
IBM
®

DB2
®

Universal Database

Administrative API Reference
Version 7

SC09-2947-00

���

IBM
®

DB2
®

Universal Database

Administrative API Reference
Version 7

SC09-2947-00

���

Before using this information and the product it supports, be sure to read the general information under “Appendix I.
Notices” on page 657.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book vii
Who Should Use this Book vii
How this Book is Structured vii

Chapter 1. Application Programming
Interfaces 1
DB2 APIs 1
DB2 Sample Programs 6
How the API Descriptions are Organized . . 12
db2AdminMsgWrite 15
db2AutoConfig 17
db2AutoConfigFreeMemory. 20
db2ConvMonStream 21
db2DatabaseRestart - Restart Database . . . 24
db2GetSnapshot - Get Snapshot 27
db2GetSnapshotSize - Estimate Size Required
for db2GetSnapshot() Output Buffer 30
db2GetSyncSession. 33
db2HistoryCloseScan - Close Recovery
History File Scan 34
db2HistoryGetEntry - Get Next Recovery
History File Entry 36
db2HistoryOpenScan - Open Recovery
History File Scan 39
db2HistoryUpdate - Update Recovery History
File 44
db2LdapCatalogDatabase 47
db2LdapCatalogNode 50
db2LdapDeregister 52
db2LdapRegister 54
db2LdapUncatalogDatabase 58
db2LdapUncatalogNode 60
db2LdapUpdate. 62
db2LoadQuery - Load Query 65
db2MonitorSwitches - Get/Update Monitor
Switches 69
db2Prune 72
db2QuerySatelliteProgress 76
db2ResetMonitor - Reset Monitor 78
db2SetSyncSession 81
db2SyncSatellite. 82
db2SyncSatelliteStop 83
db2SyncSatelliteTest 84
sqlabndx - Bind 85
sqlaintp - Get Error Message 90

sqlaprep - Precompile Program. 93
sqlarbnd - Rebind 99
sqlbctcq - Close Tablespace Container Query 103
sqlbctsq - Close Tablespace Query 105
sqlbftcq - Fetch Tablespace Container Query 107
sqlbftpq - Fetch Tablespace Query 109
sqlbgtss - Get Tablespace Statistics 111
sqlbmtsq - Tablespace Query 113
sqlbotcq - Open Tablespace Container Query 116
sqlbotsq - Open Tablespace Query 119
sqlbstpq - Single Tablespace Query 122
sqlbstsc - Set Tablespace Containers 124
sqlbtcq - Tablespace Container Query . . . 127
sqlcspqy - List DRDA Indoubt Transactions 130
sqle_activate_db - Activate Database . . . 132
sqle_deactivate_db - Deactivate Database 135
sqleaddn - Add Node 138
sqleatcp - Attach and Change Password . . 141
sqleatin - Attach 145
sqlecadb - Catalog Database 149
sqlecran - Create Database at Node 157
sqlecrea - Create Database 159
sqlectnd - Catalog Node 168
sqledcgd - Change Database Comment. . . 173
sqledcls - Close Database Directory Scan . . 176
sqledgne - Get Next Database Directory
Entry 178
sqledosd - Open Database Directory Scan 181
sqledpan - Drop Database at Node 184
sqledreg - Deregister 186
sqledrpd - Drop Database 188
sqledrpn - Drop Node Verify 191
sqledtin - Detach 193
sqlefmem - Free Memory 195
sqlefrce - Force Application 196
sqlegdad - Catalog DCS Database 200
sqlegdcl - Close DCS Directory Scan . . . 203
sqlegdel - Uncatalog DCS Database 205
sqlegdge - Get DCS Directory Entry for
Database 208
sqlegdgt - Get DCS Directory Entries . . . 210
sqlegdsc - Open DCS Directory Scan . . . 213
sqlegins - Get Instance 215
sqleintr - Interrupt 217
sqleisig - Install Signal Handler 219

© Copyright IBM Corp. 1993, 2000 iii

sqlemgdb - Migrate Database 221
sqlencls - Close Node Directory Scan . . . 223
sqlengne - Get Next Node Directory Entry 225
sqlenops - Open Node Directory Scan . . . 228
sqlepstart - Start Database Manager 230
sqlepstp - Stop Database Manager 233
sqleqryc - Query Client 236
sqleqryi - Query Client Information 239
sqleregs - Register 241
sqlesact - Set Accounting String 243
sqlesdeg - Set Runtime Degree 245
sqlesetc - Set Client 248
sqleseti - Set Client Information 251
sqleuncd - Uncatalog Database 254
sqleuncn - Uncatalog Node 257
sqlfddb - Get Database Configuration
Defaults 259
sqlfdsys - Get Database Manager
Configuration Defaults 261
sqlfrdb - Reset Database Configuration. . . 263
sqlfrsys - Reset Database Manager
Configuration 266
sqlfudb - Update Database Configuration 268
sqlfusys - Update Database Manager
Configuration 272
sqlfxdb - Get Database Configuration . . . 275
sqlfxsys - Get Database Manager
Configuration 278
sqlgaddr - Get Address 281
sqlgdref - Dereference Address 282
sqlgmcpy - Copy Memory 283
sqlogstt - Get SQLSTATE Message 284
sqluadau - Get Authorizations 287
sqlubkp - Backup Database 290
sqludrdt - Redistribute Nodegroup 298
sqluexpr - Export 302
sqlugrpn - Get Row Partitioning Number 314
sqlugtpi - Get Table Partitioning Information 318
sqluimpr - Import. 320
sqluload - Load 345
sqlurcon - Reconcile 374
sqlureot - Reorganize Table 377
sqlurestore - Restore Database 381
sqlurlog - Asynchronous Read Log 394
sqluroll - Rollforward Database 397
sqlustat - Runstats 407
sqluvqdp - Quiesce Tablespaces for Table 413

Chapter 2. Additional REXX APIs 417
Change Isolation Level 418

Chapter 3. Data Structures 419
db2HistData 423
RFWD-INPUT 427
RFWD-OUTPUT 430
SQL-AUTHORIZATIONS 434
SQL-DIR-ENTRY 437
SQLA-FLAGINFO 439
SQLB-TBS-STATS 441
SQLB-TBSCONTQRY-DATA 443
SQLB-TBSPQRY-DATA 445
SQLCA 450
SQLCHAR 452
SQLDA 453
SQLDCOL 456
SQLE-ADDN-OPTIONS. 460
SQLE-CLIENT-INFO 462
SQLE-CONN-SETTING 465
SQLE-NODE-APPC 469
SQLE-NODE-APPN 470
SQLE-NODE-CPIC 471
SQLE-NODE-IPXSPX 472
SQLE-NODE-LOCAL 473
SQLE-NODE-NETB 474
SQLE-NODE-NPIPE 475
SQLE-NODE-STRUCT 476
SQLE-NODE-TCPIP 478
SQLE-REG-NWBINDERY 479
SQLE-START-OPTIONS 480
SQLEDBCOUNTRYINFO 484
SQLEDBDESC 485
SQLEDBSTOPOPT 491
SQLEDINFO 493
SQLENINFO 496
SQLFUPD 499
SQLM-COLLECTED 507
SQLM-RECORDING-GROUP 510
SQLMA 512
SQLOPT 515
SQLU-LSN 517
SQLU-MEDIA-LIST 518
SQLU-RLOG-INFO 522
SQLU-TABLESPACE-BKRST-LIST 523
SQLUEXPT-OUT 525
SQLUIMPT-IN 526
SQLUIMPT-OUT 527
SQLULOAD-IN 529
SQLULOAD-OUT. 534
SQLUPI 536
SQLXA-RECOVER 538
SQLXA-XID. 540

iv Administrative API Reference

Appendix A. Naming Conventions . . . 541

Appendix B. Transaction APIs 543
Heuristic APIs 543
sqlxhfrg - Forget Transaction Status 545
sqlxphcm - Commit an Indoubt Transaction 546
sqlxphqr - List Indoubt Transactions . . . 548
sqlxphrl - Roll Back an Indoubt Transaction 550

Appendix C. Precompiler Customization
APIs 553

Appendix D. Backup and Restore APIs for
Vendor Products 555
Operational Overview 555

Number of Sessions 556
Operation with No Errors, Warnings or
Prompting 557
PROMPTING Mode 558
Device Characteristics 558
If Error Conditions Are Returned to DB2 560
Warning Conditions 561

Operational Hints and Tips 561
Recovery History File 561

Functions and Data Structures 562
sqluvint - Initialize and Link to Device. . . 564
sqluvget - Reading Data from Device . . . 568
sqluvput - Writing Data to Device 571
sqluvend - Unlink the Device and Release its
Resources 574
sqluvdel - Delete Committed Session . . . 577
DB2-INFO 579
VENDOR-INFO 582
INIT-INPUT 583
INIT-OUTPUT 585
DATA. 586
RETURN-CODE 587
Invoking Backup/Restore Using Vendor
Products 588

The Control Center 588
The Command Line Processor 588
Backup and Restore API Function Calls 589

Appendix E. Threaded Applications with
Concurrent Access. 591
sqleAttachToCtx - Attach to Context . . . 593
sqleBeginCtx - Create and Attach to an
Application Context 594
sqleDetachFromCtx - Detach From Context 596

sqleEndCtx - Detach and Destroy
Application Context 597
sqleGetCurrentCtx - Get Current Context 599
sqleInterruptCtx - Interrupt Context. . . . 600
sqleSetTypeCtx - Set Application Context
Type 601

Appendix F. DB2 Common Server Log
Records 603
Log Manager Header 605
Data Manager Log Records 608

Initialize Table 609
Import Replace (Truncate) 612
Rollback Insert 612
Reorg Table 612
Create Index, Drop Index 613
Create Table, Drop Table, Rollback Create
Table, Rollback Drop Table 613
Alter Table Attribute 613
Alter Table Add Columns, Rollback Add
Columns 614
Insert Record, Delete Record, Rollback
Delete Record, Rollback Update Record . 615
Update Record. 619

Long Field Manager Log Records 619
Add/Delete/Non-update Long Field
Record 620

LOB Manager Log Records 621
Insert LOB Data Log Record
(AFIM_DATA) 622
Insert LOB Data Log Record
(AFIM_AMOUNT) 622

Transaction Manager Log Records 623
Normal Commit 623
Heuristic Commit 623
MPP Coordinator Commit 623
MPP Subordinator Commit 624
Normal Abort 624
Heuristic Abort 625
Local Pending List 625
Global Pending List 625
XA Prepare 626
MPP Subordinator Prepare 627
Backout Free 627
Utility Manager Log Records 628
Datalink Manager Log Records 631

Appendix G. Application Migration
Considerations 635
Changed APIs and Data Structures 636

Contents v

Appendix H. Using the DB2 Library . . . 639
DB2 PDF Files and Printed Books 639

DB2 Information 639
Printing the PDF Books 648
Ordering the Printed Books 649

DB2 Online Documentation 650
Accessing Online Help 650
Viewing Information Online 652
Using DB2 Wizards 654
Setting Up a Document Server 655

Searching Information Online 656

Appendix I. Notices 657
Trademarks 660

Index 663

Contacting IBM 671
Product Information 671

vi Administrative API Reference

About This Book

This book provides information about the use of application programming
interfaces (APIs) to execute database administrative functions. It presents
detailed information on the use of database manager API calls in applications
written in the following programming languages:
v C
v COBOL
v FORTRAN
v REXX.

For a compiled language, an appropriate precompiler must be available to
process the statements. Precompilers are provided for all supported
languages.

Who Should Use this Book

It is assumed that the reader has an understanding of database administration
and application programming, plus a knowledge of:
v Structured Query Language (SQL)
v The C, COBOL, FORTRAN, or REXX programming language
v Application program design.

How this Book is Structured

This book provides the reference information needed to develop
administrative applications.

The following topics are covered:

Chapter 1
Provides a description of all database manager APIs.

Chapter 2
Describes DB2 APIs that are only supported in the REXX
programming language.

Chapter 3
Describes data structures used when calling APIs.

Appendix A
Explains the conventions used to name objects such as databases and
tables.

© Copyright IBM Corp. 1993, 2000 vii

Appendix B
Provides a description of transaction and heuristic APIs.

Appendix C
Describes how to contact IBM for information about the function and
use of APIs that enable the customization of precompilers.

Appendix D
Describes the function and use of APIs that enable DB2 to interface
with other vendor software.

Appendix E
Describes APIs that permit the allocation of separate environments or
contexts for each thread within a process, enabling true concurrent
access to a DB2 database.

Appendix F
Provides information on extracting and working with DB2 log records.

Appendix G
Discusses issues that should be considered before migrating an
application to DB2 Version 6.

viii Administrative API Reference

Chapter 1. Application Programming Interfaces

This chapter describes the DB2 application programming interfaces in
alphabetical order. The APIs enable most of the administrative functions from
within an application program.

Note: Slashes (/) in directory paths are specific to UNIX based systems, and
are equivalent to back slashes (\) in directory paths on OS/2 and
Windows operating systems.

DB2 APIs

The following table lists the APIs grouped by functional category:

Table 1. DB2 APIs

API Description Sample Code
a

INCLUDE File
b

Database Manager Control

“sqlepstart - Start Database Manager” on page 230 makeapi,
dbstart

sqlenv

“sqlepstp - Stop Database Manager” on page 233 makeapi,
dbstop

sqlenv

“sqlfxsys - Get Database Manager Configuration” on
page 278

dbmconf sqlutil

“sqlfdsys - Get Database Manager Configuration
Defaults” on page 261

d_dbmcon sqlutil

“sqlfrsys - Reset Database Manager Configuration”
on page 266

dbmconf sqlutil

“sqlfusys - Update Database Manager
Configuration” on page 272

dbmconf sqlutil

“sqlesdeg - Set Runtime Degree” on page 245 setrundg sqlenv

Database Control

“db2DatabaseRestart - Restart Database” on page 24 n/a db2ApiDf

“sqlecrea - Create Database” on page 159 dbconf sqlenv

“sqlecran - Create Database at Node” on page 157 n/a sqlenv

“sqledrpd - Drop Database” on page 188 dbconf sqlenv

“sqledpan - Drop Database at Node” on page 184 n/a sqlenv

“sqlemgdb - Migrate Database” on page 221 migrate sqlenv

© Copyright IBM Corp. 1993, 2000 1

Table 1. DB2 APIs (continued)

API Description Sample Code
a

INCLUDE File
b

“sqlxphqr - List Indoubt Transactions” on page 548 n/a sqlxa

“sqle_activate_db - Activate Database” on page 132 n/a sqlenv

“sqle_deactivate_db - Deactivate Database” on
page 135

n/a sqlenv

“sqlcspqy - List DRDA Indoubt Transactions” on
page 130

n/a sqlxa

Database Directory Management

“sqlecadb - Catalog Database” on page 149 dbcat sqlenv

“sqleuncd - Uncatalog Database” on page 254 dbcat sqlenv

“sqlegdad - Catalog DCS Database” on page 200 dcscat sqlenv

“sqlegdel - Uncatalog DCS Database” on page 205 dcscat sqlenv

“sqledcgd - Change Database Comment” on
page 173

dbcmt sqlenv

“sqledosd - Open Database Directory Scan” on
page 181

dbcat sqlenv

“sqledgne - Get Next Database Directory Entry” on
page 178

dbcat sqlenv

“sqledcls - Close Database Directory Scan” on
page 176

dbcat sqlenv

“sqlegdsc - Open DCS Directory Scan” on page 213 dcscat sqlenv

“sqlegdgt - Get DCS Directory Entries” on page 210 dcscat sqlenv

“sqlegdcl - Close DCS Directory Scan” on page 203 dcscat sqlenv

“sqlegdge - Get DCS Directory Entry for Database”
on page 208

dcscat sqlenv

Client/Server Directory Management

“sqlectnd - Catalog Node” on page 168 nodecat sqlenv

“sqleuncn - Uncatalog Node” on page 257 nodecat sqlenv

“sqlenops - Open Node Directory Scan” on page 228 nodecat sqlenv

“sqlengne - Get Next Node Directory Entry” on
page 225

nodecat sqlenv

“sqlencls - Close Node Directory Scan” on page 223 nodecat sqlenv

Network Support

“sqleregs - Register” on page 241 regder sqlenv

“sqledreg - Deregister” on page 186 regder sqlenv

DB2 APIs

2 Administrative API Reference

Table 1. DB2 APIs (continued)

API Description Sample Code
a

INCLUDE File
b

“db2LdapRegister” on page 54 n/a db2ApiDf

“db2LdapUpdate” on page 62 n/a db2ApiDf

“db2LdapDeregister” on page 52 n/a db2ApiDf

“db2LdapCatalogNode” on page 50 n/a db2ApiDf

“db2LdapUncatalogNode” on page 60 n/a db2ApiDf

“db2LdapCatalogDatabase” on page 47 n/a db2ApiDf

“db2LdapUncatalogDatabase” on page 58 n/a db2ApiDf

Database Configuration

“sqlfxdb - Get Database Configuration” on page 275 dbconf sqlutil

“sqlfddb - Get Database Configuration Defaults” on
page 259

d_dbconf sqlutil

“sqlfrdb - Reset Database Configuration” on
page 263

dbconf sqlutil

“sqlfudb - Update Database Configuration” on
page 268

dbconf sqlutil

Recovery

“sqlubkp - Backup Database” on page 290 backrest sqlutil

“sqlurcon - Reconcile” on page 374 n/a sqlutil

“sqlurestore - Restore Database” on page 381 backrest sqlutil

“sqluroll - Rollforward Database” on page 397 backrest sqlutil

“db2HistoryOpenScan - Open Recovery History File
Scan” on page 39

n/a db2ApiDf

“db2HistoryGetEntry - Get Next Recovery History
File Entry” on page 36

n/a db2ApiDf

“db2HistoryCloseScan - Close Recovery History File
Scan” on page 34

n/a db2ApiDf

“db2Prune” on page 72 n/a db2ApiDf

“db2HistoryUpdate - Update Recovery History File”
on page 44

n/a db2ApiDf

Operational Utilities

“sqlefrce - Force Application” on page 196 dbstop sqlenv

“sqlureot - Reorganize Table” on page 377 dbstat sqlutil

“sqlustat - Runstats” on page 407 dbstat sqlutil

Database Monitoring

DB2 APIs

Chapter 1. Application Programming Interfaces 3

Table 1. DB2 APIs (continued)

API Description Sample Code
a

INCLUDE File
b

“db2GetSnapshotSize - Estimate Size Required for
db2GetSnapshot() Output Buffer” on page 30

db2mon sqlmon

“db2MonitorSwitches - Get/Update Monitor
Switches” on page 69

db2mon sqlmon

“db2GetSnapshot - Get Snapshot” on page 27 n/a db2ApiDf

“db2ResetMonitor - Reset Monitor” on page 78 db2mon sqlmon

“db2ConvMonStream” on page 21 n/a db2ApiDf

Data Utilities

“sqluexpr - Export” on page 302 impexp sqlutil

“sqluimpr - Import” on page 320 impexp sqlutil

“sqluload - Load” on page 345 tload sqlutil

“db2LoadQuery - Load Query” on page 65 loadqry db2ApiDf

General Application Programming

“db2AutoConfig” on page 17 autoconf db2AuCfg

“db2AutoConfigFreeMemory” on page 20 autoconf db2AuCfg

“sqlaintp - Get Error Message” on page 90 util, checkerr sql

“sqlogstt - Get SQLSTATE Message” on page 284 util, checkerr sql

“sqleisig - Install Signal Handler” on page 219 dbcmt sqlenv

“sqleintr - Interrupt” on page 217 n/a sqlenv

“sqlgdref - Dereference Address” on page 282 n/a sqlutil

“sqlgmcpy - Copy Memory” on page 283 n/a sqlutil

“sqlefmem - Free Memory” on page 195 tspace sqlenv

“sqlgaddr - Get Address” on page 281 n/a sqlutil

Application Preparation

“sqlaprep - Precompile Program” on page 93 makeapi sql

“sqlabndx - Bind” on page 85 makeapi sql

“sqlarbnd - Rebind” on page 99 rebind sql

Remote Server Utilities

“sqleatin - Attach” on page 145 dbinst sqlenv

“sqleatcp - Attach and Change Password” on
page 141

dbinst sqlenv

“sqledtin - Detach” on page 193 dbinst sqlenv

DB2 APIs

4 Administrative API Reference

Table 1. DB2 APIs (continued)

API Description Sample Code
a

INCLUDE File
b

Table Space Management

“sqlbtcq - Tablespace Container Query” on page 127 tabscont sqlutil

“sqlbotcq - Open Tablespace Container Query” on
page 116

tabscont sqlutil

“sqlbftcq - Fetch Tablespace Container Query” on
page 107

tabscont sqlutil

“sqlbctcq - Close Tablespace Container Query” on
page 103

tabscont sqlutil

“sqlbstsc - Set Tablespace Containers” on page 124 backrest sqlutil

“sqlbmtsq - Tablespace Query” on page 113 tabspace sqlutil

“sqlbstpq - Single Tablespace Query” on page 122 tabspace sqlutil

“sqlbotsq - Open Tablespace Query” on page 119 tabspace sqlutil

“sqlbftpq - Fetch Tablespace Query” on page 109 tabspace sqlutil

“sqlbctsq - Close Tablespace Query” on page 105 tabspace sqlutil

“sqlbgtss - Get Tablespace Statistics” on page 111 tabspace sqlutil

“sqluvqdp - Quiesce Tablespaces for Table” on
page 413

tload sqlutil

Node Management

“sqleaddn - Add Node” on page 138 n/a sqlenv

“sqledrpn - Drop Node Verify” on page 191 n/a sqlenv

Nodegroup Management

“sqludrdt - Redistribute Nodegroup” on page 298 n/a sqlutil

Additional APIs

“sqluadau - Get Authorizations” on page 287 dbauth sqlutil

“sqlegins - Get Instance” on page 215 dbinst sqlenv

“sqleqryc - Query Client” on page 236 client sqlenv

“sqleqryi - Query Client Information” on page 239 cli_info sqlenv

“sqlesetc - Set Client” on page 248 client sqlenv

“sqleseti - Set Client Information” on page 251 cli_info sqlenv

“sqlesact - Set Accounting String” on page 243 setact sqlenv

“sqlurlog - Asynchronous Read Log” on page 394 asynrlog sqlutil

“sqlugrpn - Get Row Partitioning Number” on
page 314

n/a sqlutil

DB2 APIs

Chapter 1. Application Programming Interfaces 5

Table 1. DB2 APIs (continued)

API Description Sample Code
a

INCLUDE File
b

“sqlugtpi - Get Table Partitioning Information” on
page 318

n/a sqlutil

“db2AdminMsgWrite” on page 15 n/a db2ApiDf

Note:
a The sample programs can be found in the language specific directory of the

samples directory in the sqllib directory (for example, sqllib\samples\c for
C source code). The file extensions on sample code depend on the
programming language being used. For example, for sample code written in
C, the extension is .c or .sqc. Not all programs are available in all
supported programming languages. Not all APIs have sample code
(indicated by n/a).

b The file extensions on INCLUDE files depend on the programming language
being used. For example, an INCLUDE file written for C has a file extension
of .h. The INCLUDE files can be found in directory sqllib\include
(directory delimiters are dependant upon the operating system).

DB2 Sample Programs

The following tables list the APIs grouped by sample program. Table 2 lists
the APIs that are called by programs which contain no embedded SQL, while
Table 3 on page 9 lists the APIs that are called by programs which do contain
embedded SQL:

Table 2. DB2 APIs by Sample Program (with No Embedded SQL)

Sample Code Included APIs

backrest v sqlbftcq - Fetch Tablespace Container Query

v sqlbstsc - Set Tablespace Containers

v sqlfudb - Update Database Configuration

v sqlubkp - Backup Database

v sqluroll - Rollforward Database

v sqlurst - Restore Database

checkerr v sqlaintp - Get Error Message

v sqlogstt - Get SQLSTATE Message

cli_info v sqleqryi - Query Client Information

v sqleseti - Set Client Information

DB2 APIs

6 Administrative API Reference

Table 2. DB2 APIs by Sample Program (with No Embedded SQL) (continued)

Sample Code Included APIs

client v sqleqryc - Query Client

v sqlesetc - Set Client

d_dbconf v sqleatin - Attach

v sqledtin - Detach

v sqlfddb - Get Database Configuration Defaults

d_dbmcon v sqleatin - Attach

v sqledtin - Detach

v sqlfdsys - Get Database Manager Configuration Defaults

db_udcs v sqleatin - Attach

v sqlecrea - Create Database

v sqledrpd - Drop Database

db2mon v sqleatin - Attach

v db2MonitorSwitches - Get/Update Monitor Switches

v db2GetSnapshot - Get Snapshot

v db2GetSnapshotSize - Estimate Size Required for
db2GetSnapshot() Output Buffer

v db2ResetMonitorData - Reset Monitor

dbcat v sqlecadb - Catalog Database

v sqledcls - Close Database Directory Scan

v sqledgne - Get Next Database Directory Entry

v sqledosd - Open Database Directory Scan

v sqleuncd - Uncatalog Database

dbcmt v sqledcgd - Change Database Comment

v sqledcls - Close Database Directory Scan

v sqledgne - Get Next Database Directory Entry

v sqledosd - Open Database Directory Scan

v sqleisig - Install Signal Handler

dbconf v sqleatin - Attach

v sqlecrea - Create Database

v sqledrpd - Drop Database

v sqlfrdb - Reset Database Configuration

v sqlfudb - Update Database Configuration

v sqlfxdb - Get Database Configuration

DB2 Sample Programs

Chapter 1. Application Programming Interfaces 7

Table 2. DB2 APIs by Sample Program (with No Embedded SQL) (continued)

Sample Code Included APIs

dbinst v sqleatcp - Attach and Change Password

v sqleatin - Attach

v sqledtin - Detach

v sqlegins - Get Instance

dbmconf v sqleatin - Attach

v sqledtin - Detach

v sqlfrsys - Reset Database Manager Configuration

v sqlfusys - Update Database Manager Configuration

v sqlfxsys - Get Database Manager Configuration

dbsnap v sqleatin - Attach

v db2GetSnapshot - Get Snapshot

dbstart v sqlepstart - Start Database Manager

dbstop v sqlefrce - Force Application

v sqlepstp - Stop Database Manager

dcscat v sqlegdad - Catalog DCS Database

v sqlegdcl - Close DCS Directory Scan

v sqlegdel - Uncatalog DCS Database

v sqlegdge - Get DCS Directory Entry for Database

v sqlegdgt - Get DCS Directory Entries

v sqlegdsc - Open DCS Directory Scan

dmscont v sqleatin - Attach

v sqlecrea - Create Database

v sqledrpd - Drop Database

ebcdicdb v sqleatin - Attach

v sqlecrea - Create Database

v sqledrpd - Drop Database

migrate v sqlemgdb - Migrate Database

monreset v sqleatin - Attach

v sqlmrset - Reset Monitor

monsz v sqleatin - Attach

v sqlmonss - Get Snapshot

v sqlmonsz - Estimate Size Required for sqlmonss() Output
Buffer

DB2 Sample Programs

8 Administrative API Reference

Table 2. DB2 APIs by Sample Program (with No Embedded SQL) (continued)

Sample Code Included APIs

nodecat v sqlectnd - Catalog Node

v sqlencls - Close Node Directory Scan

v sqlengne - Get Next Node Directory Entry

v sqlenops - Open Node Directory Scan

v sqleuncn - Uncatalog Node

regder v sqledreg - Deregister

v sqleregs - Register

restart v sqlerstd - Restart Database

setact v sqlesact - Set Accounting String

setrundg v sqlesdeg - Set Runtime Degree

sws v sqleatin - Attach

v sqlmon - Get/Update Monitor Switches

util v sqlaintp - Get Error Message

v sqlogstt - Get SQLSTATE Message

Note: a The sample programs can be found in the language specific directory of the
samples directory in the sqllib directory (for example, sqllib\samples\c for C source
code). The file extensions on sample code depend on the programming language
being used. For example, for sample code written in C, the extension is .c or .sqc.
Not all programs are available in all supported programming languages. Not all APIs
have sample code.

Table 3. DB2 APIs by Sample Program (with Embedded SQL)

Sample Code Included APIs

autoconf v db2AutoConfig

v db2AutoConfigFreeMemory

asynrlog v sqlurlog - Asynchronous Read Log

bindfile v sqlabndx - Bind

dbauth v sqluadau - Get Authorizations

dbstat v sqlureot - Reorganize Table

v sqlustat - Runstats

expsamp v sqluexpr - Export

v sqluimpr - Import

DB2 Sample Programs

Chapter 1. Application Programming Interfaces 9

Table 3. DB2 APIs by Sample Program (with Embedded SQL) (continued)

Sample Code Included APIs

impexp v sqluexpr - Export

v sqluimpr - Import

loadqry v db2LoadQuery - Load Query

makeapi v sqlabndx - Bind

v sqlaprep - Precompile Program

v sqlepstp - Stop Database Manager

v sqlepstr - Start Database Manager

rebind v sqlarbnd - Rebind

rechist v sqlubkp - Backup Database

v sqluhcls - Close Recovery History File Scan

v sqluhgne - Get Next Recovery History File Entry

v sqluhops - Open Recovery History File Scan

v sqluhprn - Prune Recovery History File

v sqluhupd - Update Recovery History File

tabscont v sqlbctcq - Close Tablespace Container Query

v sqlbftcq - Fetch Tablespace Container Query

v sqlbotcq - Open Tablespace Container Query

v sqlbtcq - Tablespace Container Query

v sqlefmem - Free Memory

tabspace v sqlbctsq - Close Tablespace Query

v sqlbftpq - Fetch Tablespace Query

v sqlbgtss - Get Tablespace Statistics

v sqlbmtsq - Tablespace Query

v sqlbotsq - Open Tablespace Query

v sqlbstpq - Single Tablespace Query

v sqlefmem - Free Memory

tload v sqluexpr - Export

v sqluload - Load

v sqluvqdp - Quiesce Tablespaces for Table

DB2 Sample Programs

10 Administrative API Reference

Table 3. DB2 APIs by Sample Program (with Embedded SQL) (continued)

Sample Code Included APIs

tspace v sqlbctcq - Close Tablespace Container Query

v sqlbctsq - Close Tablespace Query

v sqlbftcq - Fetch Tablespace Container Query

v sqlbftpq - Fetch Tablespace Query

v sqlbgtss - Get Tablespace Statistics

v sqlbmtsq - Tablespace Query

v sqlbotcq - Open Tablespace Container Query

v sqlbotsq - Open Tablespace Query

v sqlbstpq - Single Tablespace Query

v sqlbstsc - Set Tablespace Containers

v sqlbtcq - Tablespace Container Query

v sqlefmem - Free Memory

Note: a The sample programs can be found in the language specific directory of the
samples directory in the sqllib directory (for example, sqllib\samples\c for C source
code). The file extensions on sample code depend on the programming language
being used. For example, for sample code written in C, the extension is .c or .sqc.
Not all programs are available in all supported programming languages. Not all APIs
have sample code.

DB2 Sample Programs

Chapter 1. Application Programming Interfaces 11

How the API Descriptions are Organized
A short description of each API precedes some or all of the following
subsections.

Scope
The API’s scope of operation within the instance. In a single-node system, the
scope is that single node only. In a multi-node system, it is the collection of all
logical nodes defined in the node configuration file, db2nodes.cfg.

Authorization
The authority required to successfully call the API.

Required Connection
One of the following: database, instance, none, or establishes a connection.
Indicates whether the function requires a database connection, an instance
attachment, or no connection to operate successfully. An explicit connection to
the database or attachment to the instance may be required before a particular
API can be called. APIs that require a database connection or an instance
attachment can be executed either locally or remotely. Those that require
neither cannot be executed remotely; when called at the client, they affect the
client environment only. For information about database connections and
instance attachments, see the Administration Guide.

API Include File
The name of the include file that contains the API prototype, and any
necessary predefined constants and parameters.

C API Syntax
The C syntax of the API call.

Starting in Version 6, a new standard is being applied to the DB2
administrative APIs. Implementation of the new API definitions is being
carried out in a staged manner. Following is a brief overview of the changes:
v The new API names contain the prefix ″db2″, followed by a meaningful

mixed case string (for example, db2LoadQuery). Related APIs have names
that allow them to be logically grouped. For example:

db2HistoryCloseScan
db2HistoryGetEntry
db2HistoryOpenScan
db2HistoryUpdate

v Generic APIs have names that contain the prefix ″db2g″, followed by a
string that matches the C API name. Data structures used by generic APIs
have names that also contain the prefix ″db2g″.

12 Administrative API Reference

v The first parameter into the function (db2VersionNumber) represents the
version, release, or PTF level to which the code is to be compiled. This
version number is used to specify the level of the structure that is passed in
as the second parameter.

v The second parameter into the function is a void pointer to the primary
interface structure for the API. Each element in the structure is either an
atomic type (for example, db2Long32) or a pointer. Each parameter name
adheres to the following naming conventions:

piCamelCase - pointer to input data
poCamelCase - pointer to output data
pioCamelCase - pointer to input or output data
iCamelCase - integral input data
ioCamelCase - integral input/output data
oCamelCase - integral output data area

v The third parameter is a pointer to the SQLCA, and is mandatory.

Generic API Syntax
The syntax of the API call for the COBOL and FORTRAN programming
languages.

Attention: Provide one extra byte for every character string passed to an
API. Failure to do so may cause unexpected errors. This extra byte is modified
by the database manager.

API Parameters
A description of each API parameter and its values. Predefined values are
listed with the appropriate symbolics. Actual values for symbolics can be
obtained from the appropriate language include files. COBOL programmers
should substitute a hyphen (-) for the underscore (_) in all symbolics. For
more information about parameter data types in each host language, see the
sample programs.

Note: Applications calling database manager APIs must properly check for
error conditions by examining return codes and the SQLCA structure.
Most database manager APIs return a zero return code when
successful. In general, a non-zero return code indicates that the
secondary error handling mechanism, the SQLCA structure, may be
corrupt. In this case, the called API is not executed. A possible cause for
a corrupt SQLCA structure is passing an invalid address for the
structure.

Error information is returned in the SQLCODE and SQLSTATE fields of
the SQLCA structure, which is updated after most database manager
API calls. Source files calling database manager APIs can provide one
or more SQLCA structures; their names are arbitrary. An SQLCODE
value of zero means successful execution (with possible SQLWARN
warning conditions). A positive value means that the statement was

Chapter 1. Application Programming Interfaces 13

successfully executed but with a warning, as with truncation of a host
variable. A negative value means that an error condition occurred.

An additional field, SQLSTATE, contains a standardized error code that
is consistent across other IBM database products, and across SQL92
compliant database managers. Use SQLSTATEs when concerned about
portability, since SQLSTATEs are common across many database
managers.

The SQLWARN field contains an array of warning indicators, even if
SQLCODE is zero.

REXX API Syntax
The REXX syntax of the API call, where appropriate.

A new interface, SQLDB2, has been added to support calling APIs from REXX.
The SQLDB2 interface was created to provide support in REXX for new or
previously unsupported APIs that do not have any output other than the
SQLCA. Invoking a command through the SQLDB2 interface is syntactically
the same as invoking the command through the command line processor
(CLP), except that the token call db2 is replaced by CALL SQLDB2. Using the
CALL SQLDB2 from REXX has the following advantages over calling the CLP
directly:
v The compound REXX variable SQLCA is set
v By default, all CLP output messages are turned off.

For more information about the SQLDB2 interface, see the Application
Development Guide.

REXX API Parameters
A description of each REXX API parameter and its values, where appropriate.

Sample Programs
The location and the names of sample programs illustrating the use of the API
in one or more supported languages (C, COBOL, FORTRAN, and REXX).

Usage Notes
Other information.

See Also
A cross-reference to related information.

14 Administrative API Reference

db2AdminMsgWrite
Provides a mechanism for users and Replication to write information to
db2diag.log and the Windows NT event log. In the case of DB2 Satellite
Edition, messages are logged to the notification files instead of the Windows
NT event log.

This API is available on Windows NT, Windows 98, and Windows 95 only.

Authorization
None

Required Connection
None

API Include File
db2ApiDf.h

C API Syntax

API Parameters

versionNumber
Input. Specifies the version and release level of the structure passed in
as the second parameter, pParmStruct.

pParmStruct
Input. A pointer to the db2AdminMsgWriteStruct structure.

/* File: db2ApiDf.h */
/* API: db2AdminMsgWrite */
/* ... */
SQL_API_RC SQL_API_FN

db2AdminMsgWrite (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef struct
{

db2Uint32 iMsgType;
db2Uint32 iComponent;
db2Uint32 iFunction;
db2Uint32 iProbeID;
char * piData_title;
void * piData;
db2Uint32 iDataLen;
db2Uint32 iError_type;

} db2AdminMsgWriteStruct;
/* ... */

db2AdminMsgWrite

Chapter 1. Application Programming Interfaces 15

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

iMsgType
Input. Specify the type of data to be logged. Valid values are
BINARY_MSG for binary data, and STRING_MSG for string data.

iComponent
Input. Specify zero.

iFunction
Input. Specify zero.

iProbeID
Input. Specify the numeric probe point.

piData_title
Input. A pointer to the title string describing the data to be logged.
Can be set to NULL if a title is not needed.

piData
Input. A pointer to the data to be logged. Can be set to NULL if data
logging is not needed.

iDataLen
Input. The number of bytes of binary data to be used for logging if
iMsgType is BINARY_MSG. Not used if iMsgType is STRING_MSG.

iError_type
Input. Valid values are:

DB2LOG_SEVERE_ERROR (1) - Severe error has occurred
DB2LOG_ERROR (2) - Error has occurred
DB2LOG_WARNING (3) - Warning has occurred
DB2LOG_INFORMATION (4) - Informational

Usage Notes
This API will log to notification files or to the Windows NT event log only if
the specified error type is less than or equal to the value of the notifylevel
database manager configuration parameter. It will log to db2diag.log only if
the specified error type is less than or equal to the value of the diaglevel
database manager configuration parameter.

db2AdminMsgWrite

16 Administrative API Reference

db2AutoConfig
Allows application programs to access the Performance Configuration wizard
in the Control Center. Detailed information about this wizard is provided
through the online help facility within the Control Center.

Authorization
sysadm

Required Connection
Database

API Include File
db2AuCfg.h

C API Syntax
SQL_API_RC_SQL_API_FN
db2AutoConfig(

db2Uint32 db2VersionNumber,
void * pAutoConfigInterface,
struct sqlca * pSqlca);

typedef struct {
db2int32 iProductID;
char iProductVersion[DB2_SG_PROD_VERSION_SIZE];
char iDbAlias[SQL_ALIAS_SZ];
db2int32 iApply;
db2AutoConfigInput iParams;
db2AutoConfigOutput oResult;

} db2AutoConfigInterface;

typedef struct {
db2int32 token;
db2int32 value;

} db2AutoConfigElement;

typedef struct {
db2Uint32 numElements;
db2AutoConfigElement * pElements;

} db2AutoConfigArray;

typedef db2AutoConfigArray db2AutoConfigInput;
typedef db2AutoConfigArray db2AutoConfigDiags;

typedef struct {
db2Uint32 numElements;
struct sqlfupd * pConfigs;
void * pDataArea;

} db2ConfigValues;

typedef struct {
db2ConfigValues oOldDbValues;
db2ConfigValues oOldDbmValues;

db2AutoConfig

Chapter 1. Application Programming Interfaces 17

db2ConfigValues oNewDbValues;
db2ConfigValues oNewDbmValues
db2AutoConfigDiags oDiagnostics;

} db2AutoConfigOutput;

API Parameters

db2VersionNumber
Input. Specifies the version and release level of the structure passed in
as the second parameter, pAutoConfigInterface.

pAutoConfigInterface
Input. A pointer to the db2AutoConfigInterface structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

iProductID
Input. Specifies a unique product identifier. For valid Product ID
values see the API Include File db2AuCfg.h.

iProductVersion
Input. A 16 byte string specifying the product version.

iDbAlias
Input. A string specifying a database alias.

iApply
Input. Updates the configuration automatically.

iParams
Input. Passes parameters into the wizard.

oResult
Output. Includes all results from the wizard.

Token Specifies the configuration value for both the input parameters and
the output diagnostics.

Value Holds the data specified by the token.

numElements
The number of array elements.

pElements
A pointer to the element array.

db2AutoConfigDiags
Returns tokens and values for diagnostics and problem determination.
The tokens identify the problems and the values state the
recommendations when appropriate. For a list of tokens and values
see the API Include File db2AuCfg.h.

db2AutoConfig

18 Administrative API Reference

pConfigs
A pointer to the SQLFUPD structure. For more information on this
structure see “SQLFUPD” on page 499.

pDataArea
A pointer to the data area containing the values of the configuration.

oOldDbValues
Output. If the iApply value is true, this value represents the database
configuration value prior to using the wizard. If the apply value is
false, this is the current value.

oOldDbmValues
Output. If the iApply value is true, this value represents the database
manager configuration value prior to using the wizard. If the apply
value is false, this is the current value.

oNewDbValues
Output. If the iApply value is true, this value represents the current
database configuration value. If the apply value is false, this is
recommended value for wizard.

oNewDbmValues
Output. If the iApply value is true, this value represents the current
database manager configuration value. If the apply value is false, this
is recommended value for wizard.

oDiagnostics
Output. Includes diagnostics from the wizard.

Sample Programs

C \sqllib\samples\cpp\autoconf.sqc

Usage Notes
To free the memory allocated by db2AutoConfg, call
“db2AutoConfigFreeMemory” on page 20.

See Also
“db2AutoConfigFreeMemory” on page 20

“sqlfudb - Update Database Configuration” on page 268

“sqlfusys - Update Database Manager Configuration” on page 272.

db2AutoConfig

Chapter 1. Application Programming Interfaces 19

db2AutoConfigFreeMemory
Frees the memory allocated by db2AutoConfig.

Authorization
sysadm

Required Connection
Database

API Include File
db2AuCfg.h

C API Syntax
SQL_API_RC_SQL_API_FN
db2AutoConfigFreeMemory(

db2Uint32 db2VersionNumber,
void * pAutoConfigInterface,
struct sqlca * pSqlca);

API Parameters

db2VersionNumber
Input. Specifies the version and release level of the structure passed in
as the second parameter, pAutoConfigInterface.

pAutoConfigInterface
Input. A pointer to the db2AutoConfigInterface structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

Sample Programs

C \sqllib\samples\cpp\autoconf.sqc

db2AutoConfigFreeMemory

20 Administrative API Reference

db2ConvMonStream
Converts the new, self-describing format for a single logical data element (for
example, SQLM_ELM_DB2) to the corresponding pre-version 6 external
monitor structure (for example, sqlm_db2). When upgrading API calls to use
the post-version 5 stream, one must traverse the monitor data using the new
stream format (for example, the user must find the SQLM_ELM_DB2
element). This portion of the stream can then be passed into the conversion
API to get the associated pre-version 6 data.

Authorization
None

Required Connection
None

API Include File
db2ApiDf.h

C API Syntax

API Parameters

version
Input. Specifies the version and release level of the structure passed in
as the second parameter, data.

data Input. A pointer to the db2ConvMonStreamData structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

/* File: db2ApiDf.h */
/* API: db2ConvMonStream */
/* ... */
int db2ConvMonStream (

unsigned char version,
db2ConvMonStreamData * data,
struct sqlca * pSqlca);

typedef struct
{

void * poTarget;
sqlm_header_info * piSource;
db2Uint32 iTargetType;
db2Uint32 iTargetSize;
db2Uint32 iSourceType

} db2ConvMonStreamData;
/* ... */

db2ConvMonStream

Chapter 1. Application Programming Interfaces 21

poTarget
Output. A pointer to the target monitor output structure (for example,
sqlm_db2). A list of output types, and their corresponding input
types, is given below.

piSource
Input. A pointer to the logical data element being converted (for
example, SQLM_ELM_DB2). A list of output types, and their
corresponding input types, is given below.

iTargetType
Input. The type of conversion being performed. Specify the value for
the v5 type in sqlmon.h for instance SQLM_DB2_SS.

iTargetSize
Input. This parameter can usually be set to the size of the structure
pointed to by poTarget; however, for elements that have usually been
referenced by an offset value from the end of the structure (for
example, statement text in sqlm_stmt), specify a buffer that is large
enough to contain the sqlm_stmt statically-sized elements, as well as a
statement of the largest size to be extracted; that is, SQL_MAX_STMT_SZ
plus sizeof(sqlm_stmt).

iSourceType
Input. The type of source stream. Valid values are
SQLM_STREAM_SNAPSHOT (snapshot stream), or SQLM_STREAM_EVMON (event
monitor stream).

Usage Notes
Following is a list of supported convertible data elements:
Snapshot Variable Datastream Type Structure
--------------------------------- ---------
SQLM_ELM_APPL sqlm_appl
SQLM_ELM_APPL_INFO sqlm_applinfo
SQLM_ELM_DB2 sqlm_db2
SQLM_ELM_FCM sqlm_fcm
SQLM_ELM_FCM_NODE sqlm_fcm_node
SQLM_ELM_DBASE sqlm_dbase
SQLM_ELM_TABLE_LIST sqlm_table_header
SQLM_ELM_TABLE sqlm_table
SQLM_ELM_DB_LOCK_LIST sqlm_dbase_lock
SQLM_ELM_APPL_LOCK_LIST sqlm_appl_lock
SQLM_ELM_LOCK sqlm_lock
SQLM_ELM_STMT sqlm_stmt
SQLM_ELM_SUBSECTION sqlm_subsectiion
SQLM_ELM_TABLESPACE_LIST sqlm_tablespace_header
SQLM_ELM_TABLESPACE sqlm_tablespace
SQLM_ELM_ROLLFORWARD sqlm_rollfwd_info
SQLM_ELM_BUFFERPOOL sqlm_bufferpool
SQLM_ELM_LOCK_WAIT sqlm_lockwait
SQLM_ELM_DCS_APPL sqlm_dcs_appl, sqlm_dcs_applid_info,

sqlm_dcs_appl_snap_stats,

db2ConvMonStream

22 Administrative API Reference

sqlm_xid, sqlm_tpmon
SQLM_ELM_DCS_DBASE sqlm_dcs_dbase
SQLM_ELM_DCS_APPL_INFO sqlm_dcs_applid_info
SQLM_ELM_DCS_STMT sqlm_dcs_stmt
SQLM_ELM_COLLECTED sqlm_collected

Event Monitor Variable Datastream Type Structure
-------------------------------------- ---------
SQLM_ELM_EVENT_DB sqlm_db_event
SQLM_ELM_EVENT_CONN sqlm_conn_event
SQLM_ELM_EVENT_TABLE sqlm_table_event
SQLM_ELM_EVENT_STMT sqlm_stmt_event
SQLM_ELM_EVENT_XACT sqlm_xaction_event
SQLM_ELM_EVENT_DEADLOCK sqlm_deadlock_event
SQLM_ELM_EVENT_DLCONN sqlm_dlconn_event
SQLM_ELM_EVENT_TABLESPACE sqlm_tablespace_event
SQLM_ELM_EVENT_DBHEADER sqlm_dbheader_event
SQLM_ELM_EVENT_START sqlm_evmon_start_event
SQLM_ELM_EVENT_CONNHEADER sqlm_connheader_event
SQLM_ELM_EVENT_OVERFLOW sqlm_overflow_event
SQLM_ELM_EVENT_BUFFERPOOL sqlm_bufferpool_event
SQLM_ELM_EVENT_SUBSECTION sqlm_subsection_event
SQLM_ELM_EVENT_LOG_HEADER sqlm_event_log_header

The sqlm_rollfwd_ts_info structure is not converted; it only contains a table
space name that can be accessed directly from the stream. The sqlm_agent
structure is also not converted; it only contains the pid of the agent, which can
also be accessed directly from the stream.

db2ConvMonStream

Chapter 1. Application Programming Interfaces 23

db2DatabaseRestart - Restart Database
Restarts a database that has been abnormally terminated and left in an
inconsistent state. At the successful completion of this API, the application
remains connected to the database if the user has CONNECT privilege.

Scope
This API affects only the node on which it is executed.

Authorization
None

Required Connection
This API establishes a database connection.

API Include File
db2ApiDf.h

C API Syntax

/* File: db2ApiDf.h */
/* API: Restart Database */
/* ... */
SQL_API_RC SQL_API_FN

db2DatabaseRestart (
db2Uint32 versionNumber;
void * pParamStruct;
struct sqlca * pSqlca);

typedef struct
{

char * piDatabaseName;
char * piUserId;
char * piPassword;
char * piTablespaceNames;

} db2RestartDbStruct;
/* ... */

db2DatabaseRestart - Restart Database

24 Administrative API Reference

Generic API Syntax

API Parameters

versionNumber
Input. Specifies the version and release level of the structure passed in
as the second parameter, pParamStruct.

pParamStruct
Input. A pointer to the db2RestartDbStruct structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

piDatabaseName
Input. A pointer to a string containing the alias of the database that is
to be restarted.

piUserId
Input. A pointer to a string containing the user name of the
application. May be NULL.

piPassword
Input. A pointer to a string containing a password for the specified
user name (if any). May be NULL.

piTablespaceNames
Input. A pointer to a string containing a list of table space names to be
dropped during the restart operation. May be NULL.

/* File: db2ApiDf.h */
/* API: Restart Database */
/* ... */
SQL_API_RC SQL_API_FN

db2DatabaseRestart (
db2Uint32 versionNumber;
void * pParamStruct;
struct sqlca * pSqlca);

typedef struct
{

char * piDatabaseName;
char * piUserId;
char * piPassword;
char * piTablespaceNames;

} db2RestartDbStruct;
/* ... */

db2DatabaseRestart - Restart Database

Chapter 1. Application Programming Interfaces 25

REXX API Syntax

REXX API Parameters

database_alias
Alias of the database to be restarted.

username
User name under which the database is to be restarted.

password
Password used to authenticate the user name.

Usage Notes
Call this API if an attempt to connect to a database returns an error message,
indicating that the database must be restarted. This action occurs only if the
previous session with this database terminated abnormally (due to power
failure, for example).

At the completion of this API, a shared connection to the database is
maintained if the user has CONNECT privilege, and an SQL warning is
issued if any indoubt transactions exist. In this case, the database is still
usable, but if the indoubt transactions are not resolved before the last
connection to the database is dropped, another call to the API must be
completed before the database can be used again. Use the transaction APIs
(see “Appendix B. Transaction APIs” on page 543) to generate a list of indoubt
transactions. For more information about indoubt transactions, see the
Administration Guide.

In the case of circular logging, a database restart operation will fail if there is
any problem with the table spaces, such as an I/O error, an unmounted file
system, and so on. If losing such table spaces is not an issue, their names can
be explicitly specified; this will put them into drop pending state, and the
restart operation can complete successfully.

See Also
CONNECT TO statement in the SQL Reference.

RESTART DATABASE database_alias [USER username USING password]

db2DatabaseRestart - Restart Database

26 Administrative API Reference

db2GetSnapshot - Get Snapshot
Collects database manager monitor information and returns it to a
user-allocated data buffer. The information returned represents a snapshot of
the database manager operational status at the time the API was called.

Scope
This API returns information only for the node on which it is issued.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

Required Connection
Instance. If there is no instance attachment, a default instance attachment is
created.

To obtain a snapshot from a remote instance (or a different local instance), it is
necessary to first attach to that instance.

API Include File
db2ApiDf.h

C API Syntax
int db2GetSnapshot(unsigned char version;
db2GetSnapshotData *data,
struct sqlca *sqlca;

The parameters described in data are:
typedef struct db2GetSnapshotData{

sqlma *piSqlmaData;
sqlm_collected *poCollectedData
void *poBuffer;
db2uint32 iVersion;
db2int32 iBufferSize;
db2uint8 iStoreResult;

db2uint16 iNodeNumber;
db2uint32 *poOutputFormat;

}db2GetSnapshotData;

API Parameters

version
Input. Specifies the version and release level of the structure passed in
as the second parameter, data.

data Input/Output. A pointer to the db2GetSnapshotData structure.

db2GetSnapshot - Get Snapshot

Chapter 1. Application Programming Interfaces 27

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

piSqlmaData
Input. Pointer to the user-allocated sqlma (monitor area) structure. This
structure specifies the type(s) of data to be collected. For more
information, see “SQLMA” on page 512.

poCollectedData
Output. A pointer to the sqlm_collected structure into which the
database monitor delivers summary statistics and the number of each
type of data structure returned in the buffer area. For more
information about this structure, see “SQLM-COLLECTED” on
page 507.

Note: This structure is only used for pre-Version 6 data streams.
However, if a snapshot call is made to a back-level remote
server, this structure must be passed in for results to be
processed. It is therefore recommended that this parameter
always be passed in.

poBuffer
Output. Pointer to the user-defined data area into which the snapshot
information will be returned. For information about interpreting the
data returned in this buffer, see the System Monitor Guide and Reference.

iVersion
Input. Version ID of the database monitor data to collect. The database
monitor only returns data that was available for the requested version.
Set this parameter to one of the following symbolic constants:
v SQLM_DBMON_VERSION1

v SQLM_DBMON_VERSION2

v SQLM_DBMON_VERSION5

v SQLM_DBMON_VERSION5_2

v SQLM_DBMON_VERSION6

v SQLM_DBMON_VERSION7

Note: If SQLM_DBMON_VERSION1 is specified as the version, the APIs
cannot be run remotely.

iBufferSize
Input. The length of the data buffer. Use “db2GetSnapshotSize -
Estimate Size Required for db2GetSnapshot() Output Buffer” on
page 30 to estimate the size of this buffer. If the buffer is not large

db2GetSnapshot - Get Snapshot

28 Administrative API Reference

enough, a warning is returned, along with the information that will fit
in the assigned buffer. It may be necessary to resize the buffer and call
the API again.

iStoreResult
Input. An indicator set to TRUE or FALSE, depending on whether the
snapshot results are to be stored at the DB2 server for viewing
through SQL. This parameter should only be set to TRUE when the
snapshot is being taken over a database connection, and when one of
the snapshot types in the sqlma is SQLMA_DYNAMIC_SQL.

iNodeNumber
Input. The node where the request is to be sent. Based on this value,
the request will be processed for the current node, all nodes or a user
specified node. Valid values are:
v SQLM_CURRENT_NODE

v SQLM_ALL_NODES

v node value

Note: For standalone instances SQLM_CURRENT_NODE must be used.

poOutputFormat
The format of the stream returned by the server. It will be one of the
following:
v SQLM_STREAM_STATIC_FORMAT

v SQLM_STREAM_DYNAMIC_FORMAT

Usage Notes
If an alias for a database residing at a different instance is specified, an error
message is returned.

For detailed information about the use of the database monitor APIs, and for
a summary of all database monitor data elements and monitoring groups, see
the System Monitor Guide and Reference.

See Also
“db2ConvMonStream” on page 21

“db2MonitorSwitches - Get/Update Monitor Switches” on page 69

“db2GetSnapshotSize - Estimate Size Required for db2GetSnapshot() Output
Buffer” on page 30

“db2ResetMonitor - Reset Monitor” on page 78.

db2GetSnapshot - Get Snapshot

Chapter 1. Application Programming Interfaces 29

db2GetSnapshotSize - Estimate Size Required for db2GetSnapshot() Output
Buffer

Estimates the buffer size needed by “db2GetSnapshot - Get Snapshot” on
page 27.

Scope
This API only affects the instance to which the calling application is attached.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

Required Connection
Instance. If there is no instance attachment, a default instance attachment is
created.

To obtain information from a remote instance (or a different local instance), it
is necessary to first attach to that instance. If an attachment does not exist, an
implicit instance attachment is made to the node specified by the
DB2INSTANCE environment variable.

API Include File
db2ApiDf.h

C API Syntax
int db2GetSnapshotSize(db2Uint32 version,

void* pParamStruct,
struct sqlca* sqlca);

typedef struct
{

struct sqlma *piSqlmaData;
sqluint32 *poBufferSize;
db2Uint32 iVersion;
db2int32 iNodeNumber;

}db2GetSnapshotSizeData;
/* ...*/

API Parameters

version
Input. Specifies the version and release level of the structure passed as
the second parameter pParamStruct.

pParamStruct
Input. A pointer to the db2GetSnapshotSizeStruct structure.

db2GetSnapshotSize - Estimate Size Required for db2GetSnapshot Output
Buffer

30 Administrative API Reference

sqlca Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

piSqlmaData
Input. Pointer to the user-allocated sqlma (monitor area) structure. This
structure specifies the type(s) of snapshot data to be collected, and can
be reused as input to “db2GetSnapshot - Get Snapshot” on page 27.
For more information about this structure, see “SQLMA” on page 512.

poBufferSize
Output. A pointer to the returned estimated buffer size needed by the
GET SNAPSHOT API.

iVersion
Input. Version ID of the database monitor data to collect. The database
monitor only returns data that was available for the requested version.
Set this parameter to one of the following symbolic constants:
v SQLM_DBMON_VERSION1

v SQLM_DBMON_VERSION2

v SQLM_DBMON_VERSION5

v SQLM_DBMON_VERSION5_2

v SQLM_DBMON_VERSION6

v SQLM_DBMON_VERSION7

Note: If SQLM_DBMON_VERSION1 is specified as the version, the APIs
cannot be run remotely.

iNodeNumber
Input. The node where the request is to be sent. Based on this value,
the request will be processed for the current node, all nodes or a user
specified node. Valid values are:
v SQLM_CURRENT_NODE

v SQLM_ALL_NODES

v node value

Note: For stand-alone instances SQLM_CURRENT_NODE must be used.

Usage Notes
This function generates a significant amount of overhead. Allocating and
freeing memory dynamically for each db2GetSnapshot call is also expensive.
If calling db2GetSnapshot repeatedly, for example, when sampling data over
a period of time, it may be preferable to allocate a buffer of fixed size, rather
than call db2GetSnapshotSize.

If the database system monitor finds no active databases or applications, it
may return a buffer size of zero (if, for example, lock information related to a

db2GetSnapshotSize - Estimate Size Required for db2GetSnapshot Output
Buffer

Chapter 1. Application Programming Interfaces 31

database that is not active is requested). Verify that the estimated buffer size
returned by this API is non-zero before calling “db2GetSnapshot - Get
Snapshot” on page 27. If an error is returned by db2GetSnapshot because of
insufficient buffer space to hold the output, call this API again to determine
the new size requirements.

For detailed information about the use of the database monitor APIs, and for
a summary of all database monitor data elements and monitoring groups, see
the System Monitor Guide and Reference.

See Also
“db2MonitorSwitches - Get/Update Monitor Switches” on page 69

“db2GetSnapshot - Get Snapshot” on page 27

“db2ResetMonitor - Reset Monitor” on page 78.

db2GetSnapshotSize - Estimate Size Required for db2GetSnapshot Output
Buffer

32 Administrative API Reference

db2GetSyncSession
Gets the satellite’s current synchronization session identifier.

Authorization
None

Required Connection
None

API Include File
db2ApiDf.h

C API Syntax

API Parameters

versionNumber
Input. Specifies the version and release level of the structure passed in
as the second parameter, pParmStruct.

pParmStruct
Input. A pointer to the db2GetSyncSessionStruct structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

poSyncSessionID
Output. Specifies an identifier for the synchronization session that a
satellite is currently using.

/* File: db2ApiDf.h */
/* API: db2GetSyncSession */
/* ... */
SQL_API_RC SQL_API_FN

db2db2GetSyncSession (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef struct
{

char * poSyncSessionID;
} db2GetSyncSessionStruct;
/* ... */

db2GetSyncSession

Chapter 1. Application Programming Interfaces 33

db2HistoryCloseScan - Close Recovery History File Scan
Ends a recovery history file scan and frees DB2 resources required for the
scan. This API must be preceded by a successful call to “db2HistoryOpenScan
- Open Recovery History File Scan” on page 39.

Authorization
None

Required Connection
Instance. It is not necessary to call ATTACH before calling this API.

API Include File
db2ApiDf.h

C API Syntax

Generic API Syntax

API Parameters

version
Input. Specifies the version and release level of the second parameter,
piHandle.

piHandle
Input. Specifies a pointer to the handle for scan access that was
returned by “db2HistoryOpenScan - Open Recovery History File
Scan” on page 39.

/* File: db2ApiDf.h */
/* API: Close Recovery History File Scan */
/* ... */
SQL_API_RC SQL_API_FN

db2HistoryCloseScan (
db2Uint32 version,
void * piHandle,
struct sqlca * pSqlca);

/* ... */

/* File: db2ApiDf.h */
/* API: Close Recovery History File Scan */
/* ... */
SQL_API_RC SQL_API_FN

db2GenHistoryCloseScan (
db2Uint32 version,
void * piHandle,
struct sqlca * pSqlca);

/* ... */

db2HistoryCloseScan - Close Recovery History File Scan

34 Administrative API Reference

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax

REXX API Parameters

scanid Host variable containing the scan identifier returned from OPEN
RECOVERY HISTORY FILE SCAN.

Usage Notes
For a detailed description of the use of the recovery history file APIs, see
“db2HistoryOpenScan - Open Recovery History File Scan” on page 39.

See Also

“db2HistoryGetEntry - Get Next Recovery History File Entry” on page 36

“db2HistoryOpenScan - Open Recovery History File Scan” on page 39

“db2Prune” on page 72

“db2HistoryUpdate - Update Recovery History File” on page 44.

CLOSE RECOVERY HISTORY FILE :scanid

db2HistoryCloseScan - Close Recovery History File Scan

Chapter 1. Application Programming Interfaces 35

db2HistoryGetEntry - Get Next Recovery History File Entry
Gets the next entry from the recovery history file. This API must be preceded
by a successful call to “db2HistoryOpenScan - Open Recovery History File
Scan” on page 39.

Authorization
None

Required Connection
Instance. It is not necessary to call sqleatin before calling this API.

API Include File
db2ApiDf.h

C API Syntax

Generic API Syntax

/* File: db2ApiDf.h */
/* API: Get Next Recovery History File Entry */
/* ... */
SQL_API_RC SQL_API_FN

db2HistoryGetEntry (
db2Uint32 version,
void * pDB2HistoryGetEntryStruct,
struct sqlca * pSqlca);

typedef struct
{

db2Uint16 iHandle,
db2Uint16 iCallerAction,
struct db2HistData * pioHistData

} db2HistoryGetEntryStruct;
/* ... */

/* File: db2ApiDf.h */
/* API: Get Next Recovery History File Entry */
/* ... */
SQL_API_RC SQL_API_FN

db2GenHistoryGetEntry (
db2Uint32 version,
void * pDB2GenHistoryGetEntryStruct,
struct sqlca * pSqlca);

typedef struct
{

db2Uint16 iHandle,
db2Uint16 iCallerAction,
struct db2HistData * pioHistData

} db2GenHistoryGetEntryStruct;
/* ... */

db2HistoryGetEntry - Get Next Recovery History File Entry

36 Administrative API Reference

API Parameters

version
Input. Specifies the version and release level of the structure passed in
as the second parameter, pDB2HistoryGetEntryStruct.

pDB2HistoryGetEntryStruct
Input. A pointer to the db2HistoryGetEntryStruct structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

iHandle
Input. Contains the handle for scan access that was returned by
“db2HistoryOpenScan - Open Recovery History File Scan” on page 39.

iCallerAction
Input. Specifies the type of action to be taken. Valid values (defined in
db2ApiDf) are:

DB2HISTORY_GET_ENTRY
Get the next entry, but without any command data.

DB2HISTORY_GET_DDL
Get only the command data from the previous fetch.

DB2HISTORY_GET_ALL
Get the next entry, including all data.

pioHistData
Input. A pointer to the db2HistData structure. For more information
about this structure, see “db2HistData” on page 423.

REXX API Syntax

REXX API Parameters

scanid Host variable containing the scan identifier returned from OPEN
RECOVERY HISTORY FILE SCAN.

value A compound REXX host variable into which the recovery history file
entry information is returned. In the following, XXX represents the
host variable name:

XXX.0 Number of first level elements in the variable (always
15)

XXX.1 Number of table space elements

GET RECOVERY HISTORY FILE ENTRY :scanid [USING :value]

db2HistoryGetEntry - Get Next Recovery History File Entry

Chapter 1. Application Programming Interfaces 37

XXX.2 Number of used table space elements

XXX.3 OPERATION (type of operation performed)

XXX.4 OBJECT (granularity of the operation)

XXX.5 OBJECT_PART (time stamp and sequence number)

XXX.6 OPTYPE (qualifier of the operation)

XXX.7 DEVICE_TYPE (type of device used)

XXX.8 FIRST_LOG (earliest log ID)

XXX.9 LAST_LOG (current log ID)

XXX.10 BACKUP_ID (identifier for the backup)

XXX.11 SCHEMA (qualifier for the table name)

XXX.12 TABLE_NAME (name of the loaded table)

XXX.13.0 NUM_OF_TABLESPACES (number of table spaces
involved in backup or restore)

XXX.13.1 Name of the first table space backed up/restored

XXX.13.2 Name of the second table space backed up/restored

XXX.13.3 and so on

XXX.14 LOCATION (where backup or copy is stored)

XXX.15 COMMENT (text to describe the entry).

Usage Notes
The records that are returned will have been selected using the values
specified on the call to “db2HistoryOpenScan - Open Recovery History File
Scan” on page 39.

For a detailed description of the use of the recovery history file APIs, see
“db2HistoryOpenScan - Open Recovery History File Scan” on page 39.

See Also
“db2HistoryCloseScan - Close Recovery History File Scan” on page 34

“db2HistoryOpenScan - Open Recovery History File Scan” on page 39

“db2Prune” on page 72

“db2HistoryUpdate - Update Recovery History File” on page 44.

db2HistoryGetEntry - Get Next Recovery History File Entry

38 Administrative API Reference

db2HistoryOpenScan - Open Recovery History File Scan
Starts a recovery history file scan.

Authorization
None

Required Connection
Instance. It is not necessary to call ATTACH before calling this API. If the
database is cataloged as remote, an instance attachment to the remote node is
established.

API Include File
db2ApiDf.h

C API Syntax

/* File: db2ApiDf.h */
/* API: Open Recovery History File Scan */
/* ... */
SQL_API_RC SQL_API_FN

db2HistoryOpenScan (
db2Uint32 version,
void * pDB2HistoryOpenStruct,
struct sqlca * pSqlca);

typedef struct
{

char * piDatabaseAlias,
char * piTimestamp,
char * piObjectName,
db2Uint32 oNumRows,
db2Uint16 iCallerAction,
db2Uint16 oHandle

} db2HistoryOpenStruct;
/* ... */

db2HistoryOpenScan - Open Recovery History File Scan

Chapter 1. Application Programming Interfaces 39

Generic API Syntax

API Parameters

version
Input. Specifies the version and release level of the structure passed in
as the second parameter, pDB2HistoryOpenStruct.

pDB2HistoryOpenStruct
Input. A pointer to the db2HistoryOpenStruct structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

piDatabaseAlias
Input. A pointer to a string containing the database alias.

piTimestamp
Input. A pointer to a string specifying the time stamp to be used for
selecting records. Records whose time stamp is equal to or greater
than this value are selected. Setting this parameter to NULL, or
pointing to zero, prevents the filtering of entries using a time stamp.

piObjectName
Input. A pointer to a string specifying the object name to be used for
selecting records. The object may be a table or a table space. If it is a
table, the fully qualified table name must be provided. Setting this
parameter to NULL, or pointing to zero, prevents the filtering of
entries using the object name.

/* File: db2ApiDf.h */
/* API: Open Recovery History File Scan */
/* ... */
SQL_API_RC SQL_API_FN

db2GenHistoryOpenScan (
db2Uint32 version,
void * pDB2GenHistoryOpenStruct,
struct sqlca * pSqlca);

typedef struct
{

char * piDatabaseAlias,
char * piTimestamp,
char * piObjectName,
db2Uint32 oNumRows,
db2Uint16 iCallerAction,
db2Uint16 oHandle

} db2GenHistoryOpenStruct;
/* ... */

db2HistoryOpenScan - Open Recovery History File Scan

40 Administrative API Reference

oNumRows
Output. Upon return from the API, this parameter contains the
number of matching recovery history file entries.

iCallerAction
Input. Specifies the type of action to be taken. Valid values (defined in
db2ApiDf) are:

DB2HISTORY_LIST_HISTORY
Select all of the records (backup, restore, and load) that pass
the other filters.

DB2HISTORY_LIST_BACKUP
Select only the backup and restore records that pass the other
filters.

DB2HISTORY_LIST_ROLLFORWARD
Select only the roll forward records that pass the other filters.

DB2HISTORY_LIST_RUNSTATS
Select only the RUNSTATS records that pass the other filters.

Note: This value is not currently supported.

DB2HISTORY_LIST_REORG
Select only the reorganize table records that pass the other
filters.

Note: This value is not currently supported.

DB2HISTORY_LIST_ALT_TABLESPACE
Select only the ALTER TABLESPACE records that pass the
other filters. The DDL field associated with an entry will not
be returned. To retrieve the DDL information for an entry,
“db2HistoryGetEntry - Get Next Recovery History File Entry”
on page 36 must be called with a caller action of
DB2HISTORY_GET_DDL immediately after the entry is fetched.

DB2HISTORY_LIST_DROPPED_TABLE
Select only the dropped table records that pass the other
filters. The DDL field associated with an entry will not be
returned. To retrieve the DDL information for an entry,
“db2HistoryGetEntry - Get Next Recovery History File Entry”
on page 36 must be called with a caller action of
DB2HISTORY_GET_DDL immediately after the entry is fetched.

DB2HISTORY_LIST_LOAD
Select only the load records that pass the other filters.

db2HistoryOpenScan - Open Recovery History File Scan

Chapter 1. Application Programming Interfaces 41

DB2HISTORY_LIST_REN_TABLESPACE
Select only the rename tablespace records that pass the other
filters.

oHandle
Output. Upon return from the API, this parameter contains the handle
for scan access. It is subsequently used in “db2HistoryGetEntry - Get
Next Recovery History File Entry” on page 36, and
“db2HistoryCloseScan - Close Recovery History File Scan” on page 34.

REXX API Syntax

REXX API Parameters

database_alias
The alias of the database whose history file is to be listed.

objname
Specifies the object name to be used for selecting records. The object
may be a table or a table space. If it is a table, the fully qualified table
name must be provided. Setting this parameter to NULL prevents the
filtering of entries using objname.

timestamp
Specifies the time stamp to be used for selecting records. Records
whose time stamp is equal to or greater than this value are selected.
Setting this parameter to NULL prevents the filtering of entries using
timestamp.

value A compound REXX host variable to which recovery history file
information is returned. In the following, XXX represents the host
variable name.

XXX.0 Number of elements in the variable (always 2)

XXX.1 Identifier (handle) for future scan access

XXX.2 Number of matching recovery history file entries.

Usage Notes
The combination of time stamp, object name and caller action can be used to
filter records. Only records that pass all specified filters are returned.

The filtering effect of the object name depends on the value specified:
v Specifying a table will return records for load operations, because this is the

only information for tables in the history file.

OPEN [BACKUP] RECOVERY HISTORY FILE FOR database_alias
[OBJECT objname] [TIMESTAMP :timestamp]
USING :value

db2HistoryOpenScan - Open Recovery History File Scan

42 Administrative API Reference

v Specifying a table space will return records for backups, restore operations,
and load operations for the table space.

Note: To return records for tables, they must be specified as schema.tablename.
Specifying tablename will only return records for table spaces.

A maximum of eight history file scans per process is permitted.

To list every entry in the history file, a typical application will perform the
following steps:
1. Call db2HistoryOpenScan, which will return oNumRows.
2. Allocate an db2HistData structure with space for n oTablespace fields, where

n is an arbitrary number.
3. Set the iDB2NumTablespace field of the db2HistData structure to n.
4. In a loop, perform the following:

v Call db2HistoryGetEntry to fetch from the history file.
v If db2HistoryGetEntry returns an SQLCODE of SQL_RC_OK, use the sqld

field of the db2HistData structure to determine the number of table space
entries returned.

v If db2HistoryGetEntry returns an SQLCODE of
SQLUH_SQLUHINFO_VARS_WARNING, not enough space has been allocated for
all of the table spaces that DB2 is trying to return; free and reallocate the
db2HistData structure with enough space for oDB2UsedTablespace table
space entries, and set iDB2NumTablespace to oDB2UsedTablespace.

v If db2HistoryGetEntry returns an SQLCODE of SQLE_RC_NOMORE, all
recovery history file entries have been retrieved.

v Any other SQLCODE indicates a problem.
5. When all of the information has been fetched, call “db2HistoryCloseScan -

Close Recovery History File Scan” on page 34 to free the resources
allocated by the call to db2HistoryOpenScan.

The macro SQLUHINFOSIZE(n), defined in sqlutil, is provided to help
determine how much memory is required for an db2HistData structure with
space for n oTablespace fields.

See Also

“db2HistoryCloseScan - Close Recovery History File Scan” on page 34

“db2HistoryGetEntry - Get Next Recovery History File Entry” on page 36

“db2Prune” on page 72

“db2HistoryUpdate - Update Recovery History File” on page 44.

db2HistoryOpenScan - Open Recovery History File Scan

Chapter 1. Application Programming Interfaces 43

db2HistoryUpdate - Update Recovery History File
Updates the location, device type, or comment in a history file entry.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

Required Connection
Database. To update entries in the history file for a database other than the
default database, a connection to the database must be established before
calling this API.

API Include File
db2ApiDf.h

C API Syntax

/* File: db2ApiDf.h */
/* API: Update Recovery History File */
/* ... */
SQL_API_RC SQL_API_FN

db2HistoryUpdate (
db2Uint32 version,
void * pDB2HistoryUpdateStruct,
struct sqlca * pSqlca);

typedef struct
{

char * piNewLocation,
char * piNewDeviceType,
char * piNewComment,
db2Uint32 iEID

} db2HistoryUpdateStruct;
/* ... */

db2HistoryUpdate - Update Recovery History File

44 Administrative API Reference

Generic API Syntax

API Parameters

version
Input. Specifies the version and release level of the structure passed in
as the second parameter, pDB2HistoryUpdateStruct.

pDB2HistoryUpdateStruct
Input. A pointer to the db2HistoryUpdateStruct structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

piNewLocation
Input. A pointer to a string specifying a new location for the backup,
restore, or load copy image. Setting this parameter to NULL, or
pointing to zero, leaves the value unchanged.

piNewDeviceType
Input. A pointer to a string specifying a new device type for storing
the backup, restore, or load copy image. Setting this parameter to
NULL, or pointing to zero, leaves the value unchanged.

piNewComment
Input. A pointer to a string specifying a new comment to describe the
entry. Setting this parameter to NULL, or pointing to zero, leaves the
comment unchanged.

iEID Input. A unique identifier that can be used to update a specific entry
in the history file.

/* File: db2ApiDf.h */
/* API: Update Recovery History File */
/* ... */
SQL_API_RC SQL_API_FN

db2GenHistoryUpdate (
db2Uint32 version,
void * pDB2GenHistoryUpdateStruct,
struct sqlca * pSqlca);

typedef struct
{

char * piNewLocation,
char * piNewDeviceType,
char * piNewComment,
db2Uint32 iEID

} db2GenHistoryUpdateStruct;
/* ... */

db2HistoryUpdate - Update Recovery History File

Chapter 1. Application Programming Interfaces 45

REXX API Syntax

REXX API Parameters

value A compound REXX host variable containing information pertaining to
the new location of a recovery history file entry. In the following, XXX
represents the host variable name:

XXX.0 Number of elements in the variable (must be between 1 and
4)

XXX.1 OBJECT_PART (time stamp with a sequence number from 001
to 999)

XXX.2 New location for the backup or copy image (this parameter is
optional)

XXX.3 New device used to store the backup or copy image (this
parameter is optional)

XXX.4 New comment (this parameter is optional).

Usage Notes
This is an update function, and all information prior to the change is replaced
and cannot be recreated. These changes are not logged.

The history file is used for recording purposes only. It is not used directly by
the restore or the roll-forward functions. During a restore operation, the
location of the backup image can be specified, and the history file is useful for
tracking this location. The information can subsequently be provided to
“sqlubkp - Backup Database” on page 290. Similarly, if the location of a load
copy image is moved, the rollforward utility must be provided with the new
location and type of storage media. For additional information, see the
Administration Guide and “sqluroll - Rollforward Database” on page 397.

See Also
“db2HistoryCloseScan - Close Recovery History File Scan” on page 34

“db2HistoryGetEntry - Get Next Recovery History File Entry” on page 36

“db2HistoryOpenScan - Open Recovery History File Scan” on page 39

“db2Prune” on page 72.

UPDATE RECOVERY HISTORY USING :value

db2HistoryUpdate - Update Recovery History File

46 Administrative API Reference

db2LdapCatalogDatabase
Catalogs a database entry in LDAP (Lightweight Directory Access Protocol).

This API is available on Windows NT, Windows 98, Windows 95, and
Windows 2000 only.

Authorization
None

Required Connection
None

API Include File
db2ApiDf.h

C API Syntax

API Parameters

versionNumber
Input. Specifies the version and release level of the structure passed in
as the second parameter, pParamStruct.

pParamStruct
Input. A pointer to the db2LdapCatalogDatabaseStruct structure.

/* File: db2ApiDf.h */
/* API: db2LdapCatalogDatabase */
/* ... */
SQL_API_RC SQL_API_FN

db2LdapCatalogDatabase(
sqlint32 versionNumber,
void * pParamStruct,
struct sqlca * pSqlca);

typedef struct
{
char * piAlias;
char * piDatabaseName;
char * piComment
char * piNodeName;
char * piGWNodeName;
char * piParameters;
char * piARLibrary;
unsigned short iAuthentication;
char * piDCEPrincipalName;
char * piBindDN;
char * piPassword;
} db2LdapCatalogDatabaseStruct;
/* ... */

db2LdapCatalogDatabase

Chapter 1. Application Programming Interfaces 47

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

piAlias
Input. Specify an alias to be used as an alternate name for the
database being cataloged. If an alias is not specified, the database
manager uses the database name as the alias name.

piDatabaseName
Input. Specify the name of the database to catalog. This parameter is
mandatory.

piComment
Input. Describes the DB2 server. Any comment that helps to describe
the server registered in the network directory can be entered.
Maximum length is 30 characters. A carriage return or a line feed
character is not permitted.

piNodeName
Input. Specify the node name of the database server on which the
database resides. This parameter is required if the database resides on
a remote database server.

piGWNodename
Input. Specify the node name of the DB2 Connect gateway server. If
the database server node type is DCS (reserved for host database
servers), and the client does not have DB2 Connect installed, the client
will connect to the DB2 Connect gateway server.

piParameters
Input. Specify a parameter string that is to be passed to the
application requestor (AR). For an explanation of what format DB2
Connect expects for this string, see the DB2 Connect User’s Guide.
Authentication DCE is not supported.

piARLibrary
Input. Specify the name of the application requester (AR) library. For
more information, see the DB2 Connect User’s Guide.

iAuthentication
Input. Specifying an authentication type can result in a performance
benefit. For more information about authentication types, see the
Administration Guide.

piDCEPrincipalName
Input. Specify the fully qualified DCE principal name for the target
server.

piBindDN
Input. Specify the user’s LDAP distinguished name (DN). The LDAP

db2LdapCatalogDatabase

48 Administrative API Reference

user DN must have sufficient authority to create and update the object
in the LDAP directory. If the user’s LDAP DN is not specified, the
credentials of the current logon user will be used.

piPassword
Input. Account password.

Usage Notes
A database may need to be manually registered or cataloged in LDAP if:
v The database server does not support LDAP. In this case, the administrator

needs to manually register each database in LDAP to allow clients that
support LDAP to access the database without having to catalog the
database locally on each client machine.

v The application wants to use a different name to connect to the database. In
this case, the administrator needs to catalog the database using a different
alias name.

v During CREATE DATABASE IN LDAP, the database name already exists in
LDAP. The database is still created on the local machine (and can be
accessed by local applications), but the existing entry in LDAP will not be
modified to reflect the new database. In this case, the administrator can:
– Remove the existing database entry from LDAP, and manually register

the new database in LDAP.
– Register the new database in LDAP using a different alias name.

db2LdapCatalogDatabase

Chapter 1. Application Programming Interfaces 49

db2LdapCatalogNode
Specifies an alternate name for the node entry in LDAP (Lightweight
Directory Access Protocol), or a different protocol type for connecting to the
database server.

This API is available on Windows NT, Windows 98, Windows 95, and
Windows 2000 only.

Authorization
None

Required Connection
None

API Include File
db2ApiDf.h

C API Syntax

API Parameters

versionNumber
Input. Specifies the version and release level of the structure passed in
as the second parameter, pParamStruct.

pParamStruct
Input. A pointer to the db2LdapCatalogNodeStruct structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

/* File: db2ApiDf.h */
/* API: db2LdapCatalogNode */
/* ... */
SQL_API_RC SQL_API_FN

db2LdapCatalogNode(
sqlint32 versionNumber,
void * pParamStruct,
struct sqlca * pSqlca);

typedef struct
{

char * piAlias;
char * piNodeName;
char * piBindDN;
char * piPassword;

} db2LdapCatalogNodeStruct;
/* ... */

db2LdapCatalogNode

50 Administrative API Reference

piAlias
Input. Specify a new alias to be used as an alternate name for the
node entry.

piNodeName
Input. Specify a node name that represents the DB2 server in LDAP.

piBindDN
Input. Specify the user’s LDAP distinguished name (DN). The LDAP
user DN must have sufficient authority to create and update the object
in the LDAP directory. If the user’s LDAP DN is not specified, the
credentials of the current logon user will be used.

piPassword
Input. Account password.

db2LdapCatalogNode

Chapter 1. Application Programming Interfaces 51

db2LdapDeregister
Deregisters the DB2 server from LDAP (Lightweight Directory Access
Protocol).

This API is available on Windows NT, Windows 98, Windows 95, and
Windows 2000 only.

Authorization
None

Required Connection
None

API Include File
db2ApiDf.h

C API Syntax

API Parameters

versionNumber
Input. Specifies the version and release level of the structure passed in
as the second parameter, pParamStruct.

pParamStruct
Input. A pointer to the db2LdapDeregisterStruct structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

piNodeName
Input. Specify a short name that represents the DB2 server in LDAP.

/* File: db2ApiDf.h */
/* API: db2LdapDeregister */
/* ... */
SQL_API_RC SQL_API_FN

db2LdapDeregister (
sqlint32 versionNumber,
void * pParamStruct,
struct sqlca * pSqlca);

typedef struct
{

char * piNodeName;
char * piBindDN;
char * piPassword;

} db2LdapDeregisterStruct;
/* ... */

db2LdapDeregister

52 Administrative API Reference

piBindDN
Input. Specify the user’s LDAP distinguished name (DN). The LDAP
user DN must have sufficient authority to delete the object from the
LDAP directory. If the user’s LDAP DN is not specified, the
credentials of the current logon user will be used.

piPassword
Input. Account password.

db2LdapDeregister

Chapter 1. Application Programming Interfaces 53

db2LdapRegister
Registers the DB2 server in LDAP (Lightweight Directory Access Protocol).

This API is available on Windows NT, Windows 98, Windows 95, and
Windows 2000 only.

Authorization
None

Required Connection
None

API Include File
db2ApiDf.h

C API Syntax
/* File: db2ApiDf.h */
/* API: db2LdapRegister */
/* ... */
SQL_API_RC SQL_API_FN

db2LdapRegister (
sqlint32 versionNumber,
void * pParamStruct,
struct sqlca * pSqlca);

typedef struct
{

char * piNodeName;
char * piComputer;
char * piInstance;
unsigned short iNodeType;
db2LdapProtocolInfo iProtocol;
char * piComment;
char * piBindDN;
char * piPassword;

} db2LdapRegisterStruct;

typedef struct
{

char iType;
char * piHostName;
char * piServiceName;
char * piNetbiosName;
char * piNetworkId;
char * piPartnerLU;
char * piTPName;
char * piMode;
unsigned short iSecurityType;
char * piLanAdapterAddress;

db2LdapRegister

54 Administrative API Reference

char * piChangePasswordLU;
char * piIpxAddress;

} db2LdapProtocolInfo;
/* ... */

API Parameters

versionNumber
Input. Specifies the version and release level of the structure passed in
as the second parameter, pParamStruct.

pParamStruct
Input. A pointer to the db2LdapRegisterStruct structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

piNodeName
Input. Specify a short name (less than 8 characters) that represents the
DB2 server in LDAP.

piComputer
Input. Specify the name of the computer system on which the DB2
server resides. The computer name value must be the same as the
value specified when adding the server machine to LDAP. On
Windows NT, this is the NT computer name. On UNIX based systems,
this is the TCP/IP host name. On OS/2, this is the value specified for
the DB2SYSTEM registry variable. Specify NULL to register the DB2
server on the local computer.

piInstance
Input. Specify the instance name of the DB2 server. The instance name
must be specified if the computer name is specified to register a
remote server. Specify NULL to register the current instance (as
defined by the DB2SYSTEM environment variable).

iNodeType
Input. Specify the node type for the database server. Valid values are:

SQLF_NT_SERVER
SQLF_NT_MPP
SQLF_NT_DCS

iProtocol
Input. Specify the protocol information in the db2LdapProtocolInfo
structure.

piComment
Input. Describes the DB2 server. Any comment that helps to describe
the server registered in the network directory can be entered.
Maximum length is 30 characters. A carriage return or a line feed
character is not permitted.

db2LdapRegister

Chapter 1. Application Programming Interfaces 55

piBindDN
Input. Specify the user’s LDAP distinguished name (DN). The LDAP
user DN must have sufficient authority to create and update the object
in the LDAP directory. If the user’s LDAP DN is not specified, the
credentials of the current logon user will be used.

piPassword
Input. Account password.

iType Input. Specify the protocol type that this server supports. If the server
supports more than one protocol, multiple registrations (each with a
different node name and protocol type) are required. Valid values are:

SQL_PROTOCOL_APPN - For APPC/APPN support
SQL_PROTOCOL_NETB - For NetBIOS support
SQL_PROTOCOL_TCPIP - For TCP/IP support
SQL_PROTOCOL_SOCKS - For TCP/IP with socket security
SQL_PROTOCOL_IPXSPX - For IPX/SPX support
SQL_PROTOCOL_NPIPE - For Windows NT Named Pipe support

piHostName
Input. Specify the TCP/IP host name or the IP address.

piServiceName
Input. Specify the TCP/IP service name or port number.

piNetbiosName
Input. Specify the NetBIOS workstation name. The NetBIOS name
must be specified for NetBIOS support.

piNetworkID
Input. Specify the network ID. The network ID must be specified for
APPC/APPN support.

piPartnerLU
Input. Specify the partner LU name for the DB2 server machine. The
partner LU must be specified for APPC/APPN support.

piTPName
Input. Specify the transaction program name. The transaction program
name must be specified for APPC/APPN support.

piMode
Input. Specify the mode name. The mode must be specified for
APPC/APPN support.

iSecurityType
Input. Specify the APPC security level. Valid values are:

SQL_CPIC_SECURITY_NONE (default)
SQL_CPIC_SECURITY_SAME
SQL_CPIC_SECURITY_PROGRAM

db2LdapRegister

56 Administrative API Reference

piLanAdapterAddress
Input. Specify the network adapter address. This parameter is only
required for APPC support. For APPN, this parameter can be set to
NULL.

piChangePasswordLU
Input. Specify the name of the partner LU to use when changing the
password for the host database server.

piIpxAddress
Input. Specify the complete IPX address. The IPX address must be
specified for IPX/SPX support.

Usage Notes
Register the DB2 server once for each protocol that the server supports each
time specifying a unique node name.

If any protocol configuration parameter is specified when registering a DB2
server locally, it will override the value specified in the database manager
configuration file.

Only a remote DB2 server can be registered in LDAP. The computer name and
the instance name of the remote server must be specified, along with the
protocol communication for the remote server.

When registering a host database server, a value of SQLF_NT_DCS must be
specified for the iNodeType parameter.

db2LdapRegister

Chapter 1. Application Programming Interfaces 57

db2LdapUncatalogDatabase
Removes a database entry from LDAP (Lightweight Directory Access
Protocol).

This API is available on Windows NT, Windows 98, Windows 95, and
Windows 2000 only.

Authorization
None

Required Connection
None

API Include File
db2ApiDf.h

C API Syntax

API Parameters

versionNumber
Input. Specifies the version and release level of the structure passed in
as the second parameter, pParamStruct.

pParamStruct
Input. A pointer to the db2LdapUncatalogDatabaseStruct structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

piAlias
Input. Specify an alias name for the database entry. This parameter is
mandatory.

/* File: db2ApiDf.h */
/* API: db2LdapUncatalogDatabase */
/* ... */
SQL_API_RC SQL_API_FN

db2LdapUncatalogDatabase(
sqlint32 versionNumber,
void * pParamStruct,
struct sqlca * pSqlca);

typedef struct
{

char * piAlias[SQL_ALIAS_SZ];
char * piBindDN;
char * piPassword;

} db2LdapUncatalogDatabaseStruct;
/* ... */

db2LdapUncatalogDatabase

58 Administrative API Reference

piBindDN
Input. Specify the user’s LDAP distinguished name (DN). The LDAP
user DN must have sufficient authority to delete the object from the
LDAP directory. If the user’s LDAP DN is not specified, the
credentials of the current logon user will be used.

piPassword
Input. Account password.

db2LdapUncatalogDatabase

Chapter 1. Application Programming Interfaces 59

db2LdapUncatalogNode
Removes a node entry from LDAP (Lightweight Directory Access Protocol).

This API is available on Windows NT, Windows 98, Windows 95, and
Windows 2000 only.

Authorization
None

Required Connection
None

API Include File
db2ApiDf.h

C API Syntax

API Parameters

versionNumber
Input. Specifies the version and release level of the structure passed in
as the second parameter, pParmStruct.

pParamStruct
Input. A pointer to the db2LdapUncatalogNodeStruct structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

piAlias
Input. Specify the alias of the node to uncatalog from LDAP.

piBindDN
Input. Specify the user’s LDAP distinguished name (DN). The LDAP

/* File: db2ApiDf.h */
/* API: db2LdapUncatalogNode */
/* ... */
SQL_API_RC SQL_API_FN

db2LdapUncatalogNode(
sqlint32 versionNumber,
void * pParamStruct,
struct sqlca * pSqlca);

typedef struct
{

char * piAlias;
char * piBindDN;
char * piPassword;

} db2LdapUncatalogNodeStruct;
/* ... */

db2LdapUncatalogNode

60 Administrative API Reference

user DN must have sufficient authority to delete the object from the
LDAP directory. If the user’s LDAP DN is not specified, the
credentials of the current logon user will be used.

piPassword
Input. Account password.

db2LdapUncatalogNode

Chapter 1. Application Programming Interfaces 61

db2LdapUpdate
Updates the communication protocol information for the DB2 server in LDAP
(Lightweight Directory Access Protocol).

This API is available on Windows NT, Windows 98, Windows 95, and
Windows 2000 only.

Authorization
None

Required Connection
None

API Include File
db2ApiDf.h

C API Syntax
/* File: db2ApiDf.h */
/* API: db2LdapUpdate */
/* ... */
SQL_API_RC SQL_API_FN

db2LdapUpdate (
sqlint32 versionNumber,
void * pParamStruct,
struct sqlca * pSqlca);

typedef struct
{

char * piNodeName;
char * piComment;
unsigned short iNodeType;
db2LdapProtocolInfo iProtocol;
char * piBindDN;
char * piPassword;

} db2LdapUpdateStruct;

typedef struct
{

char iType;
char * piHostName;
char * piServiceName;
char * piNetbiosName;
char * piNetworkId;
char * piPartnerLU;
char * piTPName;
char * piMode;
unsigned short iSecurityType;
char * piLanAdapterAddress;
char * piChangePasswordLU;
char * piIpxAddress;

} db2LdapProtocolInfo;
/* ... */

db2LdapUpdate

62 Administrative API Reference

API Parameters

versionNumber
Input. Specifies the version and release level of the structure passed in
as the second parameter, pParamStruct.

pParamStruct
Input. A pointer to the db2LdapUpdateStruct structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

piNodeName
Input. Specify the node name that represents the DB2 server in LDAP.

piComment
Input. Specify a new description for the DB2 server. Maximum length
is 30 characters. A carriage return or a line feed character is not
permitted.

iNodeType
Input. Specify a new node type. Valid values are:

SQLF_NT_SERVER
SQLF_NT_MPP
SQLF_NT_DCS
SQL_PARM_UNCHANGE

iProtocol
Input. Specify the updated protocol information in the
db2LdapProtocolInfo structure.

piBindDN
Input. Specify the user’s LDAP distinguished name (DN). The LDAP
user DN must have sufficient authority to create and update the object
in the LDAP directory. If the user’s LDAP DN is not specified, the
credentials of the current logon user will be used.

piPassword
Input. Account password.

iType Input. Specify the protocol type that this server supports. Valid values
are:

SQL_PROTOCOL_APPN - For APPC/APPN support
SQL_PROTOCOL_NETB - For NetBIOS support
SQL_PROTOCOL_TCPIP - For TCP/IP support
SQL_PROTOCOL_SOCKS - For TCP/IP with socket security
SQL_PROTOCOL_IPXSPX - For IPX/SPX support
SQL_PROTOCOL_NPIPE - For Windows NT Named Pipe support

piHostName
Input. Specify a new TCP/IP host name or IP address.

db2LdapUpdate

Chapter 1. Application Programming Interfaces 63

piServiceName
Input. Specify a new TCP/IP service name or port number.

piNetbiosName
Input. Specify a new NetBIOS workstation name.

piNetworkID
Input. Specify a new network ID.

piPartnerLU
Input. Specify a new partner LU name for the DB2 server machine.

piTPName
Input. Specify a new transaction program name.

piMode
Input. Specify a new mode name.

iSecurityType
Input. Specify a new security level. Valid values are:

SQL_CPIC_SECURITY_NONE
SQL_CPIC_SECURITY_SAME
SQL_CPIC_SECURITY_PROGRAM
SQL_PARM_UNCHANGE

piLanAdapterAddress
Input. Specify a new network adapter address.

piChangePasswordLU
Input. Specify a new name of the partner LU to use when changing
the password for the host database server.

piIpxAddress
Input. Specify a new IPX address.

db2LdapUpdate

64 Administrative API Reference

db2LoadQuery - Load Query
Checks the status of a load operation during processing.

Authorization
None

Required Connection
Database

API Include File
db2ApiDf.h

C API Syntax

/* File: db2ApiDf.h */
/* API: Load Query */
/* ... */
SQL_API_RC SQL_API_FN
db2LoadQuery (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca *pSqlca);

typedef struct
{

db2Uint32 iStringType;
char * piString;
db2Uint32 iShowLoadMessages;
db2LoadQueryOutputStruct * poOutputStruct;
char * piLocalMessageFile;

} db2LoadQueryStruct;

typedef struct
{

db2Uint32 oRowsRead;
db2Uint32 oRowsSkipped;
db2Uint32 oRowsCommitted;
db2Uint32 oRowsLoaded;
db2Uint32 oRowsRejected;
db2Uint32 oRowsDeleted;
db2Uint32 oCurrentIndex;
db2Uint32 oNumTotalIndexes;
db2Uint32 oCurrentMPPNode;
db2Uint32 oLoadRestarted;
db2Uint32 oWhichPhase;
db2Uint32 oWarningCount;

} db2LoadQueryOutputStruct;
/* ... */

db2LoadQuery - Load Query

Chapter 1. Application Programming Interfaces 65

Generic API Syntax

API Parameters

versionNumber
Input. Specifies the version and release level of the structure passed in
as the second parameter, pParmStruct.

pParmStruct
Input. A pointer to the db2LoadQueryStruct structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

/* File: db2ApiDf.h */
/* API: Load Query */
/* ... */
SQL_API_RC SQL_API_FN
db2gLoadQuery (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca *pSqlca);

typedef struct
{

db2Uint32 iStringType;
db2Uint32 iStringLen;
char * piString;
db2Uint32 iShowLoadMessages;
db2LoadQueryOutputStruct * poOutputStruct;
db2Uint32 iLocalMessageFileLen;
char * piLocalMessageFile

} db2gLoadQueryStruct;

typedef struct
{

db2Uint32 oRowsRead;
db2Uint32 oRowsSkipped;
db2Uint32 oRowsCommitted;
db2Uint32 oRowsLoaded;
db2Uint32 oRowsRejected;
db2Uint32 oRowsDeleted;
db2Uint32 oCurrentIndex;
db2Uint32 oNumTotalIndexes;
db2Uint32 oCurrentMPPNode;
db2Uint32 oLoadRestarted;
db2Uint32 oWhichPhase;
db2Uint32 oWarningCount;

} db2LoadQueryOutputStruct;
/* ... */

db2LoadQuery - Load Query

66 Administrative API Reference

iStringType
Input. Specifies a type for piString. Valid values (defined in
db2ApiDf.h) are:

DB2LOADQUERY_TABLENAME
Represents specifying a table name for use by the
db2LoadQuery API.

iStringLen
Input. Specifies the length in bytes of piString.

piString
Input. Specifies a temporary files path name or a table name,
depending on the value of iStringType.

iShowLoadMessages
Input. Specifies the level of messages that are to be returned by the
load utility. Valid values (defined in db2ApiDf.h) are:

DB2LOADQUERY_SHOW_ALL_MSGS
Return all load messages.

DB2LOADQUERY_SHOW_NO_MSGS
Return no load messages.

DB2LOADQUERY_SHOW_NEW_MSGS
Return only messages that have been generated since the last
call to this API.

poOutputStruct
Output. A pointer to the db2LoadQueryOutputStruct structure, which
contains load summary information. Set to NULL if a summary is not
required.

iLocalMessageFileLen
Input. Specifies the length in bytes of piLocalMessageFile.

piLocalMessageFile
Input. Specifies the name of a local file to be used for output
messages.

oRowsRead
Output. Number of records read so far by the load utility.

oRowsSkipped
Output. Number of records skipped before the load operation began.

oRowsCommitted
Output. Number of rows committed to the target table so far.

oRowsLoaded
Output. Number of rows loaded into the target table so far.

db2LoadQuery - Load Query

Chapter 1. Application Programming Interfaces 67

oRowsRejected
Output. Number of rows rejected from the target table so far.

oRowsDeleted
Output. Number of rows deleted from the target table so far (during
the delete phase).

oCurrentIndex
Output. Index currently being built (during the build phase).

oCurrentMPPNode
Output. Indicates which node is being queried (for MPP mode only).

oLoadRestarted
Output. A flag whose value is TRUE if the load operation being queried
is a load restart operation.

oWhichPhase
Output. Indicates the current phase of the load operation being
queried. Valid values (defined in db2ApiDf.h) are:

DB2LOADQUERY_LOAD_PHASE
Load phase.

DB2LOADQUERY_BUILD_PHASE
Build phase.

DB2LOADQUERY_DELETE_PHASE
Delete phase.

oNumTotalIndexes
Output. Total number of indexes to be built (during the build phase).

oWarningCount
Output. Total number of warnings returned so far.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How
the API Descriptions are Organized” on page 12, or the Application Development
Guide. For a description of the syntax, see the Command Reference.

Sample Programs

C \sqllib\samples\c\loadqry.sqc

COBOL \sqllib\samples\cobol\loadqry.sqb

Usage Notes
This API reads the status of the load operation on the table specified by
piString, and writes the status to the file specified by pLocalMsgFileName.

db2LoadQuery - Load Query

68 Administrative API Reference

db2MonitorSwitches - Get/Update Monitor Switches
Selectively turns on or off switches for groups of monitor data to be collected
by the database manager. Returns the current state of these switches for the
application issuing the call.

Scope
This API only returns information for the node on which it is executed.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

Required Connection
Instance. If there is no instance attachment, a default instance attachment is
created.

To display the settings for a remote instance (or a different local instance), it is
necessary to first attach to that instance.

API Include File
db2ApiDf.h

C API Syntax
int db2MonitorSwitches (db2Uint32 version,

void* pParamStruct,
struct sqlca* sqlca);

typedef struct
{

struct sqlm_recording_group *piGroupStates;
void *poBuffer;
db2Uint32 iBufferSize;
db2Uint32 iReturnData;
db2Uint32 iVersion;
db2int32 iNodeNumber;
db2Uint32 *poOutputFormat;

}db2MonitorSwitchesData;

API Parameters

version
Input. Specifies the version and release level of the structure passed as
the second parameter pParamStruct.

pParamStruct
Input. A pointer to the db2MonitorSwitchesStruct structure.

db2MonitorSwitches - Get/Update Monitor Switches

Chapter 1. Application Programming Interfaces 69

sqlca Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

piGroupStates
Input. A pointer to the structure containing a list of switches.

poBuffer
A pointer to a buffer where the switch state data will be written.

iBufferSize
Input. Specifies the size of the output buffer.

iReturnData
Input. A flag specifying whether or not the current switch states
should be written to the data buffer pointed to by poBuffer.

iVersion
Input. Version ID of the database monitor data to collect. The database
monitor only returns data that was available for the requested version.
Set this parameter to one of the following symbolic constants:
v SQLM_DBMON_VERSION1

v SQLM_DBMON_VERSION2

v SQLM_DBMON_VERSION5

v SQLM_DBMON_VERSION5_2

v SQLM_DBMON_VERSION6

v SQLM_DBMON_VERSION7

Note: If SQLM_DBMON_VERSION1 is specified as the version, the APIs
cannot be run remotely.

iNodeNumber
Input. The node where the request is to be sent. Based on this value,
the request will be processed for the current node, all nodes or a user
specified node. Valid values are:
v SQLM_CURRENT_NODE

v SQLM_ALL_NODES

v node value

Note: For standalone instances SQLM_CURRENT_NODE must be used.

poOutputFormat
The format of the stream returned by the server. It will be one of the
following:

SQLM_STREAM_STATIC_FORMAT
Indicates that the switch states are returned in static,
pre-Version 7 switch structures.

db2MonitorSwitches - Get/Update Monitor Switches

70 Administrative API Reference

SQLM_STREAM_DYNAMIC_FORMAT
Indicates that the switches are returned in a self-describing
format, similar to the format returned for db2GetSnapshot.

Note: For detailed information about the use of the database
monitor APIs, and for a summary of all database
monitor data elements and monitoring groups, see the
System Monitor Guide and Reference.

Usage Notes
To obtain the status of the switches at the database manager level, call
“db2GetSnapshot - Get Snapshot” on page 27, specifying SQMA_DB2 for
OBJ_TYPE (get snapshot for database manager).

For detailed information about the use of the database monitor APIs, and for
a summary of all database monitor data elements and monitoring groups, see
the System Monitor Guide and Reference.

See Also
“db2GetSnapshot - Get Snapshot” on page 27

“db2GetSnapshotSize - Estimate Size Required for db2GetSnapshot() Output
Buffer” on page 30

“db2ResetMonitor - Reset Monitor” on page 78.

db2MonitorSwitches - Get/Update Monitor Switches

Chapter 1. Application Programming Interfaces 71

db2Prune
Deletes entries from the recovery history file or log files from the active log
path.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

Required Connection
Database. To delete entries from the recovery history file for any database
other than the default database, a connection to the database must be
established before calling this API.

API Include File
db2ApiDf.h

C API Syntax

/* File: db2ApiDf.h */
/* API: Prune Recovery History File */
/* ... */
SQL_API_RC SQL_API_FN

db2Prune (
db2Uint32 version,
void * pDB2PruneStruct,
struct sqlca * pSqlca);

typedef struct
{

char * piString,
db2Uint32 iEID,
db2Uint32 iCallerAction,
db2Uint32 iOptions

} db2PruneStruct;
/* ... */

db2Prune

72 Administrative API Reference

Generic API Syntax

API Parameters

version
Input. Specifies the version and release level of the structure passed in
as the second parameter, pDB2PruneStruct.

pDB2PruneStruct
Input. A pointer to the db2PruneStruct structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

iStringLen
Input. Specifies the length in bytes of piString.

piString
Input. A pointer to a string specifying a time stamp or a log sequence
number (LSN). The time stamp or part of a time stamp (minimum
yyyy, or year) is used to select records for deletion. All entries equal to
or less than the time stamp will be deleted. A valid time stamp must
be provided; there is no default behavior for a NULL parameter.

This parameter can also be used to pass an LSN, so that inactive logs
can be pruned.

iEID Input. Specifies a unique identifier that can be used to prune a single
entry from the history file.

iCallerAction
Input. Specifies the type of action to be taken. Valid values (defined in
db2ApiDf) are:

/* File: db2ApiDf.h */
/* API: Prune Recovery History File */
/* ... */
SQL_API_RC SQL_API_FN

db2GenPrune (
db2Uint32 version,
void * pDB2GenPruneStruct,
struct sqlca * pSqlca);

typedef struct
{

db2Uint32 iStringLen;
char * piString,
db2Uint32 iEID,
db2Uint32 iCallerAction,
db2Uint32 iOptions

} db2GenPruneStruct;
/* ... */

db2Prune

Chapter 1. Application Programming Interfaces 73

DB2PRUNE_ACTION_HISTORY
Remove history file entries.

DB2PRUNE_ACTION_LOG
Remove log files from the active log path.

iOptions
Input. Valid values (defined in db2ApiDf) are:

DB2PRUNE_OPTION_FORCE
Force the removal of the last backup.

DB2PRUNE_OPTION_LSNSTRING
Specify that the value of piString is an LSN, used when a
caller action of DB2PRUNE_ACTION_LOG is specified.

REXX API Syntax

REXX API Parameters

timestamp
A host variable containing a time stamp. All entries with time stamps
equal to or less than the time stamp provided are deleted from the
recovery history file.

WITH FORCE OPTION
If specified, the recovery history file will be pruned according to the
time stamp specified, even if some entries from the most recent
restore set are deleted from the file. If not specified, the most recent
restore set will be kept, even if the time stamp is less than or equal to
the time stamp specified as input.

Usage Notes
Pruning the history file does not delete the actual backup or load files. The
user must manually delete these files to free up the space they consume on
storage media.

Attention: If the latest full database backup is deleted from the media (in
addition to being pruned from the history file), the user must ensure that all
table spaces, including the catalog table space and the user table spaces, are
backed up. Failure to do so may result in a database that cannot be recovered,
or the loss of some portion of the user data in the database.

See Also
“db2HistoryCloseScan - Close Recovery History File Scan” on page 34

“db2HistoryGetEntry - Get Next Recovery History File Entry” on page 36

PRUNE RECOVERY HISTORY BEFORE :timestamp [WITH FORCE OPTION]

db2Prune

74 Administrative API Reference

“db2HistoryOpenScan - Open Recovery History File Scan” on page 39

“db2HistoryUpdate - Update Recovery History File” on page 44.

db2Prune

Chapter 1. Application Programming Interfaces 75

db2QuerySatelliteProgress
Checks on the status of a satellite synchronization session.

Authorization
None

Required Connection
None

API Include File
db2ApiDf.h

C API Syntax

API Parameters

versionNumber
Input. Specifies the version and release level of the structure passed in
as the second parameter, pParmStruct.

pParmStruct
Input. A pointer to the db2QuerySatelliteProgressStruct structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

oStep Output. The current step of the synchronization session (defined in
db2ApiDf.h).

/* File: db2ApiDf.h */
/* API: db2QuerySatelliteProgress */
/* ... */
SQL_API_RC SQL_API_FN

db2QuerySatelliteProgress (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef struct
{

db2int32 oStep;
db2int32 oSubstep;
db2int32 oNumSubsteps;
db2int32 oScriptStep;
db2int32 oNumScriptSteps;
char * poDescription;
char * poError;
char * poProgressLog;

} db2QuerySatelliteProgressStruct;
/* ... */

db2QuerySatelliteProgress

76 Administrative API Reference

oSubstep
Output. If the synchronization step (oStep) can be broken down into
substeps, this will be the current substep.

oNumSubsteps
Output. If there exists a substep (oSubstep) for the current step of the
synchronization session, this will be the total number of substeps that
comprise the synchronization step.

oScriptStep
Output. If the current substep is the execution of a script, this
parameter reports on the progress of the script execution, if available.

oNumScriptSteps
Output. If a script step is reported, this parameter contains the total
number of steps that comprise the script’s execution.

poDescription
Output. A description of the state of the satellite’s synchronization
session.

poError
Output. If the synchronization session is in error, a description of the
error is passed by this parameter.

poProgressLog
Output. The entire log of the satellite’s synchronization session is
returned by this parameter.

db2QuerySatelliteProgress

Chapter 1. Application Programming Interfaces 77

db2ResetMonitor - Reset Monitor
Resets the database system monitor data of a specified database, or of all
active databases, for the application issuing the call.

Scope
This API only affects the node on which it is issued.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

Required Connection
Instance. If there is no instance attachment, a default instance attachment is
created.

To reset the monitor switches for a remote instance (or a different local
instance), it is necessary to first attach to that instance.

API Include File
db2ApiDf.h

C API Syntax
int db2ResetMonitor (db2Uint32 version,

void* pParamStruct,
struct sqlca* sqlca);

typedef struct
{

db2Uint32 iResetAll;
char *piDbAlias;
db2Uint32 iVersion;
db2int32 iNodeNumber;

}db2ResetMonitorData;

API Parameters

version
Input. Specifies the version and release level of the structure passed as
the second parameter pParamStruct.

pParamStruct
Input. A pointer to the db2ResetMonitorData structure.

sqlca Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

iResetAll
Input. The reset flag.

db2ResetMonitor - Reset Monitor

78 Administrative API Reference

piDbAlias
Input. A pointer to the database alias.

iVersion
Input. Version ID of the database monitor data to collect. The database
monitor only returns data that was available for the requested version.
Set this parameter to one of the following symbolic constants:
v SQLM_DBMON_VERSION1

v SQLM_DBMON_VERSION2

v SQLM_DBMON_VERSION5

v SQLM_DBMON_VERSION5_2

v SQLM_DBMON_VERSION6

v SQLM_DBMON_VERSION7

Note: If SQLM_DBMON_VERSION1 is specified as the version, the APIs
cannot be run remotely.

iNodeNumber
Input. The node where the request is to be sent. Based on this value,
the request will be processed for the current node, all nodes or a user
specified node. Valid values are:
v SQLM_CURRENT_NODE

v SQLM_ALL_NODES

v node value

Note: For standalone instances SQLM_CURRENT_NODE must be used.

Usage Notes
Each process (attachment) has its own private view of the monitor data. If one
user resets, or turns off a monitor switch, other users are not affected. When
an application first calls any database monitor function, it inherits the default
switch settings from the database manager configuration file (see “sqlfxsys -
Get Database Manager Configuration” on page 278). These settings can be
overridden with “db2MonitorSwitches - Get/Update Monitor Switches” on
page 69.

If all active databases are reset, some database manager information is also
reset to maintain the consistency of the data that is returned.

This API cannot be used to selectively reset specific data items or specific
monitor groups. However, a specific group can be reset by turning its switch
off, and then on, using “db2MonitorSwitches - Get/Update Monitor Switches”
on page 69.

db2ResetMonitor - Reset Monitor

Chapter 1. Application Programming Interfaces 79

For detailed information about the use of the database monitor APIs, and for
a summary of all database monitor data elements and monitoring groups, see
the System Monitor Guide and Reference.

See Also
“db2MonitorSwitches - Get/Update Monitor Switches” on page 69

“db2GetSnapshot - Get Snapshot” on page 27

“db2GetSnapshotSize - Estimate Size Required for db2GetSnapshot() Output
Buffer” on page 30.

db2ResetMonitor - Reset Monitor

80 Administrative API Reference

db2SetSyncSession
Sets the synchronization session for a satellite. A synchronization session is
associated with the version of the user application executing on the satellite.
Each version of an application is supported by a particular database
configuration, and manipulates particular data sets, each of which can be
synchronized with a central site.

Authorization
None

Required Connection
None

API Include File
db2ApiDf.h

C API Syntax

API Parameters

versionNumber
Input. Specifies the version and release level of the structure passed in
as the second parameter, pParmStruct.

pParmStruct
Input. A pointer to the db2SetSyncSessionStruct structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

piSyncSessionID
Input. Specifies an identifier for the synchronization session that a
satellite will use. The specified value must match the appropriate
application version for the satellite’s group, as defined at the satellite
control server.

/* File: db2ApiDf.h */
/* API: db2SetSyncSession */
/* ... */
SQL_API_RC SQL_API_FN

db2db2SetSyncSession (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef struct
{

char * piSyncSessionID;
} db2SetSyncSessionStruct;
/* ... */

db2SetSyncSession

Chapter 1. Application Programming Interfaces 81

db2SyncSatellite
Synchronizes a satellite.

Authorization
None

Required Connection
None

API Include File
db2ApiDf.h

C API Syntax

API Parameters

versionNumber
Input. Specifies the version and release level of the structure passed in
as the second parameter, pParmStruct.

pParmStruct
Input. Set to NULL.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

/* File: db2ApiDf.h */
/* API: db2SyncSatellite */
/* ... */
SQL_API_RC SQL_API_FN

db2SyncSatellite (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

/* ... */

db2SyncSatellite

82 Administrative API Reference

db2SyncSatelliteStop
Stops the satellite’s currently active synchronization session. The session is
stopped in such a way that synchronization for this satellite can be restarted
where it left off by invoking “db2SyncSatellite” on page 82.

Authorization
None

Required Connection
None

API Include File
db2ApiDf.h

C API Syntax

API Parameters

versionNumber
Input. Specifies the version and release level of the structure passed in
as the second parameter, pParmStruct.

pParmStruct
Input. Set to NULL.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

/* File: db2ApiDf.h */
/* API: db2SyncSatelliteStop */
SQL_API_RC SQL_API_FN

db2SyncSatelliteStop (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

/* ... */

db2SyncSatelliteStop

Chapter 1. Application Programming Interfaces 83

db2SyncSatelliteTest
Tests the ability of a satellite to synchronize.

Authorization
None

Required Connection
None

API Include File
db2ApiDf.h

C API Syntax

API Parameters

versionNumber
Input. Specifies the version and release level of the structure passed in
as the second parameter, pParmStruct.

pParmStruct
Input. Set to NULL.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

/* File: db2ApiDf.h */
/* API: db2SyncSatelliteTest */
/* ... */
SQL_API_RC SQL_API_FN

db2SyncSatelliteTest (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

/* ... */

db2SyncSatelliteTest

84 Administrative API Reference

sqlabndx - Bind
Invokes the bind utility, which prepares SQL statements stored in the bind file
generated by the precompiler, and creates a package that is stored in the
database.

Scope
This API can be called from any node in db2nodes.cfg. It updates the
database catalogs on the catalog node. Its effects are visible to all nodes.

Authorization
One of the following:
v sysadm or dbadm authority
v BINDADD privilege if a package does not exist and one of:

– IMPLICIT_SCHEMA authority on the database if the schema name of the
package does not exist

– CREATEIN privilege on the schema if the schema name of the package
exists

v ALTERIN privilege on the schema if the package exists
v BIND privilege on the package if it exists.

The user also needs all privileges required to compile any static SQL
statements in the application. Privileges granted to groups are not used for
authorization checking of static statements. If the user has sysadm authority,
but not explicit privileges to complete the bind, the database manager grants
explicit dbadm authority automatically.

Required Connection
Database

API Include File
sql.h

C API Syntax

/* File: sql.h */
/* API: Bind */
/* ... */
SQL_API_RC SQL_API_FN

sqlabndx (
_SQLOLDCHAR * pBindFileName,
_SQLOLDCHAR * pMsgFileName,
struct sqlopt * pBindOptions,
struct sqlca * pSqlca);

/* ... */

sqlabndx - Bind

Chapter 1. Application Programming Interfaces 85

Generic API Syntax

API Parameters

MsgFileNameLen
Input. A 2-byte unsigned integer representing the length of the
message file name in bytes.

BindFileNameLen
Input. A 2-byte unsigned integer representing the length of the bind
file name in bytes.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pBindOptions
Input. A structure used to pass bind options to the API. For more
information about this structure, see “SQLOPT” on page 515.

pMsgFileName
Input. A string containing the destination for error, warning, and
informational messages. Can be the path and the name of an
operating system file, or a standard device. If a file already exists, it is
overwritten. If it does not exist, a file is created.

pBindFileName
Input. A string containing the name of the bind file, or the name of a
file containing a list of bind file names. The bind file names must
contain the extension .bnd. A path for these files can be specified.

Precede the name of a bind list file with the at sign (@). For example,
a fully qualified bind list file name might be:
/u/user1/bnd/@all.lst

The bind list file should contain one or more bind file names, and
must have the extension .lst.

/* File: sql.h */
/* API: Bind */
/* ... */
SQL_API_RC SQL_API_FN

sqlgbndx (
unsigned short MsgFileNameLen,
unsigned short BindFileNameLen,
struct sqlca * pSqlca,
struct sqlopt * pBindOptions,
_SQLOLDCHAR * pMsgFileName,
_SQLOLDCHAR * pBindFileName);

/* ... */

sqlabndx - Bind

86 Administrative API Reference

Precede all but the first bind file name with a plus symbol (+). The
bind file names may be on one or more lines. For example, the bind
list file all.lst might contain:
mybind1.bnd+mybind2.bnd+
mybind3.bnd+
mybind4.bnd

Path specifications on bind file names in the list file can be used. If no
path is specified, the database manager takes path information from
the bind list file.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How
the API Descriptions are Organized” on page 12, or the Application Development
Guide. For a description of the syntax, see the Command Reference.

Sample Programs

COBOL \sqllib\samples\cobol\prepbind.sqb

Usage Notes
Binding can be done as part of the precompile process for an application
program source file, or as a separate step at a later time. Use BIND when
binding is performed as a separate process.

The name used to create the package is stored in the bind file, and is based on
the source file name from which it was generated (existing paths or extensions
are discarded). For example, a precompiled source file called myapp.sqc
generates a default bind file called myapp.bnd and a default package name of
MYAPP. (However, the bind file name and the package name can be overridden
at precompile time by using the SQL_BIND_OPT and the SQL_PKG_OPT
options in “sqlaprep - Precompile Program” on page 93.)

BIND executes under the transaction that the user has started. After
performing the bind, BIND issues a COMMIT (if bind is successful) or a
ROLLBACK (if bind is unsuccessful) operation to terminate the current
transaction and start another one.

Binding halts if a fatal error or more than 100 errors occur. If a fatal error
occurs during binding, BIND stops binding, attempts to close all files, and
discards the package.

Binding application programs has prerequisite requirements and restrictions
beyond the scope of this manual. For more detailed information about
binding application programs to databases, see the Application Development
Guide.

sqlabndx - Bind

Chapter 1. Application Programming Interfaces 87

The following table lists valid values for the type and the val fields of the bind
options structure (see “SQLOPT” on page 515), as well as their corresponding
CLP options. For a description of the bind options (including default values),
see the Command Reference.

Table 4. BIND Option Types and Values
CLP Option Option Type Option Values

ACTION ADD SQL_ACTION_OPT SQL_ACTION_ADD

ACTION REPLACE SQL_ACTION_OPT SQL_ACTION_REPLACE

BLOCKING ALL SQL_BLOCK_OPT SQL_BL_ALL

BLOCKING NO SQL_BLOCK_OPT SQL_BL_NO

BLOCKING UNAMBIG SQL_BLOCK_OPT SQL_BL_UNAMBIG

CCSIDG SQL_CCSIDG_OPT sqlopt.sqloptions.val

CCSIDM SQL_CCSIDM_OPT sqlopt.sqloptions.val

CCSIDS SQL_CCSIDS_OPT sqlopt.sqloptions.val

CHARSUB BIT SQL_CHARSUB_OPT SQL_CHARSUB_BIT

CHARSUB DEFAULT SQL_CHARSUB_OPT SQL_CHARSUB_DEFAULT

CHARSUB MIXED SQL_CHARSUB_OPT SQL_CHARSUB_MIXED

CHARSUB SBCS SQL_CHARSUB_OPT SQL_CHARSUB_SBCS

CLIPKG SQL_CLIPKG_OPT Integer between 3 and 30

CNULREQD NO SQL_CNULREQD_OPT SQL_CNULREQD_NO

CNULREQD YES SQL_CNULREQD_OPT SQL_CNULREQD_YES

COLLECTION SQL_COLLECTION_OPT sqlchar structure

DATETIME DEF SQL_DATETIME_OPT SQL_DATETIME_DEF

DATETIME EUR SQL_DATETIME_OPT SQL_DATETIME_EUR

DATETIME ISO SQL_DATETIME_OPT SQL_DATETIME_ISO

DATETIME JIS SQL_DATETIME_OPT SQL_DATETIME_JIS

DATETIME LOC SQL_DATETIME_OPT SQL_DATETIME_LOC

DATETIME USA SQL_DATETIME_OPT SQL_DATETIME_USA

DECDEL COMMA SQL_DECDEL_OPT SQL_DECDEL_COMMA

DECDEL PERIOD SQL_DECDEL_OPT SQL_DECDEL_PERIOD

DEC 15 SQL_DEC_OPT SQL_DEC_15

DEC 31 SQL_DEC_OPT SQL_DEC_31

DEGREE 1 SQL_DEGREE_OPT SQL_DEGREE_1

DEGREE ANY SQL_DEGREE_OPT SQL_DEGREE_ANY

DEGREE degree SQL_DEGREE_OPT Integer between 1 and 32767.

DYNAMICRULES BIND SQL_DYNAMICRULES_OPT SQL_DYNAMICRULES_BIND

DYNAMICRULES RUN SQL_DYNAMICRULES_OPT SQL_DYNAMICRULES_RUN

DYNAMICRULES DEFINE SQL_DYNAMICRULES_OPT SQL_DYNAMICRULES_DEFINE

DYNAMICRULES INVOKE SQL_DYNAMICRULES_OPT SQL_DYNAMICRULES_INVOKE

EXPLAIN NO SQL_EXPLAIN_OPT SQL_EXPLAIN_NO

EXPLAIN YES SQL_EXPLAIN_OPT SQL_EXPLAIN_YES

EXPLAIN ALL SQL_EXPLAIN_OPT SQL_EXPLAIN_ALL

EXPLSNAP NO SQL_EXPLSNAP_OPT SQL_EXPLSNAP_NO

sqlabndx - Bind

88 Administrative API Reference

Table 4. BIND Option Types and Values (continued)
CLP Option Option Type Option Values

EXPLSNAP YES SQL_EXPLSNAP_OPT SQL_EXPLSNAP_YES

EXPLSNAP ALL SQL_EXPLSNAP_OPT SQL_EXPLSNAP_ALL

FUNCPATH SQL_FUNCTION_PATH sqlchar structure

GENERIC SQL_GENERIC_OPT sqlchar structure

GRANT SQL_GRANT_OPT sqlchar structure

GRANT PUBLIC SQL_GRANT_OPT sqlchar structure

GRANT TO USER SQL_GRANT_USER_OPT sqlchar structure

GRANT TO GROUP SQL_GRANT_GROUP_OPT sqlchar structure

INSERT BUF SQL_INSERT_OPT SQL_INSERT_BUF

INSERT DEF SQL_INSERT_OPT SQL_INSERT_DEF

ISOLATION RS SQL_ISO_OPT SQL_READ_STAB

ISOLATION NC SQL_ISO_OPT SQL_NO_COMMIT

ISOLATION CS SQL_ISO_OPT SQL_CURSOR_STAB

ISOLATION RR SQL_ISO_OPT SQL_REP_READ

ISOLATION UR SQL_ISO_OPT SQL_UNCOM_READ

OWNER SQL_OWNER_OPT sqlchar structure

QUALIFIER SQL_QUALIFIER_OPT sqlchar structure

QUERYOPT SQL_QUERYOPT_OPT SQL_QUERYOPT_0,1,2,3,5,7,9

RELEASE COMMIT SQL_RELEASE_OPT SQL_RELEASE_COMMIT

RELEASE DEALLOCATE SQL_RELEASE_OPT SQL_RELEASE_DEALLOCATE

REPLVER SQL_REPLVER_OPT sqlchar structure

RETAIN NO SQL_RETAIN_OPT SQL_RETAIN_NO

RETAIN YES SQL_RETAIN_OPT SQL_RETAIN_YES

SQLERROR CHECK SQL_SQLERROR_OPT SQL_SQLERROR_CHECK

SQLERROR CONTINUE SQL_SQLERROR_OPT SQL_SQLERROR_CONTINUE

SQLERROR NOPACKAGE SQL_SQLERROR_OPT SQL_SQLERROR_NOPACKAGE

SQLWARN NO SQL_SQLWARN_OPT SQL_SQLWARN_NO

SQLWARN YES SQL_SQLWARN_OPT SQL_SQLWARN_YES

STRDEL APOSTROPHE SQL_STRDEL_OPT SQL_STRDEL_APOSTROPHE

STRDEL QUOTE SQL_STRDEL_OPT SQL_STRDEL_QUOTE

TEXT SQL_TEXT_OPT sqlchar structure

TRANSFORM GROUP SQL_TRANSFORMGROUP_OPT sqlchar structure

VALIDATE BIND SQL_VALIDATE_OPT SQL_VALIDATE_BIND

VALIDATE RUN SQL_VALIDATE_OPT SQL_VALIDATE_RUN

Note: Option values showing sqlchar structure have a val field that contains a pointer to “SQLCHAR” on
page 452. This structure contains a character string that specifies the option value.

See Also
“sqlaprep - Precompile Program” on page 93.

sqlabndx - Bind

Chapter 1. Application Programming Interfaces 89

sqlaintp - Get Error Message
Retrieves the message associated with an error condition specified by the
sqlcode field of the sqlca structure.

Authorization
None

Required Connection
None

API Include File
sql.h

C API Syntax

Generic API Syntax

API Parameters

BufferSize
Input. Size, in bytes, of a string buffer to hold the retrieved message
text.

LineWidth
Input. The maximum line width for each line of message text. Lines
are broken on word boundaries. A value of zero indicates that the
message text is returned without line breaks.

/* File: sql.h */
/* API: Get Error Message */
/* ... */
SQL_API_RC SQL_API_FN

sqlaintp (
char * pBuffer,
short BufferSize,
short LineWidth,
struct sqlca * pSqlca);

/* ... */

/* File: sql.h */
/* API: Get Error Message */
/* ... */
SQL_API_RC SQL_API_FN

sqlgintp (
short BufferSize,
short LineWidth,
struct sqlca * pSqlca,
_SQLOLDCHAR * pBuffer);

/* ... */

sqlaintp - Get Error Message

90 Administrative API Reference

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pBuffer
Output. A pointer to a string buffer where the message text is placed.
If the message must be truncated to fit in the buffer, the truncation
allows for the null string terminator character.

REXX API Syntax

REXX API Parameters

msg REXX variable into which the text message is placed.

width Maximum line width for each line in the text message. The line is
broken on word boundaries. If width is not given or set to 0, the
message text returns without line breaks.

Sample Programs

C \sqllib\samples\c\utilapi.c

COBOL \sqllib\samples\cobol\checkerr.cbl

REXX \sqllib\samples\rexx\dbcat.cmd

Usage Notes
One message is returned per call.

A new line (line feed, LF, or carriage return/line feed, CR/LF) sequence is
placed at the end of each message.

If a positive line width is specified, new line sequences are inserted between
words so that the lines do not exceed the line width.

If a word is longer than a line width, the line is filled with as many characters
as will fit, a new line is inserted, and the remaining characters are placed on
the next line.

GET MESSAGE INTO :msg [LINEWIDTH width]

sqlaintp - Get Error Message

Chapter 1. Application Programming Interfaces 91

Return Codes

Code Message

+i Positive integer indicating the number of bytes in the formatted
message. If this is greater than the buffer size input by the caller, the
message is truncated.

-1 Insufficient memory available for message formatting services to
function. The requested message is not returned.

-2 No error. The sqlca did not contain an error code (SQLCODE = 0).

-3 Message file inaccessible or incorrect.

-4 Line width is less than zero.

-5 Invalid sqlca, bad buffer address, or bad buffer length.

If the return code is -1 or -3, the message buffer will contain additional
information about the problem.

See Also
“sqlogstt - Get SQLSTATE Message” on page 284.

sqlaintp - Get Error Message

92 Administrative API Reference

sqlaprep - Precompile Program
Processes an application program source file containing embedded SQL
statements. A modified source file is produced containing host language calls
for the SQL statements and, by default, a package is created in the database.

Scope
This API can be called from any node in db2nodes.cfg. It updates the
database catalogs on the catalog node. Its effects are visible to all nodes.

Authorization
One of the following:
v sysadm or dbadm authority
v BINDADD privilege if a package does not exist and one of:

– IMPLICIT_SCHEMA authority on the database if the schema name of the
package does not exist

– CREATEIN privilege on the schema if the schema name of the package
exists

v ALTERIN privilege on the schema if the package exists
v BIND privilege on the package if it exists.

The user also needs all privileges required to compile any static SQL
statements in the application. Privileges granted to groups are not used for
authorization checking of static statements. If the user has sysadm authority,
but not explicit privileges to complete the bind, the database manager grants
explicit dbadm authority automatically.

Required Connection
Database

API Include File
sql.h

C API Syntax

/* File: sql.h */
/* API: Precompile Program */
/* ... */
SQL_API_RC SQL_API_FN

sqlaprep (
_SQLOLDCHAR * pProgramName,
_SQLOLDCHAR * pMsgFileName,
struct sqlopt * pPrepOptions,
struct sqlca * pSqlca);

/* ... */

sqlaprep - Precompile Program

Chapter 1. Application Programming Interfaces 93

Generic API Syntax

API Parameters

MsgFileNameLen
Input. A 2-byte unsigned integer representing the length of the
message file name in bytes.

ProgramNameLen
Input. A 2-byte unsigned integer representing the length of the
program name in bytes.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pPrepOptions
Input. A structure used to pass precompile options to the API. For
more information about this structure, see “SQLOPT” on page 515.

pMsgFileName
Input. A string containing the destination for error, warning, and
informational messages. Can be the path and the name of an
operating system file, or a standard device. If a file already exists, it is
overwritten. If it does not exist, a file is created.

pProgramName
Input. A string containing the name of the application to be
precompiled. Use the following extensions:
v .sqb - for COBOL applications
v .sqc - for C applications
v .sqC - for UNIX C++ applications
v .sqf - for FORTRAN applications
v .sqx - for C++ applications

/* File: sql.h */
/* API: Precompile Program */
/* ... */
SQL_API_RC SQL_API_FN

sqlgprep (
unsigned short MsgFileNameLen,
unsigned short ProgramNameLen,
struct sqlca * pSqlca,
struct sqlopt * pPrepOptions,
_SQLOLDCHAR * pMsgFileName,
_SQLOLDCHAR * pProgramName);

/* ... */

sqlaprep - Precompile Program

94 Administrative API Reference

When the TARGET option is used, the input file name extension does
not have to be from this predefined list.

The preferred extension for C++ applications containing embedded
SQL on UNIX based systems is sqC; however, the sqx convention,
which was invented for systems that are not case sensitive, is
tolerated by UNIX based systems.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How
the API Descriptions are Organized” on page 12, or the Application Development
Guide. For a description of the syntax, see the Command Reference.

Sample Programs

C \sqllib\samples\c\makeapi.sqc

COBOL \sqllib\samples\cobol\prepbind.sqb

Usage Notes
A modified source file is produced, which contains host language equivalents
to the SQL statements. By default, a package is created in the database to
which a connection has been established. The name of the package is the same
as the program file name (minus the extension and folded to uppercase), up
to a maximum of 8 characters.

Following connection to a database, sqlaprep executes under the transaction
that was started. PRECOMPILE PROGRAM then issues a COMMIT or a
ROLLBACK operation to terminate the current transaction and start another
one.

Precompiling stops if a fatal error or more than 100 errors occur. If a fatal
error does occur, PRECOMPILE PROGRAM stops precompiling, attempts to
close all files, and discards the package.

The following table lists valid values for the type and the val fields of the
precompile options structure (see “SQLOPT” on page 515), as well as their
corresponding CLP options. For a description of the precompile options
(including default values), see the Command Reference.

Table 5. PRECOMPILE Option Types and Values
CLP Option API Option Type API Option Values

ACTION ADD SQL_ACTION_OPT SQL_ACTION_ADD

ACTION REPLACE SQL_ACTION_OPT SQL_ACTION_REPLACE

BINDFILE SQL_BIND_OPT Null

BINDFILE filename SQL_BIND_OPT sqlchar structure

BLOCKING ALL SQL_BLOCK_OPT SQL_BL_ALL

sqlaprep - Precompile Program

Chapter 1. Application Programming Interfaces 95

Table 5. PRECOMPILE Option Types and Values (continued)
CLP Option API Option Type API Option Values

BLOCKING NO SQL_BLOCK_OPT SQL_BL_NO

BLOCKING UNAMBIG SQL_BLOCK_OPT SQL_BL_UNAMBIG

CCSIDG value SQL_CCSIDG_OPT sqlopt.sqloptions.val

CCSIDM value SQL_CCSIDM_OPT sqlopt.sqloptions.val

CCSIDS value SQL_CCSIDS_OPT sqlopt.sqloptions.val

CHARSUB BIT SQL_CHARSUB_OPT SQL_CHARSUB_BIT

CHARSUB DEFAULT SQL_CHARSUB_OPT SQL_CHARSUB_DEFAULT

CHARSUB MIXED SQL_CHARSUB_OPT SQL_CHARSUB_MIXED

CHARSUB SBCS SQL_CHARSUB_OPT SQL_CHARSUB_SBCS

CNULREQD NO SQL_CNULREQD_OPT SQL_CNULREQD_NO

CNULREQD YES SQL_CNULREQD_OPT SQL_CNULREQD_YES

COLLECTION coll-id SQL_COLLECTION_OPT sqlchar structure

CONNECT 1 SQL_CONNECT_OPT SQL_CONNECT_1

CONNECT 2 SQL_CONNECT_OPT SQL_CONNECT_2

DATETIME DEF SQL_DATETIME_OPT SQL_DATETIME_DEF

DATETIME EUR SQL_DATETIME_OPT SQL_DATETIME_EUR

DATETIME ISO SQL_DATETIME_OPT SQL_DATETIME_ISO

DATETIME JIS SQL_DATETIME_OPT SQL_DATETIME_JIS

DATETIME LOC SQL_DATETIME_OPT SQL_DATETIME_LOC

DATETIME USA SQL_DATETIME_OPT SQL_DATETIME_USA

DECDEL COMMA SQL_DECDEL_OPT SQL_DECDEL_COMMA

DECDEL PERIOD SQL_DECDEL_OPT SQL_DECDEL_PERIOD

DEC 15 SQL_DEC_OPT SQL_DEC_15

DEC 31 SQL_DEC_OPT SQL_DEC_31

DEFERRED_PREPARE ALL SQL_DEFERRED_PREPARE_OPT SQL_DEFERRED_PREPARE_ALL

DEFERRED_PREPARE NO SQL_DEFERRED_PREPARE_OPT SQL_DEFERRED_PREPARE_NO

DEFERRED_PREPARE YES SQL_DEFERRED_PREPARE_OPT SQL_DEFERRED_PREPARE_YES

DEGREE 1 SQL_DEGREE_OPT SQL_DEGREE_1

DEGREE ANY SQL_DEGREE_OPT SQL_DEGREE_ANY

DEGREE degree SQL_DEGREE_OPT Integer between 1 and 32767.

DISCONNECT EXPLICIT SQL_DISCONNECT_OPT SQL_DISCONNECT_EXPL

DISCONNECT CONDITIONAL SQL_DISCONNECT_OPT SQL_DISCONNECT_COND

DISCONNECT AUTOMATIC SQL_DISCONNECT_OPT SQL_DISCONNECT_AUTO

DYNAMICRULES BIND SQL_DYNAMICRULES_OPT SQL_DYNAMICRULES_BIND

DYNAMICRULES RUN SQL_DYNAMICRULES_OPT SQL_DYNAMICRULES_RUN

DYNAMICRULES DEFINE SQL_DYNAMICRULES_OPT SQL_DYNAMICRULES_DEFINE

DYNAMICRULES INVOKE SQL_DYNAMICRULES_OPT SQL_DYNAMICRULES_INVOKE

EXPLAIN NO SQL_EXPLAIN_OPT SQL_EXPLAIN_NO

EXPLAIN YES SQL_EXPLAIN_OPT SQL_EXPLAIN_YES

sqlaprep - Precompile Program

96 Administrative API Reference

Table 5. PRECOMPILE Option Types and Values (continued)
CLP Option API Option Type API Option Values

EXPLAIN ALL SQL_EXPLAIN_OPT SQL_EXPLAIN_ALL

Not supported by DRDA.

EXPLSNAP NO SQL_EXPLSNAP_OPT SQL_EXPLSNAP_NO

EXPLSNAP YES SQL_EXPLSNAP_OPT SQL_EXPLSNAP_YES

EXPLSNAP ALL SQL_EXPLSNAP_OPT SQL_EXPLSNAP_ALL

FUNCPATH SQL_FUNCTION_PATH sqlchar structure

GENERIC SQL_GENERIC_OPT sqlchar structure

INSERT BUF SQL_INSERT_OPT SQL_INSERT_BUF

INSERT DEF SQL_INSERT_OPT SQL_INSERT_DEF

ISOLATION RS SQL_ISO_OPT SQL_READ_STAB

ISOLATION NC SQL_ISO_OPT SQL_NO_COMMIT

ISOLATION CS SQL_ISO_OPT SQL_CURSOR_STAB

ISOLATION RR SQL_ISO_OPT SQL_REP_READ

ISOLATION UR SQL_ISO_OPT SQL_UNCOM_READ

LANGLEVEL SAA1 SQL_STANDARDS_OPT SQL_SAA_COMP

LANGLEVEL MIA SQL_STANDARDS_OPT SQL_MIA_COMP

LANGLEVEL SQL92E SQL_STANDARDS_OPT SQL_SQL92E_COMP

LEVEL levelname SQL_LEVEL_OPT sqlchar structure

LONGERROR NO SQL_LONGERROR_OPT SQL_LONGERROR_NO

LONGERROR YES SQL_LONGERROR_OPT SQL_LONGERROR_YES

NOLINEMACRO SQL_LINEMACRO_OPT SQL_NO_LINE_MACROS

(default) SQL_LINEMACRO_OPT SQL_LINE_MACROS

OPTLEVEL 0 SQL_OPTIM_OPT SQL_DONT_OPTIMIZE

OPTLEVEL 1 SQL_OPTIM_OPT SQL_OPTIMIZE

OUTPUT filename SQL_PREP_OUTPUT_OPT sqlchar structure

OWNER SQL_OWNER_OPT sqlchar structure

PACKAGE SQL_PKG_OPT Null

PACKAGE pkgname SQL_PKG_OPT sqlchar structure

PREPROCESSOR
″preprocessor-command″

SQL_PREPROCESSOR_OPT sqlchar structure

QUALIFIER SQL_QUALIFIER_OPT sqlchar structure

QUERYOPT SQL_QUERYOPT_OPT SQL_QUERYOPT_0,1,2,3,5,7,9

RELEASE COMMIT SQL_RELEASE_OPT SQL_RELEASE_COMMIT

RELEASE DEALLOCATE SQL_RELEASE_OPT SQL_RELEASE_DEALLOCATE

REPLVER versn-str SQL_REPLVER_OPT sqlchar structure

RETAIN NO SQL_RETAIN_OPT SQL_RETAIN_NO

RETAIN YES SQL_RETAIN_OPT SQL_RETAIN_YES

SQLCA SAA SQL_SAA_OPT SQL_SAA_YES

SQLCA NONE SQL_SAA_OPT SQL_SAA_NO

SQLERROR CHECK SQL_SQLERROR_OPT SQL_SQLERROR_CHECK

SQLERROR CONTINUE SQL_SQLERROR_OPT SQL_SQLERROR_CONTINUE

sqlaprep - Precompile Program

Chapter 1. Application Programming Interfaces 97

Table 5. PRECOMPILE Option Types and Values (continued)
CLP Option API Option Type API Option Values

SQLERROR NOPACKAGE SQL_SQLERROR_OPT SQL_SQLERROR_NOPACKAGE

SQLFLAG SQL92E SYNTAX SQL_FLAG_OPT SQL_SQL92E_SYNTAX

SQLFLAG MVSDB2V23 SYNTAX SQL_FLAG_OPT SQL_MVSDB2V23_SYNTAX

SQLFLAG MVSDB2V31 SYNTAX SQL_FLAG_OPT SQL_MVSDB2V31_SYNTAX

SQLFLAG MVSDB2V41 SYNTAX SQL_FLAG_OPT SQL_MVSDB2V41_SYNTAX

SQLRULES DB2 SQL_RULES_OPT SQL_RULES_DB2

SQLRULES STD SQL_RULES_OPT SQL_RULES_STD

SQLWARN NO SQL_SQLWARN_OPT SQL_SQLWARN_NO

SQLWARN YES SQL_SQLWARN_OPT SQL_SQLWARN_YES

STRDEL APOSTROPHE SQL_STRDEL_OPT SQL_STRDEL_APOSTROPHE

STRDEL QUOTE SQL_STRDEL_OPT SQL_STRDEL_QUOTE

SYNCPOINT ONEPHASE SQL_SYNCPOINT_OPT SQL_SYNC_ONEPHASE

SYNCPOINT TWOPHASE SQL_SYNCPOINT_OPT SQL_SYNC_TWOPHASE

SYNCPOINT NONE SQL_SYNCPOINT_OPT SQL_SYNC_NONE

SYNTAX SQL_SYNTAX_OPT SQL_SYNTAX_CHECK

(default) SQL_SYNTAX_OPT SQL_NO_SYNTAX_CHECK

TARGET compiler SQL_TARGET_OPT sqlchar structure

TEXT text-str SQL_TEXT_OPT sqlchar structure

TRANSFORM GROUP SQL_TRANSFORMGROUP_OPT sqlchar structure

VALIDATE BIND SQL_VALIDATE_OPT SQL_VALIDATE_BIND

VALIDATE RUN SQL_VALIDATE_OPT SQL_VALIDATE_RUN

VERSION versn-str SQL_VERSION_OPT sqlchar structure

WCHARTYPE CONVERT SQL_WCHAR_OPT SQL_WCHAR_CONVERT

WCHARTYPE NOCONVERT SQL_WCHAR_OPT SQL_WCHAR_NOCONVERT

(none) SQL_NO_OPT (none)

See Also
“sqlabndx - Bind” on page 85.

sqlaprep - Precompile Program

98 Administrative API Reference

sqlarbnd - Rebind
Allows the user to recreate a package stored in the database without the need
for a bind file.

Authorization
One of the following:
v sysadm or dbadm authority
v ALTERIN privilege on the schema
v BIND privilege on the package.

The authorization ID logged in the BOUNDBY column of the
SYSCAT.PACKAGES system catalog table, which is the ID of the most recent
binder of the package, is used as the binder authorization ID for the rebind,
and for the default schema for table references in the package. Note that this
default qualifier may be different from the authorization ID of the user
executing the rebind request. REBIND will use the same bind options that
were specified when the package was created.

Required Connection
Database

API Include File
sql.h

C API Syntax

Generic API Syntax

/* File: sql.h */
/* API: Rebind */
/* ... */
SQL_API_RC SQL_API_FN

sqlarbnd (
char * pPackageName,
struct sqlca * pSqlca,
struct sqlopt * pRebindOptions);

/* ... */

/* File: sql.h */
/* API: Rebind */
/* ... */
SQL_API_RC SQL_API_FN

sqlgrbnd (
unsigned short PackageNameLen,
char * pPackageName,
struct sqlca * pSqlca,
struct sqlopt * pRebindOptions);

/* ... */

sqlarbnd - Rebind

Chapter 1. Application Programming Interfaces 99

API Parameters

PackageNameLen
Input. A 2-byte unsigned integer representing the length of the
package name in bytes.

pPackageName
Input. A string containing the qualified or unqualified name that
designates the package to be rebound. An unqualified package name
is implicitly qualified by the current authorization ID.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pRebindOptions
Input. A pointer to the sqlopt structure, used to pass rebind options to
the API. For more information about this structure, see SQLOPT.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How
the API Descriptions are Organized” on page 12, or the Application Development
Guide. For a description of the syntax, see the Command Reference.

Sample Programs

C \sqllib\samples\c\rebind.sqc

COBOL \sqllib\samples\cobol\rebind.sqb

Usage Notes
REBIND does not automatically commit the transaction following a successful
rebind. The user must explicitly commit the transaction. This enables ″what if″
analysis, in which the user updates certain statistics, and then tries to rebind
the package to see what changes. It also permits multiple rebinds within a
unit of work.

This API:
v Provides a quick way to recreate a package. This enables the user to take

advantage of a change in the system without a need for the original bind
file. For example, if it is likely that a particular SQL statement can take
advantage of a newly created index, REBIND can be used to recreate the
package. REBIND can also be used to recreate packages after “sqlustat -
Runstats” on page 407 has been executed, thereby taking advantage of the
new statistics.

v Provides a method to recreate inoperative packages. Inoperative packages
must be explicitly rebound by invoking either the bind utility or the rebind
utility. A package will be marked inoperative (the VALID column of the

sqlarbnd - Rebind

100 Administrative API Reference

SYSCAT.PACKAGES system catalog will be set to X) if a function instance on
which the package depends is dropped.

v Gives users control over the rebinding of invalid packages. Invalid
packages will be automatically (or implicitly) rebound by the database
manager when they are executed. This may result in a noticeable delay in
the execution of the first SQL request for the invalid package. It may be
desirable to explicitly rebind invalid packages, rather than allow the system
to automatically rebind them, in order to eliminate the initial delay and to
prevent unexpected SQL error messages which may be returned in case the
implicit rebind fails. For example, following migration, all packages stored
in the database will be invalidated by the DB2 Version 5 migration process.
Given that this may involve a large number of packages, it may be
desirable to explicitly rebind all of the invalid packages at one time. This
explicit rebinding can be accomplished using BIND, REBIND, or the
db2rbind tool (see ″db2rbind - Rebind all Packages″ in the Command
Reference).

The choice of whether to use BIND or REBIND to explicitly rebind a package
depends on the circumstances. It is recommended that REBIND be used
whenever the situation does not specifically require the use of BIND, since the
performance of REBIND is significantly better than that of BIND. BIND must
be used, however:
v When there have been modifications to the program (for example, when

SQL statements have been added or deleted, or when the package does not
match the executable for the program).

v When the user wishes to modify any of the bind options as part of the
rebind. REBIND does not support any bind options. For example, if the
user wishes to have privileges on the package granted as part of the bind
process, BIND must be used, since it has an SQL_GRANT_OPT option.

v When the package does not currently exist in the database.
v When detection of all bind errors is desired. REBIND only returns the first

error it detects, and then ends, whereas the BIND command returns the
first 100 errors that occur during binding.

REBIND is supported by DB2 Connect.

If REBIND is executed on a package that is in use by another user, the rebind
will not occur until the other user’s logical unit of work ends, because an
exclusive lock is held on the package’s record in the SYSCAT.PACKAGES
system catalog table during the rebind.

When REBIND is executed, the database manager recreates the package from
the SQL statements stored in the SYSCAT.STATEMENTS system catalog table.

sqlarbnd - Rebind

Chapter 1. Application Programming Interfaces 101

If REBIND encounters an error, processing stops, and an error message is
returned.

The Explain tables are populated during REBIND if either
SQL_EXPLSNAP_OPT or SQL_EXPLAIN_OPT have been set to YES or ALL
(check EXPLAIN_SNAPSHOT and EXPLAIN_MODE columns in the catalog).
The Explain tables used are those of the REBIND requester, not the original
binder.

The following table lists valid values for the type and the val fields of the
rebind options structure (see “SQLOPT” on page 515), as well as their
corresponding CLP options. For a description of the rebind options (including
default values), see the Command Reference.

Table 6. REBIND Option Types and Values
CLP Option Option Type Option Value

RESOLVE ANY SQL_RESOLVE_OPT SQL_RESOLVE_ANY

RESOLVE CONSERVATIVE SQL_RESOLVE_OPT SQL_RESOLVE_CONSERVATIVE

See Also
“sqlabndx - Bind” on page 85

“sqlustat - Runstats” on page 407.

sqlarbnd - Rebind

102 Administrative API Reference

sqlbctcq - Close Tablespace Container Query
Ends a table space container query request and frees the associated resources.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

v load

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

Generic API Syntax

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

Sample Programs

C \sqllib\samples\c\tabscont.sqc

COBOL \sqllib\samples\cobol\tabscont.sqb

/* File: sqlutil.h */
/* API: Close Tablespace Container Query */
/* ... */
SQL_API_RC SQL_API_FN

sqlbctcq (
struct sqlca * pSqlca);

/* ... */

/* File: sqlutil.h */
/* API: Close Tablespace Container Query */
/* ... */
SQL_API_RC SQL_API_FN

sqlgctcq (
struct sqlca * pSqlca);

/* ... */

sqlbctcq - Close Tablespace Container Query

Chapter 1. Application Programming Interfaces 103

See Also
“sqlbftcq - Fetch Tablespace Container Query” on page 107

“sqlbotcq - Open Tablespace Container Query” on page 116

“sqlbstsc - Set Tablespace Containers” on page 124

“sqlbtcq - Tablespace Container Query” on page 127.

sqlbctcq - Close Tablespace Container Query

104 Administrative API Reference

sqlbctsq - Close Tablespace Query
Ends a table space query request, and frees up associated resources.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

v load

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

Generic API Syntax

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

Sample Programs

C \sqllib\samples\c\tabspace.sqc

COBOL \sqllib\samples\cobol\tabspace.sqb

/* File: sqlutil.h */
/* API: Close Tablespace Query */
/* ... */
SQL_API_RC SQL_API_FN

sqlbctsq (
struct sqlca * pSqlca);

/* ... */

/* File: sqlutil.h */
/* API: Close Tablespace Query */
/* ... */
SQL_API_RC SQL_API_FN

sqlgctsq (
struct sqlca * pSqlca);

/* ... */

sqlbctsq - Close Tablespace Query

Chapter 1. Application Programming Interfaces 105

See Also
“sqlbftpq - Fetch Tablespace Query” on page 109

“sqlbgtss - Get Tablespace Statistics” on page 111

“sqlbotsq - Open Tablespace Query” on page 119

“sqlbstpq - Single Tablespace Query” on page 122

“sqlbmtsq - Tablespace Query” on page 113.

sqlbctsq - Close Tablespace Query

106 Administrative API Reference

sqlbftcq - Fetch Tablespace Container Query
Fetches a specified number of rows of table space container query data, each
row consisting of data for a container.

Scope
In a partitioned database server environment, only the table spaces on the
current node are listed.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

Generic API Syntax

/* File: sqlutil.h */
/* API: Fetch Tablespace Container Query */
/* ... */
SQL_API_RC SQL_API_FN

sqlbftcq (
struct sqlca * pSqlca,
sqluint32 MaxContainers,
struct SQLB_TBSCONTQRY_DATA * pContainerData,
sqluint32 * pNumContainers);

/* ... */

/* File: sqlutil.h */
/* API: Fetch Tablespace Container Query */
/* ... */
SQL_API_RC SQL_API_FN

sqlgftcq (
struct sqlca * pSqlca,
sqluint32 MaxContainers,
struct SQLB_TBSCONTQRY_DATA * pContainerData,
sqluint32 * pNumContainers);

/* ... */

sqlbftcq - Fetch Tablespace Container Query

Chapter 1. Application Programming Interfaces 107

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

MaxContainers
Input. The maximum number of rows of data that the user allocated
output area (pointed to by pContainerData) can hold.

pContainerData
Output. Pointer to the output area, a structure for query data. For
more information about this structure, see
“SQLB-TBSCONTQRY-DATA” on page 443. The caller of this API
must allocate space for MaxContainers of these structures, and set
pContainerData to point to this space. The API will use this space to
return the table space container data.

pNumContainers
Output. Number of rows of output returned.

Sample Programs

C \sqllib\samples\c\tabscont.sqc

COBOL \sqllib\samples\cobol\tabscont.sqb

Usage Notes
The user is responsible for allocating and freeing the memory pointed to by
the pContainerData parameter. This API can only be used after a successful
sqlbotcq call. It can be invoked repeatedly to fetch the list generated by
sqlbotcq.

For more information, see “sqlbotcq - Open Tablespace Container Query” on
page 116.

See Also
“sqlbctcq - Close Tablespace Container Query” on page 103

“sqlbotcq - Open Tablespace Container Query” on page 116

“sqlbstsc - Set Tablespace Containers” on page 124

“sqlbtcq - Tablespace Container Query” on page 127.

sqlbftcq - Fetch Tablespace Container Query

108 Administrative API Reference

sqlbftpq - Fetch Tablespace Query
Fetches a specified number of rows of table space query data, each row
consisting of data for a table space.

Scope
In a partitioned database server environment, only the table spaces on the
current node are listed.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

v load

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

Generic API Syntax

/* File: sqlutil.h */
/* API: Fetch Tablespace Query */
/* ... */
SQL_API_RC SQL_API_FN

sqlbftpq (
struct sqlca * pSqlca,
sqluint32 MaxTablespaces,
struct SQLB_TBSPQRY_DATA * pTablespaceData,
sqluint32 * pNumTablespaces);

/* ... */

/* File: sqlutil.h */
/* API: Fetch Tablespace Query */
/* ... */
SQL_API_RC SQL_API_FN

sqlgftpq (
struct sqlca * pSqlca,
sqluint32 MaxTablespaces,
struct SQLB_TBSPQRY_DATA * pTablespaceData,
sqluint32 * pNumTablespaces);

/* ... */

sqlbftpq - Fetch Tablespace Query

Chapter 1. Application Programming Interfaces 109

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

MaxTablespaces
Input. The maximum number of rows of data that the user allocated
output area (pointed to by pTablespaceData) can hold.

pTablespaceData
Input and output. Pointer to the output area, a structure for query
data. For more information about this structure, see
“SQLB-TBSPQRY-DATA” on page 445. The caller of this API must:
v Allocate space for MaxTablespaces of these structures
v Initialize the structures
v Set TBSPQVER in the first structure to SQLB_TBSPQRY_DATA_ID

v Set pTablespaceData to point to this space. The API will use this
space to return the table space data.

pNumTablespaces
Output. Number of rows of output returned.

Sample Programs

C \sqllib\samples\c\tabspace.sqc

COBOL \sqllib\samples\cobol\tabspace.sqb

Usage Notes
The user is responsible for allocating and freeing the memory pointed to by
the pTablespaceData parameter. This API can only be used after a successful
sqlbotsq call. It can be invoked repeatedly to fetch the list generated by
sqlbotsq.

For more information, see “sqlbotsq - Open Tablespace Query” on page 119.

See Also
“sqlbctsq - Close Tablespace Query” on page 105

“sqlbgtss - Get Tablespace Statistics” on page 111

“sqlbotsq - Open Tablespace Query” on page 119

“sqlbstpq - Single Tablespace Query” on page 122

“sqlbmtsq - Tablespace Query” on page 113.

sqlbftpq - Fetch Tablespace Query

110 Administrative API Reference

sqlbgtss - Get Tablespace Statistics
Provides information on the space utilization of a table space.

Scope
In a partitioned database server environment, only the table spaces on the
current node are listed.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

v load

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

Generic API Syntax

/* File: sqlutil.h */
/* API: Get Tablespace Statistics */
/* ... */
SQL_API_RC SQL_API_FN

sqlbgtss (
struct sqlca * pSqlca,
sqluint32 TablespaceId,
struct SQLB_TBS_STATS * pTablespaceStats);

/* ... */

/* File: sqlutil.h */
/* API: Get Tablespace Statistics */
/* ... */
SQL_API_RC SQL_API_FN

sqlggtss (
struct sqlca * pSqlca,
sqluint32 TablespaceId,
struct SQLB_TBS_STATS * pTablespaceStats);

/* ... */

sqlbgtss - Get Tablespace Statistics

Chapter 1. Application Programming Interfaces 111

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

TablespaceId
Input. ID of the single table space to be queried.

pTablespaceStats
Output. A pointer to a user-allocated SQLB_TBS_STATS structure. The
information about the table space is returned in this structure. For
more information about this structure, see “SQLB-TBS-STATS” on
page 441.

Sample Programs

C \sqllib\samples\c\tabspace.sqc

COBOL \sqllib\samples\cobol\tabspace.sqb

Usage Notes
See “SQLB-TBS-STATS” on page 441 for information about the fields returned
and their meaning.

See Also
“sqlbctsq - Close Tablespace Query” on page 105

“sqlbftpq - Fetch Tablespace Query” on page 109

“sqlbotsq - Open Tablespace Query” on page 119

“sqlbstpq - Single Tablespace Query” on page 122

“sqlbmtsq - Tablespace Query” on page 113.

sqlbgtss - Get Tablespace Statistics

112 Administrative API Reference

sqlbmtsq - Tablespace Query
Provides a one-call interface to the table space query data. The query data for
all table spaces in the database is returned in an array.

Scope
In a partitioned database server environment, only the table spaces on the
current node are listed.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

v load

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */
/* API: Tablespace Query */
/* ... */
SQL_API_RC SQL_API_FN

sqlbmtsq (
struct sqlca * pSqlca,
sqluint32 * pNumTablespaces,
struct SQLB_TBSPQRY_DATA *** pppTablespaceData,
sqluint32 reserved1,
sqluint32 reserved2);

/* ... */

sqlbmtsq - Tablespace Query

Chapter 1. Application Programming Interfaces 113

Generic API Syntax

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pNumTablespaces
Output. The total number of table spaces in the connected database.

pppTablespaceData
Output. The caller supplies the API with the address of a pointer. The
space for the table space query data is allocated by the API, and a
pointer to that space is returned to the caller. On return from the call,
the pointer points to an array of SQLB_TBSPQRY_DATA pointers to
the complete set of table space query data.

reserved1
Input. Always SQLB_RESERVED1.

reserved2
Input. Always SQLB_RESERVED2.

Sample Programs

C \sqllib\samples\c\tabspace.sqc

COBOL \sqllib\samples\cobol\tabspace.sqb

Usage Notes
This API uses the lower level services, namely:
v “sqlbotsq - Open Tablespace Query” on page 119
v “sqlbftpq - Fetch Tablespace Query” on page 109
v “sqlbctsq - Close Tablespace Query” on page 105

to get all of the table space query data at once.

/* File: sqlutil.h */
/* API: Tablespace Query */
/* ... */
SQL_API_RC SQL_API_FN

sqlgmtsq (
struct sqlca * pSqlca,
sqluint32 * pNumTablespaces,
struct SQLB_TBSPQRY_DATA *** pppTablespaceData,
sqluint32 reserved1,
sqluint32 reserved2);

/* ... */

sqlbmtsq - Tablespace Query

114 Administrative API Reference

If sufficient memory is available, this function returns the number of table
spaces, and a pointer to the memory location of the table space query data. It
is the user’s responsibility to free this memory with a call to sqlefmem (see
“sqlefmem - Free Memory” on page 195).

If sufficient memory is not available, this function simply returns the number
of table spaces, and no memory is allocated. If this should happen, use
“sqlbotsq - Open Tablespace Query” on page 119, “sqlbftpq - Fetch Tablespace
Query” on page 109, and “sqlbctsq - Close Tablespace Query” on page 105, to
fetch less than the whole list at once.

See Also
“sqlbctsq - Close Tablespace Query” on page 105

“sqlbftpq - Fetch Tablespace Query” on page 109

“sqlbgtss - Get Tablespace Statistics” on page 111

“sqlbotsq - Open Tablespace Query” on page 119

“sqlbstpq - Single Tablespace Query” on page 122.

sqlbmtsq - Tablespace Query

Chapter 1. Application Programming Interfaces 115

sqlbotcq - Open Tablespace Container Query
Prepares for a table space container query operation, and returns the number
of containers currently in the table space.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

Generic API Syntax

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

TablespaceId
Input. ID of the table space for which container data is desired. If the

/* File: sqlutil.h */
/* API: Open Tablespace Container Query */
/* ... */
SQL_API_RC SQL_API_FN

sqlbotcq (
struct sqlca * pSqlca,
sqluint32 TablespaceId,
sqluint32 * pNumContainers);

/* ... */

/* File: sqlutil.h */
/* API: Open Tablespace Container Query */
/* ... */
SQL_API_RC SQL_API_FN

sqlgotcq (
struct sqlca * pSqlca,
sqluint32 TablespaceId,
sqluint32 * pNumContainers);

/* ... */

sqlbotcq - Open Tablespace Container Query

116 Administrative API Reference

special identifier SQLB_ALL_TABLESPACES (in sqlutil) is specified, a
complete list of containers for the entire database is produced.

pNumContainers
Output. The number of containers in the specified table space.

Sample Programs

C \sqllib\samples\c\tabscont.sqc

COBOL \sqllib\samples\cobol\tabscont.sqb

Usage Notes
This API is normally followed by one or more calls to “sqlbftcq - Fetch
Tablespace Container Query” on page 107, and then by one call to “sqlbctcq -
Close Tablespace Container Query” on page 103.

An application can use the following APIs to fetch information about
containers in use by table spaces:
v “sqlbtcq - Tablespace Container Query” on page 127

Fetches a complete list of container information. The API allocates the space
required to hold the information for all the containers, and returns a pointer
to this information. Use this API to scan the list of containers for specific
information. Using this API is identical to calling the three APIs below
(sqlbotcq, sqlbftcq, and sqlbctcq), except that this API automatically
allocates the memory for the output information. A call to this API must be
followed by a call to “sqlefmem - Free Memory” on page 195 to free the
memory.

v “sqlbotcq - Open Tablespace Container Query” on page 116
v “sqlbftcq - Fetch Tablespace Container Query” on page 107
v “sqlbctcq - Close Tablespace Container Query” on page 103

These three APIs function like an SQL cursor, in that they use the
OPEN/FETCH/CLOSE paradigm. The caller must provide the output area
for the fetch. Unlike an SQL cursor, only one table space container query
can be active at a time. Use this set of APIs to scan the list of table space
containers for specific information. These APIs allows the user to control
the memory requirements of an application (compared with “sqlbtcq -
Tablespace Container Query” on page 127).

When sqlbotcq is called, a snapshot of the current container information is
formed in the agent servicing the application. If the application issues a
second table space container query call (sqlbtcq or sqlbotcq), this snapshot is
replaced with refreshed information.

No locking is performed, so the information in the buffer may not reflect
changes made by another application after the snapshot was generated. The
information is not part of a transaction.

sqlbotcq - Open Tablespace Container Query

Chapter 1. Application Programming Interfaces 117

There is one snapshot buffer for table space queries and another for table
space container queries. These buffers are independent of one another.

See Also
“sqlbctcq - Close Tablespace Container Query” on page 103

“sqlbftcq - Fetch Tablespace Container Query” on page 107

“sqlbstsc - Set Tablespace Containers” on page 124

“sqlbtcq - Tablespace Container Query” on page 127.

sqlbotcq - Open Tablespace Container Query

118 Administrative API Reference

sqlbotsq - Open Tablespace Query
Prepares for a table space query operation, and returns the number of table
spaces currently in the database.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

v load

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

Generic API Syntax

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

/* File: sqlutil.h */
/* API: Open Tablespace Query */
/* ... */
SQL_API_RC SQL_API_FN

sqlbotsq (
struct sqlca * pSqlca,
sqluint32 TablespaceQueryOptions,
sqluint32 * pNumTablespaces);

/* ... */

/* File: sqlutil.h */
/* API: Open Tablespace Query */
/* ... */
SQL_API_RC SQL_API_FN

sqlgotsq (
struct sqlca * pSqlca,
sqluint32 TablespaceQueryOptions,
sqluint32 * pNumTablespaces);

/* ... */

sqlbotsq - Open Tablespace Query

Chapter 1. Application Programming Interfaces 119

TablespaceQueryOptions
Input. Indicates which table spaces to process. Valid values (defined in
sqlutil) are:

SQLB_OPEN_TBS_ALL
Process all the table spaces in the database.

SQLB_OPEN_TBS_RESTORE
Process only the table spaces that the user’s agent is restoring.

pNumTablespaces
Output. The number of table spaces in the connected database.

Sample Programs

C \sqllib\samples\c\tabspace.sqc

COBOL \sqllib\samples\cobol\tabspace.sqb

Usage Notes
This API is normally followed by one or more calls to “sqlbftpq - Fetch
Tablespace Query” on page 109, and then by one call to “sqlbctsq - Close
Tablespace Query” on page 105.

An application can use the following APIs to fetch information about the
currently defined table spaces:
v “sqlbstpq - Single Tablespace Query” on page 122

Fetches information about a given table space. Only one table space entry is
returned (into a space provided by the caller). Use this API when the table
space identifier is known, and information about only that table space is
desired.

v “sqlbmtsq - Tablespace Query” on page 113
Fetches information about all table spaces. The API allocates the space
required to hold the information for all table spaces, and returns a pointer
to this information. Use this API to scan the list of table spaces when
searching for specific information. Using this API is identical to calling the
three APIs below, except that this API automatically allocates the memory
for the output information. A call to this API must be followed by a call to
“sqlefmem - Free Memory” on page 195 to free the memory.

v “sqlbotsq - Open Tablespace Query” on page 119
v “sqlbftpq - Fetch Tablespace Query” on page 109
v “sqlbctsq - Close Tablespace Query” on page 105

These three APIs function like an SQL cursor, in that they use the
OPEN/FETCH/CLOSE paradigm. The caller must provide the output area
for the fetch. Unlike an SQL cursor, only one table space query may be
active at a time. Use this set of APIs to scan the list of table spaces when
searching for specific information. This set of APIs allows the user to

sqlbotsq - Open Tablespace Query

120 Administrative API Reference

control the memory requirements of an application (compared with
“sqlbmtsq - Tablespace Query” on page 113).

When sqlbotsq is called, a snapshot of the current table space information is
buffered in the agent servicing the application. If the application issues a
second table space query call (sqlbtsq or sqlbotsq), this snapshot is replaced
with refreshed information.

No locking is performed, so the information in the buffer may not reflect
more recent changes made by another application. The information is not part
of a transaction.

There is one snapshot buffer for table space queries and another for table
space container queries. These buffers are independent of one another.

See Also
“sqlbctsq - Close Tablespace Query” on page 105

“sqlbftpq - Fetch Tablespace Query” on page 109

“sqlbstpq - Single Tablespace Query” on page 122

“sqlbmtsq - Tablespace Query” on page 113.

sqlbotsq - Open Tablespace Query

Chapter 1. Application Programming Interfaces 121

sqlbstpq - Single Tablespace Query
Retrieves information about a single currently defined table space.

Scope
In a partitioned database server environment, only the table spaces on the
current node are listed.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

v load

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

Generic API Syntax

/* File: sqlutil.h */
/* API: Single Tablespace Query */
/* ... */
SQL_API_RC SQL_API_FN

sqlbstpq (
struct sqlca * pSqlca,
sqluint32 TablespaceId,
struct SQLB_TBSPQRY_DATA * pTablespaceData,
sqluint32 reserved);

/* ... */

/* File: sqlutil.h */
/* API: Single Tablespace Query */
/* ... */
SQL_API_RC SQL_API_FN

sqlgstpq (
struct sqlca * pSqlca,
sqluint32 TablespaceId,
struct SQLB_TBSPQRY_DATA * pTablespaceData,
sqluint32reserved);

/* ... */

sqlbstpq - Single Tablespace Query

122 Administrative API Reference

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

TablespaceId
Input. Identifier for the table space which is to be queried.

pTablespaceData
Input and output. Pointer to a user-supplied SQLB_TBSPQRY_DATA
structure where the table space information will be placed upon
return. The caller of this API must initialize the structure and set
TBSPQVER to SQLB_TBSPQRY_DATA_ID (in sqlutil).

reserved
Input. Always SQLB_RESERVED1.

Sample Programs

C \sqllib\samples\c\tabspace.sqc

COBOL \sqllib\samples\cobol\tabspace.sqb

Usage Notes
This API retrieves information about a single table space if the table space
identifier to be queried is known. This API provides an alternative to the
more expensive OPEN TABLESPACE QUERY, FETCH, and CLOSE
combination of APIs, which must be used to scan for the desired table space
when the table space identifier is not known in advance. The table space IDs
can be found in the system catalogs. No agent snapshot is taken; since there is
only one entry to return, it is returned directly.

For more information, see “sqlbotsq - Open Tablespace Query” on page 119.

See Also
“sqlbctsq - Close Tablespace Query” on page 105

“sqlbftpq - Fetch Tablespace Query” on page 109

“sqlbgtss - Get Tablespace Statistics” on page 111

“sqlbotsq - Open Tablespace Query” on page 119

“sqlbmtsq - Tablespace Query” on page 113.

sqlbstpq - Single Tablespace Query

Chapter 1. Application Programming Interfaces 123

sqlbstsc - Set Tablespace Containers
This API facilitates the provision of a redirected restore, in which the user is
restoring a database, and a different set of operating system storage containers
is desired or required.

Use this API when the table space is in a storage definition pending or a storage
definition allowed state. These states are possible during a restore operation,
immediately prior to the restoration of database pages.

Authorization
One of the following:
v sysadm

v sysctrl

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

Generic API Syntax

/* File: sqlutil.h */
/* API: Set Tablespace Containers */
/* ... */
SQL_API_RC SQL_API_FN

sqlbstsc (
struct sqlca * pSqlca,
sqluint32 SetContainerOptions,
sqluint32 TablespaceId,
sqluint32 NumContainers,
struct SQLB_TBSCONTQRY_DATA * pContainerData);

/* ... */

/* File: sqlutil.h */
/* API: Set Tablespace Containers */
/* ... */
SQL_API_RC SQL_API_FN

sqlgstsc (
struct sqlca * pSqlca,
sqluint32 SetContainerOptions,
sqluint32 TablespaceId,
sqluint32 NumContainers,
struct SQLB_TBSCONTQRY_DATA * pContainerData);

/* ... */

sqlbstsc - Set Tablespace Containers

124 Administrative API Reference

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

SetContainerOptions
Input. Use this field to specify additional options. Valid values
(defined in sqlutil) are:

SQLB_SET_CONT_INIT_STATE
Redo alter table space operations when performing a roll
forward.

SQLB_SET_CONT_FINAL_STATE
Ignore alter table space operations in the log when performing
a roll forward.

TablespaceId
Input. Identifier for the table space which is to be changed.

NumContainers
Input. The number of rows the structure pointed to by pContainerData
holds.

pContainerData
Input. Container specifications. Although the
SQLB_TBSCONTQRY_DATA structure is used, only the contType,
totalPages, name, and nameLen (for languages other than C) fields are
used; all other fields are ignored.

Sample Programs

C \sqllib\samples\c\backrest.c

COBOL \sqllib\samples\cobol\backrest.cbl

Usage Notes
This API is used in conjunction with “sqlurestore - Restore Database” on
page 381.

A backup of a database, or one or more table spaces, keeps a record of all the
table space containers in use by the table spaces being backed up. During a
restore, all containers listed in the backup are checked to see if they currently
exist and are accessible. If one or more of the containers is inaccessible for any
reason, the restore will fail. In order to allow a restore in such a case, the
redirecting of table space containers is supported during the restore. This
support includes adding, changing, or removing of table space containers. It is
this API that allows the user to add, change or remove those containers. For
more information, see the Administration Guide.

sqlbstsc - Set Tablespace Containers

Chapter 1. Application Programming Interfaces 125

Typical use of this API would involve the following sequence of actions:
1. Invoke “sqlurestore - Restore Database” on page 381 with CallerAction set

to SQLUD_RESTORE_STORDEF.
The restore utility returns an sqlcode indicating that some of the containers
are inaccessible.

2. Invoke sqlbstsc to set the table space container definitions with the
SetContainerOptions parameter set to SQLB_SET_CONT_FINAL_STATE.

3. Invoke sqlurst a second time with CallerAction set to SQLUD_CONTINUE.

The above sequence will allow the restore to use the new table space
container definitions and will ignore table space add container operations in
the logs when “sqluroll - Rollforward Database” on page 397 is called after the
restore is complete.

The user of this API should be aware that when setting the container list,
there must be sufficient disk space to allow for the restore or rollforward
operation to replace all of the original data into these new containers. If there
is not sufficient space, such table spaces will be left in the recovery pending
state until sufficient disk space is made available. A prudent Database
Administrator will keep records of disk utilization on a regular basis. Then,
when a restore or rollforward operation is needed, the required disk space
will be known.

See Also
“sqlubkp - Backup Database” on page 290

“sqluroll - Rollforward Database” on page 397

“sqlurestore - Restore Database” on page 381.

sqlbstsc - Set Tablespace Containers

126 Administrative API Reference

sqlbtcq - Tablespace Container Query
Provides a one-call interface to the table space container query data. The
query data for all containers in a table space, or for all containers in all table
spaces, is returned in an array.

Scope
In a partitioned database server environment, only the table spaces on the
current node are listed.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

Generic API Syntax

/* File: sqlutil.h */
/* API: Tablespace Container Query */
/* ... */
SQL_API_RC SQL_API_FN

sqlbtcq (
struct sqlca * pSqlca,
sqluint32 TablespaceId,
sqluint32 * pNumContainers,
struct SQLB_TBSCONTQRY_DATA ** ppContainerData);

/* ... */

/* File: sqlutil.h */
/* API: Tablespace Container Query */
/* ... */
SQL_API_RC SQL_API_FN

sqlgtcq (
struct sqlca * pSqlca,
sqluint32 TablespaceId,
sqluint32 * pNumContainers,
struct SQLB_TBSCONTQRY_DATA ** ppContainerData);

/* ... */

sqlbtcq - Tablespace Container Query

Chapter 1. Application Programming Interfaces 127

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

TablespaceId
Input. ID of the table space for which container data is desired, or a
special ID, SQLB_ALL_TABLESPACES (defined in sqlutil), which
produces a list of all containers for the entire database.

pNumContainers
Output. The number of containers in the table space.

ppContainerData
Output. The caller supplies the API with the address of a pointer to a
SQLB_TBSCONTQRY_DATA structure. The space for the table space
container query data is allocated by the API, and a pointer to that
space is returned to the caller. On return from the call, the pointer to
the SQLB_TBSCONTQRY_DATA structure points to the complete set
of table space container query data.

Sample Programs

C \sqllib\samples\c\tabscont.sqc

COBOL \sqllib\samples\cobol\tabscont.sqb

Usage Notes
This API uses the lower level services, namely:
v “sqlbotcq - Open Tablespace Container Query” on page 116
v “sqlbftcq - Fetch Tablespace Container Query” on page 107
v “sqlbctcq - Close Tablespace Container Query” on page 103

to get all of the table space container query data at once.

If sufficient memory is available, this function returns the number of
containers, and a pointer to the memory location of the table space container
query data. It is the user’s responsibility to free this memory with a call to
sqlefmem (see “sqlefmem - Free Memory” on page 195).

If sufficient memory is not available, this function simply returns the number
of containers, and no memory is allocated. If this should happen, use
“sqlbotcq - Open Tablespace Container Query” on page 116, “sqlbftcq - Fetch
Tablespace Container Query” on page 107, and “sqlbctcq - Close Tablespace
Container Query” on page 103 to fetch less than the whole list at once.

sqlbtcq - Tablespace Container Query

128 Administrative API Reference

See Also
“sqlbctcq - Close Tablespace Container Query” on page 103

“sqlbftcq - Fetch Tablespace Container Query” on page 107

“sqlbotcq - Open Tablespace Container Query” on page 116

“sqlbstsc - Set Tablespace Containers” on page 124

“sqlbtcq - Tablespace Container Query” on page 127.

sqlbtcq - Tablespace Container Query

Chapter 1. Application Programming Interfaces 129

sqlcspqy - List DRDA Indoubt Transactions
Provides a list of transactions that are indoubt between partner LUs connected
by LU 6.2 protocols.

Authorization
sysadm

Required Connection
Instance

API Include File
sqlxa.h

C API Syntax

API Parameters

indoubt_data
Output. A pointer to the returned array.

indoubt_count
Output. The number of elements in the returned array.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

Usage Notes
DRDA indoubt transactions occur when communication is lost between
coordinators and participants in distributed units of work.

A distributed unit of work lets a user or application read and update data at
multiple locations within a single unit of work. Such work requires a
two-phase commit.

The first phase requests all the participants to prepare for commit. The second
phase commits or rolls back the transactions. If a coordinator or participant
becomes unavailable after the first phase then the distributed transactions are
indoubt.

/* File: sqlxa.h */
/* API: List DRDA Indoubt Transactions */
/* ... */
extern int SQL_API_FN sqlcspqy(SQLCSPQY_INDOUBT **indoubt_data,

sqlint32 *indoubt_count,
struct sqlca *sqlca);

/* ... */

sqlcspqy - List DRDA Indoubt Transactions

130 Administrative API Reference

Before issuing LIST DRDA INDOUBT TRANSACTIONS, the application
process must be connected to the Sync Point Manager (SPM) instance. Use the
SPM_NAME as the dbalias on the CONNECT statement (see the SQL Reference
for more information about using CONNECT). SPM_NAME is a database
manager configuration parameter.

sqlcspqy - List DRDA Indoubt Transactions

Chapter 1. Application Programming Interfaces 131

sqle_activate_db - Activate Database
Activates the specified database and starts up all necessary database services,
so that the database is available for connection and use by any application.

Scope
This API activates the specified database on all nodes within the system. If
one or more of these nodes encounters an error during activation of the
database, a warning is returned. The database remains activated on all nodes
on which the API has succeeded.

Note: If it is the coordinator node or the catalog node that encounters the
error, the API returns a negative sqlcode, and the database will not be
activated on any node.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

Required Connection
None. Applications invoking ACTIVATE DATABASE cannot have any existing
database connections.

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* API: Activate Database */
/* ... */
SQL_API_RC SQL_API_FN

sqle_activate_db (
char * pDbAlias,
char * pUserName,
char * pPassword,
void * pReserved,
struct sqlca * pSqlca);

/* ... */

sqle_activate_db - Activate Database

132 Administrative API Reference

Generic API Syntax

API Parameters

DbAliasLen
Input. A 2-byte unsigned integer representing the length of the
database alias name in bytes.

UserNameLen
Input. A 2-byte unsigned integer representing the length of the user
name in bytes. Set to zero if no user name is supplied.

PasswordLen
Input. A 2-byte unsigned integer representing the length of the
password in bytes. Set to zero if no password is supplied.

pDbAlias
Input. Pointer to the database alias name.

pUserName
Input. Pointer to the user ID starting the database. Can be NULL.

pPassword
Input. Pointer to the password for the user name. Can be NULL, but
must be specified if a user name is specified.

pReserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How
the API Descriptions are Organized” on page 12, or the Application Development
Guide. For a description of the syntax, see the Command Reference.

/* File: sqlenv.h */
/* API: Activate Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlg_activate_db (
unsigned short DbAliasLen,
unsigned short UserNameLen,
unsigned short PasswordLen,
char * pDbAlias,
char * pUserName,
char * pPassword,
void * pReserved,
struct sqlca * pSqlca);

/* ... */

sqle_activate_db - Activate Database

Chapter 1. Application Programming Interfaces 133

Usage Notes
If a database has not been started, and a DB2 CONNECT TO (or an implicit
connect) is encountered in an application, the application must wait while the
database manager starts up the required database. In such cases, this first
application spends time on database initialization before it can do any work.
However, once the first application has started a database, other applications
can simply connect and use it.

Database administrators can use ACTIVATE DATABASE to start up selected
databases. This eliminates any application time spent on database
initialization.

Databases initialized by ACTIVATE DATABASE can only be shut down by
“sqle_deactivate_db - Deactivate Database” on page 135, or by “sqlepstp -
Stop Database Manager” on page 233. To obtain a list of activated databases,
call “db2GetSnapshot - Get Snapshot” on page 27.

If a database was started by a DB2 CONNECT TO (or an implicit connect)
and subsequently an ACTIVATE DATABASE is issued for that same database,
then DEACTIVATE DATABASE must be used to shut down that database.

ACTIVATE DATABASE behaves in a similar manner to a DB2 CONNECT TO
(or an implicit connect) when working with a database requiring a restart (for
example, database in an inconsistent state). The database will be restarted
before it can be initialized by ACTIVATE DATABASE.

See Also
“sqle_deactivate_db - Deactivate Database” on page 135.

sqle_activate_db - Activate Database

134 Administrative API Reference

sqle_deactivate_db - Deactivate Database
Stops the specified database.

Scope
In an MPP system, this API deactivates the specified database on all nodes in
the system. If one or more of these nodes encounters an error, a warning is
returned. The database will be successfully deactivated on some nodes, but
may remain activated on the nodes encountering the error.

Note: If it is the coordinator node or the catalog node that encounters the
error, the API returns a negative sqlcode, and the database will not be
reactivated on any node on which it was deactivated.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

Required Connection
None. Applications invoking DEACTIVATE DATABASE cannot have any
existing database connections.

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* API: Deactivate Database */
/* ... */
SQL_API_RC SQL_API_FN

sqle_deactivate_db (
char * pDbAlias,
char * pUserName,
char * pPassword,
void * pReserved,
struct sqlca * pSqlca);

/* ... */

sqle_deactivate_db - Deactivate Database

Chapter 1. Application Programming Interfaces 135

Generic API Syntax

API Parameters

DbAliasLen
Input. A 2-byte unsigned integer representing the length of the
database alias name in bytes.

UserNameLen
Input. A 2-byte unsigned integer representing the length of the user
name in bytes. Set to zero if no user name is supplied.

PasswordLen
Input. A 2-byte unsigned integer representing the length of the
password in bytes. Set to zero if no password is supplied.

pDbAlias
Input. Pointer to the database alias name.

pUserName
Input. Pointer to the user ID stopping the database. Can be NULL.

pPassword
Input. Pointer to the password for the user name. Can be NULL, but
must be specified if a user name is specified.

pReserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How
the API Descriptions are Organized” on page 12, or the Application Development
Guide. For a description of the syntax, see the Command Reference.

/* File: sqlenv.h */
/* API: Deactivate Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlg_deactivate_db (
unsigned short DbAliasLen,
unsigned short UserNameLen,
unsigned short PasswordLen,
char * pDbAlias,
char * pUserName,
char * pPassword,
void * pReserved,
struct sqlca * pSqlca);

/* ... */

sqle_deactivate_db - Deactivate Database

136 Administrative API Reference

Usage Notes
Databases initialized by ACTIVATE DATABASE can only be shut down by
DEACTIVATE DATABASE. “sqlepstp - Stop Database Manager” on page 233
automatically stops all activated databases before stopping the database
manager. If a database was initialized by ACTIVATE DATABASE, the last DB2
CONNECT RESET statement (counter equal 0) will not shut down the
database; DEACTIVATE DATABASE must be used.

See Also
“sqle_activate_db - Activate Database” on page 132.

sqle_deactivate_db - Deactivate Database

Chapter 1. Application Programming Interfaces 137

sqleaddn - Add Node
Adds a new node to the parallel database system. This API creates database
partitions for all databases currently defined in the MPP server on the new
node. The user can specify the source node for any system temporary table
spaces to be created with the databases, or specify that no system temporary
table spaces are to be created. The API must be issued from the node that is
being added, and can only be issued on an MPP server.

Scope
This API only affects the node on which it is executed.

Authorization
One of the following:
v sysadm

v sysctrl

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

/* File: sqlenv.h */
/* API: Add Node */
/* ... */
SQL_API_RC SQL_API_FN

sqleaddn (
void * pAddNodeOptions,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Add Node */
/* ... */
SQL_API_RC SQL_API_FN

sqlgaddn (
unsigned short addnOptionsLen,
struct sqlca * pSqlca,
void * pAddNodeOptions);

/* ... */

sqleaddn - Add Node

138 Administrative API Reference

API Parameters

addnOptionsLen
Input. A 2-byte unsigned integer representing the length of the
optional sqle_addn_options structure in bytes.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pAddNodeOptions
Input. A pointer to the optional sqle_addn_options structure. This
structure is used to specify the source node, if any, of the system
temporary table space definitions for all database partitions created
during the add node operation. If not specified (that is, a NULL
pointer is specified), the system temporary table space definitions will
be the same as those for the catalog node. For more information about
this structure, see “SQLE-ADDN-OPTIONS” on page 460.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How
the API Descriptions are Organized” on page 12, or the Application Development
Guide. For a description of the syntax, see the Command Reference.

Usage Notes
Before adding a new node, ensure that there is sufficient storage for the
containers that must be created for all existing databases on the system.

The add node operation creates an empty database partition on the new node
for every database that exists in the instance. The configuration parameters for
the new database partitions are set to the default value.

If an add node operation fails while creating a database partition locally, it
enters a clean-up phase, in which it locally drops all databases that have been
created. This means that the database partitions are removed only from the
node being added (that is, the local node). Existing database partitions remain
unaffected on all other nodes. If this fails, no further clean up is done, and an
error is returned.

The database partitions on the new node cannot be used to contain user data
until after the ALTER NODEGROUP statement has been used to add the node
to a nodegroup. For details, see the SQL Reference.

This API will fail if a create database or a drop database operation is in
progress. The API can be called again once the operation has completed.

If system temporary table spaces are to be created with the database
partitions, sqleaddn may have to communicate with another node in the MPP

sqleaddn - Add Node

Chapter 1. Application Programming Interfaces 139

system in order to retrieve the table space definitions. The start_stop_time
database manager configuration parameter is used to specify the time, in
minutes, by which the other node must respond with the table space
definitions. If this time is exceeded, the API fails. Increase the value of
start_stop_time, and call the API again.

See Also
“sqlecrea - Create Database” on page 159

“sqledrpn - Drop Node Verify” on page 191

“sqlepstart - Start Database Manager” on page 230.

sqleaddn - Add Node

140 Administrative API Reference

sqleatcp - Attach and Change Password
Enables an application to specify the node at which instance-level functions
(CREATE DATABASE and FORCE APPLICATION, for example) are to be
executed. This node may be the current instance (as defined by the value of
the DB2INSTANCE environment variable), another instance on the same
workstation, or an instance on a remote workstation. Establishes a logical
instance attachment to the node specified, and starts a physical
communications connection to the node if one does not already exist.

Note: This API extends the function of “sqleatin - Attach” on page 145 by
permitting the optional change of the user password for the instance
being attached.

Authorization
None

Required Connection
This API establishes an instance attachment.

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* API: Attach and Change Password */
/* ... */
SQL_API_RC SQL_API_FN

sqleatcp (
char * pNodeName,
char * pUserName,
char * pPassword,
char * pNewPassword,
struct sqlca * pSqlca);

/* ... */

sqleatcp - Attach and Change Password

Chapter 1. Application Programming Interfaces 141

Generic API Syntax

API Parameters

NewPasswordLen
Input. A 2-byte unsigned integer representing the length of the new
password in bytes. Set to zero if no new password is supplied.

PasswordLen
Input. A 2-byte unsigned integer representing the length of the
password in bytes. Set to zero if no password is supplied.

UserNameLen
Input. A 2-byte unsigned integer representing the length of the user
name in bytes. Set to zero if no user name is supplied.

NodeNameLen
Input. A 2-byte unsigned integer representing the length of the node
name in bytes. Set to zero if no node name is supplied.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pNewPassword
Input. A string containing the new password for the specified user
name. Set to NULL if a password change is not required.

pPassword
Input. A string containing the password for the specified user name.
May be NULL.

pUserName
Input. A string containing the user name under which the attachment
is to be authenticated. May be NULL.

/* File: sqlenv.h */
/* API: Attach and Change Password */
/* ... */
SQL_API_RC SQL_API_FN

sqlgatcp (
unsigned short NewPasswordLen,
unsigned short PasswordLen,
unsigned short UserNameLen,
unsigned short NodeNameLen,
struct sqlca * pSqlca,
char * pNewPassword,
char * pPassword,
char * pUserName,
char * pNodeName);

/* ... */

sqleatcp - Attach and Change Password

142 Administrative API Reference

pNodeName
Input. A string containing the alias of the instance to which the user
wants to attach. This instance must have a matching entry in the local
node directory. The only exception is the local instance (as specified
by the DB2INSTANCE environment variable), which can be specified
as the object of an attachment, but cannot be used as a node name in
the node directory. May be NULL.

REXX API Syntax
Calling this API directly from REXX is not supported. However, REXX
programmers can utilize this function by calling the DB2 command line
processor to execute the ATTACH command. For more information, see the
REXX programming chapter in the Application Development Guide.

Sample Programs

C \sqllib\samples\c\dbinst.c

COBOL \sqllib\samples\cobol\dbinst.cbl

Usage Notes

Note: A node name in the node directory can be regarded as an alias for an
instance.

If an attach request succeeds, the sqlerrmc field of the sqlca will contain 9
tokens separated by hexadecimal FF (similar to the tokens returned when a
CONNECT request is successful):
1. Country code of the application server
2. Code page of the application server
3. Authorization ID
4. Node name (as specified on the API)
5. Identity and platform type of the server (see the SQL Reference).
6. Agent ID of the agent which has been started at the server
7. Agent index
8. Node number of the server
9. Number of partitions if the server is a partitioned database server.

If the node name is a zero-length string or NULL, information about the
current state of attachment is returned. If no attachment exists, sqlcode 1427 is
returned. Otherwise, information about the attachment is returned in the
sqlerrmc field of the sqlca (as outlined above).

If an attachment has not been made, instance-level APIs are executed against
the current instance, specified by the DB2INSTANCE environment variable.

sqleatcp - Attach and Change Password

Chapter 1. Application Programming Interfaces 143

Certain functions (db2start, db2stop, and all directory services, for example)
are never executed remotely. That is, they affect only the local instance
environment, as defined by the value of the DB2INSTANCE environment
variable.

If an attachment exists, and the API is issued with a node name, the current
attachment is dropped, and an attachment to the new node is attempted.

Where the user name and password are authenticated, and where the
password is changed, depend on the authentication type of the target
instance. For detailed information about authentication types, see the
Administration Guide.

The node to which an attachment is to be made can also be specified by a call
to “sqlesetc - Set Client” on page 248 (see the SQL_ATTACH_NODE option in
“SQLE-CONN-SETTING” on page 465).

See Also
“sqleatin - Attach” on page 145

“sqledtin - Detach” on page 193

“sqlesetc - Set Client” on page 248.

sqleatcp - Attach and Change Password

144 Administrative API Reference

sqleatin - Attach
Enables an application to specify the node at which instance-level functions
(CREATE DATABASE and FORCE APPLICATION, for example) are to be
executed. This node may be the current instance (as defined by the value of
the DB2INSTANCE environment variable), another instance on the same
workstation, or an instance on a remote workstation. Establishes a logical
instance attachment to the node specified, and starts a physical
communications connection to the node if one does not already exist.

Note: If a password change is required, use “sqleatcp - Attach and Change
Password” on page 141 instead of sqleatin.

Authorization
None

Required Connection
This API establishes an instance attachment.

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

/* File: sqlenv.h */
/* API: Attach */
/* ... */
SQL_API_RC SQL_API_FN

sqleatin (
char * pNodeName,
char * pUserName,
char * pPassword,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Attach */
/* ... */
SQL_API_RC SQL_API_FN

sqlgatin (
unsigned short PasswordLen,
unsigned short UserNameLen,
unsigned short NodeNameLen,
struct sqlca * pSqlca,
char * pPassword,
char * pUserName,
char * pNodeName);

/* ... */

sqleatin - Attach

Chapter 1. Application Programming Interfaces 145

API Parameters

PasswordLen
Input. A 2-byte unsigned integer representing the length of the
password in bytes. Set to zero if no password is supplied.

UserNameLen
Input. A 2-byte unsigned integer representing the length of the user
name in bytes. Set to zero if no user name is supplied.

NodeNameLen
Input. A 2-byte unsigned integer representing the length of the node
name in bytes. Set to zero if no node name is supplied.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pPassword
Input. A string containing the password for the specified user name.
May be NULL.

pUserName
Input. A string containing the user name under which the attachment
is to be authenticated. May be NULL.

pNodeName
Input. A string containing the alias of the instance to which the user
wants to attach. This instance must have a matching entry in the local
node directory. The only exception is the local instance (as specified
by the DB2INSTANCE environment variable), which can be specified
as the object of an attachment, but cannot be used as a node name in
the node directory. May be NULL.

REXX API Syntax

REXX API Parameters

nodename
Alias of the instance to which the user wants to attach. This instance
must have a matching entry in the local node directory. The only
exception is the local instance (as specified by the DB2INSTANCE
environment variable), which can be specified as the object of an
attachment, but cannot be used as a node name in the node directory.

username
Name under which the user attaches to the instance.

ATTACH [TO nodename [USER username USING password]]

sqleatin - Attach

146 Administrative API Reference

password
Password used to authenticate the user name.

Sample Programs

C \sqllib\samples\c\dbinst.c

COBOL \sqllib\samples\cobol\dbinst.cbl

REXX \sqllib\samples\rexx\dbinst.cmd

Usage Notes

Note: A node name in the node directory can be regarded as an alias for an
instance.

If an attach request succeeds, the sqlerrmc field of the sqlca will contain 9
tokens separated by hexadecimal FF (similar to the tokens returned when a
CONNECT request is successful):
1. Country code of the application server
2. Code page of the application server
3. Authorization ID
4. Node name (as specified on the API)
5. Identity and platform type of the server (see the SQL Reference).
6. Agent ID of the agent which has been started at the server
7. Agent index
8. Node number of the server
9. Number of partitions if the server is a partitioned database server.

If the node name is a zero-length string or NULL, information about the
current state of attachment is returned. If no attachment exists, sqlcode 1427 is
returned. Otherwise, information about the attachment is returned in the
sqlerrmc field of the sqlca (as outlined above).

If an attachment has not been made, instance-level APIs are executed against
the current instance, specified by the DB2INSTANCE environment variable.

Certain functions (db2start, db2stop, and all directory services, for example)
are never executed remotely. That is, they affect only the local instance
environment, as defined by the value of the DB2INSTANCE environment
variable.

If an attachment exists, and the API is issued with a node name, the current
attachment is dropped, and an attachment to the new node is attempted.

sqleatin - Attach

Chapter 1. Application Programming Interfaces 147

Where the user name and password are authenticated depends on the
authentication type of the target instance. For detailed information about
authentication types, see the Administration Guide.

The node to which an attachment is to be made can also be specified by a call
to “sqlesetc - Set Client” on page 248 (see the SQL_ATTACH_NODE option in
“SQLE-CONN-SETTING” on page 465).

See Also
“sqleatcp - Attach and Change Password” on page 141

“sqledtin - Detach” on page 193

“sqlesetc - Set Client” on page 248.

sqleatin - Attach

148 Administrative API Reference

sqlecadb - Catalog Database
Stores database location information in the system database directory. The
database can be located either on the local workstation or on a remote node.

Scope
This API affects the system database directory. In a partitioned database
environment, when cataloging a local database into the system database
directory, this API must be called from a node on the server where the
database resides.

Authorization
One of the following:
v sysadm

v sysctrl

Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* API: Catalog Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlecadb (
_SQLOLDCHAR * pDbName,
_SQLOLDCHAR * pDbAlias,
unsigned char Type,
_SQLOLDCHAR * pNodeName,
_SQLOLDCHAR * pPath,
_SQLOLDCHAR * pComment,
unsigned short Authentication,
_SQLOLDCHAR * pPrincipal,
struct sqlca * pSqlca);

/* ... */

sqlecadb - Catalog Database

Chapter 1. Application Programming Interfaces 149

Generic API Syntax

API Parameters

PrinLen
Input. A 2-byte unsigned integer representing the length in bytes of
the principal name. Set to zero if no principal is provided. This value
should be nonzero only when authentication is specified as
SQL_AUTHENTICATION_DCE or SQL_AUTHENTICATION_KERBEROS.

CommentLen
Input. A 2-byte unsigned integer representing the length in bytes of
the comment. Set to zero if no comment is provided.

PathLen
Input. A 2-byte unsigned integer representing the length in bytes of
the path of the local database directory. Set to zero if no path is
provided.

NodeNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the node name. Set to zero if no node name is provided.

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of
the database alias.

DbNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the database name.

/* File: sqlenv.h */
/* API: Catalog Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlgcadb (
unsigned short PrinLen,
unsigned short CommentLen,
unsigned short PathLen,
unsigned short NodeNameLen,
unsigned short DbAliasLen,
unsigned short DbNameLen,
struct sqlca * pSqlca,
_SQLOLDCHAR * pPrinName,
unsigned short Authentication,
_SQLOLDCHAR * pComment,
_SQLOLDCHAR * pPath,
_SQLOLDCHAR * pNodeName,
unsigned char Type,
_SQLOLDCHAR * pDbAlias,
_SQLOLDCHAR * pDbName);

/* ... */

sqlecadb - Catalog Database

150 Administrative API Reference

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pPrinName
Input. A string containing the principal name of the DB2 server on
which the database resides. This value should only be specified when
authentication is SQL_AUTHENTICATION_DCE or
SQL_AUTHENTICATION_KERBEROS. For DCE, the principal must be the
same as the value stored in the server’s keytab file.

Authentication
Input. Contains the authentication type specified for the database.
Authentication is a process that verifies that the user is who he/she
claims to be. Access to database objects depends on the user’s
authentication. Valid values (from sqlenv) are:

SQL_AUTHENTICATION_SERVER
Specifies that authentication takes place on the node
containing the target database.

SQL_AUTHENTICATION_CLIENT
Specifies that authentication takes place on the node where
the application is invoked.

SQL_AUTHENTICATION_DCS
Specifies that authentication takes place on the node
containing the target database, except when using DB2
Connect, when it specifies that authentication takes place at
the DRDA AS.

SQL_AUTHENTICATION_DCE
Specifies that authentication takes place using DCE Security
Services.

SQL_AUTHENTICATION_KERBEROS
Specifies that authentication takes place using Kerberos
Security Mechanism.

SQL_AUTHENTICATION_NOT_SPECIFIED
Authentication not specified.

SQL_AUTHENTICATION_SVR_ENCRYPT
Specifies that authentication takes place on the node
containing the target database, and that the authentication
password is to be encrypted.

SQL_AUTHENTICATION_DCS_ENCRYPT
Specifies that authentication takes place on the node
containing the target database except when using DB2

sqlecadb - Catalog Database

Chapter 1. Application Programming Interfaces 151

Connect, in which case authentication takes place at the
DRDA AS. Also, the authentication password is to be
encrypted.

This parameter can be set to SQL_AUTHENTICATION_NOT_SPECIFIED,
except when cataloging a database that resides on a DB2 Version 1
server.

Specifying the authentication type in the database catalog results in a
performance improvement during a connect.

For more information about authentication types, see the
Administration Guide.

pComment
Input. A string containing an optional description of the database. A
null string indicates no comment. The maximum length of a comment
string is 30 characters.

pPath Input. A string which, on UNIX based systems, specifies the name of
the path on which the database being cataloged resides. Maximum
length is 215 characters.

On OS/2 or the Windows operating system, this string specifies the
letter of the drive on which the database being cataloged resides.

If a NULL pointer is provided, the default database path is assumed
to be that specified by the database manager configuration parameter
dftdbpath.

pNodeName
Input. A string containing the name of the node where the database is
located. May be NULL.

Note: If neither pPath nor pNodeName is specified, the database is
assumed to be local, and the location of the database is
assumed to be that specified in the database manager
configuration parameter dftdbpath.

Type Input. A single character that designates whether the database is
indirect, remote, or is cataloged via DCE. Valid values (defined in
sqlenv) are:

SQL_INDIRECT
Specifies that the database resides at this instance.

SQL_REMOTE
Specifies that the database resides at another instance.

sqlecadb - Catalog Database

152 Administrative API Reference

SQL_DCE
Specifies that the database is cataloged via DCE.

pDbAlias
Input. A string containing an alias for the database.

pDbName
Input. A string containing the database name.

REXX API Syntax

REXX API Parameters

dbname
Name of the database to be cataloged.

alias Alternate name for the database. If an alias is not specified, the
database name is used as the alias.

path Path on which the database being cataloged resides.

nodename
Name of the remote workstation where the database being cataloged
resides.

Note: If neither path nor nodename is specified, the database is
assumed to be local, and the location of the database is
assumed to be that specified in the database manager
configuration parameter dftdbpath.

authentication
Place where authentication is to be done. Valid values are:

SERVER
Authentication occurs at the node containing the target
database. This is the default.

CLIENT
Authentication occurs at the node where the application is
invoked.

DCS Specifies how authentication will take place for databases
accessed using DB2 Connect. The behavior is the same as for
the type SERVER, except that when the authentication type is
SERVER, DB2 Connect forces authentication at the gateway, and
when the authentication type is DCS, authentication is assumed
to take place at the host.

CATALOG DATABASE dbname [AS alias] [ON path|AT NODE nodename]
[AUTHENTICATION authentication] [WITH "comment"]

sqlecadb - Catalog Database

Chapter 1. Application Programming Interfaces 153

DCE SERVER PRINCIPAL dce_principal_name
Fully qualified DCE principal name for the target server. This
value is also recorded in the keytab file at the target server.

comment
Describes the database or the database entry in the system database
directory. The maximum length of a comment string is 30 characters.
A carriage return or a line feed character is not permitted. The
comment text must be enclosed by double quotation marks.

REXX API Syntax

REXX API Parameters

db_global_name
The fully qualified name that uniquely identifies the database in the
DCE name space.

alias Alternate name for the database.

DCE The global directory service being used.

comment
Describes the database or the database entry in the system database
directory. The maximum length of a comment string is 30 characters.
A carriage return or a line feed character is not permitted. The
comment text must be enclosed by double quotation marks.

Examples
call SQLDBS 'CATALOG GLOBAL DATABASE /.../cell1/subsys/database/DB3
AS dbtest USING DIRECTORY DCE WITH "Sample Database"'

Sample Programs

C \sqllib\samples\c\dbcat.c

COBOL \sqllib\samples\cobol\dbcat.cbl

REXX \sqllib\samples\rexx\dbcat.cmd

Usage Notes
Use CATALOG DATABASE to catalog databases located on local or remote
nodes, recatalog databases that were uncataloged previously, or maintain
multiple aliases for one database (regardless of database location).

DB2 automatically catalogs databases when they are created. It catalogs an
entry for the database in the local database directory, and another entry in the
system database directory. If the database is created from a remote client (or a

CATALOG GLOBAL DATABASE db_global_name AS alias
USING DIRECTORY {DCE} [WITH comment]

sqlecadb - Catalog Database

154 Administrative API Reference

client which is executing from a different instance on the same machine), an
entry is also made in the system database directory at the client instance.

Databases created at the current instance (as defined by the value of the
DB2INSTANCE environment variable) are cataloged as indirect. Databases
created at other instances are cataloged as remote (even if they physically
reside on the same machine).

CATALOG DATABASE automatically creates a system database directory if
one does not exist. The system database directory is stored on the path that
contains the database manager instance that is being used. The system
database directory is maintained outside of the database. Each entry in the
directory contains:
v Alias
v Authentication type
v Comment
v Database
v Entry type
v Local database directory (when cataloging a local database)
v Node name (when cataloging a remote database)
v Release information.

If a database is cataloged with the type parameter set to SQL_INDIRECT, the
value of the authentication parameter provided will be ignored, and the
authentication in the directory will be set to
SQL_AUTHENTICATION_NOT_SPECIFIED.

List the contents of the system database directory using “sqledosd - Open
Database Directory Scan” on page 181, “sqledgne - Get Next Database
Directory Entry” on page 178, and “sqledcls - Close Database Directory Scan”
on page 176.

If directory caching is enabled (see the configuration parameter dir_cache in
“sqlfxsys - Get Database Manager Configuration” on page 278), database,
node, and DCS directory files are cached in memory. An application’s
directory cache is created during its first directory lookup. Since the cache is
only refreshed when the application modifies any of the directory files,
directory changes made by other applications may not be effective until the
application has restarted. To refresh DB2’s shared cache (server only), stop
(db2stop) and then restart (db2start) the database manager. To refresh the
directory cache for another application, stop and then restart that application.

sqlecadb - Catalog Database

Chapter 1. Application Programming Interfaces 155

See Also
“sqledcls - Close Database Directory Scan” on page 176

“sqledgne - Get Next Database Directory Entry” on page 178

“sqledosd - Open Database Directory Scan” on page 181

“sqleuncd - Uncatalog Database” on page 254.

sqlecadb - Catalog Database

156 Administrative API Reference

sqlecran - Create Database at Node
Creates a database only on the node that calls the API. This API is not
intended for general use. For example, it should be used with “sqlurestore -
Restore Database” on page 381 if the database partition at a node was
damaged and must be recreated. Improper use of this API can cause
inconsistencies in the system, so it should only be used with caution.

Note: If this API is used to recreate a database partition that was dropped
(because it was damaged), the database at this node will be in the
restore-pending state. After recreating the database partition, the
database must immediately be restored on this node.

Scope
This API only affects the node on which it is called.

Authorization
One of the following:
v sysadm

v sysctrl

Required Connection
Instance. To create a database at another node, it is necessary to first attach to
that node. A database connection is temporarily established by this API
during processing.

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* API: Create Database at Node */
/* ... */
SQL_API_RC SQL_API_FN

sqlecran (
char * pDbName,
void * pReserved,
struct sqlca * pSqlca);

/* ... */

sqlecran - Create Database at Node

Chapter 1. Application Programming Interfaces 157

Generic API Syntax

API Parameters

reservedLen
Input. Reserved for the length of pReserved.

dbNameLen
Input. A 2-byte unsigned integer representing the length of the
database name in bytes.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pReserved
Input. A spare pointer that is set to null or points to zero. Reserved
for future use.

pDbName
Input. A string containing the name of the database to be created.
Must not be NULL.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How
the API Descriptions are Organized” on page 12, or the Application Development
Guide. For a description of the syntax, see the Command Reference.

Usage Notes
When the database is successfully created, it is placed in restore-pending state.
The database must be restored on this node before it can be used.

See Also
“sqlecrea - Create Database” on page 159

“sqledpan - Drop Database at Node” on page 184.

/* File: sqlenv.h */
/* API: Create Database at Node */
/* ... */
SQL_API_RC SQL_API_FN

sqlgcran (
unsigned short reservedLen,
unsigned short dbNameLen,
struct sqlca * pSqlca,
void * pReserved,
char * pDbName);

/* ... */

sqlecran - Create Database at Node

158 Administrative API Reference

sqlecrea - Create Database
Initializes a new database with an optional user-defined collating sequence,
creates the three initial table spaces, creates the system tables, and allocates
the recovery log.

Scope
In a multi-node environment, this API affects all nodes that are listed in the
$HOME/sqllib/db2nodes.cfg file.

The node from which this API is called becomes the catalog node for the new
database.

Authorization
One of the following:
v sysadm

v sysctrl

Required Connection
Instance. To create a database at another (remote) node, it is necessary to first
attach to that node. A database connection is temporarily established by this
API during processing.

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* API: Create Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlecrea (
char * pDbName,
char * pLocalDbAlias,
char * pPath,
struct sqledbdesc * pDbDescriptor,
struct sqledbcountryinfo * pCountryInfo,
char Reserved2,
void * pReserved1,
struct sqlca * pSqlca);

/* ... */

sqlecrea - Create Database

Chapter 1. Application Programming Interfaces 159

Generic API Syntax

API Parameters

PathLen
Input. A 2-byte unsigned integer representing the length of the path in
bytes. Set to zero if no path is provided.

LocalDbALiasLen
Input. A 2-byte unsigned integer representing the length of the local
database alias in bytes. Set to zero if no local alias is provided.

DbNameLen
Input. A 2-byte unsigned integer representing the length of the
database name in bytes.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pReserved1
Input. A spare pointer that is set to null or points to zero.

Reserved2
Input. Reserved for future use.

pCountryInfo
Input. A pointer to the sqledbcountryinfo structure, containing the locale
and the code set for the database. For more information about this
structure, see “SQLEDBCOUNTRYINFO” on page 484. For a list of
valid locale and code set values, see one of the Quick Beginnings
books. May be NULL.

pDbDescriptor
Input. A pointer to the database description block used when creating

/* File: sqlenv.h */
/* API: Create Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlgcrea (
unsigned short PathLen,
unsigned short LocalDbAliasLen,
unsigned short DbNameLen,
struct sqlca * pSqlca,
void * pReserved1,
unsigned short Reserved2,
struct sqledbcountryinfo * pCountryInfo,
struct sqledbdesc * pDbDescriptor,
char * pPath,
char * pLocalDbAlias,
char * pDbName);

/* ... */

sqlecrea - Create Database

160 Administrative API Reference

the database. The database description block may be used to supply
values that are permanently stored in the configuration file of the
database, such as collating sequence. Its structure is described in
“SQLEDBDESC” on page 485. May be NULL.

pPath Input. On UNIX based systems, specifies the path on which to create
the database. If a path is not specified, the database is created on the
default database path specified in the database manager configuration
file (dftdbpath parameter). On OS/2 or the Windows operating system,
specifies the letter of the drive on which to create the database. May
be NULL.

Note: For MPP systems, a database should not be created in an
NFS-mounted directory. If a path is not specified, ensure that
the dftdbpath database manager configuration parameter is not
set to an NFS-mounted path (for example, on UNIX based
systems, it should not specify the $HOME directory of the
instance owner). The path specified for this API in an MPP
system cannot be a relative path.

pLocalDbAlias
Input. A string containing the alias to be placed in the client’s system
database directory. May be NULL. If no local alias is specified, the
database name is the default.

pDbName
Input. A string containing the database name. This is the database
name that will be cataloged in the system database directory. Once the
database has been successfully created in the server’s system database
directory, it is automatically cataloged in the system database
directory with a database alias identical to the database name. Must
not be NULL.

sqlecrea - Create Database

Chapter 1. Application Programming Interfaces 161

REXX API Syntax

REXX API Parameters

dbname
Name of the database.

dbalias
Alias of the database.

path Path on which to create the database.

If a path is not specified, the database is created on the default
database path specified in the database manager configuration file
(dftdbpath configuration parameter).

Note: For MPP systems, a database should not be created in an
NFS-mounted directory. If a path is not specified, ensure that
the dftdbpath database manager configuration parameter is not
set to an NFS-mounted path (for example, on UNIX based
systems, it should not specify the $HOME directory of the
instance owner). The path specified for this API in an MPP
system cannot be a relative path.

codeset
Code set to be used for data entered into the database.

territory
Territory code (locale) to be used for data entered into the database.

SYSTEM
Uses the collating sequence of the operating system based on the
current country code.

CREATE DATABASE dbname [ON path] [ALIAS dbalias]
[USING CODESET codeset TERRITORY territory]
[COLLATE USING {SYSTEM | IDENTITY | USER :udcs}]
[NUMSEGS numsegs] [DFT_EXTENT_SZ dft_extentsize]
[CATALOG TABLESPACE <tablespace_definition>]
[USER TABLESPACE <tablespace_definition>]
[TEMPORARY TABLESPACE <tablespace_definition>]
[WITH comment]

Where <tablespace_definition> stands for:
MANAGED BY {
SYSTEM USING :SMS_string |
DATABASE USING :DMS_string }
[EXTENTSIZE number_of_pages]
[PREFETCHSIZE number_of_pages]
[OVERHEAD number_of_milliseconds]
[TRANSFERRATE number_of_milliseconds]

sqlecrea - Create Database

162 Administrative API Reference

IDENTITY
The collating sequence is the identity sequence, where strings are
compared byte for byte, starting with the leftmost byte.

USER udcs
The collating sequence is specified by the calling application in a host
variable containing a 256-byte string defining the collating sequence.

numsegs
Number of segment directories that will be created and used to store
the DAT, IDX, and LF files.

dft_extentsize
Specifies the default extentsize for table spaces in the database.

SMS_string
A compound REXX host variable identifying one or more containers
that will belong to the table space, and where the table space data will
be stored. In the following, XXX represents the host variable name.
Note that each of the directory names cannot exceed 254 bytes in
length.

XXX.0 Number of directories specified

XXX.1 First directory name for SMS table space

XXX.2 Second directory name for SMS table space

XXX.3 and so on.

DMS_string
A compound REXX host variable identifying one or more containers
that will belong to the table space, where the table space data will be
stored, container sizes (specified in a number of 4KB pages) and types
(file or device). The specified devices (not files) must already exist. In
the following, XXX represents the host variable name. Note that each
of the container names cannot exceed 254 bytes in length.

XXX.0 Number of strings in the REXX host variable (number of first
level elements)

XXX.1.1
Type of the first container (file or device)

XXX.1.2
First file name or device name

XXX.1.3
Size (in pages) of the first container

XXX.2.1
Type of the second container (file or device)

sqlecrea - Create Database

Chapter 1. Application Programming Interfaces 163

XXX.2.2
Second file name or device name

XXX.2.3
Size (in pages) of the second container

XXX.3.1
and so on.

EXTENTSIZE number_of_pages
Number of 4KB pages that will be written to a container before
skipping to the next container.

PREFETCHSIZE number_of_pages
Number of 4KB pages that will be read from the table space when
data prefetching is being performed.

OVERHEAD number_of_milliseconds
Number that specifies the I/O controller overhead, disk seek, and
latency time in milliseconds.

TRANSFERRATE number_of_milliseconds
Number that specifies the time in milliseconds to read one 4KB page
into memory.

comment
Description of the database or the database entry in the system
directory. Do not use a carriage return or line feed character in the
comment. Be sure to enclose the comment text in double quotation
marks. Maximum size is 30 characters.

Sample Programs

C \sqllib\samples\c\dbconf.c

COBOL \sqllib\samples\cobol\dbconf.cbl

REXX \sqllib\samples\rexx\dbconf.cmd

Usage Notes
CREATE DATABASE:
v Creates a database in the specified subdirectory. In an MPP system, creates

the database on all nodes listed in db2nodes.cfg, and creates a
$DB2INSTANCE/NODExxxx directory under the specified subdirectory at each
node, where xxxx represents the local node number. In a non-MPP system,
creates a $DB2INSTANCE/NODE0000 directory under the specified subdirectory.

v Creates the system catalog tables and recovery log.
v Catalogs the database in the following database directories:

– server’s local database directory on the path indicated by pPath or, if the
path is not specified, the default database path defined in the database

sqlecrea - Create Database

164 Administrative API Reference

manager system configuration file. A local database directory resides on
each file system that contains a database.

– server’s system database directory for the attached instance. The
resulting directory entry will contain the database name and a database
alias.
If the API was called from a remote client, the client’s system database
directory is also updated with the database name and an alias.

Creates a system or a local database directory if neither exists. If specified,
the comment and code set values are placed in both directories.

v Stores the specified code set, territory, and collating sequence. A flag is set
in the database configuration file if the collating sequence consists of
unique weights, or if it is the identity sequence.

v Creates the schemata called SYSCAT, SYSFUN, SYSIBM, and SYSSTAT with
SYSIBM as the owner. The server node on which this API is called becomes
the catalog node for the new database. Two nodegroups are created
automatically: IBMDEFAULTGROUP and IBMCATGROUP. For more
information, see the SQL Reference.

v Binds the previously defined database manager bind files to the database
(these are listed in db2ubind.lst). If one or more of these files do not bind
successfully, sqlecrea returns a warning in the SQLCA, and provides
information about the binds that failed. If a bind fails, the user can take
corrective action and manually bind the failing file. The database is created
in any case. A schema called NULLID is implicitly created when
performing the binds with CREATEIN privilege granted to PUBLIC.

v Creates SYSCATSPACE, TEMPSPACE1, and USERSPACE1 table spaces. The
SYSCATSPACE table space is only created on the catalog node. All nodes
have the same table space definitions.

v Grants the following:
– DBADM authority, and CONNECT, CREATETAB, BINDADD,

CREATE_NOT_FENCED, IMPLICIT_SCHEMA, and LOAD privileges to
the database creator

– CONNECT, CREATETAB, BINDADD, and IMPLICIT_SCHEMA
privileges to PUBLIC

– USE privilege on the USERSPACE1 table space to PUBLIC
– SELECT privilege on each system catalog to PUBLIC
– BIND and EXECUTE privilege to PUBLIC for each successfully bound

utility.

With dbadm authority, one can grant these privileges to (and revoke them
from) other users or PUBLIC. If another administrator with sysadm or dbadm
authority over the database revokes these privileges, the database creator
nevertheless retains them.

sqlecrea - Create Database

Chapter 1. Application Programming Interfaces 165

In an MPP environment, the database manager creates a subdirectory,
$DB2INSTANCE/NODExxxx, under the specified or default path on all nodes. The
xxxx is the node number as defined in the db2nodes.cfg file (that is, node 0
becomes NODE0000). Subdirectories SQL00001 through SQLnnnnn will reside on
this path. This ensures that the database objects associated with different
nodes are stored in different directories (even if the subdirectory $DB2INSTANCE
under the specified or default path is shared by all nodes).

CREATE DATABASE will fail if the application is already connected to a
database.

If the database description block structure is not set correctly, an error
message is returned (see “SQLEDBDESC” on page 485).

The ″eye-catcher″ of the database description block must be set to the
symbolic value SQLE_DBDESC_2 (defined in sqlenv). The following sample
user-defined collating sequences are available in the host language include
files:

sqle819a If the code page of the database is 819 (ISO Latin/1), this
sequence will cause sorting to be performed according to the
host CCSID 500 (EBCDIC International).

sqle819b If the code page of the database is 819 (ISO Latin/1), this
sequence will cause sorting to be performed according to the
host CCSID 037 (EBCDIC US English).

sqle850a If the code page of the database is 850 (ASCII Latin/1), this
sequence will cause sorting to be performed according to the
host CCSID 500 (EBCDIC International).

sqle850b If the code page of the database is 850 (ASCII Latin/1), this
sequence will cause sorting to be performed according to the
host CCSID 037 (EBCDIC US English).

sqle932a If the code page of the database is 932 (ASCII Japanese), this
sequence will cause sorting to be performed according to the
host CCSID 5035 (EBCDIC Japanese).

sqle932b If the code page of the database is 932 (ASCII Japanese), this
sequence will cause sorting to be performed according to the
host CCSID 5026 (EBCDIC Japanese).

The collating sequence specified during CREATE DATABASE cannot be
changed later, and all character comparisons in the database use the specified
collating sequence. This affects the structure of indexes as well as the results
of queries.

Use sqlecadb to define different alias names for the new database.

sqlecrea - Create Database

166 Administrative API Reference

See Also
“sqlabndx - Bind” on page 85

“sqlecadb - Catalog Database” on page 149

“sqlecran - Create Database at Node” on page 157

“sqledpan - Drop Database at Node” on page 184

“sqledrpd - Drop Database” on page 188.

sqlecrea - Create Database

Chapter 1. Application Programming Interfaces 167

sqlectnd - Catalog Node
Stores information in the node directory about the location of a DB2 server
instance based on the communications protocol used to access that instance.
The information is needed to establish a database connection or attachment
between an application and a server instance.

Authorization
One of the following:
v sysadm

v sysctrl

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

pNodeInfo
Input. A pointer to a node directory structure. For more information
about this structure, see “SQLE-NODE-STRUCT” on page 476.

pProtocolInfo
Input. A pointer to the protocol structure. For more information about
these structures, see:

/* File: sqlenv.h */
/* API: Catalog Node */
/* ... */
SQL_API_RC SQL_API_FN

sqlectnd (
struct sqle_node_struct * pNodeInfo,
void * pProtocolInfo,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Catalog Node */
/* ... */
SQL_API_RC SQL_API_FN

sqlgctnd (
struct sqlca * pSqlca,
struct sqle_node_struct * pNodeInfo,
void * pProtocolInfo);

/* ... */

sqlectnd - Catalog Node

168 Administrative API Reference

v “SQLE-NODE-CPIC” on page 471
v “SQLE-NODE-IPXSPX” on page 472
v “SQLE-NODE-LOCAL” on page 473
v “SQLE-NODE-NETB” on page 474
v “SQLE-NODE-NPIPE” on page 475
v “SQLE-NODE-TCPIP” on page 478.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax

REXX API Parameters

nodename
Alias for the node to be cataloged.

symbolic_destination_name
Symbolic destination name of the remote partner node.

comment
An optional description associated with this node directory entry. Do
not include a CR/LF character in a comment. Maximum length is 30
characters. The comment text must be enclosed by double quotation
marks.

REXX API Syntax

REXX API Parameters

nodename
Alias for the node to be cataloged.

file_server
Name of the NetWare file server where the internetwork address of
the database manager instance is registered. The internetwork address
is stored in the bindery at the NetWare file server, and is accessed
using objectname.

objectname
The database manager server instance is represented as the object,

CATALOG APPC NODE nodename DESTINATION symbolic_destination_name
[SECURITY {NONE|SAME|PROGRAM}]
[WITH comment]

CATALOG IPXSPX NODE nodename REMOTE file_server SERVER objectname
[WITH comment]

sqlectnd - Catalog Node

Chapter 1. Application Programming Interfaces 169

objectname, on the NetWare file server. The server’s IPX/SPX
internetwork address is stored and retrieved from this object.

comment
An optional description associated with this node directory entry. Do
not include a CR/LF character in a comment. Maximum length is 30
characters. The comment text must be enclosed by double quotation
marks.

REXX API Syntax

REXX API Parameters

nodename
Alias for the node to be cataloged.

instance_name
Name of the instance to be cataloged.

comment
An optional description associated with this node directory entry. Do
not include a CR/LF character in a comment. Maximum length is 30
characters. The comment text must be enclosed by double quotation
marks.

REXX API Syntax

REXX API Parameters

nodename
Alias for the node to be cataloged.

server_nname
Name of the remote workstation. This is the workstation name
(nname) found in the database manager configuration file of the server
instance.

adapternum
Local LAN adapter number.

comment
An optional description associated with this node directory entry. Do
not include a CR/LF character in a comment. Maximum length is 30
characters. The comment text must be enclosed by double quotation
marks.

CATALOG LOCAL NODE nodename INSTANCE instance_name [WITH comment]

CATALOG NETBIOS NODE nodename REMOTE server_nname ADAPTER adapternum
[WITH comment]

sqlectnd - Catalog Node

170 Administrative API Reference

REXX API Syntax

REXX API Parameters

nodename
Alias for the node to be cataloged.

computer_name
The computer name of the node on which the target database resides.

instance_name
Name of the instance to be cataloged.

REXX API Syntax

REXX API Parameters

nodename
Alias for the node to be cataloged.

hostname
Host name of the node where the target database resides.

servicename
Either the service name of the database manager instance on the
remote node, or the port number associated with that service name.

comment
An optional description associated with this node directory entry. Do
not include a CR/LF character in a comment. Maximum length is 30
characters. The comment text must be enclosed by double quotation
marks.

Sample Programs

C \sqllib\samples\c\nodecat.c

COBOL \sqllib\samples\cobol\nodecat.cbl

REXX \sqllib\samples\rexx\nodecat.cmd

Usage Notes
DB2 creates the node directory on the first call to this API if the node
directory does not exist. On OS/2 or the Windows operating system, the node
directory is stored in the directory of the instance being used. On UNIX based
systems, it is stored in the DB2 install directory (sqllib, for example).

CATALOG NPIPE NODE nodename REMOTE computer_name INSTANCE instance_name

CATALOG TCPIP NODE nodename REMOTE hostname SERVER servicename
[WITH comment]

sqlectnd - Catalog Node

Chapter 1. Application Programming Interfaces 171

If directory caching is enabled (see the configuration parameter dir_cache in
“sqlfxsys - Get Database Manager Configuration” on page 278), database,
node, and DCS directory files are cached in memory. An application’s
directory cache is created during its first directory lookup. Since the cache is
only refreshed when the application modifies any of the directory files,
directory changes made by other applications may not be effective until the
application has restarted. To refresh DB2’s shared cache (server only), stop
(db2stop) and then restart (db2start) the database manager. To refresh the
directory cache for another application, stop and then restart that application.

To list the contents of the node directory, use “sqlenops - Open Node
Directory Scan” on page 228, “sqlengne - Get Next Node Directory Entry” on
page 225, and “sqlencls - Close Node Directory Scan” on page 223.

See Also
“sqlencls - Close Node Directory Scan” on page 223

“sqlengne - Get Next Node Directory Entry” on page 225

“sqlenops - Open Node Directory Scan” on page 228

“sqleuncn - Uncatalog Node” on page 257.

sqlectnd - Catalog Node

172 Administrative API Reference

sqledcgd - Change Database Comment
Changes a database comment in the system database directory or the local
database directory. New comment text can be substituted for text currently
associated with a comment.

Scope
This API only affects the node on which it is issued.

Authorization
One of the following:
v sysadm

v sysctrl

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

/* File: sqlenv.h */
/* API: Change Database Comment */
/* ... */
SQL_API_RC SQL_API_FN

sqledcgd (
_SQLOLDCHAR * pDbAlias,
_SQLOLDCHAR * pPath,
_SQLOLDCHAR * pComment,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Change Database Comment */
/* ... */
SQL_API_RC SQL_API_FN

sqlgdcgd (
unsigned short CommentLen,
unsigned short PathLen,
unsigned short DbAliasLen,
struct sqlca * pSqlca,
_SQLOLDCHAR * pComment,
_SQLOLDCHAR * pPath,
_SQLOLDCHAR * pDbAlias);

/* ... */

sqledcgd - Change Database Comment

Chapter 1. Application Programming Interfaces 173

API Parameters

CommentLen
Input. A 2-byte unsigned integer representing the length in bytes of
the comment. Set to zero if no comment is provided.

PathLen
Input. A 2-byte unsigned integer representing the length in bytes of
the path parameter. Set to zero if no path is provided.

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of
the database alias.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pComment
Input. A string containing an optional description of the database. A
null string indicates no comment. It can also indicate no change to an
existing database comment.

pPath Input. A string containing the path on which the local database
directory resides. If the specified path is a null pointer, the system
database directory is used.

The comment is only changed in the local database directory or the
system database directory on the node on which the API is executed.
To change the database comment on all nodes, run the API on every
node.

pDbAlias
Input. A string containing the database alias. This is the name that is
cataloged in the system database directory, or the name cataloged in
the local database directory if the path is specified.

REXX API Syntax

REXX API Parameters

database_alias
Alias of the database whose comment is to be changed.

To change the comment in the system database directory, it is
necessary to specify the database alias.

If the path where the database resides is specified (with the path
parameter), enter the name (not the alias) of the database. Use this
method to change the comment in the local database directory.

CHANGE DATABASE database_alias COMMENT [ON path] WITH comment

sqledcgd - Change Database Comment

174 Administrative API Reference

path Path on which the database resides.

comment
Describes the entry in the system database directory or the local
database directory. Any comment that helps to describe the cataloged
database can be entered. The maximum length of a comment string is
30 characters. A carriage return or a line feed character is not
permitted. The comment text must be enclosed by double quotation
marks.

Sample Programs

C \sqllib\samples\c\dbcmt.c

COBOL \sqllib\samples\cobol\dbcmt.cbl

REXX \sqllib\samples\rexx\dbcmt.cmd

Usage Notes
New comment text replaces existing text. To append information, enter the
old comment text, followed by the new text.

To modify an existing comment:
1. Call “sqledosd - Open Database Directory Scan” on page 181
2. Call “sqledgne - Get Next Database Directory Entry” on page 178 to

retrieve the old comment
3. Modify the retrieved comment
4. Call “sqledcls - Close Database Directory Scan” on page 176
5. Call ″sqledcgd - Change Database Comment″ to replace the old text with

the modified text.

Only the comment for an entry associated with the database alias is modified.
Other entries with the same database name, but with different aliases, are not
affected.

If the path is specified, the database alias must be cataloged in the local
database directory. If the path is not specified, the database alias must be
cataloged in the system database directory.

See Also
“sqlecrea - Create Database” on page 159

“sqlecadb - Catalog Database” on page 149.

sqledcgd - Change Database Comment

Chapter 1. Application Programming Interfaces 175

sqledcls - Close Database Directory Scan
Frees the resources allocated by “sqledosd - Open Database Directory Scan”
on page 181.

Authorization
None

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

Handle
Input. Identifier returned from the associated OPEN DATABASE
DIRECTORY SCAN API.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax

/* File: sqlenv.h */
/* API: Close Database Directory Scan */
/* ... */
SQL_API_RC SQL_API_FN

sqledcls (
unsigned short Handle,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Close Database Directory Scan */
/* ... */
SQL_API_RC SQL_API_FN

sqlgdcls (
unsigned short Handle,
struct sqlca * pSqlca);

/* ... */

CLOSE DATABASE DIRECTORY scanid

sqledcls - Close Database Directory Scan

176 Administrative API Reference

REXX API Parameters

scanid A host variable containing the scanid returned from the OPEN
DATABASE DIRECTORY SCAN API.

Sample Programs

C \sqllib\samples\c\dbcat.c

COBOL \sqllib\samples\cobol\dbcat.cbl

REXX \sqllib\samples\rexx\dbcat.cmd

See Also
“sqledgne - Get Next Database Directory Entry” on page 178

“sqledosd - Open Database Directory Scan” on page 181.

sqledcls - Close Database Directory Scan

Chapter 1. Application Programming Interfaces 177

sqledgne - Get Next Database Directory Entry
Returns the next entry in the system database directory or the local database
directory copy returned by “sqledosd - Open Database Directory Scan” on
page 181. Subsequent calls to this API return additional entries.

Authorization
None

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

Handle
Input. Identifier returned from the associated OPEN DATABASE
DIRECTORY SCAN API.

ppDbDirEntry
Output. The caller supplies the API with the address of a pointer to
an sqledinfo structure. The space for the directory data is allocated by
the API, and a pointer to that space is returned to the caller. A call to

/* File: sqlenv.h */
/* API: Get Next Database Directory Entry */
/* ... */
SQL_API_RC SQL_API_FN

sqledgne (
unsigned short Handle,
struct sqledinfo ** ppDbDirEntry,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Get Next Database Directory Entry */
/* ... */
SQL_API_RC SQL_API_FN

sqlgdgne (
unsigned short Handle,
struct sqledinfo ** ppDbDirEntry,
struct sqlca * pSqlca);

/* ... */

sqledgne - Get Next Database Directory Entry

178 Administrative API Reference

“sqledcls - Close Database Directory Scan” on page 176 frees the
allocated space. Information returned to the buffer is described in
“SQLEDINFO” on page 493.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax

REXX API Parameters

scanid A REXX host variable containing the identifier returned from the
OPEN DATABASE DIRECTORY SCAN API.

value A compound REXX host variable to which the database entry
information is returned. If no name is given, the name SQLDINFO is
used. In the following, XXX represents the host variable name (the
corresponding field names are taken from the structure returned by
the API):

XXX.0 Number of elements in the variable (always 12)

XXX.1 ALIAS (alias of the database)

XXX.2 DBNAME (name of the database)

XXX.3 DRIVE/PATH (local database directory path name)

XXX.3.1 NODE NUMBER (valid for local database directory
only)

XXX.4 INTNAME (token identifying the database
subdirectory)

XXX.5 NODENAME (name of the node where the database
is located)

XXX.6 DBTYPE (product name and release number)

XXX.7 COMMENT (comment associated with the database)

XXX.8 Reserved

XXX.9 TYPE (entry type)

XXX.10 AUTHENTICATION (authentication type)

XXX.10.1 DCE principal

XXX.11 GLBDBNAME (Global database name)

XXX.12 CATALOG NODE NUMBER

GET DATABASE DIRECTORY ENTRY :scanid [USING :value]

sqledgne - Get Next Database Directory Entry

Chapter 1. Application Programming Interfaces 179

Sample Programs

C \sqllib\samples\c\dbcat.c

COBOL \sqllib\samples\cobol\dbcat.cbl

REXX \sqllib\samples\rexx\dbcat.cmd

Usage Notes
All fields of the directory entry information buffer are padded to the right
with blanks.

A subsequent GET NEXT DATABASE DIRECTORY ENTRY obtains the entry
following the current entry.

The sqlcode value of sqlca is set to 1014 if there are no more entries to scan
when GET NEXT DATABASE DIRECTORY ENTRY is called.

The count value returned by the OPEN DATABASE DIRECTORY SCAN API
can be used to scan through the entire directory by issuing GET NEXT
DATABASE DIRECTORY ENTRY calls, one at a time, until the number of
scans equals the count of entries.

See Also
“sqledcls - Close Database Directory Scan” on page 176

“sqledosd - Open Database Directory Scan” on page 181.

sqledgne - Get Next Database Directory Entry

180 Administrative API Reference

sqledosd - Open Database Directory Scan
Stores a copy of the system database directory or the local database directory
in memory, and returns the number of entries. This copy represents a
snapshot of the directory at the time the directory is opened. This copy is not
updated, even if the directory itself is changed later.

Use “sqledgne - Get Next Database Directory Entry” on page 178 to advance
through the database directory, examining information about the database
entries. Close the scan using “sqledcls - Close Database Directory Scan” on
page 176. This removes the copy of the directory from memory.

Authorization
None

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

/* File: sqlenv.h */
/* API: Open Database Directory Scan */
/* ... */
SQL_API_RC SQL_API_FN

sqledosd (
_SQLOLDCHAR * pPath,
unsigned short * pHandle,
unsigned short * pNumEntries,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Open Database Directory Scan */
/* ... */
SQL_API_RC SQL_API_FN

sqlgdosd (
unsigned short PathLen,
struct sqlca * pSqlca,
unsigned short * pNumEntries,
unsigned short * pHandle,
_SQLOLDCHAR * pPath);

/* ... */

sqledosd - Open Database Directory Scan

Chapter 1. Application Programming Interfaces 181

API Parameters

PathLen
Input. A 2-byte unsigned integer representing the length in bytes of
the path parameter. Set to zero if no path is provided.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pNumEntries
Output. Address of a 2-byte area where the number of directory
entries is returned.

pHandle
Output. Address of a 2-byte area for the returned identifier. This
identifier must be passed to “sqledgne - Get Next Database Directory
Entry” on page 178 for scanning the database entries, and to “sqledcls
- Close Database Directory Scan” on page 176 to release the resources.

pPath Input. The name of the path on which the local database directory
resides. If the specified path is a NULL pointer, the system database
directory is used.

REXX API Syntax

REXX API Parameters

path_name
Name of the path on which the local database directory resides. If the
path is not specified, the system database directory is used.

value A compound REXX host variable to which database directory
information is returned. In the following, XXX represents the host
variable name.

XXX.0 Number of elements in the variable (always 2)

XXX.1 Identifier (handle) for future scan access

XXX.2 Number of entries contained within the directory.

Sample Programs

C \sqllib\samples\c\dbcat.c

COBOL \sqllib\samples\cobol\dbcat.cbl

REXX \sqllib\samples\rexx\dbcat.cmd

OPEN DATABASE DIRECTORY [ON path_name] USING :value

sqledosd - Open Database Directory Scan

182 Administrative API Reference

Usage Notes
Storage allocated by this API is freed by “sqledcls - Close Database Directory
Scan” on page 176.

Multiple OPEN DATABASE DIRECTORY SCAN APIs can be issued against
the same directory. However, the results may not be the same. The directory
may change between openings.

There can be a maximum of eight opened database directory scans per
process.

See Also
“sqledcls - Close Database Directory Scan” on page 176

“sqledgne - Get Next Database Directory Entry” on page 178.

sqledosd - Open Database Directory Scan

Chapter 1. Application Programming Interfaces 183

sqledpan - Drop Database at Node
Drops a database at a specified node. Can only be run on an MPP server.

Scope
This API only affects the node on which it is called.

Authorization
One of the following:
v sysadm

v sysctrl

Required Connection
None. An instance attachment is established for the duration of the call.

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

Reserved1
Reserved for future use.

/* File: sqlenv.h */
/* API: Drop Database at Node */
/* ... */
SQL_API_RC SQL_API_FN

sqledpan (
char * pDbAlias,
void * pReserved,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Drop Database at Node */
/* ... */
SQL_API_RC SQL_API_FN

sqlgdpan (
unsigned short Reserved1,
unsigned short DbAliasLen,
struct sqlca * pSqlca,
void * pReserved2,
char * pDbAlias);

/* ... */

sqledpan - Drop Database at Node

184 Administrative API Reference

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of
the database alias.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pReserved2
A spare pointer that is set to null or points to zero. Reserved for
future use.

pDbAlias
Input. A string containing the alias of the database to be dropped.
This name is used to reference the actual database name in the system
database directory.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How
the API Descriptions are Organized” on page 12, or the Application Development
Guide. For a description of the syntax, see the Command Reference.

Usage Notes
This API is used by utilities supplied with DB2 Universal Database Enterprise
- Extended Edition, and is not intended for general use. Improper use of this
API can cause inconsistencies in the system, so it should only be used with
caution.

See Also
“sqlecran - Create Database at Node” on page 157

“sqledrpd - Drop Database” on page 188.

sqledpan - Drop Database at Node

Chapter 1. Application Programming Interfaces 185

sqledreg - Deregister
Deregisters the DB2 server from a network file server. The DB2 server’s
network address is removed from a specified registry on the file server.

Authorization
None

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

Registry
Input. Indicates where on the network file server to deregister the
DB2 server. In this release, the only supported registry is
SQL_NWBINDERY (NetWare file server bindery, defined in sqlenv).

pRegisterInfo
Input. A pointer to the sqle_reg_nwbindery structure. In this structure,
the caller specifies a user name and password that are valid on the
network file server. For more information about this structure, see
“SQLE-REG-NWBINDERY” on page 479.

/* File: sqlenv.h */
/* API: Deregister */
/* ... */
SQL_API_RC SQL_API_FN

sqledreg (
unsigned short Registry,
void * pRegisterInfo,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Deregister */
/* ... */
SQL_API_RC SQL_API_FN

sqlgdreg (
unsigned short Registry,
void * pRegisterInfo,
struct sqlca * pSqlca);

/* ... */

sqledreg - Deregister

186 Administrative API Reference

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How
the API Descriptions are Organized” on page 12, or the Application Development
Guide. For a description of the syntax, see the Command Reference.

Usage Notes
When Registry has a value of SQL_NWBINDERY, this API uses the NetWare user
name and password supplied in the sqle_reg_nwbindery structure to log onto
the NetWare file server (FILESERVER) specified in the database manager
configuration file. The object name (OBJECTNAME) specified in the database
manager configuration file is deleted from the NetWare file server bindery.

The NetWare user name and password specified must have supervisory or
equivalent authority.

This API must be issued locally from the DB2 server. It is not supported
remotely.

If the IPX/SPX fields are reconfigured, or the DB2 server’s IPX/SPX
internetwork address changes, deregister the DB2 server from the network file
server before making the changes, and then register it again after the changes
have been made.

See Also
“sqleregs - Register” on page 241.

sqledreg - Deregister

Chapter 1. Application Programming Interfaces 187

sqledrpd - Drop Database
Deletes the database contents and all log files for the database, uncatalogs the
database, and deletes the database subdirectory.

Scope
By default, this API affects all nodes that are listed in the
$HOME/sqllib/db2nodes.cfg file.

Authorization
One of the following:
v sysadm

v sysctrl

Required Connection
Instance. It is not necessary to call ATTACH before dropping a remote
database. If the database is cataloged as remote, an instance attachment to the
remote node is established for the duration of the call.

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

Reserved1
Reserved for future use.

/* File: sqlenv.h */
/* API: Drop Database */
/* ... */
SQL_API_RC SQL_API_FN

sqledrpd (
_SQLOLDCHAR * pDbAlias,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Drop Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlgdrpd (
unsigned short Reserved1,
unsigned short DbAliasLen,
struct sqlca * pSqlca,
_SQLOLDCHAR * pReserved2,
_SQLOLDCHAR * pDbAlias);

/* ... */

sqledrpd - Drop Database

188 Administrative API Reference

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of
the database alias.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pReserved2
A spare pointer that is set to null or points to zero. Reserved for
future use.

pDbAlias
Input. A string containing the alias of the database to be dropped.
This name is used to reference the actual database name in the system
database directory.

REXX API Syntax

REXX API Parameters

dbalias
The alias of the database to be dropped.

Sample Programs

C \sqllib\samples\c\dbconf.sqc

COBOL \sqllib\samples\cobol\dbconf.sqb

REXX \sqllib\samples\rexx\dbconf.cmd

Usage Notes
sqledrpd deletes all user data and log files. If the log files are needed for a
roll-forward recovery after a restore operation, the files should be saved prior
to calling this API.

The database must not be in use; all users must be disconnected from the
database before the database can be dropped.

To be dropped, a database must be cataloged in the system database directory.
Only the specified database alias is removed from the system database
directory. If other aliases with the same database name exist, their entries
remain. If the database being dropped is the last entry in the local database
directory, the local database directory is deleted automatically.

DROP DATABASE dbalias

sqledrpd - Drop Database

Chapter 1. Application Programming Interfaces 189

If this API is called from a remote client (or from a different instance on the
same machine), the specified alias is removed from the client’s system
database directory. The corresponding database name is removed from the
server’s system database directory.

This API unlinks all files that are linked through any DATALINK columns.
Since the unlink operation is performed asynchronously on the DB2 Data
Links Manager, its effects may not be seen immediately on the DB2 Data
Links Manager, and the unlinked files may not be immediately available for
other operations. When the API is called, all the DB2 Data Links Managers
configured to that database must be available; otherwise, the drop database
operation will fail.

See Also
“sqlecadb - Catalog Database” on page 149

“sqlecrea - Create Database” on page 159

“sqlecran - Create Database at Node” on page 157

“sqledpan - Drop Database at Node” on page 184

“sqleuncd - Uncatalog Database” on page 254.

sqledrpd - Drop Database

190 Administrative API Reference

sqledrpn - Drop Node Verify
Verifies whether a node is being used by a database. A message is returned,
indicating whether the node can be dropped.

Scope
This API only affects the node on which it is issued.

Authorization
One of the following:
v sysadm

v sysctrl

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

Reserved1
Reserved for the length of pReserved2.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

/* File: sqlenv.h */
/* API: Drop Node Verify */
/* ... */
SQL_API_RC SQL_API_FN

sqledrpn (
unsigned short Action,
void * pReserved,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Drop Node Verify */
/* ... */
SQL_API_RC SQL_API_FN

sqlgdrpn (
unsigned short Reserved1,
struct sqlca * pSqlca,
void * pReserved2,
unsigned short Action);

/* ... */

sqledrpn - Drop Node Verify

Chapter 1. Application Programming Interfaces 191

pReserved2
A spare pointer that is set to NULL or points to 0. Reserved for future
use.

Action
The action requested. The valid value is:

SQL_DROPNODE_VERIFY

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How
the API Descriptions are Organized” on page 12, or the Application Development
Guide. For a description of the syntax, see the Command Reference.

Usage Notes
If a message is returned, indicating that the node is not in use, use the
db2stop command with DROP NODENUM to remove the entry for the node
from the db2nodes.cfg file, which removes the node from the database
system.

If a message is returned, indicating that the node is in use, the following
actions should be taken:
1. If the node contains data, redistribute the data to remove it from the node

using “sqludrdt - Redistribute Nodegroup” on page 298. Use either the
drop node option on the sqludrdt API, or the ALTER NODEGROUP
statement to remove the node from any nodegroups for the database. This
must be done for each database that contains the node in a nodegroup.
For more information, see the SQL Reference.

2. Drop any event monitors that are defined on the node.
3. Rerun sqledrpn to ensure that the database is no longer in use.

See Also
“sqleaddn - Add Node” on page 138

“sqlepstp - Stop Database Manager” on page 233.

sqledrpn - Drop Node Verify

192 Administrative API Reference

sqledtin - Detach
Removes the logical instance attachment, and terminates the physical
communication connection if there are no other logical connections using this
layer.

Authorization
None

Required Connection
None. Removes an existing instance attachment.

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax

Sample Programs

C \sqllib\samples\c\dbinst.c

COBOL \sqllib\samples\cobol\dbinst.cbl

REXX \sqllib\samples\rexx\dbinst.cmd

/* File: sqlenv.h */
/* API: Detach */
/* ... */
SQL_API_RC SQL_API_FN

sqledtin (
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Detach */
/* ... */
SQL_API_RC SQL_API_FN

sqlgdtin (
struct sqlca * pSqlca);

/* ... */

DETACH

sqledtin - Detach

Chapter 1. Application Programming Interfaces 193

See Also
“sqleatin - Attach” on page 145.

sqledtin - Detach

194 Administrative API Reference

sqlefmem - Free Memory
Frees memory allocated by DB2 APIs on the caller’s behalf. Intended for use
with “sqlbtcq - Tablespace Container Query” on page 127 and “sqlbmtsq -
Tablespace Query” on page 113.

Authorization
None

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pBuffer
Input. Pointer to the memory to be freed.

Sample Programs

C \sqllib\samples\c\tspace.sqc

COBOL \sqllib\samples\cobol\tspace.sqb

/* File: sqlenv.h */
/* API: Free Memory */
/* ... */
SQL_API_RC SQL_API_FN

sqlefmem (
struct sqlca * pSqlca,
void * pBuffer);

/* ... */

/* File: sqlenv.h */
/* API: Free Memory */
/* ... */
SQL_API_RC SQL_API_FN

sqlgfmem (
struct sqlca * pSqlca,
void * pBuffer);

/* ... */

sqlefmem - Free Memory

Chapter 1. Application Programming Interfaces 195

sqlefrce - Force Application
Forces local or remote users or applications off the system to allow for
maintenance on a server.

Attention: If an operation that cannot be interrupted (RESTORE DATABASE,
for example) is forced, the operation must be successfully re-executed before
the database becomes available.

Scope
This API affects all nodes that are listed in the $HOME/sqllib/db2nodes.cfg
file.

In a partitioned database environment, this API does not have to be issued
from the coordinator node of the application being forced. This API can be
issued from any node (database partition server) in the partitioned database
environment.

Authorization
One of the following:
v sysadm

v sysctrl

Required Connection
Instance. To force users off a remote server, it is necessary to first attach to
that server. If no attachment exists, this API is executed locally.

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* API: Force Application */
/* ... */
SQL_API_RC SQL_API_FN

sqlefrce (
long NumAgentIds,
sqluint32 * pAgentIds,
unsigned short ForceMode,
struct sqlca * pSqlca);

/* ... */

sqlefrce - Force Application

196 Administrative API Reference

Generic API Syntax

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

ForceMode
Input. An integer specifying the operating mode of the FORCE
APPLICATION API. Only the asynchronous mode is supported. This
means that FORCE APPLICATION does not wait until all specified
users are terminated before returning. It returns as soon as the API
has been issued successfully, or an error occurs. As a result, there may
be a short interval between the time the FORCE APPLICATION call
completes and the specified users have been terminated.

This parameter must be set to SQL_ASYNCH (defined in sqlenv).

pAgentIds
Input. Pointer to an array of unsigned long integers. Each entry
describes the agent ID of the corresponding database user. To list the
agent IDs of the active applications, use “db2GetSnapshot - Get
Snapshot” on page 27.

NumAgentIds
Input. An integer representing the total number of users to be
terminated. This number should be the same as the number of
elements in the array of agent IDs.

If this parameter is set to SQL_ALL_USERS (defined in sqlenv), all users
are forced. If it is set to zero, an error is returned.

REXX API Syntax

REXX API Parameters

ALL All applications will be disconnected from their database connection.

/* File: sqlenv.h */
/* API: Force Application */
/* ... */
SQL_API_RC SQL_API_FN

sqlgfrce (
struct sqlca * pSqlca,
unsigned short ForceMode,
sqluint32 * pAgentIds,
long NumAgentIds);

/* ... */

FORCE APPLICATION {ALL | :agentidarray} [MODE ASYNC]

sqlefrce - Force Application

Chapter 1. Application Programming Interfaces 197

agentidarray
A compound REXX host variable containing the list of agent IDs to be
terminated. In the following, XXX is the name of the host variable:

XXX.0 Number of agents to be terminated

XXX.1 First agent ID

XXX.2 Second agent ID

XXX.3 and so on.

ASYNC
The only mode currently supported means that FORCE
APPLICATION does not wait until all specified applications are
terminated before returning.

Sample Programs

C \sqllib\samples\c\dbstop.sqc

COBOL \sqllib\samples\cobol\dbstop.sqb

REXX \sqllib\samples\rexx\dbstop.cmd

Usage Notes
db2stop cannot be executed during a force. The database manager remains
active so that subsequent database manager operations can be handled
without the need for db2start.

To preserve database integrity, only users who are idling or executing
interruptible database operations can be terminated.

After a FORCE has been issued, the database will still accept requests to
connect. Additional forces may be required to completely force all users off.

The database system monitor functions are used to gather the agent IDs of the
users to be forced. For more information, see the System Monitor Guide and
Reference.

When the force mode is set to SQL_ASYNCH (the only value permitted), the API
immediately returns to the calling application.

Minimal validation is performed on the array of agent IDs to be forced. The
user must ensure that the pointer points to an array containing the total
number of elements specified. If NumAgentIds is set to SQL_ALL_USERS, the
array is ignored.

When a user is terminated, a ROLLBACK is performed to ensure database
consistency.

sqlefrce - Force Application

198 Administrative API Reference

All users that can be forced will be forced. If one or more specified agent IDs
cannot be found, sqlcode in the sqlca structure is set to 1230. An agent ID may
not be found, for instance, if the user signs off between the time an agent ID
is collected and sqlefrce is called. The user that calls this API is never forced
off.

Agent IDs are recycled, and are used to force applications some time after
being gathered by the database system monitor. When a user signs off,
therefore, another user may sign on and acquire the same agent ID through
this recycling process, with the result that the wrong user may be forced.

See Also
“sqleatin - Attach” on page 145

“sqledtin - Detach” on page 193

“sqlepstp - Stop Database Manager” on page 233

“db2GetSnapshot - Get Snapshot” on page 27.

sqlefrce - Force Application

Chapter 1. Application Programming Interfaces 199

sqlegdad - Catalog DCS Database
Stores information about remote databases in the Database Connection
Services (DCS) directory. These databases are accessed through an Application
Requester (AR), such as DB2 Connect. Having a DCS directory entry with a
database name matching a database name in the system database directory
invokes the specified AR to forward SQL requests to the remote server where
the database resides. For more information about DB2 Connect and DCS
directory entries, see the DB2 Connect User’s Guide.

Authorization
One of the following:
v sysadm

v sysctrl

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

/* File: sqlenv.h */
/* API: Catalog DCS Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlegdad (
struct sql_dir_entry * pDCSDirEntry,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Catalog DCS Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlggdad (
struct sqlca * pSqlca,
struct sql_dir_entry * pDCSDirEntry);

/* ... */

sqlegdad - Catalog DCS Database

200 Administrative API Reference

pDCSDirEntry
Input. A pointer to an sql_dir_entry (Database Connection Services
directory) structure. For more information about this structure, see
“SQL-DIR-ENTRY” on page 437.

REXX API Syntax

REXX API Parameters

dbname
The local database name of the directory entry to be added.

target_dbname
The target database name.

arname
The application client name.

parms Parameter string. If specified, the string must be enclosed by double
quotation marks.

comment
Description associated with the entry. Maximum length is 30
characters. Enclose the comment by double quotation marks.

Sample Programs

C \sqllib\samples\c\dcscat.c

COBOL \sqllib\samples\cobol\dcscat.cbl

REXX \sqllib\samples\rexx\dcscat.cmd

Usage Notes
The DB2 Connect program provides connections to DRDA Application Servers
such as:
v DB2 for OS/390 databases on System/370 and System/390 architecture host

computers
v DB2 for VM and VSE databases on System/370 and System/390

architecture host computers
v OS/400 databases on Application System/400 (AS/400) host computers.

The database manager creates a Database Connection Services directory if one
does not exist. This directory is stored on the path that contains the database
manager instance that is being used. The DCS directory is maintained outside
of the database.

CATALOG DCS DATABASE dbname [AS target_dbname]
[AR arname] [PARMS parms] [WITH comment]

sqlegdad - Catalog DCS Database

Chapter 1. Application Programming Interfaces 201

The database must also be cataloged as a remote database in the system
database directory.

List the contents of the DCS directory using “sqlegdsc - Open DCS Directory
Scan” on page 213, “sqlegdge - Get DCS Directory Entry for Database” on
page 208, “sqlegdgt - Get DCS Directory Entries” on page 210, and “sqlegdcl -
Close DCS Directory Scan” on page 203.

Note: If directory caching is enabled (see the configuration parameter
dir_cache in “sqlfxsys - Get Database Manager Configuration” on
page 278), database, node, and DCS directory files are cached in
memory. An application’s directory cache is created during its first
directory lookup. Since the cache is only refreshed when the application
modifies any of the directory files, directory changes made by other
applications may not be effective until the application has restarted. To
refresh DB2’s shared cache (server only), stop (db2stop) and then
restart (db2start) the database manager. To refresh the directory cache
for another application, stop and then restart that application.

See Also
“sqlegdel - Uncatalog DCS Database” on page 205.

sqlegdad - Catalog DCS Database

202 Administrative API Reference

sqlegdcl - Close DCS Directory Scan
Frees the resources that are allocated by “sqlegdsc - Open DCS Directory
Scan” on page 213.

Authorization
None

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax

Sample Programs

C \sqllib\samples\c\dcscat.c

COBOL \sqllib\samples\cobol\dcscat.cbl

REXX \sqllib\samples\rexx\dcscat.cmd

/* File: sqlenv.h */
/* API: Close DCS Directory Scan */
/* ... */
SQL_API_RC SQL_API_FN

sqlegdcl (
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Close DCS Directory Scan */
/* ... */
SQL_API_RC SQL_API_FN

sqlggdcl (
struct sqlca * pSqlca);

/* ... */

CLOSE DCS DIRECTORY

sqlegdcl - Close DCS Directory Scan

Chapter 1. Application Programming Interfaces 203

See Also
“sqlegdgt - Get DCS Directory Entries” on page 210

“sqlegdsc - Open DCS Directory Scan” on page 213.

sqlegdcl - Close DCS Directory Scan

204 Administrative API Reference

sqlegdel - Uncatalog DCS Database
Deletes an entry from the Database Connection Services (DCS) directory.

Authorization
One of the following:
v sysadm

v sysctrl

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pDCSDirEntry
Input/Output. A pointer to the Database Connection Services
directory structure. For more information about this structure, see
“SQL-DIR-ENTRY” on page 437. Fill in the ldb field of this structure
with the local name of the database to be deleted. The DCS directory
entry with a matching local database name is copied to this structure
before being deleted.

/* File: sqlenv.h */
/* API: Uncatalog DCS Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlegdel (
struct sql_dir_entry * pDCSDirEntry,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Uncatalog DCS Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlggdel (
struct sqlca * pSqlca,
struct sql_dir_entry * pDCSDirEntry);

/* ... */

sqlegdel - Uncatalog DCS Database

Chapter 1. Application Programming Interfaces 205

REXX API Syntax

REXX API Parameters

dbname
The local database name of the directory entry to be deleted.

value A compound REXX host variable into which the directory entry
information is returned. In the following, XXX represents the host
variable name. If no name is given, the name SQLGWINF is used.

XXX.0 Number of elements in the variable (always 7)

XXX.1 RELEASE

XXX.2 LDB

XXX.3 TDB

XXX.4 AR

XXX.5 PARMS

XXX.6 COMMENT

XXX.7 RESERVED.

Sample Programs

C \sqllib\samples\c\dcscat.c

COBOL \sqllib\samples\cobol\dcscat.cbl

REXX \sqllib\samples\rexx\dcscat.cmd

Usage Notes
DCS databases are also cataloged in the system database directory as remote
databases that can be uncataloged using “sqleuncd - Uncatalog Database” on
page 254.

To recatalog a database in the DCS directory, use “sqlegdad - Catalog DCS
Database” on page 200.

To list the DCS databases that are cataloged on a node, use “sqlegdsc - Open
DCS Directory Scan” on page 213, “sqlegdgt - Get DCS Directory Entries” on
page 210, and “sqlegdcl - Close DCS Directory Scan” on page 203.

If directory caching is enabled (see the configuration parameter dir_cache in
“sqlfxsys - Get Database Manager Configuration” on page 278), database,
node, and DCS directory files are cached in memory. An application’s
directory cache is created during its first directory lookup. Since the cache is

UNCATALOG DCS DATABASE dbname [USING :value]

sqlegdel - Uncatalog DCS Database

206 Administrative API Reference

only refreshed when the application modifies any of the directory files,
directory changes made by other applications may not be effective until the
application has restarted. To refresh DB2’s shared cache (server only), stop
(db2stop) and then restart (db2start) the database manager. To refresh the
directory cache for another application, stop and then restart that application.

See Also
“sqlegdad - Catalog DCS Database” on page 200

“sqlegdcl - Close DCS Directory Scan” on page 203

“sqlegdge - Get DCS Directory Entry for Database” on page 208

“sqlegdgt - Get DCS Directory Entries” on page 210

“sqlegdsc - Open DCS Directory Scan” on page 213

“sqleuncd - Uncatalog Database” on page 254.

sqlegdel - Uncatalog DCS Database

Chapter 1. Application Programming Interfaces 207

sqlegdge - Get DCS Directory Entry for Database
Returns information for a specific entry in the Database Connection Services
(DCS) directory.

Authorization
None

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pDCSDirEntry
Input/Output. Pointer to the Database Connection Services directory
structure. For more information about this structure, see
“SQL-DIR-ENTRY” on page 437. Fill in the ldb field of this structure
with the local name of the database whose DCS directory entry is to
be retrieved. The remaining fields in the structure are filled in upon
return of this API.

/* File: sqlenv.h */
/* API: Get DCS Directory Entry for Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlegdge (
struct sql_dir_entry * pDCSDirEntry,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Get DCS Directory Entry for Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlggdge (
struct sqlca * pSqlca,
struct sql_dir_entry * pDCSDirEntry);

/* ... */

sqlegdge - Get DCS Directory Entry for Database

208 Administrative API Reference

REXX API Syntax

REXX API Parameters

dbname
Specifies the local database name of the directory entry to be obtained.

value A compound REXX host variable into which the directory entry
information is returned. In the following, XXX represents the host
variable name. If no name is given, the name SQLGWINF is used.

XXX.0 Number of elements in the variable (always 7)

XXX.1 RELEASE

XXX.2 LDB

XXX.3 TDB

XXX.4 AR

XXX.5 PARMS

XXX.6 COMMENT

XXX.7 RESERVED.

Sample Programs

C \sqllib\samples\c\dcscat.c

COBOL \sqllib\samples\cobol\dcscat.cbl

REXX \sqllib\samples\rexx\dcscat.cmd

See Also
“sqlegdad - Catalog DCS Database” on page 200

“sqlegdcl - Close DCS Directory Scan” on page 203

“sqlegdel - Uncatalog DCS Database” on page 205

“sqlegdgt - Get DCS Directory Entries” on page 210

“sqlegdsc - Open DCS Directory Scan” on page 213.

GET DCS DIRECTORY ENTRY FOR DATABASE dbname [USING :value]

sqlegdge - Get DCS Directory Entry for Database

Chapter 1. Application Programming Interfaces 209

sqlegdgt - Get DCS Directory Entries
Transfers a copy of Database Connection Services (DCS) directory entries to a
buffer supplied by the application.

Authorization
None

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pNumEntries
Input/Output. Pointer to a short integer representing the number of
entries to be copied to the caller’s buffer. The number of entries
actually copied is returned.

pDCSDirEntries
Output. Pointer to a buffer where the collected DCS directory entries
will be held upon return of the API call. For more information about

/* File: sqlenv.h */
/* API: Get DCS Directory Entries */
/* ... */
SQL_API_RC SQL_API_FN

sqlegdgt (
short * pNumEntries,
struct sql_dir_entry * pDCSDirEntries,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Get DCS Directory Entries */
/* ... */
SQL_API_RC SQL_API_FN

sqlggdgt (
struct sqlca * pSqlca,
short * pNumEntries,
struct sql_dir_entry * pDCSDirEntries);

/* ... */

sqlegdgt - Get DCS Directory Entries

210 Administrative API Reference

this structure, see “SQL-DIR-ENTRY” on page 437. The buffer must be
large enough to hold the number of entries specified in the
pNumEntries parameter.

REXX API Syntax

REXX API Parameters

value A compound REXX host variable into which the directory entry
information is returned. In the following, XXX represents the host
variable name. If no name is given, the name SQLGWINF is used.

XXX.0 Number of elements in the variable (always 7)

XXX.1 RELEASE

XXX.2 LDB

XXX.3 TDB

XXX.4 AR

XXX.5 PARMS

XXX.6 COMMENT

XXX.7 RESERVED.

Sample Programs

C \sqllib\samples\c\dcscat.c

COBOL \sqllib\samples\cobol\dcscat.cbl

REXX \sqllib\samples\rexx\dcscat.cmd

Usage Notes
“sqlegdsc - Open DCS Directory Scan” on page 213, which returns the entry
count, must be called prior to issuing GET DCS DIRECTORY ENTRIES.

If all entries are copied to the caller, the Database Connection Services
directory scan is automatically closed, and all resources are released.

If entries remain, subsequent calls to this API should be made, or CLOSE DCS
DIRECTORY SCAN should be called, to release system resources.

GET DCS DIRECTORY ENTRY [USING :value]

sqlegdgt - Get DCS Directory Entries

Chapter 1. Application Programming Interfaces 211

See Also
“sqlegdcl - Close DCS Directory Scan” on page 203

“sqlegdge - Get DCS Directory Entry for Database” on page 208

“sqlegdsc - Open DCS Directory Scan” on page 213.

sqlegdgt - Get DCS Directory Entries

212 Administrative API Reference

sqlegdsc - Open DCS Directory Scan
Stores a copy in memory of the Database Connection Services directory
entries, and returns the number of entries. This is a snapshot of the directory
at the time the directory is opened.

The copy is not updated if the directory itself changes after a call to this API.
Use “sqlegdgt - Get DCS Directory Entries” on page 210 to retrieve the entries,
and “sqlegdcl - Close DCS Directory Scan” on page 203 to release the
resources associated with calling this API.

Authorization
None

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pNumEntries
Output. Address of a 2-byte area to which the number of directory
entries is returned.

/* File: sqlenv.h */
/* API: Open DCS Directory Scan */
/* ... */
SQL_API_RC SQL_API_FN

sqlegdsc (
short * pNumEntries,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Open DCS Directory Scan */
/* ... */
SQL_API_RC SQL_API_FN

sqlggdsc (
struct sqlca * pSqlca,
short * pNumEntries);

/* ... */

sqlegdsc - Open DCS Directory Scan

Chapter 1. Application Programming Interfaces 213

REXX API Syntax

Sample Programs

C \sqllib\samples\c\dcscat.c

COBOL \sqllib\samples\cobol\dcscat.cbl

REXX \sqllib\samples\rexx\dcscat.cmd

Usage Notes
The caller of the scan uses the returned value pNumEntries to allocate enough
memory to receive the entries. If a scan call is received while a copy is already
held, the previous copy is released, and a new copy is collected.

See Also
“sqlegdcl - Close DCS Directory Scan” on page 203

“sqlegdge - Get DCS Directory Entry for Database” on page 208

“sqlegdgt - Get DCS Directory Entries” on page 210.

OPEN DCS DIRECTORY

sqlegdsc - Open DCS Directory Scan

214 Administrative API Reference

sqlegins - Get Instance
Returns the value of the DB2INSTANCE environment variable.

Authorization
None

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pInstance
Output. Pointer to a string buffer where the database manager
instance name is placed. This buffer must be at least 8 bytes in length.

REXX API Syntax

/* File: sqlenv.h */
/* API: Get Instance */
/* ... */
SQL_API_RC SQL_API_FN

sqlegins (
_SQLOLDCHAR * pInstance,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Get Instance */
/* ... */
SQL_API_RC SQL_API_FN

sqlggins (
struct sqlca * pSqlca,
_SQLOLDCHAR * pInstance);

/* ... */

GET INSTANCE INTO :instance

sqlegins - Get Instance

Chapter 1. Application Programming Interfaces 215

REXX API Parameters

instance
A REXX host variable into which the database manager instance name
is to be placed.

Sample Programs

C \sqllib\samples\c\dbinst.c

COBOL \sqllib\samples\cobol\dbinst.cbl

REXX \sqllib\samples\rexx\dbinst.cmd

Usage Notes
The value in the DB2INSTANCE environment variable is not necessarily the
instance to which the user is attached.

To identify the instance to which a user is currently attached, call “sqleatin -
Attach” on page 145, with null arguments except for the sqlca structure.

sqlegins - Get Instance

216 Administrative API Reference

sqleintr - Interrupt
Stops a request. This API is called from a control break signal handler in an
application. The control break signal handler can be the default, installed by
“sqleisig - Install Signal Handler” on page 219, or a routine supplied by the
programmer and installed using an appropriate operating system call.

Authorization
None

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters
None

REXX API Syntax

Examples
call SQLDBS 'INTERRUPT'

Usage Notes
No database manager APIs should be called from an interrupt handler except
sqleintr. However, the system will not prevent it.

/* File: sqlenv.h */
/* API: Interrupt */
/* ... */
SQL_API_RC SQL_API_FN

sqleintr (
void);

/* ... */

/* File: sqlenv.h */
/* API: Interrupt */
/* ... */
SQL_API_RC SQL_API_FN

sqlgintr (
void);

/* ... */

INTERRUPT

sqleintr - Interrupt

Chapter 1. Application Programming Interfaces 217

Any database transaction in a state of committing or rollback cannot be
interrupted.

An interrupted database manager request returns a code indicating that it was
interrupted.

The following table summarizes the effect of an interrupt operation on other
APIs:

Table 7. INTERRUPT Actions

Database Activity Action

BACKUP Utility cancelled. Data on media may be
incomplete.

BIND Binding cancelled. Package creation rolled
back.

COMMIT None. COMMIT completes.

CREATE DATABASE/CREATE DATABASE AT
NODE/ADD NODE/DROP NODE VERIFY

After a certain point, these APIs are not
interruptible. If the interrupt call is received
before this point, the database is not created. If
the interrupt call is received after this point, it
is ignored.

DROP DATABASE/DROP DATABASE AT
NODE

None. These APIs complete.

EXPORT/IMPORT/RUNSTATS Utility cancelled. Database updates rolled back.

FORCE APPLICATION None. FORCE APPLICATION completes.

LOAD Utility cancelled. Data in table may be
incomplete.

PREP Precompile cancelled. Package creation rolled
back.

REORGANIZE TABLE Utility cancelled. Table is left in its previous
state.

RESTORE Utility cancelled. DROP DATABASE
performed. Not applicable to table space level
restore.

ROLLBACK None. ROLLBACK completes.

Directory Services Directory left in consistent state. Utility
function may or may not be performed.

SQL Data Definition statements Database transactions are set to the state
existing prior to invocation of the SQL
statement.

Other SQL statements Database transactions are set to the state
existing prior to invocation of the SQL
statement.

See Also
“sqleisig - Install Signal Handler” on page 219.

sqleintr - Interrupt

218 Administrative API Reference

sqleisig - Install Signal Handler
Installs the default interrupt (usually Control-C and/or Control-Break) signal
handler. When this default handler detects an interrupt signal, it resets the
signal and calls “sqleintr - Interrupt” on page 217.

Authorization
None

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax

Sample Programs

C \sqllib\samples\c\dbcmt.c

COBOL \sqllib\samples\cobol\ish.cbl

REXX \sqllib\samples\rexx\dbcmt.cmd

/* File: sqlenv.h */
/* API: Install Signal Handler */
/* ... */
SQL_API_RC SQL_API_FN

sqleisig (
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Install Signal Handler */
/* ... */
SQL_API_RC SQL_API_FN

sqlgisig (
struct sqlca * pSqlca);

/* ... */

INSTALL SIGNAL HANDLER

sqleisig - Install Signal Handler

Chapter 1. Application Programming Interfaces 219

Usage Notes
If an application has no signal handler, and an interrupt is received, the
application is terminated. This API provides simple signal handling, and can
be used if an application does not have extensive interrupt handling
requirements.

The API must be called for the interrupt signal handler to function properly.

If an application requires a more elaborate interrupt handling scheme, a signal
handling routine that can also call “sqleintr - Interrupt” on page 217 can be
developed. Use either the operating system call or the language-specific
library signal function. “sqleintr - Interrupt” on page 217 should be the only
database manager operation performed by a customized signal handler.
Follow all operating system programming techniques and practices to ensure
that the previously installed signal handlers work properly.

See Also
“sqleintr - Interrupt” on page 217.

sqleisig - Install Signal Handler

220 Administrative API Reference

sqlemgdb - Migrate Database
Converts previous (Version 2.x or higher) versions of DB2 databases to current
formats.

Authorization
sysadm

Required Connection
This API establishes a database connection.

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

PasswordLen
Input. A 2-byte unsigned integer representing the length in bytes of
the password. Set to zero when no password is supplied.

UserNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the user name. Set to zero when no user name is supplied.

/* File: sqlenv.h */
/* API: Migrate Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlemgdb (
_SQLOLDCHAR * pDbAlias,
_SQLOLDCHAR * pUserName,
_SQLOLDCHAR * pPassword,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Migrate Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlgmgdb (
unsigned short PasswordLen,
unsigned short UserNameLen,
unsigned short DbAliasLen,
struct sqlca * pSqlca,
_SQLOLDCHAR * pPassword,
_SQLOLDCHAR * pUserName,
_SQLOLDCHAR * pDbAlias);

/* ... */

sqlemgdb - Migrate Database

Chapter 1. Application Programming Interfaces 221

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of
the database alias.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pPassword
Input. A string containing the password of the supplied user name (if
any). May be NULL.

pUserName
Input. A string containing the user name of the application. May be
NULL.

pDbAlias
Input. A string containing the alias of the database that is cataloged in
the system database directory.

REXX API Syntax

REXX API Parameters

dbalias
Alias of the database to be migrated.

username
User name under which the database is to be restarted.

password
Password used to authenticate the user name.

Sample Programs

C \sqllib\samples\c\migrate.c

COBOL \sqllib\samples\cobol\migrate.cbl

REXX \sqllib\samples\rexx\migrate.cmd

Usage Notes
This API will only migrate a database to a newer version, and cannot be used
to convert a migrated database to its previous version.

The database must be cataloged before migration.

For detailed information about database migration, see one of the Quick
Beginnings books.

MIGRATE DATABASE dbalias [USER username USING password]

sqlemgdb - Migrate Database

222 Administrative API Reference

sqlencls - Close Node Directory Scan
Frees the resources that are allocated by “sqlenops - Open Node Directory
Scan” on page 228.

Authorization
None

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

Handle
Input. Identifier returned from the associated OPEN NODE
DIRECTORY SCAN API.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax

/* File: sqlenv.h */
/* API: Close Node Directory Scan */
/* ... */
SQL_API_RC SQL_API_FN

sqlencls (
unsigned short Handle,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Close Node Directory Scan */
/* ... */
SQL_API_RC SQL_API_FN

sqlgncls (
unsigned short Handle,
struct sqlca * pSqlca);

/* ... */

CLOSE NODE DIRECTORY :scanid

sqlencls - Close Node Directory Scan

Chapter 1. Application Programming Interfaces 223

REXX API Parameters

scanid A host variable containing the scanid returned from the OPEN NODE
DIRECTORY SCAN API.

Sample Programs

C \sqllib\samples\c\nodecat.sqc

COBOL \sqllib\samples\cobol\nodecat.sqb

REXX \sqllib\samples\rexx\nodecat.cmd

See Also
“sqlengne - Get Next Node Directory Entry” on page 225

“sqlenops - Open Node Directory Scan” on page 228.

sqlencls - Close Node Directory Scan

224 Administrative API Reference

sqlengne - Get Next Node Directory Entry
Returns the next entry in the node directory after “sqlenops - Open Node
Directory Scan” on page 228 is called. Subsequent calls to this API return
additional entries.

Authorization
None

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

Handle
Input. Identifier returned from “sqlenops - Open Node Directory
Scan” on page 228.

ppNodeDirEntry
Output. Address of a pointer to an sqleninfo structure. The caller of
this API does not have to provide memory for the structure, just the
pointer. Upon return from the API, the pointer points to the next node
directory entry in the copy of the node directory allocated by

/* File: sqlenv.h */
/* API: Get Next Node Directory Entry */
/* ... */
SQL_API_RC SQL_API_FN

sqlengne (
unsigned short Handle,
struct sqleninfo ** ppNodeDirEntry,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Get Next Node Directory Entry */
/* ... */
SQL_API_RC SQL_API_FN

sqlgngne (
unsigned short Handle,
struct sqleninfo ** ppNodeDirEntry,
struct sqlca * pSqlca);

/* ... */

sqlengne - Get Next Node Directory Entry

Chapter 1. Application Programming Interfaces 225

“sqlenops - Open Node Directory Scan” on page 228. For more
information about the sqleninfo structure, see “SQLENINFO” on
page 496.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax

REXX API Parameters

scanid A REXX host variable containing the identifier returned from the
OPEN NODE DIRECTORY SCAN API.

value A compound REXX host variable to which the node entry information
is returned. If no name is given, the name SQLNINFO is used. In the
following, XXX represents the host variable name (the corresponding
field names are taken from the structure returned by the API):

XXX.0 Number of elements in the variable (always 16)

XXX.1 NODENAME

XXX.2 LOCALLU

XXX.3 PARTNERLU

XXX.4 MODE

XXX.5 COMMENT

XXX.6 RESERVED

XXX.7 PROTOCOL (protocol type)

XXX.8 ADAPTER (NetBIOS adapter #)

XXX.9 RESERVED

XXX.10 SYMDESTNAME (symbolic destination name)

XXX.11 SECURITY (security type)

XXX.12 HOSTNAME

XXX.13 SERVICENAME

XXX.14 FILESERVER

XXX.15 OBJECTNAME

XXX.16 INSTANCE (local instance name).

GET NODE DIRECTORY ENTRY :scanid [USING :value]

sqlengne - Get Next Node Directory Entry

226 Administrative API Reference

Sample Programs

C \sqllib\samples\c\nodecat.c

COBOL \sqllib\samples\cobol\nodecat.cbl

REXX \sqllib\samples\rexx\nodecat.cmd

Usage Notes
All fields in the node directory entry information buffer are padded to the
right with blanks.

The sqlcode value of sqlca is set to 1014 if there are no more entries to scan
when this API is called.

The entire directory can be scanned by calling this API pNumEntries times
(pNumEntries is returned by “sqlenops - Open Node Directory Scan” on
page 228).

See Also
“sqlencls - Close Node Directory Scan” on page 223

“sqlenops - Open Node Directory Scan” on page 228.

sqlengne - Get Next Node Directory Entry

Chapter 1. Application Programming Interfaces 227

sqlenops - Open Node Directory Scan
Stores a copy in memory of the node directory, and returns the number of
entries. This is a snapshot of the directory at the time the directory is opened.
This copy is not updated, even if the directory itself is changed later.

Use “sqlengne - Get Next Node Directory Entry” on page 225 to advance
through the node directory and examine information about the node entries.
Close the scan using “sqlencls - Close Node Directory Scan” on page 223. This
removes the copy of the directory from memory.

Authorization
None

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

pHandle
Output. Identifier returned from this API. This identifier must be
passed to “sqlengne - Get Next Node Directory Entry” on page 225,
and “sqlencls - Close Node Directory Scan” on page 223.

/* File: sqlenv.h */
/* API: Open Node Directory Scan */
/* ... */
SQL_API_RC SQL_API_FN

sqlenops (
unsigned short * pHandle,
unsigned short * pNumEntries,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Open Node Directory Scan */
/* ... */
SQL_API_RC SQL_API_FN

sqlgnops (
unsigned short * pHandle,
unsigned short * pNumEntries,
struct sqlca * pSqlca);

/* ... */

sqlenops - Open Node Directory Scan

228 Administrative API Reference

pNumEntries
Output. Address of a 2-byte area to which the number of directory
entries is returned.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax

REXX API Parameters

value A compound REXX variable to which node directory information is
returned. In the following, XXX represents the host variable name.

XXX.0 Number of elements in the variable (always 2)

XXX.1 Specifies a REXX host variable containing a number
for scanid

XXX.2 The number of entries contained within the directory.

Sample Programs

C \sqllib\samples\c\nodecat.c

COBOL \sqllib\samples\cobol\nodecat.cbl

REXX \sqllib\samples\rexx\nodecat.cmd

Usage Notes
Storage allocated by this API is freed by calling “sqlencls - Close Node
Directory Scan” on page 223.

Multiple node directory scans can be issued against the node directory.
However, the results may not be the same. The directory may change between
openings.

There can be a maximum of eight node directory scans per process.

See Also
“sqlencls - Close Node Directory Scan” on page 223

“sqlengne - Get Next Node Directory Entry” on page 225.

OPEN NODE DIRECTORY USING :value

sqlenops - Open Node Directory Scan

Chapter 1. Application Programming Interfaces 229

sqlepstart - Start Database Manager
Starts the current database manager instance background processes on a
single node or on all the nodes defined in a multi-node environment.

This API is not valid on a client.

Scope
In a multi-node environment, this API affects all nodes that are listed in the
$HOME/sqllib/db2nodes.cfg file, unless the nodenum parameter is used (see
“SQLE-START-OPTIONS” on page 480).

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

Note: On OS/2, no authorization is required if the ss_logon database manager
configuration parameter is set to 0.

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

/* File: sqlenv.h */
/* API: Start Database Manager */
/* ... */
SQL_API_RC SQL_API_FN

sqlepstart (
struct sqle_start_options * pStartOptions,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Start Database Manager */
/* ... */
SQL_API_RC SQL_API_FN

sqlgpstart (
struct sqle_start_options * pStartOptions,
struct sqlca * pSqlca);

/* ... */

sqlepstart - Start Database Manager

230 Administrative API Reference

API Parameters

pStartOptions
A pointer to the sqle_start_options structure. This structure contains the
start-up options. The pointer can be null. For more information about
this structure, see “SQLE-START-OPTIONS” on page 480.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How
the API Descriptions are Organized” on page 12, or the Application Development
Guide. For a description of the syntax, see the Command Reference.

Sample Programs

C \sqllib\samples\c\dbstart.c

COBOL \sqllib\samples\cobol\dbstart.cbl

REXX \sqllib\samples\rexx\dbstart.cmd

Usage Notes
It is not necessary to call this API on a client node. It is provided for
compatibility with older clients, but it has no effect on the database manager.

Once started, the database manager instance runs until the user stops it, even
if all application programs that were using it have ended.

If no parameters are specified in a multi-node database environment, the
database manager is started on all parallel nodes specified in the node
configuration file.

If the API call is still processing, ensure that the applicable nodes have started
before issuing a request to the database.

The db2cshrc file is not supported and cannot be used to define the
environment.

On UNIX platforms, sqlepstart supports the SIGINT and SIGALRM signals.
The SIGINT signal is issued if CTRL+C is pressed. The SIGALRM signal is
issued if the value specified for the start_stop_time database manager
configuration parameter is reached. If either signal occurs, all in-progress
startups are interrupted and a message (SQL1044N for SIGINT and SQL6037N
for SIGALRM) is returned from each interrupted node to the
$HOME/sqllib/log/db2start. timestamp.log error log file. Nodes that are

sqlepstart - Start Database Manager

Chapter 1. Application Programming Interfaces 231

already started are not affected. If CTRL+C is pressed on a node that is
starting, db2stop must be issued on that node before an attempt is made to
start it again.

See Also
“sqleaddn - Add Node” on page 138

“sqlepstp - Stop Database Manager” on page 233.

sqlepstart - Start Database Manager

232 Administrative API Reference

sqlepstp - Stop Database Manager
Stops the current database manager instance. Unless explicitly stopped, the
database manager continues to be active. This API does not stop the database
manager instance if any applications are connected to databases. If there are
no database connections, but there are instance attachments, it forces the
instance attachments and stops the database manager. This API also
deactivates any outstanding database activations before stopping the database
manager.

This API can also be used to drop a node from the db2nodes.cfg file (MPP
systems only).

This API is not valid on a client.

Scope
In a multi-node environment, this API affects all nodes that are listed in the
$HOME/sqllib/db2nodes.cfg file, unless the nodenum parameter is used (see
“SQLEDBSTOPOPT” on page 491).

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

Note: On OS/2, no authorization is required if the ss_logon database manager
configuration parameter is set to 0.

Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* API: Stop Database Manager */
/* ... */
SQL_API_RC SQL_API_FN

sqlepstp (
struct sqledbstopopt * pStopOptions,
struct sqlca * pSqlca);

/* ... */

sqlepstp - Stop Database Manager

Chapter 1. Application Programming Interfaces 233

Generic API Syntax

API Parameters

pStopOptions
A pointer to the sqledbstopopt structure. This structure contains the
stop options. The pointer can be null. For more information about this
structure, see “SQLEDBSTOPOPT” on page 491.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How
the API Descriptions are Organized” on page 12, or the Application Development
Guide. For a description of the syntax, see the Command Reference.

Sample Programs

C \sqllib\samples\c\dbstop.c

COBOL \sqllib\samples\cobol\dbstop.cbl

REXX \sqllib\samples\rexx\dbstop.cmd

Usage Notes
It is not necessary to call this API on a client node. It is provided for
compatibility with older clients, but it has no effect on the database manager.

Once started, the database manager instance runs until the user stops it, even
if all application programs that were using it have ended.

If the database manager cannot be stopped because application programs are
still connected to databases, use “sqlefrce - Force Application” on page 196 to
disconnect all users first, or call the sqlepstp API again with the FORCE
option.

The following information currently applies to multiple node environments
only:

/* File: sqlenv.h */
/* API: Stop Database Manager */
/* ... */
SQL_API_RC SQL_API_FN

sqlgpstp (
struct sqledbstopopt * pStopOptions,
struct sqlca * pSqlca);

/* ... */

sqlepstp - Stop Database Manager

234 Administrative API Reference

v If no parameters are specified, the database manager is stopped on each
node listed in the node configuration file. The db2diag.log file may contain
messages to indicate that other nodes are shutting down.

v Any nodes added to the MPP system since the previous call to sqlepstp
will be updated in the db2nodes.cfg file.

v On UNIX platforms, this API supports the SIGALRM signal, which is
issued if the value specified for the start_stop_time database manager
configuration parameter is reached. If this signal occurs, all in-progress
stops are interrupted, and message SQL6037N is returned from each
interrupted node to the $HOME/sqllib/log/db2stop. timestamp.log error log
file. Nodes that are already stopped are not affected.

v The db2cshrc file is not supported and cannot be specified as the value for
the PROFILE parameter.

See Also
“sqle_deactivate_db - Deactivate Database” on page 135

“sqledrpn - Drop Node Verify” on page 191

“sqlefrce - Force Application” on page 196

“sqlepstart - Start Database Manager” on page 230.

sqlepstp - Stop Database Manager

Chapter 1. Application Programming Interfaces 235

sqleqryc - Query Client
Returns current connection settings for an application process. For information
about the applicable connection settings and their values, see
“SQLE-CONN-SETTING” on page 465.

Authorization
None

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

pConnectionSettings
Input/Output. A pointer to an sqle_conn_setting structure, which
specifies connection setting types and values. The user defines an
array of NumSettings connection settings structures, and sets the type
field of each element in this array to indicate one of the five possible
connection settings options. Upon return, the value field of each
element contains the current setting of the option specified. For more
information about this structure, see “SQLE-CONN-SETTING” on
page 465.

/* File: sqlenv.h */
/* API: Query Client */
/* ... */
SQL_API_RC SQL_API_FN

sqleqryc (
struct sqle_conn_setting * pConnectionSettings,
unsigned short NumSettings,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Query Client */
/* ... */
SQL_API_RC SQL_API_FN

sqlgqryc (
struct sqle_conn_setting * pConnectionSettings,
unsigned short NumSettings,
struct sqlca * pSqlca);

/* ... */

sqleqryc - Query Client

236 Administrative API Reference

NumSettings
Input. Any integer (from 0 to 7) representing the number of
connection option values to be returned.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax

REXX API Parameters

output
A compound REXX host variable containing information about the
current connection settings of the application process. In the
following, XXX represents the host variable name.

XXX.1 Current connection setting for the CONNECTION
type

XXX.2 Current connection setting for the SQLRULES

XXX.3 Current connection setting indicating which
connections will be released when a COMMIT is
issued.

XXX.4 Current connection setting of the SYNCPOINT option.
Indicates whether a transaction manager should be
used to enforce two-phase commit semantics, whether
the database manager should ensure that there is only
one database being updated when multiple databases
are accessed within a single transaction, or whether
neither of these options is to be used.

XXX.5 Current connection setting for the maximum number
of concurrent connections for a NETBIOS adapter.

XXX.6 Current connection setting for deferred PREPARE.

Sample Programs

C \sqllib\samples\c\client.c

COBOL \sqllib\samples\cobol\client.cbl

REXX \sqllib\samples\rexx\client.cmd

Usage Notes
The connection settings for an application process can be queried at any time
during execution.

QUERY CLIENT INTO :output

sqleqryc - Query Client

Chapter 1. Application Programming Interfaces 237

If QUERY CLIENT is successful, the fields in the sqle_conn_setting structure
will contain the current connection settings of the application process. If SET
CLIENT has never been called, the settings will contain the values of the
precompile options only if an SQL statement has already been processed;
otherwise, they will contain the default values for the precompile options.

For information about distributed unit of work (DUOW), see the
Administration Guide.

See Also
“sqleqryi - Query Client Information” on page 239

“sqlesetc - Set Client” on page 248.

sqleqryc - Query Client

238 Administrative API Reference

sqleqryi - Query Client Information
Returns existing client information. Since this API permits specification of a
database alias, an application can query client information associated with a
specific connection. Returns null if “sqleseti - Set Client Information” on
page 251 has not previously established a value.

If a specific connection is requested, this API returns the latest values for that
connection. If all connections are specified, the API returns the values that are
to be associated with all connections; that is, the values passed in the last call
to sqleseti (specifying all connections).

Authorization
None

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

/* File: sqlenv.h */
/* API: Query Client Information */
/* ... */
SQL_API_RC SQL_API_FN

sqleqryi (
unsigned short DbAliasLen,
char * pDbAlias,
unsigned short NumItems,
struct sqle_client_info* pClient_Info,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Query Client Information */
/* ... */
SQL_API_RC SQL_API_FN

sqleqryi (
unsigned short DbAliasLen,
char * pDbAlias,
unsigned short NumItems,
struct sqle_client_info* pClient_Info,
struct sqlca * pSqlca);

/* ... */

sqleqryi - Query Client Information

Chapter 1. Application Programming Interfaces 239

API Parameters

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of
the database alias. If a value greater than zero is provided, pDbAlias
must point to the alias name. Returns the settings associated with the
last call to sqleseti for this alias (or a call to sqleseti specifying a zero
length alias). If zero is specified, returns the settings associated with
the last call to sqleseti which specified a zero length alias.

pDbAlias
Input. A pointer to a string containing the database alias.

NumItems
Input. Number of entries being modified. The minimum value is 1.

pClient_Info
Input. A pointer to an array of NumItems sqle_client_info structures,
each containing a type field indicating which value to return, and a
pointer to the returned value. The area pointed to must be large
enough to accommodate the value being requested. For more
information about this structure, see “SQLE-CLIENT-INFO” on
page 462.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

Sample Programs

C \sqllib\samples\c\cli_info.c

Usage Notes
The settings can be queried at any time during execution. If the API call is
successful, the current settings are returned to the specified areas. Returns a
length of zero and a null-terminated string (\0) for any fields that have not
been set through a call to “sqleseti - Set Client Information” on page 251.

See Also
“sqleseti - Set Client Information” on page 251.

sqleqryi - Query Client Information

240 Administrative API Reference

sqleregs - Register
Registers the DB2 server on the network server. The DB2 server’s network
address is stored in a specified registry on the file server, where it can be
retrieved by a client application that uses the IPX/SPX communication
protocol.

Authorization
None

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

Registry
Input. Indicates where on the network file server to register the DB2
server. In this release, the only supported value is SQL_NWBINDERY
(NetWare file server bindery, defined in sqlenv).

pRegisterInfo
Input. A pointer to the sqle_reg_nwbindery structure. In the structure,
the caller specifies a user name and password that are valid on the

/* File: sqlenv.h */
/* API: Register */
/* ... */
SQL_API_RC SQL_API_FN

sqleregs (
unsigned short Registry,
void * pRegisterInfo,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Register */
/* ... */
SQL_API_RC SQL_API_FN

sqlgregs (
unsigned short Registry,
void * pRegisterInfo,
struct sqlca * pSqlca);

/* ... */

sqleregs - Register

Chapter 1. Application Programming Interfaces 241

network file server. For more information about this structure, see
“SQLE-REG-NWBINDERY” on page 479.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How
the API Descriptions are Organized” on page 12, or the Application Development
Guide. For a description of the syntax, see the Command Reference.

Sample Programs

C \sqllib\samples\c\regder.c

COBOL \sqllib\samples\cobol\regder.cbl

Usage Notes
This API determines the IPX/SPX address of the DB2 server machine (the
machine from which it was called), and then creates an object in the NetWare
file server bindery using the value for objectname specified in the database
manager configuration file. The IPX/SPX address of the DB2 server is stored
as a property in that object. In order for a client to connect or attach to a DB2
database using IPX/SPX file server addressing, it must catalog an IPX/SPX
node (using the same FILESERVER and OBJECTNAME specified on the
server) in the node directory.

The specified NetWare user name and password must have supervisory or
equivalent authority.

This API must be issued locally from a DB2 server. It is not supported
remotely.

After installation and configuration of DB2, the DB2 server should be
registered once on the network file server (unless only direct addressing will be
used by IPX/SPX clients to connect to this DB2 server). After that, if the
IPX/SPX fields are reconfigured, or the DB2 server’s IPX/SPX internetwork
address changes, deregister the DB2 server on the network file server before
making the changes, and then register it again after the changes have been
made.

See Also
“sqledreg - Deregister” on page 186.

sqleregs - Register

242 Administrative API Reference

sqlesact - Set Accounting String
Provides accounting information that will be sent to a DRDA server with the
application’s next connect request.

Authorization
None

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

AccountingStringLen
Input. A 2-byte unsigned integer representing the length in bytes of
the accounting string.

pAccountingString
Input. A string containing the accounting data.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

/* File: sqlenv.h */
/* API: Set Accounting String */
/* ... */
SQL_API_RC SQL_API_FN

sqlesact (
char * pAccountingString,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Set Accounting String */
/* ... */
SQL_API_RC SQL_API_FN

sqlgsact (
unsigned short AccountingStringLen,
char * pAccountingString,
struct sqlca * pSqlca);

/* ... */

sqlesact - Set Accounting String

Chapter 1. Application Programming Interfaces 243

Sample Programs

C \sqllib\samples\c\setact.c

COBOL \sqllib\samples\cobol\setact.cbl

Usage Notes
To send accounting data with a connect request, an application should call
this API before connecting to a database. The accounting string can be
changed before connecting to another database by calling the API again;
otherwise, the value remains in effect until the end of the application. The
accounting string can be at most SQL_ACCOUNT_STR_SZ (defined in sqlenv) bytes
long; longer strings will be truncated. To ensure that the accounting string is
converted correctly when transmitted to the DRDA server, use only the
characters A to Z, 0 to 9, and the underscore (_).

See Also
The DB2 Connect User’s Guide, which contains more information about the
accounting string and the DRDA servers that support it.

“sqleseti - Set Client Information” on page 251.

sqlesact - Set Accounting String

244 Administrative API Reference

sqlesdeg - Set Runtime Degree
Sets the maximum run time degree of intra-partition parallelism for SQL
statements for specified active applications. It has no effect on CREATE
INDEX parallelism.

Scope
This API affects all nodes that are listed in the $HOME/sqllib/db2nodes.cfg
file.

Authorization
One of the following:
v sysadm

v sysctrl

Required Connection
Instance. To change the maximum run time degree of parallelism on a remote
server, it is first necessary to attach to that server. If no attachment exists, the
SET RUNTIME DEGREE statement fails.

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

/* File: sqlenv.h */
/* API: Set Runtime Degree */
/* ... */
SQL_API_RC SQL_API_FN

sqlesdeg (
sqlint32 NumAgentIds,
sqluint32 * pAgentIds,
sqlint32 Degree,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Set Runtime Degree */
/* ... */
SQL_API_RC SQL_API_FN

sqlgsdeg (
struct sqlca * pSqlca,
sqlint32 Degree,
sqluint32 * pAgentIds,
sqlint32 NumAgentIds);

/* ... */

sqlesdeg - Set Runtime Degree

Chapter 1. Application Programming Interfaces 245

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

Degree
Input. The new value for the maximum run time degree of
parallelism. The value must be in the range 1 to 32767.

pAgentIds
Input. Pointer to an array of unsigned long integers. Each entry
describes the agent ID of the corresponding application. To list the
agent IDs of the active applications, use “db2GetSnapshot - Get
Snapshot” on page 27.

NumAgentIds
Input. An integer representing the total number of active applications
to which the new degree value will apply. This number should be the
same as the number of elements in the array of agent IDs.

If this parameter is set to SQL_ALL_USERS (defined in sqlenv), the new
degree will apply to all active applications. If it is set to zero, an error
is returned.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How
the API Descriptions are Organized” on page 12, or the Application Development
Guide. For a description of the syntax, see the Command Reference.

Sample Programs

C \sqllib\samples\c\setrundg.c

Usage Notes
The database system monitor functions are used to gather the agent IDs and
degrees of active applications. For more information, see the System Monitor
Guide and Reference.

Minimal validation is performed on the array of agent IDs. The user must
ensure that the pointer points to an array containing the total number of
elements specified. If NumAgentIds is set to SQL_ALL_USERS, the array is
ignored.

If one or more specified agent IDs cannot be found, the unknown agent IDs
are ignored, and the function continues. No error is returned. An agent ID
may not be found, for instance, if the user signs off between the time an agent
ID is collected and the API is called.

sqlesdeg - Set Runtime Degree

246 Administrative API Reference

Agent IDs are recycled, and are used to change the degree of parallelism for
applications some time after being gathered by the database system monitor.
When a user signs off, therefore, another user may sign on and acquire the
same agent ID through this recycling process, with the result that the new
degree of parallelism will be modified for the wrong user.

See Also
“db2GetSnapshot - Get Snapshot” on page 27.

sqlesdeg - Set Runtime Degree

Chapter 1. Application Programming Interfaces 247

sqlesetc - Set Client
Specifies connection settings for the application. For information about the
applicable connection settings and their values, see “SQLE-CONN-SETTING”
on page 465.

Authorization
None

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

pConnectionSettings
Input. A pointer to the sqle_conn_setting structure, which specifies
connection setting types and values. Allocate an array of NumSettings
sqle_conn_setting structures. Set the type field of each element in this
array to indicate the connection option to set. Set the value field to the
desired value for the option. For more information about this
structure, see “SQLE-CONN-SETTING” on page 465.

/* File: sqlenv.h */
/* API: Set Client */
/* ... */
SQL_API_RC SQL_API_FN

sqlesetc (
struct sqle_conn_setting * pConnectionSettings,
unsigned short NumSettings,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Set Client */
/* ... */
SQL_API_RC SQL_API_FN

sqlgsetc (
struct sqle_conn_setting * pConnectionSettings,
unsigned short NumSettings,
struct sqlca * pSqlca);

/* ... */

sqlesetc - Set Client

248 Administrative API Reference

NumSettings
Input. Any integer (from 0 to 7) representing the number of
connection option values to set.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax

REXX API Parameters

values A compound REXX host variable containing the connection settings
for the application process. In the following, XXX represents the host
variable name.

XXX.0 Number of connection settings to be established

XXX.1 Specifies how to set up the CONNECTION type. The valid
values are:

1 Type 1 CONNECT

2 Type 2 CONNECT

XXX.2 Specifies how to set up the SQLRULES. The valid values are:

DB2 Process type 2 CONNECT according to the DB2 rules

STD Process type 2 CONNECT according to the Standard
rules

XXX.3 Specifies how to set up the scope of disconnection to
databases at commit. The valid values are:

EXPLICIT Disconnect only those marked by the SQL
RELEASE statement

CONDITIONAL
Disconnect only those that have no open
WITH HOLD cursors

AUTOMATIC Disconnect all connections

XXX.4 Specifies how to set up the coordination among multiple
database connections during commits or rollbacks. The valid
values are:

TWOPHASE Use Transaction Manager (TM) to coordinate
two-phase commits

ONEPHASE Use one-phase commit

SET CLIENT USING :values

sqlesetc - Set Client

Chapter 1. Application Programming Interfaces 249

NONE Do not enforce single updater and multiple
reader

XXX.5 Specifies the maximum number of concurrent connections for
a NETBIOS adapter.

XXX.6 Specifies when to execute the PREPARE statement. The valid
values are:

NO The PREPARE statement will be executed at
the time it is issued

YES The PREPARE statement will not be executed
until the corresponding OPEN, DESCRIBE, or
EXECUTE statement is issued. However, the
PREPARE INTO statement is not deferred

ALL Same as YES, except that the PREPARE INTO
statement is also deferred

Sample Programs

C \sqllib\samples\c\client.c

COBOL \sqllib\samples\cobol\client.cbl

REXX \sqllib\samples\rexx\client.cmd

Usage Notes
If this API is successful, the connections in the subsequent units of work will
use the connection settings specified. If this API is unsuccessful, the
connection settings are unchanged.

The connection settings for the application can only be changed when there
are no existing connections (for example, before any connection is established,
or after RELEASE ALL and COMMIT).

Once the SET CLIENT API has executed successfully, the connection settings
are fixed and can only be changed by again executing the SET CLIENT API.
All corresponding precompiled options of the application modules will be
overridden.

For information about distributed unit of work (DUOW), see the
Administration Guide.

See Also
“sqleqryc - Query Client” on page 236

“sqleseti - Set Client Information” on page 251.

sqlesetc - Set Client

250 Administrative API Reference

sqleseti - Set Client Information
Permits an application to set client information associated with a specific
connection, provided a connection already exists.

In a TP monitor or 3-tier client/server application environment, there is a
need to obtain information about the client, and not just the application server
that is working on behalf of the client. By using this API, the application
server can pass the client’s user ID, workstation information, program
information, and other accounting information to the DB2 server; otherwise,
only the application server’s information is passed, and that information is
likely to be the same for the many client invocations that go through the same
application server.

The application can elect to not specify an alias, in which case the client
information will be set for all existing, as well as future, connections. This API
will only permit information to be changed outside of a unit of work, either
before any SQL is executed, or after a commit or a rollback. If the call is
successful, the values for the connection will be sent at the next opportunity,
grouped with the next SQL request sent on that connection; a successful call
means that the values have been accepted, and that they will be propagated
to subsequent connections.

This API can be used to establish values prior to connecting to a database, or
it can be used to set or modify the values once a connection has been
established.

Authorization
None

Required Connection
None

API Include File
sqlenv.h

sqleseti - Set Client Information

Chapter 1. Application Programming Interfaces 251

C API Syntax

Generic API Syntax

API Parameters

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of
the database alias. If a value greater than zero is provided, pDbAlias
must point to the alias name, and the settings will affect only the
specified connection. If zero is specified, the settings will affect all
existing and future connections.

pDbAlias
Input. A pointer to a string containing the database alias.

NumItems
Input. Number of entries being modified. The minimum value is 1.

pClient_Info
Input. A pointer to an array of NumItems sqle_client_info structures,
each containing a type field indicating which value to set, the length
of that value, and a pointer to the new value. For more information
about this structure, see “SQLE-CLIENT-INFO” on page 462.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

/* File: sqlenv.h */
/* API: Set Client Information */
/* ... */
SQL_API_RC SQL_API_FN

sqleseti (
unsigned short DbAliasLen,
char * pDbAlias,
unsigned short NumItems,
struct sqle_client_info* pClient_Info,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Set Client Information */
/* ... */
SQL_API_RC SQL_API_FN

sqleseti (
unsigned short DbAliasLen,
char * pDbAlias,
unsigned short NumItems,
struct sqle_client_info* pClient_Info,
struct sqlca * pSqlca);

/* ... */

sqleseti - Set Client Information

252 Administrative API Reference

Sample Programs

C \sqllib\samples\c\cli_info.c

Usage Notes
If an alias name was provided, a connection to the alias must already exist,
and all connections to that alias will inherit the changes. The information will
be retained until the connection for that alias is broken. If an alias name was
not provided, settings for all existing connections will be changed, and any
future connections will inherit the changes. The information will be retained
until the program terminates.

The field names represent guidelines for the type of information that can be
provided. For example, a TP monitor application could choose to provide the
TP monitor transaction ID along with the application name in the
SQL_CLIENT_INFO_APPLNAM field. This would provide better monitoring
and accounting on the DB2 server, where the DB2 transaction ID can be
associated with the TP monitor transaction ID.

Currently this API will only pass information to DB2 OS/390 Version 5 and
higher. All information (except the accounting string) is displayed on the
DISPLAY THREAD command, and they will all be logged into the accounting
records.

See Also
“sqleqryi - Query Client Information” on page 239

“sqlesact - Set Accounting String” on page 243

“sqlesetc - Set Client” on page 248.

sqleseti - Set Client Information

Chapter 1. Application Programming Interfaces 253

sqleuncd - Uncatalog Database
Deletes an entry from the system database directory.

Authorization
One of the following:
v sysadm

v sysctrl

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of
the database alias.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pDbAlias
Input. A string containing the database alias that is to be uncataloged.

/* File: sqlenv.h */
/* API: Uncatalog Database */
/* ... */
SQL_API_RC SQL_API_FN

sqleuncd (
_SQLOLDCHAR * pDbAlias,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Uncatalog Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlguncd (
unsigned short DbAliasLen,
struct sqlca * pSqlca,
_SQLOLDCHAR * pDbAlias);

/* ... */

sqleuncd - Uncatalog Database

254 Administrative API Reference

REXX API Syntax

REXX API Parameters

dbname
Alias of the database to be uncataloged.

Sample Programs

C \sqllib\samples\c\dbcat.c

COBOL \sqllib\samples\cobol\dbcat.cbl

REXX \sqllib\samples\rexx\dbcat.cmd

Usage Notes
Only entries in the system database directory can be uncataloged. Entries in
the local database directory can be deleted using “sqledrpd - Drop Database”
on page 188.

To recatalog the database, use “sqlecadb - Catalog Database” on page 149.

To list the databases that are cataloged on a node, use “sqledosd - Open
Database Directory Scan” on page 181, “sqledgne - Get Next Database
Directory Entry” on page 178, and “sqledcls - Close Database Directory Scan”
on page 176.

The authentication type of a database, used when communicating with a
down-level server, can be changed by first uncataloging the database, and
then cataloging it again with a different type.

If directory caching is enabled (see the configuration parameter dir_cache in
“sqlfxsys - Get Database Manager Configuration” on page 278), database,
node, and DCS directory files are cached in memory. An application’s
directory cache is created during its first directory lookup. Since the cache is
only refreshed when the application modifies any of the directory files,
directory changes made by other applications may not be effective until the
application has restarted. To refresh DB2’s shared cache (server only), stop
(db2stop) and then restart (db2start) the database manager. To refresh the
directory cache for another application, stop and then restart that application.

UNCATALOG DATABASE dbname

sqleuncd - Uncatalog Database

Chapter 1. Application Programming Interfaces 255

See Also
“sqlecadb - Catalog Database” on page 149

“sqledcls - Close Database Directory Scan” on page 176

“sqledgne - Get Next Database Directory Entry” on page 178

“sqledosd - Open Database Directory Scan” on page 181.

sqleuncd - Uncatalog Database

256 Administrative API Reference

sqleuncn - Uncatalog Node
Deletes an entry from the node directory.

Authorization
One of the following:
v sysadm

v sysctrl

Required Connection
None

API Include File
sqlenv.h

C API Syntax

Generic API Syntax

API Parameters

NodeNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the node name.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pNodeName
Input. A string containing the name of the node to be uncataloged.

/* File: sqlenv.h */
/* API: Uncatalog Node */
/* ... */
SQL_API_RC SQL_API_FN

sqleuncn (
_SQLOLDCHAR * pNodeName,
struct sqlca * pSqlca);

/* ... */

/* File: sqlenv.h */
/* API: Uncatalog Node */
/* ... */
SQL_API_RC SQL_API_FN

sqlguncn (
unsigned short NodeNameLen,
struct sqlca * pSqlca,
_SQLOLDCHAR * pNodeName);

/* ... */

sqleuncn - Uncatalog Node

Chapter 1. Application Programming Interfaces 257

REXX API Syntax

REXX API Parameters

nodename
Name of the node to be uncataloged.

Sample Programs

C \sqllib\samples\c\nodecat.c

COBOL \sqllib\samples\cobol\nodecat.cbl

REXX \sqllib\samples\rexx\nodecat.cmd

Usage Notes
To recatalog the node, use “sqlectnd - Catalog Node” on page 168.

To list the nodes that are cataloged, use “sqlenops - Open Node Directory
Scan” on page 228, “sqlengne - Get Next Node Directory Entry” on page 225,
and “sqlencls - Close Node Directory Scan” on page 223.

If directory caching is enabled (see the configuration parameter dir_cache in
“sqlfxsys - Get Database Manager Configuration” on page 278), database,
node, and DCS directory files are cached in memory. An application’s
directory cache is created during its first directory lookup. Since the cache is
only refreshed when the application modifies any of the directory files,
directory changes made by other applications may not be effective until the
application has restarted. To refresh DB2’s shared cache (server only), stop
(db2stop) and then restart (db2start) the database manager. To refresh the
directory cache for another application, stop and then restart that application.

See Also
“sqlectnd - Catalog Node” on page 168

“sqlencls - Close Node Directory Scan” on page 223

“sqlengne - Get Next Node Directory Entry” on page 225

“sqlenops - Open Node Directory Scan” on page 228.

UNCATALOG NODE nodename

sqleuncn - Uncatalog Node

258 Administrative API Reference

sqlfddb - Get Database Configuration Defaults
Returns the default values of individual entries in a database configuration
file.

Authorization
None

Required Connection
Instance. It is not necessary to call ATTACH before getting the configuration
of a remote database. If the database is cataloged as remote, an instance
attachment to the remote node is established for the duration of the call.

API Include File
sqlutil.h

C API Syntax

Generic API Syntax

API Parameters

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of
the database alias.

NumItems
Input. Number of entries to be returned. The minimum valid value is
1.

/* File: sqlutil.h */
/* API: Get Database Configuration Defaults */
/* ... */
SQL_API_RC SQL_API_FN

sqlfddb (
char * pDbAlias,
unsigned short NumItems,
struct sqlfupd * pItemList,
struct sqlca * pSqlca);

/* ... */

/* File: sqlutil.h */
/* API: Get Database Configuration Defaults */
/* ... */
SQL_API_RC SQL_API_FN

sqlgddb (
unsigned short DbAliasLen,
unsigned short NumItems,
struct sqlfupd * pItemList,
struct sqlca * pSqlca,
char * pDbAlias);

/* ... */

sqlfddb - Get Database Configuration Defaults

Chapter 1. Application Programming Interfaces 259

pItemList
Input/Output. Pointer to an array of NumItems sqlfupd structures, each
containing a token field indicating which value to return, and a
pointer field indicating where to place the configuration value. For
more information about this structure, see “SQLFUPD” on page 499.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pDbAlias
Input. A string containing the database alias.

Sample Programs

C \sqllib\samples\c\d_dbconf.c

COBOL \sqllib\samples\cobol\d_dbconf.cbl

Usage Notes
The application is responsible for allocating sufficient memory for each data
element returned. For example, the value returned for newlogpath can be up to
242 bytes in length.

DB2 returns the current value of non-updatable parameters.

If an error occurs, the information returned is not valid. If the configuration
file is invalid, an error message is returned. The database must be restored
from a backup version.

To set the database configuration parameters to the recommended database
manager defaults, use “sqlfrdb - Reset Database Configuration” on page 263.

For a brief description of the database configuration parameters, see the
Command Reference. For more information about tuning these parameters, see
the Administration Guide.

See Also
“sqlfrdb - Reset Database Configuration” on page 263

“sqlfudb - Update Database Configuration” on page 268

“sqlfxdb - Get Database Configuration” on page 275.

sqlfddb - Get Database Configuration Defaults

260 Administrative API Reference

sqlfdsys - Get Database Manager Configuration Defaults
Returns the default values of individual entries in the database manager
configuration file.

Authorization
None

Required Connection
None or instance. An instance attachment is not required to perform database
manager configuration operations at the current instance (as defined by the
value of the DB2INSTANCE environment variable), but is required to
perform database manager configuration operations at other instances. To
display the database manager configuration for another instance, it is
necessary to first attach to that instance.

API Include File
sqlutil.h

C API Syntax

Generic API Syntax

API Parameters

NumItems
Input. Number of entries being returned. The minimum valid value is
1.

pItemList
Input/Output. Pointer to an array of NumItems sqlfupd structures, each

/* File: sqlutil.h */
/* API: Get Database Manager Configuration Defaults */
/* ... */
SQL_API_RC SQL_API_FN

sqlfdsys (
unsigned short NumItems,
struct sqlfupd * pItemList,
struct sqlca * pSqlca);

/* ... */

/* File: sqlutil.h */
/* API: Get Database Manager Configuration Defaults */
/* ... */
SQL_API_RC SQL_API_FN

sqlgdsys (
unsigned short NumItems,
struct sqlfupd * pItemList,
struct sqlca * pSqlca);

/* ... */

sqlfdsys - Get Database Manager Configuration Defaults

Chapter 1. Application Programming Interfaces 261

containing a token field indicating which value to return, and a
pointer field indicating where to place the configuration value. For
more information about this structure, see “SQLFUPD” on page 499.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

Sample Programs

C \sqllib\samples\c\d_dbmcon.c

COBOL \sqllib\samples\cobol\d_dbmcon.cbl

Usage Notes
If an attachment to a remote instance (or a different local instance) exists, the
default database manager configuration parameters for the attached server are
returned; otherwise, the local default database manager configuration
parameters are returned.

If an error occurs, the information returned is not valid. If the configuration
file is invalid, an error message is returned. The user must again install the
database manager to recover.

The current value of non-updatable parameters is returned as the default.

To set the database manager configuration parameters to the recommended
database manager defaults, use “sqlfrsys - Reset Database Manager
Configuration” on page 266.

For a brief description of the database manager configuration parameters, see
the Command Reference. For more information about tuning these parameters,
see the Administration Guide.

See Also
“sqlfrsys - Reset Database Manager Configuration” on page 266

“sqlfusys - Update Database Manager Configuration” on page 272

“sqlfxsys - Get Database Manager Configuration” on page 278.

sqlfdsys - Get Database Manager Configuration Defaults

262 Administrative API Reference

sqlfrdb - Reset Database Configuration
Resets the configuration file of a specific database to the system defaults.

Scope
This API only affects the node on which it is issued.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

Required Connection
Instance. An explicit attachment is not required. If the database is listed as
remote, an instance attachment to the remote node is established for the
duration of the call.

API Include File
sqlutil.h

C API Syntax

Generic API Syntax

API Parameters

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of
the database alias.

/* File: sqlutil.h */
/* API: Reset Database Configuration */
/* ... */
SQL_API_RC SQL_API_FN

sqlfrdb (
_SQLOLDCHAR * pDbAlias,
struct sqlca * pSqlca);

/* ... */

/* File: sqlutil.h */
/* API: Reset Database Configuration */
/* ... */
SQL_API_RC SQL_API_FN

sqlgrdb (
unsigned short DbAliasLen,
struct sqlca * pSqlca,
char * pDbAlias);

/* ... */

sqlfrdb - Reset Database Configuration

Chapter 1. Application Programming Interfaces 263

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pDbAlias
Input. A string containing the database alias.

REXX API Syntax

REXX API Parameters

dbname
Alias of the database associated with the configuration file.

Sample Programs

C \sqllib\samples\c\dbconf.c

COBOL \sqllib\samples\cobol\dbconf.cbl

REXX \sqllib\samples\rexx\dbconf.cmd

Usage Notes
This API resets the entire configuration (except for non-updatable parameters).

To view or print a list of the current database configuration parameters for a
database, use “sqlfxdb - Get Database Configuration” on page 275.

To view the default values for database configuration parameters, use
“sqlfddb - Get Database Configuration Defaults” on page 259.

To change the value of a configurable parameter, use “sqlfudb - Update
Database Configuration” on page 268.

Changes to the database configuration file become effective only after they are
loaded into memory. All applications must disconnect from the database
before this can occur.

If an error occurs, the database configuration file does not change.

The database configuration file cannot be reset if the checksum is invalid. This
may occur if the database configuration file is changed without using the
appropriate API. If this happens, the database must be restored to reset the
database configuration file.

RESET DATABASE CONFIGURATION FOR dbname

sqlfrdb - Reset Database Configuration

264 Administrative API Reference

For a brief description of the database configuration parameters, see the
Command Reference. For more information about these parameters, see the
Administration Guide.

See Also
“sqlfddb - Get Database Configuration Defaults” on page 259

“sqlfudb - Update Database Configuration” on page 268

“sqlfxdb - Get Database Configuration” on page 275.

sqlfrdb - Reset Database Configuration

Chapter 1. Application Programming Interfaces 265

sqlfrsys - Reset Database Manager Configuration
Resets the parameters in the database manager configuration file to the
system defaults.

Authorization
sysadm

Required Connection
None or instance. An instance attachment is not required to perform database
manager configuration operations at the current instance (as defined by the
value of the DB2INSTANCE environment variable), but is required to
perform database manager configuration operations at other instances. To
reset the database manager configuration for another instance, it is necessary
to first attach to that instance.

API Include File
sqlutil.h

C API Syntax

Generic API Syntax

API Parameters

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax

/* File: sqlutil.h */
/* API: Reset Database Manager Configuration */
/* ... */
SQL_API_RC SQL_API_FN

sqlfrsys (
struct sqlca * pSqlca);

/* ... */

/* File: sqlutil.h */
/* API: Reset Database Manager Configuration */
/* ... */
SQL_API_RC SQL_API_FN

sqlgrsys (
struct sqlca * pSqlca);

/* ... */

RESET DATABASE MANAGER CONFIGURATION

sqlfrsys - Reset Database Manager Configuration

266 Administrative API Reference

Sample Programs

C \sqllib\samples\c\dbmconf.c

COBOL \sqllib\samples\cobol\dbmconf.cbl

REXX \sqllib\samples\rexx\dbmconf.cmd

Usage Notes
If an attachment to a remote instance (or a different local instance) exists, the
database manager configuration parameters for the attached server are reset;
otherwise, the local database manager configuration parameters are reset.

This API resets the entire configuration (except for non-updatable parameters).

To view or print a list of the current database manager configuration
parameters, use “sqlfxsys - Get Database Manager Configuration” on
page 278.

To view the default values for database manager configuration parameters,
use “sqlfdsys - Get Database Manager Configuration Defaults” on page 261.

To change the value of a configurable parameter, use “sqlfusys - Update
Database Manager Configuration” on page 272.

Most changes to the database manager configuration file become effective
only after they are loaded into memory. For a server configuration parameter,
this occurs during execution of db2start. For a client configuration parameter,
this occurs when the application is restarted.

If an error occurs, the database manager configuration file does not change.

The database manager configuration file cannot be reset if the checksum is
invalid. This may occur if the database manager configuration file is changed
without using the appropriate API. If this happens, the database manager
must be installed again to reset the database manager configuration file.

For a brief description of the database manager configuration parameters, see
the Command Reference. For more information about these parameters, see the
Administration Guide.

See Also
“sqlfdsys - Get Database Manager Configuration Defaults” on page 261

“sqlfusys - Update Database Manager Configuration” on page 272

“sqlfxsys - Get Database Manager Configuration” on page 278.

sqlfrsys - Reset Database Manager Configuration

Chapter 1. Application Programming Interfaces 267

sqlfudb - Update Database Configuration
Modifies individual entries in a specific database configuration file.

A database configuration file resides on every node on which the database has
been created.

Scope
This API only affects the node on which it is issued.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

Required Connection
Instance. An explicit attachment is not required. If the database is listed as
remote, an instance attachment to the remote node is established for the
duration of the call.

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */
/* API: Update Database Configuration */
/* ... */
SQL_API_RC SQL_API_FN

sqlfudb (
_SQLOLDCHAR * pDbAlias,
unsigned short NumItems,
struct sqlfupd * pItemList,
struct sqlca * pSqlca);

/* ... */

sqlfudb - Update Database Configuration

268 Administrative API Reference

Generic API Syntax

API Parameters

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of
the database alias.

NumItems
Input. Number of entries being modified. The minimum valid value is
1.

pItemListLens
Input. An array of 2-byte unsigned integers representing the length of
each of the new configuration field values in the pItemList. It is
necessary to provide lengths for those fields that contain strings only,
such as newlogpath. If, for example, newlogpath is the fifth element in
the pItemList array, its length must be the fifth element in the
pItemListLens array.

pItemList
Input. Pointer to an array of NumItems sqlfupd structures, each
containing a token field indicating which value to update, and a
pointer field indicating the new value. For more information about
this structure, see “SQLFUPD” on page 499.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pDbAlias
Input. A string containing the database alias.

REXX API Syntax

/* File: sqlutil.h */
/* API: Update Database Configuration */
/* ... */
SQL_API_RC SQL_API_FN

sqlgudb (
unsigned short DbAliasLen,
unsigned short NumItems,
unsigned short * pItemListLens,
struct sqlfupd * pItemList,
struct sqlca * pSqlca,
char * pDbAlias);

/* ... */

UPDATE DATABASE CONFIGURATION FOR dbname USING :values

sqlfudb - Update Database Configuration

Chapter 1. Application Programming Interfaces 269

REXX API Parameters

dbname
Alias of the database associated with the configuration file.

values A compound REXX host variable containing tokens indicating which
configuration fields are to be modified. The application provides the
token and the new value for each field. The following are elements of
a variable, where XXX represents the host variable name:

XXX.0 Twice the number of fields supplied (number of data elements
in the remainder of the variable)

XXX.1 First token

XXX.2 Value supplied for the first field

XXX.3 Second token

XXX.4 Value supplied for the second field

XXX.5 and so on.

Sample Programs

C \sqllib\samples\c\dbconf.c

COBOL \sqllib\samples\cobol\dbconf.cbl

REXX \sqllib\samples\rexx\dbconf.cmd

Usage Notes
To view or print a list of the database configuration parameters, use “sqlfxdb -
Get Database Configuration” on page 275.

To view the default values for database configuration parameters, use
“sqlfddb - Get Database Configuration Defaults” on page 259.

To reset the database configuration parameters to the recommended defaults,
use “sqlfrdb - Reset Database Configuration” on page 263.

The default values of these parameters may differ for each type of database
node configured (server, client, or server with remote clients). See the
Administration Guide for the ranges and the default values that can be set on
each node type. The valid token values for each configuration entry are listed
in Table 53 on page 499.

Not all parameters can be updated.

Most changes to the database configuration file become effective only after
they are loaded into memory. All applications must disconnect from the
database before this can occur.

sqlfudb - Update Database Configuration

270 Administrative API Reference

If an error occurs, the database configuration file does not change.

The database configuration file cannot be updated if the checksum is invalid.
This may occur if the database configuration file is changed without using the
appropriate API. If this happens, the database must be restored to reset the
database configuration file.

For a brief description of the database configuration parameters, see the
Command Reference. For more information about these parameters, see the
Administration Guide.

See Also
“sqlfddb - Get Database Configuration Defaults” on page 259

“sqlfrdb - Reset Database Configuration” on page 263

“sqlfxdb - Get Database Configuration” on page 275.

sqlfudb - Update Database Configuration

Chapter 1. Application Programming Interfaces 271

sqlfusys - Update Database Manager Configuration
Modifies individual entries in the database manager configuration file.

Authorization
sysadm

Required Connection
None or instance. An instance attachment is not required to perform database
manager configuration operations at the current instance (as defined by the
value of the DB2INSTANCE environment variable), but is required to
perform database manager configuration operations at other instances. To
update the database manager configuration for another instance, it is
necessary to first attach to that instance.

API Include File
sqlutil.h

C API Syntax

Generic API Syntax

API Parameters

NumItems
Input. Number of entries being modified. The minimum valid value is
1.

pItemListLens
Input. An array of 2-byte unsigned integers representing the length of

/* File: sqlutil.h */
/* API: Update Database Manager Configuration */
/* ... */
SQL_API_RC SQL_API_FN

sqlfusys (
unsigned short NumItems,
struct sqlfupd * pItemList,
struct sqlca * pSqlca);

/* ... */

/* File: sqlutil.h */
/* API: Update Database Manager Configuration */
/* ... */
SQL_API_RC SQL_API_FN

sqlgusys (
unsigned short NumItems,
unsigned short * pItemListLens,
struct sqlfupd * pItemList,
struct sqlca * pSqlca);

/* ... */

sqlfusys - Update Database Manager Configuration

272 Administrative API Reference

each of the new configuration field values in the pItemList. It is
necessary to provide lengths for those fields that contain strings only,
such as dftdbpath. If, for example, dftdbpath is the fifth element in the
pItemList array, its length must be the fifth element in the pItemListLens
array.

pItemList
Input. Pointer to an array of NumItems sqlfupd structures, each
containing a token field indicating which value to update, and a
pointer field indicating the new value. For more information about
this structure, see “SQLFUPD” on page 499.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax

REXX API Parameters

values A compound REXX host variable containing tokens that indicate the
configuration fields to be modified. The application provides the
token and the new value for each field. The following are elements of
a variable, where XXX represents the host variable name:

XXX.0 Number of elements in the variable. This value is two
times the number of fields to modify.

XXX.1 First token

XXX.2 New value for the first field

XXX.3 Second token

XXX.4 New value for the second field

XXX.5 and so on.

Sample Programs

C \sqllib\samples\c\dbmconf.c

COBOL \sqllib\samples\cobol\dbmconf.cbl

REXX \sqllib\samples\rexx\dbmconf.cmd

Usage Notes
If an attachment to a remote instance (or a different local instance) exists, the
database manager configuration parameters for the attached server are
updated; otherwise, the local database manager configuration parameters are
updated.

UPDATE DATABASE MANAGER CONFIGURATION USING :values

sqlfusys - Update Database Manager Configuration

Chapter 1. Application Programming Interfaces 273

To view or print a list of the database manager configuration parameters, use
“sqlfxsys - Get Database Manager Configuration” on page 278.

To reset the database manager configuration parameters to the recommended
database manager defaults, use “sqlfrsys - Reset Database Manager
Configuration” on page 266.

The default values of these parameters may differ for each type of database
node configured (server, client, or server with remote clients). See the
Administration Guide for the ranges and the default values that can be set on
each node type. The valid token values for each configuration entry are listed
in Table 55 on page 502.

Not all parameters can be updated.

Most changes to the database manager configuration file become effective
only after they are loaded into memory. For a server configuration parameter,
this occurs during execution of db2start. For a client configuration parameter,
this occurs when the application is restarted.

If an error occurs, the database manager configuration file does not change.

The database manager configuration file cannot be updated if the checksum is
invalid. This may occur if the database manager configuration file is changed
without using the appropriate API. If this happens, the database manager
must be reinstalled to reset the database manager configuration file.

For a brief description of the database manager configuration parameters, see
the Command Reference. For more information about these parameters, see the
Administration Guide.

See Also
“sqlfdsys - Get Database Manager Configuration Defaults” on page 261

“sqlfrsys - Reset Database Manager Configuration” on page 266

“sqlfxsys - Get Database Manager Configuration” on page 278.

sqlfusys - Update Database Manager Configuration

274 Administrative API Reference

sqlfxdb - Get Database Configuration
Returns the values of individual entries in a database configuration file.

For a brief description of the database configuration parameters, see the
Command Reference. For detailed information about these parameters, see the
Administration Guide.

Scope
This API returns information only for the node from which it is called.

Authorization
None

Required Connection
Instance. It is not necessary to call ATTACH before getting the configuration
of a remote database. If the database is cataloged as remote, an instance
attachment to the remote node is established for the duration of the call.

API Include File
sqlutil.h

C API Syntax

Generic API Syntax

/* File: sqlutil.h */
/* API: Get Database Configuration */
/* ... */
SQL_API_RC SQL_API_FN

sqlfxdb (
_SQLOLDCHAR * pDbAlias,
unsigned short NumItems,
struct sqlfupd * pItemList,
struct sqlca * pSqlca);

/* ... */

/* File: sqlutil.h */
/* API: Get Database Configuration */
/* ... */
SQL_API_RC SQL_API_FN

sqlgxdb (
unsigned short DbAliasLen,
unsigned short NumItems,
struct sqlfupd * pItemList,
struct sqlca * pSqlca,
char * pDbAlias);

/* ... */

sqlfxdb - Get Database Configuration

Chapter 1. Application Programming Interfaces 275

API Parameters

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of
the database alias.

NumItems
Input. Number of entries to be returned. The minimum valid value is
1.

pItemList
Input/Output. Pointer to an array of NumItem sqlfupd structures, each
containing a token field indicating which value to return, and a
pointer field indicating where to place the configuration value. For
more information about this structure, see “SQLFUPD” on page 499.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pDbAlias
Input. A string containing the database alias.

REXX API Syntax

REXX API Parameters

database_alias
Alias of the database associated with a specific database configuration
file.

values A compound REXX host variable containing tokens that indicate the
configuration fields to be returned. The application provides the token
and the API returns the value. The following are elements of a
variable, where XXX represents the host variable name:

XXX.0 Twice the number of fields returned (number of data
elements in the remainder of the variable)

XXX.1 First token

XXX.2 Value returned for the first field

XXX.3 Second token

XXX.4 Value returned for the second field

XXX.5 and so on.

Sample Programs

C \sqllib\samples\c\dbconf.c

GET DATABASE CONFIGURATION FOR database_alias USING :values

sqlfxdb - Get Database Configuration

276 Administrative API Reference

COBOL \sqllib\samples\cobol\dbconf.cbl

REXX \sqllib\samples\rexx\dbconf.cmd

Usage Notes
Entries in the database configuration file that are not listed in the token values
for pItemList are not accessible to the application.

The application is responsible for allocating sufficient memory for each data
element returned. For example, the value returned for newlogpath can be up to
242 bytes in length.

If an error occurs, the information returned is not valid. If the configuration
file is invalid, an error message is returned. The database must be restored
from a backup version.

To set the database configuration parameters to the database manager
defaults, use “sqlfrdb - Reset Database Configuration” on page 263.

For more information about these parameters, see the Administration Guide.

See Also
“sqlfddb - Get Database Configuration Defaults” on page 259

“sqlfrdb - Reset Database Configuration” on page 263

“sqlfudb - Update Database Configuration” on page 268.

sqlfxdb - Get Database Configuration

Chapter 1. Application Programming Interfaces 277

sqlfxsys - Get Database Manager Configuration
Returns the values of individual entries in the database manager configuration
file.

For a brief description of the database manager configuration parameters, see
the Command Reference. For detailed information about these parameters, see
the Administration Guide.

Authorization
None

Required Connection
An instance attachment is not required to perform database manager
configuration operations at the current instance (as defined by the value of the
DB2INSTANCE environment variable), but is required to perform database
manager configuration operations at other instances. To display the database
manager configuration for another instance, it is necessary to first attach to
that instance.

API Include File
sqlutil.h

C API Syntax

Generic API Syntax

/* File: sqlutil.h */
/* API: Get Database Manager Configuration */
/* ... */
SQL_API_RC SQL_API_FN

sqlfxsys (
unsigned short NumItems,
struct sqlfupd * pItemList,
struct sqlca * pSqlca);

/* ... */

/* File: sqlutil.h */
/* API: Get Database Manager Configuration */
/* ... */
SQL_API_RC SQL_API_FN

sqlgxsys (
unsigned short NumItems,
struct sqlfupd * pItemList,
struct sqlca * pSqlca);

/* ... */

sqlfxsys - Get Database Manager Configuration

278 Administrative API Reference

API Parameters

NumItems
Input. Number of entries being modified. The minimum valid value is
1.

pItemList
Input/Output. Pointer to an array of NumItems sqlfupd structures, each
containing a token field indicating which value to return, and a
pointer field indicating where to place the configuration value. For
more information about this structure, see “SQLFUPD” on page 499.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax

REXX API Parameters

values A compound host variable containing tokens indicating the
configuration fields to be returned. The application provides the
token, and the API returns the value. XXX represents the host variable
name:

XXX.0 The actual number of data elements in the remainder
of the variable

XXX.1 First token

XXX.2 Value returned for the first field

XXX.3 Second token

XXX.4 Value returned for the second field

XXX.5 and so on.

Sample Programs

C \sqllib\samples\c\dbmconf.c

COBOL \sqllib\samples\cobol\dbmconf.cbl

REXX \sqllib\samples\rexx\dbmconf.cmd

Usage Notes
If an attachment to a remote instance (or a different local instance) exists, the
database manager configuration parameters for the attached server are
returned; otherwise, the local database manager configuration parameters are
returned.

GET DATABASE MANAGER CONFIGURATION USING :values

sqlfxsys - Get Database Manager Configuration

Chapter 1. Application Programming Interfaces 279

The application is responsible for allocating sufficient memory for each data
element returned. For example, the value returned for dftdbpath can be up to
215 bytes in length.

If an error occurs, the information returned is invalid. If the configuration file
is invalid, an error message is returned. The user must install the database
manager again to recover.

To set the configuration parameters to the default values shipped with the
database manager, use “sqlfrsys - Reset Database Manager Configuration” on
page 266.

For more information about these parameters, see the Administration Guide.

See Also
“sqlfdsys - Get Database Manager Configuration Defaults” on page 261

“sqlfrsys - Reset Database Manager Configuration” on page 266

“sqlfusys - Update Database Manager Configuration” on page 272.

sqlfxsys - Get Database Manager Configuration

280 Administrative API Reference

sqlgaddr - Get Address
Places the address of a variable into another variable. It is used in host
languages, such as FORTRAN and COBOL, that do not provide pointer
manipulation.

Authorization
None

Required Connection
None

API Include File
sqlutil.h

Generic API Syntax

API Parameters

pVariable
Input. Variable whose address is to be returned.

ppOutputAddress
Output. A 4-byte area into which the variable address is returned.

Usage Notes
This API is used in the COBOL and FORTRAN languages only.

See Also
“sqlgdref - Dereference Address” on page 282.

/* File: sqlutil.h */
/* API: Get Address */
/* ... */
SQL_API_RC SQL_API_FN

sqlgaddr (
char * pVariable,
char ** ppOutputAddress);

/* ... */

sqlgaddr - Get Address

Chapter 1. Application Programming Interfaces 281

sqlgdref - Dereference Address
Copies data from a buffer that is defined by a pointer, into a variable that is
directly accessible by the application. It is used in host languages, such as
FORTRAN and COBOL, that do not provide pointer manipulation. This API
can be used to obtain results from APIs, such as “sqlengne - Get Next Node
Directory Entry” on page 225, that return a pointer to the desired data.

Authorization
None

Required Connection
None

API Include File
sqlutil.h

Generic API Syntax

API Parameters

NumBytes
Input. An integer representing the number of bytes to be transferred.

pTargetBuffer
Output. Area into which the data are moved.

ppSourceBuffer
Input. A pointer to the area containing the desired data.

Usage Notes
This API is used in the COBOL and FORTRAN languages only.

See Also
“sqlgaddr - Get Address” on page 281.

/* File: sqlutil.h */
/* API: Dereference Address */
/* ... */
SQL_API_RC SQL_API_FN

sqlgdref (
unsigned int NumBytes,
char * pTargetBuffer,
char ** ppSourceBuffer);

/* ... */

sqlgdref - Dereference Address

282 Administrative API Reference

sqlgmcpy - Copy Memory
Copies data from one memory area to another. It is used in host languages,
such as FORTRAN and COBOL, that do not provide memory block copy
functions.

Authorization
None

Required Connection
None

API Include File
sqlutil.h

Generic API Syntax

API Parameters

pTargetBuffer
Output. Area into which to move the data.

pSource
Input. Area from which to move the data.

NumBytes
Input. A 4-byte unsigned integer representing the number of bytes to
be transferred.

Usage Notes
This API is used in the COBOL and FORTRAN languages only.

See Also
“sqlgaddr - Get Address” on page 281.

/* File: sqlutil.h */
/* API: Copy Memory */
/* ... */
SQL_API_RC SQL_API_FN

sqlgmcpy (
void * pTargetBuffer,
const void * pSource,
sqluint32 NumBytes);

/* ... */

sqlgmcpy - Copy Memory

Chapter 1. Application Programming Interfaces 283

sqlogstt - Get SQLSTATE Message
Retrieves the message text associated with an SQLSTATE.

Authorization
None

Required Connection
None

API Include File
sql.h

C API Syntax

Generic API Syntax

API Parameters

BufferSize
Input. Size, in bytes, of a string buffer to hold the retrieved message
text.

LineWidth
Input. The maximum line width for each line of message text. Lines
are broken on word boundaries. A value of zero indicates that the
message text is returned without line breaks.

pSqlstate
Input. A string containing the SQLSTATE for which the message text

/* File: sql.h */
/* API: Get SQLSTATE Message */
/* ... */
SQL_API_RC SQL_API_FN

sqlogstt (
char * pBuffer,
short BufferSize,
short LineWidth,
char * pSqlstate);

/* ... */

/* File: sql.h */
/* API: Get SQLSTATE Message */
/* ... */
SQL_API_RC SQL_API_FN

sqlggstt (
short BufferSize,
short LineWidth,
char * pSqlstate,
char * pBuffer);

/* ... */

sqlogstt - Get SQLSTATE Message

284 Administrative API Reference

is to be retrieved. This field is alphanumeric and must be either
five-digit (specific SQLSTATE) or two-digit (SQLSTATE class, first two
digits of an SQLSTATE). This field does not need to be
NULL-terminated if 5 digits are being passed in, but must be
NULL-terminated if 2 digits are being passed.

pBuffer
Output. A pointer to a string buffer where the message text is to be
placed. If the message must be truncated to fit in the buffer, the
truncation allows for the null string terminator character.

REXX API Syntax

REXX API Parameters

sqlstate
The SQLSTATE for which the message text is to be retrieved.

msg REXX variable into which the message is placed.

width Maximum line width for each line of the message text. The line is
broken on word boundaries. If a value is not specified, or this
parameter is set to 0, the message text returns without line breaks.

Sample Programs

C \sqllib\samples\c\utilapi.c

COBOL \sqllib\samples\cobol\checkerr.cbl

Usage Notes
One message is returned per call.

A LF/NULL sequence is placed at the end of each message.

If a positive line width is specified, LF/NULL sequences are inserted between
words so that the lines do not exceed the line width.

If a word is longer than a line width, the line is filled with as many characters
as will fit, a LF/NULL is inserted, and the remaining characters are placed on
the next line.

Return Codes

Code Message

+i Positive integer indicating the number of bytes in the formatted
message. If this is greater than the buffer size input by the caller, the
message is truncated.

GET MESSAGE FOR SQLSTATE sqlstate INTO :msg [LINEWIDTH width]

sqlogstt - Get SQLSTATE Message

Chapter 1. Application Programming Interfaces 285

-1 Insufficient memory available for message formatting services to
function. The requested message is not returned.

-2 The SQLSTATE is in the wrong format. It must be alphanumeric and
be either 2 or 5 digits in length.

-3 Message file inaccessible or incorrect.

-4 Line width is less than zero.

-5 Invalid sqlca, bad buffer address, or bad buffer length.

If the return code is -1 or -3, the message buffer will contain further
information about the problem.

See Also
“sqlaintp - Get Error Message” on page 90.

sqlogstt - Get SQLSTATE Message

286 Administrative API Reference

sqluadau - Get Authorizations
Reports the authorities of the current user from values found in the database
manager configuration file and the authorization system catalog view
(SYSCAT.DBAUTH).

Authorization
None

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

Generic API Syntax

API Parameters

pAuthorizations
Input/Output. Pointer to the sql_authorizations structure. This array of
short integers indicates which authorizations the current user holds.
The first element in the structure, sql_authorizations_len, must be
initialized to the size of the buffer being passed, prior to calling this
API. For more information about the sql_authorizations structure, see
“SQL-AUTHORIZATIONS” on page 434.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

/* File: sqlutil.h */
/* API: Get Authorizations */
/* ... */
SQL_API_RC SQL_API_FN

sqluadau (
struct sql_authorizations * pAuthorizations,
struct sqlca * pSqlca);

/* ... */

/* File: sqlutil.h */
/* API: Get Authorizations */
/* ... */
SQL_API_RC SQL_API_FN

sqlgadau (
struct sql_authorizations * pAuthorizations,
struct sqlca * pSqlca);

/* ... */

sqluadau - Get Authorizations

Chapter 1. Application Programming Interfaces 287

REXX API Syntax

REXX API Parameters

value A compound REXX host variable to which the authorization level is
returned. In the following, XXX represents the host variable name.
Values are 0 for no, and 1 for yes.

XXX.0 Number of elements in the variable (always 18)

XXX.1 Direct SYSADM authority

XXX.2 Direct DBADM authority

XXX.3 Direct CREATETAB authority

XXX.4 Direct BINDADD authority

XXX.5 Direct CONNECT authority

XXX.6 Indirect SYSADM authority

XXX.7 Indirect DBADM authority

XXX.8 Indirect CREATETAB authority

XXX.9 Indirect BINDADD authority

XXX.10 Indirect CONNECT authority

XXX.11 Direct SYSCTRL authority

XXX.12 Indirect SYSCTRL authority

XXX.13 Direct SYSMAINT authority

XXX.14 Indirect SYSMAINT authority

XXX.15 Direct CREATE_NOT_FENC authority

XXX.16 Indirect CREATE_NOT_FENC authority

XXX.17 Direct IMPLICIT_SCHEMA authority

XXX.18 Indirect IMPLICIT_SCHEMA authority.

XXX.19 Direct LOAD authority.

XXX.20 Indirect LOAD authority.

Sample Programs

C \sqllib\samples\c\dbauth.sqc

COBOL \sqllib\samples\cobol\dbauth.sqb

REXX \sqllib\samples\rexx\dbauth.cmd

GET AUTHORIZATIONS :value

sqluadau - Get Authorizations

288 Administrative API Reference

Usage Notes
Direct authorities are acquired by explicit commands that grant the authorities
to a user ID. Indirect authorities are based on authorities acquired by the
groups to which a user belongs.

Note: PUBLIC is a special group to which all users belong.

If there are no errors, each element of the sql_authorizations structure contains
a 0 or a 1. A value of 1 indicates that the user holds that authorization; 0
indicates that the user does not.

sqluadau - Get Authorizations

Chapter 1. Application Programming Interfaces 289

sqlubkp - Backup Database
Creates a backup copy of a database or a table space.

Scope
This API only affects the node on which it is executed.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

Required Connection
Database. This API automatically establishes a connection to the specified
database.

Note: If a connection to the specified database already exists, it will be used
for the backup operation. The connection will be terminated at the
completion of the backup.

API Include File
sqlutil.h

C API Syntax
/* File: sqlutil.h */
/* API: Backup Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlubkp (
char * pDbAlias,
sqluint32 BufferSize,
sqluint32 BackupMode,
sqluint32 BackupType,
sqluint32 CallerAction,
char * pApplicationId,
char * pTimestamp,
sqluint32 NumBuffers,
struct sqlu_tablespace_bkrst_list * pTablespaceList,
struct sqlu_media_list * pMediaTargetList,
char * pUserName,
char * pPassword,
void * pReserved2,
sqluint32 VendorOptionsSize,
void * pVendorOptions,
sqluint32 Parallelism,
sqluint32 * pBackupSize,
void * pReserved4,
void * pReserved3,
struct sqlca * pSqlca);

/* ... */

sqlubkp - Backup Database

290 Administrative API Reference

Generic API Syntax
/* File: sqlutil.h */
/* API: Backup Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlgbkp (
unsigned short DbAliasLen,
unsigned short UserNameLen,
unsigned short PasswordLen,
unsigned short * pReserved1,
char * pDbAlias,
sqluint32 BufferSize,
sqluint32 BackupMode,
sqluint32 BackupType,
sqluint32 CallerAction,
char * pApplicationId,
char * pTimestamp,
sqluint32 NumBuffers,
struct sqlu_tablespace_bkrst_list * pTablespaceList,
struct sqlu_media_list * pMediaTargetList,
char * pUserName,
char * pPassword,
void * pReserved2,
sqluint32 VendorOptionsSize,
void * pVendorOptions,
sqluint32 Parallelism,
sqluint32 * pBackupSize,
void * pReserved4,
void * pReserved3,
struct sqlca * pSqlca);

/* ... */

API Parameters

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of
the database alias.

UserNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the user name. Set to zero if no user name is provided.

PasswordLen
Input. A 2-byte unsigned integer representing the length in bytes of
the password. Set to zero if no password is provided.

pReserved1.
Reserved for future use.

pDbAlias
Input. A string containing the database alias (as cataloged in the
system database directory) of the database to back up.

sqlubkp - Backup Database

Chapter 1. Application Programming Interfaces 291

BufferSize
Input. Backup buffer size in 4KB allocation units (pages). Minimum is
8 units. The default is 1024 units.

BackupMode
Input. Specifies the backup mode. Valid values (defined in sqlutil)
are:

SQLUB_OFFLINE
Offline gives an exclusive connection to the database.

SQLUB_ONLINE
Online allows database access by other applications while the
backup operation occurs.

Note: An online backup operation may time out if there is an
IX lock on sysibm.systables, because the DB2 backup
utility acquires S locks on SMS LOB objects and IN
locks on all other objects.

BackupType
Input. Specifies the type of backup to be taken. Valid values (defined
in sqlutil) are:

SQLUB_FULL
Full database backup.

SQLUB_TABLESPACE
Table space level backup. For a table space level backup,
provide a list of table spaces in the pTablespaceList parameter.

CallerAction
Input. Specifies action to be taken. Valid values (defined in sqlutil)
are:

SQLUB_BACKUP
Start the backup.

SQLUB_NOINTERRUPT
Start the backup. Specifies that the backup will run
unattended, and that scenarios which normally require user
intervention will either be attempted without first returning to
the caller, or will generate an error. Use this caller action, for
example, if it is known that all of the media required for the
backup have been mounted, and utility prompts are not
desired.

SQLUB_CONTINUE
Continue the backup after the user has performed some action
requested by the utility (mount a new tape, for example).

sqlubkp - Backup Database

292 Administrative API Reference

SQLUB_TERMINATE
Terminate the backup after the user has failed to perform
some action requested by the utility.

SQLUB_DEVICE_TERMINATE
Remove a particular device from the list of devices used by
backup. When a particular medium is full, backup will return
a warning to the caller (while continuing to process using the
remaining devices). Call backup again with this caller action
to remove the device which generated the warning from the
list of devices being used.

SQLUB_PARM_CHECK
Used to validate parameters without performing a backup.
This option does not terminate the database connection after
the call returns. After successful return of this call, it is
expected that the user will issue a call with SQLUB_CONTINUE to
proceed with the action.

SQLUB_PARM_CHECK_ONLY
Used to validate parameters without performing a backup.
Before this call returns, the database connection established by
this call is terminated, and no subsequent call is required.

pApplicationId
Output. Supply a buffer of length SQLU_APPLID_LEN+1 (defined in
sqlutil). The API will return a string identifying the agent servicing
the application. Can be used to obtain information about the progress
of the backup operation using the database monitor.

pTimestamp
Output. Supply a buffer of length SQLU_TIME_STAMP_LEN+1
(defined in sqlutil). The API will return the time stamp of the
backup image.

NumBuffers
Input. Specifies number of backup buffers to be used.

pTablespaceList
Input. List of table spaces to be backed up. Required for table space
level backup only. See structure “SQLU-TABLESPACE-BKRST-LIST”
on page 523.

pMediaTargetList
Input. This structure allows the caller to specify the destination for the
backup operation. The information provided depends on the value of
the media_type field. The valid values for media_type (defined in
sqlutil) are:

sqlubkp - Backup Database

Chapter 1. Application Programming Interfaces 293

SQLU_LOCAL_MEDIA
Local devices (a combination of tapes, disks, or diskettes).
Provide a list of sqlu_media_entry structures. On OS/2 or the
Windows operating system, the entries can be directory paths
only, not tape device names.

SQLU_TSM_MEDIA
TSM. If an sqlu_media_entry structure is not being used to
specify a path for the backup image, initialize the media
pointer in the sqlu_media_list_targets structure to NULL. The
TSM shared library provided with DB2 is used. If a different
version of the TSM shared library is desired, use
SQLU_OTHER_MEDIA and provide the shared library name.

SQLU_OTHER_MEDIA
Vendor product. Provide the shared library name in an
sqlu_vendor structure.

SQLU_USER_EXIT
User exit. No additional input is required (available on OS/2
only).

For more information, see structure “SQLU-MEDIA-LIST” on
page 518, and the Administration Guide.

pUserName
Input. A string containing the user name to be used when attempting
a connection.

pPassword
Input. A string containing the password to be used with the user
name.

pReserved2
Reserved for future use.

VendorOptionsSize
Input. The length of the pVendorOptions field which cannot exceed
65535 bytes.

pVendorOptions
Input. Used to pass information from the application to the vendor
functions. This data structure must be flat; that is, no level of
indirection is supported. Note that byte-reversal is not done, and code
page is not checked for this data.

Parallelism
Input. Degree of parallelism (number of buffer manipulators).

pBackupSize
Output. Size of the backup image (in MB). Can be set to NULL.

sqlubkp - Backup Database

294 Administrative API Reference

pReserved4
Reserved for future use.

pReserved3
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax

REXX API Parameters

dbalias
Alias of the database to be backed up.

value A compound REXX host variable to which the database backup
information is returned. In the following, XXX represents the host
variable name:

XXX.0 Number of elements in the variables (always 2)

XXX.1 The time stamp of the backup image

XXX.2 An application ID that identifies the agent that serves
the application.

username
Identifies the user name under which to back up the database.

password
The password used to authenticate the user name.

tablespacenames
A compound REXX host variable containing a list of table spaces to be
backed up. In the following, XXX is the name of the host variable:

XXX.0 Number of table spaces to be backed up

XXX.1 First table space name

BACKUP DATABASE dbalias USING :value [USER username USING password]

[TABLESPACE :tablespacenames] [ONLINE]

[LOAD vendor-library [OPTIONS vendor-options] [OPEN num-sessions SESSIONS] |
TO :target-area |
USE TSM [OPEN num-sessions SESSIONS] |
USER_EXIT]

[ACTION caller-action] [WITH num-buffers BUFFERS] [BUFFERSIZE buffer-size]
[PARALLELISM parallelism-degree]

sqlubkp - Backup Database

Chapter 1. Application Programming Interfaces 295

XXX.2 Second table space name

XXX.3 and so on.

vendor-library
The name of the shared library (DLL on OS/2 or the Windows
operating system) containing the vendor backup and restore I/O
functions to be used. It may contain the full path. If the full path is
not given, defaults to the path on which the user exit program resides.

vendor-options
Information required by the vendor functions.

num-sessions
The number of I/O sessions to be used with TSM or the vendor
product.

target-area
Local devices. Allows a combination of tapes, disks or diskettes.
Provide a list in “SQLU-MEDIA-LIST” on page 518. On OS/2 or the
Windows operating system, the entries can be directory paths only,
not tape device names.

caller-action
Specifies action to be taken. Valid values are:

SQLUB_BACKUP
Start the backup.

SQLUB_NOINTERRUPT
Start the backup. Specifies that the backup will run
unattended, and that scenarios which normally require user
intervention will either be attempted without first returning to
the caller, or will generate an error. Use this caller action, for
example, if it is known that all of the media required for the
backup have been mounted, and utility prompts are not
desired.

SQLUB_CONTINUE
Continue the backup after the user has performed some action
requested by the utility (mount a new tape, for example).

SQLUB_TERMINATE
Terminate the backup after the user has failed to perform
some action requested by the utility.

SQLUB_DEVICE_TERMINATE
Remove a particular device from the list of devices used by
backup. When a particular medium is full, backup will return
a warning to the caller (while continuing to process using the

sqlubkp - Backup Database

296 Administrative API Reference

remaining devices). Call backup again with this caller action
to remove the device which generated the warning from the
list of devices being used.

SQLUB_PARM_CHECK
Used to validate parameters without performing a backup.

num-buffers
Number of backup buffers to be used.

buffer-size
Backup buffer size in allocation units of 4KB. Minimum is 8 units.

parallelism-degree
Number of buffer manipulators.

Sample Programs

C \sqllib\samples\c\backrest.c

COBOL \sqllib\samples\cobol\backrest.cbl

Usage Notes
For information about database level backup, table space level backup, online
and offline backup, backup file names, and supported devices, see the
Command Reference.

For a general discussion of backup, see “Recovering a Database” in the
Administration Guide.

See Also
“sqlemgdb - Migrate Database” on page 221

“sqluroll - Rollforward Database” on page 397

“sqlurestore - Restore Database” on page 381.

sqlubkp - Backup Database

Chapter 1. Application Programming Interfaces 297

sqludrdt - Redistribute Nodegroup
Redistributes data across the nodes in a nodegroup. The current data
distribution, whether it is uniform or skewed, can be specified. The
redistribution algorithm selects the partitions to be moved based on the
current data distribution.

This API can only be called from the catalog node. Use the LIST DATABASE
DIRECTORY command (see the Command Reference) to determine which node
is the catalog node for each database.

Scope
This API affects all nodes in the nodegroup.

Authorization
One of the following:
v sysadm

v sysctrl

v dbadm

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */
/* API: Redistribute Nodegroup */
/* ... */
SQL_API_RC SQL_API_FN

sqludrdt (
char * pNodeGroupName,
char * pTargetPMapFileName,
char * pDataDistFileName,
SQL_PDB_NODE_TYPE * pAddList,
unsigned short AddCount,
SQL_PDB_NODE_TYPE * pDropList,
unsigned short DropCount,
unsigned char DataRedistOption,
struct sqlca * pSqlca);

/* ... */

sqludrdt - Redistribute Nodegroup

298 Administrative API Reference

Generic API Syntax

API Parameters

NodeGroupNameLen
The length of the name of the nodegroup.

TargetPMapFileNameLen
The length of the name of the target partitioning map file.

DataDistFileNameLen
The length of the name of the data distribution file.

pNodeGroupName
The name of the nodegroup to be redistributed.

pTargetPMapFileName
The name of the file that contains the target partitioning map. If a
directory path is not specified as part of the file name, the current
directory is used. This parameter is used when the DataRedistOption
value is T. The file should be in character format and contain either
4 096 entries (for a multi-node nodegroup) or 1 entry (for a
single-node nodegroup). Entries in the file indicate node numbers.
Entries can be in free format.

pDataDistFileName
The name of the file that contains input distribution information. If a
directory path is not specified as part of the file name, the current
directory is used. This parameter is used when the DataRedistOption
value is U. The file should be in character format and contain 4 096
positive integer entries. Each entry in the file should indicate the
weight of the corresponding partition. The sum of the 4 096 values
should be less than or equal to 4 294 967 295.

/* File: sqlutil.h */
/* API: Redistribute Nodegroup */
/* ... */
SQL_API_RC SQL_API_FN

sqlgdrdt (
unsigned short NodeGroupNameLen,
unsigned short TargetPMapFileNameLen,
unsigned short DataDistFileNameLen,
char * pNodeGroupName,
char * pTargetPMapFileName,
char * pDataDistFileName,
SQL_PDB_NODE_TYPE * pAddList,
unsigned short AddCount,
SQL_PDB_NODE_TYPE * pDropList,
unsigned short DropCount,
unsigned char DataRedistOption,
struct sqlca * pSqlca);

/* ... */

sqludrdt - Redistribute Nodegroup

Chapter 1. Application Programming Interfaces 299

pAddList
The list of nodes to add to the nodegroup during the data
redistribution. Entries in the list must be in the form:
SQL_PDB_NODE_TYPE.

AddCount
The number of nodes to add to the nodegroup.

pDropList
The list of nodes to drop from the nodegroup during the data
redistribution. Entries in the list must be in the form:
SQL_PDB_NODE_TYPE.

DropCount
The number of nodes to drop from the nodegroup.

DataRedistOption
A single character that indicates the type of data redistribution to be
done. Possible values are:

U Specifies to redistribute the nodegroup to achieve a balanced
distribution. If pDataDistFileName is null, the current data
distribution is assumed to be uniform (that is, each hash
partition represents the same amount of data). If
pDataDistFileName is not null, the values in this file are
assumed to represent the current data distribution. When the
DataRedistOption is U, the pTargetPMapFileName should be null.

Nodes specified in the add list are added, and nodes specified
in the drop list are dropped from the nodegroup.

T Specifies to redistribute the nodegroup using
pTargetPMapFileName. For this option, pDataDistFileName,
pAddList, and pDropList should be null, and both AddCount
and DropCount must be zero.

C Specifies to continue a redistribution operation that failed. For
this option, pTargetPMapFileName, pDataDistFileName, pAddList,
and pDropList should be null, and both AddCount and
DropCount must be zero.

R Specifies to roll back a redistribution operation that failed. For
this option, pTargetPMapFileName, pDataDistFileName, pAddList,
and pDropList should be null, and both AddCount and
DropCount must be zero.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

sqludrdt - Redistribute Nodegroup

300 Administrative API Reference

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How
the API Descriptions are Organized” on page 12, or the Application Development
Guide. For a description of the syntax, see the Command Reference.

Usage Notes
When a redistribution operation is done, a message file is written to:
v The $HOME/sqllib/redist directory on UNIX based systems, using the

following format for subdirectories and file name: database-name.nodegroup-
name.timestamp.

v The $HOME\sqllib\redist\ directory on OS/2 or the Windows operating
system, using the following format for subdirectories and file name:
database-name\first-eight-characters-of-the-nodegroup-name\date\time.

The time stamp value is the time at which the API was called.

This utility performs intermittent COMMITs during processing.

Use the ALTER NODEGROUP statement to add nodes to a nodegroup. This
statement permits one to define the containers for the table spaces associated
with the nodegroup. See the SQL Reference for details.

Note: DB2 Parallel Edition for AIX Version 1 syntax, with ADD NODE and
DROP NODE options, is supported for users with sysadm or sysctrl
authority. For ADD NODE, containers are created like the containers on
the lowest node number of the existing nodes within the nodegroup.

All packages having a dependency on a table that has undergone
redistribution are invalidated. It is recommended to explicitly rebind such
packages after the redistribute nodegroup operation has completed. Explicit
rebinding eliminates the initial delay in the execution of the first SQL request
for the invalid package. The redistribute message file contains a list of all the
tables that have undergone redistribution.

It is also recommended to update statistics by issuing “sqlustat - Runstats” on
page 407 after the redistribute nodegroup operation has completed.

Nodegroups containing replicated summary tables or tables defined with
DATA CAPTURE CHANGES cannot be redistributed.

Redistribution is not allowed if there are user temporary table spaces with
existing declared temporary tables in the nodegroup.

See Also
“sqlarbnd - Rebind” on page 99.

sqludrdt - Redistribute Nodegroup

Chapter 1. Application Programming Interfaces 301

sqluexpr - Export
Exports data from a database to one of several external file formats. The user
specifies the data to be exported by supplying an SQL SELECT statement, or
by providing hierarchical information for typed tables.

Authorization
One of the following:
v sysadm

v dbadm

or CONTROL or SELECT privilege on each participating table or view.

Required Connection
Database. If implicit connect is enabled, a connection to the default database is
established.

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */
/* API: Export */
/* ... */
SQL_API_RC SQL_API_FN

sqluexpr (
char * pDataFileName,
sqlu_media_list * pLobPathList,
sqlu_media_list * pLobFileList,
struct sqldcol * pDataDescriptor,
struct sqlchar * pActionString,
char * pFileType,
struct sqlchar * pFileTypeMod,
char * pMsgFileName,
short CallerAction,
struct sqluexpt_out* pOutputInfo,
void * pReserved,
struct sqlca * pSqlca);

/* ... */

sqluexpr - Export

302 Administrative API Reference

Generic API Syntax

API Parameters

DataFileNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the data file name.

FileTypeLen
Input. A 2-byte unsigned integer representing the length in bytes of
the file type.

MsgFileNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the message file name.

pDataFileName
Input. A string containing the path and the name of the external file
into which the data is to be exported.

pLobPathList
Input. An sqlu_media_list using media_type SQLU_LOCAL_MEDIA, and the
sqlu_media_entry structure listing paths on the client where the LOB
files are to be stored.

When file space is exhausted on the first path in this list, the API will
use the second path, and so on.

For more information, see “SQLU-MEDIA-LIST” on page 518.

/* File: sqlutil.h */
/* API: Export */
/* ... */
SQL_API_RC SQL_API_FN

sqlgexpr (
unsigned short DataFileNameLen,
unsigned short FileTypeLen,
unsigned short MsgFileNameLen,
char * pDataFileName,
sqlu_media_list * pLobPathList,
sqlu_media_list * pLobFileList,
struct sqldcol * pDataDescriptor,
struct sqlchar * pActionString,
char * pFileType,
struct sqlchar * pFileTypeMod,
char * pMsgFileName,
short CallerAction,
struct sqluexpt_out* pOutputInfo,
void * pReserved,
struct sqlca * pSqlca);

/* ... */

sqluexpr - Export

Chapter 1. Application Programming Interfaces 303

pLobFileList
Input. An sqlu_media_list using media_type SQLU_CLIENT_LOCATION, and
the sqlu_location_entry structure containing base file names.

When the name space is exhausted using the first name in this list,
the API will use the second name, and so on.

For more information, see “SQLU-MEDIA-LIST” on page 518.

When creating LOB files during an export operation, file names are
constructed by appending the current base name from this list to the
current path (from pLobFilePath), and then appending a 3-digit
sequence number. For example, if the current LOB path is the
directory /u/foo/lob/path, and the current LOB file name is bar, the
created LOB files will be /u/foo/lob/path/bar.001,
/u/foo/lob/pah/bar.002, and so on.

pDataDescriptor
Input. Pointer to an sqldcol structure specifying the column names for
the output file. The value of the dcolmeth field determines how the
remainder of the information provided in this parameter is interpreted
by the export utility. Valid values for this parameter (defined in
sqlutil) are:

SQL_METH_N
Names. Specify column names to be used in the output file.

SQL_METH_D
Default. Existing column names from the table are to be used
in the output file. In this case, the number of columns and the
column specification array are both ignored. The column
names are derived from the output of the SELECT statement
specified in pActionString.

For more information, see “SQLDCOL” on page 456.

pActionString
Input. Pointer to an sqlchar structure containing a valid dynamic SQL
SELECT statement. The structure contains a 2-byte long field, followed
by the characters that make up the SELECT statement. The SELECT
statement specifies the data to be extracted from the database and
written to the external file.

The columns for the external file (from pDataDescriptor), and the
database columns from the SELECT statement, are matched according
to their respective list/structure positions. The first column of data
selected from the database is placed in the first column of the external
file, and its column name is taken from the first element of the
external column array.

sqluexpr - Export

304 Administrative API Reference

For more information, see “SQLCHAR” on page 452.

Note: The syntax that is to be used for typed tables is described in
the Command Reference.

pFileType
Input. A string that indicates the format of the data within the
external file. Supported external file formats (defined in sqlutil) are:

SQL_DEL
Delimited ASCII, for exchange with dBase, BASIC, and the
IBM Personal Decision Series programs, and many other
database managers and file managers.

SQL_WSF
Worksheet formats for exchange with Lotus Symphony and
1-2-3 programs.

SQL_IXF
PC version of the Integrated Exchange Format, the preferred
method for exporting data from a table. Data exported to this
file format can later be imported or loaded into the same table
or into another database manager table.

pFileTypeMod
Input. A pointer to an sqldcol structure containing a 2-byte long field,
followed by an array of characters that specify one or more processing
options. If this pointer is NULL, or the structure pointed to has zero
characters, this action is interpreted as selection of a default
specification.

Not all options can be used with all of the supported file types.

For more information, see “SQLCHAR” on page 452, and the
Command Reference.

pMsgFileName
Input. A string containing the destination for error, warning, and
informational messages returned by the utility. It can be the path and
the name of an operating system file or a standard device. If the file
already exists, it is overwritten. If it does not exist, a file is created.

CallerAction
Input. An action requested by the caller. Valid values (defined in
sqlutil) are:

SQLU_INITIAL
Initial call. This value must be used on the first call to the
API.

sqluexpr - Export

Chapter 1. Application Programming Interfaces 305

If the initial call or any subsequent call returns and requires the
calling application to perform some action prior to completing the
requested export operation, the caller action must be set to one of the
following:

SQLU_CONTINUE
Continue processing. This value can only be used on
subsequent calls to the API, after the initial call has returned
with the utility requesting user input (for example, to respond
to an end of tape condition). It specifies that the user action
requested by the utility has completed, and the utility can
continue processing the initial request.

SQLU_TERMINATE
Terminate processing. This value can only be used on
subsequent calls to the API, after the initial call has returned
with the utility requesting user input (for example, to respond
to an end of tape condition). It specifies that the user action
requested by the utility was not performed, and the utility is
to terminate processing the initial request.

pOutputInfo
Output. Returns the number of records exported to the target file. For
more information about this structure, see “SQLUEXPT-OUT” on
page 525.

pReserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax

REXX API Parameters

stmt A REXX host variable containing a valid dynamic SQL SELECT
statement. The statement specifies the data to be extracted from the
database.

datafile
Name of the file into which the data is to be exported.

EXPORT :stmt TO datafile OF filetype
[MODIFIED BY :filetmod] [USING :dcoldata]
MESSAGES msgfile [ROWS EXPORTED :number]

CONTINUE EXPORT

STOP EXPORT

sqluexpr - Export

306 Administrative API Reference

filetype
The format of the data in the export file. The supported file formats
are:

DEL Delimited ASCII

WSF Worksheet format

IXF PC version of Integrated Exchange Format.

filetmod
A host variable containing additional processing options (see the Data
Movement Utilities Guide and Reference).

dcoldata
A compound REXX host variable containing the column names to be
used in the export file. In the following, XXX represents the name of
the host variable:

XXX.0 Number of columns (number of elements in the remainder of
the variable).

XXX.1 First column name.

XXX.2 Second column name.

XXX.3 and so on.

If this parameter is NULL, or a value for dcoldata has not been
specified, the utility uses the column names from the database table.

msgfile
File, path, or device name where error and warning messages are to
be sent.

number
A host variable that will contain the number of exported rows.

Sample Programs

C \sqllib\samples\c\impexp.sqc

COBOL \sqllib\samples\cobol\impexp.sqb

REXX \sqllib\samples\rexx\impexp.cmd

Usage Notes
Be sure to complete all table operations and release all locks before starting an
export operation. This can be done by issuing a COMMIT after closing all
cursors opened WITH HOLD, or by issuing a ROLLBACK.

Table aliases can be used in the SELECT statement.

sqluexpr - Export

Chapter 1. Application Programming Interfaces 307

The messages placed in the message file include the information returned
from the message retrieval service. Each message begins on a new line.

The export utility produces a warning message whenever a character column
with a length greater than 254 is selected for export to DEL format files.

A warning message is issued if the number of columns (dcolnum) in the
external column name array, pDataDescriptor, is not equal to the number of
columns generated by the SELECT statement. In this case, the number of
columns written to the external file is the lesser of the two numbers. Excess
database columns or external column names are not used to generate the
output file.

If the db2uexpm.bnd module or any other shipped .bnd files are bound
manually, the format option on the binder must not be used.

PC/IXF import should be used to move data between databases. If character
data containing row separators is exported to a delimited ASCII (DEL) file
and processed by a text transfer program (moving, for example, between
OS/2 and AIX systems), fields containing the row separators will shrink or
expand.

PC/IXF file format specifications permit migration of data between OS/2
(IBM Extended Services for OS/2, OS/2 Extended Edition and DB2 for OS/2)
databases and DB2 for AIX databases via export, binary copying of files
between OS/2 and AIX, and import. The file copying step is not necessary if
the source and the target databases are both accessible from the same client.

DB2 Connect can be used to export tables from DRDA servers such as DB2 for
OS/390, DB2 for VM and VSE, and DB2 for OS/400. Only PC/IXF export is
supported.

The export utility will not create multiple-part PC/IXF files when invoked
from an AIX system.

Index definitions for a table are included in the PC/IXF file when the contents
of a single database table are exported to a PC/IXF file with a pActionString
beginning with SELECT * FROM tablename, and the pDataDescriptor parameter
specifying default names. Indexes are not saved for views, or if the SELECT
clause of the pActionString includes a join. A WHERE clause, a GROUP BY
clause, or a HAVING clause in the pActionString will not prevent the saving of
indexes. In all of these cases, when exporting from typed tables, the entire
hierarchy must be exported.

sqluexpr - Export

308 Administrative API Reference

The export utility will store the NOT NULL WITH DEFAULT attribute of the
table in an IXF file if the SELECT statement provided is in the form
SELECT * FROM tablename.

When exporting typed tables, subselect statements can only be expressed by
specifying the target table name and the WHERE clause. Fullselect and
select-statement cannot be specified when exporting a hierarchy.

For file formats other than IXF, it is recommended that the traversal order list
be specified, because it tells DB2 how to traverse the hierarchy, and what
sub-tables to export. If this list is not specified, all tables in the hierarchy are
exported, and the default order is the OUTER order. The alternative is to use
the default order, which is the order given by the OUTER function.

Note: Use the same traverse order during an import operation. The load
utility does not support loading hierarchies or sub-hierarchies.

DB2 Data Links Manager Considerations

To ensure that a consistent copy of the table and the corresponding files
referenced by the DATALINK columns are copied for export, do the
following:
1. Issue the command: QUIESCE TABLESPACES FOR TABLE tablename

SHARE.
This ensures that no update transactions are in progress when EXPORT is
run.

2. Issue the EXPORT command.
3. Run the dlfm_export utility at each Data Links server. Input to the

dlfm_export utility is the control file name, which is generated by the
export utility. This produces a tar (or equivalent) archive of the files listed
within the control file.

4. Issue the command: QUIESCE TABLESPACES FOR TABLE tablename
RESET.
This makes the table available for updates.

EXPORT is executed as an SQL application. The rows and columns satisfying
the SELECT statement conditions are extracted from the database. For the
DATALINK columns, the SELECT statement should not specify any scalar
function.

Successful execution of EXPORT results in generation of the following files:

sqluexpr - Export

Chapter 1. Application Programming Interfaces 309

v An export data file as specified in the EXPORT command. A DATALINK
column value in this file is in the format described on page 355. When the
DATALINK column value is the SQL NULL value, handling is the same as
that for other data types.

v Control files server_name, which are generated for each Data Links server
(on the Windows NT operating system, a single control file, ctrlfile.lst,
is used by all Data Links servers). These control files are placed in the
directory <data-file path>/dlfm/YYYYMMDD/HHMMSS (on the Windows
NT operating system, ctrlfile.lst is placed in the directory <data-file
path>\dlfm\YYYYMMDD\HHMMSS). YYYYMMDD represents the date
(year month day), and HHMMSS represents the time (hour minute second).

The dlfm_export utility is provided to export files from a Data Links server.
This utility generates an archive file, which can be used to restore files in the
target Data Links server.

Table 8. Valid File Type Modifiers (Export)

Modifier Description

All File Formats

lobsinfile lob-path specifies the path to the files containing LOB values.

DEL (Delimited ASCII) File Format

chardelx x is a single character string delimiter. The default value is a
double quotation mark ("). The specified character is used in
place of double quotation marks to enclose a character
string.a

The single quotation mark (') can also be specified as a
character string delimiter as follows:

modified by chardel''

coldelx x is a single character column delimiter. The default value is
a comma (,). The specified character is used in place of a
comma to signal the end of a column.a

In the following example, coldel; causes the export utility
to interpret any semicolon (;) it encounters as a column
delimiter:

db2 "export to temp of del modified by coldel;
select * from staff where dept = 20"

datesiso Date format. Causes all date data values to be exported in
ISO format (″YYYY-MM-DD″).b

decplusblank Plus sign character. Causes positive decimal values to be
prefixed with a blank space instead of a plus sign (+). The
default action is to prefix positive decimal values with a
plus sign.

sqluexpr - Export

310 Administrative API Reference

Table 8. Valid File Type Modifiers (Export) (continued)

Modifier Description

decptx x is a single character substitute for the period as a decimal
point character. The default value is a period (.). The
specified character is used in place of a period as a decimal
point character.a

dldelx x is a single character DATALINK delimiter. The default
value is a semicolon (;). The specified character is used in
place of a semicolon as the inter-field separator for a
DATALINK value. It is needed because a DATALINK value
may have more than one sub-value. a

Note: x must not be the same character specified as the
row, column, or character string delimiter.

nodoubledel Suppresses recognition of double character delimiters. For
more information, see “Delimiter Restrictions” on page 312.

WSF File Format

1 Creates a WSF file that is compatible with Lotus 1-2-3
Release 1, or Lotus 1-2-3 Release 1a.c This is the default.

2 Creates a WSF file that is compatible with Lotus Symphony
Release 1.0.c

3 Creates a WSF file that is compatible with Lotus 1-2-3
Version 2, or Lotus Symphony Release 1.1.c

4 Creates a WSF file containing DBCS characters.

Notes:

1. The export utility does not issue a warning if an attempt is made to use
unsupported file types with the MODIFIED BY option. If this is attempted, the
export operation fails, and an error code is returned.

2. a “Delimiter Restrictions” on page 312 lists restrictions that apply to the characters
that can be used as delimiter overrides.

3. b The export utility normally writes

v date data in YYYYMMDD format

v char(date) data in ″YYYY-MM-DD″ format

v time data in ″HH.MM.SS″ format

v time stamp data in ″YYYY-MM-DD-HH.MM.SS.uuuuuu″ format

Data contained in any datetime columns specified in the SELECT statement for
the export operation will also be in these formats.

4. c These files can also be directed to a specific product by specifying an L for Lotus
1-2-3, or an S for Symphony in the filetype-mod parameter string. Only one value
or product designator may be specified.

sqluexpr - Export

Chapter 1. Application Programming Interfaces 311

Delimiter Restrictions
It is the user’s responsibility to ensure that the chosen delimiter character is
not part of the data to be moved. If it is, unexpected errors may occur. The
following restrictions apply to column, string, DATALINK, and decimal point
delimiters when moving data:
v Delimiters are mutually exclusive.
v A delimiter cannot be binary zero, a line-feed character, a carriage-return, or

a blank space.
v The default decimal point (.) cannot be a string delimiter.
v The following characters are specified differently by an ASCII-family code

page and an EBCDIC-family code page:
– The Shift-In (0x0F) and the Shift-Out (0x0E) character cannot be

delimiters for an EBCDIC MBCS data file.
– Delimiters for MBCS, EUC, or DBCS code pages cannot be greater than

0x40, except the default decimal point for EBCDIC MBCS data, which is
0x4b.

– Default delimiters for data files in ASCII code pages or EBCDIC MBCS
code pages are:

" (0x22, double quotation mark; string delimiter)
, (0x2c, comma; column delimiter)

– Default delimiters for data files in EBCDIC SBCS code pages are:
" (0x7F, double quotation mark; string delimiter)
, (0x6B, comma; column delimiter)

– The default decimal point for ASCII data files is 0x2e (period).
– The default decimal point for EBCDIC data files is 0x4B (period).
– If the code page of the server is different from the code page of the

client, it is recommended that the hex representation of non-default
delimiters be specified. For example,

db2 load from ... modified by chardel0x0C coldelX1e ...

The following information about support for double character delimiter
recognition in DEL files applies to the export, import, and load utilities:
v Character delimiters are permitted within the character-based fields of a

DEL file. This applies to fields of type CHAR, VARCHAR, LONG
VARCHAR, or CLOB (except when lobsinfile is specified). Any pair of
character delimiters found between the enclosing character delimiters is
imported or loaded into the database. For example,

"What a ""nice"" day!"

will be imported as:
What a "nice" day!

In the case of export, the rule applies in reverse. For example,

sqluexpr - Export

312 Administrative API Reference

I am 6" tall.

will be exported to a DEL file as:
"I am 6"" tall."

v In a DBCS environment, the pipe (|) character delimiter is not supported.

See Also
“sqluimpr - Import” on page 320

“sqluload - Load” on page 345.

sqluexpr - Export

Chapter 1. Application Programming Interfaces 313

sqlugrpn - Get Row Partitioning Number
Returns the partition number and the node number based on the partitioning
key values. An application can use this information to determine at which
node a specific row of a table is stored.

The partitioning data structure, “SQLUPI” on page 536, is the input for this
API. The structure can be returned by “sqlugtpi - Get Table Partitioning
Information” on page 318. Another input is the character representations of
the corresponding partitioning key values. The output is a partition number
generated by the partitioning strategy and the corresponding node number
from the partitioning map. If the partitioning map information is not
provided, only the partition number is returned. This can be useful when
analyzing data distribution.

The database manager does not need to be running when this API is called.

Scope
This API can be invoked from any node in the db2nodes.cfg file.

Authorization
None

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */
/* API: Get Row Partitioning Number */
/* ... */
SQL_API_RC SQL_API_FN

sqlugrpn (
unsigned short num_ptrs,
unsigned char ** ptr_array,
unsigned short * ptr_lens,
unsigned short ctrycode,
unsigned short codepage,
struct sqlupi * part_info,
short * part_num,
SQL_PDB_NODE_TYPE * node_num,
unsigned short chklvl,
struct sqlca * sqlca,
short dataformat,
void * pReserved1,
void * pReserved2);

/* ... */

sqlugrpn - Get Row Partitioning Number

314 Administrative API Reference

Generic API Syntax

API Parameters

num_ptrs
The number of pointers in ptr_array. The value must be the same as
the one specified for part_info; that is, part_info->sqld.

ptr_array
An array of pointers that points to the character representations of the
corresponding values of each part of the partitioning key specified in
part_info. If a null value is required, the corresponding pointer is set to
null.

ptr_lens
An array of unsigned integers that contains the lengths of the
character representations of the corresponding values of each part of
the partitioning key specified in part_info.

ctrycode
The country code of the target database. For a list of valid country
code values, see one of the Quick Beginnings books.

This value can also be obtained from the database configuration file
(see the GET DATABASE CONFIGURATION command in the
Command Reference.

codepage
The code page of the target database. For a list of valid code page
values, see one of the Quick Beginnings books.

/* File: sqlutil.h */
/* API: Get Row Partitioning Number */
/* ... */
SQL_API_RC SQL_API_FN

sqlggrpn (
unsigned short num_ptrs,
unsigned char ** ptr_array,
unsigned short * ptr_lens,
unsigned short ctrycode,
unsigned short codepage,
struct sqlupi * part_info,
short * part_num,
SQL_PDB_NODE_TYPE * node_num,
unsigned short chklvl,
struct sqlca * sqlca,
short dataformat,
void * pReserved1,
void * pReserved2);

/* ... */

sqlugrpn - Get Row Partitioning Number

Chapter 1. Application Programming Interfaces 315

This value can also be obtained from the database configuration file
(see the GET DATABASE CONFIGURATION command in the
Command Reference.

part_info
A pointer to the sqlupi structure. For more information about this
structure, see “SQLUPI” on page 536.

part_num
A pointer to a 2-byte signed integer that is used to store the partition
number.

node_num
A pointer to an SQL_PDB_NODE_TYPE field used to store the node
number. If the pointer is null, no node number is returned.

chklvl An unsigned integer that specifies the level of checking that is done
on input parameters. If the value specified is zero, no checking is
done. If any non-zero value is specified, all input parameters are
checked.

sqlca Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

dataformat
Specifies the representation of partitioning key values. Valid values
are:

SQL_CHARSTRING_FORMAT
All partitioning key values are represented by character
strings. This is the default value.

SQL_IMPLIEDDECIMAL_FORMAT
The location of an implied decimal point is determined by the
column definition. For example, if the column definition is
DECIMAL(8,2), the value 12345 is processed as 123.45.

SQL_PACKEDDECIMAL_FORMAT
All decimal column partitioning key values are in packed
decimal format.

SQL_BINARYNUMERICS_FORMAT
All numeric partitioning key values are in big-endian binary
format.

pReserved1
Reserved for future use.

pReserved2
Reserved for future use.

sqlugrpn - Get Row Partitioning Number

316 Administrative API Reference

Usage Notes
Data types supported on the operating system are the same as those that can
be defined as a partitioning key.

CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC must be converted to the
target code page before this API is called.

For numeric and datetime data types, the character representations must be at
the code page of the respective system where the API is invoked.

If node_num is not NULL, the partitioning map must be supplied; that is,
part_info->pmaplen is either 2 or 8 192. Otherwise, SQLCODE -6038 is
returned.

The partitioning key must be defined; that is, part_info->sqld must be
greater than zero. Otherwise, SQLCODE -2032 is returned.

If a null value is assigned to a non-nullable partitioning column, SQLCODE
-6039 is returned.

All the leading blanks and trailing blanks of the input character string are
stripped, except for the CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC
data types, where only trailing blanks are stripped.

See Also
“sqlfxdb - Get Database Configuration” on page 275

“sqlugtpi - Get Table Partitioning Information” on page 318

“sqludrdt - Redistribute Nodegroup” on page 298.

sqlugrpn - Get Row Partitioning Number

Chapter 1. Application Programming Interfaces 317

sqlugtpi - Get Table Partitioning Information
Allows an application to obtain the partitioning information for a table. The
partitioning information includes the partitioning map and the column
definitions of the partitioning key. Information returned by this API can be
passed to “sqlugrpn - Get Row Partitioning Number” on page 314 to
determine the partition number and the node number for any row in the
table.

To use this API, the application must be connected to the database that
contains the table for which partitioning information is being requested.

Scope
This API can be executed on any node defined in the db2nodes.cfg file.

Authorization
For the table being referenced, a user must have at least one of the following:
v sysadm authority
v dbadm authority
v CONTROL privilege
v SELECT privilege

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */
/* API: Get Table Partitioning Information */
/* ... */
SQL_API_RC SQL_API_FN

sqlugtpi (
unsigned char * tablename,
struct sqlupi * part_info,
struct sqlca * sqlca);

/* ... */

sqlugtpi - Get Table Partitioning Information

318 Administrative API Reference

Generic API Syntax

API Parameters

tn_length
A 2-byte unsigned integer with the length of the table name.

tablename
The fully qualified name of the table.

part_info
A pointer to the sqlupi structure. For more information about this
structure, see “SQLUPI” on page 536.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

See Also
“sqlugrpn - Get Row Partitioning Number” on page 314

“sqludrdt - Redistribute Nodegroup” on page 298.

/* File: sqlutil.h */
/* API: Get Table Partitioning Information */
/* ... */
SQL_API_RC SQL_API_FN

sqlggtpi (
unsigned short tn_length,
unsigned char * tablename,
struct sqlupi * part_info,
struct sqlca * sqlca);

/* ... */

sqlugtpi - Get Table Partitioning Information

Chapter 1. Application Programming Interfaces 319

sqluimpr - Import
Inserts data from an external file with a supported file format into a table,
hierarchy, or view. A faster alternative is “sqluload - Load” on page 345;
however, the load utility does not support loading data at the hierarchy level.

Authorization
v IMPORT using the INSERT option requires one of the following:

– sysadm

– dbadm

– CONTROL privilege on each participating table or view
– INSERT and SELECT privilege on each participating table or view.

v IMPORT to an existing table using the INSERT_UPDATE, REPLACE, or the
REPLACE_CREATE option, requires one of the following:
– sysadm

– dbadm

– CONTROL privilege on the table or view.
v IMPORT to a table or a hierarchy that does not exist using the CREATE, or

the REPLACE_CREATE option, requires one of the following:
– sysadm

– dbadm

– CREATETAB authority on the database, and one of:
- IMPLICIT_SCHEMA authority on the database, if the schema name of

the table does not exist
- CREATEIN privilege on the schema, if the schema of the table exists.
- CONTROL privilege on every sub-table in the hierarchy, if the

REPLACE_CREATE option on the entire hierarchy is used.
v IMPORT to an existing hierarchy using the REPLACE option requires one

of the following:
– sysadm

– dbadm

– CONTROL privilege on every sub-table in the hierarchy.

Required Connection
Database. If implicit connect is enabled, a connection to the default database is
established.

sqluimpr - Import

320 Administrative API Reference

API Include File
sqlutil.h

C API Syntax

Generic API Syntax

/* File: sqlutil.h */
/* API: Import */
/* ... */
SQL_API_RC SQL_API_FN

sqluimpr (
char * pDataFileName,
sqlu_media_list * pLobPathList,
struct sqldcol * pDataDescriptor,
struct sqlchar * pActionString,
char * pFileType,
struct sqlchar * pFileTypeMod,
char * pMsgFileName,
short CallerAction,
struct sqluimpt_in* pImportInfoIn,
struct sqluimpt_out* pImportInfoOut,
sqlint32 * pNullIndicators,
void * pReserved,
struct sqlca * pSqlca);

/* ... */

/* File: sqlutil.h */
/* API: Import */
/* ... */
SQL_API_RC SQL_API_FN

sqlgimpr (
unsigned short DataFileNameLen,
unsigned short FileTypeLen,
unsigned short MsgFileNameLen,
char * pDataFileName,
sqlu_media_list * pLobPathList,
struct sqldcol * pDataDescriptor,
struct sqlchar * pActionString,
char * pFileType,
struct sqlchar * pFileTypeMod,
char * pMsgFileName,
short CallerAction,
struct sqluimpt_in* pImportInfoIn,
struct sqluimpt_out* pImportInfoOut,
sqlint32 * NullIndicators,
void * pReserved,
struct sqlca * pSqlca);

/* ... */

sqluimpr - Import

Chapter 1. Application Programming Interfaces 321

API Parameters

DataFileNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the input file name.

FileTypeLen
Input. A 2-byte unsigned integer representing the length in bytes of
the input file type.

MsgFileNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the message file name.

pDataFileName
Input. A string containing the path and the name of the external input
file from which the data is to be imported.

pLobPathList
Input. An sqlu_media_list using media_type SQLU_LOCAL_MEDIA, and the
sqlu_media_entry structure listing paths on the client where the LOB
files can be found.

For more information, see “SQLU-MEDIA-LIST” on page 518.

pDataDescriptor
Input. Pointer to an sqldcol structure containing information about the
columns being selected for import from the external file. The value of
the dcolmeth field determines how the remainder of the information
provided in this parameter is interpreted by the import utility. Valid
values for this parameter (defined in sqlutil) are:

SQL_METH_N
Names. Selection of columns from the external input file is by
column name.

SQL_METH_P
Positions. Selection of columns from the external input file is
by column position.

SQL_METH_L
Locations. Selection of columns from the external input file is
by column location. The database manager rejects an import
call with a location pair that is invalid because of any one of
the following conditions:
v Either the beginning or the ending location is not in the

range from 1 to the largest signed 2-byte integer.
v The ending location is smaller than the beginning location.

sqluimpr - Import

322 Administrative API Reference

v The input column width defined by the location pair is not
compatible with the type and the length of the target
column.

A location pair with both locations equal to zero indicates that
a nullable column is to be filled with NULLs.

SQL_METH_D
Default. If pDataDescriptor is NULL, or is set to SQL_METH_D,
default selection of columns from the external input file is
done. In this case, the number of columns and the column
specification array are both ignored. The first n columns of
data in the external input file are taken in their natural order,
where n is the number of database columns into which the
data is to be imported.

For more information, see “SQLDCOL” on page 456.

pActionString
Input. Pointer to an sqlchar structure containing a 2-byte long field,
followed by an array of characters identifying the columns into which
data is to be imported.

The character array is of the form:
{INSERT | INSERT_UPDATE | REPLACE | CREATE | REPLACE_CREATE}
INTO {tname[(tcolumn-list)] |
[{ALL TABLES | (tname[(tcolumn-list)][, tname[(tcolumn-list)]])}]
[IN] HIERARCHY {STARTING tname | (tname[, tname])}
[UNDER sub-table-name | AS ROOT TABLE]}
[DATALINK SPECIFICATION datalink-spec]

INSERT
Adds the imported data to the table without changing the
existing table data.

INSERT_UPDATE
Adds the imported rows if their primary key values are not in
the table, and uses them for update if their primary key
values are found. This option is only valid if the target table
has a primary key, and the specified (or implied) list of target
columns being imported includes all columns for the primary
key. This option cannot be applied to views.

REPLACE
Deletes all existing data from the table by truncating the table
object, and inserts the imported data. The table definition and
the index definitions are not changed. (Indexes are deleted
and replaced if indexixf is in FileTypeMod, and FileType is
SQL_IXF.) If the table is not already defined, an error is
returned.

sqluimpr - Import

Chapter 1. Application Programming Interfaces 323

Attention: If an error occurs after the existing data is
deleted, that data is lost.

CREATE
Creates the table definition and the row contents using the
information in the specified PC/IXF file, if the specified table
is not defined. If the file was previously exported by DB2,
indexes are also created. If the specified table is already
defined, an error is returned. This option is valid for the
PC/IXF file format only.

REPLACE_CREATE
Replaces the table contents using the PC/IXF row information
in the PC/IXF file, if the specified table is defined. If the table
is not already defined, the table definition and row contents
are created using the information in the specified PC/IXF file.
If the PC/IXF file was previously exported by DB2, indexes
are also created. This option is valid for the PC/IXF file
format only.

Attention: If an error occurs after the existing data is
deleted, that data is lost.

tname The name of the table, typed table, view, or object view into
which the data is to be inserted. An alias for REPLACE,
INSERT_UPDATE, or INSERT can be specified, except in the
case of a down-level server, when a qualified or unqualified
name should be specified. If it is a view, it cannot be a
read-only view.

tcolumn-list
A list of table or view column names into which the data is to
be inserted. The column names must be separated by commas.
If column names are not specified, column names as defined
in the CREATE TABLE or the ALTER TABLE statement are
used. If no column list is specified for typed tables, data is
inserted into all columns within each sub-table.

sub-table-name
Specifies a parent table when creating one or more sub-tables
under the CREATE option.

ALL TABLES
An implicit keyword for hierarchy only. When importing a
hierarchy, the default is to import all tables specified in the
traversal-order-list.

HIERARCHY
Specifies that hierarchical data is to be imported.

sqluimpr - Import

324 Administrative API Reference

STARTING
Keyword for hierarchy only. Specifies that the default order,
starting from a given sub-table name, is to be used.

UNDER
Keyword for hierarchy and CREATE only. Specifies that the
new hierarchy, sub-hierarchy, or sub-table is to be created
under a given sub-table.

AS ROOT TABLE
Keyword for hierarchy and CREATE only. Specifies that the
new hierarchy, sub-hierarchy, or sub-table is to be created as a
stand-alone hierarchy.

DATALINK SPECIFICATION datalink-spec
Specifies parameters pertaining to DB2 Data Links. These
parameters can be specified using the same syntax as in the
IMPORT command (see the Command Reference).

The tname and the tcolumn-list parameters correspond to the tablename
and the colname lists of SQL INSERT statements, and have the same
restrictions.

The columns in tcolumn-list and the external columns (either specified
or implied) are matched according to their position in the list or the
structure (data from the first column specified in the sqldcol structure
is inserted into the table or view field corresponding to the first
element of the tcolumn-list).

If unequal numbers of columns are specified, the number of columns
actually processed is the lesser of the two numbers. This could result
in an error (because there are no values to place in some non-nullable
table fields) or an informational message (because some external file
columns are ignored).

For more information, see “SQLCHAR” on page 452.

pFileType
Input. A string that indicates the format of the data within the
external file. Supported external file formats (defined in sqlutil) are:

SQL_ASC
Non-delimited ASCII.

SQL_DEL
Delimited ASCII, for exchange with dBase, BASIC, and the
IBM Personal Decision Series programs, and many other
database managers and file managers.

sqluimpr - Import

Chapter 1. Application Programming Interfaces 325

SQL_IXF
PC version of the Integrated Exchange Format, the preferred
method for exporting data from a table so that it can be
imported later into the same table or into another database
manager table.

SQL_WSF
Worksheet formats for exchange with Lotus Symphony and
1-2-3 programs.

For more information about file formats, see the
“Export/Import/Load Utility File Formats” appendix in the Data
Movement Utilities Guide and Reference.

pFileTypeMod
Input. A pointer to a structure containing a 2-byte long field, followed
by an array of characters that specify one or more processing options.
If this pointer is NULL, or the structure pointed to has zero
characters, this action is interpreted as selection of a default
specification.

Not all options can be used with all of the supported file types.

For more information, see “SQLCHAR” on page 452, and the
Command Reference.

pMsgFileName
Input. A string containing the destination for error, warning, and
informational messages returned by the utility. It can be the path and
the name of an operating system file or a standard device. If the file
already exists, it is appended to. If it does not exist, a file is created.

CallerAction
Input. An action requested by the caller. Valid values (defined in
sqlutil) are:

SQLU_INITIAL
Initial call. This value must be used on the first call to the
API.

If the initial call or any subsequent call returns and requires the
calling application to perform some action prior to completing the
requested import operation, the caller action must be set to one of the
following:

SQLU_CONTINUE
Continue processing. This value can only be used on
subsequent calls to the API, after the initial call has returned
with the utility requesting user input (for example, to respond
to an end of tape condition). It specifies that the user action

sqluimpr - Import

326 Administrative API Reference

requested by the utility has completed, and the utility can
continue processing the initial request.

SQLU_TERMINATE
Terminate processing. This value can only be used on
subsequent calls to the API, after the initial call has returned
with the utility requesting user input (for example, to respond
to an end of tape condition). It specifies that the user action
requested by the utility was not performed, and the utility is
to terminate processing the initial request.

pImportInfoIn
Input. Optional pointer to the sqluimpt_in structure containing
additional input parameters. For information about this structure, see
“SQLUIMPT-IN” on page 526.

pImportInfoOut
Output. Optional pointer to the sqluimpt_out structure containing
additional output parameters. For information about this structure, see
“SQLUIMPT-OUT” on page 527.

NullIndicators
Input. For ASC files only. An array of integers that indicate whether
or not the column data is nullable. The number of elements in this
array must match the number of columns in the input file; there is a
one-to-one ordered correspondence between the elements of this array
and the columns being imported from the data file. Therefore, the
number of elements must equal the dcolnum field of the
pDataDescriptor parameter. Each element of the array contains a
number identifying a column in the data file that is to be used as a
null indicator field, or a zero indicating that the table column is not
nullable. If the element is not zero, the identified column in the data
file must contain a Y or an N. A Y indicates that the table column data
is NULL, and N indicates that the table column data is not NULL.

pReserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

sqluimpr - Import

Chapter 1. Application Programming Interfaces 327

REXX API Syntax

REXX API Parameters

datafile
Name of the file from which the data is to be imported.

filetype
The format of the data in the external import file. The supported file
formats are:

DEL Delimited ASCII

ASC Non-delimited ASCII

WSF Worksheet format

IXF PC version of Integrated Exchange Format.

filetmod
A host variable containing additional processing options (see the
Command Reference).

L|N|P
A character specifying the method to be used to select columns within
the external input file. Valid values are:

L Location

N Name

P Position.

dcoldata
A compound REXX host variable containing information about the
columns selected for import from the external input file. The content
of the structure depends upon the specified method. In the following,
XXX represents the name of the host variable:
v Location method

XXX.0 Number of elements in the remainder of the variable

IMPORT FROM datafile OF filetype
[MODIFIED BY :filetmod]
[METHOD {L|N|P} USING :dcoldata]
[COMMITCOUNT :commitcnt] [RESTARTCOUNT :restartcnt]
MESSAGES msgfile
{INSERT|REPLACE|CREATE|INSERT_UPDATE|REPLACE_CREATE}
INTO tname [(:columns)]
[OUTPUT INTO :output]

CONTINUE IMPORT

STOP IMPORT

sqluimpr - Import

328 Administrative API Reference

XXX.1 A number representing the starting location of this column
in the input file. This column becomes the first column in
the database table.

XXX.2 A number representing the ending location of the column.

XXX.3 A number representing the starting location of this column
in the input file. This column becomes the second column
in the database table.

XXX.4 A number representing the ending location of the column.

XXX.5 and so on.
v Name method

XXX.0 Number of column names contained in the host variable.

XXX.1 First name.

XXX.2 Second name.

XXX.3 and so on.
v Position method

XXX.0 Number of column positions contained in the host variable.

XXX.1 A column position in the external input file.

XXX.2 A column position in the external input file.

XXX.3 and so on.

tname Name of the target table or view. Data cannot be imported to a
read-only view.

columns
A REXX host variable containing the names of the columns in the
table or the view into which the data is to be inserted. In the
following, XXX represents the name of the host variable:

XXX.0 Number of columns.

XXX.1 First column name.

XXX.2 Second column name.

XXX.3 and so on.

msgfile
File, path, or device name where error and warning messages are to
be sent.

commitcnt
Performs a COMMIT after every commitcnt records are imported.

sqluimpr - Import

Chapter 1. Application Programming Interfaces 329

restartcnt
Specifies that an import operation is to be started at record restartcnt +
1. The first restartcnt records are skipped.

output
A compound REXX host variable into which information from the
import operation is passed. In the following, XXX represents the name
of the host variable:

XXX.1 Number of records read from the external input file during
the import operation.

XXX.2 Number of records skipped before inserting or updating
begins.

XXX.3 Number of rows inserted into the target table.

XXX.4 Number of rows in the target table updated with information
from the imported records.

XXX.5 Number of records that could not be imported.

XXX.6 Number of records imported successfully and committed to
the database, including rows inserted, updated, skipped, and
rejected.

Sample Programs

C \sqllib\samples\c\impexp.sqc

COBOL \sqllib\samples\cobol\impexp.sqb

REXX \sqllib\samples\rexx\impexp.cmd

Usage Notes
Be sure to complete all table operations and release all locks before starting an
import operation. This can be done by issuing a COMMIT after closing all
cursors opened WITH HOLD, or by issuing a ROLLBACK.

The import utility adds rows to the target table using the SQL INSERT
statement. The utility issues one INSERT statement for each row of data in the
input file. If an INSERT statement fails, one of two actions result:
v If it is likely that subsequent INSERT statements can be successful, a

warning message is written to the message file, and processing continues.
v If it is likely that subsequent INSERT statements will fail, and there is

potential for database damage, an error message is written to the message
file, and processing halts.

The utility performs an automatic COMMIT after the old rows are deleted
during a REPLACE or a REPLACE_CREATE operation. Therefore, if the
system fails, or the application interrupts the database manager after the table

sqluimpr - Import

330 Administrative API Reference

object is truncated, all of the old data is lost. Ensure that the old data is no
longer needed before using these options.

If the log becomes full during a CREATE, REPLACE, or REPLACE_CREATE
operation, the utility performs an automatic COMMIT on inserted records. If
the system fails, or the application interrupts the database manager after an
automatic COMMIT, a table with partial data remains in the database. Use the
REPLACE or the REPLACE_CREATE option to rerun the whole import
operation, or use INSERT with the restartcnt parameter set to the number of
rows successfully imported.

By default, automatic COMMITs are not performed for the INSERT or the
INSERT_UPDATE option. They are, however, performed if the commitcnt
parameter is not zero. A full log results in a ROLLBACK.

Whenever the import utility performs a COMMIT, two messages are written
to the message file: one indicates the number of records to be committed, and
the other is written after a successful COMMIT. When restarting the import
operation after a failure, specify the number of records to skip, as determined
from the last successful COMMIT.

The import utility accepts input data with minor incompatibility problems (for
example, character data can be imported using padding or truncation, and
numeric data can be imported with a different numeric data type), but data
with major incompatibility problems is not accepted.

One cannot REPLACE or REPLACE_CREATE an object table if it has any
dependents other than itself, or an object view if its base table has any
dependents (including itself). To replace such a table or a view, do the
following:
1. Drop all foreign keys in which the table is a parent.
2. Run the import utility.
3. Alter the table to recreate the foreign keys.

If an error occurs while recreating the foreign keys, modify the data to
maintain referential integrity.

Referential constraints and foreign key definitions are not preserved when
creating tables from PC/IXF files. (Primary key definitions are preserved if the
data was previously exported using SELECT *.)

Importing to a remote database requires enough disk space on the server for a
copy of the input data file, the output message file, and potential growth in
the size of the database.

sqluimpr - Import

Chapter 1. Application Programming Interfaces 331

If an import operation is run against a remote database, and the output
message file is very long (more than 60KB), the message file returned to the
user on the client may be missing messages from the middle of the import
operation. The first 30KB of message information and the last 30KB of
message information are always retained.

Importing PC/IXF files to a remote database is much faster if the PC/IXF file
is on a hard drive rather than on diskettes. Non-default values for
pDataDescriptor, or specifying an explicit list of table columns in pActionString,
makes importing to a remote database slower.

The database table or hierarchy must exist before data in the ASC, DEL, or
WSF file formats can be imported; however, if the table does not already exist,
IMPORT CREATE or IMPORT REPLACE_CREATE creates the table when it
imports data from a PC/IXF file. For typed tables, IMPORT CREATE can
create the type hierarchy and the table hierarchy as well.

PC/IXF import should be used to move data (including hierarchical data)
between databases. If character data containing row separators is exported to
a delimited ASCII (DEL) file and processed by a text transfer program
(moving, for example between OS/2 and AIX systems), fields containing the
row separators will shrink or expand. PC/IXF file format specifications permit
migration of data between OS/2 (IBM Extended Services for OS/2, OS/2
Extended Edition, and DB2 for OS/2) databases and DB2 for AIX databases
via export, binary copying of files between OS/2 and AIX, and import. The
file copying step is not necessary if the source and the target databases are
both accessible from the same client.

The data in ASC and DEL files is assumed to be in the code page of the client
application performing the import. PC/IXF files, which allow for different
code pages, are recommended when importing data in different code pages. If
the PC/IXF file and the import utility are in the same code page, processing
occurs as for a regular application. If the two differ, and the FORCEIN option
is specified, the import utility assumes that data in the PC/IXF file has the
same code page as the application performing the import. This occurs even if
there is a conversion table for the two code pages. If the two differ, the
FORCEIN option is not specified, and there is a conversion table, all data in
the PC/IXF file will be converted from the file code page to the application
code page. If the two differ, the FORCEIN option is not specified, and there is
no conversion table, the import operation will fail. This applies only to
PC/IXF files on DB2 for AIX clients.

For table objects on an 8KB page that are close to the limit of 1012 columns,
import of PC/IXF data files may cause DB2 to return an error, because the
maximum size of an SQL statement was exceeded. This situation can occur

sqluimpr - Import

332 Administrative API Reference

only if the columns are of type CHAR, VARCHAR, or CLOB. The restriction
does not apply to import of DEL or ASC files.

DB2 Connect can be used to import data to DRDA servers such as DB2 for
OS/390, DB2 for VM and VSE, and DB2 for OS/400. Only PC/IXF import
(INSERT option) is supported. The restartcnt parameter, but not the commitcnt
parameter, is also supported.

When using the CREATE option with typed tables, create every sub-table
defined in the PC/IXF file; sub-table definitions cannot be altered. When
using options other than CREATE with typed tables, the traversal order list
enables one to specify the traverse order; therefore, the traversal order list
must match the one used during the export operation. For the PC/IXF file
format, one need only specify the target sub-table name, and use the traverse
order stored in the file.

The import utility can be used to recover a table previously exported to a
PC/IXF file. The table returns to the state it was in when exported.

Data cannot be imported to a system table, a declared temporary table, or a
summary table.

Views cannot be created through the import utility.

Importing a multiple-part PC/IXF file whose individual parts are copied from
an OS/2 system to an AIX system is supported on DB2.

On the Windows NT operating system:
v Importing logically split PC/IXF files is not supported.
v Importing bad format PC/IXF or WSF files is not supported.

DB2 Data Links Manager Considerations

Before running the DB2 import utility, do the following:
1. Copy the files that will be referenced to the appropriate Data Links

servers. The dlfm_import utility can be used to extract files from an
archive that is generated by the dlfm_export utility.

2. Register the required prefix names to the DB2 Data Links Managers. There
may be other administrative tasks, such as registering the database, if
required.

3. Update the Data Links server information in the URLs (of the DATALINK
columns) from the exported data for the SQL table, if required. (If the
original configuration’s Data Links servers are the same at the target
location, the Data Links server names need not be updated.)

sqluimpr - Import

Chapter 1. Application Programming Interfaces 333

4. Define the Data Links servers at the target configuration in the DB2 Data
Links Manager configuration file.

When the import utility is executed on the target system, data related to
DATALINK columns is loaded into the underlying DB2 tables using SQL
INSERT (as is the case for other columns).

During the insert operation, DATALINK column processing links the files in
the appropriate Data Links servers according to the column specifications at
the target database.

Representation of DATALINK Information in an Input File

For a description of how DATALINK information is represented in an input
file, see page 355.

Table 9. Valid File Type Modifiers (Import)

Modifier Description

All File Formats

compound=x x is a number between 1 and 100 inclusive. Uses nonatomic
compound SQL to insert the data, and x statements will be
attempted each time.

If this modifier is specified, and the transaction log is not
sufficiently large, the import operation will fail. The
transaction log must be large enough to accommodate either
the number of rows specified by COMMITCOUNT, or the
number of rows in the data file if COMMITCOUNT is not
specified. It is therefore recommended that the
COMMITCOUNT option be specified to avoid transaction
log overflow.

This modifier is incompatible with INSERT_UPDATE mode,
hierarchical tables, and the following modifiers:
usedefaults, identitymissing, identityignore,
generatedmissing, and generatedignore.

generatedignore This modifier informs the import utility that data for all
generated columns is present in the data file but should be
ignored. This results in all values for the generated columns
being generated by the utility. This modifier cannot be used
with the generatedmissing modifier.

generatedmissing If this modifier is specified, the utility assumes that the
input data file contains no data for the generated columns
(not even NULLs), and will therefore generate a value for
each row. This modifier cannot be used with the
generatedignore modifier.

sqluimpr - Import

334 Administrative API Reference

Table 9. Valid File Type Modifiers (Import) (continued)

Modifier Description

identityignore This modifier informs the import utility that data for the
identity column is present in the data file but should be
ignored. This results in all identity values being generated
by the utility. The behavior will be the same for both
GENERATED ALWAYS and GENERATED BY DEFAULT
identity columns. This means that for GENERATED
ALWAYS columns, no rows will be rejected. This modifier
cannot be used with the identitymissing modifier.

identitymissing If this modifier is specified, the utility assumes that the
input data file contains no data for the identity column (not
even NULLs), and will therefore generate a value for each
row. The behavior will be the same for both GENERATED
ALWAYS and GENERATED BY DEFAULT identity columns.
This modifier cannot be used with the identityignore
modifier.

lobsinfile lob-path specifies the path to the files containing LOB values.

no_type_id Valid only when importing into a single sub-table. Typical
usage is to export data from a regular table, and then to
invoke an import operation (using this modifier) to convert
the data into a single sub-table.

nodefaults If a source column for a target table column is not explicitly
specified, and the table column is not nullable, default
values are not loaded. Without this option, if a source
column for one of the target table columns is not explicitly
specified, one of the following occurs:

v If a default value can be specified for a column, the
default value is loaded

v If the column is nullable, and a default value cannot be
specified for that column, a NULL is loaded

v If the column is not nullable, and a default value cannot
be specified, an error is returned, and the utility stops
processing.

sqluimpr - Import

Chapter 1. Application Programming Interfaces 335

Table 9. Valid File Type Modifiers (Import) (continued)

Modifier Description

usedefaults If a source column for a target table column has been
specified, but it contains no data for one or more row
instances, default values are loaded. Examples of missing
data are:

v For DEL files: ",," is specified for the column

v For ASC files: The NULL indicator is set to yes for the
column

v For DEL/ASC/WSF files: A row that does not have
enough columns, or is not long enough for the original
specification.

Without this option, if a source column contains no data for
a row instance, one of the following occurs:

v If the column is nullable, a NULL is loaded

v If the column is not nullable, the utility rejects the row.

ASCII File Formats (ASC/DEL)

dateformat=″x″ x is the format of the date in the source file.a Valid date
elements are:

YYYY - Year (four digits ranging from 0000 - 9999)
M - Month (one or two digits ranging from 1 - 12)
MM - Month (two digits ranging from 1 - 12;

mutually exclusive with M)
D - Day (one or two digits ranging from 1 - 31)
DD - Day (two digits ranging from 1 - 31;

mutually exclusive with D)
DDD - Day of the year (three digits ranging

from 001 - 366; mutually exclusive
with other day or month elements)

A default value of 1 is assigned for each element that is not
specified. Some examples of date formats are:

"D-M-YYYY"
"MM.DD.YYYY"
"YYYYDDD"

implieddecimal The location of an implied decimal point is determined by
the column definition; it is no longer assumed to be at the
end of the value. For example, the value 12345 is loaded
into a DECIMAL(8,2) column as 123.45, not 12345.00.

noeofchar The optional end-of-file character x'1A' is not recognized as
the end of file. Processing continues as if it were a normal
character.

sqluimpr - Import

336 Administrative API Reference

Table 9. Valid File Type Modifiers (Import) (continued)

Modifier Description

timeformat=″x″ x is the format of the time in the source file.a Valid time
elements are:

H - Hour (one or two digits ranging from 0 - 12
for a 12 hour system, and 0 - 24
for a 24 hour system)

HH - Hour (two digits ranging from 0 - 12
for a 12 hour system, and 0 - 24
for a 24 hour system; mutually exclusive
with H)

M - Minute (one or two digits ranging
from 0 - 59)

MM - Minute (two digits ranging from 0 - 59;
mutually exclusive with M)

S - Second (one or two digits ranging
from 0 - 59)

SS - Second (two digits ranging from 0 - 59;
mutually exclusive with S)

SSSSS - Second of the day after midnight (5 digits
ranging from 00000 - 86399; mutually
exclusive with other time elements)

TT - Meridian indicator (AM or PM)

A default value of 0 is assigned for each element that is not
specified. Some examples of time formats are:

"HH:MM:SS"
"HH.MM TT"
"SSSSS"

sqluimpr - Import

Chapter 1. Application Programming Interfaces 337

Table 9. Valid File Type Modifiers (Import) (continued)

Modifier Description

timestampformat=″x″ x is the format of the time stamp in the source file.a Valid
time stamp elements are:

YYYY - Year (four digits ranging from 0000 - 9999)
M - Month (one or two digits ranging

from 1 - 12)
MM - Month (two digits ranging from 1 - 12;

mutually exclusive with M, month)
D - Day (one or two digits ranging from 1 - 31)
DD - Day (two digits ranging from 1 - 31;

mutually exclusive with D)
DDD - Day of the year (three digits ranging

from 001 - 366; mutually exclusive with
other day or month elements)

H - Hour (one or two digits ranging from 0 - 12
for a 12 hour system, and 0 - 24
for a 24 hour system)

HH - Hour (two digits ranging from 0 - 12
for a 12 hour system, and 0 - 24
for a 24 hour system; mutually exclusive
with H)

M - Minute (one or two digits ranging
from 0 - 59)

MM - Minute (two digits ranging from 0 - 59;
mutually exclusive with M, minute)

S - Second (one or two digits ranging
from 0 - 59)

SS - Second (two digits ranging from 0 - 59;
mutually exclusive with S)

SSSSS - Second of the day after midnight (5 digits
ranging from 00000 - 86399; mutually
exclusive with other time elements)

UUUUUU - Microsecond (6 digits ranging
from 000000 - 999999)

TT - Meridian indicator (AM or PM)

A default value of 1 is assigned for unspecified YYYY, M,
MM, D, DD, or DDD elements. A default value of 0 is
assigned for all other unspecified elements. Following is an
example of a time stamp format:

"YYYY/MM/DD HH:MM:SS.UUUUUU"

The following example illustrates how to import data
containing user defined date and time formats into a table
called schedule:

db2 import from delfile2 of del
modified by timestampformat="yyyy.mm.dd hh:mm tt"
insert into schedule

ASC (Non-delimited ASCII) File Format

sqluimpr - Import

338 Administrative API Reference

Table 9. Valid File Type Modifiers (Import) (continued)

Modifier Description

nochecklengths If nochecklengths is specified, an attempt is made to import
each row, even if the source data has a column definition
that exceeds the size of the target table column. Such rows
can be successfully imported if code page conversion causes
the source data to shrink; for example, 4-byte EUC data in
the source could shrink to 2-byte DBCS data in the target,
and require half the space. This option is particularly useful
if it is known that the source data will fit in all cases
despite mismatched column definitions.

nullindchar=x x is a single character. Changes the character denoting a
null value to x. The default value of x is Y.b

This modifier is case sensitive for EBCDIC data files, except
when the character is an English letter. For example, if the
null indicator character is specified to be the letter N, then n
is also recognized as a null indicator.

reclen=x x is an integer with a maximum value of 32 767. x
characters are read for each row, and a new-line character is
not used to indicate the end of the row.

striptblanks Truncates any trailing blank spaces when loading data into
a variable-length field. If this option is not specified, blank
spaces are kept.

In the following example, striptblanks causes the import
utility to truncate trailing blank spaces:

db2 import from myfile.asc of asc
modified by striptblanks
method l (1 10, 12 15) messages msgs.txt
insert into staff

This option cannot be specified together with striptnulls.
These are mutually exclusive options.
Note: This option replaces the obsolete t option, which is
supported for back-level compatibility only.

striptnulls Truncates any trailing NULLs (0x00 characters) when
loading data into a variable-length field. If this option is not
specified, NULLs are kept.

This option cannot be specified together with striptblanks.
These are mutually exclusive options.
Note: This option replaces the obsolete padwithzero option,
which is supported for back-level compatibility only.

DEL (Delimited ASCII) File Format

sqluimpr - Import

Chapter 1. Application Programming Interfaces 339

Table 9. Valid File Type Modifiers (Import) (continued)

Modifier Description

chardelx x is a single character string delimiter. The default value is a
double quotation mark ("). The specified character is used in
place of double quotation marks to enclose a character
string.bc

The single quotation mark (') can also be specified as a
character string delimiter. In the following example,
chardel'' causes the import utility to interpret any single
quotation mark (') it encounters as a character string
delimiter:

db2 "import from myfile.del of del
modified by chardel''
method p (1, 4) insert into staff (id, years)"

coldelx x is a single character column delimiter. The default value is
a comma (,). The specified character is used in place of a
comma to signal the end of a column.bc

In the following example, coldel; causes the import utility
to interpret any semicolon (;) it encounters as a column
delimiter:

db2 import from myfile.del of del
modified by coldel;
messages msgs.txt insert into staff

datesiso Date format. Causes all date data values to be imported in
ISO format.

decplusblank Plus sign character. Causes positive decimal values to be
prefixed with a blank space instead of a plus sign (+). The
default action is to prefix positive decimal values with a
plus sign.

decptx x is a single character substitute for the period as a decimal
point character. The default value is a period (.). The
specified character is used in place of a period as a decimal
point character.bc

In the following example, decpt; causes the import utility
to interpret any semicolon (;) it encounters as a decimal
point:

db2 "import from myfile.del of del
modified by chardel'
decpt; messages msgs.txt insert into staff"

sqluimpr - Import

340 Administrative API Reference

Table 9. Valid File Type Modifiers (Import) (continued)

Modifier Description

delprioritychar The current default priority for delimiters is: record
delimiter, character delimiter, column delimiter. This
modifier protects existing applications that depend on the
older priority by reverting the delimiter priorities to:
character delimiter, record delimiter, column delimiter.
Syntax:

db2 import ... modified by delprioritychar ...

For example, given the following DEL data file:

"Smith, Joshua",4000,34.98<row delimiter>
"Vincent,<row delimiter>, is a manager", ...
... 4005,44.37<row delimiter>

With the delprioritychar modifier specified, there will be
only two rows in this data file. The second <row delimiter>
will be interpreted as part of the first data column of the
second row, while the first and the third <row delimiter>
are interpreted as actual record delimiters. If this modifier is
not specified, there will be three rows in this data file, each
delimited by a <row delimiter>.

dldelx x is a single character DATALINK delimiter. The default
value is a semicolon (;). The specified character is used in
place of a semicolon as the inter-field separator for a
DATALINK value. It is needed because a DATALINK value
may have more than one sub-value. bc

Note: x must not be the same character specified as the
row, column, or character string delimiter.

keepblanks Preserves the leading and trailing blanks in each field of
type CHAR, VARCHAR, LONG VARCHAR, or CLOB.
Without this option, all leading and trailing blanks that are
not inside character delimiters are removed, and a NULL is
inserted into the table for all blank fields.

nodoubledel Suppresses recognition of double character delimiters. For
more information, see “Delimiter Restrictions” on page 312.

IXF File Format

forcein Directs the utility to accept data despite code page
mismatches, and to suppress translation between code
pages.

Fixed length target fields are checked to verify that they are
large enough for the data. If nochecklengths is specified, no
checking is done, and an attempt is made to import each
row.

sqluimpr - Import

Chapter 1. Application Programming Interfaces 341

Table 9. Valid File Type Modifiers (Import) (continued)

Modifier Description

indexixf Directs the utility to drop all indexes currently defined on
the existing table, and to create new ones from the index
definitions in the PC/IXF file. This option can only be used
when the contents of a table are being replaced. It cannot be
used with a view, or when a insert-column is specified.

indexschema=schema Uses the specified schema for the index name during index
creation. If schema is not specified (but the keyword
indexschema is specified), uses the connection user ID. If the
keyword is not specified, uses the schema in the IXF file.

nochecklengths If nochecklengths is specified, an attempt is made to import
each row, even if the source data has a column definition
that exceeds the size of the target table column. Such rows
can be successfully imported if code page conversion causes
the source data to shrink; for example, 4-byte EUC data in
the source could shrink to 2-byte DBCS data in the target,
and require half the space. This option is particularly useful
if it is known that the source data will fit in all cases
despite mismatched column definitions.

sqluimpr - Import

342 Administrative API Reference

Table 9. Valid File Type Modifiers (Import) (continued)

Modifier Description

Notes:

1. The import utility does not issue a warning if an attempt is made to use
unsupported file types with the MODIFIED BY option. If this is attempted, the
import operation fails, and an error code is returned.

2. a Double quotation marks around the date format string are mandatory. Field
separators cannot contain any of the following: a-z, A-Z, and 0-9. The field
separator should not be the same as the character delimiter or field delimiter in
the DEL file format. A field separator is optional if the start and end positions of
an element are unambiguous. Ambiguity can exist if (depending on the modifier)
elements such as D, H, M, or S are used, because of the variable length of the
entries.

For time stamp formats, care must be taken to avoid ambiguity between the
month and the minute descriptors, since they both use the letter M. A month field
must be adjacent to other date fields. A minute field must be adjacent to other
time fields. Following are some ambiguous time stamp formats:

"M" (could be a month, or a minute)
"M:M" (Which is which?)
"M:YYYY:M" (Both are interpreted as month.)
"S:M:YYYY" (adjacent to both a time value and a date value)

In ambiguous cases, the utility will report an error message, and the operation
will fail.

Following are some unambiguous time stamp formats:

"M:YYYY" (Month)
"S:M" (Minute)
"M:YYYY:S:M" (Month....Minute)
"M:H:YYYY:M:D" (Minute....Month)

Note: Some characters, such as double quotation marks and back slashes, must be
preceded by an escape character (for example, \).

3. b The character must be specified in the code page of the source data.

The character code point (instead of the character symbol), can be specified using
the syntax xJJ or 0xJJ, where JJ is the hexadecimal representation of the code point.
For example, to specify the # character as a column delimiter, use one of the
following:

... modified by coldel# ...

... modified by coldel0x23 ...

... modified by coldelX23 ...

4. c “Delimiter Restrictions” on page 312 lists restrictions that apply to the characters
that can be used as delimiter overrides.

sqluimpr - Import

Chapter 1. Application Programming Interfaces 343

See Also
“sqluexpr - Export” on page 302

“sqluload - Load” on page 345.

sqluimpr - Import

344 Administrative API Reference

sqluload - Load
Loads data into a DB2 table. Data residing on the server may be in the form
of a file, tape, or named pipe. Data residing on a remotely connected client
may be in the form of a fully qualified file or named pipe. Tape is not
supported on OS/2. The load utility does not support loading data at the
hierarchy level.

Scope
This command affects only the partition to which a direct connection exists;
the load utility operates on a single database partition only.

Loading data that resides on a remotely connected client is not supported
under the following conditions:
v The database that the client is connected to is in a DB2 Enterprise -

Extended Edition environment.
v The database that the client is connected to is cataloged against an already

cataloged database.

Authorization
One of the following:
v sysadm

v dbadm

v load authority on the database and
– INSERT privilege on the table when the load utility is invoked in

INSERT mode, TERMINATE mode (to terminate a previous load insert
operation), or RESTART mode (to restart a previous load insert
operation)

– INSERT and DELETE privilege on the table when the load utility is
invoked in REPLACE mode, TERMINATE mode (to terminate a previous
load replace operation), or RESTART mode (to restart a previous load
replace operation)

– INSERT privilege on the exception table, if such a table is used as part of
the load operation.

Note: Since all load processes (and all DB2 server processes, in general), are
owned by the instance owner, and all of these processes use the
identification of the instance owner to access needed files, the instance
owner must have read access to input data files. These input data files
must be readable by the instance owner, regardless of who invokes the
command.

Required Connection
Database. If implicit connect is enabled, a connection to the default database is
established.

sqluload - Load

Chapter 1. Application Programming Interfaces 345

Instance. An explicit attachment is not required. If a connection to the
database has been established, an implicit attachment to the local instance is
attempted.

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */
/* API: Load */
/* ... */
SQL_API_RC SQL_API_FN

sqluload (
sqlu_media_list * pDataFileList,
sqlu_media_list * pLobPathList,
struct sqldcol * pDataDescriptor,
struct sqlchar * pActionString,
char * pFileType,
struct sqlchar * pFileTypeMod,
char * pLocalMsgFileName,
char * pRemoteMsgFileName,
short CallerAction,
struct sqluload_in * pLoadInfoIn,
struct sqluload_out * pLoadInfoOut,
sqlu_media_list * pWorkDirectoryList,
sqlu_media_list * pCopyTargetList,
sqlint32 * pNullIndicators,
void * pReserved,
struct sqlca * pSqlca);

/* ... */

sqluload - Load

346 Administrative API Reference

Generic API Syntax

API Parameters

FileTypeLen
Input. A 2-byte unsigned integer representing the length in bytes of
the file type.

LocalMsgFileNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the local message file name.

RemoteMsgFileNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the temporary files path name.

pDataFileList
Input. A pointer to an sqlu_media_list structure used to provide a list
of source files, devices, vendors or pipes. Tape is not supported on
OS/2.

The information provided in this structure depends on the value of
the media_type field. Valid values (defined in sqlutil) are:

SQLU_SERVER_LOCATION
If the media_type field is set to this value, the caller provides
information through sqlu_location_entry structures. The sessions

/* File: sqlutil.h */
/* API: Load */
/* ... */
SQL_API_RC SQL_API_FN

sqlgload (
unsigned short FileTypeLen,
unsigned short LocalMsgFileNameLen,
unsigned short RemoteMsgFileNameLen,
sqlu_media_list * pDataFileList,
sqlu_media_list * pLobPathList,
struct sqldcol * pDataDescriptor,
struct sqlchar * pActionString,
char * pFileType,
struct sqlchar * pFileTypeMod,
char * pLocalMsgFileName,
char * pRemoteMsgFileName,
short CallerAction,
struct sqluload_in * pLoadInfoIn,
struct sqluload_out * pLoadInfoOut,
sqlu_media_list * pWorkDirectoryList,
sqlu_media_list * pCopyTargetList,
sqlint32 * pNullIndicators,
void * pReserved,
struct sqlca * pSqlca);

/* ... */

sqluload - Load

Chapter 1. Application Programming Interfaces 347

field indicates the number of sqlu_location_entry structures
provided. This is used for files, devices, and named pipes.

SQLU_CLIENT_LOCATION
If the media_type field is set to this value, the caller provides
information through sqlu_location_entry structures. The
sessions field indicates the number of sqlu_location_entry
structures provided. This is used for fully qualified files and
named pipes. Note that this media_type is only valid if the API
is being called via a remotely connected client.

SQLU_TSM_MEDIA
If the media_type field is set to this value, the sqlu_vendor
structure is used, where filename is the unique identifier for
the data to be loaded. There should only be one sqlu_vendor
entry, regardless of the value of sessions. The sessions field
indicates the number of TSM sessions to initiate. The load
utility will start the sessions with different sequence numbers,
but with the same data in the one sqlu_vendor entry.

SQLU_OTHER_MEDIA
If the media_type field is set to this value, the sqlu_vendor
structure is used, where shr_lib is the shared library name, and
filename is the unique identifier for the data to be loaded.
There should only be one sqlu_vendor entry, regardless of the
value of sessions. The sessions field indicates the number of
other vendor sessions to initiate. The load utility will start the
sessions with different sequence numbers, but with the same
data in the one sqlu_vendor entry.

Wherever a file name is provided, it should be fully qualified. For
more information, see “SQLU-MEDIA-LIST” on page 518.

pLobPathList
Input. A pointer to an sqlu_media_list structure. For IXF, ASC, and DEL
file types, a list of fully qualified paths or devices to identify the
location of the individual LOB files to be loaded. The file names are
found in the IXF, ASC, or DEL files, and are appended to the paths
provided. Tape is not supported on OS/2.

The information provided in this structure depends on the value of
the media_type field. Valid values (defined in sqlutil) are:

SQLU_LOCAL_MEDIA
If set to this value, the caller provides information through
sqlu_media_entry structures. The sessions field indicates the
number of sqlu_media_entry structures provided.

sqluload - Load

348 Administrative API Reference

SQLU_TSM_MEDIA
If set to this value, the sqlu_vendor structure is used, where
filename is the unique identifier for the data to be loaded.
There should only be one sqlu_vendor entry, regardless of the
value of sessions. The sessions field indicates the number of
TSM sessions to initiate. The load utility will start the sessions
with different sequence numbers, but with the same data in
the one sqlu_vendor entry.

SQLU_OTHER_MEDIA
If set to this value, the sqlu_vendor structure is used, where
shr_lib is the shared library name, and filename is the unique
identifier for the data to be loaded. There should only be one
sqlu_vendor entry, regardless of the value of sessions. The
sessions field indicates the number of other vendor sessions to
initiate. The load utility will start the sessions with different
sequence numbers, but with the same data in the one
sqlu_vendor entry.

For more information, see “SQLU-MEDIA-LIST” on page 518.

pDataDescriptor
Input. Pointer to an sqldcol structure containing information about the
columns being selected for loading from the external file.

If the pFileType parameter is set to SQL_ASC, the dcolmeth field of this
structure must be set to SQL_METH_L. The user specifies the start and
end locations for each column to be loaded.

If the file type is SQL_DEL, dcolmeth can be either SQL_METH_P or
SQL_METH_D. If it is SQL_METH_P, the user must provide the source
column position. If it is SQL_METH_D, the first column in the file is
loaded into the first column of the table, and so on.

If the file type is SQL_IXF, dcolmeth can be one of SQL_METH_P,
SQL_METH_D, or SQL_METH_N. The rules for DEL files apply here, except
that SQL_METH_N indicates that file column names are to be provided in
the sqldcol structure.

For more information, see “SQLDCOL” on page 456.

pActionString
Input. Pointer to an sqlchar structure containing a 2-byte long field,
followed by an array of characters specifying an action that affects the
table.

The character array is of the form:
"INSERT|REPLACE|RESTART|TERMINATE
INTO tbname [(column_list)]
[DATALINK SPECIFICATION datalink-spec]
[FOR EXCEPTION e_tbname]"

sqluload - Load

Chapter 1. Application Programming Interfaces 349

INSERT
Adds the loaded data to the table without changing the
existing table data.

REPLACE
Deletes all existing data from the table, and inserts the loaded
data. The table definition and the index definitions are not
changed.

RESTART
Restarts a previously interrupted load operation. The load
operation will automatically continue from the last consistency
point in the load, build, or delete phase.

TERMINATE
Terminates a previously interrupted load operation, and rolls
back the operation to the point in time at which it started,
even if consistency points were passed. The states of any table
spaces involved in the operation return to normal, and all
table objects are made consistent (index objects may be
marked as invalid, in which case index rebuild will
automatically take place at next access). If the table spaces in
which the table resides are not in load pending state, this
option does not affect the state of the table spaces.

The load terminate option will not remove a backup pending
state from table spaces.

tbname The name of the table into which the data is to be loaded. The
table cannot be a system table or a declared temporary table.
An alias, or the fully qualified or unqualified table name can
be specified. A qualified table name is in the form
schema.tablename. If an unqualified table name is specified, the
table will be qualified with the CURRENT SCHEMA.

(column_list)
A list of table column names into which the data is to be
inserted. The column names must be separated by commas. If
a name contains spaces or lowercase characters, it must be
enclosed by quotation marks.

DATALINK SPECIFICATION datalink-spec
Specifies parameters pertaining to DB2 Data Links. These
parameters can be specified using the same syntax as in the
LOAD command (see the Command Reference).

FOR EXCEPTION e_tbname
Specifies the exception table into which rows in error will be
copied. Any row that is in violation of a unique index or a

sqluload - Load

350 Administrative API Reference

primary key index is copied. DATALINK exceptions are also
captured in the exception table.

pFileType
Input. A string that indicates the format of the data within the
external file. Supported external file formats (defined in sqlutil) are:

SQL_ASC
Non-delimited ASCII.

SQL_DEL
Delimited ASCII, for exchange with dBase, BASIC, and the
IBM Personal Decision Series programs, and many other
database managers and file managers.

SQL_IXF
PC version of the Integrated Exchange Format, the preferred
method for exporting data from a table so that it can be
loaded later into the same table or into another database
manager table.

For more information about file formats, see the
“Export/Import/Load Utility File Formats” appendix in the Data
Movement Utilities Guide and Reference.

pFileTypeMod
Input. A pointer to a structure containing a 2-byte long field, followed
by an array of characters that specify one or more processing options.
If this pointer is NULL, or the structure pointed to has zero
characters, this action is interpreted as selection of a default
specification.

Not all options can be used with all of the supported file types.

For more information, see “SQLCHAR” on page 452, and the
Command Reference.

pLocalMsgFileName
Input. A string containing the name of a local file to which output
messages are to be written.

pRemoteMsgFileName
Input. A string containing the path name to be used on the server for
temporary files. Temporary files are created to store messages,
consistency points, and delete phase information. For more
information about temporary files, see Data Movement Utilities Guide
and Reference.

CallerAction
Input. An action requested by the caller. Valid values (defined in
sqlutil) are:

sqluload - Load

Chapter 1. Application Programming Interfaces 351

SQLU_INITIAL
Initial call. This value (or SQLU_NOINTERRUPT) must be
used on the first call to the API.

SQLU_NOINTERRUPT
Initial call. Do not suspend processing. This value (or
SQLU_INITIAL) must be used on the first call to the API.

If the initial call or any subsequent call returns and requires the
calling application to perform some action prior to completing the
requested load operation, the caller action must be set to one of the
following:

SQLU_CONTINUE
Continue processing. This value can only be used on
subsequent calls to the API, after the initial call has returned
with the utility requesting user input (for example, to respond
to an end of tape condition). It specifies that the user action
requested by the utility has completed, and the utility can
continue processing the initial request.

SQLU_TERMINATE
Terminate processing. Causes the load utility to exit
prematurely, leaving the table spaces being loaded in
LOAD_PENDING state. This option should be specified if
further processing of the data is not to be done.

SQLU_ABORT
Terminate processing. Causes the load utility to exit
prematurely, leaving the table spaces being loaded in
LOAD_PENDING state. This option should be specified if
further processing of the data is not to be done.

SQLU_RESTART
Restart processing.

SQLU_DEVICE_TERMINATE
Terminate a single device. This option should be specified if
the utility is to stop reading data from the device, but further
processing of the data is to be done.

pLoadInfoIn
Input. Optional pointer to the sqluload_in structure containing
additional input parameters. For information about this structure, see
“SQLULOAD-IN” on page 529.

pLoadInfoOut
Output. Optional pointer to the sqluload_out structure containing
additional output parameters. For information about this structure, see
“SQLULOAD-OUT” on page 534.

sqluload - Load

352 Administrative API Reference

pWorkDirectoryList
Reserved.

pCopyTargetList
Input. A pointer to an sqlu_media_list structure used (if a copy image
is to be created) to provide a list of target paths, devices, or a shared
library to which the copy image is to be written.

The values provided in this structure depend on the value of the
media_type field. Valid values for this field (defined in sqlutil) are:

SQLU_LOCAL_MEDIA
If the copy is to be written to local media, set the media_type
to this value and provide information about the targets in
sqlu_media_entry structures. The sessions field specifies the
number of sqlu_media_entry structures provided.

SQLU_TSM_MEDIA
If the copy is to be written to TSM, use this value. No further
information is required.

SQLU_OTHER_MEDIA
If a vendor product is to be used, use this value and provide
further information via an sqlu_vendor structure. Set the shr_lib
field of this structure to the shared library name of the vendor
product. Provide only one sqlu_vendor entry, regardless of the
value of sessions. The sessions field specifies the number of
sqlu_media_entry structures provided. The load utility will start
the sessions with different sequence numbers, but with the
same data provided in the one sqlu_vendor entry.

For more information, see “SQLU-MEDIA-LIST” on page 518.

pNullIndicators
Input. For ASC files only. An array of integers that indicate whether
or not the column data is nullable. There is a one-to-one ordered
correspondence between the elements of this array and the columns
being loaded from the data file. That is, the number of elements must
equal the dcolnum field of the pDataDescriptor parameter. Each element
of the array contains a number identifying a location in the data file
that is to be used as a NULL indicator field, or a zero indicating that
the table column is not nullable. If the element is not zero, the
identified location in the data file must contain a Y or an N. A Y
indicates that the table column data is NULL, and N indicates that the
table column data is not NULL.

pReserved
Reserved for future use.

sqluload - Load

Chapter 1. Application Programming Interfaces 353

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How
the API Descriptions are Organized” on page 12, or the Application Development
Guide. For a description of the syntax, see the Command Reference.

Sample Programs

C \sqllib\samples\c\tload.sqc

COBOL \sqllib\samples\cobol\tload.sqb

Usage Notes
Data is loaded in the sequence that appears in the input file. If a particular
sequence is desired, the data should be sorted before a load is attempted.

The load utility builds indexes based on existing definitions. The exception
tables are used to handle duplicates on unique keys. The utility does not
enforce referential integrity, perform constraints checking, or update summary
tables that are dependent on the tables being loaded. Tables that include
referential or check constraints are placed in check pending state. Summary
tables that are defined with REFRESH IMMEDIATE, and that are dependent
on tables being loaded, are also placed in check pending state. Issue the SET
INTEGRITY statement to take the tables out of check pending state. Load
operations cannot be carried out on replicated summary tables.

If clustering is required, the data should be sorted on the clustering index
prior to loading.

DB2 Data Links Manager Considerations

For each DATALINK column, there can be one column specification within
parentheses. Each column specification consists of one or more of
DL_LINKTYPE, prefix and a DL_URL_SUFFIX specification. The prefix
information can be either DL_URL_REPLACE_PREFIX, or the
DL_URL_DEFAULT_PREFIX specification.

There can be as many DATALINK column specifications as the number of
DATALINK columns defined in the table. The order of specifications follows
the order of DATALINK columns as found within the insert-column list (if
specified by INSERT INTO (insert-column, ...)), or within the table definition
(if insert-column is not specified).

For example, if a table has columns C1, C2, C3, C4, and C5, and among them
only columns C2 and C5 are of type DATALINK, and the insert-column list is

sqluload - Load

354 Administrative API Reference

(C1, C5, C3, C2), there should be two DATALINK column specifications. The
first column specification will be for C5, and the second column specification
will be for C2. If an insert-column list is not specified, the first column
specification will be for C2, and the second column specification will be for
C5.

If there are multiple DATALINK columns, and some columns do not need any
particular specification, the column specification should have at least the
parentheses to unambiguously identify the order of specifications. If there are
no specifications for any of the columns, the entire list of empty parentheses
can be dropped. Thus, in cases where the defaults are satisfactory, there need
not be any DATALINK specification.

If data is being loaded into a table with a DATALINK column that is defined
with FILE LINK CONTROL, perform the following steps before invoking the
load utility. (If all the DATALINK columns are defined with NO LINK
CONTROL, these steps are not necessary).
1. Ensure that the DB2 Data Links Manager is installed on the Data Links

servers that will be referred to by the DATALINK column values.
2. Ensure that the database is registered with the DB2 Data Links Manager.
3. Copy to the appropriate Data Links servers, all files that will be inserted

as DATALINK values.
4. Define the prefix name (or names) to the DB2 Data Links Managers on the

Data Links servers.
5. Register the Data Links servers referred to by DATALINK data (to be

loaded) in the DB2 Data Links Manager configuration file.

The connection between DB2 and the Data Links server may fail while
running the load utility, causing the load operation to fail. If this occurs:
1. Start the Data Links server and the DB2 Data Links Manager.
2. Invoke a load restart operation.

Links that fail during the load operation are considered to be data integrity
violations, and are handled in much the same way as unique index violations.
Consequently, a special exception has been defined for loading tables that
have one or more DATALINK columns. For additional information, refer to
the description of exceptions in the SQL Reference.

Representation of DATALINK Information in an Input File

The LINKTYPE (currently only URL is supported) is not specified as part of
DATALINK information. The LINKTYPE is specified in the LOAD or the
IMPORT command, and for input files of type PC/IXF, in the appropriate
column descriptor records as described in

sqluload - Load

Chapter 1. Application Programming Interfaces 355

The syntax of DATALINK information for a URL LINKTYPE is as follows:

ZZ
urlname dl_delimiter comment

Z[

Note that both urlname and comment are optional. If neither is provided, the
NULL value is assigned.

urlname
The URL name must conform to valid URL syntax.

Notes:

1. Only ″http″ and ″file″ are permitted as a scheme name.
2. The prefix (scheme, host, and port) of the URL name is optional. If

a prefix is not present, it is taken from the
DL_URL_DEFAULT_PREFIX or the DL_URL_REPLACE_PREFIX
specification of the load or the import utility. If none of these is
specified, the prefix defaults to ″file://localhost″. Thus, in the case
of local files, the file name with full path name can be entered as
the URL name, without the need for a DATALINK column
specification within the LOAD or the IMPORT command.

3. Prefixes, even if present in URL names, are overridden by a
different prefix name on the DL_URL_REPLACE_PREFIX
specification during a load or import operation.

4. The ″path″ (after appending DL_URL_SUFFIX, if specified) is the
full path name of the remote file in the remote server. Relative
path names are not allowed. The http server default path-prefix is
not taken into account.

dl_delimiter
For the delimited ASCII (DEL) file format, a character specified via
the dldel modifier, or defaulted to on the LOAD or the IMPORT
command. For the non-delimited ASCII (ASC) file format, this should
correspond to the character sequence \; (a backslash followed by a
semicolon). Whitespace characters (blanks, tabs, and so on) are
permitted before and after the value specified for this parameter.

comment
The comment portion of a DATALINK value. If specified for the
delimited ASCII (DEL) file format, the comment text must be enclosed
by the character string delimiter, which is double quotation marks (″)
by default. This character string delimiter can be overridden by the
MODIFIED BY filetype-mod specification of the LOAD or the IMPORT
command.

sqluload - Load

356 Administrative API Reference

If no comment is specified, the comment defaults to a string of length
zero.

Following are DATALINK data examples for the delimited ASCII (DEL) file
format:
v http://www.almaden.ibm.com:80/mrep/intro.mpeg; "Intro Movie"

This is stored with the following parts:
– scheme = http
– server = www.almaden.ibm.com
– path = /mrep/intro.mpeg
– comment = ″Intro Movie″

v file://narang/u/narang; "InderPal's Home Page"

This is stored with the following parts:
– scheme = file
– server = narang
– path = /u/narang
– comment = ″InderPal’s Home Page″

v file:/home/ff.gg; "hi there"

This is stored with the following parts:
– scheme = file
– server = localhost
– path = /home/ff.gg
– comment = ″hi there″

Following are DATALINK data examples for the non-delimited ASCII (ASC)
file format:
v http://www.almaden.ibm.com:80/mrep/intro.mpeg\;Intro Movie

This is stored with the following parts:
– scheme = http
– server = www.almaden.ibm.com
– path = /mrep/intro.mpeg
– comment = ″Intro Movie″

v file://narang/u/narang\; InderPal's Home Page

This is stored with the following parts:
– scheme = file
– server = narang
– path = /u/narang
– comment = ″InderPal’s Home Page″

v file:/home/ff.gg\; hi there

sqluload - Load

Chapter 1. Application Programming Interfaces 357

This is stored with the following parts:
– scheme = file
– server = localhost
– path = /home/ff.gg
– comment = ″hi there″

Following are DATALINK data examples in which the load or import
specification for the column is assumed to be DL_URL_DEFAULT_PREFIX
(″http://qso″):
v file://narang/pics/xxx.jpeg?search_pat

This is stored with the following parts:
– scheme = file
– server = narang
– path = /pics/xxx.jpeg
– comment = NULL string

v /u/me/myfile.ps

This is stored with the following parts:
– scheme = http
– server = qso
– path = /u/me/myfile.ps
– comment = NULL string

Table 10. Valid File Type Modifiers (LOAD)

Modifier Description

All File Formats

anyorder This modifier is used in conjunction with the cpu_parallelism
parameter. Specifies that the preservation of source data
order is not required, yielding significant additional
performance benefit on SMP systems. If the value of
cpu_parallelism is 1, this option is ignored. This option is not
supported if SAVECOUNT > 0, since crash recovery after a
consistency point requires that data be loaded in sequence.

sqluload - Load

358 Administrative API Reference

Table 10. Valid File Type Modifiers (LOAD) (continued)

Modifier Description

fastparse Reduced syntax checking is done on user-supplied column
values, and performance is enhanced. Tables loaded under
this option are guaranteed to be architecturally correct, and
the utility is guaranteed to perform sufficient data checking
to prevent a segmentation violation or trap. Data that is in
correct form will be loaded correctly.

For example, if a value of 123qwr4 were to be encountered
as a field entry for an integer column in an ASC file, the
load utility would ordinarily flag a syntax error, since the
value does not represent a valid number. With fastparse, a
syntax error is not detected, and an arbitrary number is
loaded into the integer field. Care must be taken to use this
modifier with clean data only. Performance improvements
using this option with ASCII data can be quite substantial,
but fastparse does not significantly enhance performance
with PC/IXF data, since IXF is a binary format, and
fastparse affects parsing and conversion from ASCII to
internal forms.

generatedignore This modifier informs the load utility that data for all
generated columns is present in the data file but should be
ignored. For nullable generated columns, this results in
NULLs being loaded into the column; for non-nullable
generated columns, this results in the default value for the
generated column’s data type being loaded. At the end of
the load operation, the SET INTEGRITY statement can be
invoked to force the replacement of loaded values with
values computed according to the generated column
definition. This modifier cannot be used with either the
generatedmissing or the generatedoverride modifier.

generatedmissing If this modifier is specified, the utility assumes that the
input data file contains no data for the generated column
(not even NULLs), and will therefore load NULLs into the
column. At the end of the load operation, the SET
INTEGRITY statement can be used to replace the NULLs
with values computed according to the generated column
definition. This modifier cannot be used with either the
generatedignore or the generatedoverride modifier.

sqluload - Load

Chapter 1. Application Programming Interfaces 359

Table 10. Valid File Type Modifiers (LOAD) (continued)

Modifier Description

generatedoverride This modifier instructs the load utility to accept explicit,
non-NULL data for all generated columns in the table
(contrary to the normal rules for these types of columns).
This is useful when migrating data from another database
system, or when loading a table from data that was
recovered using the DROPPED TABLE RECOVERY option
on the ROLLFORWARD DATABASE command. When this
modifier is used, any rows with no data or NULL data for a
non-nullable generated column will be rejected (SQL3116W).
Note: The load utility will not attempt to validate generated
column values when this option is used.

This modifier cannot be used with either the
generatedmissing or the generatedignore modifier.

identityignore This modifier informs the load utility that data for the
identity column is present in the data file but should be
ignored. This results in all identity values being generated
by the utility. The behavior will be the same for both
GENERATED ALWAYS and GENERATED BY DEFAULT
identity columns. This means that for GENERATED
ALWAYS columns, no rows will be rejected. This modifier
cannot be used with either the identitymissing or the
identityoverride modifier.

identitymissing If this modifier is specified, the utility assumes that the
input data file contains no data for the identity column (not
even NULLs), and will therefore generate a value for each
row. The behavior will be the same for both GENERATED
ALWAYS and GENERATED BY DEFAULT identity columns.
This modifier cannot be used with either the
identityignore or the identityoverride modifier.

sqluload - Load

360 Administrative API Reference

Table 10. Valid File Type Modifiers (LOAD) (continued)

Modifier Description

identityoverride This modifier should be used only when an identity column
defined as GENERATED ALWAYS is present in the table to
be loaded. It instructs the utility to accept explicit,
non-NULL data for such a column (contrary to the normal
rules for these types of identity columns). This is useful
when migrating data from another database system when
the table must be defined as GENERATED ALWAYS, or
when loading a table from data that was recovered using
the DROPPED TABLE RECOVERY option on the
ROLLFORWARD DATABASE command. When this
modifier is used, any rows with no data or NULL data for
the identity column will be rejected (SQL3116W). This
modifier cannot be used with either the identitymissing or
the identityignore modifier.
Note: The load utility will not attempt to maintain or verify
the uniqueness of values in the table’s identity column
when this option is used.

indexfreespace=x x is an integer between 0 and 99 inclusive. The value is
interpreted as the percentage of each index page that is to
be left as free space when loading the index. The first entry
in a page is added without restriction; subsequent entries
are added if the percent free space threshold can be
maintained. The default value is the one used at CREATE
INDEX time.

This value takes precedence over the PCTFREE value
specified in the CREATE INDEX statement, and affects
index leaf pages only.

lobsinfile lob-path specifies the path to the files containing LOB values.
The ASC, DEL, or IXF load input files contain the names of
the files having LOB data in the LOB column.

noheader Skips the header verification code (applicable only to load
operations into tables that reside in a single-node
nodegroup).

The AutoLoader utility (see writes a header to each file
contributing data to a table in a multi-node nodegroup. The
header includes the node number, the partitioning map, and
the partitioning key specification. The load utility requires
this information to verify that the data is being loaded at
the correct node. When loading files into a table that exists
on a single-node nodegroup, the headers do not exist, and
this option causes the load utility to skip the header
verification code.

norowwarnings Suppresses all warnings about rejected rows.

sqluload - Load

Chapter 1. Application Programming Interfaces 361

Table 10. Valid File Type Modifiers (LOAD) (continued)

Modifier Description

pagefreespace=x x is an integer between 0 and 100 inclusive. The value is
interpreted as the percentage of each data page that is to be
left as free space.

If the specified value is invalid because of the minimum
row size, (for example, a row that is at least 3 000 bytes
long, and an x value of 50), the row will be placed on a
new page. If a value of 100 is specified, each row will reside
on a new page.
Note: The PCTFREE value of a table determines the
amount of free space designated per page. If a
pagefreespace value on the load operation or a PCTFREE
value on a table have not been set, the utility will fill up as
much space as possible on each page. The value set by
pagefreespace overrides the PCTFREE value specified for
the table.

totalfreespace=x x is an integer between 0 and 100 inclusive. The value is
interpreted as the percentage of the total pages in the table
that is to be appended to the end of the table as free space.
For example, if x is 20, and the table has 100 data pages, 20
additional empty pages will be appended. The total number
of data pages for the table will be 120.

usedefaults If a source column for a target table column has been
specified, but it contains no data for one or more row
instances, default values are loaded. Examples of missing
data are:

v For DEL files: ",," is specified for the column

v For DEL/ASC/WSF files: A row that does not have
enough columns, or is not long enough for the original
specification.

Without this option, if a source column contains no data for
a row instance, one of the following occurs:

v If the column is nullable, a NULL is loaded

v If the column is not nullable, the utility rejects the row.

ASCII File Formats (ASC/DEL)

sqluload - Load

362 Administrative API Reference

Table 10. Valid File Type Modifiers (LOAD) (continued)

Modifier Description

codepage=x x is an ASCII character string. The value is interpreted as
the code page of the data in the input data set. Converts
character data (and numeric data specified in characters)
from this code page to the database code page during the
load operation.

The following rules apply:

v For pure DBCS (graphic), mixed DBCS, and EUC,
delimiters are restricted to the range of x00 to x3F,
inclusive.

v For DEL data specified in an EBCDIC code page, the
delimiters may not coincide with the shift-in and shift-out
DBCS characters.

v nullindchar must specify symbols included in the
standard ASCII set between code points x20 and x7F,
inclusive. This refers to ASCII symbols and code points.
EBCDIC data can use the corresponding symbols, even
though the code points will be different.

dateformat=″x″ x is the format of the date in the source file.a Valid date
elements are:

YYYY - Year (four digits ranging from 0000 - 9999)
M - Month (one or two digits ranging from 1 - 12)
MM - Month (two digits ranging from 1 - 12;

mutually exclusive with M)
D - Day (one or two digits ranging from 1 - 31)
DD - Day (two digits ranging from 1 - 31;

mutually exclusive with D)
DDD - Day of the year (three digits ranging

from 001 - 366; mutually exclusive
with other day or month elements)

A default value of 1 is assigned for each element that is not
specified. Some examples of date formats are:

"D-M-YYYY"
"MM.DD.YYYY"
"YYYYDDD"

sqluload - Load

Chapter 1. Application Programming Interfaces 363

Table 10. Valid File Type Modifiers (LOAD) (continued)

Modifier Description

dumpfile = x x is the fully qualified (according to the server node) name
of an exception file to which rejected rows are written. A
maximum of 32KB of data is written per record. Following
is an example that shows how to specify a dump file:

db2 load from data of del
modified by dumpfile = /u/user/filename
insert into table_name

Notes:

1. In a partitioned database environment, the path should
be local to the loading node, so that concurrently
running load operations do not attempt to write to the
same file.

2. The contents of the file are written to disk in an
asynchronous buffered mode. In the event of a failed or
an interrupted load operation, the number of records
committed to disk cannot be known with certainty, and
consistency cannot be guaranteed after a LOAD
RESTART. The file can only be assumed to be complete
for a load operation that starts and completes in a single
pass.

3. This modifier does not support file names with multiple
file extensions. For example,

dumpfile = /home/svtdbm6/DUMP.FILE

is acceptable to the load utility, but

dumpfile = /home/svtdbm6/DUMP.LOAD.FILE

is not.

implieddecimal The location of an implied decimal point is determined by
the column definition; it is no longer assumed to be at the
end of the value. For example, the value 12345 is loaded
into a DECIMAL(8,2) column as 123.45, not 12345.00.

sqluload - Load

364 Administrative API Reference

Table 10. Valid File Type Modifiers (LOAD) (continued)

Modifier Description

timeformat=″x″ x is the format of the time in the source file.a Valid time
elements are:

H - Hour (one or two digits ranging from 0 - 12
for a 12 hour system, and 0 - 24
for a 24 hour system)

HH - Hour (two digits ranging from 0 - 12
for a 12 hour system, and 0 - 24
for a 24 hour system; mutually exclusive
with H)

M - Minute (one or two digits ranging
from 0 - 59)

MM - Minute (two digits ranging from 0 - 59;
mutually exclusive with M)

S - Second (one or two digits ranging
from 0 - 59)

SS - Second (two digits ranging from 0 - 59;
mutually exclusive with S)

SSSSS - Second of the day after midnight (5 digits
ranging from 00000 - 86399; mutually
exclusive with other time elements)

TT - Meridian indicator (AM or PM)

A default value of 0 is assigned for each element that is not
specified. Some examples of time formats are:

"HH:MM:SS"
"HH.MM TT"
"SSSSS"

sqluload - Load

Chapter 1. Application Programming Interfaces 365

Table 10. Valid File Type Modifiers (LOAD) (continued)

Modifier Description

timestampformat=″x″ x is the format of the time stamp in the source file.a Valid
time stamp elements are:

YYYY - Year (four digits ranging from 0000 - 9999)
M - Month (one or two digits ranging

from 1 - 12)
MM - Month (two digits ranging from 1 - 12;

mutually exclusive with M, month)
D - Day (one or two digits ranging from 1 - 31)
DD - Day (two digits ranging from 1 - 31;

mutually exclusive with D)
DDD - Day of the year (three digits ranging

from 001 - 366; mutually exclusive with
other day or month elements)

H - Hour (one or two digits ranging from 0 - 12
for a 12 hour system, and 0 - 24
for a 24 hour system)

HH - Hour (two digits ranging from 0 - 12
for a 12 hour system, and 0 - 24
for a 24 hour system; mutually exclusive
with H)

M - Minute (one or two digits ranging
from 0 - 59)

MM - Minute (two digits ranging from 0 - 59;
mutually exclusive with M, minute)

S - Second (one or two digits ranging
from 0 - 59)

SS - Second (two digits ranging from 0 - 59;
mutually exclusive with S)

SSSSS - Second of the day after midnight (5 digits
ranging from 00000 - 86399; mutually
exclusive with other time elements)

UUUUUU - Microsecond (6 digits ranging
from 000000 - 999999)

TT - Meridian indicator (AM or PM)

A default value of 1 is assigned for unspecified YYYY, M,
MM, D, DD, or DDD elements. A default value of 0 is
assigned for all other unspecified elements. Following is an
example of a time stamp format:

"YYYY/MM/DD HH:MM:SS.UUUUUU"

The following example illustrates how to import data
containing user defined date and time formats into a table
called schedule:

db2 import from delfile2 of del
modified by timestampformat="yyyy.mm.dd hh:mm tt"
insert into schedule

sqluload - Load

366 Administrative API Reference

Table 10. Valid File Type Modifiers (LOAD) (continued)

Modifier Description

noeofchar The optional end-of-file character x'1A' is not recognized as
the end of file. Processing continues as if it were a normal
character.

ASC (Non-delimited ASCII) File Format

binarynumerics Numeric (but not DECIMAL) data must be in binary form,
not the character representation. This avoids costly
conversions.

This option is supported only with positional ASC, using
fixed length records specified by the reclen option. The
noeofchar option is assumed.

The following rules apply:

v No conversion between data types is performed, with the
exception of BIGINT, INTEGER, and SMALLINT.

v Data lengths must match their target column definitions.

v FLOATs must be in IEEE Floating Point format.

v Binary data in the load source file is assumed to be
big-endian, regardless of the platform on which the load
operation is running.

Note: NULLs cannot be present in the data for columns
affected by this modifier. Blanks (normally interpreted as
NULL) are interpreted as a binary value when this modifier
is used.

nochecklengths If nochecklengths is specified, an attempt is made to load
each row, even if the source data has a column definition
that exceeds the size of the target table column. Such rows
can be successfully loaded if code page conversion causes
the source data to shrink; for example, 4-byte EUC data in
the source could shrink to 2-byte DBCS data in the target,
and require half the space. This option is particularly useful
if it is known that the source data will fit in all cases
despite mismatched column definitions.

nullindchar=x x is a single character. Changes the character denoting a
NULL value to x. The default value of x is Y.b

This modifier is case sensitive for EBCDIC data files, except
when the character is an English letter. For example, if the
NULL indicator character is specified to be the letter N, then
n is also recognized as a NULL indicator.

sqluload - Load

Chapter 1. Application Programming Interfaces 367

Table 10. Valid File Type Modifiers (LOAD) (continued)

Modifier Description

packeddecimal Loads packed-decimal data directly, since the
binarynumerics modifier does not include the DECIMAL
field type.

This option is supported only with positional ASC, using
fixed length records specified by the reclen option. The
noeofchar option is assumed.

Supported values for the sign nibble are:

+ = 0xC 0xA 0xE 0xF
- = 0xD 0xB

Note: NULLs cannot be present in the data for columns
affected by this modifier. Blanks (normally interpreted as
NULL) are interpreted as a binary value when this modifier
is used.

Regardless of the server platform, the byte order of binary
data in the load source file is assumed to be big-endian; that
is, when using this modifier on OS/2 or on the Windows
operating system, the byte order must not be reversed.

reclen=x x is an integer with a maximum value of 32 767. x
characters are read for each row, and a new-line character is
not used to indicate the end of the row.

striptblanks Truncates any trailing blank spaces when loading data into
a variable-length field. If this option is not specified, blank
spaces are kept.

This option cannot be specified together with striptnulls.
These are mutually exclusive options.
Note: This option replaces the obsolete t option, which is
supported for back-level compatibility only.

striptnulls Truncates any trailing NULLs (0x00 characters) when
loading data into a variable-length field. If this option is not
specified, NULLs are kept.

This option cannot be specified together with striptblanks.
These are mutually exclusive options.
Note: This option replaces the obsolete padwithzero option,
which is supported for back-level compatibility only.

sqluload - Load

368 Administrative API Reference

Table 10. Valid File Type Modifiers (LOAD) (continued)

Modifier Description

zoneddecimal Loads zoned decimal data, since the BINARYNUMERICS
modifier does not include the DECIMAL field type. This
option is supported only with positional ASC, using fixed
length records specified by the RECLEN option. The
NOEOFCHAR option is assumed.

Half-byte sign values can be one of the following:

+ = 0xC 0xA 0xE 0xF
- = 0xD 0xB

Supported values for digits are 0x0 to 0x9.

Supported values for zones are 0x3 and 0xF.

DEL (Delimited ASCII) File Format

chardelx x is a single character string delimiter. The default value is a
double quotation mark ("). The specified character is used in
place of double quotation marks to enclose a character
string.bc

The single quotation mark (') can also be specified as a
character string delimiter as follows:

modified by chardel''

coldelx x is a single character column delimiter. The default value is
a comma (,). The specified character is used in place of a
comma to signal the end of a column.bc

datesiso Date format. Causes all date data values to be loaded in ISO
format.

decplusblank Plus sign character. Causes positive decimal values to be
prefixed with a blank space instead of a plus sign (+). The
default action is to prefix positive decimal values with a
plus sign.

decptx x is a single character substitute for the period as a decimal
point character. The default value is a period (.). The
specified character is used in place of a period as a decimal
point character.bc

sqluload - Load

Chapter 1. Application Programming Interfaces 369

Table 10. Valid File Type Modifiers (LOAD) (continued)

Modifier Description

delprioritychar The current default priority for delimiters is: record
delimiter, character delimiter, column delimiter. This
modifier protects existing applications that depend on the
older priority by reverting the delimiter priorities to:
character delimiter, record delimiter, column delimiter.
Syntax:

db2 load ... modified by delprioritychar ...

For example, given the following DEL data file:

"Smith, Joshua",4000,34.98<row delimiter>
"Vincent,<row delimiter>, is a manager", ...
... 4005,44.37<row delimiter>

With the delprioritychar modifier specified, there will be
only two rows in this data file. The second <row delimiter>
will be interpreted as part of the first data column of the
second row, while the first and the third <row delimiter>
are interpreted as actual record delimiters. If this modifier is
not specified, there will be three rows in this data file, each
delimited by a <row delimiter>.

dldelx x is a single character DATALINK delimiter. The default
value is a semicolon (;). The specified character is used in
place of a semicolon as the inter-field separator for a
DATALINK value. It is needed because a DATALINK value
may have more than one sub-value. bcd

Note: x must not be the same character specified as the
row, column, or character string delimiter.

keepblanks Preserves the leading and trailing blanks in each field of
type CHAR, VARCHAR, LONG VARCHAR, or CLOB.
Without this option, all leading and tailing blanks that are
not inside character delimiters are removed, and a NULL is
inserted into the table for all blank fields.

The following example illustrates how to load data into a
table called TABLE1, while preserving all leading and
trailing spaces in the data file:

db2 load from delfile3 of del
modified by keepblanks
insert into table1

nodoubledel Suppresses recognition of double character delimiters. For
more information, see “Delimiter Restrictions” on page 312.

IXF File Format

sqluload - Load

370 Administrative API Reference

Table 10. Valid File Type Modifiers (LOAD) (continued)

Modifier Description

forcein Directs the utility to accept data despite code page
mismatches, and to suppress translation between code
pages.

Fixed length target fields are checked to verify that they are
large enough for the data. If nochecklengths is specified, no
checking is done, and an attempt is made to load each row.

nochecklengths If nochecklengths is specified, an attempt is made to load
each row, even if the source data has a column definition
that exceeds the size of the target table column. Such rows
can be successfully loaded if code page conversion causes
the source data to shrink; for example, 4-byte EUC data in
the source could shrink to 2-byte DBCS data in the target,
and require half the space. This option is particularly useful
if it is known that the source data will fit in all cases
despite mismatched column definitions.

sqluload - Load

Chapter 1. Application Programming Interfaces 371

Table 10. Valid File Type Modifiers (LOAD) (continued)

Modifier Description

Notes:

1. The load utility does not issue a warning if an attempt is made to use
unsupported file types with the MODIFIED BY option. If this is attempted, the
load operation fails, and an error code is returned.

2. a Double quotation marks around the date format string are mandatory. Field
separators cannot contain any of the following: a-z, A-Z, and 0-9. The field
separator should not be the same as the character delimiter or field delimiter in
the DEL file format. A field separator is optional if the start and end positions of
an element are unambiguous. Ambiguity can exist if (depending on the modifier)
elements such as D, H, M, or S are used, because of the variable length of the
entries.

For time stamp formats, care must be taken to avoid ambiguity between the
month and the minute descriptors, since they both use the letter M. A month field
must be adjacent to other date fields. A minute field must be adjacent to other
time fields. Following are some ambiguous time stamp formats:

"M" (could be a month, or a minute)
"M:M" (Which is which?)
"M:YYYY:M" (Both are interpreted as month.)
"S:M:YYYY" (adjacent to both a time value and a date value)

In ambiguous cases, the utility will report an error message, and the operation
will fail.

Following are some unambiguous time stamp formats:

"M:YYYY" (Month)
"S:M" (Minute)
"M:YYYY:S:M" (Month....Minute)
"M:H:YYYY:M:D" (Minute....Month)

Note: Some characters, such as double quotation marks and back slashes, must be
preceded by an escape character (for example, \).

3. b The character must be specified in the code page of the source data.

The character code point (instead of the character symbol), can be specified using
the syntax xJJ or 0xJJ, where JJ is the hexadecimal representation of the code point.
For example, to specify the # character as a column delimiter, use one of the
following:

... modified by coldel# ...

... modified by coldel0x23 ...

... modified by coldelX23 ...

4. c “Delimiter Restrictions” on page 312 lists restrictions that apply to the characters
that can be used as delimiter overrides.

5. d Even if the DATALINK delimiter character is a valid character within the URL
syntax, it will lose its special meaning within the scope of the load operation.

sqluload - Load

372 Administrative API Reference

See Also
“db2LoadQuery - Load Query” on page 65

“sqluvqdp - Quiesce Tablespaces for Table” on page 413.

sqluload - Load

Chapter 1. Application Programming Interfaces 373

sqlurcon - Reconcile
Validates the references to files for the DATALINK data of a table. The rows
for which the references to files cannot be established are copied to the
exception table (if specified), and modified in the input table.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

v CONTROL privilege on the table.

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */
/* API: Reconcile */
/* ... */
SQL_API_RC SQL_API_FN

sqlurcon (
char * pTableName,
char * pExTableName,
char * pReportFileName,
void * pReserved,
struct sqlca * pSqlca);

/* ... */

sqlurcon - Reconcile

374 Administrative API Reference

Generic API Syntax

API Parameters

TableNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the table name.

pTableName
Input. Specifies the table on which reconciliation is to be performed.
An alias, or the fully qualified or unqualified table name can be
specified. A qualified table name is in the form schema.tablename. If an
unqualified table name is specified, the table will be qualified with the
current authorization ID.

ExTableNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the exception table name.

pExTableName
Input. Specifies the exception table into which rows that encounter
link failures for DATALINK values are to be copied.

ReportFileNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the report file name.

pReportFileName
Input. Specifies the file that will contain information about the files
that are unlinked during reconciliation. The name must be fully
qualified (for example, /u/johnh/report). The reconcile utility
appends a .ulk extension to the specified file name (for example,
report.ulk).

pReserved
Reserved for future use.

/* File: sqlutil.h */
/* API: Reconcile */
/* ... */
SQL_API_RC SQL_API_FN

sqlgrcon (
unsigned short TableNameLen,
char * pTableName,
unsigned short ExTableNameLen,
char * pExTableName,
unsigned short ReportFleNameLen,
char * pReportFileName,
void * pReserved,
struct sqlca * pSqlca);

/* ... */

sqlurcon - Reconcile

Chapter 1. Application Programming Interfaces 375

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

Usage Notes
During reconciliation, attempts are made to link files which exist according to
table data, but which do not exist according to Data Links File Manager
metadata, if no other conflict exists.

Reconciliation is performed with respect to all DATALINK data in the table. If
file references cannot be re-established, the violating rows are inserted into the
exception table (if specified). These rows are not deleted from the input table.
To ensure file reference integrity, the offending DATALINK values are nulled.
If the column is defined as not nullable, the DATALINK values are replaced
by a zero length URL.

If an exception table is not specified, the DATALINK column values for which
file references cannot be re-established are copied to an exception report file
(<pReportFileName>.exp), along with the column ID and a comment.

At the end of the reconciliation process, the table is taken out of datalink
reconcile pending (DRP) state.

sqlurcon - Reconcile

376 Administrative API Reference

sqlureot - Reorganize Table
Reorganizes a table by reconstructing the rows to eliminate fragmented data,
and by compacting information.

Scope
This API affects all nodes in the nodegroup.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

v CONTROL privilege on the table.

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */
/* API: Reorganize Table */
/* ... */
SQL_API_RC SQL_API_FN

sqlureot (
_SQLOLDCHAR * pTableName,
_SQLOLDCHAR * pIndexName,
_SQLOLDCHAR * pTablespace,
struct sqlca * pSqlca);

/* ... */

sqlureot - Reorganize Table

Chapter 1. Application Programming Interfaces 377

Generic API Syntax

API Parameters

TablespaceLen
Input. A 2-byte unsigned integer representing the length in bytes of
the table space string. Set to zero if no table space is specified.

IndexNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the index name. Set to zero if no index is specified.

TableNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the table name.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

pTablespace
Input. A string containing the name of the system temporary table
space if the caller wants a secondary work area when reorganizing a
table. May be NULL.

pIndexName
Input. The fully qualified index name to be used when reorganizing
the user table. The records in the reorganized table are physically
ordered according to this index. Setting this parameter to NULL
causes the data to be reorganized in no specific order.

pTableName
Input. Name of the table to be reorganized. Can be an alias, except in
the case of a down-level server, when the fully qualified name of the
table must be used.

/* File: sqlutil.h */
/* API: Reorganize Table */
/* ... */
SQL_API_RC SQL_API_FN

sqlgreot (
unsigned short TablespaceLen,
unsigned short IndexNameLen,
unsigned short TableNameLen,
struct sqlca * pSqlca,
_SQLOLDCHAR * pTablespace,
_SQLOLDCHAR * pIndexName,
_SQLOLDCHAR * pTableName);

/* ... */

sqlureot - Reorganize Table

378 Administrative API Reference

REXX API Syntax

REXX API Parameters

tablename
The fully qualified name of the table.

iname The fully qualified index name used to reorganize the table. If an
index name is not specified, the data is reorganized in no specific
order.

tablespace_id
The name of a system temporary table space.

Sample Programs

C \sqllib\samples\c\dbstat.sqc

COBOL \sqllib\samples\cobol\dbstat.sqb

REXX \sqllib\samples\rexx\dbstat.cmd

Usage Notes
This API is not supported for declared temporary tables.

Tables that have been modified so many times that data is fragmented and
access performance is noticeably slow are candidates for reorganization. Use
″REORGCHK″ in the Command Reference to determine whether a table needs
reorganizing. Be sure to complete all database operations and release all locks
before calling REORGANIZE TABLE. This may be done by issuing a
COMMIT after closing all cursors opened WITH HOLD, or by issuing a
ROLLBACK. After reorganizing a table, use “sqlustat - Runstats” on page 407
to update the table statistics, and “sqlarbnd - Rebind” on page 99 to rebind the
packages that use this table.

If the table is partitioned onto several nodes, and the table reorganization fails
on any of the affected nodes, then only the failing nodes will have the table
reorganization rolled back.

Note: If the reorganization is not successful, temporary files should not be
deleted. The database manager uses these files to recover the database.

If the name of an index is specified, the database manager reorganizes the
data according to the order in the index. To maximize performance, specify an
index that is often used in SQL queries. If the name of an index is not
specified, and if a clustering index exists, the data will be ordered according
to the clustering index.

REORG TABLE tablename [INDEX iname] [USE tablespace_id]

sqlureot - Reorganize Table

Chapter 1. Application Programming Interfaces 379

The PCTFREE value of a table determines the amount of free space
designated per page. If the value has not been set, the utility will fill up as
much space as possible on each page.

REORGANIZE TABLE cannot be used on views.

REORGANIZE TABLE cannot be used on a DMS table while an online backup
of a table space in which the table resides is being performed.

To complete a table space roll-forward recovery following a table
reorganization, both data and LONG table spaces must be roll-forward
enabled.

If the table contains LOB columns that do not use the COMPACT option, the
LOB DATA storage object can be significantly larger following table
reorganization. This can be a result of the order in which the rows were
reorganized, and the types of table spaces used (SMS/DMS).

DB2 Version 2 servers do not support down-level client requests to reorganize
a table. Since pre-Version 2 servers do not support table spaces, the pTablespace
parameter is treated as the Version 1 path parameter, when Version 2 clients
are used with a down-level server.

If a Version 2 client requests to reorganize a table on a Version 2 server, and
that request includes a path instead of a temporary table space in the
pTablespace parameter (for example, an old application, specifying a temporary
file path, being executed on Version 2 clients), REORG chooses a system
temporary table space in which to place the work files on behalf of the user. A
valid system temporary table space name containing a path separator
character (/ or \) should not be specified, because it will be interpreted as a
temporary path (pre-Version 2 request), and REORG will choose a system
temporary table space on behalf of the user.

REORGANIZE TABLE cannot use an index that is based on an index
extension.

See Also
“sqlarbnd - Rebind” on page 99

“sqlustat - Runstats” on page 407.

sqlureot - Reorganize Table

380 Administrative API Reference

sqlurestore - Restore Database
Rebuilds a damaged or corrupted database that has been backed up using
“sqlubkp - Backup Database” on page 290. The restored database is in the
same state it was in when the backup copy was made. This utility can also
restore to a database with a name different from the database name in the
backup image (in addition to being able to restore to a new database).

This utility can also be used to restore DB2 databases created in the two
previous releases.

This utility can also restore from a table space level backup.

Note: This API supersedes sqlurst (DB2 Version 5.0), and should be used
with DB2 Data Links Manager. If DB2 Data Links Manager function is
not required, sqlurst can be used.

Scope
This API only affects the node from which it is called.

Authorization
To restore to an existing database, one of the following:
v sysadm

v sysctrl

v sysmaint

To restore to a new database, one of the following:
v sysadm

v sysctrl

Required Connection
Database, to restore to an existing database. This API automatically establishes
a connection to the specified database.

Instance and database, to restore to a new database. The instance attachment
is required to create the database.

To restore to a new database at an instance different from the current instance
(as defined by the value of the DB2INSTANCE environment variable), it is
necessary to first attach to the instance where the new database will reside.

API Include File
sqlutil.h

sqlurestore - Restore Database

Chapter 1. Application Programming Interfaces 381

C API Syntax

/* File: sqlutil.h */
/* API: Restore Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlurestore (
char * pSourceDbAlias,
char * pTargetDbAlias,
sqluint32 BufferSize,
sqluint32 RollforwardMode,
sqluint32 DatalinkMode,
sqluint32 RestoreType,
sqluint32 RestoreMode,
sqluint32 CallerAction,
char * pApplicationId,
char * pTimestamp,
char * pTargetPath,
sqluint32 NumBuffers,
char * pReportFile,
struct sqlu_tablespace_bkrst_list * pTablespaceList,
struct sqlu_media_list * pMediaSourceList,
char * pUserName,
char * pPassword,
void * pReserved2,
sqluint32 VendorOptionsSize,
void * pVendorOptions,
sqluint32 Parallelism,
void * pRestoreInfo,
void * pContainerPageList,
void * pReserved3,
struct sqlca * pSqlca);

/* ... */

sqlurestore - Restore Database

382 Administrative API Reference

Generic API Syntax

API Parameters

SourceDbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of
the source database alias.

TargetDbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of
the target database alias. Set to zero if no target database alias is
specified.

/* File: sqlutil.h */
/* API: Restore Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlgrestore (
unsigned short SourceDbAliasLen,
unsigned short TargetDbAliasLen,
unsigned short TimestampLen,
unsigned short TargetPathLen,
unsigned short UserNameLen,
unsigned short PasswordLen,
unsigned short ReportFileLen,
unsigned short Reserved2Len,
char * pSourceDbAlias,
char * pTargetDbAlias,
sqluint32 BufferSize,
sqluint32 RollforwardMode,
sqluint32 DatalinkMode,
sqluint32 RestoreType,
sqluint32 RestoreMode,
sqluint32 CallerAction,
char * pApplicationId,
char * pTimestamp,
char * pTargetPath,
sqluint32 NumBuffers,
char * pReportFile,
struct sqlu_tablespace_bkrst_list * pTablespaceList,
struct sqlu_media_list * pMediaSourceList,
char * pUserName,
char * pPassword,
void * pReserved2,
sqluint32 VendorOptionsSize,
void * pVendorOptions,
sqluint32 Parallelism,
unsigned short RestoreInfoSize,
void * pRestoreInfo,
unsigned short ContainerPageListSize,
void * pContainerPageList,
void * pReserved3,
struct sqlca * pSqlca);

/* ... */

sqlurestore - Restore Database

Chapter 1. Application Programming Interfaces 383

TimestampLen
Input. A 2-byte unsigned integer representing the length in bytes of
the time stamp. Set to zero if no time stamp is provided.

TargetPathLen
Input. A 2-byte unsigned integer representing the length in bytes of
the target directory. Set to zero if no target path is provided.

UserNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the user name. Set to zero if no user name is provided.

PasswordLen
Input. A 2-byte unsigned integer representing the length in bytes of
the password. Set to zero if no password is provided.

ReportFileLen
Input. A 2-byte unsigned integer representing the length in bytes of
the report file name. Set to zero if no report file name is provided.

Reserved2Len
Input. A 2-byte unsigned integer representing the length in bytes of
the reserved area. Set to zero.

pSourceDbAlias
Input. A string containing the database alias of the source database
backup image.

pTargetDbAlias
Input. A string containing the target database alias. If this parameter is
null, the pSourceDbAlias alias is used.

BufferSize
Input. Backup buffer size in 4KB allocation units (pages). Minimum is
8 units. The default is 1024 units.

Note: The buffer size entered for a restore must be equal to or an
integer multiple of the buffer size used to produce the backup
image.

RollforwardMode
Input. Indicates whether or not to place the database in rollforward
pending state at the end of the restore. Valid values (defined in
sqlutil) are:

SQLUD_ROLLFWD
Place the database in roll-forward pending state after it has
been successfully restored.

sqlurestore - Restore Database

384 Administrative API Reference

SQLUD_NOROLLFWD
Do not place the database in roll-forward pending state after
it has been successfully restored.

If, following a successful restore, the database is in roll-forward
pending state, “sqluroll - Rollforward Database” on page 397 must be
executed before the database can be used.

DatalinkMode
Input. Specifies whether any tables with DATALINK columns are to
be placed in DataLink_Reconcile_Pending (DRP) state, and whether
reconciliation of linked files is to be performed. Valid values (defined
in sqlutil) are:

SQLUD_DATALINK
Perform reconciliation operations. Tables with a defined
DATALINK column must have the RECOVERY YES option
specified.

SQLUD_NODATALINK
Do not perform reconciliation operations. Tables with
DATALINK columns are placed in
DataLink_Reconcile_Pending (DRP) state. Tables with a
defined DATALINK column must have the RECOVERY YES
option specified.

RestoreType
Input. Specifies the type of restore. Valid values (defined in sqlutil)
are:

SQLUD_FULL
Restore everything from the backup image. This will be run
offline.

SQLUD_ONLINE_TABLESPACE
Restore only the table space level backups. This will be run
online.

SQLUD_HISTORY
Restore only the recovery history file.

RestoreMode
Input. Specifies whether the restore is to be performed offline or
online. Valid values (defined in sqlutil) are:

SQLUD_OFFLINE
Perform an offline restore operation.

SQLUD_ONLINE
Perform an online restore operation.

sqlurestore - Restore Database

Chapter 1. Application Programming Interfaces 385

CallerAction
Input. Specifies the type of action to be taken. Valid values (defined in
sqlutil) are:

SQLUD_RESTORE
Start the restore.

SQLUD_NOINTERRUPT
Start the restore. Specifies that the restore will run unattended,
and that scenarios which normally require user intervention
will either be attempted without first returning to the caller, or
will generate an error. Use this caller action, for example,
when all of the media required for the restore are known to
have been mounted, and utility prompts are not desired.

SQLUD_CONTINUE
Continue the restore after the user has performed some action
requested by the utility (mount a new tape, for example).

SQLUD_TERMINATE
Terminate the restore after the user has failed to perform some
action requested by the utility.

SQLUD_DEVICE_TERMINATE
Remove a particular device from the list of devices used by
the restore utility. When a particular device has exhausted its
input, restore will return a warning to the caller. Call restore
again with this caller action, and the device which generated
the warning will be removed from the list of devices being
used.

SQLUD_PARM_CHECK
Validate parameters without performing the restore.

SQLUD_RESTORE_STORDEF
Initial call. Table space container redefinition requested.

CallerAction must be set to SQLUD_RESTORE, SQLUD_NOINTERRUPT,
SQLUD_RESTORE_STORDEF, or SQLUD_PARM_CHECK on the first call.

pApplicationId
Output. Supply a buffer of length SQLU_APPLID_LEN+1 (defined in
sqlutil). Restore will return a string identifying the agent servicing
the application. Can be used with the database system monitor APIs
to monitor some aspects of the application.

pTimestamp
Input. A string representing the time stamp of the backup image. This
field is optional if there is only one backup image in the source
specified.

sqlurestore - Restore Database

386 Administrative API Reference

pTargetPath
Input. A string containing the relative or fully qualified name of the
target database directory. Used if a new database is to be created for
the restored backup.

NumBuffers
Input. The number of buffers to be used for the restore.

pReportFile
The file name, if specified, must be fully qualified. The files which
become unlinked during restore (as a result of a fast reconcile) will be
reported.

pTablespaceList
Specifies one or more table spaces to be restored. Used when restoring
a subset of the backup image or a table space from a table space
backup image.

The following restrictions apply:
v The database must be recoverable; that is, log retain or user exits

must be enabled.
v The database being restored to must be the same database that was

used to create the backup image. That is, table spaces can not be
added to a database through the table space restore function.

v This function is not available when restoring from a user exit on
OS/2.

v The rollforward utility will ensure that table spaces restored in an
MPP environment are synchronized with any other node containing
the same table spaces.

Note: When restoring a table space that has been renamed since it
was backed up, the new table space name must be used in the
restore command. If the old table space name is used, it will
not be found.

pMediaSourceList
Input. Source media for the backup image. See structure
“SQLU-MEDIA-LIST” on page 518. The information the caller needs to
provide in this structure is dependent upon the value of the
media_type field. Valid values for this field (defined in sqlutil) are:

SQLU_LOCAL_MEDIA
Local devices (a combination of tapes, disks, or diskettes).
Provide a list of sqlu_media_entry structures. On OS/2 or the
Windows operating system, the entries can be directory paths
only, not tape device names.

sqlurestore - Restore Database

Chapter 1. Application Programming Interfaces 387

SQLU_TSM_MEDIA
TSM. No additional input is required, and the TSM shared
library provided with DB2 is used. If a different version of
TSM is desired, use SQLU_OTHER_MEDIA and provide the shared
library name.

SQLU_OTHER_MEDIA
Vendor product. Provide the shared library name in an
sqlu_vendor structure.

SQLU_USER_EXIT
User exit. No additional input is required (available on OS/2
only).

For more information, see the Administration Guide.

pUserName
Input. A string containing the user name to be used for a connection.

pPassword
Input. A string containing the password to be used with the user
name for a connection.

pReserved2
Reserved for future use.

VendorOptionsSize
Input. The length of the vendor options field which cannot exceed
65535 bytes.

pVendorOptions
Input. To be used by the vendor to pass information from the
application to the vendor functions. This data structure must be flat;
that is, no level of indirection is supported. Note that byte-reversal is
not done, and the code page for this data is not checked.

Parallelism
Input. Degree of intra-partition parallelism (number of buffer
manipulators).

RestoreInfoSize
Reserved for future use.

pRestoreInfo
Reserved for future use.

ContainerPageListSize
Reserved for future use.

pContainerPageList
Reserved for future use.

sqlurestore - Restore Database

388 Administrative API Reference

pReserved3
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax

REXX API Parameters

source-database-alias
Alias of the source database from which the database backup image
was taken.

value A compound REXX host variable to which the database restore
information is returned. In the following, XXX represents the host
variable name:

XXX.0 Number of elements in the variable (always 1)

XXX.1 An application ID that identifies the agent that serves
the application.

username
Identifies the user name to be used for connection.

password
The password used to authenticate the user name.

tablespacenames
A compound REXX host variable containing a list of table spaces to be
restored. In the following, XXX is the name of the host variable:

XXX.0 Number of table spaces to be restored

XXX.1 First table space name

XXX.2 Second table space name

XXX.3 and so on.

HISTORY FILE
Specifies to restore the history file from the backup.

RESTORE DATABASE source-database-alias [USING :value] [USER username USING password]
[TABLESPACE :tablespacenames] [ONLINE | HISTORY FILE]
[LOAD shared-library [OPTIONS vendor-options] [OPEN num-sessions SESSIONS] |
FROM :source-area | USE TSM [OPEN num-sessions SESSIONS] | USER_EXIT]
[TAKEN AT timestamp] [TO target-directory] [INTO target-database-alias]
[ACTION caller-action] [WITH num-buffers BUFFERS] [BUFFERSIZE buffer-size]
[WITHOUT ROLLING FORWARD] [PARALLELISM parallelism-degree]

sqlurestore - Restore Database

Chapter 1. Application Programming Interfaces 389

shared-library
The name of the shared library (DLL on OS/2 or the Windows
operating system) containing the vendor restore I/O functions to be
used. It may contain the full path. If the full path is not given,
defaults to the path on which the user exit program resides.

vendor-options
Information required by the vendor functions.

num-sessions
The number of I/O sessions to be used with TSM or the vendor
product.

source-area
A compound REXX host variable that indicates on which directory or
device the backup image resides. The default value is the current
directory. On OS/2 or the Windows operating system, the entries can
be directory paths only, not tape device names.

timestamp
The time stamp of the database backup.

target-directory
The directory of the target database.

target-database-alias
Alias of the target database. If the target database does not exist, it
will be created.

caller-action
Specifies action to be taken. Valid values are:

SQLUD_RESTORE
Start the restore.

SQLUD_NOINTERRUPT
Start the restore. Specifies that the restore will run unattended,
and that scenarios which normally require user intervention
will either be attempted without first returning to the caller, or
will generate an error. Use this caller action, for example,
when all of the media required for the restore are known to
have been mounted, and utility prompts are not desired.

SQLUD_CONTINUE
Continue the restore after the user has performed some action
requested by the utility (mount a new tape, for example).

SQLUD_TERMINATE
Terminate the restore after the user has failed to perform some
action requested by the utility.

sqlurestore - Restore Database

390 Administrative API Reference

SQLUD_DEVICE_TERMINATE
Remove a particular device from the list of devices used by
the restore utility. When a particular device has exhausted its
input, restore will return a warning to the caller. Call restore
again with this caller action, and the device which generated
the warning will be removed from the list of devices being
used.

SQLUD_PARM_CHECK
Validate parameters without performing the restore.

SQLUD_RESTORE_STORDEF
Initial call. Table space container redefinition requested.

num-buffers
Number of backup buffers to be used.

buffer-size
Backup buffer size in allocation units of 4KB. Minimum is 16 units.

parallelism-degree
Number of buffer manipulators.

Sample Programs

C \sqllib\samples\c\backrest.c

COBOL \sqllib\samples\cobol\backrest.cbl

Usage Notes
For offline restore, this utility connects to the database in exclusive mode. The
utility fails if any application, including the calling application, is already
connected to the database that is being restored. In addition, the request will
fail if the operating system restore utility is being used to perform the restore,
and any application, including the calling application, is already connected to
any database on the same workstation. If the connect is successful, the API
locks out other applications until the restore is completed.

The current database configuration file will not be replaced by the backup
copy unless it is unusable. If the file is replaced, a warning message is
returned.

The database or table space must have been backed up using “sqlubkp -
Backup Database” on page 290.

If the caller action is SQLUD_NOINTERRUPT, the restore continues without
prompting the application. If the caller action is SQLUD_RESTORE, and the utility
is restoring to an existing database, the utility returns control to the
application with a message requesting some user interaction. After handling
the user interaction, the application calls RESTORE DATABASE again, with

sqlurestore - Restore Database

Chapter 1. Application Programming Interfaces 391

the caller action set to indicate whether processing is to continue
(SQLUD_CONTINUE) or terminate (SQLUD_TERMINATE) on the subsequent call. The
utility finishes processing, and returns an SQLCODE in the sqlca.

To close a device when finished, set the caller action to
SQLUD_DEVICE_TERMINATE. If, for example, a user is restoring from 3 tape
volumes using 2 tape devices, and one of the tapes has been restored, the
application obtains control from the API with an SQLCODE indicating end of
tape. The application can prompt the user to mount another tape, and if the
user indicates ″no more″, return to the API with caller action
SQLUD_DEVICE_TERMINATE to signal end of the media device. The device driver
will be terminated, but the rest of the devices involved in the restore will
continue to have their input processed until all segments of the restore set
have been restored (the number of segments in the restore set is placed on the
last media device during the backup process). This caller action can be used
with devices other than tape (vendor supported devices).

To perform a parameter check before returning to the application, set caller
action to SQLUD_PARM_CHECK.

Set caller action to SQLUD_RESTORE_STORDEF when performing a redirected
restore; used in conjunction with “sqlbstsc - Set Tablespace Containers” on
page 124. For more information, see the Administration Guide.

If an error occurs, the utility terminates and returns the error in the sqlca
structure.

If a system failure occurs during a critical stage of restoring a database, the
user will not be able to successfully connect to the database until a successful
restore is performed. This condition will be detected when the connection is
attempted, and an error message is returned. If the backed-up database is not
configured for roll-forward recovery, and there is a usable current
configuration file with either of these parameters enabled, following the
restore, the user will be required to either take a new backup of the database,
or disable the log retain and user exit parameters before connecting to the
database.

Although the restored database will not be dropped (unless restoring to a
nonexistent database), if the restore fails, it will not be usable.

If the restore type specifies that the recovery history file on the backup is to
be restored, it will be restored over the existing recovery history file for the
database, effectively erasing any changes made to the history file after the
backup that is being restored. If this is undesirable, restore the history file to a
new or test database so that its contents can be viewed without destroying
any updates that have taken place.

sqlurestore - Restore Database

392 Administrative API Reference

If, at the time of the backup operation, the database was enabled for roll
forward recovery, the database can be brought to the state it was in prior to
the occurrence of the damage or corruption by issuing sqluroll after
successful execution of sqlurestore. If the database is recoverable, it will
default to roll forward pending state after the completion of the restore.

If the database backup image is taken offline, and the caller does not want to
roll forward the database after the restore, the RollforwardMode parameter can
be set to SQLUD_NOROLLFWD. This results in the database being useable
immediately after the restore. If the backup image is taken online, the caller
must roll forward through the corresponding log records at the completion of
the restore.

See Also
“sqlbstsc - Set Tablespace Containers” on page 124

“sqlemgdb - Migrate Database” on page 221

“sqlfxdb - Get Database Configuration” on page 275

“sqlubkp - Backup Database” on page 290

“sqluroll - Rollforward Database” on page 397.

sqlurestore - Restore Database

Chapter 1. Application Programming Interfaces 393

sqlurlog - Asynchronous Read Log
Provides the caller with the ability to extract certain log records from the DB2
Common Server database logs, and to query the Log Manager for current log
state information. This API can only be used on databases with recoverable
database logs (the configuration parameters LOGRETAIN or USEREXIT
enabled).

Authorization
One of the following:
v sysadm

v dbadm

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

API Parameters

CallerAction
Input. Specifies the action to be performed.

SQLU_RLOG_READ
Read the database log from the starting log sequence to the
ending log sequence number and return all propagatable log
records within this range.

SQLU_RLOG_READ_SINGLE
Read a single log record (propagatable or not) identified by
the starting log sequence number.

SQLU_RLOG_QUERY
Query the database log. Results of the query will be sent back

/* File: sqlutil.h */
/* API: Asynchronous Read Log */
/* ... */
SQL_API_RC SQL_API_FN

sqlurlog (
sqluint32 CallerAction,
SQLU_LSN * pStartLsn,
SQLU_LSN * pEndLsn,
char * pLogBuffer,
sqluint32 LogBufferSize,
SQLU_RLOG_INFO * pReadLogInfo,
struct sqlca * pSqlca);

/* ... */

sqlurlog - Asynchronous Read Log

394 Administrative API Reference

via the SQLU_RLOG_INFO structure (see
“SQLU-RLOG-INFO” on page 522).

pStartLsn
Input. The starting log sequence number specifies the starting relative
byte address for the reading of the log. This value must be the start of
an actual log record.

pEndLsn
Input. The ending log sequence number specifies the ending relative
byte address for the reading of the log. This value must be greater
than startLsn, and does not need to be the end of an actual log record.

pLogBuffer
Output. The buffer where all the propagatable log records read within
the specified range are stored sequentially. This buffer must be large
enough to hold a single log record. As a guideline, this buffer should
be a minimum of 32 bytes. Its maximum size is dependent on the size
of the requested range. Each log record in the buffer is prefixed by a
six byte log sequence number (LSN), representing the LSN of the
following log record.

LogBufferSize
Output. Specifies the size, in bytes, of the log buffer.

pReadLogInfo
Output. A structure detailing information regarding the call and the
database log. For more information about this structure, see
“SQLU-RLOG-INFO” on page 522.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

Sample Programs

C \sqllib\samples\c\asynrlog.sqc

Usage Notes
If the requested action is to read the log, the caller will provide a log sequence
number range and a buffer to hold the log records. The ASYNCHRONOUS
READ LOG API reads the log sequentially, bounded by the requested LSN
range, and returns log records associated with tables having the DATA
CAPTURE option CHANGES, and an SQLU_RLOG_INFO structure with the
current active log information. If the requested action is query, the API returns
an SQLU_RLOG_INFO structure with the current active log information.

To use the Asynchronous Log Reader, first query the database log for a valid
starting LSN. Following the query call, the read log information structure
(SQLU-RLOG-INFO) will contain a valid starting LSN (in the initialLSN

sqlurlog - Asynchronous Read Log

Chapter 1. Application Programming Interfaces 395

member), to be used on a read call. The end of the current active log will be
in the curActiveLSN member of the read log information structure. The value
used as the ending LSN on a read can be one of the following:
v The value of the curActiveLSN
v A value greater than initialLSN
v FFFF FFFF FFFF which is interpreted by the asynchronous log reader as the

end of the current log.

For more information about the read log information structure, see
“SQLU-RLOG-INFO” on page 522.

The propagatable log records read within the starting and ending LSN range
are returned in the log buffer. A log record does not contain its LSN, it is
contained in the buffer before the actual log record. Descriptions of the
various DB2 Common Server log records returned by sqlurlog can be found
in “Appendix F. DB2 Common Server Log Records” on page 603.

After the initial read, in order to read the next sequential log record, add 1 to
the last read LSN returned in SQLU-RLOG-INFO. Resubmit the call, with this
new starting LSN and a valid ending LSN. The next block of records is then
read. An sqlca code of SQLU_RLOG_READ_TO_CURRENT means the log
reader has read to the end of the current active log.

sqlurlog - Asynchronous Read Log

396 Administrative API Reference

sqluroll - Rollforward Database
Recovers a database by applying transactions recorded in the database log
files. Called after a database or a table space backup has been restored, or if
any table spaces have been taken offline by the database due to a media error.
The database must be recoverable (that is, either logretain, userexit, or both of
these database configuration parameters must be set on) before the database
can be recovered with roll-forward recovery.

Scope
In a multi-node environment, this API can only be called from the catalog
node. A database or table space rollforward call specifying a point-in-time
affects all nodes that are listed in the db2nodes.cfg file. A database or table
space rollforward call specifying end of logs affects the nodes that are
specified. If no nodes are specified, it affects all nodes that are listed in the
db2nodes.cfg file; if no roll forward is needed on a particular node, that node
is ignored.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

Required Connection
None. This API establishes a database connection.

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */
/* API: Rollforward Database */
/* ... */
SQL_API_RC SQL_API_FN

sqluroll (
struct rfwd_input * pRfwdInput,
struct rfwd_output * pRfwdOuput,
struct sqlca * pSqlca);

/* ... */

sqluroll - Rollforward Database

Chapter 1. Application Programming Interfaces 397

Generic API Syntax

API Parameters

pRfwdInput
Input. A pointer to the rfwd_input structure. For more information
about this structure, see “RFWD-INPUT” on page 427.

pRfwdOutput
Output. A pointer to the rfwd_output structure. For more information
about this structure, see “RFWD-OUTPUT” on page 430.

/* File: sqlutil.h */
/* API: Rollforward Database */
/* ... */
SQL_API_RC SQL_API_RN

sqlgroll (
struct grfwd_input * grfwdin,
struct rfwd_output * rfwdout,
struct sqlca * sqlca);

SQL_STRUCTURE grfwd_input
{

unsigned short DbAliasLen,
unsigned short StopTimeLen,
unsigned short UserNameLen,
unsigned short PasswordLen,
unsigned short OverflowLogPathLen,
unsigned short ReportFileLen, /* NOTE: This parameter is no longer used */

/* for the DB2 Data Links Manager. */
sqluint32 Version,
char * pDbAlias,
unsigned short CallerAction,
char * pStopTime,
char * pUserName,
char * pPassword,
char * pOverflowLogPath,
unsigned short NumChngLgOvrflw,
struct sqlurf_newlogpath * pChngLogOvrflw,
unsigned short ConnectMode,
struct sqlu_tablespace_bkrst_list * pTablespaceList,
short AllNodeFlag,
short NumNodes,
SQL_PDB_NODE_TYPE * pNodeList,
short NumNodeInfo,
unsigned short DlMode, /* NOTE: This parameter is no longer used */

/* for the DB2 Data Links Manager. */
char * pReportFile, /* NOTE: This parameter is no longer used */

/* for the DB2 Data Links Manager. */
char * pDroppedTblID,
char * pExportDir

}
/* ... */

sqluroll - Rollforward Database

398 Administrative API Reference

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of
the database alias.

StopTimeLen
Input. A 2-byte unsigned integer representing the length in bytes of
the stop time parameter. Set to zero if no stop time is provided.

UserNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the user name. Set to zero if no user name is provided.

PasswordLen
Input. A 2-byte unsigned integer representing the length in bytes of
the password. Set to zero if no password is provided.

OverflowLogPathLen
Input. A 2-byte unsigned integer representing the length in bytes of
the overflow log path. Set to zero if no overflow log path is provided.

ReportFileLen
Input. This parameter is not currently used, and should be set to zero.

Version
Input. The version ID of the rollforward parameters. It is defined as
SQLUM_RFWD_VERSION.

pDbAlias
Input. A string containing the database alias. This is the alias that is
cataloged in the system database directory.

CallerAction
Input. Specifies action to be taken. Valid values (defined in sqlutil)
are:

SQLUM_ROLLFWD
Rollforward to the point in time specified by pPointInTime. For
database rollforward, the database is left in rollforward-pending
state. For table space rollforward to a point in time, the table
spaces are left in rollforward-in-progress state.

SQLUM_STOP
End roll-forward recovery. No new log records are processed
and uncommitted transactions are backed out. The
rollforward-pending state of the database or table spaces is
turned off. Synonym is SQLUM_COMPLETE.

SQLUM_ROLLFWD_STOP
Rollforward to the point in time specified by pPointInTime,
and end roll-forward recovery. The rollforward-pending state of

sqluroll - Rollforward Database

Chapter 1. Application Programming Interfaces 399

the database or table spaces is turned off. Synonym is
SQLUM_ROLLFWD_COMPLETE.

SQLUM_QUERY
Query values for pNextArcFileName, pFirstDelArcFileName,
pLastDelArcFileName, and pLastCommitTime. Return database
status and a node number.

SQLUM_PARM_CHECK
Validate parameters without performing the roll forward.

SQLUM_CANCEL
Cancel the rollforward operation that is currently running.
The database or table space are put in recovery pending state.

Note: This option cannot be used while the rollforward is
actually running. It can be used if the rollforward is
paused (that is, waiting for a STOP), or if a system
failure occurred during the rollforward. It should be
used with caution.

Rolling databases forward may require a load recovery using tape
devices. The rollforward API will return with a warning message if
user intervention on a device is required. The API can be called again
with one of the following three caller actions:

SQLUM_LOADREC_CONTINUE
Continue using the device that generated the warning
message (for example, when a new tape has been mounted).

SQLUM_LOADREC_DEVICE_TERMINATE
Stop using the device that generated the warning message (for
example, when there are no more tapes).

SQLUM_LOADREC_TERMINATE
Terminate all devices being used by load recovery.

pStopTime
Input. A character string containing a time stamp in ISO format.
Database recovery will stop when this time stamp is exceeded. Specify
SQLUM_INFINITY_TIMESTAMP to roll forward as far as possible.
May be NULL for SQLUM_QUERY, SQLUM_PARM_CHECK, and any of the load
recovery (SQLUM_LOADREC_xxx) caller actions.

pUserName
Input. A string containing the user name of the application. May be
NULL.

sqluroll - Rollforward Database

400 Administrative API Reference

pPassword
Input. A string containing the password of the supplied user name (if
any). May be NULL.

pOverflowLogPath
Input. This parameter is used to specify an alternate log path to be
used. In addition to the active log files, archived log files need to be
moved (by the user) into the logpath (see “sqlfxdb - Get Database
Configuration” on page 275) before they can be used by this utility.
This can be a problem if the user does not have sufficient space in the
logpath. The overflow log path is provided for this reason. During
roll-forward recovery, the required log files are searched, first in the
logpath, and then in the overflow log path. The log files needed for
table space roll-forward recovery can be brought into either the logpath
or the overflow log path. If the caller does not specify an overflow log
path, the default value is the logpath. In a multi-node environment, the
overflow log path must be a valid, fully qualified path; the default
path is the default overflow log path for each node. In a single-node
environment, the overflow log path can be relative if the server is
local.

NumChngLgOvrflw
MPP only. The number of changed overflow log paths. These new log
paths override the default overflow log path for the specified node
only.

pChngLogOvrflw
MPP only. A pointer to a structure containing the fully qualified
names of changed overflow log paths. These new log paths override
the default overflow log path for the specified node only.

ConnectMode
Input. Valid values (defined in sqlutil) are:

SQLUM_OFFLINE
Offline roll forward. This value must be specified for database
roll-forward recovery.

SQLUM_ONLINE
Online roll forward.

pTablespaceList
Input. A pointer to a structure containing the names of the table
spaces to be rolled forward to the end-of-logs or to a specific point in
time. If not specified, the table spaces needing rollforward will be
selected.

AllNodeFlag
MPP only. Input. Indicates whether the rollforward operation is to be
applied to all nodes defined in db2nodes.cfg. Valid values are:

sqluroll - Rollforward Database

Chapter 1. Application Programming Interfaces 401

SQLURF_NODE_LIST
Apply to nodes in a node list that is passed in pNodeList.

SQLURF_ALL_NODES
Apply to all nodes. pNodeList should be NULL. This is the
default value.

SQLURF_ALL_EXCEPT
Apply to all nodes except those in a node list that is passed in
pNodeList.

SQLURF_CAT_NODE_ONLY
Apply to the catalog node only. pNodeList should be NULL.

NumNodes
Input. Specifies the number of nodes in the pNodeList array.

pNodeList
Input. A pointer to an array of node numbers on which to perform the
roll-forward recovery.

NumNodeInfo
Input. Defines the size of the output parameter pNodeInfo, which must
be large enough to hold status information from each node that is
being rolled forward. In a single-node environment, this parameter
should be set to 1. The value of this parameter should be same as the
number of nodes for which this API is being called.

DlMode
Input. This parameter is not currently used, and should be set to zero.

pReportFile
Input. This parameter is not currently used, and should be set to
NULL.

pDroppedTblID
Input. A string containing the ID of the dropped table whose recovery
is being attempted.

pExportDir
Input. The directory into which the dropped table data will be
exported.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

sqluroll - Rollforward Database

402 Administrative API Reference

REXX API Syntax

REXX API Parameters

database-alias
Alias of the database to be rolled forward.

value A compound REXX host variable containing the output values. In the
following, XXX represents the host variable name:

XXX.0 Number of elements in the variable

XXX.1 The application ID

XXX.2 Number of replies received from nodes

XXX.2.1.1 First node number

XXX.2.1.2 First state information

XXX.2.1.3 First next archive file needed

XXX.2.1.4 First first archive file to be deleted

XXX.2.1.5 First last archive file to be deleted

XXX.2.1.6 First last commit time

XXX.2.2.1 Second node number

XXX.2.2.2 Second state information

XXX.2.2.3 Second next archive file needed

XXX.2.2.4 Second first archive file to be deleted

XXX.2.2.5 Second last archive file to be deleted

XXX.2.2.6 Second last commit time

XXX.2.3.x and so on.

ROLLFORWARD DATABASE database-alias [USING :value] [USER username USING password]
[rollforward_action_clause | load_recovery_action_clause]
where rollforward_action_clause stands for:

{ TO point-in-time [AND STOP] |
{

[TO END OF LOGS [AND STOP] | STOP | CANCEL | QUERY STATUS | PARM CHECK }
[ON {:nodelist | ALL NODES [EXCEPT :nodelist]}]

}
}
[TABLESPACE {ONLINE |:tablespacenames [ONLINE]}]
[OVERFLOW LOG PATH default-log-path [:logpaths]]

and load_recovery_action_clause stands for:
LOAD RECOVERY { CONTINUE | DEVICE_TERMINATE | TERMINATE }

sqluroll - Rollforward Database

Chapter 1. Application Programming Interfaces 403

username
Identifies the user name under which the database is to be rolled
forward.

password
The password used to authenticate the user name.

point-in-time
A time stamp in ISO format, yyyy-mm-dd-hh.mm.ss.nnnnnn (year,
month, day, hour, minutes,seconds, microseconds), expressed in
Coordinated Universal Time (UTC).

tablespacenames
A compound REXX host variable containing a list of table spaces to be
rolled forward. In the following, XXX is the name of the host variable:

XXX.0 Number of table spaces to be rolled forward

XXX.1 First table space name

XXX.2 Second table space name

XXX.x and so on.

default-log-path
The default overflow log path to be searched for archived logs during
recovery

logpaths
A compound REXX host variable containing a list of alternate log
paths to be searched for archived logs during recovery. In the
following, XXX is the name of the host variable:

XXX.0 Number of changed overflow log paths

XXX.1.1 First node

XXX.1.2 First overflow log path

XXX.2.1 Second node

XXX.2.2 Second overflow log path

XXX.3.1 Third node

XXX.3.2 Third overflow log path

XXX.x.1 and so on.

nodelist
A compound REXX host variable containing a list of nodes. In the
following, XXX is the name of the host variable:

XXX.0 Number of nodes

XXX.1 First node

sqluroll - Rollforward Database

404 Administrative API Reference

XXX.2 Second node

XXX.x and so on.

Sample Programs

C \sqllib\samples\c\backrest.c

COBOL \sqllib\samples\cobol\backrest.cbl

Usage Notes
The database manager uses the information stored in the archived and the
active log files to reconstruct the transactions performed on the database since
its last backup.

The action performed when this API is called depends on the
rollforward_pending flag of the database prior to the call. This can be queried
using “sqlfxdb - Get Database Configuration” on page 275. The
rollforward_pending flag is set to DATABASE if the database is in roll-forward
pending state. It is set to TABLESPACE if one or more table spaces are in
SQLB_ROLLFORWARD_PENDING or SQLB_ROLLFORWARD_IN_PROGRESS state. The
rollforward_pending flag is set to NO if neither the database nor any of the table
spaces needs to be rolled forward.

If the database is in roll-forward pending state when this API is called, the
database will be rolled forward. Table spaces are returned to normal state
after a successful database roll-forward, unless an abnormal state causes one
or more table spaces to go offline. If the rollforward_pending flag is set to
TABLESPACE, only those table spaces that are in roll-forward pending state, or
those table spaces requested by name, will be rolled forward.

Note: If table space rollforward terminates abnormally, table spaces that were
being rolled forward will be put in SQLB_ROLLFORWARD_IN_PROGRESS
state. In the next invocation of ROLLFORWARD DATABASE, only
those table spaces in SQLB_ROLLFORWARD_IN_PROGRESS state will be
processed. If the set of selected table space names does not include all
table spaces that are in SQLB_ROLLFORWARD_IN_PROGRESS state, the table
spaces that are not required will be put into SQLB_RESTORE_PENDING
state.

If the database is not in roll-forward pending state and no point in time is
specified, any table spaces that are in rollforward-in-progress state will be
rolled forward to the end of logs. If no table spaces are in
rollforward-in-progress state, any table spaces that are in rollforward pending
state will be rolled forward to the end of logs.

sqluroll - Rollforward Database

Chapter 1. Application Programming Interfaces 405

This API reads the log files, beginning with the log file that is matched with
the backup image. The name of this log file can be determined by calling this
API with a caller action of SQLUM_QUERY before rolling forward any log files.

The transactions contained in the log files are reapplied to the database. The
log is processed as far forward in time as information is available, or until the
time specified by the stop time parameter.

Recovery stops when any one of the following events occurs:
v No more log files are found
v A time stamp in the log file exceeds the completion time stamp specified by

the stop time parameter
v An error occurs while reading the log file.

Some transactions might not be recovered. The value returned in
pLastCommitTime indicates the time stamp of the last committed transaction
that was applied to the database.

If the need for database recovery was caused by application or human error,
the user may want to provide a time stamp value in pStopTime, indicating that
recovery should be stopped before the time of the error. This applies only to
full database roll-forward recovery, and to table space rollforward to a point
in time. It also permits recovery to be stopped before a log read error occurs,
determined during an earlier failed attempt to recover.

When the rollforward_recovery flag is set to DATABASE, the database is not
available for use until roll-forward recovery is terminated. Termination is
accomplished by calling the API with a caller action of SQLUM_STOP or
SQLUM_ROLLFORWARD_STOP to bring the database out of roll-forward pending
state. If the rollforward_recovery flag is TABLESPACE, the database is available for
use. However, the table spaces in SQLB_ROLLFORWARD_PENDING and
SQLB_ROLLFORWARD_IN_PROGRESS states will not be available until the API is
called to perform table space roll-forward recovery. If rolling forward table
spaces to a point in time, the table spaces are placed in backup pending state
after a successful rollforward.

Rolling databases forward may involve prerequisites and restrictions that are
beyond the scope of this manual. For more detailed information, see the
Administration Guide.

See Also
“sqluload - Load” on page 345

“sqlurestore - Restore Database” on page 381.

sqluroll - Rollforward Database

406 Administrative API Reference

sqlustat - Runstats
Updates statistics about the characteristics of a table and any associated
indexes. These characteristics include, among many others, number of records,
number of pages, and average record length. The optimizer uses these
statistics when determining access paths to the data.

This utility should be called when a table has had many updates, after
reorganizing a table, or after creating a new index.

Statistics are collected based on the table partition that is resident on the node
where the API executes. Global table statistics are derived by multiplying the
values obtained at a node by the number of nodes on which the table is
completely stored. The global statistics are stored in the catalog tables.

The node from which the API is called does not have to contain a partition for
the table:
v If the API is called from a node that contains a partition for the table, the

utility executes at this node.
v If the API is called from a node that does not contain a table partition, the

request is sent to the first node in the nodegroup that holds a partition for
the table. The utility then executes at this node.

Scope
This API can be called from any node in the db2nodes.cfg file. It can be used
to update the catalogs on the catalog node.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

v CONTROL privilege on the table.

Required Connection
Database

API Include File
sqlutil.h

sqlustat - Runstats

Chapter 1. Application Programming Interfaces 407

C API Syntax

Generic API Syntax

API Parameters

TableNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the table name.

NumIndexes
Input. The number of indexes specified in this call. This value is used
with the StatsOption parameter. Valid values are:

0 All the indexes are to be calculated.

n The number of indexes contained in the index list. The names
of the indexes to be calculated are specified in ppIndexList.

StatsOption
Input. Statistical option, indicating which calculations are to be
performed. Valid values (defined in sqlutil) are:

SQL_STATS_TABLE
Table only.

/* File: sqlutil.h */
/* API: Run Statistics */
/* ... */
SQL_API_RC SQL_API_FN

sqlustat (
_SQLOLDCHAR * pTableName,
unsigned short NumIndexes,
_SQLOLDCHAR ** ppIndexList,
unsigned char StatsOption,
unsigned char ShareLevel,
struct sqlca * pSqlca);

/* ... */

/* File: sqlutil.h */
/* API: Run Statistics */
/* ... */
SQL_API_RC SQL_API_FN

sqlgstat (
unsigned short TableNameLen,
unsigned short NumIndexes,
unsigned char StatsOption,
unsigned char ShareLevel,
unsigned short * pIndexLens,
struct sqlca * pSqlca,
_SQLOLDCHAR ** ppIndexList,
_SQLOLDCHAR * pTableName);

/* ... */

sqlustat - Runstats

408 Administrative API Reference

SQL_STATS_EXTTABLE_ONLY
Table with extended (distribution) statistics.

SQL_STATS_BOTH
Both table and indexes.

SQL_STATS_EXTTTABLE_INDEX
Both table (with distribution statistics) and basic indexes.

SQL_STATS_INDEX
Indexes only.

SQL_STATS_EXTINDEX_ONLY
Extended statistics for indexes only.

SQL_STATS_EXTINDEX_TABLE
Extended statistics for indexes and basic table statistics.

SQL_STATS_ALL
Extended statistics for indexes and table statistics with
distribution statistics.

ShareLevel
Input. Specifies how the statistics are to be gathered with respect to
other users. Valid values (defined in sqlutil) are:

SQL_STATS_REF
Allows others to have read-only access while the statistics are
being gathered.

SQL_STATS_CHG
Allows others to have read and write access while the
statistics are being gathered.

pIndexLens
Input. An array of 2-byte unsigned integers representing the length in
bytes of each of the index names in the index list.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

ppIndexList
Input. An array of strings. Each string contains one fully qualified
index name.

pTableName
Input. The table on which to update statistics. Can be an alias, except
in the case of down-level servers, when the fully qualified table name
must be used.

For row types, pTableName must be the name of the hierarchy’s root
table.

sqlustat - Runstats

Chapter 1. Application Programming Interfaces 409

REXX API Syntax

REXX API Parameters

tname The fully qualified name of the table on which statistics are to be
gathered.

statsopt
A host variable containing a statistical option, indicating which
calculations are to be performed. Valid values are:

T Indicates that basic statistics are to be updated for the
specified table only. This is the default

D Indicates that extended (distribution) statistics are to be
updated for the specified table

B Indicates that basic statistics are to be updated for both the
specified table and the specified indexes

E Indicates that extended statistics are to be updated for the
specified table, and that basic statistics are to be updated for
the indexes

I Indicates that basic statistics are to be updated for the
specified indexes only

X Indicates that extended statistics are to be updated for the
specified indexes only

Y Indicates that basic statistics are to be updated for the
specified table, and that extended statistics are to be updated
for the indexes

A Indicates that extended statistics are to be updated for both
the specified table and the specified indexes.

value A compound REXX host variable containing the names of the indexes
for which statistics are to be generated. In the following, XXX
represents the host variable name:

XXX.0 The number of indexes specified in this call

XXX.1 First fully qualified index name

XXX.2 Second fully qualified index name

XXX.3 and so on.

RUNSTATS ON TABLE tname
[WITH :statsopt INDEXES {ALL | USING :value}]
[SHRLEVEL {REFERENCE|CHANGE}]

sqlustat - Runstats

410 Administrative API Reference

REFERENCE
Other users can have read-only access while updates are being made.

CHANGE
Other users can have read or write access while updates are being
made. This is the default.

Sample Programs

C \sqllib\samples\c\dbstat.sqc

COBOL \sqllib\samples\cobol\dbstat.sqb

Usage Notes
This API is not supported for declared temporary tables.

Use RUNSTATS to update statistics:
v On tables that have been modified many times (for example, if a large

number of updates have been made, or if a significant amount of data has
been inserted or deleted)

v On tables that have been reorganized
v When a new index has been created.

After statistics have been updated, new access paths to the table can be
created by rebinding the packages using “sqlabndx - Bind” on page 85.

If index statistics are requested, and statistics have never been run on the
table containing the index, statistics on both the table and indexes are
calculated.

After calling this API, the application should issue a COMMIT to release the
locks.

To allow new access plans to be generated, the packages that reference the
target table must be rebound after calling this API.

Statistics are collected based on the table data that is located on the database
partition where the API executes. Global table statistics for an entire
partitioned table are derived by multiplying the values obtained at a database
partition by the number of database partitions in the nodegroup over which
the table is partitioned. The global statistics are stored in the catalog tables.

The database partition from which the API is called does not have to contain
a partition for the table:
v If the API is called from a database partition that contains a partition for

the table, the utility executes at this database partition.

sqlustat - Runstats

Chapter 1. Application Programming Interfaces 411

v If the API is called from a database partition that does not contain a table
partition, the request is sent to the first database partition in the nodegroup
that holds a partition for the table. The utility then executes at this database
partition.

If inconsistencies are found when running a portion of this API (resulting
from activity on the table since the API was last called), a warning message is
returned. For example, if table distribution statistics were gathered on the first
call, and only index statistics are gathered on the second call, then if
inconsistencies are detected as a result of activity on the table, the table
distribution statistics are dropped. At this point, it is recommended to call the
API again to refresh the table distribution statistics.

See Also
“REORGCHK” in the Command Reference

“sqlfxdb - Get Database Configuration” on page 275

“sqlureot - Reorganize Table” on page 377.

sqlustat - Runstats

412 Administrative API Reference

sqluvqdp - Quiesce Tablespaces for Table
Quiesces table spaces for a table. There are three valid quiesce modes: share,
intent to update, and exclusive. There are three possible table space states
resulting from the quiesce function: QUIESCED SHARE, QUIESCED
UPDATE, and QUIESCED EXCLUSIVE.

Scope
In a single-node environment, this API quiesces all table spaces involved in a
load operation in exclusive mode for the duration of the load. In an MPP
environment, this API acts locally on a node. It quiesces only that portion of
table spaces belonging to the node on which the load is performed.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

v load

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */
/* API: Quiesce Tablespaces for Table */
/* ... */
SQL_API_RC SQL_API_FN

sqluvqdp (
char * pTableName,
sqlint32 QuiesceMode,
void * pReserved,
struct sqlca * pSqlca);

/* ... */

sqluvqdp - Quiesce Tablespaces for Table

Chapter 1. Application Programming Interfaces 413

Generic API Syntax

API Parameters

TableNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the table name.

pTableName
Input. A string containing the table name as used in the system
catalog. This may be a two-part name with the schema and the table
name separated by a period (.). If the schema is not provided, the
CURRENT SCHEMA will be used. The table cannot be a system
catalog table. This field is mandatory.

QuiesceMode
Input. Specifies the quiesce mode. Valid values (defined in sqlutil)
are:

SQLU_QUIESCEMODE_SHARE
For share mode

SQLU_QUIESCEMODE_INTENT_UPDATE
For intent to update mode

SQLU_QUIESCEMODE_EXCLUSIVE
For exclusive mode

SQLU_QUIESCEMODE_RESET
To reset the state of the table spaces to normal if either of the
following is true:
v The caller owns the quiesce
v The caller who sets the quiesce disconnects, creating a

″phantom quiesce″

SQLU_QUIESCEMODE_RESET_OWNED
To reset the state of the table spaces to normal if the caller
owns the quiesce.

/* File: sqlutil.h */
/* API: Quiesce Tablespaces for Table */
/* ... */
SQL_API_RC SQL_API_FN

sqlgvqdp (
unsigned short TableNameLen,
char * pTableName,
sqlint32 QuiesceMode,
void * pReserved,
struct sqlca * pSqlca);

/* ... */

sqluvqdp - Quiesce Tablespaces for Table

414 Administrative API Reference

This field is mandatory.

pReserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

REXX API Syntax

REXX API Parameters

table_name
Name of the table as used in the system catalog. This may be a
two-part name with the schema and the table name separated by a
period (.). If the schema is not provided, the CURRENT SCHEMA will
be used.

Sample Programs

C \sqllib\samples\c\tload.sqc

COBOL \sqllib\samples\cobol\tload.sqb

REXX \sqllib\samples\rexx\quitab.cmd

Usage Notes
This API is not supported for declared temporary tables.

When the quiesce share request is received, the transaction requests intent
share locks for the table spaces and a share lock for the table. When the
transaction obtains the locks, the state of the table spaces is changed to
QUIESCED SHARE. The state is granted to the quiescer only if there is no
conflicting state held by other users. The state of the table spaces is recorded
in the table space table, along with the authorization ID and the database
agent ID of the quiescer, so that the state is persistent.

The table cannot be changed while the table spaces for the table are in
QUIESCED SHARE state. Other share mode requests to the table and table
spaces will be allowed. When the transaction commits or rolls back, the locks
are released, but the table spaces for the table remain in QUIESCED SHARE
state until the state is explicitly reset.

When the quiesce exclusive request is made, the transaction requests super
exclusive locks on the table spaces, and a super exclusive lock on the table.
When the transaction obtains the locks, the state of the table spaces changes to

QUIESCE TABLESPACES FOR TABLE table_name
{SHARE | INTENT TO UPDATE | EXCLUSIVE | RESET}

sqluvqdp - Quiesce Tablespaces for Table

Chapter 1. Application Programming Interfaces 415

QUIESCED EXCLUSIVE. The state of the table spaces, along with the
authorization ID and the database agent ID of the quiescer, are recorded in
the table space table. Since the table spaces are held in super exclusive mode,
no other access to the table spaces is allowed. The user who invokes the
quiesce function (the quiescer), however, has exclusive access to the table and
the table spaces.

When a quiesce update request is made, the table spaces are locked in intent
exclusive (IX) mode, and the table is locked in update (U) mode. The state of
the table spaces with the quiescer is recorded in the table space table.

There is a limit of five quiescers on a table space at any given time. Since
QUIESCED EXCLUSIVE is incompatible with any other state, and QUIESCED
UPDATE is incompatible with another QUIESCED UPDATE, the five quiescer
limit, if reached, must have at least four QUIESCED SHARE and at most one
QUIESCED UPDATE.

A quiescer can upgrade the state of a table space from a less restrictive state
to a more restrictive one (for example, S to U, or U to X). If a user requests a
state lower than one that is already held, the original state is returned. States
are not downgraded.

The quiesced state of a table space must be reset explicitly by using
SQLU_QUIESCEMODE_RESET.

See Also
“sqluload - Load” on page 345.

sqluvqdp - Quiesce Tablespaces for Table

416 Administrative API Reference

Chapter 2. Additional REXX APIs

This chapter describes DB2 application programming interfaces that are only
supported in the REXX programming language.

© Copyright IBM Corp. 1993, 2000 417

Change Isolation Level
Changes the way that DB2 isolates data from other processes while a database
is being accessed.

Authorization
None

Required Connection
None

REXX API Syntax

REXX API Parameters

RR Repeatable read.

CS Cursor stability. This is the default.

UR Uncommitted read.

RS Read stability.

NC No commit.

Sample Programs

REXX \sqllib\samples\rexx\chgisl.cmd

CHANGE SQLISL TO {RR|CS|UR|RS|NC}

Change Isolation Level

418 Administrative API Reference

Chapter 3. Data Structures

This chapter describes the data structures used to access the database
manager. The following data structures are provided:

“db2HistData” on page 423
Used by the recovery history file APIs to return information from the
recovery history file

“RFWD-INPUT” on page 427
Transfers rollforward information between an application and the
database manager

“RFWD-OUTPUT” on page 430
Transfers rollforward information between an application and the
database manager

“SQL-AUTHORIZATIONS” on page 434
Returns authorizations information

“SQL-DIR-ENTRY” on page 437
Passes Database Connection Services directory information

“SQLA-FLAGINFO” on page 439
Holds flagger information

“SQLB-TBS-STATS” on page 441
Returns additional table space statistics to an application program

“SQLB-TBSCONTQRY-DATA” on page 443
Returns container data to an application program

“SQLB-TBSPQRY-DATA” on page 445
Returns table space data to an application program

“SQLCA” on page 450
Returns error information to an application

“SQLCHAR” on page 452
Transfers variable length data between an application and the
database manager

“SQLDA” on page 453
Transfers collections of data between an application and the database
manager

“SQLDCOL” on page 456
Passes column information to the IMPORT and EXPORT APIs

© Copyright IBM Corp. 1993, 2000 419

“SQLE-ADDN-OPTIONS” on page 460
Passes information to “sqleaddn - Add Node” on page 138

“SQLE-CLIENT-INFO” on page 462
Passes information to the client information APIs (see “sqleseti - Set
Client Information” on page 251 and “sqleqryi - Query Client
Information” on page 239)

“SQLE-CONN-SETTING” on page 465
Specifies connection setting types and values

“SQLE-NODE-APPC” on page 469
Passes information for cataloging APPC nodes

“SQLE-NODE-APPN” on page 470
Passes information for cataloging APPN nodes

“SQLE-NODE-CPIC” on page 471
Passes information for cataloging CPIC nodes

“SQLE-NODE-IPXSPX” on page 472
Passes information for cataloging IPX/SPX nodes

“SQLE-NODE-LOCAL” on page 473
Passes information for cataloging LOCAL nodes

“SQLE-NODE-NETB” on page 474
Passes information for cataloging NetBIOS nodes

“SQLE-NODE-NPIPE” on page 475
Passes information for cataloging named pipe nodes

“SQLE-NODE-STRUCT” on page 476
Passes information for cataloging nodes

“SQLE-NODE-TCPIP” on page 478
Passes information for cataloging TCP/IP nodes

“SQLE-REG-NWBINDERY” on page 479
Passes information for registering/deregistering the DB2 server
in/from the bindery on the NetWare file server

“SQLE-START-OPTIONS” on page 480
Holds the database manager start-up options

“SQLEDBCOUNTRYINFO” on page 484
Transfers country information between an application and the
database manager

“SQLEDBDESC” on page 485
Passes creation parameters to the CREATE DATABASE API

“SQLEDBSTOPOPT” on page 491
Holds the database manager stop options

420 Administrative API Reference

“SQLEDINFO” on page 493
Returns a copy of a single directory entry from the system or local
database directory

“SQLENINFO” on page 496
Returns a copy of a single directory entry from the node directory

“SQLFUPD” on page 499
Passes configuration file information

“SQLM-COLLECTED” on page 507
Transfers Database System Monitor collection count information
between an application and the database manager

“SQLM-RECORDING-GROUP” on page 510
Transfers Database System Monitor monitor group information
between an application and the database manager

“SQLMA” on page 512
Sends database monitor requests from an application to the database
manager

“SQLOPT” on page 515
Transfers bind parameters to the BIND API and precompile options to
the PRECOMPILE PROGRAM API

“SQLU-LSN” on page 517
Contains the definition of the log sequence number used by the
ASYNCHRONOUS READ LOG API

“SQLU-MEDIA-LIST” on page 518
Holds a list of target media (BACKUP) or source media (RESTORE)
for the backup image. Also used for the import, export and load APIs

“SQLU-RLOG-INFO” on page 522
Contains information regarding a call to the ASYNCHRONOUS
READ LOG API

“SQLU-TABLESPACE-BKRST-LIST” on page 523
Provides a list of table space names

“SQLUEXPT-OUT” on page 525
Transfers export information between an application and the database
manager

“SQLUIMPT-IN” on page 526
Transfers import information between an application and the database
manager

“SQLUIMPT-OUT” on page 527
Transfers import information between an application and the database
manager

Chapter 3. Data Structures 421

“SQLULOAD-IN” on page 529
Transfers load information between an application and the database
manager

“SQLULOAD-OUT” on page 534
Transfers load information between an application and the database
manager

“SQLUPI” on page 536
Contains partitioning information, such as the partitioning map and
the partitioning key of a table

“SQLXA-RECOVER” on page 538
Used by the transaction APIs to return a list of indoubt transactions

“SQLXA-XID” on page 540
Used by the transaction APIs to identify a transaction.

422 Administrative API Reference

db2HistData

This structure is used to return information after a call to
“db2HistoryGetEntry - Get Next Recovery History File Entry” on page 36.

Table 11. Fields in the db2HistData Structure

Field Name Data Type Description

ioHistDataID char(8) An eight-byte structure identifier and
″eye-catcher″ for storage dumps. The only
valid value is "SQLUHINF". No symbolic
definition for this strings exists.

oObjectPart db2Char The first 14 characters are a time stamp with
format yyyymmddhhnnss, indicating when the
operation was begun. The next 3 characters
are a sequence number. Each backup
operation can result in multiple entries in this
file when the backup image is saved in
multiple files or on multiple tapes. The
sequence number allows multiple locations to
be specified. Restore and load operations have
only a single entry in this file, which
corresponds to sequence number ’001’ of the
corresponding backup. The time stamp,
combined with the sequence number, must be
unique.

oEndTime db2Char A time stamp with format yyyymmddhhnnss,
indicating when the operation was completed.

oFirstLog db2Char The earliest log file ID (ranging from S0000000
to S9999999):

v Required to apply roll forward recovery for
an online backup

v Required to apply roll forward recovery for
an offline backup

v Applied after restoring a full database or
table space level backup that was current
when the load started.

oLastLog db2Char The latest log file ID (ranging from S0000000
to S9999999):

v Required to apply roll forward recovery for
an online backup

v Required to apply roll forward recovery to
the current point in time for an offline
backup

v Applied after restoring a full database or
table space level backup that was current
when the load operation finished (will be
the same as oFirstLog if roll forward
recovery is not applied).

oID db2Char Unique backup or table identifier.

oTableQualifier db2Char Table qualifier.

db2HistData

Chapter 3. Data Structures 423

Table 11. Fields in the db2HistData Structure (continued)

Field Name Data Type Description

oTableName db2Char Table name.

oLocation db2Char For backups and load copies, this field
indicates where the data has been saved. For
operations that require multiple entries in the
file, the sequence number defined by
oObjectPart identifies which part of the backup
is found in the specified location. For restore
and load operations, the location always
identifies where the first part of the data
restored or loaded (corresponding to sequence
’001’ for multi-part backups) has been saved.
The data in oLocation is interpreted differently,
depending on oDeviceType:

v For disk or diskette (D or K), a fully
qualified file name

v For tape (T), a volume label

v For TSM (A), the server name

v For user exit or other (U or O), free form
text.

oComment db2Char Free form text comment.

oCommandText db2Char Command text, or DDL.

oLastLSN SQLU_LSN Last log sequence number.

oEID Structure Unique entry identifier.

poEventSQLCA Structure Result sqlca of the recorded event. For
information about the sqlca structure, see
“SQLCA” on page 450.

poTablespace db2Char A list of table space names.

ioNumTablespaces db2Uint32 Number of entries in the poTablespace list. Each
table space backup contains one or more table
spaces. Each table space restore operation
replaces one or more table spaces. If this field
is not zero (indicating a table space level
backup or restore), the next lines in this file
contain the name of the table space backed up
or restored, represented by an 18-character
string. One table space name appears on each
line.

oOperation char Type of event: B for backup, C for copy, D for
dropped table, F for roll forward, G for
reorganize table, L for load, Q for quiesce, R for
restore, S for run statistics, T for alter table
space, and U for future use.

oObject char Granularity of the operation: D for full
database, P for table space, and T for table.

db2HistData

424 Administrative API Reference

Table 11. Fields in the db2HistData Structure (continued)

Field Name Data Type Description

oOptype char Operation type: C for alter tablespace (add
containers), E for end of log, F for offline, I for
insert (load), N for online, P for point in time,
R for alter tablespace (rebalance), S for quiesce
share, U for quiesce update, X for quiesce
exclusive, and Z for quiesce reset.

oStatus char Entry status: D for deleted (future use), E for
expired, I for inactive, N for not yet
committed, and Y for committed or active.

oDeviceType char Device type. This field determines how the
oLocation field is interpreted: A for TSM, C for
client, D for disk, K for diskette, L for local, O
for other (for other vendor device support), P
for pipe, S for server, T for tape, and U for user
exit.

Table 12. Fields in the db2Char Structure

Field Name Data Type Description

pioData char A pointer to a character data buffer. If NULL,
no data will be returned.

iLength db2Uint32 Input. The size of the pioData buffer.

oLength db2Uint32 Output. The number of valid characters of
data in the pioData buffer.

Table 13. Fields in the db2HistoryEID Structure

Field Name Data Type Description

ioNode SQL_PDB_NODE_TYPE Node number.

ioHID db2Uint32 Local history file entry ID.

db2HistData

Chapter 3. Data Structures 425

Language Syntax
C Structure

/* File: db2ApiDf.h */
/* ... */
typedef SQL_STRUCTURE db2HistoryData
{

char ioHistDataID[8];
db2Char oObjectPart;
db2Char oEndTime;
db2Char oFirstLog;
db2Char oLastLog;
db2Char oID;
db2Char oTableQualifier;
db2Char oTableName;
db2Char oLocation;
db2Char oComment;
db2Char oCommandText;
SQLU_LSN oLastLSN;
db2HistoryEID oEID;
struct sqlca * poEventSQLCA;
db2Char * poTablespace;
db2Uint32 ioNumTablespaces;
char oOperation;
char oObject;
char oOptype;
char oStatus;
char oDeviceType

} db2HistoryData;

typedef SQL_STRUCTURE db2Char
{

char * pioData;
db2Uint32 ioLength

} db2Char;

typedef SQL_STRUCTURE db2HistoryEID
{

SQL_PDB_NODE_TYPE ioNode;
db2Uint32 ioHID

} db2HistoryEID;
/* ... */

db2HistData

426 Administrative API Reference

RFWD-INPUT

This structure is used to pass information to “sqluroll - Rollforward Database”
on page 397.

Table 14. Fields in the RFWD-INPUT Structure
Field Name Data Type Description

VERSION sqluint32 Rollforward version.

PDBALIAS Pointer Database alias.

CALLERACTION UNSIGNED SHORT Action.

PSTOPTIME Pointer Stop time.

PUSERNAME Pointer User name.

PPASSWORD Pointer Password.

POVERFLOWLOGPATH Pointer Overflow log path.

NUMCHNGLGOVRFLW UNSIGNED SHORT Number of changed overflow log paths (MPP only).

PCHNGLOGOVRFLW Structure Changed overflow log paths (MPP only).

CONNECTMODE UNSIGNED SHORT Connect mode.

PTABLESPACELIST Structure A pointer to a list of table space names. For
information about this structure, see
“SQLU-TABLESPACE-BKRST-LIST” on page 523.

ALLNODEFLAG SHORT All node flag.

NUMNODES SHORT Size of the node list.

PNODELIST Pointer List of node numbers.

NUMNODEINFO SHORT Size of pNodeInfo in “RFWD-OUTPUT” on page 430.

DLMODE UNSIGNED SHORT This parameter is not currently used.

PREPORTFILE Pointer This parameter is not currently used.

PDROPPEDTBLID Pointer A string containing the ID of the dropped table
whose recovery is being attempted.

PEXPORTDIR Pointer The directory into which the dropped table data will
be exported.

NODENUM SQL_PDB_NODE_TYPE Node number.

PATHLEN UNSIGNED SHORT Length of the new log path.

LOGPATH CHAR(255) New overflow log path.

RFWD-INPUT

Chapter 3. Data Structures 427

Language Syntax
C Structure

/* File: sqlutil.h */
/* Structure: RFWD-INPUT */
/* ... */
SQL_STRUCTURE rfwd_input
{

sqluint32 version;
char *pDbAlias;
unsigned short CallerAction;
char *pStopTime;
char *pUserName;
char *pPassword;
char *pOverflowLogPath;
unsigned short NumChngLgOvrflw;
struct sqlurf_newlogpath *pChngLogOvrflw;
unsigned short ConnectMode;
struct sqlu_tablespace_bkrst_list *pTablespaceList;
short AllNodeFlag;
short NumNodes;
SQL_PDB_NODE_TYPE *pNodeList;
short NumNodeInfo;
unsigned short DlMode; /* This parameter is not currently used. */
char *pReportFile; /* This parameter is not currently used. */
char *pDroppedTblID;
char *pExportDir;

};
/* ... */

/* File: sqlutil.h */
/* Structure: SQLURF-NEWLOGPATH */
/* ... */
SQL_STRUCTURE sqlurf_newlogpath
{

SQL_PDB_NODE_TYPE nodenum;
unsigned short pathlen;
char logpath[SQL_LOGPATH_SZ+SQL_LOGFILE_NAME_SZ+1];

};
/* ... */

RFWD-INPUT

428 Administrative API Reference

COBOL Structure

* File: sqlutil.cbl
01 SQL-RFWD-INPUT.

05 SQL-VERSION PIC 9(9) COMP-5.
05 SQL-DBALIAS USAGE IS POINTER.
05 SQL-CALLERACTION PIC 9(4) COMP-5.
05 FILLER PIC X(2).
05 SQL-STOPTIME USAGE IS POINTER.
05 SQL-USERNAME USAGE IS POINTER.
05 SQL-PASSWORD USAGE IS POINTER.
05 SQL-OVERFLOWLOGPATH USAGE IS POINTER.
05 SQL-NUMCHANGE PIC 9(4) COMP-5.
05 FILLER PIC X(2).
05 SQL-P-CHNG-LOG-OVRFLW USAGE IS POINTER.
05 SQL-CONNECTMODE PIC 9(4) COMP-5.
05 FILLER PIC X(2).
05 SQL-P-TABLESPACE-LIST USAGE IS POINTER.
05 SQL-ALLNODEFLAG PIC S9(4) COMP-5.
05 SQL-NUMNODES PIC S9(4) COMP-5.
05 SQL-NODELIST USAGE IS POINTER.
05 SQL-NUMNODEINFO PIC S9(4) COMP-5.
05 SQL-DLMODE PIC 9(4) COMP-5. * This parameter is not

* currently used.
05 SQL-REPORTFILE USAGE IS POINTER. * This parameter is not

* currently used.
05 SQL-DROPPEDTBLID USAGE IS POINTER.
05 SQL-EXPORTDIR USAGE IS POINTER.

*

* File: sqlutil.cbl
01 SQLURF-NEWLOGPATH.

05 SQL-NODENUM PIC S9(4) COMP-5.
05 SQL-PATHLEN PIC 9(4) COMP-5.
05 SQL-LOGPATH PIC X(254).
05 FILLER PIC X.
05 FILLER PIC X(1).

*

RFWD-INPUT

Chapter 3. Data Structures 429

RFWD-OUTPUT

This structure is used to pass information from “sqluroll - Rollforward
Database” on page 397.

Table 15. Fields in the RFWD-OUTPUT Structure

Field Name Data Type Description

PAPPLICATIONID Pointer The address of a buffer of length
SQLU_APPLID_LEN+1 (defined in sqlutil) to
hold an application identifier returned from
the API. This identifier can be used with the
database system monitor APIs to monitor
some aspects of the application. If this
information is not of interest, supply the
NULL pointer. In a multi-node environment,
returns only the application identifier for the
catalog node.

PNUMREPLIES Pointer Number of node replies received. Each node
that replies fills in an sqlurf_info structure in
pNodeInfo. In a single-node environment, the
value of this parameter is 1.

PNODEINFO Structure Node reply information. A user defined array
of NumNodeInfo sqlurf_info structures.

Table 16. Fields in the SQLURF-INFO Structure

Field Name Data Type Description

NODENUM SQL_PDB_NODE_TYPE Node number.

STATE LONG State information.

NEXTARCLOG UNSIGNED CHAR(13) A 12-byte buffer to hold the returned name of
the next archived log file required. If a caller
action other than SQLUM_QUERY is supplied, the
value returned in this field indicates that an
error occurred when accessing the file.
Possible causes are:

v The file was not found in the database log
directory, nor on the path specified by the
overflow log path parameter

v The user exit program failed to return the
archived file.

RFWD-OUTPUT

430 Administrative API Reference

Table 16. Fields in the SQLURF-INFO Structure (continued)

Field Name Data Type Description

FIRSTARCDEL UNSIGNED CHAR(13) A 12-byte buffer to hold the returned name of
the first archived log file no longer needed for
recovery. This file, and all files up to and
including lastarcdel, can be moved to make
room on the disk.

For example, if the values returned in
firstarcdel and lastarcdel are S0000001.LOG and
S0000005.LOG, the following log files can be
moved:

v S0000001.LOG

v S0000002.LOG

v S0000003.LOG

v S0000004.LOG

v S0000005.LOG

LASTARCDEL UNSIGNED CHAR(13) A 12-byte buffer to hold the returned name of
the last archived log file that can be removed
from the database log directory.

LASTCOMMIT UNSIGNED CHAR(27) A 26-character string containing a time stamp
in ISO format. This value represents the time
stamp of the last committed transaction after
the rollforward operation terminates.

Possible values for STATE (defined in sqlutil) are:

SQLURFQ_NOT_AVAILABLE
Could not connect to the node.

SQLURFQ_NOT_RFW_PENDING
Database is not rollforward pending.

SQLURFQ_DB_RFW_PENDING
Database is rollforward pending.

SQLURFQ_TBL_RFW_PENDING
Table space is rollforward pending.

SQLURFQ_DB_RFW_IN_PROGRESS
Database rollforward in progress.

SQLURFQ_TBL_RFW_IN_PROGRESS
Table space rollforward in progress.

SQLURFQ_DB_RFW_STOPPING
Database rollforward was interrupted while processing a STOP
request.

RFWD-OUTPUT

Chapter 3. Data Structures 431

SQLURFQ_TBL_RFW_STOPPING
Table space rollforward was interrupted while processing a STOP
request.

Language Syntax
C Structure

COBOL Structure

/* File: sqlutil.h */
/* Structure: RFWD-OUTPUT */
/* ... */
SQL_STRUCTURE rfwd_output
{

char *pApplicationId;
long *pNumReplies;
struct sqlurf_info *pNodeInfo;

};
/* ... */

/* File: sqlutil.h */
/* Structure: SQLURF-INFO */
/* ... */
SQL_STRUCTURE sqlurf_info
{

SQL_PDB_NODE_TYPE nodenum;
long state;
unsigned char nextarclog[SQLUM_ARCHIVE_FILE_LEN+1];
unsigned char firstarcdel[SQLUM_ARCHIVE_FILE_LEN+1];
unsigned char lastarcdel[SQLUM_ARCHIVE_FILE_LEN+1];
unsigned char lastcommit[SQLUM_TIMESTAMP_LEN+1];

};
/* ... */

* File: sqlutil.cbl
01 SQL-RFWD-OUTPUT.

05 SQL-APPLID USAGE IS POINTER.
05 SQL-NUMREPLIES USAGE IS POINTER.
05 SQL-P-NODE-INFO USAGE IS POINTER.

*

RFWD-OUTPUT

432 Administrative API Reference

* File: sqlutil.cbl
01 SQLURF-INFO.

05 SQL-NODENUM PIC S9(4) COMP-5.
05 FILLER PIC X(2).
05 SQL-STATE PIC S9(9) COMP-5.
05 SQL-NEXTARCLOG PIC X(12).
05 FILLER PIC X.
05 SQL-FIRSTARCDEL PIC X(12).
05 FILLER PIC X.
05 SQL-LASTARCDEL PIC X(12).
05 FILLER PIC X.
05 SQL-LASTCOMMIT PIC X(26).
05 FILLER PIC X.
05 FILLER PIC X(2).

*

RFWD-OUTPUT

Chapter 3. Data Structures 433

SQL-AUTHORIZATIONS

This structure is used to return information after a call to “sqluadau - Get
Authorizations” on page 287. The data type of all fields is SMALLINT. The
first half of the following table contains authorities granted directly to a user.
The second half of the table contains authorities granted to the groups to
which a user belongs.

Table 17. Fields in the SQL-AUTHORIZATIONS Structure

Field Name Description

SQL_AUTHORIZATIONS_LEN Size of structure.

SQL_SYSADM_AUTH SYSADM authority.

SQL_SYSCTRL_AUTH SYSCTRL authority.

SQL_SYSMAINT_AUTH SYSMAINT authority.

SQL_DBADM_AUTH DBADM authority.

SQL_CREATETAB_AUTH CREATETAB authority.

SQL_CREATET_NOT_FENC_AUTH CREATE_NOT_FENCED authority.

SQL_BINDADD_AUTH BINDADD authority.

SQL_CONNECT_AUTH CONNECT authority.

SQL_IMPLICIT_SCHEMA_AUTH IMPLICIT_SCHEMA authority.

SQL_LOAD_AUTH LOAD authority.

SQL_SYSADM_GRP_AUTH User belongs to a group which holds SYSADM
authority.

SQL_SYSCTRL_GRP_AUTH User belongs to a group which holds SYSCTRL
authority.

SQL_SYSMAINT_GRP_AUTH User belongs to a group which holds
SYSMAINT authority.

SQL_DBADM_GRP_AUTH User belongs to a group which holds DBADM
authority.

SQL_CREATETAB_GRP_AUTH User belongs to a group which holds
CREATETAB authority.

SQL_CREATE_NON_FENC_GRP_AUTH User belongs to a group which holds
CREATE_NOT_FENCED authority.

SQL_BINDADD_GRP_AUTH User belongs to a group which holds
BINDADD authority.

SQL_CONNECT_GRP_AUTH User belongs to a group which holds
CONNECT authority.

SQL_IMPLICIT_SCHEMA_GRP_AUTH User belongs to a group which holds
IMPLICIT_SCHEMA authority.

SQL_LOAD_GRP_AUTH User belongs to a group which holds LOAD
authority.

Note: SYSADM, SYSMAINT, and SYSCTRL are only indirect authorities and cannot be granted
directly to the user. They are available only through the groups to which the user belongs.

SQL-AUTHORIZATIONS

434 Administrative API Reference

Language Syntax
C Structure

/* File: sqlutil.h */
/* Structure: SQL-AUTHORIZATIONS */
/* ... */
SQL_STRUCTURE sql_authorizations
{

short sql_authorizations_len;
short sql_sysadm_auth;
short sql_dbadm_auth;
short sql_createtab_auth;
short sql_bindadd_auth;
short sql_connect_auth;
short sql_sysadm_grp_auth;
short sql_dbadm_grp_auth;
short sql_createtab_grp_auth;
short sql_bindadd_grp_auth;
short sql_connect_grp_auth;
short sql_sysctrl_auth;
short sql_sysctrl_grp_auth;
short sql_sysmaint_auth;
short sql_sysmaint_grp_auth;
short sql_create_not_fenc_auth;
short sql_create_not_fenc_grp_auth;
short sql_implicit_schema_auth;
short sql_implicit_schema_grp_auth;
short sql_load_auth;
short sql_load_grp_auth;

};
/* ... */

SQL-AUTHORIZATIONS

Chapter 3. Data Structures 435

COBOL Structure

* File: sqlutil.cbl
01 SQL-AUTHORIZATIONS.

05 SQL-AUTHORIZATIONS-LEN PIC S9(4) COMP-5.
05 SQL-SYSADM-AUTH PIC S9(4) COMP-5.
05 SQL-DBADM-AUTH PIC S9(4) COMP-5.
05 SQL-CREATETAB-AUTH PIC S9(4) COMP-5.
05 SQL-BINDADD-AUTH PIC S9(4) COMP-5.
05 SQL-CONNECT-AUTH PIC S9(4) COMP-5.
05 SQL-SYSADM-GRP-AUTH PIC S9(4) COMP-5.
05 SQL-DBADM-GRP-AUTH PIC S9(4) COMP-5.
05 SQL-CREATETAB-GRP-AUTH PIC S9(4) COMP-5.
05 SQL-BINDADD-GRP-AUTH PIC S9(4) COMP-5.
05 SQL-CONNECT-GRP-AUTH PIC S9(4) COMP-5.
05 SQL-SYSCTRL-AUTH PIC S9(4) COMP-5.
05 SQL-SYSCTRL-GRP-AUTH PIC S9(4) COMP-5.
05 SQL-SYSMAINT-AUTH PIC S9(4) COMP-5.
05 SQL-SYSMAINT-GRP-AUTH PIC S9(4) COMP-5.
05 SQL-CREATE-NOT-FENC-AUTH PIC S9(4) COMP-5.
05 SQL-CREATE-NOT-FENC-GRP-AUTH PIC S9(4) COMP-5.
05 SQL-IMPLICIT-SCHEMA-AUTH PIC S9(4) COMP-5.
05 SQL-IMPLICIT-SCHEMA-GRP-AUTH PIC S9(4) COMP-5.
05 SQL-LOAD-AUTH PIC S9(4) COMP-5.
05 SQL-LOAD-GRP-AUTH PIC S9(4) COMP-5.

*

SQL-AUTHORIZATIONS

436 Administrative API Reference

SQL-DIR-ENTRY

This structure is used by the DCS directory APIs.

Table 18. Fields in the SQL-DIR-ENTRY Structure

Field Name Data Type Description

STRUCT_ID SMALLINT Structure identifier. Set to SQL_DCS_STR_ID
(defined in sqlenv).

RELEASE SMALLINT Release version (assigned by the API).

CODEPAGE SMALLINT Code page for comment.

COMMENT CHAR(30) Optional description of the database.

LDB CHAR(8) Local name of the database; must match
database alias in system database directory.

TDB CHAR(18) Actual name of the database.

AR CHAR(32) Name of the application client.

PARM CHAR(512) Contains transaction program prefix,
transaction program name, SQLCODE
mapping file name, and disconnect and
security option.

Note: The character fields passed in this structure must be null terminated or blank filled up to
the length of the field.

Language Syntax
C Structure

/* File: sqlenv.h */
/* Structure: SQL-DIR-ENTRY */
/* ... */
SQL_STRUCTURE sql_dir_entry
{

unsigned short struct_id;
unsigned short release;
unsigned short codepage;
_SQLOLDCHAR comment[SQL_CMT_SZ + 1];
_SQLOLDCHAR ldb[SQL_DBNAME_SZ + 1];
_SQLOLDCHAR tdb[SQL_LONG_NAME_SZ + 1];
_SQLOLDCHAR ar[SQL_AR_SZ + 1];
_SQLOLDCHAR parm[SQL_PARAMETER_SZ + 1];

};
/* ... */

SQL-DIR-ENTRY

Chapter 3. Data Structures 437

COBOL Structure

* File: sqlenv.cbl
01 SQL-DIR-ENTRY.

05 STRUCT-ID PIC 9(4) COMP-5.
05 RELEASE-LVL PIC 9(4) COMP-5.
05 CODEPAGE PIC 9(4) COMP-5.
05 COMMENT PIC X(30).
05 FILLER PIC X.
05 LDB PIC X(8).
05 FILLER PIC X.
05 TDB PIC X(18).
05 FILLER PIC X.
05 AR PIC X(32).
05 FILLER PIC X.
05 PARM PIC X(512).
05 FILLER PIC X.
05 FILLER PIC X(1).

*

SQL-DIR-ENTRY

438 Administrative API Reference

SQLA-FLAGINFO

This structure is used to hold flagger information.

Table 19. Fields in the SQLA-FLAGINFO Structure

Field Name Data Type Description

VERSION SMALLINT Input field that must be set to
SQLA_FLAG_VERSION (defined in sqlaprep).

MSGS Structure An imbedded sqla_flagmsgs structure.

Table 20. Fields in the SQLA-FLAGMSGS Structure

Field Name Data Type Description

COUNT SMALLINT Output field set to the number of messages
returned by the flagger.

SQLCA Array Array of SQLCA structures returning
information from the flagger.

Language Syntax
C Structure

/* File: sqlaprep.h */
/* Structure: SQLA-FLAGINFO */
/* ... */
SQL_STRUCTURE sqla_flaginfo
{

short version;
short padding;
struct sqla_flagmsgs msgs;

};
/* ... */

/* File: sqlaprep.h */
/* Structure: SQLA-FLAGMSGS */
/* ... */
SQL_STRUCTURE sqla_flagmsgs
{

short count;
short padding;
SQL_STRUCTURE sqlca sqlca[SQLA_FLAG_MAXMSGS];

};
/* ... */

SQLA-FLAGINFO

Chapter 3. Data Structures 439

COBOL Structure

* File: sqlaprep.cbl
01 SQLA-FLAGINFO.

05 SQLFLAG-VERSION PIC 9(4) COMP-5.
05 FILLER PIC X(2).
05 SQLFLAG-MSGS.

10 SQLFLAG-MSGS-COUNT PIC 9(4) COMP-5.
10 FILLER PIC X(2).
10 SQLFLAG-MSGS-SQLCA OCCURS 10 TIMES.

*

SQLA-FLAGINFO

440 Administrative API Reference

SQLB-TBS-STATS

This structure is used to return additional table space statistics to an
application program.

Table 21. Fields in the SQLB-TBS-STATS Structure

Field Name Data Type Description

TOTALPAGES INTEGER Total operating system space occupied by the
table space (in 4KB pages). For DMS, this is
the sum of the container sizes (including
overhead). For SMS, this is the sum of all file
space used for the tables stored in this table
space. This is the only piece of information
returned for SMS table spaces; the other fields
are set to this value or zero.

USEABLEPAGES INTEGER For DMS, equal to TOTALPAGES minus
(overhead plus partial extents). For SMS, equal
to TOTALPAGES.

USEDPAGES INTEGER For DMS, the total number of pages in use.
For more information, see ″Designing and
Choosing Table Spaces″ in the Administration
Guide. For SMS, equal to TOTALPAGES.

FREEPAGES INTEGER For DMS, equal to USEABLEPAGES minus
USEDPAGES. For SMS, not applicable.

HIGHWATERMARK INTEGER For DMS, the high water mark is the current
″end″ of the table space address space. In
other words, the page number of the first free
extent following the last allocated extent of a
table space.

Note that this is not really a ″high water
mark″, but rather a ″current water mark″,
since the value can decrease. For SMS, this is
not applicable.

During a table space rebalance, the number of useable pages will include
pages for the newly added container, but these new pages will not be
reflected in the number of free pages until the rebalance is complete. When a
table space rebalance is not taking place, the number of used pages plus the
number of free pages will equal the number of useable pages.

SQLB-TBS-STATS

Chapter 3. Data Structures 441

Language Syntax
C Structure

COBOL Structure

/* File: sqlutil.h */
/* Structure: SQLB-TBS-STATS */
/* ... */
SQL_STRUCTURE SQLB_TBS_STATS
{

sqluint32 totalPages;
sqluint32 useablePages;
sqluint32 usedPages;
sqluint32 freePages;
sqluint32 highWaterMark;

};
/* ... */

* File: sqlutil.cbl
01 SQLB-TBS-STATS.

05 SQL-TOTAL-PAGES PIC 9(9) COMP-5.
05 SQL-USEABLE-PAGES PIC 9(9) COMP-5.
05 SQL-USED-PAGES PIC 9(9) COMP-5.
05 SQL-FREE-PAGES PIC 9(9) COMP-5.
05 SQL-HIGH-WATER-MARK PIC 9(9) COMP-5.

*

SQLB-TBS-STATS

442 Administrative API Reference

SQLB-TBSCONTQRY-DATA

This structure is used to return container data to an application program.

Table 22. Fields in the SQLB-TBSCONTQRY-DATA Structure

Field Name Data Type Description

ID INTEGER Container identifier.

NTBS INTEGER Always 1.

TBSID INTEGER Table space identifier.

NAMELEN INTEGER Length of the container name (for languages
other than C).

NAME CHAR(256) Container name.

UNDERDBDIR INTEGER Either 1 (container is under the DB directory)
or 0 (container is not under the DB directory).

CONTTYPE INTEGER Container type.

TOTALPAGES INTEGER Total number of pages occupied by the table
space container.

USEABLEPAGES INTEGER For DMS, TOTALPAGES minus overhead. For
SMS, equal to TOTALPAGES.

OK INTEGER Either 1 (container is accessible) or 0
(container is inaccessible). Zero indicates an
abnormal situation that usually requires the
attention of the database administrator.

Possible values for CONTTYPE (defined in sqlutil) are:

SQLB_CONT_PATH
Specifies a directory path (SMS only).

SQLB_CONT_DISK
Specifies a raw device (DMS only).

SQLB_CONT_FILE
Specifies a file (DMS only).

SQLB-TBSCONTQRY-DATA

Chapter 3. Data Structures 443

Language Syntax
C Structure

COBOL Structure

/* File: sqlutil.h */
/* Structure: SQLB-TBSCONTQRY-DATA */
/* ... */
SQL_STRUCTURE SQLB_TBSCONTQRY_DATA
{

sqluint32 id;
sqluint32 nTbs;
sqluint32 tbsID;
sqluint32 nameLen;
char name[SQLB_MAX_CONTAIN_NAME_SZ];
sqluint32 underDBDir;
sqluint32 contType;
sqluint32 totalPages;
sqluint32 useablePages;
sqluint32 ok;

};
/* ... */

* File: sqlutbcq.cbl
01 SQLB-TBSCONTQRY-DATA.

05 SQL-ID PIC 9(9) COMP-5.
05 SQL-N-TBS PIC 9(9) COMP-5.
05 SQL-TBS-ID PIC 9(9) COMP-5.
05 SQL-NAME-LEN PIC 9(9) COMP-5.
05 SQL-NAME PIC X(256).
05 SQL-UNDER-DBDIR PIC 9(9) COMP-5.
05 SQL-CONT-TYPE PIC 9(9) COMP-5.
05 SQL-TOTAL-PAGES PIC 9(9) COMP-5.
05 SQL-USEABLE-PAGES PIC 9(9) COMP-5.
05 SQL-OK PIC 9(9) COMP-5.

*

SQLB-TBSCONTQRY-DATA

444 Administrative API Reference

SQLB-TBSPQRY-DATA

This structure is used to return table space data to an application program.

Table 23. Fields in the SQLB-TBSPQRY-DATA Structure

Field Name Data Type Description

TBSPQVER CHAR(8) Structure version identifier.

ID INTEGER Internal identifier for the table space.

NAMELEN INTEGER Length of the table space name.

NAME CHAR(128) Null-terminated name of the table space.

TOTALPAGES INTEGER Number of pages specified by CREATE
TABLESPACE (DMS only).

USEABLEPAGES INTEGER TOTALPAGES minus overhead (DMS only).
This value is rounded down to the next
multiple of 4KB.

FLAGS INTEGER Bit attributes for the table space.

PAGESIZE INTEGER Page size (in bytes) of the table space.
Currently fixed at 4KB.

EXTSIZE INTEGER Extent size (in pages) of the table space.

PREFETCHSIZE INTEGER Prefetch size.

NCONTAINERS INTEGER Number of containers in the table space.

TBSSTATE INTEGER Table space states.

LIFELSN CHAR(6) Time stamp identifying the origin of the table
space.

FLAGS2 INTEGER Bit attributes for the table space.

MINIMUMRECTIME CHAR(27) Earliest point in time that may be specified by
point-in-time table space rollforward.

STATECHNGOBJ INTEGER If TBSSTATE is SQLB_LOAD_PENDING or
SQLB_DELETE_PENDING, the object ID in
table space STATECHANGEID that caused the
table space state to be set. Otherwise zero.

STATECHNGID INTEGER If TBSSTATE is SQLB_LOAD_PENDING or
SQLB_DELETE_PENDING, the table space ID
of the object STATECHANGEOBJ that caused
the table space state to be set. Otherwise zero.

NQUIESCERS INTEGER If TBSSTATE is SQLB_QUIESCED_SHARE,
UPDATE, or EXCLUSIVE, the number of
quiescers of the table space and the number of
entries in QUIESCERS.

QUIESCEID INTEGER The table space ID of the object QUIESCEOBJ
that caused the table space to be quiesced.

QUIESCEOBJ INTEGER The object ID in table space QUIESCEID that
caused the table space to be quiesced.

RESERVED CHAR(32) Reserved for future use.

SQLB-TBSPQRY-DATA

Chapter 3. Data Structures 445

Possible values for FLAGS (defined in sqlutil) are:

SQLB_TBS_SMS
System Managed Space

SQLB_TBS_DMS
Database Managed Space

SQLB_TBS_ANY
Regular contents

SQLB_TBS_LONG
Long field data

SQLB_TBS_SYSTMP
System temporary data.

SQLB_TBS_USRTMP
User temporary data.

Possible values for TBSSTATE (defined in sqlutil) are:

SQLB_NORMAL
Normal

SQLB_QUIESCED_SHARE
Quiesced: SHARE

SQLB_QUIESCED_UPDATE
Quiesced: UPDATE

SQLB_QUIESCED_EXCLUSIVE
Quiesced: EXCLUSIVE

SQLB_LOAD_PENDING
Load pending

SQLB_DELETE_PENDING
Delete pending

SQLB_BACKUP_PENDING
Backup pending

SQLB_ROLLFORWARD_IN_PROGRESS
Roll forward in progress

SQLB_ROLLFORWARD_PENDING
Roll forward pending

SQLB_RESTORE_PENDING
Restore pending

SQLB_DISABLE_PENDING
Disable pending

SQLB-TBSPQRY-DATA

446 Administrative API Reference

SQLB_REORG_IN_PROGRESS
Reorganization in progress

SQLB_BACKUP_IN_PROGRESS
Backup in progress

SQLB_STORDEF_PENDING
Storage must be defined

SQLB_RESTORE_IN_PROGRESS
Restore in progress

SQLB_STORDEF_ALLOWED
Storage may be defined

SQLB_STORDEF_FINAL_VERSION
Storage definition is in ’final’ state

SQLB_STORDEF_CHANGED
Storage definition was changed prior to roll forward

SQLB_REBAL_IN_PROGRESS
DMS rebalancer is active

SQLB_PSTAT_DELETION
Table space deletion in progress

SQLB_PSTAT_CREATION
Table space creation in progress.

Possible values for FLAGS2 (defined in sqlutil) are:

SQLB_STATE_SET
For service use only.

SQLB-TBSPQRY-DATA

Chapter 3. Data Structures 447

Language Syntax
C Structure

/* File: sqlutil.h */
/* ... */
SQL_STRUCTURE SQLB_TBSPQRY_DATA
{

char tbspqver[SQLB_SVERSION_SIZE];
sqluint32 id;
sqluint32 nameLen;
char name[SQLB_MAX_TBS_NAME_SZ];
sqluint32 totalPages;
sqluint32 useablePages;
sqluint32 flags;
sqluint32 pageSize;
sqluint32 extSize;
sqluint32 prefetchSize;
sqluint32 nContainers;
sqluint32 tbsState;
char lifeLSN[6];
char pad[2];
sqluint32 flags2;
char minimumRecTime[SQL_STAMP_STRLEN+1];
char pad1[1];
sqluint32 StateChngObj;
sqluint32 StateChngID;
sqluint32 nQuiescers;
struct SQLB_QUIESCER_DATA quiescer[SQLB_MAX_QUIESCERS];
char reserved[32];

};
/* ... */

/* File: sqlutil.h */
/* ... */
SQL_STRUCTURE SQLB_QUIESCER_DATA
{

sqluint32 quiesceId;
sqluint32 quiesceObject;

};
/* ... */

SQLB-TBSPQRY-DATA

448 Administrative API Reference

COBOL Structure

* File: sqlutbsp.cbl
01 SQLB-TBSPQRY-DATA.

05 SQL-TBSPQVER PIC X(8).
05 SQL-ID PIC 9(9) COMP-5.
05 SQL-NAME-LEN PIC 9(9) COMP-5.
05 SQL-NAME PIC X(128).
05 SQL-TOTAL-PAGES PIC 9(9) COMP-5.
05 SQL-USEABLE-PAGES PIC 9(9) COMP-5.
05 SQL-FLAGS PIC 9(9) COMP-5.
05 SQL-PAGE-SIZE PIC 9(9) COMP-5.
05 SQL-EXT-SIZE PIC 9(9) COMP-5.
05 SQL-PREFETCH-SIZE PIC 9(9) COMP-5.
05 SQL-N-CONTAINERS PIC 9(9) COMP-5.
05 SQL-TBS-STATE PIC 9(9) COMP-5.
05 SQL-LIFE-LSN PIC X(6).
05 SQL-PAD PIC X(2).
05 SQL-FLAGS2 PIC 9(9) COMP-5.
05 SQL-MINIMUM-REC-TIME PIC X(26).
05 FILLER PIC X.
05 SQL-PAD1 PIC X(1).
05 SQL-STATE-CHNG-OBJ PIC 9(9) COMP-5.
05 SQL-STATE-CHNG-ID PIC 9(9) COMP-5.
05 SQL-N-QUIESCERS PIC 9(9) COMP-5.
05 SQL-QUIESCER OCCURS 5 TIMES.

10 SQL-QUIESCE-ID PIC 9(9) COMP-5.
10 SQL-QUIESCE-OBJECT PIC 9(9) COMP-5.

05 SQL-RESERVED PIC X(32).
*

SQLB-TBSPQRY-DATA

Chapter 3. Data Structures 449

SQLCA

The SQL Communication Area (SQLCA) structure is used by the database
manager to return error information to an application program. This structure
is updated after every API call and SQL statement issued.

For detailed information about the SQLCA structure, including a description
of its fields, see the SQL Reference.

Language Syntax
C Structure

/* File: sqlca.h */
/* Structure: SQLCA */
/* ... */
SQL_STRUCTURE sqlca
{

_SQLOLDCHAR sqlcaid[8];
sqlint32 sqlcabc;
#ifdef DB2_SQL92E
sqlint32 sqlcade;
#else
sqlint32 sqlcode;
#endif
short sqlerrml;
_SQLOLDCHAR sqlerrmc[70];
_SQLOLDCHAR sqlerrp[8];
sqlint32 sqlerrd[6];
_SQLOLDCHAR sqlwarn[11];
#ifdef DB2_SQL92E
_SQLOLDCHAR sqlstat[5];
#else
_SQLOLDCHAR sqlstate[5];
#endif

};
/* ... */

SQLCA

450 Administrative API Reference

COBOL Structure

* File: sqlca.cbl
01 SQLCA SYNC.

05 SQLCAID PIC X(8) VALUE "SQLCA ".
05 SQLCABC PIC S9(9) COMP-5 VALUE 136.
05 SQLCODE PIC S9(9) COMP-5.
05 SQLERRM.
05 SQLERRP PIC X(8).
05 SQLERRD OCCURS 6 TIMES PIC S9(9) COMP-5.
05 SQLWARN.

10 SQLWARN0 PIC X.
10 SQLWARN1 PIC X.
10 SQLWARN2 PIC X.
10 SQLWARN3 PIC X.
10 SQLWARN4 PIC X.
10 SQLWARN5 PIC X.
10 SQLWARN6 PIC X.
10 SQLWARN7 PIC X.
10 SQLWARN8 PIC X.
10 SQLWARN9 PIC X.
10 SQLWARNA PIC X.

05 SQLSTATE PIC X(5).
*

SQLCA

Chapter 3. Data Structures 451

SQLCHAR

This structure is used to pass variable length data to the database manager.

Table 24. Fields in the SQLCHAR Structure

Field Name Data Type Description

LENGTH SMALLINT Length of the character string pointed to by DATA.

DATA CHAR(n) An array of characters of length LENGTH.

Language Syntax
C Structure

COBOL Structure

This is not defined in any header file. The following is an example showing
how it can be done:

/* File: sql.h */
/* Structure: SQLCHAR */
/* ... */
SQL_STRUCTURE sqlchar
{

short length;
_SQLOLDCHAR data[1];

};
/* ... */

* Replace maxlen with the appropriate value:
01 SQLCHAR.
49 SQLCHAR-LEN PIC S9(4) COMP-5.
49 SQLCHAR-DATA PIC X(maxlen).

SQLCHAR

452 Administrative API Reference

SQLDA

The SQL Descriptor Area (SQLDA) structure is a collection of variables that is
required for execution of the SQL DESCRIBE statement. The SQLDA variables
are options that can be used with the PREPARE, OPEN, FETCH, EXECUTE,
and CALL statements.

An SQLDA communicates with dynamic SQL; it can be used in a DESCRIBE
statement, modified with the addresses of host variables, and then reused in a
FETCH statement.

SQLDAs are supported for all languages, but predefined declarations are
provided only for C, REXX, FORTRAN, and COBOL. In REXX, the SQLDA is
somewhat different than in the other languages; for information about the use
of SQLDAs in REXX, see the Application Development Guide.

The meaning of the information in an SQLDA depends on its use. In
PREPARE and DESCRIBE, an SQLDA provides information to an application
program about a prepared statement. In OPEN, EXECUTE, FETCH, and
CALL, an SQLDA describes host variables.

For detailed information about the SQLDA structure, including a description
of its fields, see the SQL Reference.

Language Syntax
C Structure

/* File: sqlda.h */
/* Structure: SQLDA */
/* ... */
SQL_STRUCTURE sqlda
{

_SQLOLDCHAR sqldaid[8];
long sqldabc;
short sqln;
short sqld;
struct sqlvar sqlvar[1];

};
/* ... */

SQLDA

Chapter 3. Data Structures 453

/* File: sqlda.h */
/* Structure: SQLVAR */
/* ... */
SQL_STRUCTURE sqlvar
{

short sqltype;
short sqllen;
_SQLOLDCHAR *SQL_POINTER sqldata;
short *SQL_POINTER sqlind;
struct sqlname sqlname;

};
/* ... */

/* File: sqlda.h */
/* Structure: SQLNAME */
/* ... */
SQL_STRUCTURE sqlname
{

short length;
_SQLOLDCHAR data[30];

};
/* ... */

/* File: sqlda.h */
/* Structure: SQLVAR2 */
/* ... */
SQL_STRUCTURE sqlvar2
{

union sql8bytelen len;
char *SQL_POINTER sqldatalen;
struct sqldistinct_type sqldatatype_name;

};
/* ... */

/* File: sqlda.h */
/* Structure: SQL8BYTELEN */
/* ... */
union sql8bytelen
{

long reserve1[2];
long sqllonglen;

};
/* ... */

SQLDA

454 Administrative API Reference

COBOL Structure

/* File: sqlda.h */
/* Structure: SQLDISTINCT-TYPE */
/* ... */
SQL_STRUCTURE sqldistinct_type
{

short length;
char data[27];
char reserved1[3];

};
/* ... */

* File: sqlda.cbl
01 SQLDA SYNC.

05 SQLDAID PIC X(8) VALUE "SQLDA ".
05 SQLDABC PIC S9(9) COMP-5.
05 SQLN PIC S9(4) COMP-5.
05 SQLD PIC S9(4) COMP-5.
05 SQLVAR-ENTRIES OCCURS 0 TO 1489 TIMES

10 SQLVAR.
10 SQLVAR2 REDEFINES SQLVAR.

*

SQLDA

Chapter 3. Data Structures 455

SQLDCOL

This structure is used to pass variable column information to “sqluexpr -
Export” on page 302, “sqluimpr - Import” on page 320, and “sqluload - Load”
on page 345.

Table 25. Fields in the SQLDCOL Structure

Field Name Data Type Description

DCOLMETH SMALLINT A character indicating the
method to be used to select
columns within the data file.

DCOLNUM SMALLINT The number of columns
specified in the array
DCOLNAME.

DCOLNAME Array An array of DCOLNUM
sqldcoln structures.

Table 26. Fields in the SQLDCOLN Structure

Field Name Data Type Description

DCOLNLEN SMALLINT Length of the data pointed to
by DCOLNPTR.

DCOLNPTR Pointer Pointer to a data element
determined by DCOLMETH.

Note: The DCOLNLEN and DCOLNPTR fields are repeated for each column specified.

Table 27. Fields in the SQLLOCTAB Structure

Field Name Data Type Description

LOCPAIR Array An array of sqllocpair
structures.

Table 28. Fields in the SQLLOCPAIR Structure

Field Name Data Type Description

BEGIN_LOC SMALLINT Starting position of the column
data in the external file.

END_LOC SMALLINT Ending position of the column
data in the external file.

The valid values for DCOLMETH (defined in sqlutil) are:

SQL_METH_N
Names. When importing or loading, use the column names provided
via this structure to identify the data to import or load from the
external file. The case of these column names must match the case of

SQLDCOL

456 Administrative API Reference

the corresponding names in the system catalogs. When exporting, use
the column names provided via this structure as the column names in
the output file.

The dcolnptr pointer of each element of the dcolname array points to an
array of characters, of length dcolnlen bytes, that make up the name of
a column to be imported or loaded. The dcolnum field, which must be
positive, indicates the number of elements in the dcolname array.

This method is invalid if the external file does not contain column
names (DEL or ASC format files, for example).

SQL_METH_P
Positions. When importing or loading, use starting column positions
provided via this structure to identify the data to import or load from
the external file. This method is not valid when exporting data.

The dcolnptr pointer of each element of the dcolname array is ignored,
while the dcolnlen field contains a column position in the external file.
The dcolnum field, which must be positive, indicates the number of
elements in the dcolname array.

The lowest valid column position value is 1 (indicating the first
column), and the highest valid value depends on the external file
type. Positional selection is not valid for import of ASC files.

SQL_METH_L
Locations. When importing or loading, use starting and ending
column positions provided via this structure to identify the data to
import or load from the external file. This method is not valid when
exporting data.

The dcolnptr field of the first element of the dcolname array points to
an sqlloctab structure, which consists of an array of sqllocpair
structures. The number of elements in this array is determined by the
dcolnum field of the sqldcol structure, which must be positive. Each
element in the array is a pair of 2-byte integers that indicate where
the column begins and ends. The first element of each location pair is
the byte within the file where the column begins, and the second
element is the byte where the column ends. The first byte position
within a row in the file is considered byte position 1. The columns can
overlap.

This method is the only valid method for importing or loading ASC
files.

SQL_METH_D
Default. When importing or loading, the first column of the file is

SQLDCOL

Chapter 3. Data Structures 457

loaded or imported into the first column of the table, and so on.
When exporting, the default names are used for the columns in the
external file.

The dcolnum and dcolname fields of the sqldcol structure are both
ignored, and the columns from the external file are taken in their
natural order.

A column from the external file can be used in the array more than once. It is
not necessary to use every column from the external file.

Language Syntax
C Structure

/* File: sqlutil.h */
/* Structure: SQLDCOL */
/* ... */
SQL_STRUCTURE sqldcol
{

short dcolmeth;
short dcolnum;
struct sqldcoln dcolname[1];

};
/* ... */

/* File: sqlutil.h */
/* Structure: SQLDCOLN */
/* ... */
SQL_STRUCTURE sqldcoln
{

short dcolnlen;
char *dcolnptr;

};
/* ... */

/* File: sqlutil.h */
/* Structure: SQLLOCTAB */
/* ... */
SQL_STRUCTURE sqlloctab
{

struct sqllocpair locpair[1];
};
/* ... */

SQLDCOL

458 Administrative API Reference

COBOL Structure

/* File: sqlutil.h */
/* Structure: SQLLOCPAIR */
/* ... */
SQL_STRUCTURE sqllocpair
{

short begin_loc;
short end_loc;

};
/* ... */

* File: sqlutil.cbl
01 SQL-DCOLDATA.

05 SQL-DCOLMETH PIC S9(4) COMP-5.
05 SQL-DCOLNUM PIC S9(4) COMP-5.
05 SQLDCOLN OCCURS 0 TO 255 TIMES DEPENDING ON SQL-DCOLNUM.

10 SQL-DCOLNLEN PIC S9(4) COMP-5.
10 FILLER PIC X(2).
10 SQL-DCOLN-PTR USAGE IS POINTER.

*

* File: sqlutil.cbl
01 SQL-LOCTAB.

05 SQL-LOC-PAIR OCCURS 1 TIMES.
10 SQL-BEGIN-LOC PIC S9(4) COMP-5.
10 SQL-END-LOC PIC S9(4) COMP-5.

*

SQLDCOL

Chapter 3. Data Structures 459

SQLE-ADDN-OPTIONS

This structure is used to pass information to “sqleaddn - Add Node” on
page 138.

Table 29. Fields in the SQLE-NODE-APPN Structure

Field Name Data Type Description

SQLADDID CHAR An ″eyecatcher″ value which must be set to
SQLE_ADDOPTID_V51.

TBLSPACE_TYPE sqluint32 Specifies the type of system temporary table
space definitions to be used for the node
being added. See below for values.

TBLSPACE_NODE SQL_PDB_NODE_TYPE Specifies the node number from which the
system temporary table space definitions
should be obtained. The node number must
exist in the db2nodes.cfg file, and is only used
if the tblspace_type field is set to
SQLE_TABLESPACES_LIKE_NODE.

Valid values for TBLSPACE_TYPE (defined in sqlenv) are:

SQLE_TABLESPACES_NONE
Do not create any system temporary table spaces.

SQLE_TABLESPACES_LIKE_NODE
The containers for the system temporary table spaces should be the
same as those for the specified node.

SQLE_TABLESPACES_LIKE_CATALOG
The containers for the system temporary table spaces should be the
same as those for the catalog node of each database.

Language Syntax
C Structure

/* File: sqlenv.h */
/* Structure: SQLE-ADDN-OPTIONS */
/* ... */
SQL_STRUCTURE sqle_addn_options
{

char sqladdid[8];
sqluint32 tblspace_type;
SQL_PDB_NODE_TYPE tblspace_node;

};
/* ... */

SQLE-ADDN-OPTIONS

460 Administrative API Reference

COBOL Structure

* File: sqlenv.cbl
01 SQLE-ADDN-OPTIONS.

05 SQLADDID PIC X(8).
05 SQL-TBLSPACE-TYPE PIC 9(9) COMP-5.
05 SQL-TBLSPACE-NODE PIC S9(4) COMP-5.
05 FILLER PIC X(2).

*

SQLE-ADDN-OPTIONS

Chapter 3. Data Structures 461

SQLE-CLIENT-INFO

This structure is used to pass information to “sqleseti - Set Client
Information” on page 251 and “sqleqryi - Query Client Information” on
page 239.

This structure specifies:
v The type of information being set or queried
v The length of the data being set or queried
v A pointer to either:

– An area that will contain the data being set
– An area of sufficient length to contain the data being queried

Applications can specify the following types of information:
v Client user ID being set or queried. A maximum of 255 characters can be

set, although servers can truncate this to some platform-specific value.

Note: This user ID is for identification purposes only, and is not used for
any authorization.

v Client workstation name being set or queried. A maximum of 255 characters
can be set, although servers can truncate this to some platform-specific
value.

v Client application name being set or queried. A maximum of 255 characters
can be set, although servers can truncate this to some platform-specific
value.

v Client accounting string being set or queried. A maximum of 200 characters
can be set, although servers can truncate this to some platform-specific
value.

Note: The information can be set using “sqlesact - Set Accounting String”
on page 243. However, sqlesact does not permit the accounting
string to be changed once a connection exists, whereas sqleseti
allows the accounting information to be changed for future, as well
as already established, connections.

Table 30. Fields in the SQLE-CLIENT-INFO Structure

Field Name Data Type Description

TYPE sqlint32 Setting type.

SQLE-CLIENT-INFO

462 Administrative API Reference

Table 30. Fields in the SQLE-CLIENT-INFO Structure (continued)

Field Name Data Type Description

LENGTH sqlint32 Length of the value. On
sqleseti calls, the length can be
between zero and the
maximum length defined for
the type. A length of zero
indicates a null value. On
sqleqryi calls, the length is
returned, but the area pointed
to by pValue must be large
enough to contain the
maximum length for the type.
A length of zero indicates a
null value.

PVALUE Pointer Pointer to an
application-allocated buffer
that contains the specified
value. The data type of this
value is dependent on the type
field.

The valid entries for the SQLE-CLIENT-INFO TYPE element and the
associated descriptions for each entry are listed below:

Table 31. Connection Settings

Type Data Type Description

SQLE_CLIENT_INFO_USERID CHAR(255) The user ID for the client.
Some servers may truncate the
value. For example, DB2 for
OS/390 servers support up to
length 16. This user ID is for
identification purposes only,
and is not used for any
authorization.

SQLE_CLIENT_INFO_
WRKSTNNAME

CHAR(255) The workstation name for the
client. Some servers may
truncate the value. For
example, DB2 for OS/390
servers support up to length
18.

SQLE_CLIENT_INFO_
APPLNAME

CHAR(255) The application name for the
client. Some servers may
truncate the value. For
example, DB2 for OS/390
servers support up to length
32.

SQLE-CLIENT-INFO

Chapter 3. Data Structures 463

Table 31. Connection Settings (continued)

Type Data Type Description

SQLE_CLIENT_INFO_
ACCTSTR

CHAR(200) The accounting string for the
client. Some servers may
truncate the value. For
example, DB2 for OS/390
servers support up to length
200.

Note: These field names are defined for the C programming language. There are similar names
for FORTRAN and COBOL, which have the same semantics.

Language Syntax
C Structure

COBOL Structure

/* File: sqlenv.h */
/* Structure: SQLE-CLIENT-INFO */
/* ... */
SQL_STRUCTURE sqle_client_info
{

unsigned short type;
unsigned short length;
char *pValue;

};
/* ... */

* File: sqlenv.cbl
01 SQLE-CLIENT-INFO.

05 SQLE-CLIENT-INFO-ITEM OCCURS 4 TIMES.
10 SQLE-CLIENT-INFO-TYPE PIC S9(4) COMP-5.
10 SQLE-CLIENT-INFO-LENGTH PIC S9(4) COMP-5.
10 SQLE-CLIENT-INFO-VALUE USAGE IS POINTER.

*

SQLE-CLIENT-INFO

464 Administrative API Reference

SQLE-CONN-SETTING

This structure is used to specify connection setting types and values (see
“sqleqryc - Query Client” on page 236, and “sqlesetc - Set Client” on
page 248).

Table 32. Fields in the SQLE-CONN-SETTING Structure

Field Name Data Type Description

TYPE SMALLINT Setting type.

VALUE SMALLINT Setting value.

The valid entries for the SQLE-CONN-SETTING TYPE element and the
associated descriptions for each entry are listed below (defined in sqlenv and
sql):

Table 33. Connection Settings

Type Value Description

SQL_CONNECT_TYPE SQL_CONNECT_1 Type 1 CONNECTs enforce the
single database per unit of
work semantics of older
releases, also known as the
rules for remote unit of work
(RUOW).

SQL_CONNECT_2 Type 2 CONNECTs support
the multiple databases per unit
of work semantics of DUOW.

SQL_RULES SQL_RULES_DB2 Enable the SQL CONNECT
statement to switch the current
connection to an established
(dormant) connection.

SQL_RULES_STD Permit only the establishment
of a new connection through
the SQL CONNECT statement.
The SQL SET CONNECTION
statement must be used to
switch the current connection
to a dormant connection.

SQL_DISCONNECT SQL_DISCONNECT_EXPL Removes those connections
that have been explicitly
marked for release by the SQL
RELEASE statement at
commit.

SQL_DISCONNECT_COND Breaks those connections that
have no open WITH HOLD
cursors at commit, and those
that have been marked for
release by the SQL RELEASE
statement.

SQLE-CONN-SETTING

Chapter 3. Data Structures 465

Table 33. Connection Settings (continued)

Type Value Description

SQL_DISCONNECT_AUTO Breaks all connections at
commit.

SQL_SYNCPOINT SQL_SYNC_TWOPHASE Requires a Transaction
Manager (TM) to coordinate
two-phase commits among
databases that support this
protocol.

SQL_SYNC_ONEPHASE Uses one-phase commits to
commit the work done by each
database in multiple database
transactions. Enforces single
updater, multiple read
behavior.

SQL_SYNC_NONE Uses one-phase commits to
commit work done, but does
not enforce single updater,
multiple read behavior.

SQL_MAX_NETBIOS_
CONNECTIONS

Between 1 and 254 This specifies the maximum
number of concurrent
connections that can be made
using a NETBIOS adapter in
an application.

SQL_DEFERRED_PREPARE SQL_DEFERRED_PREPARE_
NO

The PREPARE statement will
be executed at the time it is
issued.

SQL_DEFERRED_PREPARE_
YES

Execution of the PREPARE
statement will be deferred
until the corresponding OPEN,
DESCRIBE, or EXECUTE
statement is issued. The
PREPARE statement will not
be deferred if it uses the INTO
clause, which requires an
SQLDA to be returned
immediately. However, if the
PREPARE INTO statement is
issued for a cursor that does
not use any parameter
markers, the processing will be
optimized by pre-OPENing the
cursor when the PREPARE is
executed.

SQLE-CONN-SETTING

466 Administrative API Reference

Table 33. Connection Settings (continued)

Type Value Description

SQL_DEFERRED_PREPARE_
ALL

Same as YES, except that a
PREPARE INTO statement
which contains parameter
markers is deferred. If a
PREPARE INTO statement
does not contain parameter
markers, pre-OPENing of the
cursor will still be performed.
If the PREPARE statement uses
the INTO clause to return an
SQLDA, the application must
not reference the content of
this SQLDA until the OPEN,
DESCRIBE, or EXECUTE
statement is issued and
returned.

SQL_CONNECT_NODE Between 0 and 999, or the
keyword
SQL_CONN_CATALOG_
NODE.

Specifies the node to which a
connect is to be made.
Overrides the value of the
environment variable
DB2NODE.

For example, if nodes 1, 2, and
3 are defined, the client only
needs to be able to access one
of these nodes. If only node 1
containing databases has been
cataloged, and this parameter
is set to 3, the next connect
attempt will result in a
connection at node 3, after an
initial connection at node 1.

SQL_ATTACH_NODE Between 0 and 999. Specifies the node to which an
attach is to be made. Overrides
the value of the environment
variable DB2NODE.

For example, if nodes 1, 2, and
3 are defined, the client only
needs to be able to access one
of these nodes. If only node 1
containing databases has been
cataloged, and this parameter
is set to 3, then the next attach
attempt will result in an
attachment at node 3, after an
initial attachment at node 1.

Note: These field names are defined for the C programming language. There are similar names
for FORTRAN and COBOL, which have the same semantics.

SQLE-CONN-SETTING

Chapter 3. Data Structures 467

Language Syntax
C Structure

COBOL Structure

/* File: sqlenv.h */
/* Structure: SQLE-CONN-SETTING */
/* ... */
SQL_STRUCTURE sqle_conn_setting
{

unsigned short type;
unsigned short value;

};
/* ... */

* File: sqlenv.cbl
01 SQLE-CONN-SETTING.

05 SQLE-CONN-SETTING-ITEM OCCURS 7 TIMES.
10 SQLE-CONN-TYPE PIC S9(4) COMP-5.
10 SQLE-CONN-VALUE PIC S9(4) COMP-5.

*

SQLE-CONN-SETTING

468 Administrative API Reference

SQLE-NODE-APPC

This structure is used to catalog APPC nodes (see “sqlectnd - Catalog Node”
on page 168).

Table 34. Fields in the SQLE-NODE-APPC Structure

Field Name Data Type Description

LOCAL_LU CHAR(8) Local_lu name.

PARTNER_LU CHAR(8) Alias Partner_lu name.

MODE CHAR(8) Mode.

Note: The character fields passed in this structure must be null terminated or blank filled up to
the length of the field.

Language Syntax
C Structure

COBOL Structure

/* File: sqlenv.h */
/* Structure: SQLE-NODE-APPC */
/* ... */
SQL_STRUCTURE sqle_node_appc
{

_SQLOLDCHAR local_lu[SQL_LOCLU_SZ + 1];
_SQLOLDCHAR partner_lu[SQL_RMTLU_SZ + 1];
_SQLOLDCHAR mode[SQL_MODE_SZ + 1];

};
/* ... */

* File: sqlenv.cbl
01 SQL-NODE-APPC.

05 LOCAL-LU PIC X(8).
05 FILLER PIC X.
05 PARTNER-LU PIC X(8).
05 FILLER PIC X.
05 TRANS-MODE PIC X(8).
05 FILLER PIC X.

*

SQLE-NODE-APPC

Chapter 3. Data Structures 469

SQLE-NODE-APPN

This structure is used to catalog APPN nodes (see “sqlectnd - Catalog Node”
on page 168).

Table 35. Fields in the SQLE-NODE-APPN Structure

Field Name Data Type Description

NETWORKID CHAR(8) Network ID.

REMOTE_LU CHAR(8) Alias Remote_lu name.

LOCAL_LU CHAR(8) Alias Local_lu name.

MODE CHAR(8) Mode.

Note: The character fields passed in this structure must be null terminated or blank filled up to
the length of the field.

Language Syntax
C Structure

COBOL Structure

/* File: sqlenv.h */
/* Structure: SQLE-NODE-APPN */
/* ... */
SQL_STRUCTURE sqle_node_appn
{

_SQLOLDCHAR networkid[SQL_NETID_SZ + 1];
_SQLOLDCHAR remote_lu[SQL_RMTLU_SZ + 1];
_SQLOLDCHAR local_lu[SQL_LOCLU_SZ + 1];
_SQLOLDCHAR mode[SQL_MODE_SZ + 1];

};
/* ... */

* File: sqlenv.cbl
01 SQL-NODE-APPN.

05 NETWORKID PIC X(8).
05 FILLER PIC X.
05 REMOTE-LU PIC X(8).
05 FILLER PIC X.
05 LOCAL-LU PIC X(8).
05 FILLER PIC X.
05 TRANS-MODE PIC X(8).
05 FILLER PIC X.

*

SQLE-NODE-APPN

470 Administrative API Reference

SQLE-NODE-CPIC

This structure is used to catalog CPIC nodes (see “sqlectnd - Catalog Node”
on page 168).

Table 36. Fields in the SQLE-NODE-CPIC Structure

Field Name Data Type Description

SYM_DEST_NAME CHAR(8) Symbolic destination name of
remote partner.

SECURITY_TYPE SMALLINT Security type.

Note: The character fields passed in this structure must be null terminated or blank filled up to
the length of the field.

Valid values for SECURITY_TYPE (defined in sqlenv) are:

SQL_CPIC_SECURITY_NONE

SQL_CPIC_SECURITY_SAME

SQL_CPIC_SECURITY_PROGRAM

Language Syntax
C Structure

COBOL Structure

/* File: sqlenv.h */
/* Structure: SQLE-NODE-CPIC */
/* ... */
SQL_STRUCTURE sqle_node_cpic
{

_SQLOLDCHAR sym_dest_name[SQL_SYM_DEST_NAME_SZ+1];
unsigned short security_type;

};
/* ... */

* File: sqlenv.cbl
01 SQL-NODE-CPIC.

05 SYM-DEST-NAME PIC X(8).
05 FILLER PIC X.
05 FILLER PIC X(1).
05 SECURITY-TYPE PIC 9(4) COMP-5.

*

SQLE-NODE-CPIC

Chapter 3. Data Structures 471

SQLE-NODE-IPXSPX

This structure is used to catalog IPX/SPX nodes (see “sqlectnd - Catalog
Node” on page 168).

Table 37. Fields in the SQLE-NODE-IPXSPX Structure

Field Name Data Type Description

FILESERVER CHAR(48) Name of the NetWare file server where the
DB2 server instance is registered.

OBJECTNAME CHAR(48) The database manager server instance is
represented as the object, objectname, on the
NetWare file server. The server’s IPX/SPX
internetwork address is stored and retrieved
from this object.

Note: The character fields passed in this structure must be null terminated or blank filled up to
the length of the field.

Language Syntax
C Structure

COBOL Structure

/* File: sqlenv.h */
/* Structure: SQLE-NODE-IPXSPX */
/* ... */
SQL_STRUCTURE sqle_node_ipxspx
{

char fileserver[SQL_FILESERVER_SZ+1];
char objectname[SQL_OBJECTNAME_SZ+1];

};
/* ... */

* File: sqlenv.cbl
01 SQL-NODE-IPXSPX.

05 SQL-FILESERVER PIC X(48).
05 FILLER PIC X.
05 SQL-OBJECTNAME PIC X(48).
05 FILLER PIC X.

*

SQLE-NODE-IPXSPX

472 Administrative API Reference

SQLE-NODE-LOCAL

This structure is used to catalog local nodes (see “sqlectnd - Catalog Node” on
page 168).

Table 38. Fields in the SQLE-NODE-LOCAL Structure

Field Name Data Type Description

INSTANCE_NAME CHAR(8) Name of an instance.

Note: The character fields passed in this structure must be null terminated or blank filled up to
the length of the field.

Language Syntax
C Structure

COBOL Structure

/* File: sqlenv.h */
/* Structure: SQLE-NODE-LOCAL */
/* ... */
SQL_STRUCTURE sqle_node_local
{

char instance_name[SQL_INSTNAME_SZ+1];
};
/* ... */

* File: sqlenv.cbl
01 SQL-NODE-LOCAL.

05 SQL-INSTANCE-NAME PIC X(8).
05 FILLER PIC X.

*

SQLE-NODE-LOCAL

Chapter 3. Data Structures 473

SQLE-NODE-NETB

This structure is used to catalog NetBIOS nodes (see “sqlectnd - Catalog
Node” on page 168).

Table 39. Fields in the SQLE-NODE-NETB Structure

Field Name Data Type Description

ADAPTER SMALLINT Local LAN adapter.

REMOTE_NNAME CHAR(8) Nname of the remote
workstation that is stored in
the database manager
configuration file on the server
instance.

Note: The character fields passed in this structure must be null terminated or blank filled up to
the length of the field.

Language Syntax
C Structure

COBOL Structure

/* File: sqlenv.h */
/* Structure: SQLE-NODE-NETB */
/* ... */
SQL_STRUCTURE sqle_node_netb
{

unsigned short adapter;
_SQLOLDCHAR remote_nname[SQL_RMTLU_SZ + 1];

};
/* ... */

* File: sqlenv.cbl
01 SQL-NODE-NETB.

05 ADAPTER PIC 9(4) COMP-5.
05 REMOTE-NNAME PIC X(8).
05 FILLER PIC X.
05 FILLER PIC X(1).

*

SQLE-NODE-NETB

474 Administrative API Reference

SQLE-NODE-NPIPE

This structure is used to catalog named pipe nodes (see “sqlectnd - Catalog
Node” on page 168).

Table 40. Fields in the SQLE-NODE-NPIPE Structure

Field Name Data Type Description

COMPUTERNAME CHAR(15) Computer name.

INSTANCE_NAME CHAR(8) Name of an instance.

Note: The character fields passed in this structure must be null terminated or blank filled up to
the length of the field.

Language Syntax
C Structure

COBOL Structure

/* File: sqlenv.h */
/* Structure: SQLE-NODE-NPIPE */
/* ... */
SQL_STRUCTURE sqle_node_npipe
{

char computername[SQL_COMPUTERNAME_SZ+1];
char instance_name[SQL_INSTNAME_SZ+1];

};
/* ... */

* File: sqlenv.cbl
01 SQL-NODE-NPIPE.

05 COMPUTERNAME PIC X(15).
05 FILLER PIC X.
05 INSTANCE-NAME PIC X(8).
05 FILLER PIC X.

*

SQLE-NODE-NPIPE

Chapter 3. Data Structures 475

SQLE-NODE-STRUCT

This structure is used to catalog nodes (see “sqlectnd - Catalog Node” on
page 168).

Table 41. Fields in the SQLE-NODE-STRUCT Structure

Field Name Data Type Description

STRUCT_ID SMALLINT Structure identifier.

CODEPAGE SMALLINT Code page for comment.

COMMENT CHAR(30) Optional description of the
node.

NODENAME CHAR(8) Local name for the node
where the database is located.

PROTOCOL CHAR(1) Communications protocol
type.

Note: The character fields passed in this structure must be null terminated or blank filled up to
the length of the field.

Valid values for PROTOCOL (defined in sqlenv) are:

SQL_PROTOCOL_APPC

SQL_PROTOCOL_APPN

SQL_PROTOCOL_CPIC

SQL_PROTOCOL_IPXSPX

SQL_PROTOCOL_LOCAL

SQL_PROTOCOL_NETB

SQL_PROTOCOL_NPIPE

SQL_PROTOCOL_SOCKS

SQL_PROTOCOL_TCPIP

SQLE-NODE-STRUCT

476 Administrative API Reference

Language Syntax
C Structure

COBOL Structure

/* File: sqlenv.h */
/* Structure: SQLE-NODE-STRUCT */
/* ... */
SQL_STRUCTURE sqle_node_struct
{

unsigned short struct_id;
unsigned short codepage;
_SQLOLDCHAR comment[SQL_CMT_SZ + 1];
_SQLOLDCHAR nodename[SQL_NNAME_SZ + 1];
unsigned char protocol;

};
/* ... */

* File: sqlenv.cbl
01 SQL-NODE-STRUCT.

05 STRUCT-ID PIC 9(4) COMP-5.
05 CODEPAGE PIC 9(4) COMP-5.
05 COMMENT PIC X(30).
05 FILLER PIC X.
05 NODENAME PIC X(8).
05 FILLER PIC X.
05 PROTOCOL PIC X.
05 FILLER PIC X(1).

*

SQLE-NODE-STRUCT

Chapter 3. Data Structures 477

SQLE-NODE-TCPIP

This structure is used to catalog TCP/IP nodes (see “sqlectnd - Catalog Node”
on page 168).

Note: To catalog a TCP/IP SOCKS node, set the PROTOCOL type in the node
directory structure to SQL_PROTOCOL_SOCKS before calling the sqlectnd
API (see “SQLE-NODE-STRUCT” on page 476).

Table 42. Fields in the SQLE-NODE-TCPIP Structure

Field Name Data Type Description

HOSTNAME CHAR(255) The name of the TCP/IP host on which the
DB2 server instance resides.

SERVICE_NAME CHAR(14) TCP/IP service name or associated port
number of the DB2 server instance.

Note: The character fields passed in this structure must be null terminated or blank filled up to
the length of the field.

Language Syntax
C Structure

COBOL Structure

/* File: sqlenv.h */
/* Structure: SQLE-NODE-TCPIP */
/* ... */
SQL_STRUCTURE sqle_node_tcpip
{

_SQLOLDCHAR hostname[SQL_HOSTNAME_SZ+1];
_SQLOLDCHAR service_name[SQL_SERVICE_NAME_SZ+1];

};
/* ... */

* File: sqlenv.cbl
01 SQL-NODE-TCPIP.

05 HOSTNAME PIC X(255).
05 FILLER PIC X.
05 SERVICE-NAME PIC X(14).
05 FILLER PIC X.

*

SQLE-NODE-TCPIP

478 Administrative API Reference

SQLE-REG-NWBINDERY

This structure is used to register/deregister the DB2 server in/from the
bindery on the NetWare file server (see “sqleregs - Register” on page 241, and
“sqledreg - Deregister” on page 186).

Table 43. Fields in the SQLE-REG-NWBINDERY Structure

Field Name Data Type Description

UID CHAR(48) User ID used to log into the NetWare file
server.

PSWD CHAR(128) Password used to validate the user ID.

Language Syntax
C Structure

COBOL Structure

/* File: sqlenv.h */
/* Structure: SQLE-REG-NWBINDERY */
/* ... */
SQL_STRUCTURE sqle_reg_nwbindery
{

char uid[SQL_NW_UID_SZ+1];
unsigned short reserved_len_1;
char pswd[SQL_NW_PSWD_SZ+1];
unsigned short reserved_len_2;

};
/* ... */

* File: sqlenv.cbl
01 SQLE-REG-NWBINDERY.

05 SQL-UID PIC X(48).
05 FILLER PIC X.
05 FILLER PIC X(1).
05 SQL-UID-LEN PIC 9(4) COMP-5.
05 SQL-PSWD PIC X(128).
05 FILLER PIC X.
05 FILLER PIC X(1).
05 SQL-PSWD-LEN PIC 9(4) COMP-5.

*

SQLE-REG-NWBINDERY

Chapter 3. Data Structures 479

SQLE-START-OPTIONS

This structure is used to provide the database manager start-up options.

Table 44. Fields in the SQLE-START-OPTIONS Structure

Field Name Data Type Description

SQLOPTID CHAR An ″eyecatcher″ value which
must be set to
SQLE_STARTOPTID_V51.

ISPROFILE sqluint32 Indicates whether a profile is
specified. If this field indicates
that a profile is not specified,
the file db2profile is used.

PROFILE CHAR(236) The name of the profile file to
be executed at each node to
define the DB2 environment
(MPP only). This file is
executed before the nodes are
started. The default value is
db2profile.

ISNODENUM sqluint32 Indicates whether a node
number is specified. If
specified, the start command
only affects the specified node.

NODENUM SQL_PDB_NODE_TYPE Node number.

OPTION sqluint32 Specifies an action. See below
for values.

ISHOSTNAME sqluint32 Indicates whether a host name
is specified.

HOSTNAMEa CHAR(256) System name.

ISPORT sqluint32 Indicates whether a port
number is specified.

PORTa SQL_PDB_PORT_TYPE Port number.

ISNETNAME sqluint32 Indicates whether a net name
is specified.

NETNAMEa CHAR(256) Net name.

TBLSPACE_TYPE sqluint32 Specifies the type of system
temporary table space
definitions to be used for the
node being added. See below
for values.

SQLE-START-OPTIONS

480 Administrative API Reference

Table 44. Fields in the SQLE-START-OPTIONS Structure (continued)

Field Name Data Type Description

TBLSPACE_NODE SQL_PDB_NODE_TYPE Specifies the node number
from which the system
temporary table space
definitions should be obtained.
The node number must exist
in the db2nodes.cfg file, and is
only used if the tblspace_type
field is set to
SQLE_TABLESPACES_LIKE_NODE.

ISCOMPUTER sqluint32 Indicates whether a computer
name is specified. Valid on
OS/2 or the Windows
operating system only.

COMPUTER CHAR(16) Computer name. Valid on
OS/2 or the Windows
operating system only.

PUSERNAME CHAR Logon account user name.
Valid on OS/2 or the Windows
operating system only.

PPASSWORD CHAR Logon account password.
Valid on OS/2 or the Windows
operating system only.

a This field is valid only for the SQLE_ADDNODE or the SQLE_RESTART value of the OPTION field.

Valid values for OPTION (defined in sqlenv) are:

SQLE_NONE
Issue the normal db2start operation.

SQLE_ADDNODE
Issue the ADD NODE command.

SQLE_RESTART
Issue the RESTART DATABASE command.

SQLE_STANDALONE
Start the node in STANDALONE mode.

For more information about these options, see the Command Reference.

Valid values for TBLSPACE_TYPE (defined in sqlenv) are:

SQLE_TABLESPACES_NONE
Do not create any system temporary table spaces.

SQLE_TABLESPACES_LIKE_NODE
The containers for the system temporary table spaces should be the
same as those for the specified node.

SQLE-START-OPTIONS

Chapter 3. Data Structures 481

SQLE_TABLESPACES_LIKE_CATALOG
The containers for the system temporary table spaces should be the
same as those for the catalog node of each database.

Language Syntax
C Structure

/* File: sqlenv.h */
/* Structure: SQLE-START-OPTIONS */
/* ... */
SQL_STRUCTURE sqle_start_options
{

char sqloptid[8];
sqluint32 isprofile;
char profile[SQL_PROFILE_SZ+1];
sqluint32 isnodenum;
SQL_PDB_NODE_TYPE nodenum;
sqluint32 option;
sqluint32 ishostname;
char hostname[SQL_HOSTNAME_SZ+1];
sqluint32 isport;
SQL_PDB_PORT_TYPE port;
sqluint32 isnetname;
char netname[SQL_HOSTNAME_SZ+1];
sqluint32 tblspace_type;
SQL_PDB_NODE_TYPE tblspace_node;
sqluint32 iscomputer;
char computer[SQL_COMPUTERNAME_SZ+1];
char *pUserName;
char *pPassword;

};
/* ... */

SQLE-START-OPTIONS

482 Administrative API Reference

COBOL Structure

* File: sqlenv.cbl
01 SQLE-START-OPTIONS.

05 SQLOPTID PIC X(8).
05 SQL-ISPROFILE PIC 9(9) COMP-5.
05 SQL-PROFILE PIC X(235).
05 FILLER PIC X.
05 SQL-ISNODENUM PIC 9(9) COMP-5.
05 SQL-NODENUM PIC S9(4) COMP-5.
05 FILLER PIC X(2).
05 SQL-OPTION PIC 9(9) COMP-5.
05 SQL-ISHOSTNAME PIC 9(9) COMP-5.
05 SQL-HOSTNAME PIC X(255).
05 FILLER PIC X.
05 SQL-ISPORT PIC 9(9) COMP-5.
05 SQL-PORT PIC S9(9) COMP-5.
05 SQL-ISNETNAME PIC 9(9) COMP-5.
05 SQL-NETNAME PIC X(255).
05 FILLER PIC X.
05 SQL-TBLSPACE-TYPE PIC 9(9) COMP-5.
05 SQL-TBLSPACE-NODE PIC S9(4) COMP-5.
05 FILLER PIC X(2).
05 SQL-ISCOMPUTER PIC 9(9) COMP-5.
05 SQL-COMPUTER PIC X(15).
05 FILLER PIC X.
05 SQL-P-USER-NAME USAGE IS POINTER.
05 SQL-P-PASSWORD USAGE IS POINTER.

*

SQLE-START-OPTIONS

Chapter 3. Data Structures 483

SQLEDBCOUNTRYINFO

This structure is used to provide code set and territory options to “sqlecrea -
Create Database” on page 159.

Table 45. Fields in the SQLEDBCOUNTRYINFO Structure

Field Name Data Type Description

SQLDBCODESET CHAR(9) Database code set.

SQLDBLOCALE CHAR(5) Database territory.

Language Syntax
C Structure

COBOL Structure

/* File: sqlenv.h */
/* Structure: SQLEDBCOUNTRYINFO */
/* ... */
SQL_STRUCTURE sqledbcountryinfo
{

char sqldbcodeset[SQL_CODESET_LEN + 1];
char sqldblocale[SQL_LOCALE_LEN + 1];

};
/* ... */

* File: sqlenv.cbl
01 SQLEDBCOUNTRYINFO.

05 SQLDBCODESET PIC X(9).
05 FILLER PIC X.
05 SQLDBLOCALE PIC X(5).
05 FILLER PIC X.

*

SQLEDBCOUNTRYINFO

484 Administrative API Reference

SQLEDBDESC

The Database Description Block (SQLEDBDESC) structure can be used during
a call to “sqlecrea - Create Database” on page 159 to specify permanent values
for database attributes. These attributes include database comment, collating
sequences, and table space definitions.

Table 46. Fields in the SQLEDBDESC Structure

Field Name Data Type Description

SQLDBDID CHAR(8) A structure identifier and ″eye-catcher″ for storage
dumps. It is a string of eight bytes that must be
initialized with the value of SQLE_DBDESC_2 (defined in
sqlenv). The contents of this field are validated for
version control.

SQLDBCCP INTEGER The code page of the database comment. This value is
no longer used by the database manager.

SQLDBCSS INTEGER A value indicating the source of the database collating
sequence. See below for values.
Note: To specify the IDENTITY collating sequence
when creating a database, specify SQL_CS_NONE
(which implements a binary collating sequence).

SQLDBUDC CHAR(256) The nth byte of this field contains the sort weight of the
code point whose underlying decimal representation is
n in the code page of the database. If SQLDBCSS is not
equal to SQL_CS_USER, this field is ignored.

SQLDBCMT CHAR(30) The comment for the database.

SQLDBSGP INTEGER Reserved field. No longer used.

SQLDBNSG SHORT A value which indicates the number of file segments to
be created in the database. The minimum value for this
field is 1 and the maximum value for this field is 256. If
a value of -1 is supplied, this field will default to 1.
Note: SQLDBNSG set to zero produces a default for
Version 1 compatibility.

SQLTSEXT INTEGER A value, in 4KB pages, which indicates the default
extent size for each table space in the database. The
minimum value for this field is 2 and the maximum
value for this field is 256. If a value of -1 is supplied,
this field will default to 32.

SQLCATTS Pointer A pointer to a table space description control block,
SQLETSDESC, which defines the catalog table space. If
null, a default catalog table space based on the values
of SQLTSEXT and SQLDBNSG will be created.

SQLUSRTS Pointer A pointer to a table space description control block,
SQLETSDESC, which defines the user table space. If
null, a default user table space based on the values of
SQLTSEXT and SQLDBNSG will be created.

SQLEDBDESC

Chapter 3. Data Structures 485

Table 46. Fields in the SQLEDBDESC Structure (continued)

Field Name Data Type Description

SQLTMPTS Pointer A pointer to a table space description control block,
SQLETSDESC, which defines the system temporary
table space. If null, a default system temporary table
space based on the values of SQLTSEXT and
SQLDBNSG will be created.

The Tablespace Description Block structure (SQLETSDESC) is used to specify
the attributes of any of the three initial table spaces.

Table 47. Fields in the SQLETSDESC Structure

Field Name Data Type Description

SQLTSDID CHAR(8) A structure identifier and ″eye-catcher″ for storage
dumps. It is a string of eight bytes that must be
initialized with the value of SQLE_DBTSDESC_1 (defined
in sqlenv). The contents of this field are validated for
version control.

SQLEXTNT INTEGER Table space extentsize, in 4KB pages. If a value of -1 is
supplied, this field will default to the current value of
the dft_extent_sz configuration parameter.

SQLPRFTC INTEGER Table space prefetchsize, in 4KB pages. If a value of -1
is supplied, this field will default to the current value
of the dft_prefetch_sz configuration parameter.

SQLPOVHD DOUBLE Table space I/O overhead, in milliseconds. If a value of
-1 is supplied, this field will default to an internal
database manager value (currently 24.1 ms) that could
change with future releases.

SQLTRFRT DOUBLE Table space I/O transfer rate, in milliseconds. If a value
of -1 is supplied, this field will default to an internal
database manager value (currently 0.9 ms) that could
change with future releases.

SQLTSTYP CHAR(1) Indicates whether the table space is system-managed or
database-managed. See below for values.

SQLCCNT SMALLINT Number of containers being assigned to the table space.
Indicates how many
SQLCTYPE/SQLCSIZE/SQLCLEN/SQLCONTR values
follow.

CONTAINR Array An array of sqlccnt SQLETSCDESC structures.

Table 48. Fields in the SQLETSCDESC Structure

Field Name Data Type Description

SQLCTYPE CHAR(1) Identifies the type of this container. See below for
values.

SQLCSIZE INTEGER Size of the container identified in SQLCONTR, specified
in 4KB pages. Valid only when SQLTSTYP is set to
SQL_TBS_TYP_DMS.

SQLEDBDESC

486 Administrative API Reference

Table 48. Fields in the SQLETSCDESC Structure (continued)

Field Name Data Type Description

SQLCLEN SMALLINT Length of following SQLCONTR value.

SQLCONTR CHAR(256) Container string.

Valid values for SQLDBCSS (defined in sqlenv) are:

SQL_CS_SYSTEM
Collating sequence from system.

SQL_CS_USER
Collating sequence from user.

SQL_CS_NONE
None.

SQLE_CS_COMPATABILITY
Use pre-Version 5 collating sequence.

Valid values for SQLTSTYP (defined in sqlenv) are:

SQL_TBS_TYP_SMS
System managed

SQL_TBS_TYP_DMS
Database managed.

Valid values for SQLCTYPE (defined in sqlenv) are:

SQL_TBSC_TYP_DEV
Device. Valid only when SQLTSTYP = SQL_TBS_TYP_DMS.

SQL_TBSC_TYP_FILE
File. Valid only when SQLTSTYP = SQL_TBS_TYP_DMS.

SQL_TBSC_TYP_PATH
Path (directory). Valid only when SQLTSTYP = SQL_TBS_TYP_SMS.

SQLEDBDESC

Chapter 3. Data Structures 487

Language Syntax
C Structure

/* File: sqlenv.h */
/* Structure: SQLEDBDESC */
/* ... */
SQL_STRUCTURE sqledbdesc
{

_SQLOLDCHAR sqldbdid[8];
sqlint32 sqldbccp;
sqlint32 sqldbcss;
unsigned char sqldbudc[SQL_CS_SZ];
_SQLOLDCHAR sqldbcmt[SQL_CMT_SZ+1];
_SQLOLDCHAR pad[1];
sqluint32 sqldbsgp;
short sqldbnsg;
char pad2[2];
sqlint32 sqltsext;
struct SQLETSDESC *sqlcatts;
struct SQLETSDESC *sqlusrts;
struct SQLETSDESC *sqltmpts;

};
/* ... */

/* File: sqlenv.h */
/* Structure: SQLETSDESC */
/* ... */
SQL_STRUCTURE SQLETSDESC
{

char sqltsdid[8];
sqlint32 sqlextnt;
sqlint32 sqlprftc;
double sqlpovhd;
double sqltrfrt;
char sqltstyp;
char pad1;
short sqlccnt;
struct SQLETSCDESC containr[1];

};
/* ... */

SQLEDBDESC

488 Administrative API Reference

COBOL Structure

/* File: sqlenv.h */
/* Structure: SQLETSCDESC */
/* ... */
SQL_STRUCTURE SQLETSCDESC
{

char sqlctype;
char pad1[3];
sqlint32 sqlcsize;
short sqlclen;
char sqlcontr[SQLB_MAX_CONTAIN_NAME_SZ];
char pad2[2];

};
/* ... */

* File: sqlenv.cbl
01 SQLEDBDESC.

05 SQLDBDID PIC X(8).
05 SQLDBCCP PIC S9(9) COMP-5.
05 SQLDBCSS PIC S9(9) COMP-5.
05 SQLDBUDC PIC X(256).
05 SQLDBCMT PIC X(30).
05 FILLER PIC X.
05 SQL-PAD PIC X(1).
05 SQLDBSGP PIC 9(9) COMP-5.
05 SQLDBNSG PIC S9(4) COMP-5.
05 SQL-PAD2 PIC X(2).
05 SQLTSEXT PIC S9(9) COMP-5.
05 SQLCATTS USAGE IS POINTER.
05 SQLUSRTS USAGE IS POINTER.
05 SQLTMPTS USAGE IS POINTER.

*

* File: sqletsd.cbl
01 SQLETSDESC.

05 SQLTSDID PIC X(8).
05 SQLEXTNT PIC S9(9) COMP-5.
05 SQLPRFTC PIC S9(9) COMP-5.
05 SQLPOVHD USAGE COMP-2.
05 SQLTRFRT USAGE COMP-2.
05 SQLTSTYP PIC X.
05 SQL-PAD1 PIC X.
05 SQLCCNT PIC S9(4) COMP-5.
05 SQL-CONTAINR OCCURS 001 TIMES.

10 SQLCTYPE PIC X.
10 SQL-PAD1 PIC X(3).
10 SQLCSIZE PIC S9(9) COMP-5.
10 SQLCLEN PIC S9(4) COMP-5.
10 SQLCONTR PIC X(256).
10 SQL-PAD2 PIC X(2).

*

SQLEDBDESC

Chapter 3. Data Structures 489

* File: sqlenv.cbl
01 SQLETSCDESC.

05 SQLCTYPE PIC X.
05 SQL-PAD1 PIC X(3).
05 SQLCSIZE PIC S9(9) COMP-5.
05 SQLCLEN PIC S9(4) COMP-5.
05 SQLCONTR PIC X(256).
05 SQL-PAD2 PIC X(2).

*

SQLEDBDESC

490 Administrative API Reference

SQLEDBSTOPOPT

This structure is used to provide the database manager stop options.

Table 49. Fields in the SQLEDBSTOPOPT Structure

Field Name Data Type Description

ISPROFILE sqluint32 Indicates whether a profile is
specified. If this field indicates
that a profile is not specified,
the file db2profile is used.

PROFILE CHAR(236) The name of the profile file
that was executed at startup to
define the DB2 environment
for those nodes that were
started (MPP only). If a profile
for “sqlepstart - Start Database
Manager” on page 230 was
specified, the same profile
must be specified here.

ISNODENUM sqluint32 Indicates whether a node
number is specified. If
specified, the start command
only affects the specified node.

NODENUM SQL_PDB_NODE_TYPE Node number.

OPTION sqluint32 Option.

CALLERAC sqluint32 Caller action. This field is
valid only for the SQLE_DROP
value of the OPTION field.

Valid values for OPTION (defined in sqlenv) are:

SQLE_NONE
Issue the normal db2stop operation.

SQLE_FORCE
Issue the FORCE APPLICATION (ALL) command.

SQLE_DROP
Drop the node from the db2nodes.cfg file.

For more information about these options, see the Command Reference.

Valid values for CALLERAC (defined in sqlenv) are:

SQLE_DROP
Initial call. This is the default value.

SQLE_CONTINUE
Subsequent call. Continue processing after a prompt.

SQLEDBSTOPOPT

Chapter 3. Data Structures 491

SQLE_TERMINATE
Subsequent call. Terminate processing after a prompt.

Language Syntax
C Structure

COBOL Structure

/* File: sqlenv.h */
/* Structure: SQLEDBSTOPOPT */
/* ... */
SQL_STRUCTURE sqledbstopopt
{

sqluint32 isprofile;
char profile[SQL_PROFILE_SZ+1];
sqluint32 isnodenum;
SQL_PDB_NODE_TYPE nodenum;
sqluint32 option;
sqluint32 callerac;

};
/* ... */

* File: sqlenv.cbl
01 SQLEDBSTOPOPT.

05 SQL-ISPROFILE PIC 9(9) COMP-5.
05 SQL-PROFILE PIC X(235).
05 FILLER PIC X.
05 SQL-ISNODENUM PIC 9(9) COMP-5.
05 SQL-NODENUM PIC S9(4) COMP-5.
05 FILLER PIC X(2).
05 SQL-OPTION PIC 9(9) COMP-5.
05 SQL-CALLERAC PIC 9(9) COMP-5.

*

SQLEDBSTOPOPT

492 Administrative API Reference

SQLEDINFO

This structure is used to return information after a call to “sqledgne - Get
Next Database Directory Entry” on page 178. It is shared by both the system
database directory and the local database directory.

Table 50. Fields in the SQLEDINFO Structure

Field Name Data Type Description

ALIAS CHAR(8) An alternate database name.

DBNAME CHAR(8) The name of the database.

DRIVE CHAR(215) The local database directory path name where
the database resides. This field is returned
only if the system database directory is
opened for scan.
Note: On OS/2, this field is CHAR(2); on
Windows NT, it is CHAR(12).

INTNAME CHAR(8) A token identifying the database subdirectory.
This field is returned only if the local database
directory is opened for scan.

NODENAME CHAR(8) The name of the node where the database is
located. This field is returned only if the
cataloged database is a remote database.

DBTYPE CHAR(20) Database manager release information.

COMMENT CHAR(30) The comment associated with the database.

COM_CODEPAGE SMALLINT The code page of the comment. Not used.

TYPE CHAR(1) Entry type. See below for values.

AUTHENTICATION SMALLINT Authentication type. See below for values.

GLBDBNAME CHAR(255) The global name of the target database in the
global (DCE) directory, if the entry is of type
SQL_DCE.

DCEPRINCIPAL CHAR(1024) The principal name if the authentication is of
type DCE or KERBEROS.

CAT_NODENUM SHORT Catalog node number.

NODENUM SHORT Node number.

Note: Both system and local database directory use the same structure, but only certain fields
are valid for each. Each character field returned is blank filled up to the length of the field.

Valid values for TYPE (defined in sqlenv) are:

SQL_INDIRECT
Database created by the current instance (as defined by the value of
the DB2INSTANCE environment variable).

SQL_REMOTE
Database resides at a different instance.

SQLEDINFO

Chapter 3. Data Structures 493

SQL_HOME
Database resides on this volume (always HOME in local database
directory).

SQL_DCE
Database resides in DCE directories.

Valid values for AUTHENTICATION (defined in sqlenv) are:

SQL_AUTHENTICATION_SERVER
Authentication of the user name and password takes place at the
server.

SQL_AUTHENTICATION_CLIENT
Authentication of the user name and password takes place at the
client.

SQL_AUTHENTICATION_DCS
Used for DB2 Connect.

SQL_AUTHENTICATION_DCE
Authentication takes place using DCE Security Services.

SQL_AUTHENTICATION_KERBEROS
Authentication takes place using Kerberos Security Mechanism.

SQL_AUTHENTICATION_NOT_SPECIFIED
DB2 no longer requires authentication to be kept in the database
directory. Specify this value when connecting to anything other than a
down-level (DB2 V2 or less) server.

SQLEDINFO

494 Administrative API Reference

Language Syntax
C Structure

COBOL Structure

/* File: sqlenv.h */
/* Structure: SQLEDINFO */
/* ... */
SQL_STRUCTURE sqledinfo
{

_SQLOLDCHAR alias[SQL_ALIAS_SZ];
_SQLOLDCHAR dbname[SQL_DBNAME_SZ];
_SQLOLDCHAR drive[SQL_DRIVE_SZ];
_SQLOLDCHAR intname[SQL_INAME_SZ];
_SQLOLDCHAR nodename[SQL_NNAME_SZ];
_SQLOLDCHAR dbtype[SQL_DBTYP_SZ];
_SQLOLDCHAR comment[SQL_CMT_SZ];
short com_codepage;
_SQLOLDCHAR type;
unsigned short authentication;
char glbdbname[SQL_DIR_NAME_SZ];
_SQLOLDCHAR dceprincipal[SQL_DCEPRIN_SZ];
short cat_nodenum;
short nodenum;

};
/* ... */

* File: sqlenv.cbl
01 SQLEDINFO.

05 SQL-ALIAS PIC X(8).
05 SQL-DBNAME PIC X(8).
05 SQL-DRIVE PIC X(215).
05 SQL-INTNAME PIC X(8).
05 SQL-NODENAME PIC X(8).
05 SQL-DBTYPE PIC X(20).
05 SQL-COMMENT PIC X(30).
05 FILLER PIC X(1).
05 SQL-COM-CODEPAGE PIC S9(4) COMP-5.
05 SQL-TYPE PIC X.
05 FILLER PIC X(1).
05 SQL-AUTHENTICATION PIC 9(4) COMP-5.
05 SQL-GLBDBNAME PIC X(255).
05 SQL-DCEPRINCIPAL PIC X(1024).
05 FILLER PIC X(1).
05 SQL-CAT-NODENUM PIC S9(4) COMP-5.
05 SQL-NODENUM PIC S9(4) COMP-5.

*

SQLEDINFO

Chapter 3. Data Structures 495

SQLENINFO

This structure returns information after a call to “sqlengne - Get Next Node
Directory Entry” on page 225.

Table 51. Fields in the SQLENINFO Structure

Field Name Data Type Description

NODENAME CHAR(8) Used for the NetBIOS protocol; the nname of
the node where the database is located (valid
in system directory only).

LOCAL_LU CHAR(8) Used for the APPN protocol; local logical unit.

PARTNER_LU CHAR(8) Used for the APPN protocol; partner logical
unit.

MODE CHAR(8) Used for the APPN protocol; transmission
service mode.

COMMENT CHAR(30) The comment associated with the node.

COM_CODEPAGE SMALLINT The code page of the comment. This field is
no longer used by the database manager.

ADAPTER SMALLINT Used for the NetBIOS protocol; the local
network adapter.

NETWORKID CHAR(8) Used for the APPN protocol; network ID.

PROTOCOL CHAR(1) Communications protocol.

SYM_DEST_NAME CHAR(8) Used for the APPC protocol; the symbolic
destination name.

SECURITY_TYPE SMALLINT Used for the APPC protocol; the security type.
See below for values.

HOSTNAME CHAR(255) Used for the TCP/IP protocol; the name of the
TCP/IP host on which the DB2 server instance
resides.

SERVICE_NAME CHAR(14) Used for the TCP/IP protocol; the TCP/IP
service name or associated port number of the
DB2 server instance.

FILESERVER CHAR(48) Used for the IPX/SPX protocol; the name of
the NetWare file server where the DB2 server
instance is registered.

OBJECTNAME CHAR(48) The database manager server instance is
represented as the object, objectname, on the
NetWare file server. The server’s IPX/SPX
internetwork address is stored and retrieved
from this object.

INSTANCE_NAME CHAR(8) Used for the local and NPIPE protocols; the
name of the server instance.

COMPUTERNAME CHAR(15) Used by the NPIPE protocol; the server node’s
computer name.

SYSTEM_NAME CHAR(21) The DB2 system name of the remote server.

REMOTE_INSTNAME CHAR(8) The name of the DB2 server instance.

SQLENINFO

496 Administrative API Reference

Table 51. Fields in the SQLENINFO Structure (continued)

Field Name Data Type Description

CATALOG_NODE_TYPE CHAR Catalog node type.

OS_TYPE UNSIGNED
SHORT

Identifies the operating system of the server.

Note: Each character field returned is blank filled up to the length of the field.

Valid values for SECURITY_TYPE (defined in sqlenv) are:

SQL_CPIC_SECURITY_NONE

SQL_CPIC_SECURITY_SAME

SQL_CPIC_SECURITY_PROGRAM

Language Syntax
C Structure

/* File: sqlenv.h */
/* Structure: SQLENINFO */
/* ... */
SQL_STRUCTURE sqleninfo
{

_SQLOLDCHAR nodename[SQL_NNAME_SZ];
_SQLOLDCHAR local_lu[SQL_LOCLU_SZ];
_SQLOLDCHAR partner_lu[SQL_RMTLU_SZ];
_SQLOLDCHAR mode[SQL_MODE_SZ];
_SQLOLDCHAR comment[SQL_CMT_SZ];
unsigned short com_codepage;
unsigned short adapter;
_SQLOLDCHAR networkid[SQL_NETID_SZ];
_SQLOLDCHAR protocol;
_SQLOLDCHAR sym_dest_name[SQL_SYM_DEST_NAME_SZ];
unsigned short security_type;
_SQLOLDCHAR hostname[SQL_HOSTNAME_SZ];
_SQLOLDCHAR service_name[SQL_SERVICE_NAME_SZ];
char fileserver[SQL_FILESERVER_SZ];
char objectname[SQL_OBJECTNAME_SZ];
char instance_name[SQL_INSTNAME_SZ];
char computername[SQL_COMPUTERNAME_SZ];
char system_name[SQL_SYSTEM_NAME_SZ];
char remote_instname[SQL_REMOTE_INSTNAME_SZ];
_SQLOLDCHAR catalog_node_type;
unsigned short os_type;

};
/* ... */

SQLENINFO

Chapter 3. Data Structures 497

COBOL Structure

* File: sqlenv.cbl
01 SQLENINFO.

05 SQL-NODE-NAME PIC X(8).
05 SQL-LOCAL-LU PIC X(8).
05 SQL-PARTNER-LU PIC X(8).
05 SQL-MODE PIC X(8).
05 SQL-COMMENT PIC X(30).
05 SQL-COM-CODEPAGE PIC 9(4) COMP-5.
05 SQL-ADAPTER PIC 9(4) COMP-5.
05 SQL-NETWORKID PIC X(8).
05 SQL-PROTOCOL PIC X.
05 SQL-SYM-DEST-NAME PIC X(8).
05 FILLER PIC X(1).
05 SQL-SECURITY-TYPE PIC 9(4) COMP-5.
05 SQL-HOSTNAME PIC X(255).
05 SQL-SERVICE-NAME PIC X(14).
05 SQL-FILESERVER PIC X(48).
05 SQL-OBJECTNAME PIC X(48).
05 SQL-INSTANCE-NAME PIC X(8).
05 SQL-COMPUTERNAME PIC X(15).
05 SQL-SYSTEM-NAME PIC X(21).
05 SQL-REMOTE-INSTNAME PIC X(8).
05 SQL-CATALOG-NODE-TYPE PIC X.
05 SQL-OS-TYPE PIC 9(4) COMP-5.

*

SQLENINFO

498 Administrative API Reference

SQLFUPD

This structure passes information about database configuration files and the
database manager configuration file. It is used with the database configuration
and database manager configuration APIs.

Table 52. Fields in the SQLFUPD Structure

Field Name Data Type Description

TOKEN UINT16 Specifies the configuration value to return or
update.

PTRVALUE Pointer A pointer to an application allocated buffer
that holds the data specified by TOKEN.

Valid data types for the token element are:

Uint16 Unsigned 2-byte integer

Sint16 Signed 2-byte integer

Uint32 Unsigned 4-byte integer

Sint32 Signed 4-byte integer

float 4-byte floating-point decimal

char(n) String of length n (not including null termination).

For a complete description of the database configuration parameters, see the
Administration Guide.

Valid entries for the SQLFUPD token element are listed below:

Table 53. Updatable Database Configuration Parameters

Parameter Name Token Token Value Data Type

app_ctl_heap_sz SQLF_DBTN_APP_CTL_HEAP_SZ 500 Uint16

applheapsz SQLF_DBTN_APPLHEAPSZ 51 Uint16

audit_buf_sz SQLF_KTN_AUDIT_BUF_SZ 312 Sint32

autorestart SQLF_DBTN_AUTO_RESTART 25 Uint16

avg_appls SQLF_DBTN_AVG_APPLS 47 Uint16

buffpage SQLF_DBTN_BUFF_PAGE 90 Uint32

catalogcache_sz SQLF_DBTN_CATALOGCACHE_SZ 56 Sint32

chngpgs_thresh SQLF_DBTN_CHNGPGS_THRESH 38 Uint16

copyprotect SQLF_DBTN_COPY_PROTECT 22 Uint16

dbheap SQLF_DBTN_DB_HEAP 701 Uint64

dft_degree SQLF_DBTN_DFT_DEGREE 301 Sint32

dft_extent_sz SQLF_DBTN_DFT_EXTENT_SZ 54 Uint32

SQLFUPD

Chapter 3. Data Structures 499

Table 53. Updatable Database Configuration Parameters (continued)

Parameter Name Token Token Value Data Type

dft_loadrec_ses SQLF_DBTN_DFT_LOADREC_SES 42 Sint16

dft_prefetch_sz SQLF_DBTN_DFT_PREFETCH_SZ 40 Sint16

dft_queryopt SQLF_DBTN_DFT_QUERYOPT 57 Sint32

dft_refresh_age SQLF_DBTN_DFT_REFRESH_AGE 702 char(22)

dft_sqlmathwarn SQLF_DBTN_DFT_SQLMATHWARN 309 Sint16

dir_obj_name SQLF_DBTN_DIR_OBJ_NAME 46 char(255)

discover SQLF_DBTN_DISCOVER 308 Uint16

dl_expint SQLF_DBTN_DL_EXPINT 350 Sint32

dl_num_copies SQLF_DBTN_DL_NUM_COPIES 351 Uint16

dl_time_drop SQLF_DBTN_DL_TIME_DROP 353 Uint16

dl_token SQLF_DBTN_DL_TOKEN 602 char(10)

dl_upper SQLF_DBTN_DL_UPPER 603 Sint16

dlchktime SQLF_DBTN_DLCHKTIME 9 Uint32

dyn_query_mgmt SQLF_DBTN_DYN_QUERY_MGMT 604 Uint16

estore_seg_sz SQLF_DBTN_ESTORE_SEG_SZ 303 Sint32

indexreca SQLF_DBTN_INDEXREC 30 Uint16

indexsort SQLF_DBTN_INDEXSORT 35 Uint16

locklist SQLF_DBTN_LOCKLIST 1 Uint16

locktimeout SQLF_DBTN_LOCKTIMEOUT 34 Sint16

logbufsz SQLF_DBTN_LOGBUFSZ 33 Uint16

logfilsiz SQLF_DBTN_LOGFIL_SIZ 92 Uint32

logprimary SQLF_DBTN_LOGPRIMARY 16 Uint16

logretainb SQLF_DBTN_LOG_RETAIN 23 Uint16

logsecond SQLF_DBTN_LOGSECOND 17 Uint16

maxappls SQLF_DBTN_MAXAPPLS 6 Uint16

maxfilop SQLF_DBTN_MAXFILOP 3 Uint16

maxlocks SQLF_DBTN_MAXLOCKS 15 Uint16

mincommit SQLF_DBTN_MINCOMMIT 32 Uint16

newlogpath SQLF_DBTN_NEWLOGPATH 20 char(242)

num_db_backups SQLF_DBTN_NUM_DB_BACKUPS 352 Uint16

num_estore_segs SQLF_DBTN_NUM_ESTORE_SEGS 304 Sint32

num_freqvalues SQLF_DBTN_NUM_FREQVALUES 36 Uint16

num_iocleaners SQLF_DBTN_NUM_IOCLEANERS 37 Uint16

num_ioservers SQLF_DBTN_NUM_IOSERVERS 39 Uint16

num_quantiles SQLF_DBTN_NUM_QUANTILES 48 Uint16

pckcachesz SQLF_DBTN_PCKCACHE_SZ 505 Uint32

SQLFUPD

500 Administrative API Reference

Table 53. Updatable Database Configuration Parameters (continued)

Parameter Name Token Token Value Data Type

rec_his_retentn SQLF_DBTN_REC_HIS_RETENTN 43 Sint16

seqdetect SQLF_DBTN_SEQDETECT 41 Uint16

softmax SQLF_DBTN_SOFTMAX 5 Uint16

sortheap SQLF_DBTN_SORT_HEAP 52 Uint32

stat_heap_sz SQLF_DBTN_STAT_HEAP_SZ 45 Uint32

stmtheap SQLF_DBTN_STMTHEAP 53 Uint16

tsm_mgmtclass SQLF_DBTN_TSM_MGMTCLASS 307 char(30)

tsm_nodename SQLF_DBTN_TSM_NODENAME 306 char(64)

tsm_owner SQLF_DBTN_TSM_OWNER 305 char(64)

tsm_password SQLF_DBTN_TSM_PASSWORD 501 char(64)

userexit SQLF_DBTN_USER_EXIT 24 Uint16

util_heap_sz SQLF_DBTN_UTIL_HEAP_SZ 55 Uint32
a Valid values (defined in sqlutil.h):

SQLF_INX_REC_SYSTEM (0)
SQLF_INX_REC_REFERENCE (1)
SQLF_INX_REC_RESTART (2)

b Valid values (defined in sqlutil.h):

SQLF_LOGRETAIN_NO (0)
SQLF_LOGRETAIN_RECOVERY (1)
SQLF_LOGRETAIN_CAPTURE (2)

Table 54. Non-updatable Database Configuration Parameters

Parameter Name Token Token
Value

Data Type

backup_pending SQLF_DBTN_BACKUP_PENDING 112 Uint16

codepage SQLF_DBTN_CODEPAGE 101 Uint16

codeset SQLF_DBTN_CODESET 120 char(9)a

collate_info SQLF_DBTN_COLLATE_INFO 44 char(260)

country SQLF_DBTN_COUNTRY 100 Uint16

database_consistent SQLF_DBTN_CONSISTENT 111 Uint16

database_level SQLF_DBTN_DATABASE_LEVEL 124 Uint16

log_retain_status SQLF_DBTN_LOG_RETAIN_STATUS 114 Uint16

loghead SQLF_DBTN_LOGHEAD 105 char(12)

logpath SQLF_DBTN_LOGPATH 103 char(242)

multipage_alloc SQLF_DBTN_MULTIPAGE_ALLOC 506 Uint16

numsegs SQLF_DBTN_NUMSEGS 122 Uint16

release SQLF_DBTN_RELEASE 102 Uint16

restore_pending SQLF_DBTN_RESTORE_PENDING 503 Uint16

SQLFUPD

Chapter 3. Data Structures 501

Table 54. Non-updatable Database Configuration Parameters (continued)

Parameter Name Token Token
Value

Data Type

rollfwd_pending SQLF_DBTN_ROLLFWD_PENDING 113 Uint16

territory SQLF_DBTN_TERRITORY 121 char(5)b

user_exit_status SQLF_DBTN_USER_EXIT_STATUS 115 Uint16
a char(17) on HP-UX and Solaris.

b char(33) on HP-UX and Solaris.

For a complete description of the database manager configuration parameters,
see the Administration Guide.

Valid entries for the SQLFUPD token element are listed below:

Table 55. Updatable Database Manager Configuration Parameters

Parameter Name Token Token Value Data Type

agent_stack_sz SQLF_KTN_AGENT_STACK_SZ 61 Uint16

agentpri SQLF_KTN_AGENTPRI 26 Sint16

aslheapsz SQLF_KTN_ASLHEAPSZ 15 Uint32

audit_buf_sz SQLF_KTN_AUDIT_BUF_SZ 312 Sint32

authenticationa SQLF_KTN_AUTHENTICATION 78 Uint16

backbufsz SQLF_KTN_BACKBUFSZ 18 Uint32

catalog_noauth SQLF_KTN_CATALOG_NOAUTH 314 Uint16

comm_bandwidth SQLF_KTN_COMM_BANDWIDTH 307 float

conn_elapse SQLF_KTN_CONN_ELAPSE 508 Uint16

cpuspeed SQLF_KTN_CPUSPEED 42 float

datalinks SQLF_KTN_DATALINKS 603 Sint16

dft_account_str SQLF_KTN_DFT_ACCOUNT_STR 28 char(25)

dft_client_adpt SQLF_KTN_DFT_CLIENT_ADPT 82 Uint16

dft_client_comm SQLF_KTN_DFT_CLIENT_COMM 77 char(31)

dft_monswitches SQLF_KTN_DFT_MONSWITCHESb 29 Uint16

dft_mon_bufpool SQLF_KTN_DFT_MON_BUFPOOL 33 Uint16

dft_mon_lock SQLF_KTN_DFT_MON_LOCK 34 Uint16

dft_mon_sort SQLF_KTN_DFT_MON_SORT 35 Uint16

dft_mon_stmt SQLF_KTN_DFT_MON_STMT 31 Uint16

dft_mon_table SQLF_KTN_DFT_MON_TABLE 32 Uint16

dft_mon_uow SQLF_KTN_DFT_MON_UOW 30 Uint16

dftdbpath SQLF_KTN_DFTDBPATH 27 char(215)

diaglevel SQLF_KTN_DIAGLEVEL 64 Uint16

SQLFUPD

502 Administrative API Reference

Table 55. Updatable Database Manager Configuration Parameters (continued)

Parameter Name Token Token Value Data Type

diagpath SQLF_KTN_DIAGPATH 65 char(215)

dir_cache SQLF_KTN_DIR_CACHE 40 Uint16

dir_obj_name SQLF_KTN_DIR_OBJ_NAME 75 char(255)

dir_path_name SQLF_KTN_DIR_PATH_NAME 74 char(255)

dir_typec SQLF_KTN_DIR_TYPE 73 Uint16

discoverd SQLF_KTN_DISCOVER 304 Uint16

discover_comm SQLF_KTN_DISCOVER_COMM 305 char(35)

discover_inst SQLF_KTN_DISCOVER_INST 308 Uint16

dos_rqrioblk SQLF_KTN_DOS_RQRIOBLK 72 Uint16

drda_heap_sz SQLF_KTN_DRDA_HEAP_SZ 41 Uint16

fcm_num_anchors SQLF_KTN_FCM_NUM_ANCHORS 506 Sint32

fcm_num_buffers SQLF_KTN_FCM_NUM_BUFFERS 503 Uint32

fcm_num_connect SQLF_KTN_FCM_NUM_CONNECT 505 Sint32

fcm_num_rqb SQLF_KTN_FCM_NUM_RQB 504 Uint32

federated SQLF_KTN_FEDERATED 604 Sint16

fileserver SQLF_KTN_FILESERVER 47 char(48)

indexrece SQLF_KTN_INDEXREC 20 Uint16

initdari_jvm SQLF_KTN_INITDARI_JVM 602 Sint16

intra_parallel SQLF_KTN_INTRA_PARALLEL 306 Sint16

ipx_socket SQLF_KTN_IPX_SOCKET 71 char(4)

java_heap_sz SQLF_KTN_JAVA_HEAP_SZ 310 Sint32

jdk11_path SQLF_KTN_JDK11_PATH 311 char(255)

keepdari SQLF_KTN_KEEPDARI 81 Uint16

max_connretries SQLF_KTN_MAX_CONNRETRIES 509 Uint16

max_coordagents SQLF_KTN_MAX_COORDAGENTS 501 Sint32

max_logicagents SQLF_KTN_MAX_LOGICAGENTS 70 Sint32

max_querydegree SQLF_KTN_MAX_QUERYDEGREE 303 Sint32

max_time_diff SQLF_KTN_MAX_TIME_DIFF 510 Uint16

maxagents SQLF_KTN_MAXAGENTS 12 Uint32

maxcagents SQLF_KTN_MAXCAGENTS 13 Sint32

maxdari SQLF_KTN_MAXDARI 80 Sint32

maxtotfilop SQLF_KTN_MAXTOTFILOP 45 Uint16

min_priv_mem SQLF_KTN_MIN_PRIV_MEM 43 Uint32

mon_heap_sz SQLF_KTN_MON_HEAP_SZ 79 Uint16

nname SQLF_KTN_NNAME 7 char(8)

notifylevel SQLF_KTN_NOTIFYLEVEL 605 Sint16

SQLFUPD

Chapter 3. Data Structures 503

Table 55. Updatable Database Manager Configuration Parameters (continued)

Parameter Name Token Token Value Data Type

num_initagents SQLF_KTN_NUM_INITAGENTS 500 Uint32

num_initdaris SQLF_KTN_NUM_INITDARIS 601 Sint32

num_poolagents SQLF_KTN_NUM_POOLAGENTS 502 Sint32

numdb SQLF_KTN_NUMDB 6 Uint16

objectname SQLF_KTN_OBJECTNAME 48 char(48)

priv_mem_thresh SQLF_KTN_PRIV_MEM_THRESH 44 Sint32

query_heap_sz SQLF_KTN_QUERY_HEAP_SZ 49 Sint32

restbufsz SQLF_KTN_RESTBUFSZ 19 Uint32

resync_interval SQLF_KTN_RESYNC_INTERVAL 68 Uint16

route_obj_name SQLF_KTN_ROUTE_OBJ_NAME 76 char(255)

rqrioblk SQLF_KTN_RQRIOBLK 1 Uint16

sheapthres SQLF_KTN_SHEAPTHRES 21 Uint32

spm_log_file_sz SQLF_KTN_SPM_LOG_FILE_SZ 90 Sint32

spm_max_resync SQLF_KTN_SPM_MAX_RESYNC 91 Sint32

spm_name SQLF_KTN_SPM_NAME 92 char(8)

spm_path_name SQLF_KTN_SPM_PATH_NAME 313 char(226)

ss_logon SQLF_KTN_SS_LOGON 309 Uint16

start_stop_time SQLF_KTN_START_STOP_TIME 511 Uint16

svcename SQLF_KTN_SVCENAME 24 char(14)

sysadm_group SQLF_KTN_SYSADM_GROUP 39 char(16)

sysctrl_group SQLF_KTN_SYSCTRL_GROUP 63 char(16)

sysmaint_group SQLF_KTN_SYSMAINT_GROUP 62 char(16)

tm_database SQLF_KTN_TM_DATABASE 67 char(8)

tp_mon_name SQLF_KTN_TP_MON_NAME 66 char(19)

tpname SQLF_KTN_TPNAME 25 char(64)

trust_allclntsf SQLF_KTN_TRUST_ALLCLNTS 301 Uint16

trust_clntauth SQLF_KTN_TRUST_CLNTAUTH 302 Uint16

udf_mem_sz SQLF_KTN_UDF_MEM_SZ 69 Uint16

SQLFUPD

504 Administrative API Reference

Table 55. Updatable Database Manager Configuration Parameters (continued)

Parameter Name Token Token Value Data Type
a Valid values (defined in sqlenv.h):

SQL_AUTHENTICATION_SERVER (0)
SQL_AUTHENTICATION_CLIENT (1)
SQL_AUTHENTICATION_DCS (2)
SQL_AUTHENTICATION_DCE (3)
SQL_AUTHENTICATION_SVR_ENCRYPT (4)
SQL_AUTHENTICATION_DCS_ENCRYPT (5)
SQL_AUTHENTICATION_DCE_SVR_ENC (6)
SQL_AUTHENTICATION_KERBEROS (7)
SQL_AUTHENTICATION_KRB_SVR_ENC (8)
SQL_AUTHENTICATION_NOT_SPEC (255)

b SQLF_KTN_DFT_MONSWITCHES is a Uint16 parameter, the bits of which indicate the default
monitor switch settings. This allows for the specification of a number of parameters at once. The
individual bits making up this composite parameter are:

Bit 1 (xxxx xxx1): dft_mon_uow
Bit 2 (xxxx xx1x): dft_mon_stmt
Bit 3 (xxxx x1xx): dft_mon_table
Bit 4 (xxxx 1xxx): dft_mon_buffpool
Bit 5 (xxx1 xxxx): dft_mon_lock
Bit 6 (xx1x xxxx): dft_mon_sort

c Valid values (defined in sqlutil.h):

SQLF_DIRTYPE_NONE (0)
SQLF_DIRTYPE_DCE (1)

d Valid values (defined in sqlutil.h):

SQLF_DSCVR_KNOWN (1)
SQLF_DSCVR_SEARCH (2)

e Valid values (defined in sqlutil.h):

SQLF_INX_REC_SYSTEM (0)
SQLF_INX_REC_REFERENCE (1)

f Valid values (defined in sqlutil.h):

SQLF_TRUST_ALLCLNTS_NO (0)
SQLF_TRUST_ALLCLNTS_YES (1)
SQLF_TRUST_ALLCLNTS_DRDAONLY (2)

Table 56. Non-updatable Database Manager Configuration Parameters

Parameter Name Token Token
Value

Data Type

nodetypea SQLF_KTN_NODETYPE 100 Uint16

release SQLF_KTN_RELEASE 101 Uint16

SQLFUPD

Chapter 3. Data Structures 505

Table 56. Non-updatable Database Manager Configuration Parameters (continued)

Parameter Name Token Token
Value

Data Type

a Valid values (defined in sqlutil.h):

SQLF_NT_STANDALONE (0)
SQLF_NT_SERVER (1)
SQLF_NT_REQUESTOR (2)
SQLF_NT_STAND_REQ (3)
SQLF_NT_MPP (4)
SQLF_NT_SATELLITE (5)

Language Syntax
C Structure

COBOL Structure

/* File: sqlutil.h */
/* Structure: SQLFUPD */
/* ... */
SQL_STRUCTURE sqlfupd
{

unsigned short token;
char *ptrvalue;

};
/* ... */

* File: sqlutil.cbl
01 SQL-FUPD.

05 SQL-TOKEN PIC 9(4) COMP-5.
05 FILLER PIC X(2).
05 SQL-VALUE-PTR USAGE IS POINTER.

*

SQLFUPD

506 Administrative API Reference

SQLM-COLLECTED

This structure is used to return information after a call to the Database System
Monitor APIs. It will only be filled in for snapshot requests made at the
SQLM_DBMON_VERSION5_2 level and lower.

Table 57. Fields in the SQLM-COLLECTED Structure

Field Name Data Type Description

SIZE sqluint32 The size of the structure.

DB2 sqluint32 Obsolete.

DATABASES sqluint32 Obsolete.

TABLE_DATABASES sqluint32 Obsolete.

LOCK_DATABASES sqluint32 Obsolete.

APPLICATIONS sqluint32 Obsolete.

APPLINFOS sqluint32 Obsolete.

DCS_APPLINFOS sqluint32 Obsolete.

SERVER_DB2_TYPE sqluint32 The database manager server type (defined in
sqlutil.h).

TIME_STAMP TIMESTAMP Time that the snapshot was taken.

GROUP_STATES OBJECT SQLM_
RECORDING_ GROUP

Current state of the monitor switch.

SERVER_PRDID CHAR(20) Product name and version number of the
database manager on the server.

SERVER_NNAME CHAR(20) Configuration node name of the server.

SERVER_
INSTANCE_NAME

CHAR(20) Instance name of the database manager.

RESERVED CHAR(22) Reserved for future use.

NODE_NUMBER UNSIGNED SHORT Number of the node sending data.

TIME_ZONE_DISP sqlint32 The difference (in seconds) between GMT and
local time.

NUM_TOP_LEVEL_
STRUCTS

sqluint32 The total number of high-level structures
returned in the snapshot output buffer. A
high-level structure can be composed of
several lower-level data structures. This
counter replaces the individual counters (such
as table_databases) for each high-level structure,
which are now obsolete.

TABLESPACE_
DATABASES

sqluint32 Obsolete.

SERVER_VERSION sqluint32 The version of the server returning the data.

For information about programming the database monitor, see the System
Monitor Guide and Reference.

SQLM-COLLECTED

Chapter 3. Data Structures 507

Language Syntax
C Structure

/* File: sqlmon.h */
/* Structure: SQLM-COLLECTED */
/* ... */
typedef struct sqlm_collected
{

sqluint32 size;
sqluint32 db2;
sqluint32 databases;
sqluint32 table_databases;
sqluint32 lock_databases;
sqluint32 applications;
sqluint32 applinfos;
sqluint32 dcs_applinfos;
sqluint32 server_db2_type;
sqlm_timestamp time_stamp;
sqlm_recording_group group_states[SQLM_NUM_GROUPS];
_SQLOLDCHAR server_prdid[SQLM_IDENT_SZ];
_SQLOLDCHAR server_nname[SQLM_IDENT_SZ];
_SQLOLDCHAR server_instance_name[SQLM_IDENT_SZ];
_SQLOLDCHAR reserved[22];
unsigned short node_number;
long time_zone_disp;
sqluint32 num_top_level_structs;
sqluint32 tablespace_databases;
sqluint32 server_version;

}sqlm_collected;
/* ... */

SQLM-COLLECTED

508 Administrative API Reference

COBOL Structure

* File: sqlmonct.cbl
01 SQLM-COLLECTED.

05 SQLM-SIZE PIC 9(9) COMP-5.
05 DB2 PIC 9(9) COMP-5.
05 DATABASES PIC 9(9) COMP-5.
05 TABLE-DATABASES PIC 9(9) COMP-5.
05 LOCK-DATABASES PIC 9(9) COMP-5.
05 APPLICATIONS PIC 9(9) COMP-5.
05 APPLINFOS PIC 9(9) COMP-5.
05 DCS-APPLINFOS PIC 9(9) COMP-5.
05 SERVER-DB2-TYPE PIC 9(9) COMP-5.
05 TIME-STAMP.

10 SECONDS PIC 9(9) COMP-5.
10 MICROSEC PIC 9(9) COMP-5.

05 GROUP-STATES OCCURS 6.
10 INPUT-STATE PIC 9(9) COMP-5.
10 OUTPUT-STATE PIC 9(9) COMP-5.
10 START-TIME.

05 SERVER-PRDID PIC X(20).
05 SERVER-NNAME PIC X(20).
05 SERVER-INSTANCE-NAME PIC X(20).
05 RESERVED PIC X(32).
05 TABLESPACE-DATABASES PIC 9(9) COMP-5.
05 SERVER-VERSION PIC 9(9) COMP-5.

*

SQLM-COLLECTED

Chapter 3. Data Structures 509

SQLM-RECORDING-GROUP

This structure is used to return information after a call to the Database System
Monitor APIs.

Table 58. Fields in the SQLM-RECORDING-GROUP Structure

Field Name Data Type Description

INPUT_STATE INTEGER Required state for the specific monitor group.

OUTPUT_STATE INTEGER Returned information on the state of the
specific monitor switch.

START_TIME Structure Time stamp when the monitoring group
switch was turned on.

Table 59. Fields in the SQLM-TIMESTAMP Structure

Field Name Data Type Description

SECONDS INTEGER The date and time, expressed as the number
of seconds since January 1, 1970 (GMT).

MICROSEC INTEGER The number of elapsed microseconds in the
current second.

For both input_state and output_state, a particular monitor switch is identified
by its index in the array passed to “db2MonitorSwitches - Get/Update
Monitor Switches” on page 69. The constants that map the indexes to the
switches are called SQLM_XXXX_SW, where XXXX is the name of the monitor
group. These constants are defined in sqlmon.h.

For information about programming the database monitor, see the System
Monitor Guide and Reference.

Language Syntax
C Structure

/* File: sqlmon.h */
/* Structure: SQLM-RECORDING-GROUP */
/* ... */
typedef struct sqlm_recording_group
{

sqluint32 input_state;
sqluint32 output_state;
sqlm_timestamp start_time;

}sqlm_recording_group;
/* ... */

SQLM-RECORDING-GROUP

510 Administrative API Reference

COBOL Structure

/* File: sqlmon.h */
/* Structure: SQLM-TIMESTAMP */
/* ... */
typedef struct sqlm_timestamp
{

sqluint32 seconds;
sqluint32 microsec;

}sqlm_timestamp;
/* ... */

* File: sqlmonct.cbl
01 SQLM-RECORDING-GROUP OCCURS 6 TIMES.

05 INPUT-STATE PIC 9(9) COMP-5.
05 OUTPUT-STATE PIC 9(9) COMP-5.
05 START-TIME.

10 SECONDS PIC 9(9) COMP-5.
10 MICROSEC PIC 9(9) COMP-5.

*

* File: sqlmonct.cbl
01 SQLM-TIMESTAMP.

05 SECONDS PIC 9(9) COMP-5.
05 MICROSEC PIC 9(9) COMP-5.

*

SQLM-RECORDING-GROUP

Chapter 3. Data Structures 511

SQLMA

The SQL Monitor Area (SQLMA) structure is used to send database monitor
snapshot requests to the database manager. It is also used to estimate the size
(in bytes) of the snapshot output.

Table 60. Fields in the SQLMA Structure

Field Name Data Type Description

OBJ_NUM INTEGER Number of objects to be monitored.

OBJ_VAR Array An array of sqlm_obj_struct structures
containing descriptions of objects to be
monitored. The length of the array is
determined by OBJ_NUM.

Table 61. Fields in the SQLM-OBJ-STRUCT Structure

Field Name Data Type Description

AGENT_ID INTEGER The application handle of the application to be
monitored. Specified only if OBJ_TYPE
requires an agent_id (application handle).

OBJ_TYPE INTEGER The type of object to be monitored.

OBJECT CHAR(36) The name of the object to be monitored.
Specified only if OBJ_TYPE requires a name,
such as appl_id, or a database alias.

Valid values for OBJ_TYPE (defined in sqlmon) are:

SQLMA_DB2
DB2 related information

SQLMA_DBASE
Database related information

SQLMA_APPL
Application information organized by the application ID

SQLMA_AGENT_ID
Application information organized by the agent ID

SQLMA_DBASE_TABLES
Table information for a database

SQLMA_DBASE_APPLS
Application information for a database

SQLMA_DBASE_APPLINFO
Summary application information for a database

SQLMA_DBASE_LOCKS
Locking information for a database

SQLMA

512 Administrative API Reference

SQLMA_DBASE_ALL
Database information for all active databases in the database manager

SQLMA_APPL_ALL
Application information for all active applications in the database
manager

SQLMA_APPLINFO_ALL
Summary application information for all active applications in the
database manager

SQLMA_DCS_APPLINFO_ALL
Database Connection Services application information summary for all
active applications in the database manager.

SQLMA_DYNAMIC_SQL
Get snapshot for dynamic SQL.

SQLMA_DCS_DBASE
Database Connection Services database level information.

SQLMA_DCS_DBASE_ALL
Database Connection Services database information for all active
databases.

SQLMA_DCS_APPL_ALL
Database Connection Services application information for all
connections.

SQLMA_DCS_APPL
Database Connection Services application information identified by
application ID.

SQLMA_DCS_APPL_HANDLE
Database Connection Services application information identified by
application handle.

SQLMA_DCS_DBASE_APPLS
Database Connection Services application information for all active
connections to the database.

SQLMA_DBASE_TABLESPACES
Table space information for a database.

SQLMA_DBASE_REMOTE
Information for a DataJoiner database.

SQLMA_DBASE_REMOTE_ALL
Information for all DataJoiner databases.

SQLMA_DBASE_APPLS_REMOTE
Application information for a particular DataJoiner database.

SQLMA

Chapter 3. Data Structures 513

SQLMA_APPLS_REMOTE_ALL
Application information for all DataJoiner databases.

For information about programming the database monitor, see the System
Monitor Guide and Reference.

Language Syntax
C Structure

COBOL Structure

/* File: sqlmon.h */
/* Structure: SQLMA */
/* ... */
typedef struct sqlma
{

sqluint32 obj_num;
sqlm_obj_struct obj_var[1];

}sqlma;
/* ... */

/* File: sqlmon.h */
/* Structure: SQLM-OBJ-STRUCT */
/* ... */
typedef struct sqlm_obj_struct
{

sqluint32 agent_id;
sqluint32 obj_type;
_SQLOLDCHAR object[SQLM_OBJECT_SZ];

}sqlm_obj_struct;
/* ... */

* File: sqlmonct.cbl
01 SQLMA.

05 OBJ-NUM PIC 9(9) COMP-5.
05 OBJ-VAR OCCURS 0 TO 100 TIMES DEPENDING ON OBJ-NUM.

10 AGENT-ID PIC 9(9) COMP-5.
10 OBJ-TYPE PIC 9(9) COMP-5.
10 OBJECT PIC X(36).

*

SQLMA

514 Administrative API Reference

SQLOPT

This structure is used to pass bind options to “sqlabndx - Bind” on page 85,
precompile options to “sqlaprep - Precompile Program” on page 93, and
rebind options to “sqlarbnd - Rebind” on page 99.

Table 62. Fields in the SQLOPT Structure

Field Name Data Type Description

HEADER Structure An sqloptheader structure.

OPTION Array An array of sqloptions structures. The number
of elements in this array is determined by the
value of the allocated field of the header.

Table 63. Fields in the SQLOPTHEADER Structure

Field Name Data Type Description

ALLOCATED INTEGER Number of elements in the option array of the
sqlopt structure.

USED INTEGER Number of elements in the option array of the
sqlopt structure actually used. This is the
number of option pairs (TYPE and VAL)
supplied.

Table 64. Fields in the SQLOPTIONS Structure

Field Name Data Type Description

TYPE INTEGER Bind/precompile/rebind option type.

VAL INTEGER Bind/precompile/rebind option value.

Note: The TYPE and VAL fields are repeated for each bind/precompile/rebind option specified.

For more information about valid values for TYPE and VAL, see “sqlabndx -
Bind” on page 85, “sqlaprep - Precompile Program” on page 93 and “sqlarbnd
- Rebind” on page 99.

Language Syntax
C Structure

/* File: sql.h */
/* Structure: SQLOPT */
/* ... */
SQL_STRUCTURE sqlopt
{

SQL_STRUCTURE sqloptheader header;
SQL_STRUCTURE sqloptions option[1];

};
/* ... */

SQLOPT

Chapter 3. Data Structures 515

COBOL Structure

/* File: sql.h */
/* Structure: SQLOPTHEADER */
/* ... */
SQL_STRUCTURE sqloptheader
{

sqluint32 allocated;
sqluint32 used;

};
/* ... */

/* File: sql.h */
/* Structure: SQLOPTIONS */
/* ... */
SQL_STRUCTURE sqloptions
{

sqluint32 type;
sqluint32 val;

};
/* ... */

* File: sql.cbl
01 SQLOPT.

05 SQLOPTHEADER.
10 ALLOCATED PIC 9(9) COMP-5.
10 USED PIC 9(9) COMP-5.

05 SQLOPTIONS OCCURS 1 TO 50 DEPENDING ON ALLOCATED.
10 SQLOPT-TYPE PIC 9(9) COMP-5.
10 SQLOPT-VAL PIC 9(9) COMP-5.
10 SQLOPT-VAL-PTR REDEFINES SQLOPT-VAL

*

SQLOPT

516 Administrative API Reference

SQLU-LSN

This union, used by “sqlurlog - Asynchronous Read Log” on page 394,
contains the definition of the log sequence number. A log sequence number
(LSN) represents a relative byte address within the database log. All log
records are identified by this number. It represents the log record’s byte offset
from the beginning of the database log.

Table 65. Fields in the SQLU-LSN Union

Field Name Data Type Description

lsnChar Array of UNSIGNED
CHAR

Specifies the 6-member character array log
sequence number.

lsnWord Array of UNSIGNED
SHORT

Specifies the 3-member short array log
sequence number.

Language Syntax
C Structure

typedef union SQLU_LSN
{
unsigned char lsnChar [6] ;
unsigned short lsnWord [3] ;
} SQLU_LSN;

SQLU-LSN

Chapter 3. Data Structures 517

SQLU-MEDIA-LIST

This structure is used to:
v Hold a list of target media for the backup image (see “sqlubkp - Backup

Database” on page 290)
v Hold a list of source media for the backup image (see “sqlurestore - Restore

Database” on page 381)
v Pass information to “sqluload - Load” on page 345.

Table 66. Fields in the SQLU-MEDIA-LIST Structure

Field Name Data Type Description

MEDIA_TYPE CHAR(1) A character indicating media type.

SESSIONS INTEGER Indicates the number of elements in the array
pointed to by the target field of this structure.

TARGET Union This field is a pointer to one of three types of
structures. The type of structure pointed to is
determined by the value of the media_type
field. For more information on what to
provide in this field, see the appropriate API.

Table 67. Fields in the SQLU-MEDIA-LIST-TARGETS Structure

Field Name Data Type Description

MEDIA Pointer A pointer to an sqlu_media_entry structure.

VENDOR Pointer A pointer to an sqlu_vendor structure.

LOCATION Pointer A pointer to an sqlu_location_entry structure.

Table 68. Fields in the SQLU-MEDIA-ENTRY Structure

Field Name Data Type Description

RESERVE_LEN INTEGER Length of the media_entry field. For languages
other than C.

MEDIA_ENTRY CHAR(215) Path for a backup image used by the backup
and restore utilities.

Table 69. Fields in the SQLU-VENDOR Structure

Field Name Data Type Description

RESERVE_LEN1 INTEGER Length of the shr_lib field. For languages other
than C.

SHR_LIB CHAR(255) Name of a shared library supplied by vendors
for storing or retrieving data.

RESERVE_LEN2 INTEGER Length of the filename field. For languages
other than C.

FILENAME CHAR(255) File name to identify the load input source
when using a shared library.

SQLU-MEDIA-LIST

518 Administrative API Reference

Table 70. Fields in the SQLU-LOCATION-ENTRY Structure

Field Name Data Type Description

RESERVE_LEN INTEGER Length of the location_entry field. For
languages other than C.

LOCATION_ENTRY CHAR(256) Name of input data files for the load utility.

Valid values for MEDIA_TYPE (defined in sqlutil) are:

SQLU_LOCAL_MEDIA
Local devices (tapes, disks, or diskettes)

SQLU_SERVER_LOCATION
Server devices (tapes, disks, or diskettes; load only). Can be specified
only for the pDataFileList parameter.

SQLU_TSM_MEDIA
TSM

SQLU_OTHER_MEDIA
Vendor library

SQLU_USER_EXIT
User exit (OS/2 only)

SQLU_PIPE_MEDIA
Named pipe (for vendor APIs only)

SQLU_DISK_MEDIA
Disk (for vendor APIs only)

SQLU_DISKETTE_MEDIA
Diskette (for vendor APIs only)

SQLU_TAPE_MEDIA
Tape (for vendor APIs only).

Language Syntax
C Structure

/* File: sqlutil.h */
/* Structure: SQLU-MEDIA-LIST */
/* ... */
typedef SQL_STRUCTURE sqlu_media_list
{

char media_type;
char filler[3];
sqlint32 sessions;
union sqlu_media_list_targets target;

} sqlu_media_list;
/* ... */

SQLU-MEDIA-LIST

Chapter 3. Data Structures 519

/* File: sqlutil.h */
/* Structure: SQLU-MEDIA-LIST-TARGETS */
/* ... */
union sqlu_media_list_targets
{

struct sqlu_media_entry *media;
struct sqlu_vendor *vendor;
struct sqlu_location_entry *location;

};
/* ... */

/* File: sqlutil.h */
/* Structure: SQLU-MEDIA-ENTRY */
/* ... */
typedef SQL_STRUCTURE sqlu_media_entry
{

sqluint32 reserve_len;
char media_entry[SQLU_DB_DIR_LEN+1];

} sqlu_media_entry;
/* ... */

/* File: sqlutil.h */
/* Structure: SQLU-VENDOR */
/* ... */
typedef SQL_STRUCTURE sqlu_vendor
{

sqluint32 reserve_len1;
char shr_lib[SQLU_SHR_LIB_LEN+1];
sqluint32 reserve_len2;
char filename[SQLU_SHR_LIB_LEN+1];

} sqlu_vendor;
/* ... */

/* File: sqlutil.h */
/* Structure: SQLU-LOCATION-ENTRY */
/* ... */
typedef SQL_STRUCTURE sqlu_location_entry
{

sqluint32 reserve_len;
char location_entry[SQLU_MEDIA_LOCATION_LEN+1];

} sqlu_location_entry;
/* ... */

SQLU-MEDIA-LIST

520 Administrative API Reference

COBOL Structure

* File: sqlutil.cbl
01 SQLU-MEDIA-LIST.

05 SQL-MEDIA-TYPE PIC X.
05 SQL-FILLER PIC X(3).
05 SQL-SESSIONS PIC S9(9) COMP-5.
05 SQL-TARGET.

10 SQL-MEDIA USAGE IS POINTER.
10 SQL-VENDOR REDEFINES SQL-MEDIA
10 SQL-LOCATION REDEFINES SQL-MEDIA
10 FILLER REDEFINES SQL-MEDIA

*

* File: sqlutil.cbl
01 SQLU-MEDIA-ENTRY.

05 SQL-MEDENT-LEN PIC 9(9) COMP-5.
05 SQL-MEDIA-ENTRY PIC X(215).
05 FILLER PIC X.

*

* File: sqlutil.cbl
01 SQLU-VENDOR.

05 SQL-SHRLIB-LEN PIC 9(9) COMP-5.
05 SQL-SHR-LIB PIC X(255).
05 FILLER PIC X.
05 SQL-FILENAME-LEN PIC 9(9) COMP-5.
05 SQL-FILENAME PIC X(255).
05 FILLER PIC X.

*

* File: sqlutil.cbl
01 SQLU-LOCATION-ENTRY.

05 SQL-LOCATION-LEN PIC 9(9) COMP-5.
05 SQL-LOCATION-ENTRY PIC X(255).
05 FILLER PIC X.

*

SQLU-MEDIA-LIST

Chapter 3. Data Structures 521

SQLU-RLOG-INFO

This structure contains information regarding calls to “sqlurlog -
Asynchronous Read Log” on page 394. The read log information structure
contains information on the status of the call and the database log.

Table 71. Fields in the SQLU-RLOG-INFO Structure

Field Name Data Type Description

initialLSN SQLU_LSN Specifies the LSN value of the first log record
written to the database after the first connect is
issued. For more information on the
SQLU_LSN structure, see “SQLU-LSN” on
page 517.

firstReadLSN SQLU_LSN Specifies the LSN value of the first log record
read.

lastReadLSN SQLU_LSN Specifies the LSN value of the last log record
byte read.

curActiveLSN SQLU_LSN Specifies the LSN value of the current active
log.

logRecsWritten sqluint32 Specifies the number of log records written to
the buffer.

logBytesWritten sqluint32 Specifies the number of bytes written to the
buffer.

Language Syntax
C Structure

typedef SQL_STRUCTURE SQLU_RLOG_INFO
{
SQLU_LSN initialLSN ;
SQLU_LSN firstReadLSN ;
SQLU_LSN lastReadLSN ;
SQLU_LSN curActiveLSN ;
sqluint32 logRecsWritten ;
sqluint32 logBytesWritten ;
} SQLU_RLOG_INFO;

SQLU-RLOG-INFO

522 Administrative API Reference

SQLU-TABLESPACE-BKRST-LIST

This structure is used to provide a list of table space names.

Table 72. Fields in the SQLU-TABLESPACE-BKRST-LIST Structure

Field Name Data Type Description

NUM_ENTRY INTEGER Number of entries in the list pointed to by the
tablespace field.

TABLESPACE Pointer A pointer to an sqlu_tablespace_entry structure.

Table 73. Fields in the SQLU-TABLESPACE-ENTRY Structure

Field Name Data Type Description

RESERVE_LEN INTEGER Length of the character string provided in the
tablespace_entry field. For languages other than
C.

TABLESPACE_ENTRY CHAR(19) Table space name.

Language Syntax
C Structure

COBOL Structure

/* File: sqlutil.h */
/* Structure: SQLU-TABLESPACE-BKRST-LIST */
/* ... */
typedef SQL_STRUCTURE sqlu_tablespace_bkrst_list
{

long num_entry;
struct sqlu_tablespace_entry *tablespace;

} sqlu_tablespace_bkrst_list;
/* ... */

/* File: sqlutil.h */
/* Structure: SQLU-TABLESPACE-ENTRY */
/* ... */
typedef SQL_STRUCTURE sqlu_tablespace_entry
{

sqluint32 reserve_len;
char tablespace_entry[SQLU_MAX_TBS_NAME_LEN+1];
char filler[1];

} sqlu_tablespace_entry;
/* ... */

* File: sqlutil.cbl
01 SQLU-TABLESPACE-BKRST-LIST.

05 SQL-NUM-ENTRY PIC S9(9) COMP-5.
05 SQL-TABLESPACE USAGE IS POINTER.

*

SQLU-TABLESPACE-BKRST-LIST

Chapter 3. Data Structures 523

* File: sqlutil.cbl
01 SQLU-TABLESPACE-ENTRY.

05 SQL-TBSP-LEN PIC 9(9) COMP-5.
05 SQL-TABLESPACE-ENTRY PIC X(18).
05 FILLER PIC X.
05 SQL-FILLER PIC X(1).

*

SQLU-TABLESPACE-BKRST-LIST

524 Administrative API Reference

SQLUEXPT-OUT

This structure is used to pass information from “sqluexpr - Export” on
page 302.

Table 74. Fields in the SQLUEXPT-OUT Structure

Field Name Data Type Description

SIZEOFSTRUCT INTEGER Size of the structure.

ROWSEXPORTED INTEGER Number of records exported from the
database into the target file.

Language Syntax
C Structure

COBOL Structure

/* File: sqlutil.h */
/* Structure: SQL-UEXPT-OUT */
/* ... */
SQL_STRUCTURE sqluexpt_out
{

sqluint32 sizeOfStruct;
sqluint32 rowsExported;

};
/* ... */

* File: sqlutil.cbl
01 SQL-UEXPT-OUT.

05 SQL-SIZE-OF-UEXPT-OUT PIC 9(9) COMP-5 VALUE 8.
05 SQL-ROWSEXPORTED PIC 9(9) COMP-5 VALUE 0.

*

SQLUEXPT-OUT

Chapter 3. Data Structures 525

SQLUIMPT-IN

This structure is used to pass information to “sqluimpr - Import” on page 320.

Table 75. Fields in the SQLUIMPT-IN Structure

Field Name Data Type Description

SIZEOFSTRUCT INTEGER Size of this structure in bytes.

COMMITCNT INTEGER The number of records to import before
committing them to the database. A COMMIT
is performed whenever commitcnt records are
imported.

RESTARTCNT INTEGER The number of records to skip before starting
to insert or update records. This parameter
should be used if a previous attempt to
import records fails after some records have
been committed to the database. The specified
value represents a starting point for the next
import operation.

Language Syntax
C Structure

COBOL Structure

/* File: sqlutil.h */
/* Structure: SQLUIMPT-IN */
/* ... */
SQL_STRUCTURE sqluimpt_in
{

sqluint32 sizeOfStruct;
sqluint32 commitcnt;
sqluint32 restartcnt;

};
/* ... */

* File: sqlutil.cbl
01 SQL-UIMPT-IN.

05 SQL-SIZE-OF-UIMPT-IN PIC 9(9) COMP-5 VALUE 12.
05 SQL-COMMITCNT PIC 9(9) COMP-5 VALUE 0.
05 SQL-RESTARTCNT PIC 9(9) COMP-5 VALUE 0.

*

SQLUIMPT-IN

526 Administrative API Reference

SQLUIMPT-OUT

This structure is used to pass information from “sqluimpr - Import” on
page 320.

Table 76. Fields in the SQLUIMPT-OUT Structure

Field Name Data Type Description

SIZEOFSTRUCT INTEGER Size of this structure in bytes.

ROWSREAD INTEGER Number of records read from the file during
import.

ROWSSKIPPED INTEGER Number of records skipped before inserting or
updating begins.

ROWSINSERTED INTEGER Number of rows inserted into the target table.

ROWSUPDATED INTEGER Number of rows in the target table updated
with information from the imported records
(records whose primary key value already
exists in the table).

ROWSREJECTED INTEGER Number of records that could not be
imported.

ROWSCOMMITTED INTEGER Number of records imported successfully and
committed to the database.

Language Syntax
C Structure

/* File: sqlutil.h */
/* Structure: SQLUIMPT-OUT */
/* ... */
SQL_STRUCTURE sqluimpt_out
{

sqluint32 sizeOfStruct;
sqluint32 rowsRead;
sqluint32 rowsSkipped;
sqluint32 rowsInserted;
sqluint32 rowsUpdated;
sqluint32 rowsRejected;
sqluint32 rowsCommitted;

};
/* ... */

SQLUIMPT-OUT

Chapter 3. Data Structures 527

COBOL Structure

* File: sqlutil.cbl
01 SQL-UIMPT-OUT.

05 SQL-SIZE-OF-UIMPT-OUT PIC 9(9) COMP-5 VALUE 28.
05 SQL-ROWSREAD PIC 9(9) COMP-5 VALUE 0.
05 SQL-ROWSSKIPPED PIC 9(9) COMP-5 VALUE 0.
05 SQL-ROWSINSERTED PIC 9(9) COMP-5 VALUE 0.
05 SQL-ROWSUPDATED PIC 9(9) COMP-5 VALUE 0.
05 SQL-ROWSREJECTED PIC 9(9) COMP-5 VALUE 0.
05 SQL-ROWSCOMMITTED PIC 9(9) COMP-5 VALUE 0.

*

SQLUIMPT-OUT

528 Administrative API Reference

SQLULOAD-IN

This structure is used to input information during a call to “sqluload - Load”
on page 345.

Table 77. Fields in the SQLULOAD-IN Structure

Field Name Data Type Description

SIZEOFSTRUCT sqluint32 Size of this structure in bytes.

SAVECNT sqluint32 The number of records to load before establishing a
consistency point. This value is converted to a page
count, and rounded up to intervals of the extent size.
Since a message is issued at each consistency point,
this option should be selected if the load operation
will be monitored using “db2LoadQuery - Load
Query” on page 65. If the value of savecnt is not
sufficiently high, the synchronization of activities
performed at each consistency point will impact
performance.

The default value is 0, meaning that no consistency
points will be established, unless necessary.

RESTARTCNT sqluint32G Reserved.

ROWCNT sqluint32 The number of physical records to be loaded. Allows
a user to load only the first rowcnt rows in a file.

WARNINGCNT sqluint32 Stops the load operation after warningcnt warnings.
Set this parameter if no warnings are expected, but
verification that the correct file and table are being
used is desired. If warningcnt is 0, or this option is
not specified, the load operation will continue
regardless of the number of warnings issued.

If the load operation is stopped because the
threshold of warnings was exceeded, another load
operation can be started in RESTART mode. The load
operation will automatically continue from the last
consistency point. Alternatively, another load
operation can be initiated in REPLACE mode,
starting at the beginning of the input file.

SQLULOAD-IN

Chapter 3. Data Structures 529

Table 77. Fields in the SQLULOAD-IN Structure (continued)

Field Name Data Type Description

DATA_BUFFER_SIZE sqluint32 The number of 4KB pages (regardless of the degree
of parallelism) to use as buffered space for
transferring data within the utility. If the value
specified is less than the algorithmic minimum, the
required minimum is used, and no warning is
returned.

This memory is allocated directly from the utility
heap, whose size can be modified through the
util_heap_sz database configuration parameter.

If a value is not specified, an intelligent default is
calculated by the utility at run time. The default is
based on a percentage of the free space available in
the utility heap at the instantiation time of the
loader, as well as some characteristics of the table.

SORT_BUFFER_SIZE sqluint32 Reserved.

HOLD_QUIESCE UNSIGNED
SHORT

A flag whose value is set to TRUE if the utility is to
leave the table in quiesced exclusive state after the
load, and to FALSE if it is not.

RESTARTPHASE CHAR(1) Reserved.

STATSOPT CHAR(1) Granularity of statistics to collect. See below for
values.

CPU_PARALLELISM UNSIGNED
SHORT

The number of processes or threads that the load
utility will spawn for parsing, converting and
formatting records when building table objects. This
parameter is designed to exploit intra-partition
parallelism. It is particularly useful when loading
presorted data, because record order in the source
data is preserved. If the value of this parameter is
zero, the load utility uses an intelligent default value
at run time.
Note: If this parameter is used with tables
containing either LOB or LONG VARCHAR fields,
its value becomes one, regardless of the number of
system CPUs, or the value specified by the user.

DISK_PARALLELISM UNSIGNED
SHORT

The number of processes or threads that the load
utility will spawn for writing data to the table space
containers. If a value is not specified, the utility
selects an intelligent default based on the number of
table space containers and the characteristics of the
table.

SQLULOAD-IN

530 Administrative API Reference

Table 77. Fields in the SQLULOAD-IN Structure (continued)

Field Name Data Type Description

NON_RECOVERABLE UNSIGNED
SHORT

Set to SQLU_NON_RECOVERABLE_LOAD if the load
transaction is to be marked as non-recoverable, and
it will not be possible to recover it by a subsequent
roll forward action. The rollforward utility will skip
the transaction, and will mark the table into which
data was being loaded as ″invalid″. The utility will
also ignore any subsequent transactions against that
table. After the roll forward is completed, such a
table can only be dropped.

With this option, table spaces are not put in backup
pending state following the load operation, and a
copy of the loaded data does not have to be made
during the load operation.

Set to SQLU_RECOVERABLE_LOAD if the load transaction
is to be marked as recoverable.

INDEXING_MODE UNSIGNED
SHORT

Specifies whether the load utility is to rebuild
indexes or to extend them incrementally. See below
for values.

Valid values for STATSOPT (defined in sqlutil) are:

SQLU_STATS_NONE

SQL_STATS_EXTTABLE_ONLY

SQL_STATS_EXTTABLE_INDEX

SQL_STATS_INDEX

SQL_STATS_TABLE

SQL_STATS_EXTINDEX_ONLY

SQL_STATS_EXTINDEX_TABLE

SQL_STATS_ALL

SQL_STATS_BOTH

Valid values for INDEXING_MODE (defined in sqlutil) are:

SQLU_INX_AUTOSELECT

SQLU_INX_REBUILD

SQLU_INX_INCREMENTAL

SQLU_INX_DEFERRED

SQLULOAD-IN

Chapter 3. Data Structures 531

For an explanation of these indexing modes, see the description of the LOAD
command in the Command Reference.

SQLULOAD-IN

532 Administrative API Reference

Language Syntax
C Structure

COBOL Structure

/* File: sqlutil.h */
/* Structure: SQLULOAD-IN */
/* ... */
SQL_STRUCTURE sqluload_in
{

sqluint32 sizeOfStruct;
sqluint32 savecnt;
sqluint32 restartcnt;
sqluint32 rowcnt;
sqluint32 warningcnt;
sqluint32 data_buffer_size;
sqluint32 sort_buffer_size; /* No longer used. */
unsigned short hold_quiesce;
char restartphase;
char statsopt;
unsigned short cpu_parallelism;
unsigned short disk_parallelism;
unsigned short non_recoverable;
unsigned short indexing_mode;

};
/* ... */

* File: sqlutil.cbl
01 SQLULOAD-IN.

05 SQL-SIZE-OF-STRUCT PIC 9(9) COMP-5 VALUE 40.
05 SQL-SAVECNT PIC 9(9) COMP-5.
05 SQL-RESTARTCOUNT PIC 9(9) COMP-5.
05 SQL-ROWCNT PIC 9(9) COMP-5.
05 SQL-WARNINGCNT PIC 9(9) COMP-5.
05 SQL-DATA-BUFFER-SIZE PIC 9(9) COMP-5.
05 SQL-SORT-BUFFER-SIZE PIC 9(9) COMP-5. * No longer used.
05 SQL-HOLD-QUIESCE PIC 9(4) COMP-5.
05 SQL-RESTARTPHASE PIC X.
05 SQL-STATSOPT PIC X.
05 SQL-CPU-PARALLELISM PIC 9(4) COMP-5.
05 SQL-DISK-PARALLELISM PIC 9(4) COMP-5.
05 SQL-NON-RECOVERABLE PIC 9(4) COMP-5.
05 SQL-INDEXING-MODE PIC 9(4) COMP-5.

*

SQLULOAD-IN

Chapter 3. Data Structures 533

SQLULOAD-OUT

This structure is used to output information after a call to “sqluload - Load”
on page 345.

Table 78. Fields in the SQLULOAD-OUT Structure

Field Name Data Type Description

SIZEOFSTRUCT sqluint32 Size of this structure in bytes.

ROWSREAD sqluint32 Number of records read
during the load operation.

ROWSSKIPPED sqluint32 Number of records skipped
before the load operation
begins.

ROWSLOADED sqluint32 Number of rows loaded into
the target table.

ROWSREJECTED sqluint32 Number of records that could
not be loaded.

ROWSDELETED sqluint32 Number of duplicate rows
deleted.

ROWSCOMMITTED sqluint32 The total number of processed
records: the number of records
loaded successfully and
committed to the database,
plus the number of skipped
and rejected records.

Language Syntax
C Structure

/* File: sqlutil.h */
/* Structure: SQLULOAD-OUT */
/* ... */
SQL_STRUCTURE sqluload_out
{

sqluint32 sizeOfStruct;
sqluint32 rowsRead;
sqluint32 rowsSkipped;
sqluint32 rowsLoaded;
sqluint32 rowsRejected;
sqluint32 rowsDeleted;
sqluint32 rowsCommitted;

};
/* ... */

SQLULOAD-OUT

534 Administrative API Reference

COBOL Structure

* File: sqlutil.cbl
01 SQLULOAD-OUT.

05 SQL-SIZE-OF-STRUCT PIC 9(9) COMP-5 VALUE 28.
05 SQL-ROWS-READ PIC 9(9) COMP-5.
05 SQL-ROWS-SKIPPED PIC 9(9) COMP-5.
05 SQL-ROWS-LOADED PIC 9(9) COMP-5.
05 SQL-ROWS-REJECTED PIC 9(9) COMP-5.
05 SQL-ROWS-DELETED PIC 9(9) COMP-5.
05 SQL-ROWS-COMMITTED PIC 9(9) COMP-5.

*

SQLULOAD-OUT

Chapter 3. Data Structures 535

SQLUPI

This structure is used to store partitioning information, such as the
partitioning map and the partitioning key of a table.

Table 79. Fields in the SQLUPI Structure

Field Name Data Type Description

PMAPLEN INTEGER The length of the partitioning map in bytes.
For a single-node table, the value is
sizeof(SQL_PDB_NODE_TYPE). For a mult-inode
table, the value is
SQL_PDB_MAP_SIZE * sizeof(SQL_PDB_NODE_TYPE).

PMAP SQL_PDB_NODE_TYPE The partitioning map.

SQLD INTEGER The number of used SQLPARTKEY elements;
that is, the number of key parts in a
partitioning key.

SQLPARTKEY Structure The description of a partitioning column in a
partitioning key. The maximum number of
partitioning columns is
SQL_MAX_NUM_PART_KEYS.

Table 80 shows the SQL data types and lengths for the SQLUPI data structure.
The SQLTYPE column specifies the numeric value that represents the data
type of an item.

Table 80. SQL Data Types and Lengths for the SQLUPI Structure

Data type SQLTYPE (Nulls
Not Allowed)

SQLTYPE (Nulls
Allowed)

SQLLEN AIX

Date 384 385 Ignored Yes

Time 388 389 Ignored Yes

Timestamp 392 393 Ignored Yes

Variable-length
character string

448 449 Length of the
string

Yes

Fixed-length
character string

452 453 Length of the
string

Yes

Long character
string

456 457 Ignored No

Null-terminated
character string

460 461 Length of the
string

Yes

Floating point 480 481 Ignored Yes

Decimal 484 485 Byte 1 = precision
Byte 2 = scale

Yes

Large integer 496 497 Ignored Yes

Small integer 500 501 Ignored Yes

SQLUPI

536 Administrative API Reference

Table 80. SQL Data Types and Lengths for the SQLUPI Structure (continued)

Data type SQLTYPE (Nulls
Not Allowed)

SQLTYPE (Nulls
Allowed)

SQLLEN AIX

Variable-length
graphic string

464 465 Length in
double-byte
characters

Yes

Fixed-length
graphic string

468 469 Length in
double-byte
characters

Yes

Long graphic
string

472 473 Ignored No

Language Syntax
C Structure

/* File: sqlutil.h */
/* Structure: SQLUPI */
/* ... */
SQL_STRUCTURE sqlupi
{

unsigned short pmaplen;
SQL_PDB_NODE_TYPE pmap[SQL_PDB_MAP_SIZE];
unsigned short sqld;
struct sqlpartkey sqlpartkey[SQL_MAX_NUM_PART_KEYS];

};
/* ... */

/* File: sqlutil.h */
/* Structure: SQLPARTKEY */
/* ... */
SQL_STRUCTURE sqlpartkey
{

unsigned short sqltype;
unsigned short sqllen;

};
/* ... */

SQLUPI

Chapter 3. Data Structures 537

SQLXA-RECOVER

Used by the transaction APIs to return information about indoubt transactions
(see “Appendix B. Transaction APIs” on page 543).

Table 81. Fields in the SQLXA-RECOVER Structure

Field Name Data Type Description

TIMESTAMP INTEGER Time stamp when the
transaction entered the
prepared (indoubt) state. This
is the number of seconds the
local time zone is displaced
from Coordinated Universal
Time.

XID CHAR(140) XA identifier assigned by the
transaction manager to
uniquely identify a global
transaction.

DBALIAS CHAR(16) Alias of the database where
the indoubt transaction is
found.

APPLID CHAR(30) Application identifier assigned
by the database manager for
this transaction.

SEQUENCE_NO CHAR(4) The sequence number assigned
by the database manager as an
extension to the APPLID.

AUTH_ID CHAR(8) ID of the user who ran the
transaction.

LOG_FULL CHAR(1) Indicates whether this
transaction caused a log full
condition.

CONNECTED CHAR(1) Indicates whether an
application is connected.

INDOUBT_STATUS CHAR(1) Possible values are listed
below.

ORIGINATOR CHAR(1) Indicates whether the
transaction was originated by
XA or by DB2 in a partitioned
database environment.

RESERVED CHAR(9) The first byte is used to
indicate the type of indoubt
transaction: 0 indicates RM,
and 1 indicates TM.

Possible values for LOGFULL (defined in sqlxa) are:

SQLXA_TRUE
True

SQLXA-RECOVER

538 Administrative API Reference

SQLXA_FALSE
False.

Possible values for CONNECTED (defined in sqlxa) are:

SQLXA_TRUE
True. The transaction is undergoing normal syncpoint processing, and
is waiting for the second phase of the two-phase commit.

SQLXA_FALSE
False. The transaction was left indoubt by an earlier failure, and is
now waiting for re-sync from a transaction manager.

Possible values for INDOUBT_STATUS (defined in sqlxa) are:

SQLXA_TS_PREP
Prepared

SQLXA_TS_HCOM
Heuristically committed

SQLXA_TS_HROL
Heuristically rolled back

SQLXA_TS_MACK
Missing commit acknowledgement

SQLXA_TS_END
Idle.

Language Syntax
C Structure

/* File: sqlxa.h */
/* Structure: SQLXA-RECOVER */
/* ... */
typedef struct sqlxa_recover_t
{

sqluint32 timestamp;
SQLXA_XID xid;
_SQLOLDCHAR dbalias[SQLXA_DBNAME_SZ];
_SQLOLDCHAR applid[SQLXA_APPLID_SZ];
_SQLOLDCHAR sequence_no[SQLXA_SEQ_SZ];
_SQLOLDCHAR auth_id[SQLXA_USERID_SZ];
char log_full;
char connected;
char indoubt_status;
char originator;
char reserved[8];

} SQLXA_RECOVER;
/* ... */

SQLXA-RECOVER

Chapter 3. Data Structures 539

SQLXA-XID

Used by the transaction APIs to identify XA transactions (see “Appendix B.
Transaction APIs” on page 543).

Table 82. Fields in the SQLXA-XID Structure

Field Name Data Type Description

FORMATID INTEGER XA format ID.

GTRID_LENGTH INTEGER Length of the global
transaction ID.

BQUAL_LENGTH INTEGER Length of the branch identifier.

DATA CHAR[128] GTRID, followed by BQUAL
and trailing blanks, for a total
of 128 bytes.

Note: The maximum size for GTRID and BQUAL is 64 bytes each.

Language Syntax
C Structure

/* File: sqlxa.h */
/* Structure: SQLXA-XID */
/* ... */
typedef struct sqlxa_xid_t SQLXA_XID;
/* ... */

/* File: sqlxa.h */
/* Structure: SQLXA-XID-T */
/* ... */
struct sqlxa_xid_t
{

sqlint32 formatID;
sqlint32 gtrid_length;
sqlint32 bqual_length;
char data[SQLXA_XIDDATASIZE];

};
/* ... */

SQLXA-XID

540 Administrative API Reference

Appendix A. Naming Conventions

This section provides information about the conventions that apply when
naming database manager objects, such as databases and tables, and
authentication IDs.
v Character strings that represent names of database manager objects can

contain any of the following: a-z, A-Z, 0-9, @, #, and $.
v The first character in the string must be an alphabetic character, @, #, or $;

it cannot be a number or the letter sequences SYS, DBM, or IBM.
v Unless otherwise noted, names can be entered in lowercase letters; however,

the database manager processes them as if they were uppercase.
The exception to this is character strings that represent names under the
systems network architecture (SNA). Many values, such as logical unit
names (partner_lu and local_lu), are case sensitive. The name must be
entered exactly as it appears in the SNA definitions that correspond to
those terms.

v A database name or database alias is a unique character string containing
from one to eight letters, numbers, or keyboard characters from the set
described above.
Databases are cataloged in the system and local database directories by
their aliases in one field, and their original name in another. For most
functions, the database manager uses the name entered in the alias field of
the database directories. (The exceptions are CHANGE DATABASE
COMMENT and CREATE DATABASE, where a directory path must be
specified.)

v The name or the alias name of a table or a view is an SQL identifier that is
a unique character string 1 to 128 characters in length. Column names can
be 1 to 30 characters in length.
A fully qualified table name consists of the schema.tablename. The schema is
the unique user ID under which the table was created. The schema name
for a declared temporary table must be SESSION.

v Authentication IDs cannot exceed 30 characters on Windows 32-bit
operating systems and 8 characters on all other operating systems.

v Group IDs cannot exceed 8 characters in length.
v Local aliases for remote nodes that are to be cataloged in the node directory

cannot exceed eight characters in length.

For more information about naming conventions, see the Administration Guide.
For more information about length limits for all DB2 identifiers, see the SQL
Reference.

© Copyright IBM Corp. 1993, 2000 541

542 Administrative API Reference

Appendix B. Transaction APIs

Databases can be used in a distributed transaction processing (DTP)
environment; for information about this topic and heuristic operations, see the
Administration Guide.

Heuristic APIs

A set of APIs is provided for tool writers to perform heuristic functions on
indoubt transactions when the resource owner (such as the database
administrator) cannot wait for the Transaction Manager (TM) to perform the
re-sync action. This condition may occur if, for example, the communication
line is broken, and an indoubt transaction is tying up needed resources. For
the database manager, these resources include locks on tables and indexes, log
space, and storage used by the transaction. Each indoubt transaction also
decreases, by one, the maximum number of concurrent transactions that could
be processed by the database manager.

The heuristic APIs have the capability to query, commit, and roll back indoubt
transactions, and to cancel transactions that have been heuristically committed
or rolled back, by removing the log records and releasing log pages.

Attention: The heuristic APIs should be used with caution and only as a last
resort. The TM should drive the re-sync events. If the TM has an operator
command to start the re-sync action, it should be used. If the user cannot wait
for a TM-initiated re-sync, heuristic actions are necessary.

Although there is no set way to perform these actions, the following
guidelines may be helpful:
v Use the sqlxphqr function to display the indoubt transactions. They have a

status = ’P’ (prepared), and are not connected. The gtrid portion of an xid is
the global transaction ID that is identical to that in other resource managers
(RM) that participate in the global transaction.

v Use knowledge of the application and the operating environment to
identify the other participating RMs.

v If the transaction manager is CICS, and the only RM is a CICS resource,
perform a heuristic rollback.

v If the transaction manager is not CICS, use it to determine the status of the
transaction that has the same gtrid as does the indoubt transaction.

v If at least one RM has committed or rolled back, perform a heuristic
commit or a rollback.

© Copyright IBM Corp. 1993, 2000 543

v If they are all in the prepared state, perform a heuristic rollback.
v If at least one RM is not available, perform a heuristic rollback.

If the transaction manager is available, and the indoubt transaction is due to
the RM not being available in the second phase, or in an earlier re-sync, the
DBA should determine from the TM’s log what action has been taken against
the other RMs, and then do the same. The gtrid is the matching key between
the TM and the RMs.

Do not execute “sqlxhfrg - Forget Transaction Status” on page 545 unless a
heuristically committed or rolled back transaction happens to cause a log full
condition. The forget function releases the log space occupied by this indoubt
transaction. If a transaction manager eventually performs a re-sync action for
this indoubt transaction, the TM could make the wrong decision to commit or
to roll back other RMs, because no record was found in this RM. In general, a
missing record implies that the RM has rolled back.

544 Administrative API Reference

sqlxhfrg - Forget Transaction Status
Permits the RM to erase knowledge of a heuristically completed transaction
(that is, one that has been committed or rolled back heuristically).

Authorization
One of the following:
v sysadm

v dbadm

Required Connection
Database

API Include File
sqlxa.h

C API Syntax

API Parameters

pTransId
Input. XA identifier of the transaction to be heuristically forgotten, or
removed from the database log.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

Usage Notes
Only transactions with a status of heuristically committed or rolled back can have
the FORGET operation applied to them.

For information about the SQLXA_XID structure, see “SQLXA-XID” on
page 540.

/* File: sqlxa.h */
/* API: Forget Transaction Status */
/* ... */
extern int SQL_API_FN sqlxhfrg(

SQLXA_XID *pTransId,
struct sqlca *pSqlca
);

/* ... */

sqlxhfrg - Forget Transaction Status

Appendix B. Transaction APIs 545

sqlxphcm - Commit an Indoubt Transaction
Commits an indoubt transaction (that is, a transaction that is prepared to be
committed). If the operation succeeds, the transaction’s state becomes
heuristically committed.

Scope
This API only affects the node on which it is issued.

Authorization
One of the following:
v sysadm

v dbadm

Required Connection
Database

API Include File
sqlxa.h

C API Syntax

API Parameters

exe_type
Input. If EXE_THIS_NODE is specified, the operation is executed only at
this node.

pTransId
Input. XA identifier of the transaction to be heuristically committed.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

Usage Notes
Only transactions with a status of prepared can be committed. Once
heuristically committed, the database manager remembers the state of the
transaction until “sqlxhfrg - Forget Transaction Status” on page 545 is issued.

/* File: sqlxa.h */
/* API: Commit an Indoubt Transaction */
/* ... */
extern int SQL_API_FN sqlxphcm(

int exe_type,
SQLXA_XID *pTransId,
struct sqlca *pSqlca
);

/* ... */

sqlxphcm - Commit an Indoubt Transaction

546 Administrative API Reference

For information about the SQLXA_XID structure, see “SQLXA-XID” on
page 540 .

sqlxphcm - Commit an Indoubt Transaction

Appendix B. Transaction APIs 547

sqlxphqr - List Indoubt Transactions
Gets a list of all indoubt transactions for the currently connected database.

Scope
This API only affects the node on which it is issued.

Authorization
One of the following:
v sysadm

v dbadm

Required Connection
Database

API Include File
sqlxa.h

C API Syntax

API Parameters

exe_type
Input. If EXE_THIS_NODE is specified, the operation is executed only at
this node.

ppIndoubtData
Output. Supply the address of a pointer to an SQLXA_RECOVER
structure to hold the indoubt transactions. This API allocates sufficient
space to hold the list of indoubt transactions, and returns a pointer to
this space. The space is released only when the process terminates. Do
not use “sqlefmem - Free Memory” on page 195 to free this memory,
since it contains pointers to other dynamically allocated structures
which will not be freed. For more information, see
“SQLXA-RECOVER” on page 538.

pNumIndoubts
Output. The API will return the number of indoubt transactions
returned in ppIndoubtData.

/* File: sqlxa.h */
/* API: List Indoubt Transactions */
/* ... */
extern int SQL_API_FN sqlxphqr(

int exe_type,
SQLXA_RECOVER **ppIndoubtData,
sqlint32 *pNumIndoubts,
struct sqlca *pSqlca
);

/* ... */

sqlxphqr - List Indoubt Transactions

548 Administrative API Reference

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

sqlxphqr - List Indoubt Transactions

Appendix B. Transaction APIs 549

sqlxphrl - Roll Back an Indoubt Transaction
Rolls back an indoubt transaction (that is, a transaction that has been
prepared). If the operation succeeds, the transaction’s state becomes
heuristically rolled back.

Scope
This API only affects the node on which it is issued.

Authorization
One of the following:
v sysadm

v dbadm

Required Connection
Database

API Include File
sqlxa.h

C API Syntax

API Parameters

exe_type
Input. If EXE_THIS_NODE is specified, the operation is executed only at
this node.

pTransId
Input. XA identifier of the transaction to be heuristically rolled back.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

Usage Notes
Only transactions with a status of prepared or idle can be rolled back. Once
heuristically rolled back, the database manager remembers the state of the
transaction until “sqlxhfrg - Forget Transaction Status” on page 545 is issued.

/* File: sqlxa.h */
/* API: Roll Back an Indoubt Transaction */
/* ... */
extern int SQL_API_FN sqlxphrl(

int exe_type,
SQLXA_XID *pTransId,
struct sqlca *pSqlca
);

/* ... */

sqlxphrl - Roll Back an Indoubt Transaction

550 Administrative API Reference

For information about the SQLXA_XID structure, see “SQLXA-XID” on
page 540 .

sqlxphrl - Roll Back an Indoubt Transaction

Appendix B. Transaction APIs 551

sqlxphrl - Roll Back an Indoubt Transaction

552 Administrative API Reference

Appendix C. Precompiler Customization APIs

There is a set of precompiler service APIs which enable the customization of
precompilers. Information about what these APIs are, and how to use them, is
available from an anonymous FTP site called ftp://ftp.software.ibm.com. The
PostScript file, called prepapi.psbin, is located in the directory
/ps/products/db2/info. This file is in binary format.

If you do not have access to this electronic forum and would like to get a
copy of the document, you can call IBM Service as described in the Service
Information Flyer.

For more generic information about what is available on the Internet, or how
to access it, see “Contacting IBM” on page 671.

© Copyright IBM Corp. 1993, 2000 553

554 Administrative API Reference

Appendix D. Backup and Restore APIs for Vendor Products

DB2 provides interfaces that can be used by third-party media management
products to store and retrieve data for backup and restore operations. This
function is designed to augment the backup and restore data targets of
diskette, disk, tape, and Tivoli Storage Manager, that are supported as a
standard part of DB2.

These third-party media management products will be referred to as vendor
products in the remainder of this appendix.

DB2 defines a set of function prototypes that provide a general purpose data
interface to backup and restore that can be used by many vendors. These
functions are to be provided by the vendor in a shared library on UNIX based
systems, or DLL on OS/2 or the Windows operating system. When the
functions are invoked by DB2, the shared library or DLL specified by the
calling backup or restore routine is loaded and the functions provided by the
vendor are called to perform the required tasks.

This appendix is divided into four parts:
v Operational overview of DB2’s interaction with vendor products.
v Detailed descriptions of DB2’s vendor APIs.
v Information on the data structures used in the API calls.
v Details on invoking backup and restore using vendor products.

Operational Overview

Five functions are defined to interface DB2 and the vendor product:
v sqluvint - Initialize and Link to Device
v sqluvget - Reading Data from Device
v sqluvput - Writing Data to Device
v sqluvend - Unlink the Device
v sqluvdel - Delete Committed Session

DB2 will call these functions, and they should be provided by the vendor
product in a shared library on UNIX based systems, or in a DLL on OS/2 or
the Windows operating system.

© Copyright IBM Corp. 1993, 2000 555

Note: The shared library or DLL code will be run as part of the database
engine code. Therefore, it must be reentrant and thoroughly debugged.
An errant function may compromise data integrity of the database.

The sequence of functions that DB2 will call in a specific backup or restore
session depends on these factors:
v The number of sessions that will be utilized (one or more)?
v Whether it is a backup or a restore.
v The PROMPTING mode that is specified on the backup or restore.
v The characteristics of the device that the data is stored on.
v Any errors encountered during the operation.

Number of Sessions
DB2 supports the backup and restore of database objects using one or more
data streams or sessions. A backup or restore using three sessions would
require three physical or logical devices to be available. When vendor device
support is being used, it is the vendor’s functions that are responsible for
managing the interface to each physical or logical device. DB2 simply sends or
receives data buffers to or from the vendor provided functions.

The number of sessions to be used is specified as a parameter by the
application that calls the backup or restore database function. This value is
provided in the INIT-INPUT structure used by sqluvint (see “sqluvint -
Initialize and Link to Device” on page 564).

DB2 will continue to initialize sessions until the specified number is reached,
or it receives an SQLUV_MAX_LINK_GRANT warning return code from an
sqluvint call. In order to warn DB2 that it has reached the maximum number
of sessions that it can support, the vendor product will require code to track
the number of active sessions. Failure to warn DB2 could lead to a DB2
initialize session request that fails, resulting in a termination of all sessions
and the failure of the entire backup or restore operation.

When the operation is backup, DB2 writes a media header record at the
beginning of each session. It contains information that DB2 utilizes to identify
the session during a restore. DB2 uniquely identifies each session by
appending a sequence number to the name of the backup. It starts at 1 (one)
for the first session and is incremented by one each time another session is
initiated with an sqluvint call for a backup or restore operation. For more
details, see “INIT-INPUT” on page 583.

When the backup is successfully completed, DB2 writes a media trailer to the
last session it closes. This trailer includes information that tells DB2 how

Operational Overview

556 Administrative API Reference

many sessions were used to perform the backup. During restore, this
information is used to ensure all the sessions, or data streams, have been
restored.

Operation with No Errors, Warnings or Prompting
For backup, the following sequence of calls will be issued by DB2 for each
session.

sqluvint, action = SQLUV_WRITE

followed by 1 to n
sqluvput

followed by 1
sqluvend, action = SQLUV_COMMIT

When DB2 issues an sqluvend call (action SQLUV_COMMIT), it expects the
vendor product to appropriately save the output data. A return code of
SQLUV_OK to DB2 indicates success.

The DB2-INFO structure, used on the sqluvint call, contains the information
required to identify the backup (see “DB2-INFO” on page 579). A sequence
number is supplied. The vendor product may choose to save this information.
DB2 will use it during restore to identify the backup that will be restored.

For restore, the sequence of calls for each session is:
sqluvint, action = SQLUV_READ

followed by 1 to n
sqluvget

followed by 1
sqluvend, action = SQLUV_COMMIT

The information in the DB2-INFO structure used on the sqluvint call will
contain the information required to identify the backup. Sequence number is
not supplied. DB2 expects that all backup objects (session outputs committed
during backup) will be returned. The first backup object returned is the object
generated with sequence number 1, and all other objects are restored in no
specific order. DB2 checks the media tail to ensure that all objects have been
processed.

Note: Not all vendor products will keep a record of the names of the backup
objects. This is most likely when the backups are being done to tapes,
or other media of limited capacity. During the initialization of restore
sessions, the identification information can be utilized to stage the

Operational Overview

Appendix D. Backup and Restore APIs for Vendor Products 557

necessary backup objects so that they are available when required; this
may be most useful when juke boxes or robotic systems are used to
store the backups. DB2 will always check the media header (first record
in each session’s output) to ensure that the correct data is being
restored.

PROMPTING Mode
When a backup or restore is initiated, two prompting modes are possible:
v WITHOUT PROMPTING or NOINTERRUPT where there is no opportunity

for the vendor product to write messages to the user, or for the user to
respond to them.

v PROMPTING or INTERRUPT where the user can receive and respond to
messages from the vendor product.

For PROMPTING mode, backup and restore define three possible user
responses:
v Continue

The operation of writing or reading data to the device will resume.
v Device terminate

The device will receive no additional data and the session is terminated.
v Terminate

The entire backup or restore operation is terminated.

The use of the PROMPTING and WITHOUT PROMPTING modes is
discussed in the sections that follow.

Device Characteristics
For the purposes of the vendor device support APIs, two general types of
devices are defined:
v Limited capacity devices requiring user action to change the media, for

example, a tape drive, diskette, or CDROM drive.
v Very large capacity devices where normal operations do not require the

user be involved with handling media; for example, a juke box, or an
intelligent, robotic media handling device.

A limited capacity device may require that the user be prompted to load
additional media during the backup or restore operation. Generally DB2 is not
sensitive to the order in which the media is loaded for either backup or
restore. It also provides facilities to pass vendor media handling messages to
the user. This prompting requires that the backup or restore operation be
initiated with PROMPTING on. The media handling message text is specified
in the description field of the return code structure.

Operational Overview

558 Administrative API Reference

If PROMPTING is on and DB2 receives an SQLUV_ENDOFMEDIA or an
SQLUV_ENDOFMEDIA_NO_DATA return code from a sqluvput (write) or
sqluvget (read) call, then DB2 will:
v Mark the last buffer sent to the session to be resent, if the call was

sqluvput. It will be put to a session later.
v Call the session with sqluvend (action = SQLUV_COMMIT). If successful

(SQLUV_OK return code), DB2 will:
– Write a message to the user containing a vendor media handling

message from the return code structure that signaled end-of-media.
– Prompt the user for a continue, device terminate, or terminate response.

Based on the user response, DB2 will:
v If continue, DB2 will initialize another session using the sqluvint call, and

when successful, begin writing data to or reading data from the session. To
identify the session uniquely when writing, DB2 increments the sequence
number. The sequence number is available in the DB2-INFO structure used
with sqluvint, and is in the media header record, which is the first data
record sent to the session.
DB2 will not start more sessions than requested when backup or restore is
started or indicated by the vendor product with a
SQLUV_MAX_LINK_GRANT warning on an sqluvint.

v If device terminate, DB2 will not attempt to initialize another session, and
the number of active session will be reduced by one. DB2 will not allow all
sessions to be terminated by device terminate responses; at least one must
be kept active until the backup or restore operation completes (for example,
all data is processed).

v If terminate, DB2 will terminate the backup or restore operation. For more
information on exactly what DB2 does to terminate the sessions, see “If
Error Conditions Are Returned to DB2” on page 560.

Since the performance of backup or restore is often dependent on the number
of devices being used, it is important that parallelism be maintained. For
backup, users should be encouraged to respond to the prompting with a
continue, unless they know that the remaining active sessions will hold the
data that is still to be written out. For restore, users should use the continue
response until all media have been processed or are being processed (for
example, all the tapes have been read or are being read).

If the backup or restore mode is WITHOUT PROMPTING and DB2 receives
an SQLUV_ENDOFMEDIA or an SQLUV_ENDOFMEDIA_NO_DATA return
code from a session, it will terminate the session and not attempt to open
another session. If all sessions return end-of-media to DB2 before the backup
or restore is complete, then the backup or restore operation will fail. Because

Operational Overview

Appendix D. Backup and Restore APIs for Vendor Products 559

of this, WITHOUT PROMPTING should be used carefully with limited
capacity devices. However, it makes sense to operate in this mode with very
large capacity devices.

It is possible for the vendor product to hide media mounting and switching
actions from DB2, so that the device appears to have infinite capacity. Some
very large capacity devices operate in this mode. In these cases, it is critical
that all the data that was backed up be returned to DB2 in the same order
when a restore operation is in progress. Failure to do so could result in
missing data, but DB2 would assume a successful restore operation, since it
has no way of detecting the missing data.

DB2 writes data to the vendor product with the assumption that each buffer
will be contained on one and only one media (for example, a tape). It is
possible for the vendor product to split these buffers across multiple media
without DB2’s knowledge. In these cases, the order in which the media is
processed during a restore is critical, since the vendor product will be
responsible for returning reconstructed buffers from the multiple media to
DB2. Failure to do so will result in a failure of the restore operation.

If Error Conditions Are Returned to DB2
When performing a backup or restore operation, DB2 expects that all sessions
will complete successfully, or the entire backup or restore operation fails. A
session signals completed correctly (for example, committed) to DB2 with an
SQLUV_OK return code on the call sqluvend, action = SQLUV_COMMIT.

If unrecoverable errors are encountered, the session will be terminated by
DB2. These can be DB2 errors, or errors returned to DB2 from the vendor
product. Since all sessions must commit successfully to have a complete
backup or restore, the failure of one will cause DB2 to terminate the other
sessions associated with the operation.

If the vendor product decides to respond to a call from DB2 with an
unrecoverable return code, the vendor product can optionally provide
additional information to the user using message text placed in the
description field of the RETURN-CODE structure. This message text will be
presented to the user along with the DB2 information, so that corrective action
may be taken.

There will be backup scenarios where a session has committed successfully,
and another session associated with the backup operation experiences an
unrecoverable error. Since all sessions must complete successfully before a
backup operation is successful, DB2 must delete the output data in the
committed sessions: DB2 issues a sqluvdel call to request deletion of the

Operational Overview

560 Administrative API Reference

object. This call is not considered an I/O session, and is responsible for
initializing and terminating any connection that may be necessary to delete
the backup object.

The information in the DB2-INFO structure will not contain a sequence
number; sqluvdel will delete all backup objects that match the remaining
parameters in the DB2-INFO structure.

Warning Conditions
It is possible for DB2 to receive warning return codes from the vendor
product; for example, under the condition that a device is not ready or some
other correctable condition has occurred. This is true for both read and write
operations.

On the sqluvput and sqluvget calls, the vendor can set the return code to
SQLUV_WARNING and optionally provide additional information to the user
using message text placed in the description field of the return code structure.
This message text will be presented to the user, so that corrective action may
be taken. Again the user can respond in one of three ways: continue, device
terminate, or terminate. The mechanism used to accomplish communication
with the user is the same as for end-of-media conditions.

DB2’s actions will be:
v For continue, DB2 will attempt to rewrite the buffer using sqluvput if the

operation is backup. If the operation is restore, DB2 will issue an sqluvget
call, to read the next buffer.

v For device terminate or terminate, DB2 will terminate the entire backup or
restore in the same way that it would for an unrecoverable error (for
example, terminate active sessions and delete committed sessions).

Details about possible return codes for each function call and DB2 reactions
are specified in the following API sections.

Operational Hints and Tips

This section provides some hints and tips when building vendor products.

Recovery History File
A recovery history file can be used as an aid in database recovery operations.
It is associated with each database and is automatically updated with each
backup or restore operation. A general overview of the file is provided in the
Administration Guide. The information in the file can be viewed, updated and
pruned through the following facilities:
v Control Center
v Command Line Processor

Operational Overview

Appendix D. Backup and Restore APIs for Vendor Products 561

– LIST HISTORY
– PRUNE HISTORY
– UPDATE RECOVERY HISTORY FILE

v APIs
– sqluhcls, sqluhgne, slquhops, sqluhprn, and sqluhupd.

For information about the layout of the file, see “db2HistData” on page 423.

When a backup operation completes, a record or records are written to the
file. If the output of the backup operation was directed to vendor devices, the
DEVICE field in the history record will contain a O, and the LOCATION field
will contain either:
v The vendor file name supplied when the backup was invoked.
v The name of the shared library if there was no vendor file name supplied

when the backup was invoked.

See “Invoking Backup/Restore Using Vendor Products” on page 588 for more
details about specifying this option. If the vendor file name is not specified,
LOCATION will be blank.

The LOCATION field can be updated using any of the above facilities. This
capability can be utilized to update the location of the backup information if
limited capacity devices (for example, removable media) have been used to
hold the backup, and the media is physically moved to a different storage
location (for example, off-site). If this is done, then this file can be utilized to
assist in locating a backup when a recovery is necessary.

Functions and Data Structures

The following sections describe the generic functions and data structures
available for use by the vendor products.

The APIs for vendor products are:
v “sqluvint - Initialize and Link to Device” on page 564
v “sqluvget - Reading Data from Device” on page 568
v “sqluvput - Writing Data to Device” on page 571
v “sqluvend - Unlink the Device and Release its Resources” on page 574
v “sqluvdel - Delete Committed Session” on page 577

The data structures used by the vendor APIs are:

“DB2-INFO” on page 579
Contains information identifying DB2 to the vendor device.

Operational Hints and Tips

562 Administrative API Reference

“VENDOR-INFO” on page 582
Contains information identifying the vendor and version of the
device.

“INIT-INPUT” on page 583
Sets up a logical link between DB2 and the vendor device.

“INIT-OUTPUT” on page 585
Contains output from the device.

“DATA” on page 586
Contains data transferred between DB2 and the vendor device.

“RETURN-CODE” on page 587
Contains return code and explanation of the error.

Functions and Data Structures

Appendix D. Backup and Restore APIs for Vendor Products 563

sqluvint - Initialize and Link to Device
This function is called to provide information for initialization and
establishment of a logical link between DB2 and the vendor device.

Authorization
One of the following:
v sysadm

v dbadm

Required Connection
Database

API Include File
sql.h

C API Syntax

API Parameters

Init_input
Input. Structure that contains information provided by DB2 to
establish a logical link with the vendor device.

Init_output
Output. Structure that contains the output returned by the vendor
device.

Return_code
Output. Structure that contains the return code to be passed to DB2,
and a brief text explanation.

Usage Notes
For each media I/O session, DB2 will call this function to obtain a device
handle. If for any reason, the vendor function encounters an error during
initialization, it will indicate it via a return code. If the return code indicates
an error, DB2 may choose to terminate the operation by calling the sqluvend
function. Details on possible return codes, and the DB2 reaction to each of
these, is contained in the return codes table (see Table 83 on page 565).

/* File: sqluvend.h */
/* API: Initialize and Link to Device */
/* ... */
int sqluvint (

struct Init_input *,
struct Init_output *,
struct Return_code *);

/* ... */

sqluvint - Initialize and Link to Device

564 Administrative API Reference

The INIT-INPUT structure contains elements that can be used by the vendor
product to determine if the backup or restore can proceed:
v size_HI_order and size_LOW_order

This is the estimated size of the backup. They can be used to determine if
the vendor devices can handle the size of the backup image. They can be
used to estimate the quantity of removable media that will be required to
hold the backup. It might be beneficial to fail at the first sqluvint call if
problems are anticipated.

v req_sessions
The number of user requested sessions can be used in conjunction with the
estimated size and the prompting level to determine if the backup or
restore operation is possible.

v prompt_lvl
The prompting level indicates to the vendor if it is possible to prompt for
actions such as changing removable media (for example, put another tape
in the tape drive). This might suggest that the operation cannot proceed
since there will be no way to prompt the user.
If the prompting level is WITHOUT PROMPTING and the quantity of
removable media is greater than the number of sessions requested, DB2 will
not be able to complete the operation successfully (see “PROMPTING
Mode” on page 558 and “Device Characteristics” on page 558 for more
information).

DB2 names the backup being written or the restore to be read via fields in the
DB2-INFO structure. In the case of an action = SQLUV_READ, the vendor
product must check for the existence of the named object. If it cannot be
found, the return code should be set to SQLUV_OBJ_NOT_FOUND so that
DB2 will take the appropriate action.

After initialization is completed successfully, DB2 will continue by issuing
other data transfer functions, but may terminate the session at any time with
an sqluvend call.

Return Codes

Table 83. Valid Return Codes for sqluvint and Resulting DB2 Action
Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. sqluvput, sqluvget (see
comments)

If action = SQLUV_WRITE, the next call will be
sqluvput (to BACKUP data). If action =
SQLUV_READ, verify the existence of the named
object prior to returning SQLUV_OK; the next call
will be sqluvget to RESTORE data.

SQLUV_LINK_EXIST Session activated
previously.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

sqluvint - Initialize and Link to Device

Appendix D. Backup and Restore APIs for Vendor Products 565

Table 83. Valid Return Codes for sqluvint and Resulting DB2 Action (continued)
Literal in Header File Description Probable Next Call Other Comments

SQLUV_COMM_ ERROR Communication error
with device.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_INV_VERSION The DB2 and vendor
products are
incompatible.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_INV_ACTION Invalid action is
requested. This could
also be used to indicate
that the combination of
parameters results in an
operation which is not
possible.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_NO_DEV_
AVAIL

No device is available for
use at the moment.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_OBJ_NOT_
FOUND

Object specified cannot
be found. This should be
used when the action on
the sqluvint call is ’R’
(read) and the requested
object cannot be found
based on the criteria
specified in the
DB2-INFO structure.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_OBJS_FOUND More than 1 object
matches the specified
criteria. This will result
when the action on the
sqluvint call is ’R’ (read)
and more than one object
matches the criteria in
the DB2-INFO structure.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_INV_USERID Invalid userid specified. no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_INV_
PASSWORD

Invalid password
provided.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_INV_OPTIONS Invalid options
encountered in the
vendor options field.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_INIT_FAILED Initialization failed and
the session is to be
terminated.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_DEV_ERROR Device error. no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

sqluvint - Initialize and Link to Device

566 Administrative API Reference

Table 83. Valid Return Codes for sqluvint and Resulting DB2 Action (continued)
Literal in Header File Description Probable Next Call Other Comments

SQLUV_MAX_LINK_
GRANT

Max number of links
established.

sqluvput, sqluvget (see
comments)

This is treated as a warning by DB2. The warning
tells DB2 not to open additional sessions with the
vendor product, because the maximum number of
sessions it can support has been reached (note: this
could be due to device availability). If action =
SQLUV_WRITE (BACKUP), the next call will be
sqluvput. If action = SQLUV_READ, verify the
existence of the named object prior to returning
SQLUV_MAX_LINK_GRANT; the next call will be
sqluvget to RESTORE data.

SQLUV_IO_ERROR I/O error. no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_NOT_
ENOUGH_SPACE

There is not enough
space to store the entire
backup image; the size
estimate is provided as a
64 bit value in bytes.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

sqluvint - Initialize and Link to Device

Appendix D. Backup and Restore APIs for Vendor Products 567

sqluvget - Reading Data from Device
After initialization, this function can be called to read data from the device.

Authorization
One of the following:
v sysadm

v dbadm

Required Connection
Database

API Include File
sqluvend.h

C API Syntax

API Parameters

pVendorCB
Input. Pointer to space allocated for the DATA structure (including the
data buffer) and Return_code.

Data Input/output. A pointer to the data structure.

Return_code
Output. The return code from the API call.

obj_num
Specifies which backup object should be retrieved.

buff_size
Specifies the buffer size to be used.

/* File: sqluvend.h */
/* API: Reading Data from Device */
/* ... */
int sqluvget (

void * pVendorCB,
struct Data *,
struct Return_code *);

/* ... */

typedef struct Data
}

sqlint32 obj_num;
sqlint32 buff_size;
sqlint32 actual_buff_size;
void *dataptr;
void *reserve;

{ Data;

sqluvget - Reading Data from Device

568 Administrative API Reference

actual_buff_size
Specifies the actual bytes read or written. This value should be set to
output to indicate how many bytes of data were actually read.

dataptr
A pointer to the data buffer.

reserve
A reserve for future use.

Usage Notes
This is used by the restore function.

Return Codes

Table 84. Valid Return Codes for sqluvget and Resulting DB2 Action
Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. sqluvget DB2 processes the data

SQLUV_COMM_ERROR Communication error with
device.

sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_INV_ACTION Invalid action is requested. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_INV_DEV_HANDLE Invalid device handle. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_INV_BUFF_SIZE Invalid buffer size specified. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_DEV_ERROR Device error. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_WARNING Warning. This should not be
used to indicate end-of-media
to DB2; use
SQLUV_ENDOFMEDIA or
SQLUV_ENDOFMEDIA_NO_
DATA for this purpose.
However, device not ready
conditions can be indicated
using this return code.

sqluvget, or sqluvend, action
=SQLU_ABORT

See the explanation of DB2’s
handling of warnings (
“Warning Conditions” on
page 561).

SQLUV_LINK_NOT_EXIST No link currently exists. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_MORE_DATA Operation successful; more data
available.

sqluvget

SQLUV_ENDOFMEDIA_NO_
DATA

End of media and 0 bytes read
(for example, end of tape).

sqluvend See the explanation of DB2’s
handling of end-of-media
conditions under
“PROMPTING Mode” on
page 558, and “Device
Characteristics” on page 558.

SQLUV_ENDOFMEDIA End of media and > 0 bytes
read, (for example, end of
tape).

sqluvend DB2 processes the data, and
then handles the end-of-media
condition as described under
“PROMPTING Mode” on
page 558, and “Device
Characteristics” on page 558.

sqluvget - Reading Data from Device

Appendix D. Backup and Restore APIs for Vendor Products 569

Table 84. Valid Return Codes for sqluvget and Resulting DB2 Action (continued)
Literal in Header File Description Probable Next Call Other Comments

SQLUV_IO_ERROR I/O error. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

Next call:

v a If the next call will be an sqluvend, action = SQLU_ABORT, this session will be terminated. In addition, all other active sessions
are terminated with sqluvend, action = SQLU_ABORT.

sqluvget - Reading Data from Device

570 Administrative API Reference

sqluvput - Writing Data to Device
After initialization, this function can be used to write data to the device.

Authorization
One of the following:
v sysadm

v dbadm

Required Connection
Database

API Include File
sqluvend.h

C API Syntax

API Parameters

pVendorCB
Input. Pointer to space allocated for the DATA structure (including the
data buffer) and Return_code.

Data Output. Data buffer filled with data to be written out.

Return_code
Output. The return code from the API call.

obj_num
Specifies which backup object should be retrieved.

buff_size
Specifies the buffer size to be used.

/* File: sqluvend.h */
/* API: Writing Data to Device */
/* ... */
int sqluvput (

void * pVendorCB,
struct Data *,
struct Return_code *);

/* ... */

typedef struct Data
}

sqlint32 obj_num;
sqlint32 buff_size;
sqlint32 actual_buff_size;
void *dataptr;
void *reserve;

{ Data;

sqluvput - Writing Data to Device

Appendix D. Backup and Restore APIs for Vendor Products 571

actual_buff_size
Specifies the actual bytes read or written. This value should be set to
output to indicate how many bytes of data were actually read.

dataptr
A pointer to the data buffer.

reserve
A reserve for future use.

Usage Notes
This is used in the backup function.

Return Codes

Table 85. Valid Return Codes for sqluvput and Resulting DB2 Action
Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. sqluvput or sqluvend, if
complete (for example, DB2 has
no more data)

Inform other processes of
successful operation.

SQLUV_COMM_ERROR Communication error with
device.

sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_INV_ACTION Invalid action is requested. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_INV_DEV_HANDLE Invalid device handle. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_INV_BUFF_SIZE Invalid buffer size specified. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_ENDOFMEDIA End of media reached, for
example, end of tape.

sqluvend See the explanation of DB2’s
handling of end-of-media
conditions under
“PROMPTING Mode” on
page 558, and “Device
Characteristics” on page 558.

SQLUV_DATA_RESEND Device requested to have buffer
sent again.

sqluvput DB2 will retransmit the last
buffer. This will only be done
once.

SQLUV_DEV_ERROR Device error. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_WARNING Warning. This should not be
used to indicate end-of-media
to DB2; use
SQLUV_ENDOFMEDIA for this
purpose. However, device not
ready conditions can be
indicated using this return
code.

sqluvput See the explanation of DB2’s
handling of warnings in
“Warning Conditions” on
page 561.

SQLUV_LINK_NOT_EXIST No link currently exists. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_IO_ERROR I/O error. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

sqluvput - Writing Data to Device

572 Administrative API Reference

Table 85. Valid Return Codes for sqluvput and Resulting DB2 Action (continued)
Literal in Header File Description Probable Next Call Other Comments

Next call:

v a If the next call will be an sqluvend, action = SQLU_ABORT, this session will be terminated. In addition, all other active sessions
are terminated with sqluvend, action = SQLU_ABORT. Committed sessions are deleted with an sqluvint, sqluvdel, and sqluvend
sequence of calls (see “If Error Conditions Are Returned to DB2” on page 560).

sqluvput - Writing Data to Device

Appendix D. Backup and Restore APIs for Vendor Products 573

sqluvend - Unlink the Device and Release its Resources
Ends or unlinks the device, and frees all its related resources. The vendor has
to free or release unused resources before returning to DB2 (for example,
allocated space and file handles).

Authorization
One of the following:
v sysadm

v dbadm

Required Connection
Database

API Include File
sql.h

C API Syntax

API Parameters

action Input. Used to commit or abort the session:
v SQLUV_COMMIT (0 = to commit)
v SQLUV_ABORT (1 = to abort)

pVendorCB
Input. Pointer to the Init_output structure.

Init_output
Output. Space for Init_output de-allocated. The data has been
committed to stable storage for a backup if action is to commit. The
data is purged for a backup if the action is to abort.

Return code
Output. The return code from the API call.

/* File: sqluvend.h */
/* API: Unlink the Device and Release its Resources */
/* ... */
int sqluvend (

sqlint32 action,
void * pVendorCB,
struct Init_output *,
struct Return_code *);

/* ... */

sqluvend - Unlink the Device and Release its Resources

574 Administrative API Reference

Usage Notes
This function will be called for each session opened.

There are two possible action codes:
v Commit

Output of data to this session, or the reading of data from the session, is
complete.
For a write (BACKUP) session, if the vendor returns to DB2 with a return
code of SQLUV_OK, DB2 will assume that the output data has been
appropriately saved by the vendor’s product, and can be accessed if
referenced in a later sqluvint call.
For a read (RESTORE) session, if the vendor returns to DB2 with a return
code of SQLUV_OK, the data should not be deleted, because it may be
needed again.
If the vendor returns SQLUV_COMMIT_FAILED, DB2 must assume that
there are problems with the entire backup or restore. All active sessions will
be terminated by sqluvend calls with action = SQLUV_ABORT. For a
backup operation, committed sessions will receive a sqluvint, sqluvdel, and
sqluvend sequence of calls (see “If Error Conditions Are Returned to DB2”
on page 560).

v Abort
A problem has been encountered by DB2, and there will be no more
reading of data or writing of data to the session.
For a write (BACKUP) session, the vendor should delete the partial output
dataset, and use a SQLUV_OK return code if the partial output is deleted.
Also, DB2 assumes that there are problems with the entire backup. All
active sessions will be terminated by sqluvend calls with action =
SQLUV_ABORT, and committed sessions will receive a sqluvint, sqluvdel,
and sqluvend sequence of calls (see “If Error Conditions Are Returned to
DB2” on page 560).
For a read (RESTORE) session, the vendor should not delete the data
(because it may be needed again), but should clean up and return to DB2
with a SQLUV_OK return code. DB2 will terminate all the restore sessions
by sqluvend calls with action = SQLUV_ABORT. If the vendor returns
SQLUV_ABORT_FAILED to DB2, the caller will not be notified of this error,
because DB2 returns the first fatal failure and ignores subsequent failures.
In this case, for DB2 to have called sqluvend with action = SQLUV_ABORT,
an initial fatal error must have occurred.

sqluvend - Unlink the Device and Release its Resources

Appendix D. Backup and Restore APIs for Vendor Products 575

Return Codes

Table 86. Valid Return Codes for sqluvend and Resulting DB2 Action

Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. no further calls Free all memory allocated
for this session and
terminate.

SQLUV_COMMIT_FAILED Commit request failed. no further calls Free all memory allocated
for this session and
terminate.

SQLUV_ABORT_FAILED Abort request failed. no further calls

sqluvend - Unlink the Device and Release its Resources

576 Administrative API Reference

sqluvdel - Delete Committed Session
Deletes committed sessions.

Authorization
One of the following:
v sysadm

v dbadm

Required Connection
Database

API Include File
sqluvend.h

C API Syntax

API Parameters

Init_input
Input. Space allocated for Init_input and Return_code.

Return_code
Output. Return code from the API call. The object pointed to by the
Init_input structure is deleted.

Usage Notes
If multiple sessions are opened, and some sessions are committed but one of
them fails, this function is called to delete the committed sessions. No
sequence number will be specified; sqluvdel is responsible for finding all the
objects that were created during a pacticular backup and deleting them.
Information in the INIT-INPUT structure is utilized to identify the output data
to be deleted. The call to sqluvdel is responsible for establishing any
connection or session that is required to delete a backup object from the
vendor device. If the return code from this call is SQLUV_DELETE_FAILED,
DB2 will not notify the caller of this error, because DB2 returns the first fatal
failure and ignores subsequent failures. In this case, for DB2 to have called
sqluvdel, an initial fatal error must have occurred.

/* File: sqluvend.h */
/* API: Delete Committed Session */
/* ... */
int sqluvdel (

struct Init_input *,
struct Init_output *,
struct Return_code *);

/* ... */

sqluvdel - Delete Committed Session

Appendix D. Backup and Restore APIs for Vendor Products 577

Return Codes

Table 87. Valid Return Codes for sqluvdel and Resulting DB2 Action

Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. no further calls

SQLUV_DELETE_FAILED Delete request failed. no further calls

sqluvdel - Delete Committed Session

578 Administrative API Reference

DB2-INFO

This structure contains information provided by DB2 to identify itself to the
vendor device.

Note: All fields are NULL terminated strings.

Table 88. Fields in the DB2-INFO Structure

Field Name Data Type Description

DB2_id char An identifier for the DB2 product. Maximum
length of string it points to is 8 characters.

version char The current version of the DB2 product.
Maximum length of string it points to is 8
characters.

release char The current release of the DB2 product. Set to
NULL if it is insignificant. Maximum length of
string it points to is 8 characters.

level char The current level of the DB2 product. Set to
NULL if it is insignificant. Maximum length of
string it points to is 8 characters.

action char Specifies the action to be taken. Maximum
length of string it points to is 1 character.

filename char The file name used to identify the backup
image. If it is NULL, the server_id, db2instance,
dbname, and timestamp will uniquely identify
the backup image. Maximum length of string
it points to is 255 characters.

server_id char A unique name identifying the server where
the database resides. Maximum length of
string it points to is 8 characters.

db2instance char The db2instance ID. This is the user ID
invoking the command. Maximum length of
string it points to is 8 characters.

type char Specifies the type of backup being taken or
the type of restore being performed. The
following are possible values:

When action is SQLUV_WRITE:

0 - full database backup
3 - table space level backup

When action is SQLUV_READ:

0 - full restore
3 - online table space restore
4 - table space restore
5 - history file restore

dbname char The name of the database to be backed up or
restored. Maximum length of string it points
to is 8 characters.

DB2-INFO

Appendix D. Backup and Restore APIs for Vendor Products 579

Table 88. Fields in the DB2-INFO Structure (continued)

Field Name Data Type Description

alias char The alias of the database to be backed up or
restored. Maximum length of string it points
to is 8 characters.

timestamp char The time stamp used to identify the backup
image. Maximum length of string it points to
is 26 characters.

sequence char Specifies the file extension for the backup
image. For write operations, the value for the
first session is 1 and each time another session
is initiated with an sqluvint call, the value is
incremented by 1. For read operations, the
value is always zero. Maximum length of
string it points to is 3 characters.

obj_list struct sqlu_gen_list Lists the objects in the backup image. This is
provided to the vendors for their information
only.

max_bytes_per_txn sqlint32 Specifies to the vendor in bytes, the transfer
buffer size specified by the user.

image_filename char Reserved for future use.

reserve void Reserved for future use.

nodename char Name of the node at which the backup was
generated.

password char Password for the node at which the backup
was generated.

owner char ID of the backup originator.

mcNameP char Management class.

nodeNum SQL_PDB_NODE_TYPE Node number. Numbers greater than 255 are
supported by the vendor interface.

The filename, or server_id, db2instance, type, dbname and timestamp uniquely
identifies the backup image. The sequence number specified by seq identifies
the file extension. When a backup image is to be restored, the same values
must be used to retrieve the backup image. Depending on the vendor
product, if filename is used, the other parameters may be set to NULL, and
vice versa.

DB2-INFO

580 Administrative API Reference

Language Syntax
C Structure

/* File: sqluvend.h */
/* ... */
typedef struct DB2_info
{

char *DB2_id;
char *version;
char *release;
char *level;
char *action;
char *filename;
char *server_id;
char *db2instance;
char *type;
char *dbname;
char *alias;
char *timestamp;
char *sequence;
struct sqlu_gen_list *obj_list;
long max_bytes_per_txn;
char *image_filename;
void *reserve;
char *nodename;
char *password;
char *owner;
char *mcNameP;
SQL_PDB_NODE_TYPE nodeNum;

} DB2_info;
/* ... */

DB2-INFO

Appendix D. Backup and Restore APIs for Vendor Products 581

VENDOR-INFO

This structure contains information to identify the vendor and the version of
the device being used.

Note: All fields are NULL terminated strings.

Table 89. Fields in the VENDOR-INFO Structure

Field Name Data Type Description

vendor_id char An identifier for the vendor. Maximum length
of string it points to is 64 characters.

version char The current version of the vendor product.
Maximum length of string it points to is 8
characters.

release char The current release of the vendor product. Set
to NULL if it is insignificant. Maximum length
of string it points to is 8 characters.

level char The current level of the vendor product. Set to
NULL if it is insignificant. Maximum length of
string it points to is 8 characters.

server_id char A unique name identifying the server where
the database resides. Maximum length of
string it points to is 8 characters.

max_bytes_per_txn sqlint32 The maximum supported transfer buffer size.
Specified by the vendor in bytes. This is used
only if the return code from the vendor
initialize function is SQLUV_BUFF_SIZE,
indicating an invalid buffer size is specified.

num_objects_in_backup sqlint32 The number of sessions that were used to
make a complete backup. This is used to
determine when all backup images have been
processed during a restore.

reserve void Reserved for future use.

Language Syntax
C Structure

typedef struct Vendor_info
{

char *vendor_id;
char *version;
char *release;
char *level;
char *server_id;
sqlint32 max_bytes_per_txn;
sqlint32 num_objects_in_backup;
void *reserve;

} Vendor_info;

VENDOR-INFO

582 Administrative API Reference

INIT-INPUT

This structure contains information provided by DB2 to set up and to
establish a logical link with the vendor device.

Note: All fields are NULL terminated strings.

Table 90. Fields in the INIT-INPUT Structure

Field Name Data Type Description

DB2_session struct DB2_info A description of the session from the DB2
perspective.

size_options unsigned short The length for the options field. When using
sqlubkp and sqlurestore, the data in this field
is passed directly from the VendorOptionsSize
parameter.

size_HI_order sqluint32 High order 32 bits of DB size estimate in
bytes; total size is 64 bits.

size_LOW_order sqluint32 Low order 32 bits of DB size estimate in bytes;
total size is 64 bits.

options void This information is passed from the
application when the backup or restore
function is invoked. This data structure must
be flat. In other words, no level of indirection
is supported. Note that byte-reversal is not
done, and that code page is not checked for
this data. When using sqlubkp and
sqlurestore, the data in this field is passed
directly from the pVendorOptions parameter.

reserve void Reserved for future use.

prompt_lvl char Prompting level requested by the user when
backup or restore was invoked. Maximum
length of string it points to is 1 character.

num_sessions unsigned short Number of sessions requested by the user
when backup or restore was invoked.

INIT-INPUT

Appendix D. Backup and Restore APIs for Vendor Products 583

Language Syntax
C Structure
typedef struct Init_input
{

struct DB2_info *DB2_session;
unsigned short size_options;
sqluint32 size_HI_order;
sqluint32 size_LOW_order;
void *options;
void *reserve;
char *prompt_lvl;
unsigned short num_sessions;

} Init_input;

INIT-INPUT

584 Administrative API Reference

INIT-OUTPUT

This structure contains the output returned by the vendor device.

Table 91. Fields in the INIT-OUTPUT Structure

Field Name Data Type Description

vendor_session struct Vendor_info Contains information to identify the vendor to
DB2.

pVendorCB void Vendor control block.

reserve void Reserved for future use.

Language Syntax
C Structure

typedef struct Init_output
{

struct Vendor_info *vendor_session;
void *pVendorCB;
void *reserve;

} Init_output;

INIT-OUTPUT

Appendix D. Backup and Restore APIs for Vendor Products 585

DATA

This structure contains data transferred (read and write) between DB2 and the
vendor device.

Table 92. Fields in the DATA Structure

Field Name Data Type Description

obj_num sqlint32 The sequence number assigned by DB2 during
backup.

buff_size sqlint32 The size of the buffer.

actual_buf_size sqlint32 The actual number of bytes sent or received.
This must not exceed buff_size.

dataptr void Pointer to the data buffer. DB2 allocates space
for the buffer.

reserve void Reserved for future use.

Language Syntax
C Structure

typedef struct Data
{

sqlint32 obj_num;
sqlint32 buff_size;
sqlint32 actual_buff_size;
void *dataptr;
void *reserve;

} Data;

DATA

586 Administrative API Reference

RETURN-CODE

This structure contains the return code and a short text explanation of the
error to be returned to DB2.

Table 93. Fields in the RETURN-CODE Structure

Field Name Data Type Description

return_codea sqlint32 Return code from the vendor function.

description char A short text description of the return code.

reserve void Reserved for future use.

Note: aThis is a vendor-specific return code, and is not identical to the one used as the return
value for various APIs.

Language Syntax
C Structure

See the individual API descriptions for valid return codes accepted from
vendor products.

typedef struct Return_code
{

sqlint32 return_code,
char description[60],
void *reserve,

} Return_code;

RETURN-CODE

Appendix D. Backup and Restore APIs for Vendor Products 587

Invoking Backup/Restore Using Vendor Products

Parameters are available to specify the use of vendor products for backup and
restore through these interfaces:
v Control Center backup and restore tools
v Command Line Processor (CLP) BACKUP and RESTORE commands
v Backup and Restore API function calls.

The Control Center
The Control Center is the GUI interface for database administration shipped
with DB2. Information on invoking the Control Center is contained in the
Command Reference.

Its use is documented through help panels provided with the interface. These
should be reviewed to gain an understanding of the backup and restore tools
that are part of the Control Center.

The following parameters are used to specify the use of vendor device
support:

To Specify Control Center Input Variables (for both
Backup and Restore)

Use of vendor device and library name Select Use Library, and specify the library
name (on UNIX based systems) or the
DLL name (on OS/2 or the Windows
operating system).

Number of sessions Sessions

Vendor options not supported

Vendor file name not supported

Transfer buffer size For backup: Size of each Buffer For restore:
not applicable.

The Command Line Processor
The command line processor (CLP) is the non-GUI tool shipped with DB2 that
can be utilized for database administration and other tasks. The BACKUP
DATABASE and RESTORE DATABASE CLP commands are documented in
the Command Reference.

The specification of vendor device support is handled by the following
parameters:

Invoking Backup/Restore Using Vendor Products

588 Administrative API Reference

To Specify Command Line Processor Parameter

for Backup for Restore

Use of vendor device and
library name

library-name shared-library

Number of sessions num-sessions num-sessions

Vendor options not supported not supported

Vendor file name not supported not supported

Transfer buffer size buffer-size buffer-size

Backup and Restore API Function Calls
Two API function calls are provided to support backup and restore: sqlubkp
for backup (see “sqlubkp - Backup Database” on page 290), and sqlurestore
for restore (see “sqlurestore - Restore Database” on page 381).

A number of parameters on these API calls support the invocation and
passing of data to the vendor device support functions:

To Specify API Parameter (for both sqlubkp and
sqlurst)

Use of vendor device and library name In structure sqlu_media_list, specify a
media-type of SQLU_OTHER_MEDIA,
and then in structure sqlu_vendor, specify
the shared library or DLL in shr_lib.

Number of sessions In structure sqlu_media_list, specify
sessions.

Vendor options PVendorOptions

Vendor file name In structure sqlu_media_list, specify a
media-type of SQLU_OTHER_MEDIA,
and then in structure sqlu_vendor, specify
the file name using filename.

Transfer buffer size BufferSize

Invoking Backup/Restore Using Vendor Products

Appendix D. Backup and Restore APIs for Vendor Products 589

Invoking Backup/Restore Using Vendor Products

590 Administrative API Reference

Appendix E. Threaded Applications with Concurrent
Access

In the default implementation of threaded applications against a DB2
database, serialization of access to the database is enforced by the database
APIs. If one thread performs a database call that is blocked for some reason
(that is, the table is already in exclusive use), all other threads will be blocked
as well. In addition, all threads within a process share a commit scope. True
concurrent access to a database can only be achieved through separate
processes, or by using the APIs that are described in this section.

This section describes APIs that can be used to allocate and manipulate
separate environments (contexts) for the use of database APIs and embedded
SQL. Each context is a separate entity, and any connection or attachment
using one context is independent of all other contexts (and thus all other
connections or attachments within a process). In order for work to be done on
a context, it must first be associated with a thread. A thread must always have
a context when making database API calls or when using embedded SQL. If
these APIs to manipulate contexts are not used, all threads within a process
share the same context. If these APIs are used, each thread can have its own
context. It will have a separate connection to a database or attachment to an
instance, and will have its own commit scope.

Contexts need not be associated with a given thread for the duration of a
connection or attachment. One thread can attach to a context, connect to a
database, detach from the context, and then a second thread can attach to the
context and continue doing work using the already existing database
connection. Contexts can be passed around among threads in a process, but
not among processes.

If the new APIs are not used, the old behavior is in effect, and existing
applications need not change.

Even if the new APIs are used, the following APIs continue to be serialized:
v sqlabndx - Bind
v sqlaprep - Precompile Program
v sqluexpr - Export
v sqluimpr - Import.

The new APIs can be used with embedded SQL and the transaction APIs.

© Copyright IBM Corp. 1993, 2000 591

These APIs have no effect (that is, they are no-ops) on platforms that do not
support application threading.

Notes:

1. CLI automatically uses the new scheme (it creates a new context for each
incoming connection), and it is up to the user to disable this explicitly. For
more information, see the CLI Guide and Reference.

2. By default, AIX does not permit more than 10 share memory segments per
process, thus limiting the number of local DB2 connections per process to
10. When this limit is reached, DB2 returns SQLCODE -1224 on an SQL
CONNECT. DB2 Connect also has the 10-connections limitation if local
users are running two-phase commit over SNA, or two-phase commit with
a TP Monitor (SNA or TCP/IP).
On AIX Version 4.2.1 or greater, the environment variable EXTSHM (=ON)
can be used to enhance the number of shared memory regions to which a
process can attach.
On AIX prior to Version 4.2.1, there are no operating system-based
solutions. An alternative is to move the local database or DB2 Connect into
another machine and to access it remotely, or to access the local database
or the DB2 Connect database with TCP/IP loop-back by cataloging it as a
remote node that has the TCP/IP address of the local machine.

592 Administrative API Reference

sqleAttachToCtx - Attach to Context
Makes the current thread use a specified context. All subsequent database
calls made on this thread will use this context. If more than one thread is
attached to a given context, access is serialized for these threads, and they
share a commit scope.

Scope
The scope of this API is limited to the immediate process.

Authorization
None

Required Connection
None

API Include File
sql.h

C API Syntax

API Parameters

pCtx Input. A valid context previously allocated by “sqleBeginCtx - Create
and Attach to an Application Context” on page 594.

reserved
Reserved for future use. Must be set to NULL.

pstSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

int sqleAttachToCtx (
void *pCtx,
void *reserved,
struct sqlca *pstSqlca);

sqleAttachToCtx - Attach to Context

Appendix E. Threaded Applications with Concurrent Access 593

sqleBeginCtx - Create and Attach to an Application Context
Creates an application context, or creates and then attaches to an application
context. More than one application context can be created. Each context has its
own commit scope. Different threads can attach to different contexts (see
“sqleAttachToCtx - Attach to Context” on page 593). Any database API calls
made by such threads will not be serialized with one another.

Scope
The scope of this API is limited to the immediate process.

Authorization
None

Required Connection
None

API Include File
sql.h

C API Syntax

API Parameters

ppCtx Output. A data area allocated out of private memory for the storage of
context information.

lOptions
Input. Valid values are:

SQL_CTX_CREATE_ONLY
The context memory will be allocated, but there will be no
attachment.

SQL_CTX_BEGIN_ALL
The context memory will be allocated, and then a call to
“sqleAttachToCtx - Attach to Context” on page 593 will be
made for the current thread. If this option is used, the ppCtx
parameter can be NULL. If the thread is already attached to a
context, the call will fail.

reserved
Reserved for future use. Must be set to NULL.

int sqleBeginCtx (
void **ppCtx,
sqlint32 lOptions,
void *reserved,
struct sqlca *pstSqlca);

sqleBeginCtx - Create and Attach to an Application Context

594 Administrative API Reference

pstSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

sqleBeginCtx - Create and Attach to an Application Context

Appendix E. Threaded Applications with Concurrent Access 595

sqleDetachFromCtx - Detach From Context
Detaches the context being used by the current thread. The context will be
detached only if an attach to that context has previously been made.

Scope
The scope of this API is limited to the immediate process.

Authorization
None

Required Connection
None

API Include File
sql.h

C API Syntax

API Parameters

pCtx Input. A valid context previously allocated by “sqleBeginCtx - Create
and Attach to an Application Context” on page 594.

reserved
Reserved for future use. Must be set to NULL.

pstSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

int sqleDetachFromCtx (
void *pCtx,
void *reserved,
struct sqlca *pstSqlca);

sqleDetachFromCtx - Detach From Context

596 Administrative API Reference

sqleEndCtx - Detach and Destroy Application Context
Frees all memory associated with a given context.

Scope
The scope of this API is limited to the immediate process.

Authorization
None

Required Connection
None

API Include File
sql.h

C API Syntax

API Parameters

ppCtx Output. A data area in private memory (used for the storage of
context information) that is freed.

lOptions
Input. Valid values are:

SQL_CTX_FREE_ONLY
The context memory will be freed only if a prior detach has
been done.

Note: pCtx must be a valid context previously allocated by
“sqleBeginCtx - Create and Attach to an Application
Context” on page 594.

SQL_CTX_END_ALL
If necessary, a call to “sqleDetachFromCtx - Detach From
Context” on page 596 will be made before the memory is
freed.

Note: A detach will be done even if the context is still in use.
If this option is used, the ppCtx parameter can be
NULL, but if passed, it must be a valid context
previously allocated by “sqleBeginCtx - Create and
Attach to an Application Context” on page 594. A call to

int sqleEndCtx (
void **ppCtx,
sqlint32 lOptions,
void *reserved,
struct sqlca *pstSqlca);

sqleEndCtx - Detach and Destroy Application Context

Appendix E. Threaded Applications with Concurrent Access 597

“sqleGetCurrentCtx - Get Current Context” on page 599
will be made, and the current context freed from there.

reserved
Reserved for future use. Must be set to NULL.

pstSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

Usage Notes
If a database connection exists, or the context has been attached by another
thread, this call will fail.

Note: If a context calls an API that establishes an instance attachment (for
example, “sqlfxdb - Get Database Configuration” on page 275), it is
necessary to detach from the instance using “sqledtin - Detach” on
page 193 before calling sqleEndCtx.

sqleEndCtx - Detach and Destroy Application Context

598 Administrative API Reference

sqleGetCurrentCtx - Get Current Context
Returns the current context associated with a thread.

Scope
The scope of this API is limited to the immediate process.

Authorization
None

Required Connection
None

API Include File
sql.h

C API Syntax

API Parameters

ppCtx Output. A data area allocated out of private memory for the storage of
context information.

reserved
Reserved for future use. Must be set to NULL.

pstSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

int sqleGetCurrentCtx (
void **ppCtx,
void *reserved,
struct sqlca *pstSqlca);

sqleGetCurrentCtx - Get Current Context

Appendix E. Threaded Applications with Concurrent Access 599

sqleInterruptCtx - Interrupt Context
Interrupts the specified context.

Scope
The scope of this API is limited to the immediate process.

Authorization
None

Required Connection
Database

API Include File
sql.h

C API Syntax

API Parameters

pCtx Input. A valid context previously allocated by “sqleBeginCtx - Create
and Attach to an Application Context” on page 594.

reserved
Reserved for future use. Must be set to NULL.

pstSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” on page 450.

Usage Notes
During processing, this API:
v Switches to the context that has been passed in
v Sends an interrupt
v Switches to the original context
v Exits.

int sqleInterruptCtx (
void *pCtx,
void *reserved,
struct sqlca *pstSqlca);

sqleInterruptCtx - Interrupt Context

600 Administrative API Reference

sqleSetTypeCtx - Set Application Context Type
Sets the application context type. This API should be the first database API
called inside an application.

Scope
The scope of this API is limited to the immediate process.

Authorization
None

Required Connection
None

API Include File
sql.h

C API Syntax

API Parameters

lOptions
Input. Valid values are:

SQL_CTX_ORIGINAL
All threads will use the same context, and concurrent access
will be blocked. This is the default if none of these APIs is
called.

SQL_CTX_MULTI_MANUAL
All threads will use separate contexts, and it is up to the
application to manage the context for each thread. See
v “sqleBeginCtx - Create and Attach to an Application

Context” on page 594
v “sqleAttachToCtx - Attach to Context” on page 593
v “sqleDetachFromCtx - Detach From Context” on page 596
v “sqleEndCtx - Detach and Destroy Application Context” on

page 597.

The following restrictions/changes apply when this option is used:
v When termination is normal, automatic COMMIT at process

termination is disabled. All outstanding transactions are rolled back,
and all COMMITs must be done explicitly.

int sqleSetTypeCtx (
sqlint32 lOptions);

sqleSetTypeCtx - Set Application Context Type

Appendix E. Threaded Applications with Concurrent Access 601

v “sqleintr - Interrupt” on page 217 interrupts all contexts. To
interrupt a specific context, use “sqleInterruptCtx - Interrupt
Context” on page 600.

Usage Notes
This API must be called before any other database call, and only the first call is
effective.

sqleSetTypeCtx - Set Application Context Type

602 Administrative API Reference

Appendix F. DB2 Common Server Log Records

This section describes the structure of the DB2 common server log records
returned by “sqlurlog - Asynchronous Read Log” on page 394.

All DB2 common server log records begin with a log manager header. This
header includes the total log record size, the log record type, and
transaction-specific information. It does not include information about
accounting, statistics, traces, or performance evaluation. For more information,
see “Log Manager Header” on page 605.

Log records are uniquely identified by a log sequence number (LSN). The
LSN represents a relative byte address, within the database log, for the first
byte of the log record. It marks the offset of the log record from the beginning
of the database log.

The log records written by a single transaction are uniquely identifiable by a
field in the log record header. The unique transaction identifier is a six-byte
field that increments by one whenever a new transaction is started. All log
records written by a single transaction contain the same identifier.

When a transaction performs writable work against a table with DATA
CAPTURE CHANGES on, or invokes a log writing utility, the transaction is
marked as propagatable. Only propagatable transactions have their transaction
manager log records marked as propagatable.

Table 94. DB2 Common Server Log Records

Data Manager

“Initialize Table” on page 609 New permanent table creation.

“Import Replace (Truncate)” on page 612 Import replace activity.

“Rollback Insert” on page 612 Rollback row insert.

“Reorg Table” on page 612 REORG committed.

“Create Index, Drop Index” on page 613 Index activity.

“Create Table, Drop Table, Rollback
Create Table, Rollback Drop Table” on
page 613

Table activity.

“Alter Table Attribute” on page 613 Propagation, check pending, and append
mode activity.

“Alter Table Add Columns, Rollback Add
Columns” on page 614

Adding columns to existing tables.

© Copyright IBM Corp. 1993, 2000 603

Table 94. DB2 Common Server Log Records (continued)

“Insert Record, Delete Record, Rollback
Delete Record, Rollback Update Record”
on page 615

Table record activity.

“Update Record” on page 619 Row updates where storage location not
changed.

Long Field Manager

“Add/Delete/Non-update Long Field
Record” on page 620

Long field record activity.

LOB Manager

“Insert LOB Data Log Record
(AFIM_DATA)” on page 622

Adding LOB data with logging.

“Insert LOB Data Log Record
(AFIM_AMOUNT)” on page 622

Adding LOB data without logging.

Transaction Manager

“Normal Commit” on page 623 Transaction commits.

“Heuristic Commit” on page 623 Indoubt transaction commits.

“MPP Coordinator Commit” on page 623 Transaction commits. This is written on a
coordinator node for an application that
performs updates on at least one
subordinator node.

“MPP Subordinator Commit” on page 624 Transaction commits. This is written on a
subordinator node.

“Normal Abort” on page 624 Transaction aborts.

“Heuristic Abort” on page 625 Indoubt transaction aborts.

“Local Pending List” on page 625 Transaction commits with a pending list
existing.

“Global Pending List” on page 625 Transaction commits (two-phase) with a
pending list existing.

“XA Prepare” on page 626 XA transaction preparation in two-phase
commit environments.

“MPP Subordinator Prepare” on page 627 MPP transaction preparation in two-phase
commit environments. This log record
only exists on subordinator nodes.

“Backout Free” on page 627 Marks the end of a backout free interval.
The backout free interval is a set of log
records that is not to be compensated if
the transaction aborts.

Utility Manager

“Migration Begin” on page 628 Catalog migration starts.

604 Administrative API Reference

Table 94. DB2 Common Server Log Records (continued)

“Migration End” on page 628 Catalog migration completes.

“Load Start” on page 628 Table load starts.

“Table Load Delete Start” on page 629 Load delete phase starts.

“Load Delete Start Compensation” on
page 629

Load delete phase ends.

“Load Pending List” on page 629 Table load completes.

“Backup End” on page 630 Backup activity completes.

“Tablespace Rolled Forward” on page 630 Table space rollforward completes.

“Tablespace Roll Forward to PIT Begins”
on page 630

Marks the beginning of a table space
rollforward to a point in time.

“Tablespace Roll Forward to PIT Ends” on
page 630

Marks the end of a table space
rollforward to a point in time.

Datalink Manager

“Link File” on page 631 Written when an insert or an update on a
table with a DATALINK column creates a
link to a file.

“Unlink File” on page 632 Written when a delete or an update on a
table with a DATALINK column drops a
link to a file.

“Delete Group” on page 633 Written when a table with DATALINK
columns (having the file link control
attribute) is dropped.

“Delete PGroup” on page 633 Written when a table space is dropped.

“DLFM Prepare” on page 634 Written during the prepare phase, when a
two-phase commit is used for transactions
involving DB2 Data Links Managers.

Log Manager Header

All DB2 common server log records begin with a log manager header. This
header contains information detailing the log record and transaction
information of the log record writer.

Table 95. Log Manager Log Record Header (LogManagerLogRecordHeader)

Description Type Offset (Bytes)

Length of the entire log record int 0(4)

Type of log recorda short 4(2)

Log record general flagb short 6(2)

Appendix F. DB2 Common Server Log Records 605

Table 95. Log Manager Log Record Header
(LogManagerLogRecordHeader) (continued)

Description Type Offset (Bytes)

Log Sequence Number of the previous
log record written by this transaction. It
is used to chain log records by
transaction. If the value is 0000 0000
0000, this is the first log record written
by the transaction.

SQLU_LSNc 8(6)

Unique transaction identifier SQLU_TIDd 14(6)

Log Sequence Number of the log record
for this transaction prior to the log
record being compensated. (Note: For
compensation and backout free log
records only.)

SQLU_LSN 20(6)

Log Sequence Number of the log record
for this transaction being compensated.
(Note: For propagatable compensation
log records only.)

SQLU_LSN 26(6)

Total Length for Log Manager Log Record Header:

v Non Compensation: 20 bytes

v Compensation: 26 bytes

v Propagatable Compensation: 32 bytes

Log Manager Header

606 Administrative API Reference

Table 95. Log Manager Log Record Header
(LogManagerLogRecordHeader) (continued)

Description Type Offset (Bytes)

Definitions and Values

a Valid log record types

a Datalink manager log record o Backup start
A Normal abort O Backup end
B Backout free p Tablespace roll forward to PIT starts
c MPP coordinator commit P Table quiesce
C Compensation q Tablespace roll forward to PIT ends
D Tablespace rolled forward Q Global pending list
E Local pending list R Redo
F Forget transaction s MPP subordinate commit
g MPP log synchronization S Compensation required
G Load pending list T Partial abort
H Table load delete start U Undo
i Propagate only V Migration begin
I Heuristic abort W Migration end
J Load start X TM prepare
K Load delete start compensation Y Heuristic commit
L Lock description z MPP prepare
M Normal commit Z XA prepare
N Normal

Note: A log record of type 'i' is an informational log record only.
It will be ignored by DB2 during roll forward, roll back,
and crash recovery.

b Log record general flag constants

Redo Always 0x0001
Propagatable 0x0002
Conditionally Recoverable 0x0080

c Log Sequence Number (LSN)

A unique log record identifier representing the relative byte address
of the log record within the database log.

SQLU_LSN: union { char [6] ;
short [3] ;
}

d Transaction Identifier (TID)

A unique log record identifier representing the transaction.

SQLU_TID: union { char [6] ;
short [3] ;
}

Log Manager Header

Appendix F. DB2 Common Server Log Records 607

Data Manager Log Records

Data manager log records are the result of DDL, DML, or Utility activities.

There are two types of data manager log records:
v Data Management System (DMS) logs have a component identifier of 1 in

their header.
v Data Object Manager (DOM) logs have a component identifier of 4 in their

header.

Table 96. DMS Log Record Header Structure (DMSLogRecordHeader)

Description Type Offset (Bytes)

Component identifier (=1) unsigned char 0(1)

Function identifiera unsigned char 1(1)

Table identifiers

Table space identifier

Table identifier

unsigned short

unsigned short

2(2)

4(2)

Total Length: 6 bytes

Values and Definitions

a Valid function identifier values

102 Add columns to table
104 Undo add columns
106 Delete record
110 Undo insert record record
111 Undo delete record
112 Undo update record
113 Alter column length
115 Undo alter column length
118 Insert record
120 Update record
124 Alter table attribute
128 Initialize table

Table 97. DOM Log Record Header Structure (DOMLogRecordHeader)

Description Type Offset (Bytes)

Component identifier (=4) unsigned char 0(1)

Function identifiera unsigned char 1(1)

Object identifiers

Table space identifier

Object identifier

unsigned short

unsigned short

2(2)

4(2)

Data Manager Log Records

608 Administrative API Reference

Table 97. DOM Log Record Header Structure (DOMLogRecordHeader) (continued)

Description Type Offset (Bytes)

Table identifiers

Table space identifier

Table identifier

unsigned short

unsigned short

6(2)

8(2)

Object type unsigned char 10(1)

Flags unsigned char 11(1)

Total Length: 12 bytes

Values and Definitions

a Valid function identifier values

2 Create index
3 Drop index
4 Drop table
11 Truncate table (import replace)
35 Reorg table
101 Create table
130 Undo create table

Note: All data manager log record offsets are from the end of the log
manager record header.

All log records whose function identifier short name begins with UNDO are log
records written during the UNDO or ROLLBACK of the action in question.

The ROLLBACK can be a result of:
v The user issuing the ROLLBACK transaction statement
v A deadlock causing the ROLLBACK of a selected transaction
v The ROLLBACK of uncommitted transactions following a crash recovery
v The ROLLBACK of uncommitted transactions following a RESTORE and

ROLLFORWARD of the logs.

Initialize Table
The initialize table log record is written when a new permanent table is being
created; it signifies table initialization. This record appears after any log
records that create the DATA storage object, and before any log records that
create the LF and LOB storage objects. This is a Redo log record.

Table 98. Initialize Table Log Record Structure

Description Type Offset (Bytes)

Log header DMSLogRecordHeader 0(6)

Data Manager Log Records

Appendix F. DB2 Common Server Log Records 609

Table 98. Initialize Table Log Record Structure (continued)

Description Type Offset (Bytes)

File create LSN SQLU_LSN 6(6)

Table directory record variable 12(72)

record type unsigned char 12(1)

reserved char 13(1)

index flag unsigned short 14(2)

index root page sqluint32 16(4)

TDESC recid sqlint32 20(4)

reserved char 24(56)

flagsa sqluint32 80(4)

Table description length 84(4)

Table description record variable 88(variable)

record type unsigned char 88(1)

reserved char 89(1)

number of columns unsigned short 90(2)

array variable long 92(variable)

Total Length: 88 bytes plus table description record length
a Bit 0x00000020 indicates that the table was created with the NOT LOGGED
INITIALLY option, and that no DML activity on this table is logged until the
transaction that created the table has been committed.

Data Manager Log Records

610 Administrative API Reference

Table 98. Initialize Table Log Record Structure (continued)

Description Type Offset (Bytes)

Table Description Record: column descriptor array

(number of columns) * 8, where each element of the array contains:

v field type (unsigned short, 2 bytes)

SMALLINT 0x0000 CHAR 0x0100 GRAPHIC 0x0200
INTEGER 0x0001 VARCHAR 0x0101 VARGRAPH 0x0201
DECIMAL 0x0002 LONG VARCHAR 0x0104 LONG VARG 0x0202
DOUBLE 0x0003 DATE 0x0105 DBCLOB 0x0203
REAL 0x0004 TIME 0x0106
BIGINT 0x0005 TIMESTAMP 0x0107

BLOB 0x0108
CLOB 0x0109
DATALINK 0x010E

v length (2 bytes)

– If BLOB, CLOB, or DBCLOB, this field is not used. For the maximum length of
this field, see the array that follows the column descriptor array.

– If not DECIMAL, length is the maximum length of the field (short).

– If PACKED DECIMAL: Byte 1, unsigned char, precision (total length) Byte 2,
unsigned char, scale (fraction digits).

v null flag (unsigned short, 2 bytes)

– mutually exclusive: allows nulls, or does not allow nulls

– valid options: no default, type default, or user default

ISNULL 0x01
NONULLS 0x02
TYPE_DEFAULT 0x04
USER_DEFAULT 0x08

v field offset (unsigned short, 2 bytes) This is the offset from the start of the
formatted record to where the field’s fixed value can be found.

Table Description Record: LOB descriptor array

(number of LOB, CLOB, and DBCLOB fields) * 12, where each element of the array
contains:

v length (MAX LENGTH OF FIELD, sqluint32, 4 bytes)

v reserved (internal, sqluint32, 4 bytes)

v log flag (IS COLUMN LOGGED, sqluint32. 4 bytes)

The first LOB, CLOB, or DBCLOB encountered in the column descriptor array uses
the first element in the LOB descriptor array. The second LOB, CLOB, or DBCLOB
encountered in the column descriptor array uses the second element in the LOB
descriptor array, and so on.

Data Manager Log Records

Appendix F. DB2 Common Server Log Records 611

Import Replace (Truncate)
The import replace (truncate) log record is written when an IMPORT
REPLACE action is being executed. This record indicates the re-initialization
of the table (no user records, new life LSN). The second set of pool and object
IDs in the log header identify the table being truncated (IMPORT REPLACE).
This is a Redo log record.

Table 99. Import Replace (Truncate) Log Record Structure

Description Type Offset (Bytes)

Log header DOMLogRecordHeader 0(12)

internal variable 12(variable)

Total Length: 12 bytes plus variable length

Rollback Insert
The rollback insert log record is written when an insert row action (INSERT
RECORD) is rolled back. This is a Compensation log record.

Table 100. Rollback Insert Log Record Structure

Description Type Offset (Bytes)

Log header DMSLogRecordHeader 0(6)

Padding char[] 6(2)

RID sqlint32 8(4)

Record length unsigned short 12(2)

Free space unsigned short 14(2)

Total Length: 16 bytes

Reorg Table
The reorg table log record is written when the REORG utility has committed
to completing the reorganization of a table. This is a Normal log record.

Table 101. Reorg Table Log Record Structure

Description Type Offset (Bytes)

Log header DOMLogRecordHeader 0(12)

Internal variable 12(252)

Index tokena unsigned short 2(264)

Temporary tablespace IDb unsigned short 2(266)

Total Length: 268 bytes
a If not 0, it is the index by which the reorg is clustered (clustering index).

b If not 0, it is the system temporary table space that was used to build the reorg.

Data Manager Log Records

612 Administrative API Reference

Create Index, Drop Index
These log records are written when indexes are created or dropped. The two
elements of the log record are:
v The index root page, which is an internal identifier
v The index token, which is equivalent to the IID column in

SYSIBM.SYSINDEXES. If the value for this element is 0, the log record
represents an action on an internal index, and is not related to any user
index.

This is a Undo log record.

Table 102. Create Index, Drop Index Log Records Structure

Description Type Offset (Bytes)

Log header DOMLogRecordHeader 0(12)

Padding char[] 12(2)

Index token unsigned short 14(2)

Index root page sqluint32 16(4)

Total Length: 20 bytes

Create Table, Drop Table, Rollback Create Table, Rollback Drop Table
These log records are written when the DATA object for a permanent table is
created or dropped. The DATA object is created during a CREATE TABLE,
and prior to table initialization (Initialize Table). Create table and drop table
are Normal log records. Rollback create table and rollback drop table are
Compensation log records.

Table 103. Create Table, Drop Table, Rollback Create Table, Rollback Drop Table Log
Records Structure

Description Type Offset (Bytes)

Log header DOMLogRecordHeader 0(12)

Internal variable 12(56)

Total Length: 68 bytes

Alter Table Attribute
The alter table attribute log record is written when the state of a table is
changed VIA the ALTER TABLE statement or as a result of adding or
validating constraints.

Data Manager Log Records

Appendix F. DB2 Common Server Log Records 613

Table 104. Alter Table Attribute, Undo Alter Table Attribute

Description Type Offset (Bytes)

Log header DMSLogRecordHeader 0(6)

Padding char[] 6(2)

Alter bit (attribute) mask int 8(4)

Alter bit (attribute) values int 12(4)

Total Length: 16 bytes

Attribute Bits:

0x00000001 Propagation
0x00000002 Check Pending
0x00010000 Append Mode
0x00200000 LF Propagation
0x00400000 LOB Propagation

If one of the bits above is present in the alter bit mask, then this attribute of the table
is being altered. To determine the new value of the table attribute (0 = OFF and 1 =
ON), check the corresponding bit in the alter bit value.

Alter Table Add Columns, Rollback Add Columns
The alter table add columns log record is written when the user is adding
columns to an existing table using an ALTER TABLE statement. Complete
information on the old columns and new columns is logged.
v Column count elements represent the old number of columns and the new

total number of columns.
v The parallel arrays contain information about the columns defined in the

table. The old parallel array defines the table prior to the ALTER TABLE
statement, while the new parallel array defines the table resulting from
ALTER TABLE statement.

v Each parallel array consists of:
– An array equivalent to the column descriptor array in the table

description record (see “Initialize Table” on page 609).
– A second array equivalent to the LOB descriptor array in the table

description record. However, since this array is parallel to the first, the
only elements used are those whose corresponding element in the first
array are of type BLOB, CLOB, or DBCLOB.

Alter table add columns is a Normal log record. Rollback add columns is a
Compensation log record.

Table 105. Alter Table Add Columns, Rollback Add Columns Log Records Structure

Description Type Offset (Bytes)

Log header DMSLogRecordheader 0(6)

Data Manager Log Records

614 Administrative API Reference

Table 105. Alter Table Add Columns, Rollback Add Columns Log Records
Structure (continued)

Description Type Offset (Bytes)

Padding char[] 6(2)

Old column count int 8(4)

New column count int 12(4)

Old parallel arraysa variable 16(variable)

New parallel arraysb variable variable

Total Length: 40 bytes plus 2 sets of parallel arrays; array size is (old/new column count) *
20.

Array Elements <\p>

a Each element in this array is 8 bytes long.

b Each element in this array is 12 bytes long.

For information about the column descriptor array or the LOB descriptor array, see
Table 98 on page 609).

Insert Record, Delete Record, Rollback Delete Record, Rollback Update
Record

These log records are written when rows are inserted into or deleted from a
table. Insert record and delete record log records are generated during an
update if the location of the record being updated must be changed to
accommodate the modified record data. Insert record and delete record are
Normal log records. Rollback delete record and rollback update record are
Compensation log records.

Table 106. Insert Record, Delete Record, Rollback Delete Record, Rollback Update
Record Log Records Structure

Description Type Offset (Bytes)

Log header DMSLogRecordHeader 0(6)

Padding char[] 6(2)

RID sqlint32 8(4)

Record length unsigned short 12(2)

Free space unsigned short 14(2)

Record offset unsigned short 16(2)

Record header and data variable 18(variable)

Total Length: 18 bytes plus Record length

Data Manager Log Records

Appendix F. DB2 Common Server Log Records 615

Table 106. Insert Record, Delete Record, Rollback Delete Record, Rollback Update
Record Log Records Structure (continued)

Description Type Offset (Bytes)

Record Header and Data Details:

Record header
4 bytes

v Record typea (unsigned char, 1 byte). Records are one of two classes:

– Updatable

– Special control

A value of 0 or 4 indicates that the record can be viewed.

Each class has three types:

– Normal

– Pointer

– Overflow

v Reserved (char, 1 byte)

v Record length (unsigned short, 2 bytes)

Record variable

v Record type (unsigned char, 1 byte). Updatable records are one of two
types:

– Internal control

– Formatted user data

A value of 1 signifies a formatted user data record.

v Reserved (char, 1 byte)

v The rest of the record is dependent upon the record type and the table
descriptor record defined for the table. If the record type is internal
control, the data cannot be viewed. The following fields apply to user data
records:

– Fixed length (unsigned short, 2 bytes). This is the length of all fixed
portions of the data row.

– Formatted record (fixed and variable length). For more information
about formatted records, see ″Formatted User Data Record″.

a Record data can only be viewed if the record type (specified in the record header) is
updatable (that is, not special control).

Formatted User Data Record

The formatted record can be a combination of fixed and variable length data.
All fields contain a fixed length portion. In addition, there are eight field
types that have variable length parts:

Data Manager Log Records

616 Administrative API Reference

v VARCHAR
v LONG VARCHAR
v DATALINK
v BLOB
v CLOB
v VARGRAPHIC
v LONG VARG
v DBCLOB

Field Lengths

The length of the fixed portion of the different field types can be determined
as follows:
v DECIMAL

This field is a standard packed decimal in the form: nnnnnn...s. The length
of the field is: (precision + 2)/2. The sign nibble (s) is xC for positive (+),
and xD or xB for negative (−).

v SMALLINT INTEGER BIGINT DOUBLE REAL CHAR GRAPHIC
The length field in the element for this column in the table descriptor
record contains the fixed length size of the field.

v DATE
This field is a 4-byte packed decimal in the form: yyyymmdd. For example,
April 3, 1996 is represented as x‘19960403’.

v TIME
This field is a 3-byte packed decimal in the form: hhmmss. For example,
1:32PM is represented as x‘133200’.

v TIMESTAMP
This field is a 10-byte packed decimal in the form: yyyymmddhhmmssuuuuuu
(DATE|TIME|microseconds).

v VARCHAR LONG VARCHAR DATALINK BLOB CLOB VARGRAPHIC
LONG VARG DBCLOB
The length of the fixed portion of all the variable length fields is 4.

Note: For element addresses, see Table 98 on page 609.

For more detailed information about field types, see the SQL Reference.

The following sections describe the location of the fixed portion of each field
within the formatted record.

Data Manager Log Records

Appendix F. DB2 Common Server Log Records 617

Table Descriptor Record

The table descriptor record describes the column format of the table. It
contains an array of column structures, whose elements represent field type,
field length, null flag, and field offset. The latter is the offset from the
beginning of the formatted record, where the fixed length portion of the field
is located.

Table 107. Table Descriptor Record Structure

Table Descriptor
Record

record type number of columns column structure

v field type

v length

v null flag

v field offset

LOB information

Note: For more information, see Table 98 on page 609.

For columns that are nullable (as specified by the null flag), there is an
additional byte following the fixed length portion of the field. This byte
contains one of two values:
v NOT NULL (0x00)
v NULL (0x01)

If the null flag within the formatted record for a column that is nullable is set
to 0x00, there is a valid value in the fixed length data portion of the record. If
the null flag value is 0x01, the data field value is NULL.

The formatted user data record contains the table data that is visible to the
user. It is formatted as a fixed length record, followed by a variable length
section.

Table 108. Formatted User Data Record Structure

Formatted User
Data Record

record type length of fixed
section

fixed length section variable data
section

Note: For more information, see Table 106 on page 615.

All variable field types have a 4-byte fixed data portion in the fixed length
section (plus a null flag, if the column is nullable). The first 2 bytes (short)
represent the offset from the beginning of the fixed length section, where the

Data Manager Log Records

618 Administrative API Reference

variable data is located. The next 2 bytes (short) specify the length of the
variable data referenced by the offset value.

Update Record
The update record log record is written when a row is updated, and if its
storage location does not change. There are two available log record formats;
they are identical to the insert record and the delete record log records (see
“Insert Record, Delete Record, Rollback Delete Record, Rollback Update
Record” on page 615). One contains the pre-update image of the row being
updated; the other contains the post-update image of the row being updated.
This is a Normal log record.

Table 109. Update Record Log Record Structure

Description Type Offset (Bytes)

Log header DMSLogRecordHeader 0(6)

Padding char[] 6(2)

RID sqlint32 8(4)

New Record length unsigned short 12(2)

Free space unsigned short 14(2)

Record offset unsigned short 16(2)

Old record header and data variable 18(variable)

Log header DMSLogRecordHeader variable(6)

Padding char[] variable(2)

RID sqlint32 variable(4)

Old record length unsigned short variable(2)

Free space unsigned short variable(2)

Record offset unsigned short variable(2)

New record header and
data

variable variable(variable)

Total Length: 36 bytes plus 2 Record lengths

Long Field Manager Log Records

Long field manager log records are written only if a database is configured
with LOG RETAIN on or USEREXITS enabled. They are written whenever
long field data is inserted, deleted, or updated.

To conserve log space, long field data inserted into tables is not logged if the
database is configured for circular logging. In addition, when a long field
value is updated, the before image is shadowed and not logged.

Data Manager Log Records

Appendix F. DB2 Common Server Log Records 619

All long field manager log records begin with a header.

All long field manager log record offsets are from the end of the log manager
log record header.

When a table has been altered to capture LONG VARCHAR OR LONG
VARGRAPHIC columns (by specifying INCLUDE LONGVAR COLUMNS on
the ALTER TABLE statement):
v The long field manager will write the appropriate long field log record.
v When long field data is updated, the update is treated as a delete of the old

long field value, followed by an insert of the new value.
v When tables with long field columns are updated, but the long field

columns themselves are not updated, a Non-update Long Field Record is
written.

v The Delete Long Field Record and the Non-update Long Field Record are
information only log records.

Table 110. Long Field Manager Log Record Header (LongFieldLogRecordHeader)

Description Type Offset (Bytes)

Originator code
(component identifier = 3)

unsigned char 0(1)

Operation typea unsigned char 1(1)

Pool identifier unsigned short 2(2)

Object identifier unsigned short 4(2)

Parent pool identifierb unsigned short 6(2)

Parent object identifierc unsigned short 8(2)

Total Length: 10 bytes
a Valid operation type values and definitions:

Operation type value Long Field Log Record Type

110 Add Long Field Record
111 Delete Long Field Record
112 Non-Update Long Field Record

b Pool ID of the data object

c Object ID of the data object

Add/Delete/Non-update Long Field Record
These log records are written whenever long field data is inserted, deleted, or
updated. The length of the data is rounded up to the next 512-byte boundary.

Long Field Manager Log Records

620 Administrative API Reference

Table 111. Add/Delete/Non-update Long Field Record Log Record Structure

Description Type Offset (Bytes)

Log header LongFieldLogRecordHeader 0(10)

Long field lengtha unsigned short 10(2)

File offsetb sqluint32 12(4)

Long field data char[] 16(variable)
a Long field data length in 512-byte sectors (actual data length is not logged). The
value of this field is always positive. The long field manager never writes log records
for zero length long field data that is being inserted, deleted, or updated.

b 512-byte sector offset into long field object where data is to be located.

LOB Manager Log Records

LOB manager log records are written only if a database is configured with
LOG RETAIN on or USEREXITS enabled. The log records are written
whenever LOB data is inserted into a table. When LOB data is updated, the
update is treated as a delete of the old LOB value, followed by an insert of
the new value. If the LOB manager is able to determine that the new value is
simply the old value with new data appended to it, the new data is appended
to the old data. In this case, only the new data is logged.

For LOB columns that were created with the NOT LOGGED option, a log
record is still written if the database is forward recoverable. However, instead
of logging the actual data, only the quantity of data and its position within
the LOB object are logged. During forward recovery, zeros (not user data) are
written to the LOB object.

For any LOB value inserted, multiple LOB records may be written. A single
LOB record will not contain more than 32 768 bytes of data.

In order to conserve log space, LOB data inserted into tables is not logged if
the database is configured for circular logging. In addition, when a LOB value
is updated, the before image is shadowed and not logged.

All LOB manager log records begin with a log record header.

All LOB manager log record offsets are from the end of the log manager log
record header.

Long Field Manager Log Records

Appendix F. DB2 Common Server Log Records 621

Table 112. LOB Manager Log Record Header Structure

Description Type Offset (Bytes)

Originator code
(component identifier = 5)

unsigned char 0(1)

Operation identifier unsigned char 1(1)

Pool identifier unsigned short 2(2)

Object identifier unsigned short 4(2)

Parent pool identifier unsigned short 6(2)

Parent object identifier unsigned short 8(2)

Object type unsigned char 10(1)

Total Length: 11 bytes

Insert LOB Data Log Record (AFIM_DATA)
This log record is written when LOB data is inserted into a LOB column, or
appended to an existing LOB value, and logging of the data has been
specified.

Table 113. Insert LOB Data Log Record (AFIM_DATA)

Description Type Offset (Bytes)

Log header LOBLogRecordHeader 0(11)

Padding char 11(1)

Data length sqluint32 12(4)

Byte address in object double 16(8)

LOB data variable 24(variable)

Total Length: 24 bytes plus LOB data

Insert LOB Data Log Record (AFIM_AMOUNT)
This log record is written instead of the AFIM_DATA log record if logging for
the LOB column has been turned off.

Table 114. Insert LOB Data Log Record (AFIM_AMOUNT)

Description Type Offset (Bytes)

Log header LOBLogRecordHeader 0(11)

Padding char 11(1)

Data length sqluint32 12(4)

Byte address in object double 16(8)

Total Length: 24 bytes

LOB Manager Log Records

622 Administrative API Reference

Transaction Manager Log Records

The transaction manager produces log records signifying the completion of
transaction events (for example, commit or rollback). The time stamps in the
log records are in Coordinated Universal Time (CUT), and mark the time (in
seconds) since January 01, 1970.

Normal Commit
This log record is written for XA transactions in a single-node environment, or
on the coordinator node in MPP. It is only used for XA applications. The log
record is written when a transaction commits after one of the following
events:
v A user has issued a COMMIT
v An implicit commit occurs during a CONNECT RESET.

Table 115. Normal Commit Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Time transaction committed sqluint32 20(4)

Authorization identifier of the
applicationa

char [] 24(variable)

Total Length: 24 bytes plus variable propagatable (24 bytes non-propagatable)
a If the log record is marked as propagatable

Heuristic Commit
This log record is written when an indoubt transaction is committed.

Table 116. Heuristic Commit Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Time transaction committed sqluint32 20(4)

Authorization identifier of the
applicationa

char [] 24(variable)

Total Length: 24 bytes plus variable propagatable (24 bytes non-propagatable)
a If the log record is marked as propagatable

MPP Coordinator Commit
This log record is written on a coordinator node for an application that
performs updates on at least one subordinator node.

Table 117. Heuristic MPP Coordinator Commit Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Transaction Manager Log Records

Appendix F. DB2 Common Server Log Records 623

Table 117. Heuristic MPP Coordinator Commit Log Record Structure (continued)

Description Type Offset (Bytes)

Time transaction committed sqluint32 20(4)

MPP identifier of the
transaction

SQLP_GXID 24(20)

Maximum node number unsigned short 44(2)

TNL unsigned char [] 46(max node number/8 + 1)

Authorization identifier of the
applicationa

char [] variable(variable)

Total Length: variable
a If the log record is marked as propagatable

MPP Subordinator Commit
This log record is written on a subordinator node in MPP.

Table 118. MPP Subordinator Commit Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Time transaction committed sqluint32 20(4)

MPP identifier of the
transaction

SQLP_GXID 24(20)

Authorization identifiera char [] 44(variable)

Total Length: 44 bytes plus variable propagatable (44 bytes non-propagatable)
a If the log record is marked as propagatable

Normal Abort
This log record is written when a transaction aborts after one of the following
events:
v A user has issued a ROLLBACK
v A deadlock occurs
v An implicit rollback occurs during crash recovery
v An implicit rollback occurs during ROLLFORWARD recovery.

Table 119. Normal Abort Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Authorization identifier of the
applicationa

char [] 20(variable)

Total Length: 20 bytes plus variable (20 bytes non-propagatable)
a If the log record is marked as propagatable

Transaction Manager Log Records

624 Administrative API Reference

Heuristic Abort
This log record is written when an indoubt transaction is aborted.

Table 120. Heuristic Abort Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Authorization identifier of the
applicationa

char [] 20(variable)

Total Length: 20 bytes plus variable (20 bytes non-propagatable)
a If the log record is marked as propagatable

Local Pending List
This log record is written if a transaction commits and a pending list exists.
The pending list is a linked list of non-recoverable operations (such as
deletion of a file) that can only be performed when the user/application
issues a COMMIT. The variable length structure contains the pending list
entries.

Table 121. Local Pending List Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Time transaction committed sqluint32 20(4)

Authorization identifier
lengtha

unsigned short 24(2)

Authorization identifier of the
applicationa

char [] 26(variable)b

Pending list entries variable variable(variable)

Total Length: 26 bytes plus variables propagatable (24 bytes plus pending list entries non-propagatable)
a If the log record is marked as propagatable

b Variable based on Authorization identifier length

Global Pending List
This log record is written if a transaction involved in a two-phase commit
commits, and a pending list exists. The pending list contains non-recoverable
operations (such as deletion of a file) that can only be performed when the
user/application issues a COMMIT. The variable length structure contains the
pending list entries.

Table 122. Global Pending List Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Authorization identifier
lengtha

unsigned short 20(2)

Transaction Manager Log Records

Appendix F. DB2 Common Server Log Records 625

Table 122. Global Pending List Log Record Structure (continued)

Description Type Offset (Bytes)

Authorization identifier of the
applicationa

char [] 22(variable)b

Global pending list entries variable variable(variable)

Total Length: 22 bytes plus variables propagatable (20 bytes plus pending list entries non-propagatable)
a If the log record is marked as propagatable

b Variable based on Authorization identifier length

XA Prepare
This log record is written for XA transactions in a single-node environment, or
on the coordinator node in MPP. It is only used for XA applications. The log
record is written to mark the preparation of the transaction as part of a
two-phase commit. The XA prepare log record describes the application that
started the transaction, and is used to recreate an indoubt transaction.

Table 123. XA Prepare Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Time transaction prepared sqluint32 20(4)

Log space used by transaction sqluint64 24(8)

Transaction Node List Size sqluint32 32(4)

Transaction Node List unsigned char [] 36(variable)

XA identifier of the transaction SQLXA_XID variable(140)

Application Information
Length

sqluint32 variable(4)

Code Page Identifier sqluint32 variable(4)

Transaction Start Time sqluint32 variable(4)

Application name char [] variable(20)

Application identifier char [] variable(32)

Sequence number char [] variable(4)

Database alias used by client char [] 240(20)

Authorization identifier char [] variable(variable)

Synclog information variable variable(variable)

Total Length: 264 bytes plus variables

Transaction Manager Log Records

626 Administrative API Reference

MPP Subordinator Prepare
This log record is written for MPP transactions on subordinator nodes. The
log record is written to mark the preparation of the transaction as part of a
two-phase commit. The MPP subordinator prepare log record describes the
application that started the transaction, and is used to recreate an indoubt
transaction.

Table 124. MPP Subordinator Prepare Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Time Transaction Prepared sqluint32 20(4)

Log space used by transaction sqluint64 24(8)

Coordinator LSN SQLP_LSN 32(6)

Padding char [] 38(2)

MPP identifier of the
transaction

SQLP_GXID 40(20)

Application Information
Length

sqluint32 60(4)

Code page sqluint32 64(4)

Transaction Start Time sqluint32 68(4)

Application name char [] 72(20)

Application identifier char [] 92(32)

Sequence number char [] 124(4)

Database alias used by client char [] 128(20)

Authorization identifier char [] 148(variable)

Total Length: 148 bytes plus variable

Backout Free
This log record is used to mark the end of a backout free interval. The
backout free interval is a set of log records that is not to be compensated if
the transaction aborts. This log record contains only a 6-byte log sequence
number (complsn, stored in the log record header starting at offset 20). When
this log record is read during rollback (following an aborted transaction),
complsn marks the next log record to be compensated.

Table 125. Migration Begin Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Complsn SQLP_LSN 20(6)

Total Length: 26 bytes

Transaction Manager Log Records

Appendix F. DB2 Common Server Log Records 627

Utility Manager Log Records
The utility manager produces log records associated with the following DB2
common server utilities:
v Migration
v Load
v Backup
v Table space rollforward.

The log records signify the beginning or the end of the requested activity. All
utility manager log records are marked as propagatable regardless of the
tables that they affect.

Migration Begin
This log record is associated with the beginning of catalog migration.

Table 126. Migration Begin Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Migration start time char[] 20(10)

Migrate from release unsigned short 30(2)

Migrate to release unsigned short 32(2)

Total Length: 34 bytes

Migration End
This log record is associated with the successful completion of catalog
migration.

Table 127. Migration End Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Migration end time char[] 20(10)

Migrate to release unsigned short 30(2)

Total Length: 32 bytes

Load Start
This log record is associated with the beginning of a load.

Table 128. Load Start Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Log record identifier sqluint32 20(4)

Pool identifier unsigned short 24(2)

Utility Manager Log Records

628 Administrative API Reference

Table 128. Load Start Log Record Structure (continued)

Description Type Offset (Bytes)

Object identifier unsigned short 26(2)

Flag unsigned char 28(1)

Object pool list variable 29(variable)

Total Length: 29 bytes plus variable

Table Load Delete Start
This log record is associated with the beginning of the delete phase in a load
operation. The delete phase is started only if there are duplicate primary key
values.

Table 129. Table Load Delete Start Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Total Length: 20 bytes

Load Delete Start Compensation
This log record is associated with the end of the delete phase in a load
operation.

Table 130. Load Delete Start Compensation Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Total Length: 20 bytes

Load Pending List
This log record is written when a load transaction commits. The pending list
is a linked list of non-recoverable operations which are deferred until the
transaction commits. No commit log record follows this transaction.

Table 131. Load Pending List Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Time transaction committed sqluint32 20(4)

Authorization identifier of the
applicationa

char[] 24(9)

Pending list entries variable 33(variable)

Total Length: 33 bytes plus pending list entries propagatable (24 bytes plus pending list entries
non-propagatable)
a If the log record is marked as propagatable

Utility Manager Log Records

Appendix F. DB2 Common Server Log Records 629

Backup End
This log record is associated with the end of a successful backup.

Table 132. Backup End Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Backup end time sqluint32 20(4)

Total Length: 24 bytes

Tablespace Rolled Forward
This log record is associated with table space ROLLFORWARD recovery. It is
written for each table space that is successfully rolled forward.

Table 133. Table Space Rolled Forward Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Table space identifier unsigned short 20(2)

Total Length: 22 bytes

Tablespace Roll Forward to PIT Begins
This log record is associated with table space ROLLFORWARD recovery. It
marks the beginning of a table space rollforward to a point in time.

Table 134. Table Space Roll Forward to PIT Begins Log Record Structure

Description Type Offset (Bytes)

Time stamp for this log
record.

sqluint32 0(4)

Time stamp to which table
spaces are being rolled
forward.

sqluint32 4(4)

Number of pools being
rolled forward.

unsigned short 8(2)

Integer list of pool IDs that
are being rolled forward.

int*numpools 10(variable)

Total Length: 10 bytes plus variable

Tablespace Roll Forward to PIT Ends
This log record is associated with table space ROLLFORWARD recovery. It
marks the end of a table space rollforward to a point in time.

Utility Manager Log Records

630 Administrative API Reference

Table 135. Table Space Roll Forward to PIT Ends Log Record Structure

Description Type Offset (Bytes)

Time stamp for this log
record.

sqluint32 0(4)

Time stamp to which table
spaces were rolled forward.

sqluint32 4(4)

A flag whose value is TRUE
if the roll forward was
successful, or FALSE if the
roll forward was canceled.

int 8(4)

Total Length: 12 bytes

Datalink Manager Log Records
Datalink manager log records are the result of DDL, DML, or completion of
transaction events involving DATALINK columns. These log records are
written only when the DDL or the DML involves DATALINK columns with
the file link control attribute.

Table 136. Datalink Manager Log Record Header Structure (DLMLogRecordHeader)

Description Type Offset (Bytes)

Component identifier (=8) unsigned char 0(1)

Function identifiera unsigned char 1(1)

padding char [] 2(2)

Total Length: 6 bytes

Definitions and Values

a Valid function identifier values

LINK_FILE 33 link file
UNLINK_FILE 34 unlink file
DELETE_GROUP 35 delete group
DELETE_PGROUP 36 delete pgroup
DLFM_PREPARE 37 DLFM prepare

Link File
The link file log record is written when an insert or an update on a table with
a DATALINK column creates a link to a file. One log record is written for
each new link that is created. This log record is only used for undo.

Table 137. Link File Log Record Structure

Description Type Offset (Bytes)

Log header DLMLogRecordHeader 0(4)

ServerId sqlint32 4(4)

Utility Manager Log Records

Appendix F. DB2 Common Server Log Records 631

Table 137. Link File Log Record Structure (continued)

Description Type Offset (Bytes)

ReadOnly int 8(4)

AuthId char [] 12(8)

GroupId char [] 20(17)

padding char [] 37(1)

AccessControl unsigned short 38(2)

PrefixId char [] 40(9)

padding char [] 49(3)

RecoveryId char [] 52(7)

padding char [] 59(1)

Time stamp sqluint32 60(4)

StemNameLen sqluint32 64(4)

StemName variable 68(variable)

ServerNameLena sqluint32 variable(4)

PrefixNameLena sqluint32 variable(4)

ServeNamePrefixNamea variable variable(variable)

Total Length: 68 plus StemNameLen if non-progagatable (76 plus StemNameLen plus
ServerNameLen plus PrefixNameLen if propagatable)

Note: aIf the log record is propagatable.

Unlink File
The unlink file log record is written when a delete or an update on a table
with a DATALINK column drops a link to a file. One log record is written for
each link that is dropped. This log record is only used for undo.

Table 138. Unlink File Log Record Structure

Description Type Offset (Bytes)

Log header DLMLogRecordHeader 0(4)

ServerId sqlint32 4(4)

PrefixId char [] 8(9)

padding char [] 17(3)

RecoveryId char [] 20(7)

padding char [] 27(1)

Time stamp sqluint32 28(4)

StemNameLen sqluint32 32(4)

Datalink Manager Log Records

632 Administrative API Reference

Table 138. Unlink File Log Record Structure (continued)

Description Type Offset (Bytes)

StemName variable 36(variable)

poolIDa unsigned short variable(2)

objectIDa unsigned short variable(2)

colNuma unsigned short variable(2)

paddinga char [] variable(2)

ServerNameLena sqluint32 variable(4)

PrefixNameLena sqluint32 variable(4)

ServerNamePrefixNamea variable variable(variable)

Total Length: 36 plus StemNameLen if non-propagatable (52 plus StemNameLen plus
ServerNameLen plus PrefixNameLen if propagatable)

Note: aIf the log record is propagatable.

Delete Group
The delete group log record is written when a table with DATALINK columns
(having the file link control attribute) is dropped. One log record is written for
each such DATALINK column for each DB2 Data Links Manager configured
to the database. For a given DB2 Data Links Manager, the log record is
written only if that DB2 Data Links Manager has the group defined on it
when the table is dropped. This log record is only used for undo.

Table 139. Delete Group Log Record Structure

Description Type Offset (Bytes)

Log header DLMLogRecordHeader 0(4)

ServerId sqlint32 4(4)

RecoveryId char [] 8(7)

padding char [] 15(1)

GroupId char [] 16(17)

padding char [] 33(3)

Total Length: 36 bytes

Delete PGroup
The delete pgroup log record is written when a table space is dropped. One
log record is written for each DB2 Data Links Manager configured to the
database. For a given DB2 Data Links Manager, the log record is written only
if that DB2 Data Links Manager has the pgroup defined on it when the table
space is dropped. This log record is only used for undo.

Datalink Manager Log Records

Appendix F. DB2 Common Server Log Records 633

Table 140. Delete PGroup Log Record Structure

Description Type Offset (Bytes)

Log header DLMLogRecordHeader 0(4)

ServerId sqlint32 4(4)

poolLifeLSN SQLU_LSN 8(6)

poolId unsigned short 14(2)

RecoveryId char [] 16(7)

padding char [] 23(1)

Total Length: 24 bytes

DLFM Prepare
The DLFM prepare log record is written during the prepare phase, when a
two-phase commit is used for transactions involving DB2 Data Links
Managers. It is used to recreate a transaction for DB2 Data Links Managers
that are in-doubt.

Table 141. DLFM Prepare Log Record Structure

Description Type Offset (Bytes)

Log header DLMLogRecordHeader 0(4)

NumDLFMs unsigned short 4(4)

ServerIds variable 8(variable)

Total Length: 8 bytes plus (NumDLFMs * 4)

Datalink Manager Log Records

634 Administrative API Reference

Appendix G. Application Migration Considerations

This section describes issues that should be considered before migrating an
application to Version 7.

There are four possible operating scenarios:
1. Running pre-Version 7 applications against databases that have not been

migrated
2. Running pre-Version 7 applications against migrated databases
3. Updating applications with Version 7 APIs
4. Running Version 7 applications against migrated databases.

The first and the fourth are consistent operating environments that do not
require qualification.

The second, in which only the databases have been migrated, should work
without changes to any application, because back-level applications are
supported. However, as with any new version, a small number of
incompatibilities can occur, and these are described in the Administration
Guide.

For the third scenario, in which applications are to be updated with Version 7
APIs, the following points should be considered:
v All pre-Version 7 APIs that have been discontinued in Version 7 are still

defined in the Version 7 header files, so that older applications will compile
and link with Version 7 headers.

v Discontinued APIs should be removed from applications as soon as possible
to enable these applications to take full advantage of the new functions
available in Version 7, and to position the applications for future
enhancements.

v The names of the APIs listed below have changed because of new function
in Version 7. Users should scan for these names in their application source
code to identify the changes required following Version 7 migration of the
application.
APIs that are not listed do not require changes following migration of an
application.
Note that an application may contain the generic version of an API call,
depending on the application programming language being used. In all
cases, the generic version of the API name is identical to the C version of
the name, with the exception that the fourth character is always g.

© Copyright IBM Corp. 1993, 2000 635

Changed APIs and Data Structures

Table 142. Back-level Supported APIs

API (Version) Descriptive Name New API (Version)

sqlbftsq (V2) Fetch Tablespace Query sqlbftpq (V5)

sqlbstsq (V2) Single Tablespace Query sqlbstpq (V5)

sqlbtsq (V2) Tablespace Query sqlbmtsq (V5)

sqlectdd (V2) Catalog Database sqlecadb (V5)

sqlepstr (V2) Start Database Manager (DB2 Parallel
Edition Version 1.2)

sqlepstart (V5)

sqlestar (V2) Start Database Manager (DB2 Version 2) sqlepstart (V5)

sqlestop (V2) Stop Database Manager sqlepstp (V5)

sqlerstd (V5) Restart Database db2DatabaseRestart (V6)

sqlmon (V6) Get/Update Monitor Switches db2MonitorSwitches (V7)

sqlmonss (V5) Get Snapshot db2GetSnapshot (V6)

sqlmonsz (V6) Estimate Size Required for sqlmonss()
Output Buffer

db2GetSnapshotSize (V7)

sqlmrset (V6) Reset Monitor db2ResetMonitorData (V7)

sqlubkup (V2) Backup Database sqlubkp (V5)

sqlugrpi (V2) Get Row Partitioning Information (DB2
Parallel Edition Version 1.x)

sqlugrpn (V5)

sqluhcls (V5) Close Recovery History File Scan db2HistoryCloseScan (V6)

sqluhget (V5) Retrieve DDL Information From the
History File

db2HistoryGetEntry (V6)

sqluhgne (V5) Get Next Recovery History File Entry db2HistoryGetEntry (V6)

sqluhops (V5) Open Recovery History File Scan db2HistoryOpenScan (V6)

sqluhprn (V5) Prune Recovery History File db2Prune (V6)

sqluhupd (V5) Update Recovery History File db2HistoryUpdate (V6)

sqluqry (V5) Load Query db2LoadQuery (V6)

sqlursto (V2) Restore Database sqlurst (V5)

sqlxhcom (V2) Commit an Indoubt Transaction sqlxphcm (V5)

sqlxhqry (V2) List Indoubt Transactions sqlxphqr (V5)

sqlxhrol (V2) Roll Back an Indoubt Transaction sqlxphrl (V5)

SQLB-TBSQRY-DATA (V2) Table space data structure. SQLB-TBSPQRY-DATA
(V5)

SQLEDBSTRTOPT (V2) Start Database Manager data structure
(DB2 Parallel Edition Version 1.2)

SQLE-START-OPTIONS
(V5)

SQLUHINFO and
SQLUHADM (V5)

History file data structures. db2HistData (V6)

636 Administrative API Reference

Table 143. Back-level Unsupported APIs

Name Descriptive Name APIs Supported in V7

sqlufrol/sqlgfrol Roll Forward Database (DB2 Version
1.1)

sqluroll

sqluprfw Rollforward Database (DB2 Parallel
Edition Version 1.x)

sqluroll

sqlurfwd/sqlgrfwd Roll Forward Database (DB2 Version
1.2)

sqluroll

sqlurllf/sqlgrfwd Rollforward Database (DB2 Version 2) sqluroll

Appendix G. Application Migration Considerations 637

638 Administrative API Reference

Appendix H. Using the DB2 Library

The DB2 Universal Database library consists of online help, books (PDF and
HTML), and sample programs in HTML format. This section describes the
information that is provided, and how you can access it.

To access product information online, you can use the Information Center. For
more information, see “Accessing Information with the Information Center”
on page 653. You can view task information, DB2 books, troubleshooting
information, sample programs, and DB2 information on the Web.

DB2 PDF Files and Printed Books

DB2 Information
The following table divides the DB2 books into four categories:

DB2 Guide and Reference Information
These books contain the common DB2 information for all platforms.

DB2 Installation and Configuration Information
These books are for DB2 on a specific platform. For example, there are
separate Quick Beginnings books for DB2 on OS/2, Windows, and
UNIX-based platforms.

Cross-platform sample programs in HTML
These samples are the HTML version of the sample programs that are
installed with the Application Development Client. The samples are
for informational purposes and do not replace the actual programs.

Release notes
These files contain late-breaking information that could not be
included in the DB2 books.

The installation manuals, release notes, and tutorials are viewable in HTML
directly from the product CD-ROM. Most books are available in HTML on the
product CD-ROM for viewing and in Adobe Acrobat (PDF) format on the DB2
publications CD-ROM for viewing and printing. You can also order a printed
copy from IBM; see “Ordering the Printed Books” on page 649. The following
table lists books that can be ordered.

On OS/2 and Windows platforms, you can install the HTML files under the
sqllib\doc\html directory. DB2 information is translated into different

© Copyright IBM Corp. 1993, 2000 639

languages; however, all the information is not translated into every language.
Whenever information is not available in a specific language, the English
information is provided

On UNIX platforms, you can install multiple language versions of the HTML
files under the doc/%L/html directories, where %L represents the locale. For
more information, refer to the appropriate Quick Beginnings book.

You can obtain DB2 books and access information in a variety of ways:
v “Viewing Information Online” on page 652
v “Searching Information Online” on page 656
v “Ordering the Printed Books” on page 649
v “Printing the PDF Books” on page 648

Table 144. DB2 Information

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Guide and Reference Information

Administration Guide Administration Guide: Planning provides
an overview of database concepts,
information about design issues (such as
logical and physical database design),
and a discussion of high availability.

Administration Guide: Implementation
provides information on implementation
issues such as implementing your
design, accessing databases, auditing,
backup and recovery.

Administration Guide: Performance
provides information on database
environment and application
performance evaluation and tuning.

You can order the three volumes of the
Administration Guide in the English
language in North America using the
form number SBOF-8934.

SC09-2946
db2d1x70

SC09-2944
db2d2x70

SC09-2945
db2d3x70

db2d0

Administrative API
Reference

Describes the DB2 application
programming interfaces (APIs) and data
structures that you can use to manage
your databases. This book also explains
how to call APIs from your applications.

SC09-2947

db2b0x70

db2b0

640 Administrative API Reference

Table 144. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Application Building
Guide

Provides environment setup information
and step-by-step instructions about how
to compile, link, and run DB2
applications on Windows, OS/2, and
UNIX-based platforms.

SC09-2948

db2axx70

db2ax

APPC, CPI-C, and SNA
Sense Codes

Provides general information about
APPC, CPI-C, and SNA sense codes that
you may encounter when using DB2
Universal Database products.

Available in HTML format only.

No form number

db2apx70

db2ap

Application Development
Guide

Explains how to develop applications
that access DB2 databases using
embedded SQL or Java (JDBC and
SQLJ). Discussion topics include writing
stored procedures, writing user-defined
functions, creating user-defined types,
using triggers, and developing
applications in partitioned environments
or with federated systems.

SC09-2949

db2a0x70

db2a0

CLI Guide and Reference Explains how to develop applications
that access DB2 databases using the DB2
Call Level Interface, a callable SQL
interface that is compatible with the
Microsoft ODBC specification.

SC09-2950

db2l0x70

db2l0

Command Reference Explains how to use the Command Line
Processor and describes the DB2
commands that you can use to manage
your database.

SC09-2951

db2n0x70

db2n0

Connectivity Supplement Provides setup and reference information
on how to use DB2 for AS/400, DB2 for
OS/390, DB2 for MVS, or DB2 for VM as
DRDA application requesters with DB2
Universal Database servers. This book
also details how to use DRDA
application servers with DB2 Connect
application requesters.

Available in HTML and PDF only.

No form number

db2h1x70

db2h1

Appendix H. Using the DB2 Library 641

Table 144. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Data Movement Utilities
Guide and Reference

Explains how to use DB2 utilities, such
as import, export, load, AutoLoader, and
DPROP, that facilitate the movement of
data.

SC09-2955

db2dmx70

db2dm

Data Warehouse Center
Administration Guide

Provides information on how to build
and maintain a data warehouse using
the Data Warehouse Center.

SC26-9993

db2ddx70

db2dd

Data Warehouse Center
Application Integration
Guide

Provides information to help
programmers integrate applications with
the Data Warehouse Center and with the
Information Catalog Manager.

SC26-9994

db2adx70

db2ad

DB2 Connect User’s Guide Provides concepts, programming, and
general usage information for the DB2
Connect products.

SC09-2954

db2c0x70

db2c0

DB2 Query Patroller
Administration Guide

Provides an operational overview of the
DB2 Query Patroller system, specific
operational and administrative
information, and task information for the
administrative graphical user interface
utilities.

SC09-2958

db2dwx70

db2dw

DB2 Query Patroller
User’s Guide

Describes how to use the tools and
functions of the DB2 Query Patroller.

SC09-2960

db2wwx70

db2ww

Glossary Provides definitions for terms used in
DB2 and its components.

Available in HTML format and in the
SQL Reference.

No form number

db2t0x70

db2t0

Image, Audio, and Video
Extenders Administration
and Programming

Provides general information about DB2
extenders, and information on the
administration and configuration of the
image, audio, and video (IAV) extenders
and on programming using the IAV
extenders. It includes reference
information, diagnostic information
(with messages), and samples.

SC26-9929

dmbu7x70

dmbu7

Information Catalog
Manager Administration
Guide

Provides guidance on managing
information catalogs.

SC26-9995

db2dix70

db2di

642 Administrative API Reference

Table 144. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Information Catalog
Manager Programming
Guide and Reference

Provides definitions for the architected
interfaces for the Information Catalog
Manager.

SC26-9997

db2bix70

db2bi

Information Catalog
Manager User’s Guide

Provides information on using the
Information Catalog Manager user
interface.

SC26-9996

db2aix70

db2ai

Installation and
Configuration Supplement

Guides you through the planning,
installation, and setup of
platform-specific DB2 clients. This
supplement also contains information on
binding, setting up client and server
communications, DB2 GUI tools, DRDA
AS, distributed installation, the
configuration of distributed requests,
and accessing heterogeneous data
sources.

GC09-2957

db2iyx70

db2iy

Message Reference Lists messages and codes issued by DB2,
the Information Catalog Manager, and
the Data Warehouse Center, and
describes the actions you should take.

You can order both volumes of the
Message Reference in the English
language in North America with the
form number SBOF-8932.

Volume 1
GC09-2978

db2m1x70
Volume 2
GC09-2979

db2m2x70

db2m0

OLAP Integration Server
Administration Guide

Explains how to use the Administration
Manager component of the OLAP
Integration Server.

SC27-0787

db2dpx70

n/a

OLAP Integration Server
Metaoutline User’s Guide

Explains how to create and populate
OLAP metaoutlines using the standard
OLAP Metaoutline interface (not by
using the Metaoutline Assistant).

SC27-0784

db2upx70

n/a

OLAP Integration Server
Model User’s Guide

Explains how to create OLAP models
using the standard OLAP Model
Interface (not by using the Model
Assistant).

SC27-0783

db2lpx70

n/a

OLAP Setup and User’s
Guide

Provides configuration and setup
information for the OLAP Starter Kit.

SC27-0702

db2ipx70

db2ip

OLAP Spreadsheet Add-in
User’s Guide for Excel

Describes how to use the Excel
spreadsheet program to analyze OLAP
data.

SC27-0786

db2epx70

db2ep

Appendix H. Using the DB2 Library 643

Table 144. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

OLAP Spreadsheet Add-in
User’s Guide for Lotus
1-2-3

Describes how to use the Lotus 1-2-3
spreadsheet program to analyze OLAP
data.

SC27-0785

db2tpx70

db2tp

Replication Guide and
Reference

Provides planning, configuration,
administration, and usage information
for the IBM Replication tools supplied
with DB2.

SC26-9920

db2e0x70

db2e0

Spatial Extender User’s
Guide and Reference

Provides information about installing,
configuring, administering,
programming, and troubleshooting the
Spatial Extender. Also provides
significant descriptions of spatial data
concepts and provides reference
information (messages and SQL) specific
to the Spatial Extender.

SC27-0701

db2sbx70

db2sb

SQL Getting Started Introduces SQL concepts and provides
examples for many constructs and tasks.

SC09-2973

db2y0x70

db2y0

SQL Reference, Volume 1
and Volume 2

Describes SQL syntax, semantics, and the
rules of the language. This book also
includes information about
release-to-release incompatibilities,
product limits, and catalog views.

You can order both volumes of the SQL
Reference in the English language in
North America with the form number
SBOF-8933.

Volume 1
SC09-2974

db2s1x70

Volume 2
SC09-2975

db2s2x70

db2s0

System Monitor Guide and
Reference

Describes how to collect different kinds
of information about databases and the
database manager. This book explains
how to use the information to
understand database activity, improve
performance, and determine the cause of
problems.

SC09-2956

db2f0x70

db2f0

Text Extender
Administration and
Programming

Provides general information about DB2
extenders and information on the
administration and configuring of the
text extender and on programming using
the text extenders. It includes reference
information, diagnostic information
(with messages) and samples.

SC26-9930

desu9x70

desu9

644 Administrative API Reference

Table 144. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Troubleshooting Guide Helps you determine the source of
errors, recover from problems, and use
diagnostic tools in consultation with DB2
Customer Service.

GC09-2850

db2p0x70

db2p0

What’s New Describes the new features, functions,
and enhancements in DB2 Universal
Database, Version 7.

SC09-2976

db2q0x70

db2q0

DB2 Installation and Configuration Information

DB2 Connect Enterprise
Edition for OS/2 and
Windows Quick
Beginnings

Provides planning, migration,
installation, and configuration
information for DB2 Connect Enterprise
Edition on the OS/2 and Windows 32-bit
operating systems. This book also
contains installation and setup
information for many supported clients.

GC09-2953

db2c6x70

db2c6

DB2 Connect Enterprise
Edition for UNIX Quick
Beginnings

Provides planning, migration,
installation, configuration, and task
information for DB2 Connect Enterprise
Edition on UNIX-based platforms. This
book also contains installation and setup
information for many supported clients.

GC09-2952

db2cyx70

db2cy

DB2 Connect Personal
Edition Quick Beginnings

Provides planning, migration,
installation, configuration, and task
information for DB2 Connect Personal
Edition on the OS/2 and Windows 32-bit
operating systems. This book also
contains installation and setup
information for all supported clients.

GC09-2967

db2c1x70

db2c1

DB2 Connect Personal
Edition Quick Beginnings
for Linux

Provides planning, installation,
migration, and configuration information
for DB2 Connect Personal Edition on all
supported Linux distributions.

GC09-2962

db2c4x70

db2c4

DB2 Data Links Manager
Quick Beginnings

Provides planning, installation,
configuration, and task information for
DB2 Data Links Manager for AIX and
Windows 32-bit operating systems.

GC09-2966

db2z6x70

db2z6

Appendix H. Using the DB2 Library 645

Table 144. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Enterprise - Extended
Edition for UNIX Quick
Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition on
UNIX-based platforms. This book also
contains installation and setup
information for many supported clients.

GC09-2964

db2v3x70

db2v3

DB2 Enterprise - Extended
Edition for Windows Quick
Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition for
Windows 32-bit operating systems. This
book also contains installation and setup
information for many supported clients.

GC09-2963

db2v6x70

db2v6

DB2 for OS/2 Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on the OS/2
operating system. This book also
contains installation and setup
information for many supported clients.

GC09-2968

db2i2x70

db2i2

DB2 for UNIX Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on
UNIX-based platforms. This book also
contains installation and setup
information for many supported clients.

GC09-2970

db2ixx70

db2ix

DB2 for Windows Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on Windows
32-bit operating systems. This book also
contains installation and setup
information for many supported clients.

GC09-2971

db2i6x70

db2i6

DB2 Personal Edition
Quick Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database Personal
Edition on the OS/2 and Windows 32-bit
operating systems.

GC09-2969

db2i1x70

db2i1

DB2 Personal Edition
Quick Beginnings for
Linux

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database Personal
Edition on all supported Linux
distributions.

GC09-2972

db2i4x70

db2i4

646 Administrative API Reference

Table 144. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Query Patroller
Installation Guide

Provides installation information about
DB2 Query Patroller.

GC09-2959

db2iwx70

db2iw

DB2 Warehouse Manager
Installation Guide

Provides installation information for
warehouse agents, warehouse
transformers, and the Information
Catalog Manager.

GC26-9998

db2idx70

db2id

Cross-Platform Sample Programs in HTML

Sample programs in
HTML

Provides the sample programs in HTML
format for the programming languages
on all platforms supported by DB2. The
sample programs are provided for
informational purposes only. Not all
samples are available in all
programming languages. The HTML
samples are only available when the DB2
Application Development Client is
installed.

For more information on the programs,
refer to the Application Building Guide.

No form number db2hs

Release Notes

DB2 Connect Release
Notes

Provides late-breaking information that
could not be included in the DB2
Connect books.

See note #2. db2cr

DB2 Installation Notes Provides late-breaking
installation-specific information that
could not be included in the DB2 books.

Available on
product
CD-ROM only.

DB2 Release Notes Provides late-breaking information about
all DB2 products and features that could
not be included in the DB2 books.

See note #2. db2ir

Notes:

1. The character x in the sixth position of the file name indicates the
language version of a book. For example, the file name db2d0e70 identifies
the English version of the Administration Guide and the file name db2d0f70
identifies the French version of the same book. The following letters are
used in the sixth position of the file name to indicate the language version:

Language Identifier
Brazilian Portuguese b

Appendix H. Using the DB2 Library 647

Bulgarian u
Czech x
Danish d
Dutch q
English e
Finnish y
French f
German g
Greek a
Hungarian h
Italian i
Japanese j
Korean k
Norwegian n
Polish p
Portuguese v
Russian r
Simp. Chinese c
Slovenian l
Spanish z
Swedish s
Trad. Chinese t
Turkish m

2. Late breaking information that could not be included in the DB2 books is
available in the Release Notes in HTML format and as an ASCII file. The
HTML version is available from the Information Center and on the
product CD-ROMs. To view the ASCII file:
v On UNIX-based platforms, see the Release.Notes file. This file is located

in the DB2DIR/Readme/%L directory, where %L represents the locale name
and DB2DIR represents:
– /usr/lpp/db2_07_01 on AIX
– /opt/IBMdb2/V7.1 on HP-UX, PTX, Solaris, and Silicon Graphics IRIX
– /usr/IBMdb2/V7.1 on Linux.

v On other platforms, see the RELEASE.TXT file. This file is located in the
directory where the product is installed. On OS/2 platforms, you can
also double-click the IBM DB2 folder and then double-click the Release
Notes icon.

Printing the PDF Books
If you prefer to have printed copies of the books, you can print the PDF files
found on the DB2 publications CD-ROM. Using the Adobe Acrobat Reader,
you can print either the entire book or a specific range of pages. For the file
name of each book in the library, see Table 144 on page 640.

648 Administrative API Reference

You can obtain the latest version of the Adobe Acrobat Reader from the
Adobe Web site at http://www.adobe.com.

The PDF files are included on the DB2 publications CD-ROM with a file
extension of PDF. To access the PDF files:
1. Insert the DB2 publications CD-ROM. On UNIX-based platforms, mount

the DB2 publications CD-ROM. Refer to your Quick Beginnings book for
the mounting procedures.

2. Start the Acrobat Reader.
3. Open the desired PDF file from one of the following locations:

v On OS/2 and Windows platforms:
x:\doc\language directory, where x represents the CD-ROM drive and
language represent the two-character country code that represents your
language (for example, EN for English).

v On UNIX-based platforms:
/cdrom/doc/%L directory on the CD-ROM, where /cdrom represents the
mount point of the CD-ROM and %L represents the name of the desired
locale.

You can also copy the PDF files from the CD-ROM to a local or network drive
and read them from there.

Ordering the Printed Books

You can order the printed DB2 books either individually or as a set (in North
America only) by using a sold bill of forms (SBOF) number. To order books,
contact your IBM authorized dealer or marketing representative, or phone
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada. You can
also order the books from the Publications Web page at
http://www.elink.ibmlink.ibm.com/pbl/pbl.

Two sets of books are available. SBOF-8935 provides reference and usage
information for the DB2 Warehouse Manager. SBOF-8931 provides reference
and usage information for all other DB2 Universal Database products and
features. The contents of each SBOF are listed in the following table:

Appendix H. Using the DB2 Library 649

Table 145. Ordering the printed books

SBOF Number Books Included

SBOF-8931 v Administration Guide: Planning

v Administration Guide: Implementation

v Administration Guide: Performance

v Administrative API Reference

v Application Building Guide

v Application Development Guide

v CLI Guide and Reference

v Command Reference

v Data Movement Utilities Guide and
Reference

v Data Warehouse Center Administration
Guide

v Data Warehouse Center Application
Integration Guide

v DB2 Connect User’s Guide

v Installation and Configuration
Supplement

v Image, Audio, and Video Extenders
Administration and Programming

v Message Reference, Volumes 1 and 2

v OLAP Integration Server
Administration Guide

v OLAP Integration Server Metaoutline
User’s Guide

v OLAP Integration Server Model User’s
Guide

v OLAP Integration Server User’s Guide

v OLAP Setup and User’s Guide

v OLAP Spreadsheet Add-in User’s
Guide for Excel

v OLAP Spreadsheet Add-in User’s
Guide for Lotus 1-2-3

v Replication Guide and Reference

v Spatial Extender Administration and
Programming Guide

v SQL Getting Started

v SQL Reference, Volumes 1 and 2

v System Monitor Guide and Reference

v Text Extender Administration and
Programming

v Troubleshooting Guide

v What’s New

SBOF-8935 v Information Catalog Manager
Administration Guide

v Information Catalog Manager User’s
Guide

v Information Catalog Manager
Programming Guide and Reference

v Query Patroller Administration Guide

v Query Patroller User’s Guide

DB2 Online Documentation

Accessing Online Help
Online help is available with all DB2 components. The following table
describes the various types of help.

650 Administrative API Reference

Type of Help Contents How to Access...

Command Help Explains the syntax of
commands in the command
line processor.

From the command line processor in interactive
mode, enter:

? command

where command represents a keyword or the entire
command.

For example, ? catalog displays help for all the
CATALOG commands, while ? catalog database
displays help for the CATALOG DATABASE
command.

Client Configuration
Assistant Help

Command Center Help

Control Center Help

Data Warehouse Center
Help

Event Analyzer Help

Information Catalog
Manager Help

Satellite Administration
Center Help

Script Center Help

Explains the tasks you can
perform in a window or
notebook. The help includes
overview and prerequisite
information you need to
know, and it describes how
to use the window or
notebook controls.

From a window or notebook, click the Help push
button or press the F1 key.

Message Help Describes the cause of a
message and any action you
should take.

From the command line processor in interactive
mode, enter:

? XXXnnnnn

where XXXnnnnn represents a valid message
identifier.

For example, ? SQL30081 displays help about the
SQL30081 message.

To view message help one screen at a time, enter:

? XXXnnnnn | more

To save message help in a file, enter:

? XXXnnnnn > filename.ext

where filename.ext represents the file where you
want to save the message help.

Appendix H. Using the DB2 Library 651

Type of Help Contents How to Access...

SQL Help Explains the syntax of SQL
statements.

From the command line processor in interactive
mode, enter:

help statement

where statement represents an SQL statement.

For example, help SELECT displays help about the
SELECT statement.
Note: SQL help is not available on UNIX-based
platforms.

SQLSTATE Help Explains SQL states and
class codes.

From the command line processor in interactive
mode, enter:

? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL
state and class code represents the first two digits
of the SQL state.

For example, ? 08003 displays help for the 08003
SQL state, while ? 08 displays help for the 08 class
code.

Viewing Information Online
The books included with this product are in Hypertext Markup Language
(HTML) softcopy format. Softcopy format enables you to search or browse the
information and provides hypertext links to related information. It also makes
it easier to share the library across your site.

You can view the online books or sample programs with any browser that
conforms to HTML Version 3.2 specifications.

To view online books or sample programs:
v If you are running DB2 administration tools, use the Information Center.
v From a browser, click File —>Open Page. The page you open contains

descriptions of and links to DB2 information:
– On UNIX-based platforms, open the following page:

INSTHOME/sqllib/doc/%L/html/index.htm

where %L represents the locale name.
– On other platforms, open the following page:

sqllib\doc\html\index.htm

The path is located on the drive where DB2 is installed.

652 Administrative API Reference

If you have not installed the Information Center, you can open the page
by double-clicking the DB2 Information icon. Depending on the system
you are using, the icon is in the main product folder or the Windows
Start menu.

Installing the Netscape Browser
If you do not already have a Web browser installed, you can install Netscape
from the Netscape CD-ROM found in the product boxes. For detailed
instructions on how to install it, perform the following:
1. Insert the Netscape CD-ROM.
2. On UNIX-based platforms only, mount the CD-ROM. Refer to your Quick

Beginnings book for the mounting procedures.
3. For installation instructions, refer to the CDNAVnn.txt file, where nn

represents your two character language identifier. The file is located at the
root directory of the CD-ROM.

Accessing Information with the Information Center
The Information Center provides quick access to DB2 product information.
The Information Center is available on all platforms on which the DB2
administration tools are available.

You can open the Information Center by double-clicking the Information
Center icon. Depending on the system you are using, the icon is in the
Information folder in the main product folder or the Windows Start menu.

You can also access the Information Center by using the toolbar and the Help
menu on the DB2 Windows platform.

The Information Center provides six types of information. Click the
appropriate tab to look at the topics provided for that type.

Tasks Key tasks you can perform using DB2.

Reference DB2 reference information, such as keywords, commands, and
APIs.

Books DB2 books.

Troubleshooting
Categories of error messages and their recovery actions.

Sample Programs
Sample programs that come with the DB2 Application
Development Client. If you did not install the DB2
Application Development Client, this tab is not displayed.

Web DB2 information on the World Wide Web. To access this
information, you must have a connection to the Web from
your system.

Appendix H. Using the DB2 Library 653

When you select an item in one of the lists, the Information Center launches a
viewer to display the information. The viewer might be the system help
viewer, an editor, or a Web browser, depending on the kind of information
you select.

The Information Center provides a find feature, so you can look for a specific
topic without browsing the lists.

For a full text search, follow the hypertext link in the Information Center to
the Search DB2 Online Information search form.

The HTML search server is usually started automatically. If a search in the
HTML information does not work, you may have to start the search server
using one of the following methods:

On Windows
Click Start and select Programs —> IBM DB2 —> Information —>
Start HTML Search Server.

On OS/2
Double-click the DB2 for OS/2 folder, and then double-click the Start
HTML Search Server icon.

Refer to the release notes if you experience any other problems when
searching the HTML information.

Note: The Search function is not available in the Linux, PTX, and Silicon
Graphics IRIX environments.

Using DB2 Wizards
Wizards help you complete specific administration tasks by taking you
through each task one step at a time. Wizards are available through the
Control Center and the Client Configuration Assistant. The following table
lists the wizards and describes their purpose.

Note: The Create Database, Create Index, Configure Multisite Update, and
Performance Configuration wizards are available for the partitioned
database environment.

Wizard Helps You to... How to Access...

Add Database Catalog a database on a client workstation. From the Client Configuration
Assistant, click Add.

Backup Database Determine, create, and schedule a backup
plan.

From the Control Center, right-click
the database you want to back up
and select Backup —> Database
Using Wizard.

654 Administrative API Reference

Wizard Helps You to... How to Access...

Configure Multisite
Update

Configure a multisite update, a distributed
transaction, or a two-phase commit.

From the Control Center, right-click
the Databases folder and select
Multisite Update.

Create Database Create a database, and perform some basic
configuration tasks.

From the Control Center, right-click
the Databases folder and select
Create —> Database Using
Wizard.

Create Table Select basic data types, and create a primary
key for the table.

From the Control Center, right-click
the Tables icon and select Create
—> Table Using Wizard.

Create Table Space Create a new table space. From the Control Center, right-click
the Table Spaces icon and select
Create —> Table Space Using
Wizard.

Create Index Advise which indexes to create and drop for
all your queries.

From the Control Center, right-click
the Index icon and select Create
—> Index Using Wizard.

Performance
Configuration

Tune the performance of a database by
updating configuration parameters to match
your business requirements.

From the Control Center, right-click
the database you want to tune and
select Configure Performance
Using Wizard.

For the partitioned database
environment, from the Database
Partitions view, right-click the first
database partition you want to
tune and select Configure
Performance Using Wizard.

Restore Database Recover a database after a failure. It helps
you understand which backup to use, and
which logs to replay.

From the Control Center, right-click
the database you want to restore
and select Restore —> Database
Using Wizard.

Setting Up a Document Server
By default, the DB2 information is installed on your local system. This means
that each person who needs access to the DB2 information must install the
same files. To have the DB2 information stored in a single location, perform
the following steps:
1. Copy all files and subdirectories from \sqllib\doc\html on your local

system to a Web server. Each book has its own subdirectory that contains
all the necessary HTML and GIF files that make up the book. Ensure that
the directory structure remains the same.

Appendix H. Using the DB2 Library 655

2. Configure the Web server to look for the files in the new location. For
information, refer to the NetQuestion Appendix in the Installation and
Configuration Supplement.

3. If you are using the Java version of the Information Center, you can
specify a base URL for all HTML files. You should use the URL for the list
of books.

4. When you are able to view the book files, you can bookmark commonly
viewed topics. You will probably want to bookmark the following pages:
v List of books
v Tables of contents of frequently used books
v Frequently referenced articles, such as the ALTER TABLE topic
v The Search form

For information about how you can serve the DB2 Universal Database online
documentation files from a central machine, refer to the NetQuestion
Appendix in the Installation and Configuration Supplement.

Searching Information Online
To find information in the HTML files, use one of the following methods:
v Click Search in the top frame. Use the search form to find a specific topic.

This function is not available in the Linux, PTX, or Silicon Graphics IRIX
environments.

v Click Index in the top frame. Use the index to find a specific topic in the
book.

v Display the table of contents or index of the help or the HTML book, and
then use the find function of the Web browser to find a specific topic in the
book.

v Use the bookmark function of the Web browser to quickly return to a
specific topic.

v Use the search function of the Information Center to find specific topics. See
“Accessing Information with the Information Center” on page 653 for
details.

656 Administrative API Reference

Appendix I. Notices

IBM may not offer the products, services, or features discussed in this
document in all countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 1993, 2000 657

improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
1150 Eglinton Ave. East
North York, Ontario
M3C 1H7
CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

658 Administrative API Reference

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source
language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using,
marketing or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All
rights reserved.

Appendix I. Notices 659

Trademarks

The following terms, which may be denoted by an asterisk(*), are trademarks
of International Business Machines Corporation in the United States, other
countries, or both.

ACF/VTAM
AISPO
AIX
AIX/6000
AIXwindows
AnyNet
APPN
AS/400
BookManager
CICS
C Set++
C/370
DATABASE 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Extenders
DB2 OLAP Server
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
eNetwork
Extended Services
FFST
First Failure Support Technology

IBM
IMS
IMS/ESA
LAN DistanceMVS
MVS/ESA
MVS/XA
Net.Data
OS/2
OS/390
OS/400
PowerPC
QBIC
QMF
RACF
RISC System/6000
RS/6000
S/370
SP
SQL/DS
SQL/400
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WebExplorer
WIN-OS/2

The following terms are trademarks or registered trademarks of other
companies:

Microsoft, Windows, and Windows NT are trademarks or registered
trademarks of Microsoft Corporation.

Java or all Java-based trademarks and logos, and Solaris are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States,
other countries, or both.

660 Administrative API Reference

UNIX is a registered trademark in the United States, other countries or both
and is licensed exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a
double asterisk(**) may be trademarks or service marks of others.

Appendix I. Notices 661

662 Administrative API Reference

Index

A
abnormal termination

restart 24
access path

creating new 411
ACTIVATE DATABASE

(sqle_activate_db) 132
add database wizard 654, 655
add long field record log

record 620
ADD NODE (sqleaddn) 138
AFIM_AMOUNT (insert LOB data

log record) 622
AFIM_DATA (insert LOB data log

record) 622
alter table add columns log

record 614
alter table attribute log record 613
anyorder 358
APIs, directory of 1
application design

code page values, allocating
storage for 260, 277

installing signal handler
routine 220

pointer manipulation 281
providing pointer

manipulation 282, 283
setting collating sequence 166

application migration 635
application program

access through database
manager 85

ASYNCHRONOUS READ LOG
(sqlurlog) 394

ATTACH (sqleatin) 145
ATTACH AND CHANGE

PASSWORD (sqleatcp) 141
ATTACH TO CONTEXT

(sqleAttachToCtx) 593
authorities and privileges

granted when creating a
database 165

authority level
direct, defined 289
for creating databases,

granting 165
indirect, defined 289
retrieving user’s 287

B
backout free log record 627
backup and restore with vendor

products 555
BACKUP DATABASE

(sqlubkp) 290
backup database wizard 654
backup end log record 630
binarynumerics 367
BIND

to create new access path 411
BIND (sqlabndx) 85
bind option types and values 88
binding

application programs to
databases 85

defaults 87
errors during 165

books 639, 649

C
case sensitivity

in naming conventions 541
CATALOG DATABASE

(sqlecadb) 149
CATALOG DCS DATABASE

(sqlegdad) 200
CATALOG NODE (sqlectnd) 168
CHANGE DATABASE COMMENT

(sqledcgd) 173
CHANGE ISOLATION LEVEL

(REXX only) 418
chardel 310, 340, 369
CLOSE DATABASE DIRECTORY

SCAN (sqledcls) 176
CLOSE DCS DIRECTORY SCAN

(sqlegdcl) 203
CLOSE NODE DIRECTORY SCAN

(sqlencls) 223
CLOSE RECOVERY HISTORY FILE

SCAN (db2HistoryCloseScan) 34
CLOSE TABLESPACE CONTAINER

QUERY (sqlbctcq) 103
CLOSE TABLESPACE QUERY

(sqlbctsq) 105
COBOL

pointer manipulation 281
providing pointer

manipulation 282, 283

codepage 363
coldel 310, 340, 369
collating sequence

user-defined 159
user-defined, sample 166

column
specifying for import 325

comment
database, changing 173

COMMIT AN INDOUBT
TRANSACTION (sqlxphcm) 546

compound 334
concurrency

controlling 418
configuration, database

checking 275
resetting to default 263
updating 268

configuration, database manager
checking 278
resetting to default 266
updating 272

configure multisite update
wizard 654

conventions, naming
for database manager

objects 541
COPY MEMORY (sqlgmcpy) 283
CREATE AND ATTACH TO AN

APPLICATION CONTEXT
(sqleBeginCtx) 594

CREATE DATABASE (sqlecrea) 159
CREATE DATABASE AT NODE

(sqlecran) 157
create database wizard 655
create index log record 613
create table log record 613
create table space wizard 655
create table wizard 655

D
data manager log records

alter table add columns 614
alter table attribute 613
create index 613
create table 613
delete record 615
description 608
drop index 613
drop table 613

© Copyright IBM Corp. 1993, 2000 663

data manager log records (continued)
import replace (truncate) 612
initialize table 609
insert record 615
reorg table 612
rollback add columns 614
rollback create table 613
rollback delete record 615
rollback drop table 613
rollback insert 612
rollback update record 615
update record 619

data skew, redistributing data in
nodegroup 298

DATA structure 586
data structures

list of 419
vendor product 562

database
binding application

programs 85
checking configuration 275
concurrent request

processing 418
creating 159
deleting, ensuring recovery with

log files 189
dropping 188
exporting table to a file 302
importing file to table 320
isolating data 418
loading file to table 345

database configuration
checking 275
file 275
network parameter values 270
resetting to default 263
updating 268

database configuration file
valid entries 499

Database Connection Services (DCS)
directory

cataloging entries 200
copy entries from 210
retrieving entries from 208
uncataloging entries 205

database directory
retrieving next entry from 178

database manager
starting 230
stopping 233

database manager configuration
checking 278
file 280
network parameter values 274

database manager configuration
(continued)

resetting to default 266
updating 272

database manager configuration file
valid entries 502

datalink manager log records
delete group 633
delete pgroup 633
description 631
DLFM prepare 634
link file 631
unlink file 632

dateformat 336, 363
datesiso 310, 340, 369
DB2 Connect

supported connections to other
systems 201

DB2-INFO structure 579
DB2 library

books 639
Information Center 653
language identifier for

books 647
late-breaking information 648
online help 650
ordering printed books 649
printing PDF books 648
searching online

information 656
setting up document server 655
structure of 639
viewing online information 652
wizards 654

db2AdminMsgWrite 15
db2AutoConfig 17, 20
db2ConvMonStream 21
db2DatabaseRestart - Restart

Database 24
db2GetSnapshot - Get Snapshot 27
db2GetSnapshotSize - Estimate Size

Required for db2GetSnapshot()
Output Buffer 30

db2GetSyncSession 33
db2HistData structure 423
db2HistoryCloseScan - Close

Recovery History File Scan 34
db2HistoryGetEntry - Get Next

Recovery History File Entry 36
db2HistoryOpenScan - Open

Recovery History File Scan 39
db2HistoryUpdate - Update

Recovery History File 44
db2LdapCatalogDatabase 47
db2LdapCatalogNode 50

db2LdapDeregister 52
db2LdapRegister 54
db2LdapUncatalogDatabase 58
db2LdapUncatalogNode 60
db2LdapUpdate 62
db2LoadQuery - Load Query 65
db2MonitorSwitches - Get/Update

Monitor Switches 69
db2Prune 72
db2QuerySatelliteProgress 76
db2ResetMonitor - Reset

Monitor 78
db2SetSyncSession 81
db2SyncSatellite 82
db2SyncSatelliteStop 83
db2SyncSatelliteTest 84
DEACTIVATE DATABASE

(sqle_deactivate_db) 135
decplusblank 310, 340, 369
decpt 311, 340, 369
default

database configuration, resetting
to 263

database manager configuration,
resetting to 266

DELETE COMMITTED SESSION
(sqluvdel) 577

delete group log record 633
delete long field record log

record 620
delete pgroup log record 633
delete record log record 615
delprioritychar 341, 370
DEREFERENCE ADDRESS

(sqlgdref) 282
DEREGISTER (sqledreg) 186
DETACH (sqledtin) 193
DETACH AND DESTROY

APPLICATION CONTEXT
(sqleEndCtx) 597

DETACH FROM CONTEXT
(sqleDetachFromCtx) 596

directories
cataloging 168
Database Connection Services

retrieving entries from 208
Database Connection Services,

copy entries from 210
Database Connection Services

(DCS), cataloging entries 200
Database Connection Services

(DCS), uncataloging
entries 205

deleting entries 257
local database 181

664 Administrative API Reference

directories (continued)
OPEN DCS DIRECTORY

SCAN 213
retrieving entries from 225
retrieving next entry from 178
system database 181
system database, cataloging 149
uncataloging 254

discontinued APIs and data
structures 636

dldel 311, 341, 370
DLFM prepare log record 634
DROP DATABASE (sqledrpd) 188
DROP DATABASE AT NODE

(sqledpan) 184
drop index log record 613
DROP NODE VERIFY

(sqledrpn) 191
drop table log record 613
dumpfile 364

E
error message

restore 392
error messages

database configuration file 260,
277

database description block
structure 166

dropping remote database 189
during binding 87
during roll-forward 400
invalid checksum, database

configuration file 264, 271
invalid checksum, database

manager configuration
file 267, 274

retrieving from SQLCODE
field 90

return codes 92, 285
ESTIMATE SIZE REQUIRED FOR

db2GetSnapshot() OUTPUT
BUFFER (db2GetSnapshotSize) 30

EXPORT 302
exporting

database table to a file 302
file type modifiers for 310
specifying column names 304

F
fastparse 359
FETCH TABLESPACE CONTAINER

QUERY (sqlbftcq) 107
FETCH TABLESPACE QUERY

(sqlbftpq) 109

file type modifiers
export utility 310
import utility 334
load utility 358

FORCE APPLICATION
(sqlefrce) 196

forcein 341, 371
FORGET TRANSACTION STATUS

(sqlxhfrg) 545
FORTRAN

pointer manipulation 281
providing pointer

manipulation 282, 283
FREE MEMORY (sqlefmem) 195

G
generatedignore 334, 359
generatedmissing 334, 359
generatedoverride 360
GET ADDRESS (sqlgaddr) 281
GET AUTHORIZATIONS

(sqluadau) 287
GET CURRENT CONTEXT

(sqleGetCurrentCtx) 599
GET DATABASE CONFIGURATION

(sqlfxdb) 275
GET DATABASE CONFIGURATION

DEFAULTS (sqlfddb) 259
GET DATABASE MANAGER

CONFIGURATION (sqlfxsys) 278
GET DATABASE MANAGER

CONFIGURATION DEFAULTS
(sqlfdsys) 261

GET DCS DIRECTORY ENTRIES
(sqlegdgt) 210

GET DCS DIRECTORY ENTRY FOR
DATABASE (sqlegdge) 208

GET ERROR MESSAGE
(sqlaintp) 90

GET INSTANCE (sqlegins) 215
GET NEXT DATABASE DIRECTORY

ENTRY (sqledgne) 178
GET NEXT NODE DIRECTORY

ENTRY (sqlengne) 225
GET NEXT RECOVERY HISTORY

FILE ENTRY
(db2HistoryGetEntry) 36

GET ROW PARTITIONING
NUMBER (sqlugrpn) 314

GET SNAPSHOT
(db2GetSnapshot) 27

GET SQLSTATE MESSAGE
(sqlogstt) 284

GET TABLE PARTITIONING
INFORMATION (sqlugtpi) 318

GET TABLESPACE STATISTICS
(sqlbgtss) 111

GET/UPDATE MONITOR
SWITCHES
(db2MonitorSwitches) 69

global pending list log record 625

H
heuristic abort log record 625
heuristic commit log record 623
host systems

connections supported by DB2
Connect 201

HTML
sample programs 647

I
identityignore 335, 360
identitymissing 335, 360
identityoverride 361
implieddecimal 336, 364
IMPORT (sqluimpr) 320
import replace (truncate) log

record 612
importing

code page considerations 332
database access through DB2

Connect 333
DB2 Data Links Manager

considerations 333
file to database table 320
file type modifiers for 334
PC/IXF, multiple-part files 333
restrictions 333
to a remote database 331
to a table or hierarchy that does

not exist 332
to typed tables 333

index wizard 655
indexfreespace 361
indexixf 342
indexschema 342
Information Center 653
INIT-INPUT structure 583
INIT-OUTPUT structure 585
INITIALIZE AND LINK TO DEVICE

(sqluvint) 564
initialize table log record 609
insert LOB data log record

(AFIM_AMOUNT) 622
insert LOB data log record

(AFIM_DATA) 622
insert record log record 615
INSTALL SIGNAL HANDLER

(sqleisig) 219

Index 665

installing
Netscape browser 653

INTERRUPT (sqleintr) 217
INTERRUPT CONTEXT

(sqleInterruptCtx) 600
isolation level

changing 418

K
keepblanks 341, 370

L
language identifier

books 647
late-breaking information 648
link file log record 631
LIST DRDA INDOUBT

TRANSACTIONS (sqlcspqy) 130
LIST INDOUBT TRANSACTIONS

(sqlxphqr) 548
LOAD 345
LOAD (sqluload) 345
load delete start compensation log

record 629
load pending list log record 629
LOAD QUERY (db2LoadQuery) 65
load start log record 628
loading

file to database table 345
file type modifiers for 358

LOB manager log records
description 621
insert LOB data

(AFIM_AMOUNT) 622
insert LOB data

(AFIM_DATA) 622
lobsinfile 310, 335, 361
local database directory

open scan 181
local pending list log record 625
locks

changing 418
resetting maximum to

default 263
verifying maximum number 275

log
file, use of in roll-forward 430
recovery, allocating 159

log record header 605
log records

add long field record 620
alter table add columns 614
alter table attribute 613
backout free 627
backup end 630
create index 613

log records (continued)
create table 613
data manager 608
datalink manager 631
DB2 logs 603
delete group 633
delete long field record 620
delete pgroup 633
delete record 615
DLFM prepare 634
drop index 613
drop table 613
global pending list 625
header 605
heuristic abort 625
heuristic commit 623
import replace (truncate) 612
initialize table 609
insert LOB data

(AFIM_AMOUNT) 622
insert LOB data

(AFIM_DATA) 622
insert record 615
link file 631
load delete start

compensation 629
load pending list 629
load start 628
LOB manager 621
local pending list 625
long field manager 619
migration begin 628
migration end 628
MPP coordinator commit 623
MPP subordinator commit 624
MPP subordinator prepare 627
non-update long field

record 620
normal abort 624
normal commit 623
reorg table 612
returned by sqlurlog 603
rollback add columns 614
rollback create table 613
rollback delete record 615
rollback drop table 613
rollback insert 612
rollback update record 615
table load delete start 629
tablespace roll forward to PIT

begins 630
tablespace roll forward to PIT

ends 630
tablespace rolled forward 630
transaction manager 623

log records (continued)
unlink file 632
update record 619
utility 628
XA prepare 626

log sequence number (LSN) 603
long field manager log records

add long field record 620
delete long field record 620
description 619
non-update long field

record 620
LSN (log sequence number) 603

M
MIGRATE DATABASE

(sqlemgdb) 221
migration

application 635
migration begin log record 628
migration end log record 628
modifiers, file type

for export utility 310
for import utility 334
for load utility 358

moving data between
databases 332

MPP coordinator commit log
record 623

MPP subordinator commit log
record 624

MPP subordinator prepare log
record 627

multiple concurrent requests
changing isolation level to

control 418

N
naming conventions

for database manager
objects 541

Netscape browser
installing 653

no_type_id 335
nochecklengths 339, 342, 367, 371
node

directory 168
directory entries, retrieving 225
OPEN DCS DIRECTORY

SCAN 213
node, SOCKS 476, 478
nodefaults 335
nodoubledel 311, 341, 370
noeofchar 336, 367
noheader 361
non-propagatable 603

666 Administrative API Reference

non-update long field record log
record 620

normal abort log record 624
normal commit log record 623
norowwarnings 361
nullindchar 339, 367

O
online help 650
online information

searching 656
viewing 652

OPEN DATABASE DIRECTORY
SCAN (sqledosd) 181

OPEN DCS DIRECTORY SCAN
(sqlegdsc) 213

OPEN NODE DIRECTORY SCAN
(sqlenops) 228

OPEN RECOVERY HISTORY FILE
SCAN (db2HistoryOpenScan) 39

OPEN TABLESPACE CONTAINER
QUERY (sqlbotcq) 116

OPEN TABLESPACE QUERY
(sqlbotsq) 119

optimization 377

P
package

creating with BIND 85
force new access paths, after

running statistics 411
recreating 99

packeddecimal 368
pagefreespace 362
partitioning information, table,

obtaining 318
password

changing 141
PDF 648
performance, improving

by reorganizing tables 379
performance configuration

wizard 655
pointer

manipulation 281
pointers

manipulation of 282, 283
precompile option types and

values 95
PRECOMPILE PROGRAM

(sqlaprep) 93
printing PDF books 648
privileges

direct, defined 289
indirect, defined 289
retrieving user’s 287

privileges and authorities
granted when creating a

database 165
propagatable 603

Q
QUERY CLIENT (sqleqryc) 236
QUERY CLIENT INFORMATION

(sqleqryi) 239
QUIESCE TABLESPACES FOR

TABLE (sqluvqdp) 413

R
READING DATA FROM DEVICE

(sqluvget) 568
REBIND (sqlarbnd) 99
rebind option types and values 102
reclen 339, 368
RECONCILE (sqlurcon) 374
recovering a database 381
REDISTRIBUTE NODEGROUP

(sqludrdt) 298
REGISTER (sqleregs) 241
release notes 648
reorg table log record 612
REORGANIZE TABLE

(sqlureot) 377
RESET DATABASE

CONFIGURATION (sqlfrdb) 263
RESET DATABASE MANAGER

CONFIGURATION (sqlfrsys) 266
RESET MONITOR (sqlmrset) 78
RESTART DATABASE

(db2DatabaseRestart) 24
RESTORE DATABASE

(sqlurestore) 381
restore wizard 655
restoring earlier versions of DB2

databases 381
RETURN-CODE structure 587
return codes 13
RFWD-INPUT structure 427
RFWD-OUTPUT structure 430
ROLL BACK AN INDOUBT

TRANSACTION (sqlxphrl) 550
rollback add columns log

record 614
rollback create table log record 613
rollback delete record log

record 615
rollback drop table log record 613
rollback insert log record 612
rollback update record log

record 615
ROLLFORWARD DATABASE

(sqluroll) 397

RUNSTATS (sqlustat) 407

S
sample programs

cross-platform 647
HTML 647

sample programs, directory of 6
schema

created when creating a
database 165

searching
online information 654, 656

SET ACCOUNTING STRING
(sqlesact) 243

SET APPLICATION CONTEXT
TYPE (sqleSetTypeCtx) 601

SET CLIENT (sqlesetc) 248
SET CLIENT INFORMATION

(sqleseti) 251
SET RUNTIME DEGREE

(sqlesdeg) 245
SET TABLESPACE CONTAINERS

(sqlbstsc) 124
setting up document server 655
SIGALRM signal 231

starting the database
manager 231

SIGINT signal, starting database
manager 231

signal handling
INSTALL SIGNAL

HANDLER 219
INTERRUPT 217

SINGLE TABLESPACE QUERY
(sqlbstpq) 122

SmartGuides
wizards 654

SOCKS node 476, 478
SQL-AUTHORIZATIONS

structure 434
SQL-DIR-ENTRY structure 437
SQL-UEXPT-OUT structure 525
SQLA-FLAGINFO structure 439
sqlabndx - Bind 85
sqlaintp - Get Error Message 90
sqlaprep - Precompile Program 93
sqlarbnd - Rebind 99
SQLB-TBS-STATS structure 441
SQLB-TBSCONTQRY-DATA

structure 443
SQLB-TBSPQRY-DATA

structure 445
sqlbctcq - Close Tablespace

Container Query 103
sqlbctsq - Close Tablespace

Query 105

Index 667

sqlbftcq - Fetch Tablespace Container
Query 107

sqlbftpq - Fetch Tablespace
Query 109

sqlbgtss - Get Tablespace
Statistics 111

sqlbmtsq - Tablespace Query 113
sqlbotcq - Open Tablespace

Container Query 116
sqlbotsq - Open Tablespace

Query 119
sqlbstpq - Single Tablespace

Query 122
sqlbstsc - Set Tablespace

Containers 124
sqlbtcq - Tablespace Container

Query 127
SQLCA structure 450

retrieving error messages
from 13, 90, 284

SQLCHAR structure 452
SQLCODE values 13
sqlcspqy - List DRDA Indoubt

Transactions 130
SQLDA structure 453
SQLDCOL structure 456
sqle_activate_db - Activate

Database 132
SQLE-ADDN-OPTIONS

structure 460
SQLE-CLIENT-INFO structure 462
SQLE-CONN-SETTING

structure 465
sqle_deactivate_db - Deactivate

Database 135
SQLE-NODE-APPC structure 469
SQLE-NODE-APPN structure 470
SQLE-NODE-CPIC structure 471
SQLE-NODE-IPXSPX structure 472
SQLE-NODE-LOCAL structure 473
SQLE-NODE-NETB structure 474
SQLE-NODE-NPIPE structure 475
SQLE-NODE-STRUCT

structure 476
SQLE-NODE-TCPIP structure 478
SQLE-REG-NWBINDERY

structure 479
SQLE-START-OPTIONS

structure 480
sqleaddn - Add Node 138
sqleatcp - Attach and Change

Password 141
sqleatin - Attach 145
sqlecadb - Catalog Database 149

sqlecran - Create Database at
Node 157

sqlecrea - Create Database 159
sqlectnd - Catalog Node 168
SQLEDBCOUNTRYINFO

structure 484
SQLEDBDESC structure 485
SQLEDBSTOPOPT structure 491
sqledcgd - Change Database

Comment 173
sqledcls - Close Database Directory

Scan 176
sqledgne - Get Next Database

Directory Entry 178
SQLEDINFO structure 493
sqledosd - Open Database Directory

Scan 181
sqledpan - Drop Database at

Node 184
sqledreg - Deregister 186
sqledrpd - Drop Database 188
sqledrpn - Drop Node Verify 191
sqledtin - Detach 193
sqlefmem - Free Memory 195
sqlefrce - Force Application 196
sqlegdad - Catalog DCS

Database 200
sqlegdcl - Close DCS Directory

Scan 203
sqlegdel - Uncatalog DCS

Database 205
sqlegdge - Get DCS Directory Entry

for Database 208
sqlegdgt - Get DCS Directory

Entries 210
sqlegdsc - Open DCS Directory

Scan 213
sqlegins - Get Instance 215
sqleintr - Interrupt 217
sqleisig - Install Signal Handler 219
sqlemgdb - Migrate Database 221
sqlencls - Close Node Directory

Scan 223
sqlengne - Get Next Node Directory

Entry 225
SQLENINFO structure 496
sqlenops - Open Node Directory

Scan 228
sqlepstart - Start Database

Manager 230
sqlepstp - Stop Database

Manager 233
sqleqryc - Query Client 236
sqleqryi - Query Client

Information 239

sqleregs - Register 241
sqlesact - Set Accounting String 243
sqlesdeg - Set Runtime Degree 245
sqlesetc - Set Client 248
sqleseti - Set Client Information 251
SQLETSDESC structure

field descriptions 486
sqleuncd - Uncatalog Database 254
sqleuncn - Uncatalog Node 257
sqlfddb - Get Database

Configuration Defaults 259
sqlfdsys - Get Database Manager

Configuration Defaults 261
sqlfrdb - Reset Database

Configuration 263
sqlfrsys - Reset Database Manager

Configuration 266
sqlfudb - Update Database

Configuration 268
SQLFUPD structure 499
SQLFUPD token element

valid database configuration file
entries 499

valid database manager
configuration file entries 502

sqlfusys - Update Database Manager
Configuration 272

sqlfxdb - Get Database
Configuration 275

sqlfxsys - Get Database Manager
Configuration 278

sqlgaddr - Get Address 281
sqlgdref - Dereference Address 282
sqlgmcpy - Copy Memory 283
SQLM-COLLECTED structure 507
SQLM-RECORDING-GROUP

structure 510
SQLMA structure 512
sqlogstt - Get SQLSTATE

Message 284
SQLOPT structure 515
SQLSTATE messages 13

retrieving from SQLSTATE
field 284

SQLU-LSN structure 517
SQLU-MEDIA-LIST structure 518
SQLU-RLOG-INFO structure 522
SQLU-TABLESPACE-BKRST-LIST

structure 523
sqluadau - Get Authorizations 287
sqlubkp - Backup Database 290
sqludrdt - Redistribute

Nodegroup 298
sqlugrpn - Get Row Partitioning

Number 314

668 Administrative API Reference

sqlugtpi - Get Table Partitioning
Information 318

sqluimpr - Import 320
SQLUIMPT-IN structure 526
SQLUIMPT-OUT structure 527
sqluload - Load 345
SQLULOAD-IN structure 529
SQLULOAD-OUT structure 534
SQLUPI structure 536
sqlurcon - Reconcile 374
sqlureot - Reorganize Table 377
sqlurestore - Restore Database 381
sqlurlog - Asynchronous Read

Log 394
sqluroll - Rollforward Database 397
sqlustat - Runstats 407
sqluvdel - Delete Committed

Session 577
sqluvend - Unlink the Device and

Release its Resources 574
sqluvget - Reading Data from

Device 568
sqluvint - Initialize and Link to

Device 564
sqluvput - Writing Data to

Device 571
sqluvqdp - Quiesce Tablespaces for

Table 413
SQLWARN messages 13
SQLXA-RECOVER structure 538
SQLXA-XID structure 540
START DATABASE MANAGER

(sqlepstart) 230
STOP DATABASE MANAGER

(sqlepstp) 233
storage

physical 377
striptblanks 339, 368
striptnulls 339, 368
system database directory

cataloging 149
open scan 181
uncataloging 254

T
table

exporting to a file 302
importing file to 320
loading file to 345

table load delete start log
record 629

TABLESPACE CONTAINER QUERY
(sqlbtcq) 127

TABLESPACE QUERY
(sqlbmtsq) 113

tablespace roll forward to PIT begins
log record 630

tablespace roll forward to PIT ends
log record 630

tablespace rolled forward log
record 630

TCP/IP using SOCKS 476, 478
termination

abnormal 24
normal 234

timeformat 337, 365
timestampformat 338, 366
totalfreespace 362
transaction identifier

log records 603
transaction manager log records

backout free 627
description 623
global pending list 625
heuristic abort 625
heuristic commit 623
local pending list 625
MPP coordinator commit 623
MPP subordinator commit 624
MPP subordinator prepare 627
normal abort 624
normal commit 623
XA prepare 626

U
UNCATALOG DATABASE

(sqleuncd) 254
UNCATALOG DCS DATABASE

(sqlegdel) 205
UNCATALOG NODE

(sqleuncn) 257
uncataloging

system database directory 254
unlink file log record 632
UNLINK THE DEVICE AND

RELEASE ITS RESOURCES
(sqluvend) 574

unsupported APIs and data
structures 637

UPDATE DATABASE
CONFIGURATION (sqlfudb) 268

UPDATE DATABASE MANAGER
CONFIGURATION (sqlfusys) 272

update record log record 619
UPDATE RECOVERY HISTORY

FILE (db2HistoryUpdate) 44
usedefaults 336, 362
utility log records

backup end 630
description 628

utility log records (continued)
load delete start

compensation 629
load pending list 629
load start 628
migration begin 628
migration end 628
table load delete start 629
tablespace roll forward to PIT

begins 630
tablespace roll forward to PIT

ends 630
tablespace rolled forward 630

V
VENDOR-INFO structure 582
vendor products

backup and restore 555
DATA structure 586
DB2-INFO structure 579
DELETE COMMITTED

SESSION 577
description 555
INIT-INPUT structure 583
INIT-OUTPUT structure 585
INITIALIZE AND LINK TO

DEVICE 564
operation 555
READING DATA FROM

DEVICE 568
RETURN-CODE structure 587
sqluvdel 577
sqluvend 574
sqluvget 568
sqluvint 564
sqluvput 571
UNLINK THE DEVICE 574
VENDOR-INFO structure 582
WRITING DATA TO

DEVICE 571
viewing

online information 652

W
warning message

restore 391
wizards

add database 654, 655
backup database 654
completing tasks 654
configure multisite update 654
create database 655
create table 655
create table space 655
index 655

Index 669

wizards (continued)
performance configuration 655
restore database 655

WRITING DATA TO DEVICE
(sqluvput) 571

X
XA prepare log record 626

Z
zoneddecimal 369

670 Administrative API Reference

Contacting IBM

If you have a technical problem, please review and carry out the actions
suggested by the Troubleshooting Guide before contacting DB2 Customer
Support. This guide suggests information that you can gather to help DB2
Customer Support to serve you better.

For information or to order any of the DB2 Universal Database products
contact an IBM representative at a local branch office or contact any
authorized IBM software remarketer.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-237-5511 for customer support
v 1-888-426-4343 to learn about available service options

Product Information

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) or 1-800-3IBM-OS2 (1-800-342-6672) to

order products or get general information.
v 1-800-879-2755 to order publications.

http://www.ibm.com/software/data/
The DB2 World Wide Web pages provide current DB2 information
about news, product descriptions, education schedules, and more.

http://www.ibm.com/software/data/db2/library/
The DB2 Product and Service Technical Library provides access to
frequently asked questions, fixes, books, and up-to-date DB2 technical
information.

Note: This information may be in English only.

http://www.elink.ibmlink.ibm.com/pbl/pbl/
The International Publications ordering Web site provides information
on how to order books.

http://www.ibm.com/education/certify/
The Professional Certification Program from the IBM Web site
provides certification test information for a variety of IBM products,
including DB2.

© Copyright IBM Corp. 1993, 2000 671

ftp.software.ibm.com
Log on as anonymous. In the directory /ps/products/db2, you can
find demos, fixes, information, and tools relating to DB2 and many
other products.

comp.databases.ibm-db2, bit.listserv.db2-l
These Internet newsgroups are available for users to discuss their
experiences with DB2 products.

On Compuserve: GO IBMDB2
Enter this command to access the IBM DB2 Family forums. All DB2
products are supported through these forums.

For information on how to contact IBM outside of the United States, refer to
Appendix A of the IBM Software Support Handbook. To access this document,
go to the following Web page: http://www.ibm.com/support/, and then
select the IBM Software Support Handbook link near the bottom of the page.

Note: In some countries, IBM-authorized dealers should contact their dealer
support structure instead of the IBM Support Center.

672 Administrative API Reference

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-2947-00

	Contents
	About This Book
	Who Should Use this Book
	How this Book is Structured

	Chapter 1. Application Programming Interfaces
	DB2 APIs
	DB2 Sample Programs
	How the API Descriptions are Organized
	db2AdminMsgWrite
	db2AutoConfig
	db2AutoConfigFreeMemory
	db2ConvMonStream
	db2DatabaseRestart - Restart Database
	db2GetSnapshot - Get Snapshot
	db2GetSnapshotSize - Estimate Size Required for db2GetSnapshot() OutputBuffer
	db2GetSyncSession
	db2HistoryCloseScan - Close Recovery History File Scan
	db2HistoryGetEntry - Get Next Recovery History File Entry
	db2HistoryOpenScan - Open Recovery History File Scan
	db2HistoryUpdate - Update Recovery History File
	db2LdapCatalogDatabase
	db2LdapCatalogNode
	db2LdapDeregister
	db2LdapRegister
	db2LdapUncatalogDatabase
	db2LdapUncatalogNode
	db2LdapUpdate
	db2LoadQuery - Load Query
	db2MonitorSwitches - Get/Update Monitor Switches
	db2Prune
	db2QuerySatelliteProgress
	db2ResetMonitor - Reset Monitor
	db2SetSyncSession
	db2SyncSatellite
	db2SyncSatelliteStop
	db2SyncSatelliteTest
	sqlabndx - Bind
	sqlaintp - Get Error Message
	sqlaprep - Precompile Program
	sqlarbnd - Rebind
	sqlbctcq - Close Tablespace Container Query
	sqlbctsq - Close Tablespace Query
	sqlbftcq - Fetch Tablespace Container Query
	sqlbftpq - Fetch Tablespace Query
	sqlbgtss - Get Tablespace Statistics
	sqlbmtsq - Tablespace Query
	sqlbotcq - Open Tablespace Container Query
	sqlbotsq - Open Tablespace Query
	sqlbstpq - Single Tablespace Query
	sqlbstsc - Set Tablespace Containers
	sqlbtcq - Tablespace Container Query
	sqlcspqy - List DRDA Indoubt Transactions
	sqle_activate_db - Activate Database
	sqle_deactivate_db - Deactivate Database
	sqleaddn - Add Node
	sqleatcp - Attach and Change Password
	sqleatin - Attach
	sqlecadb - Catalog Database
	sqlecran - Create Database at Node
	sqlecrea - Create Database
	sqlectnd - Catalog Node
	sqledcgd - Change Database Comment
	sqledcls - Close Database Directory Scan
	sqledgne - Get Next Database Directory Entry
	sqledosd - Open Database Directory Scan
	sqledpan - Drop Database at Node
	sqledreg - Deregister
	sqledrpd - Drop Database
	sqledrpn - Drop Node Verify
	sqledtin - Detach
	sqlefmem - Free Memory
	sqlefrce - Force Application
	sqlegdad - Catalog DCS Database
	sqlegdcl - Close DCS Directory Scan
	sqlegdel - Uncatalog DCS Database
	sqlegdge - Get DCS Directory Entry for Database
	sqlegdgt - Get DCS Directory Entries
	sqlegdsc - Open DCS Directory Scan
	sqlegins - Get Instance
	sqleintr - Interrupt
	sqleisig - Install Signal Handler
	sqlemgdb - Migrate Database
	sqlencls - Close Node Directory Scan
	sqlengne - Get Next Node Directory Entry
	sqlenops - Open Node Directory Scan
	sqlepstart - Start Database Manager
	sqlepstp - Stop Database Manager
	sqleqryc - Query Client
	sqleqryi - Query Client Information
	sqleregs - Register
	sqlesact - Set Accounting String
	sqlesdeg - Set Runtime Degree
	sqlesetc - Set Client
	sqleseti - Set Client Information
	sqleuncd - Uncatalog Database
	sqleuncn - Uncatalog Node
	sqlfddb - Get Database Configuration Defaults
	sqlfdsys - Get Database Manager Configuration Defaults
	sqlfrdb - Reset Database Configuration
	sqlfrsys - Reset Database Manager Configuration
	sqlfudb - Update Database Configuration
	sqlfusys - Update Database Manager Configuration
	sqlfxdb - Get Database Configuration
	sqlfxsys - Get Database Manager Configuration
	sqlgaddr - Get Address
	sqlgdref - Dereference Address
	sqlgmcpy - Copy Memory
	sqlogstt - Get SQLSTATE Message
	sqluadau - Get Authorizations
	sqlubkp - Backup Database
	sqludrdt - Redistribute Nodegroup
	sqluexpr - Export
	sqlugrpn - Get Row Partitioning Number
	sqlugtpi - Get Table Partitioning Information
	sqluimpr - Import
	sqluload - Load
	sqlurcon - Reconcile
	sqlureot - Reorganize Table
	sqlurestore - Restore Database
	sqlurlog - Asynchronous Read Log
	sqluroll - Rollforward Database
	sqlustat - Runstats
	sqluvqdp - Quiesce Tablespaces for Table

	Chapter 2. Additional REXX APIs
	Change Isolation Level

	Chapter 3. Data Structures
	db2HistData
	RFWD-INPUT
	RFWD-OUTPUT
	SQL-AUTHORIZATIONS
	SQL-DIR-ENTRY
	SQLA-FLAGINFO
	SQLB-TBS-STATS
	SQLB-TBSCONTQRY-DATA
	SQLB-TBSPQRY-DATA
	SQLCA
	SQLCHAR
	SQLDA
	SQLDCOL
	SQLE-ADDN-OPTIONS
	SQLE-CLIENT-INFO
	SQLE-CONN-SETTING
	SQLE-NODE-APPC
	SQLE-NODE-APPN
	SQLE-NODE-CPIC
	SQLE-NODE-IPXSPX
	SQLE-NODE-LOCAL
	SQLE-NODE-NETB
	SQLE-NODE-NPIPE
	SQLE-NODE-STRUCT
	SQLE-NODE-TCPIP
	SQLE-REG-NWBINDERY
	SQLE-START-OPTIONS
	SQLEDBCOUNTRYINFO
	SQLEDBDESC
	SQLEDBSTOPOPT
	SQLEDINFO
	SQLENINFO
	SQLFUPD
	SQLM-COLLECTED
	SQLM-RECORDING-GROUP
	SQLMA
	SQLOPT
	SQLU-LSN
	SQLU-MEDIA-LIST
	SQLU-RLOG-INFO
	SQLU-TABLESPACE-BKRST-LIST
	SQLUEXPT-OUT
	SQLUIMPT-IN
	SQLUIMPT-OUT
	SQLULOAD-IN
	SQLULOAD-OUT
	SQLUPI
	SQLXA-RECOVER
	SQLXA-XID

	Appendix A. Naming Conventions
	Appendix B. Transaction APIs
	Heuristic APIs
	sqlxhfrg - Forget Transaction Status
	sqlxphcm - Commit an Indoubt Transaction
	sqlxphqr - List Indoubt Transactions
	sqlxphrl - Roll Back an Indoubt Transaction

	Appendix C. Precompiler Customization APIs
	Appendix D. Backup and Restore APIs for Vendor Products
	Operational Overview
	Number of Sessions
	Operation with No Errors, Warnings or Prompting
	PROMPTING Mode
	Device Characteristics
	If Error Conditions Are Returned to DB2
	Warning Conditions

	Operational Hints and Tips
	Recovery History File

	Functions and Data Structures
	sqluvint - Initialize and Link to Device
	sqluvget - Reading Data from Device
	sqluvput - Writing Data to Device
	sqluvend - Unlink the Device and Release its Resources
	sqluvdel - Delete Committed Session
	DB2-INFO
	VENDOR-INFO
	INIT-INPUT
	INIT-OUTPUT
	DATA
	RETURN-CODE
	Invoking Backup/Restore Using Vendor Products
	The Control Center
	The Command Line Processor
	Backup and Restore API Function Calls

	Appendix E. Threaded Applications with ConcurrentAccess
	sqleAttachToCtx - Attach to Context
	sqleBeginCtx - Create and Attach to an Application Context
	sqleDetachFromCtx - Detach From Context
	sqleEndCtx - Detach and Destroy Application Context
	sqleGetCurrentCtx - Get Current Context
	sqleInterruptCtx - Interrupt Context
	sqleSetTypeCtx - Set Application Context Type

	Appendix F. DB2 Common Server Log Records
	Log Manager Header
	Data Manager Log Records
	Initialize Table
	Import Replace (Truncate)
	Rollback Insert
	Reorg Table
	Create Index, Drop Index
	Create Table, Drop Table, Rollback Create Table, Rollback Drop Table
	Alter Table Attribute
	Alter Table Add Columns, Rollback Add Columns
	Insert Record, Delete Record, Rollback Delete Record, Rollback UpdateRecord
	Update Record

	Long Field Manager Log Records
	Add/Delete/Non-update Long Field Record

	LOB Manager Log Records
	Insert LOB Data Log Record (AFIM_DATA)
	Insert LOB Data Log Record (AFIM_AMOUNT)

	Transaction Manager Log Records
	Normal Commit
	Heuristic Commit
	MPP Coordinator Commit
	MPP Subordinator Commit
	Normal Abort
	Heuristic Abort
	Local Pending List
	Global Pending List
	XA Prepare
	MPP Subordinator Prepare
	Backout Free
	Utility Manager Log Records
	Migration Begin
	Migration End
	Load Start
	Table Load Delete Start
	Load Delete Start Compensation
	Load Pending List
	Backup End
	Tablespace Rolled Forward
	Tablespace Roll Forward to PIT Begins
	Tablespace Roll Forward to PIT Ends

	Datalink Manager Log Records
	Link File
	Unlink File
	Delete Group
	Delete PGroup
	DLFM Prepare

	Appendix G. Application Migration Considerations
	Changed APIs and Data Structures

	Appendix H. Using the DB2 Library
	DB2 PDF Files and Printed Books
	DB2 Information
	Printing the PDF Books
	Ordering the Printed Books

	DB2 Online Documentation
	Accessing Online Help
	Viewing Information Online
	Installing the Netscape Browser
	Accessing Information with the Information Center

	Using DB2 Wizards
	Setting Up a Document Server
	Searching Information Online

	Appendix I. Notices
	Trademarks

	Index
	Contacting IBM
	Product Information

