator of the cluster is familiar with the system and

what should happen when a failover occurs.
2. Ensure that each part of the cluster is truly redundant and can be replaced

quickly if it fails.
3. Force a test system to fail in a controlled environment, and make sure that

it fails over correctly each time.
4. Keep track of the reasons for each failover. Although this should not

happen often, it is important to address any issues that make the cluster
unstable. For example, if one piece of the cluster caused a failover five
times in one month, find out why and fix it.

5. Ensure that the support staff for the cluster is notified when a failover
occurs.

6. Do not overload the cluster. Ensure that the remaining systems can still
handle the workload at an acceptable level after a failover.

7. Check failure-prone components (such as disks) often, so that they can be
replaced before problems occur.

Fault Tolerance and Continuous Availability
Another way to increase the availability of a data service is fault tolerance. A
fault tolerant machine has all of its redundancy built in, and should be able to
withstand a single failure of any part, including CPU and memory. Fault
tolerant machines are most often used in niche markets, and are usually
expensive to implement. An HA cluster with machines in different

Chapter 14. DB2 and High Availability on Sun Cluster 2.2 291

geographical locations has the added advantage of being able to recover from
a disaster affecting only a subset of those locations.

Continuous availability is a step above high availability. It shelters its clients
from both planned and unplanned down time. With a continuous availability
configuration, the client is completely unaffected if one of the machines
hosting the data service fails or is brought down for maintenance. Continuous
availability configurations are complex and more expensive to implement.

An HA cluster is the most common solution to increase availability because it
is scalable, easy to use, and relatively inexpensive to implement.

Sun Cluster 2.2

Sun Cluster 2.2 (SC2.2) is Sun Microsystems’ clustering and high availability
product. SC2.2 supports up to four machines in a single cluster. Using four
Ultra Enterprise 10000s, a cluster can have up to 256 CPUs and 256 GB of
RAM.

Supported Systems

System UltraSPARC Memory Capacity I/O

Ultra Enterprise 1 1 64MB-1GB 3 SBus

Ultra Enterprise 2 1-2 64MB-2GB 4 SBus

Ultra Enterprise 450 1-4 32MB-4GB 10 PCI

Ultra Enterprise
3000

1-6 64MB-6GB 9 SBus

Ultra Enterprise
4000

1-14 64MB-14GB 21 SBus

Ultra Enterprise
5000

1-14 64MB-14GB 21 SBus

Ultra Enterprise
6000

1-30 64MB-30GB 45 SBus

Ultra Enterprise
10000

1-64 512MB-64GB 64 SBus

Agents
The Sun Cluster software includes a number of high availability agents that
are supported and shipped with the SC2.2 product. Other HA agents, such as
the one for DB2, are developed outside of Sun, and are not shipped with the
Sun Cluster software. The HA agent for DB2 is shipped with DB2, and
supported by IBM.

292 Administration Guide: Planning

The Sun Cluster software works with highly available data services by
providing an opportunity to register methods (scripts or programs) that
correspond to various components of the Sun Cluster software. Utilizing these
methods, the SC2.2 software can control a data service without having
intimate knowledge of it. These methods include:

START
Used to start portions of the data service before the logical network
interfaces are online.

START_NET
Used to start portions of the data service after the logical network
interfaces are online.

STOP Used to stop portions of the data service after the logical network
interfaces are offline.

STOP_NET
Used to stop portions of the data service before the logical network
interfaces are offline.

ABORT
Like the STOP method, except it is run just before a machine is
brought down by the cluster software. In this case, the machine’s
″health″ is in question, and a data service may want to execute ″last
wish″ requests before the machine is brought down. Run after the
logical network interfaces are offline.

ABORT_NET
Like the ABORT method, except it is run before the logical network
interfaces are offline.

FM_INIT
Used to initialize fault monitors.

FM_START
Used to start the fault monitors.

FM_STOP
Used to stop the fault monitors.

FM_CHECK
Called by the hactl command. Returns the current status of the
corresponding data service.

The DB2 agent consists of the following scripts: START_NET, STOP_NET,
FM_START, and FM_STOP. The following scripts are not run during cluster
reconfiguration: ABORT, ABORT_NET, and FM_CHECK.

Chapter 14. DB2 and High Availability on Sun Cluster 2.2 293

A high availability agent consists of one or more of these methods. The
methods are registered with SC2.2 through the hareg command. Once
registered, the Sun Cluster software will call the corresponding method to
control the data service.

It is important to remember that the ABORT and STOP methods of a service
may not be called. These methods are intended for the controlled shutdown of
a data service, and the data service must be able to recover if a machine fails
without calling them.

For more information, refer to the Sun Cluster documentation.

Logical Hosts
The SC2.2 software uses the concept of a logical host. A logical host consists of
a set of disks and one or more logical public network interfaces. A highly
available data service is associated with a logical host, and requires the disks
that are in the disk groups of the logical host. Logical hosts can be hosted by
different machines in the cluster, and ″borrow″ the CPUs and memory of the
machine on which they are running.

Logical Network Interfaces
As with other UNIX based operating systems, Solaris has the ability to have
extra IP addresses, in addition to the primary one for a network interface. The
extra IP addresses reside on a logical interface in the same way that the
primary IP address resides on the physical network interface. Following is an
example of the logical interfaces on two machines in a cluster. There are two
logical hosts, and both are currently on the machine ″thrash″.

scadmin@crackle(202)# netstat -in
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
lo0 8232 127.0.0.0 127.0.0.1 289966 0 289966 0 0 0
hme0 1500 9.21.55.0 9.21.55.98 121657 6098 764122 0 0 0
scid0 16321 204.152.65.0 204.152.65.1 489307 0 476479 0 0 0
scid0:1 16321 204.152.65.32 204.152.65.33 0 0 0 0 0 0
scid1 16321 204.152.65.16 204.152.65.17 347317 0 348073 0 0 0

1. lo0 is the loopback interface
2. hme0 is the public network interface (ethernet)
3. scid0 is the first private network interface (SCI or Scalable

Coherent Interface)
4. scid0:1 is a logical network interface that the Sun Cluster software

uses internally
5. scid1 is the second private network interface

scadmin@thrash(203)# netstat -in
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
lo0 8232 127.0.0.0 127.0.0.1 1128780 0 118780 0 0 0
hme0 1500 9.21.55.0 9.21.55.92 1741422 5692 757127 0 0 0
hme0:1 1500 9.21.55.0 9.21.55.109 0 0 0 0 0 0
hme0:2 1500 9.21.55.0 9.21.55.110 0 0 0 0 0 0
scid0 16321 204.152.65.0 204.152.65.2 476641 0 489476 0 0 0

294 Administration Guide: Planning

scid0:1 16321 204.152.65.32 204.152.65.34 0 0 0 0 0 0
scid1 16321 204.152.65.16 204.152.65.18 348199 0 347444 0 0 0

1. hme0:1 is a logical network interface for a logical host
2. hme0:2 is a logical network interface for another logical host

A logical host can have one or more logical interfaces associated with it. These
logical interfaces move with the logical host from machine to machine, and
are used to access the data service that is associated with the logical host.
Because these logical interfaces move with the logical hosts, clients can access
the data service independently of the machine on which it resides.

A highly available data service should bind to the TCP/IP address
INADDR_ANY. This ensures that each IP address on the system can accept
connections for the data service. If a data service binds to a specific IP address
instead, it must bind the logical interface associated with the logical host that
is hosting the data service. Binding to INADDR_ANY also removes the need
to rebind to a new IP address if one arrives on the system that is needed by
the data service.

Note: Clients of an HA instance should catalog the database using the host
name for the logical IP address of a logical host. They should never use
the primary host name for a machine, because there is no guarantee
that DB2 will be running on that machine.

Disk Groups and File Systems
Disks for a data service are associated with a logical host in groups (or sets).
If the cluster is running Sun StorEdge Volume Manager (Veritas), the Sun
Cluster software uses the Veritas ″vxdg″ utility to import and deport the disk
groups for each logical host. Following is an example of the disk groups for
two logical hosts, ″log0″ and ″log1″, which are being hosted by a machine
called ″thrash″. The machine called ″crackle″ is not currently hosting any
logical hosts.

scadmin@crackle(206)# vxdg list
NAME STATE ID
rootdg enabled 899825206.1025.crackle

scadmin@thrash(205)# vxdg list
NAME STATE ID
rootdg enabled 924176206.1025.thrash
data0 enabled 925142028.1157.crackle=
data1 enabled 899826248.1108.crackle

The disk groups ″data0″ and ″data1″ correspond to the logical hosts ″log0″
and ″log1″, respectively. The disk group ″data0″ can be deported from
″thrash″ by running

vxdg deport data0

Chapter 14. DB2 and High Availability on Sun Cluster 2.2 295

and imported to ″crackle″ by running
vxdg import data1

This is done automatically by the Sun Cluster software, and should not be
done manually on a live cluster.

Each disk group contains a number of disks that can be shared between two
or more machines in the cluster. A logical host can only be moved to another
machine that has physical access to the disks in the disk groups that belong to
it.

There are two files that control the file systems for each logical host:
/etc/opt/SUNWcluster/conf/hanfs/vfstab.<logical_host>
/etc/opt/SUNWcluster/conf/hanfs/dfstab.<logical_host>

where logical_host is the name of the associated logical host name.

The vfstab file is similar to the /etc/vfstab file, except that it contains entries
for the file systems to be mounted after the disk groups have been imported
for a logical host. The dfstab file is similar to the /etc/dfs/dfstab file, except
that is contains entries for file systems to export through HA-NFS for a logical
host. Each machine has its own copy of these files, and care should be taken
to ensure that they have the same content on each machine in the cluster.

Note: The paths for the vfstab and dfstab files of a logical host are
misleading, because they contain the directory hanfs. Only the dfstab
file for a logical host is used for HA-NFS. The vfstab file is used, even
if HA-NFS is not configured.

Following are examples from a cluster running DB2 Universal Database
Enterprise - Extended Edition (EEE) in a mutual takeover configuration:

scadmin@thrash(217)# ls -l /etc/opt/SUNWcluster/conf/hanfs
total 8
-rw-r--r-- 1 root build 173 Apr 14 15:01 dfstab.log0
-rw-r--r-- 1 root build 316 Apr 26 12:07 vfstab.log0
-rw-r--r-- 1 root build 389 Apr 13 21:04 vfstab.log1

scadmin@thrash(218)# cat dfstab.log0
share -F nfs -o root=crackle:thrash:\
jolt:bump:crackle.torolab.ibm.com:thrash.torolab.ibm.com:\
jolt.torolab.ibm.com:bump.torolab.ibm.com /log0/home

The hosts, which are given permission to mount the file system, /log0/home,
are from all of the network interfaces (logical and physical) on each machine
in the cluster. The file systems are exported with root permissions.

296 Administration Guide: Planning

scadmin@thrash(220)# cat vfstab.log0
#device to mount device to fsck mount
point

/dev/vx/dsk/data0/data1-stat /dev/vx/rdsk/data0/data1-stat /log0
/dev/vx/dsk/data0/vol01 /dev/vx/rdsk/data0/vol01 /log0/home
/dev/vx/dsk/data0/vol02 /dev/vx/rdsk/data0/vol02 /log0/data

scadmin@thrash(221)# cat vfstab.log1
#device to mount device to fsck mount
point
/dev/vx/dsk/data1/data1-stat /dev/vx/rdsk/data1/data1-stat /log1
/dev/vx/dsk/data1/vol01 /dev/vx/rdsk/data1/vol01 /log1/home
/dev/vx/dsk/data1/vol02 /dev/vx/rdsk/data1/vol02 /log1/data
/dev/vx/dsk/data1/vol03 /dev/vx/rdsk/data1/vol03 /log1/data1

FS fsck mount options
type pass at boot

ufs 2 no -
ufs 2 no -
ufs 2 no -

FS fsck mount options
type pass at boot

ufs 2 no -
ufs 2 no -
ufs 2 no -
ufs 2 no -

The vfstab.log0 file contains three valid entries for file systems under the
/log0 directory. Notice that the file systems for the logical host log0 use
logical volume devices, which are part of the disk group data0 that is
associated with the logical host.

The file systems in the vfstab files are mounted in order from top to bottom,
so it is important to ensure that the file systems are listed in the correct order.
File systems that are mounted underneath a particular file system should be
listed below it. The actual file systems that are needed for a logical host
depend on the needs of the data service, and will vary considerably from
these examples.

During a failover, the SC2.2 software is responsible for ensuring that the disk
groups and logical interfaces associated with a logical host follow it around
the cluster from machine to machine. The highly available data service expects
to have at least these resources available on a new system after a failover. In

Chapter 14. DB2 and High Availability on Sun Cluster 2.2 297

fact, many data services are not even aware that they are highly available, and
must have these resources ″appear″ to be exactly the same after a failover.

Control Methods
The control methods are registered using

hareg(1m)

Once an HA service is registered, SC2.2 is responsible for calling the methods
that were registered for the HA service at appropriate times during a cluster
reconfiguration or failover.

The following actions take place (in the given order) during a cluster
reconfiguration (controlled failover). Actions preceding step 5c will not be
taken if a machine crashes. (For more information about cluster
reconfiguration, refer to the SC2.2 documentation.)

1. FM_STOP method is run.
2. STOP_NET method is run.
3. Logical interfaces for the logical host are brought offline.

- ifconfig hme0:1 0.0.0.0 down
4. STOP method is run.
5. Disk groups and file systems are moved.

a. Unmount logical host file systems.
b. vxdg deport disk groups on one machine.

- - Only the steps below are run if a machine crashes - -

c. vxdg import disk groups on the other machine.
d. fsck logical host file systems.
e. Mount logical host file systems.

6. START method is run.
7. Logical interfaces for the logical host are brought online.

- ifconfig hme0:1 <ip address> up
8. START_NET method is run.
9. FM_INIT method is run.
10. FM_START method is run.

The control methods are run with the following command line arguments:
METHOD <logical hosts being hosted> <logical hosts not being hosted> <time-out>

The first argument is a comma delimited list of logical hosts that are currently
being hosted, and the second is a comma delimited list of logical hosts that
are not being hosted. The last argument is the time-out for the method, the
amount of time that the method is allowed to run before the SC2.2 software
aborts it.

Disk and File System Configuration
SC2.2 supports two volume managers: Sun StorEdge Volume Manager
(Veritas) and Solstice Disk Suite. Although both work well, the StorEdge
Volume Manager has some advantages in a clustered environment. In some

298 Administration Guide: Planning

cluster configurations, the controller number for a disk enclosure can be
different for each machine in the cluster. If the controller number is different,
the paths for the disk devices for the controller will also be different. Because
Disk Suite works directly with the disk device paths, it will not work well in
this situation. The StorEdge Volume Manager works with the disks
themselves, regardless of the controller number, and is not affected if the
controller numbers are different.

Since the goal of HA is to increase availability for a data service, it is
important to ensure that all file systems and disk devices are mirrored, or in a
RAID configuration. This will prevent failovers due to a failed disk, and
increase the stability of the cluster.

HA-NFS
DB2 UDB EEE requires a shared file system when an instance is configured
across multiple machines. A typical DB2 UDB EEE configuration has the home
directory exported from one machine through NFS, and mounted on all of the
machines participating in the EEE instance. For a mutual takeover
configuration, DB2 UDB EEE depends on HA-NFS to provide a shared, highly
available file system. One of the logical hosts exports a file system through
HA-NFS, and each machine in the cluster then mounts the file system as the
home directory of the EEE instance. For more information about HA-NFS,
refer to the Sun Cluster documentation.

The cconsole and ctelnet Utilities
Two useful utilities that come with SC2.2 are cconsole and ctelnet. These
utilities can be used to issue a single command to several machines in a
cluster simultaneously. Editing a configuration file with these utilities ensures
that it will remain identical on all of the machines in the cluster. These utilities
can also be used to install software in exactly the same way on each machine.
For more information about these utilities, refer to the Sun Cluster
documentation.

Campus Clustering and Continental Clustering
A cluster is called a campus cluster when its machines are not in the same
building. A campus cluster is useful for removing the building itself as the
single point of failure. For example, if the machines in the cluster are all in the
same building, and it burns down, the entire cluster is affected. However, if
the machines are in different buildings, and one of the buildings burns down,
the cluster survives.

A continental cluster is a cluster whose machines are distributed among
different cities. In this case, the goal is to remove the geographic region as the
single point of failure. This type of cluster provides protection against
catastrophic events, such as earthquakes and tidal waves.

Chapter 14. DB2 and High Availability on Sun Cluster 2.2 299

Currently, a Sun Cluster can support machines as far apart as 10 km, or about
6 miles. This makes campus clustering a viable option for those who need
high speed connections between two different sites. A cluster requires two
private interconnects, and a number of fiber optic cables for the shared disks.
The cost of high speed connections between two sites may offset the benefits.

Common Problems
The SC2.2 software uses the Cluster Configuration Database, or CCD(4), to
provide a single cluster-wide repository for the cluster configuration. The
CCD has a private API and is stored under the /etc/opt/SUNWcluster/conf
directory. In rare cases, the CCD can go out of synchrony, and may need to be
repaired. The best way to repair the CCD in this situation is to restore it from
a backup copy.

To back up the CCD, shut down the cluster software on all machines in the
cluster, ″tar″ up the /etc/opt/SUNWcluster/conf directory, and store the tar
file in a safe place. If the cluster software is not shut down when the backup
is made, you may have trouble restoring the CCD. Ensure that the backup
copy is kept up-to-date by taking a fresh backup any time that the cluster
configuration is changed. To restore the CCD, shut down the cluster software
on all machines in the cluster, move the conf directory to conf.old, and
″untar″ the backup copy. The cluster can then be started with the new CCD.

DB2 Considerations

The following topics are covered in this section:
v “Applications Connecting to an HA Instance”
v “Disk Layout for EE and EEE Instances” on page 302
v “Home Directory Layout for EE and EEE Instances” on page 303
v “Logical Hosts and DB2 UDB EEE” on page 304
v “DB2 Installation Location and Options” on page 305
v “Database and Database Manager Configuration Parameters” on page 305
v “Crash Recovery” on page 306
v “High Availability through Data Replication” on page 306.

Applications Connecting to an HA Instance
Applications that rely on a highly available DB2 instance must be able to
reconnect in the event of a failover. Since the host name and IP address of a
logical host remain the same, there is no need to connect to a different host
name or to recatalog the database.

Consider a cluster with two machines and one DB2 Universal Database
Enterprise Edition (EE) instance. The EE instance will normally reside on one

300 Administration Guide: Planning

of the machines in the cluster. Clients of the HA instance will connect to the
logical IP address (or host name) of the logical host associated with the HA
instance.

According to an HA client, there are two types of failover. One type occurs if
the machine that is hosting the HA instance crashes. The other type occurs
when the HA instance is given an opportunity to shut down gracefully.

If a machine crashes and takes down the HA instance, both existing
connections and new connections to the database will hang. The connections
hang because there are no machines on the network with the IP address that
the clients were using for the database. If the database is shut down
gracefully, a db2stop force breaks existing connections to the database, and
an error message is returned.

During the failover, the logical IP address associated with the database is
offline, either because the SC2.2 software took it offline, or because the
machine that was hosting the logical host crashed. At this point, any new
connections to the database will hang for a short period of time.

The logical IP address associated with the database is eventually brought up
on another machine before DB2 is started. At this stage, a connection to the
database will not hang, but will receive a communication error, because DB2
has not yet been started on the system. DB2 clients that were still connected to
the database will also begin receiving communication errors. Although the
clients still believe they are connected, the machine that has started hosting
the logical IP address has no knowledge of any existing connections. The
connections are simply reset, and the DB2 client receives a communication
error. After a short time, DB2 will be started on the machine, and a successful
connection to the database can be made. At this point, the database may be
inconsistent, and clients may have to wait for it to recover.

When designing an application for an HA environment, it is not necessary to
write special code for the stages where the database connections hang. The
connections only hang for a short period of time while the Sun Cluster
software moves the logical IP address. Any data service running on Sun
Cluster will experience the same hanging connections during this stage. No
matter how the database comes down, the clients will receive an error
message, and must try to reconnect until successful. From the client’s
perspective, it is as if the HA instance went down, and was brought back up
on the same machine. In a controlled failover, it appears to the client that it
was forced off, and that it can later reconnect to the database on the same
machine. In an uncontrolled failover, it appears to the client that the database
server crashed, and was soon brought back up on the same machine.

Chapter 14. DB2 and High Availability on Sun Cluster 2.2 301

Disk Layout for EE and EEE Instances
DB2 expects the disk devices or file systems it requires to appear the same on
each machine in the cluster. To ensure that this happens, the required disks or
file systems should be configured in such a way that they follow the logical
host associated with the HA instance, and will have the same path names on
each machine in the cluster.

Both DMS and SMS table spaces are supported in an HA environment. Device
containers for DMS table spaces must use raw devices created by the volume
manager, which are either mirrored, or in a RAID configuration. Regular disk
devices, such as /dev/rdsk/c20t0d0s0 should not be used because:
v It increases the possibility that the device could be written to from more

than one machine at the same time.
v The controller number may be different on another machine.

If DB2 is failed over in this situation, the disk devices it requires will not look
the same as they did on the other machine, and it will not start. File
containers for DMS table spaces, and containers for SMS table spaces, must
reside on mounted file systems. The file systems for a logical host are
mounted automatically when they are included in the vfstab file for the
logical host.

The vfstab file for a logical host is in the path:
/etc/opt/SUNWcluster/conf/hanfs/vfstab.<logical_host>

where logical_host is the name of the logical host that is associated with the
vfstab file.

Each logical host has its own vfstab file, which contains file systems that are
to be mounted after the disk groups for the logical host have been transferred
to the current machine, but before the HA services are started. The Sun
Cluster software will try to mount any file system that is properly defined
after running fsck (file system check), to ensure the health of the file system.
If fsck fails, the file system will not be mounted, and an error message is
logged.

Note: If a process has an open file, or its current working directory is under a
mount point, the mount will fail. To prevent this, ensure that no
processes are left under the mount points contained in the logical host’s
vfstab file.

Any convention can be used for the file system layout of an EEE instance
when using SMS table spaces. Following is the convention used by the
hadb2_setup utility:

302 Administration Guide: Planning

scadmin@crackle(190)# pwd
/export/ha_home/db2eee/db2eee
scadmin@crackle(191)# ls -l
total 18
lrwxrwxrwx 1 root build 28 Aug 12 19:08 NODE0000 -> /log0/disks/db2eee/NODE0000
lrwxrwxrwx 1 root build 28 Aug 12 19:08 NODE0001 -> /log0/disks/db2eee/NODE0001
lrwxrwxrwx 1 root build 28 Aug 12 19:08 NODE0002 -> /log0/disks/db2eee/NODE0002
lrwxrwxrwx 1 root build 28 Aug 12 19:08 NODE0003 -> /log0/disks/db2eee/NODE0003
lrwxrwxrwx 1 root build 28 Aug 12 19:08 NODE0004 -> /log0/disks/db2eee/NODE0004
lrwxrwxrwx 1 root build 28 Aug 12 19:08 NODE0005 -> /log1/disks/db2eee/NODE0005
lrwxrwxrwx 1 root build 28 Aug 12 19:08 NODE0006 -> /log1/disks/db2eee/NODE0006
lrwxrwxrwx 1 root build 28 Aug 12 19:08 NODE0007 -> /log1/disks/db2eee/NODE0007
lrwxrwxrwx 1 root build 28 Aug 12 19:08 NODE0008 -> /log1/disks/db2eee/NODE0008
scadmin@crackle(192)#

The instance owner is db2eee, and the default database directory for the
db2eee instance is /export/ha_home/db2eee. Logical host log0 is hosting
database partitions 0, 1, 2, and 3, while logical host log1 is hosting database
partitions 4, 5, 6, 7, and 8.

For each database partition, there is a corresponding NODExxxx directory. The
node directories for the database partitions point to a directory under the
associated logical host file system.

When choosing a path convention, ensure that:
1. The disks for the file system are in a disk group of the logical host

responsible for the database partitions that need them.
2. The file systems that hold containers are mounted through the logical

host’s vfstab file.

Home Directory Layout for EE and EEE Instances
For an EE instance, the home directory should be a file system that is defined
in the vfstab file for a logical host. This directory will be available before DB2
is started, and is transferred with DB2 to wherever the logical host is moved
in the cluster. Each machine has its own copy of the vfstab file, and care
should be taken to ensure that it has the same contents on each machine.
Following is an example of the home directory for an EE instance:

/log0/home/db2ee

where /log0 is the logical host file system for the logical host log0, and db2ee
is the name of the DB2 instance. This home directory path should be placed in
the /etc/passwd file on each machine in the cluster that could host the
″db2ee″ instance.

For an EEE instance, there are two ways to set up the home directory. For a
hot standby configuration, the home directory can be set up in the same way

Chapter 14. DB2 and High Availability on Sun Cluster 2.2 303

as for an EE instance. For a mutual takeover configuration, HA-NFS must be
used for the home directory, and must be configured properly before setting up
the EEE instance.

One of the machines in the cluster must export the file system for the EEE
instance, using the dfstab file for a chosen logical host. The dfstab file
contains file systems that should be exported through NFS when a machine is
hosting a logical host. Each machine has its own copy of the dfstab file, and
care should be taken to ensure that it has the same contents on each machine.

Information for the HA-NFS file system is placed in the hadb2tab file (through
the hadb2_setup program). When an HA agent reads the information for the
instance, it automatically mounts the HA-NFS file system for the instance (see
“The hadb2tab File” on page 307).

The mount point for the HA-NFS file system is typically /export/ha_home. On
each machine in the cluster, this would be NFS mounted from the logical host
that is exporting the HA-NFS directory. The EEE instance owner’s home
directory is placed under this directory and is called:

/export/ha_home/<instance>

where instance is the name of the instance owner.

One could have a home directory for an instance on each machine, to avoid
having to mount or unmount it. Doing this requires extra administrative
overhead to ensure that the home directories remain identical on each
machine. Failure to do so can prevent DB2 from starting properly, or cause it
to start with a different configuration. This is not a supported configuration.

Logical Hosts and DB2 UDB EEE
A logical host is usually chosen to host one or more database partitions, as
well as export the HA-NFS file system. For example, if there are four database
partitions and two machines in the cluster, there should be one logical host for
each machine (Figure 61 on page 305). One logical host could host two
database partitions, and export the HA-NFS file system, while the other
logical host could host the remaining two database partitions.

By default, a DB2 UDB EEE instance allocates enough resources to
successfully add up to two database partitions to a machine that already has
one or more live database partitions for that instance. For example, if there are
four database partitions for a single instance on a cluster, this will only be a
concern if there is one database partition per logical host, or one logical host
is hosting three database partitions. In either case, it is possible to have three
database partitions fail over to a machine that is already hosting a database
partition for the same instance.

304 Administration Guide: Planning

The DB2_NUM_FAILOVER_NODES registry variable can be used to increase
the amount of resource reserved for database partitions that are failed over.

DB2 Installation Location and Options
The file system on which DB2 is installed should be mirrored, or at least be in
a RAID configuration. If DB2 is installed on regular disks, disk failure is more
likely; the resulting failover is considered preventable, and decreases the
stability of the cluster.

DB2 cannot be installed on disks in a disk group for a logical host, because
the HA agent always needs to have access to the DB2 libraries. If the HA
agents do not have access to the DB2 libraries, they will fail. DB2 must be
installed normally on each machine in the cluster.

Database and Database Manager Configuration Parameters
The database manager configuration parameters can be changed after a
failover, and before DB2 is started, by using the pre_db2start script (see
“User Scripts” on page 309). This executable script is run (if it exists) under
the sqllib/ha directory of the instance owner’s home directory. As the name

Switch

Log0 : HA-NFS, 0, 1 Log1: 2, 3

Mach A Mach B

Data 0

Data 1

Data 2

Data 3

Data 0 Data 1

Figure 61. One Logical Host For Each Machine

Chapter 14. DB2 and High Availability on Sun Cluster 2.2 305

suggests, it is run just before db2start. The same arguments that are passed to
the control methods are passed to the pre_db2start script, unless the instance
is an EEE instance. For an EEE instance, the pre_db2start script is also passed
the node number for the db2start command.

Crash Recovery
Crash recovery in an HA environment is the same as it would in a regular
environment. Even if the HA instance is brought up on a different machine
from the one on which it crashed, the files and disk devices for the instance
will look the same, and the actions needed to recover the database will not be
different. For more information about crash recovery and other forms of
database recovery, see ″Recovering a Database″ in the Administration Guide:
Implementation.

Although a database can be restarted manually (or through one of the user
scripts), it is recommended that the autorestart database configuration
parameter be set to ON, especially for an EEE instance. This will minimize the
amount of time that the database is in an inconsistent state.

High Availability through Data Replication
Data availability can also be enhanced through replication. By replicating data
between two servers, a form of high availability is achieved. If one of the
servers goes down, the other server should be able to take over and continue
to provide the data service.

However, because the replication is done asynchronously, some changes may
not have been propagated to the other server when that server goes down.

The DB2 High Availability Agent

The DB2 high availability agent acts like a mediator between DB2 and SC2.x.
It provides a way for the Sun Cluster 2.2 software to control DB2 in a
clustered environment, without having intimate knowledge of DB2. There is
one agent for both EE and EEE instances. The agent supports both
administrative instances and database instances.

Registering the hadb2 Service
To work with SC2.2, the DB2 HA agent must be registered. Registering a data
service tells SC2.2 which control methods are available, and in which
directory they reside. A special script called hadb2_reg, which is shipped with
the HA agent, can register the hadb2 service for both EE and EEE instances.
The hadb2_reg script needs to be run only once for the entire cluster.

Although there is only one set of control methods for the DB2 HA agent, the
way they are registered depends on whether or not an EEE instance will be
used in a mutual takeover configuration. For an EE instance or EEE instance

306 Administration Guide: Planning

in a hot standby configuration, HA-NFS is not used; therefore, the ″-d nfs″
switch, which tells the SC2.2 software that the hadb2 service is dependent on
HA-NFS, is not needed.

The actual command that hadb2_reg uses to register the DB2 V7.1 control
methods for an EEE instance is:

hareg -r hadb2 -b /opt/IBMdb2/V7.1/ha -m
START=hadb2_start,START_NET=hadb2_startnet,STOP_NET=hadb2_stopnet,
FM_START=hadb2_fmstart,FM_STOP=hadb2_fmstop
-t START_NET=$TIMEOUT,STOP_NET=$TIMEOUT -d nfs

The -b switch tells SC2.x to look in the opt/IBMdb2/V7.1/ha directory for all of
the control methods. The -m switch defines the actual control methods for the
hadb2 service. The -t switch defines the timeout for the START_NET and
STOP_NET control methods. For a detailed description of each control
method, refer to the Sun Cluster documentation.

The hadb2_unreg script can be used to unregister the hadb2 service and, like
hadb2_reg, needs to be run only once for the cluster.

The hadb2tab File
The hadb2tab file is the main configuration file for the DB2 HA agent. Each
control method consults this file to find out which instances are highly
available. The hadb2tab file is located under the /var/db2/v71/ directory for
DB2 UDB Version 7.1. The file supports multiple instances, and each
non-commented line represents a different HA instance. Following is an
example of an hadb2tab file:

<scadmin@thrash(203)# cat hadb2tab
EEE DATA db2eee jolt ON /export/ha_home /log0/home #Added by DB2 HA software
EE ADMIN db2ee log1 ON - - #Added by DB2 HA software

The first field indicates to the DB2 HA agent whether the instance is an EE
instance, or an EEE instance. The second field indicates whether the instance
is a data instance, or an administrative instance. The third field contains the
user name of the HA instance. The fourth field is the logical host or the
HA-NFS host for the instance, depending on whether it is an EE or an EEE
instance. The fifth field indicates whether fault monitoring for the instance is
turned on or off. The last two fields are the local mount point, and the remote
HA-NFS directory, respectively. These fields should be set to - (hyphen) if
they are not used, and should only be used with an EEE mutual takeover
configuration. Comments are allowed in the hadb2tab file if the information
on the line before a ″#″ marker is either of zero length, or a valid definition of
an instance.

Chapter 14. DB2 and High Availability on Sun Cluster 2.2 307

Control Methods
Control methods for SC2.2 agents can be a set of scripts or programs. The
agent for DB2 on Solaris is a set of programs that includes the following
methods:

START_NET
hadb2_startnet, used to start DB2

STOP_NET
hadb2_stopnet, used to stop DB2

FM_START
hadb2_fmstart, used to start the fault monitor for DB2

FM_STOP
hadb2_fmstop, used to stop the fault monitor for DB2

For more information about these control methods, refer to the Sun Cluster
documentation.

For EE instances, the logical host that is associated with the instance is
defined right in the hadb2tab file. For EEE instances, however, the control
method must also look in:

˜<instance>/sqllib/ha/hadb2-eee.cfg

where ˜<instance> is the home directory of the instance owner. This file
contains one line for each database partition, and is used to associate database
partitions with logical hosts. An example of a valid hadb2-eee.cfg file is:

crackle % cat hadb2-eee.cfg
NODE:log0 0
NODE:log0 1
NODE:log1 2
NODE:log1 3

The instance or database partitions follow the corresponding logical host
around the cluster. The logical host can move to any machine in the cluster
that is supported by the underlying hardware and SC2.2. If the configuration
is properly set up, DB2 will support any topology that is supported by the
SC2.2 software.

After reading all of the information for an instance, the control method knows
which logical hosts are associated with the instance. After parsing the
command line arguments, the control method also knows which logical hosts
are hosted, and which are not hosted by the current machine.

The following table shows the actions that are taken, depending on which
control method is being run, and whether the logical hosts associated with the
database partition or instance are hosted on the current machine.

308 Administration Guide: Planning

Control Method Associated logical host(s)
are hosted

Associated logical host(s)
are not hosted

START_NET Start DB2 instance or
database partitions

No action

STOP_NET No action Stop DB2 instance or
database partitions

FM_START Start fault monitor for
instance

No action

FM_STOP No action Stop fault monitoring for
instance

The control methods that perform start actions are only concerned with the
logical hosts that are currently being hosted, and the control methods that
perform stop actions are only concerned with the logical hosts that are not
currently being hosted.

The control methods also need to mount the HA-NFS directory in a special
way if HA-NFS is being used. If the local mount point and directory for
HA-NFS are not defined as - (hyphen), the control method runs a statvfs(2)
on the local mount point. If the file system type for the local mount point is
not nfs, the agent attempts to mount the file system using information from
the hadb2tab line. If the mount point and the directory for HA-NFS are
defined as - (hyphen), the vfstab file of the corresponding logical host is
required to mount the file system containing the home directory of the
instance. The local mount point and the remote directory for HA-NFS should
only be defined as - (hyphen) for EE and EEE hot standby configurations.

User Scripts
These scripts are run from the control methods to add additional
functionality; they are passed the same command line arguments as the
control methods are passed, and are written by the system administrator or
the database administrator.

If a program must be run from within a script that is not run in the
background, consider backgrounding the program with nohup(1). The nohup
program protects the executed program from the SIGHUP (or hangup) signal.
Without nohup, a program that is run in the background from a script may die
as a result of a SIGHUP signal when the script is finished.

The control methods run the following scripts:
v /var/db2/v61/failover

v ˜<instance>/sqllib/ha/pre_db2start

v ˜<instance>/sqllib/ha/post_db2start

Chapter 14. DB2 and High Availability on Sun Cluster 2.2 309

v ˜<instance>%s/sqllib/ha/post_failover

v ˜<instance>/sqllib/ha/pre_db2stop

v ˜<instance>/sqllib/ha/fm_warning

where ˜instance is the home directory of the HA instance.

With the exception of the fm_warning script, each user script is run with the
same arguments as the control method that invoked it. When using EEE
instances, the database partition number is also passed (as the last argument)
to the user script.

The /var/db2/v71/failover script is invoked at the beginning of the
START_NET method, and runs in the background. Such a script can be used,
for example, to e-mail support staff in the event of a failover. Following is an
example of a failover script:

#!/bin/ksh

E-mail or page support staff to notify them that a failover has occurred.

echo "Failover occurred on machine ′hostname′:Running $0!"
|/bin/mail admin@sphere.torolab.ibm.com

To e-mail successfully from a script, sendmail(1m) must be properly
configured on the system.

As its name suggests, the pre_db2start script is run just before db2start is
invoked. This script can be used for such tasks as changing database manager
configuration parameters. It is given a maximum of 20 seconds to complete.
For EEE instances, this script is run before db2start is invoked on each
database partition. This script is applicable only to data instances, not to
administrative instances.

Similarly, the post_db2start script is run just after db2start is invoked. This
script can be used for such tasks as restarting databases. It is run in the
background to ensure that its execution time does not interfere with other
instances. This script is applicable only to data instances, not to administrative
instances.

The post_failover script under the instance owner’s home directory, is run
after processing the instance. This script can be used to notify client
applications that DB2 is now functional, to activate databases, or to send
administrators a status file. It is run in the background to prevent its
execution time from delaying actions against the other HA instances.
Following is an example of a post-failover script:

310 Administration Guide: Planning

#!/bin/ksh
#

Send the status file to the administrato-r.
mail admin@sphere.torolab.ibm.com </tmp/HA.info.db2eee

Both the START_NET and the STOP_NET method of the DB2 HA agent create
a status file after processing each instance. The name of the status file is:

/tmp/HA.info.<instance>

where instance is the user name of the instance owner. The status file contains
the start and stop report for the instance, as well as the time it took to run the
control method. Following is an example of a status file:

scadmin@crackle(173)# cat /tmp/HA.info.db2eee
----- Elapsed Time: 00:00:18 -----
----- Elapsed Time: 00:00:00 (HA-NFS) -----

NODE ACTION RESULT TRIES RC
---- ------ ------ ----- --

4 stop success 3 1064
5 stop success 1 1064
6 stop success 2 1064
7 stop success 2 1064
8 stop success 1 1064

The pre_db2stop script is run just before db2stop is invoked. This script can
be used to notify client applications that DB2 is about to stop. It is given a
maximum of 20 seconds to complete. This script is applicable only to data
instances, not to administrative instances.

The fault monitor will also run a user script when DB2 is restarted because of
an unexpected shutdown. This script is called:

˜<instance>/sqllib/ha/fm_warning

The fm_warning script can be used to notify the system administrator that DB2
was restarted by the fault monitor. The system administrator should try to
find out why DB2 shut down unexpectedly, and take appropriate actions to
prevent this from happening again. The fm_warning script is run in the
background.

Other Considerations
If an HA data service is turned off, only the stop methods are run during a
failover or cluster reconfiguration; the other methods are run only if the HA
data service is properly registered and turned on.

Ensure that each machine in the cluster has enough resources to run all of the
data services for which it may be responsible. Resources such as CPU load,

Chapter 14. DB2 and High Availability on Sun Cluster 2.2 311

memory, swap and kernel parameters must be considered before the cluster
goes into production. For example, if a machine in the cluster may need to
run two DB2 instances, the kernel parameter requirements for that machine
will be the sum of what is needed for each instance.

Fault Monitor
If fault monitoring is turned on, the fault monitor will be started during a
cluster reconfiguration or failover. If DB2 is not started by the START_NET
script, the fault monitor itself will start DB2. The fault monitor can detect if
DB2 did not start, or if it shut down for unknown reasons. Because of this, it
is important not to shut down DB2 manually when the fault monitor is
turned on. The fault monitor will see this as an unexpected shutdown, and
restart DB2. If this happens too many times, it will fail over the appropriate
logical host.

When fault monitoring is enabled for an instance, the correct way to start or
stop the instance manually is to first turn off fault monitoring or the hadb2
service. Both of these actions can be initiated through the hadb2_setup
command using the -f and -s switches (see “The hadb2_setup Command” on
page 317).

Note: Do not use more than one instance for the same logical host. If more
than one instance is associated with a logical host, a healthy instance
may be failed over along with an unhealthy one.

EEE Considerations
When deciding which database partitions to associate with a logical host, it is
important to consider how they will fail over. Consider a two-machine cluster
that is to be used with four database partitions between the two machines, as
shown in Figure 62 on page 313.

312 Administration Guide: Planning

You could associate one logical host with each database partition, and one for
HA-NFS. In this case, there could be a problem if all of the logical hosts are
being hosted by one system. If that system fails, all of the logical hosts must
be moved off the system at the same time. Unfortunately, the Sun Cluster
software does not move the logical hosts in any predictable order, and it is
possible for a logical host that has a database partition associated with it to
move before the logical host with HA-NFS. It is usually a good idea to group
database partitions together, according to what would be hosted on a single
system. This means that two database partitions that are normally hosted on
one machine should be associated with a single logical host.

The db2nodes.cfg file used by an EEE instance is updated to indicate the
machine on which the database partitions are residing. For example, if all of
the database partitions are on a machine called ″crackle″, the db2nodes.cfg file
resembles the following:

scadmin@crackle(193)# cat db2nodes.cfg
0 crackle 0 204.152.65.33
1 crackle 1 204.152.65.33
2 crackle 2 204.152.65.33
3 crackle 3 204.152.65.33

Switch

Log0 : HA-NFS, 0 Log1: 1, 2, 3

Mach A Mach B

Data 0

Data 1

Data 2

Data 3

Data 0
Data 1

Data 2 Data 3

Figure 62. Two-machine Cluster with Four Database Partitions

Chapter 14. DB2 and High Availability on Sun Cluster 2.2 313

4 crackle 4 204.152.65.33
5 crackle 5 204.152.65.33
6 crackle 6 204.152.65.33
7 crackle 7 204.152.65.33
8 crackle 8 204.152.65.33

If some of these database partitions are moved to a machine called ″thrash″,
the db2nodes.cfg file is updated as follows:

scadmin@crackle(193)# cat db2nodes.cfg
0 crackle 0 204.152.65.33
1 crackle 1 204.152.65.33
2 crackle 2 204.152.65.33
3 crackle 3 204.152.65.33
4 thrash 0 204.152.65.34
5 thrash 1 204.152.65.34
6 thrash 2 204.152.65.34
7 thrash 3 204.152.65.34
8 thrash 4 204.152.65.34

Notice that both the host name and the switch name are changed to reflect the
machine name ″thrash″, and that the port numbers are also different.

The HA.config File
If it exists, the /etc/HA.config file can contain a number of configuration
options, including the following:

scadmin@thrash(204)# cat /etc/HA.config
SYSLOG_FACILITY=LOG_LOCAL3
SYSLOG_LPRIORITY=LOG_INFO
SYSLOG_EPRIORITY=LOG_ERR
USE_INTERCONNECT=auto
SWITCH_NAME=204.152.65.18
DEBUG_LEVEL=2
FAILS_PER_HOUR=2
FAILS_PER_DAY=4
FAILS_PER_WEEK=10
FM_FAIL_SEV=soft
DB2START_TIMEOUT=60
DB2STOP_TIMEOUT=500
SCRIPT_USER=bin

Note: If the HA.config file does not exist, default values are used.

The SYSLOG_FACILITY variable sets the SYSLOG facility for logging both
messages and errors. The SYSLOG_LPRIORITY and SYSLOG_EPRIORITY
variables set the SYSLOG priority for logging informational messages and
error messages, respectively.

314 Administration Guide: Planning

Some changes may be needed to enable the SYSLOG daemon to log
information from the DB2 HA agent. For example, one of the following two
lines added to the /etc/syslog.conf file will tell the SYSLOG daemon to
write information to a log file.

*.notice /var/adm/SC.x
local3.info /var/adm/SC.LOG_LOCAL3

A Sun Cluster usually has a high speed interconnect. To use the high speed
interconnect with DB2, set USE_INTERCONNECT to auto or to override. The
auto setting (the default) uses the Sun internal logical network interface. This
interface will be transferred to another physical interface if the initial interface
fails. If USE_INTERCONNECT is set to override, the switch name is taken
from the SWITCH_NAME variable. Another option is to set
USE_INTERCONNECT to no, which specifies that high speed interconnect is
not to be used.

DEBUG_LEVEL specifies how much information is to be logged during a
failover. It is a number between 0 and 10, where 10 is the highest debug level.
The information is logged at the specified SYSLOG priority and facility. If any
problems are encountered, set the debug level to the maximum level,
configure SYSLOG to log the output from the HA agents, and send the
SYSLOG output to IBM service.

Three of the variables help the DB2 fault monitor decide when to fail over a
logical host: FAILS_PER_HOUR, FAILS_PER_DAY, and FAILS_PER_WEEK.
Every HA environment is different; you must decide how many DB2 failures
are acceptable. After each ″acceptable″ failure, DB2 is restarted on the same
machine. When one of these three failure thresholds is exceeded, the logical
host associated with the instance or database partition is failed over.

The FM_FAIL_SEV variable specifies whether the failover is ″soft″ or ″hard″.
For more information, refer to the Sun Cluster documentation on hactl(1m).

The DB2START_TIMEOUT and DB2STOP_TIMEOUT variables specify the
maximum number of seconds that db2start and db2stop are allowed to run.
After the specified interval has passed, the HA agent considers the operation
to have failed, and try to restart the instance.

There are some user scripts that are not associated with any particular
instance. Normally, these scripts are run as root; this can be overridden by the
SCRIPT_USER variable, which can be set to specify the user ID that can run
these scripts.

How Control Methods Run DB2 Commands
The DB2 HA agent uses the su command to run commands as the instance
owner. The actual command would look something like:

Chapter 14. DB2 and High Availability on Sun Cluster 2.2 315

su - <instance> -c "db2stop"

where instance is the user name of the instance.

It is important to ensure that the .profile file of the instance owner is
su-″friendly″. If it is not, the su command may not work properly. Invoke the
su command manually, or from a script, to verify that the command can run
successfully.

Setup

Before you read this section, be sure that you are familiar with the SC2.2
software. This section assumes that you know how to set up SC2.2 and
HA-NFS, and that you know how to use your volume manager. Along with
the other required patches for DB2, the following patches are required for the
HA agent:

Solaris 2.6:
105210-17 (or later)
105786-05 (or later)

Note: There are no required patches for Solaris 7 (Solaris 2.7).

Common Installation Steps
1. Install SC2.2 on all machines in the cluster. During installation, SC2.2 will

ask which agents to install. Since DB2 is not shipped with SC2.2, it is not
in the list of agents. The agent for DB2 will be installed with DB2 and
registered through the hadb2_reg command.

2. Configure the logical hosts with disk groups and logical IP addresses.

Setup on DB2 UDB Enterprise Edition
1. Create the home directory for the instance under the logical host file

system of a logical host.
2. Install DB2 on all machines in the cluster.
3. Create the instance on the machine in the cluster that currently has the

home directory for the instance.
4. Add the user for the instance to the other machines in the cluster, ensuring

that the numeric user ID is the same.
5. Register the hadb2 service using the hadb2_reg command.
6. Run the hadb2_setup command to set up HA for the instance.

Setup on DB2 UDB Enterprise - Extended Edition
1. Create the home directory for the HA instance owner:

a. For hot standby, create the home directory for the instance under the
logical host file system of a logical host.

316 Administration Guide: Planning

b. For mutual takeover, configure HA-NFS, and export the home
directory from one of the logical hosts. On one of the machines, mount
the HA-NFS directory under the chosen mount point.

2. Install DB2 on all machines in the cluster.
3. Create the instance on the machine that has the HA-NFS file system

mounted.
4. Add the user for the instance to the other machines in the cluster, ensuring

that the numeric user ID is the same.
5. Register the hadb2 service using the hadb2_reg command.
6. Run the hadb2_setup command to set up HA for the instance.

Note: Using NIS to define the information for the HA instance is not
recommended, because NIS can introduce a single point of failure.

The hadb2_setup Command
The hadb2_setup command is the central point of the programs that come
with the DB2 HA agent. It can be used to set up an instance, to modify it, or
to delete it. It can also be used to turn the hadb2_setup service on and off.
With this command, there is no need to manually edit the hadb2tab file.

Note: The hadb2_setup command performs actions only on the machine on
which it runs. Changes made to one machine should also be made to
the other machines in the cluster.

The following arguments are supported:
To add an EE instance:

hadb2_setup -a -i <instance> -f [on|off] -h <logical_host> -p [DATA|ADMIN] -t EE

For example:
hadb2_setup -a -i db2ee -f off -h log1 -p DATA -t EE

To add an EEE instance:

hadb2_setup -a -i <instance> -f [on|off] -h <nfs_host> -l <mount_point> \
-r <ha-nfs_dir> -p [DATA|ADMIN] -t EEE -n "<node_info>"

For example:
hadb2_setup -a -i db2eee -f off -h ha-sun1 -l /export/ha_home \

-r /log0/home -p DATA -t EEE -n "log0[0,10,20],log1[30,40,50]"

To delete an instance:

hadb2_setup -d -i <instance>

Chapter 14. DB2 and High Availability on Sun Cluster 2.2 317

To modify an instance:

hadb2_setup -m -i <instance> [-f [on|off] | -l <mount_point> | \
-h <host> | -p [DATA|ADMIN] | -r <ha-nfs_dir> | -t [EE|EEE]]

Other options:

-s <on|off> Bring hadb2 up or down (for all HA instances)
-y Assume yes for safety checks

To turn the hadb2 service on or off, specify the -s switch. This is equivalent to
using the hareg command with the -n and -y switches, and specifying the
hadb2 service. For more information about the hareg(1m) command, refer to
the Sun Cluster documentation.

The fault monitor for the instance can be turned off using the -f switch. This
has the effect of stopping the fault monitor for the instance on the local
machine, as well as modifying the hadb2tab file to reflect the fact that fault
monitoring is turned off.

For EE instances, turning off fault monitoring on all machines is
recommended in case the instance fails over. For EEE instances, fault
monitoring must be turned off on all machines that are hosting database
partitions for the instance before it is shut down manually.

To delete an instance, use the -d switch. This only removes the instance from
the hadb2tab file, and does not remove or modify any other files or
directories. Since the hadb2tab file is the main configuration file for the
HA-DB2 agent, removing an instance from this file makes the control methods
unaware of its existence.

To modify an instance, use the -m switch. This only changes information in the
hadb2tab file, and does not remove or modify any other files or directories.
The -m switch can be used with any switch that pertains to information in the
hadb2tab file. The db2nodes.cfg file and the hadb2-eee.cfg file must be
changed manually after the initial setup, because the hadb2_setup command
does not support modifying these files.

Adding an instance is somewhat more involved.

For EE instances, the following arguments are required:
hadb2_setup -a -i <instance> -f <fm> -h <logical_host> -t <EEE_or_EE>

-p <purpose>

318 Administration Guide: Planning

where instance is the name of the instance to be added, fm specifies whether
fault monitoring is initially turned on or off, logical_host is the associated
logical host, EEE_or_EE is set to EE, and purpose can be either DATA or ADMIN.

For EEE instances, the following arguments are required:
hadb2_setup -a -i <instance> -f <fm> -h <nfs_host> -t <EEE_or_EE> -p

<purpose> -l <mount_point> -r <HA-NFS_directory> -n <node_info>

where instance is the name of the instance to be added, fm specifies whether
fault monitoring is initially turned on or off, nfs_host is the host name for the
logical host that is exporting the HA-NFS file system, EEE_or_EE is set to EEE,
purpose can be either DATA or ADMIN, mount_point is the local mount point for
the HA-NFS directory, HA-NFS_directory is the HA-NFS directory, and
node_info is the information that associates database partitions with a logical
host. For example:

hadb2_setup -a -i db2eee -f on -h jolt -l /export/ha_home -p DATA -t EEE -r
/log1/home -n "log0[0,1],log1[2,3]"

When adding an EEE instance, the node information must be enclosed by
quotation marks. In this example, the instance ″db2eee″ will be associated
with two logical hosts, ″log0″ and ″log1″. Database partitions ″0″ and ″1″ of
the ″db2eee″ instance will be associated with the logical host ″log0″, and
database partitions ″2″ and ″3″ will be associated with logical host ″log1″.

Use the hadb2_setup command to add an instance to all machines in the
cluster. The instance can then be started by forcing a cluster reconfiguration,
or by turning hadb2 service off and then on. This can be done, either through
the hareg command, or with the -s switch of the hadb2_setup command. If
the instance does not start, see “Troubleshooting” on page 323.

When the hadb2_setup command adds an EEE instance, the following actions
are performed transparently:
v Checking the specified information. This includes ensuring that the user

exists on the system, and that HA-NFS is running.
v Creating a db2nodes.cfg file.
v Creating an hadb2-eee.cfg file.
v Creating a .rhosts file for the EEE instance.
v Creating symbolic links from the default database path to the associated

logical hosts data directories.
v Adding a line to the hadb2tab file.

To prevent configuration errors, and to ensure that the HA instance will be
able to start after the hadb2_setup command runs, the command performs a
significant amount of testing before a new instance is added.

Chapter 14. DB2 and High Availability on Sun Cluster 2.2 319

The db2nodes.cfg file is created and seeded with information corresponding
to the current cluster status. For example, if logical host ″log0″ is being hosted
by the machine ″crackle″, the entries for the database partitions associated
with ″log0″ will contain the machine name ″crackle″ and the high speed
interconnect for ″crackle″:

scadmin@crackle(193)# cat db2nodes.cfg
0 crackle 0 204.152.65.33
1 crackle 1 204.152.65.33
2 thrash 0 204.152.65.34
3 thrash 1 204.152.65.34

The hadb2-eee.cfg file is created only on the basis of the node information
that is specified on the command. There is one line per database partition:

sphere % cat hadb2-eee.cfg
NODE:log0 0
NODE:log0 1
NODE:log1 2
NODE:log1 3

The .rhost file is required for DB2 UDB EEE, and should contain all host
names (or IP addresses) for each machine in the cluster. For example:

crackle db2eee
204.152.65.1 db2eee
204.152.65.17 db2eee
thrash db2eee
204.152.65.2 db2eee
204.152.65.18 db2eee
crackle db2eee
jolt db2eee
bump db2eee
thrash.torolab.ibm.com db2eee
crackle.torolab.ibm.com db2eee

In accordance with a file system layout for SMS tables spaces, the
hadb2_setup command sets up a number of directories and symbolic links.
These include:
v A directory called ″data″ under the logical host file system for each logical

host.
v A node directory (under this ″data″ directory) for each database partition

associated with the logical host.
v Symbolic links in the default database path, located under ˜<instance>,

where ˜instance is the home directory of the instance. There is one symbolic
link for each database partition that points to the corresponding node
directory. For more information, see “Disk Layout for EE and EEE
Instances” on page 302.

320 Administration Guide: Planning

Failover Time

Failover time is measured from when data is first unavailable to when it is
available again. A number of events that occur during a failover can
contribute significantly to the failover time:
v Disk deporting and importing.

Deporting and importing disks usually does not take a very long time
compared to other events, although it does contribute to the overall down
time. The more disks that need to be moved from one machine to another
during a failover, the longer the process takes. If there are defective disks,
the process can take even longer.

v Fsck of the file systems that are mounted for a logical host.
Before the file systems of the logical host can be mounted, they must pass
an fsck to ensure the health of the file system. The larger the file system,
the longer this process takes. By using a journalled file system, this time
can be drastically reduced. Since journalled file systems are normally used
in an HA environment, the fsck time is usually not an issue.

v User scripts called from the HA agent.
The HA agent will call user scripts if they exist and are executable. Some of
these scripts are run synchronously, and can add to the time it takes to
bring up the HA instances. Ensure that they run as quickly as possible;
consider running any external programs called by these scripts in the
background.

v HA-NFS.
For a single EEE instance in a mutual takeover configuration, HA-NFS must
be used for the home directory of the instance owner. HA-NFS adds to
failover time because of the grace period for lockd (defined in the HA agent
for HA-NFS), which is 90 seconds when running HA-NFS. This affects
failover times, because any process that locks a file on the HA-NFS file
system after a failover must wait until the grace period is over. The HA
agent for DB2 is the first process to lock a file under the instance owner’s
home directory after a failover, and it records the time it takes to obtain the
first lock. This time is displayed in the status report after a failover.

v Starting DB2.
Starting DB2 contributes only a small amount to the failover time. For an
EE instance, it contributes about 5-15 seconds on average. For an EEE
instance, it contributes about 10 seconds, plus about 5 seconds per database
partition that is being failed over. If three database partitions are being
failed over, for example, the failover time contributed by starting these
three database partitions will be approximately 25 seconds. This does not
include crash recovery for the databases of the instance.

v Database crash recovery.

Chapter 14. DB2 and High Availability on Sun Cluster 2.2 321

Crash recovery often contributes to the majority of down time associated
with a failover. How long it takes to recover a database depends on a
number of factors, including:
– Client workload. Only changes to the database are logged in the

transaction logs. If the client workload is mostly read-only operations,
relatively few transactions must be applied to the database during crash
recovery.

– Disk and machine speed. The speed of the disks and the machine that is
hosting the HA instance also contributes to the time it takes to recover
the database. The faster the system, the shorter the crash recovery time.

– Value of the softmax database configuration parameter. The value of
softmax is the percentage of the log file size at which a soft checkpoint is
to be taken, and a log control file is to be written. The log control file is
used during crash recovery to determine which log records are truly
necessary to restore the database to a consistent state. Reducing this
value will cause the database manager to trigger the page cleaners more
often, and take more frequent soft checkpoints; although performance is
reduced, database recovery is faster.

– Whether the instance is EE or EEE. If the instance is an EEE instance, the
database restart operations will be done in parallel. Each database
partition is responsible for restarting its own portion of the databases. If
there are 50 GB of data for a database, an instance with four database
partitions will be able to recover the database roughly four times faster
than an EE instance can.

322 Administration Guide: Planning

Troubleshooting

The following table identifies problems that you might encounter, their
probable causes, and actions that you can take to solve them.

Table 29. Troubleshooting High Availability on Sun Cluster 2.2

Symptom Possible cause Action

Cannot
mount
logical host
file system

The logical host file system is
normally mounted and unmounted
during the failover of a logical
host. During failover, there should
be no active processes or open files
under the logical host file system.
In rare cases, processes that cannot
be killed have their current
working directory under the logical
host file system. To find out if a
process is under the mount point,
use fuser(1m), or a GNU utility
called lsof. Error messages are
produced when the logical host file
system cannot be mounted.a

Reboot the system, or move the
logical host file system to another
name and recreate it. Doing this
allows the frozen process to stay
under the directory (since it can’t
be killed), and allows the mount to
take place.b

The
db2start or
db2stop
time-out
does not
work

A SIGALRM signal may not break
out of a blocking system call.
Instead, the system call will restart
as if the SA_RESTART flag were
set with sigaction(). This causes
time-outs for the DB2 HA agents to
be ignored, and the agent method
will hang instead of recovering
from a hung db2start or db2stop
command.

Apply the required patch,
105210-17 (or later), for Solaris 2.6.

Logging
into an
instance
hangs

Although there are numerous
reasons why this can happen, the
most common reasons include NFS
problems and the /usr/sbin/quota
program.

Check the NFS mounts to ensure
that they are healthy, and look for
quota processes owned by the
instance owner. At the discretion of
the system administrator, changing
the quota program to a symbolic
link to /bin/true may solve the
problem. This is not a
recommended solution, but it may
work.

I just set up
an EEE
instance,
but it does
not start

The hadb2_setup command does
not add ports to the /etc/services
file; it is expected that the
administrator will add them
manually. An error message is
returned.c

Ensure that you have appropriate
ports named in the /etc/services
file.

Chapter 14. DB2 and High Availability on Sun Cluster 2.2 323

Table 29. Troubleshooting High Availability on Sun Cluster 2.2 (continued)

Symptom Possible cause Action

START_NET
method
cannot start
DB2

Turn off fault monitoring to ensure
that the instance does not get failed
over. Log in as the instance owner,
and try to start DB2 manually.

1. Ensure that the hadb2tab
configuration file has the
correct instance type specified.
For example, having a
db2nodes.cfg file for an EE
administrative instance will
cause problems, and the HA
agent methods will not be able
to recover from this.

2. Ensure that the .rhosts file
exists, and has valid entries in
it.

3. Ensure that the HA-NFS file
system is shared with root
permissions for all machines in
the cluster.

4. Check the kernel parameters,
and ensure that they are
correct.

5. Ensure that the /etc/services
file contains entries for the
instance.

The
instance
only works
on one
machine

v The numeric uid for the instance
may not be the same on each
machine in the cluster.

v The kernel parameters may not
be valid on each machine in the
cluster.

v The hadb2tab file may not be the
same on each machine in the
cluster.

v Other configuration files, such as
the logical host vfstab file, may
not be the same on each machine
in the cluster.

If none of these causes appears to
apply, try logging in as the
instance owner, and start DB2
manually. For EE instances, this
should work if the logical host that
is hosting the instance is being
hosted by the current machine. For
EEE instances, this should work
from any machine in the cluster
that can host the database
partitions.

324 Administration Guide: Planning

Table 29. Troubleshooting High Availability on Sun Cluster 2.2 (continued)

Symptom Possible cause Action

su -
<instance>
-c
″db2start″
does not
work

v The .profile for the instance
may not be su-″friendly″.

v There is a known problem with
the Bourne shell (/bin/sh), in
which the su command works
manually, but not through the
HA agent.

v As root, try running this
command manually, and ensure
that it works before trying again
through the HA agent.

v Switch to the Korn shell
(/bin/ksh), if necessary.

My EEE
instance
cannot
start, but
the home
directory is
mounted

The HA-NFS directory may not
have been exported with ″root″
permissions to the machines in the
cluster. Both DB2 and the HA
agents require this to run properly.

To test this, try to create a file (as
root) under the instance owner’s
home directory.

Trying to
access the
EEE
instance
directory
returns a
″Stale NFS
file handle″
error

There may still be processes under
the instance owner’s home
directory.

Unmount the instance owner’s
home directory, and allow the HA
agent to remount it. The HA agent
will remount it if the hadb2 service
is turned off and on again (see a
description of the -s switch on the
hadb2_setup command in “The
hadb2_setup Command” on
page 317).

Chapter 14. DB2 and High Availability on Sun Cluster 2.2 325

Table 29. Troubleshooting High Availability on Sun Cluster 2.2 (continued)

Symptom Possible cause Action

Control
methods do
not run
successfully
through
SC2.2

The hadb2 service may not be
registered with the Sun Cluster
software, or it may not be turned
on.

If the control methods appear to
run normally from the command
line, check the SYSLOG files for
error messages that may help to
explain the problem. Ensure that
the hadb2 service is registered with
the Sun Cluster software, and that
it is turned on.

Running the methods manually is
useful for debugging a problem.d

The methods should be run as root
and given the appropriate
command line arguments. If the list
of logical hosts is nil, the argument
should be given as ″″. The double
quotation marks without a blank
space separator denotes a blank
argument. For example:

hadb2_startnet log0,log1 "" 600

The first argument, log0,log1, tells
the hadb2_startnet method that
logical hosts log0 and log1 are
being hosted by the current
machine. The second argument is
nil, which tells the hadb2_startnet
method that there are no other
logical hosts being hosted on other
machines in the cluster (all of them
are on the current machine). The
third argument tells the method
that SC2.2 will time out after 600
seconds.

User scripts
do not run

The user scripts can only be run if
they exist in the appropriate
directories and are executable.

Check file ownership and
attributes. If a script still fails to
run, contact IBM service. Forward
a directory listing of the script that
does not run, and SYSLOG output
for a failover or a cluster
reconfiguration that should have
run the script.

326 Administration Guide: Planning

Table 29. Troubleshooting High Availability on Sun Cluster 2.2 (continued)

Symptom Possible cause Action

Information
is not being
logged to
the file
specified in
/etc/syslog.conf

Use touch(1) to create the file that
is specified in the
/etc/syslog.conf file, and then
restart the SYSLOG daemon.

a Error messages that are produced when the logical host file system cannot be
mounted may look something like the following:

Aug 17 11:14:01 rash ID[SUNWcluster.loghost.1170]: importing data1
Aug 17 11:14:06 rash ID[SUNWcluster.scnfs.3040]: mount -F ufs -o ""

/dev/vx/dsk/data1/data1-stat /log1 failed.
Aug 17 11:14:07 rash ID[SUNWcluster.ccd.ccdd.5304]: error freeze cmd =

/opt/SUNWcluster/bin/loghost_sync
CCDSYNC_POST_ADDU LOGHOST_CM:log1:rash /etc/opt/SUNWcluster/conf/ccd.database

2 "0 1" 1 error code = 1

b For example:

scadmin@rash(218)# ps -fe | egrep db2
db2ee 1984 1 0 0:01 <defunct>

Solution:

scadmin@rash(229)# cd /
scadmin@rash(230)# mv /log1 /log1.bkp
scadmin@rash(231)# mkdir /log1

c The error message may look something like the following:

SQL6030N START or STOP DATABASE MANAGER failed. Reason code "13".

d For example, if the hadb2_startnet method cannot find libdb2.so.1, but it runs
normally through the Sun Cluster software, no errors will be reported. Running the
method manually results in the following:

scadmin@crackle(213)# hadb2_startnet '''log0,log1' 600
ld.so.1: hadb2_startnet: fatal: libdb2.so.1: open failed:

No such file or directory
Killed

Chapter 14. DB2 and High Availability on Sun Cluster 2.2 327

328 Administration Guide: Planning

Part 5. Appendixes

© Copyright IBM Corp. 1993, 2000 329

330 Administration Guide: Planning

Appendix A. Using the DB2 Library

The DB2 Universal Database library consists of online help, books (PDF and
HTML), and sample programs in HTML format. This section describes the
information that is provided, and how you can access it.

To access product information online, you can use the Information Center. For
more information, see “Accessing Information with the Information Center”
on page 345. You can view task information, DB2 books, troubleshooting
information, sample programs, and DB2 information on the Web.

DB2 PDF Files and Printed Books

DB2 Information
The following table divides the DB2 books into four categories:

DB2 Guide and Reference Information
These books contain the common DB2 information for all platforms.

DB2 Installation and Configuration Information
These books are for DB2 on a specific platform. For example, there are
separate Quick Beginnings books for DB2 on OS/2, Windows, and
UNIX-based platforms.

Cross-platform sample programs in HTML
These samples are the HTML version of the sample programs that are
installed with the Application Development Client. The samples are
for informational purposes and do not replace the actual programs.

Release notes
These files contain late-breaking information that could not be
included in the DB2 books.

The installation manuals, release notes, and tutorials are viewable in HTML
directly from the product CD-ROM. Most books are available in HTML on the
product CD-ROM for viewing and in Adobe Acrobat (PDF) format on the DB2
publications CD-ROM for viewing and printing. You can also order a printed
copy from IBM; see “Ordering the Printed Books” on page 341. The following
table lists books that can be ordered.

On OS/2 and Windows platforms, you can install the HTML files under the
sqllib\doc\html directory. DB2 information is translated into different

© Copyright IBM Corp. 1993, 2000 331

languages; however, all the information is not translated into every language.
Whenever information is not available in a specific language, the English
information is provided

On UNIX platforms, you can install multiple language versions of the HTML
files under the doc/%L/html directories, where %L represents the locale. For
more information, refer to the appropriate Quick Beginnings book.

You can obtain DB2 books and access information in a variety of ways:
v “Viewing Information Online” on page 344
v “Searching Information Online” on page 348
v “Ordering the Printed Books” on page 341
v “Printing the PDF Books” on page 340

Table 30. DB2 Information

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Guide and Reference Information

Administration Guide Administration Guide: Planning provides
an overview of database concepts,
information about design issues (such as
logical and physical database design),
and a discussion of high availability.

Administration Guide: Implementation
provides information on implementation
issues such as implementing your
design, accessing databases, auditing,
backup and recovery.

Administration Guide: Performance
provides information on database
environment and application
performance evaluation and tuning.

You can order the three volumes of the
Administration Guide in the English
language in North America using the
form number SBOF-8934.

SC09-2946
db2d1x70

SC09-2944
db2d2x70

SC09-2945
db2d3x70

db2d0

Administrative API
Reference

Describes the DB2 application
programming interfaces (APIs) and data
structures that you can use to manage
your databases. This book also explains
how to call APIs from your applications.

SC09-2947

db2b0x70

db2b0

332 Administration Guide: Planning

Table 30. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Application Building
Guide

Provides environment setup information
and step-by-step instructions about how
to compile, link, and run DB2
applications on Windows, OS/2, and
UNIX-based platforms.

SC09-2948

db2axx70

db2ax

APPC, CPI-C, and SNA
Sense Codes

Provides general information about
APPC, CPI-C, and SNA sense codes that
you may encounter when using DB2
Universal Database products.

Available in HTML format only.

No form number

db2apx70

db2ap

Application Development
Guide

Explains how to develop applications
that access DB2 databases using
embedded SQL or Java (JDBC and
SQLJ). Discussion topics include writing
stored procedures, writing user-defined
functions, creating user-defined types,
using triggers, and developing
applications in partitioned environments
or with federated systems.

SC09-2949

db2a0x70

db2a0

CLI Guide and Reference Explains how to develop applications
that access DB2 databases using the DB2
Call Level Interface, a callable SQL
interface that is compatible with the
Microsoft ODBC specification.

SC09-2950

db2l0x70

db2l0

Command Reference Explains how to use the Command Line
Processor and describes the DB2
commands that you can use to manage
your database.

SC09-2951

db2n0x70

db2n0

Connectivity Supplement Provides setup and reference information
on how to use DB2 for AS/400, DB2 for
OS/390, DB2 for MVS, or DB2 for VM as
DRDA application requesters with DB2
Universal Database servers. This book
also details how to use DRDA
application servers with DB2 Connect
application requesters.

Available in HTML and PDF only.

No form number

db2h1x70

db2h1

Appendix A. Using the DB2 Library 333

Table 30. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Data Movement Utilities
Guide and Reference

Explains how to use DB2 utilities, such
as import, export, load, AutoLoader, and
DPROP, that facilitate the movement of
data.

SC09-2955

db2dmx70

db2dm

Data Warehouse Center
Administration Guide

Provides information on how to build
and maintain a data warehouse using
the Data Warehouse Center.

SC26-9993

db2ddx70

db2dd

Data Warehouse Center
Application Integration
Guide

Provides information to help
programmers integrate applications with
the Data Warehouse Center and with the
Information Catalog Manager.

SC26-9994

db2adx70

db2ad

DB2 Connect User’s Guide Provides concepts, programming, and
general usage information for the DB2
Connect products.

SC09-2954

db2c0x70

db2c0

DB2 Query Patroller
Administration Guide

Provides an operational overview of the
DB2 Query Patroller system, specific
operational and administrative
information, and task information for the
administrative graphical user interface
utilities.

SC09-2958

db2dwx70

db2dw

DB2 Query Patroller
User’s Guide

Describes how to use the tools and
functions of the DB2 Query Patroller.

SC09-2960

db2wwx70

db2ww

Glossary Provides definitions for terms used in
DB2 and its components.

Available in HTML format and in the
SQL Reference.

No form number

db2t0x70

db2t0

Image, Audio, and Video
Extenders Administration
and Programming

Provides general information about DB2
extenders, and information on the
administration and configuration of the
image, audio, and video (IAV) extenders
and on programming using the IAV
extenders. It includes reference
information, diagnostic information
(with messages), and samples.

SC26-9929

dmbu7x70

dmbu7

Information Catalog
Manager Administration
Guide

Provides guidance on managing
information catalogs.

SC26-9995

db2dix70

db2di

334 Administration Guide: Planning

Table 30. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Information Catalog
Manager Programming
Guide and Reference

Provides definitions for the architected
interfaces for the Information Catalog
Manager.

SC26-9997

db2bix70

db2bi

Information Catalog
Manager User’s Guide

Provides information on using the
Information Catalog Manager user
interface.

SC26-9996

db2aix70

db2ai

Installation and
Configuration Supplement

Guides you through the planning,
installation, and setup of
platform-specific DB2 clients. This
supplement also contains information on
binding, setting up client and server
communications, DB2 GUI tools, DRDA
AS, distributed installation, the
configuration of distributed requests,
and accessing heterogeneous data
sources.

GC09-2957

db2iyx70

db2iy

Message Reference Lists messages and codes issued by DB2,
the Information Catalog Manager, and
the Data Warehouse Center, and
describes the actions you should take.

You can order both volumes of the
Message Reference in the English
language in North America with the
form number SBOF-8932.

Volume 1
GC09-2978

db2m1x70
Volume 2
GC09-2979

db2m2x70

db2m0

OLAP Integration Server
Administration Guide

Explains how to use the Administration
Manager component of the OLAP
Integration Server.

SC27-0787

db2dpx70

n/a

OLAP Integration Server
Metaoutline User’s Guide

Explains how to create and populate
OLAP metaoutlines using the standard
OLAP Metaoutline interface (not by
using the Metaoutline Assistant).

SC27-0784

db2upx70

n/a

OLAP Integration Server
Model User’s Guide

Explains how to create OLAP models
using the standard OLAP Model
Interface (not by using the Model
Assistant).

SC27-0783

db2lpx70

n/a

OLAP Setup and User’s
Guide

Provides configuration and setup
information for the OLAP Starter Kit.

SC27-0702

db2ipx70

db2ip

OLAP Spreadsheet Add-in
User’s Guide for Excel

Describes how to use the Excel
spreadsheet program to analyze OLAP
data.

SC27-0786

db2epx70

db2ep

Appendix A. Using the DB2 Library 335

Table 30. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

OLAP Spreadsheet Add-in
User’s Guide for Lotus
1-2-3

Describes how to use the Lotus 1-2-3
spreadsheet program to analyze OLAP
data.

SC27-0785

db2tpx70

db2tp

Replication Guide and
Reference

Provides planning, configuration,
administration, and usage information
for the IBM Replication tools supplied
with DB2.

SC26-9920

db2e0x70

db2e0

Spatial Extender User’s
Guide and Reference

Provides information about installing,
configuring, administering,
programming, and troubleshooting the
Spatial Extender. Also provides
significant descriptions of spatial data
concepts and provides reference
information (messages and SQL) specific
to the Spatial Extender.

SC27-0701

db2sbx70

db2sb

SQL Getting Started Introduces SQL concepts and provides
examples for many constructs and tasks.

SC09-2973

db2y0x70

db2y0

SQL Reference, Volume 1
and Volume 2

Describes SQL syntax, semantics, and the
rules of the language. This book also
includes information about
release-to-release incompatibilities,
product limits, and catalog views.

You can order both volumes of the SQL
Reference in the English language in
North America with the form number
SBOF-8933.

Volume 1
SC09-2974

db2s1x70

Volume 2
SC09-2975

db2s2x70

db2s0

System Monitor Guide and
Reference

Describes how to collect different kinds
of information about databases and the
database manager. This book explains
how to use the information to
understand database activity, improve
performance, and determine the cause of
problems.

SC09-2956

db2f0x70

db2f0

Text Extender
Administration and
Programming

Provides general information about DB2
extenders and information on the
administration and configuring of the
text extender and on programming using
the text extenders. It includes reference
information, diagnostic information
(with messages) and samples.

SC26-9930

desu9x70

desu9

336 Administration Guide: Planning

Table 30. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Troubleshooting Guide Helps you determine the source of
errors, recover from problems, and use
diagnostic tools in consultation with DB2
Customer Service.

GC09-2850

db2p0x70

db2p0

What’s New Describes the new features, functions,
and enhancements in DB2 Universal
Database, Version 7.

SC09-2976

db2q0x70

db2q0

DB2 Installation and Configuration Information

DB2 Connect Enterprise
Edition for OS/2 and
Windows Quick
Beginnings

Provides planning, migration,
installation, and configuration
information for DB2 Connect Enterprise
Edition on the OS/2 and Windows 32-bit
operating systems. This book also
contains installation and setup
information for many supported clients.

GC09-2953

db2c6x70

db2c6

DB2 Connect Enterprise
Edition for UNIX Quick
Beginnings

Provides planning, migration,
installation, configuration, and task
information for DB2 Connect Enterprise
Edition on UNIX-based platforms. This
book also contains installation and setup
information for many supported clients.

GC09-2952

db2cyx70

db2cy

DB2 Connect Personal
Edition Quick Beginnings

Provides planning, migration,
installation, configuration, and task
information for DB2 Connect Personal
Edition on the OS/2 and Windows 32-bit
operating systems. This book also
contains installation and setup
information for all supported clients.

GC09-2967

db2c1x70

db2c1

DB2 Connect Personal
Edition Quick Beginnings
for Linux

Provides planning, installation,
migration, and configuration information
for DB2 Connect Personal Edition on all
supported Linux distributions.

GC09-2962

db2c4x70

db2c4

DB2 Data Links Manager
Quick Beginnings

Provides planning, installation,
configuration, and task information for
DB2 Data Links Manager for AIX and
Windows 32-bit operating systems.

GC09-2966

db2z6x70

db2z6

Appendix A. Using the DB2 Library 337

Table 30. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Enterprise - Extended
Edition for UNIX Quick
Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition on
UNIX-based platforms. This book also
contains installation and setup
information for many supported clients.

GC09-2964

db2v3x70

db2v3

DB2 Enterprise - Extended
Edition for Windows Quick
Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition for
Windows 32-bit operating systems. This
book also contains installation and setup
information for many supported clients.

GC09-2963

db2v6x70

db2v6

DB2 for OS/2 Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on the OS/2
operating system. This book also
contains installation and setup
information for many supported clients.

GC09-2968

db2i2x70

db2i2

DB2 for UNIX Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on
UNIX-based platforms. This book also
contains installation and setup
information for many supported clients.

GC09-2970

db2ixx70

db2ix

DB2 for Windows Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on Windows
32-bit operating systems. This book also
contains installation and setup
information for many supported clients.

GC09-2971

db2i6x70

db2i6

DB2 Personal Edition
Quick Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database Personal
Edition on the OS/2 and Windows 32-bit
operating systems.

GC09-2969

db2i1x70

db2i1

DB2 Personal Edition
Quick Beginnings for
Linux

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database Personal
Edition on all supported Linux
distributions.

GC09-2972

db2i4x70

db2i4

338 Administration Guide: Planning

Table 30. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Query Patroller
Installation Guide

Provides installation information about
DB2 Query Patroller.

GC09-2959

db2iwx70

db2iw

DB2 Warehouse Manager
Installation Guide

Provides installation information for
warehouse agents, warehouse
transformers, and the Information
Catalog Manager.

GC26-9998

db2idx70

db2id

Cross-Platform Sample Programs in HTML

Sample programs in
HTML

Provides the sample programs in HTML
format for the programming languages
on all platforms supported by DB2. The
sample programs are provided for
informational purposes only. Not all
samples are available in all
programming languages. The HTML
samples are only available when the DB2
Application Development Client is
installed.

For more information on the programs,
refer to the Application Building Guide.

No form number db2hs

Release Notes

DB2 Connect Release
Notes

Provides late-breaking information that
could not be included in the DB2
Connect books.

See note #2. db2cr

DB2 Installation Notes Provides late-breaking
installation-specific information that
could not be included in the DB2 books.

Available on
product
CD-ROM only.

DB2 Release Notes Provides late-breaking information about
all DB2 products and features that could
not be included in the DB2 books.

See note #2. db2ir

Notes:

1. The character x in the sixth position of the file name indicates the
language version of a book. For example, the file name db2d0e70 identifies
the English version of the Administration Guide and the file name db2d0f70
identifies the French version of the same book. The following letters are
used in the sixth position of the file name to indicate the language version:

Language Identifier
Brazilian Portuguese b

Appendix A. Using the DB2 Library 339

Bulgarian u
Czech x
Danish d
Dutch q
English e
Finnish y
French f
German g
Greek a
Hungarian h
Italian i
Japanese j
Korean k
Norwegian n
Polish p
Portuguese v
Russian r
Simp. Chinese c
Slovenian l
Spanish z
Swedish s
Trad. Chinese t
Turkish m

2. Late breaking information that could not be included in the DB2 books is
available in the Release Notes in HTML format and as an ASCII file. The
HTML version is available from the Information Center and on the
product CD-ROMs. To view the ASCII file:
v On UNIX-based platforms, see the Release.Notes file. This file is located

in the DB2DIR/Readme/%L directory, where %L represents the locale name
and DB2DIR represents:
– /usr/lpp/db2_07_01 on AIX
– /opt/IBMdb2/V7.1 on HP-UX, PTX, Solaris, and Silicon Graphics IRIX
– /usr/IBMdb2/V7.1 on Linux.

v On other platforms, see the RELEASE.TXT file. This file is located in the
directory where the product is installed. On OS/2 platforms, you can
also double-click the IBM DB2 folder and then double-click the Release
Notes icon.

Printing the PDF Books
If you prefer to have printed copies of the books, you can print the PDF files
found on the DB2 publications CD-ROM. Using the Adobe Acrobat Reader,
you can print either the entire book or a specific range of pages. For the file
name of each book in the library, see Table 30 on page 332.

340 Administration Guide: Planning

You can obtain the latest version of the Adobe Acrobat Reader from the
Adobe Web site at http://www.adobe.com.

The PDF files are included on the DB2 publications CD-ROM with a file
extension of PDF. To access the PDF files:
1. Insert the DB2 publications CD-ROM. On UNIX-based platforms, mount

the DB2 publications CD-ROM. Refer to your Quick Beginnings book for
the mounting procedures.

2. Start the Acrobat Reader.
3. Open the desired PDF file from one of the following locations:

v On OS/2 and Windows platforms:
x:\doc\language directory, where x represents the CD-ROM drive and
language represent the two-character country code that represents your
language (for example, EN for English).

v On UNIX-based platforms:
/cdrom/doc/%L directory on the CD-ROM, where /cdrom represents the
mount point of the CD-ROM and %L represents the name of the desired
locale.

You can also copy the PDF files from the CD-ROM to a local or network drive
and read them from there.

Ordering the Printed Books

You can order the printed DB2 books either individually or as a set (in North
America only) by using a sold bill of forms (SBOF) number. To order books,
contact your IBM authorized dealer or marketing representative, or phone
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada. You can
also order the books from the Publications Web page at
http://www.elink.ibmlink.ibm.com/pbl/pbl.

Two sets of books are available. SBOF-8935 provides reference and usage
information for the DB2 Warehouse Manager. SBOF-8931 provides reference
and usage information for all other DB2 Universal Database products and
features. The contents of each SBOF are listed in the following table:

Appendix A. Using the DB2 Library 341

Table 31. Ordering the printed books

SBOF Number Books Included

SBOF-8931 v Administration Guide: Planning

v Administration Guide: Implementation

v Administration Guide: Performance

v Administrative API Reference

v Application Building Guide

v Application Development Guide

v CLI Guide and Reference

v Command Reference

v Data Movement Utilities Guide and
Reference

v Data Warehouse Center Administration
Guide

v Data Warehouse Center Application
Integration Guide

v DB2 Connect User’s Guide

v Installation and Configuration
Supplement

v Image, Audio, and Video Extenders
Administration and Programming

v Message Reference, Volumes 1 and 2

v OLAP Integration Server
Administration Guide

v OLAP Integration Server Metaoutline
User’s Guide

v OLAP Integration Server Model User’s
Guide

v OLAP Integration Server User’s Guide

v OLAP Setup and User’s Guide

v OLAP Spreadsheet Add-in User’s
Guide for Excel

v OLAP Spreadsheet Add-in User’s
Guide for Lotus 1-2-3

v Replication Guide and Reference

v Spatial Extender Administration and
Programming Guide

v SQL Getting Started

v SQL Reference, Volumes 1 and 2

v System Monitor Guide and Reference

v Text Extender Administration and
Programming

v Troubleshooting Guide

v What’s New

SBOF-8935 v Information Catalog Manager
Administration Guide

v Information Catalog Manager User’s
Guide

v Information Catalog Manager
Programming Guide and Reference

v Query Patroller Administration Guide

v Query Patroller User’s Guide

DB2 Online Documentation

Accessing Online Help
Online help is available with all DB2 components. The following table
describes the various types of help.

342 Administration Guide: Planning

Type of Help Contents How to Access...

Command Help Explains the syntax of
commands in the command
line processor.

From the command line processor in interactive
mode, enter:

? command

where command represents a keyword or the entire
command.

For example, ? catalog displays help for all the
CATALOG commands, while ? catalog database
displays help for the CATALOG DATABASE
command.

Client Configuration
Assistant Help

Command Center Help

Control Center Help

Data Warehouse Center
Help

Event Analyzer Help

Information Catalog
Manager Help

Satellite Administration
Center Help

Script Center Help

Explains the tasks you can
perform in a window or
notebook. The help includes
overview and prerequisite
information you need to
know, and it describes how
to use the window or
notebook controls.

From a window or notebook, click the Help push
button or press the F1 key.

Message Help Describes the cause of a
message and any action you
should take.

From the command line processor in interactive
mode, enter:

? XXXnnnnn

where XXXnnnnn represents a valid message
identifier.

For example, ? SQL30081 displays help about the
SQL30081 message.

To view message help one screen at a time, enter:

? XXXnnnnn | more

To save message help in a file, enter:

? XXXnnnnn > filename.ext

where filename.ext represents the file where you
want to save the message help.

Appendix A. Using the DB2 Library 343

Type of Help Contents How to Access...

SQL Help Explains the syntax of SQL
statements.

From the command line processor in interactive
mode, enter:

help statement

where statement represents an SQL statement.

For example, help SELECT displays help about the
SELECT statement.
Note: SQL help is not available on UNIX-based
platforms.

SQLSTATE Help Explains SQL states and
class codes.

From the command line processor in interactive
mode, enter:

? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL
state and class code represents the first two digits
of the SQL state.

For example, ? 08003 displays help for the 08003
SQL state, while ? 08 displays help for the 08 class
code.

Viewing Information Online
The books included with this product are in Hypertext Markup Language
(HTML) softcopy format. Softcopy format enables you to search or browse the
information and provides hypertext links to related information. It also makes
it easier to share the library across your site.

You can view the online books or sample programs with any browser that
conforms to HTML Version 3.2 specifications.

To view online books or sample programs:
v If you are running DB2 administration tools, use the Information Center.
v From a browser, click File —>Open Page. The page you open contains

descriptions of and links to DB2 information:
– On UNIX-based platforms, open the following page:

INSTHOME/sqllib/doc/%L/html/index.htm

where %L represents the locale name.
– On other platforms, open the following page:

sqllib\doc\html\index.htm

The path is located on the drive where DB2 is installed.

344 Administration Guide: Planning

If you have not installed the Information Center, you can open the page
by double-clicking the DB2 Information icon. Depending on the system
you are using, the icon is in the main product folder or the Windows
Start menu.

Installing the Netscape Browser
If you do not already have a Web browser installed, you can install Netscape
from the Netscape CD-ROM found in the product boxes. For detailed
instructions on how to install it, perform the following:
1. Insert the Netscape CD-ROM.
2. On UNIX-based platforms only, mount the CD-ROM. Refer to your Quick

Beginnings book for the mounting procedures.
3. For installation instructions, refer to the CDNAVnn.txt file, where nn

represents your two character language identifier. The file is located at the
root directory of the CD-ROM.

Accessing Information with the Information Center
The Information Center provides quick access to DB2 product information.
The Information Center is available on all platforms on which the DB2
administration tools are available.

You can open the Information Center by double-clicking the Information
Center icon. Depending on the system you are using, the icon is in the
Information folder in the main product folder or the Windows Start menu.

You can also access the Information Center by using the toolbar and the Help
menu on the DB2 Windows platform.

The Information Center provides six types of information. Click the
appropriate tab to look at the topics provided for that type.

Tasks Key tasks you can perform using DB2.

Reference DB2 reference information, such as keywords, commands, and
APIs.

Books DB2 books.

Troubleshooting
Categories of error messages and their recovery actions.

Sample Programs
Sample programs that come with the DB2 Application
Development Client. If you did not install the DB2
Application Development Client, this tab is not displayed.

Web DB2 information on the World Wide Web. To access this
information, you must have a connection to the Web from
your system.

Appendix A. Using the DB2 Library 345

When you select an item in one of the lists, the Information Center launches a
viewer to display the information. The viewer might be the system help
viewer, an editor, or a Web browser, depending on the kind of information
you select.

The Information Center provides a find feature, so you can look for a specific
topic without browsing the lists.

For a full text search, follow the hypertext link in the Information Center to
the Search DB2 Online Information search form.

The HTML search server is usually started automatically. If a search in the
HTML information does not work, you may have to start the search server
using one of the following methods:

On Windows
Click Start and select Programs —> IBM DB2 —> Information —>
Start HTML Search Server.

On OS/2
Double-click the DB2 for OS/2 folder, and then double-click the Start
HTML Search Server icon.

Refer to the release notes if you experience any other problems when
searching the HTML information.

Note: The Search function is not available in the Linux, PTX, and Silicon
Graphics IRIX environments.

Using DB2 Wizards
Wizards help you complete specific administration tasks by taking you
through each task one step at a time. Wizards are available through the
Control Center and the Client Configuration Assistant. The following table
lists the wizards and describes their purpose.

Note: The Create Database, Create Index, Configure Multisite Update, and
Performance Configuration wizards are available for the partitioned
database environment.

Wizard Helps You to... How to Access...

Add Database Catalog a database on a client workstation. From the Client Configuration
Assistant, click Add.

Backup Database Determine, create, and schedule a backup
plan.

From the Control Center, right-click
the database you want to back up
and select Backup —> Database
Using Wizard.

346 Administration Guide: Planning

Wizard Helps You to... How to Access...

Configure Multisite
Update

Configure a multisite update, a distributed
transaction, or a two-phase commit.

From the Control Center, right-click
the Databases folder and select
Multisite Update.

Create Database Create a database, and perform some basic
configuration tasks.

From the Control Center, right-click
the Databases folder and select
Create —> Database Using
Wizard.

Create Table Select basic data types, and create a primary
key for the table.

From the Control Center, right-click
the Tables icon and select Create
—> Table Using Wizard.

Create Table Space Create a new table space. From the Control Center, right-click
the Table Spaces icon and select
Create —> Table Space Using
Wizard.

Create Index Advise which indexes to create and drop for
all your queries.

From the Control Center, right-click
the Index icon and select Create
—> Index Using Wizard.

Performance
Configuration

Tune the performance of a database by
updating configuration parameters to match
your business requirements.

From the Control Center, right-click
the database you want to tune and
select Configure Performance
Using Wizard.

For the partitioned database
environment, from the Database
Partitions view, right-click the first
database partition you want to
tune and select Configure
Performance Using Wizard.

Restore Database Recover a database after a failure. It helps
you understand which backup to use, and
which logs to replay.

From the Control Center, right-click
the database you want to restore
and select Restore —> Database
Using Wizard.

Setting Up a Document Server
By default, the DB2 information is installed on your local system. This means
that each person who needs access to the DB2 information must install the
same files. To have the DB2 information stored in a single location, perform
the following steps:
1. Copy all files and subdirectories from \sqllib\doc\html on your local

system to a Web server. Each book has its own subdirectory that contains
all the necessary HTML and GIF files that make up the book. Ensure that
the directory structure remains the same.

Appendix A. Using the DB2 Library 347

2. Configure the Web server to look for the files in the new location. For
information, refer to the NetQuestion Appendix in the Installation and
Configuration Supplement.

3. If you are using the Java version of the Information Center, you can
specify a base URL for all HTML files. You should use the URL for the list
of books.

4. When you are able to view the book files, you can bookmark commonly
viewed topics. You will probably want to bookmark the following pages:
v List of books
v Tables of contents of frequently used books
v Frequently referenced articles, such as the ALTER TABLE topic
v The Search form

For information about how you can serve the DB2 Universal Database online
documentation files from a central machine, refer to the NetQuestion
Appendix in the Installation and Configuration Supplement.

Searching Information Online
To find information in the HTML files, use one of the following methods:
v Click Search in the top frame. Use the search form to find a specific topic.

This function is not available in the Linux, PTX, or Silicon Graphics IRIX
environments.

v Click Index in the top frame. Use the index to find a specific topic in the
book.

v Display the table of contents or index of the help or the HTML book, and
then use the find function of the Web browser to find a specific topic in the
book.

v Use the bookmark function of the Web browser to quickly return to a
specific topic.

v Use the search function of the Information Center to find specific topics. See
“Accessing Information with the Information Center” on page 345 for
details.

348 Administration Guide: Planning

Appendix B. Naming Rules

Use the naming rules shown below when you provide names for the
following databases and database objects:
v Database Names
v Database and Database Alias Names
v User IDs and Passwords
v Schema Names
v Group and User Names
v Object Names.

Do not use IBM SQL or ISO/ANSI SQL92 reserved words to name tables,
views, columns, indexes, or authorization IDs. A list of these words is
included in the SQL Reference.

Refer to the Quick Beginnings manuals for naming rules about authorization
IDs (including user names and group names) and workstations, and for
additional platform restrictions.

Database Names

Every time a new database is created, the database manager creates a separate
directory to store the control files and data files for that database.

The naming scheme for these directories is SQL00001 through SQLnnnnn, where
SQL00001 contains control files associated with the first database created,
SQL00002 contains control files for the second database created, and so on.

These directories are maintained automatically. To avoid potential directory
naming problems, do not create your own directories using the same naming
schema as used by the database manager, and do not manipulate directories
that have already been created by the database manager.

Database and Database Alias Names

Database names are the identifying names you or your users provide as part of
the CREATE DATABASE command or API. These names must be unique
within the location in which they are cataloged. For example, on UNIX based
implementations of DB2, this location is a directory path, while on OS/2
implementations, it is a drive letter.

© Copyright IBM Corp. 1993, 2000 349

Database alias names are local synonyms given to local or remote databases.
These names must be unique within the System Database Directory, in which
all aliases are stored for the individual instance of the database manager.
When a new database is created, the alias defaults to the database name. As a
result, you cannot create a database using a name that exists as a database
alias, even if there is no database with that name.

When naming a database or a database alias, the name you specify:
v Can contain 1 to 8 characters
v Must begin with one of the following:

– A through Z (converts lowercase letters to uppercase)
– @, #, or $

v Can include:
– A through Z (converts lowercase letters to uppercase)
– 0 through 9
– @, #, $, and _ (underscore)

Note: To avoid potential problems, do not use the special characters @, #, and
$ in a database name if you intend to use the database in a
communications environment. Also, because these characters are not
common to all keyboards, do not use them if you plan to use the
database in another country. Finally, on Windows NT systems, ensure
that no instance name is the same as a service name.

User IDs and Passwords

When creating a user ID or password, the name you create:
v Cannot be any of the following:

– USERS, ADMINS, GUESTS, PUBLIC, LOCAL, or any SQL reserved word
listed in the SQL Reference.

v Cannot begin with:
– SQL, SYS, or IBM

v Can include:
– A through Z

Note: Some operating systems allow case-sensitive user IDs and
passwords. You should check your operating system
documentation to see if this is the case.

– 0 through 9
– @, #, or $

v User IDs cannot exceed 30 characters.

350 Administration Guide: Planning

Note: You may be required to perform password maintenance tasks. Since
such tasks are required at the server, and many users are not able or
comfortable working with the server environment, carrying these tasks
can pose a significant challenge. DB2 UDB provides a way to update
and verify passwords without having to be at the server. For example,
DB2 for OS/390 Version 5 supports this method of changing a user’s
password. If an error message SQL1404N “Password expired” is
received, use the CONNECT statement to change the password as
follows:

CONNECT TO <database> USER <userid> USING <password>
NEW <new_password> VERIFY <new_password>

The “Password change” dialog of the DB2 Client Configuration
Assistant (CCA) can also be used to change the password. For more
information about these methods of changing the password, refer to the
SQL Reference and the CCA online help.

Schema Names

The following schema names are reserved words and must not be used:
v SYSCAT
v SYSFUN
v SYSIBM
v SYSSTAT.

In general, you should avoid schema names that begin with SYS to avoid
potential migration problems in the future. The database manager will not
allow you to create triggers, user-defined types or user-defined functions
using a schema name beginning with SYS.

It is also recommended that you not use SESSION as a schema name.
Declared temporary tables must be qualified by SESSION. It is therefore
possible to have an application declare a temporary table with a name
identical to that of a persistent table, in which case the application logic can
become overly complicated. Avoid the use of the schema SESSION, except
when dealing with declared temporary tables.

Group and User Names

On UNIX based systems, groups and users can have the same name. For the
GRANT statement, you must specify whether you are referring to a group or
to a user. For the REVOKE statement, specifying user or group depends on
whether or not there are multiple rows in the authorization catalog tables for
the GRANTEE with different values of GRANTEETYPE.

Appendix B. Naming Rules 351

On OS/2, groups and users cannot have the same name.

On Windows NT, Local Group names, Global Group names, and User IDs
cannot have the same name.

Group names cannot exceed 8 characters.

Object Names

Database objects include the following:
v Schemas
v Tables
v Views
v Columns
v Indexes
v User-defined functions (UDFs)
v User-defined types (UDTs)
v Triggers
v Aliases
v Table spaces
v Stored procedures
v Methods
v Nodegroups
v Buffer pools
v Event monitors.

When naming database objects, the name you specify:
v Can contain 1 to 18 characters (bytes)

Note: There are exceptions:
– Schemas and columns allow 1 to 30 characters
– Tables, views, correlation names, and alias names allow 1 to 128

characters.
v Must begin with one of the following:

– A through Z (converts lowercase letters to uppercase)
– A valid accented letter (such as ö)
– A multibyte character, except multibyte spaces (for multibyte

environments)
v Can include:

– A through Z (converts lowercase letters to uppercase)

352 Administration Guide: Planning

– A valid accented letter (such as ö)
– 0 through 9
– @, #, $, and _ (underscore)
– Multibyte characters, except multibyte spaces (for multibyte

environments)

Keywords can be used. If the keyword is used in a context where it could also
be interpreted as an SQL keyword, it must be specified as a delimited
identifier. Refer to the SQL Reference for information on delimited identifiers.

For maximum portability, use the IBM SQL and ISO/ANSI SQL92 reserved
words. For a list of these words, refer to the SQL Reference.

Notes:

1. Using delimited identifiers, it is possible to create an object that violates
these naming rules; however, subsequent use could lead to error
situations. To avoid potential problems with the use and operation of your
database, do not violate the above rules.
For example, if you create a column with a + or a − sign included in the
name, and you subsequently use that column in an index, you will
experience problems when you attempt to reorganize the table.

Federated Database Object Names

Federated database objects include:
v Index specifications
v Nicknames
v Servers
v Wrappers
v Function mappings
v Type mappings
v User mappings.

Limits apply when naming federated database objects. A complete list of
object names and associated identifier limits and requirements is located in
the SQL Reference. In summary, object names:
v Have limits. Nicknames, mapping, index specification, server, and wrapper

names cannot exceed 128 bytes.
v Must begin with one of the following:

– A through Z (names without quotation marks are converted to
uppercase)

– A valid accented letter (such as ö)

Appendix B. Naming Rules 353

– A multibyte character, except multibyte spaces (for multibyte
environments)

v Must follow internal naming conventions. Non-leading characters can
include:
– A through Z
– A valid accented letter (such as ö)
– 0 through 9
– @, #, $, and _ (underscore)
– Multibyte characters, except multibyte spaces (for multibyte

environments)

Keywords can be used. If the keyword is used in a context where it could also
be interpreted as an SQL keyword, it must be specified as a delimited
identifier. Refer to the SQL Reference for information on delimited identifiers.

For maximum portability, use the IBM SQL and ISO/ANSI SQL92 reserved
words. For a list of these words, refer to the SQL Reference.

Options (server, nickname) and option settings are limited to 255 bytes.

How Case-Sensitive Values Are Preserved in a Federated System
With distributed requests, you sometimes need to specify identifiers and
passwords that are case-sensitive at the data source. To ensure that the case is
correct when they are passed to the data source, follow these guidelines:
v Specify them in the required case, and enclose them in double quotation

marks.
v If you are specifying a user ID, set the fold_id server option to ″n″ (“No,

don’t change case”) for the data source. If you are specifying a password,
set the fold_pw server option to ″n″ for the data source.
There is an alternative for user IDs and passwords. If a data source requires
a user ID to be in lowercase, you can specify it in any case and set the
fold_id server option to ″l″ (“Send this ID to the data source in lowercase”).
If the data source requires the ID to be in uppercase, you can specify it in
any case and set fold_id to ″u″ (“Send this ID to the data source in
uppercase”). In the same way, if a data source requires a password to be in
lowercase or uppercase, you can meet this requirement by setting the
fold_pw server option to ″l″ or ″u″.
For more information about server options, see ″Using Server Options to
Help Define Data Sources and Facilitate Authentication Processing″ in the
Administration Guide: Implementation .

v If you enclose a case-sensitive identifier or a password in double quotation
marks at an operating system command prompt, you must ensure that the
system parses the double quotation marks correctly. To do this:

354 Administration Guide: Planning

– On a UNIX based operating system, enclose the statement in single
quotation marks.

– On the Windows NT operating system, precede each quotation mark
with a backward slash.

For example, many delimited identifiers in DB2 family data sources are
case-sensitive. Suppose you want to create a nickname, NICK1, for a DB2 for
CS view, "my_schema"."wkly_sal", that resides in a data source called
NORBASE.

At the command prompt for a UNIX based system, you would type:
db2 'create nickname nick1 for norbase."my_schema"."wkly_sal"'

At a Windows NT command prompt, you would type:
db2 create nickname nick1 for norbase.\"my_schema\".\"wkly_sal\"

If you enter the statement from the DB2 interactive mode command
prompt, or if you specify it in an application program, you do not need the
single quotation marks or the slashes. For example, at the DB2 command
prompt on either a UNIX based system or Windows NT, you would type:

create nickname nick1 for norbase."my_schema"."wkly_sal"

Appendix B. Naming Rules 355

356 Administration Guide: Planning

Appendix C. Planning Database Migration

This section provides you with an overview of the migration process. Note
that DB2 UDB Version 6 databases do not need to be migrated to Version 7.
Detailed information about migrating your DB2 UDB Version 5.x databases
can be found in the Quick Beginnings manual for your operating system.

When you migrate your database:
v The following database entities are migrated:

– Database configuration file
– Database system catalog tables
– Database directories
– Database log file header

v System catalog tables are changed as follows:
– New columns are added.
– New tables are created.
– A set of catalog views is migrated, and a set of new catalog views is

created in the SYSCAT schema.
– A set of updatable catalog views is created in the SYSSTAT schema.
– A set of general purpose scalar functions is kept, and a set of new

general purpose scalar functions is created in the SYSFUN schema. Only
the SYSFUN.DIFFERENCE scalar function is dropped and recreated
during database migration.

v A database history file and its shadow are created in the database directory.
This file contains a summary of backup information that can be used if a
database must be restored, and it is updated whenever specific operations
are performed on the database. A summary of backup information is also
kept for backup and restore operations on a table space.

Migration Considerations

To successfully migrate a database created with a previous version of the
database manager, you must consider the following:
v “Migration Restrictions” on page 358
v “Security and Authorization” on page 358
v “Storage Requirements” on page 358
v “Release-to-Release Incompatibilities” on page 358

© Copyright IBM Corp. 1993, 2000 357

Migration Restrictions
There are certain pre-conditions or restrictions that you should be aware of
before attempting to migrate your database to Version 7:
v Migration is only supported from V5.x or V6. Migration from DB2 V1.2

Parallel Edition is not supported. Earlier versions of DB2 (Database
Manager) must be migrated to V5.x or V6 before being migrated to V7.

v Issuing the migration command from a V7 client to migrate a database to a
V7 server is supported; however, issuing the migration command from an
older DB2 client to migrate a database to a V7 server is not supported.

v Migration between platforms is not supported.
v User objects within your database cannot have V7 reserved schema names

as object qualifiers. These reserved schema names include: SYSCAT,
SYSSTAT, and SYSFUN.

v User-defined distinct types using the names BIGINT, REAL, DATALINK, or
REFERENCE must be renamed before migrating the database.

v You cannot migrate a database that is in one of the following states:
– Backup pending
– Roll-forward pending
– One or more table spaces not in a normal state
– Transaction inconsistent

v Restoration of down-level (V5.x or V6) database backups is supported, but
the rolling forward of down-level logs is not supported.

Security and Authorization
You need SYSADM authority to migrate your database.

Storage Requirements
Space is required for both the old and the new catalogs during the migration.
The amount of disk space required will vary, depending on the complexity of
the database, as well as the number and size of the database objects. These
objects include all tables and views. You should make available at least two
times the amount of disk space that the database catalog currently occupies. If
there is not enough disk space, migration fails.

If your SYSCAT table space is an SMS type of table space, you should also
consider updating the database configuration parameters that are associated
with the log files. You should increase the values of logfilsiz, logprimary, and
logsecond to prevent the space for these log files from running out (SQL1704N
with reason code 3). If this happens, increase the log space parameters, and
re-issue the MIGRATE DATABASE command.

Release-to-Release Incompatibilities
Consider the impact of incompatibilities between the two versions of the
product when planning to migrate a database.

358 Administration Guide: Planning

To take advantage of Version 7 enhancements, you should tune your database
and database manager configuration after migrating your databases. To
facilitate this, you can record and compare configuration parameter values
from before and after migration. (For a description of the GET DATABASE
CONFIGURATION command and the GET DATABASE MANAGER
CONFIGURATION command, refer to the Command Reference.)

Migrating a Database
Following are the steps you must take to migrate your database. The database
manager must be started before migration can begin.

PRE-MIGRATION:

Note: The pre-migration steps must be done on a previous release (that is, on
your current release before migrating to, or installing, the new release).

1. Verify that there are no unresolved issues that pertain to “Migration
Restrictions” on page 358.

2. Disconnect all applications and end users from each database being
migrated (use the LIST APPLICATIONS command, or the FORCE
APPLICATIONS command, as necessary).

3. Use the DB2CKMIG pre-migration utility to determine if the database can
be migrated (for detailed information about using this utility, see the
Quick Beginnings book for your platform). Note that on Windows NT or
OS/2, you are prompted to run this tool during installation, but on UNIX
based systems, this tool is invoked automatically during instance
migration.

4. Back up your database.
Migration is not a recoverable process. If you back up your database
before the Version 6 reserved schema names are changed, you will not be
able to restore the database using DB2 UDB Version 7. To restore the
database, you will have to use your previous version of the database
manager.
Attention! If you do not have a backup of your database, and the
migration fails, you will have no way of restoring your database using
DB2 UDB Version 7, or your previous version of the database manager.
You should also be aware that any database transactions done between
the time the backup was taken and the time that the upgrade to Version
7 is completed are not recoverable. That is, if at some time following the
completion of the installation and migration to Version 7, the database
needs to be restored (to a Version 7 level), the logs written before Version
7 installation cannot be used in roll-forward recovery.

MIGRATION:

5. Migrate the database using one of the following:

Appendix C. Planning Database Migration 359

v The MIGRATE DATABASE command
v The RESTORE DATABASE command, when restoring a full backup of

the database
v The sqlemgdb - Migrate Database API.

On OS/2: The DB2CIDMG migration utility, which works in a
Configuration/Installation/Distribution (CID) architecture environment,
is only available on DB2 for OS/2. It permits remote unattended
installation and configuration on LAN-based workstations. You must
have NetView DM/2 on your LAN to use CID migration.

On UNIX based systems: The Quick Beginnings book for your platform
describes what to do if you do not want to migrate all databases in a
given instance.

POST-MIGRATION:

6. Optionally, use the DB2UIDDL utility to facilitate the management of a
staged migration of unique indexes on your own schedule. (DB2 Version
5 databases that were created in Version 5 do not require this tool to take
advantage of deferred uniqueness checking, because all unique indexes
created in Version 5 have these semantics already. However, for databases
that were previously migrated to Version 5, these semantics are not
automatic, unless you use the DB2UIDDL utility to change the unique
indexes.) This utility generates CREATE UNIQUE INDEX statements for
unique indexes on user tables, and writes them to a file. Running this file
as a DB2 CLP command file results in the unique index being converted
to Version 7 semantics. For detailed information about using this utility,
refer to one of the Quick Beginnings books.

7. Optionally, issue the RUNSTATS command against tables that are
particularly critical to the performance of SQL queries. Old statistics are
retained in the migrated database, and are not updated unless you
invoke the RUNSTATS command.

8. Optionally, use the DB2RBIND utility to revalidate all packages, or allow
package revalidation to occur implicitly when a package is first used.

9. Optionally, migrate Explain tables if you are planning to use them in
Version 7. For more information, see ″SQL Explain Facility″ in the
Administration Guide: Performance.

10. Tune your database and database manager configuration parameters to
take advantage of Version 7 enhancements.

360 Administration Guide: Planning

Appendix D. Incompatibilities Between Releases

This section identifies the incompatibilities that exist between DB2 Universal
Database and previous releases of DB2.

An incompatibility is a part of DB2 Universal Database that works differently
than it did in a previous release of DB2. If used in an existing application, it
will produce an unexpected result, necessitate a change to the application, or
reduce performance. In this context, ″application″ refers to:
v Application program code
v Third-party utilities
v Interactive SQL queries
v Command or API invocation.

Incompatibilities introduced with DB2 Universal Database Version 6 and
Version 7 are described. They are grouped according to the following
categories:
v System Catalog Views
v Application Programming
v SQL
v Database Security and Tuning
v Utilities and Tools
v Connectivity and Coexistence
v Configuration Parameters.

Each incompatibility section includes a description of the incompatibility, the
symptom or effect of the incompatibility, and possible resolutions. There is
also an indicator at the beginning of each incompatibility description that
identifies the operating system to which the incompatibility applies:

WIN Microsoft Windows platforms supported by DB2

UNIX UNIX based platforms supported by DB2

OS/2 OS/2

Note: As of DB2 Universal Database Version 6, Version 1.x and Version 2.x
clients, including the clients packaged with DB2 Parallel Edition
Version 1.2 servers, are no longer supported.

© Copyright IBM Corp. 1993, 2000 361

DB2 Universal Database Planned Incompatibilities

This section describes future incompatibilities that users of DB2 Universal
Database should keep in mind when coding new applications, or when
modifying existing applications. This will facilitate migration to future
versions of DB2 UDB.

Read-only Views in a Future Version of DB2 Universal Database

WIN UNIX OS/2

Change
The system catalog views will be read-only views. The SYSSTAT views will
continue to be updatable.

Symptom
UPDATE statements that used to work against columns in the SYSCAT views
will fail.

Explanation
Tools or applications are coded to change values in the catalog by updating
the column as defined in the SYSCAT view.

Resolution
Change the tool or application to change the catalog by updating the column
as defined in the SYSSTAT view.

PK_COLNAMES and FK_COLNAMES in a Future Version of DB2 Universal
Database

WIN UNIX OS/2

Change
The SYSCAT.REFERENCES columns PK_COLNAMES and FK_COLNAMES
will no longer be available.

Symptom
Column does not exist and an error is returned.

Explanation
Tools or applications are coded to use the obsolete PK_COLNAMES and
FK_COLNAMES columns.

Resolution
Change the tool or application to use the SYSCAT.KEYCOLUSE view instead.

362 Administration Guide: Planning

COLNAMES No Longer Available in a Future Version of DB2 Universal
Database

WIN UNIX OS/2

Change
The SYSCAT.INDEXES column COLNAMES will no longer be available.

Symptom
Column does not exist and an error is returned.

Explanation
Tools or applications are coded to use the obsolete COLNAMES column.

Resolution
Change the tool or application to use the SYSCAT.INDEXCOLUSE view
instead.

DB2 Universal Database Version 7 Incompatibilities

This section identifies incompatibilities introduced in DB2 Universal Database
Version 7.

Application Programming

Query Patroller Universal Client

WIN UNIX OS/2

Change: This new version of the client application enabler (CAE) will only
work with Query Patroller Server Version 7, because there are new stored
procedures. CAE is the application interface to DB2 through which all
applications must eventually pass to access the database.

Symptom: If this CAE is run against a back-level server, message SQL29001
is returned.

Object Transform Functions and Structured Types

WIN UNIX OS/2

Change: There is a minor and remotely possible incompatibility between a
pre-Version 7 client and a Version 7 server that relates to changes that have
been made to the SQLDA. As described in the Application Development Guide,

Appendix D. Incompatibilities Between Releases 363

byte 8 of the second SQLVAR can now take on the value X’12’ (in addition to
the values X’00’ and X’01’). Applications that do not anticipate the new value
may be affected by this extension.

Resolution: Because there may be other extensions to this field in future
releases, developers are advised to only test for explicitly defined values.

Versions of Class and Jar Files Used by the JVM

WIN UNIX OS/2

Change: Previously, once a Java stored procedure or user-defined function
(UDF) was started, the Java Virtual Machine (JVM) locked all files given in the
CLASSPATH (including those in sqllib/function). The JVM used these files
until the database manager was stopped. Depending on the environment in
which you run a stored procedure or UDF (that is, depending on the value of
the keepdari database manager configuration parameter, and whether or not
the stored procedure is fenced), refreshing classes will let you replace class
and jar files without stopping the database manager. This is different from the
previous behavior.

Changed Functionality of Install, Replace, and Remove Jar Commands

WIN UNIX OS/2

Change: Previously, installation of a jar caused the flushing of all DARI
(Database Application Remote Interface) processes. This way, a new stored
procedure class was guaranteed to be picked up on the next call. Currently, no
jar commands flush DARI processes. To ensure that classes from newly
installed or replaced jars are picked up, you must explicitly issue the
SQLEJ.REFRESH_CLASSES command.

Another incompatibility introduced by not flushing DARI processes is the fact
that for fenced stored procedures, with the value of the keepdari database
manager configuration parameter set to ″YES″, clients may get different
versions of the jar files. Consider the following scenario:
1. User A replaces a jar and does not refresh classes.
2. User A then calls a stored procedure from the jar. Assuming that this call

uses the same DARI process, User A will get an old version of the jar file.
3. User B calls the same stored procedure. This call uses a new DARI, which

means that the newly created class loader will pick up the new version of
the jar file.

In other words, if classes are not refreshed after jar operations, a stored
procedure from different versions of jars may be called, depending on which

364 Administration Guide: Planning

DARI processes are used. This differs from the previous behavior, which
ensured (by flushing DARI processes) that new classes were always used.

32-bit Application Incompatibility

UNIX

Change: 32-bit executables (DB2 applications) will not run against the new
64-bit database engine.

Symptom: The application fails to link. When you attempt to link 32-bit
objects against the 64-bit DB2 application library, an operating system linker
error message is displayed.

Resolution: The application must be recompiled as a 64-bit executable, and
relinked against the new 64-bit DB2 libraries.

Changing the Length Field of the Scratchpad

WIN UNIX OS/2

Change: Any user-defined function (UDF) that changes the length field of
the scratchpad passed to the UDF will now receive SQLCODE -450.

Symptom: A UDF that changes the length field of the scratchpad fails. The
invoking statement receives SQLCODE -450, with the schema and the specific
name of the function filled in.

Resolution: Rewrite the UDF body to not change the length field of the
scratchpad.

SQL

Applications that Use Regular Tables Qualified by the Schema SESSION

WIN UNIX OS/2

Change: The schema SESSION is the only schema allowed for temporary
tables, and is now used by DB2 to indicate that a SESSION-qualified table
may refer to a temporary table. However, SESSION is not a keyword reserved
for temporary tables, and can be used as a schema for regular base tables. An
application, therefore, may find a SESSION.T1 real table and a SESSION.T1
declared temporary table existing simultaneously. If, when a package is being
bound, a static statement that includes a table reference qualified (explicitly or
implicitly) by ″SESSION″ is encountered, neither a section nor dependencies
for this statement are stored in the catalogs. Instead, this section will need to

Appendix D. Incompatibilities Between Releases 365

be incrementally bound at run time. This will place a copy of the section in
the dynamic SQL cache, where the cached copy will be private only to the
unique instance of the application. If, at run time, a declared temporary table
matching the table name exists, the declared temporary table is used, even if a
permanent base table of the same name exists.

Symptom: In Version 6 (and earlier), any package with static statements
involving tables qualified by SESSION would always refer to a permanent
base table. When binding the package, a section, as well as relevant
dependency records for that statement, would be saved in the catalogs. In
Version 7, these statements are not bound at bind time, and could resolve to a
declared temporary table of the same name at run time. Thus, the following
situations can arise:
v Migrating from Version 5. If such a package existed in Version 5, it will be

bound again in Version 6, and the static statements will now be
incrementally bound. This could affect performance, because these
incrementally bound sections behave like cached dynamic SQL, except that
the cached dynamic section cannot be shared among other applications
(even different instances of the same application executable).

v Migrating from Version 6 to Version 7. If such a package existed in Version
6, it will not necessarily be bound again in Version 7. Instead, the
statements will still execute as regular static SQL, using the section that was
saved in the catalog at original bind time. However, if this package is
rebound (either implicitly or explicitly), the statements in the package with
SESSION-qualified table references will no longer be stored, and will
require incremental binding. This could degrade performance.

To summarize, any packages bound in Version 7 with static statements
referring to SESSION-qualified tables will no longer perform like static SQL,
because they require incremental binding. If, in fact, the application process
issues a DECLARE GLOBAL TEMPORARY TABLE statement for a table that
has the same name as an existing SESSION-qualified table, view, or alias,
references to those objects will always be taken to refer to the declared
temporary table.

Resolution: If possible, change the schema names of permanent tables so
that they are not ″SESSION″. Otherwise, there is no recourse but to be aware
of the performance implications, and the possible conflict with declared
temporary tables that may occur.

The following query can be used to identify tables, views, and aliases that
may be affected if an application uses temporary tables:

select tabschema, tabname from SYSCAT.TABLES where tabschema = 'SESSION'

366 Administration Guide: Planning

The following query can be used to identify Version 7 bound packages that
have static sections stored in the catalogs, and whose behavior might change
if the package is rebound (only relevant when moving from Version 6 to
Version 7):

select pkgschema, pkgname, bschema, bname from syscat.packagedep
where bschema = 'SESSION' and btype in ('T', 'V', 'I')

Utilities and Tools

Data Links File Manager and File System Filter on Solaris

UNIX

Change: Data Links File Manager and File System Filter are not supported
on Solaris OS 2.5.1.

db2set on AIX and Solaris

UNIX

Change: The command ″db2set -ul (user level)″ and its related functions are
not ported to AIX or Solaris.

Connectivity and Coexistence

32-bit Client Incompatibility

WIN UNIX OS/2

Change: 32-bit clients cannot attach to instances or connect to databases on
64-bit servers.

Symptom: If both the client and the server are running Version 7 code,
SQL1434N is returned; otherwise, the attachment or connection fails with
SQLCODE -30081.

Resolution: Use 64-bit clients.

DB2 Universal Database Version 6 Incompatibilities

This section identifies incompatibilities introduced in DB2 Universal Database
Version 6.

Appendix D. Incompatibilities Between Releases 367

System Catalog Views

System Catalog Views in DB2 Universal Database Version 6

WIN UNIX OS/2

Change: In the system catalog views, new codes have been introduced: ″U″
for typed tables, and ″W″ for typed views.

Symptom: Queries that search for tables and views in the system catalogs,
using the type code ″T″ for tables and ″V″ for views, will no longer find typed
tables and views.

Explanation: Several system catalogs, including the system catalog views
named TABLES, PACKAGEDEP, TRIGDEP, and VIEWDEP, have a column
named TYPE or BTYPE containing a one-letter type code. In Version 5.2, the
type code ″T″ was used for all tables, and ″V″ was used for all views. In
Version 6, untyped tables will continue to have a type code of ″T″ and typed
tables will have a new type code of ″U″. Similarly, untyped views will
continue to have a type code of ″V″ and typed views will have a new type
code of ″W″. Also, a new kind of table called a hierarchy table, not directly
created by users but used by the system to implement table hierarchies, will
appear in the system catalog tables with a type code of ″H″.

Resolution: Change the tool or application to recognize the codes for typed
tables and views. If the tool or application needs a logical view of tables, then
type codes ″T″, ″U″, ″V″, and ″W″ should be used. If the tool or application
needs a physical view of tables, including hierarchy tables, then type codes
″T″ and ″H″ should be used.

Primary and Foreign Key Column Names in DB2 Universal Database
Version 6

WIN UNIX OS/2

Change: Data type change to two SYSCAT.REFERENCES columns,
PK_COLNAMES and FK_COLNAMES, from VARCHAR(320) to
VARCHAR(640).

Symptom: Primary key or foreign key column names are truncated, are not
correct, or are missing.

Explanation: When column names greater than 18 bytes in length are used in
a primary key or a foreign key, the format under which the list of column
names are stored in these two columns cannot remain the same. The 20-byte
blank delimited column names following the column whose length (n) is

368 Administration Guide: Planning

greater than 18 will be shifted n-18 bytes to the right. As well, if the list of
column names exceeds 640 bytes, the column will contain the empty string.

Resolution: The SYSCAT.KEYCOLUSE view contains the list of columns that
make up a primary, foreign, as well as a unique key, and should be used
instead of the columns in SYSCAT.REFERENCES. Alternatively, users can
restrict the length of column names to 18 bytes, or restrict the total length of
the list of columns to 640 bytes.

SYSCAT.VIEWS Column TEXT in DB2 Universal Database Version 6

WIN UNIX OS/2

Change: View text in the SYSCAT.VIEWS column TEXT will no longer be
split across multiple rows. The data type is changed from VARCHAR(3600) to
CLOB(64K).

Symptom: The complete view text is not given by the tool or the application.

Explanation: Tools or applications that were coded to expect no more than
3600 (or perhaps 3900) bytes returned from the TEXT column at one time are
not handling the increased size of this field. The mechanism for retrieving
multiple rows and reconstructing the view text using the SEQNO field is no
longer necessary. The SEQNO value will always be 1.

Resolution: Change the tool or application to be able to handle values from
the TEXT column that are greater than 3600 bytes. Alternatively, the view
TEXT could be rewritten to fit within 3600 bytes.

SYSCAT.STATEMENTS Column TEXT in DB2 Universal Database Version
6

WIN UNIX OS/2

Change: Statement text in the SYSCAT.STATEMENTS column TEXT will no
longer be split across multiple rows. The data type is changed from
VARCHAR(3600) to CLOB(64K).

Symptom: The complete statement text is not given by the tool or the
application.

Explanation: Tools or applications that were coded to expect no more than
3600 (or perhaps 3900) bytes returned from the TEXT column at one time are
not handling the increased size of this field. The mechanism for retrieving
multiple rows and reconstructing the statement text using the SEQNO field is
no longer necessary. The SEQNO value will always be 1.

Appendix D. Incompatibilities Between Releases 369

Resolution: Change the tool or application to be able to handle values from
the TEXT column that are greater than 3600 bytes. Alternatively, the statement
TEXT could be rewritten to fit within 3600 bytes.

SYSCAT.INDEXES Column COLNAMES in DB2 Universal Database
Version 6

WIN UNIX OS/2

Change: The SYSCAT.INDEXES column COLNAMES data type is changed
from VARCHAR(320) to VARCHAR(640).

Symptom: Column names are missing from an index.

Explanation: Tools or applications coded to retrieve data from a column with
data type VARCHAR(320) cannot handle the increased size of this field.

Resolution: The SYSCAT.INDEXCOLUSE view contains the list of columns
that make up an index, and should be used instead of the COLNAMES
column. Alternatively, remove a column from the index, or reduce the size of
the column name, so that the list of column names (with the leading + or −)
will fit within 320 bytes.

SYSCAT.CHECKS Column TEXT in DB2 Universal Database Version 6

WIN UNIX OS/2

Change: CHECKS Column TEXT data type is changed from CLOB(32K) to
CLOB(64K).

Symptom: Check constraint clause is incomplete.

Explanation: Tools or applications coded to retrieve data from a column with
data type CLOB(32K) cannot handle the increased size of this field.

Resolution: Change the tool or application to be able to handle values from
the TEXT column that are longer than 32 KB. Alternatively, rewrite the check
constraint clause to use fewer characters, so that it will fit within 32 KB.

Column Data Type to BIGINT in DB2 Universal Database Version 6

WIN UNIX OS/2

Change: Several system catalog view columns have had their data type
changed from INTEGER to BIGINT.

370 Administration Guide: Planning

Symptom: Values are much smaller (or larger) than expected, especially
statistical information.

Explanation: Tools or applications coded to retrieve data from a column with
data type INTEGER cannot handle the increased size of this field.

Resolution: Change the tool or application to be able to handle values that
are greater than the maximum, or less than the minimum value that can be
stored in an INTEGER field. Alternatively, change the underlying structure or
SQL code that causes the value to fall outside of what can be represented in
an INTEGER field.

Column Mismatch in DB2 Universal Database Version 6

WIN UNIX OS/2

Change: New columns are not inserted at the end of views in the SYSCAT
view definition.

Symptom: Re-preprocessing fails with several column mismatches or column
data type mismatches.

Explanation: New columns are introduced to the system catalog views and
placed in a position that is useful in an ad hoc query environment;
specifically, shorter columns are placed before very long columns, and the
REMARKS column is always last.

Resolution: Explicitly name the columns in the select list instead of coding
″SELECT *″.

SYSCAT.COLUMNS and SYSCAT.ATTRIBUTES in DB2 Universal Database
Version 6

WIN UNIX OS/2

Change: SYSCAT.COLUMNS and SYSCAT.ATTRIBUTES now contain entries
for inherited columns and attributes.

Symptom: Queries against SYSCAT.COLUMNS to retrieve the columns of a
typed table or view, and queries against SYSCAT.ATTRIBUTES to retrieve the
attributes of a structured type, may return more rows in Version 6 than in
Version 5.2 if the subject of the query is a subtable, subview, or subtype.

Explanation: In Version 5.2, for a given table, view, or structured type, the
COLUMNS and ATTRIBUTES catalogs contained entries only for columns and
attributes that were introduced by that table, view, or type. Columns and

Appendix D. Incompatibilities Between Releases 371

attributes that were inherited from supertables or supertypes were not
represented in the catalogs. However, in Version 6, the COLUMNS and
ATTRIBUTES catalogs will contain entries for inherited columns and
attributes.

Resolution: Change the tool or application to recognize the new entries in
the COLUMNS and ATTRIBUTES catalogs.

OBJCAT Views No Longer Supported in DB2 Universal Database Version
6

WIN UNIX OS/2

Change: The recursive catalog views in the OBJCAT schema of Version 5.2
are no longer part of the shipped DB2 Universal Database product.

Symptom: Queries written against the OBJCAT catalog views will no longer
run successfully.

Resolution: Most of the information formerly in the OBJCAT views has been
incorporated into the regular SYSCAT catalog views. In most cases, you can
obtain the information from the system catalog views. If you migrate from
Version 5.2, and the OBJCAT catalog views exist, they should be dropped.
This can be done by running the CLP script called objcatdp.db2, found under
the misc subdirectory of the sqllib directory.

You can also create your own set of OBJCAT views that are equivalent to the
catalog views supported in Version 5.2.

In version 5.2, ″Appendix E″ of the SQL Reference warned users that the
OBJCAT catalog views were temporary, and would not be supported in future
releases.

Dependency Codes Changed in DB2 Universal Database Version 6

WIN UNIX OS/2

Change: In the system catalog views, the hierarchic dependencies formerly
denoted by code ″H″ are now denoted by code ″O″.

Symptom: Queries that search for hierarchic dependencies by code ″H″ in
the catalog views will no longer work correctly.

Explanation: Several system catalogs, including the system catalog views
named PACKAGEDEP, TRIGDEP, and VIEWDEP, have a column named

372 Administration Guide: Planning

BTYPE. In Version 5.2, the OBJCAT views denoted hierarchic dependencies by
code ″H″. In Version 6, these dependencies are denoted by code ″O″.

Resolution: Revise these queries to search for code ″O″.

SYSIBM Base Catalog Tables in DB2 Universal Database Version 6

WIN UNIX OS/2

Change: Following are changes to the SYSIBM base catalog tables, which you
may still be using instead of the SYSCAT views:
v Deleted fields (but still in the SYSCAT views):

– SYSSTMT.SEQNO
– SYSVIEWS.SEQNO

v Renamed catalog table: SYSTRIGDEP changed to SYSDEPENDENCIES. As
well, the columns BCREATOR and DCREATOR were renamed to
BSCHEMA and DSCHEMA, respectively. The view SYSCAT.TRIGDEP did
not change.

v Deleted fields (were never in the SYSCAT views):
– SYSATTRIBUTES.DEFAULT_VALUE
– SYSATTRIBUTES.NULLS
– SYSCOLUMNS.SERVERTYPE
– SYSDATATYPES.REFREP_TYPENAME
– SYSDATATYPES.REFREP_TYPESCHEMA
– SYSDATATYPES.REFREP_LENGTH
– SYSDATATYPES.REFREP_SCALE
– SYSDATATYPES.REFREP_CODEPAGE
– SYSINDEXES.TEXT

(Was in the view, but reserved for future use only.)
– SYSPLANDEP.PUBLICPRIV
– SYSSECTION.SEQNO
– SYSTABAUTH.UPDATE_BY_COLS
– SYSTABAUTH.REF_BY_COLS
– SYSTABLES.MINPDLENGTH
– SYSTABLESPACES.READONLY
– SYSTABLESPACES.REMOVABLEMEDIA

v Data type changes:
– SYSSECTION.SECTION, from VARCHAR(3600) to CLOB(10M)
– SYSPLANDEP.COLUSAGE, from VARCHAR(3000) FOR BIT DATA to

BLOB(5K)

Appendix D. Incompatibilities Between Releases 373

Application Programming

VARCHAR Data Type in DB2 Universal Database Version 6

WIN UNIX OS/2

Change: Maximum possible size of VARCHAR (VARGRAPHIC) data type
has increased from 4000 characters (2000 double byte characters) to 32672
characters (16336 double byte characters) in Version 6.

Symptom: An application that uses fixed length buffers of 4000 bytes for a
VARCHAR (VARGRAPHIC) data type has the potential for buffer overwrite
or truncation, if it fetches a VARCHAR field that is longer than 4000 bytes
into a buffer that is too small. The CLI function - SQLGetTypeInfo() now
returns the size of VARCHAR as 32672. CLI applications that use this value in
table DDLs may get errors because table spaces of sufficient page size are not
available. For more information about table space page size, see “User Table
Data” on page 117.

Resolution: When coding the application, it is recommended that you first
describe the columns of the result set (using the DESCRIBE statement), and
then use buffers whose size is based on the length returned from the
DESCRIBE statement.

Java Programming Positioned UPDATE and DELETE in DB2 Universal
Database Version 6

WIN UNIX OS/2

Change: When programming Java in Version 6, positioned UPDATE and
DELETE statements use the default authorization identifier of the person that
bound the cursor package. This is different from Version 5.2, in which the
authorization identifier of the person running the package was used.

Symptom: The package containing the positioned UPDATE and DELETE
statements may not run, because the authorization identifier of the person
who bound the package does not have sufficient authority.

Resolution: The authorization identifier of the person who binds the package
must be granted sufficient authority to run the positioned UPDATE and
DELETE statements in the package. Grant the correct privileges and then
rebind the package.

374 Administration Guide: Planning

Syntax Change in FOR UPDATE Clause in DB2 Universal Database
Version 6

WIN UNIX OS/2

Change: In Version 5.2, the FOR UPDATE clause in a SELECT statement can
be used in an SQLJ program to identify the columns that can be updated in
subsequent positioned UPDATE statements. The syntax has changed for
Version 6.

Symptom: You will receive the error message SQJ0204E if a SELECT
statement contains a FOR UPDATE clause.

Resolution: Remove the FOR UPDATE clause from the SELECT statement.
Specify an updatable iterator through the iterator declaration clause. For
example:

#sql public iterator DelByName implements sqlj.runtime.ForUpdate(String EmpNo)
with updateColumns = (salary);

If you want to explicitly identify what columns are updateable, specify them
through the updateColumns keyword, used in conjunction with the WITH
clause.

For more information about positioned iterator declarations, refer to the
Application Development Guide.

Character Name Sizes in DB2 Universal Database Version 6

WIN UNIX OS/2

Change: DB2 Universal Database Version 6 supports 128-byte table, view,
and alias names, and 30-byte column names. Previous support was for 18-byte
names for each of these entities.

USER and CURRENT SCHEMA special registers were CHAR(8), and are now
VARCHAR(128). The CURRENT EXPLAIN MODE special register was
CHAR(8), and is now VARCHAR(254). The output for TYPE_SCHEMA and
TABLE_SCHEMA built-in functions was CHAR(8), and is now
VARCHAR(128).

Symptom: If applications that were developed before Version 6 are run
against a Version 6 database that does not use the longer limits, application
behavior should not change at all. However, running these applications
against a Version 6 database that does use longer names could result in certain
side effects, depending on how these applications were coded.

Appendix D. Incompatibilities Between Releases 375

Following are some examples:
v Consider an existing application that FETCHes a table or column name

(typically from a catalog view) into a host variable that was defined to be
18 bytes long. Since 18 bytes was the limit on the size of the table or
column name until Version 6, this application may not bother to check the
sqlwarn1 bit of the SQLCA. It will assume (incorrectly) that truncation will
never occur.

v Consider an application that FETCHes a table or column name (typically
from a catalog view) into an SQLDA, where the size of the sqldata field
was allocated on the basis of the sqllen field from a DESCRIBE of the
SELECT. This will result in the correct (untruncated) result being returned
to the application, even though the size of the table or column names may
have increased. If other application logic operates on the assumption that
column names are limited to 18 bytes, longer names that are returned may
be handled in an unexpected way; for example, the display of longer
column names may be truncated at 18 bytes.

v Since the SQLCA token field (sqlerrmc) is limited to 70 bytes, existing
applications that attempt to insert a row into a table may be affected. In
response to error SQL0204N, such applications determine the name of the
table from the SQLCA sqlerrmc field, and then perform some operations
based on that object name. With earlier versions of DB2, the table or schema
identifier limit guaranteed that the entire table name would be included in
the SQLCA. This is not the case in Version 6.

v An application using a back-level API will only get the first 18 bytes of a
table name.

v Existing CLI and ODBC applications that use the schema functions (such as
SQLTables(), or SQLColumns(), and others) will be affected when
connecting to a server with support for greater than 18-byte names.
Although there will be truncation warnings, the application may not check
for this warning, and may proceed with a truncated name.

Resolution: The best way to resolve problems of this type is to recode the
application to handle longer table and column names. Otherwise, ensure that
these applications are not run against Version 6 databases that use greater
than 18-byte names.

PC/IXF Format Changes in DB2 Universal Database Version 6

WIN UNIX OS/2

Change: DB2 Universal Database Version 6 supports 128-byte table, view,
and alias names, and 30-byte column names. Previous support was for 18-byte
names for each of these entities.

376 Administration Guide: Planning

Symptom: A DB2 Universal Database Version 5 client cannot import a
PC/IXF file that was exported by a DB2 Universal Database Version 6 client
(error SQL3059N). A PC/IXF file (exported from a DB2 Universal Database
Version 6 client) cannot be loaded into a DB2 Universal Database Version 5
database (error SQL3059N).

Resolution: Use compatible versions of DB2 Universal Database when
importing or loading PC/IXF data.

SQLNAME in a Non-doubled SQLVAR in DB2 Universal Database Version
6

WIN UNIX OS/2

Change: DB2 Universal Database Version 6 supports 30-byte column names.
The former support was for 18-byte names. In Version 5, the documented
behavior was that ″0xFF″ is placed in the 30th byte of an SQLNAME field for
a non-doubled SQLVAR; for system-generated names and for user-specified
column names specified in an ″AS″ clause, ″0x00″ is also placed in the 30th
byte.

In Version 6, ″0xFF″ is returned in the 30th byte only if the name is
system-generated.

Symptom: Any applications that rely on the 30th byte of the SQLNAME
field to determine whether it is a user-specified column name or a
system-generated name may receive unexpected logic checks if the
user-specifed column name is 30 characters long. This should be a rare
occurrence.

Resolution: These applications should be modified to only check for ″0xFF″
in the 30th byte of the SQLNAME field if the length of that field is less than
30. In this case, the name is user-generated.

Obsolete DB2 CLI/ODBC Configuration Keywords in DB2 Universal
Database Version 6

WIN

Change: When migrating to a new version of DB2 UDB, you can change the
behavior of the DB2 CLI/ODBC driver by specifying a set of optional
keywords in the db2cli.ini file.

In Version 6, the TRANSLATEDLL and TRANSLATEOPTION keywords
became obsolete.

Appendix D. Incompatibilities Between Releases 377

Symptom: These keywords will be ignored if they still exist. You may notice
behavioral changes based on the removal of these settings.

Resolution: You will need to review the new list of valid parameters to
decide what the appropriate keywords and settings are for your environment.
For information about these keywords, refer to the CLI Guide and Reference.

Event Monitor Output Stream Format in DB2 Universal Database Version
6

WIN UNIX OS/2

Change: Event monitor output streams have no version control. As a result,
adding support for greater than 18-byte table names requires moving to an
output stream format.

Symptom: Applications that parse the event monitor output streams will no
longer work properly.

Resolution: There are two options:
v Update the application to use the new data stream.
v Set the registry variable

DB2OLDEVMON=evmonname1,evmonname2,...

where evmonname is the name of the event monitor that you want written in
the old data format. Note that any new fields in the event monitor will not
be accessible under the old data format.

SQL

DATALINK Columns in DB2 Universal Database Version 6

UNIX

Change: DATALINK values inserted under DB2 Universal Database Version
6 will require an extra four bytes of space in the column value descriptor.

Symptom: When DATALINK columns created in Version 5.2 are updated, an
additional four bytes are required on the data page to store the new column
value. As a result, there may not be enough space in the data page to
complete the update, and it may have to be moved to a new page. This could
cause the update to run out of space.

Resolution: You will need to add more space on your system to allow for
updates.

378 Administration Guide: Planning

SYSFUN String Function Signatures in DB2 Universal Database Version 6

WIN UNIX OS/2

Change: A number of string functions in the SYSFUN schema now have
improved versions defined in the SYSIBM schema (built-in functions). The
function names are LCASE, LTRIM, RTRIM, and UCASE.

Symptom: When preparing statements or creating views, the returned data
type from any of these functions may be different in Version 6. This occurs
because the built-in functions (under the SYSIBM schema) are usually
resolved before functions in the SYSFUN schema are resolved.

Resolution: No action is required. The built-in function is usually preferred
over the function in the SYSFUN schema. The previous version behavior can
be restored by switching the SQL path (so that SYSFUN precedes SYSIBM),
but performance will be degraded. The previous version function can also be
invoked by qualifying the function name with the schema name SYSFUN.

Migrated packages, views, summary tables, triggers, and constraints that
reference these functions continue to use the version from the SYSFUN
schema, unless explicit action is taken, such as explicitly binding the package
or recreating the view, summary table, trigger, or constraint.

SYSTABLE Column Change With New Integrity State in DB2 Universal
Database Version 6

WIN UNIX OS/2

Change: The ″U″ states in the CONST_CHECKED column of
SYSCAT.TABLES changes differently when a SET INTEGRITY ... OFF
statement is run.

Symptom: Prior to Version 6, any ″U″ state in the CONST_CHECKED
column changed to an ″N″ state when a SET INTEGRITY ... OFF statement
was run. The ″U″ state now changes to a ″W″ state.

Resolution: No action is required. The new ″W″ state in the
CONST_CHECKED column is used to indicate that the constraints type was
previously checked by the user, and that some data in the table may need to
be checked for integrity.

The ″N″ state does not clarify whether there exists any old data that has not
yet been verified by the database manager. On a subsequent SET INTEGRITY
... IMMEDIATE CHECKED INCREMENTAL statement, the database manager
must return an error, because data integrity cannot be guaranteed if only new

Appendix D. Incompatibilities Between Releases 379

changes have been checked. On the other hand, the ″W″ state can be changed
back to the ″U″ state (if the INCREMENTAL option is specified) to indicate
that the user is still responsible for the integrity of data in the table. If the
INCREMENTAL option is not specified, the database manager will choose full
processing, change the ″W″ state to a ″Y″ state, and assume responsibility for
maintaining data integrity.

Database Security and Tuning

Creating Databases Using Clients in DB2 Universal Database Version 6

WIN UNIX OS/2

Change: The method used by clients to create a database.

Symptom: Using a back-level client to create a database will result in errors.

Resolution: When using a client to create a database, ensure that the client
and the server are running the same level of DB2 code.

SELECT Privilege Required on Hierarchy in DB2 Universal Database
Version 6

WIN 32-bit UNIX OS/2

Change: Specification of the ONLY keyword (for a table) now requires that
the user have SELECT privilege on all subtables of the specified typed table.
Similarly, specification of the ONLY keyword (for a view) now requires that
the user have SELECT privilege on all subviews of the specified typed table.
Previous versions of DB2 only required SELECT privilege on the specified
table or view.

Symptom: There are two possible symptoms:
v An authorization error (SQLCODE -551, SQLSTATE 42501) occurs when

rebinding a package containing an SQL statement that specifies the ONLY
keyword in a FROM clause, if the authorization ID under which the
package was bound lacks the SELECT privilege on the subtables of the
named typed table (or view).

v If the definition of a view or trigger contains the ONLY keyword in a
FROM clause, the view or trigger will continue to work normally. However,
the definition of the view or trigger can no longer be used to create a new
view or trigger, unless the creator holds the SELECT privilege on all of the
subtables of the named table (or view).

380 Administration Guide: Planning

Resolution: The authorization ID that needs to rebind a package, or to create
a new view or trigger, should be granted SELECT privilege on all subtables
(and subviews) of the table (or view) specified following the ONLY keyword.

Obsolete Profile Registry and Environment Variables in DB2 Universal
Database Version 6

WIN UNIX OS/2

Change: The following profile registry or environment variables are obsolete:
v DB2_VECTOR

Resolution: These variables are no longer needed.

Utilities and Tools

Current Explain Mode in DB2 Universal Database Version 6

WIN UNIX OS/2

Change: The type of the ″CURRENT EXPLAIN MODE″ special register has
changed from CHAR(8) to VARCHAR(254).

Symptom: If the application assumes that the type is still CHAR(8), the value
may be truncated from 254 to 8 bytes.

Resolution: Redefine the type of all host variables that read the special
register, from CHAR(8) to VARCHAR(254).

This change is required to accommodate two new values for the ″CURRENT
EXPLAIN MODE″ special register. These new values are ″EVALUATE
INDEXES″ and ″RECOMMEND INDEXES″.

The USING and SORT BUFFER Parameters in DB2 Universal Database
Version 6

WIN UNIX OS/2

Change: As of Version 6, the USING and SORT BUFFER parameters of the
LOAD command are no longer supported. These parameters are ignored.

Symptom: A warning message is returned, stating that the USING and SORT
BUFFER parameters are no longer supported, and will be ignored by the load
utility.

Appendix D. Incompatibilities Between Releases 381

Resolution: Ignore the warning message. For additional information, refer to
the Data Movement Utilities Guide and Reference.

Connectivity and Coexistence

Replace RUMBA with PCOMM in DB2 Universal Database Version 6

WIN

Change: In Version 6, RUMBA is replaced by PCOMM on Windows NT,
Windows 98, and Windows 95 (but not on Windows 3.1).

Symptom: None.

Resolution: None.

Configuration Parameters

Obsolete Database Configuration Parameters

WIN UNIX OS/2

Change: The following database configuration parameters are obsolete:
v DL_NUM_BACKUP (replaced by NUM_DB_BACKUP database

configuration parameter)

Resolution: Remove all references to these parameters from your
applications.

382 Administration Guide: Planning

Appendix E. National Language Support (NLS)

This section contains information about the national language support (NLS)
provided by DB2, including information about countries, languages, and code
pages (code sets) supported, and how to configure and use DB2 NLS features
in your databases and applications.

Country Code and Code Page Support

Table 32 on page 384 shows the languages and code sets supported by the
database servers, and how these values are mapped to country code and code
page values that are used by the database manager.

The following is an explanation of each column in the table:
v Code Page shows the IBM-defined code page as mapped from the

operating system code set.
v Group shows whether a code page is single-byte (″S″) or multi-byte (″D″).

The ″-n″ is a number used to create a letter-number combination. Matching
combinations show where connection and conversion is allowed by DB2.
For example, all ″S-1″ groups can work together.

v Code Set shows the code set associated with the supported language. The
code set is mapped to the DB2 code page.

v Tr. shows the two letter territory identifier.
v Country Code shows the country code that is used by the database

manager internally to provide country-specific support.
v Locale shows the locale values supported by the database manager.
v OS shows the operating system that supports the languages and code sets.
v Country Name shows the name of the country or countries.

© Copyright IBM Corp. 1993, 2000 383

Table 32. Supported Languages and Code Sets

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

437 S-1 IBM-437 AL 355 - OS2 Albania
850 S-1 IBM-850 AL 355 - OS2 Albania
819 S-1 ISO8859-1 AL 355 sq_AL AIX Albania
850 S-1 IBM-850 AL 355 Sq_AL AIX Albania
819 S-1 iso88591 AL 355 - HP Albania
1051 S-1 roman8 AL 355 - HP Albania
819 S-1 ISO8859-1 AL 355 - Sun Albania
1252 S-1 1252 AL 355 - WIN Albania
1275 S-1 1275 AL 355 - Mac Albania
37 S-1 IBM-37 AL 355 - HOST Albania
1140 S-1 IBM-1140 AL 355 - HOST Albania

864 S-6 IBM-864 AA 785 - OS2 Arabic Countries
1046 S-6 IBM-1046 AA 785 Ar_AA AIX Arabic Countries
1089 S-6 ISO8859-6 AA 785 ar_AA AIX Arabic Countries
1089 S-6 iso88596 AA 785 ar_SA.iso88596 HP Arabic Countries
1256 S-6 1256 AA 785 - WIN Arabic Countries
420 S-6 IBM-420 AA 785 - HOST Arabic Countries

437 S-1 IBM-437 AU 61 - OS2 Australia
850 S-1 IBM-850 AU 61 - OS2 Australia
819 S-1 ISO8859-1 AU 61 en_AU AIX Australia
850 S-1 IBM-850 AU 61 En_AU AIX Australia
819 S-1 iso88591 AU 61 - HP Australia
1051 S-1 roman8 AU 61 - HP Australia
819 S-1 ISO8859-1 AU 61 en_AU Sun Australia
819 S-1 ISO8859-1 AU 61 en_AU SCO Australia
1252 S-1 1252 AU 61 - WIN Australia
1275 S-1 1275 AU 61 - Mac Australia
37 S-1 IBM-37 AU 61 - HOST Australia
1140 S-1 IBM-1140 AU 61 - HOST Australia

437 S-1 IBM-437 AT 43 - OS2 Austria
850 S-1 IBM-850 AT 43 - OS2 Austria
819 S-1 ISO8859-1 AT 43 ge_AT AIX Austria
850 S-1 IBM-850 AT 43 Ge_AT AIX Austria
819 S-1 iso88591 AT 43 - HP Austria
1051 S-1 roman8 AT 43 - HP Austria
819 S-1 ISO8859-1 AT 43 de_AT SCO Austria
819 S-1 ISO-8859-1 AT 43 de_AT Linux Austria
819 S-1 ISO8859-1 AT 43 de_AT Sun Austria
1252 S-1 1252 AT 43 - WIN Austria
1275 S-1 1275 AT 43 - Mac Austria
37 S-1 IBM-37 AT 43 - HOST Austria
1140 S-1 IBM-1140 AT 43 - HOST Austria

384 Administration Guide: Planning

Table 32. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

915 S-5 IS08859-5 BY 375 - OS2 Belarus
915 S-5 ISO8859-5 BY 375 be_BY AIX Belarus
1131 S-5 IBM-1131 BY 375 - OS2 Belarus
1251 S-5 1251 BY 375 - WIN Belarus
1283 S-5 1283 BY 375 - Mac Belarus
1025 S-5 IBM-1025 BY 375 - HOST Belarus

437 S-1 IBM-437 BE 32 - OS2 Belgium
850 S-1 IBM-850 BE 32 - OS2 Belgium
819 S-1 ISO8859-1 BE 32 nl_BE AIX Belgium
850 S-1 IBM-850 BE 32 Nl_BE AIX Belgium
819 S-1 iso88591 BE 32 - HP Belgium
819 S-1 ISO8859-1 BE 32 fr_BE SCO Belgium
819 S-1 ISO8859-1 BE 32 nl_BE SCO Belgium
819 S-1 ISO-8859-1 BE 32 nl_BE Linux Belgium
819 S-1 ISO8859-1 BE 32 nl_BE Sun Belgium
1252 S-1 1252 BE 32 - WIN Belgium
1275 S-1 1275 BE 32 - Mac Belgium
500 S-1 IBM-500 BE 32 - HOST Belgium
1148 S-1 IBM-1148 BE 32 - HOST Belgium

855 S-5 IBM-855 BG 359 - OS2 Bulgaria
915 S-5 ISO8859-5 BG 359 - OS2 Bulgaria
915 S-5 ISO8859-5 BG 359 bg_BG AIX Bulgaria
915 S-5 iso88595 BG 359 bg_BG.iso88595 HP Bulgaria
1251 S-5 1251 BG 359 - WIN Bulgaria
1283 S-5 1283 BG 359 - Mac Bulgaria
1025 S-5 IBM-1025 BG 359 - HOST Bulgaria

850 S-1 IBM-850 BR 55 - OS2 Brazil
850 S-1 IBM-850 BR 55 - AIX Brazil
819 S-1 ISO8859-1 BR 55 pt_BR AIX Brazil
819 S-1 ISO8859-1 BR 55 - HP Brazil
819 S-1 ISO8859-1 BR 55 pt_BR SCO Brazil
819 S-1 ISO8859-1 BR 55 pt_BR Sun Brazil
819 S-1 ISO-8859-1 BR 55 pt_BR Linux Brazil
1252 S-1 1252 BR 55 - WIN Brazil
37 S-1 IBM-37 BR 55 - HOST Brazil
1140 S-1 IBM-1140 BR 55 - HOST Brazil

Appendix E. National Language Support (NLS) 385

Table 32. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

850 S-1 IBM-850 CA 1 - OS2 Canada
850 S-1 IBM-850 CA 1 En_CA AIX Canada
819 S-1 ISO8859-1 CA 1 en_CA AIX Canada
819 S-1 iso88591 CA 1 fr_CA.iso88591 HP Canada
1051 S-1 roman8 CA 1 fr_CA.roman8 HP Canada
819 S-1 ISO8859-1 CA 1 en_CA SCO Canada
819 S-1 ISO8859-1 CA 1 fr_CA SCO Canada
819 S-1 ISO8859-1 CA 1 en_CA Sun Canada
819 S-1 ISO8859-1 CA 1 en_CA Sun Canada
819 S-1 ISO-8859-1 CA 1 en_CA Linux Canada
1252 S-1 1252 CA 1 - WIN Canada
1275 S-1 1275 CA 1 - Mac Canada
37 S-1 IBM-37 CA 1 - HOST Canada
1140 S-1 IBM-1140 CA 1 - HOST Canada
863 S-1 IBM-863 CA 2 - OS2 Canada (French)

1381 D-4 IBM-1381 CN 86 - OS2 China (PRC)
1386 D-4 GBK CN 86 - OS2 China (PRC)
1383 D-4 IBM-eucCN CN 86 zh_CN AIX China (PRC)
1386 D-4 GBK CN 86 Zh_CN.GBK AIX China (PRC)
1383 D-4 hp15CN CN 86 zh_CN.hp15CN HP China (PRC)
1383 D-4 eucCN CN 86 zh_CN SCO China (PRC)
1383 D-4 eucCN CN 86 zh_CN.eucCN SCO China (PRC)
1383 D-4 gb2312 CN 86 zh Sun China (PRC)
1381 D-4 IBM-1381 CN 86 - WIN China (PRC)
1386 D-4 GBK CN 86 - WIN China (PRC)
935 D-4 IBM-935 CN 86 - HOST China (PRC)
1388 D-4 IBM-1388 CN 86 - HOST China (PRC)

852 S-2 IBM-852 HR 385 - OS2 Croatia
912 S-2 ISO8859-2 HR 385 hr_HR AIX Croatia
912 S-2 iso88592 HR 385 hr_HR.iso88592 HP Croatia
912 S-2 ISO8859-2 HR 385 hr_HR.ISO8859-2 SCO Croatia
912 S-2 ISO-8859-2 HR 385 hr_HR Linux Croatia
1250 S-2 1250 HR 385 - WIN Croatia
1282 S-2 1282 HR 385 - Mac Croatia
870 S-2 IBM-870 HR 385 - HOST Croatia

852 S-2 IBM-852 CZ 421 - OS2 Czech Republic
912 S-2 ISO8859-2 CZ 421 cs_CZ AIX Czech Republic
912 S-2 iso88592 CZ 421 cs_CZ.iso88592 HP Czech Republic
912 S-2 ISO8859-2 CZ 421 cs_CZ.ISO8859-2 SCO Czech Republic
912 S-2 ISO-8859-2 CZ 421 cs_CZ Linux Czech Republic
1250 S-2 1250 CZ 421 - WIN Czech Republic
1282 S-2 1282 CZ 421 - Mac Czech Republic
870 S-2 IBM-870 CZ 421 - HOST Czech Republic

386 Administration Guide: Planning

Table 32. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

850 S-1 IBM-850 DK 45 - OS2 Denmark
819 S-1 ISO8859-1 DK 45 da_DK AIX Denmark
850 S-1 IBM-850 DK 45 Da_DK AIX Denmark
819 S-1 iso88591 DK 45 da_DK.iso88591 HP Denmark
1051 S-1 roman8 DK 45 da_DK.roman8 HP Denmark
819 S-1 ISO8859-1 DK 45 da SCO Denmark
819 S-1 ISO8859-1 DK 45 da_DA SCO Denmark
819 S-1 ISO8859-1 DK 45 da_DK SCO Denmark
819 S-1 ISO8859-1 DK 45 da Sun Denmark
819 S-1 ISO8859-1 DK 45 da Sun Denmark
819 S-1 ISO-8859-1 DK 45 da_DK Linux Denmark
1252 S-1 1252 DK 45 - WIN Denmark
1275 S-1 1275 DK 45 - Mac Denmark
277 S-1 IBM-277 DK 45 - HOST Denmark
1142 S-1 IBM-1142 DK 45 - HOST Denamrk

922 S-10 IBM-922 EE 372 - OS2 Estonia
922 S-10 IBM-922 EE 372 Et_EE AIX Estonia
922 S-10 IBM-922 EE 372 - WIN Estonia
1122 S-10 IBM-1122 EE 372 - HOST Estonia

437 S-1 IBM-437 FI 358 - OS2 Finland
850 S-1 IBM-850 FI 358 - OS2 Finland
819 S-1 ISO8859-1 FI 358 fi_FI AIX Finland
850 S-1 IBM-850 FI 358 Fi_FI AIX Finland
819 S-1 iso88591 FI 358 fi_FI.iso88591 HP Finland
819 S-1 ISO8859-1 FI 358 fi SCO Finland
819 S-1 ISO8859-1 FI 358 fi_FI SCO Finland
819 S-1 ISO8859-1 FI 358 sv_FI SCO Finland
819 S-1 ISO8859-1 FI 358 - Sun Finland
819 S-1 ISO-8859-1 FI 358 fi_FI Linux Finland
1051 S-1 roman8 FI 358 - HP Finland
1252 S-1 1252 FI 358 - WIN Finland
1275 S-1 1275 FI 358 - Mac Finland
278 S-1 IBM-278 FI 358 - HOST Finland
1143 S-1 IBM-1143 FI 358 - HOST Finland

855 S-5 IBM-855 MK 389 - OS2 FYR Macedonia
915 S-5 ISO8859-5 MK 389 - OS2 FYR Macedonia
915 S-5 ISO8859-5 MK 389 mk_MK AIX FYR Macedonia
915 S-5 iso88595 MK 389 - HP FYR Macedonia
1251 S-5 1251 MK 389 - WIN FYR Macedonia
1283 S-5 1283 MK 389 - Mac FYR Macedonia
1025 S-5 IBM-1025 MK 389 - HOST FYR Macedonia

Appendix E. National Language Support (NLS) 387

Table 32. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

437 S-1 IBM-437 FR 33 - OS2 France
850 S-1 IBM-850 FR 33 - OS2 France
819 S-1 ISO8859-1 FR 33 fr_FR AIX France
850 S-1 IBM-850 FR 33 Fr_FR AIX France
819 S-1 iso88591 FR 33 fr_FR.iso88591 HP France
1051 S-1 roman8 FR 33 fr_FR.roman8 HP France
819 S-1 ISO8859-1 FR 33 fr Sun France
819 S-1 ISO8859-1 FR 33 fr SCO France
819 S-1 ISO8859-1 FR 33 fr_FR SCO France
819 S-1 ISO-8859-1 FR 33 fr_FR Linux France
1252 S-1 1252 FR 33 - WIN France
1275 S-1 1275 FR 33 - Mac France
297 S-1 IBM-297 FR 33 - HOST France
1147 S-1 IBM-1147 FR 33 - HOST France

437 S-1 IBM-437 DE 49 - OS2 Germany
850 S-1 IBM-850 DE 49 - OS2 Germany
819 S-1 ISO8859-1 DE 49 de_DE AIX Germany
850 S-1 IBM-850 DE 49 De_DE AIX Germany
819 S-1 iso88591 DE 49 de_DE.iso88591 HP Germany
1051 S-1 roman8 DE 49 de_DE.roman8 HP Germany
819 S-1 ISO8859-1 DE 49 de SCO Germany
819 S-1 ISO8859-1 DE 49 de_DE SCO Germany
819 S-1 ISO8859-1 DE 49 de Sun Germany
819 S-1 ISO-8859-1 DE 49 de_DE Linux Germany
1252 S-1 1252 DE 49 - WIN Germany
1275 S-1 1275 DE 49 - Mac Germany
273 S-1 IBM-273 DE 49 - HOST Germany
1141 S-1 IBM-1141 DE 49 - HOST Germany
819 S-1 ISO8859-1 DE 49 De_DE.88591 SINIX Germany
819 S-1 ISO8859-1 DE 49 De_DE.6937 SINIX Germany

813 S-7 ISO8859-7 GR 30 - OS2 Greece
869 S-7 IBM-869 GR 30 - OS2 Greece
813 S-7 ISO8859-7 GR 30 el_GR AIX Greece
813 S-7 iso88597 GR 30 el_GR.iso88597 HP Greece
813 S-7 ISO8859-7 GR 30 el_GR.ISO8859-7 SCO Greece
813 S-7 ISO-8859-7 GR 30 gr_GR Linux Greece
737 S-7 737 GR 30 - WIN Greece
1253 S-7 1253 GR 30 - WIN Greece
1280 S-7 1280 GR 30 - Mac Greece
423 S-7 IBM-423 GR 30 - HOST Greece
875 S-7 IBM-875 GR 30 - HOST Greece

388 Administration Guide: Planning

Table 32. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

852 S-2 IBM-852 HU 36 - OS2 Hungary
912 S-2 ISO8859-2 HU 36 hu_HU AIX Hungary
912 S-2 iso88592 HU 36 hu_HU.iso88592 HP Hungary
912 S-2 ISO8859-2 HU 36 hu_HU.ISO8859-2 SCO Hungary
912 S-2 ISO-8859-2 HU 36 hu_HU Linux Hungary
1250 S-2 1250 HU 36 - WIN Hungary
1282 S-2 1282 HU 36 - Mac Hungary
870 S-2 IBM-870 HU 36 - HOST Hungary

850 S-1 IBM-850 IS 354 - OS2 Iceland
819 S-1 ISO8859-1 IS 354 is_IS AIX Iceland
850 S-1 IBM-850 IS 354 Is_IS AIX Iceland
819 S-1 iso88591 IS 354 is_IS.iso88591 HP Iceland
1051 S-1 roman8 IS 354 is_IS.roman8 HP Iceland
819 S-1 ISO8859-1 IS 354 is SCO Iceland
819 S-1 ISO8859-1 IS 354 is_IS SCO Iceland
819 S-1 ISO8859-1 IS 354 - Sun Iceland
819 S-1 ISO-8859-1 IS 354 is_IS Linux Iceland
1252 S-1 1252 IS 354 - WIN Iceland
1275 S-1 1275 IS 354 - Mac Iceland
871 S-1 IBM-871 IS 354 - HOST Iceland
1149 S-1 IBM-1149 IS 354 - HOST Iceland

437 S-1 IBM-437 IE 353 - OS2 Ireland
850 S-1 IBM-850 IE 353 - OS2 Ireland
819 S-1 ISO8859-1 IE 353 en_IE AIX Ireland
850 S-1 IBM-850 IE 353 En_IE AIX Ireland
819 S-1 iso88591 IE 353 - HP Ireland
1051 S-1 roman8 IE 353 - HP Ireland
819 S-1 ISO8859-1 IE 353 en_IE Sun Ireland
819 S-1 ISO8859-1 IE 353 en_IE.ISO8859-1 SCO Ireland
819 S-1 ISO-8859-1 IE 353 en_IE Linux Ireland
1252 S-1 1252 IE 353 - WIN Ireland
1275 S-1 1275 IE 353 - Mac Ireland
285 S-1 IBM-285 IE 353 - HOST Ireland
1146 S-1 IBM-1146 IE 353 - HOST Ireland

806 S-12 IBM-806 IN 91 hi_IN - India
1137 S-12 IBM-1137 IN 91 - HOST India

862 S-8 IBM-862 IL 972 - OS2 Israel
916 S-8 ISO8859-8 IL 972 iw_IL AIX Israel
916 S-8 ISO-8859-8 IL 972 iw_IL Linux Israel
1255 S-8 1255 IL 972 - WIN Israel
424 S-8 IBM-424 IL 972 - HOST Israel

Appendix E. National Language Support (NLS) 389

Table 32. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

437 S-1 IBM-437 IT 39 - OS2 Italy
850 S-1 IBM-850 IT 39 - OS2 Italy
819 S-1 ISO8859-1 IT 39 it_IT AIX Italy
850 S-1 IBM-850 IT 39 It_IT AIX Italy
819 S-1 iso88591 IT 39 it_IT.iso88591 HP Italy
1051 S-1 roman8 IT 39 it_IT.roman8 HP Italy
819 S-1 ISO8859-1 IT 39 it SCO Italy
819 S-1 ISO8859-1 IT 39 it_IT SCO Italy
819 S-1 ISO8859-1 IT 39 it Sun Italy
819 S-1 ISO-8859-1 IT 39 it_IT Linux Italy
1252 S-1 1252 IT 39 - WIN Italy
1275 S-1 1275 IT 39 - Mac Italy
280 S-1 IBM-280 IT 39 - HOST Italy
1144 S-1 IBM-1144 IT 39 - HOST Italy

932 D-1 IBM-932 JP 81 - OS2 Japan
942 D-1 IBM-942 JP 81 - OS2 Japan
943 D-1 IBM-943 JP 81 - OS2 Japan
954 D-1 IBM-eucJP JP 81 ja_JP AIX Japan
932 D-1 IBM-932 JP 81 Ja_JP AIX Japan
954 D-1 eucJP JP 81 ja_JP.eucJP HP Japan
5039 D-1 SJIS JP 81 ja_JP.SJIS HP Japan
954 D-1 eucJP JP 81 ja SCO Japan
954 D-1 eucJP JP 81 ja_JP SCO Japan
954 D-1 eucJP JP 81 ja_JP.EUC SCO Japan
954 D-1 eucJP JP 81 ja_JP.eucJP SCO Japan
954 D-1 eucJP JP 81 ja Sun Japan
954 D-1 EUC-JP JP 81 ja_JP Linux Japan
943 D-1 IBM-943 JP 81 - WIN Japan
930 D-1 IBM-930 JP 81 - HOST Japan
939 D-1 IBM-939 JP 81 - HOST Japan
5026 D-1 IBM-5026 JP 81 - HOST Japan
5035 D-1 IBM-5035 JP 81 - HOST Japan
1390 D-1 JP 81 - HOST Japan
1399 D-1 JP 81 - HOST Japan

949 D-3 IBM-949 KR 82 - OS2 Korea, South
970 D-3 IBM-eucKR KR 82 ko_KR AIX Korea, South
970 D-3 eucKR KR 82 ko_KR.eucKR HP Korea, South
970 D-3 eucKR KR 82 ko_KR.eucKR SGI Korea, South
970 D-3 5601 KR 82 ko Sun Korea, South
1363 D-3 1363 KR 82 - WIN Korea, South
933 D-3 IBM-933 KR 82 - HOST Korea, South
1364 D-3 IBM-1364 KR 82 - HOST Korea, South

390 Administration Guide: Planning

Table 32. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

437 S-1 IBM-437 Lat 3 - OS2 Latin America
850 S-1 IBM-850 Lat 3 - OS2 Latin America
819 S-1 ISO8859-1 Lat 3 - AIX Latin America
850 S-1 IBM-850 Lat 3 - AIX Latin America
819 S-1 iso88591 Lat 3 - HP Latin America
819 S-1 ISO8859-1 Lat 3 - Sun Latin America
819 S-1 ISO-8859-1 Lat 3 - Linux Latin America
1051 S-1 roman8 Lat 3 - HP Latin America
1252 S-1 1252 Lat 3 - WIN Latin America
1275 S-1 1275 Lat 3 - Mac Latin America
284 S-1 IBM-284 Lat 3 - HOST Latin America
1145 S-1 IBM-1145 Lat 3 - HOST Latin America

921 S-10 IBM-921 LV 371 - OS2 Latvia
921 S-10 IBM-921 LV 371 Lv_LV AIX Latvia
921 S-10 IBM-921 LV 371 - WIN Latvia
1112 S-10 IBM-1112 LV 371 - HOST Latvia

921 S-10 IBM-921 LT 370 - OS2 Lithuania
921 S-10 IBM-921 LT 370 Lt_LT AIX Lithuania
921 S-10 IBM-921 LV 370 - WIN Lithuania
1112 S-10 IBM-1112 LV 370 - HOST Lithuania

437 S-1 IBM-437 NL 31 - OS2 Netherlands
850 S-1 IBM-850 NL 31 - OS2 Netherlands
819 S-1 ISO8859-1 NL 31 nl_NL AIX Netherlands
850 S-1 IBM-850 NL 31 Nl_NL AIX Netherlands
819 S-1 iso88591 NL 31 nl_NL.iso88591 HP Netherlands
1051 S-1 roman8 NL 31 nl_NL.roman8 HP Netherlands
819 S-1 ISO8859-1 NL 31 nl SCO Netherlands
819 S-1 ISO8859-1 NL 31 nl_NL SCO Netherlands
819 S-1 ISO8859-1 NL 31 nl Sun Netherlands
819 S-1 ISO-8859-1 NL 31 nl_NL Linux Netherlands
1252 S-1 1252 NL 31 - WIN Netherlands
1275 S-1 1275 NL 31 - Mac Netherlands
37 S-1 IBM-37 NL 31 - HOST Netherlands
1140 S-1 IBM-1140 NL 31 - HOST Netherlands

850 S-1 IBM-850 NZ 64 - OS2 New Zealand
850 S-1 IBM-850 NZ 64 En_NZ AIX New Zealand
819 S-1 ISO8859-1 NZ 64 en_NZ AIX New Zealand
819 S-1 ISO8859-1 NZ 64 - HP New Zealand
819 S-1 ISO8859-1 NZ 64 en_NZ SCO New Zealand
819 S-1 ISO8859-1 NZ 64 en_NZ Sun New Zealand
1252 S-1 1252 NZ 64 - WIN New Zealand
37 S-1 IBM-37 NZ 64 - HOST New Zealand
1140 S-1 IBM-1140 NZ 64 - HOST New Zealand

Appendix E. National Language Support (NLS) 391

Table 32. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

850 S-1 IBM-850 NO 47 - OS2 Norway
819 S-1 ISO8859-1 NO 47 no_NO AIX Norway
850 S-1 IBM-850 NO 47 No_NO AIX Norway
819 S-1 iso88591 NO 47 no_NO.iso88591 HP Norway
1051 S-1 roman8 NO 47 no_NO.roman8 HP Norway
819 S-1 ISO8859-1 NO 47 no SCO Norway
819 S-1 ISO8859-1 NO 47 no_NO SCO Norway
819 S-1 ISO8859-1 NO 47 no Sun Norway
819 S-1 ISO-8859-1 NO 47 no_NO Linux Norway
1252 S-1 1252 NO 47 - WIN Norway
1275 S-1 1275 NO 47 - Mac Norway
277 S-1 IBM-277 NO 47 - HOST Norway
1142 S-1 IBM-1142 NO 47 - HOST Norway

852 S-2 IBM-852 PL 48 - OS2 Poland
912 S-2 ISO8859-2 PL 48 pl_PL AIX Poland
912 S-2 iso88592 PL 48 pl_PL.iso88592 HP Poland
912 S-2 ISO8859-2 PL 48 pl_PL.ISO8859-2 SCO Poland
912 S-2 ISO-8859-2 PL 48 pl_PL Linux Poland
1250 S-2 1250 PL 48 - WIN Poland
1282 S-2 1282 PL 48 - Mac Poland
870 S-2 IBM-870 PL 48 - HOST Poland

860 S-1 IBM-860 PT 351 - OS2 Portugal
850 S-1 IBM-850 PT 351 - OS2 Portugal
819 S-1 ISO8859-1 PT 351 pt_PT AIX Portugal
850 S-1 IBM-850 PT 351 Pt_PT AIX Portugal
819 S-1 iso88591 PT 351 pt_PT.iso88591 HP Portugal
1051 S-1 roman8 PT 351 pt_PT.roman8 HP Portugal
819 S-1 ISO8859-1 PT 351 pt SCO Portugal
819 S-1 ISO8859-1 PT 351 pt_PT SCO Portugal
819 S-1 ISO8859-1 PT 351 pt Sun Portugal
819 S-1 ISO-8859-1 PT 351 pt_PT Linux Portugal
1252 S-1 1252 PT 351 - WIN Portugal
1275 S-1 1275 PT 351 - Mac Portugal
37 S-1 IBM-37 PT 351 - HOST Portugal
1140 S-1 IBM-1140 PT 351 - HOST Portugal

852 S-2 IBM-852 RO 40 - OS2 Romania
912 S-2 ISO8859-2 RO 40 ro_RO AIX Romania
912 S-2 iso88592 RO 40 ro_RO.iso88592 HP Romania
912 S-2 ISO8859-2 RO 40 ro_RO.ISO8859-2 SCO Romania
912 S-2 ISO-8859-2 RO 40 ro_RO Linux Romania
1250 S-2 1250 RO 40 - WIN Romania
1282 S-2 1282 RO 40 - Mac Romania
870 S-2 IBM-870 RO 40 - HOST Romania

392 Administration Guide: Planning

Table 32. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

866 S-5 IBM-866 RU 7 - OS2 Russia
915 S-5 ISO8859-5 RU 7 - OS2 Russia
915 S-5 ISO8859-5 RU 7 ru_RU AIX Russia
915 S-5 iso88595 RU 7 ru_RU.iso88595 HP Russia
915 S-5 ISO8859-5 RU 7 ru_RU.ISO8859-5 SCO Russia
915 S-5 ISO-8859-5 RU 7 ru_RU Linux Russia
1251 S-5 1251 RU 7 - WIN Russia
1283 S-5 1283 RU 7 - Mac Russia
1025 S-5 IBM-1025 RU 7 - HOST Russia

855 S-5 IBM-855 SP 381 - OS2 Serbia/Montenegro
915 S-5 ISO8859-5 SP 381 - OS2 Serbia/Montenegro
915 S-5 ISO8859-5 SP 381 sr_SP AIX Serbia/Montenegro
915 S-5 iso88595 SP 381 - HP Serbia/Montenegro
1251 S-5 1251 SP 381 - WIN Serbia/Montenegro
1283 S-5 1283 SP 381 - Mac Serbia/Montenegro
1025 S-5 IBM-1025 SP 381 - HOST Serbia/Montenegro

852 S-2 IBM-852 SK 422 - OS2 Slovakia
912 S-2 ISO8859-2 SK 422 sk_SK AIX Slovakia
912 S-2 iso88592 SK 422 sk_SK.iso88592 HP Slovakia
912 S-2 ISO8859-2 SK 422 sk_SK.ISO8859-2 SCO Slovakia
1250 S-2 1250 SK 422 - WIN Slovakia
1282 S-2 1282 SK 422 - Mac Slovakia
870 S-2 IBM-870 SK 422 - HOST Slovakia

852 S-2 IBM-852 SI 386 - OS2 Slovenia
912 S-2 ISO8859-2 SI 386 sl_SI AIX Slovenia
912 S-2 iso88592 SI 386 sl_SI.iso88592 HP Slovenia
912 S-2 ISO8859-2 SI 386 sl_SI.ISO8859-2 SCO Slovenia
912 S-2 ISO-8859-2 SI 386 sl_SI Linux Slovenia
1250 S-2 1250 SI 386 - WIN Slovenia
1282 S-2 1282 SI 386 - Mac Slovenia
870 S-2 IBM-870 SI 386 - HOST Slovenia

437 S-1 IBM-437 ZA 27 - OS2 South Africa
850 S-1 IBM-850 ZA 27 - OS2 South Africa
819 S-1 ISO8859-1 ZA 27 en_ZA AIX South Africa
850 S-1 IBM-850 ZA 27 En_ZA AIX South Africa
819 S-1 iso88591 ZA 27 - HP South Africa
1051 S-1 roman8 ZA 27 - HP South Africa
819 S-1 ISO8859-1 ZA 27 - Sun South Africa
819 S-1 ISO8859-1 ZA 27 en_ZA.ISO8859-1 SCO South Africa
1252 S-1 1252 ZA 27 - WIN South Africa
1275 S-1 1275 ZA 27 - Mac South Africa
285 S-1 IBM-285 ZA 27 - HOST South Africa
1146 S-1 IBM-1146 ZA 27 - HOST South Africa

Appendix E. National Language Support (NLS) 393

Table 32. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

437 S-1 IBM-437 ES 34 - OS2 Spain
850 S-1 IBM-850 ES 34 - OS2 Spain
819 S-1 ISO8859-1 ES 34 es_ES AIX Spain
850 S-1 IBM-850 ES 34 Es_ES AIX Spain
819 S-1 iso88591 ES 34 es_ES.iso88591 HP Spain
1051 S-1 roman8 ES 34 es_ES.roman8 HP Spain
819 S-1 ISO8859-1 ES 34 es Sun Spain
819 S-1 ISO8859-1 ES 34 es SCO Spain
819 S-1 ISO8859-1 ES 34 es_ES SCO Spain
819 S-1 ISO-8859-1 ES 34 es_ES Linux Spain
1252 S-1 1252 ES 34 - WIN Spain
1275 S-1 1275 ES 34 - Mac Spain
284 S-1 IBM-284 ES 34 - HOST Spain
1145 S-1 IBM-1145 ES 34 - HOST Spain

437 S-1 IBM-437 SE 46 - OS2 Sweden
850 S-1 IBM-850 SE 46 - OS2 Sweden
819 S-1 ISO8859-1 SE 46 sv_SE AIX Sweden
850 S-1 IBM-850 SE 46 Sv_SE AIX Sweden
819 S-1 iso88591 SE 46 sv_SE.iso88591 HP Sweden
1051 S-1 roman8 SE 46 sv_SE.roman8 HP Sweden
819 S-1 ISO8859-1 SE 46 sv SCO Sweden
819 S-1 ISO8859-1 SE 46 sv_SE SCO Sweden
819 S-1 ISO8859-1 SE 46 sv Sun Sweden
819 S-1 ISO-8859-1 SE 46 sv_SE Linux Sweden
1252 S-1 1252 SE 46 - WIN Sweden
1275 S-1 1275 SE 46 - Mac Sweden
278 S-1 IBM-278 SE 46 - HOST Sweden
1143 S-1 IBM-1143 SE 46 - HOST Sweden

437 S-1 IBM-437 CH 41 - OS2 Switzerland
850 S-1 IBM-850 CH 41 - OS2 Switzerland
819 S-1 ISO8859-1 CH 41 de_CH AIX Switzerland
850 S-1 IBM-850 CH 41 De_CH AIX Switzerland
819 S-1 iso88591 CH 41 - HP Switzerland
1051 S-1 roman8 CH 41 - HP Switzerland
819 S-1 ISO8859-1 CH 41 de_CH SCO Switzerland
819 S-1 ISO8859-1 CH 41 fr_CH SCO Switzerland
819 S-1 ISO8859-1 CH 41 it_CH SCO Switzerland
819 S-1 ISO8859-1 CH 41 de_CH Sun Switzerland
819 S-1 ISO-8859-1 CH 41 de_CH Linux Switzerland
1252 S-1 1252 CH 41 - WIN Switzerland
1275 S-1 1275 CH 41 - Mac Switzerland
500 S-1 IBM-500 CH 41 - HOST Switzerland
1148 S-1 IBM-1148 CH 41 - HOST Switzerland

394 Administration Guide: Planning

Table 32. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

938 D-2 IBM-938 TW 88 - OS2 Taiwan
948 D-2 IBM-948 TW 88 - OS2 Taiwan
950 D-2 big5 TW 88 - OS2 Taiwan
950 D-2 big5 TW 88 Zh_TW AIX Taiwan
964 D-2 IBM-eucTW TW 88 zh_TW AIX Taiwan
950 D-2 big5 TW 88 zh_TW.big5 HP Taiwan
964 D-2 eucTW TW 88 zh_TW.eucTW HP Taiwan
950 D-2 big5 TW 88 big5 Sun Taiwan
964 D-2 cns11643 TW 88 zh_TW Sun Taiwan
950 D-2 big5 TW 88 - WIN Taiwan
937 D-2 IBM-937 TW 88 - HOST Taiwan

874 S-20 TIS620-1 TH 66 - OS2 Thailand
874 S-20 TIS620-1 TH 66 Th_TH AIX Thailand
874 S-20 tis620 TH 66 th_TH.tis620 HP Thailand
874 S-20 TIS620-1 TH 66 - WIN Thailand
838 S-20 IBM-838 TH 66 - HOST Thailand

857 S-9 IBM-857 TR 90 - OS2 Turkey
920 S-9 ISO8859-9 TR 90 tr_TR AIX Turkey
920 S-9 iso88599 TR 90 tr_TR.iso88599 HP Turkey
920 S-9 ISO8859-9 TR 90 tr_TR.ISO8859-9 SCO Turkey
920 S-9 ISO-8859-9 TR 90 tr_TR Linux Turkey
1254 S-9 1254 TR 90 - WIN Turkey
1281 S-9 1281 TR 90 - Mac Turkey
1026 S-9 IBM-1026 TR 90 - HOST Turkey

437 S-1 IBM-437 GB 44 - OS2 U.K.
850 S-1 IBM-850 GB 44 - OS2 U.K.
819 S-1 ISO8859-1 GB 44 en_GB AIX U.K.
850 S-1 IBM-850 GB 44 En_GB AIX U.K.
819 S-1 iso88591 GB 44 en_GB.iso88591 HP U.K.
1051 S-1 roman8 GB 44 en_GB.roman8 HP U.K.
819 S-1 ISO8859-1 GB 44 en_UK Sun U.K.
819 S-1 ISO8859-1 GB 44 en_GB SCO U.K.
819 S-1 ISO8859-1 GB 44 en SCO U.K.
819 S-1 ISO-8859-1 GB 44 en_GB Linux U.K.
1252 S-1 1252 GB 44 - WIN U.K.
1275 S-1 1275 GB 44 - Mac U.K.
285 S-1 IBM-285 GB 44 - HOST U.K.
1146 S-1 IBM-1146 GB 44 - HOST U.K.
819 S-1 88591 GB 44 En_GB.88591 SINIX U.K.
819 S-1 ISO8859-1 GB 44 En_GB.6937 SINIX U.K.

1125 S-5 IBM-1125 UA 380 - OS2 Ukraine
1124 S-5 IBM-1124 UA 380 uk_UA AIX Ukraine
1251 S-5 1251 UA 380 - WIN Ukraine
1123 S-5 IBM-1123 UA 380 - HOST Ukraine

Appendix E. National Language Support (NLS) 395

Table 32. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

437 S-1 IBM-437 US 1 - OS2 USA
850 S-1 IBM-850 US 1 - OS2 USA
819 S-1 ISO8859-1 US 1 en_US AIX USA
850 S-1 IBM-850 US 1 En_US AIX USA
819 S-1 iso88591 US 1 en_US.iso88591 HP USA
1051 S-1 roman8 US 1 en_US.roman8 HP USA
819 S-1 ISO8859-1 US 1 en_US Sun USA
819 S-1 ISO8859-1 US 1 en_US SGI USA
819 S-1 ISO8859-1 US 1 en_US SCO USA
819 S-1 ISO-8859-1 US 1 en_US Linux USA
1252 S-1 1252 US 1 - WIN USA
1275 S-1 1275 US 1 - Mac USA
37 S-1 IBM-37 US 1 - HOST USA
1140 S-1 IBM-1140 US 1 - HOST USA

1163 S-11 IBM-1163 VN 84 - OS2 Vietnam
1163 S-11 IBM-1163 VN 84 vi_VN AIX Vietnam
1258 S-11 1258 VN 84 - WIN Vietnam
1164 S-11 IBM-1164 VN 84 - HOST Vietnam

The following map to Arabic Countries (AA):
--

/* Arabic (Saudi Arabia) */
/* Arabic (Iraq) */
/* Arabic (Egypt) */
/* Arabic (Libya) */
/* Arabic (Algeria) */
/* Arabic (Morocco) */
/* Arabic (Tunisia) */
/* Arabic (Oman) */
/* Arabic (Yemen) */
/* Arabic (Syria) */
/* Arabic (Jordan) */
/* Arabic (Lebanon) */
/* Arabic (Kuwait) */
/* Arabic (United Arab Emirates) */
/* Arabic (Bahrain) */
/* Arabic (Qatar) */

The following map to English (US):

/* English (Jamaica) */
/* English (Carribean) */

396 Administration Guide: Planning

Table 32. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

The following map to Latin America (Lat):
--

/* Spanish (Mexican) */
/* Spanish (Guatemala) */
/* Spanish (Costa Rica) */
/* Spanish (Panama) */
/* Spanish (Dominican Republic) */
/* Spanish (Venezuela) */
/* Spanish (Colombia) */
/* Spanish (Peru) */
/* Spanish (Argentina) */
/* Spanish (Ecuador) */
/* Spanish (Chile) */
/* Spanish (Uruguay) */
/* Spanish (Paraguay) */
/* Spanish (Bolivia) */

Note: The Solaris code page 950 does not support the following characters in
IBM 950:

Code Range Description Sun Big-5 IBM Big-5

C6A1-C8FE Symbols Reserved area Symbols

F9D6-F9FE ETen extension Reserved area ETen extension

F286-F9A0 IBM selected chars Reserved area IBM selected

Note: Euro-symbol support is provided with this version of DB2 UDB.
Microsoft Windows ANSI code pages are modified according to the
latest definition from Microsoft to include the Euro-symbol in position
0x80. This position was previously undefined. In addition, the
definition of code page 850 has changed to replace the character Dotless
i (found at position 0xD5) with the Euro-symbol. DB2 UDB uses the
new definitions of these code pages as the default to provide
Euro-symbol support. This implementation is the appropriate default
for current DB2 UDB customers who require Euro-symbol support, and
should not impact other customers. However, if you want to continue
to use the previous definition of these code pages, you can copy the
following files:
v 12520850.cnv
v 08501252.cnv

Appendix E. National Language Support (NLS) 397

v IBM00850.ucs
v IBM01252.ucs

from this directory
sqllib/conv/alt/

to this directory
sqllib/conv/

after installation is complete. You may want to back up the existing
IBM01252.usc and IBM00850.ucs files before copying the non-Euro
versions over them. After copying the files, you will not have Euro
currency symbol support from DB2 UDB.

Deriving Code Page Values

The application code page is derived from the active environment when the
database connection is made. If the DB2CODEPAGE registry variable is set, its
value is taken as the application code page. However, it is not necessary to set
the DB2CODEPAGE registry variable, because DB2 will determine the
appropriate code page value from the operating system. Setting the
DB2CODEPAGE registry variable to incorrect values may cause unpredictable
results.

The database code page is derived from the value specified (explicitly or by
default) at the time the database is created. For example, the following defines
how the active environment is determined in different operating environments:

UNIX On UNIX based operating systems, the active
environment is determined from the locale
setting, which includes information about
language, territory and code set.

OS/2 On OS/2, primary and secondary code pages
are specified in the CONFIG.SYS file. You can
use the chcp command to display and
dynamically change code pages within a given
session.

Macintosh For the Macintosh operating system, if the
DB2CODEPAGE registry variable is not set,
the Macintosh code page is derived from the
Regional version code from the installed
script.

Windows For the Windows operating system, if the
DB2CODEPAGE registry variable is not set,
the Windows code page is derived from the

398 Administration Guide: Planning

country ID, as specified in the iCountry value
in the [intl] section of the Windows WIN.INI
file.

Windows 32-bit operating systems
For all Windows 32-bit operating systems, if
the DB2CODEPAGE registry variable is not
set, the code page is derived from the ANSI
code page setting in the Registry.

For a complete list of environment mappings for code page values, see
Table 32 on page 384.

Character Sets

The database manager does not, in general, restrict the character set available
to an application. For a detailed explanation of multi-byte character sets
(MBCS) supported by DB2, refer to the Application Development Guide.

Character Set for Identifiers
The basic character set that can be used in database names consists of the
single-byte uppercase and lowercase Latin letters (A...Z, a...z), the Arabic
numerals (0...9) and the underscore character (_). This list is augmented with
three special characters (#, @, and $) to provide compatibility with host
database products. However, these special characters should be used with care
in an NLS environment, because they are not included in the NLS host
(EBCDIC) invariant character set.

When naming database objects (such as tables and views), program labels,
host variables, cursors, and elements from the extended character set (for
example, letters with diacritical marks) can also be used. Precisely which
characters are available depends on the code page in use. If you are using the
database in a multiple code page environment, you must ensure that all code
pages support any elements from the extended character set that you plan to
use. For information about delimited identifiers that have characters outside
of the extended character set, but which can be used in SQL statements, refer
to the SQL Reference.

Extended Character Set Definition for DBCS Identifiers
In DBCS environments, the extended character set consists of all the
characters in the basic character set, plus the following:
v All double-byte characters in each DBCS code page, except the double-byte

space, are valid letters.
v The double-byte space is a special character.
v The single-byte characters available in each mixed code page are assigned

to various categories as follows:

Appendix E. National Language Support (NLS) 399

Category
Valid Code Points within each Mixed Code Page

Digits x30-39

Letters
x23-24, x40-5A, x61-7A, xA6-DF (A6-DF for code pages 932 and 942
only)

Special Characters
All other valid single-byte character code points

Coding SQL Statements
The coding of SQL statements is not language dependent. SQL keywords can
be typed in uppercase, lowercase, or mixed case. The names of database
objects and host variables, as well as program labels in an SQL statement
cannot contain characters that are outside of the extended character set as
described above.

Bidirectional CCSID Support
The following BiDi attributes are required for correct handling of bidirectional
data on different platforms:

- Text type (LOGICAL or VISUAL)
- Shaping (SHAPED or UNSHAPED)
- Orientation (RIGHT-TO-LEFT or LEFT-TO-RIGHT)
- Numeral shape (ARABIC or HINDI)
- Symmetric swapping (YES or NO)

Because default values on different platforms are not the same, problems can
occur when DB2 data is moved from one platform to another. For example,
the Windows operating system uses LOGICAL UNSHAPED data, while
OS/390 usually uses SHAPED VISUAL data. Therefore, without support for
bidirectional attributes, data sent from DB2 Universal Database for OS/390 to
DB2 UDB on Windows 32-bit operating systems may display incorrectly.

Bidirectional-specific CCSIDs
DB2 supports bidirectional data attributes through special bidirectional Coded
Character Set Identifiers (CCSIDs). The following bidirectional CCSIDs have
been defined and are implemented with DB2 UDB:

CCSID | CCSID | Code | String
(dec) | (hex) | Page | Type
-------+--------+--------+--------

00420 x'01A4' 420 4
00424 x'01A8' 424 4
08612 x'21A4' 420 5
08616 x'21A8' 424 10

00856 x'0358' 856 5
00862 x'035E' 862 4
00864 x'0360' 864 5

400 Administration Guide: Planning

00916 x'0394' 916 5
01046 x'0416' 1046 5
01089 x'0441' 1089 5
01255 x'04E7' 1255 5
01256 x'04E8' 1256 5

62208 x'F300' 856 4
62209 x'F301' 862 10
62210 x'F302' 916 4
62211 x'F303' 424 5
62213 x'F305' 862 5
62215 x'F307' 1255 4
62218 x'F30A' 864 4
62220 x'F30C' 856 6
62221 x'F30D' 862 6
62222 x'F30E' 916 6
62223 x'F30F' 1255 6
62224 x'F310' 420 6
62225 x'F311' 864 6
62226 x'F312' 1046 6
62227 x'F313' 1089 6
62228 x'F314' 1256 6
62229 x'F315' 424 8
62230 x'F316' 856 8
62231 x'F317' 862 8
62232 x'F318' 916 8
62233 x'F319' 420 8
62234 x'F31A' 420 9
62235 x'F31B' 424 6
62236 x'F31C' 856 10
62237 x'F31D' 1255 8
62238 x'F31E' 916 10
62239 x'F31F' 1255 10
62240 x'F320' 424 11
62241 x'F321' 856 11
62242 x'F322' 862 11
62243 x'F323' 916 11
62244 x'F324' 1255 11

62245 x'F325' 424 10
62246 x'F326' 1046 8
62247 x'F327' 1046 9
62248 x'F328' 1046 4
62249 x'F329' 1046 12
62250 x'F32A' 420 12

where CDRA string types are defined as:
String | Text | Numerical | Orientation | Shaping | Symmetrical
Type | Type | Shape | | | Swapping

--------+-------+------------+-------------+-----------+-------------
4 Visual Passthru LTR Shaped OFF
5 Implicit Arabic LTR Unshaped ON
6 Implicit Arabic RTL Unshaped ON
7(*) Visual Arabic Contextual(*) Unshaped-Lig OFF

Appendix E. National Language Support (NLS) 401

8 Visual Arabic RTL Shaped OFF
9 Visual Passthru RTL Shaped ON
10 Implicit Passthru Contextual-L Unshaped ON
11 Implicit Passthru Contextual-R Unshaped ON
12 Implicit Arabic RTL Shaped ON

Note: (*) Field orientation is left-to-right (LTR) when the first alphabetic
character is a Latin character, and right-to-left (RTL) when it is a
bidirectional (RTL) character. Characters are unshaped, but LamAlef
ligatures are kept, and are not broken into constituents.

DB2 Universal Database Implementation of Bidirectional Support
Bidirectional layout transformations are implemented in DB2 Universal
Database using the new CCSID definitions. For the new BiDi-specific CCSIDs,
layout transformations are performed instead of, or in addition to, code page
conversions. To use this support, the DB2BIDI registry variable must be set to
YES. By default, this variable is not set. It is used by the server for all
conversions, and can only be set when the server is started. Setting DB2BIDI
to YES may have some performance impact because of additional checking
and layout transformations.

To specify a particular bidirectional CCSID in a non-DRDA environment,
select the CCSID (from the above table) that matches the characteristics of
your client, and set DB2CODEPAGE to that value. If you already have a
connection to the database, you must issue a TERMINATE command, and
then reconnect to allow the new setting for DB2CODEPAGE to take effect. If
you select a CCSID that is not appropriate for the code page or string type of
your client platform, you may get unexpected results. If you select an
incompatible CCSID (for example, the Hebrew CCSID for connection to an
Arabic database), or if DB2BIDI has not been set for the server, you will
receive an error message when you try to connect.

For DRDA environments, if the HOST EBCDIC platform also supports these
bidirectional CCSIDs, you only need to set the DB2CODEPAGE value.
However, if the HOST platform does not support these CCSIDs, you must
also specify a CCSID override for the HOST database server to which you are
connecting. This is necessary because, in a DRDA environment, code page
conversions and layout transformations are performed by the receiver of data.
However, if the HOST server does not support these bidirectional CCSIDs, it
does not perform layout transformation on the data that it receives from DB2
UDB. If you use a CCSID override, the DB2 UDB client performs layout
transformation on the outbound data as well. For information about setting a
CCSID override, refer to the DB2 Connect User’s Guide.

CCSID override is not supported for cases where the HOST EBCDIC platform
is the client, and DB2 UDB is the server.

402 Administration Guide: Planning

DB2 Connect Implementation of Bidirectional Support
When data is exchanged between DB2 Connect and a database on the server,
it is usually the receiver that performs conversion on the incoming data. The
same convention would normally apply to bidirectional layout
transformations, and is in addition to the usual code page conversion. DB2
Connect has the optional ability to perform bidirectional layout transformation
on data it is about to send to the server database, in addition to data received
from the server database.

In order for DB2 Connect to perform bidirectional layout transformation on
outgoing data for a server database, the bidirectional CCSID of the server
database must be overridden. This is accomplished through the use of the
BIDI parameter in the PARMS field of the DCS database directory entry for
the server database.

Note: If you want DB2 Connect to perform layout transformation on the data
it is about to send to the DB2 host database, even though you do not
have to override its CCSID, you must still add the BIDI parameter to
the PARMS field of the DCS database directory. In this case, the CCSID
that you should provide is the default DB2 host database CCSID.

The BIDI parameter is to be specified as the ninth parameter in the PARMS
field, along with the bidirectional CCSID with which you want to override the
default server database bidirectional CCSID:

",,,,,,,,BIDI=xyz"

where xyz is the CCSID override.

Note: The registry variable DB2BIDI must be set to YES for the BIDI
parameter to take effect.

A list of the bidirectional CCSIDs that are supported, along with their string
types, can be found in “Bidirectional-specific CCSIDs” on page 400.

The use of this feature is best described with an example.

Suppose you have a Hebrew DB2 client running CCSID 62213 (bidirectional
string type 5), and you want to access a DB2 host database running CCSID
00424 (bidirectional string type 4). However, you know that the data
contained in the DB2 host database is based on CCSID 08616 (bidirectional
string type 6).

There are two problems here: The first is that the DB2 host database does not
know the difference in the bidirectional string types with CCSIDs 00424 and
08616. The second problem is that the DB2 host database does not recognize

Appendix E. National Language Support (NLS) 403

the DB2 client CCSID (62213). It only supports CCSID 00862, which is based
on the same code page as CCSID 62213.

You will need to ensure that data sent to the DB2 host database is in
bidirectional string type 6 format to begin with, and also let DB2 Connect
know that it has to perform bidirectional transformation on data it receives
from the DB2 host database. You will need to use following catalog command
for the DB2 host database:

db2 catalog dcs database nydb1 as telaviv parms ",,,,,,,,BIDI=08616"

This command tells DB2 Connect to override the DB2 host database CCSID of
00424 with 08616. This override includes the following processing:
1. DB2 Connect connects to the DB2 host database using CCSID 00862.
2. DB2 Connect performs bidirectional layout transformation on the data it is

about to send to the DB2 host database. The transformation is from CCSID
62213 (bidirectional string type 5) to CCSID 62221 (bidirectional string type
6).

3. DB2 Connect performs bidirectional layout transformation on data it
receives from the DB2 host database. This transformation is from CCSID
08616 (bidirectional string type 6) to CCSID 62213 (bidirectional string type
5).

Note: In some cases, use of a bidirectional CCSID may cause the SQL query
itself to be modified in such a way that it is not recognized by the DB2
server. Specifically, you should avoid using IMPLICIT CONTEXTUAL
and IMPLICIT RIGHT-TO-LEFT CCSIDs when a different string type
can be used. CONTEXTUAL CCSIDs can produce unpredictable results
if the SQL query contains quoted strings. Avoid using quoted strings in
SQL statements; use host variables whenever possible.

If a specific bidirectional CCSID is causing problems that cannot be
rectified by following these recommendations, set DB2BIDI to NO.

Collating Sequences
The database manager compares character data using a collating sequence. This
is an ordering for a set of characters that determines whether a particular
character sorts higher, lower, or the same as another. For example, a collating
sequence can be used to indicate that lowercase and uppercase versions of a
particular character are to be sorted equally.

The collating sequence is specified at database creation time, and cannot be
modified later.

404 Administration Guide: Planning

The database manager allows databases to be created with custom collating
sequences, using the application programming interface (API). For
information about implementing a custom collating sequence table, refer to
the Application Development Guide.

Note: Character string data defined with the FOR BIT DATA attribute, and
BLOB data, is sorted using the binary sort sequence.

General Concerns
Once a collating sequence is defined, all future character comparisons for that
database will be performed with that collating sequence. Except for character
data defined as FOR BIT DATA or BLOB data, the collating sequence will be
used for all SQL comparisons and ORDER BY clauses, and also in setting up
indexes and statistics. For more information about how the database collating
sequence is used, see ″String Comparisons″ in the SQL Reference.

Potential problems can occur in the following cases:
v An application merges sorted data from a database with application data

that was sorted using a different collating sequence.
v An application merges sorted data from one database with sorted data from

another, but the databases have different collating sequences.
v An application makes assumptions about sorted data that are not true for

the relevant collating sequence. For example, numbers collating lower than
alphabetics may or may not be true for a particular collating sequence.

A final point to remember is that the results of any sort based on a direct
comparison of character code points will only match query results that are
ordered using an identity collating sequence.

Federated Database Concerns
Your choice of database collating sequence can affect federated system
performance. If a data source uses the same collating sequence as the DB2
federated database, DB2 can push down order-dependent processing
involving character data to the data source. If a data source collating sequence
does not match the DB2 collating sequence, data is retrieved, and all
order-dependent processing on character data is done locally (this can reduce
performance).

To determine whether a data source and DB2 have the same collating
sequence, consider the following:
v National language support.

The collating sequence is related to the language supported on a server.
Compare DB2 NLS information to data source NLS information.

v Data source characteristics.

Appendix E. National Language Support (NLS) 405

Some data sources are created using case-insensitive collating sequences,
which can yield results that are different from DB2 in order-dependent
operations.

v Customization.
Some data sources provide multiple options for collating sequences, or
allow the collating sequence to be customized.

Choose the collating sequence for a DB2 federated database based on the mix
of data sources that will be accessed from that database. For example:
v If a DB2 database will access mostly Oracle databases with the same code

page (NLS) as DB2, specify the identity sequence at database creation time
(Oracle databases use an equivalent collating sequence).

v If a DB2 database will access only DB2 UDB databases, ensure that you
match collating sequence values.

For information about setting up an MVS collating sequence, refer to the
Administrative API Reference for examples under the description of the sqlecrea
- Create Database API. These examples contain collation tables for the
EBCIDIC 500, 37, and 5026/5035 code pages.

After you set the collating sequence for the DB2 database, ensure that you set
the collating_sequence server option for each data source server. This option
specifies whether the collating sequence of a given data source server matches
the collating sequence of the DB2 database.

Set the collating_sequence option to ″Y″ if the collating sequences match. This
setting allows the DB2 optimizer to consider order-dependent processing at a
data source, which can improve performance. However, if the data source
collating sequence is not the same as the DB2 database collating sequence,
you may receive incorrect results. For example, if your plan uses merge joins,
the DB2 optimizer will push down ordering operations to the data sources as
much as possible. If the data source collating sequence is not the same, the
join result set may not be correct.

Set the collating_sequence option to ″N″ if the collating sequences do not
match. Use this value when data source collating sequences differ from DB2,
or when the data source collating operations might be case insensitive. For
example, in a case-insensitive data source with an English code page,
TOLLESON, ToLLeSoN, and tolleson would all be considered equal. Set the
collating_sequence option to ″N″ if you are not sure whether the collating
sequence at the data source is identical to the DB2 collating sequence.

Datetime Values
The datetime data types are described below. Although datetime values can be
used in certain arithmetic and string operations, and are compatible with
certain strings, they are neither strings nor numbers.

406 Administration Guide: Planning

Date
A date is a three-part value (year, month, and day). The range of the year part
is 0001 to 9999. The range of the month part is 1 to 12. The range of the day
part is 1 to x, where x depends on the month.

The internal representation of a date is a string of 4 bytes. Each byte consists
of 2 packed decimal digits. The first 2 bytes represent the year, the third byte
the month, and the last byte the day.

The length of a DATE column, as described in the SQLDA, is 10 bytes, which
is the appropriate length for a character string representation of the value.

Time
A time is a three-part value (hour, minute, and second) designating a time of
day under a 24-hour clock. The range of the hour part is 0 to 24. The range of
the other parts is 0 to 59. If the hour is 24, the minute and second
specifications are zero.

The internal representation of a time is a string of 3 bytes. Each byte is 2
packed decimal digits. The first byte represents the hour, the second byte the
minute, and the last byte the second.

The length of a TIME column, as described in the SQLDA, is 8 bytes, which is
the appropriate length for a character string representation of the value.

Time Stamp
A time stamp is a seven-part value (year, month, day, hour, minute, second,
and microsecond) designating a date and a time of day as defined above,
except that the time includes the specification of microseconds.

The internal representation of a time stamp is a string of 10 bytes. Each byte is
2 packed decimal digits. The first 4 bytes represent the date, the next 3 bytes
the time, and the last 3 bytes the microseconds.

The length of a TIMESTAMP column, as described in the SQLDA, is 26 bytes,
which is the appropriate length for a character string representation of the
value.

String Representations of Datetime Values
Values whose data types are DATE, TIME, or TIMESTAMP are represented in
an internal form that is transparent to the SQL user. Dates, times, and time
stamps can also, however, be represented by character strings, and these
representations directly concern the SQL user, because there are no constants
or variables whose data types are DATE, TIME, or TIMESTAMP. Thus, to be
retrieved, a datetime value must be assigned to a character string variable.
The character string representation is normally the default format of datetime
values associated with the country code of the client, unless overridden by

Appendix E. National Language Support (NLS) 407

specification of the ″F″ format option when the program is precompiled or
bound to the database. For a list of the string formats for the various country
codes, see Table 35 on page 410.

When a valid string representation of a datetime value is used in an operation
with an internal datetime value, the string representation is converted to the
internal form of the date, time, or time stamp before the operation is
performed. Valid string representations of datetime values are defined in the
following sections.

Date Strings
A string representation of a date is a character string that starts with a digit
and has a length of at least 8 characters. Trailing blanks may be included;
leading zeros may be omitted from the month part and the day part of the
date.

Valid string formats for dates are listed in Table 33. Each format is identified
by name, and includes an associated abbreviation and an example of its use.

Table 33. Formats for String Representations of Dates

Format Name Abbreviation Date Format Example

International Standards
Organization

ISO yyyy-mm-dd 1991-10-27

IBM USA standard USA mm/dd/yyyy 10/27/1991

IBM European standard EUR dd.mm.yyyy 27.10.1991

Japanese Industrial Standard
Christian era

JIS yyyy-mm-dd 1991-10-27

Site-defined (Local) LOC Depends on
database
country code

—

Time Strings
A string representation of a time is a character string that starts with a digit
and has a length of at least 4 characters. Trailing blanks may be included; a
leading zero may be omitted from the hour part of the time, and seconds may
be omitted entirely. If you choose to omit seconds, an implicit specification of
0 seconds is assumed. Thus, 13.30 is equivalent to 13.30.00.

Valid string formats for times are listed in Table 34 on page 409. Each format is
identified by name, and includes an associated abbreviation and an example
of its use.

408 Administration Guide: Planning

Table 34. Formats for String Representations of Times

Format Name Abbreviation Time Format Example

International Standards
Organization

ISO hh.mm.ss 13.30.05

IBM USA standard USA hh:mm AM or
PM

1:30 PM

IBM European standard EUR hh.mm.ss 13.30.05

Japanese Industrial Standard
Christian Era

JIS hh:mm:ss 13:30:05

Site-defined (Local) LOC Depends on
application
country code

—

Notes:

1. In ISO, EUR, or JIS time string format, .ss (or :ss) is optional.
2. In USA time string format, the minutes specification can be omitted,

indicating an implicit specification of 00 minutes. Thus, 1 PM is equivalent
to 1:00 PM.

3. In USA time string format, the hours specification cannot be greater than
12, and cannot be 0, except in the special case of 00:00 AM. Using the ISO
format of the 24-hour clock, the correspondence between the USA format
and the 24-hour clock is as follows:
v 12:01 AM through 12:59 AM corresponds to 00.01.00 through 00.59.00.
v 01:00 AM through 11:59 AM corresponds to 01.00.00 through 11.59.00.
v 12:00 PM (noon) through 11:59 PM corresponds to 12.00.00 through

23.59.00.
v 12:00 AM (midnight) corresponds to 24.00.00, and 00:00 AM (midnight)

corresponds to 00.00.00.

Time Stamp Strings
A string representation of a time stamp is a character string that starts with a
digit and has a length of at least 16 characters. The complete string
representation of a time stamp has the form yyyy-mm-dd-hh.mm.ss.nnnnnn.
Trailing blanks may be included; leading zeros may be omitted from the
month, day, or hour part of the time stamp, and microseconds may be
truncated or omitted entirely. If you choose to omit any digit of the
microseconds part, an implicit specification of 0 is assumed. Thus,
1991-3-2-8.30.00 is equivalent to 1991-03-02-08.30.00.000000.

MBCS Considerations
Date and time stamp strings must contain only single-byte characters and
digits.

Appendix E. National Language Support (NLS) 409

Date and Time Formats: The character string representation of date and time
formats is the default format of datetime values associated with the country
code of the application. This default format can be overridden by specifying
the ″F″ format option when the program is precompiled or bound to the
database.

Following is a description of the input and output formats for date and time:
v Input Time Format

– There is no default input time format
– All time formats are allowed as input for all country codes.

v Output Time Format
– The default output time format is equal to the local time format.

v Input Date Format
– There is no default input date format
– Where the local format for date conflicts with an ISO, JIS, EUR, or USA

date format, the local format is recognized for date input. For example,
see the UK entry in Table 35.

v Output Date Format
– The default output date format is shown in Table 35.

Note: Table 35 also shows a listing of the string formats for the various
country codes.

Table 35. Date and Time Formats by Country Code

Country Code Local Date
Format

Local Time
Format

Default Output
Date Format

Input Date
Formats

355 Albania yyyy-mm-dd JIS LOC LOC, USA,
EUR, ISO

785 Arabic dd/mm/yyyy JIS LOC LOC, EUR, ISO

001 Australia
(1)

mm-dd-yyyy JIS LOC LOC, USA,
EUR, ISO

061 Australia dd-mm-yyyy JIS LOC LOC, USA,
EUR, ISO

032 Belgium dd/mm/yyyy JIS LOC LOC, EUR, ISO

055 Brazil dd.mm.yyyy JIS LOC LOC, EUR, ISO

359 Bulgaria dd.mm.yyyy JIS EUR LOC, USA,
EUR, ISO

001 Canada mm-dd-yyyy JIS USA LOC, USA,
EUR, ISO

002 Canada
(French)

dd-mm-yyyy ISO ISO LOC, USA,
EUR, ISO

410 Administration Guide: Planning

Table 35. Date and Time Formats by Country Code (continued)

Country Code Local Date
Format

Local Time
Format

Default Output
Date Format

Input Date
Formats

385 Croatia yyyy-mm-dd JIS ISO LOC, USA,
EUR, ISO

042 Czech
Republic

yyyy-mm-dd JIS ISO LOC, USA,
EUR, ISO

045 Denmark dd-mm-yyyy ISO ISO LOC, USA,
EUR, ISO

358 Finland dd/mm/yyyy ISO EUR LOC, EUR, ISO

389 FYR
Macedonia

dd.mm.yyyy JIS EUR LOC, USA,
EUR, ISO

033 France dd/mm/yyyy JIS EUR LOC, EUR, ISO

049 Germany dd/mm/yyyy ISO ISO LOC, EUR, ISO

030 Greece dd/mm/yyyy JIS LOC LOC, EUR, ISO

036 Hungary yyyy-mm-dd JIS ISO LOC, USA,
EUR, ISO

354 Iceland dd-mm-yyyy JIS LOC LOC, USA,
EUR, ISO

091 India dd/mm/yyyy JIS LOC LOC, EUR, ISO

972 Israel dd/mm/yyyy JIS LOC LOC, EUR, ISO

039 Italy dd/mm/yyyy JIS LOC LOC, EUR, ISO

081 Japan mm/dd/yyyy JIS ISO LOC, USA,
EUR, ISO

082 Korea mm/dd/yyyy JIS ISO LOC, USA,
EUR, ISO

001 Latin
America (1)

mm-dd-yyyy JIS LOC LOC, USA,
EUR, ISO

003 Latin
America

dd-mm-yyyy JIS LOC LOC, EUR, ISO

031
Netherlands

dd-mm-yyyy JIS LOC LOC, USA,
EUR, ISO

047 Norway dd/mm/yyyy ISO EUR LOC, EUR, ISO

048 Poland yyyy-mm-dd JIS ISO LOC, USA,
EUR, ISO

351 Portugal dd/mm/yyyy JIS LOC LOC, EUR, ISO

086 People’s
Republic of
China

mm/dd/yyyy JIS ISO LOC, USA,
EUR, ISO

Appendix E. National Language Support (NLS) 411

Table 35. Date and Time Formats by Country Code (continued)

Country Code Local Date
Format

Local Time
Format

Default Output
Date Format

Input Date
Formats

040 Romania yyyy-mm-dd JIS ISO LOC, USA,
EUR, ISO

007 Russia dd/mm/yyyy ISO LOC LOC, EUR, ISO

381 Serbia/
Montenegro

yyyy-mm-dd JIS ISO LOC, USA,
EUR, ISO

042 Slovakia yyyy-mm-dd JIS ISO LOC, USA,
EUR, ISO

386 Slovenia yyyy-mm-dd JIS ISO LOC, USA,
EUR, ISO

034 Spain dd/mm/yyyy JIS LOC LOC, EUR, ISO

046 Sweden dd/mm/yyyy ISO ISO LOC, EUR, ISO

041 Switzerland dd/mm/yyyy ISO EUR LOC, EUR, ISO

088 Taiwan mm-dd-yyyy JIS ISO LOC, USA,
EUR, ISO

066 Thailand
(2)

dd/mm/yyyy JIS LOC LOC, EUR, ISO

090 Turkey dd/mm/yyyy JIS LOC LOC, EUR, ISO

044 UK dd/mm/yyyy JIS LOC LOC, EUR, ISO

001 USA mm-dd-yyyy JIS USA LOC, USA,
EUR, ISO

084 Vietnam dd/mm/yyyy JIS LOC LOC, EUR, ISO

Notes:

1. Countries using the default C locale are assigned country code 001.

2. yyyy in Buddhist era is equivalent to Gregorian + 543 years (Thailand only).

Unicode/UCS-2 and UTF-8 Support in DB2 UDB

These two standards are documented here.

Introduction
The Unicode character encoding standard is a fixed-length, character encoding
scheme that includes characters from almost all of the living languages of the
world. Unicode characters are usually shown as ″U+xxxx″, where xxxx is the
hexadecimal code of the character.

Each character is 16 bits (2 bytes) wide, regardless of the language. While the
resulting 65000 code elements are sufficient for encoding most of the

412 Administration Guide: Planning

characters of the major languages of the world, the Unicode standard also
provides an extension mechanism that allows the encoding of as many as one
million more characters. This extension reserves a range of code values
(U+D800 to U+D8FF, known as ″surrogates″) for encoding some 32-bit
characters as two successive code elements.

The International Standards Organization (ISO) and the International
Electrotechnical Commission (IEC) standard 10646 (ISO/IEC 10646) specifies
the Universal Multiple-Octet Coded Character Set (UCS) that has a 2-byte
version (UCS-2) and a 4-byte version (UCS-4). The 2-byte version of this ISO
standard is identical to Unicode without surrogates. ISO 10646 also defines an
extension technique for encoding some UCS-4 codes in a UCS-2 encoded
string. This extension, called UTF-16, is identical to Unicode with surrogates.

DB2 UDB supports UCS-2; that is, Unicode without surrogates.

Connection of a UTF-8 (code page 1208) client to a non-Unicode database is
not supported.

UTF-8
With UCS-2 or Unicode encoding, ASCII and control characters are also two
bytes long, and the lead byte is zero. For example, NULL is U+0000, and the
uppercase ″A″ is represented by U+0041. This could be a major problem for
ASCII-based applications and ASCII file systems, because in a UCS-2 string,
extraneous NULLs can appear anywhere in the string. A transformation
algorithm, known as UTF-8, can be used to circumvent this problem for
programs that rely on ASCII code being invariant.

UTF-8 (UCS Transformation Format 8) is an algorithmic transformation that
transforms fixed-length UCS-4 characters into variable-length byte strings. In
UTF-8, ASCII characters are represented by their usual single-byte codes, but
non-ASCII characters in UCS-2 become two or three bytes long. In other
words, UTF-8 transforms UCS-2 characters into a multi-byte code set, for
which ASCII is invariant. The number of bytes for each UCS-2 character in
UTF-8 format can be determined from the following table:

UCS-2 (hex) UTF-8 (binary) Description
------------ -------------------------- ----------------
0000 to 007F 0xxxxxxx ASCII
0080 to 07FF 110xxxxx 10xxxxxx up to U+07FF
0800 to FFFF 1110xxxx 10xxxxxx 10xxxxxx other UCS-2

NOTE: The range D800 to DFFF is to be excluded from treatment
by the third row of this table which governs the UCS-4 range
0000 0800 to 0000 FFFF.

In each of the above, a series of x’s is the UCS bit representation of the
character. For example, U0080 transforms into 11000010 10000000.

Appendix E. National Language Support (NLS) 413

UCS-2/UTF-8 Implementation in DB2 UDB

Code Page/CCSID Numbers
Within IBM, the UCS-2 code page has been registered as code page 1200. All
code pages are defined with growing character sets; that is, when new
characters are added to a code page, the code page number does not change.
Code page 1200 always refers to the current version of Unicode/UCS-2, and
has been used for UCS-2 support in DB2 UDB.

A specific version of the UCS standard, as defined by Unicode 2.0 and
ISO/IEC 10646-1, has also been registered within IBM as CCSID 13488. This
CCSID has been used internally by DB2 UDB for storing graphic string data
in euc-Japan and euc-Taiwan databases. CCSID 13488 and code page 1200
both refer to UCS-2, and are handled the same way, except for the value of
their ″double-byte″ (DBCS) space:

CP/CCSID Single-byte (SBCS) space Double-byte (DBCS) space
--------- ------------------------ ------------------------

1200 N/A U+0020
13488 N/A U+3000

NOTE: In a UCS-2 database, U+3000 has no special meaning.

Regarding the conversion tables, since code page 1200 is a superset of CCSID
13488, the same (superset) tables are used for both.

Within IBM, UTF-8 has been registered as CCSID 1208 with growing character
set (sometimes also referred to as code page 1208). As new characters are
added to the standard, this number (1208) will not change. The number 1208
is used as the multi-byte code page number for DB2’s UCS-2/UTF-8 support.

DB2 UDB supports UCS-2 as a new multi-byte code page. The MBCS code
page number is 1208, which is the database code page number, and the code
page of character string data within the database. The double-byte code page
number for UCS-2 is 1200, which is the code page of graphic string data
within the database. When a database is created in UCS-2/UTF-8, CHAR,
VARCHAR, LONG VARCHAR, and CLOB data are stored in UTF-8, and
GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, and DBCLOB data are
stored in UCS-2. We will simply refer to this as a UCS-2 database.

Creating a UCS-2 Database
By default, databases are created in the code page of the application creating
them. Therefore, if you create your database from a UTF-8 client (for example,
the UNIVERSAL locale of AIX), or if the DB2CODEPAGE registry variable on
the client is set to 1208, your database will be created as a UCS-2 database.
Alternatively, you can explicitly specify ″UTF-8″ as the CODESET name, and
use any valid two letter TERRITORY code supported by DB2 UDB.

414 Administration Guide: Planning

For example, to create a UCS-2 database with the territory code for the United
States, issue:

DB2 CREATE DATABASE dbname USING CODESET UTF-8 TERRITORY US

To create a UCS-2 database using the sqlecrea API, you should set the values
in sqledbcountryinfo accordingly. For example, set SQLDBCODESET to UTF-8,
and SQLDBLOCALE to any valid territory code (for example, US).

The default collating sequence for a UCS-2 database is IDENTITY, which
provides UCS-2 code point order. Therefore, by default, all UCS-2/UTF-8
characters are ordered and compared according to their UCS-2 code point
sequence.

All culturally-sensitive parameters, such as date or time format, decimal
separator, and others, are based on the current territory of the client.

A UCS-2 database allows connection from every single-byte and multi-byte
code page supported by DB2 UDB. Code page character conversions between
the client’s code page and UTF-8 are automatically performed by the database
manager. Data in graphic string types is always in UCS-2, and does not go
through code page conversions. The command line processor (CLP)
environment is an exception. If you select graphic string (UCS-2) data from
the CLP, the returned graphic string data is converted (by the CLP) from
UCS-2 to the code page of your client environment.

Every client is limited by the character repertoire, the input method, and the
fonts supported by its environment, but the UCS-2 database itself accepts and
stores all UCS-2 characters. Therefore, every client usually works with a
subset of UCS-2 characters, but the database manager allows the entire
repertoire of UCS-2 characters.

When characters are converted from a local code page to UTF-8, there may be
expansion in the number of bytes. There is no expansion for ASCII characters,
but other UCS-2 characters expand by a factor of two or three. The number of
bytes of each UCS-2 character in UTF-8 format can be determined from the
table in “UTF-8” on page 413.

Data Types
All data types supported by DB2 UDB are also supported in a UCS-2
database. In particular, graphic string data is supported for a UCS-2 database,
and is stored in UCS-2/Unicode. Every client, including SBCS clients, can
work with graphic string data types in UCS-2/Unicode when connected to a
UCS-2 database.

A UCS-2 database is like any MBCS database where character string data is
measured in number of bytes. When working with character string data in

Appendix E. National Language Support (NLS) 415

UTF-8, one should not assume that each character is one byte. In multi-byte
UTF-8 encoding, each ASCII character is one byte, but non-ASCII characters
take two or three bytes each. This should be taken into account when defining
CHAR fields. Depending on the ratio of ASCII to non-ASCII characters, a
CHAR field of size n bytes can contain anywhere from n/3 to n characters.

Using character string UTF-8 encoding versus the graphic string UCS-2 data
type also has an impact on the total storage requirements. In a situation where
the majority of characters are ASCII, with some non-ASCII characters in
between, storing UTF-8 data may be a better alternative, because the storage
requirements are closer to one byte per character. On the other hand, in
situations where the majority of characters are non-ASCII characters that
expand to three-byte UTF-8 sequences (for example ideographic characters),
the UCS-2 graphic-string format may be a better alternative, because every
UCS-2 character requires exactly two bytes, rather than three bytes, for each
corresponding character in the UTF-8 format.

In MBCS environments, SQL scalar functions that operate on character strings,
such as LENGTH, SUBSTR, POSSTR, MAX, MIN, and the like, operate on the
number of ″bytes″ rather than number of ″characters″. The behavior is the
same in a UCS-2 database, but you should take extra care when specifying
offsets and lengths for a USC-2 database, because these values are always
defined in the context of the database code page. That is, in the case of a
UCS-2 database, these offsets should be defined in UTF-8. Since some
single-byte characters require more than one byte in UTF-8, SUBSTR indexes
that are valid for a single-byte database may not be valid for a UCS-2
database. If you specify incorrect indexes, SQLCODE -191 (SQLSTATE 22504)
is returned. For a description of the behavior of these functions, refer to the
SQL Reference.

SQL CHAR data types are supported (in the C language) by the char data
type in user programs. SQL GRAPHIC data types are supported by sqldbchar
in user programs. Note that, for a UCS-2 database, sqldbchar data is always
in big-endian (high byte first) format. When an application program is
connected to a UCS-2 database, character string data is converted between the
application code page and UTF-8 by DB2 UDB, but graphic string data is
always in UCS-2.

Identifiers
In a UCS-2 database, all identifiers are in multi-byte UTF-8. Therefore, it is
possible to use any UCS-2 character in identifiers where the use of a character
in the extended character set (for example, an accented character, or a
multi-byte character) is allowed by DB2 UDB. For details about which
identifiers allow the use of extended characters, see “Appendix B. Naming
Rules” on page 349.

416 Administration Guide: Planning

Clients can enter any character that is supported by their SBCS or MBCS
environment, and all the characters in the identifiers will be converted to
UTF-8 by the database manager. Two points must be taken into account when
specifying national language characters in identifiers for a UCS-2 database:
v Each non-ASCII character requires two or three bytes. Therefore, an n-byte

identifier can only hold somewhere between n/3 and n characters,
depending on the ratio of ASCII to non-ASCII characters. If you have only
one or two non-ASCII (for example, accented) characters, the limit is closer
to n characters, while for an identifier that is completely non-ASCII (for
example, in Japanese), only n/3 characters can be used.

v If identifiers are to be entered from different client environments, they
should be defined using the common subset of characters available to those
clients. For example, if a UCS-2 database is to be accessed from Latin-1,
Arabic, and Japanese environments, all identifiers should realistically be
limited to ASCII.

UCS-2 Literals
UCS-2 literals can be specified in two ways:
v As a graphic string constant, using the G’...’ or N’....’ format described in

the ″Graphic String Constants″ section of the ″Language Elements″ chapter
in the SQL Reference. Any literal specified in this way will be converted by
the database manager from the application code page to UCS-2.

v As a UCS-2 hexadecimal string, using the UX’....’ or GX’....’ format. The
constant specified between the quotation marks after UX or GX must be a
multiple of 4 hexadecimal digits. Each four-digit group represents one
UCS-2 code point.

When using the command line processor (CLP), the first method is easier if
the UCS-2 character exists in the local application code page (for example,
when entering any code page 850 character from a terminal that is using code
page 850). The second method should be used for characters that are outside
of the application code page repertoire (for example, when specifying
Japanese characters from a terminal that is using code page 850).

Pattern Matching in a UCS-2 Database
Pattern matching is one area where the behavior of existing MBCS databases
is slightly different from the behavior of a UCS-2 database.

For MBCS databases in DB2 UDB, the current behavior is as follows: If the
match-expression contains MBCS data, the pattern can include both SBCS and
MBCS characters. The special characters in the pattern are interpreted as
follows:
v An SBCS underscore refers to one SBCS character.
v A DBCS underscore refers to one MBCS character.

Appendix E. National Language Support (NLS) 417

v A percent (either SBCS or DBCS) refers to a string of zero or more SBCS or
MBCS characters.

If the match-expression contains graphic string DBCS data, the expressions
contain only DBCS characters. The special characters in the pattern are
interpreted as follows:
v A DBCS underscore refers to one DBCS character.
v A DBCS percent sign refers to a string of zero or more DBCS characters.

In a UCS-2 database, there is really no distinction between ″single-byte″ and
″double-byte″ characters; every UCS-2 character occupies two bytes. Although
the UTF-8 format is a ″mixed-byte″ encoding of UCS-2 characters, there is no
real distinction between SBCS and MBCS characters in UTF-8. Every character
is a UCS-2 character, regardless of the number of its bytes that are in UTF-8
format. When specifying a character string, or a graphic string expression, an
underscore refers to one UCS-2 character, and a percent sign refers to a string
of zero or more UCS-2 characters.

On the client side, the character string expressions are in the code page of the
client, and will be converted to UTF-8 by the database manager. SBCS client
code pages do not have a DBCS percent sign or a DBCS underscore, but every
supported code page contains a single-byte percent sign (corresponding to
U+0025) and a single-byte underscore (corresponding to U+005F). The
interpretation of special characters for a UCS-2 database is as follows:
v An SBCS underscore (corresponding to U+0025) refers to one UCS-2

character in a graphic string expression, or to one UTF-8 character in a
character string expression.

v An SBCS percent sign (corresponding to U+005F) refers to a string of zero
or more UCS-2 characters in a graphic string expression, or to a string of
zero or more UTF-8 characters in a character string expression.

DBCS code pages also support a DBCS percent sign (corresponding to
U+FF05) and a DBCS underscore (corresponding to U+FF3F). These characters
have no special meaning for a UCS-2 database.

For the optional ″escape expression″, which specifies a character to be used to
modify the special meaning of the underscore and percent sign characters,
only ASCII characters, or characters that expand into a two-byte UTF-8
sequence, are supported. If you specify an escape character that expands to a
three-byte UTF-8 value, an error message (error SQL0130N, SQLSTATE 22019)
is returned.

Import/Export/Load Considerations
The DEL, ASC, and PC/IXF file formats are supported for a UCS-2 database,
as described in this section. The WSF format is not supported.

418 Administration Guide: Planning

When exporting from a UCS-2 database to an ASCII delimited (DEL) file, all
character data is converted to the application code page. Both character string
and graphic string data are converted to the same SBCS or MBCS code page
of the client. This is expected behavior for the export of any database, and
cannot be changed, because the entire delimited ASCII file can have only one
code page. Therefore, if you export to a delimited ASCII file, only those UCS-2
characters that exist in your application code page will be saved. Other
characters are replaced with the default substitution character for the
application code page. For UTF-8 clients (code page 1208), there is no data
loss, because all UCS-2 characters are supported by UTF-8 clients.

When importing from an ASCII file (DEL or ASC) to a UCS-2 database,
character string data is converted from the application code page to UTF-8,
and graphic string data is converted from the application code page to UCS-2.
There is no data loss. If you want to import ASCII data that has been saved
under a different code page, you should change the data file code page before
issuing the IMPORT command. One way to accomplish this is to set
DB2CODEPAGE to the code page of the ASCII data file.

The range of valid ASCII delimiters for SBCS and MBCS clients is identical to
what is currently supported by DB2 UDB for those clients. The range of valid
delimiters for UTF-8 clients is 0x01 to 0x7F, with the usual restrictions. For a
complete list of these restrictions, refer to the ″Export/Import/Load Utility
File Formats″ appendix in the Data Movement Utilities Guide and Reference.

When exporting from a UCS-2 database to a PC/IXF file, character string data
is converted to the SBCS/MBCS code page of the client. graphic string data is
not converted, and is stored in UCS-2 (code page 1200). There is no data loss.

When importing from a PC/IXF file to a UCS-2 database, character string data
is assumed to be in the SBCS/MBCS code page stored in the PC/IXF header,
and graphic string data is assumed to be in the DBCS code page stored in the
PC/IXF header. Character string data is converted by the import utility from
the code page specified in the PC/IXF header to the code page of the client,
and then from the client code page to UTF-8 (by the INSERT statement).
graphic string data is converted by the import utility from the DBCS code
page specified in the PC/IXF header directly to UCS-2 (code page 1200).

The load utility places the data directly into the database and, by default,
assumes data in ASC or DEL files to be in the code page of the database.
Therefore, by default, no code page conversion takes place for ASCII files.
When the code page for the data file has been explicitly specified (using the
codepage modifier), the load utility uses this information to convert from the
specified code page to the database code page before loading the data. For

Appendix E. National Language Support (NLS) 419

PC/IXF files, the load utility always converts from the code pages specified in
the IXF header to the database code page (1208 for CHAR, and 1200 for
GRAPHIC).

The code page for DBCLOB files is always 1200 for UCS-2. The code page for
CLOB files is the same as the code page for the data files being imported,
loaded or exported. For example, when loading or importing data using the
PC/IXF format, the CLOB file is assumed to be in the code page specified by
the PC/IXF header. If the DBCLOB file is in ASC or DEL format, the load
utility assumes that CLOB data is in the code page of the database (unless
explicitly specified otherwise using the codepage modifier), while the import
utility assumes it to be in the code page of the client application.

The nochecklengths modifier is always specified for a UCS-2 database,
because:
v Any SBCS can be connected to a database for which there is no DBCS code

page
v Character strings in UTF-8 format usually have different lengths than those

in client code pages.

For more information about the load, import, and export utilities, refer to the
Data Movement Utilities Guide and Reference.

Incompatibilities
For applications connected to a UCS-2 database, graphic string data is always
in UCS-2 (code page 1200). For applications connected to non-UCS-2
databases, the graphic string data is in the DBCS code page of the application,
or not allowed if the application code page is SBCS. For example, when a 932
client is connected to a Japanese non-UCS-2 database, the graphic string data
is in code page 301. For the 932 client applications connected to a UCS-2
database, the graphic string data is in UCS-2.

420 Administration Guide: Planning

Appendix F. Notices

IBM may not offer the products, services, or features discussed in this
document in all countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 1993, 2000 421

improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
1150 Eglinton Ave. East
North York, Ontario
M3C 1H7
CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

422 Administration Guide: Planning

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source
language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using,
marketing or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All
rights reserved.

Appendix F. Notices 423

Trademarks

The following terms, which may be denoted by an asterisk(*), are trademarks
of International Business Machines Corporation in the United States, other
countries, or both.

ACF/VTAM
AISPO
AIX
AIX/6000
AIXwindows
AnyNet
APPN
AS/400
BookManager
CICS
C Set++
C/370
DATABASE 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Extenders
DB2 OLAP Server
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
eNetwork
Extended Services
FFST
First Failure Support Technology

IBM
IMS
IMS/ESA
LAN DistanceMVS
MVS/ESA
MVS/XA
Net.Data
OS/2
OS/390
OS/400
PowerPC
QBIC
QMF
RACF
RISC System/6000
RS/6000
S/370
SP
SQL/DS
SQL/400
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WebExplorer
WIN-OS/2

The following terms are trademarks or registered trademarks of other
companies:

Microsoft, Windows, and Windows NT are trademarks or registered
trademarks of Microsoft Corporation.

Java or all Java-based trademarks and logos, and Solaris are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States,
other countries, or both.

424 Administration Guide: Planning

UNIX is a registered trademark in the United States, other countries or both
and is licensed exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a
double asterisk(**) may be trademarks or service marks of others.

Appendix F. Notices 425

426 Administration Guide: Planning

Index

A
active logs 32
add database wizard 346, 347
adding containers to DMS table

spaces 141
agent

high availability 292
warehouse 74

agent site 74
alias

naming rules 352
alias address 222
application design

collating sequences,
guidelines 405

archive logging 31
archived logs

offline 32
online 32

attribute 87
attribute data 80
audit activities

overview 110
authentication 49

federated database overview 52
authority level 51
authorization 51

federated database overview 52
overview 110

B
backup

frequency 37
offline 37
online 37
storage considerations 39
user exit program 40

backup database wizard 346
base address 222
bidirectional CCSID support 400

CCSID table 400
DB2 Connect

implementation 403
DB2 UDB implementation 402

books 331, 341
buffer pool

IBMDEFAULTBP 143
overview 17

business meta-data 77

business rules
overview 20

C
campus clustering 299
capacity 62
cascading assignment 214
case-sensitive names, federated

database 354
catalog table space 134
cconsole utility 299
changing passwords 351
check constraint 23
choosing an extent size 146
circular logging 31
cluster

configuration 214
management 214
monitoring 242

clustering
campus 299
continental 299

code page
DB2CODEPAGE registry

variable 398
supported Windows code

pages 398
collating sequence

collating_sequence option 406
federated database concerns 405
general concerns 405

collocation, table 130
column

defining for a table 91
naming rules 352

commit
errors during two-phase 168
two-phase 165

compatibility
partition 131

composite key 95, 105
Concurrent Resource Manager 203
configuration

multiple partition 65
configuration parameters

DB2 transaction manager
considerations 162

overview 18
configure multisite update

wizard 346

connection pooling, MTS 197
constraint 103

check 23
foreign key 22
NOT NULL 21
primary key 21
unique 21

container
overview 16

continental clustering 299
continuous availability 292
control methods 298
coordinate system 81
coordinator node 57
crash recovery 25
create database wizard 347
create table space wizard 347
create table wizard 347
ctelnet utility 299

D
damaged table space 41
data

informational 73
large object (LOB) 119
long field 119
operational 73
partitioning 126

data and parity striping by sectors
(RAID-5) 45

data source 53
data typing

overview 110
Data Warehouse Center 73
database

directories 113
distributed 155
files 114
naming rules 350
non-recoverable 31
object naming rules 349
on a host system 158
overview 9
recoverable 31
using several databases in a

single transaction 157
database alias 349

naming rules 350
database configuration parameter

overview 19

© Copyright IBM Corp. 1993, 2000 427

database design
logical 87
physical 113

database logs 31
database managed space (DMS) 13,

139
database manager

naming rules 349
database manager configuration

parameter
overview 18

database migration 357
database objects

database 9
index 10
instance 8
naming rules 352, 399
nodegroup 9
overview 7
schema 11
system catalog table 11
table 9
view 9

database partition 57
synchronization 47

database restore 26
database roll-forward recovery 28
database system

federated 53
date

definition of 407
formats 410

date strings
definition of 408

datetime values
overview of 406
string representations 407

DB2 Connect
using, for multisite database

updates 158
DB2 high availability agent 306

control methods for 308
hadb2tab configuration file 307
registering 306

DB2 library
books 331
Information Center 345
language identifier for

books 339
late-breaking information 340
online help 342
ordering printed books 341
printing PDF books 340
searching online

information 348

DB2 library (continued)
setting up document server 347
structure of 331
viewing online information 344
wizards 346

DB2 shared nothing model 203
DB2 sync point manager (SPM) 163
DB2CODEPAGE registry

variable 398
DB2MSCS utility

DB2MSCS.CFG parameters 261
overview 260
setting up a partitioned database

system 267
setting up a single-partition

database system 265
setting up two single-partition

database systems for mutual
takeover 266

declustering
partial 126

default agent site 74
defining table columns 91
delete rules 107
dependent row 105
dependent table 105
descendent table 106
design

federated database 153
table space 141

designing and choosing table
spaces 132

directory
database 113

disaster recovery 44
disk

array 45
RAID (Redundant Array of

Independent Disks) 45
striping 45

disk arrays
hardware 45
software 47

disk failure
protecting against 45

disk groups 295
disk mirroring 47
disk mirroring or duplexing

(RAID-1) 45
disruptive maintenance 232
distributed database 155
distributed request 53
distributed transaction processing

application program 172
configuration considerations 186

distributed transaction processing
(continued)

database connection
considerations 182

error handling 182
RELEASE statement 182
resource manager 175
security considerations 185
support for host and AS/400

database servers 181
transaction manager 174

DMS (database managed space) 13,
139

adding containers to 141
DTP (distributed transaction

processing) 172

E
enhanced scalability (ES) 213
entity 87
Eprimary node of the SP

switch 223
ES (enhanced scalability) 213
estimating size requirements for

index space 120
large object (LOB) data 119
log file space 123
long field data 119
tables 115
temporary work space 124

event monitoring 233
extent size 17, 133

choosing 146

F
failover 213

overview 289
failover support 203, 213, 257, 289

concurrent access mode 203
hot standby mode 203, 204
instance failover 204
multiple logical node

failover 206
mutual instance failover 207
mutual partition failover 209
mutual takeover mode 203, 207
partition failover 205
reconnecting after a failover 210

failover time 321
fault monitoring 312
fault tolerance 291
federated database

authentication 52
authorization 52
case-sensitive names 354

428 Administration Guide: Planning

federated database (continued)
collating sequences,

guidelines 405
design considerations 153
object names 353
systems 53

file
database 114

first-fit order 117
first normal form 98
flush logs 34
foreign key 105
foreign key constraint 22
fourth normal form 102

G
geocoding 82
geographic information system

(GIS) 79
GIS (geographic information

system) 79

H
HA.config file 314
HA-NFS 299
HACMP (high availability cluster

multi-processing) 203, 213
HACMP ES configuration

examples 223
hardware disk arrays 45
hardware environments 62

logical database partitions 68
partitions with multiple

processors 67
partitions with one processor 66
single partition, multiple

processors 64
single partition, single

processor 63
types of parallelism 70

heartbeat 213, 290
heuristic operations 184
high availability 203, 257, 289
high availability cluster

multi-processing (HACMP) 203,
213

high availability on Sun Cluster 2.2
applications connecting to an HA

instance 300
crash recovery 306
data replication 306
database and database manager

configuration parameters 305
DB2 high availability agent 306
DB2 installation location and

options 305

high availability on Sun Cluster 2.2
(continued)

disk layout for EE and EEE
instances 302

hadb2_setup command 317
home directory layout for EE and

EEE instances 303
logical hosts and DB2 UDB

EEE 304
setup 316
troubleshooting 323

historical data
overview 110

hot standby configuration 214
example 220

HTML
sample programs 339

I
I/O parallelism 59
IBMCATGROUP 134
IBMDEFAULTGROUP 134
IBMTEMPGROUP 134
identifying candidate key

columns 95
identity column 96
incompatibilities

COLNAMES (planned) 363
Column Data Type to

BIGINT 370
column mismatch 371
creating databases 380
description 361
FK_COLNAMES (planned) 362
foreign key column names 368
PK_COLNAMES (planned) 362
planned 362
primary key column names 368
read-only views (planned) 362
SYSCAT.CHECKS Column

TEXT 370
SYSCAT.INDEXES Column

COLNAMES 370
SYSCAT.STATEMENTS column

TEXT 369
SYSCAT.VIEWS column

TEXT 369
Version 6 367
Version 7 363

incompatibilities for Version 6
character name sizes 375
current explain mode 381
DATALINK columns 378
dependency codes 372

incompatibilities for Version 6
(continued)

event monitor output stream
format 378

FOR UPDATE syntax 375
Java programming 374
OBJCAT views 372
obsolete configuration

keywords 377
obsolete database configuration

parameters 382
PC/IXF format changes 376
RUMBA 382
SELECT privilege on

hierarchy 380
SQLNAME in a non-doubled

SQLVAR 377
SYSFUN string function

signatures 379
SYSIBM base catalogs 373
SYSTABLE column change 379
USING and SORT BUFFER 381
VARCHAR data type 374

index
naming rules 352
overview 10

index key 10
index space

estimating size requirements
for 120

index wizard 347
indoubt transactions 182

manual recovery of 182
recovering 169, 174
resynchronizing 170

information catalog 77
Information Center 345
informational data 73
input and output (I/O)

considerations
table space 142

insert rules 106
installing

Netscape browser 345
instance

overview 8
inter-partition parallelism 60

used with intra-partition
parallelism 61

inter-query parallelism 59
intra-partition parallelism 59

used with inter-partition
parallelism 61

intra-query parallelism 59

Index 429

J
join path 97

K
keepalive packets 213
key 94

partitioning 128
key columns

identifying 95

L
language identifier

books 339
large object (LOB) data

column definition 92
estimating size requirements

for 119
late-breaking information 340
LIST INDOUBT TRANSACTIONS

command 182
LOB (large object) data

column definition 92
estimating size requirements

for 119
log file space

estimating size requirements
for 123

logging
archive 31
circular 31

logical database design 87
deciding what data to record 87
defining tables 89
relationships 89

logical database partitions 68
logical host 294
logical network interface 294
logs

active 32
database 31
online archived logs 32
storage required 40
userexit program 40

long field data
estimating size requirements

for 119

M
map

partitioning 127
mapping

table spaces to buffer pools 143
table spaces to nodegroups 144
tables to table spaces 144

media failure
catalog node considerations 45
logs 40
reducing the impact of 45

meta-data 77
methods

Sun Cluster 292
Microsoft Cluster Server

(MSCS) 257
Microsoft Transaction Server

connection pooling 197
connection pooling using ADO

2.1 and later 198
enabling support in DB2 195
installation and

configuration 195
reusing ODBC connections 199
software prerequisites 195
supported DB2 database

servers 196
testing DB2 with sample

application 200
transaction time-out and DB2

connection behavior 197
tuning TCP/IP

communications 199
verifying the installation 196

migration
database 357

migration tasks for HACMP ES 245
MPP environment 66
MSCS (Microsoft Cluster

Server) 257
multi-partition nodegroup 57
multimedia objects 88
multiple partition configurations 65
multisite update 157, 158

host or AS/400 applications
accessing a DB2 UDB
server 163

mutual takeover configuration 214
example 220

N
national language support (NLS)

bidirectional CCSID support 400
character sets 399
datetime values 406

Netscape browser
installing 345

NFS server node 220
NFS server takeover configuration

example 222
node

data location, determining 127

node_down event 213
node synchronization 47
node_up event 213
nodegroups 57

designing 124
IBMCATGROUP 134
IBMDEFAULTGROUP 134
IBMTEMPGROUP 134
overview 9

non-disruptive maintenance 232
non-recoverable databases 31
normalizing tables 98
NOT NULL constraint 21
NULL value 93

O
object names, federated

database 353
occurrence 88
offline archived logs 32
online archived logs 32
online help 342
online information

searching 348
viewing 344

operating system restrictions 41
operational data 73
overview of warehousing 73

P
parallel processing capability

overview 111
parallelism

and different hardware
environments 70

and index creation 62
AutoLoader utility 62
database backup and restore

utilities 62
I/O 59
inter-partition 60
intra-partition 59
load utility 62
overview 57
query 59
types 59
utility 62

parent
key 104, 105
row 105
table 105

partial declustering 126
partition

database 57
partition compatibility 131
partitioned database 57

430 Administration Guide: Planning

partitioning
data 126
key 128
map 127

partitions with multiple
processors 67

partitions with one processor 66
passwords

changing 351
naming 350

PDF 340
performance

recovery 43
performance configuration

wizard 347
physical database design 113
physical files

SMS 138
point of consistency 26
point of recovery 37
primary index 94
primary key 94, 105
primary key constraint 21, 105
primary key values

generating unique 96
printing PDF books 340
privilege 51
process (in warehousing) 75
program step 76
protecting against disk failure 45

Q
query parallelism 59

R
RAID (Redundant Array of

Independent Disks) 45
RAID-1 (disk mirroring or

duplexing) 45
RAID-5 (data and parity striping by

sectors) 45
RAID devices

optimizing performance
with 151

recommendations for catalog table
spaces 148

recoverable databases 31
recovery 24

damaged table spaces 41
factors affecting 30
history file 13
log file 12
operating system restrictions 41
performance 43
point-in-time 29
point of 37

recovery 24 (continued)
reducing logging on work

tables 36
storage considerations 39
time required 39
to end of logs 29

recovery objects
history file 13
log file 12
overview 12

recovery program file for HACMP
ES 235

recovery scripts for HACMP
ES 239

reducing logging on work tables 36
reducing the impact of media

failure 45
reducing the impact of transaction

failure 47
Redundant Array of Independent

Disks (RAID) 45
reference type 92

overview 110
referential constraints 104

delete-connected
relationships 108

implications for SQL
operations 106

SQL DELETE rules 107
SQL INSERT rules 106
SQL UPDATE rules 108

referential cycle 106
relational database concepts

overview 7
relationship

many-to-many 90
many-to-one 89
one-to-many 89
one-to-one 91

relationships between tables 40
release notes 340
release to release incompatibilities

description 361
remote unit of work 156
reorganizing tables 49
replicated summary tables 131
resource manager

setting up a database as 176
restore

database 26
table space 28

restore wizard 347
roll-forward recovery 27

database 28
table space 29

root type 92
rotating assignment 214
rules file 213

for HACMP 233
restriction 234

S
sample programs

cross-platform 339
HTML 339

scalability 62, 213
schema

naming rules 351
overview 11

scope 93
script files for HACMP ES 237

installation 237
SDR (System Data Repository) 222
searching

online information 346, 348
second normal form 99
security 49, 110
self-referencing

constraint 106
row 106
table 106

setting up document server 347
shared nothing model 203
single partition

multiple processor
environment 64

single processor environment 63
SmartGuides

wizards 346
SMP cluster environment 67
SMP environment 64
SMS (system managed space) 13,

135
SMS physical files 138
SNA (Systems Network

Architecture) 163
software disk arrays 47
SP frame 214
SP switch configuration

considerations 222
spatial

data 81
information 79

Spatial Extender
overview 79

SPM (sync point manager) 160
SQL optimizer 10
SQL step 76
star schema 77
step (in warehousing) 75

Index 431

storage
media failure 40
required for backup and

recovery 39
storage objects

buffer pool 17
container 16
overview 13
table space 13

structured type 92
overview 110

subject area 74
subtype 92
summary tables

overview 110
replicated 131

Sun Cluster 2.x 289
supertype 92
supported DB2 database servers for

MTS-coordinated transactions 196
switch alias address 219
sync point manager (SPM) 160
synchronization

database partition 47
node 47
recovery considerations 47

SYSCATSPACE 134
system catalog table

estimating initial size 117
overview 11

System Data Repository (SDR) 222
system log facility

XA interface example 190
system managed space (SMS) 13,

135
system objects

configuration parameter 18
overview 18

system temporary table space 134
Systems Network Architecture

(SNA) 163

T
table

check constraints 109
collocation 130
estimating size requirements

for 115
mapping to table spaces 144
naming rules 352
normalization 98
overview 9
relationships 40
reorganizing 49
system catalog 117
user 117

table space
catalog 134, 148
choosing SMS or DMS 150
database managed space

(DMS) 139
design 141
designing and choosing 132
input and output (I/O)

considerations 142
mapping to buffer pools 143
mapping to nodegroups 144
naming rules 352
overview 13
recovery 42
restore 28
roll-forward recovery 29
SYSCATSPACE 134
system managed space

(SMS) 135
temporary 134, 147
TEMPSPACE1 134
user 134
USERSPACE1 134
workload considerations 149

target
row 93
table 93
type 92
view 93

tasks
warehousing 76

temporary table space 134, 147
temporary work space

estimating size requirements
for 124

TEMPSPACE1 134
third normal form 100
time

definition of 407
formats 410

time required for database
recovery 39

time stamp
definition of 407

time strings
definition of 408

timestamp strings
definition of 409

TPM and TP_MON_NAME
values 178

transaction
accessing partitioned

databases 182
global 173
loosely coupled 173

transaction (continued)
non-XA 173
tightly coupled 174
two-phase commit 173

transaction failure
reducing the impact of 47

transaction manager
implementing using IBM

TXSeries CICS 190
implementing using IBM

TXSeries Encina 190
configuring DB2 191
configuring Encina for each

resource manager 191
referencing a DB2 database

from an Encina
application 192

implementing using Microsoft
Transaction Server 195

implementing using Tuxedo 193
transaction manager (TM) 158, 159
transaction processing

configuring XA transaction
managers 190

transformer step 76
trigger 23, 109

naming rules 352
two-phase commit 157, 158, 165

error handling 168
type hierarchy 92

overview 110
typed

table 92, 110
view 92

U
UDF (user-defined function) 93
uniprocessor environment 63
unique

constraints 103
index 10
key 94, 104

unique constraint 21
uniquely identifying entities 97
unit of work 155

remote 156
update rules 108
user-defined distinct type (UDT)

column definition 92
naming rules 352

user-defined events 213, 233
user-defined functions (UDF) 93

naming rules 352
user-defined program step 76

432 Administration Guide: Planning

user exit program
backup 40
logs 40

user IDs
naming 350

user scripts 309
user table

page limits 117
user table space 134
user temporary table space 134
USERSPACE1 134
utility parallelism 62

V
version recovery 26
view

naming rules 352
overview 9

viewing
online information 344

W
warehouse 73

agent 74
process 75
source 74
target 74

warehouse step 75
program 76
SQL 76
transformer 76
user-defined program 76

warehousing
objects 73
overview 73
tasks 76

Windows 95 failover
Administration Server

considerations 285
Control Center

considerations 285
Windows code pages

DB2CODEPAGE registry
variable 398

supported code pages 398
Windows NT failover

communications
considerations 284

considerations for administering
DB2 278

database considerations 283
DB2MSCS utility

DB2MSCS.CFG
parameters 261

overview 260

Windows NT failover (continued)
DB2MSCS utility (continued)

setting up a partitioned
database system 267

setting up a single-partition
database system 265

setting up two single-partition
database systems for mutual
takeover 266

fallback considerations 269
hot standby 258
limitations 287
maintaining the MSCS

system 268
mutual takeover 259
planning 257
reconciling the database drive

mapping 271
restrictions 287
running scripts, overview 279
running scripts after DB2

resource brought online 282
running scripts before DB2

resource brought online 279
setting database drive mapping

for mutual takeover in a
partitioned database
environment 269

setting up partitioned database
system for mutual takeover
example

objectives 274
preliminary tasks 275
registering database drive

mapping for ClusterA 277
registering database drive

mapping for ClusterB 277
run DB2MSCS utility 276

setting up two instances for
mutual takeover example

objectives 272
preliminary tasks 272
run DB2MSCS utility 273

starting and stopping DB2
resources 278

system time considerations 284
types 258
user and group support 283

wizards

add database 346, 347
backup database 346
completing tasks 346
configure multisite update 346
create database 347
create table 347

wizards (continued)
create table space 347
index 347
performance configuration 347
restore database 347

X
X/Open transactional manager

interface (XA)
distributed transaction processing

(DTP) 172
xa_open string 176
XA transaction managers

configuring 190

Index 433

434 Administration Guide: Planning

Contacting IBM

If you have a technical problem, please review and carry out the actions
suggested by the Troubleshooting Guide before contacting DB2 Customer
Support. This guide suggests information that you can gather to help DB2
Customer Support to serve you better.

For information or to order any of the DB2 Universal Database products
contact an IBM representative at a local branch office or contact any
authorized IBM software remarketer.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-237-5511 for customer support
v 1-888-426-4343 to learn about available service options

Product Information

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) or 1-800-3IBM-OS2 (1-800-342-6672) to

order products or get general information.
v 1-800-879-2755 to order publications.

http://www.ibm.com/software/data/
The DB2 World Wide Web pages provide current DB2 information
about news, product descriptions, education schedules, and more.

http://www.ibm.com/software/data/db2/library/
The DB2 Product and Service Technical Library provides access to
frequently asked questions, fixes, books, and up-to-date DB2 technical
information.

Note: This information may be in English only.

http://www.elink.ibmlink.ibm.com/pbl/pbl/
The International Publications ordering Web site provides information
on how to order books.

http://www.ibm.com/education/certify/
The Professional Certification Program from the IBM Web site
provides certification test information for a variety of IBM products,
including DB2.

© Copyright IBM Corp. 1993, 2000 435

ftp.software.ibm.com
Log on as anonymous. In the directory /ps/products/db2, you can
find demos, fixes, information, and tools relating to DB2 and many
other products.

comp.databases.ibm-db2, bit.listserv.db2-l
These Internet newsgroups are available for users to discuss their
experiences with DB2 products.

On Compuserve: GO IBMDB2
Enter this command to access the IBM DB2 Family forums. All DB2
products are supported through these forums.

For information on how to contact IBM outside of the United States, refer to
Appendix A of the IBM Software Support Handbook. To access this document,
go to the following Web page: http://www.ibm.com/support/, and then
select the IBM Software Support Handbook link near the bottom of the page.

Note: In some countries, IBM-authorized dealers should contact their dealer
support structure instead of the IBM Support Center.

436 Administration Guide: Planning

����

Part Number: CT7XVNA

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-2946-00

CT
7X

VN
A

	Contents
	About This Book
	Who Should Use This book
	How This Book is Structured
	A Brief Overview of the Other Volumes of the Administration Guide
	Administration Guide: Implementation
	Administration Guide: Performance

	Part 1. The World of DB2 Universal Database
	Chapter 1. Administering DB2 Universal Database
	Part 2. Database Concepts
	Chapter 2. Basic Relational Database Concepts
	Overview of Database Objects
	Instances
	Databases
	Nodegroups
	Tables
	Views
	Indexes
	Schemas
	System Catalog Tables

	Overview of Recovery Objects
	Recovery Log Files
	Recovery History File

	Overview of Storage Objects
	Table Spaces
	Containers
	Buffer Pool

	Overview of System Objects
	Configuration Parameters

	Business Rules for Data
	Recovering a Database
	Overview of Recovery
	Factors Affecting Recovery
	Recoverable and Non-Recoverable Databases
	Database Logs
	Reducing Logging on Work Tables
	Point of Recovery
	Frequency of Backups and Time Required
	Recovery Time Required
	Storage Considerations
	Keeping Related Data Together
	Restrictions on Using Different Operating Systems
	Damaged Table Space Recovery
	Recovery Performance Considerations

	Disaster Recovery Considerations
	Reducing the Impact of Media Failure
	Protecting Against Disk Failure

	Reducing the Impact of Transaction Failure
	System Clock Synchronization in a Partitioned Database System

	Reorganizing Tables in a Database
	Overview of DB2 Security
	Authentication
	Authorization
	Federated Database Authentication and Authorization Overview

	Chapter 3. Federated Systems
	Enabling a Federated System

	Chapter 4. Parallel Database Systems
	Nodegroups and Data Partitioning
	Types of Parallelism
	I/O Parallelism
	Query Parallelism
	Intra-partition Parallelism
	Inter-partition Parallelism
	Simultaneous Intra-partition and Inter-partition Parallelism

	Utility Parallelism

	Hardware Environments
	Single Partition on a Single Processor
	Capacity and Scalability

	Single Partition with Multiple Processors
	Capacity and Scalability

	Multiple Partition Configurations
	Partitions with One Processor
	Partitions with Multiple Processors
	Logical Database Partitions

	Summary of Parallelism Best Suited to Each Hardware Environment

	Chapter 5. About Data Warehousing
	What is Data Warehousing?
	Subject Areas
	Warehouse Sources
	Warehouse Targets
	Warehouse Agents and Agent Sites
	Steps and Processes
	SQL Steps
	Program Steps
	Transformer Steps
	User-defined Program Steps

	Warehousing Tasks

	Chapter 6. About Spatial Extender
	The Purpose of Spatial Extender
	Data that Represents Geographic Features
	How Data Represents Geographic Features
	The Nature of Spatial Data
	Where Spatial Data Comes From
	Using Attribute Data as Source Data
	Using Other Spatial Data as Source Data
	Importing Spatial Data

	Part 3. Database Design
	Chapter 7. Logical Database Design
	Decide What Data to Record in the Database
	Define Tables for Each Type of Relationship
	One-to-Many and Many-to-One Relationships
	Many-to-Many Relationships
	One-to-One Relationships

	Provide Column Definitions for All Tables
	Identify One or More Columns as the Primary Key
	Identifying Candidate Key Columns
	Defining Identity Columns

	Ensure that Equal Values Represent the Same Entity
	Consider Normalizing Your Tables
	First Normal Form
	Second Normal Form
	Third Normal Form
	Fourth Normal Form

	Planning for Constraints Enforcement
	Unique Constraints
	Referential Integrity
	Implications for SQL Operations

	Table Check Constraints
	Triggers

	Other Database Design Considerations

	Chapter 8. Physical Database Design
	Database Directories
	Database Files

	Estimating Space Requirements for Tables
	System Catalog Tables
	User Table Data
	Long Field Data
	Large Object (LOB) Data
	Index Space

	Additional Space Requirements
	Log File Space
	Temporary Work Space

	Designing Nodegroups
	Nodegroup Design Considerations
	Data Partitioning
	Partitioning Maps
	Partitioning Keys
	Table Collocation
	Partition Compatibility
	Replicated Summary Tables

	Designing and Choosing Table Spaces
	System Managed Space
	SMS Physical Files

	Database Managed Space Table Space
	Adding Containers to DMS Table Spaces

	Table Space Design Considerations
	Considerations for Table Space Input and Output (I/O)
	Mapping Table Spaces to Buffer Pools
	Mapping Table Spaces to Nodegroups
	Mapping Tables to Table Spaces
	Choosing an Extent Size
	Recommendations for Temporary Table Spaces
	Recommendations for Catalog Table Spaces
	Workload Considerations
	Choosing an SMS or DMS Table Space
	Optimizing Performance When Data is Placed on RAID Devices

	Federated Database Design Considerations

	Chapter 9. Designing Distributed Databases
	Using a Single Database in a Transaction
	Using Multiple Databases in a Single Transaction
	Updating a Single Database
	Updating Multiple Databases
	Using the DB2 Transaction Manager

	Other Configuration Considerations
	Host or AS/400 Applications Accessing a LAN Based DB2 UniversalDatabase Server in a Multisite Update

	Understanding the Two-Phase Commit Process
	Recovering from Problems During Two-Phase Commit
	Resynchronizing Indoubt Transactions if AUTORESTART=OFF

	Chapter 10. Designing for Transaction Managers
	X/Open Distributed Transaction Processing Model
	Application Program (AP)
	Transaction Manager (TM)
	Resource Managers (RM)

	Setting Up a Database as a Resource Manager
	xa_open and xa_close Strings Usage
	New xa_open String Format for DB2 Version 7
	TPM and TP_MON_NAME Values
	Examples

	xa_open String Format for Earlier Versions of DB2
	Updating Host or AS/400 Database Servers
	Database Connection Considerations
	RELEASE Statement
	Transactions Accessing Partitioned Databases

	Making a Heuristic Decision
	Security Considerations
	Configuration Considerations
	XA Function Supported
	XA Switch Usage and Location
	Using the DB2 Universal Database XA Switch

	XA Interface Problem Determination

	Configuring XA Transaction Managers to Use DB2 UDB
	Configuring IBM TXSeries CICS
	Configuring IBM TXSeries Encina
	Configuring DB2
	Configuring Encina for Each Resource Manager
	Referencing a DB2 Database from an Encina Application

	Configuring BEA Tuxedo
	Configuring Microsoft Transaction Server
	Enabling MTS Support in DB2
	MTS Software Prerequisites
	Installation and Configuration
	Verifying the Installation
	Supported DB2 Database Servers
	MTS Transaction Time-Out and DB2 Connection Behavior
	Connection Pooling
	MTS Connection Pooling using ADO 2.1 and Later
	Reusing ODBC Connections Between COM Objects Participating in theSame Transaction
	Tuning TCP/IP Communications
	Testing DB2 With The MTS "BANK" Sample Application

	Chapter 11. Designing for High Availability
	Hot Standby
	Examples
	Instance Failover
	Partition Failover
	Multiple Logical Node Failover

	Mutual Takeover
	Examples
	Mutual DB2 Instance Failover
	Mutual DB2 Partition Failover

	Reconnecting after a Failover
	Resources

	Part 4. High Availability
	Chapter 12. High Availability Cluster Multi-processing,Enhanced Scalability (HACMP ES) for AIX
	Cluster Configuration
	Configuring a DB2 Database Partition
	Example of a Hot Standby Configuration
	Example of a Mutual Takeover Configuration
	Configuration of an NFS Server Node
	Example of an NFS Server Takeover Configuration
	Considerations When Configuring the SP Switch
	DB2 HACMP Configuration Examples
	DB2 HACMP Startup Recommendations

	HACMP ES Event Monitoring and User-defined Events
	HACMP ES Script Files
	DB2 Recovery Script Operations with HACMP ES
	Other Script Utilities

	Monitoring HACMP Clusters
	DB2 SP HACMP ES Installation
	DB2 SP HACMP ES New Installation
	DB2 SP HACMP ES Migration
	DB2 SP HACMP ES Worksheets

	Chapter 13. High Availability in the Windows NTEnvironment
	Failover Configurations
	Hot Standby Configuration
	Mutual Takeover Configuration

	Using the DB2MSCS Utility
	Specifying the DB2MSCS.CFG File
	Setting up Failover for a Single-Partition Database System
	Setting up a Mutual Takeover Configuration for Two Single-PartitionDatabase Systems
	Setting up Multiple MSCS Clusters for a Partitioned Database System

	Maintaining the MSCS System
	Fallback Considerations
	Registering Database Drive Mapping for Mutual Takeover Configurations in aPartitioned Database Environment
	Reconciling the Database Drive Mapping

	Example - Setting up Two Single-Partition Instances for Mutual Takeover
	Preliminary Tasks
	Run the DB2MSCS Utility

	Example - Setting up a Four-Node Partitioned Database System for MutualTakeover
	Preliminary Tasks
	Run the DB2MSCS Utility
	Register the Database Drive Mapping for ClusterA
	Register the Database Drive Mapping for ClusterB

	Administering DB2 in an MSCS Environment
	Starting and Stopping DB2 Resources
	Running Scripts
	Running Scripts Before Bringing DB2 Resources Online
	Running Scripts After Bringing DB2 Resources Online

	Database Considerations
	User and Group Support
	Communications Considerations
	System Time Considerations
	Administration Server and Control Center Considerations in a PartitionedDatabase Environment
	Limitations and Restrictions

	Chapter 14. DB2 and High Availability on Sun Cluster 2.2
	High Availability
	Fault Tolerance and Continuous Availability

	Sun Cluster 2.2
	Supported Systems
	Agents
	Logical Hosts
	Logical Network Interfaces
	Disk Groups and File Systems
	Control Methods
	Disk and File System Configuration
	HA-NFS
	The cconsole and ctelnet Utilities
	Campus Clustering and Continental Clustering
	Common Problems

	DB2 Considerations
	Applications Connecting to an HA Instance
	Disk Layout for EE and EEE Instances
	Home Directory Layout for EE and EEE Instances
	Logical Hosts and DB2 UDB EEE
	DB2 Installation Location and Options
	Database and Database Manager Configuration Parameters
	Crash Recovery
	High Availability through Data Replication

	The DB2 High Availability Agent
	Registering the hadb2 Service
	The hadb2tab File
	Control Methods
	User Scripts
	Other Considerations
	Fault Monitor
	EEE Considerations
	The HA.config File
	How Control Methods Run DB2 Commands

	Setup
	Common Installation Steps
	Setup on DB2 UDB Enterprise Edition
	Setup on DB2 UDB Enterprise - Extended Edition
	The hadb2_setup Command

	Failover Time
	Troubleshooting

	Part 5. Appendixes
	Appendix A. Using the DB2 Library
	DB2 PDF Files and Printed Books
	DB2 Information
	Printing the PDF Books
	Ordering the Printed Books

	DB2 Online Documentation
	Accessing Online Help
	Viewing Information Online
	Installing the Netscape Browser
	Accessing Information with the Information Center

	Using DB2 Wizards
	Setting Up a Document Server
	Searching Information Online

	Appendix B. Naming Rules
	Database Names
	Database and Database Alias Names
	User IDs and Passwords
	Schema Names
	Group and User Names
	Object Names
	Federated Database Object Names
	How Case-Sensitive Values Are Preserved in a Federated System

	Appendix C. Planning Database Migration
	Migration Considerations
	Migration Restrictions
	Security and Authorization
	Storage Requirements
	Release-to-Release Incompatibilities
	Migrating a Database

	Appendix D. Incompatibilities Between Releases
	DB2 Universal Database Planned Incompatibilities
	Read-only Views in a Future Version of DB2 Universal Database
	Change
	Symptom
	Explanation
	Resolution

	PK_COLNAMES and FK_COLNAMES in a Future Version of DB2 UniversalDatabase
	Change
	Symptom
	Explanation
	Resolution

	COLNAMES No Longer Available in a Future Version of DB2 UniversalDatabase
	Change
	Symptom
	Explanation
	Resolution

	DB2 Universal Database Version 7 Incompatibilities
	Application Programming
	Query Patroller Universal Client
	Object Transform Functions and Structured Types
	Versions of Class and Jar Files Used by the JVM
	Changed Functionality of Install, Replace, and Remove Jar Commands
	32-bit Application Incompatibility
	Changing the Length Field of the Scratchpad

	SQL
	Applications that Use Regular Tables Qualified by the Schema SESSION

	Utilities and Tools
	Data Links File Manager and File System Filter on Solaris
	db2set on AIX and Solaris

	Connectivity and Coexistence
	32-bit Client Incompatibility

	DB2 Universal Database Version 6 Incompatibilities
	System Catalog Views
	System Catalog Views in DB2 Universal Database Version 6
	Primary and Foreign Key Column Names in DB2 Universal DatabaseVersion 6
	SYSCAT.VIEWS Column TEXT in DB2 Universal Database Version 6
	SYSCAT.STATEMENTS Column TEXT in DB2 Universal Database Version6
	SYSCAT.INDEXES Column COLNAMES in DB2 Universal DatabaseVersion 6
	SYSCAT.CHECKS Column TEXT in DB2 Universal Database Version 6
	Column Data Type to BIGINT in DB2 Universal Database Version 6
	Column Mismatch in DB2 Universal Database Version 6
	SYSCAT.COLUMNS and SYSCAT.ATTRIBUTES in DB2 Universal DatabaseVersion 6
	OBJCAT Views No Longer Supported in DB2 Universal Database Version6
	Dependency Codes Changed in DB2 Universal Database Version 6
	SYSIBM Base Catalog Tables in DB2 Universal Database Version 6

	Application Programming
	VARCHAR Data Type in DB2 Universal Database Version 6
	Java Programming Positioned UPDATE and DELETE in DB2 UniversalDatabase Version 6
	Syntax Change in FOR UPDATE Clause in DB2 Universal DatabaseVersion 6
	Character Name Sizes in DB2 Universal Database Version 6
	PC/IXF Format Changes in DB2 Universal Database Version 6
	SQLNAME in a Non-doubled SQLVAR in DB2 Universal Database Version6
	Obsolete DB2 CLI/ODBC Configuration Keywords in DB2 UniversalDatabase Version 6
	Event Monitor Output Stream Format in DB2 Universal Database Version6

	SQL
	DATALINK Columns in DB2 Universal Database Version 6
	SYSFUN String Function Signatures in DB2 Universal Database Version 6
	SYSTABLE Column Change With New Integrity State in DB2 UniversalDatabase Version 6

	Database Security and Tuning
	Creating Databases Using Clients in DB2 Universal Database Version 6
	SELECT Privilege Required on Hierarchy in DB2 Universal DatabaseVersion 6
	Obsolete Profile Registry and Environment Variables in DB2 UniversalDatabase Version 6

	Utilities and Tools
	Current Explain Mode in DB2 Universal Database Version 6
	The USING and SORT BUFFER Parameters in DB2 Universal DatabaseVersion 6

	Connectivity and Coexistence
	Replace RUMBA with PCOMM in DB2 Universal Database Version 6

	Configuration Parameters
	Obsolete Database Configuration Parameters

	Appendix E. National Language Support (NLS)
	Country Code and Code Page Support
	Deriving Code Page Values
	Character Sets
	Character Set for Identifiers
	Extended Character Set Definition for DBCS Identifiers

	Coding SQL Statements
	Bidirectional CCSID Support
	Bidirectional-specific CCSIDs
	DB2 Universal Database Implementation of Bidirectional Support
	DB2 Connect Implementation of Bidirectional Support

	Collating Sequences
	General Concerns
	Federated Database Concerns

	Datetime Values
	Date
	Time
	Time Stamp
	String Representations of Datetime Values
	Date Strings
	Time Strings
	Time Stamp Strings
	MBCS Considerations

	Unicode/UCS-2 and UTF-8 Support in DB2 UDB
	Introduction
	UTF-8

	UCS-2/UTF-8 Implementation in DB2 UDB
	Code Page/CCSID Numbers
	Creating a UCS-2 Database
	Data Types
	Identifiers
	UCS-2 Literals
	Pattern Matching in a UCS-2 Database
	Import/Export/Load Considerations
	Incompatibilities

	Appendix F. Notices
	Trademarks

	Index
	Contacting IBM
	Product Information

