
IBM® DB2® Warehouse Manager

Information Catalog Manager
Programming Guide and Reference
Version 7

SC26-9997-00

���

IBM® DB2® Warehouse Manager

Information Catalog Manager
Programming Guide and Reference
Version 7

SC26-9997-00

���

Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 365.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book vii
What is an information catalog? vii
What are information catalog architected
interfaces? vii

How to send your comments vii

Chapter 1. Introduction to the Information
Catalog Manager 1
Who uses the Information Catalog Manager? . 1

Users. 1
Administrators 2
Application programmers 2

What kinds of applications work with the
Information Catalog Manager? 2

Informational applications. 2
Tools that maintain and administer the
information catalog metadata 3

Chapter 2. Managing objects with an
application 5
Organizing objects using categories 5
A programmer’s view of the Information
Catalog Manager object types 7
Defining object types 8

Specifying registration properties 8
Specifying the category for a new object
type 9
Defining required object type properties . 10
Identifying your new object type and
object instances 12

The Information Catalog Manager identifier
names 12

Chapter 3. Writing programs with the
Information Catalog Manager API calls . . 15
What you can do with the Information
Catalog Manager API calls 15

Provide the Information Catalog Manager
application support 15
Manage object type registrations 16
Manage object types 16
Manage object instances 16
Manage the Information Catalog Manager
identifiers 17
Define object relationships 17

Locate object instances 17
List object types and instances 17
Copy metadata objects to or from the
Information Catalog Manager 18
Start external programs 19
Confirm or remove changes to the
Information Catalog Manager database . . 19
Manage your enterprise information
catalogs 19

Issuing an Information Catalog Manager API
call 20
Passing data to and from the Information
Catalog Manager API calls 20

Passing single input values and pointers as
parameters 20
Passing multiple values using input
structures and output structures 21

Including header files 22
An overview of writing a C language
program 23

Creating C language source code 23
Setting up your environment 23
Compiling and linking your application. . 24

How to use the Information Catalog Manager
API calls in your program 24

Starting your program with FLGInit . . . 24
Ending your program with FLGTerm . . 25
Protecting your information catalog
database when errors occur 25
Setting up Programs objects to start
programs 25
Creating metadata using API calls. . . . 26
Deleting metadata using API calls. . . . 26
Specifying the information catalog
metadata using the Information Catalog
Manager data types 27

National language considerations 28
Translated required properties 28
Specifying values in languages other than
English. 28

Introducing DG2SAMP.C. 29

Chapter 4. The Information Catalog
Manager input and output structures . . . 31

© Copyright IBM Corp. 1994, 2000 iii

Common characteristics of the Information
Catalog Manager API input and output
structures 31
The Information Catalog Manager API input
structure 32

Header area — always required 33
Definition area — always required . . . 35
Object area — Required when defining
values 39

Creating input structures for an API call . . 40
Defining lengths and values using
DG2API.H 40
Calculating the size of the entire input
structure 42
Defining the header area 44
Defining the definition area 45
Defining the object area 47
Example of defining header, definition,
and object areas 48

The Information Catalog Manager API output
structure 51

Header area — always present 53
Definition area — always present 55
Object area — Present when retrieving
information 57

Reading an output structure resulting from an
API call 58

Using pointers to read an output structure 58
Reading values using DG2API.H 59
Calculating the number of properties in
the output structure 60
Calculating the number of sets of values
returned 60
Reading the property data types and
lengths in the definition area 60
Stepping through the object area to read
values 62
DG2SAMP.C example of locating a value
in an output structure. 63

Chapter 5. The Information Catalog
Manager API call syntax 67
API call syntax conventions 67

Reading syntax diagrams 67
Using constants defined in DG2API.H in
your program 67

FLGAppendType 69
FLGCommit 74
FLGConvertID 76
FLGCreateInst 78

FLGCreateReg 84
FLGCreateType 91
FLGDeleteInst 97
FLGDeleteReg 100
FLGDeleteTree 102
FLGDeleteType 107
FLGDeleteTypeExt 110
FLGExport 113
FLGFoundIn 120
FLGFreeMem 125
FLGGetInst 127
FLGGetReg 131
FLGGetType 135
FLGImport 138
FLGInit 142
FLGListAnchors 149
FLGListAssociates 152
FLGListContacts 161
FLGListObjTypes 164
FLGListOrphans 167
FLGListPrograms 173
FLGManageCommentStatus 176
FLGManageFlags 180
FLGManageIcons 182
FLGManageTagBuf 185
FLGManageUsers 187
FLGMdisExport 193
FLGMdisImport 196
FLGNavigate 198
FLGOpen 202
FLGRelation 204
FLGRollback 207
FLGSearch 208
FLGSearchAll 217
FLGTerm 223
FLGTrace 225
FLGUpdateInst 228
FLGUpdateReg 233
FLGWhereUsed 238
FLGXferTagBuf 241

Appendix A. Sample program
DG2SAMP.C 243
Compiling DG2SAMP.C. 243
Linking DG2SAMP.C. 243
Executing DG2SAMP.C 243

Appendix B. The Information Catalog
Manager API header file—DG2APIH . . . 245
Constants defined in DG2API.H 245

iv Information Catalog Manager Programming Guide and Reference

Structure and data type definitions in
DG2API.H 253
Information Catalog Manager API call
function prototypes 255

Appendix C. Information Catalog Manager
limits 261

Appendix D. Information Catalog Manager
reason codes. 263

Notices 365

Trademarks 368

Glossary 371

Bibliography 377

Index 379

Contacting IBM 385
Product Information 385

Contents v

vi Information Catalog Manager Programming Guide and Reference

About this book

This book is intended for programmers who plan to write applications that
work with the Information Catalog Manager. These programs can use
application program interface (API) calls to access the Information Catalog
Manager functions.

This book assumes that you are familiar with the concepts explained in the
Information Catalog Manager Administration Guide and with C language
programming. You should also have Microsoft Visual C++ Compiler installed.

The Information Catalog Manager provides the application program interface
(API) and import/export interfaces for information catalogs.

What is an information catalog?

An information catalog is a mechanism for storing descriptive details, or
metadata, about an organization’s information resources. An information
catalog can help users find what data is available to them and what that data
means. When users find data they want, they can use informational
applications to retrieve and analyze the data. The Information Catalog
Manager provides functions that let users use informational application
functions, such as Lotus 1-2-3.

What are information catalog architected interfaces?

This book includes definitions for information catalogs. These interfaces
include:
v Application program interface (API)

The syntax and specifications for input and output for the Information
Catalog Manager API calls are documented in “Chapter 5. The Information
Catalog Manager API call syntax” on page 67.
Specifications for the input and output structures used with these API calls
are documented in “Chapter 4. The Information Catalog Manager input and
output structures” on page 31.

v Import/export interface to the information catalog
The syntax and information about using the tag language is documented in
the Information Catalog Manager Administration Guide.

How to send your comments
Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other Data Warehouse Center

© Copyright IBM Corp. 1994, 2000 vii

publications. Send your comments from the Web. Visit the Web site at
http://www.software.ibm.com/data/vw/

The Web site has a feedback page that you can use to enter and send
comments.

viii Information Catalog Manager Programming Guide and Reference

Chapter 1. Introduction to the Information Catalog Manager

The Information Catalog Manager helps business professionals locate data
anywhere in an organization quickly and easily. Users actually access the data
using informational applications—applications that allow them to retrieve and
analyze their data, without knowing or caring where the data is actually
stored.

The Information Catalog Manager helps you learn:
v What data is available
v What the data means in business terms
v Where the data is located
v How you can access the data
v Who you can contact about the data

This information about data is called descriptive data, or metadata, and is stored
in an information catalog. Each information catalog is stored in a database that
is maintained by the Information Catalog Manager.

Each information source or group of information sources is represented as an
object. You can use many types of objects to represent the various kinds of
information sources your organization uses, such as database tables,
spreadsheets, and digitized photographs. From many of these objects, you can
start programs that can work with the information sources.

Each information catalog object is similar to a card in a card catalog. Each
object provides details about the information source, such as the name of the
information source, a description, and the date on which the information
source was last updated.

Who uses the Information Catalog Manager?

There are three types of Information Catalog Manager users:
v Users
v Administrators
v Application programmers

Users
In your organization, users make business decisions and contribute to
decisions using information they locate using the Information Catalog
Manager. Although they might be familiar with various software programs,
they do not need to understand database or computer programming concepts.

© Copyright IBM Corp. 1994, 2000 1

Some Information Catalog Manager users can perform additional object
management tasks that are normally performed by the Information Catalog
Manager administrators if they have been granted authority by their
administrator.

Administrators
Administrators manage the Information Catalog Manager. They provide the
metadata that helps users locate the data they need. Administrators ensure
that the information catalog metadata is available, easy to find and use,
current, and protected from unauthorized access.

Application programmers
Application programmers write programs that support information catalog
users. The Information Catalog Manager provides C language API calls that
let your programs use the Information Catalog Manager functions.

Application programmers need detailed information about how the
Information Catalog Manager organizes and stores metadata. See “Chapter 2.
Managing objects with an application” on page 5 for information about how
an Information Catalog Manager application works with objects.

What kinds of applications work with the Information Catalog Manager?

You can write two types of applications that use the Information Catalog
Manager functions:
v Applications that present data to the user
v Tools that help the administrator perform tasks such as adding and

updating metadata—extract programs, for example

Informational applications
You can write applications that work with the Information Catalog Manager
in two ways. These applications can:
v Start the application from the Information Catalog Manager

Figure 1 on page 3 shows that users can find the object they want, then start
a familiar informational application, running under DOS or Microsoft®

Windows®, that works with the information source identified by this object.
The Information Catalog Manager passes the necessary metadata to this
application.

Who uses the Information Catalog Manager?

2 Information Catalog Manager Programming Guide and Reference

v Provide the application with metadata
Users work with familiarinformational applications that run on DOS or
Microsoft Windows. These applications can use the Information Catalog
Manager functions to locate the information sources that the user wants to
work with. Then these applications can retrieve and analyze the actual data
located by the Information Catalog Manager, and present the results to the
user using its own user interface, as shown in Figure 2.

Tools that maintain and administer the information catalog metadata
You can write tools for your administrator that:
v Maintain the information catalog metadata
v Add metadata to the information catalog

Maintaining an information catalog
One of the main tasks of a administrator is to update the metadata in the
information catalog when the information source itself changes. For example,
metadata about a file can include the date of the most recent update; if the file
is again updated, the administrator needs to update the corresponding date in
the metadata.

You can automate this process by writing programs that update the metadata
when the corresponding information source changes.

Figure 1. Starting an application from the Information Catalog Manager

Figure 2. Using an application that lets the Information Catalog Manager locate the data

Who uses the Information Catalog Manager?

Chapter 1. Introduction to the Information Catalog Manager 3

Adding new objects
When administrators create new information catalogs or add newinformation
sources to existing information catalogs, they need to add new object types
and objects. The administrator can add metadata by importing files that
contain the Information Catalog Manager tag language. This tag language
defines the meaning of the metadata being imported into an information
catalog.

You can write applications that automatically generate tag language files
based on information specified by the administrator. These files can then be
imported into one or more information catalog databases to populate the
information catalog with metadata.

You can also write applications that extract metadata from existing data
sources and format the data as tag language files. These applications are
called extract programs, and are described in the Information Catalog Manager
Administration Guide.

Who uses the Information Catalog Manager?

4 Information Catalog Manager Programming Guide and Reference

Chapter 2. Managing objects with an application

When you write applications that manage or access metadata in the
information catalogs, you need more information about how the information
catalog organizes and controls the metadata it stores. This chapter describes:
v How categories, object types, and object instances organize your

information catalog
v The two parts of the object type definition
v How to define new object types
v Terminology available for different levels of information catalog users

Organizing objects using categories

The Information Catalog Manager provides seven categories for classifying
your metadata. These categories control how objects work together to provide
a structure for the metadata in your information catalog database. Except for
the Program and Attachment categories, you can create new object types in
any of the following information catalog categories:

Category Definition

Grouping Object types that can contain other object types.

Elemental Non-Grouping object types that are the building blocks for
other Information Catalog Manager object types.

Contact Object types that identify a reference for more information
about an object. More information might include the person
who created the information that the object represents, or the
department responsible for maintaining the information.

Program A Programs object type that identifies and describes
applications capable of processing the actual information
represented by the Information Catalog Manager object types.
The only object type belonging to the Program category is the
Programs object type, which is defined when you create an
information catalog.

Dictionary Object types that define terminology that is specific to your
business.

Support Object types that provide additional information about your
information catalog or enterprise.

Attachment A Comments object type that identifies additional information
attached to another Information Catalog Manager object. The

© Copyright IBM Corp. 1994, 2000 5

only object type belonging to the Attachment category is the
Comments object type, which is defined when you create an
information catalog.

Table 1 summarizes the relationships among the Information Catalog
Manager’s object type categories.

Table 1. The Information Catalog Manager category relationships

Category
Can contain/
contained by Links with

Contacts
associated

Comments
attached

Programs
launch from

Grouping Contains other
Grouping or
Elemental
objects.

Other Grouping
or Elemental
objects

Yes Yes Yes

Elemental Contained by
any Grouping
object.

Other Grouping
or Elemental
objects

Yes Yes Yes

Contact None None No Yes Yes

Program None None No Yes No

Dictionary None None No Yes Yes

Support None None No Yes Yes

Attachment None None No No Yes

The Information Catalog Manager lets you organize data about your
information sources by defining object types and objects.

You use object types to classify your objects. For example, if you have several
database tables, you can create an object type for tables so that you can store
and maintain similar metadata for each table. For most categories, you can
define your object types to contain whatever metadata is most useful for your
organization.

Objects contain the metadata for a specific unit of information; for example,
information about a table, a person, or a program. An object type is a
template for an object; it defines the metadata that you need to store in the
information catalog for each similar unit of information. Therefore, consider
objects as instances of the object type; you can define several instances based
on a single object type.

For more information about using different categories to design your
information catalog, see the Information Catalog Manager Administration Guide.

Organizing objects using categories

6 Information Catalog Manager Programming Guide and Reference

A programmer’s view of the Information Catalog Manager object types

The administrator managing an object type with the user interface or tag
language is aware only of working with an object type. However, when you
write a program using the Information Catalog Manager API calls to manage
an object type, you need to be aware that there are two parts of the object
type: the object type registration and the object type itself.

Object type registration
The object type registration contains overall information about the
object type, including:
v Category the object type belongs to
v Extended (NAME) and short (DPNAME) names of the object type
v Name of the information catalog database table containing the

object instance information

When you create or update the object type registration, you also give
the Information Catalog Manager the name of an icon file associated
with the object type.

Object type
The object type defines the properties that are used for each object.
These properties, such as OWNER and DESCRIPTION, contain
information about the information source described by each object.

The above two parts require separate maintenance functions, which are
provided by the following the Information Catalog Manager API calls:

For object type
registration: For object type: Purpose

FLGCreateReg FLGCreateType Define a new object type or
object type registration

FLGGetReg FLGGetType Get information about an
object type or object type
registration

FLGUpdateReg FLGAppendType Change the definition of an
object type or object type
registration

FLGDeleteReg FLGDeleteType
FLGDeleteTypeExt

Delete an object type or
object type registration

When you create or delete an object type, you need to use the FLGCreateReg
and FLGCreateType calls or FLGDeleteType and FLGDeleteReg calls as pairs
to make sure that complete object types are created or deleted. Object type
registrations that do not have associated object types with defined properties

A programmer’s view of the Information Catalog Manager object types

Chapter 2. Managing objects with an application 7

are useless and can cause problems if you later try to use these object types to
define objects in your information catalog.

You cannot change or delete object type properties after you create the object
type; you can only append new optional properties using the
FLGAppendType call (see “FLGAppendType” on page 69).

Defining object types

When defining a new object type, at a minimum you must specify the
following:
v Registration properties
v The category the object type belongs to
v Required properties common to all objects

After you complete the above steps, you can define additional optional
properties for the object type.

Specifying registration properties
When you register an object type, you must specify these six properties in the
order shown in Table 2.

Table 2. Properties required for object type registrations

Position
Property short
name Property name1 Description Comments

1 NAME EXTERNAL NAME
OF OBJ TYPE

80-byte name of the
object type.

You must set this
value using the
FLGCreateReg call.

You can modify
this value using the
FLGUpdateReg
call.

2 PTNAME PHYSICAL TYPE
NAME

30-character name
of the table in the
information catalog
database that
contains the object
type.

You can only set
this value using the
FLGCreateReg call.

You cannot modify
this value after the
object type is
registered.

A programmer’s view of the Information Catalog Manager object types

8 Information Catalog Manager Programming Guide and Reference

Table 2. Properties required for object type registrations (continued)

Position
Property short
name Property name1 Description Comments

3 DPNAME DP NAME 8-character short
name for the object
type.

You must set this
value using the
FLGCreateReg call.

You cannot modify
this value after the
object type is
registered.

4 CREATOR CREATOR 8-character user ID
of the
administrator who
creates the object
type.

The Information
Catalog Manager
sets this value
when the
FLGCreateType call
is issued for the
object type.

You cannot set or
modify this value.

5 UPDATEBY LAST CHANGED
BY

8-character user ID
of the
administrator who
last modified the
object type.

The Information
Catalog Manager
sets and modifies
this value when the
FLGAppendType
call is issued to
add optional
properties to the
object type.

6 UPDATIME LAST CHANGED
DATE AND TIME

26-character time
stamp of the last
date and time the
object type was
modified.

The Information
Catalog Manager
sets and modifies
this value when the
FLGCreateType or
FLGAppendType
call is issued for
the object type.

Note:

1. The property names in this column apply to English versions of the Information Catalog Manager; if
you are using a translated version of the Information Catalog Manager, the property name will also
be translated.

Specifying the category for a new object type
You set the category of the object type when you register the object type using
FLGCreateReg.

Defining object types

Chapter 2. Managing objects with an application 9

You can create object types belonging to the following categories:
v Grouping
v Elemental
v Contact
v Dictionary
v Support

These five categories are briefly described in “Organizing objects using
categories” on page 5. For more detailed information, see the Information
Catalog Manager Administration Guide.

The Information Catalog Manager defines both a Programs and Comments
object type when you create a new information catalog database. Programs is
the only object type that can belong to the Program category; you cannot
create any other Program object types. Comments is the only object type that
can belong to the Attachment category; you cannot create any other
Attachment object types.

Defining required object type properties
When you define a new object type, you must specify the five required
properties shown in Table 3 as the first five properties for the object type. The
Information Catalog Manager uses the property short names to identify the
required properties.

Table 3. Properties required for every object type

Position
Property short
name Property name Description Comments

1 OBJTYPID Object type
identifier

6-character
system-generated
ID for the object
type

The Information
Catalog Manager
generates a unique
identifier for each
object type.

This value is the
first part of the
FLGID that you
use with several
API calls to
identify object
instances.

You cannot modify
this value.

Defining object types

10 Information Catalog Manager Programming Guide and Reference

Table 3. Properties required for every object type (continued)

Position
Property short
name Property name Description Comments

2 INSTIDNT Instance identifier 10-character
system-generated
ID for the object
instance

The Information
Catalog Manager
generates a unique
identifier for each
object instance.

This value is the
second part of the
FLGID that you
use with several
API calls to
identify object
instances.

You cannot modify
this value.

3 NAME Name 80-byte
user-specified name
for the object.

This name is
displayed by the
Information
Catalog Manager.

You can modify
this value using the
FLGUpdateInst
call.

4 UPDATIME Last Changed Date
and Time

26-character time
stamp of the last
date and time the
object instance was
modified.

The Information
Catalog Manager
sets this value
when the object
instance is created
or modified (using
FLGCreateInst or
FLGUpdateInst
calls).

You cannot modify
this value.

Defining object types

Chapter 2. Managing objects with an application 11

Table 3. Properties required for every object type (continued)

Position
Property short
name Property name Description Comments

5 UPDATEBY Last Changed By 8-character user ID
of the person who
last modified the
object instance.

The Information
Catalog Manager
sets and modifies
this value when the
object instance is
created or modified
(using
FLGCreateInst or
FLGUpdateInst
calls).

The property short names for these required properties are reserved. Do not
use these names for any other property short name assignments.

When you create a new object instance, you must specify a value for NAME.
The Information Catalog Manager generates the values for OBJTYPID,
INSTIDNT, UPDATIME, and UPDATEBY. You cannot modify these
system-generated values.

Identifying your new object type and object instances
When the system generates OBJTYPID, you use this value to uniquely identify
a registered and defined object type.

When the system generates INSTIDNT, you use this value with OBJTYPID to
uniquely identify a single object instance.

This book refers to the combined OBJTYPID and INSTIDNT values as FLGID
in “Chapter 5. The Information Catalog Manager API call syntax” on page 67.

The Information Catalog Manager identifier names

Because the Information Catalog Manager is designed to be used by several
different levels of users, different terminology is used for describing object
types for different product users. You find less technical, more
business-oriented terms in the Information Catalog Manager interface and in
the books Information Catalog Manager User’s Guide and the Information Catalog
Manager Administration Guide.

In this book terms are oriented to the data processing environment for
administrators and application programmers.

Defining object types

12 Information Catalog Manager Programming Guide and Reference

You need to be aware of these terminology differences when writing
applications for users or administrators. Table 4 provides a quick reference to
the different levels of terminology.

Table 4. The Information Catalog Manager terminology for object types

Description User term Administrator term Tag language term API call term

Long (80-byte)
name of object type

Object type Object type name EXTNAME(ext_name) EXTERNAL
NAME OF OBJ
TYPE

NAME property
in the input or
output structure

Short (8-character)
name of the object
type

— Short name TYPE (type) DP NAME

DPNAME
property in the
input or output
structure

Name of the
information catalog
database table
containing the
object type
information

— — PHYNAME
(table_name)

TYPE (type) if
PHYNAME is not
specified

PHYSICAL TYPE
NAME

PTNAME
property in input
or output
structure

Long (80-byte)
property name

Property Property name EXTNAME
(ext_name)

Property name

Property short
(8-character) name

— Short name SHRTNAME
(short_name)

Property short
name

Information Catalog Manager identifier names

Chapter 2. Managing objects with an application 13

Information Catalog Manager identifier names

14 Information Catalog Manager Programming Guide and Reference

Chapter 3. Writing programs with the Information Catalog
Manager API calls

The Information Catalog Manager provides C language API calls that let your
programs use the Information Catalog Manager functions.

This chapter describes:
v What Information Catalog Manager functions you can perform using API

calls
v The general structure of API calls
v How to pass data to and from the Information Catalog Manager API calls
v C language header files provided by the Information Catalog Manager
v How to write a C language program using the Information Catalog

Manager
v Rules for using the Information Catalog Manager API calls
v The DG2SAMP.C sample program

What you can do with the Information Catalog Manager API calls

The Information Catalog Manager API calls have consistent syntax rules. See
“Chapter 5. The Information Catalog Manager API call syntax” on page 67 for
the complete syntax for each API call.

These API calls use self-defining input and output structures. Any
programming language can read and generate these structures. For more
information about the input structures and output structures, see “Chapter 4.
The Information Catalog Manager input and output structures” on page 31.

This section briefly describes all of the API calls provided by the Information
Catalog Manager and tells you where to find detailed information about each
call.

Provide the Information Catalog Manager application support
These API calls allow your program to use other the Information Catalog
Manager API calls.

API call Purpose See:

FLGInit Allocate required resources and
initialize the Information Catalog
Manager client

142

FLGFreeMem Free output structures defined by
the Information Catalog Manager.

125

© Copyright IBM Corp. 1994, 2000 15

API call Purpose See:

FLGTerm Relinquish resources and terminate
the Information Catalog Manager
client

223

FLGTrace Set the level of tracing 225

Manage object type registrations
Registrations uniquely identify object types to the Information Catalog
Manager.

API call Purpose See:

FLGCreateReg Register a new object type 84

FLGDeleteReg Delete an object type registration 100

FLGGetReg Get the information for an object
type registration

131

FLGUpdateReg Update the information for an
object type registration

233

FLGManageIcons Create and update icons that
represent an object type

182

Manage object types
Object types define associated properties.

API call Purpose See:

FLGAppendType Add new properties to an object
type

69

FLGCreateType Create a new object type 91

FLGDeleteType Delete an object type 107

FLGDeleteTypeExt Delete an object type along with its
instances and object type
registration

110

FLGGetType Get information about an object
type

135

Manage object instances
Object instances contain metadata representing a unit of information.

API call Purpose See:

FLGCreateInst Create a new object instance 78

FLGDeleteInst Delete an object instance 97

What you can do with the Information Catalog Manager API calls

16 Information Catalog Manager Programming Guide and Reference

API call Purpose See:

FLGDeleteTree Delete a Grouping object instance
and optionally delete all
underlying instances

102

FLGUpdateInst Update information about an object
instance

228

FLGGetInst Get information about an object
instance

127

Manage the Information Catalog Manager identifiers
This API call allows your program to convert identifiers for performance
purposes.

API call Purpose See:

FLGConvertID Convert object type and instance
identifiers for application
performance

76

Define object relationships
Relationships define the interaction of two object instances.

API call Purpose See:

FLGRelation Create or delete a contains, contact,
attachment, or link relationship
between two object instances.

204

Locate object instances
You can locate object instances based on the values of certain properties.

API call Purpose See:

FLGSearch Return a list of the instances of a
specific object type that meet the
selection criteria

208

FLGSearchAll Return a list of the instances of any
object type that meet the selection
criteria

217

List object types and instances
You can retrieve a list of object types or instances according to their category
or relationships.

What you can do with the Information Catalog Manager API calls

Chapter 3. Writing programs with the Information Catalog Manager API calls 17

API call Purpose See:

FLGFoundIn Return a list of: objects in which a
specific instance is contained;
objects for which a specific instance
is a contact; objects to which a
specific instance is attached as a
comment; object types for which a
specified Programs instance is
associated

120

FLGListAnchors Return a list of the Grouping
objects that are not contained by
other objects; these top-level
Grouping objects are referred to as
anchors.

149

FLGListAssociates Return a list of the objects that are:
contained by a specified Grouping
object; contacts for a specified
object; comments attached to a
specified object; linked with a
specified object; or Programs
associated with a specified object
type

152

FLGListContacts Return a list of all Contact objects
associated with a specified
Grouping or Elemental object

161

FLGListObjTypes Return a list of all object types 164

FLGListOrphans Return a list of currently
unassociated Attachment, Contact,
or Program object instances

167

FLGListPrograms Return a list of all Programs
objects associated with a
non-Programs object type

173

FLGNavigate Return a list of the Grouping or
Elemental objects that the specified
Grouping object contains

198

FLGWhereUsed Return a list of the Grouping
objects that contain the specified
object

238

Copy metadata objects to or from the Information Catalog Manager
You can import or export metadata to or from the information catalog
database.

What you can do with the Information Catalog Manager API calls

18 Information Catalog Manager Programming Guide and Reference

API call Purpose See:

FLGExport Copy and translate the Information
Catalog Manager metadata objects
to a file in tag language format

113

FLGImport Interpret and copy metadata
objects from a file in tag language
format into the information catalog

138

FLGMdisExport Copy and translate the Information
Catalog Manager metadata objects
to a file in MDIS-conforming tag
language format

113

FLGMdisImport Interpret and copy metadata
objects from an MDIS-conforming
tag language file into the
information catalog

138

Start external programs
You can start a DOS or Microsoft Windows application from the Information
Catalog Manager.

API call Purpose See:

FLGOpen Start an external program using
information from the specified
object.

202

Confirm or remove changes to the Information Catalog Manager database
You can commit or roll back changes to the Information Catalog Manager
database.

API call Purpose See:

FLGCommit Confirm that you want changes to
the information catalog database
made permanent

74

FLGRollback Remove changes made to the
information catalog database back
to the point where changes were
last committed.

207

Manage your enterprise information catalogs
You can manage the list of users authorized to perform object management
tasks, choose the comment status choices available to users, and propagate
deletions from one information catalog to shadow information catalogs in
your enterprise.

What you can do with the Information Catalog Manager API calls

Chapter 3. Writing programs with the Information Catalog Manager API calls 19

API call Purpose See:

FLGManageUsers Update administrators and grant
object management authority to
specific users

187

FLGManageCommentStatus Set and update a list of available
status choices for users to assign
comments

176

FLGManageFlags Start or stop recording of
information catalog deletions
(delete history), or retrieve current
setting

180

FLGManageTagBuf Query or reset currently recorded
delete history

185

FLGXferTagBuf Transfer delete history to a tag file
for import into other catalogs

241

Issuing an Information Catalog Manager API call

The standard structure for all the Information Catalog Manager API calls is:
rc = FLGxxx (parameter,

parameter,
parameter,
.
.
&ExtCode);

These parameters are typically assigned values or addresses in the code
preceding the API call.

rc is the variable for the reason code returned by the API call; a reason code
of zero (0) means that the API call completed without errors or warnings.
&ExtCode is the address for the extended code sometimes returned by the API
call.

Passing data to and from the Information Catalog Manager API calls

Information catalog API calls receive input and provide output using two
mechanisms: parameters and input structures and output structures.

Passing single input values and pointers as parameters
You can use parameters to provide single input values and pointers to output
values and data structures.

All API call parameters that are character strings must be passed as strings
terminated by a null character, or null-terminated strings. Under the Syntax

What you can do with the Information Catalog Manager API calls

20 Information Catalog Manager Programming Guide and Reference

section for each API call in “Chapter 5. The Information Catalog Manager API
call syntax” on page 67, the descriptions for such parameters specify the
maximum length of the actual data without the null terminator. For example,
the length of an object type identifier, ObjTypeID, is specified as 6, not 7.

However, the C declarations for such parameters in the examples include the
extra byte for the null terminator. For example, if you use the #define
constants in the DG2API.H file, a possible declaration for the ObjTypeID
parameter is:
uchar objtypid[FLG_OBJTYPID_LEN+1]

(See “Appendix B. The Information Catalog Manager API header
file—DG2APIH” on page 245 for a list of the constants in the DG2API.H file.)

Passing multiple values using input structures and output structures
To provide multiple values of input and receive multiple values of output
from the Information Catalog Manager API calls, you need to use input
structures and output structures.

Input structures and output structures are self-defining data structures; each
structure defines the format and meaning of the data that it is passing.

Each self-defining structure must be a contiguous area of storage. Input
structures and output structures contain only character data, and cannot
contain nulls.

Each input structure and output structure must contain these two areas:

Header area Identifies and defines the size of the structure

Definition area
Defines object area properties

Structures that define or receive values for the properties defined in the
definition area must also contain an object area, which specifies values for the
properties defined in the definition area. Figure 3 on page 22 shows how these
three areas are put together.

What you can do with the Information Catalog Manager API calls

Chapter 3. Writing programs with the Information Catalog Manager API calls 21

To pass an input structure to an API call, build the input structure and pass a
pointer to the beginning of the input structure as an input parameter for the
API call.

To retrieve information from an output structure, pass the address of a null
pointer as an input parameter so that the Information Catalog Manager can
assign that pointer the address of the beginning of the output structure.

For example, when you pass the API call a pointer named ppListStruct, which
contains the address of a null pointer named pOutStruct, the API call then
assigns pOutStruct the address of the output structure, as shown in Figure 4.

To avoid running out of memory after several API calls, your program can
deallocate the memory allocated for this output structure using the
Information Catalog Manager API call FLGFreeMem. For more information
about using FLGFreeMem, see “FLGFreeMem” on page 125.

Including header files

The Information Catalog Manager provides C language header files that
define the function prototypes of the Information Catalog Manager API calls,
constants, data types, and constants for Information Catalog Manager reason
codes.

Figure 3. An input or output structure

Figure 4. A pointer to an output structure

What you can do with the Information Catalog Manager API calls

22 Information Catalog Manager Programming Guide and Reference

To work with the Information Catalog Manager, your programs must include
these header files:

DG2API.H Defines the constants for frequently used values, the
Information Catalog Manager-specific data types, and the
function prototypes for API calls.

“Appendix B. The Information Catalog Manager API header
file—DG2APIH” on page 245 contains a complete list of what
is defined in the DG2API.H file.

DG2ERR.H Defines constants for the Information Catalog Manager reason
codes.

Your program must contain the following #define and #include statements to
work with the Information Catalog Manager:

#define DGWIN32
#include WINDOWS.H
#include DG2API.H
#include DG2ERR.H

WINDOWS.H is part of the Microsoft Visual C++ Compiler. This file embeds
header files that define standard declarations for Windows data types that are
used by the Information Catalog Manager.

An overview of writing a C language program

This section outlines the steps for writing and running a C language program
that uses the Information Catalog Manager API calls. Most of this information
is standard for any C language program you write.

Creating C language source code
To build an Information Catalog Manager application using C language:
1. Create the source code.
2. Compile the source code using a C compiler.
3. Link the object files with the Information Catalog Manager and C

language libraries to produce an executable program.
The Information Catalog Manager library is DGWAPI.LIB.

4. Execute the application.

Setting up your environment
Use the following steps to set up your environment to compile and run the
Information Catalog Manager programs written in the C language:
1. Install the compilers.
2. Verify the LIBPATH.

Including header files

Chapter 3. Writing programs with the Information Catalog Manager API calls 23

The LIBPATH= environment variable must include the x:\SQLLIB directory,
where x is the drive where you installed DB2 UDB.

3. Set environment variables. You set environment variables either in your
AUTOEXEC.BAT or from the Microsoft Visual C++ Compiler menu bar
(include file path and library file path).
The SET INCLUDE= statement must include the x:\SQLLIB\LIB directory.
The directory containing the WINDOWS.H should also be specified on SET
INCLUDE=.
SET LIB= must include the x:\SQLLIB\LIB directory.

Compiling and linking your application
To compile your application using Microsoft Visual C++ Compiler you need to
issue a command such as:

cl /c filename.c

You might need or want to add other options, depending on the compiler you
use and the way you write your program.

To link your program, issue a command such as:

link /dll dgwapi.lib filename.obj

How to use the Information Catalog Manager API calls in your program

You must follow certain rules and guidelines when you write C language
programs that contain the Information Catalog Manager API calls. These
guidelines are explained in this section.

Starting your program with FLGInit
When you write a program that issues the Information Catalog Manager API
calls, you must issue an FLGInit call before you can issue any other
Information Catalog Manager API calls.

FLGInit initializes the Information Catalog Manager, returns the names of
properties required for the Information Catalog Manager object types and
registrations, and returns environmental information.

Save the information returned by FLGInit. You might need this information
for other Information Catalog Manager API calls. If you are using a national
language version of the Information Catalog Manager, FLGInit returns the
translated names of the properties required for the Information Catalog
Manager object types and registrations. You need to use these translated
names in the definition area of your input structure when you create or
maintain object types and registrations.

Including header files

24 Information Catalog Manager Programming Guide and Reference

See “FLGInit” on page 142 for information about the contents of the FLGInit
output structure.

Ending your program with FLGTerm
Your program must issue an FLGTerm call after it finishes using the
Information Catalog Manager functions. FLGTerm ends the Information
Catalog Manager session and releases resources used by the Information
Catalog Manager. See “FLGTerm” on page 223 for more information about this
API call.

Protecting your information catalog database when errors occur
Certain Information Catalog Manager errors indicate that some of the
metadata in the database on which your information catalog resides might be
inconsistent. Therefore, you should write your program to roll back the
information catalog database when your program encounters errors. By
issuing FLGCommit calls when your API calls succeed and FLGRollback calls
when they fail, you protect your information catalog database from becoming
inconsistent.

Attention: When your information catalog database is on DB2 you must
issue an FLGRollback call if you encounter an error. Otherwise, your
information catalog database may be damaged when your program issues
FLGTerm.

Setting up Programs objects to start programs
To start a program that works with your data from an Information Catalog
Manager application, create a Programs object instance that is associated with
the object type that represents that kind of data.

You must define values for three properties in the Programs object instance
that identify the program and associate the Programs object instance with an
object type, as shown in Table 5.

Table 5. Properties of a Programs object instance that start the program

Property name
Property short
name Value

Start by
invoking

STARTCMD Path and file name of the program to be started,
as well as the start options.

Object type this
program
handles

HANDLES 8-character short name of the object type

Parameter list is PARMLIST List of properties in the associated object type the
values of which you want to pass to the program
as command-line parameters. Each property is
delimited by two percent signs (%%)

Including header files

Chapter 3. Writing programs with the Information Catalog Manager API calls 25

The value of the Start by invoking (STARTCMD) property has different
recommended formats, depending on the program’s interface type. Enter the
file name of the program and the recommended starting parameters. For
Windows NT®, Windows 95, and Windows 98, the recommended starting
parameter is START filename.exe. The PATH statement must contain the
directory where the program is located.

If the file name of the program is in high-performance file system (HPFS)
format and contains blanks, then you must surround the path and file name
of the program with double quotes, as shown below:
""D:\PROGPATH\My Program.EXE""

If your program name contains blanks, then you cannot specify any other
start options in the STARTCMD property value.

To start a program, issue an FLGOpen call with the Programs object FLGID
and object instance FLGID as parameters. For more information about the
FLGOpen call, see “FLGOpen” on page 202.

Creating metadata using API calls
The registration, object type, object instances, and relationships build upon
one another; therefore, you can only create a set of these entities in a certain
order. When creating new object types, object instances, and relationships, you
must issue the Information Catalog Manager API calls in the following order:
1. FLGCreateReg
2. FLGCreateType
3. FLGCreateInst
4. FLGRelation

Deleting metadata using API calls
You can, however, delete registration, object type, object instances, and
relationships in two manners: conservative (this method is slower), or
potentially destructive (yet quicker).

When deleting object types and object instances in a conservative manner,
issue the following the Information Catalog Manager API calls for related
object instances and object types in the following order:
1. FLGRelation

You must delete all relationships where the particular object instances are
containers of other objects before you can delete these object instances.
FLGDeleteInst automatically deletes relationships where object instances
are contained or have associated Contact, Attachment, or linked objects.

2. FLGDeleteInst
You must delete all object instances of a particular object type before you
can delete the object type using FLGDeleteType.

Including header files

26 Information Catalog Manager Programming Guide and Reference

3. FLGDeleteType
4. FLGDeleteReg

You can delete object instances and object types more quickly using the
following APIs, but if you are not completely certain of your information
catalog’s contents, the results can be destructive.
1. FLGDeleteTree

Simultaneously delete a Grouping object instance and, optionally, all object
instances it contains as well as all relationships in which the contained
object instances participate.

2. FLGDeleteTypeExt
Simultaneously delete the object type, object type registration, and all
instances of the object type. You must delete individual branches
containing objects of other object types before you can delete the object
type using FLGDeleteTypeExt.

Specifying the information catalog metadata using the Information
Catalog Manager data types

The Information Catalog Manager stores the metadata for an object’s
properties using four data types, which are defined in Table 6.

Your program may need to make some data conversions to ensure that your
metadata is in a valid format.

Table 6. Valid data types for information catalog metadata

Data type How represented

How an omitted value is
represented in input and output
structures

CHAR Occupies its defined length. The
value is padded on the right
with trailing blanks if the value
is shorter than its defined length.

Blanks fill up the value’s defined
length.

TIMESTAMP Occupies its full length (26)
using the following format:
yyyy-mm-dd-hh.mm.ss.nnnnnn

Represented by 26 blanks.

LONG
VARCHAR

Preceded by an 8-character
length field that specifies the
actual length of the following
value.

Length field is set to zeros that
specifies that no value follows.
Example: 00000000

VARCHAR Preceded by an 8-character
length field that specifies the
actual length of the following
value.

Length field set to zeros that
specifies that no value follows.
Example: 00000000

Including header files

Chapter 3. Writing programs with the Information Catalog Manager API calls 27

With input structures, the Information Catalog Manager automatically
removes trailing blanks from variable-length values and adjusts their lengths
accordingly before validating and accepting the request. Therefore, if only
blanks are specified for a required value, the request is rejected with a reason
code indicating that a required value was not specified. When a value is
required, but not available, you can use the not-applicable symbol to avoid
errors.

National language considerations

Unless otherwise specified, the Information Catalog Manager commands,
parameters, required property short names, data type names, indicator values,
and option values are not translated for national language versions, and must
be entered in English.

Translated required properties
The 80-byte names of required registration properties and object type
properties are translated into the national language.

The English names for the required registration properties are:
v EXTERNAL NAME OF OBJ TYPE
v PHYSICAL TYPE NAME
v DP NAME
v CREATOR
v LAST CHANGED BY
v LAST CHANGED DATE AND TIME

The English names for the required object type properties are:
v Object type identifier
v Instance identifier
v Name
v Last Changed Date and Time
v Last Changed By

The translated names are returned in the output structure produced by the
FLGInit call.

Specifying values in languages other than English
Most metadata values stored in an information catalog can be stored in any
language. This section describes the guidelines for using SBCS characters and
DBCS characters in values with the Information Catalog Manager.

Values that use SBCS characters only
– DP NAME (object type short name) values
– Property short names
– PT NAME (physical type name) values
Values that can use SBCS or DBCS characters

Including header files

28 Information Catalog Manager Programming Guide and Reference

– NAME (external name of an object type) values
– Property names, other than those required for object types and

registrations
– Property values for user-defined properties
– Values for the following API call parameters:

FLGCreateReg pszIconFileID
FLGGetReg pszIconFileID
FLGExport pszTagFileID, pszLogFileID, pszIcoPath
FLGImport pszTagFileID, pszLogFileID, pszIcoPath
FLGInit pszUserID, pszPassword,

pszDatabaseName
FLGManageIcons pszIconFileID
FLGMdisExport pszTagFileID, pszLogFileID,

pszObjTypeName, pszObjectName
FLGMdisImport pszTagFileID, pszLogFileID
FLGUpdateReg pszIconFileID
FLGXferTagBuf pszTagFileID

Introducing DG2SAMP.C

The Information Catalog Manager provides a sample program, DG2SAMP.C,
that you can compile, link, and run. DG2SAMP.C is in the DG2LIB\LIB
directory on the drive where you installed the Information Catalog Manager.

This book uses parts of DG2SAMP.C to show how to write applications that
use the Information Catalog Manager API calls. DG2SAMP.C issues the
following calls:
v FLGCommit
v FLGFreeMem
v FLGGetInst
v FLGInit
v FLGListObjTypes
v FLGRollback
v FLGSearch
v FLGTerm
v FLGTrace
v FLGUpdateInst

For instructions for compiling and linking DG2SAMP.C and an example for
running the program, see “Appendix A. Sample program DG2SAMP.C” on
page 243.

Including header files

Chapter 3. Writing programs with the Information Catalog Manager API calls 29

Including header files

30 Information Catalog Manager Programming Guide and Reference

Chapter 4. The Information Catalog Manager input and
output structures

The Information Catalog Manager API calls receive input and provide output
using parameters and input structures and output structures. The input
structures and output structures allow you to provide multiple values of input
and receive multiple values of output from the Information Catalog Manager
API calls.

Input structures and output structures are self-defining data structures; each
structure defines the format and meaning of the data that it passes.

To pass an input structure to an API call, you need to build the input
structure and pass a pointer to the beginning of the input structure as an
input parameter for the API call. This process is explained in “Creating input
structures for an API call” on page 40.

To retrieve information from an output structure, you need to step through
the output structure using one or more pointers. This process is explained in
“Reading an output structure resulting from an API call” on page 58.

Although the examples in this book are written in C language, you can create
and read input and output structures using any programming language.

Common characteristics of the Information Catalog Manager API input and
output structures

The Information Catalog Manager input structures and output structures
contain three parts, called areas, as shown in Figure 5:

Header Identifies and defines the size of the structure

Figure 5. An input or output structure

© Copyright IBM Corp. 1994, 2000 31

Definition Defines object area properties

Object Specifies property values

The entire self-defining structure must be a contiguous area of storage.

Input structures and output structures contain only character data, and cannot
contain null characters.

If you omit a value in an input or output structure, use an appropriate
number of space characters, called blanks in this book, in place of the value to
keep the byte offsets of the values consistent with the definition of the input
structure and output structure.

The Information Catalog Manager API input structure

Figure 6 shows the general format of the Information Catalog Manager API
input structure. The structure consists of three contiguous areas: the header
area, the definition area, and the object area. Some Information Catalog
Manager API calls require only the first two areas.

The fields of each of the areas are described in the following sections.

The following API calls receive input from an input structure:

Figure 6. API input structure

Common characteristics of the API input and output structures

32 Information Catalog Manager Programming Guide and Reference

FLGAppendType
Adds new properties to an object type

FLGCreateInst
Creates a new object instance

FLGCreateReg
Registers a new object type

FLGCreateType
Creates a new object type

FLGExport Copies and translates the Information Catalog Manager
metadata objects to a file in tag language format

FLGManageCommentStatus
Updates the list of available status choices for comments

FLGManageUsers
Updates the administrators and users for an information
catalog and identifies extent of each user’s authority

FLGSearch Returns a list of the instances of a specific object type that
meet the selection criteria

FLGSearchAll Returns a list of the instances of any object type that meet the
selection criteria

FLGUpdateInst
Updates information about an object instance

FLGUpdateReg
Updates information about an object type registration

If FLGSearch and FLGSearchAll do not receive an input structure, they
attempt to retrieve all objects.

Header area — always required
The header area describes the information in the definition and object areas.
Any fields that are not required and are not specified must be set to blanks.

Table 7 on page 34 describes the meaning of each byte offset position in the
header area shown in Figure 7.

Figure 7. Input structure header area

Common characteristics of the API input and output structures

Chapter 4. The Information Catalog Manager input and output structures 33

Table 7. The input structure header area and its fields

Section from
Figure 7 on
page 33 Byte offset Required? Description

FLG-HEAD 0-7 Always Structure identifier.

definition
length

8-15 Always Length of the definition area.

The value must be a multiple of
160 (160 times the number of
definition records).

object length 16-23 Always Length of the object area.

For FLGAppendType and
FLGCreateType, this value is zero
(00000000).

obj area entry
count

24-31 Always Number of entries (property
values) in the object area.

The value is the number of
properties in the definition area
times the number of sets of values
described in the object area.

For FLGAppendType and
FLGCreateType, this value is zero
(00000000).

cat 32 Required for:
v FLGAppendType
v FLGCreateInst
v FLGCreateReg
v FLGCreateType
v FLGUpdateInst
v FLGUpdateReg

Category of the object type or
object.

Valid values are:

G Grouping

E Elemental

C Contact

P Program

D Dictionary

S Support

A Attachment

Common characteristics of the API input and output structures

34 Information Catalog Manager Programming Guide and Reference

Table 7. The input structure header area and its fields (continued)

Section from
Figure 7 on
page 33 Byte offset Required? Description

object type id 33-38 Required for:
v FLGAppendType
v FLGCreateInst
v FLGCreateType
v FLGUpdateInst
v FLGUpdateReg

System-generated identifier for an
object type.

39-159 Always Should be left blank.

Definition area — always required
The definition area contains a set of property definitions required as input by
a particular the Information Catalog Manager API function.

Table 8 shows what the information in the definition area means for different
API calls that use input structures.

Table 8. The meaning of the definition area for different API calls

API calls Information in the definition area

FLGAppendType
FLGCreateInst
FLGCreateReg
FLGCreateType
FLGUpdateInst
FLGUpdateReg

Definition of the set of properties that define the object
registration, object type, or object instance

FLGSearch
FLGSearchAll

Definition of the set of properties that describe the
selection criteria

FLGExport Definition of the properties that specify the metadata to
be exported

FLGManageCommentStatus Definition of the set of properties that specify Comments
status choices

FLGManageUsers Definition of the set of properties that describe the
Information Catalog Manager users

Each property in the definition area is defined by a set of formatted
specifications. Table 9 on page 36 describes the byte offset positions shown in
Figure 8 on page 36.

Common characteristics of the API input and output structures

Chapter 4. The Information Catalog Manager input and output structures 35

Table 9. The input structure definition area and its fields

Section from
Figure 8

Byte offset Required? Description

property
name

0-79 Always External name of the property.

datatype 80-109 Always The data type of the property.

Valid values are:

CHAR Fixed-length character
data. Maximum length is
254.

VARCHAR
Variable-length character
data. Maximum length is
4000.

LONG VARCHAR
Variable-length character
data. Maximum length is
32700.

TIMESTAMP
Time stamp in the form
of: yyyy-mm-dd-
hh.mm.ss.nnnnnn
Timestamp length is 26.

length 110-117 Always Maximum length of the property
value.

Figure 8. Input structure definition record

Common characteristics of the API input and output structures

36 Information Catalog Manager Programming Guide and Reference

Table 9. The input structure definition area and its fields (continued)

Section from
Figure 8 on
page 36

Byte offset Required? Description

ppn 118-125 Required for:
v FLGAppendType
v FLGCreateInst
v FLGCreateReg
v FLGCreateType
v FLGManage-

CommentStatus
v FLGSearch
v FLGSearchAll
v FLGUpdateInst
v FLGUpdateReg

For other API calls
this field is unused
and left blank

Property short name

vf 126 Required for:
v FLGAppendType
v FLGCreateInst
v FLGCreateReg
v FLGCreateType
v FLGUpdateInst
v FLGUpdateReg

For other API calls
this field is unused
and left blank.

Value flag specifying whether a
property is required, optional, or
system-generated.

Valid values are:
R Required
O Optional
S System-generated

Common characteristics of the API input and output structures

Chapter 4. The Information Catalog Manager input and output structures 37

Table 9. The input structure definition area and its fields (continued)

Section from
Figure 8 on
page 36

Byte offset Required? Description

us 127 Required for the
following API calls:
v FLGCreateInst
v FLGCreateType
v FLGUpdateInst

For other API calls,
this field is unused
and left blank.

Universal unique identifier (UUI)
sequence number, which specifies
that a property is part of the UUI.

Valid values are:
1 UUI Part 1
2 UUI Part 2
3 UUI Part 3
4 UUI Part 4
5 UUI Part 5
(blank) Not part of the UUI

At least one property must be
specified as UUI Part 1 for any
object type.

See the Information Catalog
Manager Administration Guide for
more information about defining
UUI parts.

cs 128 Required for the
following API calls:
v FLGSearch
v FLGSearchAll

For other API calls,
this field is unused
and left blank.

Case-sensitivity flag.

Valid values are:
Y Case-sensitive
N Not case-sensitive

See “FLGSearch” on page 208 and
“FLGSearchAll” on page 217 for
information about using the
case-sensitivity flag.

fs 129 Required for the
following API calls:
v FLGSearch
v FLGSearchAll

For other API calls,
this field is unused
and left blank.

Fuzzy search flag.

Valid values are:
Y Fuzzy search
N Not a fuzzy search

See “FLGSearch” on page 208 and
“FLGSearchAll” on page 217 for
information about using the fuzzy
search flag.

130-159 Always Reserved section.

Should be left blank.

Common characteristics of the API input and output structures

38 Information Catalog Manager Programming Guide and Reference

Object area — Required when defining values
The object area contains the values for the properties defined in the definition
area. The values must appear in the order defined in the definition area.

The object area for an input structure contains only one value per property
defined in the definition area for all APIs except FLGExport and
FLGManageUsers. For FLGExport and FLGManageUsers, the object area can
contain more than one value per property defined in the definition area.

The object area is required for the following API calls:
v FLGCreateInst
v FLGCreateReg
v FLGExport
v FLGManageCommentStatus
v FLGManageUsers
v FLGSearch
v FLGSearchAll
v FLGUpdateInst
v FLGUpdateReg

You can determine how to represent each value using the following rules:

Data type How to represent the value in the object area

VARCHAR Value is preceded by an 8-character length
field that specifies the actual length of the
value. Trailing blanks are automatically
removed from these values; the Information
Catalog Manager adjusts the length field
accordingly.

LONG VARCHAR Value is preceded by an 8-character length
field that specifies the actual length of the
value. Trailing blanks are automatically
removed from these values; the Information
Catalog Manager adjusts the length field
accordingly.

CHAR Value occupies the number of bytes defined
by the property’s length field in the definition
area and is padded on the right with blanks to
fill the defined length.

TIMESTAMP 26 bytes

Common characteristics of the API input and output structures

Chapter 4. The Information Catalog Manager input and output structures 39

Creating input structures for an API call

Follow these steps to create an input structure:
1. Define lengths and values using DG2API.H
2. Calculate the size of the entire output structure
3. Define the header area
4. Define the definition area
5. Define the object area

Defining lengths and values using DG2API.H
The Information Catalog Manager provides a C language header file named
DG2API.H that defines many of the value lengths and valid values that you
need to create input structures and read output structures. You can include
(using the #include statement) this file in your program so that you do not
need to write the code for certain data types, structures, and function
prototypes yourself.

DG2API.H contains type definition (typedef) declarations of the structures
needed to build the header and definition areas, as shown in Figure 9 on
page 41. (In Figure 9 on page 41, WINDOWS refers only to Microsoft Windows
3.1.)

Common characteristics of the API input and output structures

40 Information Catalog Manager Programming Guide and Reference

Variables starting with FLG_D or FLG_H are lengths for the structure parts
that are defined in DG2API.H.

See “Appendix B. The Information Catalog Manager API header
file—DG2APIH” on page 245 for a list of all the constants defined in the
DG2API.H file.

You can use these defined structures to define the storage required for the
header and definition areas of the input structure. Figure 10 on page 42 shows
a part of DG2SAMP.C that uses data types defined in the DG2API.H header
file to define the structures later used to store the header and definition areas
of an input structure.

#pragma pack(1)

/* Structure definition for the FLG header area */
typedef struct _FLG_HEADER_AREA {

UCHAR pchHIdent [FLG_H_IDENT_LEN];
UCHAR pchHDefLength [FLG_H_DEFAREA_LEN];
UCHAR pchHObjLength [FLG_H_OBJAREA_LEN];
UCHAR pchHObjEntryCount [FLG_H_OBJAREAENT_LEN];
UCHAR pchHCategory [FLG_H_CATEGORY_LEN];
UCHAR pchHObjTypeId [FLG_H_OBJTYPID_LEN];
UCHAR pchHReserved [FLG_H_RESERVED_LEN];

} FLGHEADERAREA;
#ifdef WINDOWS

typedef FLGHEADERAREA __huge *PFLGHEADERAREA;
#else

typedef FLGHEADERAREA *PFLGHEADERAREA;
#endif

/* Structure definition for the FLG definition area */
typedef struct _FLG_DEFINITION_AREA {

UCHAR pchDPropName [FLG_D_PROPNM_LEN];
UCHAR pchDDataType [FLG_D_DATATYP_LEN];
UCHAR pchDDataLength [FLG_D_DATA_LEN];
UCHAR pchDTagName [FLG_D_PPN_LEN];
UCHAR pchDVF [FLG_D_VF_LEN];
UCHAR pchDUS [FLG_D_US_LEN];
UCHAR pchDCS [FLG_D_CS_LEN];
UCHAR pchDFS [FLG_D_FS_LEN];
UCHAR pchDReserved [FLG_D_RESERVED_LEN];

} FLGDEFINITIONAREA;
#ifdef WINDOWS

typedef FLGDEFINITIONAREA __huge *PFLGDEFINITIONAREA;
#else

typedef FLGDEFINITIONAREA *PFLGDEFINITIONAREA;
#endif

Figure 9. DG2API.H: Structure definitions for the header and definition areas

Common characteristics of the API input and output structures

Chapter 4. The Information Catalog Manager input and output structures 41

To ensure that the input structure is defined as contiguous storage, Figure 9 on
page 41 uses a #pragma pack(1) instruction, and Figure 10 uses a typedef
_Packed struct definition. If you build input structures using another
programming language, be aware that you might need to issue similar
commands to define the input structure as contiguous storage.

Calculating the size of the entire input structure
You need to calculate the size of the entire input structure so that you can
allocate the amount of storage for the input structure. To make this
calculation, you need to know the following values:
v Number of properties defined in the definition area

This value depends on the number of properties required by the API call.
You use this value to calculate the length of the definition area.

v Lengths of the values in the object area. You add these values together to
get the length of the object area.

DG2API.H provides variables that define the length of the header area
(FLG_HEADER_SIZE) and the length of a single definition record
(FLG_DEFINITION_SIZE).

Calculating the definition area length
To calculate the definition area length, multiply the fixed length of each
definition record (160) by the number of records needed to define your data,
as shown in Figure 11.

DG2API.H provides the variable FLG_DEFINITION_SIZE, defined as 160, to
help you define this calculation in your code.

You will need this value to define the definition area length field of the
header area, as shown in “Defining the header area” on page 44.

// This structure defines the input structure for FLGSearch.
typedef _Packed struct SEARCH_STRUCT {

FLGHEADERAREA srchHdr;
FLGDEFINITIONAREA srchDef;
OBJECTAREA Item;

} SEARCHSTRUCT;
typedef SEARCHSTRUCT *PSEARCHSTRUCT;

Figure 10. DG2SAMP.C: Defining the header and definition areas

Definition_area_length = number_of_properties × FLG_DEFINITION_SIZE

Figure 11. Calculating the definition area length

Common characteristics of the API input and output structures

42 Information Catalog Manager Programming Guide and Reference

Calculating the object area length
The object area length is the sum of the lengths of all the values that go into
the object area.

You will need this value to define the object area length field of the header
area, as shown in “Defining the header area” on page 44.

If you are creating an input structure for an API call that does not require or
expect an object area, the value in the object area is zero (00000000).

To calculate the exact object area length, you need the length of all of the
values in your object area. For CHAR and TIMESTAMP values, use the length
defined in the definition area. However, for LONG VARCHAR and
VARCHAR values, you need to check the length for each value and include
the 8-byte length field as part of the length value. The formula for this
calculation is shown in Figure 12.

You can also define your object area to contain the longest possible value for
all properties, including VARCHAR and LONG VARCHAR values. With this
method, you can add the maximum data lengths for all the properties
together to ensure that the values you define for the object area will fit in the
allocated storage. For VARCHAR and LONG VARCHAR properties, be sure
to include the 8-byte length field as part of the maximum length value. The
formula for this calculation is the following:

Be aware, however, that this method can waste a lot of storage, especially if
several of your properties are LONG VARCHAR fields with a maximum
length of 32700 bytes.

Object_area_length = length_of_property1 +
length_of_property2 +
length_of_property3 +
.
.
.

Figure 12. Calculating the exact object area length

Length_of_object_area = maximum_length_of_property1 +
maximum_length_of_property2 +
maximum_length_of_property3 +
.
.
.

Figure 13. Calculating the maximum possible object area length

Common characteristics of the API input and output structures

Chapter 4. The Information Catalog Manager input and output structures 43

Adding all the parts together
The entire formula for determining the storage you need to allocate is shown
in Figure 14.

Defining the header area
Because the input structure is a self-defining structure, there are several values
in the header area that define the structure’s size and format. To define these
values properly, you need to consider the entire set of information and the
structure you need to create.

The header area is 160 bytes. Each byte position must be assigned a value; if
you do not specify a value, you must define a blank for that position. One
way of defining one or more byte positions as blanks is to use the C language
memset function to set the entire structure to FLG_BLANK or all zero
characters first, and then to use the C language memcpy function to copy only
the information that needs to be set to something else. This method also
makes it easier to use the constants defined in DG2API.H, because you only
need to worry about overlaying blanks or zeroes, not about padding the
values to match the data length.

Complete specifications for each byte of the header area are discussed in
“Header area — always required” on page 33.

The syntax for the header area for each API call is discussed in “Chapter 5.
The Information Catalog Manager API call syntax” on page 67.

Although some values in the header area not required for certain API calls,
you need to define the header area to contain the byte offset positions shown
in Figure 15.

These byte offset positions are described in Table 7 on page 34. Table 10 on
page 45 lists constants in DG2API.H that can help you define the header area.

Structure_size = FLG_HEADER_SIZE +
Definition_area_length +
Object_area_length

Figure 14. Calculating the required storage for an input structure

Figure 15. The header area

Common characteristics of the API input and output structures

44 Information Catalog Manager Programming Guide and Reference

Table 10. Header area byte offset positions and useful constants defined in DG2API.H

Bytes Contents Useful constants defined in
DG2API.H

Value

0-7 FLG-HEAD FLG_H_IDENT FLG-HEAD

8-15 Definition area
length

FLG_DEFINITION_SIZE 160; length of one
definition area
record

16-23 Object area length

24-31 Object area entry
count

32 Category FLG_GROUPING_OBJ
FLG_ELEMENTAL_OBJ
FLG_CONTACT_OBJ
FLG_DICTIONARY_OBJ
FLG_PROGRAM_OBJ
FLG_SUPPORT_OBJ
FLG_ATTACHMENT_OBJ

G
E
C
D
P
S
A

33-38 Object type ID

39-159 Reserved area
(always blank)

When you define the header area, three values depend on the content of the
definition and object areas:
v Definition area length (bytes 8-15)

You probably already calculated this value to allocate storage for the input
structure. To review the description of this calculation, see “Calculating the
definition area length” on page 42.

v Object area length (bytes 16-23)
You probably already calculated this value to allocate storage for the input
structure. To review the description of this calculation, see “Calculating the
object area length” on page 43.

v Object area entry count (bytes 23-31)
For all API calls requiring an input structure except FLGExport and
FLGManageUsers, the object area entry count equals the number of
properties in the definition area. For FLGExport, the object area entry count
equals five times the number of objects specified to be exported. For
FLGManageUsers, the object area entry count equals two for each user
added or updated.

Defining the definition area
To define the definition area, you need to know what information the API call
requires in the input structure.

Common characteristics of the API input and output structures

Chapter 4. The Information Catalog Manager input and output structures 45

Each record of the definition area is 160 bytes long. Each byte position must
be assigned a value; even if you do not specify a value, you must define a
blank for that position. One way of defining one or more byte positions to
blanks is to use the C language memset function to set the entire structure to
FLG_BLANK first, and then to use the C language memcpy function to copy
only the information that needs to be set to something else. This method also
makes it easier to use the constants defined in DG2API.H, because you only
need to worry about overlaying blanks, not about padding the values to
match the data length. Although some of the values are not required for
certain API calls, the definition area must always contain the full 160 bytes as
shown in Figure 16.

These byte offset positions are described in Table 9 on page 36. Table 11 lists
constants in DG2API.H that can help you define the definition area.

Table 11. Definition area byte offset positions and useful constants defined in
DG2API.H.

Bytes Contents Useful variables in DG2API.H Values

0-79 Property
name

80-109 Data type FLG_DTYPE_CHAR
FLG_DTYPE_VARCHAR
FLG_DTYPE_LONGVARCHAR
FLG_DTYPE_TIMESTAMP

CHAR
VARCHAR
LONG VARCHAR
TIMESTAMP

110-117 Data length

118-125 Property
short name

FLG_PPN_OBJTYPID
FLG_PPN_INSTIDNT
FLG_PPN_INST_NAME
FLG_PPN_UPDATIME
FLG_PPN_UPDATEBY
FLG_PPN_EXTERNAL_NAME
FLG_PPN_PTNAME
FLG_PPN_DPNAME
FLG_PPN_CREATOR

OBJTYPID
INSTIDNT
NAME
UPDATIME
UPDATEBY
NAME
PTNAME
DPNAME
CREATOR

126 Value flag FLG_REQUIRED
FLG_OPTIONAL
FLG_SYSTEM

R
O
S

Figure 16. A record in the definition area

Common characteristics of the API input and output structures

46 Information Catalog Manager Programming Guide and Reference

Table 11. Definition area byte offset positions and useful constants defined in
DG2API.H. (continued)

Bytes Contents Useful variables in DG2API.H Values

127 UUI
sequence
number

FLG_UUI_1
FLG_UUI_2
FLG_UUI_3
FLG_UUI_4
FLG_UUI_5
FLG_BLANK

1
2
3
4
5

128 Case-
sensitivity
flag

FLG_YES
FLG_NO

Y
N

129 Fuzzy search
flag

FLG_YES
FLG_NO

Y
N

130-159 Reserved
area (always
blank)

For more information about the specific meanings for all the byte positions in
the definition area, see “Definition area — always required” on page 35. For
more information about the definition for the API call you are using, see
“Chapter 5. The Information Catalog Manager API call syntax” on page 67.

Defining the object area
How you define the values in your object area depends on the data type of
each property being defined. CHAR and TIMESTAMP values are relatively
straightforward because they have fixed lengths, but variable values
(VARCHAR and LONG VARCHAR) are more complicated.

TIMESTAMP values have a fixed length and format.

CHAR values are left-justified and padded with trailing blanks to fill the
defined length, as in this example:
'My example '

All values must be character data. If the value is numeric, you must convert it
to character data.

Null characters are not permitted in any value. If the value you specify does
not fill the entire fixed length, you must define blanks or zeroes for the
unfilled positions. One way of defining blanks or zeroes for unused byte
positions is to use the C language memset function to set the entire structure to
FLG_BLANK or zero characters (’0’ or 0x30) first, and then to use the C
language memcpy function to copy only the information that needs to be set to

Common characteristics of the API input and output structures

Chapter 4. The Information Catalog Manager input and output structures 47

something else. This method also makes it easier to use the constants defined
in DG2API.H, because you only need to worry about overlaying blanks, not
about padding the values to match the data length.

To specify VARCHAR and LONG VARCHAR values, include an extra 8 bytes
before the value to specify the length of the value. For example, the value you
need to specify for a VARCHAR value of “Employee records -- Southwest
Region” would be
00000036Employee records -- Southwest Region

Because this is a VARCHAR value, you do not need to pad the value with
trailing blanks.

Example of defining header, definition, and object areas
This section discusses the parts of DG2SAMP.C that define an input structure.

Calculating the object area length
The code shown in Figure 17 calculates the object area length for an input
structure.

The code in Figure 17 performs the following steps for determining the object
area:

�1� Sets pszObjInstName to the object instance name entered by the user.

�2� Determines the length of the object instance name

�3� Adds the length of the variable data length field (8) to the length of
the object instance name

�4� Converts the object area length value to character data

Defining the header area
The code in Figure 18 on page 49 shows how DG2SAMP.C defines the header
area of the input structure for FLGSearch. This header area contains the same
values as shown in Figure 19 on page 49.

//--
// Build input structure for FLGSearch
//--
printf ("Enter object instance name:\n");
gets(pszObjInstName); �1�
ulInstValLen = strlen(pszObjInstName); �2�
ulInstLen = (FLG_VARIABLE_DATA_LENGTH_LEN + ulInstValLen); �3�
convertultoa(ulInstLen, pszLength); �4�

Figure 17. DG2SAMP.C: Determining the object area length

Common characteristics of the API input and output structures

48 Information Catalog Manager Programming Guide and Reference

The code in Figure 18 performs the following steps for defining a header area
using C language.

�1� Sets the entire header area to blanks.

�2� Sets bytes 0-7 to the identifier (FLG_HEAD).

�3� Sets the definition length to 160.

�4� Sets the object area length. This length was calculated earlier in the
program.

�5� Sets the object area entry count to 1.

Figure 19 shows the storage defined by the C language code in Figure 18.

Defining the definition area
The code in Figure 20 on page 50 shows how DG2SAMP.C defines the
definition area of the input structure for FLGSearch. This definition area
contains the values shown in Figure 21 on page 50.

//--
// Header
//--
memset(&(SearchStruct.srchHdr), FLG_BLANK, FLG_HEADER_SIZE); �1�

memcpy(&SearchStruct.srchHdr.pchHIdent, FLG_H_IDENT, FLG_H_IDENT_LEN); �2�
memcpy(&SearchStruct.srchHdr.pchHDefLength, "00000160", FLG_H_DEFAREA_LEN); �3�
memcpy(&SearchStruct.srchHdr.pchHObjLength, pszLength , FLG_H_OBJAREA_LEN); �4�
memcpy(&SearchStruct.srchHdr.pchHObjEntryCount, "00000001", FLG_H_OBJAREAENT_LEN); �5�

Figure 18. DG2SAMP.C: Defining the header area

Figure 19. Defined header area—SearchStruct.srchHdr

Common characteristics of the API input and output structures

Chapter 4. The Information Catalog Manager input and output structures 49

The code in Figure 20 performs the following steps for defining a record in
the definition area using the C language:

�1� Sets the entire definition record to blanks

�2� Sets the property name to Name

�3� Sets the data type to VARCHAR

�4� Sets the data length to 80

�5� Sets the property short name to NAME

�6� Sets the case-sensitivity flag to N

�7� Sets the fuzzy search flag to N

Figure 21 shows the storage defined by the C language code in Figure 20.

Defining the object area
Figure 22 on page 51 shows how DG2SAMP.C defines the object area of the
input structure for FLGSearch. This object area contains values shown in
Figure 23 on page 51.

//--
// Definition area
//--
memset(&(SearchStruct.srchDef), FLG_BLANK, FLG_DEFINITION_SIZE); �1�
memcpy(&SearchStruct.srchDef.pchDPropName,
"Name ",FLG_D_PROPNM_LEN); �2�
memcpy(&SearchStruct.srchDef.pchDDataType, "VARCHAR ", FLG_D_DATATYP_LEN); �3�
memcpy(&SearchStruct.srchDef.pchDDataLength, "00000080", FLG_D_DATA_LEN); �4�
memcpy(&SearchStruct.srchDef.pchDTagName, "NAME ", FLG_D_PPN_LEN); �5�
memset(SearchStruct.srchDef.pchDCS, 'N', FLG_D_CS_LEN); �6�
memset(SearchStruct.srchDef.pchDFS, 'N', FLG_D_FS_LEN); �7�

Figure 20. DG2SAMP.C: Defining the definition area

Figure 21. Defined definition area—SearchStruct.srchDef

Common characteristics of the API input and output structures

50 Information Catalog Manager Programming Guide and Reference

The code in Figure 22 performs the following steps for defining an object area
using the C language:

�1� Sets the object area to blanks

�2� Converts the length of the Name value to character data

�3� Concatenates the length of the VARCHAR value with the value

�4� Sets the object area to the value length and the value

Figure 23 shows the storage defined by the C language code in Figure 22.

The Information Catalog Manager API output structure

Figure 24 on page 52 shows the general format of the Information Catalog
Manager API output structure. The output structure consists of three
contiguous areas: the header area, the definition area, and the object area.
Some Information Catalog Manager API calls (for example, FLGGetType)
produce only the first two areas.

When your program calls an API call that produces an output structure, it
passes a pointer to a null pointer as a parameter. The API call then assigns the
address of the output structure to the null pointer.

To avoid running out of memory after several API calls, your program can
deallocate the memory allocated for this output structure using the
Information Catalog Manager API call FLGFreeMem. For more information
about FLGFreeMem, see “FLGFreeMem” on page 125.

//--
// Object area
//--
memset(&(SearchStruct.Item), FLG_BLANK, FLG_INST_NAME_LEN + FLG_VARIABLE_DATA_LENGTH_LEN); �1�
convertultoa(ulInstValLen, pszNameLength); �2�
pszInstanceName=strncat(pszNameLength,pszObjInstName,ulInstValLen); �3�
memcpy(&SearchStruct.Item.Name, pszInstanceName, ulInstLen); �4�

Figure 22. DG2SAMP.C: Defining the object area

Figure 23. Defined object area—SearchStruct.Item

Common characteristics of the API input and output structures

Chapter 4. The Information Catalog Manager input and output structures 51

The following API calls produce output structures to return data:

FLGDeleteTree
Returns a list of deleted object instances

FLGFoundIn Returns a list of instances or object types in which a specified
instance is found

FLGGetInst Gets information about an object instance

FLGGetReg Gets the information for an object type registration

FLGGetType Gets information about an object type

FLGInit Allocates required resources and initializes the Information
Catalog Manager client

FLGListAnchors
Returns a list of the instances of the Grouping objects that are
not contained by other objects; these top-level Grouping
objects are referred to as anchors.

FLGListAssociates
Returns a list of the associate instances for a specified instance
or object type

Figure 24. API output structure

The Information Catalog Manager API output structure

52 Information Catalog Manager Programming Guide and Reference

FLGListContacts
Returns a list of all Contact object instances for a specified
instance

FLGListObjTypes
Returns a list of all object types

FLGListOrphans
Returns a list of instances for a specified object type that are
not currently associated with any other instances

FLGListPrograms
Returns a list of all Program objects

FLGManageCommentStatus
Updates the list of available status choices for comments

FLGManageUsers
Updates the administrators and users for an information
catalog and identifies extent of each user’s authority

FLGNavigate Returns a list of the Grouping or Elemental objects that the
specified Grouping object contains

FLGSearch Returns a list of the instances of a specific object type that
meet the selection criteria

FLGSearchAll Returns a list of the instances of any object type that meet the
selection criteria

FLGWhereUsed
Returns a list of the Grouping objects that contain the
specified object

Header area — always present
The header area describes the information in the definition and object areas.
The byte-offset positions of the header area are shown in Figure 25 and
described in Table 12.

Table 12. The output structure header area and its fields

Section from
Figure 25 Byte offset Present? Description

FLG-HEAD 0-7 Always Structure identifier.

Figure 25. Output structure header area

The Information Catalog Manager API output structure

Chapter 4. The Information Catalog Manager input and output structures 53

Table 12. The output structure header area and its fields (continued)

Section from
Figure 25 on
page 53 Byte offset Present? Description

definition
length

8-15 Always Length of the definition area.

Value is a multiple of 160
(number of properties times the
length of each definition record).

object length 16-23 Always Length of the object area.

If no data is returned, then the
length of the object area is zero
(00000000).

obj area entry
count

24-31 Always Number of individual property
values entered in the object area.

Value is the number of properties
in the definition area times the
number of sets of values
described in the object area.

If no data is returned, then the
length of the object area is zero
(00000000).

cat 32 Present with:
v FLGGetInst
v FLGGetReg
v FLGGetType

Category of the object type or
object.

Valid values are:

G Grouping

E Elemental

C Contact

P Program

D Dictionary

S Support

A Attachment

object type id 33-38 Present with:
v FLGGetInst
v FLGGetReg
v FLGGetType

System-generated identifier for an
object type.

39-159 Always Should be left blank.

The Information Catalog Manager API output structure

54 Information Catalog Manager Programming Guide and Reference

Definition area — always present
The definition area contains a set of property definitions produced as output
values by a particular Information Catalog Manager API function.

Table 13 shows the meaning of the definition area for the API calls that
produce output structures.

Table 13. The meaning of the definition area for different API calls

API calls Information in the definition area

FLGGetInst
FLGGetReg
FLGGetType
FLGDeleteTree

Definition of the set of properties that define the object
registration, object type, or object instance

FLGInit Information about the Information Catalog Manager
environment

FLGFoundIn
FLGListAnchors
FLGListAssociates
FLGListContacts
FLGListObjTypes
FLGListOrphans
FLGListPrograms
FLGManage-
CommentStatus
FLGManageUsers
FLGNavigate
FLGSearch
FLGSearchAll
FLGWhereUsed

Definition of the set of properties that describe each item
returned by one of these API calls

Figure 26 shows the byte-offset positions for a record in the definition area.

Each property in the set is defined by a set of formatted specifications, as
described in Table 14 on page 56.

Figure 26. A record in the definition area

The Information Catalog Manager API output structure

Chapter 4. The Information Catalog Manager input and output structures 55

Table 14. The output structure definition area and its fields

Section from
Figure 26 on
page 55 Byte offset Present? Description

property
name

0-79 Always External name

datatype 80-109 Always The data type of the property.

Valid values are:

CHAR Fixed-length character
data. Maximum length is
254.

VARCHAR
Variable-length character
data. Maximum length is
4000.

LONG VARCHAR
Variable-length character
data. Maximum length is
32700.

TIMESTAMP
Time stamp in the form
of: yyyy-mm-dd-
hh.mm.ss.nnnnnn
Timestamp length is 26.

length 110-117 Always Maximum length of the property
value in the object area.

ppn 118-125 Present with:
v FLGGetInst
v FLGGetReg
v FLGGetType
v FLGManage-

CommentStatus

For other API calls,
this field is unused
and left blank

Property short name

The Information Catalog Manager API output structure

56 Information Catalog Manager Programming Guide and Reference

Table 14. The output structure definition area and its fields (continued)

Section from
Figure 26 on
page 55 Byte offset Present? Description

vf 126 Present with:
v FLGGetInst
v FLGGetReg
v FLGGetType

For other API calls,
this field is unused
and left blank

Value flag specifying whether a
property is required, optional, or
system-generated.

Valid values are:

R Required

O Optional

S System-generated

us 127 Present for the
following API calls:
v FLGGetInst
v FLGGetType

For other API calls,
this field is unused
and left blank

Universal Unique Identifier (UUI)
sequence number that specifies
that a property is part of the UUI.

Valid values are:
1 UUI Part 1
2 UUI Part 2
3 UUI Part 3
4 UUI Part 4
5 UUI Part 5
(blank) Not part of the UUI

See the Information Catalog
Manager Administration Guide for
more information about UUI
parts.

128-159 Always Reserved section.

Is left blank.

Object area — Present when retrieving information
The object area contains the values for the properties defined in the definition
area. The values appear in the order defined in the definition area.

The object area is included in the output structure for the following API calls:
FLGDeleteTree
FLGFoundIn
FLGGetInst
FLGGetReg
FLGInit
FLGListAnchors

The Information Catalog Manager API output structure

Chapter 4. The Information Catalog Manager input and output structures 57

FLGListAssociates
FLGListContacts
FLGListObjTypes
FLGListOrphans
FLGListPrograms
FLGManageCommentStatus
FLGManageUsers
FLGNavigate
FLGSearch
FLGSearchAll
FLGWhereUsed

You can determine the size of each value using the following rules:

Data type Rules for value size

VARCHAR Value is preceded by an 8-character length field that specifies
the actual length of the value.

LONG VARCHAR
Value is preceded by an 8-character length field that specifies
the actual length of the value.

CHAR Value occupies the number of bytes defined by the property’s
length field in the definition area and is padded on the right
with blanks to fill the defined length.

TIMESTAMP 26 bytes.

Reading an output structure resulting from an API call

The Information Catalog Manager API calls that return information put that
information into an output structure.

To read an output structure, consider the structure as a whole, because
different parts of the structure define the meaning of other parts of the
structure.

For API calls that return lists of object instances, the object area can contain
more than one value for each property. The object area can contain several
sets of values that map to the properties defined in the definition area.

Using pointers to read an output structure
To read values in the output structure, define two or more pointers to the
structure, using the pointer value returned by the API call.

The Information Catalog Manager API output structure

58 Information Catalog Manager Programming Guide and Reference

When your program issues an API call that produces an output structure,
your program must define a pointer that contains the address of a null
pointer and pass this defined pointer to the API call as a parameter. The API
function then assigns the null pointer the address of the output structure.

You need to define a second pointer that will step through the header and
definition areas of the structure, and a third that will step through the object
area.

In Figure 27, pOutStruct is the pointer to the beginning of the output
structure. You can then define pReadStruct to step through the header area
and definition area, and pObjArea to step through the object area.

Depending on your needs, you can either read the values of the structure in
the order they are returned, or you can search for a specific value. In either
case, you need to:
1. Calculate the number of properties and the number of objects returned
2. Find the data type and data length for each property
3. Step through the object area to read or locate values

Reading values using DG2API.H
The Information Catalog Manager provides a header file named DG2API.H
that defines many of the value lengths and valid values that you need to read
output structures. You can use these lengths to write the C language code you
need to step through the header, definition, and object areas.

Figure 27. Defining pointers that step through the output structure

Reading an output structure resulting from an API call

Chapter 4. The Information Catalog Manager input and output structures 59

See “Appendix B. The Information Catalog Manager API header
file—DG2APIH” on page 245 for a complete list of the constants defined in
the DG2API.H file.

Calculating the number of properties in the output structure
Certain API calls return an unknown number of properties, so you need to
calculate this number.

Set a pointer to the beginning of the output structure using the pointer
address returned by the API call.

To calculate the number of properties in the definition area, divide the
numeric value of the definition length area of the header area (bytes 8-15) by
the length of an individual record in the definition area (160). You need to
convert the definition length character string to an integer value to perform
this calculation.

DG2API.H provides the variable FLG_DEFINITION_SIZE to help you write
this calculation:

Calculating the number of sets of values returned
To calculate the number of sets of values returned in the output structure,
divide the object area entry count shown in Figure 29 by the number of
properties in the structure, as shown in Figure 30.

The fields in the header area are in character format and must be converted to
numeric format for use in the calculation in Figure 30. You can use the
structures defined in DG2API.H to arrive at the calculation in Figure 30.

Reading the property data types and lengths in the definition area
To read the property data types and lengths, define a pointer and perform
pointer arithmetic to read the correct values in the definition area. The

number_of_properties = definition_length_integer_value / FLG_DEFINITION_SIZE

Figure 28. Calculating the number of properties

Figure 29. The object area entry count in the header area

number_of_sets_of_values = object_area_entry_count / number_of_properties

Figure 30. Calculating the number of sets of values

Reading an output structure resulting from an API call

60 Information Catalog Manager Programming Guide and Reference

location of the data types and lengths of the first property are highlighted in
Figure 31.

To read the data type for the first property in the definition area, add the
length of the header area and the property name field of the first definition
record to the location of the pointer to the output structure, as shown in
Figure 32.

pOutStruct is the pointer to the output structure, FLG_HEADER_SIZE is the
length of the header area, and FLG_D_PROPNM_LEN is the length of the
property name field. You can now save the value at this location in another
variable.

To read the data length for the first property in the definition area, add the
length of the data type field to the pointer you calculated to get to the data
type, as shown in Figure 33.

pLocationOfDataType is a pointer to the data type field in the definition record
and FLG_D_DATATYP_LEN is the length of the data type field.

Figure 31. The data type and data length of the first property

pLocationOfDataType = pOutStruct +
FLG_HEADER_SIZE +
FLG_D_PROPNM_LEN

Figure 32. Calculating the position of the data type value

pLocationOfDataLen = pLocationOfDataType +
FLG_D_DATATYP_LEN

Figure 33. Calculating the position of the data length value

Reading an output structure resulting from an API call

Chapter 4. The Information Catalog Manager input and output structures 61

To read the data types and lengths of other properties, continue to add offset
values. To get to the data type field for the next property, you can add the
length of an entire data record (160) to the pointer to the data type for the
current property as shown in Figure 34.

FLG_DEFINITION_SIZE is 160 bytes.

Stepping through the object area to read values
To read a value in the object area, you need to calculate its position using
pointer arithmetic. You need to know the data type and length of the
properties to calculate positions properly.
1. Read the first value in the object area by incrementing the pointer to the

beginning of the object area, as shown in Figure 35.

FLG_HEADER_SIZE is the length of the header area and
FLG_DEFINITION_SIZE is the length of a record in the definition area.

2. Check the data type and data length for the property this value belongs to
in the definition area.

For CHAR or TIMESTAMP Read in a value that is the length specified
in the definition area.

For VARCHAR or LONG VARCHAR

a. Read the first 8 characters for this
value to determine the length of the
value.

b. Move the pointer 8 bytes to read the
value itself.

Move to the next value in the object area by adding the actual length of
the current value to the pointer as shown in Figure 36.

pLocationOfDataType = pLocationOfDataType + FLG_DEFINITION_SIZE

Figure 34. Calculating the position of the next data type value

pObjArea = pOutStructure + FLG_HEADER_SIZE +
(FLG_DEFINITION_SIZE × number_of_properties)

Figure 35. Moving the pointer to the beginning of the object area

pObjValue = pObjArea + actual_value_length

Figure 36. Moving the pointer to the next value

Reading an output structure resulting from an API call

62 Information Catalog Manager Programming Guide and Reference

Figure 37 shows how to start at the beginning of the object area, read the
length of the VARCHAR value, move the pointer to the beginning of the
value itself, then read the value before moving the pointer to the next
value.

DG2SAMP.C example of locating a value in an output structure
The DG2SAMP.C program gets an object type name from the user, then issues
an FLGListObjTypes call to retrieve a list of object types available in the
information catalog database. The program tries to match the external name of
an object type specified by the user with a name in the output structure
returned by FLGListObjTypes.

Figure 38 shows the format of the output structure produced by an
FLGListObjTypes API call.

Figure 37. Reading a VARCHAR value in the object area

Figure 38. FLGListObjTypes output structure

Reading an output structure resulting from an API call

Chapter 4. The Information Catalog Manager input and output structures 63

Getting values from the user and the output structure
Figure 39 shows how the program reads the value specified by the user and
calculates its length. It also shows how the program copies values in the
output structure into null-terminated strings and calculates the number of sets
of values in the object area.

The code in Figure 39 performs the following steps:

�1� Gets the object type name as input from the user

�2� Determines the length of the object type name

�3� Copies the object entry count into a null-terminated string

�4� Copies the definition length into a null-terminated string

�5� Calculates the number of sets of values in the object area

Assigning a pointer to the beginning of the object area
The code in Figure 40 assigns a pointer to the beginning of the object area.

In this example, the output for FLGListObjTypes always has the same three
properties, so the program does not need to determine the number of
properties, the data type, or the data length.

The code in Figure 40 performs the following steps:

�1� Sets the position counter to 0.

�2� Positions a pointer at the beginning of the object area by adding the
length of the header area and definition area to the position of the
pointer to the beginning of the output structure (pListStruct).

Moving through the object area
The code in Figure 41 on page 65 moves a pointer through the object area,
trying to find an object type name that matches the name given by the user.

gets(pszObjName); �1�
ulTypeLen = strlen(pszObjName); �2�
memcpy(&pszObjEntryCount, pListStruct->pchHObjEntryCount, FLG_H_OBJAREAENT_LEN); �3�
memcpy(&pszDefLength, pListStruct->pchHDefLength, FLG_H_DEFAREA_LEN); �4�
ulCount = (atoi(pszObjEntryCount) / (atoi(pszDefLength) / FLG_DEFINITION_SIZE)); �5�

Figure 39. DG2SAMP.C: Getting a value from the user

ulPosition = 0; �1�
pCurrPos = ((UCHAR *)pListStruct + FLG_HEADER_SIZE + ulDefLen); �2�

Figure 40. DG2SAMP.C: Assigning a pointer to the beginning of the object area

Reading an output structure resulting from an API call

64 Information Catalog Manager Programming Guide and Reference

The code in Figure 41 performs the following steps:

�1� Checks that the program has not yet found a matching object name,
and that the pointer has not yet reached the last set of values in the
object area

�2� Copies the object type ID of the first object type into pszObjTypeId

�3� Moves the pointer to the next value, which is the value of the object
type name

�4� Copies the first 8 characters of the object type name value, which
contain the length for this VARCHAR value

�5� Converts the length to integer data

�6� Moves the pointer past the variable data length to the beginning of
the object type name

�7� Copies the object type name at the pointer to pszObjectName

�8� Adds a null character to the end of the object type name to make the
value a null-terminated string

�9� Compares pszObjectName to the object type name specified by the user

�10� If the value of pszObjectName doesn’t match the object type name
specified by the user, moves the cursor to the beginning of the next
set of values

while (fNotFound && (ulPosition < ulCount)) �1�
{

ulPosition = (ulPosition + 1);
memcpy(&pszObjTypeId, (void *) pCurrPos, FLG_H_OBJTYPID_LEN); �2�
pCurrPos = pCurrPos + FLG_H_OBJTYPID_LEN; �3�
memcpy(&pszLength, (void *)pCurrPos, FLG_VARIABLE_DATA_LENGTH_LEN);�4�
ulLength = atoi(pszLength); �5�
pCurrPos = pCurrPos + FLG_VARIABLE_DATA_LENGTH_LEN; �6�
strncpy (pszObjectName, (void *)pCurrPos, ulLength); �7�
pszObjectName[ulLength]} = NULLCHAR; �8�

if (!(strcmp(pszObjName, pszObjectName))) �9�
{

fNotFound = FALSE;
printf ("The object type ID for %s is %s.\n\n", pszObjName, pszObjTypeId);

}
else

{ // Move temporary pointer to the next object
pCurrPos = pCurrPos + ulLength + FLG_DPNAME_LEN; �10�

}
}

Figure 41. DG2SAMP.C: Matching an object type name with one in the object area

Reading an output structure resulting from an API call

Chapter 4. The Information Catalog Manager input and output structures 65

Reading an output structure resulting from an API call

66 Information Catalog Manager Programming Guide and Reference

Chapter 5. The Information Catalog Manager API call
syntax

The Information Catalog Manager provides API calls to allow you to use the
Information Catalog Manager functions in your own applications.

The API calls are described in alphabetic order. These descriptions include
input parameters and structures and output parameters and structures for
each API call.

Each API call’s description include this information, as appropriate:
v Input parameters
v Input structures
v Output parameters
v Output structures

API call syntax conventions

You must follow certain syntax conventions when using the Information
Catalog Manager API calls.

Reading syntax diagrams
The syntax diagrams in this section are written in the form of C language
function prototypes.

These function prototypes are defined in the DG2API.H header file, so that
you can include (using the #include statement) this file in your program
without having to specify this function prototype in your own code.
“Appendix B. The Information Catalog Manager API header file—DG2APIH”
on page 245 lists the data types, function prototypes, and constants defined in
the DG2API.H file.

Reason codes are returned as the APIRET data type. APIRET is defined as the
unsigned long integer data type in the DG2API.H header file.

Reason codes and extended codes are listed in “Appendix D. Information
Catalog Manager reason codes” on page 263.

Using constants defined in DG2API.H in your program
The DG2API.H header file contains structures, typedefs, and commonly used
values for the Information Catalog Manager API calls. The function prototypes
for the Information Catalog Manager API calls are also included in this file.
You can use these constants to help you write your C language program. See

© Copyright IBM Corp. 1994, 2000 67

“Appendix B. The Information Catalog Manager API header file—DG2APIH”
on page 245 for a list of the constants defined in the Information Catalog
Manager API header file.

API call syntax conventions

68 Information Catalog Manager Programming Guide and Reference

FLGAppendType
Appends optional properties to an existing object type.

You can append to any object type except the Comments object type, because
the Comments object type cannot be extended.

Authorization
Administrator

Syntax

Parameters

pObjTypeStruct (PFLGHEADERAREA) — input
Points to the input structure that contains the specifications for one or
more properties to be appended for this object type.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Input structure
To use FLGAppendType, you must define the input structure shown in
Figure 42 on page 70. This structure contains only the header area and the
definition area.

APIRET APIENTRY FLGAppendType(PFLGHEADERAREA pObjTypeStruct,
PFLGEXTCODE pExtCode);

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 69

For an explanation of the meanings of the byte offsets, see “The Information
Catalog Manager API input structure” on page 32.

Usage
Restrictions:

You can append to any object type except the Comments object type,
because the Comments object type cannot be extended.
If you append a new property that already exists within the object type,
the “new” property is treated as a duplicate and FLGAppendType
completes successfully with a warning (FLG_WRN_PROPDUP). A
property is a duplicate if all of the following match an existing property:

Data type
Data length
Property short name
Value flag
UUI number

Input requirements:
Header area

- The object type ID in bytes 33-38 must exist in the catalog.
- The category specified in byte 32 must match the category of the

existing object type specified in bytes 33-38.
Definition area

- The input structure should not contain any previously defined
properties for this object type, only new properties that are to be
appended.

Figure 42. FLGAppendType input structure

API call syntax conventions

70 Information Catalog Manager Programming Guide and Reference

- Any properties being appended must be optional. Specify the letter
O in the value flag field in byte 126.

- Any properties being appended cannot be defined as part of the
universal unique identifier (UUI); define the field in byte 127 as
blank.

- New property names must be unique within the object type.
- New property short names must be unique within the object type.

Property short names must follow these rules:
v Characters must be single-byte character set (SBCS) only.
v The first character must be an English alphabetic character (A

through Z or a through z), @, #, or $.
v Characters other than the first can be an English alphabetic

character (A through Z or a through z), 0 through 9, @, #, $, or _
(underscore).

v No leading or embedded blanks are allowed.
v The name cannot be any of the SQL reserved words for the current

database. See the documentation for the underlying database for a
list of reserved words.

- The total length of all of the properties for an object type must not
exceed the environment limit. The limit depends on the maximum
limit for a row (including overhead) for your database system. For
more information, see the DB2 UDB SQL reference for your database
system.

In general:

- The maximum number of properties for an object type is 255
(FLG_MAX_PROPERTIES).

- The maximum number of properties for an object type that can have
a data type of LONG VARCHAR is 14
(FLG_MAX_NUM_LONG_VARCHARS).

Controlling updates to your information catalog

To keep your program as synchronized as possible with your
information catalog, you should include a call to FLGCommit (see
“FLGCommit” on page 74) after FLGAppendType completes
successfully. If FLGAppendType does not complete successfully, you
should include a call to FLGRollback (see “FLGRollback” on page 207).

Examples
Figure 43 on page 72 shows the C language code required to issue the
FLGAppendType call. This code appends an additional property named
Density to the object type with an object type identifier of 000044.

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 71

Figure 44 shows the input structure for the FLGAppendType call. The
pObjTypeStruct parameter points to this input structure.

Special error handling
If FLGAppendType encounters a database error, the Information Catalog
Manager rolls back the database to the last commit that occurred in your
program.

If this rollback is successful, FLGAppendType returns the reason code
FLG_SEVERR_DB_AUTO_ROLLBACK_COMPLETE. The extended code
contains the SQL code for the database error that prompted the Information
Catalog Manager to roll back the database.

Attention: If this rollback fails, FLGAppendType returns the reason code
FLG_SEVERR_DB_AUTO_ROLLBACK_FAIL. The extended code contains the
SQL code for the database error that prompted the Information Catalog
Manager to roll back the database. In this case, your database could have
severe integrity problems, and your program should call FLGTerm to exit the
Information Catalog Manager.

APIRET rc; // Declare reason code
PFLGHEADERAREA pObjTypeStruct; // Pointer to the input structure
FLGEXTCODE ExtCode = 0; // Declare extended code

.

. /* Appending pObjTypeStruct object Type */

. /* by providing object properties */

.

rc = FLGAppendType (pObjTypeStruct,
&ExtCode); // Pass pointer to extended code

Figure 43. Sample C language call to FLGAppendType

Figure 44. Sample input structure for FLGAppendType

API call syntax conventions

72 Information Catalog Manager Programming Guide and Reference

Depending on the state of your database, you might need to recover your
database using your backed-up database files. For more information about
recovering your information catalog database, see the Information Catalog
Manager Administration Guide.

To prevent the Information Catalog Manager from removing uncommitted
changes that are not related to the FLGAppendType error, include
FLGCommit calls in your program just before this call.

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 73

FLGCommit
Commits all changes made to the information catalog since the unit of work
was started or since the last commit point.

Authorization
Administrator or user

Syntax

Parameters

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

APIRET
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Usage
Your program should call FLGCommit after making changes to the
information catalog database to make these changes permanent. In general,
you can have your program call FLGCommit after it makes any change to the
database.

The following situations are particularly good opportunities for committing
changes to the database:
v After updating a series of related metadata values. To keep related

information consistent in the information catalog, your program can issue
FLGCommit after making a number of related changes.

v After a set of FLGCreateReg and FLGCreateType calls that completely
define a new object type, or a set of FLGDeleteType and FLGDeleteReg
calls that completely remove an object type. At this point, you know that
your program is not committing a partial object type definition.

v After FLGDeleteTree or FLGDeleteTypeExt calls, because these calls make
major changes to your information catalog.

v Before FLGAppendType, FLGCreateReg, FLGCreateType, FLGDeleteType,
and FLGDeleteTypeExt calls. These API calls automatically roll back the
database when they encounter severe database errors. You can issue
FLGCommit calls before one or more of these API calls to prevent the

APIRET APIENTRY FLGCommit (PFLGEXTCODE pExtCode)

API call syntax conventions

74 Information Catalog Manager Programming Guide and Reference

Information Catalog Manager from removing uncommitted changes that are
not related to the database error if a rollback occurs.

v Before an FLGImport call. The Information Catalog Manager rolls back the
database when FLGImport encounters errors. Your program should issue
FLGCommit before issuing FLGImport to ensure that the Information
Catalog Manager does not also roll back uncommitted changes that
occurred before the FLGImport call.

Examples
Figure 45 shows the C language code that calls FLGCommit.

Special error handling
If FLGCommit encounters a database error, the Information Catalog Manager
rolls back the database to the previous commit that occurred in your program.

If this rollback is successful, FLGCommit returns the reason code
FLG_SEVERR_DB_AUTO_ROLLBACK_COMPLETE. The extended code
contains the SQL code for the database error that prompted the Information
Catalog Manager to roll back the database.

Attention: If this rollback fails, FLGCommit returns the reason code
FLG_SEVERR_DB_AUTO_ROLLBACK_FAIL. The extended code contains the
SQL code for the database error that prompted the Information Catalog
Manager to roll back the database. In this case, your database could have
severe integrity problems, and your program should call FLGTerm to exit the
Information Catalog Manager.

Depending on the state of your database, you might need to recover your
database using your backed-up database files. For more information about
recovering your information catalog database, see the Information Catalog
Manager Administration Guide.

APIRET rc; // Declare reason code from FLGCommit
FLGEXTCODE ExtCode = 0; // Declare extended code

.

.
rc = FLGCommit(&ExtCode); // pass the address of

// extended code

Figure 45. Sample C language call to FLGCommit

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 75

FLGConvertID
Retrieves the object type ID of an object type given the DP NAME, or the
Name of an object instance given the FLGID.

Authorization
Administrator or user

Syntax

Parameters

pszInBuffer (PSZ) — input
Points to an input buffer containing either a 16-character
system-generated, unique identifier of an object instance (FLGID), or an
8-character short name for an object type (DP NAME).

pszOutBuffer (PSZ) — output
Points to an output buffer containing either an 80-character external name
of an object instance, or a 6-character object type ID.

Options (FLGOPTIONS) — input
Choose one of the following options:
FLG_DPNAME

Indicates that the input buffer contains a DP NAME.
FLG_FLGID

Indicates that the input buffer contains an FLGID.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Examples
Figure 46 on page 77 shows the C language code required to issue the
FLGConvertID call. This sample code retrieves the object type identifier for a
specified object type.

APIRET APIENTRY FLGConvertID(PSZ pszInBuffer,
PSZ pszOutBuffer,
FLGOPTIONS Options,
PFLGEXTCODE pExtCode);

API call syntax conventions

76 Information Catalog Manager Programming Guide and Reference

APIRET rc; // reason code
PSZ pszInBuffer; // pointer to input buffer
PSZ pszOutBuffer; // pointer to output buffer
FLGOPTIONS options=FLG_DPNAME; // option flag
FLGEXTCODE xc = 0; // extended code

.

.

.
strcpy (pszInBuffer,"CHARTS"); // object type's DP NAME

.

.

.

rc = FLGConvertID (pszInBuffer,
pszOutBuffer,
options,
&xc);

Figure 46. Sample C language call to FLGConvertID

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 77

FLGCreateInst
Creates a new instance of the specified object type.

Authorization
Administrator or authorized user (all object types); user (Comments object
type only)

Syntax

Parameters

pObjInstStruct (PFLGHEADERAREA) — input
Points to the input structure that contains the property specifications and
values for the new object instance.

pszFLGID (PSZ) — output
Points to the 16-character, system-generated ID for the new object
instance.

Characters 1-6 of this ID identify the object type of this instance; these
characters have the same value as bytes 33 through 38 in the input
structure header record.

Characters 7-16 of this ID are the system-generated unique instance
identifier.

This returned pszFLGID is used by other API calls when referring to this
instance.

pszFLGID is set to NULL if the FLGCreateInst API call is not successful.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

APIRET APIENTRY FLGCreateInst(PFLGHEADERAREA pObjInstStruct,
PSZ pszFLGID,
PFLGEXTCODE pExtCode);

API call syntax conventions

78 Information Catalog Manager Programming Guide and Reference

Input structure
To use FLGCreateInst, you must define the input structure shown in
Figure 47. This structure contains the header area, the definition area, and the
object area.

For an explanation of the meanings of the byte offsets, see “The Information
Catalog Manager API input structure” on page 32.

Usage
Prerequisites

– Before you can create an object instance, the object type must already
exist in the information catalog. If it does not, you must register and
create the object type by issuing an FLGCreateReg call followed by an
FLGCreateType call.

– To issue an FLGCreateInst call, you must have the information about
the properties required to define a new instance, either from issuing the
FLGCreateType call or from issuing an FLGGetType call to retrieve this
information.

Restriction

If you are not authorized to perform object management tasks and you are
creating a Comments object instance, you must not change the Creator
property value to be other than your logged-on user ID.

Figure 47. FLGCreateInst input structure

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 79

Input requirements

Header area:

All of the fields in the header record are required.
Definition area:

The definition area can contain any or all of the defined properties of
the object type for which you are creating an object instance. The
following rules apply:
- You must first specify all five of the Information Catalog Manager

required properties in the following order: OBJTYPID, INSTIDNT,
NAME, UPDATIME, and UPDATEBY.

- You must specify all other required (indicated by an R in byte 126)
properties.

- The Information Catalog Manager compares all specified properties
to the object type definition for the following specifications:

Data type
Data length
Property short name
Value flag
UUI number

Object area:

- Values for the following properties must be specified:

OBJTYPID
Must be same as Header area, bytes 33 through 38.

NAME
Must not be all blank.

The value of the property NAME does not have to be unique within
an object type; you can successfully create duplicate entries.
However, when you create duplicate entries, specify some descriptive
information as the value of another property to differentiate one
object instance from another.

- Values for the following properties are system-generated and must be
left blank:
v INSTIDNT
v UPDATIME
v UPDATEBY

- If a value is not specified for a required property (defined with an R
in column 126 of the definition area) the appropriate space in the
object area must be initialized as follows:

API call syntax conventions

80 Information Catalog Manager Programming Guide and Reference

Data type Initialized to

CHAR Not-applicable symbol followed by blanks for the length
of the property

TIMESTAMP Set to the largest allowable value: 9999-12-31-
24.00.00.000000

VARCHAR
LONG VARCHAR

00000001; the length field, specified in 8 bytes, followed
by the not-applicable symbol

- If a value is not specified for an optional property, the appropriate
space in the object area must be initialized as follows:

Data type Initialized to

CHAR
TIMESTAMP

Blanks for the entire length of the property

VARCHAR
LONG VARCHAR

00000000; the length field, specified in 8 bytes, must be
present and set to zero

- The Information Catalog Manager removes all trailing blanks of
values in the object area with data types of VARCHAR or LONG
VARCHAR, and the length of that area is automatically adjusted.

- The object type in the HANDLES property (when specified) must
exist in the information catalog and be a non-Program object type.
Any properties specified in the PARMLIST property must be a
property of the object type specified in HANDLES. For more
information, see “Setting up Programs objects to start programs” on
page 25.

- Each object instance must have unique values for the UUI properties.
If an object instance already exists with the same UUI values as the
object instance being created, an error will occur.

Controlling updates to your information catalog

To keep your program as synchronized as possible with your
information catalog, you should include a call to FLGCommit (see
“FLGCommit” on page 74) after FLGCreateInst completes successfully.
If FLGCreateInst does not complete successfully, you should include a
call to FLGRollback (see “FLGRollback” on page 207).

Examples
Figure 48 on page 82 shows the C language code required to call
FLGCreateInst.

This sample code creates a new instance of a Grouping object type.

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 81

Figure 49 shows the input structure for the FLGCreateInst call. The
pObjInstStruct parameter points to this structure, which carries the property
and value information for the new object instance.

APIRET rc; // Declare reason code
PFLGfEADERAREA pObjInstStruct; // Pointer to the input structure
UCHAR pszFLGID[FLG_ID_LEN+1]; // Returns system-generated ID
FLGEXTCODE ExtCode = 0; // Declare extended code

.
/* creating pObjInstStruct object Instance by providing property values */
.
.

rc = FLGCreateInst (pObjInstStruct, // input structure
pszFLGID, // Returned ID of created instance
&ExtCode); // Pass pointer to extended code

Figure 48. Sample C language call to FLGCreateInst

Figure 49. Sample input structure for FLGCreateInst

API call syntax conventions

82 Information Catalog Manager Programming Guide and Reference

Notes:

1. Bytes 33 through 38 of the header record contain the object type identifier
(000033) that was generated by the FLGCreateReg when this object type
was registered. The same value must be specified for the OBJTYPID in the
object area. In this example, it appears as the first value in the object area.

2. This object type contains the first five required properties (OBJTYPID,
INSTIDNT, NAME, UPDATIME, UPDATEBY) plus three more properties
that were added by the user.

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 83

FLGCreateReg
Creates registration information in the information catalog for an object type.

This API call does not create the object type itself; it registers the object type
so that the object type can be created. The registration information that
FLGCreateReg stores in the information catalog includes registration values
that describe the object type.

You can register a type for any category except the Program and Attachment
categories, because these categories can contain only the Programs and
Comments types respectively, which the Information Catalog Manager
automatically creates in the information catalog.

Authorization
Administrator

Syntax

Parameters

pObjRegStruct (PFLGHEADERAREA) — input
Points to the input structure that contains the property specifications and
values of the new object type registration.

pszIconFileID (PSZ) — input
Contains the drive, directory path, and file name of the file that contains
the icon for the new object type registration. If this parameter is NULL,
then no icon is associated with the new object type registration.

pszObjTypeID (PSZ) — output
Points to the 6-character, system-generated unique identifier (object type
ID) of the registered object type.

This returned ObjTypeID is used by other API calls to identify the object
type. It is set to NULL if the object type is not registered successfully.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

APIRET APIENTRY FLGCreateReg(PFLGHEADERAREA pObjRegStruct,
PSZ pszIconFileID,
PSZ pszObjTypeID,
PFLGEXTCODE pExtCode);

API call syntax conventions

84 Information Catalog Manager Programming Guide and Reference

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Input structure
To use FLGCreateReg, you must define the input structure shown in
Figure 50. This structure contains the header area, the definition area, and the
object area.

In the input structure, you must specify these six properties in the definition
area in the order shown.

If you are using a version of the Information Catalog Manager other than
English, the names of these required properties are translated, and are
returned in the output structure of FLGInit.

Table 15

Table 15. Properties required for object type registrations

Property
short
name Property name1 Description Specify value in object area?

NAME EXTERNAL NAME
OF OBJ TYPE

80-byte name of the object type;
can be later modified.

Required.

Figure 50. FLGCreateReg input structure

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 85

Table 15. Properties required for object type registrations (continued)

Property
short
name Property name1 Description Specify value in object area?

PTNAME PHYSICAL TYPE
NAME

30-character name of the actual
table in the information catalog
that contains the object type.

Optional; default value is the
value for DPNAME.

DPNAME DP NAME 8-character short name for the
object type.

You must set this value using
FLGCreateReg.

Required.

CREATOR CREATOR 8-character user ID of the
administrator who creates the
object type.

No; the Information Catalog
Manager sets this value when
FLGCreateType is issued for the
object type.

UPDATEBY LAST CHANGED BY 8-character user ID of the
administrator who last modified
the object type.

No; the Information Catalog
Manager sets this value when
FLGAppendType is issued for
the object type.

UPDATIME LAST CHANGED
DATE AND TIME

26-character time stamp of the
last date and time the object type
was modified.

No; the Information Catalog
Manager sets this value when
FLGCreateType or
FLGAppendType is issued for
the object type.

Note:

1. The property names in this column apply to English versions of the Information Catalog Manager; if
you are using a translated version of the Information Catalog Manager, the property name will also
be translated.

For a general explanation of the meanings of the byte offsets, see “The
Information Catalog Manager API input structure” on page 32.

Usage
Restrictions

– You cannot register a new object type for the Program category (P),
because you cannot add any new Program object types. When you
create your information catalog, it includes the only permitted object
type (″Programs″) of category Program.

– You cannot register a new object type for the Attachment category (A),
because you cannot add any new Attachment object types. When you
create your information catalog, it includes the only permitted object
type (″Comments″) of category Attachment.

– To assign an icon to the object type, use FLGManageIcons (see
“FLGManageIcons” on page 182).

API call syntax conventions

86 Information Catalog Manager Programming Guide and Reference

– After you define the object type using FLGCreateReg, you can issue
FLGUpdateReg or FLGManageIcons calls to change the icon that is
associated with the object type, or add an icon association if one was
not defined originally. You can also use FLGManageIcons to remove an
icon from an object type.

Input requirements

Header area:

All of the information shown in the header record in Figure 50 on
page 85 is required.

Definition area:

- The definition area must contain definitions for each of the six
registration properties shown in Figure 50 on page 85. The definitions
for each of these registration properties, except translated property
names (see Table 15 on page 85), must be specified exactly as shown.

- Each required property name (bytes 0-80 for each property) could be
translated from the English property name shown in Figure 50 on
page 85 into any of the supported national languages. The translation
of the names of these required properties is returned in the output
structure of FLGInit.

Object area:

- For properties defined with an S value in byte 126, leave the values
in the object area blank; the Information Catalog Manager ignores
any specified values for these properties because the system
generates these values when you create or append the object type.
These properties are CREATOR, UPDATEBY, and UPDATIME.

- Rules for the PTNAME:
v The PTNAME of the object type must be unique within the

Information Catalog Manager catalog.
v The Information Catalog Manager maximum length for the value

of PTNAME is FLG_PTNAME_LEN (30); however, database
constraints can shorten the maximum length in your information
catalog environment. See the Information Catalog Manager
Administration Guide for more information about setting this
maximum.

v If the number of significant characters of the PTNAME, not
including trailing blanks, exceeds the maximum allowed for your
environment (the value of STOR ENVSIZE returned by FLGInit),
the registration request is rejected.

v Specifying the PTNAME is optional. If you do not specify the
PTNAME, then the Information Catalog Manager sets it to the
value of DPNAME by default.

v The restrictions for PTNAME are:

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 87

– Must be SBCS only
– The first character must be an English alphabetic character (A

through Z or a through z), @, #, $
– Characters other than the first can be an English alphabetic

character (A through Z or a through z), 0 through 9, @, #, $, or
_ (underscore).

– No leading or embedded blanks are allowed
– The PTNAME cannot be any of the SQL reserved words for

your database
- The DPNAME of the object type:

v Must be unique among all the information catalogs in the
organization

v Must be SBCS only
v The first character must be an English alphabetic character (A

through Z or a through z), @, #, or $.
v Characters other than the first can be an English alphabetic

character (A through Z or a through z), 0 through 9, @, #, $, or _
(underscore).

v No leading or embedded blanks are allowed
v The NAME value must be unique within the local information

catalog.
Output information

The system-generated object type identification is returned in the
output parameter pszObjTypeID. When the Information Catalog
Manager returns this number, you use this number in subsequent calls,
such as FLGDeleteReg or FLGGetReg, to uniquely identify the object
type registration.

Controlling updates to your information catalog

If FLGCreateReg does not complete successfully, you should include a call
to FLGRollback (see “FLGRollback” on page 207). Do not call FLGCommit
after FLGCreateReg completes successfully—wait until you complete a call
to FLGCreateType.

Examples
Figure 51 on page 89 shows the C language code required to issue the
FLGCreateReg call. This sample code creates registration information for a
new object type called MYIMAGE that belongs to the Elemental category.

API call syntax conventions

88 Information Catalog Manager Programming Guide and Reference

Figure 52 shows the input structure for the FLGCreateReg call. The
pObjRegStruct pointer points to this structure, which carries the property and
value information needed for registration of the new object type.

APIRET rc; // Declare reason code
PFLGHEADERAREA pObjRegStruct; // Pointer to the input structure
UCHAR pszIconFileID[FLG_ICON_FILE_ID_MAXLEN+1]; // Path/File name of ICON
UCHAR pszObjTypeID[FLG_OBJTYPID_LEN+1]; // Returned system-generated ID
FLGEXTCODE ExtCode = 0; // Declare extended code

.

. /* creating pObjRegStruct object Type Registration by providing values */

.
strcpy (pszIconFileID,"Y:\\FLGICON2.ICO");

rc = FLGCreateReg (pObjRegStruct, // input structure
pszIconFileID, // Path/File name of file containing the ICON
pszObjTypeID, // Returned id of registered object type
&ExtCode); // Pass extended code pointer

Figure 51. Sample C language call to FLGCreateReg

Figure 52. Sample input structure for FLGCreateReg

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 89

Special error handling
If FLGCreateReg encounters a database error, the Information Catalog
Manager rolls back the database to the last commit that occurred in your
program.

If this rollback is successful, FLGCreateReg returns the reason code
FLG_SEVERR_DB_AUTO_ROLLBACK_COMPLETE. The extended code
contains the SQL code for the database error that prompted the Information
Catalog Manager to roll back the database.

Attention: If this rollback fails, FLGCreateReg returns the reason code
FLG_SEVERR_DB_AUTO_ROLLBACK_FAIL. The extended code contains the
SQL code for the database error that prompted the Information Catalog
Manager to roll back the database. In this case, your database could have
severe integrity problems, and your program should call FLGTerm to exit the
Information Catalog Manager.

Depending on the state of your database, you might need to recover your
database using your backed-up database files. For more information about
recovering your information catalog database, see the Information Catalog
Manager Administration Guide.

To prevent the Information Catalog Manager from removing uncommitted
changes that are not related to the FLGCreateReg error, include FLGCommit
calls in your program just before this call.

API call syntax conventions

90 Information Catalog Manager Programming Guide and Reference

FLGCreateType
Creates a new user-defined object type.

The Administrator can create a type for any category except the Program and
Attachment categories, because these categories can contain only the Programs
and Comments types respectively, which the Information Catalog Manager
automatically creates in the information catalog.

Authorization
Administrator

Syntax

Parameters

pObjTypeStruct (PFLGHEADERAREA) — input
Points to the input structure that contains the specifications of the
properties for this object type.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Input structure
To use FLGCreateType, you must define the input structure shown in
Figure 53 on page 92. This structure contains only the header area and the
definition area.

APIRET APIENTRY FLGCreateType(PFLGHEADERAREA pObjTypeStruct,
PFLGEXTCODE pExtCode);

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 91

For an explanation of the meanings of the byte offsets, see “The Information
Catalog Manager API input structure” on page 32.

Usage
Prerequisites:

Before you can call the FLGCreateType API to create a new object type,
you need to call the FLGCreateReg API to register this new type.
You need to specify the object type identifier returned by the
FLGCreateReg API when you call FLGCreateType.
Input requirements:

Header area

The object type that you specify in the header of the input structure
must be registered, but not yet created.
Definition area

- The first five properties defined in the definition area must be for
these five Information Catalog Manager required properties:
OBJTYPID, INSTIDNT, NAME, UPDATIME, and UPDATEBY. If
these properties are not in this order, the create will fail.

OBJTYPID
Unique system-generated identifier (ID) for the object type

INSTIDNT
Unique system-generated ID for an object instance

NAME
User-specified name for an object

Figure 53. FLGCreateType input structure

API call syntax conventions

92 Information Catalog Manager Programming Guide and Reference

UPDATIME
System-generated time stamp of when the object was last
updated

UPDATEBY
System-generated user ID of the administrator or user who
last updated the object

- Rules for the required properties:
v The data type, length, property short name, and value flag (vf) of

each of these required properties are fixed and must be specified
exactly as shown in Figure 53 on page 92.

v The UUI sequence (us) is fixed as blank for each of the four
system-generated (S) properties, but can be 1, 2, 3, 4, 5, or blank
for the NAME property.

v The 80-byte property name is fixed, but it is translated for the
supported national language versions. The translation of the
names of these required properties is returned in the output
structure of FLGInit.

- The total number of properties in the definition must not exceed
FLG_MAX_PROPERTIES (255).

- The total number of properties in the definition that have a data type
of LONG VARCHAR must not exceed the Information Catalog
Manager limit of FLG_MAX_NUM_LONG_VARCHARS (14).

- Rules for the UUI:
v At least one UUI property must be defined for each object type

created.
v Within the object type, you must start the UUI numbering with 1

and not skip any values. For example, in an object type, a set of
UUI sequence values of 1, 2, and 3 is valid, but 2, 3, and 5 is not.

v You cannot specify the same UUI sequence number more than
once in the same object type.

v Any property specified as a UUI must not exceed 254 bytes in
length.

v Any property specified as a UUI must be a required property (″R″
value-flag, column 126).

v Any property specified as a UUI (column 127) must not have a
data type of LONG VARCHAR.

v You should define the UUI properties so that each instance of this
object type can be uniquely identified. You should be able to use
these properties to identify a single instance of this object type,
even if instances of this object type exist in several related
information catalogs.

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 93

- In addition to the required properties, the user can add more
properties to tailor the created object type to the needs of the
business.
The order of these additional properties in the definition area does
not matter because the Information Catalog Manager uses the
property short names in bytes 118-125 as a key to ensure that all
required properties are always specified. However, the order of the
properties in the definition area for the FLGCreateType call is the
order in which the Information Catalog Manager returns the
properties to the calling application.

- New property names must be unique within the object type.
- New property short names must be unique within the object type.
- If a property belongs to an object type that is shared among two or

more related information catalogs, and you plan to import and
export the Information Catalog Manager data to share information,
then the values for data type, data length, property short name,
value flag, and UUI sequence must be same as for the same object
type in the other information catalogs. The property name can be
different.

- Property short names must follow these rules:
v Must be (SBCS) only.
v The first character must be an English alphabetic character (A

through Z or a through z), @, #, or $.
v Characters other than the first can be an English alphabetic

character (A through Z or a through z), 0 through 9, @, #, $, or _
(underscore).

v No leading or embedded blanks are allowed.
v Cannot be any of the SQL reserved words for the current database.

- The total length of all of the properties for an object type must not
exceed the row limit for the underlying database. See the
documentation for the underlying database for information about
calculating the row length.

Controlling updates to your information catalog

To keep your program as synchronized as possible with your
information catalog, you should include a call to FLGCommit (see
“FLGCommit” on page 74) after FLGCreateType completes successfully.
If FLGCreateType does not complete successfully, you should include a
call to FLGRollback (see “FLGRollback” on page 207).

Examples
Figure 54 on page 95 shows the C language code required to issue the
FLGCreateType API call.

API call syntax conventions

94 Information Catalog Manager Programming Guide and Reference

This sample code creates a new object type. This new object type is of the
Elemental category, as indicated by E in the structure header area, with an
object type ID of 000044. Along with the Information Catalog
Manager-required properties, this object type contains three additional
required properties: imagecolor, imagesize, and description.

Figure 55 shows the input structure for the FLGCreateType API call. The
pObjTypeStruct pointer points to the structure that carries the property
information for the new object type.

Special error handling
If FLGCreateType encounters a database error, the Information Catalog
Manager rolls back the database to the last commit that occurred in your
program.

APIRET rc; // Declare reason code
PFLGHEADERAREA pObjTypeStruct; // Pointer to the input structure
FLGEXTCODE ExtCode=0; // Declare extended code

.

. /* creating pObjTypeStruct object type by */
/* providing object type's properties */

.

rc = FLGCreateType (pObjTypeStruct,
&ExtCode); // Pass pointer to extended code

Figure 54. Sample C language call to FLGCreateType

Figure 55. Sample input structure for FLGCreateType

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 95

If this rollback is successful, FLGCreateType returns the reason code
FLG_SEVERR_DB_AUTO_ROLLBACK_COMPLETE. The extended code
contains the SQL code for the database error that prompted the Information
Catalog Manager to roll back the database.

Attention: If this rollback fails, FLGCreateType returns the reason code
FLG_SEVERR_DB_AUTO_ROLLBACK_FAIL. The extended code contains the
SQL code for the database error that prompted the Information Catalog
Manager to roll back the database. In this case, your database could have
severe integrity problems, and your program should call FLGTerm to exit the
Information Catalog Manager.

Depending on the state of your database, you might need to recover your
database using your backed-up database files. For more information about
recovering your information catalog database, see the Information Catalog
Manager Administration Guide.

To prevent the Information Catalog Manager from removing uncommitted
changes that are not related to the FLGCreateType error, include FLGCommit
calls in your program just before the call to FLGCreateReg for the object type
you are creating.

API call syntax conventions

96 Information Catalog Manager Programming Guide and Reference

FLGDeleteInst
Deletes a single, specified object instance of an object type.

Authorization
Administrator or authorized user (all object types); user (Comments object
type only)

Syntax

Parameters

pszFLGID (PSZ) — input
Points to the 16-character, system-generated unique identifier of the
instance to be deleted.

Characters 1-6 of this ID identify the object type of this instance.

Characters 7-16 of this ID are the system-generated unique instance
identifier.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Usage
Prerequisites

The value specified for the pszFLGID input parameter must exist.
Restrictions

If you are a user who has not been authorized to perform object
management tasks, you can only delete Comments instances for which the
value of your logged-on user ID is the same as the value of the Creator
property.
Rules for object instances with relationships

For instances participating in Attachment relationships:
- If the instance has one or more associated Comments instances, then

all the Comments instances and all such relationships are deleted
when the object instance itself is deleted.

APIRET APIENTRY FLGDeleteInst(PSZ pszFLGID,
PFLGEXTCODE pExtCode);

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 97

- If the instance is a Comments instance in an Attachment relationship,
then all such relationships are deleted when the Comments object
instance itself is deleted.

For instances that are contained or containers:
- If the instance is a container, you must delete all relationships with

contained object instances before deleting the instance using
FLGDeleteInst. If you want to delete an instance that is a container
and all relationships with contained object instances, you can use
FLGDeleteTree instead (see “FLGDeleteTree” on page 102).

- If the instance is contained by another object, you can delete the
instance without first deleting the relationship with the container
object. Both the relationship and the instance itself are automatically
deleted.

For instances participating in Contact relationships:
- If the instance participates in any Contact relationship, then all such

relationships are deleted when the object instance itself is deleted.
- If the instance is a Contact in a Contact relationship, then all such

relationships are deleted when the Contact object instance itself is
deleted.

For instances participating in link relationships:
If the instance participates in link relationships, then all such
relationships are deleted when the object instance itself is deleted.
For Programs instances associated with non-Program object types:
A Programs instance can be deleted at any time without affecting any
associated object types.

Controlling updates to your information catalog

To keep your program as synchronized as possible with your information
catalog, you should include a call to FLGCommit (see “FLGCommit” on
page 74) after FLGDeleteInst completes successfully. If FLGDeleteInst does
not complete successfully, you should include a call to FLGRollback (see
“FLGRollback” on page 207).

Examples
Figure 56 on page 99 shows the C language code required to issue the
FLGDeleteInst call. This sample code deletes an object instance.

API call syntax conventions

98 Information Catalog Manager Programming Guide and Reference

APIRET rc; // Declare reason code
UCHAR pszFLGID[FLG_ID_LEN + 1]; // Unique instance identifier
FLGEXTCODE ExtCode = 0; // Declare extended code

.

. /* Get FLGID for object instance using FLGSearch. */

.
strcpy (pszFLGID,"0000330000001234");
rc = FLGDeleteInst (pszFLGID, // Instance ID

&ExtCode);

Figure 56. Sample C language call to FLGDeleteInst

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 99

FLGDeleteReg
Deletes a specific object type registration from the information catalog.

You can delete registration for a type of any category except the Program and
Attachment categories, because the Information Catalog Manager provides
these categories when it creates the information catalog.

Authorization
Administrator

Syntax

Parameters

pszObjTypeID (PSZ) — input
Points to the 6-character, system-generated unique identifier (object type
ID) of the object type for which you are deleting the registration.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Usage
This action does not delete the object type itself; it deletes the registration for
the object type.

Restrictions

The value for the input parameter pszObjTypeID must exist for an object
registration in the information catalog.
Before you can delete the registration for the object type, the object type
itself must not exist. If the object type exists, you must delete the object
type using FLGDeleteType.
Controlling updates to your information catalog

To keep your program as synchronized as possible with your information
catalog, you should include a call to FLGCommit (see “FLGCommit” on
page 74

APIRET APIENTRY FLGDeleteReg(PSZ pszObjTypeID,
PFLGEXTCODE pExtCode);

API call syntax conventions

100 Information Catalog Manager Programming Guide and Reference

page 74) after FLGDeleteReg completes successfully. If FLGDeleteReg does
not complete successfully, you should include a call to FLGRollback (see
“FLGRollback” on page 207).

Examples
Figure 57 shows the C language code required to invoke the FLGDeleteReg
API call. This sample code deletes the registration information for an object
type from the information catalogs.

The example shown in Figure 57 assumes that the object type ID that was
returned when you created the object registration (using FLGCreateReg) was
000044.

APIRET rc; // Declare reason code
UCHAR pszObjTypeID[FLG_OBJTYPID_LEN + 1];
FLGEXTCODE ExtCode = 0; // Declare extended code

.

. /* Get object type ID using FLGConvertID. */

.
strcpy (pszObjTypeID,"000044");
rc = FLGDeleteReg (pszObjTypeID, // object type ID

&ExtCode);

Figure 57. Sample C language call to FLGDeleteReg

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 101

FLGDeleteTree
Deletes a specific instance of a Grouping object type, all Comments instances
attached to it, and all ATTACHMENT, CONTACT, CONTAIN, and LINK
relationships in which it participates. Optionally also deletes all object
instances contained in the Grouping category object instance, all Comments
instances attached to them, and all ATTACHMENT, CONTACT, and LINK
relationships in which they participate.

Authorization
Administrator or authorized user

Syntax

Parameters

pszFLGID (PSZ) — input
Points to the 16-character, system-generated unique identifier of the
Grouping category instance (container) to be deleted.

Characters 1-6 of this ID identify the object type of this instance.

Characters 7-16 of this ID are the system-generated unique instance
identifier.

Options (FLGOPTIONS) — input
Choose one of the following deletion options:

FLG_DELTREE_ALL
Deletes a Grouping category object instance, all Comments
instances attached to it, and all ATTACHMENT, CONTACT, and
LINK relationships in which it participates. Deletes all object
instances contained in the Grouping category object instance, all
Comments instances attached to them, and all ATTACHMENT,
CONTACT, and LINK relationships in which they participate. See
Figure 58 on page 104 through Figure 60 on page 105 for a
graphical illustration of this option.

FLG_DELTREE_REL
Deletes a Grouping category object instance, all Comments
instances attached to it, and all ATTACHMENT, CONTACT, and
LINK relationships in which it participates. Deletes the underlying
tree structure of CONTAIN relationships. See Figure 58 on
page 104 through Figure 60 on page 105 for a graphical illustration
of this option.

APIRET APIENTRY FLGDeleteTree(PSZ pszFLGID,
FLGOPTIONS Options,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

API call syntax conventions

102 Information Catalog Manager Programming Guide and Reference

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure containing a
list of deleted object instances.

This output structure contains the 16-character FLGID of each deleted
object instance.

If this parameter is NULL, no output structure will be returned. If there is
no output structure, then the pointer to the output structure is set to
NULL.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Usage
Prerequisite

The specified object instance ID (FLGID) must exist.
Restriction

Object instances that are contained by other Grouping objects than the one
being deleted (as illustrated in Figure 59 on page 104) are not deleted.
Freeing memory allocated for an output structure

If FLGDeleteTree returned data in the output structure, you must save the
data returned in the output structure and then call FLGFreeMem (see
“FLGFreeMem” on page 125). Do not use other methods, for example, C
language instructions, to free memory.
Controlling updates to your information catalog

To keep your program as synchronized as possible with your information
catalog, you should include a call to FLGCommit (see “FLGCommit” on
page 74) after FLGDeleteTree completes successfully. If FLGDeleteTree does
not complete successfully, you should include a call to FLGRollback (see
“FLGRollback” on page 207).

Examples
Figure 58 on page 104 through Figure 60 on page 105 illustrate the effects of
the two delete options. Figure 58 on page 104 shows an information catalog
with three grouping objects A, Z, and Y. Object B will be deleted using
FLGDeleteTree.

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 103

Using the FLG_DELTREE_REL option, object instance B and some
relationships under B are deleted. Object C and its containees are not touched
because C is contained by another tree, Z. Object D is not contained by any
other object and is therefore subject to the cascading effect.

Figure 59 illustrates the information catalog after B is deleted.

Using option FLG_DELTREE_ALL, object instance B and some instances under
it are deleted from the catalog. Object instance C and its containees are kept,
because it is also contained by Z.

Figure 60 on page 105 shows the information catalog after B is deleted using
the FLG_DELTREE_ALL option.

Figure 58. Sample information catalog before deletions

Figure 59. Example of the FLG_DELTREE_REL option

API call syntax conventions

104 Information Catalog Manager Programming Guide and Reference

Figure 61 shows the C language code required to issue the FLGDeleteTree call.
This sample code deletes the DEPT001 Grouping category object instance, all
Comments instances attached to it, and all ATTACHMENT, CONTACT, and
LINK relationships in which it participates. The sample code also deletes all
object instances contained in DEPT001 object instance, all Comments instances
attached to them, and all ATTACHMENT, CONTACT, and LINK relationships
in which they participate.

Figure 62 on page 106 shows the output structure for the FLGDeleteTree call.

Figure 60. Example of the FLG_DELTREE_ALL option

APIRET rc; // Declare reason code
FLGOPTIONS ulOptMask=0;
UCHAR pszFLGID[FLG_ID_LEN + 1];
PFLGHEADERAREA pDelStruct=NULL;
FLGEXTCODE xc = 0; // Declare extended code

.

. set value for pszFLGID

.

ulOptMask = ulOptMask | FLG_DELTREE_ALL; // delete whole tree
rc = FLGDeleteTree (pszFLGID, ulOptMask,

&pDelStruct, &xc);

Figure 61. Sample C language call to FLGDeleteTree

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 105

Figure 62. Sample output structure for FLGDeleteTree

API call syntax conventions

106 Information Catalog Manager Programming Guide and Reference

FLGDeleteType
Deletes a user-defined object type.

You can delete an object type of any category except the Program and
Attachment categories, because the Information Catalog Manager provides
these categories when it creates the information catalog.

Authorization
Administrator

Syntax

Parameters

pszObjTypeID (PSZ) — input
Points to the 6-character system-generated unique identifier (object type
ID) for the object type to be deleted.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Usage
Prerequisites:

The object type ID specified as the input parameter must exist.
No object instances can exist for the object type. If instances of an object
type exist, you must delete them using FLGDeleteInst before you can
delete the object type. You can either delete the instances individually
using FLGDeleteInst or delete several instances at once by importing a tag
language file.
You cannot delete the Programs object type that was automatically created
in your information catalog. However, an object type can be deleted if it is
related to one or more Program instances. The Program instances are
automatically updated to clear the values for the HANDLES and
PARMLIST properties.

APIRET APIENTRY FLGDeleteType(PSZ pszObjTypeID,
PFLGEXTCODE pExtCode);

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 107

You cannot delete the Comments object type that was automatically
created in your information catalog.
Controlling updates to your information catalog

If FLGDeleteType does not complete successfully, you should include a call
to FLGRollback (see “FLGRollback” on page 207). Do not call FLGCommit
after FLGDeleteType completes successfully—wait until you complete a
call to FLGDeleteReg.

Examples
Figure 63 shows the C language code required to invoke the FLGDeleteType
API call. This sample code deletes an object type from the information catalog.

If instances of MYIMAGE exist, you must delete them before you can delete
the MYIMAGE object type. You can either delete the instances individually
using the administrator user interface or delete several instances at once by
importing a tag language file.

Special error handling
If FLGDeleteType encounters a database error, the Information Catalog
Manager rolls back the database to the last commit that occurred in your
program.

If this rollback is successful, FLGDeleteType returns the reason code
FLG_SEVERR_DB_AUTO_ROLLBACK_COMPLETE. The extended code
contains the SQL code for the database error that prompted the Information
Catalog Manager to roll back the database.

APIRET rc; // Declare reason code
UCHAR pszObjTypeID[FLG_OBJTYPID_LEN + 1];
FLGEXTCODE ExtCode = 0; // Declare extended code

.

. /* Get the object type ID of MYIMAGE using FLGConvertID. */

.

rc = FLGDeleteType (pszObjTypeID,
&ExtCode);

.

. // if (rc == 0)

. // rc = FLGDeleteReg (pszObjTypeID, &ExtCode);

. // if (rc == 0)

. // rc = FLGCommit (&ExtCode);

. // else

. // rc = FLGRollback (&ExtCode);

.

Figure 63. Sample C language call to FLGDeleteType

API call syntax conventions

108 Information Catalog Manager Programming Guide and Reference

Attention: If this rollback fails, FLGDeleteType returns the reason code
FLG_SEVERR_DB_AUTO_ROLLBACK_FAIL. The extended code contains the
SQL code for the database error that prompted the Information Catalog
Manager to roll back the database. In this case, your database could have
severe integrity problems, and your program should call FLGTerm to exit the
Information Catalog Manager.

Depending on the state of your database, you might need to recover your
database using your backed-up database files. For more information about
recovering your information catalog database, see the Information Catalog
Manager Administration Guide.

To prevent the Information Catalog Manager from removing uncommitted
changes that are not related to the FLGDeleteType error, include FLGCommit
calls in your program just before this call.

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 109

FLGDeleteTypeExt
Deletes a user-defined object type and instances of that object type, any
Comments objects attached to those instances, and any relationships in which
those instances participate. Also deletes the object type registration.

You can delete an object type of any category except the Program and
Attachment categories, because the Information Catalog Manager provides
these categories when it creates the information catalog.

Authorization
Administrator

Syntax

Parameters

pszObjTypeID (PSZ) — input
Points to the 6-character system-generated unique identifier (object type
ID) for the object type to delete.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Usage
Prerequisites:

The object type ID specified as the input parameter must exist.
Restrictions:

FLGDeleteTypeExt does not delete Grouping category object instances that
contain instances of objects of a different object type. If such Grouping
category instances exist, you must delete them using FLGDeleteTree before
you can delete the object type.
You cannot delete the Programs object type that was automatically created
in your information catalog. However, an object type can be deleted if it is

APIRET APIENTRY FLGDeleteTypeExt(PSZ pszObjTypeID,
PFLGEXTCODE pExtCode);

API call syntax conventions

110 Information Catalog Manager Programming Guide and Reference

related to one or more Program instances. The Program instances are
automatically updated to clear the values for the HANDLES and
PARMLIST properties.
You cannot delete the Comments object type that was automatically
created in your information catalog.
Controlling updates to your information catalog

Because FLGDeleteTypeExt deletes all instances of an object type along
with the object type, before calling FLGDeleteTypeExt you might want to
search for objects of a particular type to ensure that you do not want to
retain any of the existing objects of the object type you want to delete.
To keep your program as synchronized as possible with your information
catalog, include a call to FLGCommit (see “FLGCommit” on page 74) after
FLGDeleteTypeExt completes successfully. If FLGDeleteTypeExt does not
complete successfully, you should include a call to FLGRollback (see
“FLGRollback” on page 207).

Examples
Figure 64 shows the C language code required to issue the FLGDeleteTypeExt
call. This sample code deletes from the information catalog the MYIMAGE
object type, all instances of the MYIMAGE object type, all comments attached
to instances of the MYIMAGE object type, all relationships in which the
MYIMAGE instances participate, and the registration for the MYIMAGE object
type.

Special error handling
If FLGDeleteTypeExt encounters a database error, the Information Catalog
Manager rolls back the database to the last commit that occurred in your
program.

If this rollback is successful, FLGDeleteTypeExt returns the reason code
FLG_SEVERR_DB_AUTO_ROLLBACK_COMPLETE. The extended code

APIRET rc; // Declare reason code
UCHAR pszTypeID[FLG_OBJTYPID_LEN+1];
FLGEXTCODE xc = 0; // Declare extended code

.

. /* processing */

.

rc = FLGDeleteTypeExt (pszTypeID,
&xc);

Figure 64. Sample C language call to FLGDeleteTypeExt

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 111

contains the SQL code for the database error that prompted the Information
Catalog Manager to roll back the database.

Attention: If this rollback fails, FLGDeleteTypeExt returns the reason code
FLG_SEVERR_DB_AUTO_ROLLBACK_FAIL. The extended code contains the
SQL code for the database error that prompted the Information Catalog
Manager to roll back the database. In this case, your database could have
severe integrity problems, and your program should call FLGTerm to exit the
Information Catalog Manager.

Depending on the state of your database, you might need to recover your
database using your backed-up database files. For more information about
recovering your information catalog database, see the Information Catalog
Manager Administration Guide.

To prevent the Information Catalog Manager from removing uncommitted
changes that are not related to the FLGDeleteTypeExt error, include
FLGCommit calls in your program just before this call.

API call syntax conventions

112 Information Catalog Manager Programming Guide and Reference

FLGExport
Retrieves metadata from the information catalog and translates it to tag
language in a file.

Authorization
Administrator or authorized user

Syntax

Parameters

pszTagFileID (PSZ) — input
Points to the name of the output tag language file. This parameter is
required.

This parameter contains the drive, directory path, and file name, and must
be valid for a file allocation table (FAT) or HPFS file. The target drive for
this file can be either a fixed or removable disk. If you type only the file
name, the Information Catalog Manager places the tag language file on
the drive and path pointed to by the DGWPATH environment variable.

The target tag language file must not exist; the Information Catalog
Manager does not overwrite existing tag files.

The file name and extension (excluding the drive and directories) cannot
exceed 240 characters. The entire tag language file ID cannot exceed 259
characters.

pszLogFileID (PSZ) — input
Points to the name of the log file. This parameter is required.

This parameter contains the drive, directory path, and file name, and must
be valid for a FAT or HPFS file. The target drive for the log file must be a
fixed disk. The log file ID cannot exceed 259 characters. If you specify
only a file name, the Information Catalog Manager places the log file on
the drive and path pointed to by the DGWPATH environment variable.

If the log file specified in this parameter does not exist, a new file is
created. If the log file specified in this parameter already exists, then the
FLGExport API call appends to it.

pszIcoPath (PSZ) — input
Points to the specification of the path containing the OS/2® or Windows
icon files.

APIRET APIENTRY FLGExport(PSZ pszTagFileID,
PSZ pszLogFileID,
PSZ pszIcoPath,
PFLGHEADERAREA pListStruct,
PFLGEXTCODE pExtCode);

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 113

This parameter is optional. If this parameter is NULL, no icon files are
exported.

This parameter contains the drive and directories and must be valid for a
FAT or HPFS file. This parameter cannot be longer than 246 characters.

If this parameter is specified, the target drive for the icon files must be a
fixed disk.

pListStruct (PFLGHEADERAREA) — input
Points to an input structure containing the list of objects to be exported
and the export options.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Input structure
To use FLGExport, you must define the input structure shown in Figure 65 on
page 115. This structure contains the header area, the definition area, and the
object area.

API call syntax conventions

114 Information Catalog Manager Programming Guide and Reference

For an explanation of the meanings of the byte offsets, see “The Information
Catalog Manager API input structure” on page 32.

Usage
Input structure

The definition area for the FLGExport input structure must be specified
exactly as shown in Figure 65.
The input structure for FLGExport contains the following information:

FLGID
16-character, system-generated unique identifier of the instance to
be exported.

Characters 1-6 of this ID identify the object type of this instance.

Characters 7-16 of this ID are the system-generated unique
instance identifier.

You can export any Information Catalog Manager object instances.

CONTAINEE-IND
1-character indicator (Y | N) that specifies whether the

Figure 65. FLGExport input structure

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 115

Information Catalog Manager exports all objects contained by this
object. This indicator applies only to Grouping objects and is
ignored for all other objects.

CONTACT-IND
1-character indicator (Y | N) that specifies whether the
Information Catalog Manager exports all associated Contact objects
of Grouping and Elemental objects. This indicator applies only to
Grouping and Elemental objects and is ignored for all other
objects.

ATTACHMENT-IND
1-character indicator (Y | N) that specifies whether the
Information Catalog Manager exports all Attachment objects
attached to the specified object instance. This indicator is ignored if
the specified object is an Attachment object.

LINK-IND
1-character indicator (Y | N) that specifies whether the
Information Catalog Manager exports all Grouping and Elemental
object instances linked with the specified object instance. This
indicator applies only to Grouping and Elemental objects and is
ignored for all other objects.

Generated tag language file

FLGExport generates a tag language file that contains tags for each object
instance exported. Depending on what you specify for the indicators,
object instances are exported as shown in Table 16.

Table 16. Object instances exported to tag language file for indicator combinations

Indicator value

Exports:CONTAINEE CONTACT ATTACHMENT LINK

Y Y Y Y a through j

Y Y Y N a, b, c, d, g, h, i,
j

Y Y N Y a, b, e, f, g, h

Y Y N N a, b, g, h

Y N Y Y a, b, c, d, e, f

Y N Y N a, b, c, d

Y N N N a, b

Y N N Y a, b, e, f

N Y Y Y a, c, e, g, i

N Y Y N a, c, g, i

N Y N Y a, e, g

API call syntax conventions

116 Information Catalog Manager Programming Guide and Reference

Table 16. Object instances exported to tag language file for indicator
combinations (continued)

Indicator value

Exports:CONTAINEE CONTACT ATTACHMENT LINK

N N Y Y a, c, e

N N Y N a, c

N N N Y a, e

N N N N a only

Notes:
a Specified object instance
b Object instances contained by a
c Comments attached to a
d Comments attached to b
e Links for a
f Links for b
g Contacts for a
h Contacts for b
i Comments attached to g
j Comments attached to h

FLGExport generates frequent COMMIT tags in the tag language file.

FLGExport places a copy of the icon associated with each object type in
the specified icon path. FLGExport does not export the default category
icons if no other icon is associated with the object type. The name of the
exported icon file is the object type DP NAME (short name) with an
extension of .ICO for OS/2 icons or .ICW for Windows icons.
Linking your VisualAge C++ program when it exports metadata to
diskettes

If your C language program issues an FLGExport call that exports the
Information Catalog Manager information to diskettes, link your program
with an application type of WINDOWAPI so that the Information Catalog
Manager can use Presentation Manager® (PM) interface display messages
that prompt the user for diskettes when necessary.
You can perform this linking using one of these methods:
– The following link statement:

ilink /NOFREE /PMTYPE:vio /NOI filename.obj,,,dgwapi.lib,,

– A module definition file. Specify an apptype of WINDOWAPI in your
NAME statement.

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 117

Examples
Figure 66 shows the C language code required to invoke the FLGExport API
call. This sample code exports three Information Catalog Manager objects. All
three objects are Grouping objects:
v The first object, all the objects it contains, and its Contacts objects are

exported.
v The second object, all the objects it contains, and attached Comments

objects are exported.
v The third object is exported without exporting objects it contains.

Figure 67 on page 119 shows the input structure for the FLGExport call.

APIRET rc; // Declare reason code
UCHAR pszTagFileID[FLG_TAG_FILE_ID_MAXLEN + 1]; // Tag file id
UCHAR pszLogFileID[FLG_LOG_FILE_ID_MAXLEN + 1]; // Log file id
UCHAR pszIcoPath[FLG_ICON_PATH_MAXLEN + 1]; // icon files path
PFLGHEADERAREA pListStruct; // pointer to the input structure
FLGEXTCODE ExtCode=0; // declare an extended code for API

.

. /* set values for Tag file/ Log file/ Icon path */

. /* create object list */

.

rc = FLGExport (pszTagFileID,
pszLogFileID,
pszIcoPath,
pListStruct, // Pass input structure
&ExtCode); // Pass pointer to extended code

Figure 66. Sample C language call to FLGExport

API call syntax conventions

118 Information Catalog Manager Programming Guide and Reference

Figure 67. Sample input structure for FLGExport

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 119

FLGFoundIn
Retrieves a list of object instances or object types in which a specified instance
is found. FLGFoundIn can retrieve any of the following:
v Grouping object instances that contain the specified object instance
v Object instances for which the specified object instance is a Contact
v Object instances to which the specified object instance is attached as a

Comments object
v Object types with which the specified Programs object instance is associated

Authorization
Administrator or user

Syntax

Parameters

pszFLGID (PSZ) — input
Points to the 16-character object instance ID (FLGID) of the object instance
for which a list of parents will be retrieved.

Characters 1-6 of this ID identify the object type of this instance.

Characters 7-16 of this ID are the system-generated unique instance
identifier.

The FLGID you specify depends on what you want to list:

Attachments
FLGID of an Attachment category object instance (retrieves object
instances to which the specified object instance is attached as a
Comments object).

Contacts
FLGID of a Contact category object instance (retrieves object
instances for which the specified object instance is a Contact).

Containees
FLGID of an Elemental or Grouping category object instance
(retrieves Grouping object instances that contain the specified
object instance)

APIRET APIENTRY FLGFoundIn(PSZ pszFLGID,
FLGOPTIONS Options,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

API call syntax conventions

120 Information Catalog Manager Programming Guide and Reference

Programs
FLGID of a Program category object instance (retrieves object
types with which the specified Programs object instance is
associated)

Options (FLGOPTIONS) — input
Choose one of the following options:
FLG_LIST_ATTACHMENT

Retrieves object instances to which the specified object instance is
attached as a Comments object

FLG_LIST_CONTACT
Retrieves object instances for which the specified object instance is
a Contact

FLG_LIST_CONTAIN
Retrieves Grouping object instances that contain the specified
object instance

FLG_LIST_PROGRAM
Retrieves object types with which the specified Programs object
instance is associated

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure containing a
list of object instances or object types in which a specified instance is
found. If there is no output structure, then the pointer to the output
structure is set to NULL.

For each Contain, Contact, or Attachment relationship, the output
structure contains the following information about the “found-in” object
instances:
v FLGID (16 characters)
v Name (80 characters)

All instances are sorted by object type name first, then object instance
name, in ascending order according to collating order of the underlying
database management system.

For each Program association, the output structure contains the following
information about the “found-in” object types:
v Object type ID (6 characters)
v 80-character external name of object type (EXTERNAL NAME OF OBJ

TYPE)

All object types are sorted by the 80-character external name of object type
(EXTERNAL NAME OF OBJ TYPE) in ascending order according to
collating order of the underlying database management system.

The maximum number of object instances or object types that can be
returned by FLGFoundInis 5000.

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 121

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Usage
Freeing memory allocated for an output structure

If FLGFoundIn returned data in the output structure, you must save the
data returned in the output structure and then call FLGFreeMem (see
“FLGFreeMem” on page 125). Do not use other methods, for example, C
language instructions, to free memory.

Examples
This sample code retrieves a list of object instances in which the specified
Contact object is found. Figure 68 shows the C language code required to
issue the FLGFoundIn call.

Figure 69 on page 123 shows the output structure for the FLGFoundIn call.

APIRET rc; // reason code from FLGFoundIn
UCHAR pszInstID[FLG_ID_LEN + 1];
FLGOPTIONS Option=0; // association type
PFLGHEADERAREA * ppReturnObjList; // pointer to output structure ptr
FLGEXTCODE xc=0; // extended code

.

. /* provide values for input parameters */

.
Option = Option | FLG_LIST_CONTACT;
rc = FLGFoundIn (pszInstID,

Option,
ppReturnObjList,
&xc);

Figure 68. Sample C language call to FLGFoundIn

API call syntax conventions

122 Information Catalog Manager Programming Guide and Reference

This sample code retrieves a list of object types handled by the specified
Programs object instance. Figure 70 shows the C language code required to
issue the FLGFoundIn call.

Figure 71 on page 124 shows the output structure for the FLGFoundIn call.

Figure 69. Sample output structure for FLGFoundIn

APIRET rc; // reason code from FLGFoundIn
UCHAR pszInstID[FLG_ID_LEN + 1];
FLGOPTIONS Option=0; // association type
PFLGHEADERAREA * ppReturnObjList; // pointer to output structure ptr
FLGEXTCODE xc=0; // extended code

.

. /* provide values for input parameters */

.
Option = Option | FLG_LIST_PROGRAM;
rc = FLGFoundIn (pszInstID,

Option,
ppReturnObjList,
&xc);

Figure 70. Sample C language call to FLGFoundIn

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 123

Figure 71. Sample output structure for FLGFoundIn

API call syntax conventions

124 Information Catalog Manager Programming Guide and Reference

FLGFreeMem
Frees the memory allocated to an output structure created by an Information
Catalog Manager API call; for example FLGListObjTypes or FLGNavigate.

Authorization
Administrator or user

Syntax

Parameters

pFLGOutputStruct (PFLGHEADERAREA) — input
Points to the Information Catalog Manager output structure to be
deallocated.

When you issue an API call that creates an output structure, you need to
save the value of the pointer to the output structure that is generated by
the Information Catalog Manager and stored at the address indicated by
the PFLGHEADERAREA data type so that you can pass this pointer as a
parameter to FLGFreeMem to free the allocated memory.

FLGFreeMem works only with output structures produced by the
Information Catalog Manager API calls.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Examples
Figure 72 on page 126 shows the C language code required to invoke the
FLGFreeMem API call. This sample code frees an Information Catalog
Manager output structure in memory.

APIRET APIENTRY FLGFreeMem(PFLGHEADERAREA pFLGOutputStruct,
PFLGEXTCODE pExtCode);

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 125

PFLGHEADERAREA pFLGOutputStruct; // pointer to the FLG output structure
APIRET rc; // reason code
FLGEXTCODE ExtCode = 0; // Extended code

rc = FLGFreeMem (pFLGOutputStruct, &ExtCode);

Figure 72. Sample C language call to FLGFreeMem

API call syntax conventions

126 Information Catalog Manager Programming Guide and Reference

FLGGetInst
Retrieves a single object instance for a specified object type.

Authorization
Administrator or user

Syntax

Parameters

pszFLGID (PSZ) — input
Points to the 16-character, system-generated unique identifier of the object
instance to be retrieved.

Characters 1-6 of this ID identify the object type of this instance.

Characters 7-16 of this ID are the system-generated unique instance
identifier.

ppObjInstStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure. This pointer is
set to NULL if FLGGetInst fails.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Output structure
FLGGetInst produces an output structure containing the property
specifications and values of the requested object instance, as shown in
Figure 73 on page 128.

The object area of the output structure contains the values of the properties of
the requested object instance.

APIRET APIENTRY FLGGetInst(PSZ pszFLGID,
PFLGHEADERAREA * ppObjInstStruct,
PFLGEXTCODE pExtCode);

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 127

For an explanation of the meanings of the byte offsets, see “The Information
Catalog Manager API output structure” on page 51.

Usage
Prerequisites

The value in the pszFLGID input parameter must refer to an existing
object instance.
Freeing memory allocated for an output structure

If FLGGetInst returned data in the output structure, you must save the
data returned in the output structure and then call FLGFreeMem (see
“FLGFreeMem” on page 125). Do not use other methods, for example, C
language instructions, to free memory.
Controlling updates to your information catalog

Figure 73. FLGGetInst output structure

API call syntax conventions

128 Information Catalog Manager Programming Guide and Reference

FLGGetInst commits changes to the database. Your program should issue
FLGCommit or FLGRollback before issuing FLGGetInst to ensure that the
Information Catalog Manager does not also commit unexpected changes
that occurred before the FLGGetInst call.

Examples
Figure 74 shows the C language code required to invoke the FLGGetInst API
call. This sample code retrieves information about the Quality Group object
instance.

Figure 75 on page 130 shows the output structure that contains the property
and value information for the object instance.

APIRET rc; // Declare reason code
UCHAR pszFLGID[FLG_ID_LEN+1]; // Unique ID for "Quality Group"
PFLGHEADERAREA * ppObjInstStruct; // Pointer to the output structure
FLGEXTCODE ExtCode = 0; // Declare extended code

.

. /* Retrieving an object Instance */

.

strcpy (pszFLGID,"0000330000001234");
rc = FLGGetInst (pszFLGID, // Instance ID

ppObjInstStruct, // Structure pointer where output will be returned
&ExtCode); // Pass pointer to extended code

Figure 74. Sample C language call to FLGGetInst

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 129

Figure 75. Sample output structure for FLGGetInst

API call syntax conventions

130 Information Catalog Manager Programming Guide and Reference

FLGGetReg
Retrieves registration information from the information catalog for the
specified object type.

Authorization
Administrator or user

Syntax

Parameters

pszObjTypeID (PSZ) — input
Points to the 6-character, system-generated unique identifier (object type
ID) of the object type for which you are retrieving the registration.

pszIconFileID (PSZ) — input/output
As input, points to the file path and name of the file in which you want
to return the OS/2 icon for the registered object type. If this parameter is
NULL, the Information Catalog Manager does not retrieve the icon for the
registered object type.

As output, points to the file path and name of the file where the
Information Catalog Manager stored the OS/2 icon for the registered
object type. This pointer is set to NULL if there is no icon associated with
the object type registration.

ppObjRegStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure.

The output structure contains the property specifications and values of the
requested object type registration information. The pointer is set to NULL
if FLGGetReg fails.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

APIRET APIENTRY FLGGetReg(PSZ pszObjTypeID,
PSZ pszIconFileID,
PFLGHEADERAREA * ppObjRegStruct,
PFLGEXTCODE pExtCode);

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 131

Output structure
FLGGetReg produces an output structure containing the property
specifications and values of the requested object type registration, as shown in
Figure 76.

The object area of the output structure contains the values of the registration
properties for the requested object type.

For an explanation of the meanings of the byte offsets, see “The Information
Catalog Manager API output structure” on page 51.

Usage
Restrictions

You can only retrieve an OS/2 icon using FLGGetReg. To retrieve a
Windows icon, use FLGManageIcons (see “FLGManageIcons” on page 182).
Prerequisites

The value in the pszObjTypeID parameter must refer to an existing object
type ID registered in the information catalog.
Freeing memory allocated for an output structure

If FLGGetReg returned data in the output structure, you must save the
data returned in the output structure and then call FLGFreeMem (see

Figure 76. FLGGetReg output structure

API call syntax conventions

132 Information Catalog Manager Programming Guide and Reference

“FLGFreeMem” on page 125). Do not use other methods, for example, C
language instructions, to free memory.

Examples
Figure 77 shows the C language code required to issue the FLGGetReg API
call. This sample code retrieves information about the registration for the
MYIMAGE object type from the information catalog.

Figure 78 on page 134 shows the output structure that contains the property
and value information for the registration of the MYIMAGE object type.

APIRET rc; // Declare reason code
UCHAR pszObjTypeID[FLG_OBJTYPID_LEN+1]; // Unique ID for MYIMAGE ObjType
UCHAR pszIconFileID[FLG_ICON_FILE_ID_MAXLEN+1]; // Path/File name for ICON
PFLGHEADERAREA * ppObjRegStruct; // Ptr to pointer to the output structure
FLGEXTCODE ExtCode = 0; // Declare extended code

.

. /* Retrieving an object Type Registration Instance */

.

strcpy (pszObjTypeID,"000044");
strcpy (pszIconFileID,"Y:\\FLGICON2.ICO");

rc = FLGGetReg (pszObjTypeID, // id of the object type
pszIconFileID,// Path/File name of file to contain ICON
ppObjRegStruct,// Structure pointer where out put will be returned
&ExtCode); // Pass pointer to extended code

Figure 77. Sample C language call to FLGGetReg

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 133

In this example, bytes 33 through 38 of the header record contain the object
type ID (000044) of the object type for which registration information has been
retrieved. It matches the object type ID specified as input in the pszObjTypeID
parameter.

Figure 78. Sample output structure for FLGGetReg

API call syntax conventions

134 Information Catalog Manager Programming Guide and Reference

FLGGetType
Retrieves the definition of all properties of an object type.

Authorization
Administrator or user

Syntax

Parameters

pszObjTypeID (PSZ) — input
Points to the 6-character, system-generated unique identifier (object type
ID) that was returned when the object type was registered. You can also
retrieve this object type ID using either the FLGConvertID or
FLGListObjTypes API call.

ppObjTypeStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure. The pointer is
set to NULL if the FLGGetType fails.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Output structure
FLGGetType produces an output structure containing the property
specifications of the requested object type, as shown in Figure 79 on page 136.

The definition area of the output structure contains the properties of the
requested object type in the order in which they were specified when the
object type was created.

APIRET APIENTRY FLGGetType(PSZ pszObjTypeID,
PFLGHEADERAREA * ppObjTypeStruct,
PFLGEXTCODE pExtCode);

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 135

For an explanation of the meanings of the byte offsets, see “Chapter 4. The
Information Catalog Manager input and output structures” on page 31.

Usage
Prerequisites

The value in the pszObjTypeID parameter must refer to an existing object
type ID registered in the information catalog.
Freeing memory allocated for an output structure

If FLGGetType returned data in the output structure, you must save the
data returned in the output structure and then call FLGFreeMem (see
“FLGFreeMem” on page 125). Do not use other methods, for example, C
language instructions, to free memory.

Examples
Figure 80 on page 137 shows the C language code required to issue the
FLGGetType API call. This sample code retrieves information about the
properties of the MYIMAGE object type from the information catalog.

Figure 79. FLGGetType output structure

API call syntax conventions

136 Information Catalog Manager Programming Guide and Reference

Figure 81 shows the output structure that contains the property information
for the MYIMAGE object type.

APIRET rc; // Declare reason code
UCHAR pszObjTypeID[FLG_OBJTYPID_LEN + 1]; // Set to ID of MYIMAGE (000044)
PFLGHEADERAREA * ppObjTypeStruct; // Pointer to the output structure
FLGEXTCODE ExtCode=0; // Declare extended code

.

. /* retrieving a user-defined object type - MYIMAGE */
strcpy (pszObjTypeID,"000044");

.

rc = FLGGetType (pszObjTypeID,
ppObjTypeStruct,
&ExtCode); // Pass pointer to extended code

Figure 80. Sample C language call to FLGGetType

Figure 81. Sample output structure for FLGGetType

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 137

FLGImport
Imports metadata from a flat file in tag language format into the Information
Catalog Manager.

Authorization
Administrator

Syntax

Parameters

pszTagFileID (PSZ) — input
Identifies the tag language file. This parameter is required.

This parameter contains the drive, directory path, and file name, and must
be valid for a FAT or HPFS file. This drive can be a removable drive. The
file name and extension, excluding the drive and directories, cannot
exceed 240 characters. If you type only the file name, the Information
Catalog Manager assumes that the tag language file is on the drive and
path pointed to by the DGWPATH environment variable.

The file identified by pszTagFileID contains the Information Catalog
Manager objects and related metadata to be imported.

pszLogFileID (PSZ) — input
Specifies the location and name of the log file. This parameter is required.

This parameter contains the drive, directory path, and file name, and must
be valid for a FAT or HPFS file. The drive cannot be a removable drive. If
you specify only a file name, the Information Catalog Manager places the
log file on the drive and path pointed to by the DGWPATH environment
variable.

If the log file specified in this parameter does not exist, a new file is
created. If the log file specified in this parameter already exists, then the
Information Catalog Manager appends to it.

The file identified by pszLogFileID contains logging information as well
as warnings and errors detected during processing of the FLGImport API
call.

pszIcoPath (PSZ) — input
Specifies the location of the OS/2 and Windows icon files. This parameter

APIRET APIENTRY FLGImport(PSZ pszTagFileID,
PSZ pszLogFileID,
PSZ pszIcoPath,
FLGRESTARTOPTION RestartOpt,
PFLGEXTCODE pExtCode);

API call syntax conventions

138 Information Catalog Manager Programming Guide and Reference

contains the drive and directories, and must be valid for a FAT or HPFS
file on a nonremovable drive. The maximum length for the icon path is
246 characters.

This parameter is optional. If you do not specify this parameter, icon files
are not imported, even when the tag language file contains instructions to
import icons associated with object types.

When specified, the import function searches this path for any icon files
referenced within the tag language file identified by pszTagFileID. If the
tag language file indicates that icons are to be associated with an object
type, and the icons do not reside in the icon path, a warning is recorded
in the log file.

RestartOpt (FLGRESTARTOPTION) — input
Specifies whether the Information Catalog Manager processes the input
tag language file from the beginning or from a checkpoint. Valid values
are:

B Beginning

The tag language file is processed from the beginning, even if the
same tag language file was already specified at a previous time
and only partially processed because of run-time errors.

C Checkpoint

The same tag language file was processed, but only partially. The
system saved the checkpoint label information where execution is
to resume for this file. In this case, the tag language file is
searched for the saved checkpoint label and, if a match is found,
importing resumes from that point. If a match is not found, then
the FLGImport API call fails.

If C is specified for the RestartOpt, but the tag language file was
not previously processed, then the Information Catalog Manager
processes the tag language file from the beginning.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Usage
Debugging import errors

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 139

The Information Catalog Manager creates a log file and an echo file when
importing a tag language file.
The log file records what happens during the import process. It includes
the times and dates when the import process started and stopped. It also
includes any warning or error messages for problems that occur during the
process. The log file is identified by the pszLogFileID parameter.
The echo file lists the tags that have been processed by the Information
Catalog Manager. The echo file has the same name as the import tag
language file, and is stored in the same directory and path as the log file,
but has the .ech file extension.
You can use the echo file and log file to find the tag that is causing the
import error. The last one or two tags of an echo file tell you which tag in
your tag language file caused the import process to stop.
Importing a delete history tag file

To protect against erroneous deletions in other information catalogs, you
should examine the contents of a delete history tag file before importing it
to any other information catalog, especially if you have deleted Grouping
object instances, or object types.
Linking your VisualAge® C++ program when it imports from diskettes

If your C language program issues an FLGImport call that imports the
Information Catalog Manager information from diskettes, link your
program with an application type of WINDOWAPI so that the Information
Catalog Manager can use the PM interface to display messages that
prompt the user for diskettes when necessary.
You can perform this linking using one of these methods:
– The following link statement:

ilink /NOFREE /PMTYPE:vio /NOI filename.obj,,,dgwapi.lib,,

– A module definition file. Specify an apptype of WINDOWAPI in your
NAME statement.

Committing changes before using FLGImport

The Information Catalog Manager rolls back the database when
FLGImport encounters errors. Your program should issue FLGCommit
before issuing FLGImport to ensure that the Information Catalog Manager
does not also roll back uncommitted changes that occurred before the
FLGImport call.

Examples
The sample code in Figure 82 on page 141 imports a tag language file named
TAGFILE1.TAG. The Information Catalog Manager logs the processing
information in TAGFILE1.LOG.

API call syntax conventions

140 Information Catalog Manager Programming Guide and Reference

APIRET rc; // Declare reason code
UCHAR pszTagFileID[FLG_TAG_FILE_ID_MAXLEN+1]; // ID for Tag Language file
UCHAR pszLogFileID[FLG_LOG_FILE_ID_MAXLEN+1]; // ID for Log file
UCHAR pszIconPath[FLG_ICON_PATH_MAXLEN+1]; // Path for Icon files
FLGRESTARTOPTION RestartOpt; // Restart option
FLGEXTCODE ExtCode=0; // Returned extended code

.

. /* Importing the Tag Language file TAGFILE1.TAG */

.

strcpy (pszTagFileID,"c:\\DGdata\\TAGFILE1.TAG");
strcpy (pszLogFileID,"c:\\DGdata\\TAGFILE1.LOG");
strcpy (pszIconPath,"c:\\DGdata");
RestartOpt = FLG_RESTART_BEGIN;

rc = FLGImport (pszTagFileID,
pszLogFileID,
pszIconPath,
RestartOpt,
&ExtCode); // Pass extended code by reference

Figure 82. Sample C language call to FLGImport

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 141

FLGInit
Initializes the Information Catalog Manager API DLL for use, connects the
application to the database, and retrieves environmental information that you
can use with other API calls.

Authorization
Administrator or user

Syntax

Parameters

pszUserID (PSZ) — input
Points to a null-terminated string containing the user ID for the
information catalog database logon.

pszPassword (PSZ) — input
Points to a null-terminated string containing the user’s password.

pszDatabaseName (PSZ) — input
Points to a null-terminated string containing the database alias for the
information catalog.

admin (FLGADMIN) — input
Indicates the user option desired.
FLG_YES

Log on as an administrator.
FLG_NO

The default. Log on as an user.

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure. For the format
of the output structure, see “The Information Catalog Manager API output
structure” on page 51.

If there is no output structure, the pointer to the output structure is set to
NULL, and the Information Catalog Manager returns an error condition
with a reason code.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See

APIRET APIENTRY FLGInit(PSZ pszUserID,
PSZ pszPassword,
PSZ pszDatabaseName,
FLGADMIN Admin,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

API call syntax conventions

142 Information Catalog Manager Programming Guide and Reference

“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Output structure
FLGInit produces an output structure containing information about the
Information Catalog Manager environment, as shown in Figure 83 on
page 144.

The object area of the output structure contains the required registration and
object properties in the user’s national language. The object area also contains
values that provide information about the user’s Information Catalog Manager
environment.

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 143

Usage
The output structure returns the 80-byte property names required for all
object type registrations, object types, and objects.
If you are using a non-English version of the Information Catalog
Manager, the values in the object area for each of these properties are
translated. You need to save these translated values so that you can use
them with FLGCreateReg and FLGCreateType.
Freeing memory allocated for an output structure

If FLGInit returned data in the output structure, you must save the data
returned in the output structure and then call FLGFreeMem (see

Figure 83. FLGInit output structure

API call syntax conventions

144 Information Catalog Manager Programming Guide and Reference

“FLGFreeMem” on page 125). Do not use other methods, for example, C
language instructions, to free memory.

Table 17 shows the required properties that are returned by FLGInit.

Table 17. Required property names returned by FLGInit

Property name Description

EXTERNAL NAME OF OBJ TYPE First registration property in any object
type registration

PHYSICAL TYPE NAME Second registration property in any object
type registration

DP NAME Third registration property in any object
type registration

CREATOR Fourth registration property in any object
type registration

LAST CHANGED BY Fifth registration property in any object
type registration

LAST CHANGED DATE AND TIME Sixth registration property in any object
type registration

Object type identifier First required property on any object type

Instance identifier Second required property on any object
type

Name Third required property on any object type

Last Changed Date and Time Fourth required property on any object
type

Last Changed By Fifth required property on any object type

This output structure also returns environmental values. Save these values to
use with other API calls.

Table 18. Environmental values returned by FLGInit

Property name Description

STORE ENVIRON Database product name with the release number in
VxRxMx format. For example:
DB2/NT V07R01M0

DB2 UDB for Windows NT product

STORE ENVSIZE Value indicating the maximum length of PTNAME for
the information catalog in this environment.

Not-applicable symbol 1-character default token of the Information Catalog
Manager environment to represent an unspecified data
field. This value was set during installation.

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 145

Table 18. Environmental values returned by FLGInit (continued)

Property name Description

VERSION 20-character indicator of the version of the Information
Catalog Manager.

LANGUAGE 3-character national language code; for example, ENU
indicates English. Valid values are:
CHS Simplified Chinese
CHT Traditional Chinese
DAN Danish
DEU German
ENU US English
ESP Spanish
FIN Finnish
FRA French
ITA Italian
JPN Japanese
KOR Korean
NLB Belgian French
NOR Norwegian
PTB Brazilian Portuguese
SVE Swedish

KAUSERID 8-character user ID for the administrator currently logged
on.

Product Path 260-character full working path for the Information
Catalog Manager.

System Path Length 8-character value for the maximum path length for the
system.

Code page 4-character code page identifier

User Type 1-character identifier, set to:
A Logged-on user ID is the primary administrator
B Logged-on user ID is the backup administrator
D Logged-on user ID is a user with authority to

perform object management tasks
W Logged-on user ID is a user

Examples
Figure 84 on page 147 shows the C language code required to invoke the
FLGInit API call. This sample code initializes the Information Catalog
Manager API DLL so that information applications can issue calls to the
Information Catalog Manager API.

API call syntax conventions

146 Information Catalog Manager Programming Guide and Reference

Figure 85 on page 148 shows the output structure.

UCHAR pszUserID[FLG_USERID_LEN + 1];
UCHAR pszPassword[FLG_PASSWORD_LEN + 1];
UCHAR pszDatabaseName[FLG_DATABASENAME_LEN + 1];
FLGADMIN admin = FLG_YES;
APIRET rc; // reason code
PFLGHEADERAREA * ppListStruct; // pointer to output structure pointer
FLGEXTCODE ExtCode = 0; // Extended code

.

. // IA specific code

.
strcpy(pszUserID, "LAUTZ");
strcpy(pszPassword, "MYPASSWD");
strcpy(pszDatabaseName, "CATALOG");

rc = FLGInit (pszUserName,
pszPassword,
pszDatabaseName,
admin,
ppListStruct,
&ExtCode);

. // Issue FLGFreeMem to release the output structure created by FLGInit

. // Calls to the FLG API

. // When complete, call

. // FLGTerm()

Figure 84. Sample C language call to FLGInit

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 147

Figure 85. Sample output structure for FLGInit

API call syntax conventions

148 Information Catalog Manager Programming Guide and Reference

FLGListAnchors
Retrieves a list of all anchor instances for the Grouping category. Anchors are
Grouping category objects that have containees, but are not contained by
other objects.

Authorization
Administrator or user

Syntax

Parameters

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure listing the
anchors. When there is no output structure, the pointer to the structure is
set to NULL.

The output structure contains the following information for each anchor
object instance:
v FLGID (16 characters)
v Name (80 characters)

All instances are sorted according to the collating sequence of the
database used for your information catalog, first by object type name,
then by Name.

The maximum number of object instances that can be returned by
FLGListAnchors is 1600.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Output structure
FLGListAnchors produces an output structure containing a list of anchors, as
shown in Figure 86 on page 150.

APIRET APIENTRY FLGListAnchors(PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 149

The object area of the output structure contains a list of anchor object
instances, identified by the value of the FLGID and the external name for each
object instance.

Usage
Freeing memory allocated for an output structure

If FLGListAnchors returned data in the output structure, you must save
the data returned in the output structure and then call FLGFreeMem (see
“FLGFreeMem” on page 125). Do not use other methods, for example, C
language instructions, to free memory.

Examples
Figure 87 on page 151 shows the C language code required to invoke the
FLGListAnchors API call. This sample code retrieves a list of the anchors in
your information catalog.

Figure 86. FLGListAnchors output structure

API call syntax conventions

150 Information Catalog Manager Programming Guide and Reference

Figure 88 shows the output structure.

APIRET rc; // reason code from FLGListAnchors
PFLGHEADERAREA * ppListStruct; // pointer to output structure pointer
FLGEXTCODE ExtCode=0; // Extended code

.

.
rc = FLGListAnchors (ppListStruct, // address of output structure pointer

&ExtCode);

Figure 87. Sample C language call to FLGListAnchors

Figure 88. Sample output structure for FLGListAnchors

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 151

FLGListAssociates
Retrieves a list of associate instances for a specified object instance or object
type. An associate can be any one of the following:
v Instances contained by a Grouping object instance
v Contact instances for an object instance
v Attachment instances for an object instance
v Instances linked with an object instances
v Program instances associated with an object type

Authorization
Administrator or user

Syntax

Parameters

pszInBuffer (PSZ) — input
Points to an input buffer containing either a 16-character,
system-generated unique identifier of an object instance, or a 6-character,
system-generated unique identifier of an object type, depending on what
you are listing:

Attachments
Object instance ID (FLGID) of a non-Attachment category object
instance

Comments
FLGID of a non-Comments type object instance

Contacts
FLGID of an Elemental or Grouping category object instance

Containees
FLGID of a Grouping category object instance

Links FLGID of an Elemental or Grouping category object instance

Programs
Object type ID of a non-Program category object type

Options (FLGOPTIONS) — input
Choose one of the following options:
FLG_LIST_ATTACHMENT

Retrieves object instances in an Attachment relationship with the
specified instance.

APIRET APIENTRY FLGListAssociates(PSZ pszInBuffer,
FLGOPTIONS Options,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

API call syntax conventions

152 Information Catalog Manager Programming Guide and Reference

FLG_LIST_COMMENTS
Retrieves Comments object instances attached to the specified
instance. FLG_LIST_COMMENTS retrieves the same object
instances as FLG_LIST_ATTACHMENT, but returns more
information (Last Changed Date and Time, Creator) about each
instance.

FLG_LIST_CONTACT
Retrieves Contact object instances associated with the specified
instance.

FLG_LIST_CONTAIN
Retrieves object instances contained in the specified instance.

FLG_LIST_LINK
Retrieves object instances linked with the specified instance.

FLG_LIST_PROGRAM
Retrieves Programs object instances associated with the specified
object type.

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure listing the
associates. When there is no output structure, the pointer to the structure
is set to NULL.

The output structure for each instance has the following information:
FLGID (16 characters)
Name (80 characters)

In addition, for FLG_LIST_CONTAIN, the output structure for each
instance also has a flag (CHILDIND) indicating whether it is itself a
container. For FLG_LIST_COMMENTS, the output structure for each
instance also includes the following:

Last Changed Date and Time
Creator

All instances are sorted by object type name first, then object instance
name, in ascending order according to collating order of the underlying
database management system.

The maximum number of object instances that can be returned by
FLGListAssociates is 5000.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 153

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Usage
Freeing memory allocated for an output structure

If FLGListAssociates returned data in the output structure, you must save
the data returned in the output structure and then call FLGFreeMem (see
“FLGFreeMem” on page 125). Do not use other methods, for example, C
language instructions, to free memory.

Examples
This sample code retrieves a list of the Programs object instances associated
with the Grouping object type, MYREGION. Figure 89 shows the C language
code required to issue the FLGListAssociates call.

Figure 90 on page 155 shows the output structure for the FLGListAssociates
call in Figure 89.

APIRET rc; // reason code
UCHAR pszObjTypeID[FLG_OBJTYPID_LEN + 1];
PFLGHEADERAREA * ppReturnObjList; // ptr to output structure ptr
FLGOPTIONS Option=0;
FLGEXTCODE xc=0; // extended code

.

.

.
Option=Option | FLG_LIST_PROGRAM;
rc = FLGListAssociates (pszObjTypeID,

Option,
ppReturnObjList,
&xc);

Figure 89. Sample C language call to FLGListAssociates

API call syntax conventions

154 Information Catalog Manager Programming Guide and Reference

This sample code retrieves the object instances contained in the Grouping
object, MYBGROUP. Figure 91 shows the C language code required to issue
the FLGListAssociates call.

Figure 92 on page 156 shows the output structure for the FLGListAssociates
call in Figure 91.

Figure 90. Sample output structure for FLGListAssociates

APIRET rc; // reason code
UCHAR objid[FLG_ID_LEN + 1];
PFLGHEADERAREA * ppReturnObjList; // ptr to output structure ptr
FLGOPTIONS Option=0;
FLGEXTCODE xc=0; // extended code

.

.

.
Option=Option | FLG_LIST_CONTAIN;
rc = FLGListAssociates (objid,

Option,
ppReturnObjList,
&xc);

Figure 91. Sample C language call to FLGListAssociates

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 155

This sample code retrieves the Contact object instances for the Grouping
object, MYBGROUP. Figure 93 shows the C language code required to issue
the FLGListAssociates call.

Figure 94 on page 157 shows the output structure for the FLGListAssociates
call in Figure 93.

Figure 92. Sample output structure for FLGListAssociates

APIRET rc; // reason code
UCHAR objid[FLG_ID_LEN + 1];
PFLGHEADERAREA * ppReturnObjList; // ptr to output structure ptr
FLGOPTIONS Option=0;
FLGEXTCODE xc=0; // extended code

.

.

.
Option=Option | FLG_LIST_CONTACT;
rc = FLGListAssociates (objid,

Option,
ppReturnObjList,
&xc);

Figure 93. Sample C language call to FLGListAssociates

API call syntax conventions

156 Information Catalog Manager Programming Guide and Reference

This sample code retrieves the Attachment category object instances for the
Grouping object, MYBGROUP. Figure 95 shows the C language code required
to issue the FLGListAssociates call.

Figure 96 on page 158 shows the output structure for the FLGListAssociates
call in Figure 95.

Figure 94. Sample output structure for FLGListAssociates

APIRET rc; // reason code
UCHAR objid[FLG_ID_LEN + 1];
PFLGHEADERAREA * ppReturnObjList; // ptr to output structure ptr
FLGOPTIONS Option=0;
FLGEXTCODE xc=0; // extended code

.

.

.
Option=Option | FLG_LIST_ATTACHMENT;
rc = FLGListAssociates (objid,

Option,
ppReturnObjList,
&xc);

Figure 95. Sample C language call to FLGListAssociates

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 157

This sample code retrieves the Comments object instances attached to the
Elemental object, MYREPORT. Figure 97 shows the C language code required
to issue the FLGListAssociates call.

Figure 98 on page 159 shows the output structure for the FLGListAssociates
call in Figure 97.

Figure 96. Sample output structure for FLGListAssociates

APIRET rc; // reason code
UCHAR objid[FLG_ID_LEN + 1];
PFLGHEADERAREA * ppReturnObjList; // ptr to output structure ptr
FLGOPTIONS Option=0;
FLGEXTCODE xc=0; // extended code

.

.

.
Option=Option | FLG_LIST_COMMENTS;
rc = FLGListAssociates (objid,

Option,
ppReturnObjList,
&xc);

Figure 97. Sample C language call to FLGListAssociates

API call syntax conventions

158 Information Catalog Manager Programming Guide and Reference

This sample code retrieves the object instances with which the Grouping
object, MYBGROUP, is linked. Figure 99 shows the C language code required
to issue the FLGListAssociates call.

Figure 100 on page 160 shows the output structure for the FLGListAssociates
call in Figure 99.

Figure 98. Sample output structure for FLGListAssociates

APIRET rc; // reason code
UCHAR objid[FLG_ID_LEN + 1];
PFLGHEADERAREA * ppReturnObjList; // ptr to output structure ptr
FLGOPTIONS Option=0;
FLGEXTCODE xc=0; // extended code

.

.

.
Option=Option | FLG_LIST_LINK;
rc = FLGListAssociates (objid,

Option,
ppReturnObjList,
&xc);

Figure 99. Sample C language call to FLGListAssociates

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 159

Figure 100. Sample output structure for FLGListAssociates

API call syntax conventions

160 Information Catalog Manager Programming Guide and Reference

FLGListContacts
Retrieves a list of Contact objects for an Elemental or Grouping object.

Authorization
Administrator or user

Syntax

Parameters

pszFLGID (PSZ) — input
Points to the 16-character FLGID of the object instance for which Contacts
will be retrieved.

Characters 1-6 of this ID identify the object type of this instance.

Characters 7-16 of this ID are the system-generated unique instance
identifier.

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure listing the
Contacts. When there is no output structure, the pointer to the structure is
set to NULL.

This output structure contains the 16-character FLGID of each Contact
object and its 80-character name.

Entries in the list are first sorted by object type name, then by the value of
the Name property for each instance, according to the collating sequence
used by the database management system used by your information
catalog.

The maximum number of Contact object instances that can be returned by
FLGListContacts is approximately 5000, depending on the storage
available on your machine.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

APIRET APIENTRY FLGListContacts(PSZ pszFLGID,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 161

Output structure
FLGListContacts produces an output structure containing a list of Contacts, as
shown in Figure 101.

The object area of the output structure contains a list of Contact object
instances associated with the specified object instance. These Contact objects
are identified by the value of the FLGID and the external name for each object
instance.

Usage
Freeing memory allocated for an output structure

If FLGListContacts returned data in the output structure, you must save
the data returned in the output structure and then call FLGFreeMem (see
“FLGFreeMem” on page 125). Do not use other methods, for example, C
language instructions, to free memory.

Examples
Figure 102 on page 163 shows the C language code required to invoke the
FLGListContacts API call. This sample code retrieves a list of the Contacts for
Elemental object MYREPORT.

Figure 101. FLGListContacts output structure

API call syntax conventions

162 Information Catalog Manager Programming Guide and Reference

Figure 103 shows the output structure for this API call.

APIRET rc; // reason code from FLGListContacts
UCHAR pszFLGID[FLG_ID_LEN + 1];
PFLGHEADERarea * ppListStruct; // pointer to output structure pointer
FLGEXTCODE ExtCode=0; // extended code

.

. /* allocate storage for input parms */

. /* set objid to FLGID of 'MYREPORT' */

.
rc = FLGListContacts (pszFLGID,

ppListStruct, // address of output structure pointer
&ExtCode);

Figure 102. Sample C language call to FLGListContacts

Figure 103. Sample output structure for FLGListContacts

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 163

FLGListObjTypes
Displays all object types currently registered and created in the information
catalog database.

Authorization
Administrator or user

Syntax

Parameters

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure listing the
object types. When there is no output structure, the pointer to the
structure is set to NULL.

Each entry has the following information:
v Object type ID
v Object type external name (80-byte)
v Object type short name (8-byte DP NAME)

Entries are sorted by 80-byte object type external name (EXTERNAL
NAME OF OBJ TYPE); the actual order depends on the collating sequence
used by the database management system used for the information
catalog.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Output structure
FLGListObjTypes produces an output structure containing a list of object
types, as shown in Figure 104 on page 165.

The object area of the output structure contains a list of all the object types in
the information catalog. These object types are identified by the values of the

APIRET APIENTRY FLGListObjTypes(PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

API call syntax conventions

164 Information Catalog Manager Programming Guide and Reference

object type ID, the object type external name, and the object type DP NAME
(short name).

For an explanation of the meanings of the byte offsets, see “The Information
Catalog Manager API output structure” on page 51.

Usage
Freeing memory allocated for an output structure

If FLGListObjTypes returned data in the output structure, you must save
the data returned in the output structure and then call FLGFreeMem (see
“FLGFreeMem” on page 125). Do not use other methods, for example, C
language instructions, to free memory.

Examples
Figure 105 on page 166 shows the C language code required to invoke the
FLGListObjTypes API call. This sample code retrieves a list of all the object
types in the information catalog.

Figure 104. FLGListObjTypes output structure

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 165

Figure 106 shows the output structure for this API call.

PFLGHEADERAREA * ppListStruct; // pointer to output structure pointer
APIRET rc; // reason code from FLGListObjTypes
FLGEXTCODE ExtCode=0; // extended code

.

.

.
rc = FLGListObjTypes (ppListStruct, // address of output structure pointer

&ExtCode);

Figure 105. Sample C language call to FLGListObjTypes

Figure 106. Sample output structure for FLGListObjTypes

API call syntax conventions

166 Information Catalog Manager Programming Guide and Reference

FLGListOrphans
Retrieves a list of all orphan instances of the Attachment, Contact, or Program
category. Orphans are Attachment, or Contact objects that are not associated
with other object instances, or Program objects that are not associated with
any object type.

You can use this list to clean up your information catalog by associating
orphan object instances to other objects or by deleting orphan instances.

Authorization
Administrator or user

Syntax

Parameters

pszObjTypeID (PSZ) — input
Points to the 6-character, system-generated unique identifier (object type
ID) of an object type for which to retrieve a list of instances that exist, but
are not currently associated with any object instances. The object type ID
you specify depends on what you want to list:

Attachments
Attachment category object type ID

Comments
This parameter is ignored.

Contacts
Contact category object type ID

Programs
Program category object type ID

If pszObjTypeID is NULL, then the Information Catalog Manager returns
orphans of all object types in the Attachment category (when
FLG_LIST_ATTACHMENT is specified), or in the Contact category (when
FLG_LIST_CONTACT is specified).

Options (FLGOPTIONS) — input
Choose one of the following options:

FLG_LIST_ATTACHMENT
Retrieves Attachment category object instances that are currently
unattached.

APIRET APIENTRY FLGListOrphans(PSZ pszObjTypeID,
FLGOPTIONS Options,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 167

FLG_LIST_COMMENTS
Retrieves Comments object instances that are currently
unattached. FLG_LIST_COMMENTS retrieves the same object
instances as FLG_LIST_ATTACHMENT, but returns more
information (Last Changed Date and Time, Creator) about each
instance

FLG_LIST_CONTACT
Retrieves Contact category object instances that are currently
unattached.

FLG_LIST_PROGRAM
Retrieves Programs object instances that are not currently
associated with any object type.

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure listing the
orphans. When there is no output structure, the pointer to the structure is
set to NULL.

The output structure for each instance has the following information:
FLGID (16 characters)
Name (80 characters)

In addition, for FLG_LIST_COMMENTS, the output structure for each
instance also includes the following:

Last Changed Date and Time
Creator

All instances are sorted by object type name first, then object instance
name, in ascending order according to collating order of the underlying
database management system.

The maximum number of object instances that can be returned by
FLGListOrphans is 1600.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Usage
Restrictions

API call syntax conventions

168 Information Catalog Manager Programming Guide and Reference

If a user uses FLGListOrphans to list orphan Comments, FLGListOrphans
only returns the Comments for which the user is also the creator.
Freeing memory allocated for an output structure

If FLGListOrphans returned data in the output structure, you must save
the data returned in the output structure and then call FLGFreeMem (see
“FLGFreeMem” on page 125). Do not use other methods, for example, C
language instructions, to free memory.

Examples
This sample code retrieves all orphan Program category object instances.
Figure 107 shows the C language code required to issue the FLGListOrphans
call.

Figure 108 shows the output structure for the FLGListOrphans call in
Figure 107.

APIRET rc; // reason code
PFLGHEADERAREA * ppReturnObjList; // ptr to output structure ptr
FLGOPTIONS Option=0;
FLGEXTCODE xc=0; // extended code

.

.

.
Option=Option | FLG_LIST_PROGRAM;
rc = FLGListOrphans (NULL,

Option,
ppReturnObjList,
&xc);

Figure 107. Sample C language call to FLGListOrphans

Figure 108. Sample output structure for FLGListOrphans

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 169

This sample code retrieves all orphan Contact category object instances.
Figure 109 shows the C language code required to issue the FLGListOrphans
call.

Figure 110 shows the output structure for the FLGListOrphans call in
Figure 109.

This sample code retrieves all orphan Attachment category object instances.
Figure 111 on page 171 shows the C language code required to issue the
FLGListOrphans call.

APIRET rc; // reason code
PFLGHEADERAREA * ppReturnObjList; // ptr to output structure ptr
FLGOPTIONS Option=0;
FLGEXTCODE xc=0; // extended code

.

.

.
Option=Option | FLG_LIST_CONTACT;
rc = FLGListOrphans (NULL,

Option,
ppReturnObjList,
&xc);

Figure 109. Sample C language call to FLGListOrphans

Figure 110. Sample output structure for FLGListOrphans

API call syntax conventions

170 Information Catalog Manager Programming Guide and Reference

Figure 112 shows the output structure for the FLGListOrphans call in
Figure 111.

This sample code retrieves all orphan Attachment category object instances
that are of the Comments object type. Figure 113 on page 172 shows the C
language code required to issue the FLGListOrphans call.

APIRET rc; // reason code
PFLGHEADERAREA * ppReturnObjList; // ptr to output structure ptr
FLGOPTIONS Option=0;
FLGEXTCODE xc=0; // extended code

.

.

.
Option=Option | FLG_LIST_ATTACHMENT;
rc = FLGListOrphans (NULL,

Option,
ppReturnObjList,
&xc);

Figure 111. Sample C language call to FLGListOrphans

Figure 112. Sample output structure for FLGListOrphans

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 171

Figure 114 shows the output structure for the FLGListOrphans call in
Figure 113. This particular output structure has two additional property
values.

APIRET rc; // reason code
PFLGHEADERAREA * ppReturnObjList; // ptr to output structure ptr
FLGOPTIONS Option=0;
FLGEXTCODE xc=0; // extended code

.

.

.
Option=Option | FLG_LIST_COMMENTS;
rc = FLGListOrphans (NULL,

Option,
ppReturnObjList,
&xc);

Figure 113. Sample C language call to FLGListOrphans

Figure 114. Sample output structure for FLGListOrphans

API call syntax conventions

172 Information Catalog Manager Programming Guide and Reference

FLGListPrograms
Retrieves a list of Programs objects for a non-Program object type.

Authorization
Administrator or user

Syntax

Parameters

pszObjTypeID (PSZ) — input
Points to the 6-character, system-generated unique identifier (object type
ID) of the object type for which to retrieve a list of associated Programs
objects.

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure listing the
Programs instances. When there is no output structure, the pointer to the
structure is set to NULL.

This output structure contains the 16-character FLGID of a Programs
object instance and its 80-character external name.

Entries in the list are sorted by the external name (value of the NAME
property); the actual order of the list depends on the collating sequence
used by the database management system used for your information
catalog.

The maximum number of Programs object instances that can be returned
by FLGListPrograms is approximately 5000, depending on the storage
available on your machine.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Output structure
FLGListPrograms produces an output structure containing a list of Programs
objects, as shown in Figure 115 on page 174.

APIRET APIENTRY FLGListPrograms(PSZ pszObjTypeID,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 173

The object area of the output structure contains a list of all the Programs
objects associated with the specified object type. These Programs objects are
identified by the values of the FLGID and the external name of the object
instance.

Usage
Freeing memory allocated for an output structure

If FLGListPrograms returned data in the output structure, you must save
the data returned in the output structure and then call FLGFreeMem (see
“FLGFreeMem” on page 125). Do not use other methods, for example, C
language instructions, to free memory.

Examples
Figure 116 on page 175 shows the C language code required to invoke the
FLGListPrograms API call.

This sample code retrieves a list of programs that the object type named
REPORT is associated with.

There are two programs created to use with REPORT: Read report and Update
report.

Figure 115. FLGListPrograms output structure

API call syntax conventions

174 Information Catalog Manager Programming Guide and Reference

Figure 117 shows the output structure for this API call.

APIRET rc; // reason code from FLGListPrograms
UCHAR pszObjTypeID[FLG_OBJTYPID_LEN + 1];
PFLGHEADERAREA * ppListStruct; // pointer to output structure pointer
FLGEXTCODE ExtCode=0; // extended code

.

. /* set object type ID to ID of 'REPORT' */

.
rc = FLGListPrograms (pszObjTypeID,

ppListStruct,
&ExtCode);

Figure 116. Sample C language call to FLGListPrograms

Figure 117. Sample output structure for FLGListPrograms

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 175

FLGManageCommentStatus
Sets the list of available status choices for users to assign to Comments objects
they create in the information catalog using the Information Catalog Manager
interface. For example, status choices might be: Open, Pending, Action
required, and Closed.

Authorization
Administrator; user (FLG_ACTION_GET only)

Syntax

Parameters

Action (FLGOPTIONS) — input
Choose one of the following action options:
FLG_ACTION_GET

Retrieves a list of current status choices for Comments object
instances

FLG_ACTION_UPDATE
Adds, changes, or deletes entries from the list of status choices for
Comments object instances

pStatusStruct (PFLGHEADERAREA) — input
Points to the input structure that contains the updated list of status
choices for Comments object instances for FLG_ACTION_UPDATE.

ppStatusStruct (PFLGHEADERAREA) — output
Points to the output structure that contains the current list of status
choices for Comments object instances for FLG_ACTION_GET.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

APIRET APIENTRY FLGManageCommentStatus(FLGOPTIONS Action,
FLGHEADERAREA * pStatusStruct,
PFLGHEADERAREA * ppStatusStruct,
PFLGEXTCODE pExtCode);

API call syntax conventions

176 Information Catalog Manager Programming Guide and Reference

Usage
Each time you call FLGManageCommentStatus, you must include the
entire 10-entry definition area and corresponding 10 entries in the object
area. Use zeros for status areas that you want to leave blank (see
Figure 119 on page 178).
Freeing memory allocated for an output structure

If FLGManageCommentStatus returned data in the output structure, you
must save the data returned in the output structure and then call
FLGFreeMem (see “FLGFreeMem” on page 125). Do not use other
methods, for example, C language instructions, to free memory.
Controlling updates to your information catalog

To keep your program as synchronized as possible with your information
catalog, you should include a call to FLGCommit (see “FLGCommit” on
page 74) after FLGManageCommentStatus completes successfully. If
FLGManageCommentStatus does not complete successfully, include a call
to FLGRollback (see “FLGRollback” on page 207).

Examples
This sample code retrieves the status structure. Figure 118 shows the C
language code required to issue the FLGManageCommentStatus call.

Figure 119 on page 178 shows the output structure for the
FLGManageCommentStatus call in Figure 118.

APIRET rc; // reason code for API
FLGOPTIONS Action=0;
PFLGHEADERAREA pStatusStruct;
FLGEXTCODE xc=0; // extended code

.

. /* */

.
Action= Action | FLG_ACTION_GET; //set get option
rc = FLGManageCommentStatus (Action,

NULL,
&pStatusStruct,
&xc);

Figure 118. Sample C language call to FLGManageCommentStatus

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 177

This sample code updates the status structure with an additional status field.
Figure 120 shows the C language code required to issue the
FLGManageCommentStatus call.

Figure 119. Sample output structure for FLGManageCommentStatus

APIRET rc; // reason code for API
FLGOPTIONS Action=0;
PFLGHEADERAREA pStatusStruct;
FLGEXTCODE xc=0; // extended code

.

. /* */

.
Action= Action | FLG_ACTION_UPDATE; //update option
rc = FLGManageCommentStatus (Action,

pStatusStruct,
NULL,
&xc);

Figure 120. Sample C language call to FLGManageCommentStatus

API call syntax conventions

178 Information Catalog Manager Programming Guide and Reference

Figure 121 shows the input structure for the FLGManageCommentStatus call
in Figure 120 on page 178.

Figure 121. Sample input structure for FLGManageCommentStatus

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 179

FLGManageFlags
Queries or starts or stops recording delete history. Delete history is a log of
delete activity that can be turned on and off.

Authorization
Administrator; user (FLG_ACTION_GET only)

Syntax

Parameters

Action (FLGOPTIONS) — input
Choose one of the following action options:
FLG_ACTION_GET

Indicates whether logging of delete history is currently enabled or
disabled

FLG_ACTION_UPDATE
Turns on or off logging of delete history

FlagType (FLGOPTIONS) — input
Indicates the flag type. This value must be
FLG_HISTORY_TYPE_DELETE.

chValue (UCHAR) — input
Indicates desired flag value for FLG_ACTION_UPDATE. Choose one of
the following flags:
FLG_YES

Enables logging of delete history
FLG_NO

Disables logging of delete history

pchValue (UCHAR) — output
Points to the status returned by FLG_ACTION_GET, either:
FLG_YES

Logging of delete history is enabled
FLG_NO

Logging of delete history is disabled

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

APIRET APIENTRY FLGManageFlags(FLGOPTIONS Action,
FLGOPTIONS FlagType,
UCHAR chValue,
UCHAR * pchValue,
PFLGEXTCODE pExtCode);

API call syntax conventions

180 Information Catalog Manager Programming Guide and Reference

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Usage
Controlling updates to your information catalog

To keep your program as synchronized as possible with your information
catalog, you should include a call to FLGCommit (see “FLGCommit” on
page 74) after FLGManageFlagssuccessfully updates flags. If
FLGManageFlags does not update flags successfully, you should include a
call to FLGRollback (see “FLGRollback” on page 207).

Examples
Figure 122 shows the C language code required to issue the FLGManageFlags
call. This sample code enables logging of the delete history.

APIRET rc; // reason code for API
FLGOPTIONS Action=0;
FLGOPTIONS Type=0;
UCHAR chValue=FLG_YES;
FLGEXTCODE xc=0; // extended code

.

.

.
Action= Action | FLG_ACTION_UPDATE;
Type = Type | FLG_HISTORY_TYPE_DELETE;
rc = FLGManageFlags (Action,

Type,
chValue,
NULL,
&xc);

Figure 122. Sample C language call to FLGManageFlags

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 181

FLGManageIcons
Creates, deletes, gets, queries, or updates representative OS/2 or Windows
icons.

Authorization
Administrator; user (FLG_ACTION_GET and FLG_ACTION_QUERY only)

Syntax

Parameters

pszObjTypeID (PSZ) — input
Points to the 6-character, system-generated unique identifier (object type
ID) of an object type for which you want to retrieve, query, create, update,
or delete icons.

pszIconFileID (PSZ) — input
Contains the drive, directory path, and file name (valid for a FAT or HPFS
file) of the file that contains the OS/2 or Windows icon you want to
retrieve, create, or update for the specified object type. This parameter is
ignored for FLG_ACTION_QUERY and FLG_ACTION_DELETE.

InOptions (FLGOPTIONS) — input
Indicates the desired action and platform options. Choose one of the
following action options:
FLG_ACTION_CREATE

Adds the specified icon to the specified object type.
FLG_ACTION_DELETE

Removes the specified icon from the specified object type.
FLG_ACTION_GET

Retrieves the specified icon file.
FLG_ACTION_QUERY

Determines whether the specified icon file exists.
FLG_ACTION_UPDATE

Changes the icon for the specified object type.

Choose one of the following platform options:
FLG_PLATFORM_OS2

Manages OS/2 icons.
FLG_PLATFORM_WINDOWS

Manages Windows icons.

APIRET APIENTRY FLGManageIcons(PSZ pszObjTypeID,
PSZ pszIconFileID,
FLGOPTIONS InOptions,
PFLGOPTIONS pOutOptions,
PFLGEXTCODE pExtCode);

API call syntax conventions

182 Information Catalog Manager Programming Guide and Reference

pOutOptions (PFLGOPTIONS) — output
Points to the status returned by FLG_ACTION_QUERY, either:

FLG_ICON_EXIST
FLG_ICON_NOTEXIST

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Usage
Prerequisite:

Before you can call FLGManageIcons, you need to call FLGCreateReg to
register the object type for which you want to manage icons.
Controlling updates to your information catalog

To keep your program as synchronized as possible with your information
catalog, you should include a call to FLGCommit (see “FLGCommit” on
page 74) after FLGManageIcons successfully creates, updates, or deletes
icons. If FLGManageIcons does not create, update, or delete icons
successfully, you should include a call to FLGRollback (see “FLGRollback”
on page 207).

Examples
Figure 123 on page 184 shows the C language code required to issue the
FLGManageIcons call. This sample code updates a Windows icon in the
Information Catalog Manager.

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 183

APIRET rc; // reason code from FLGManageIcons
UCHAR pszObjTypeID[FLG_OBJTYPID_LEN + 1];
UCHAR pszIconFileID[FLG_ICON_FILE_ID_MAXLEN + 1];
FLGOPTIONS Options = 0; // initialize option
FLGEXTCODE xc=0; // extended code

.

. /* provide values for input parameters */

.
Options = Options | FLG_ACTION_UPDATE | FLG_PLATFORM_WINDOWS;
rc = FLGManageIcons (pszObjTypeID,

pszIconFileID,
Options,
NULL,
&xc);

Figure 123. Sample C language call to FLGManageIcons

API call syntax conventions

184 Information Catalog Manager Programming Guide and Reference

FLGManageTagBuf
Queries or resets the current delete history. Delete history is a log of delete
activity that can be turned on and off.

Authorization
Administrator

Syntax

Parameters

InOptions (FLGOPTIONS) — input
Choose one of the following options:
FLG_TAGBUF_QUERY

Queries whether the delete history log currently contains entries
FLG_TAGBUF_RESET

Removes any existing entries from the delete history log

pOutOptions (PFLGOPTIONS) — output
Points to the status returned by FLG_TAGBUF_QUERY, either:

FLG_TAGBUF_STATUS_EMPTY
FLG_TAGBUF_STATUS_NOT_EMPTY

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Usage
Controlling updates to your information catalog

To keep your program as synchronized as possible with your information
catalog, you should include a call to FLGCommit (see “FLGCommit” on
page 74) after FLGManageTagBuf successfully resets the delete history. If
FLGManageTagBuf does not reset the delete history successfully, include a
call to FLGRollback (see “FLGRollback” on page 207).

APIRET APIENTRY FLGManageTagBuf(FLGOPTIONS InOptions,
PFLGOPTIONS pOutOptions,
PFLGEXTCODE pExtCode);

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 185

Examples
Figure 124 shows the C language code required to issue the
FLGManageTagBuf call. This sample code deletes the current contents of the
delete history.

APIRET rc; // reason code
FLGOPTIONS Opt1=0; //option
FLGEXTCODE xc=0; // extended code

.

. /* */

.
Opt1=Opt1 | FLG_TAGBUF_RESET; //set reset option
rc = FLGManageTagBuf (Opt1,

NULL, // not used.
&xc);

Figure 124. Sample C language call to FLGManageTagBuf

API call syntax conventions

186 Information Catalog Manager Programming Guide and Reference

FLGManageUsers
Authorizes specified Information Catalog Manager users in your organization
to perform the following object management tasks that are normally
performed by an Information Catalog Manager administrator:
v Creating an object
v Deleting an object
v Updating an object
v Copying an object
v Exporting an object
v Associating contacts
v Updating links between objects
v Updating groupings of objects
v Associating programs with objects

FLGManageUsers also updates primary and backup administrators for the
information catalog.

Authorization
Administrator

Syntax

Parameters

Action (FLGOPTIONS) — input
Choose one of the following action options:
FLG_ACTION_CREATE

Adds the specified users to the list of users authorized to perform
additional object management tasks for the current information
catalog.

FLG_ACTION_UPDATE
Changes the primary or backup administrator.

FLG_ACTION_DELETE
Removes the specified users from the list of users authorized to
perform additional object management tasks for the current
information catalog.

FLG_ACTION_LIST
Returns a list of the following:

Administrator
Backup administrator

APIRET APIENTRY FLGManageUsers(FLGOPTIONS Options,
PFLGHEADERAREA pListStruct,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 187

Users authorized to perform additional object management
tasks for the current information catalog.

pListStruct (PFLGHEADERAREA) — input
Points to the input structure that contains the new, changed, or deleted
user IDs.

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure listing the
primary and backup administrators and all users authorized to perform
additional object management tasks for the current information catalog.

Each entry in the output structure has the following information:
v USERID (8 characters)
v User Type (1 character) flag:

A USERID is the primary administrator
(FLG_USERTYPE_PADMIN)

B USERID is the backup administrator
(FLG_USERTYPE_BADMIN)

D USERID is a user authorized to perform additional object
management tasks (FLG_USERTYPE_POWERUSER)

All users are sorted by User Type first, then USERID, in ascending order
according to collating order of the underlying database management
system.

When there is no output structure, the pointer to the structure is set to
NULL.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Usage
Restrictions

The Information Catalog Manager only allows one primary and one
backup administrator and only the administrators can invoke
FLGManageUsers. If FLGManageUsers affects the logged-on administrator
user ID, then the change will not take effect until the current administrator
logs off.
Freeing memory allocated for an output structure

API call syntax conventions

188 Information Catalog Manager Programming Guide and Reference

If FLGManageUsers returned data in the output structure, you must save
the data returned in the output structure and then call FLGFreeMem (see
“FLGFreeMem” on page 125). Do not use other methods, for example, C
language instructions, to free memory.
Controlling updates to your information catalog

To keep your program as synchronized as possible with your information
catalog, you should include a call to FLGCommit (see “FLGCommit” on
page 74) after FLGManageUsers successfully creates, updates, or deletes
users. If FLGManageUsers does not create, update, or delete users
successfully, you should include a call to FLGRollback (see “FLGRollback”
on page 207).

Examples
This sample code adds two users to the list of administrators and users who
are authorized to perform additional object management tasks. Figure 125
shows the C language code required to issue the FLGManageUsers call.

Figure 126 on page 190 shows the input structure for the FLGManageUsers
call in Figure 125.

APIRET rc; // reason code for API
FLGOPTIONS Action=0;
PFLGHEADERAREA pInList;
FLGEXTCODE xc=0; // extended code

.

. /* */

.
Action= Action | FLG_ACTION_CREATE;
rc = FLGManageUsers (Action,

pInList,
NULL,
&xc);

Figure 125. Sample C language call to FLGManageUsers

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 189

This sample code retrieves a current list of users who are authorized to
perform additional object management tasks. Figure 127 shows the C language
code required to issue the FLGManageUsers call.

Figure 128 on page 191 shows the output structure for the FLGManageUsers
call in Figure 127.

Figure 126. Sample input structure for FLGManageUsers

APIRET rc; // reason code for API
FLGOPTIONS Action=0;
PFLGHEADERAREA * ppOutList;
FLGEXTCODE xc=0; // extended code

.

. /* */

.
Action= Action | FLG_ACTION_LIST;
rc = FLGManageUsers (Action,

NULL,
ppOutList,
&xc);

Figure 127. Sample C language call to FLGManageUsers

API call syntax conventions

190 Information Catalog Manager Programming Guide and Reference

This sample code updates the primary administrator. Figure 129 shows the C
language code required to issue the FLGManageUsers call.

Figure 130 on page 192 shows the input structure for the FLGManageUsers
call in Figure 129. Because only the primary administrator is updated, the
backup administrator remains the same.

Figure 128. Sample output structure for FLGManageUsers

APIRET rc; // reason code for API
FLGOPTIONS Action=0;
PFLGHEADERAREA pInList;
FLGEXTCODE xc=0; // extended code

.

. /* */

.
Action= Action | FLG_ACTION_UPDATE;
rc = FLGManageUsers (Action,

pInList,
NULL,
&xc);

Figure 129. Sample C language call to FLGManageUsers

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 191

Figure 130. Sample input structure for FLGManageUsers

API call syntax conventions

192 Information Catalog Manager Programming Guide and Reference

FLGMdisExport
Retrieves MDIS-conforming metadata from the information catalog and
translates it to an MDIS-conforming file. The information catalog from which
you export MDIS metadata is not limited to containing MDIS metadata, but
FLGMdisExport exports only MDIS-conforming metadata.

Authorization
Administrator or authorized user

Syntax

Parameters

pszTagFileName (PSZ) — input
Name of the output tag language file. This parameter is required.

This parameter contains the drive, directory path, and file name, and must
be valid for a file allocation table (FAT) or HPFS file. The target drive for
this file must be a fixed disk. If you type only the file name, the
Information Catalog Manager places the MDIS–conforming file on the
drive and path pointed to by the DGWPATH environment variable.

The target MDIS–conforming file must not exist; the Information Catalog
Manager does not overwrite existing files.

The file name and extension (excluding the drive and directories) cannot
exceed 240 characters. The entire MDIS tag file name cannot exceed 259
characters.

pszLogFileName (PSZ) — input
Points to the name of the log file. This parameter is required.

This parameter contains the drive, directory path, and file name, and must
be valid for a FAT or HPFS file. The target drive for the log file must be a
fixed disk. The log file name cannot exceed 259 characters. If you specify
only a file name, the Information Catalog Manager places the log file on
the drive and path pointed to by the DGWPATH environment variable.

If the log file specified in this parameter does not exist, a new file is
created. If the log file specified in this parameter already exists, then the
FLGMdisExport API call appends to it.

pszObjTypeName (PSZ) — input
Specifies one of the following MDIS object types that you want to export:
v Database

APIRET APIENTRY FLGExport(PSZ pszTagFileName,
PSZ pszLogFileName,
PSZ pszObjTypeName,
PSZ pszObjectName,
PFLGEXTCODE pExtCode);

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 193

v Dimension
v Subschema
v Record
v Element

The object type name is not case sensitive.

pszObjectName (PSZ) — input
Specifies the objects you want to export. Depending on the object type
you specified with the pszObjTypeName parameter, the value for
pszObjectName is from three to five property values, separated by periods
(.).

pszObjTypeName
pszObjectName

Database ServerName.DatabaseName.OwnerName

Dimension ServerName.DatabaseName.OwnerName.DimensionName

Subschema ServerName.DatabaseName.OwnerName.SubschemaName

Record ServerName.DatabaseName.OwnerName.RecordName

Element ServerName.DatabaseName.OwnerName.RecordName.ElementName

In this list, the parts of the name are represented with their MDIS name.
To find the equivalent Information Catalog Manager names, refer to
Appendix B in the Information Catalog Manager Administration Guide.
1. Find the table for the object type you are exporting.
2. Find the MDIS name in the Maps to MDIS name column.
3. Find the equivalent Information Catalog Manager names in the

Property name and Property short name columns.

For each part, enter the value of the named property for the object you
want to export. You can use an asterisk (*) as a wildcard within, or
instead of, any of the parts. If you enter nothing for a required part, the
Information Catalog Manager uses the not-applicable symbol when
searching for objects to export. (The not-applicable symbol is a hyphen
unless you identified a different symbol when you created the information
catalog.) If you enter nothing for an optional part, the Information Catalog
Manager uses a null character when searching for objects to export.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

API call syntax conventions

194 Information Catalog Manager Programming Guide and Reference

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 195

FLGMdisImport
Imports metadata from a file that conforms to the Metadata Interchange
Specification (MDIS) into the Information Catalog Manager. The information
catalog into which you import MDIS metadata must include, but is not
limited to, valid MDIS object type definitions. Appendix B of the Information
Catalog Manager Administration Guide describes the Information Catalog
Manager predefined object types and how they map to MDIS.

Authorization
Administrator

Syntax

Parameters

pszTagFileID (PSZ) — input
Identifies the tag language file. This parameter is required.

This parameter contains the drive, directory path, and file name, and must
be valid for a FAT or HPFS file. The drive cannot be a removable drive.
The file name and extension, excluding the drive and directories, cannot
exceed 240 characters. If you type only the file name, the Information
Catalog Manager assumes that the tag language file is on the drive and
path pointed to by the DGWPATH environment variable.

The file identified by pszTagFileID contains the MDIS–conforming
metadata to be imported.

pszLogFileID (PSZ) — input
Specifies the location and name of the log file. This parameter is required.

This parameter contains the drive, directory path, and file name, and must
be valid for a FAT or HPFS file. The drive cannot be a removable drive. If
you specify only a file name, the Information Catalog Manager places the
log file on the drive and path pointed to by the DGWPATH environment
variable.

If the log file specified in this parameter does not exist, a new file is
created. If the log file specified in this parameter already exists, then the
Information Catalog Manager appends to it.

The file identified by pszLogFileID contains logging information as well
as warnings and errors detected during processing of the FLGMdisImport
API call.

APIRET APIENTRY FLGMdisImport(PSZ pszTagFileID,
PSZ pszLogFileID,
PFLGEXTCODE pExtCode);

API call syntax conventions

196 Information Catalog Manager Programming Guide and Reference

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Usage
Setting the MDIS environment

Before running MDIS import, set the MDIS environment variable:
SET MDIS_PROFILE=X:\SQLLIB\METADATA\PROFILES

where X is the drive where DB2 UDB is installed.

Note to those currently using MDIS with other products and Visual
Warehouse 3.1: If you already had MDIS configuration and profile files,
the DB2 UDB nstallation program did not overwrite them. However,
before you use the MDIS function of the Information Catalog Manager for
the first time, you must merge the information in the Information Catalog
Manager MDIS profile and configuration files with your existing files.
Complete the following steps:
1. Check the MDIS environment variable setting to locate your existing

MDIS profile file (MDISTOOL.PRO) and configuration file
(MDISTOOL.CFG).

2. Using a text editor, append the contents of
X:\SQLLIB\METADATA\PROFILES\MDISTOOL.PRO to your existing
profile file. (X is the drive where you installed DB2 UDB.)

3. Using a text editor, append the contents of
X:\SQLLIB\METADATA\PROFILES\MDISTOOL.CFG to your existing
configuration file. (X is the drive where you installed DB2 UDB.)

Debugging MDIS import errors

The Information Catalog Manager creates a log file when importing an
MDIS-conforming file.
The log file records what happens during the import process. It includes
the times and dates when the import process started and stopped. It also
includes any warning or error messages for problems that occur during the
process. The log file is identified by the pszLogFileID parameter.

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 197

FLGNavigate
Retrieves a list of objects contained by a specific Grouping object.

Authorization
Administrator or user

Syntax

Parameters

pszFLGID (PSZ) — input
Points to the 16-character FLGID of the object instance for which
contained objects will be retrieved.

Characters 1-6 of this ID identify the object type of this instance.

Characters 7-16 of this ID are the system-generated unique instance
identifier.

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure. If there is no
output structure, then the pointer to the output structure is set to NULL.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Output structure
FLGNavigate produces an output structure containing a list of objects
contained by the specified object, as shown in Figure 131 on page 199.

The object area of the output structure contains a list of all the object instances
contained by the specified object instance. Returned for each object instance
are the values of the FLGID, the object instance external name, and the child
indicator, which indicates whether the object contains any other objects.

APIRET APIENTRY FLGNavigate(PSZ pszFLGID,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

API call syntax conventions

198 Information Catalog Manager Programming Guide and Reference

For an explanation of the meanings of the byte offsets, see “Chapter 4. The
Information Catalog Manager input and output structures” on page 31.

Usage
The output structure contains the following property values for each
instance returned:
FLGID

The 16-character identifier of the object instance
Name The 80-byte external name of the object instance
CHILDIND

1-character value specifying whether an object instance contains
other object instances: Y is yes, N is no

The output list is sorted by object type name, then by the 80-byte name of
the object instance according to the collating order used by the underlying
database management system.
The maximum number of contained object instances that can be returned
by FLGNavigate is approximately 5000, depending on the storage available
on your machine.
Freeing memory allocated for an output structure

If FLGNavigate returned data in the output structure, you must save the
data returned in the output structure and then call FLGFreeMem (see
“FLGFreeMem” on page 125). Do not use other methods, for example, C
language instructions, to free memory.

Figure 131. FLGNavigate output structure

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 199

Examples
Figure 133 navigates through a structure of objects that contain other objects.
In this example, ACCOUNTING contains three objects: ACCPAYABLE, ACCRECBLE, and
GLEDGER. The structure is illustrated in Figure 132.

Figure 133 shows the C language code required to issue the FLGNavigate API
call.

Figure 134 on page 201 illustrates the output structure for this API call.

ACCOUNTING

ACCPAYABLE

PAYABLE1

PAYABLE2

ACCRECBLE

GLEDGER

Figure 132. The contents of the ACCOUNTING object

APIRET rc; // reason code from FLGNavigate
UCHAR pszFLGID[FLG_ID_LEN + 1];
PFLGHEADERAREA * ppListStruct;
FLGEXTCODE ExtCode = 0; // Declare extended code

.

. /* set pszParentID to FLGID of 'ACCOUNTING' */

.
rc = FLGNavigate (pszFLGID,

ppListStruct, // pass the address of
// output structure pointer

&ExtCode);

Figure 133. Sample C language call to FLGNavigate

API call syntax conventions

200 Information Catalog Manager Programming Guide and Reference

Figure 134. Sample output structure for FLGNavigate

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 201

FLGOpen
Starts an external program from the Information Catalog Manager.

Authorization
Administrator or user

Syntax

Parameters

pszPgmFLGID (PSZ) — input
Points to the 16-character FLGID of the Programs object instance that
contains execution information. This FLGID includes the 6-character object
type ID followed by a 10-character instance ID of the Programs object.

pszObjFLGID (PSZ) — input
Points to the 16-character FLGID of a non-Program category object
instance that supplies values to the parameter list. This includes the
6-character object type ID followed by a 10-character instance ID.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Usage
To issue an FLGOpen call for a program, the program object must be set up as
described in “Setting up Programs objects to start programs” on page 25.

When the program described by the Programs object starts, it uses invocation
parameters provided by the identified object instance. The Information
Catalog Manager removes any formatting characters entered with the
invocation parameters.

APIRET APIENTRY FLGOpen(PSZ pszPgmFLGID,
PSZ pszObjFLGID,
PFLGEXTCODE pExtCode);

API call syntax conventions

202 Information Catalog Manager Programming Guide and Reference

Examples
Figure 135 shows the C language code required to call the FLGOpen API call.
This sample code launches a program named PRINTRPT using invocation
parameters supplied by an object instance named REPORT1.

.
APIRET rc; // reason code from FLGOpen
UCHAR pszPgmFLGID[FLG_ID_LEN + 1];
UCHAR pszObjFLGID[FLG_ID_LEN + 1];
FLGEXTCODE ExtCode = 0; // Extended code

.

. /* set pszPgmFLGID Information Catalog Manager-id of 'PRINTRPT' */

. /* set pszObjFLGID to Information Catalog Manager-id of 'REPORT1' */

.
rc = FLGOpen (pszPgmFLGID,

pszObjFLGID,
&ExtCode);

Figure 135. Sample C language call to FLGOpen

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 203

FLGRelation
Creates or deletes the following relationships between two object instances:
v Attachment
v Contains
v Contact
v Link

Authorization
Administrator or authorized user (all relationships); user (Attachment
relationships only)

Syntax

Parameters

pszSrcFLGID (PSZ) — input
Points to the 16-character, system-generated unique identifier of the source
object instance.

Characters 1-6 of this ID identify the object type of this instance.

Characters 7-16 of this ID are the system-generated unique instance
identifier.

The FLGID you specify depends on the type of relationship that you want
to create or delete:

Attachment relationship
FLGID of a non-Attachment category object instance to which a
Comments is being attached or detached

Contact relationship
FLGID of an Elemental or Grouping category object instance for
which a Contact is being defined or removed

Contains relationship
FLGID of the Grouping category container object instance

Link relationship
FLGID of an Elemental or Grouping category object instance for
which a peer relationship with another object instance is to be
created or deleted

pszTrgFLGID (PSZ) — input
Points to the 16-character, system-generated unique ID of the target object.

APIRET APIENTRY FLGRelation(PSZ pszSrcFLGID,
PSZ pszTrgFLGID,
FLGRELTYPE RelType,
FLGRELOPTION RelOpt,
PFLGEXTCODE pExtCode);

API call syntax conventions

204 Information Catalog Manager Programming Guide and Reference

This includes the 6-character object type ID and the 10-character instance
ID. The FLGID you specify depends on the type of relationship you want
to create or delete:

Attachment relationship
FLGID of an Attachment category object instance being attached
or detached

Contact relationship
FLGID of a Contact category object instance being defined or
removed

Contains relationship
FLGID of the Elemental or Grouping category object instance
being added or removed from the Grouping source container

Link relationship
FLGID of an Elemental or Grouping category object instance for
which a peer relationship with another object instance is to be
created or deleted

RelType (FLGRELTYPE) — input
Identifies the type of relationship being created or deleted. Valid values
are:
A Attachment
C Contains
L Link
T Contact

RelOpt (FLGRELOPTION) — input
Specifies the action being performed. Valid values are:
C Create the relationship
D Delete the relationship

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Usage
Prerequisite

Before deleting an object instance, you must delete all relationships where
the object instance contains other object instances.

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 205

Controlling updates to your information catalog

To keep your program as synchronized as possible with your information
catalog, you should include a call to FLGCommit (see “FLGCommit” on
page 74) after FLGRelation completes successfully. If FLGRelation does not
complete successfully, include a call to FLGRollback (see “FLGRollback” on
page 207).

Examples
Figure 136 shows the C language code required to call the FLGRelation API
call to create a relationship defining objects contained by an object instance. In
the sample code, MYBUSGP is an instance of a Business Group object type (a
Grouping object), and IMAGE-A is an instance of an Image object type (an
Elemental object).

APIRET rc; // Declare reason code
UCHAR pszSrcFLGID[FLG_ID_LEN + 1];
UCHAR pszTrgFLGID[FLG_ID_LEN + 1];
FLGRELTYPE RelType=FLG_CONTAINER_RELATION;
FLGRELOPTION RelOpt=FLG_CREATE_RELATION;
FLGEXTCODE ExtCode=0; // Declare extended code

.

. /* set values for pszSrcFLGID and pszTrgFLGID */

.

rc = FLGRelation (pszSrcFLGID,
pszTrgFLGID,
RelType,
RelOpt,
&ExtCode);

Figure 136. Sample C language call to FLGRelation

API call syntax conventions

206 Information Catalog Manager Programming Guide and Reference

FLGRollback
Deletes all information catalog changes made since the last commit point or
rollback.

Authorization
Administrator and user

Syntax

Parameters

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Usage
Issue FLGRollback when your program encounters an error that might make
your information catalog inconsistent.

Examples
Figure 137 shows the code that issues the FLGRollback API call.

APIRET APIENTRY FLGRollback (PFLGEXTCODE pExtCode)

APIRET rc; // Declare reason code from FLGRollback
FLGEXTCODE ExtCode = 0; // Declare extended code

.

.
rc = FLGRollback(&ExtCode); // pass the address of

// extended code

Figure 137. Sample C code to invoke the FLGRollback API call

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 207

FLGSearch
Searches the information catalog to locate instances of a particular object type
based on user-defined search criteria.

Authorization
Administrator or user

Syntax

Parameters

pszObjTypeID (PSZ) — input
Indicates any 6-character Information Catalog Manager object type ID that
you want to search for.

pSelCriteriaStruct (PFLGHEADERAREA) — input
Points to an input structure that contains the property specifications and
values of the search criteria.

If this value is NULL, then the Information Catalog Manager returns all
instances of the specified object type.

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure containing a
list of selected object instances resulting from the search.

Each instance has the following information:
v FLGID (16 characters)
v Name (80 characters)

All instances are sorted by the 80-byte external name (value of Name) in
ascending order according to the collating order of the underlying
database management system.

The maximum number of object instances that can be returned by
FLGSearch is approximately 5000, depending on the storage available on
your machine.

If there is no output structure, then the pointer to the output structure is
set to NULL.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See

APIRET APIENTRY FLGSearch(PSZ pszObjTypeID,
PFLGHEADERAREA pSelCriteriaStruct,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

API call syntax conventions

208 Information Catalog Manager Programming Guide and Reference

“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Input structure
To use FLGSearch, you must define the input structure shown in Figure 138.
This structure contains only the header area and the definition area.

The definition area for the FLGSearch input structure must be specified as
shown in Figure 138, although you can specify any and all of the properties
defined for the object type. You must provide a corresponding search criteria
value in the object area for each property specified in the definition area. For
an explanation of the meanings of the byte offsets, see “The Information
Catalog Manager API output structure” on page 51.

When the database is DB2 UDB for OS/390, the maximum length for search
criteria is 254.

Output structure
FLGSearch produces an output structure containing a list of objects retrieved
using the search criteria, as shown in Figure 139 on page 210.

Figure 138. FLGSearch input structure

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 209

The object area of the output structure contains a list of all the object instances
that match the input search criteria. The returned object instances are
identified by the values of the FLGID and object instance external name.

Usage
FLGSearch searches for instances of only one object type. To search for
instances of all object types, use the FLGSearchAll API call.
To search for instances of more than one object type, but not all object
types, call FLGSearch for each object type that you want to search.
The input structure contains the property specifications and values of the
search criterion:
– Any of the object’s properties can be specified as a search criterion

property.
– When more than one property is specified, the properties are linked

with an AND operator to produce the search criteria.
– Any blanks you include, except trailing blanks on nonCHAR data types,

are considered as part of the search criterion
– You can include wildcard characters in the search criterion. These

characters allow you to specify a pattern you are trying to locate in the
values for a given property. The database supports two wildcard
characters:
% Represents zero or more characters
_ Represents one character

Figure 139. FLGSearch output structure

API call syntax conventions

210 Information Catalog Manager Programming Guide and Reference

Although you can use different wildcard characters in the user interface,
you can only use the % and _ characters with FLGSearch.

Because DB2 databases treat trailing blanks as significant, you should
include a wildcard at the end of search criteria on CHAR type
properties, otherwise you might receive less objects than you expected
from the call to FLGSearch.

If you include wildcard characters in the search criterion, you must set
the fuzzy-search flag (fs) to Y.

– You must specify values for the following flags in the definition area:

cs Case-sensitivity flag in byte 128. Valid values are Y for case
sensitive, N for not case sensitive.

If your information catalog is located on DB2 UDB for OS/390
and:
- Was created with all uppercase values (the default), then the

case-sensitivity flag must be N.
- Was created with mixed-case values, then the case-sensitivity

flag must be Y.

fs Fuzzy search flag in byte 129. Valid values are Y for fuzzy
search, N for not a fuzzy search. This value must be Y if
wildcards (% or _) are included in the search criterion.

Controlling updates to your information catalog

FLGSearch commits changes to the database. Your program should issue
FLGCommit or FLGRollback before issuing FLGSearch to ensure that the
Information Catalog Manager does not also commit unexpected changes
that occurred before the FLGSearch call.
Freeing memory allocated for an output structure

If FLGSearch returned data in the output structure, you must save the data
returned in the output structure and then call FLGFreeMem (see
“FLGFreeMem” on page 125). Do not use other methods, for example, C
language instructions, to free memory.

Examples

FLGSearch: Example 1
The sample code in Figure 140 on page 212 performs a search for glossary
instances. This search is an exact search because the fuzzy search flag in byte
129 of the definition area is set to N, as shown in Figure 141 on page 212.
However, the case of the characters in the values (uppercase or lowercase) is
not significant because the case-sensitivity flag in byte 128 is set to N. You
must have already found the object type identifier using an FLGListObjTypes
or FLGGetType call.

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 211

Figure 141 shows the search condition input structure(pointed to by
pSelCriteria) that carries the property and value information for the search.

The case sensitivity flag at byte 128 and the fuzzy search flag at byte 129 of
the definition area must be set to N, because the user wants an exact search,
but is not concerned about the case of the property value.

Figure 142 on page 213 shows the output structure (ppListStruct points to the
address of the pointer to this output structure) that carries glossary instances
as the search result.

APIRET rc; // reason code from FLGSearch
UCHAR pszObjTypeID[FLG_OBJTYPID_LEN + 1];
PFLGHEADERAREA pSelCriteria; // search criterion input structure pointer
PFLGHEADERAREA * ppListStruct; // pointer to search result pointer
FLGEXTCODE ExtCode = 0; // Declare extended code

.

. /* provide values for input parameters */

.
strcpy (pszObjTypeID, "000006");

rc = FLGSearch (pszObjTypeID, // Information Catalog Manager object type ID
pSelCriteria, // input structure pointer
ppListStruct, // pass the address of

// output structure pointer
&ExtCode);

Figure 140. Sample C language call to FLGSearch

Figure 141. Sample input structure for FLGSearch

API call syntax conventions

212 Information Catalog Manager Programming Guide and Reference

The CONTEXT value Customer Orders is used as the search criterion. Any
glossary instance with this CONTEXT value is returned in the output
structure. Because the case-sensitivity flag is set to N, even CONTEXT values
like customer orders or CUSTOMER ORDERS would have been returned if they
existed.

FLGSearch: Example 2
This example shows how your program can use fuzzy searches to locate
instances that contain values fitting a pattern.

The values specified in the input structure shown in Figure 143 specify a
wildcard search for glossary instances that contain the letters metadata. The
multiple-character wildcards (%) indicate where any other characters can
occur in the value and still fit the search criterion.

Figure 143 shows the input structure(pointed to by pSelCriteria) that your
program passes to FLGSearch.

Figure 142. Sample output structure for FLGSearch

Figure 143. Sample input structure for FLGSearch

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 213

Because this is a wildcard search, the fuzzy search flag at byte 129 must be set
to Y. If the fuzzy search flag is set to N, then the % character becomes a literal
part of the search criterion; that is, any instances that are returned must have
% in the specified property value.

The case sensitivity flag at byte 128 of the definition area is set to Y because
the case of metadata is significant in this example. Figure 144 shows the
output structure (ppListStruct points to the address of the pointer to the
output structure) that carries glossary instances as the search result.

The value of the Definition property, %metadata%, is used as the search
criterion. Any glossary instance with a Definition property value containing
metadata is returned in the output structure. Because the case sensitivity flag
is set to Y, all instances found in the example also match the case of metadata.

FLGSearch: Example 3
This example shows how your program can use fuzzy searches to locate
instances that contain values fitting a pattern.

The values specified in the input structure shown in Figure 145 on page 215
uses the single-character wildcard (_) to search for glossary instances that
have the specified property value with only one variable character.

Figure 144. Sample output structure for FLGSearch

API call syntax conventions

214 Information Catalog Manager Programming Guide and Reference

Figure 145 shows the input structure(pointed to by pSelCriteria) that your
program passes to FLGSearch.

Because the search criterion contains the single-character wildcard (_), the
fuzzy search flag at byte 129 must be set to Y. If the fuzzy search flag is set to
N, the Information Catalog Manager assumes that _ is a literal part of the
search criterion, and only returns object instances that have _ as part of the
specified property value.

In this example, the values for both NAME and UPDATIME are used as the
search criterion.
v The specified NAME value Dept_ means search for instances starting with

Dept and ending with an unknown character. This value contains five
characters.

v Values for year and day are provided for the time stamp data type property
UPDATIME. The UPDATIME values with the year 1995 and the day 01 are
linked using the AND operator with the value of NAME to construct the
search criteria which determine whether an object instance is returned. Both
the UPDATIME value and the NAME value must match the search criterion
before the Information Catalog Manager returns the object instance.

Figure 146 on page 216 shows the output structure (ppListStruct points to the
address of the pointer to the output structure) that carries glossary instances
as the search result.

Figure 145. Sample input structure for FLGSearch

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 215

Any glossary instance with Dept as the prefix for the five-character Name
value and updated on the first day of each month in year 1995 is returned in
the output structure.

Figure 146. Sample output structure for FLGSearch

API call syntax conventions

216 Information Catalog Manager Programming Guide and Reference

FLGSearchAll
Searches all object types in the information catalog to locate any instances that
have instance names (value of Name property) that match the search criterion.

Authorization
Administrator or user

Syntax

Parameters

pSelCriteriaStruct (PFLGHEADERAREA) — input
Points to an input structure.

The structure contains the property specification and value of the search
criterion. Only the value of the object instance’s external name (Name) can
be used as the search criterion with FLGSearchAll.

If pSelCriteriaStruct is set to NULL, then the Information Catalog
Manager returns all instances in the information catalog up to a maximum
of approximately 5000.

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure containing a
list of selected object instances resulting from the search. If there is no
output structure, then the pointer to the output structure is set to NULL.
Each instance has the following information:
v FLGID (16 characters)
v Name (80 characters)

All instances are first sorted by object type name, then by the instance
external name (value of Name) in ascending order according to the
collating order of the underlying database management system.

The maximum number of object instances that can be returned by
FLGSearchAll is approximately 5000, depending on the storage available
on your machine.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

APIRET APIENTRY FLGSearchAll(PFLGHEADERAREA pSelCriteriaStruct,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 217

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Input structure
To specify search criterion for FLGSearchAll, you must define the following
input structure. This structure contains the header area, the definition area,
which can contain only the Name property, and the object area.

The definition area for the FLGSearchAll input structure must be specified
exactly as shown in Figure 147. For an explanation of the meanings of the byte
offsets, see “The Information Catalog Manager API input structure” on
page 32.

Output structure
FLGSearchAll produces an output structure containing a list of objects
retrieved using the search criterion, as shown in Figure 148 on page 219.

The object area of the output structure contains a list of all the object instances
that match the input search criteria. The returned object instances are
identified by the values of the FLGID and object instance external name.

Figure 147. FLGSearchAll input structure

API call syntax conventions

218 Information Catalog Manager Programming Guide and Reference

Usage
Only the value of the object instance’s external name (Name) can be used as
the search criterion. No other property values can be used with
FLGSearchAll. If you need to use the values of other properties in your
search criterion, use FLGSearch (see “FLGSearch” on page 208).
You can include wildcard characters in the search criterion. These characters
allow you to specify a pattern you are trying to locate in the values for a
given property. The database supports two wildcard characters:
% Represents zero or more characters
_ Represents one character

Although you can use different wildcard characters in the user interface,
you can only use the % and _ characters with FLGSearchAll.

If you include wildcard characters in the search criterion, you must set the
fuzzy-search flag (fs) to Y.
You must specify values for the following flags in the definition area:

cs Case-sensitivity flag in byte 128. Valid values are Y for case
sensitive, N for not case sensitive.

If your information catalog is located on DB2 UDB for OS/390
and:
– Was created with all uppercase values (the default), then the

case-sensitivity flag must be N.

Figure 148. FLGSearchAll output structure

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 219

– Was created with mixed-case values, then the case-sensitivity
flag must be Y.

fs Fuzzy search flag in byte 129. Valid values are Y for fuzzy search,
N for not a fuzzy search. This value must be Y if you want to
search using wildcards (% or _) are included in the search
criterion.

Controlling updates to your information catalog

FLGSearchAll commits changes to the database. Your program should
issue FLGCommit or FLGRollback before issuing FLGSearchAll to ensure
that the Information Catalog Manager does not also commit unexpected
changes that occurred before the FLGSearchAll call.
Freeing memory allocated for an output structure

If FLGSearchAll returned data in the output structure, you must save the
data returned in the output structure and then call FLGFreeMem (see
“FLGFreeMem” on page 125). Do not use other methods, for example, C
language instructions, to free memory.

Examples
Figure 149 shows the C language code required to invoke the FLGSearchAll.
This sample code searches for a name across all object type instances.

Figure 150 on page 221 shows the search condition input structure (pointed to
by pSelCriteria) that carries the property and value information for the search.

APIRET rc; // reason code from FLGSearchAll
PFLGHEADERAREA pSelCriteria; // search criterion input structure pointer
PFLGHEADERAREA * ppListStruct; // pointer to search result pointer
FLGEXTCODE ExtCode = 0; // Declare extended code

.

. /* provide values for input parameters */

.

rc = FLGSearchAll (pSelCriteria, // input structure pointer
ppListStruct, // pass the address of

// output structure pointer
&ExtCode);

Figure 149. Sample C language call to FLGSearchAll

API call syntax conventions

220 Information Catalog Manager Programming Guide and Reference

In this example, you want to perform a fuzzy search using wildcard
characters in the search criterion, so the fuzzy search flag at byte 129 of the
definition area is set to Y.

The case-sensitivity flag at byte 128 of the definition area is set to N, because
the user does not need case sensitivity in the search criterion. Figure 151 on
page 222 shows the output structure (ppListStruct points to the address of the
pointer to this output structure) that carries the Information Catalog Manager
objects as the search result.

Figure 150. Sample input structure for FLGSearchAll

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 221

The specified partial object instance name is used by the nine instances in two
different object types.

Figure 151. Sample output structure for FLGSearchAll

API call syntax conventions

222 Information Catalog Manager Programming Guide and Reference

FLGTerm
Ends the Information Catalog Manager API DLL environment, disconnects
from the database manager, and frees all associated system resources.

Authorization
Administrator or user

Syntax

Parameters

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Usage
When your program calls FLGTerm, the Information Catalog Manager
automatically commits any uncommitted changes to the information catalog
database. If any changes need to be rolled back, your program should call
FLGRollback before calling FLGTerm to exit the Information Catalog Manager.

If the Information Catalog Manager encountered a severe error while trying to
roll back the database, FLGTerm will encounter an error while shutting down
the Information Catalog Manager and trying to release resources. If the person
using your program is logged on as an administrator when the FLGTerm call
fails, that person might need to use the Information Catalog Manager
CLEARKA utility to log off the administrator user ID.

Examples
Figure 152 on page 224 shows the C language code required to invoke the
FLGTerm API call. This sample code stops the Information Catalog Manager
API DLL.

APIRET APIENTRY FLGTerm (PFLGEXTCODE pExtCode)

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 223

.

APIRET rc; // Reason code
FLGEXTCODE ExtCode = 0; // Extended code

.

. // FLGInit()

. // calls to the FLG API

rc = FLGTerm (&ExtCode);

Figure 152. Sample C language call to FLGTerm

API call syntax conventions

224 Information Catalog Manager Programming Guide and Reference

FLGTrace
Sets the level of information about the Information Catalog Manager function
written in the trace (.TRC) file.

Authorization
Administrator or user

Syntax

Parameters

TraceOpt (FLGTRACEOPTION) — input
Indicates the desired trace option. Valid options are:

0 The default. Include all messages and warning, error, and severe
error conditions.

1 Include entry and exit records of the highest-level Information
Catalog Manager functions.

2 Include extremely granular entry and exit records of the
Information Catalog Manager functions.

3 Include input and output parameters (excluding input or output
structure)

4 Include all input or output structures that are passed to and used
by the Information Catalog Manager, including SQLCA
information passed to and used by the underlying database
management system.

Constants for these values are defined in the Information Catalog
Manager API header file, DG2API.H.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

APIRET APIENTRY FLGTrace(FLGTRACEOPTION TraceOpt,
PFLGEXTCODE pExtCode);

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 225

Usage
The name of the trace file is the name of the information catalog you are
using with the extension of .TRC.
When you use trace files to debug your programs, levels 0 and 4 are most
likely to be useful to you.

Level 0
Returns information explaining the functions that the Information
Catalog Manager is performing.

When the Information Catalog Manager encounters an error, it
inserts the reason code and extended code for that error into the
trace file as the New Reason Code and the New Extended Code.
The trace file also contains an Old Reason Code and an Old
Extended Code, which contain the reason code that was returned
before the error occurred. Any messages that the Information
Catalog Manager produces in the trace file.

Level 4
Returns the same information as for Level 0, more detailed
functional information about the Information Catalog Manager,
and information about the data structures passed to and from the
Information Catalog Manager, including input structures, output
structures and SQLCA structures from the database.

Tracing the contents of these structures can be valuable when you
need to determine the cause of data errors or ensure that the
contents of an input or output structure is being produced or read
properly.

For more information about using trace files, see the Information Catalog
Manager Administration Guide.

Examples
Figure 153 on page 227 shows the C language code required to invoke the
FLGTrace API call. This sample code sets the level of tracing from an
information application.

API call syntax conventions

226 Information Catalog Manager Programming Guide and Reference

.
FLGTRACEOPTION TraceOpt = FLG_TRACELEVEL_1; // Turn on Entry/Exit Tracing
FLGTRACEOPTION TraceReset = FLG_TRACELEVEL_0; // Reset to default level
APIRET rc; // reason code
FLGEXTCODE ExtCode = 0; // Extended code

.

. // FLGInit()

. // calls to the FLG API

rc = FLGTrace (TraceOpt,
&ExtCode);

.

. // Check rc and ExtCode

.

. // More API calls

.

rc = FLGTrace (TraceReset,
&ExtCode);

Figure 153. Sample C language call to FLGTrace

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 227

FLGUpdateInst
Alters one or more property values for a specific object instance.

Authorization
Administrator or authorized user (all object types); user (Comments object
type only)

Syntax

Parameters

pObjInstStruct (PFLGHEADERAREA) — input
Points to the input structure that contains the property specifications and
values of the database object being updated.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Input structure
To use FLGUpdateInst, you must define the input structure shown in
Figure 154 on page 229. This structure contains the header area, the definition
area, and the object area.

APIRET APIENTRY FLGUpdateInst(PFLGHEADERAREA pObjInstStruct,
PFLGEXTCODE pExtCode);

API call syntax conventions

228 Information Catalog Manager Programming Guide and Reference

For an explanation of the meanings of the byte offsets, see “The Information
Catalog Manager API input structure” on page 32.

Usage
Prerequisites

Before issuing an FLGUpdateInst call, you must issue either an
FLGCreateInst call or an FLGGetInst call to obtain the property
specifications and values of the instance being modified.
Input requirements

Header area:

- All of the information shown in the header record is required.
- The value for the object type identifier must be the same in the

header record (bytes 33 through 38) as in the object area (first item in
the object area).

Definition area:

Figure 154. FLGUpdateInst input structure

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 229

The definition area can contain any or all of the defined properties of
the object type for which you are updating an object instance. The
following rules apply:
- You must first specify all five of the Information Catalog Manager

required properties in the following order: OBJTYPID, INSTIDNT,
NAME, UPDATIME, and UPDATEBY.

- You must specify all UUI properties.
- The Information Catalog Manager compares the values for all

specified properties to the object type definition for the following
specifications:

Data type
Data length
Property short name
Value flag
UUI number

Object area:

- The object type in the HANDLES property (when specified) must
exist in the information catalog and be a non-Program object type.
Any properties specified in the PARMLIST property must be a
property of the object type specified in HANDLES. For more
information, see “Setting up Programs objects to start programs” on
page 25.

- If a value is not specified for a required property (defined with an R
in column 126 of the definition area) the appropriate space in the
object area must be initialized as follows:

Data type Initialized to
CHAR Not-applicable symbol followed by blanks for the length

of the property
TIMESTAMP Set to the largest allowable value: 9999-12-31-

24.00.00.000000
VARCHAR LONG
VARCHAR

00000001; the length field, specified in 8 bytes, followed
by the not-applicable symbol

- Values for the OBJTYPID and INSTIDNT properties identify the
instance being updated, and therefore must be present.

- Values for the UPDATIME and UPDATEBY properties are system
generated and therefore should not be modified by the user. If you
issue an FLGGetInst call before issuing this FLGUpdateInst call, the
object area can contain values for these two system-generated
properties. This does not cause an error, but when the instance is
updated, the system replaces the values of these two properties.

API call syntax conventions

230 Information Catalog Manager Programming Guide and Reference

Trailing blanks are automatically removed from object area values that
have VARCHAR or LONG VARCHAR data types and the length field
is adjusted accordingly.
Controlling updates to your information catalog

To keep your program as synchronized as possible with your
information catalog, you should include a call to FLGCommit (see
“FLGCommit” on page 74) after FLGUpdateInst completes successfully.
If FLGUpdateInst does not complete successfully, you should include a
call to FLGRollback (see “FLGRollback” on page 207).

Examples
Figure 155 shows the C language code required to invoke the FLGUpdateInst
API call.

This sample code updates the object instance named Quality Group that was
defined in the FLGCreateInst example. The update modifies the value for the
short description property, Sdesc.

Figure 156 on page 232 shows the input structure (pointed to by the
″pObjInstStruct″ pointer in the C code) that carries the property and value
information for the object instance to be updated.

APIRET rc; // Declare reason code
PFLGHEADERAREA pObjInstStruct; // Pointer to the input structure
FLGEXTCODE ExtCode = 0; // Declare extended code

.

. /* updating pObjInstStruct object Instance by */
/* providing an updated input structure */

.

rc = FLGUpdateInst (pObjInstStruct, // Pointer to updated input structure
&ExtCode); // Pass pointer to extended code

Figure 155. Sample C language call to FLGUpdateInst

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 231

The values in the object area that are not system-generated (the value at byte
126 is not S) can be modified:
v NAME
v SOURCE
v SHRTDESC
v LONGDESC

When you use FLGUpdateInst, you can omit properties and values that you
are not modifying.

In this example, the Sdesc value is updated. Modifying the Sdesc value affects
its length also. Therefore, the 8-character length field that precedes the Sdesc
field in the object area is modified from 27 to 40. The object Length value in
the header record is changed from 246 to 259.

When FLGUpdateInst completes, the value for UPDATEBY is modified to
contain the user ID used to update the instance, and UPDATIME is modified
to contain the time stamp of the update.

Figure 156. Sample input structure for FLGUpdateInst

API call syntax conventions

232 Information Catalog Manager Programming Guide and Reference

FLGUpdateReg
Modifies registration information in the information catalog for a specific
object type.

This action does not update the object type itself; it updates the registration
information for the object type.

Authorization
Administrator

Syntax

Parameters

pObjRegStruct (PFLGHEADERAREA) — input
Points to the input structure that contains the property specifications and
values of the object type registration being updated.

pszIconFileID (PSZ) — input
Contains the drive, directory path, and file name of the file that contains
the OS/2 ICON for the object type registration being updated. If this
parameter is NULL, then no change is made to the ICON. If specified, the
OS/2 ICON is added to the object type registration if an ICON does not
currently exist or replaces any existing ICON for the registration.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Input structure
To use FLGUpdateReg, you must define the input structure shown in
Figure 157 on page 234. This structure contains only the header area and the
definition area.

APIRET APIENTRY FLGUpdateReg(PFLGHEADERAREA pObjRegStruct,
PSZ pszIconFileID,
PFLGEXTCODE pExtCode);

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 233

Usage
Restrictions

– The registration information stored in the information catalog by
FLGCreateReg consists of registration values, such as DP NAME,
Physical Type Name, External Name, and Icon, which describe the
object type. FLGUpdateReg can only update the External Name and
Icon information.

– You can only update an OS/2 icon using FLGUpdateReg. To update a
Windows icon, use FLGManageIcons (see “FLGManageIcons” on
page 182).

– After you define the object type using FLGCreateReg, you can issue
FLGUpdateReg or FLGManageIcons calls to change the icon that is
associated with the object type, or add an icon association if one was
not defined originally. You can also use FLGManageIcons to remove an
icon from an object type.

Prerequisites

Before issuing an FLGUpdateReg call, you must obtain the current values
of the registration information. You can either save this information from
the original FLGCreateReg call, or issue an FLGGetReg call for the object
type registration being modified.

Figure 157. FLGUpdateReg input structure

API call syntax conventions

234 Information Catalog Manager Programming Guide and Reference

Input requirements

Header area

All of the information shown in the header record is required.
Definition area

– The definition area must contain definitions for each of the six
registration properties. The definitions for each of these registration
properties are fixed, and all specifications other than those for the
property name must be exactly as shown in Figure 157 on page 234. The
property name is also fixed, but might be translated from the English
property name illustrated in the example into any one of the supported
languages.

– The properties (as identified by their property short names) must be
specified in the following order in the definition and object area:
1. NAME
2. PTNAME
3. DPNAME
4. CREATOR
5. UPDATEBY
6. UPDATIME

These properties are explained in “FLGCreateReg” on page 84.
Object area

Only the value for NAME (EXTERNAL NAME OF OBJ TYPE) can be
updated. The NAME value must be unique within the local information
catalog.
The remaining property values cannot be modified. CREATOR,
UPDATEBY, and UPDATIME are system-generated values. DPNAME and
PTNAME are the unique identifiers of the object type, and cannot be
updated. Values for system-generated properties are generated when the
object type itself is created or appended.
The value for DPNAME must be specified and match the DPNAME of the
current object registration associated with the object type ID in the header
area.
Controlling updates to your information catalog

To keep your program as synchronized as possible with your information
catalog, you should include a call to FLGCommit (see “FLGCommit” on
page 74) after FLGUpdateReg completes successfully. If FLGUpdateReg
does not complete successfully, you should include a call to FLGRollback
(see “FLGRollback” on page 207).

Examples
Figure 158 on page 236 shows the C language code required to invoke the
FLGUpdateReg API call. This sample code updates the object type registration

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 235

for the MYIMAGE object type. The update modifies the value for the external
name property, NAME.

Figure 159 shows the input structure (pointed to by the pObjRegStruct pointer
in the C code) that carries the property and value information for the object
type registration information to be updated.

In this example, the values in the object areas corresponding to
system-generated properties (CREATOR, LAST CHANGED BY, and LAST

APIRET rc; // Declare reason code
PFLGHEADERAREA pObjRegStruct; // Pointer to the input structure
UCHAR pszIconFileID[FLG_ICON_FILE_ID_MAXLEN+1]; // Path/File name of ICON
FLGEXTCODE ExtCode=0; // Declare extended code

.

. /* updating pObjRegStruct object type */
/* registration by providing an updated input structure */

.
strcpy (pszIconFileID,"Y:\\FLGICON2.ICO");

rc = FLGUpdateReg (pObjRegStruct, // Pointer to updated Input Structure
pszIconFileID, // Path/File name of file containing the ICON
&ExtCode); // Pass pointer to extended code

Figure 158. Sample C language call to FLGUpdateReg

Figure 159. Sample input structure for FLGUpdateReg

API call syntax conventions

236 Information Catalog Manager Programming Guide and Reference

CHANGED DATE AND TIME) cannot be updated and are ignored by
FLGUpdateReg. One way of generating the input structure is to issue
FLGGetReg to get the current definition and values and use the output
structure from that API call as a template for this FLGUpdateReg input
structure.

Bytes 33 through 38 of the header area contain the object type ID (000044) of
the object type for which registration information is being updated.

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 237

FLGWhereUsed
Retrieves a list of Grouping object instances that contain a specific object
instance.

Authorization
Administrator or user

Syntax

Parameters

pszFLGID (PSZ) — input
Points to the system-generated unique ID for the contained instance (16
characters).

Characters 1-6 of this ID identify the object type of this instance.

Characters 7-16 of this ID are the system-generated unique instance
identifier.

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure listing the
container objects.

The output structure includes some property specifications and the
property values of the container objects. Each container object has the
following information:
v FLGID (16 characters)
v Name (80 characters)

All instances are first sorted by object type name, and then sorted by
Name; the actual order of the instances depends on the collating sequence
used by the database management system for the information catalog.

The maximum number of object instances that can be returned by
FLGWhereUsed is approximately 5000, depending on the storage available
on your machine.

When there is no output structure, the pointer to the structure is set to
NULL.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

APIRET APIENTRY FLGWhereUsed(PSZ pszFLGID,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

API call syntax conventions

238 Information Catalog Manager Programming Guide and Reference

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Output structure
FLGWhereUsed produces an output structure containing a list of objects that
contain the specified object, as shown in Figure 160.

The object area of the output structure contains a list of all the Grouping
objects that contain the specified object instance. The returned object instances
are identified by the values of the FLGID and object instance external name.

Usage
Freeing memory allocated for an output structure

If FLGWhereUsed returned data in the output structure, you must save the
data returned in the output structure and then call FLGFreeMem (see
“FLGFreeMem” on page 125). Do not use other methods, for example, C
language instructions, to free memory.

Examples
Figure 161 on page 240 shows the C language code required to issue the
FLGWhereUsed API call. This sample code issues the FLGWhereUsed API
call.

Figure 160. FLGWhereUsed output structure

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 239

Figure 162 shows the resulting output structure.

The specified object instance is contained by three instances in two different
object types. The object type name for the object type ID 000056 is
alphabetically less than the object type name for the object ID 000022, and
therefore appears first.

APIRET rc; // reason code from FLGWhereUsed
UCHAR pszFLGID[FLG_ID_LEN + 1]; // Information Catalog Manager ID
PFLGHEADERAREA * ppListStruct; // pointer to output structure pointer
FLGEXTCODE ExtCode=0; // extended code

.

. /* provide values for input parameters */

.
strcpy (pszFLGID, "0000770000003333");
rc = FLGWhereUsed (pszFLGID,

ppListStruct, // address of output structure pointer
&ExtCode);

Figure 161. Sample C language call to FLGWhereUsed

Figure 162. Sample output structure for FLGWhereUsed

API call syntax conventions

240 Information Catalog Manager Programming Guide and Reference

FLGXferTagBuf
Transfers the delete history, which is a log of delete activity, to a tag file to
duplicate the deletions in other information catalogs, for example, “shadow”
information catalogs in a distributed environment.

Authorization
Administrator

Syntax

Parameters

pszTagFileID (PSZ) — input
Points to the name of the output tag language file. This parameter is
required.

For OS/2, this parameter contains the drive, directory path, and file name,
and must be valid for a file allocation table (FAT) or HPFS file. The file
name and extension (excluding the drive and directories) cannot exceed
240 characters.

The target drive for this file can be either a fixed or removable disk.

Options (FLGOPTIONS) — input
Choose one of the following options for the file to which you want to
transfer the delete history:
FLG_TAGOPT_NEW

Create a new file
FLG_TAGOPT_REPLACE

Replaces an existing file

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See
“Appendix D. Information Catalog Manager reason codes” on page 263 to
see if a meaningful extended code is associated with the returned reason
code.

Reason code (APIRET)
Represents the execution result of this API call.

See “Appendix D. Information Catalog Manager reason codes” on
page 263 for an explanation of the returned reason codes.

Usage
FLGXferTagBuf terminates abnormally when the target disk is full, even if
the disk is removable.

APIRET APIENTRY FLGXferTagBuf(PSZ pszTagFileID,
FLGOPTIONS Options,
PFLGEXTCODE pExtCode);

API call syntax conventions

Chapter 5. The Information Catalog Manager API call syntax 241

To protect against erroneous deletions in other information catalogs, you
should examine the contents of a delete history tag file before importing it
to any other information catalog, especially if you have deleted Grouping
object instances, or object types.

Examples
Figure 163 shows the C language code required to issue the FLGXferTagBuf
call. This sample code creates the file c:\sampdel.tag, to which it then
transfers the delete history.

APIRET rc; // reason code from API
PSZ pszTagFile = "c:\\sampdel.tag";
FLGEXTCODE xc=0; // extended code
FLGOPTIONS Options=0;

.

. /* */

.
Options=Options | FLG_TAGOPT_NEW;
rc = FLGXferTagBuf (pszTagFile,

Options,
&xc);

Figure 163. Sample C language call to FLGXferTagBuf

API call syntax conventions

242 Information Catalog Manager Programming Guide and Reference

Appendix A. Sample program DG2SAMP.C

The Information Catalog Manager provides a sample program, DG2SAMP.C,
that you can compile, link, and run. DG2SAMP.C is in your \SQLLIB\LIB
directory on the drive where DB2 UDB is installed. This sample program lets
the user change the name of an object instance by:
1. Getting a list of the object types in your information catalog.
2. Finding the object you are looking for if it exists.
3. Getting information about the instance.
4. Updating the value of the Name property.

This program issues the following API calls:
v FLGCommit
v FLGFreeMem
v FLGGetInst
v FLGInit
v FLGListObjTypes
v FLGRollback
v FLGSearch
v FLGTerm
v FLGTrace
v FLGUpdateInst

Compiling DG2SAMP.C

To compile DG2SAMP.C using Microsoft Visual C++ Compiler you need to
issue the following command while in the same directory as DG2SAMP.C:
cl /c DG2SAMP.C

Linking DG2SAMP.C

To link your Microsoft Visual C++ Compiler program, issue the following
command while in the same directory as DG2SAMP.C:
link /dll dgwapi.lib dg2samp.obj

Executing DG2SAMP.C

This example uses the DGSAMPLE information catalog provided with the
Information Catalog Manager, and assumes that you have administrator
authorization to this information catalog.
1. Enter the command DG2SAMP.

© Copyright IBM Corp. 1994, 2000 243

2. Enter your user ID.
3. Enter your password.
4. Enter the name of the information catalog.

For this scenario, enter: DGSAMPLE
5. Enter the external name of the object type of the object you want to

change.
For this scenario, enter: Business groupings

6. Enter the external name of the object you want to change.
For this scenario, enter: Billings

7. Enter the new external name of the object.
For this scenario, enter: Account payment histories

Executing DG2SAMP·C

244 Information Catalog Manager Programming Guide and Reference

Appendix B. The Information Catalog Manager API header
file—DG2APIH

The Information Catalog Manager provides a header file, DG2API.H that
defines the function prototypes of API calls, constants, and data types
required for C language applications that use the Information Catalog
Manager API calls.

DG2API.H is installed in the VWSLIB\LIB directory on the drive where you
installed the Information Catalog Manager.

To use the definition types defined in DG2API.H with the Information Catalog
Manager for Windows, you need to include in your program the
WINDOWS.H header file included with Microsoft Visual C++ Compiler.

Constants defined in DG2API.H

Table 19 contains variables defined for programs that use the Information
Catalog Manager API calls to access the Information Catalog Manager
functions.

Table 19. Constants defined in DG2API.H
Input or output structure header area constants Bytes Defines length of:

FLG_H_IDENT_LEN 8 Structure identifier
(FLG-HEAD)

FLG_H_DEFAREA_LEN 8 Definition length
FLG_H_OBJAREA_LEN 8 Object area length
FLG_H_OBJAREAENT_LEN 8 Object area entry count
FLG_H_CATEGORY_LEN 1 Category
FLG_H_OBJTYPID_LEN 6 Object type ID
FLG_H_RESERVED_LEN 121 Reserved area
FLG_HEADER_SIZE 160 Header area

Input or output structure definition area
lengths

Bytes Defines length of:

FLG_D_PROPNM_LEN 80 Property name
FLG_D_DATATYP_LEN 30 Data type value
FLG_D_DATA_LEN 8 Data length value
FLG_D_PPN_LEN 8 Property short name
FLG_D_VF_LEN 1 Value flag
FLG_D_US_LEN 1 UUI sequence number
FLG_D_CS_LEN 1 Case- sensitivity flag

© Copyright IBM Corp. 1994, 2000 245

Table 19. Constants defined in DG2API.H (continued)
FLG_D_FS_LEN 1 Fuzzy-search flag
FLG_D_RESERVED_LEN 30 Reserved area
FLG_DEFINITION_SIZE 160 Definition area record

Information Catalog Manager string lengths Byte length Defines length of:

FLG_OBJTYPID_LEN 6 Object type ID
FLG_INSTIDNT_LEN 10 Instance ID
FLG_INST_NAME_LEN 80 Instance name
FLG_UPDATIME_LEN 26 Time stamp for when the

object type is created or
updated

FLG_UPDATEBY_LEN 8 User ID of the person who
performed the update

FLG_ID_LEN 16 FLGID value
FLG_EXTERNAL_NAME_LEN 80 Object type external name
FLG_PTNAME_LEN 30 Object type physical type

name
FLG_DPNAME_LEN 8 Object type short name
FLG_CREATOR_LEN 8 User ID of the creator of the

object type
FLG_USERID_LEN 8 Log on user ID
FLG_PASSWORD_LEN 8 Log on password
FLG_DATABASENAME_LEN 8 Name of the Information

Catalog Manager database
FLG_VARIABLE_DATA_LENGTH_LEN 8 Length field for VARCHAR

and LONG VARCHAR
values

Data type maximum lengths Bytes Defines maximum length
for:

FLG_CHAR_MAXLEN 254 CHAR data type
FLG_VARCHAR_MAXLEN 4000 VARCHAR data type
FLG_LONG_VARCHAR_MAXLEN 32700 LONG VARCHAR data type
FLG_TIMESTAMP_MAXLEN 26 TIMESTAMP data type

Maximum values Value Defines maximum for:

FLG_REG_NUM_PROPERTIES 6 Number of registration
properties

FLG_ICON_FILE_ID_MAXLEN 259 Length of the path, file
name, and extension of the
icon file

FLG_TAG_FILE_ID_MAXLEN 259 Length of the path, file
name, and extension of the
tag language file

Constants defined in DG2API·H

246 Information Catalog Manager Programming Guide and Reference

Table 19. Constants defined in DG2API.H (continued)
FLG_LOG_FILE_ID_MAXLEN 259 Length of the path, file

name, and extension of the
log file

FLG_ECHO_FILE_ID_MAXLEN 259 Length of the path, file
name, and extension of the
echo file

FLG_ICON_PATH_MAXLEN 246 Length of the icon path
FLG_ICON_MAXLEN 30000 Size of the icon file
FLG_UUI_MAXLEN 254 Length in bytes of a UUI

property value
FLG_MAX_PROPERTIES 255 Number of properties in an

object type
FLG_MAX_NUM_LONG_VARCHARS 14 Number of properties with

the LONG VARCHAR data
type

FLG_MAXLEN_SEARCH_LONGVARCHAR 3000 Length of search criteria for a
property with the LONG
VARCHAR data type

FLG_MAX_IMP_EXP_OBJTYPES 3500 Number of unique object
types processed in a single
tag language file

FLG_MAX_ANCHOR_NUM 1600 Number of object instances
returned by FLGListAnchors

FLG_MAX_ORPHAN_NUM 1600 Number of object instances
returned by FLGListOrphans

FLG_MAX_CONTAINEE_NUM 1600 Number of object instances
returned by FLGFoundIn

Input parameters for FLGConvertID Value Description

FLG_DPNAME 'D' Object type short name to
convert to object type ID

FLG_FLGID 'F' Object instance ID to convert
to extended object instance
name

Input options for FLGFoundIn,
FLGListAssociates, and FLGListOrphans Value Description

FLG_LIST_PROGRAM 0x00000001 Retrieve Program object
instances associated with
specified object type

FLG_LIST_CONTAIN 0x00000002 Retrieve object instances
contained by a specified
instance

FLG_LIST_CONTACT 0x00000003 Retrieve Contact object
instances associated with
specified instance

Constants defined in DG2API·H

Appendix B. The Information Catalog Manager API header file—DG2APIH 247

Table 19. Constants defined in DG2API.H (continued)
FLG_LIST_ATTACHMENT 0x00000004 Retrieve object instances

attached to specified instance
FLG_LIST_COMMENTS 0x00000005 Retrieve Comments object

instances attached to
specified instance

FLG_LIST_LINK 0x00000006 Retrieve object instances
linked to specified instance

Platform options for FLGManageIcons Length Description

FLG_PLATFORM_OS2 0x00000100 OS/2 icons
FLG_PLATFORM_WINDOWS 0x00000200 Windows icons

Output options for FLGManageIcons Length Description

FLG_ICON_EXIST 0x00000001 Specified icon exists
FLG_ICON_NOTEXIST 0x00000002 Specified icon does not exist

Options of FLGRelation Value Description

FLG_CREATE_RELATION 'C' Create option
FLG_DELETE_RELATION 'D' Delete option

Types of relationships defined by FLGRelation Value Description

FLG_ATTACHMENT_RELATION 'A' Attachment relationship
FLG_CONTAINER_RELATION 'C' Contains relationship
FLG_CONTACT_RELATION 'T' Contact relationship
FLG_LINK_RELATION 'L' Link relationship

File options for FLGXferTagBuf Value Description

FLG_TAGOPT_NEW 0x00000001 Create a new file into which
to transfer delete history

FLG_TAGOPT_REPLACE 0x00000002 Transfer delete history into
an existing file, replacing
former contents

Input/output options for FLGManageTagBuf Value Description

FLG_TAGBUF_RESET 0x00000001 Remove existing entries from
delete history log

FLG_TAGBUF_QUERY 0x00000002 Query whether delete history
log contains entries

FLG_TAGBUF_EMPTY 0x00000001 Delete history log contains
no entries

FLG_TAGBUF_NOT_EMPTY 0x00000002 Delete history log contains
entries

Delete options for FLGDeleteTree Value Description

Constants defined in DG2API·H

248 Information Catalog Manager Programming Guide and Reference

Table 19. Constants defined in DG2API.H (continued)
FLG_DELTREE_REL 0x00000001 Delete Grouping object

instance and its underlying
tree structure

FLG_DELTREE_ALL 0x00000002 Delete Grouping object
instance and its underlying
tree structure, including
underlying objects

FLGManageCommentStatus output structure
property short names Value Description

FLG_COMMENT_STATUS1_PPN "CSTATUS1" First available status choice
for comments

FLG_COMMENT_STATUS2_PPN "CSTATUS2" Second available status
choice for comments

FLG_COMMENT_STATUS3_PPN "CSTATUS3" Third available status choice
for comments

FLG_COMMENT_STATUS4_PPN "CSTATUS4" Fourth available status choice
for comments

FLG_COMMENT_STATUS5_PPN "CSTATUS5" Fifth available status choice
for comments

FLG_COMMENT_STATUS6_PPN "CSTATUS6" Sixth available status choice
for comments

FLG_COMMENT_STATUS7_PPN "CSTATUS7" Seventh available status
choice for comments

FLG_COMMENT_STATUS8_PPN "CSTATUS8" Eighth available status choice
for comments

FLG_COMMENT_STATUS9_PPN "CSTATUS9" Ninth available status choice
for comments

FLG_COMMENT_STATUSA_PPN "CSTATUSA" Tenth available status choice
for comments

User type options for FLGManageUsers Value Description

FLG_USERTYPE_PADMIN 'A' Primary administrator
FLG_USERTYPE_BADMIN 'B' Backup administrator
FLG_USERTYPE_POWERUSER 'D' User authorized to perform

additional object
management tasks

FLG_USERTYPE_USER 'W' User

Trace level options set with FLGTrace Value Description

FLG_TRACE_ON 1 Turn tracing on
FLG_TRACE_OFF 0 Turn tracing off
FLG_TRACELEVEL_0 0 Default trace level
FLG_TRACELEVEL_1 1 Include function entry and

exit records

Constants defined in DG2API·H

Appendix B. The Information Catalog Manager API header file—DG2APIH 249

Table 19. Constants defined in DG2API.H (continued)
FLG_TRACELEVEL_2 2 Include function-level

information
FLG_TRACELEVEL_3 3 Include input and output

parameters
FLG_TRACELEVEL_4 4 Include all input and output

structures passed to or used
by the Information Catalog
Manager

Actions performed by the Information Catalog
Manager

Value Description

FLG_ACTION_CREATE 0x00000001 Creates; for example, adds an
icon to an object type or user
to an information catalog

FLG_ACTION_DELETE 0x00000002 Deletes; for example, deletes
an icon from an object type

FLG_ACTION_UPDATE 0x00000004 Updates; for example,
changes the list of available
status choices for comments,
or toggles on or off recording
of delete history

FLG_ACTION_GET 0x00000008 Retrieve current setting or
list

FLG_ACTION_QUERY 0x00000010 Determine existence
FLG_ACTION-LIST 0x00000020 Retrieve list of users

Category types Value Description

FLG_GROUPING_OBJ 'G' Grouping category
FLG_ELEMENTAL_OBJ 'E' Elemental category
FLG_CONTACT_OBJ 'C' Contact category
FLG_DICTIONARY_OBJ 'D' Dictionary category
FLG_PROGRAM_OBJ 'P' Program category
FLG_SUPPORT_OBJ 'S' Support category
FLG_ATTACHMENT_OBJ 'A' Attachment category

Yes and no values Value Description

FLG_YES 'Y' Yes
FLG_NO 'N' No

Value flags Value Description

FLG_REQUIRED 'R' Required property
FLG_OPTIONAL 'O' Optional property
FLG_SYSTEM 'S' System- generated property

Universal unique identifier sequence numbers Value Description

Constants defined in DG2API·H

250 Information Catalog Manager Programming Guide and Reference

Table 19. Constants defined in DG2API.H (continued)
FLG_UUI_1 '1' First property in UUI
FLG_UUI_2 '2' Second property in UUI
FLG_UUI_3 '3' Third property in UUI
FLG_UUI_4 '4' Fourth property in UUI
FLG_UUI_5 '5' Fifth property in UUI
FLG_BLANK ' ' A single blank character

Property short names of required properties Value Description

FLG_PPN_OBJTYPID "OBJTYPID" Object type ID
FLG_PPN_INSTIDNT "INSTIDNT" Instance ID
FLG_PPN_INST_NAME "NAME" Name of object instance
FLG_PPN_UPDATIME "UPDATIME" Time stamp of date and time

last updated
FLG_PPN_UPDATEBY "UPDATEBY" User ID of person who

performed the last update
FLG_PPN_EXTERNAL_NAME "NAME" External name of object type
FLG_PPN_PTNAME "PTNAME" Physical type name of object

type
FLG_PPN_DPNAME "DPNAME" DP NAME (short name) of

the object type
FLG_PPN_CREATOR "CREATOR" User ID of the person who

created the object type

Common property short names—Information
Catalog Manager-defined object types Value Description

FLG_PPN_UUICLASS "UUICLASS" Defines object class
FLG_PPN_UUIQUAL1 "UUIQUAL1" First qualifier property used

to ensure that the identifier
UUI value is unique within
the UUI class.

FLG_PPN_UUIQUAL2 "UUIQUAL2" Second qualifier property
used to ensure that the
identifier UUI value is
unique within the UUI class.

FLG_PPN_UUIQUAL3 "UUIQUAL3" Third qualifier property used
to ensure that the identifier
UUI value is unique within
the UUI class.

FLG_PPN_UUIDENT "UUIDENT" Unique object instance-level
identifier used as part of the
UUI.

FLG_PPN_HANDLES "HANDLES" Identifies object type handled
by the program association.

FLG_PPN_STARTCMD "STARTCMD" Command to invoke
program associated with an
object type

Constants defined in DG2API·H

Appendix B. The Information Catalog Manager API header file—DG2APIH 251

Table 19. Constants defined in DG2API.H (continued)
FLG_PPN_PARMLIST "PARMLIST" Parameter list to pass to

program upon invocation
FLG_PPN_SHRTDESC "SHRTDESC" Short description for object

instances
FLG_PPN_CREATSTP "CREATSTP" Creation date timestamp for

Comments objects
FLG_PPN_STATUS "STATUS" Status of Comments object

instances
FLG_PPN_ACTIONS "ACTIONS" Actions to be taken against

an object instance, for
example, starting a program

FLG_PPN_EXTRA "EXTRA" Reserved
FLG_PPN_LONGDESC "LONGDESC" Long description of an object

instance

FLGImport restart options Value Description

FLG_RESTART_BEGIN 'B' Import the tag language file
from the beginning

FLG_RESTART_CHECKPT 'C' Import the tag language file
starting at the last committed
checkpoint.

Export input structure property names Value Description

FLG_EXPORT_DEFAREA_FLGID "FLGID" Property passing the FLGID
of the object to be exported

FLG_EXPORT_DEFAREA_ATTACHMENT_IND "ATTACHMENT-IND" Property indicating whether
to export associated
Attachment objects

FLG_EXPORT_DEFAREA_CONTAINEE_IND "CONTAINEE-IND" Property indicating whether
to export contained objects

FLG_EXPORT_DEFAREA_CONTACT_IND "CONTACT-IND" Property indicating whether
to export associated Contact
objects

FLG_EXPORT_DEFAREA_LINK_IND "LINK-IND" Property indicating whether
to export linked objects

Data types Value Description

FLG_DTYPE_CHAR "CHAR" Fixed-length character
FLG_DTYPE_VARCHAR "VARCHAR" Variable length character
FLG_DTYPE_LONGVARCHAR "LONG VARCHAR" Long variable length

character
FLG_DTYPE_TIMESTAMP "TIMESTAMP" Time stamp

Header area structure identifier Value Description

Constants defined in DG2API·H

252 Information Catalog Manager Programming Guide and Reference

Table 19. Constants defined in DG2API.H (continued)
FLG_H_IDENT "FLG-HEAD" First value in an Information

Catalog Manager input or
output structure

Database platform identifiers Value Description

FLG_DG2_DB22 0 The Information Catalog
Manager using DB2 UDB for
OS/2

FLG_DG2_DB2 1 The Information Catalog
Manager using DB2 UDB for
OS/390® or DB2 for OS/390

FLG_DG2MVS 2 Reserved
FLG_DG2_DB400 4 The Information Catalog

Manager using DB2 UDB for
AS/400

FLG_DG2_DB6000 6 The Information Catalog
Manager using DB2 UDB for
AIX

FLG_DG2_DB26000PE 7 The Information Catalog
Manager using DB2 PE for
AIX or DB2 UDB EEE

FLG_DG2_DB2NT 8 The Information Catalog
Manager using DB2 UDB for
Windows NT

FLG_DG2_DB295 9 The Information Catalog
Manager using DB2 UDB for
Windows 95

Structure and data type definitions in DG2API.H

Table 20 and Table 21 on page 254 contain definitions for structures and data
types used with the Information Catalog Manager API calls.

Table 20. Structure definitions

Header area Description

Constants defined in DG2API·H

Appendix B. The Information Catalog Manager API header file—DG2APIH 253

Table 20. Structure definitions (continued)

typedef struct _FLG_HEADER_AREA {
UCHAR pchHIdent [FLG_H_IDENT_LEN];
UCHAR pchHDefLength [FLG_H_DEFAREA_LEN];
UCHAR pchHObjLength [FLG_H_OBJAREA_LEN];
UCHAR pchHObjEntryCount [FLG_H_OBJAREAENT_LEN];
UCHAR pchHCategory [FLG_H_CATEGORY_LEN];
UCHAR pchHObjTypeId [FLG_H_OBJTYPID_LEN];
UCHAR pchHReserved [FLG_H_RESERVED_LEN];
} FLGHEADERAREA;
#ifdef WINDOWS

typedef FLGHEADERAREA __huge *PFLGHEADERAREA;
#else

typedef FLGHEADERAREA *PFLGHEADERAREA;
#endif

Defines a structure containing all the
elements of the header area for an
Information Catalog Manager input
or output structure

Definition area Description

typedef struct _FLG_DEFINITION_AREA {
UCHAR pchDPropName [FLG_D_PROPNM_LEN];
UCHAR pchDDataType [FLG_D_DATATYP_LEN];
UCHAR pchDDataLength [FLG_D_DATA_LEN];
UCHAR pchDTagName [FLG_D_PPN_LEN];
UCHAR pchDVF [FLG_D_VF_LEN];
UCHAR pchDUS [FLG_D_US_LEN];
UCHAR pchDCS [FLG_D_CS_LEN];
UCHAR pchDFS [FLG_D_FS_LEN];
UCHAR pchDReserved [FLG_D_RESERVED_LEN];
} FLGDEFINITIONAREA;
#ifdef WINDOWS

typedef FLGDEFINITIONAREA __huge *PFLGDEFINITIONAREA;
#else

typedef FLGDEFINITIONAREA *PFLGDEFINITIONAREA;
#endif

Defines a structure containing all the
elements of a definition area record
for an Information Catalog Manager
input or output structure

Table 21. Data type definitions
Synonyms for data types Data types
FLGRELOPTION UCHAR—unsigned character
FLGRELTYPE UCHAR—unsigned character
FLGTRACEOPTION ULONG—unsigned long integer
FLGIDLENGTH ULONG—unsigned long integer
FLGOPTIONS ULONG—unsigned long integer
PFLGOPTIONS * FLGOPTIONS—pointer to unsigned long

integer
FLGADMIN UCHAR—unsigned character
FLGRESTARTOPTION UCHAR—unsigned character
FLGEXTCODE LONG—long integer
PFLGEXTCODE * FLGEXTCODE—pointer to long integer

Structure and data type definitions in DG2API·H

254 Information Catalog Manager Programming Guide and Reference

Information Catalog Manager API call function prototypes

Table 22 defines the function prototypes for the Information Catalog Manager
API calls.

Table 22. API call function prototypes

FLGAppendType

APIRET APIENTRY FLGAppendType(PFLGHEADERAREA pObjTypeStruct,
PFLGEXTCODE pExtCode);

FLGCommit

APIRET APIENTRY FLGCommit(PFLGEXTCODE pExtCode);

FLGConvertID

APIRET APIENTRY FLGConvertID(PSZ pszInBuffer,
PSZ pszOutBuffer,
FLGOPTIONS Options,
PFLGEXTCODE pExtCode);

FLGCreateInst

APIRET APIENTRY FLGCreateInst(PFLGHEADERAREA pObjInstStruct,
PSZ pszFLGID,
PFLGEXTCODE pExtCode);

FLGCreateReg

APIRET APIENTRY FLGCreateReg(PFLGHEADERAREA pObjRegStruct,
PSZ pszIconFileID,
PSZ pszObjTypeID,
PFLGEXTCODE pExtCode);

FLGCreateType

APIRET APIENTRY FLGCreateType(PFLGHEADERAREA pObjTypeStruct,
PFLGEXTCODE pExtCode);

FLGDeleteInst

APIRET APIENTRY FLGDeleteInst(PSZ pszFLGID,
PFLGEXTCODE pExtCode);

FLGDeleteReg

APIRET APIENTRY FLGDeleteReg(PSZ pszObjTypeID,
PFLGEXTCODE pExtCode);

FLGDeleteTree

APIRET APIENTRY FLGDeleteTree(PSZ pszFLGID,
FLGOPTIONS Options,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

FLGDeleteType

Information Catalog Manager API call function prototypes

Appendix B. The Information Catalog Manager API header file—DG2APIH 255

Table 22. API call function prototypes (continued)

APIRET APIENTRY FLGDeleteType(PSZ pszObjTypeID,
PFLGEXTCODE pExtCode);

FLGDeleteTypeExt

APIRET APIENTRY FLGDeleteTypeExt(PSZ pszObjTypeID,
PFLGEXTCODE pExtCode);

FLGExport

APIRET APIENTRY FLGExport(PSZ pszTagFileID,
PSZ pszLogFileID,
PSZ pszIcoPath,
PFLGHEADERAREA pListStruct,
PFLGEXTCODE pExtCode);

FLGFoundIn

APIRET APIENTRY FLGFoundIn(PSZ pszFLGID,
FLGOPTIONS Options,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

FLGFreeMem

APIRET APIENTRY FLGFreeMem(PFLGHEADERAREA pFLGOutputStruct,
PFLGEXTCODE pExtCode);

FLGGetInst

APIRET APIENTRY FLGGetInst(PSZ pszFLGID,
PFLGHEADERAREA * ppObjInstStruct,
PFLGEXTCODE pExtCode);

FLGGetReg

APIRET APIENTRY FLGGetReg(PSZ pszObjTypeID,
PSZ pszIconFileID,
PFLGHEADERAREA * ppObjRegStruct,
PFLGEXTCODE pExtCode);

FLGGetType

APIRET APIENTRY FLGGetType(PSZ pszObjTypeID,
PFLGHEADERAREA * ppObjTypeStruct,
PFLGEXTCODE pExtCode);

FLGImport

APIRET APIENTRY FLGImport(PSZ pszTagFileID,
PSZ pszLogFileID,
PSZ pszIcoPath,
FLGRESTARTOPTION RestartOpt,
PFLGEXTCODE pExtCode);

FLGInit

Information Catalog Manager API call function prototypes

256 Information Catalog Manager Programming Guide and Reference

Table 22. API call function prototypes (continued)

APIRET APIENTRY FLGInit(PSZ pszUserID,
PSZ pszPassword,
PSZ pszDatabaseName,
FLGADMIN Admin,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

FLGListAnchors

APIRET APIENTRY FLGListAnchors(PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

FLGListAssociates

APIRET APIENTRY FLGListAssociates(PSZ pszInBuffer,
FLGOPTIONS Options,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

FLGListContacts

APIRET APIENTRY FLGListContacts(PSZ pszFLGID,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

FLGListObjTypes

APIRET APIENTRY FLGListObjTypes(PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

FLGListOrphans

APIRET APIENTRY FLGListOrphans(PSZ pszObjTypeID,
FLGOPTIONS Options,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

FLGListPrograms

APIRET APIENTRY FLGListPrograms(PSZ pszObjTypeID,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

FLGManageCommentStatus

APIRET APIENTRY FLGManageCommentStatus(FLGOPTIONS Action,
FLGHEADERAREA * pStatusStruct,
PFLGHEADERAREA * ppStatusStruct,
PFLGEXTCODE pExtCode);

FLGManageFlags

APIRET APIENTRY FLGManageFlags(FLGOPTIONS Action,
FLGOPTIONS FlagType,
UCHAR chValue,
UCHAR * pchValue,
PFLGEXTCODE pExtCode);

Information Catalog Manager API call function prototypes

Appendix B. The Information Catalog Manager API header file—DG2APIH 257

Table 22. API call function prototypes (continued)

FLGManageIcons

APIRET APIENTRY FLGManageIcons(PSZ pszObjTypeID,
PSZ pszIconFileID,
FLGOPTIONS InOptions,
PFLGOPTIONS pOutOptions,
PFLGEXTCODE pExtCode);

FLGManageTagBuf

APIRET APIENTRY FLGManageTagBuf(FLGOPTIONS InOptions,
PFLGOPTIONS pOutOptions,
PFLGEXTCODE pExtCode);

FLGManageUsers

APIRET APIENTRY FLGManageUsers(FLGOPTIONS Options,
PFLGHEADERAREA pListStruct,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

FLGMdisExport

APIRET APIENTRY FLGMdisExport(PSZ pszTagFileName,
PSZ pszLogFileName,
PSZ pszObjTypeName,
PSZ pszObjectName,
PFLGEXTCODE pExtCode);

FLGMdisImport

APIRET APIENTRY FLGMdisImport(PSZ pszTagFileID,
PSZ pszLogFileID,
PFLGEXTCODE pExtCode);

FLGNavigate

APIRET APIENTRY FLGNavigate(PSZ pszFLGID,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

FLGOpen

APIRET APIENTRY FLGOpen(PSZ pszPgmFLGID,
PSZ pszObjFLGID,
PFLGEXTCODE pExtCode);

FLGRelation

APIRET APIENTRY FLGRelation(PSZ pszSrcFLGID,
PSZ pszTrgFLGID,
FLGRELTYPE RelType,
FLGRELOPTION RelOpt,
PFLGEXTCODE pExtCode);

FLGRollback

Information Catalog Manager API call function prototypes

258 Information Catalog Manager Programming Guide and Reference

Table 22. API call function prototypes (continued)

APIRET APIENTRY FLGRollback(PFLGEXTCODE pExtCode);

FLGSearch

APIRET APIENTRY FLGSearch(PSZ pszObjTypeID,
PFLGHEADERAREA pSelCriteriaStruct,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

FLGSearchAll

APIRET APIENTRY FLGSearchAll(PFLGHEADERAREA pSelCriteriaStruct,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

FLGTerm

APIRET APIENTRY FLGTerm(PFLGEXTCODE pExtCode);

FLGTrace

APIRET APIENTRY FLGTrace(FLGTRACEOPTION TraceOpt,
PFLGEXTCODE pExtCode);

FLGUpdateInst

APIRET APIENTRY FLGUpdateInst(PFLGHEADERAREA pObjInstStruct,
PFLGEXTCODE pExtCode);

FLGUpdateReg

APIRET APIENTRY FLGUpdateReg(PFLGHEADERAREA pObjRegStruct,
PSZ pszIconFileID,
PFLGEXTCODE pExtCode);

FLGWhereUsed

APIRET APIENTRY FLGWhereUsed(PSZ pszFLGID,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

FLGXferTagBuf

APIRET APIENTRY FLGXferTagBuf(PSZ pszTagFileID,
FLGOPTIONS Options,
PFLGEXTCODE pExtCode);

Information Catalog Manager API call function prototypes

Appendix B. The Information Catalog Manager API header file—DG2APIH 259

Information Catalog Manager API call function prototypes

260 Information Catalog Manager Programming Guide and Reference

Appendix C. Information Catalog Manager limits

Table 23 describes certain Information Catalog Manager limits.

Table 23. The Information Catalog Manager limits

Information Catalog Manager values Limit

Longest information catalog database name 30 characters

Longest information catalog physical table name (PT
NAME)

30 characters

Longest physical table name (PT NAME) with DB2 UDB for
OS/2

18 characters

Longest physical table name (PT NAME) with DB2 UDB for
OS/390

18 characters

Longest UUI property value length 254 bytes

Maximum for total of five UUI property value lengths 1270 bytes

Largest Information Catalog Manager object type icon 30000 bytes

Most properties in an object type 255

Most properties with LONG VARCHAR data type in an
Information Catalog Manager object type

14

Longest search criteria length for a LONG VARCHAR
property

3000 bytes

Maximum number of unique object types processed with
ACTION.OBJTYPE() tags in a single tag language file

3500

Maximum number of objects returned for the following API
calls:

FLGListAnchors

FLGListOrphans

1600

Maximum number of objects returned for the following API
calls:

FLGFoundIn

FLGListAssociates

FLGListContacts

FLGListPrograms

FLGNavigate

FLGSearch

FLGSearchAll

FLGWhereUsed

5000

© Copyright IBM Corp. 1994, 2000 261

Information Catalog Manager limits

262 Information Catalog Manager Programming Guide and Reference

Appendix D. Information Catalog Manager reason codes

Table 24 contains all the reason codes produced by the Information Catalog
Manager. The reason codes are ordered by number, and include the mnemonic
name, the extended code, and an explanation of what condition produces the
reason code.

Certain reason codes produce extended codes, which provide more
information about the error situation. If a reason code returns an extended
code, the possible meanings of the extended code are listed.

Table 24. Information Catalog Manager reason codes

Number Reason code Extended codes Explanation

0 FLG_OK — Completed
successfully.

1 FLG_WRN — Place holder;
indicates the
beginning of the
numeric range
for warnings.

201 FLG_WRN_DISCONNECTED — The database has
been
disconnected.

202 FLG_WRN_DBM_ALREADY_STARTED — The database
manager was
already started
before the
Information
Catalog Manager
initialization.

203 FLG_WRN_DB_RESTART — The database
manager needed
to be restarted
before the
Information
Catalog Manager
initialization.

© Copyright IBM Corp. 1994, 2000 263

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

204 FLG_WRN_DB_ACTIVE — The specified
database
manager was
already active
before the
Information
Catalog Manager
initialization.

1001 FLG_WRN_INST_NOTFOUND — Unable to find
the object
instance (also
used by
FLGListOrphans,
FLGFoundIn,
FLGListAssociates,
and FLGExport).

1002 FLG_WRN_CONTAINER_NOTFOUND — Unable to find a
container for the
specified object
instance.

1003 FLG_WRN_CONTAINEE_NOTFOUND — Unable to find
any objects
contained by the
specified object
instance.

1004 FLG_WRN_CONTACT_NOTFOUND — Unable to find a
contact for the
specified object
instance.

1005 FLG_WRN_PROGRAM_NOTFOUND — Unable to find a
program
associated with
this object type.

1006 FLG_WRN_ANCHOR_NOTFOUND — Unable to find
any anchors
(subjects)
defined in the
Information
Catalog Manager
database.

The Information Catalog Manager reason codes

264 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

1007 FLG_WRN_PROGRAM_CHANGED — One or more
associated
program
instances were
changed when
the object type
was deleted.

1008 FLG_WRN_NO_INPARM_ICON_FILE — FLGGetReg API
call did not
specify a pointer
to receive the
name of the
retrieved icon
file. The
Information
Catalog Manager
did not return
an icon.

1009 FLG_WRN_NO_ICON — No icon
associated with
the object type.

1010 FLG_WRN_ID_LIMIT_REACHED — Reached the
maximum
number of object
types limit.

1011 FLG_WRN_OBJECT_NOT_CHANGED — Reserved

1012 FLG_WRN_EXCEED_MAX_ANCHORNUM Actual number
of anchors

Unable to return
all anchors
(subjects)
defined in the
Information
Catalog Manager
database.

1013 FLG_WRN_ICON_REPLACED — An icon file
already existed
in the specified
ICOPATH. The
icon file was
replaced.

1014 FLG_WRN_PROPDUP — The property to
be appended
already exists.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 265

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

1015 FLG_WRN_EXCEED_MAX_ORPHANNUM Actual number
of orphans

Exceeded the
maximum
number of
orphans.

1016 FLG_WRN_DB_ICON_REPLACED — The object type
icon has been
replaced in the
catalog.

1017 FLG_WRN_LINKOBJ_NOTFOUND — Unable to find a
linked object for
the specified
object instance.

1018 FLG_WRN_ATTACHOBJ_NOTFOUND — Unable to find
attachment
objects for the
specified object
instance.

1019 FLG_WRN_MISSING_PROPS_IN_IOSTRUCT — The input
structure
contains less
properties than
that defined for
the object type.
All missing
properties are
optional. Object
instance is
created/updated.

2002 FLG_WRN_NO_DISKCNTL_TAG_PRESENTED — DISKCNTL is
not the first tag
in the input tag
language file on
a removable
device.
Importing
continues, but
only the tag
language file on
the current
diskette is
processed.

The Information Catalog Manager reason codes

266 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

2003 FLG_WRN_NEED_NEW_TAGFILE_DISKETTE — Insert the next
diskette to
continue
importing the
tag language
file.

2004 FLG_WRN_ICONFILE_OPENERR — Reserved

2005 FLG_WRN_NOTHING_TO_IMPORT — Unable to find
any data to
import in the tag
language file or
in the part of the
tag language file
after the last
checkpoint. The
file or part of
the file may be
empty or contain
only
COMMENT or
DISKCNTL tags.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 267

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

2006 FLG_WRN_ICONFILE_RETRIEVE_ERROR Reason code API
FLGCreateReg
or
FLGUpdateReg
encountered an
error while
retrieving
(opening,
reading, or
closing) the icon
file specified in
parameter
pszIconFileID.
The reason code
returned in the
extended code
indicates the
error.
FLGCreateReg
and
FLGUpdateReg
have completed
all other
registration
processing
successfully.

2007 FLG_WRN_P_HANDLES_CLEARED — FLGImport
cleared the
HANDLES
property value
for a program
instance, because
this value refers
to an object type
that does not
exist in the
target
information
catalog.

The Information Catalog Manager reason codes

268 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

2501 FLG_WRN_CFLAG_IGNORED — CONTAINEE-
IND value for
the exported
object was
ignored because
the object does
not belong to the
Grouping
category.

2502 FLG_WRN_TFLAG_IGNORED — CONTACT-IND
value for the
exported object
was ignored
because the
object does not
belong to the
Grouping or
Elemental
categories.

2503 FLG_WRN_NO_ICOPATH — No icon path
was specified;
no icons were
exported.

2504 FLG_WRN_GETREG_WARNING Reason code Export
encountered a
warning from
FLGGetReg. The
extended code
contains the
reason code
returned by
FLGGetReg.

2505 FLG_WRN_GETINST_WARNING Reason code Export
encountered a
warning from
FLGGetInst. The
extended code
contains the
reason code
returned by
FLGGetInst.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 269

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

2506 FLG_WRN_LISTCONTACTS_WARNING Reason code Export
encountered a
warning from
FLGListContacts.
The extended
code contains
the reason code
returned by
FLGListContacts.

2507 FLG_WRN_NAVIGATE_WARNING Reason code Export
encountered a
warning from
FLGNavigate.
The extended
code contains
the reason code
returned by
FLGNavigate.

2508 FLG_WRN_AFLAG_IGNORED — ATTACHMENT-
IND value for
the exported
object was
ignored because
the object is in
the Attachment
category and
cannot have
associated
attachment
objects.

2509 FLG_WRN_LFLAG_IGNORED — LINK-IND value
for the exported
object was
ignored because
the object does
not belong to the
Grouping or
Elemental
categories.

2601 FLG_WRN_NO_HISTORY — There is no
history entry in
the history
buffer.

The Information Catalog Manager reason codes

270 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

2602 FLG_WRN_NO_TYPE_RELATE_TO_PROGRAM — There is no
object type
related to the
program
instance.

7500 FLG_WRN_VIEW_NOT_SUPPORTED — View ″T″ is
specified in the
Tool profile, but
this function is
not supported
by the
Information
Catalog
Manager.

7501 FLG_WRN_LEVEL_NOT_SUPPORTED — Level ″T″ is
specified in the
Tool profile, but
this function is
not supported
by the
Information
Catalog
Manager.

7505 FLG_WRN_NO_BEGIN_DEFINITION_SECTION — The BEGIN
DEFINITION
section is
missing from the
tag language
file.

7510 FLG_WRN_VALUE_TRUNCATED — A value is
truncated
because it
exceeded the
maximum
allowable length.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 271

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

7515 FLG_WRN_INV_TIMESTAMP_FORMAT — A date or time
value does not
follow the
correct format.

Format for date
values:
YYYY-MM-DD.

Format for time
values:
HH.MM.SS

Format for
refresh date
values:
YYYY-MM-DD-
HH.MM.SS.

30000 FLG_ERR — Place holder;
indicates the
beginning of the
numeric range
for errors.

30001 FLG_ERR_INVALID_NUM_STR — The numeric
string passed to
the Information
Catalog Manager
as input is
invalid.

30002 FLG_ERR_INVALID_NUMBER — The integer
value passed to
the Information
Catalog Manager
as input is too
large.

30003 FLG_ERR_BUFF_TOO_SMALL — Information
Catalog Manager
internal error.

The Information Catalog Manager reason codes

272 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

30004 FLG_ERR_MSGFILE_NOTFOUND — Unable to locate
the Information
Catalog Manager
message file
(DGxyMSG.MSG
or
DGxySTR.MSG,
where x is the
platform
identifier and y
is the national
language version
identifier).

This file must be
in the
Information
Catalog Manager
working
directory.

30005 FLG_ERR_MSGID_NOTFOUND — The message
identifier could
not be located in
the message file.

30006 FLG_ERR_CANT_ACCESS_MSGFILE — Unable to open
the Information
Catalog Manager
message file.

30007 FLG_ERR_INVALID_MSGFILE_FORMAT — The message file
(DGxyMSG.MSG
or
DGxySTR.MSG,
where x is the
platform
identifier and y
is the national
language version
identifier) is
corrupted or
invalid.

Reinstall the
affected file.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 273

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

30008 FLG_ERR_MSGFILE_ERROR — Information
Catalog Manager
internal error.

30009 FLG_ERR_TRACE_FAIL — An error
occurred in the
Information
Catalog Manager
trace function.
The trace file
may be
corrupted or
incomplete.

30010 FLG_ERR_INTERNAL_ERROR Reason code The Information
Catalog Manager
encountered an
internal error.

Check the reason
code returned in
the extended
code and try to
remedy the
problem; if this
is unsuccessful,
call your IBM
Service
Representative.

30011 FLG_ERR_RESDLL_NOT_LOADED — Language DLL
file is not found.

30012 FLG_ERR_DGPATH_NOT_FOUND — Environment
path (DG2PATH)
was not set in
the CONFIG.SYS
file.

Environment
path
(DGWPATH)
was not set in
either the system
registry or the
AUTOEXEC.BAT
file.

The Information Catalog Manager reason codes

274 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

30013 FLG_ERR_CP_LOAD_FAILED — The primary and
secondary code
pages specified
in your
CONFIG.SYS file
are not
supported by
the Information
Catalog
Manager.

30014 FLG_ERR_DBSEM_ERROR — Information
Catalog Manager
internal error
(can’t get
database
semaphore).

30015 FLG_ERR_STRINGFILE_ERROR — Reserved

30016 FLG_ERR_MSG_TOO_LONG — Information
Catalog Manager
internal error.

30017 FLG_ERR_DG_DB_INUSE — User tried to log
on to the same
Information
Catalog Manager
database twice.

30018 FLG_ERR_DGLANG_PATH_NOT_FOUND — The Information
Catalog Manager
language
dependent
directory path
cannot be found.

30019 FLG_ERR_INV_DG_CP — The code pages
specified on the
workstation are
not supported
by the
Information
Catalog
Manager.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 275

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

30020 FLG_ERR_INV_DB_CP — The code pages
specified on the
workstation are
not supported
by the database.

30021 FLG_ERR_VWSPATH_NOT_FOUND — Environment
path
(VWSPATH) was
not set in either
the system
registry or the
AUTOEXEC.BAT
file.

31000 FLG_ERR_DBERROR Database
SQLCODE

An unexpected
database error
has occurred.
See the database
documentation
for an
explanation of
the SQLCODE.

31001 FLG_ERR_DBDISC_FAIL — Error occurred
while
disconnecting
from the
database.

31002 FLG_ERR_NODBACCESS — You cannot
access the
specified
Information
Catalog Manager
database.

Ask the
administrator or
database
administrator for
the database
authorization
you need.

The Information Catalog Manager reason codes

276 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

31003 FLG_ERR_ID_LIMIT_EXCEEDED — The
system-
generated ID
(object type ID
or instance ID)
exceeds the
maximum
number of IDs
allowed in the
Information
Catalog Manager
database.

This limit is
99999999 for
object instance
IDs, and 999999
for object type
IDs.

31004 FLG_ERR_PROP_LIMIT_EXCEEDED — Exceeded the
maximum
number of
properties (255)
allowed for an
object type.

31005 FLG_ERR_LONG_VARCHAR_LIMIT_EXCEEDED Sequence
number of
property

Exceeded the
maximum
number of
LONG
VARCHAR
properties (14)
allowed for an
object type.

31006 FLG_ERR_PTNAME_EXCEEDS_ENVSIZE — The physical
type name for
the object type
exceeds the
maximum length
allowed. This
maximum length
depends on the
underlying
database you are
using.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 277

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

31007 FLG_ERR_DBNAME_NOT_FOUND — Unable to find
the Information
Catalog Manager
database. If the
database is local,
the database
name was not
found. If the
database is
remote, the
database name
was not defined
in the local
database
directory.

31008 FLG_ERR_SRH_CRITERIA_TOOLONG — The total length
of the search
criteria is too
long. The
maximum length
for the sum of
the lengths for
all specified
search criteria is
about 32700
bytes, depending
on the number
of properties in
the search
criteria.

31009 FLG_ERR_DB_TRANSLOG_FULL — The database
transaction log is
full.

Issue
FLGCommit or
FLGRollback
immediately.
Increase the
database log file
size to increase
the number of
changes possible
before you need
to commit the
changes.

The Information Catalog Manager reason codes

278 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

31010 FLG_ERR_INVALID_AUTHENTICATION — The database
was cataloged
with an incorrect
authentication
option.

31011 FLG_ERR_CHARCONV_WINTODBM — An error
occurred while
converting a
character from
the Windows
code page to the
database code
page.

31012 FLG_ERR_DB_TIMEOUT — Database server
is busy or
deadlocked.

31013 FLG_ERR_NOT_SUPPORTED_BY_DB — This function is
not supported
by the database
server.

31014 FLG_ERR_DB_ICON_EXIST — FLGManageIcons
was called with
the InOptions
parameter set to
FLG_ACTION_CREATE,
but the icon
specified in
pszIconFileID
already exists in
the database.

Specify a
different icon
file, or use
FLG_ACTION_UPDATE.

32000 FLG_ERR_REG_NOTEXIST — No registration
information
exists for the
specified object
type.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 279

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

32001 FLG_ERR_TYPEID_NOTEXIST — No registration
information
exists for the
specified object
type.

32002 FLG_ERR_SRCTYPEID_NOTEXIST — The specified
source object
type does not
exist.

32003 FLG_ERR_TRGTYPEID_NOTEXIST — The specified
target object
type does not
exist.

32004 FLG_ERR_INSTID_NOTEXIST — The specified
object ID
(FLGID) does
not exist.

32005 FLG_ERR_SRCINSTID_NOTEXIST — The specified
source object ID
(FLGID) does
not exist.

32006 FLG_ERR_TRGINSTID_NOTEXIST — The specified
target object ID
(FLGID) does
not exist.

32007 FLG_ERR_PROP_NOTEXIST — Unable to start
the specified
program. The
property
specified in the
program object
parameter list is
not defined for
the object
instance.

32008 FLG_ERR_REL_NOTEXIST — Unable to delete
the relationship
because it does
not exist.

32009 FLG_ERR_TYPE_NOT_CREATED — The specified
object type has
been registered
but not created.

The Information Catalog Manager reason codes

280 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

32010 FLG_ERR_SRCTYPE_NOT_CREATED — The object type
specified in the
FLGID of the
source object
instance has
been registered
but not created.

32011 FLG_ERR_TRGTYPE_NOT_CREATED — The object type
specified in the
FLGID of the
target object
instance has
been registered
but not created.

32012 FLG_ERR_INV_P_CATEGORY — P (Program) is
an invalid value
for the category
when creating or
deleting object
types. You
cannot create or
delete Program
category object
types.

32013 FLG_ERR_INV_P_HANDLE_CAT — The HANDLES
property value
of the Program
object instance is
invalid.

The value must
be the name of a
non-PROGRAM
object type.

32014 FLG_ERR_P_HANDLE_NOTEXIST — The HANDLES
property value
of the Program
object instance is
invalid. The
specified object
type does not
exist.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 281

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

32015 FLG_ERR_P_HANDLE_NOT_CREATED — The HANDLES
property value
of the Program
object instance is
invalid. The
specified object
type has been
registered, but
not created.

32016 FLG_ERR_INV_A_CATEGORY — A (Attachment)
is an invalid
value for the
category when
creating,
deleting, or
appending to
object types. You
cannot create,
delete, or
append to
Attachment
category object
types.

32300 FLG_ERR_REG_DUP — Unable to
register the
object type. The
specified object
type has already
been registered.

32301 FLG_ERR_TYPE_DUP — Unable to create
an object type
with the
specified name.
The specified
object type name
already exists in
the Information
Catalog Manager
database.

The Information Catalog Manager reason codes

282 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

32302 FLG_ERR_INST_DUP — Unable to create
the specified
object instance.
The Information
Catalog Manager
database already
contains an
object instance
with identical
UUI property
values.

32303 FLG_ERR_REL_DUP — Unable to create
the specified
object
relationship. The
relationship
already exists.

32304 FLG_ERR_REL_RECURSIVE — Unable to create
the specified
relationship. The
specified
relationship
would cause a
Grouping object
to contain itself.

32305 FLG_ERR_UUI_DUP Sequence
number of
property that
duplicates the
UUI sequence
number

The definition of
this object type
or object
contains two or
more properties
with the same
UUI sequence
number.

32306 FLG_ERR_INVALID_LINK_RELATION — The specified
LINK
relationship is
invalid, because
the linker and
linkee are the
same.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 283

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

32307 FLG_ERR_INVALID_ATTACHMENT_RELATION — The attachment
relationship is
rejected because
the target object
is already
related to some
non-attachment
source object.
Attachment
category objects
can be
associated to
only one
non-attachment
category source
object.

32308 FLG_ERR_ICONFILE_RETRIEVE_ERROR Reason code API
FLGManageIcons
encountered an
error while
retrieving
(opening,
reading, or
closing) the icon
file specified in
parameter
pszIconFileID.
This applies to
input options
FLG_ACTION_CREATE
or
FLG_ACTION_UPDATE
only. The reason
code returned in
the extended
code indicates
the error.
Processing is
unsuccessful.

The Information Catalog Manager reason codes

284 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

32400 FLG_ERR_CONTAINEE_EXIST — Unable to delete
this object
instance because
this Grouping
object instance
contains one or
more object
instances. You
cannot delete
this object
instance until
you delete either
the relationships
or the contained
objects.

32401 FLG_ERR_INST_EXIST — Unable to delete
the specified
object type
because
instances of the
object type exist.
You cannot
delete this object
type until you
delete all its
instances.

32402 FLG_ERR_TYPE_EXIST — Unable to delete
the object type
registration
because its
object type
exists. You
cannot delete
this object type
registration until
the object type is
deleted.

32403 FLG_ERR_CONTAINEE_DIFFTYPE — FLGDeleteTypeExt
API stopped,
because it found
a containee
belonging to a
different object
type.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 285

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

32500 FLG_ERR_INVALID_SRCCAT — Unable to create
the specified
relationship. The
category for the
source object
type is invalid.

32501 FLG_ERR_INVALID_TRGCAT — Unable to create
the specified
relationship. The
category for the
target object
type is invalid.

32502 FLG_ERR_INVALID_CAT — The category of
the input object
type is incorrect.

Refer to the
specific
documentation
for the API you
called for the
required input
object type.

32600 FLG_ERR_KAEXIST — Unable to log on
as an
administrator.
Another
administrator is
already logged
on. The
Information
Catalog Manager
allows only one
administrator to
log on at a time.

32601 FLG_ERR_NOTAUTH — The current user
ID is not
authorized to
use this
Information
Catalog Manager
function.

The Information Catalog Manager reason codes

286 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

32602 FLG_ERR_NOT_INITIALIZED — The Information
Catalog Manager
is not initialized.

FLGInit must be
issued before the
Information
Catalog Manager
can perform any
other functions.

32603 FLG_ERR_ALREADY_INITIALIZED — The Information
Catalog Manager
has already been
initialized. You
cannot issue a
second FLGInit
call before
issuing an
FLGTerm call.

32604 FLG_ERR_NOT_CREATOR — You do not have
the authority to
update
Comments
objects you did
not create.

32700 FLG_ERR_INVALID_TYPEID — The specified
object type ID
(OBJTYPID) is
invalid.

32701 FLG_ERR_INVALID_TYPEID_LEN — The specified
object type ID
(OBJTYPID) is
invalid. This
value must be 6
bytes long.

32702 FLG_ERR_INVALID_TYPEID_VAL — The value of the
specified object
type ID
(OBJTYPID) is
invalid.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 287

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

32703 FLG_ERR_INVALID_FLGID Number of
exported
objects or
position of
parameter

The specified
object ID
(FLGID) is
invalid.

32704 FLG_ERR_INVALID_FLGID_LEN — The object ID
(FLGID) is
invalid. This
value must be 16
bytes long.

32705 FLG_ERR_INVALID_FLGID_VAL — The object ID
(FLGID) contains
invalid
characters.

32706 FLG_ERR_INVALID_TYPNM — The object type
name is invalid.

32707 FLG_ERR_INVALID_INSTNM — The object
instance name is
invalid.

32708 FLG_ERR_INVALID_TIMESTAMP Sequence
number of
property

The input value
is invalid. The
input value must
be a time stamp
of the form
YYYY-MM-DD-
HH.MM.SS.NNNNNN
and 26 bytes
long.

32709 FLG_ERR_INVALID_SRCID — The source
object ID
(FLGID) is
invalid.

32710 FLG_ERR_INVALID_TRGID — The target object
ID (FLGID) is
invalid.

32711 FLG_ERR_INVALID_RELTYPE — The specified
relation type
(RelType) is
invalid. Valid
values are C, T,
A, or L.

The Information Catalog Manager reason codes

288 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

32712 FLG_ERR_INVALID_RELOPT — The specified
relation option
(RelOpt) is
invalid. Valid
values are C or
D.

32713 FLG_ERR_INVALID_PGM_FLGID — The specified
object ID
(FLGID) for the
program object
is invalid.

32714 FLG_ERR_INVALID_OBJ_FLGID — The specified
object ID
(FLGID) for the
object providing
parameters for
the FLGOpen
call is invalid.

32718 FLG_ERR_INVALID_USERID — The user ID
value is invalid.
The length must
be 1-8
characters.

User
ID/password is
invalid
(password is
case sensitive on
AIX®).

User is not
logged on to the
remote node
(DB2 for OS/2
V2.1).

32719 FLG_ERR_INVALID_PASSWORD — The specified
password is
invalid. The
length must be
1-8 characters.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 289

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

32720 FLG_ERR_INVALID_DBNAME — The specified
Information
Catalog Manager
database name is
invalid. The
length must be
1-8 characters.

32721 FLG_ERR_INVALID_ADMINOPT — The specified
user option
(admin) is
invalid. Valid
values are Y and
N.

32722 FLG_ERR_INVALID_TRACEOPT — The trace option
(TraceOpt) is
invalid. Valid
options are: 0, 1,
2, 3, and 4.

32723 FLG_ERR_NULL_PARAMETER Position of
parameter

A parameter
required as
input to this API
call is missing or
null. The
extended code
indicates the
position of the
null parameter.

32724 FLG_ERR_NULL_EXTCODE — The extended
code pointer
parameter
(pExtCode) is
null.

32725 FLG_ERR_INVALID_CONVERTOPT — The specified
input option
(Options) was
invalid. Valid
values are D, or
F.

32726 FLG_ERR_INVALID_ICONOPT — The specified
input options
(Options) are not
valid for
FLGManageIcons.

The Information Catalog Manager reason codes

290 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

32727 FLG_ERR_INVALID_TAGBUFOPT — The InOptions
specified for
FLGManageTagBuf
API is not valid.
Use
FLG_TAGBUF_QUERY
or
FLG_TAGBUF_RESET
as defined in the
DGxAPI.H file.

32728 FLG_ERR_INVALID_TAGFILEOPT — The Options
parameter
specified for
FLGXferTagBuf
API is not valid.
Use
FLG_TAGOPT_NEW
or
FLG_TAGOPT_REPLACE
as defined in the
DGxAPI.H file.

32729 FLG_ERR_INV_DGFLAG_ACTION — The Action
parameter
specified for
FLGManageFlags
is not valid. Use
FLG_ACTION_GET
or
FLG_ACTION_UPDATE
as defined in
DGxAPI.H file.

32730 FLG_ERR_INV_DGFLAG_FLAGTYPE — The FlagType
parameter
specified for the
FLGManageFlags
API is not valid.
Use
FLG_HISTORY_TYPE_DELETE
as defined in the
DGxAPI.H file.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 291

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

32731 FLG_ERR_INV_DGFLAG_VALUE — The chValue
parameter
specified for
FLGManageFlags
is not valid.
Valid values are
FLG_YES or
FLG_NO.

32732 FLG_ERR_INV_STATUS_ACTION — The Action
parameter
specified for the
FLGManageCommentStatus
API is not valid.
Use
FLG_ACTION_UPDATE
or
FLG_ACTION_GET
as defined in the
DGxAPI.H file.

32733 FLG_ERR_INV_STATUS_LEN Sequence
number of
property

The input
structure object
area contains a
status field that
is longer than 80
characters.

32734 FLG_ERR_INVALID_TREEOPT — The Options
parameter
specified for
FLGDeleteTree
API is not valid.
Use
FLG_DELTREE_REL
or
FLG_DELTREE_ALL
as defined in the
DGxAPI.H file.

The Information Catalog Manager reason codes

292 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

32735 FLG_ERR_INVALID_ASSOCOPT — The Options
parameter
specified for
FLGListAssociates
API is not valid.
Use
FLG_LIST_PROGRAM,
FLG_LIST_ATTACHMENT,
FLG_LIST_COMMENTS,
FLG_LIST_CONTAIN,
FLG_LIST_CONTACT
or
FLG_LIST_LINK
as defined in the
DGxAPI.H file.

32736 FLG_ERR_INVALID_ORPHANOPT — The Options
parameter
specified for the
FLGListOrphans
API is not valid.
Use
FLG_LIST_PROGRAM,
FLG_LIST_CONTACT,
FLG_LIST_ATTACHMENT
or
FLG_LIST_COMMENTS
as defined in the
DGxAPI.H file.

32737 FLG_ERR_INVALID_FOUNDINOPT — The Options
parameter
specified in the
FLGFoundIn
API is not valid.
Use
FLG_LIST_PROGRAM,
FLG_LIST_CONTAIN,
FLG_LIST_CONTACT
or
FLG_LIST_ATTACHMENT
as defined in the
DGxAPI.H file.

33000 FLG_ERR_ICON_NOTEXIST — The specified
icon file does
not exist.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 293

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

34000 FLG_ERR_INVALID_IOSTRUCT — The input
structure is
invalid. Either
the definition
area length or
object area
length does not
match the length
of the area it
describes.

34001 FLG_ERR_NO_DEFN_AREA — The definition
area is missing
in the input
structure.

34002 FLG_ERR_NO_OBJ_AREA — The object area
is missing in the
input structure.

34003 FLG_ERR_INVALID_POSITION — Information
Catalog Manager
internal error.

34004 FLG_ERR_IOSTRUCT_CONVERSION — An Information
Catalog Manager
internal error
occurred while
reading the
input structure
or writing the
output structure.

34005 FLG_ERR_INVALID_IOSTRUCT_NULL Byte offset The input
structure
contains a null
character.

34006 FLG_ERR_OBJLEN_OBJCNT_MISMATCH — Either the object
area entry count
or the object
area length is
zero.

If one of the
values is greater
than zero, the
other value
cannot be zero.

The Information Catalog Manager reason codes

294 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

34200 FLG_ERR_INV_HEADER_IDENT — The identifier in
the input
structure header
area is invalid.

The identifier
must be
FLG-HEAD.

34201 FLG_ERR_INV_HEADER_DEFLEN — The definition
length in the
input structure
header area is
not valid.

The definition
length must be
greater than 0
and a multiple
of 160. Some API
calls require a
fixed definition
length; see the
syntax for the
API call for the
required
definition length.

34202 FLG_ERR_INV_HEADER_DEFCNT — The number of
definitions
expected based
on the definition
length in the
header area is
invalid for
FLGExport.

The number of
definitions must
be five for
FLGExport;
therefore, the
definition length
must be 800.

34203 FLG_ERR_INV_HEADER_OBJLEN — The object length
in the input
structure header
area is not valid.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 295

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

34204 FLG_ERR_INV_HEADER_OBJCNT — The object area
entry count in
the input
structure header
area is not valid.

34205 FLG_ERR_INV_HEADER_CATEGORY — Invalid category
specified in
header area.

For
FLGCreateReg,
the category
value must be
one of the
following: G, E,
C, D, or S.

For
FLGCreateType,
FLGCreateInst,
FLGUpdateReg,
FLGAppendType,
and
FLGUpdateInst,
the category
value must
match the value
for the related
object type
registration.

34206 FLG_ERR_INV_HEADER_OBJTYPEID — The value of the
object type ID in
the header area
is invalid.

This value must
be identical to
the object type
ID generated for
the related object
type registration.

The Information Catalog Manager reason codes

296 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

34207 FLG_ERR_CONFLICTING_HEADER_FIELDS — The number of
properties
derived from the
definition length
conflicts with
the object area
entry count in
the header area.

The number of
properties equals
the definition
area length
divided by 160,
and the object
area entry count
must be evenly
divisible by the
number of
properties.

34208 FLG_ERR_CONFLICTING_OBJTYPID Sequence
number of
property

The value
specified for the
object type
identifier
(OBJTYPID) in
the object area
does not match
the object type
ID in the header
area.

34209 FLG_ERR_HEADER_DEFLEN_EXCEEDS_MAX — The definition
length in the
header area
exceeds the
maximum
number of
properties.

34210 FLG_ERR_NONBLANK_HEADER_CATEGORY — The category
value in the
header area is
invalid.

34211 FLG_ERR_NONBLANK_HEADER_OBJTYPEID — The object type
ID value in the
header area is
invalid.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 297

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

34222 FLG_ERR_NONBLANK_HEADER_RESERVED — The reserved
area of the input
structure header
area must
always be blank.

34500 FLG_ERR_INV_PROPERTY_NAME Sequence
number of
property

The specified
property name is
not one of the
property names
required with
this API call.

34501 FLG_ERR_INV_PROPERTY_PPNAME Sequence
number of
property

The property
short name for a
property in the
definition area is
invalid. The
value may be
missing, using
DBCS characters,
or not using the
value required
by the API call.

34502 FLG_ERR_INV_PROPERTY_DATATYPE Sequence
number of
property

The data type
for a property in
the definition
area is invalid.

Valid values are
CHAR,
TIMESTAMP,
VARCHAR, or
LONG
VARCHAR,
depending on
the API call.

34503 FLG_ERR_INV_PROPERTY_V_FLAG Sequence
number of
property

The value flag
for the indicated
property in the
definition area is
invalid.

Valid values are
R, O, or S.

The Information Catalog Manager reason codes

298 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

34504 FLG_ERR_INV_PROPERTY_SVALUE_V_FLAG Sequence
number of
property

The value flag
for the indicated
property in the
definition area is
invalid. The
specified value
flag is S, but the
Information
Catalog Manager
does not
generate the
property
indicated by the
property short
name.

34505 FLG_ERR_INV_PROPERTY_CS_FLAG Sequence
number of
property

The
case-sensitivity
flag value for
the indicated
property in the
definition area is
invalid.

Valid values are
Y or N.

34506 FLG_ERR_INV_PROPERTY_FS_FLAG Sequence
number of
property

The fuzzy search
flag value for
the indicated
property in the
definition area is
invalid.

Valid values are
Y or N.

34507 FLG_ERR_INV_PROPERTY_UUISEQ Sequence
number of
property

The UUI
Sequence for the
indicated
property in the
definition area is
invalid.

Valid values are
1, 2, 3, 4, 5, or
blank.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 299

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

34508 FLG_ERR_INV_PROPERTY_LEN_FOR_DTYPE Sequence
number of
property

The length value
is invalid for the
indicated
property in the
definition area
because of the
defined data
type.

34509 FLG_ERR_INV_PROP_LEN_FIELD Sequence
number of
property

The length for
the indicated
property in the
definition area is
invalid.

Check the API
call syntax for
the required
length.

34510 FLG_ERR_INV_PROP_VAL_LEN — The length field
for a VARCHAR
or LONG
VARCHAR
property value
in the object area
is invalid; it
must contain
right-aligned
numeric
characters.

The Information Catalog Manager reason codes

300 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

34511 FLG_ERR_INV_RQDPROP_SPEC Sequence
number of
property

In a property
definition in the
definition area,
one or more
fields required to
define a required
property are
invalid.

For a required
property, the
following fields
must be
specified as
shown in the
input structure
diagrams for the
API call:

v Property name
(bytes 0-79)

v Data type
(bytes 80-109)

v Length (bytes
110-117)

v Property short
name (bytes
118-125)

v Value flag
(byte 126)

v UUI sequence
number (byte
127)

34512 FLG_ERR_DUP_PROPERTY_NAME Sequence
number of
property

Another
property in the
input structure
already has this
property name.
Each property
name must be
unique in the
input structure.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 301

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

34513 FLG_ERR_DUP_PROPERTY_PPNAME Sequence
number of
property

The property
short name for
the indicated
property is
identical to the
property short
name of another
property in this
input structure.
Each property
short name must
be unique in the
input structure.

34514 FLG_ERR_INV_TOT_UUI_LEN — Reserved

34515 FLG_ERR_INV_UUI_LENGTH UUI sequence
number

The indicated
UUI property
length value in
the definition
area exceeds the
maximum length
for a UUI
property.

34516 FLG_ERR_MISSING_PROPERTY — The definition
area for the
object instance
does not contain
all the properties
defined for the
object type.

34517 FLG_ERR_MISSING_PROPERTY_NAME Sequence
number of
property

The property
name is required
but missing for
the indicated
property in the
definition area.

34518 FLG_ERR_MISSING_PROPERTY_LENGTH Sequence
number of
property

The length value
is required but
missing for the
indicated
property in the
definition area.

The Information Catalog Manager reason codes

302 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

34519 FLG_ERR_MISSING_PROPERTY_PPNAME Sequence
number of
property

The property
short name is
required but
missing for the
indicated
property in the
definition area.

34520 FLG_ERR_MISSING_REG_DPNAME — The DP NAME
(DPNAME)
property is
required but
missing in the
input structure
definition area.

34521 FLG_ERR_MISSING_REG_PTNAME — The PHYSICAL
TYPE NAME
(PTNAME)
property is
required but
missing in the
input structure
definition area.

34522 FLG_ERR_MISSING_REG_CREATOR — The CREATOR
property is
required but
missing in the
input structure
definition area.

34523 FLG_ERR_MISSING_REG_UPDATIME — The LAST
CHANGED
DATE AND
TIME
(UPDATIME)
property is
required but
missing in the
input structure
definition area.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 303

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

34524 FLG_ERR_MISSING_REG_UPDATEBY — The LAST
CHANGED BY
(UPDATEBY)
property is
required but
missing in the
input structure
definition area.

34525 FLG_ERR_MISSING_REG_NAME — The EXTERNAL
NAME OF OBJ
TYPE (NAME)
property is
required but
missing in the
input structure
definition area.

34526 FLG_ERR_MISSING_UUI_SEQUENCE — The indicated
UUI sequence
number was
specified in the
definition area,
although the
preceding
number was not.

UUI sequence
numbers must
not skip
numbers in the
sequence: 1, 2,
and 3 is valid; 1,
3, and 5 is
invalid.

34527 FLG_ERR_MISSING_RQD_INSTIDNT — The Instance
identifier
(INSTIDNT)
property is
required but
missing in the
input structure
definition area.

The Information Catalog Manager reason codes

304 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

34528 FLG_ERR_MISSING_RQD_NAME — The Name
(NAME)
property is
required but
missing in the
input structure
definition area.

34529 FLG_ERR_MISSING_RQD_OBJTYPID — The Object type
identifier
(OBJTYPID)
property is
required but
missing in the
input structure
definition area.

34530 FLG_ERR_MISSING_RQD_UPDATEBY — The Last
Changed By
(UPDATEBY)
property is
required but
missing in the
input structure
definition area.

34531 FLG_ERR_MISSING_RQD_UPDATIME — The Last
Changed Date
and Time
(UPDATIME)
property is
required but
missing in the
input structure
definition area.

34532 FLG_ERR_NOMATCH_PROPERTY_NAME Sequence
number of
property

The indicated
input property
in the definition
area matches the
property short
name for an
existing
property, but the
property names
do not match.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 305

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

34533 FLG_ERR_NOMATCH_PROPERTY_SPEC Sequence
number of
property

The indicated
property in the
definition area
matches the
property name
and property
short name for
an existing
property;
however, the
data type,
length, value
flag, or UUI
sequence values
do not match.

34534 FLG_ERR_PROPERTY_NOTEXIST Sequence
number of
property

The property
specified as part
of the selection
criteria does not
exist.

34536 FLG_ERR_UNMATCH_DEFINITION Sequence
number of
property

One of the
following
occurred:

v The indicated
property
specified in
the definition
area for the
object instance
does not
match any
property
defined for
the object
type.

v The object
instance has
more
properties
defined in the
definition area
than are
defined for
the object
type.

The Information Catalog Manager reason codes

306 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

34537 FLG_ERR_PROPDUP — Duplicate
property name
or property
short name
specified in the
definition area.

34538 FLG_ERR_REG_PROPS_OUT_OF_SEQUENCE — The registration
properties are
not specified in
the correct
sequence.

34539 FLG_ERR_RQD_PROPS_OUT_OF_SEQUENCE — The required
properties are
not specified in
the correct
sequence in the
definition area.

34540 FLG_ERR_INV_V_FLAG_FOR_APPEND Sequence
number of
property

The indicated
appended
property has a
value flag of S
or R.

An appended
property must
have a value flag
of ″O″ (optional
property).

34541 FLG_ERR_INV_UUI_FOR_APPEND Sequence
number of
property

The indicated
appended
property is
specified as a
UUI property.
Appended
properties
cannot be UUI
properties.

34542 FLG_ERR_NONBLANK_PROPERTY_V_FLAG Sequence
number of
property

The value flag
for the indicated
property is not
blank. The value
flag is not used
by this API call
and must be left
blank.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 307

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

34543 FLG_ERR_NONBLANK_PROPERTY_CS_FLAG Sequence
number of
property

The
case-sensitivity
flag for the
indicated
property is not
blank. The
case-sensitivity
flag is not used
by this API call
and must be left
blank.

34544 FLG_ERR_NONBLANK_PROPERTY_FS_FLAG Sequence
number of
property

The fuzzy search
flag for the
indicated
property is not
blank. The fuzzy
search flag is not
used by this API
call and must be
left blank.

The Information Catalog Manager reason codes

308 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

34545 FLG_ERR_NONBLANK_PROPERTY_UUISEQ Sequence
number of
property

The UUI
sequence
position for the
indicated
property is not
blank.

The UUI
sequence
position is not
used by this API
and must be left
blank.

The data type is
LONG
VARCHAR and
the UUI
sequence
position is not
blank. A UUI
property can be
CHAR,
VARCHAR,
TIMESTAMP,
but not LONG
VARCHAR.

34546 FLG_ERR_NONBLANK_PROPERTY_RESERVED Sequence
number of
property

The reserved
area of the input
structure
property
specifications
must always be
blank.

34547 FLG_ERR_UUI_V_FLAG_MUST_BE_R Sequence
number of
property

The value flag
for the indicated
property is not
valid because all
UUI properties
must have value
flags of R
(required).

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 309

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

34548 FLG_ERR_AT_LEAST_ONE_UUI_PROP_RQD — None of the
properties
specified in the
definition area
are defined as
UUI properties.

Every
Information
Catalog Manager
object type must
be defined with
at least one UUI
property.

34550 FLG_ERR_DUP_REG_DPNAME — The DP NAME
(DPNAME)
specified in the
definition area
duplicates the
DP NAME value
of an existing
object type
registration.

The DPNAME
value must be
unique across
the Information
Catalog Manager
database.

34551 FLG_ERR_DUP_REG_PTNAME — The PHYSICAL
TYPE NAME
(PTNAME)
duplicates the
name of an
existing table in
the database.

The PTNAME
value must be
unique across
the Information
Catalog Manager
database.

The Information Catalog Manager reason codes

310 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

34552 FLG_ERR_DUP_REG_NAME — The specified
EXTERNAL
NAME OF OBJ
TYPE (NAME)
duplicates the
NAME value of
an existing
object type
registration.

The NAME must
be unique across
the Information
Catalog Manager
database.

34553 FLG_ERR_INV_DPNAME — The syntax of
the specified
DPNAME value
is invalid.

34554 FLG_ERR_INV_DB_PTNAME — The specified
PTNAME value
is not valid
according to
database syntax
rules.

34555 FLG_ERR_INV_DB_DPNAME — Reserved

34556 FLG_ERR_INV_DB_PROPERTY_PPNAME — The property
short name is
not valid
according to
database syntax
rules.

34557 FLG_ERR_INV_TOT_PROPERTY_LEN — The total length
of CHAR,
VARCHAR, and
TIMESTAMP
properties, plus
overhead, is
longer than the
maximum
allowed by a
database for
each row in the
physical table in
the database.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 311

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

34558 FLG_ERR_INV_PTNAME — The syntax of
the specified
PTNAME value
is invalid.

34559 FLG_ERR_INV_PROPERTY_CS_FLAG_FOR_DB Sequence
number of
property

The value for
the
case-sensitivity
flag is not valid
for the database.

34560 FLG_ERR_SRH_PROP_VAL_TOOLONG Sequence
number of
property

The search
criteria value is
too long. The
maximum length
when using DB2
on OS/390 is
254 bytes.

34561 FLG_ERR_EXTRA_PROPS_IN_IOSTRUCT — The input
structure
contains one or
more properties
that are not in
the object type
definition.

34562 FLG_ERR_MISSING_REQ_PROPERTY Sequence
number of
property

A required
property is
missing from the
input structure
of an
FLGCreateInst or
FLGUpdateInst
API. The
extended code
points to the
position of the
missing property
using the object
type’s complete
definition.

The Information Catalog Manager reason codes

312 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

34800 FLG_ERR_PROP_VALUE_REQUIRED Sequence
number of
property

No value was
specified in the
object area for
the indicated
property. The
definition for the
property
specifies that a
value is
required.

34801 FLG_ERR_PROP_VALUE_EXCEEDED Sequence
number of
property

The length of
the value for the
indicated
property exceeds
the maximum
length defined in
the definition
area.

34802 FLG_ERR_INVALID_PROPERTY_VALUE Sequence
number of
property

The property
value is invalid
for one of the
following
reasons:

v The value
uses DBCS
characters, but
must use
SBCS
characters.

v With
FLGUpdateInst,
the INSTIDNT
value in the
object area is
not valid.

34803 FLG_ERR_INV_SRH_VAL_FOR_LONGVARCHAR Sequence
number of
property

The search value
for the indicated
property is
longer than the
maximum length
allowed for
search criteria
with a LONG
VARCHAR data
type (3000).

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 313

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

34804 FLG_ERR_INV_OBJ_LENGTH — The actual
length of the
object area does
not match the
object length
specified in the
header area.

34805 FLG_ERR_PARMLIST_REQUIRES_HANDLES Sequence
number of
property

The HANDLES
property is not
specified in the
definition area.

34806 FLG_ERR_REG_CONFLICT — The DPNAME
or the PTNAME
values specified
in the object area
do not match the
values for the
registration
information
identified by the
object type ID.

34807 FLG_ERR_ICON_EXCEEDS_LIMIT — The icon size is
greater than the
maximum icon
size (30000).

34808 FLG_ERR_INST_VALUE_EXCEEDED — The total length
of the instance
value exceeds
the database
limit.

34809 FLG_ERR_INVALID_VARCHAR_LENGTH — Reserved

The Information Catalog Manager reason codes

314 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

34810 FLG_ERR_INVALID_CREATOR — APIs
FLGCreateInst
and
FLGUpdateInst
found an error
in the input I/O
structure. The
CREATOR value
is not the same
as the logged-on
user ID. This is a
requirement if
the calling user
is not authorized
to perform
object
management
operations.

35000 FLG_ERR_PRG_NOT_STARTED — The program
could not be
started due to an
unexpected
operating system
error.

35001 FLG_ERR_PROG_PARM_TOOLONG — The parameter
specified for the
Parameter list
(PARMLIST)
property of the
program object
is too long for
the
platform-specific
program
invocation.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 315

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

35002 FLG_ERR_INV_PROG_PARM — The parameter
list in the
program object
contains an
unmatched
token specifier
(%), or a
property
delimited by
token specifiers
is not a property
of the object
type identified
by the
HANDLES
property.

35003 FLG_ERR_PROGRAM_NOTEXIST — The program to
be started does
not exist or the
path
specification is
incorrect.

35004 FLG_ERR_INV_SYNTAX_STARTCMD — The value of the
STARTCMD
property of the
Program object
is invalid.

36001 FLG_ERR_ACCESS_DENIED — Access is denied
when opening or
reading a file.

36002 FLG_ERR_BAD_INVOCATION — An error
occurred on the
Information
Catalog Manager
command line
invocation.

36003 FLG_ERR_BROKEN_PIPE — Unable to open
or read the
specified file.

36004 FLG_ERR_BUFFER_OVERFLOW — Information
Catalog Manager
internal error.

The Information Catalog Manager reason codes

316 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

36005 FLG_ERR_CANNOT_MAKE — Unable to create
the specified file.

36006 FLG_ERR_CLOSE_ERROR — Unable to close
the file.

36007 FLG_ERR_COPY_ERROR — Unable to copy a
file.

36008 FLG_ERR_DELETE_ERROR — Unable to delete
the specified file.

36009 FLG_ERR_DEVICE_IN_USE — Unable to access
a file; the file is
currently in use.

36010 FLG_ERR_DIRECT_ACCESS_HANDLE — Information
Catalog Manager
internal error.

36011 FLG_ERR_DISK_FULL — The disk is full
and the file
cannot be
created.

36012 FLG_ERR_DRIVE_LOCKED — Unable to access
a drive; the
drive is
currently in use.

36013 FLG_ERR_DUPHNDL_ERROR — Information
Catalog Manager
internal error.

36014 FLG_ERR_EAS_DIDNT_FIT — The icon file has
too many
extended
attributes.

36015 FLG_ERR_EA_LIST_INCONSISTENT — Some of the
extended
attributes of the
icon file are
invalid.

36016 FLG_ERR_EAS_NOT_SUPPORTED — Unable to copy a
file with
extended
attributes to a
file system that
does not support
extended
attributes.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 317

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

36017 FLG_ERR_FILENAME_EXCED_RANGE — The file name or
path was
invalid.

36018 FLG_ERR_FILE_NOT_FOUND — The specified
path and file
name was not
found.

36019 FLG_ERR_FINDFILE_ERROR — Unable to find
the specified file.

36020 FLG_ERR_FINDNEXT_ERROR — Unable to find
the next file.

36021 FLG_ERR_INVALID_ACCESS — Unable to write
to the file; the
file is read-only.

36022 FLG_ERR_INVALID_DIRECTORY — The specified
directory is
invalid.

36023 FLG_ERR_INVALID_DRIVE — Unable to access
the specified
drive.

36024 FLG_ERR_INVALID_EA_NAME — Information
Catalog Manager
internal error.

36025 FLG_ERR_INVALID_FILE_NAME — The specified file
name is invalid.

36026 FLG_ERR_INVALID_FUNCTION — Information
Catalog Manager
internal error.

36027 FLG_ERR_INVALID_HANDLE — Information
Catalog Manager
internal error.

36028 FLG_ERR_INVALID_PARAMETER — Information
Catalog Manager
internal error.

36029 FLG_ERR_INVALID_TARGET_HANDLE — Information
Catalog Manager
internal error.

The Information Catalog Manager reason codes

318 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

36030 FLG_ERR_LOCK_VIOLATION — Unable to access
a file; the file is
locked by
another
application.

36031 FLG_ERR_META_EXPANSION_TOO_LONG — Information
Catalog Manager
internal error.

36032 FLG_ERR_MORE_DATA — Unable to open
a file; the file is
too large.

36033 FLG_ERR_NEED_EAS_FOUND — Unable to move
the file to a
drive that does
not support
extended
attributes.
Extended
attributes are
required for this
file.

36034 FLG_ERR_NEGATIVE_SEEK — Information
Catalog Manager
internal error.

36035 FLG_ERR_NOT_DOS_DISK — The specified
disk is not a
valid disk or
does not exist.

36036 FLG_ERR_NO_MORE_FILES — Information
Catalog Manager
internal error.

36037 FLG_ERR_NO_MORE_SEARCH_HANDLES — This Information
Catalog Manager
session reached
the maximum
number of
handles.

In your
CONFIG.SYS
file, increase the
value for the
FILES= option.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 319

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

36038 FLG_ERR_OPEN_ERROR — Unable to open
the icon file, tag
language file,
echo file, or log
file.

36039 FLG_ERR_OPEN_FAILED — Unable to open
the icon file, tag
language file,
echo file, or log
file.

36040 FLG_ERR_PATH_NOT_FOUND — The specified
path was not
found.

36041 FLG_ERR_PIPE_BUSY — Information
Catalog Manager
internal error.

36042 FLG_ERR_READ_ERROR — Information
Catalog Manager
internal error.

36043 FLG_ERR_SEEK_ON_DEVICE — Information
Catalog Manager
internal error.

36044 FLG_ERR_SETFILEPTR_ERROR — Information
Catalog Manager
internal error.

36045 FLG_ERR_SHARING_BUFFER_EXCEEDED — This file cannot
be shared,
because there is
a buffer
overflow.

36046 FLG_ERR_SHARING_VIOLATION — Unable to access
this file. Another
process is using
this file.

36047 FLG_ERR_TOO_MANY_OPEN_FILES — Unable to open
any more files.

Under OS/2,
increase the
value of the
FILES= option.

The Information Catalog Manager reason codes

320 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

36048 FLG_ERR_WRITE_ERROR — Information
Catalog Manager
internal error.

36049 FLG_ERR_WRITE_FAULT — Unable to write
to the disk. The
disk might be
locked or
unreadable.

36050 FLG_ERR_WRITE_PROTECT — Unable to write
to the file. The
file is read-only.

36200 FLG_ERR_NO_MORE_THREADS — No more system
threads are
available.

Close some
existing
programs to
continue.

36201 FLG_ERR_QDISK_FAIL — Unable to access
information
about the disk
drive.

37001 FLG_ERR_INV_RESTART_OPT — The specified
restart option
(RestartOpt) was
invalid.

Valid values are
B, C, b, or c.

37002 FLG_ERR_INV_OBJTYPE_OPT — The option on
the
ACTION.OBJTYPE
tag is invalid.

Valid options are
MERGE, ADD,
UPDATE,
DELETE,
DELETE_EXT,
and APPEND.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 321

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

37003 FLG_ERR_INV_OBJINST_OPT — The option on
the
ACTION.OBJINST
tag is invalid.

Valid options are
ADD, UPDATE,
DELETE,
DELETE_TREE_REL,
DELETE_TREE_ALL,
and MERGE.

37004 FLG_ERR_INV_RELATION_OPT — The option on
the
ACTION.RELATION
tag is invalid.

Valid options are
ADD and
DELETE.

37005 FLG_ERR_TAG_OUT_OF_SEQUENCE — A tag is not in
the correct
sequence
following an
ACTION tag in
the tag language
file.

37006 FLG_ERR_KEYNAME_TOO_LONG — A UUI property
short name on
the INSTANCE
tag is longer
than the
maximum length
(8).

37007 FLG_ERR_INV_ACTION_TYPE — The keyword on
the ACTION tag
is invalid.

Valid keywords
are OBJTYPE,
OBJINST, or
RELATION.

The Information Catalog Manager reason codes

322 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

37008 FLG_ERR_KEYWORD_TOO_LONG — A keyword on a
tag is longer
than the
maximum
allowed for the
keyword.

37009 FLG_ERR_PROPNAME_TOO_LONG — Property short
name on the
INSTANCE tag
is longer than
the maximum
length (8).

37010 FLG_ERR_VALUE_TOO_LONG — Value in the tag
language file is
longer than the
maximum
allowed by its
keyword,
property short
name, or UUI
property short
name.

37011 FLG_ERR_OBJTAG_DUP_KEYWORD — A keyword on
the OBJECT tag
is specified more
than once.

37012 FLG_ERR_PROPTAG_DUP_KEYWORD — A keyword on
the PROPERTY
tag is specified
more than once.

37013 FLG_ERR_RELTAG_DUP_KEYWORD — A keyword is
specified more
than once on the
RELTYPE tag.

37014 FLG_ERR_INSTTAG_DUP_KEYNAME — A UUI property
short name is
specified more
than once on the
INSTANCE tag.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 323

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

37015 FLG_ERR_INSTTAG_DUP_PROPNAME — A property short
name is
specified more
than once on the
INSTANCE tag.

37016 FLG_ERR_OBJTAG_INV_KEYWORD — A keyword on
the OBJECT tag
is invalid.

Valid keywords
are TYPE,
CATEGORY,
EXTNAME,
PHYNAME,
ICOFILE and
ICWFILE.

37017 FLG_ERR_PROPTAG_INV_KEYWORD — A keyword on
the PROPERTY
tag is invalid.

Valid keywords
are EXTNAME,
DT, DL,
SHRTNAME,
NULLS, and
UUISEQ.

37018 FLG_ERR_RELTAG_INV_KEYWORD — A keyword on
the RELTYPE
tag is invalid.

Valid keywords
are TYPE,
SOURCETYPE,
and
TARGETYPE.

37019 FLG_ERR_CMMTTAG_INV_KEYWORD — A keyword on
the COMMIT
tag is invalid.

The valid
keyword is
CHKPID.

The Information Catalog Manager reason codes

324 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

37020 FLG_ERR_INSTTAG_INV_KEYNAME — A UUI property
short name on
the INSTANCE
tag is invalid.

37021 FLG_ERR_INSTTAG_INV_PROPNAME — A property short
name on the
INSTANCE tag
is invalid.

The property
short name must
exist in the
object type
specified on the
OBJECT tag.

37022 FLG_ERR_INSTTAG_MISSING_SKEY — SOURCEKEY is
not the first
keyword on the
INSTANCE tag.

37023 FLG_ERR_INSTTAG_MISSING_TKEY — TARGETKEY is
not the second
keyword on the
INSTANCE tag
when creating or
deleting a
relationship.

37024 FLG_ERR_TAGFILE_PREMATURE_EOF — The Information
Catalog Manager
encountered the
end of the tag
language file
unexpectedly
when importing
the tag language
file.

37025 FLG_ERR_PROPTAG_INV_DT — The DT value on
the PROPERTY
tag is invalid.

Valid values are
C, V, L, and T.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 325

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

37026 FLG_ERR_PROPTAG_RESERVED_SHRTNAME — The short name
of a reserved
property was
specified as the
value for
SHRTNAME on
the PROPERTY
tag.

The following
short names are
reserved and
cannot be
specified as the
SHRTNAME:
OBJTYPID,
INSTIDNT,
UPDATIME, and
UPDATEBY.

37027 FLG_ERR_PROPTAG_INV_NULLS — NULLS value on
the PROPERTY
tag is invalid.

Valid values are
Y and N.

37028 FLG_ERR_PROPTAG_INV_UUISEQ — UUISEQ value
on the
PROPERTY tag
is invalid.

Valid values are
0, 1, 2, 3, 4, and
5.

The Information Catalog Manager reason codes

326 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

37029 FLG_ERR_INSTTAG_RESERVED_PROPNAME — The property
short name of a
reserved
property was
specified on the
INSTANCE tag.

The following
property short
names are
reserved and
cannot be
assigned values:
OBJTYPID,
INSTIDNT,
UPDATIME, and
UPDATEBY.

37030 FLG_ERR_OBJTAG_MISSING_REQD_KEYWORD — A required
keyword is
missing on the
OBJECT tag.

37031 FLG_ERR_OBJTAG_KEYWORD_NOT_ALLOWED — A keyword
specified on the
OBJECT tag is
not allowed with
the current
ACTION tag
keyword and
option.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 327

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

37032 FLG_ERR_PROPTAG_MISSING_REQD_KEYWORD — A required
keyword is
missing on the
PROPERTY tag.

Required
keywords are:
EXTNAME, DT,
DL,
SHRTNAME,
and NULLS.

When NAME is
specified as the
value of
SHRTNAME,
SHRTNAME is
the only
required
keyword.

37033 FLG_ERR_RELTAG_MISSING_REQD_KEYWORD — A required
keyword is
missing on the
RELTYPE tag.

Required
keywords are
TYPE,
SOURCETYPE,
and
TARGETYPE.

37034 FLG_ERR_INVALID_DISKCNTL_TAG — The values and
keywords on the
DISKCNTL tag
are invalid.

37035 FLG_ERR_NO_VALID_INPUT_TAG — The tag
language file
contains no valid
tags.

The Information Catalog Manager reason codes

328 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

37037 FLG_ERR_OBJTAG_INV_CATEGORY — The CATEGORY
value on the
OBJECT tag is
invalid.

Valid values are
GROUPING,
ELEMENTAL,
CONTACT,
DICTIONARY,
and SUPPORT.

37038 FLG_ERR_RELTAG_INV_TYPE — The TYPE value
on the RELTYPE
tag is invalid.

Valid values are
CONTAIN,
CONTACT,
LINK, and
ATTACHMENT.

37039 FLG_ERR_MISSING_LPAREN — A left
parenthesis is
missing
following a
keyword, UUI
property short
name, or
property short
name.

37040 FLG_ERR_INSTTAG_NO_PROPNAME — No property
short names
were specified
on the
INSTANCE tag.

37041 FLG_ERR_NO_VALUE — The value for
the specified
keyword is
missing.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 329

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

37042 FLG_ERR_NO_KEYWORD — A tag does not
include any
keywords.

At least one
keyword is
required for all
tags except
COMMENT, NL,
and TAB.

37043 FLG_ERR_TAG_FOLLOWED_BY_GARBAGE — A valid tag is
followed by
extra characters.

37044 FLG_ERR_BAD_PAREN_WITHIN_VALUE — A parenthesis
specified within
this value is
invalid.

A parenthesis
within values
must be
surrounded by
single quotation
marks.

37046 FLG_ERR_PROPTAG_KEYWORD_NOT_ALLOWED — A specified
keyword is not
allowed on the
PROPERTY tag
when NAME is
specified as the
SHRTNAME
value.

Valid keywords
in this case are
SHRTNAME
and UUISEQ.

The Information Catalog Manager reason codes

330 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

37047 FLG_ERR_UNEXPECTED_LPAREN — A left
parenthesis is
specified before
an expected
keyword, UUI
property short
name, or
property short
name.

37048 FLG_ERR_UNEXPECTED_RPAREN — A right
parenthesis is
specified before
an expected left
parenthesis,
keyword, UUI
property short
name, or
property short
name.

37300 FLG_ERR_CHKPT_DUP — Information
Catalog Manager
internal error.

37301 FLG_ERR_CHKPT_NOTEXIST — Information
Catalog Manager
internal error.

37302 FLG_ERR_INV_SAVEAREA_LEN — Information
Catalog Manager
internal error.

37303 FLG_ERR_INV_CHKPT_TOT_LEN — Information
Catalog Manager
internal error.

37304 FLG_ERR_MISSING_CHKPT_VALUE — Information
Catalog Manager
internal error.

37305 FLG_ERR_NO_MATCH_ON_CHKPTID — Unable to match
the system-saved
checkpoint ID
with any
COMMIT tag
checkpoint ID in
the specified tag
language file.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 331

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

37500 FLG_ERR_REQUEST_A_NEW_DISK_FAILED — The user did not
insert the next
tag language file
diskette in the
sequence.

37501 FLG_ERR_VERIFY_DISKETTE_SEQUENCE_FAILED — The Information
Catalog Manager
encountered an
error while
trying to verify
the diskette
sequence.

37502 FLG_ERR_UNABLE_TO_FIND_REQUIRED_PROPERTY — Unable to find a
specified
property short
name in the
target database.

This property
short name was
specified on the
INSTANCE tag
while updating
or merging an
object instance
using
ACTION.OBJINST(UPDATE)
or
ACTION.OBJINST(MERGE).

37503 FLG_ERR_UNABLE_TO_FIND_REQUIRED_OBJTYPE — Unable to find
the object type
name, specified
on the OBJECT
tag, in the target
database.

37504 FLG_ERR_NONUNIQUE_UUI_KEY — The specified
UUI values
identify more
than one
instance.

The Information Catalog Manager reason codes

332 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

37505 FLG_ERR_MISMATCH_UUI_IN_MERGE — In an object type
merge, the UUI
property short
names for the
object type in
the input tag
language file do
not match the
UUI property
short names for
the same object
type in the
Information
Catalog Manager
database.

37506 FLG_ERR_DATA_LENGTH_CONVERSION_FAILED — Information
Catalog Manager
internal error.

37507 FLG_ERR_MISMATCH_DATA_LENGTH_IN_MERGE — The value of DL
(data length) on
a PROPERTY tag
following an
ACTION.OBJTYPE(MERGE)
tag in the input
tag language file
does not match
the value for the
same property in
the target
Information
Catalog Manager
database for the
same object type.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 333

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

37508 FLG_ERR_MISMATCH_DATA_TYPE_IN_MERGE — The value of DT
(data type) on a
PROPERTY tag
following an
ACTION.OBJTYPE(MERGE)
tag in the input
tag language file
does not match
the value for the
same property in
the target
Information
Catalog Manager
database for the
same object type.

37509 FLG_ERR_MISMATCH_PROPERTY_NAME_IN_MERGE — The value of
SHRTNAME
(property short
name) on a
PROPERTY tag
that follows an
ACTION.OBJTYPE(MERGE)
tag in the input
tag language
filedoes not
match any
property in the
Information
Catalog Manager
database for the
same object type.

37510 FLG_ERR_MISMATCH_CATEGORY_IN_MERGE — The value of
CATEGORY on
an OBJECT tag
following an
ACTION.OBJTYPE(MERGE)
tag in the input
tag language file
does not match
the value in the
Information
Catalog Manager
database for the
same object type.

The Information Catalog Manager reason codes

334 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

37511 FLG_ERR_MISSING_REQUIRED_OBJTYPE_MERGE_STATEMENT Unable to merge
an object
instance using
ACTION.OBJINST(MERGE)
before its object
type is merged
using
ACTION.OBJTYPE(MERGE).

The
ACTION.OBJTYPE(MERGE)
tag must be
processed before
an
ACTION.OBJINST(MERGE)
for the same
object type.

37512 FLG_ERR_NONUNIQUE_SOURCE_UUI_KEY — Reserved

37513 FLG_ERR_NONUNIQUE_TARGET_UUI_KEY — Reserved

37514 FLG_ERR_NO_TAGFILE_ON_DISKETTE — Unable to find
the input tag
language file on
the provided
diskette.

37515 FLG_ERR_WRONG_DISK_SEQUENCE — The diskettes
containing the
tag language file
were inserted in
the wrong order.

37516 FLG_ERR_REQ_INST_NOTFOUND — Unable to find
the instance to
be updated.

37801 FLG_ERR_NO_UUI — Export
encountered an
object with no
UUI and cannot
process.

37802 FLG_ERR_CREATEREG_FAILED — Reserved

37803 FLG_ERR_UPDATEREG_FAILED — Reserved

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 335

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

37804 FLG_ERR_GETREG_FAILED Reason code Export calls
FLGGetReg,
which returned
an error.

See the log file
for information
about how this
error affects the
export.

37805 FLG_ERR_DELETEREG_FAILED — Reserved

37806 FLG_ERR_CREATETYPE_FAILED — Reserved

37807 FLG_ERR_APPENDTYPE_FAILED — Reserved

37808 FLG_ERR_GETTYPE_FAILED — Reserved

37809 FLG_ERR_DELETETYPE_FAILED — Reserved

37820 FLG_ERR_CREATEINST_FAILED — Reserved

37821 FLG_ERR_UPDATEINST_FAILED — Reserved

37822 FLG_ERR_GETINST_FAILED Reason code Export calls
FLGGetInst,
which returned
an error.

See the log file
for information
about how this
error affects the
export.

37823 FLG_ERR_DELETEINST_FAILED — Reserved

37824 FLG_ERR_LISTTYPE_FAILED — Reserved

37825 FLG_ERR_SEARCH_FAILED — Reserved

37826 FLG_ERR_RELATE_FAILED — Reserved

37827 FLG_ERR_LISTCONTACTS_FAILED Reason code Export calls
FLGListContacts,
which returned
an error.

See the log file
for information
about how this
error affects the
export.

The Information Catalog Manager reason codes

336 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

37828 FLG_ERR_NAVIGATE_FAILED Reason code Export calls
FLGNavigate,
which returned
an error.

See the log file
for information
about how this
error affects the
export.

37829 FLG_ERR_FREEMEM_FAILED Reason code Export calls
FLGFreeMem,
which returned
an error.

See the log file
for information
about how this
error affects the
export.

37831 FLG_ERR_LISTASSOC_FAILED Reason code This function
calls
FLGListAssociates
which returned
an error.

37901 FLG_ERR_NULL_LOGFILE — The log file
pointer
parameter value
is NULL.

A value is
required for this
parameter.

37902 FLG_ERR_LOGFILE_OPENERR Reason code Import or export
encountered an
error while
opening the log
file.

The extended
code contains
the reason code
for the error.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 337

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

37904 FLG_ERR_LOGFILE_WRITEERR Reason code Import or export
encountered an
error while
writing to the
log file.

The extended
code contains
the reason code
for the error.

37906 FLG_ERR_LOGFILE_CLOSEERR Reason code Import or export
encountered an
error while
closing the log
file.

The extended
code contains
the reason code
for the error.

37908 FLG_ERR_INV_TAGFILE_LEN — One of the
following has
occurred:

v The specified
name of the
tag language
file is null.

v The full name
of the tag
language file
including the
path
information, is
longer than
the maximum
length
allowed (259).

v The tag
language file
name and
extension are
longer than
the maximum
length
allowed (240).

The Information Catalog Manager reason codes

338 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

37909 FLG_ERR_INV_LOGFILE_LEN — One of the
following has
occurred:

v The specified
name of the
log file is null.

v The entire
name,
including the
path, is longer
than the
allowed
maximum
length (259).

37910 FLG_ERR_INV_TAGFILE — The specified
drive for the tag
language file is
invalid because
the Information
Catalog Manager
encountered an
error while
trying to access
it.

If the tag
language file is
in MDIS format,
then the drive
cannot be a
removable drive.

37911 FLG_ERR_INV_LOGFILE — The specified
drive for the log
file is invalid.
The specified
drive might be
removable, or an
error occurred
when the
Information
Catalog Manager
tried to access it.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 339

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

37912 FLG_ERR_ECHOFILE_OPENERR Reason code Import
encountered an
error while
opening the echo
file.

The extended
code contains
the reason code
for the error.

37913 FLG_ERR_TAGFILE_READERR Reason code Import
encountered an
error while
reading the tag
language file.

The extended
code contains
the reason code
for the error.

37914 FLG_ERR_ECHOFILE_WRITEERR Reason code Import
encountered an
error while
writing to the
echo file.

The extended
code contains
the reason code
for the error.

37915 FLG_ERR_INV_ICOPATH_LEN — The specified
icon path is too
long.

The maximum
length for an
icon path,
including the
drive and
directories, is
246.

The Information Catalog Manager reason codes

340 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

37919 FLG_ERR_ICOPATH_NONBLANK_EXT — The specified
icon path
(pszIcoPath)
includes an
extension.

This value
should include
only the path.

37920 FLG_ERR_INV_ICOPATH — The drive or
extension
specified in the
icon path is
invalid for one
of the following
reasons:

v The drive was
not specified,
the drive is
removable, or
the
Information
Catalog
Manager
encountered
an error while
reading from
it.

v A file
extension was
specified in
the icon path.

37921 FLG_ERR_TAGFILE_OPENERR Reason code Import, export,
or
FLGXferTagBuf
encountered an
error while
opening the tag
language file.

The extended
code contains
the reason code
for the open
error.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 341

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

37922 FLG_ERR_TAGFILE_CLOSEERR Reason code Import, export,
or
FLGXferTagBuf
encountered an
error while
closing the tag
language file.

The extended
code contains
the reason code
for the error.

37923 FLG_ERR_ECHOFILE_CLOSEERR Reason code Import
encountered an
error while
closing the echo
file.

The extended
code contains
the reason code
for the error.

37924 FLG_ERR_INV_ECHOFILE_LEN — The length of
the log file path
with the tag
language file
name and the
ECH extension
is longer than
the maximum
length allowed
for the complete
echo file path
and name.

This maximum
is 259 characters.

The Information Catalog Manager reason codes

342 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

37925 FLG_ERR_MAX_OBJTYPE_EXCEEDED — The tag
language file
contains more
than the
maximum
number of
discrete object
types allowed
(3500) when
importing or
exporting.

37926 FLG_ERR_TAGFILE_WRITEERR Reason code Export or the
FLGXferTagBuf
API encountered
an error while
trying to write
to the tag
language file.

The extended
code contains
the reason code
for the write
error.

37928 FLG_ERR_INV_TAGFILE_EXT — The filename
specified for the
tag language file
has an extension
of ECH. This
extension is
invalid.

37929 FLG_ERR_INV_LOGFILE_EXT — The filename
specified for the
log file has an
extension of
ECH. This
extension is
invalid.

37930 FLG_ERR_TAGFILE_LOGFILE_CONFLICT — The specified log
file is the same
as the tag
language file.
The two files
must be
different.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 343

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

38000 FLG_ERR_INVALID_EXPORT_IOSTRUCT Sequence
number of
object

The input
structure for
FLGExport is
invalid.

38001 FLG_ERR_INVALID_CFLAG Sequence
number of
object

The containee
flag value is
invalid in the
FLGExport input
structure.

Valid values are
Y or N.

38002 FLG_ERR_INVALID_TFLAG Sequence
number of
object

The contact flag
value is invalid
in the
FLGExport input
structure.

Valid values are
Y or N.

38003 FLG_ERR_TAGFILE_EXIST — The name
specified for the
export output
tag language file
(pszTagFileID)
points to a file
that already
exists.

The name of the
output tag
language file
must not already
exist.

38004 FLG_ERR_GET_ICON_FAILED Reason code Unable to export
the icon for the
specified object
type.

38005 FLG_ERR_INVALID_AFLAG Sequence
number of
object

The attachment
flag on the
export input
structure is not
valid. Valid
values are ’Y’ or
’N’.

The Information Catalog Manager reason codes

344 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

38006 FLG_ERR_INVALID_LFLAG Sequence
number of
object type.

The link flag in
the export input
structure is not
valid. Valid
values are ’Y’ or
’N’.

39000 FLG_ERR_UPM_FAIL — The User Profile
Management
utility failed
(logon failed or
logon user ID is
different than
connected user
ID).

39001 FLG_ERR_INV_INPUT_PARM — The input
parameter
keywords for the
command are
invalid or
missing.

39002 FLG_ERR_MISSING_PARM_VALUE — The input
parameter
values for the
command are
invalid or
missing.

39003 FLG_ERR_INIT_BIDI_ERROR — The Information
Catalog Manager
encountered an
error while
initializing for
the bi-directional
environment.
This applies only
when the
Information
Catalog Manager
is running on an
Arabic or
Hebrew
machine.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 345

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

39201 FLG_ERR_INVALID_USERTYPE_FOR_UPDATE — The user type
specified to be
updated is
invalid. The
valid types are
either the
primary or
backup
administrator.

39202 FLG_ERR_INVALID_USERTYPE_FOR_CRT_OR_DEL — The user type
specified to be
created or
deleted is
invalid. Only
users authorized
to perform
object
management
tasks can be
created or
deleted.

39203 FLG_ERR_INVALID_ID_BAD_CHAR — The specified
user ID contains
an invalid
character. Refer
to your database
documentation
for valid
characters.

39204 FLG_ERR_INVALID_ID_NUM_START — The specified
user ID begins
with a numeric.
This is not a
valid starting
character.

39205 FLG_ERR_INVALID_ID_IMB_BLANK — The specified
user ID contains
an imbedded
blank. This is
not allowed.

The Information Catalog Manager reason codes

346 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

39206 FLG_ERR_INVALID_MUU_OPT — The option
specified for the
FLGManageUsers
API is invalid.
Valid actions are
FLG_ACTION_CREATE,
FLG_ACTION_UPDATE,
FLG_ACTION_DELETE,
or
FLG_ACTION_LIST.

39209 FLG_ERR_INVALID_PADMIN_USERID — The specified
user ID for the
primary
administrator is
invalid. Verify
the user ID
syntax in your
database
documentation.

39210 FLG_ERR_INVALID_BADMIN_USERID — The specified
user ID for the
backup
administrator is
invalid. Verify
the user ID
syntax in your
database
documentation.

39211 FLG_ERR_INVALID_POWERUSER_USERID Contains the
index to the
user ID in the
input structure
that is invalid.

The specified
user ID is
invalid. Verify
the user ID
syntax in your
database
documentation.

39502 FLG_ERR_CDF_ERROR — Reserved

39504 FLG_ERR_INSTPROFILE_ERROR — Reserved

39700 FLG_ERR_TERM_FAIL_ROLLBACK_CLOSE — Reserved

39701 FLG_ERR_TERM_FAIL_ROLLBACK — Reserved

39702 FLG_ERR_TERM_FAIL_COMMIT — Reserved

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 347

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

40001 FLG_ERR_INVALID_CONFIG_PROFILE — The MDIS
Configuration
profile file does
not contain a
valid BEGIN
CONFIGURATION
section.

40002 FLG_ERR_CONFIGFILE_READERR Reason code MDIS import
encountered an
error while
reading the
Configuration
profile file.

40003 FLG_ERR_CONFIGFILE_CLOSEERR Reason code MDIS import
encountered an
error while
closing the
Configuration
profile file.

40006 FLG_ERR_CONFIGFILE_INV_BEGIN_STMT — The MDIS
Configuration
profile file
contains an
invalid BEGIN
statement. Valid
statement is:
BEGIN
CONFIGURATION.

40007 FLG_ERR_CONFIGFILE_INV_END_STMT — The MDIS
Configuration
profile file
contains an
invalid END
statement. Valid
statement is:
END
CONFIGURATION.

40010 FLG_ERR_CONFIGFILE_INV_KEYWORD — The MDIS
Configuration
profile file
contains an
invalid keyword.

The Information Catalog Manager reason codes

348 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

40011 FLG_ERR_CONFIGFILE_INV_TEXT — The MDIS
Configuration
profile file
contains invalid
text.

40012 FLG_ERR_CONFIGFILE_INV_VALUE — The MDIS
Configuration
profile file
contains an
invalid keyword
value.

40013 FLG_ERR_CONFIGFILE_VALUE_TOO_LONG — The MDIS
Configuration
profile file
contains a
keyword value
that exceeds the
maximum
allowable length
for that
keyword.

40015 FLG_ERR_CONFIGFILE_PREMATURE_EOF — MDIS import
unexpectedly
encountered the
end of the
Configuration
profile file.

40021 FLG_ERR_INVALID_TOOL_PROFILE — The MDIS Tool
profile file does
not contain a
valid BEGIN
TOOL section.

40022 FLG_ERR_TOOLFILE_READERR Reason code MDIS import
encountered an
error while
reading the Tool
profile file.

40023 FLG_ERR_TOOLFILE_CLOSEERR Reason code MDIS import
encountered an
error while
closing the Tool
profile file.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 349

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

40026 FLG_ERR_TOOLFILE_INV_BEGIN_STMT — The MDIS Tool
profile file
contains an
invalid BEGIN
statement. Valid
statements are:
BEGIN TOOL,
BEGIN
APPLICATIONDATA.

40027 FLG_ERR_TOOLFILE_INV_END_STMT — The MDIS Tool
profile file
contains an
invalid END
statement. Valid
statements are:
END TOOL,
END
APPLICATIONDATA.

40030 FLG_ERR_TOOLFILE_INV_KEYWORD — The MDIS Tool
profile file
contains an
invalid keyword.

40031 FLG_ERR_TOOLFILE_INV_TEXT — The MDIS Tool
profile file
contains invalid
text.

40032 FLG_ERR_TOOLFILE_INV_VALUE — The MDIS Tool
profile file
contains an
invalid keyword
value.

40033 FLG_ERR_TOOLFILE_VALUE_TOO_LONG — The MDIS Tool
profile file
contains a
keyword value
that exceeds the
maximum
allowable length
for that
keyword.

The Information Catalog Manager reason codes

350 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

40034 FLG_ERR_TOOLFILE_CONFLICTING_VALUES — The MDIS Tool
profile file
contains
conflicting
RECORD,
DIMENSION, or
ELEMENT
values.

40050 FLG_ERR_TOOLFILE_PREMATURE_EOF — MDIS import
unexpectedly
encountered the
end of the Tool
profile file.

40100 FLG_ERR_UNSUPPORTED_MDIS_FUNCTION — The
Configuration
profile file
specifies a
function that is
not supported
by the
Information
Catalog
Manager.

40101 FLG_ERR_MISSING_REQ_MDIS_KEYWORD — A required
MDIS keyword
is not present in
the tag language
file.

40110 FLG_ERR_TAGFILE_INV_KEYWORD — The MDIS tag
language file
contains an
invalid keyword.

40111 FLG_ERR_TAGFILE_INV_TEXT — The MDIS tag
language file
contains invalid
text.

40112 FLG_ERR_TAGFILE_INV_VALUE — The MDIS tag
language file
contains an
invalid keyword
value.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 351

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

40113 FLG_ERR_TAGFILE_VALUE_TOO_LONG — The MIDS tag
language file
contains a
keyword value
that exceeds the
maximum
allowable length
for that
keyword.

40115 FLG_ERR_MISSING_DQUOTE — A double
quotation mark
is missing
following a
keyword.

40116 FLG_ERR_UNEXPECTED_DQUOTE — A double
quotation mark
was found
unexpectedly.

40117 FLG_ERR_SPECIFIED_PROPERTY_NOT_FOUND — Unable to find a
specified
property short
name in the
target database.

40118 FLG_ERR_TAGFILE_INV_END_STMT — The MDIS tag
language file
contains an
invalid END
statement.

40119 FLG_ERR_TAGFILE_INV_BEGIN_STMT — The MDIS tag
language file
contains an
invalid BEGIN
statement.

40130 FLG_ERR_INV_RECORD_SECTION — A BEGIN
RECORD section
is incorrectly
nested in the
MDIS tag
language file.

The Information Catalog Manager reason codes

352 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

40131 FLG_ERR_INV_DIMENSION_SECTION — A BEGIN
DIMENSION
section is
incorrectly
nested in the
MDIS tag
language file.

40132 FLG_ERR_INV_SUBSCHEMA_SECTION — A BEGIN
SUBSCHEMA
section is
incorrectly
nested in the
MDIS tag
language file.

40201 FLG_ERR_DUPLICATE_IDENTIFIER — An identifier
value is
duplicated in the
MDIS tag
language file.

40202 FLG_ERR_INV_IDENTIFIER_REFERENCE — Either a
SourceObjectIdentifier
or a
TargetObjectIdentifier
value does not
refer to an
identifier value
previously
defined in the
tag language
file.

40211 FLG_ERR_INV_PART1_VALUE — The value for
the first part of
an MDIS object
does not match
the parent value.

40212 FLG_ERR_INV_PART2_VALUE — The value for
the second part
of an MDIS
object does not
match the parent
value.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 353

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

40213 FLG_ERR_INV_PART3_VALUE — The value for
the third part of
an MDIS object
does not match
the parent value.

40214 FLG_ERR_INV_PART4_VALUE — The value for
the fourth part
of an MDIS
object does not
match the parent
value.

40215 FLG_ERR_MDIS_WORK_BUFFER_OVERFLOW — An MDIS file
(Configuration
profile file, Tool
profile file, or
tag language
file) contains a
value that is
longer than the
maximum
allowable size of
internal work
buffers (32700
bytes).

40216 FLG_ERR_MDIS_APPL_DATA_TOO_LONG — ApplicationData
section of MDIS
tag language file
exceeds limits
for Information
Catalog Manager
Application data
object type.
Information
Catalog Manager
Application data
object type is
limited to 10
properties of
32700 bytes
each.

80000 FLG_SEVERR — Place holder;
indicates the
beginning of the
numeric range
for severe errors.

The Information Catalog Manager reason codes

354 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

80002 FLG_SEVERR_NO_MEMORY — The Information
Catalog Manager
is unable to
allocate more
memory.

80003 FLG_SEVERR_MEM_ERROR — One of the
following
occurred:

v A hardware
memory
interrupt
occurred.

v Some
corruption in
the
Information
Catalog
Manager heap
prevents the
Information
Catalog
Manager from
allocating or
deallocating
memory.

80004 FLG_SEVERR_NO_CSA — Information
Catalog Manager
internal error.

80005 FLG_SEVERR_APIDLL_FAILURE — The API DLL is
missing API
calls, or the API
DLL could not
be loaded.

80006 FLG_SEVERR_VIOPOPUP_FAIL — The Information
Catalog Manager
is unable to
display OS/2
character-based
error messages
using video
input/output
(VIO).

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 355

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

80007 FLG_SEVERR_BIDIDLL_FAILURE — The Information
Catalog Manager
encountered an
error while
loading the
PMBIDI.DLL.
This DLL is
needed when
the Information
Catalog Manager
runs on an
Arabic or
Hebrew
machine.

80008 FLG_SEVERR_DG2IFORDLL_FAILURE — A necessary
DG2IFOR.DLL
file was not
found or is
invalid. The
Information
Catalog Manager
cannot continue.

81000 FLG_SEVERR_STARTDBM_FAIL — Unable to start
the local
database
management
system. Refer to
your database
documentation
for an
explanation of
the SQLCODE.

81001 FLG_SEVERR_STARTDB_FAIL — Reserved

81002 FLG_SEVERR_DB_DISCONNECTED — The database
disconnected
unexpectedly.

81003 FLG_SEVERR_DB_INCONSISTENT — The Information
Catalog Manager
detected an
inconsistency in
the Information
Catalog Manager
database.

The Information Catalog Manager reason codes

356 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

81004 FLG_SEVERR_COMMIT_FAIL — The commit call
to the
Information
Catalog Manager
database failed.

81005 FLG_SEVERR_ROLLBACK_FAIL — The rollback call
to the
Information
Catalog Manager
database failed.

81006 FLG_SEVERR_NO_DBSPACE — The database
server has run
out of space or
the file system is
full.

81007 FLG_SEVERR_DB_AUTO_ROLLBACK_COMPLETE Database
SQLCODE

The Information
Catalog Manager
encountered a
database error
and rolled back
any
uncommitted
changes to the
database.

Check the
extended code
for the database
SQLCODE that
describes the
error condition
that caused the
Information
Catalog Manager
to perform the
rollback.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 357

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

81008 FLG_SEVERR_DB_AUTO_ROLLBACK_FAIL Database
SQLCODE

The Information
Catalog Manager
encountered a
database error
and attempted
to roll back any
uncommitted
changes to the
database, but
this roll back
failed.

Check the
extended code
for the database
SQLCODE that
describes the
error condition
that caused the
Information
Catalog Manager
to perform the
rollback.

The database
might be in an
inconsistent state
and need to be
recovered.

82000 FLG_SEVERR_INIT_FAIL — The Information
Catalog Manager
encountered an
unexpected
condition,
probably an
OS/2 internal
memory error,
that prevents the
Information
Catalog Manager
from running
normally.

The Information Catalog Manager reason codes

358 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

82001 FLG_SEVERR_TERM_FAIL — The Information
Catalog Manager
encountered an
unexpected
condition,
probably an
OS/2 internal
memory error,
that prevents the
Information
Catalog
Managerfrom
releasing its
allocated
resources. The
resources will be
freed when the
calling
application
session ends.

82002 FLG_SEVERR_TERM_FAIL_CLOSE — Reserved

82200 FLG_SEVERR_GETREG_FAILED Reason code Export calls
FLGGetReg,
which returned
a severe error.

82201 FLG_SEVERR_GETINST_FAILED Reason code Export calls
FLGGetInst,
which returned
a severe error.

82202 FLG_SEVERR_LISTCONTACTS_FAILED Reason code Export calls
FLGListContacts,
which returned
a severe error.

82203 FLG_SEVERR_NAVIGATE_FAILED Reason code Export calls
FLGNavigate,
which returned
a severe error.

82204 FLG_SEVERR_FREEMEM_FAILED Reason code Export calls
FLGFreeMem,
which returned
a severe error.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 359

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

82400 FLG_SEVERR_THREAD_FAILED — A severe error
occurred while
creating the new
thread and
Information
Catalog Manager
cannot continue.

82500 FLG_SEVERR_PARMS_MISSING — The Information
Catalog Manager
required system
table is
corrupted or
missing.

82501 FLG_SEVERR_DGEMPTY — The Information
Catalog Manager
database
contains no
registrations or
object types. The
Information
Catalog Manager
database is
corrupted.

Recover the
database using
your backed-up
database files.

82502 FLG_SEVERR_TYPE_WOUT_PROPERTY — No properties
exist for the
specified object
type, or the
Information
Catalog Manager
is unable to
retrieve any
properties.

82503 FLG_SEVERR_MORE_THAN_ONE_KA — A security
violation
occurred; more
than one
administrator is
logged on at the
same time.

83000 FLG_SEVERR_SESSION_ABENDED — Reserved

The Information Catalog Manager reason codes

360 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

83001 FLG_SEVERR_CDF_ERROR — Reserved

83002 FLG_SEVERR_INTERNAL_ERROR — Reserved

84000 FLG_SEVERR_DEMO_EXPIRED — The evaluation
period for IBM
Information
Catalog Manager
Administrator
has ended.
Please contact
the local
software reseller
or your IBM
representative to
order the
product.

84101 FLG_SEVERR_DB_CONNECT_FAILED — Unable to
connect to
database. Refer
to your database
documentation
for an
explanation of
the SQLCODE.

84102 FLG_SEVERR_DB_BIND — Unable to bind
the Information
Catalog Manager
to the
information
catalog. The
Information
Catalog Manager
has encountered
an unexpected
database error or
cannot find the
bind file in the
current directory
or path.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 361

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

84103 FLG_SEVERR_INSAUTH_BIND — You must have
SYSADM
authority to bind
the Information
Catalog Manager
to the
information
catalog.

84104 FLG_SEVERR_CREATETAB — Unable to create
the Information
Catalog Manager
system table.

84105 FLG_SEVERR_INSAUTH_GRANT — You must have
SYSADM
authority to
grant access to
the information
catalog.

84106 FLG_SEVERR_CREATECOLLECTION — The Information
Catalog Manager
failed to create
an AS/400®

library
collection.

84107 FLG_SEVERR_ICON_NOT_GENERATED — The Information
Catalog Manager
has encountered
a system error,
or is unable to
find the
Information
Catalog Manager
icon files or the
Information
Catalog Manager
executable file.

The Information
Catalog Manager
icons will not be
generated.

The Information Catalog Manager reason codes

362 Information Catalog Manager Programming Guide and Reference

Table 24. Information Catalog Manager reason codes (continued)

Number Reason code Extended codes Explanation

84108 FLG_SEVERR_DGCOL_NOTEXIST — You must create
the AS/400
library
collection,
Information
Catalog
Manager, prior
to invoking this
utility.

84109 FLG_SEVERR_DB_NOTFOUND — The Information
Catalog Manager
cannot find the
specified
database. Create
the database if it
does not exist.
Then, register
the remote
database on
your
workstation.

The Information Catalog Manager reason codes

Appendix D. Information Catalog Manager reason codes 363

The Information Catalog Manager reason codes

364 Information Catalog Manager Programming Guide and Reference

Notices

IBM may not offer the products, services, or features discussed in this
document in all countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 1994, 2000 365

improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
1150 Eglinton Ave. East
North York, Ontario
M3C 1H7
CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

366 Information Catalog Manager Programming Guide and Reference

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source
language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using,
marketing or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All
rights reserved.

Notices 367

Trademarks

The following terms, which may be denoted by an asterisk(*), are trademarks
of International Business Machines Corporation in the United States, other
countries, or both.

ACF/VTAM
AISPO
AIX
AIX/6000
AIXwindows
AnyNet
APPN
AS/400
BookManager
CICS
C Set++
C/370
DATABASE 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Extenders
DB2 OLAP Server
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
eNetwork
Extended Services
FFST
First Failure Support Technology

IBM
IMS
IMS/ESA
LAN DistanceMVS
MVS/ESA
MVS/XA
Net.Data
OS/2
OS/390
OS/400
PowerPC
QBIC
QMF
RACF
RISC System/6000
RS/6000
S/370
SP
SQL/DS
SQL/400
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WebExplorer
WIN-OS/2

The following terms are trademarks or registered trademarks of other
companies:

Microsoft, Windows, and Windows NT are trademarks or registered
trademarks of Microsoft Corporation.

Java or all Java-based trademarks and logos, and Solaris are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States,
other countries, or both.

368 Information Catalog Manager Programming Guide and Reference

UNIX is a registered trademark in the United States, other countries or both
and is licensed exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a
double asterisk(**) may be trademarks or service marks of others.

Notices 369

370 Information Catalog Manager Programming Guide and Reference

Glossary

A

administrator. A person responsible for
managing the content and use of the Information
Catalog Manager.

anchor. A Grouping object that contains other
objects, but is not contained by another Grouping
object.

Attachment. The category for object types used
to attach additional information to another
Information Catalog Manager object. For
example, you can attach comments to an object.

B

browse. To display information catalog objects
that are grouped by subject. Contrast with search.

C

catalog. See information catalog and database
catalog.

category. A classification for Information
Catalog Manager object types. The category
designates the:
v Actions available to object types
v Relationships allowed between object types in

the same or different categories.

Object types belong to one of the following
categories:

Attachment
Contact
Dictionary
Elemental
Grouping
Program
Support

CelDial sample data. A sample information
catalog (ICMSAMP) available when you install
the Information Catalog Manager that can be

used for installation verification. This sample
information catalog is also used in the exercises
in theInformation Catalog Manager User’s Guide.

collection. A container for objects. A collection
can be used to gather objects of interest for easy
access.

Comments. A classification for objects that
annotate another object in the Information
Catalog Manager. For example, you may want to
attach a Comments object to a chart object that
contains notes about the data in the chart.

The Comments object type is with the
Information Catalog Manager. You cannot add
properties to it.

commit. To make changes to information
catalog database permanent. Contrast with roll
back.

contact. A reference for more information about
an object. Further information might include the
person who created the information that the
object represents, or the department responsible
for maintaining the information.

Contact. A category for the Contact object type
and other object types that identify contacts.

Contact object type. A classification for objects
that identify contacts.

D

database catalog. A collection of tables that
contains descriptions of database objects such as
tables, views, and indexes.

DBCS. Double-byte character set.

decision-support system. A system of
applications that help users make decisions. This
kind of system allows users to work with
information presented in meaningful ways; for
example, spreadsheets, charts, and reports.

© Copyright IBM Corp. 1994, 2000 371

delete history. A log of delete activity, the
capture of which is turned on and off by the
Information Catalog Manager administrator. The
log can be transferred to a tag language file.

derived data. Data that is copied or enhanced
(perhaps by summarizing the data) from
operational data sources into an informational
database.

descriptive data. Data that identifies and
describes an object, for example, the name of a
table, the location of a spreadsheet, or the creator
of a document. Also called metadata.

Description view. A view that lists the
properties and property values for an object.

Dictionary. The category for object types that
can be used to define terminology (for example,
the “Glossary entries” object type in the sample
information catalog).

dictionary facility. A collection of definitions or
synonyms for the business terms you use in the
information catalog. After it is created, the
dictionary facility appears in every user’s Catalog
window as a saved search icon.

double-byte character set (DBCS). A set of
characters in which each character is represented
by two bytes. Languages such as Japanese,
Chinese, and Korean, which contain more
symbols than can be represented by 256 code
points, require double-byte character sets.
Contrast with single-byte character set.

DP NAME. An identification for an object type
that uniquely identifies it for import operations.
Also called the short name of an object type.

E

echo file. A file produced by the Information
Catalog Manager when it imports a tag language
file. This file contains all the tags that have been
processed since either the beginning of the tag
language file or the point when the last
COMMIT tag was processed.

Elemental. The category for non-Grouping
object types that are the building blocks for other
Information Catalog Manager object types.
Elemental object types are at the bottom of object
type hierarchies. “Columns in relational tables,”
“Presentations {electronic and hardcopy},” and
“Graphics and Images” are all examples of
Elemental object types.

export. To copy metadata from the Information
Catalog Manager, translate the metadata into tag
language, and put this output in a tag language
file for a subsequent import operation.

external name. The 80-byte name for an object
type. Also called object type name.

extract control file. A file that contains
statements that control the operation of an
extractor utility program.

extract program. A utility program that copies
from a metadata source, such as an RDBMS
catalog, translates the metadata into tag
language, and places this output in a tag
language file.

F

FAT. File allocation table. A table used to
allocate space on a disk for a file and to locate
the file.

FLGID. See object identifier.

G

Grouping. The category for object types that
can contain other object types. Examples of
Grouping object types available in the sample
information catalog included with the
Information Catalog Manager are: “Tables or
views in a relational database,” which contains
the Elemental object type “Columns in relational
tables”; and “Multi-dimensional model,” which
contains another Grouping object type
“Dimension.”

372 Information Catalog Manager Programming Guide and Reference

H

HPFS. High-performance file system. In OS/2,
an installable file system that uses high-speed
buffer storage, known as a cache, to provide fast
access to large disk volumes. File names used
with the HPFS can have as many as 254
characters.

I

import. To apply the contents of a tag language
file to an Information Catalog Manager to
initially populate the information catalog, change
the information catalog contents, or copy the
contents of another information catalog to the
information catalog.

information catalog. The database managed by
the Information Catalog Manager containing
descriptive data that helps users identify and
locate the data and information available to them
in the organization.

Information Catalog Manager application
program interface (API). The portion of the
Information Catalog Manager that processes
application program requests for the Information
Catalog Manager services and functions.

information source. An item of data or
information, such as a table or chart, that is
represented by an Information Catalog Manager
object.

informational application. A program or
system that lets users retrieve and analyze their
data.

informational database. A database that
contains derived data and is intended for
business decision making.

input structure. A self-defining data structure
used to submit data to the Information Catalog
Manager application program interface.

instance. See object.

instance identifier. A 10-digit numeric identifier
generated by the Information Catalog Manager

for each object. The identifier is unique for that
object within a given object type (an object of
another object type may have the same
identifier), and within a given information
catalog database (an object in another
information catalog database may have the same
identifier).

I/O structure. See input structure and output
structure.

K

keyword. An element of the Information
Catalog Manager tag language that identifies the
meaning of a data value imported into or
exported out of an information catalog.

keyword search. See search.

L

link. A connection between two or more objects
involved in a linked relationship.

linked relationship. A relationship between
objects in an information catalog. Objects in a
linked relationship are peers, rather than one an
underlying object of the other.

For example, in the sample information catalog
included with the Information Catalog Manager,
the object called CelDial Sales Information is
linked with various objects describing CelDial
advertisements for the year.

log file. A file produced by the Information
Catalog Manager when it imports a tag language
file or exports objects in the information catalog.
This file records the times and dates when the
import or export started and stopped and any
error information for the process.

M

metadata. Data about information sources. See
descriptive data.

multiple character wildcard. A character used
to represent any series of characters of any

Glossary 373

length. By default, the multiple character
wildcard is an asterisk (*). See also wildcard and
single character wildcard.

N

not-applicable symbol. A character that
indicates that a value for a required property
was not provided when an object was created.
The not-applicable symbol is a hyphen (-) by
default, but you could have identified a different
symbol when you created the information
catalog.

O

object. An item that represents a unit or distinct
grouping of information. Each Information
Catalog Manager object identifies and describes
information, but does not contain the actual
information. For example, an object can provide
the name of a report, list its creation date, and
describe its purpose.

object identifier. A 16-digit identifier for an
object that is made up of its 6-digit object type
identifier and its 10-digit instance identifier that
is used with some API calls. See object type
identifier and instance identifier.

object type. A classification for objects. An
object type is used to reflect a type of business
information, such as a table, report, or image.

The Information Catalog Manager provides a set
of sample object types, which you can modify.
You can also create additional object types to
meet the needs of your organization.

object type identifier. A 6-digit numeric
identifier generated by the Information Catalog
Manager for each object type. The identifier is
unique within the information catalog database.

object type registration. With the Information
Catalog Manager application program interface,
the basic information about an object type that
you must define in the Information Catalog
Manager before you can define the properties for
the object type. This information includes the

category, the name, the icon, and the name of the
table containing the object information.

operational data. Data used to run the
day-to-day operations of an organization.

option. In Information Catalog Manager tag
language, a parameter of the ACTION tag that
defines the action to be performed on objects or
object types in the î database when the tag
language file is imported.

output structure. A self-defining data structure
produced by the Information Catalog Manager
when returning data produced by an Information
Catalog Manager API call.

P

physical type name. The name of the table in
the information catalog database that contains
metadata for instances of a specific object type.

populate. To add object types, objects, or
metadata to the Information Catalog Manager.

Program category. The category for the
Programs object type.

Programs object type. A classification for
objects that identify and describe applications
capable of processing the actual information
described by Information Catalog Manager
objects.

The Programs object type is included with the
Information Catalog Manager.

property. A characteristic or attribute that
describes a unit of information. Each object type
has a set of associated properties. For example,
the “Graphics and Images” object type in the
sample information catalog includes the
following properties:

Name
Description
Image type
Image filename

For each object, a set of values are assigned to
the properties.

374 Information Catalog Manager Programming Guide and Reference

property name. The 80-byte descriptive name of
a property that is displayed in the Information
Catalog Manager user interface. Contrast with
property short name.

property short name. An 8-character name used
by the Information Catalog Manager to uniquely
identify a property of an object or object type.

property value. The value of a property.

PT NAME. See physical type name.

R

RDBMS. Relational database management
system.

RDBMS catalog. A set of tables that contain
descriptions of SQL objects, such as tables, views,
and indexes, maintained by an RDBMS.

relational database management system. A
software system, such as DB2 UDB for OS/2,
that manages and stores relational data.

registration. See object type registration.

roll back. To remove uncommitted changes to
the information catalog database. Contrast with
commit.

S

saved search. A set of search criteria that is
saved for subsequent use. Appears as an icon in
the Catalog window.

SBCS. Single-byte character set.

search. To request the display of the
Information Catalog Manager objects that meet
specific criteria.

search by subject. See browse.

search by term. See search.

search criteria. Options and character strings
used to specify how to perform a search. This
can include object type names, property values,

whether the search is for an exact match, and
whether the search is case sensitive.

single-byte character set (SBCS). A character
set in which each character is represented by a
one-byte code. Contrast with double-byte character
set.

single character wildcard. A character used to
represent any single character. By default, the
single character wildcard is a question mark (?).
See also wildcard and multiple character wildcard.

subject search. See browse.

Support. The category for object types that
provide additional information about your
information catalog or enterprise (for example,
the “ Information Catalog Manager News” object
type in the sample information catalog).

support facility. A collection of information you
consider helpful for users of your information
catalog, such as announcements of changes or
updates to the information catalog. After it is
created, the support facility appears in every
user’s Catalog window as a saved search icon.

T

tag. An element of the tag language. Tags
indicate actions to be taken when the tag
language file is imported to the information
catalog.

tag language. A format for defining object types
and objects, and actions to be taken on those
object types and objects, in the Data Warehouse
Center or the information catalog.

tag language file. A file that contains tag
language that describes objects and object types
to be added, updated or deleted in the Data
Warehouse Center or in the information catalog,
when the file is imported. A tag language file is
produced by exporting objects from the Data
Warehouse Center or from the Information
Catalog Manager.

In the Information Catalog Manager, a tag
language file is also produced by:
v Transferring a delete history log.

Glossary 375

v Extracting descriptive data from another
database system using an extract program.

Tree view. A view that displays hierarchically
an object and the objects it contains.

U

unit of work. A recoverable sequence of
operations within an application process. A unit
of work is the basic building block a database
management system uses to ensure that a
database is in a consistent state. A unit of work is
ended when changes to the database are
committed or rolled back.

universal unique identifier (UUI). A key for an
object. The key is comprised of up to five
properties, which, when concatenated in a
designated order, uniquely identify the object
during import and export functions.

user. A person who accesses the information
available in the information catalog but who is
not an administrator.

Some Information Catalog Manager users, if they
have been granted authority, can perform some
object management tasks normally performed by
administrators.

W

wildcard. A special character that is used as a
variable when specifying property values in a
search. See also single character wildcard and
multiple character wildcard.

376 Information Catalog Manager Programming Guide and Reference

Bibliography

To get copies of the books listed here, or to
get more information about a particular
library, see your IBM representative.

Data Warehouse Center publications

Warehouse Manager Installation Guide
(GC26–9998)
Information Catalog Manager
Administration Guide (SC26–9995)
Data Warehouse Center Administration
Guide (SC26–9993)
Information Catalog Manager User’s Guide
(SC26–9996)
IBM DB2 Universal Database Message
Reference (GC09-2978)

© Copyright IBM Corp. 1994, 2000 377

Bibliography

378 Information Catalog Manager Programming Guide and Reference

Index

Special Characters
#define statements 23
#define statements in

DG2API.H 245
#include statements 22, 23

A
adding

object instances 78
object type registrations 84
object types 91
objects 4

administrator 2
anchors, listing 149
API call

call structure 20
FLGAppendType 69
FLGCommit 74
FLGConvertID 76
FLGCreateInst 78
FLGCreateReg 84
FLGCreateType 91
FLGDeleteInst 97
FLGDeleteReg 100
FLGDeleteTree 102
FLGDeleteType 107
FLGDeleteTypeExt 110
FLGExport 113
FLGFoundIn 120
FLGFreeMem 125
FLGGetInst 127
FLGGetReg 131
FLGGetType 135
FLGImport 138
FLGInit 142
FLGListAnchors 149
FLGListAssociates 152
FLGListContacts 161
FLGListObjTypes 164
FLGListOrphans 167
FLGListPrograms 173
FLGManageCommentStatus 176
FLGManageFlags 180
FLGManageIcons 182
FLGManageTagBuf 185
FLGManageUsers 187
FLGMdisExport 193
FLGMdisImport 196
FLGNavigate 198

API call (continued)
FLGOpen 202
FLGRelation 204
FLGRollback 207
FLGSearch 208
FLGSearchAll 217
FLGTerm 223
FLGTrace 225
FLGUpdateInst 228
FLGUpdateReg 233
FLGWhereUsed 238
FLGXferTagBuf 241
function prototypes in

DG2API.H 255
reason codes 263
syntax conventions 67

API syntax 67
appending properties to an object

type 69
application program 2, 3
application support

FLGFreeMem 15
FLGInit 15
FLGTerm 15
FLGTrace 15

associates, listing 152
Attachment category

definition of 5
relationships

summary of 6

C
C language 23
categories of metadata 5
categories of objects 5
category

Attachment
definition of 5
relationships with other

categories 6
Contact

definition of 5
relationships with other

categories 6
Dictionary

definition of 5
relationships with other

categories 6
Elemental

definition of 5

category (continued)
Elemental (continued)

relationships with other
categories 6

Grouping
definition of 5
relationships with other

categories 6
Program

definition of 5
relationships with other

categories 6
Support

definition of 5
relationships with other

categories 6
CHAR data type 27
codes, reason 263
comments

status choices
setting list of 176

committing changes to the database
FLGCommit 19

committing changes to the
Information Catalog Manager
information catalog 74

compiling a C language program
under Windows 24

compiling and linking the sample
program 243

Contact
creating and deleting

relationships 204
listing 161
objects adding and

removing 204
Contact category

definition of 5
relationships

summary of 6
contains 204
converting

DP NAME to object type ID 76
FLGID to object instance

name 76
copying object instances 18
copying object types 18
creating

object instances 78

© Copyright IBM Corp. 1994, 2000 379

creating (continued)
object type registrations 84
object types 91

CREATOR property 8

D
data

passing with API calls 20
structure 32, 51
types 27, 254

database, maintaining 3
DBCS characters in values 28
definition area

data structure in DG2API.H 253
input structure 35, 45
output structure 55
sample code defining 49

delete activity
log

querying 185
resetting 185
transferring to tag file 241

logging
disabling 180
enabling 180

delete history
log

querying 185
resetting 185
transferring to tag file 241

logging
disabling 180
enabling 180

deleting
object instances 97

grouping 102
object type registrations 100
object types 107
object types and instances

of 110
descriptive data 1
DG2API.H

definitions in 245
for reading output structures 59
header file 40

DG2SAMP.C 29, 243
Dictionary category

definition of 5
relationships

summary of 6
DOS batch file 26
DOS character-based program 26
DPNAME property 8

converting to OBJTYPID
property 76

E
Elemental category

definition of 5
relationships

summary of 6

error recovery 25, 225

examples

FLGAppendType API call 71
FLGCommit 75
FLGConvertID 76
FLGCreateInst 81
FLGCreateReg 88
FLGCreateType 94
FLGDeleteInst 98
FLGDeleteReg 101
FLGDeleteTree 103
FLGDeleteType 108
FLGDeleteTypeExt 111
FLGExport 118
FLGFoundIn 122
FLGFreeMem 125
FLGGetInst 129
FLGGetReg 133
FLGGetType 136
FLGImport 140
FLGInit 146
FLGListAnchors 150
FLGListAssociates 154
FLGListContacts 162
FLGListObjTypes 165
FLGListOrphans 169
FLGListPrograms 174
FLGManageCommentStatus 177
FLGManageFlags 181
FLGManageIcons 183
FLGManageTagBuf 186
FLGManageUsers 189
FLGNavigate 200
FLGOpen 203
FLGRelation 206
FLGRollback 207
FLGSearch 211
FLGSearchAll 220
FLGTerm 223
FLGTrace 226
FLGUpdateInst 231
FLGUpdateReg 235
FLGWhereUsed 239
FLGXferTagBuf 242
sample code for reading 63

exporting Information Catalog
Manager metadata 113, 193

exporting metadata 18

F
finding

object instances within other
instances 120

FLGAppendType
API call 69
overview 7

FLGCommit 74
FLGConvertID 76
FLGCreateInst 78
FLGCreateReg

API call 84
overview 7

FLGCreateType
API call 91
overview 7

FLGDeleteInst 97
FLGDeleteReg

API call 100
overview 7

FLGDeleteTree 102
FLGDeleteType

API call 107
overview 7

FLGDeleteTypeExt 110
FLGExport 113
FLGFoundIn 120
FLGFreeMem 125
FLGGetInst 127
FLGGetReg

API call 131
overview 7

FLGGetType
API call 135
overview 7

FLGID
converting to object instance

name 76
FLGImport 138
FLGInit

API call 142
starting your program 24

FLGListAnchors 149
FLGListAssociates 152
FLGListContacts 161
FLGListObjTypes 164
FLGListOrphans 167
FLGListPrograms 173
FLGManageCommentStatus 176
FLGManageFlags 180
FLGManageIcons 182
FLGManageTagBuf 185
FLGManageUsers 187
FLGMdisExport 193
FLGMdisImport 196

380 Information Catalog Manager Programming Guide and Reference

FLGNavigate 198
FLGOpen

API call 202
starting programs 26

FLGRelation 204
FLGRollback 207
FLGSearch 208
FLGSearchAll 217
FLGTerm

API call 223
ending your program 25

FLGTrace 225
FLGUpdateInst 228
FLGUpdateReg

API call 233
overview 7

FLGWhereUsed 238
FLGXferTagBuf 241
freeing storage for output

structures 125
function prototypes in

DG2API.H 255

G
getting information

about an object instance 127
about an object type 135
about an object type

registration 131
Grouping category

definition of 5
relationships

summary of 6
Grouping objects 198, 204

H
HANDLES property 25
header area

data structure in DG2API.H 253
input structure 33, 44
output structure 53
sample code defining 48

header file 22, 245

I
icons

managing 182
identifier names 12
importing metadata 18, 138, 196
include file 245
Information Catalog Manager

introduction 1
limits 261
objects 5

initializing Information Catalog
Manager 142

input data structure 32
input structure

calculating the size of 42
common characteristics 31
constants defined in

DG2API.H 245
defining

definition area 45
header area 44
object area 47

definition area 35
definition area in

DG2API.H 253
example of defining 48
format 32
header area 33
header area in DG2API.H 253
object area 39
overview 21
passing to an API call 21
sample code

defining definition area 49
defining header area 48
defining object area 50

input structures
creating 40

instances of object types 6
INSTIDNT property 10
introduction 1

L
launching program

external 202
setting up Programs objects 25
workstation 19

LIBPATH 23
limits 261
linking a C language program

under Windows 24
listing

anchor objects 149
associate objects 152
Contact objects 161
Grouping objects that contain this

object 238
object instances 17
object types 17, 164
orphan objects 167
programs 173
subject objects 149

locating object instances
in any object type 217
in one object type 208
using one or more

properties 208
using properties 17

locating object instances (continued)
using the object name 217
within other instances 120

log
delete activity

querying 185
resetting 185
transferring to a tag file 241

logging
delete activity

disabling 180
enabling 180

LONG VARCHAR data type 27

M
maintaining a database 3
managing

comment status 176
databases, enterprise

FLGManageCommentStatus 19
FLGManageFlags 19
FLGManageTagBuf 19
FLGManageUsers 19
FLGXferTagBuf 19

delete activity log 185
icons 182
Information Catalog Manager

identifiers
FLGConvertID 17

Information Catalog Manager
users 187

object instances 16
object relationships 17
object type registrations 16
object types 16

maximum values in Information
Catalog Manager 261

metadata
categories 5
defined 1
deleting with API calls 26
valid data types 27

Microsoft Windows program 26

N
NAME property 8, 10
names used in Information Catalog

Manager 12
national language considerations 28

O
object

adding 4
classifying 6
overview 5, 6

object area
input structure 39, 47

Index 381

object area (continued)
output structure 57
sample code defining 50

object categories 5
object instance 6

copying
FLGExport 18
FLGImport 18

creating 78
deleting 97

grouping 102
finding other instances in 120
listing

FLGFoundIn 17
FLGListAnchors 17
FLGListAssociates 17
FLGListContacts 17
FLGListOrphans 17
FLGListPrograms 17
FLGNavigate 17
FLGWhereUsed 17

listing objects that contain this
object 238

locating
FLGSearch 17
FLGSearchAll 17

managing
FLGCreateInst 16
FLGDeleteInst 16
FLGDeleteTree 16
FLGGetInst 16
FLGUpdateInst 16

retrieving information 127
searching for 208, 217
updating information 228

object relationship 17
object type

adding properties 69
copying

FLGExport 18
FLGImport 18

creating 91
creating with API calls 26
defining 8
defining required properties 10
deleting 107
deleting, and instances of 110
listing

FLGListObjTypes 17
listing all 164
managing

FLGAppendType 16
FLGCreateType 16
FLGDeleteType 16
FLGDeleteTypeExt 16

object type (continued)
managing (continued)

FLGGetType 16
overview 7
registration 7
relationships between 6
retrieving information 135
specifying categories for 9
terminology 12

object type registration
creating 84
deleting 100
managing

FLGCreateReg 16
FLGDeleteReg 16
FLGGetReg 16
FLGManageIcons 16
FLGUpdateReg 16

required properties 8
retrieving information 131
updating information 233

OBJTYPID property 10
converting DP NAME to 76

orphans, listing 167
OS/2 26
output data structure 51
output structure

calculating the number of
properties 60

calculating the number sets of
values returned 60

common characteristics 31
constants defined in

DG2API.H 245
definition area 55
definition area in

DG2API.H 253
format 51
header area 53
header area in DG2API.H 253
object area 57
overview 21
reading 58, 67
retrieving from an API call 22
sample code for reading 63

P
parameters of API calls 20
PARMLIST property 25
populating a Information Catalog

Manager î 138, 196
Program category

definition of 5
relationships

summary of 6

programmer 2
programs

listing 173
setting up Programs objects 25
starting

FLGOpen 19
writing with API calls 15

programs in C language 23
properties of object types 10
PTNAME property 8

R
reading an output structure 58, 63
recording error conditions 225
recovering from errors 25
registration 7
related publications 377
relationships 204

object types, between 6
required properties of object

types 10
retrieving

information about an object
instance 127

information about an object
type 135

information about an object type
registration 131

retrieving a list of contained
objects 198

rolling back changes to the database
FLGRollback 19

rolling back changes to the
Information Catalog Manager
information catalog 207

running the sample program 243

S
sample program

compiling and linking 243
defining an input structure 48
DG2SAMP.C 29
executing 243

SBCS characters in values 28
searching for object instances 208,

217
SET INCLUDE 23
SET LIB 23
setting trace levels 225
STARTCMD property 25
starting

Information Catalog
Manager 142

programs
FLGOpen 19, 202
HPFS file considerations 26

382 Information Catalog Manager Programming Guide and Reference

starting (continued)
STARTCMD property 26
with FLGOpen 26

with HPFS file names 26
stopping Information Catalog

Manager 223
structure

common characteristics 31
input format 32
output format 51

subjects, listing 149
Support category

definition of 5
relationships

summary of 6
supporting applications

FLGFreeMem 15
FLGInit 15
FLGTerm 15
FLGTrace 15

syntax diagrams, reading 67
syntax for API calls 67

T
tag file

transferring delete activity
to 185, 241

templates of objects 6
terminating Information Catalog

Manager 223
terminology for object types 12
TIMESTAMP data type 27
trace (.TRC) file 225
tracing Information Catalog Manager

functions 225
translated required property

names 28, 145

U
UPDATEBY property 8, 10
UPDATIME property 8, 10
updating metadata for an object

instance 228
updating object type registration

information 233
user 1
using Information Catalog Manager

API calls 24

V
VARCHAR data type 27

W
Windows header file 245
writing programs in C language 23
writing programs with API calls 15

Index 383

384 Information Catalog Manager Programming Guide and Reference

Contacting IBM

If you have a technical problem, please review and carry out the actions
suggested by the Troubleshooting Guide before contacting DB2 Customer
Support. This guide suggests information that you can gather to help DB2
Customer Support to serve you better.

For information or to order any of the DB2 Universal Database products
contact an IBM representative at a local branch office or contact any
authorized IBM software remarketer.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-237-5511 for customer support
v 1-888-426-4343 to learn about available service options

Product Information

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) or 1-800-3IBM-OS2 (1-800-342-6672) to

order products or get general information.
v 1-800-879-2755 to order publications.

http://www.ibm.com/software/data/
The DB2 World Wide Web pages provide current DB2 information
about news, product descriptions, education schedules, and more.

http://www.ibm.com/software/data/db2/library/
The DB2 Product and Service Technical Library provides access to
frequently asked questions, fixes, books, and up-to-date DB2 technical
information.

Note: This information may be in English only.

http://www.elink.ibmlink.ibm.com/pbl/pbl/
The International Publications ordering Web site provides information
on how to order books.

http://www.ibm.com/education/certify/
The Professional Certification Program from the IBM Web site
provides certification test information for a variety of IBM products,
including DB2.

© Copyright IBM Corp. 1994, 2000 385

ftp.software.ibm.com
Log on as anonymous. In the directory /ps/products/db2, you can
find demos, fixes, information, and tools relating to DB2 and many
other products.

comp.databases.ibm-db2, bit.listserv.db2-l
These Internet newsgroups are available for users to discuss their
experiences with DB2 products.

On Compuserve: GO IBMDB2
Enter this command to access the IBM DB2 Family forums. All DB2
products are supported through these forums.

For information on how to contact IBM outside of the United States, refer to
Appendix A of the IBM Software Support Handbook. To access this document,
go to the following Web page: http://www.ibm.com/support/, and then
select the IBM Software Support Handbook link near the bottom of the page.

Note: In some countries, IBM-authorized dealers should contact their dealer
support structure instead of the IBM Support Center.

386 Information Catalog Manager Programming Guide and Reference

����

Program Number: 5648-D35

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-9997-00

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
IB

M
®

D
B

2®
W

ar
eh

ou
se

M
an

ag
er

In
fo

rm
at

io
n

C
at

al
og

M
an

ag
er

Pr
og

ra
m

m
in

g
G

ui
de

an
d

R
ef

er
en

ce
Ve

rs
io

n
7

	Contents
	About this book
	What is an information catalog?
	What are information catalog architected interfaces?
	How to send your comments

	Chapter 1. Introduction to the Information Catalog Manager
	Who uses the Information Catalog Manager?
	Users
	Administrators
	Application programmers

	What kinds of applications work with the Information Catalog Manager?
	Informational applications
	Tools that maintain and administer the information catalog metadata
	Maintaining an information catalog
	Adding new objects

	Chapter 2. Managing objects with an application
	Organizing objects using categories
	A programmer's view of the Information Catalog Manager object types
	Defining object types
	Specifying registration properties
	Specifying the category for a new object type
	Defining required object type properties
	Identifying your new object type and object instances

	The Information Catalog Manager identifier names

	Chapter 3. Writing programs with the Information CatalogManager API calls
	What you can do with the Information Catalog Manager API calls
	Provide the Information Catalog Manager application support
	Manage object type registrations
	Manage object types
	Manage object instances
	Manage the Information Catalog Manager identifiers
	Define object relationships
	Locate object instances
	List object types and instances
	Copy metadata objects to or from the Information Catalog Manager
	Start external programs
	Confirm or remove changes to the Information Catalog Manager database
	Manage your enterprise information catalogs

	Issuing an Information Catalog Manager API call
	Passing data to and from the Information Catalog Manager API calls
	Passing single input values and pointers as parameters
	Passing multiple values using input structures and output structures

	Including header files
	An overview of writing a C language program
	Creating C language source code
	Setting up your environment
	Compiling and linking your application

	How to use the Information Catalog Manager API calls in your program
	Starting your program with FLGInit
	Ending your program with FLGTerm
	Protecting your information catalog database when errors occur
	Setting up Programs objects to start programs
	Creating metadata using API calls
	Deleting metadata using API calls
	Specifying the information catalog metadata using the InformationCatalog Manager data types

	National language considerations
	Translated required properties
	Specifying values in languages other than English

	Introducing DG2SAMP.C

	Chapter 4. The Information Catalog Manager input andoutput structures
	Common characteristics of the Information Catalog Manager API input andoutput structures
	The Information Catalog Manager API input structure
	Header area — always required
	Definition area — always required
	Object area — Required when defining values

	Creating input structures for an API call
	Defining lengths and values using DG2API.H
	Calculating the size of the entire input structure
	Calculating the definition area length
	Calculating the object area length
	Adding all the parts together

	Defining the header area
	Defining the definition area
	Defining the object area
	Example of defining header, definition, and object areas
	Calculating the object area length
	Defining the header area
	Defining the definition area
	Defining the object area

	The Information Catalog Manager API output structure
	Header area — always present
	Definition area — always present
	Object area — Present when retrieving information

	Reading an output structure resulting from an API call
	Using pointers to read an output structure
	Reading values using DG2API.H
	Calculating the number of properties in the output structure
	Calculating the number of sets of values returned
	Reading the property data types and lengths in the definition area
	Stepping through the object area to read values
	DG2SAMP.C example of locating a value in an output structure
	Getting values from the user and the output structure
	Assigning a pointer to the beginning of the object area
	Moving through the object area

	Chapter 5. The Information Catalog Manager API callsyntax
	API call syntax conventions
	Reading syntax diagrams
	Using constants defined in DG2API.H in your program

	FLGAppendType
	FLGCommit
	FLGConvertID
	FLGCreateInst
	FLGCreateReg
	FLGCreateType
	FLGDeleteInst
	FLGDeleteReg
	FLGDeleteTree
	FLGDeleteType
	FLGDeleteTypeExt
	FLGExport
	FLGFoundIn
	FLGFreeMem
	FLGGetInst
	FLGGetReg
	FLGGetType
	FLGImport
	FLGInit
	FLGListAnchors
	FLGListAssociates
	FLGListContacts
	FLGListObjTypes
	FLGListOrphans
	FLGListPrograms
	FLGManageCommentStatus
	FLGManageFlags
	FLGManageIcons
	FLGManageTagBuf
	FLGManageUsers
	FLGMdisExport
	FLGMdisImport
	FLGNavigate
	FLGOpen
	FLGRelation
	FLGRollback
	FLGSearch
	FLGSearchAll
	FLGTerm
	FLGTrace
	FLGUpdateInst
	FLGUpdateReg
	FLGWhereUsed
	FLGXferTagBuf

	Appendix A. Sample program DG2SAMP.C
	Compiling DG2SAMP.C
	Linking DG2SAMP.C
	Executing DG2SAMP.C

	Appendix B. The Information Catalog Manager API headerfile—DG2APIH
	Constants defined in DG2API.H
	Structure and data type definitions in DG2API.H
	Information Catalog Manager API call function prototypes

	Appendix C. Information Catalog Manager limits
	Appendix D. Information Catalog Manager reason codes
	Notices
	Trademarks

	Glossary
	Bibliography
	Index
	Contacting IBM
	Product Information

