
IBM
®

DB2
®

Universal Database

Application Building Guide
Version 7

SC09-2948-00

���

IBM
®

DB2
®

Universal Database

Application Building Guide
Version 7

SC09-2948-00

���

Before using this information and the product it supports, be sure to read the general information under
“Appendix E. Notices” on page 391.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Welcome to DB2 Application Development vii
The DB2 Developer’s Edition vii

Installation Information viii
DB2 Application Development Books. . . . ix
DB2 Programming Interfaces x

Using Embedded SQL Statements xi
Using the DB2 Call Level Interface . . . xiii
DB2 CLI Versus Embedded Dynamic SQL xiv
Using Java Database Connectivity (JDBC) xv
Using DB2 APIs xvi
Using ActiveX Data Objects (ADO) and
Remote Data Objects (RDO) xvi
Using IBM, Third-Party, and ODBC
End-User Tools xvii

DB2 Features xviii
Constraints xix
User-Defined Types (UDTs) and Large
Objects (LOBs) xix
Stored Procedures xx
User-Defined Functions (UDFs) xxi
OLE Automation UDFs and Stored
Procedures xxii
Triggers xxii
DB2 Universal Database Tools xxiii

Chapter 1. Introduction 1
Who Should Use This Book 3
How To Use This Book. 3
Highlighting Conventions 3
About the DB2 Application Development
Client 4
Supported Servers 6
Supported Software by Platform 7

AIX 8
HP-UX 9
Linux 9
OS/2. 9
PTX 10
Silicon Graphics IRIX 10
Solaris 10
Windows 32-bit Operating Systems . . . 11

Sample Programs 12
DB2 API Non-Embedded SQL Samples . . 16
DB2 API Embedded SQL Samples. . . . 19

Embedded SQL Samples With No DB2
APIs 20
User-Defined Function Samples 22
DB2 Call Level Interface Samples 22
Java Samples. 24
SQL Procedure Samples 26
ADO, RDO, and MTS Samples 28
Object Linking and Embedding Samples 29
Command Line Processor Samples . . . 30
Log Management User Exit Samples . . . 31

Chapter 2. Setup 33
Setting the OS/2 Environment 34
Setting the UNIX Environment 36
Setting the Windows 32-bit Operating
Systems Environment 37
Enabling Communications on the Server . . 38

Windows NT and Windows 2000 39
Creating, Cataloging, and Binding the Sample
Database 40

Creating 40
Cataloging 42
Binding 42

Where to Go Next 44

Chapter 3. General Information for Building
DB2 Applications 47
Build Files, Makefiles, and Error-checking
Utilities 48

Build Files 48
Makefiles 51
Error-checking Utilities 53

Java Applets and Applications 55
DB2 API Applications 55
DB2 Call Level Interface (CLI) Applications 56
Embedded SQL Applications 57
Stored Procedures 58
User-Defined Functions (UDFs) 60
Multi-threaded Applications 60
C++ Considerations for UDFs and Stored
Procedures 60

Chapter 4. Building Java Applets and
Applications 63
Setting the Environment 64

© Copyright IBM Corp. 1993, 2000 iii

AIX 64
HP-UX 65
Linux 66
OS/2 67
PTX 68
Silicon Graphics IRIX 69
Solaris 71
Windows 32-bit Operating Systems . . . 72

Java Sample Programs 74
JDBC Programs 75

Applets 75
Applications 75
Stored Procedures 77

SQLJ Programs 77
Applets 80
Applications 81
Stored Procedures 82

User-Defined Functions (UDFs) 86
General Points for DB2 Java Applets 86

Chapter 5. Building SQL Procedures . . . 89
Setting the SQL Procedures Environment . . 89
Creating SQL Procedures. 93
Calling SQL Procedures 93

Using the CALL Command 93
OS/2 DB2 CLI Client Applications . . . 94
OS/2 Embedded SQL Client Applications 95
UNIX DB2 CLI Client Applications . . . 95
UNIX Embedded SQL Client Applications 95
Windows DB2 CLI Client Applications . . 96
Windows Embedded SQL Client
Applications 96

Chapter 6. Building AIX Applications . . . 99
Important Considerations 100

Installing and Running IBM and Micro
Focus COBOL 100
Entry Points for Stored Procedures and
UDFs 100
Stored Procedures and the CALL
Statement 101
UDFs and the CREATE FUNCTION
Statement 103

IBM C 104
DB2 CLI Applications 104
DB2 CLI Applications with DB2 APIs . . 106
DB2 CLI Stored Procedures 107
DB2 API and Embedded SQL
Applications 109
Embedded SQL Stored Procedures . . . 112

User-Defined Functions (UDFs) 115
Multi-threaded Applications 118

IBM C Set++ 119
DB2 API and Embedded SQL
Applications 119
Embedded SQL Stored Procedures . . . 122
User-Defined Functions (UDFs) 125
Multi-threaded Applications 128

VisualAge C++ Version 4.0 129
DB2 CLI Applications 130
DB2 CLI Applications with DB2 APIs . . 132
DB2 CLI Stored Procedures 133
DB2 API Applications 136
Embedded SQL Applications 137
Embedded SQL Stored Procedures . . . 139
User-Defined Functions (UDFs) 142

IBM COBOL Set for AIX 144
Using the Compiler 144
DB2 API and Embedded SQL
Applications 145
Embedded SQL Stored Procedures . . . 147

Micro Focus COBOL 150
Using the Compiler 150
DB2 API and Embedded SQL
Applications 151
Embedded SQL Stored Procedures . . . 154

REXX 158

Chapter 7. Building HP-UX Applications 161
HP-UX C 162

DB2 CLI Applications 162
DB2 CLI Applications with DB2 APIs . . 165
DB2 CLI Stored Procedures 165
DB2 API and Embedded SQL
Applications 168
Embedded SQL Stored Procedures . . . 170
User-Defined Functions (UDFs) 173
Multi-threaded Applications 175

HP-UX C++. 176
DB2 API and Embedded SQL
Applications 176
Embedded SQL Stored Procedures . . . 179
User-Defined Functions (UDFs) 181
Multi-threaded Applications 183

Micro Focus COBOL 184
Using the Compiler 185
DB2 API and Embedded SQL
Applications 186
Embedded SQL Stored Procedures . . . 188

iv Application Building Guide

Chapter 8. Building Linux Applications 191
Linux C 191

DB2 CLI Applications 191
DB2 CLI Applications with DB2 APIs . . 194
DB2 CLI Stored Procedures 194
DB2 API and Embedded SQL
Applications 196
Embedded SQL Stored Procedures . . . 199
User-Defined Functions (UDFs) 202
Multi-threaded Applications 204

Linux C++ 205
DB2 API and Embedded SQL
Applications 205
Embedded SQL Stored Procedures . . . 208
User-Defined Functions (UDFs) 211
Multi-threaded Applications 213

Chapter 9. Building OS/2 Applications 215
IBM VisualAge C++ for OS/2 Version 3 . . 215

DB2 CLI Applications 216
DB2 CLI Applications with DB2 APIs . . 218
DB2 CLI Stored Procedures 218
DB2 API and Embedded SQL
Applications 221
Embedded SQL Stored Procedures . . . 224
User-Defined Functions (UDFs) 226

IBM VisualAge C++ for OS/2 Version 4.0 229
IBM VisualAge COBOL for OS/2 229

Using the Compiler 229
Embedded SQL Applications 230
Embedded SQL Stored Procedures . . . 232

Micro Focus COBOL 234
Using the Compiler 234
DB2 API and Embedded SQL
Applications 235
Embedded SQL Stored Procedures . . . 237

REXX 239

Chapter 10. Building PTX Applications 241
ptx/C. 241

DB2 CLI Applications 241
DB2 CLI Applications with DB2 APIs . . 244
DB2 CLI Stored Procedures 244
DB2 API and Embedded SQL
Applications 247
Embedded SQL Stored Procedures . . . 249
User-Defined Functions (UDFs) 252
Multi-threaded Applications 254

ptx/C++ 255

DB2 API and Embedded SQL
Applications 255
Embedded SQL Stored Procedures . . . 258
User-Defined Functions (UDFs) 260
Multi-threaded Applications 262

Chapter 11. Building Silicon Graphics
IRIX Applications 265
MIPSpro C 266

DB2 CLI Applications 266
DB2 CLI Applications with DB2 APIs . . 269
DB2 CLI Client Applications for Stored
Procedures 269
DB2 CLI Client Applications for UDFs 270
DB2 API and Embedded SQL
Applications 270
Multi-threaded Applications 274

MIPSpro C++ 275
DB2 API and Embedded SQL
Applications 275
Multi-threaded Applications 279

Chapter 12. Building Solaris Applications 281
SPARCompiler C 282

DB2 CLI Applications 282
DB2 CLI Applications with DB2 APIs . . 284
DB2 CLI Stored Procedures 285
DB2 API and Embedded SQL
Applications 287
Embedded SQL Stored Procedures . . . 290
User-Defined Functions (UDFs) 293
Multi-threaded Applications 296

SPARCompiler C++ 297
DB2 API and Embedded SQL
Applications 297
Embedded SQL Stored Procedures . . . 300
User-Defined Functions (UDFs) 303
Multi-threaded Applications 306

Micro Focus COBOL 307
Using the Compiler 307
DB2 API and Embedded SQL
Applications 307
Embedded SQL Stored Procedures . . . 310

Chapter 13. Building Applications for
Windows 32-bit Operating Systems . . . 315
Microsoft Visual Basic 317

ActiveX Data Objects (ADO) 317
Remote Data Objects (RDO) 318

Contents v

Object Linking and Embedding (OLE)
Automation 320

Microsoft Visual C++ 321
ActiveX Data Objects (ADO) 321
Object Linking and Embedding (OLE)
Automation 322
DB2 CLI Applications 322
DB2 CLI Applications with DB2 APIs . . 325
DB2 CLI Stored Procedures 326
DB2 API and Embedded SQL
Applications 328
Embedded SQL Stored Procedures . . . 331
User-Defined Functions (UDFs) 334

IBM VisualAge C++ Version 3.5 337
DB2 CLI Applications 337
DB2 CLI Applications with DB2 APIs . . 339
DB2 CLI Stored Procedures 340
DB2 API and Embedded SQL
Applications 342
Embedded SQL Stored Procedures . . . 345
User-Defined Functions (UDFs) 348

IBM VisualAge C++ Version 4.0 350
IBM VisualAge COBOL 350

Using the Compiler 350
DB2 API and Embedded SQL
Applications 351
Embedded SQL Stored Procedures . . . 353

Micro Focus COBOL 355
Using the Compiler 355
DB2 API and Embedded SQL
Applications 356
Embedded SQL Stored Procedures . . . 358

Object REXX 360

Appendix A. About Database Manager
Instances 361

Appendix B. Migrating Your Applications 363
Questions 364
Conditions 366
Other Migration Considerations 367

Appendix C. Problem Determination. . . 369

Appendix D. Using the DB2 Library . . . 371
DB2 PDF Files and Printed Books 371

DB2 Information 371
Printing the PDF Books 380
Ordering the Printed Books 381

DB2 Online Documentation 382
Accessing Online Help 382
Viewing Information Online 384
Using DB2 Wizards 387
Setting Up a Document Server 388
Searching Information Online 388

Appendix E. Notices 391
Trademarks 394

Index 397

Contacting IBM 403
Product Information 403

vi Application Building Guide

Welcome to DB2 Application Development

This preface provides the information you need to get started with DB2
application development, specifically with the DB2 Developer’s Edition
products.

The section “The DB2 Developer’s Edition” guides you to the installation
information for your particular development needs. This information will help
you decide how to install DB2 from either the IBM DB2 Universal Developer’s
Edition, Version 7.1, or the IBM DB2 Personal Developer’s Edition, Version 7.1.

The section “DB2 Application Development Books” on page ix describes the
main books in the DB2 library for application development.

The section “DB2 Programming Interfaces” on page x presents key
programming interface concepts for DB2 application development.

The section “DB2 Features” on page xviii describes the main features available
to you for DB2 application development.

The DB2 Developer’s Edition

DB2 Universal Database provides two product packages for application
development: DB2 Personal Developer’s Edition and DB2 Universal
Developer’s Edition. The Personal Developer’s Edition provides the DB2
Universal Database and DB2 Connect Personal Edition products that run on
OS/2, Linux, and Windows 32-bit operating systems. The DB2 Universal
Developer’s Edition provides DB2 products on these platforms as well as on
AIX, HP-UX, PTX, Silicon Graphics IRIX, and the Solaris** Operating
Environment**.

Using the software that comes with these products, you can develop and test
applications that run on one operating system and access databases on the
same or on a different operating system. For example, you can create an
application that runs on the Windows NT operating system but accesses a
database on a UNIX platform such as AIX. See your License Agreement for
the terms and conditions of use for the Developer’s Edition products.

The Developer’s Edition boxes contain several CD-ROMs with all the code
that you need to develop and test your applications. In each box, you will
find:

© Copyright IBM Corp. 1993, 2000 vii

v The DB2 Universal Database product CD-ROMs for several operating
systems. Each CD-ROM contains the DB2 server, Administration Client,
Application Development Client, and Run-Time Client for a supported
operating system. These CD-ROMs are provided to you for testing your
applications only. If you need to install and use a database for your
company’s needs, you need to get a valid license for the Universal Database
product by purchasing the product. The Personal Developer’s Edition box
contains the CD-ROMs for Personal Edition products for the OS/2, Linux,
and Windows 32-bit operating systems. The Universal Developer’s Edition
box contains the CD-ROMs for all the operating systems supported by DB2.

v A CD-ROM with a Netscape browser for several operating systems. This
allows you to view the HTML information in case you do not have a
browser installed on your machine.

v A DB2 publications CD-ROM containing DB2 books in PDF format.
v DB2 Extenders for supported platforms.
v OLAP Starter Kit for supported platforms. You must install a DB2 server

before installing the OLAP Starter Kit.
v In addition, you get copies of other software that you may find useful for

developing applications. This software may vary from time to time, and is
accompanied by license agreements for use.

The Universal Developer’s Edition also contains the following:
v A set of CD-ROMs containing Administration Clients for all platforms.

These clients contain tools for administering databases, such as the Control
Center and the Event Analyzer. These clients also allow you to run
applications on any system.

v A set of CD-ROMs containing Application Development Clients for all
platforms. These clients have application development tools, sample
programs, and header files. Each DB2 AD Client includes everything you
need to develop your applications.

v A set of CD-ROMs containing Run-Time Clients for all platforms. An
application can be run from a Run-Time Client on any system. The
Run-Time Client does not have some of the features of the Administration
Client, such as the DB2 Control Center and Event Analyzer, and so takes up
less space.

v A CD-ROM containing Net.Data for supported platforms.

Installation Information
Each DB2 product CD-ROM contains installation information in HTML
directly viewable from the CD-ROM. The Quick Beginnings book for the
supported platform is provided, which explains how to install DB2 servers,
Administration Clients, Application Development Clients, and Run-Time
Clients.

viii Application Building Guide

Additional information is available in the Installation and Configuration
Supplement. This book is only viewable from the Client CD-ROMs.

The book you want will be in a subdirectory for the language you are using.
The CD-ROM README.TXT file tells you where to find the book files on the
CD-ROM.

With your browser running, click on the index.htm file in the book
subdirectory. Here are the subdirectories for the Quick Beginnings and
Installation and Configuration Supplement books.

db2i2 DB2 for OS/2 Quick Beginnings

db2ix DB2 for UNIX Quick Beginnings

db2i6 DB2 for Windows Quick Beginnings

db2iy Installation and Configuration Supplement

The DB2 publications CD-ROM contains PDF files for all the DB2 books
shipped with the product. They are viewable directly from the CD-ROM with
an Adobe Acrobat Reader. The DB2 books available in your language are in
the appropriate language subdirectory. For the installation information, you
can access the Quick Beginnings and Installation and Configuration Supplement
books. Their file names begin with the sets of characters listed above.

For instructions on printing the PDF files, see “Printing the PDF Books” on
page 380.

See the README.TXT file on the CD-ROM for full details on how to access
the book files.

DB2 Application Development Books

The DB2 library is described in “Appendix D. Using the DB2 Library” on
page 371. There are two general categories of DB2 books: those that provide
information for administering DB2 databases, and those that provide
information for DB2 application development. Some books provide both kinds
of information. As a DB2 application developer, you may well find that you
are referring to DB2 books in both these categories. However, your focus, and
the focus of this section, will be on the main application development books
of the DB2 library.

There are two main books for programming your applications. These are the
CLI Guide and Reference, which discusses programming DB2 CLI applications,
and the Application Development Guide, which discusses all the different kinds
of DB2 programming other than DB2 CLI. Both these books also contain
reference information.

Welcome to DB2 Application Development ix

You can find the information for setting up your development environment,
as well as compiling, linking, and running your applications, in the book you
are reading now, the Application Building Guide.

For the syntax of SQL statements and functions, you can refer to the SQL
Reference.

Two books considered to be in the administrative category of the DB2 library
are also important reference books for your application programming. The
Administrative API Reference contains details of all administrative functions
used to manage DB2 databases. You may find it convenient to use DB2 APIs
in your applications along with, or instead of, SQL statements. The Command
Reference contains details of all DB2 commands (except for SQL statements),
and explains how to use the DB2 Command Line Processor (CLP).

To solve problems with environmental setup or program development, you
can refer to the Troubleshooting Guide. It helps you to determine the source of
errors, to recover from problems, and to use diagnostic tools in consultation
with DB2 Customer Service. The Message Reference contains the full list and
description of DB2 error messages, a very useful reference when debugging
your applications.

These and the other books of the DB2 library, as well as the online
information available in your DB2 environment, will provide you with the
information you need to develop your DB2 applications. For development
information not strictly pertaining to DB2, see the documentation provided by
the vendor for the compiler, interpreter, or other development tools you are
using.

DB2 Programming Interfaces

You can use several different programming interfaces to manage or access
DB2 databases. You can:
1. Use DB2 APIs to perform administrative functions such as backing up and

restoring databases.
2. Embed static and dynamic SQL statements in your applications.
3. Code DB2 Call Level Interface (DB2 CLI) function calls in your

applications to invoke dynamic SQL statements.
4. Develop Java applications and applets that call the Java Database

Connectivity application programming interface (JDBC API).
5. Develop Microsoft Visual Basic and Visual C++ applications that conform

to Data Access Object (DAO) and Remote Data Object (RDO)
specifications, and ActiveX Data Object (ADO) applications that use the
Object Linking and Embedding Database (OLE DB) Bridge.

x Application Building Guide

6. Develop applications using IBM or third-party tools such as Net.Data,
Excel, Perl, and Open Database Connectivity (ODBC) end-user tools such
as Lotus Approach, and its programming language, LotusScript.

The way your application accesses DB2 databases will depend on the type of
application you want to develop. For example, if you want a data entry
application, you might choose to embed static SQL statements in your
application. If you want an application that performs queries over the World
Wide Web, you might choose Net.Data, Perl, or Java.

Using Embedded SQL Statements
Structured Query Language (SQL) is the database interface language used to
access and manipulate data in DB2 databases. You can embed SQL statements
in your applications, enabling them to perform any task supported by SQL,
such as retrieving or storing data. Using DB2, you can code your embedded
SQL applications in the C/C++, COBOL, FORTRAN, Java (SQLJ), and REXX
programming languages.

An application in which you embed SQL statements is called a host program.
The programming language you use to create a host program is called a host
language. The program and language are defined this way because they host
or accommodate SQL statements.

For static SQL statements, you know before compile time the SQL statement
type and the table and column names. The only unknowns are specific data
values the statement is searching for or updating. You can represent those
values in host language variables. You precompile, bind and then compile
static SQL statements before you run your application. Static SQL is best run
on databases whose schema does not change a great deal. Otherwise, the
statements will soon get out of date.

In contrast, dynamic SQL statements are those that your application builds
and executes at run time. An interactive application that prompts the end user
for key parts of an SQL statement, such as the names of the tables and
columns to be searched, is a good example of dynamic SQL. The application
builds the SQL statement while it’s running, and then submits the statement
for processing.

You can write applications that have static SQL statements, dynamic SQL
statements, or a mix of both.

Generally, static SQL statements are well-suited for high-performance
applications with predefined transactions. A reservation system is a good
example of such an application.

Welcome to DB2 Application Development xi

Generally, dynamic SQL statements are well-suited for applications that run
against a rapidly changing database where transactions need to be specified at
run time. An interactive query interface is a good example of such an
application.

When you embed SQL statements in your application, you must precompile
and bind your application to a database with the following steps:
1. Create source files that contain programs with embedded SQL statements.
2. Connect to a database, then precompile each source file.

The precompiler converts the SQL statements in each source file into DB2
run-time API calls to the database manager. The precompiler also produces
an access package in the database and, optionally, a bind file, if you
specify that you want one created.
The access package contains access plans selected by the DB2 optimizer for
the static SQL statements in your application. The access plans contain the
information required by the database manager to execute the static SQL
statements in the most efficient manner as determined by the optimizer.
For dynamic SQL statements, the optimizer creates access plans when you
run your application.
The bind file contains the SQL statements and other data required to
create an access package. You can use the bind file to rebind your
application later without having to precompile it first. Rebinding creates
access plans that are optimized for current database conditions. You need
to rebind your application if it will access a different database from the
one against which it was precompiled. You should rebind your application
if the database statistics have changed since the last binding.

3. Compile the modified source files (and other files without SQL statements)
using the host language compiler.

4. Link the object files with the DB2 and host language libraries to produce
an executable program.

5. Bind the bind file to create the access package if this was not already done
at precompile time, or if a different database is going to be accessed.

6. Run the application. The application accesses the database using the access
plan in the package.

Embedded SQL for Java (SQLJ)
DB2 Java embedded SQL (SQLJ) support is provided by the DB2 AD Client.
With DB2 SQLJ support, in addition to DB2 JDBC support, you can build and
run SQLJ applets, applications, and stored procedures. These contain static
SQL and use embedded SQL statements that are bound to a DB2 database.

For more information on DB2 SQLJ support, visit the Web page at:
http://www.ibm.com/software/data/db2/java

xii Application Building Guide

http://www.ibm.com/software/data/db2/java

Using the DB2 Call Level Interface
DB2 CLI is a programming interface that your C and C++ applications can
use to access DB2 databases. DB2 CLI is based on the Microsoft Open
Database Connectivity (ODBC) specification, and the ISO CLI standard. Since
DB2 CLI is based on industry standards, application programmers who are
already familiar with these database interfaces may benefit from a shorter
learning curve.

When you use DB2 CLI, your application passes dynamic SQL statements as
function arguments to the database manager for processing. As such, DB2 CLI
is an alternative to embedded dynamic SQL.

It is also possible to run the SQL statements as static SQL in a CLI, ODBC or
JDBC application. The CLI/ODBC/JDBC Static Profiling feature enables end
users of an application to replace the use of dynamic SQL with static SQL in
many cases. For more information, see:

http://www.ibm.com/software/data/db2/udb/staticcli

You can build an ODBC application without using an ODBC driver manager,
and simply use DB2’s ODBC driver on any platform by linking your
application with libdb2 on UNIX, and db2cli.lib on OS/2 and Windows
32-bit operating systems. The DB2 CLI sample programs demonstrate this.
They are located in sqllib/samples/cli on UNIX and %DB2PATH%\samples\cli
on OS/2 and Windows 32-bit operating systems.

You do not need to precompile or bind DB2 CLI applications because they use
common access packages provided with DB2. You simply compile and link
your application.

However, before your DB2 CLI or ODBC applications can access DB2
databases, the DB2 CLI bind files that come with the DB2 AD Client must be
bound to each DB2 database that will be accessed. This occurs automatically
on the first connection to the database, but we recommend that the database
administrator bind the bind files from one client on each platform that will
access a DB2 database. For the bind instructions, see “Binding” on page 42.

For example, suppose you have OS/2, AIX, and Windows 95 clients that each
access two DB2 databases. The administrator should bind the bind files from
one OS/2 client on each database that will be accessed. Next, the
administrator should bind the bind files from one AIX client on each database
that will be accessed. Finally, the administrator should do the same on one
Windows 95 client.

Welcome to DB2 Application Development xiii

DB2 CLI Versus Embedded Dynamic SQL
You can develop dynamic applications using either embedded dynamic SQL
statements or DB2 CLI. In both cases, SQL statements are prepared and
processed at run time. Each method has unique advantages listed below.

DB2 CLI Advantages

Portability
DB2 CLI applications use a standard set of functions to pass SQL
statements to the database. All you need to do is compile and link
DB2 CLI applications before you can run them. In contrast, you must
precompile embedded SQL applications, compile them, and then bind
them to the database before you can run them. This process effectively
ties your application to a particular database.

No binding
You do not need to bind individual DB2 CLI applications to each
database they access. You only need to bind the bind files that are
shipped with DB2 CLI once for all your DB2 CLI applications. This
can significantly reduce the amount of time you spend managing your
applications.

Extended fetching and input
DB2 CLI functions enable you to retrieve multiple rows in the
database into an array with a single call. They also let you execute an
SQL statement many times using an array of input variables.

Consistent interface to catalog
Database systems contain catalog tables that have information about
the database and its users. The form of these catalogs can vary among
systems. DB2 CLI provides a consistent interface to query catalog
information about components such as tables, columns, foreign and
primary keys, and user privileges. This shields your application from
catalog changes across releases of database servers, and from
differences among database servers. You don’t have to write catalog
queries that are specific to a particular server or product version.

Extended data conversion
DB2 CLI automatically converts data between SQL and C data types.
For example, fetching any SQL data type into a C char data type
converts it into a character-string representation. This makes DB2 CLI
well-suited for interactive query applications.

No global data areas
DB2 CLI eliminates the need for application controlled, often complex
global data areas, such as SQLDA and SQLCA, typically associated
with embedded SQL applications. Instead, DB2 CLI automatically
allocates and controls the necessary data structures, and provides a
handle for your application to reference them.

xiv Application Building Guide

Retrieve result sets from stored procedures
DB2 CLI applications can retrieve multiple rows and result sets
generated from a stored procedure residing on the server.

Scrollable cursors
DB2 CLI supports server-side scrollable cursors that can be used in
conjunction with array output. This is useful in GUI applications that
display database information in scroll boxes that make use of the Page
Up, Page Down, Home and End keys. You can declare a cursor as
scrollable and then move forwards or backwards through the result
set by one or more rows. You can also fetch rows by specifying an
offset from the current row, the beginning or end of a result set, or a
specific row you bookmarked previously.

Embedded Dynamic SQL Advantages

All DB2 CLI users share the same privileges. Embedded SQL offers the
advantage of more granular security through granting execute privileges to
particular users for a package.

Embedded SQL supports more than just C and C++. This might be an
advantage if you prefer to code your applications in another language.

Dynamic SQL is generally more consistent with static SQL. If you already
know how to program static SQL, moving to dynamic SQL might not be as
difficult as moving to DB2 CLI.

Using Java Database Connectivity (JDBC)
DB2’s Java support includes JDBC, a vendor-neutral dynamic SQL interface
that provides data access to your application through standardized Java
methods. JDBC is similar to DB2 CLI in that you do not have to precompile or
bind a JDBC program. As a vendor-neutral standard, JDBC applications offer
increased portability. An application written using JDBC uses only dynamic
SQL.

JDBC can be especially useful for accessing DB2 databases across the Internet.
Using the Java programming language, you can develop JDBC applets and
applications that access and manipulate data in remote DB2 databases using a
network connection. You can also create JDBC stored procedures that reside
on the server, access the database server, and return information to a remote
client application that calls the stored procedure.

The JDBC API, which is similar to the CLI/ODBC API, provides a standard
way to access databases from Java code. Your Java code passes SQL
statements as function arguments to the DB2 JDBC driver. The driver handles
the JDBC API calls from your client Java code.

Welcome to DB2 Application Development xv

Java’s portability enables you to deliver DB2 access to clients on multiple
platforms, requiring only a Java-enabled web browser.

Java applications rely on the DB2 client to connect to DB2. You start your
application from the desktop or command line, like any other application. The
DB2 JDBC driver handles the JDBC API calls from your application, and uses
the client connection to communicate the requests to the server and to receive
the results.

Java applets do not require the DB2 client connection. Typically, you would
embed the applet in a HyperText Markup Language (HTML) web page.

You need only a Java-enabled web browser or applet viewer on the client
machine to run your applet. When you load your HTML page, the browser
downloads the Java applet to your machine, which then downloads the Java
class files and DB2’s JDBC driver. When your applet calls the JDBC API to
connect to DB2, the JDBC driver establishes a separate network connection
with the DB2 database through the JDBC applet server residing on the web
server.

For more information on DB2 JDBC support, visit the Web page at:
http://www.ibm.com/software/data/db2/java

Using DB2 APIs
Your applications may need to perform some database administration tasks,
such as creating, activating, backing up, or restoring a database. DB2 provides
numerous APIs so you can perform these tasks from your applications,
including embedded SQL and DB2 CLI applications. This enables you to
program the same administrative functions into your applications that you
can perform using the DB2 server administration tools, discussed in “DB2
Universal Database Tools” on page xxiii.

Additionally, you might need to perform specific tasks that can only be
performed using the DB2 APIs. For example, you might want to retrieve the
text of an error message so your application can display it to the end user. To
retrieve the message, you must use the Get Error Message API.

Using ActiveX Data Objects (ADO) and Remote Data Objects (RDO)
You can write Microsoft Visual Basic and Microsoft Visual C++ database
applications that conform to the Data Access Object (DAO) and Remote Data
Object (RDO) specifications. DB2 also supports ActiveX Data Object (ADO)
applications that use the Microsoft OLE DB to ODBC Bridge.

xvi Application Building Guide

http://www.ibm.com/software/data/db2/java

ActiveX Data Objects (ADO) allow you to write an application to access and
manipulate data in a database server through an OLE DB provider. The
primary benefits of ADO are high speed development time, ease of use, and a
small disk footprint.

Remote Data Objects (RDO) provide an information model for accessing
remote data sources through ODBC. RDO offers a set of objects that make it
easy to connect to a database, execute queries and stored procedures,
manipulate results, and commit changes to the server. It is specifically
designed to access remote ODBC relational data sources, and makes it easier
to use ODBC without complex application code.

Using IBM, Third-Party, and ODBC End-User Tools
To perform a basic task, such as querying a database, you can use Net.Data or
Perl.

Net.Data enables Internet and intranet access to DB2 data through your web
applications. It exploits web server interfaces (APIs), providing higher
performance than common gateway interface (CGI) applications. Net.Data
supports client-side processing as well as server-side processing with
languages such as Java, REXX, Perl and C++. Net.Data provides conditional
logic and a rich macro language. The Net.Data web page is at:

http://www.ibm.com/software/data/net.data/

DB2 supports the Perl Database Interface (DBI) specification for data access
through the DBD::DB2 driver. The DB2 Universal Database Perl DBI website is
located at:

http://www.ibm.com/software/data/db2/perl/

and contains the latest DBD::DB2 driver, and related information.

You can also use ODBC end-user tools such as Lotus Approach, Microsoft
Access, and Microsoft Visual Basic to create applications to perform these
tasks. ODBC tools provide a simpler alternative to developing applications
than using a high-level programming language.

Lotus Approach provides two ways to access DB2 data. You can use the
graphical interface to perform queries, develop reports, and analyze data. Or
you can develop applications using LotusScript, a full-featured, object-oriented
programming language that comes with a wide array of objects, events,
methods, and properties, along with a built-in program editor.

Welcome to DB2 Application Development xvii

http://www.ibm.com/software/data/net.data/
http://www.ibm.com/software/data/db2/perl/

DB2 Features

DB2 comes with a variety of features that run on the server which you can
use to supplement or extend your applications. When you use DB2 features,
you do not have to write your own code to perform the same tasks. DB2 also
lets you store some parts of your code at the server instead of keeping all of it
in your client application. This can have performance and maintenance
benefits.

There are features to protect data and to define relationships between data. As
well, there are object-relational features to create flexible, advanced
applications. You can use some features in more than one way. For example,
constraints enable you to protect data and to define relationships between
data values. Here are some key DB2 features:
v Constraints
v User-Defined Types (UDTs) and Large Objects (LOBs)
v User-Defined Functions (UDFs)
v Triggers
v Stored Procedures

To decide whether or not to use DB2 features, consider the following points:

Application independence
You can make your application independent of the data it processes.
Using DB2 features that run at the database enables you to maintain
and change the logic surrounding the data without affecting your
application. If you need to make a change to that logic, you only need
to change it in one place; at the server, and not in each application
that accesses the data.

Performance
You can make your application perform more quickly by storing and
running parts of your application on the server. This shifts some
processing to generally more powerful server machines, and can
reduce network traffic between your client application and the server.

Application requirements
Your application might have unique logic that other applications do
not. For example, if your application processes data entry errors in a
particular order that would be inappropriate for other applications,
you might want to write your own code to handle this situation.

In some cases, you might decide to use DB2 features that run on the server
because they can be used by several applications. In other cases, you might
decide to keep logic in your application because it is used by your application
only.

xviii Application Building Guide

Constraints
To protect data and to define relationships between your data, you usually
define business rules. These rules define what data values are valid for a
column in a table, or how columns in one or more tables are related to each
other.

DB2 provides constraints as a way to enforce those rules using the database
system. By using the database system to enforce business rules, you don’t
have to write code in your application to enforce them. However, if a business
rule applies to one application only, you should code it in the application
instead of using a global database constraint.

DB2 provides the following kinds of constraints:
1. NOT NULL constraints
2. UNIQUE constraints
3. PRIMARY KEY constraints
4. FOREIGN KEY constraints
5. CHECK constraints

You define constraints using the SQL statements CREATE TABLE and ALTER
TABLE.

User-Defined Types (UDTs) and Large Objects (LOBs)
Every data element in the database is stored in a column of a table, and each
column is defined to have a data type. The data type places limits on the
types of values you can put into the column and the operations you can
perform on them. For example, a column of integers can only contain
numbers within a fixed range. DB2 includes a set of built-in data types with
defined characteristics and behaviors: character strings, numerics, datetime
values, large objects, Nulls, graphic strings, binary strings, and datalinks.

Sometimes, however, the built-in data types might not serve the needs of your
applications. DB2 provides user-defined types (UDTs) which enable you to
define the distinct data types you need for your applications.

UDTs are based on the built-in data types. When you define a UDT, you also
define the operations that are valid for the UDT. For example, you might
define a MONEY data type that is based on the DECIMAL data type.
However, for the MONEY data type, you might allow only addition and
subtraction operations, but not multiplication and division operations.

Large Objects (LOBs) enable you to store and manipulate large, complex data
objects in the database: objects such as audio, video, images, and large
documents.

Welcome to DB2 Application Development xix

The combination of UDTs and LOBs gives you considerable power. You are no
longer restricted to using the built-in data types provided by DB2 to model
your business data, and to capture the semantics of that data. You can use
UDTs to define large, complex data structures for advanced applications.

In addition to extending built-in data types, UDTs provide several other
benefits:

Support for object-oriented programming in your applications
You can group similar objects into related data types. These types
have a name, an internal representation, and a specific behavior. By
using UDTs, you can tell DB2 the name of your new type and how it
is represented internally. A LOB is one of the possible internal
representations for your new type, and is the most suitable
representation for large, complex data structures.

Data integrity through strong typing and encapsulation
Strong typing guarantees that only functions and operations defined
on the distinct type can be applied to the type. Encapsulation ensures
that the behavior of UDTs is restricted by the functions and operators
that can be applied to them. In DB2, behavior for UDTs can be
provided in the form of user-defined functions (UDFs), which can be
written to accommodate a broad range of user requirements.

Performance through integration into the database manager
Because UDTs are represented internally, the same way as built-in
data types, they share the same efficient code as built-in data types to
implement built-in functions, comparison operators, indexes, and
other functions.The exception to this is UDTs that utilize LOBs, which
cannot be used with comparison operators and indexes.

Stored Procedures
Typically, applications access the database across the network. This can result
in poor performance if a lot of data is being returned. A stored procedure runs
on the database server. A client application can call the stored procedure
which then performs the database accessing without returning unnecessary
data across the network. Only the results the client application needs are
returned by the stored procedure.

You gain several benefits using stored procedures:

Reduced network traffic
Grouping SQL statements together can save on network traffic. A
typical application requires two trips across the network for each SQL
statement. Grouping SQL statements results in two trips across the
network for each group of statements, resulting in better performance
for applicatons.

xx Application Building Guide

Access to features that exist only on the server
Stored procedures can have access to commands that run only on the
server, such as LIST DATABASE DIRECTORY and LIST NODE
DIRECTORY; they might have the advantages of increased memory
and disk space on server machines; and they can access any
additional software installed on the server.

Enforcement of business rules
You can use stored procedures to define business rules that are
common to several applications. This is another way to define
business rules, in addition to using constraints and triggers.

When an application calls the stored procedure, it will process data in
a consistent way according to the rules defined in the stored
procedure. If you need to change the rules, you only need to make the
change once in the stored procedure, not in every application that
calls the stored procedure.

User-Defined Functions (UDFs)
The built-in capabilities supplied through SQL may not satisfy all of your
application needs. To allow you to extend those capabilities, DB2 supports
user-defined functions (UDFs). You can write your own code in Visual Basic,
C/C++ or Java to perform operations within any SQL statement that returns a
single scalar value or a table.

UDFs give you significant flexibility. They can return a single scalar value as
part of a select list from a database, or they can return whole tables from
non-database sources such as spreadsheets.

UDFs provide a way to standardize your applications. By implementing a
common set of user-defined functions, many applications can process data in
the same way, thus ensuring consistent results.

User-defined functions also support object-oriented programming in your
applications. UDFs provide for abstraction, allowing you to define the
methods that can be used to perform operations on data objects. And UDFs
provide for encapsulation, allowing you to control access to the underlying
data of an object, protecting it from direct manipulation and possible
corruption.

OLE DB Table Functions
Microsoft OLE DB is a set of OLE/COM interfaces that provide applications
with uniform access to data stored in diverse information sources. DB2
Universal Database simplifies the creation of OLE DB applications by enabling
you to define table functions that access an OLE DB data source. You can
perform operations including GROUP BY, JOIN, and UNION, on data sources
that expose their data through OLE DB interfaces. For example, you can

Welcome to DB2 Application Development xxi

define an OLE DB table function to return a table from a Microsoft Access
database or a Microsoft Exchange address book, then create a report that
seamlessly combines data from this OLE DB table function with data in your
DB2 database.

Using OLE DB table functions reduces your application development effort by
providing built-in access to any OLE DB provider. For C, Java, and OLE
automation table functions, the developer needs to implement the table
function, whereas in the case of OLE DB table functions, a generic built-in
OLE DB consumer interfaces with any OLE DB provider to retrieve data. You
only need to register a table function of language type OLEDB, and refer to
the OLE DB provider and the relevant rowset as a data source. You do not
have to do any UDF programming to take advantage of OLE DB table
functions.

OLE Automation UDFs and Stored Procedures
OLE (Object Linking and Embedding) automation is part of the OLE 2.0
architecture from Microsoft Corporation. With OLE automation, your
applications, regardless of the language in which they are written, can expose
their properties and methods in OLE automation objects. Other applications,
such as Lotus Notes or Microsoft Exchange, can then integrate these objects
by taking advantage of these properties and methods through OLE
automation.

DB2 for Windows 32-bit operating systems provides access to OLE
automation objects using UDFs and stored procedures. To access OLE
automation objects and invoke their methods, you must register the methods
of the objects as UDFs or stored procedures. DB2 applications can then invoke
the methods by calling the UDFs or stored procedures. The UDFs can be
scalar or table functions.

For example, you can develop an application that queries data in a
spreadsheet created using a product such as Microsoft Excel. To do this, you
would develop an OLE automation table function that retrieves data from the
worksheet, and returns it to DB2. DB2 can then process the data, perform
online analytical processing (OLAP), and return the query result to your
application.

Triggers
A trigger defines a set of actions executed by a delete, insert, or update
operation on a specified table. When such an SQL operation is executed, the
trigger is said to be activated. The trigger can be activated before the SQL
operation or after it. You define a trigger using the SQL statement CREATE
TRIGGER.

You can use triggers that run before an update or insert in several ways:

xxii Application Building Guide

v To check or modify values before they are actually updated or inserted in
the database. This is useful if you need to transform data from the way the
user sees it to some internal database format.

v To run other non-database operations coded in user-defined functions.

Similarly, you can use triggers that run after an update or insert in several
ways:
v To update data in other tables. This is useful for maintaining relationships

between data or in keeping audit trail information.
v To check against other data in the table or in other tables. This is useful to

ensure data integrity when referential integrity constraints aren’t
appropriate, or when table check constraints limit checking to the current
table only.

v To run non-database operations coded in user-defined functions. This is
useful when issuing alerts or to update information outside the database.

You gain several benefits using triggers:

Faster application development
Triggers are stored in the database, and are available to all
applications. This relieves you of the need to code equivalent
functions for each application.

Global enforcement of business rules
Triggers are defined once, and are used by all applications that use
the data governed by the triggers.

Easier maintenance
Any changes need to be made only once in the database instead of in
every application that uses a trigger.

DB2 Universal Database Tools
You can use a variety of different tools when developing your applications.
DB2 Universal Database supplies the following tools to help you write and
test the SQL statements in your applications, and to help you monitor their
performance:

Note: Not all tools are available on every platform.

Control Center

A graphical interface that displays database objects (such as databases, tables,
and packages) and their relationship to each other. Use the Control Center to
perform administrative tasks such as configuring the system, managing
directories, backing up and recovering the system, scheduling jobs, and
managing media.

Welcome to DB2 Application Development xxiii

The Control Center includes the following facilities:

Command Center
is used to enter DB2 commands and SQL statements in an interactive
window, and to see the execution result in a result window. You can
scroll through the results and save the output to a file.

Script Center
is used to create scripts, which you can store and invoke at a later
time. These scripts can contain DB2 commands, SQL statements, or
operating system commands. You can schedule scripts to run
unattended. You can run these jobs once or you can set them up to
run on a repeating schedule. A repeating schedule is particularly
useful for tasks like backups.

Journal
is used to view the following types of information: all available
information about jobs that are pending execution, executing, or that
have completed execution; the recovery history log; the alerts log; and
the messages log. You can also use the Journal to review the results of
jobs that run unattended.

Alert Center
is used to monitor your system for early warnings of potential
problems, or to automate actions to correct problems.

Tools Setting
is used to change the settings for the Control Center, Alert Center, and
Replication.

Performance Monitor

An installable option for the Control Center, the Performance Monitor is a
graphical interface that provides comprehensive performance data collection,
viewing, reporting, analysis, and alerting capabilities for your DB2 system.
Use the Performance Monitor for performance tuning.

You can choose to monitor snapshots or events. The Snapshot Monitor enables
you to capture point-in-time information at specified intervals. The Event
Monitor allows you to record performance information over the duration of
an event, such as a connection.

Visual Explain

An installable option for the Control Center, Visual Explain is a graphical
interface that enables you to analyze and tune SQL statements, including
viewing access plans chosen by the optimizer for SQL statements.

xxiv Application Building Guide

Stored Procedure Builder (SPB)

A GUI-based tool that supports the rapid development of DB2 stored
procedures. It provides a single development environment for the DB2 family
ranging from workstation to OS/390. On Windows 32-bit operating systems, it
can be launched from these popular application development tools: Microsoft
Visual Studio, Microsoft Visual Basic, and IBM VisualAge for Java, or
launched as a separate application from the IBM DB2 Universal Database
program group. It can also be started by executing the following file:

%DB2PATH%\bin\DB2SPB.exe

where %DB2PATH% points to the directory where DB2 is installed.

On AIX and Solaris, the Stored Procedure Builder can be started with the
db2spb command.

Welcome to DB2 Application Development xxv

xxvi Application Building Guide

Chapter 1. Introduction

Who Should Use This Book 3
How To Use This Book. 3
Highlighting Conventions 3
About the DB2 Application Development
Client 4
Supported Servers 6
Supported Software by Platform 7

AIX 8
HP-UX 9
Linux 9
OS/2. 9
PTX 10
Silicon Graphics IRIX 10
Solaris 10

Windows 32-bit Operating Systems . . . 11
Sample Programs 12

DB2 API Non-Embedded SQL Samples . . 16
DB2 API Embedded SQL Samples. . . . 19
Embedded SQL Samples With No DB2
APIs 20
User-Defined Function Samples 22
DB2 Call Level Interface Samples 22
Java Samples. 24
SQL Procedure Samples 26
ADO, RDO, and MTS Samples 28
Object Linking and Embedding Samples 29
Command Line Processor Samples . . . 30
Log Management User Exit Samples . . . 31

This book provides the information you need to set up your environment for
developing DB2 applications, and provides step-by-step instructions to
compile, link, and run these applications in this environment. It explains how
to build applications using the DB2 Application Development (DB2 AD)
Client for DB2 Universal Database Version 7.1 on the following platforms:
v AIX
v HP-UX
v Linux
v OS/2
v PTX
v Silicon Graphics IRIX
v Solaris Operating Environment
v Windows 32-bit operating systems

Notes:

1. DB2 for NUMA-Q supports the PTX operating system.
2. Windows 32-bit operating systems includes Windows NT, Windows 95,

Windows 98, and Windows 2000. Whenever this book mentions Windows
32-bit operating systems, all of these operating systems are implied, except
in the case of Systems Network Architecture (SNA) support, and REXX
support. These are supported on Windows NT and Windows 2000 only.

To develop your applications, you can use the following programming
interfaces:

DB2 Application Programming Interfaces (DB2 APIs)
provide administrative functions to manage DB2 databases.

© Copyright IBM Corp. 1993, 2000 1

DB2 Call Level Interface (DB2 CLI)
is a callable SQL interface based on the X/Open CLI specification, and
is compatible with Microsoft Corporation’s Open Database
Connectivity (ODBC) interface.

Embedded SQL
uses SQL statements coded directly in your program which must be
precompiled in order to be converted into run-time function calls.

Embedded SQL for Java (SQLJ)
uses SQL statements in a generated profile that are precompiled and
customized into run-time function calls, which in turn provide an
interface to the database manager.

Java Database Connectivity (JDBC)
is a dynamic SQL API for Java. The JDBC API is included in the Java
Development Kits available for supported platforms.

For more information on each of the different programming interfaces, refer
to:
v The Application Development Guide, which discusses how to code and design

application programs that access DB2 family servers using embedded SQL,
embedded SQL for Java, and Java Database Connectivity (JDBC). It also
discusses user-defined functions (UDFs).

v The CLI Guide and Reference, which explains how to code and design
application programs that use the DB2 Call Level Interface and ODBC.

v The Administrative API Reference, which discusses how to code and design
application programs that use DB2 Application Programming Interfaces.

You may find the following books useful for further related information, such
as detailed product installation and setup:
v DB2 for OS/2 Quick Beginnings, which explains how to install the database

manager, and the DB2 Application Development Client on OS/2 server and
client workstations.

v DB2 for UNIX Quick Beginnings, which explains how to install the database
manager, and the DB2 Application Development Client on UNIX server and
client workstations.

v DB2 for Windows Quick Beginnings, which explains how to install the
database manager, and the DB2 Application Development Client on server
and client workstations for Windows 32-bit operating systems.

v The Command Reference, which explains how to use the DB2 Command Line
Processor (CLP), and all non-SQL DB2 commands.

v The Troubleshooting Guide, which helps you resolve application development
problems involving DB2 clients and servers, as well as problems with
related tasks in database administration and connectivity.

2 Application Building Guide

For a complete list of the DB2 documentation library, see “Appendix D. Using
the DB2 Library” on page 371.

Note: The examples in this book are provided ″as is″ without any warranty of
any kind. The user, and not IBM, assumes the entire risk of quality,
performance, and repair of any defects.

Who Should Use This Book

You should use this book if you want to develop programs on one of the
currently supported platforms for DB2 Universal Database Version 7.1. The
book describes how your programs can manage DB2 databases with DB2
APIs, and can access DB2 databases with DB2 CLI, embedded SQL, SQLJ, and
JDBC.

In order to use this book, you should know one or more of the supported
programming languages on the platform you will be using. These languages
are listed in “Supported Software by Platform” on page 7.

How To Use This Book

The book is designed to allow easy access to the information needed to
develop your applications. The chapters are grouped as follows:
v Chapters 1 to 3: each contains general, introductory information for all

platforms.
v Chapters 4 and 5: each contains specific programming information for all

platforms.
v Chapters 6 to 13: each contains programming information specific to one

platform.

All application developers should read the first three chapters, and then read
the ″Building Applications″ chapter containing the specific programming
information they will need, depending on the operating system and
programming language they will be using.

The appendices give important additional information on various topics.

Highlighting Conventions

This book uses the following conventions:

Italics Indicates one of the following:
v Introduction of a new term
v Names or values that are supplied by the user
v References to another source of information
v General emphasis

Chapter 1. Introduction 3

UPPERCASE
Indicates one of the following:
v Database manager data types
v Field names
v Key words
v SQL statements

Example text
Indicates one of the following:
v Coding examples and code fragments
v Commands
v Examples of output, similar to what is displayed by the system
v Examples of specific data values
v Examples of system messages
v File and directory names
v Information that you are instructed to enter

Bold Emphasizes a point.

About the DB2 Application Development Client

Note: The Application Development Client was known as the DB2 Software
Development Kit (DB2 SDK) Client in previous versions of DB2.

The DB2 Application Development (DB2 AD) Client provides the tools and
environment you need to develop applications that access DB2 servers and
application servers that implement the Distributed Relational Database
Architecture (DRDA).

You can build and run DB2 applications with a DB2 AD Client installed. You
can also run DB2 applications on these DB2 clients:
v DB2 Run-Time Client
v DB2 Administration Client

See “Chapter 2. Setup” on page 33 for information about setting up your
programming environment.

The DB2 AD Clients for the platforms described in this book include the
following:
v Precompilers for C/C++, Java, COBOL, and Fortran, (providing the

language is supported for that platform; please see “Supported Software by
Platform” on page 7 for details).

v Embedded SQL application support, including programming libraries,
include files and code samples.

4 Application Building Guide

v DB2 Call Level Interface (DB2 CLI) application support, including
programming libraries, include files, and code samples to develop
applications which are easily ported to ODBC and compiled with an ODBC
SDK. An ODBC SDK is available from Microsoft for Windows 32-bit
operating systems, and from various other vendors for many of the other
supported platforms. For Windows 32-bit operating systems, DB2 clients
contain an ODBC driver that supports applications developed with the
Microsoft ODBC Software Developer’s Kit. For all other platforms, DB2
clients contain an optionally installed ODBC driver that supports
applications that can be developed with an ODBC SDK for that platform, if
one exists. Only DB2 Clients for Windows 32-bit operating systems contain
an ODBC driver manager.

v DB2 Java Enablement, which includes DB2 Java Database Connectivity
(DB2 JDBC) support to develop Java applications and applets, and DB2
embedded SQL for Java (DB2 SQLJ) support to develop Java embedded
SQL applications and applets.

v Java Development Kit (JDK) 1.1.8 and Java Runtime Environment (JRE)
1.1.8 from IBM, installed with DB2 for AIX and DB2 for Windows 32-bit
operating systems, and shipped with DB2 for OS/2.

v REXX language support on AIX (32-bit applications only), OS/2, and
Windows 32-bit operating systems. This support is not updated beyond
DB2 Version 5.2.

v ActiveX Data Objects (ADO) and Object Linking and Embedding (OLE)
automation UDFs and Stored Procedures on Windows 32-bit operating
systems, including code samples implemented in Microsoft Visual Basic and
Microsoft Visual C++. Also, code samples with Remote Data Objects (RDO)
implemented in Microsoft Visual Basic.

v Object Linking and Embedding Database (OLE DB) table functions on
Windows 32-bit operating systems.

v DB2 Stored Procedure Builder (SPB), available on AIX, Solaris, and
Windows 32-bit operating systems. This is a GUI-based tool that supports
the rapid development of DB2 stored procedures. It provides a single
development environment for the DB2 family ranging from workstation to
OS/390. On Windows, it can be launched from these popular application
development tools: Microsoft Visual Studio, Microsoft Visual Basic, and IBM
VisualAge for Java, or launched as a separate application from the IBM DB2
Universal Database program group. On AIX and Solaris, it can be started
with the db2spb command.

v Interactive SQL through the Command Center or Command Line Processor
(CLP) to prototype SQL statements or to perform ad hoc queries against the
database.

v A set of documented APIs to enable other application development tools to
implement precompiler support for DB2 directly within their products. For
example, on AIX and OS/2, IBM COBOL uses this interface. Information on

Chapter 1. Introduction 5

the set of Precompiler Services APIs is available from the anonymous FTP
site, ftp://ftp.software.ibm.com. The PostScript file, called prepapi.psbin, is
located in the directory /ps/products/db2/info. This file is in binary
format. If you do not have access to this electronic forum and would like to
get a copy of this document, you can order it from IBM Service as
described in the Service Information Flyer.

v An SQL92 and MVS Conformance Flagger, which identifies embedded
SQL statements in applications that do not conform to the ISO/ANSI
SQL92 Entry Level standard, or which are not supported by DB2 for
OS/390. If you migrate applications developed on a workstation to another
platform, the Flagger saves you time by showing syntax incompatibilities.
Refer to the Command Reference for information about the SQLFLAG option
in the PRECOMPILE PROGRAM command.

Supported Servers

You use the DB2 AD client to develop applications that will run on a specific
platform. However, your applications can access remote databases on the
following platform servers:
v DB2 for AIX
v DB2 for HP-UX
v DB2 for Linux
v DB2 for OS/2
v DB2 for NUMA-Q
v DB2 for SCO UnixWare 7
v DB2 for Solaris
v DB2 for Windows NT
v Distributed Relational Database Architecture (DRDA)-compliant application

servers, such as:
– DB2 for OS/390
– DB2 for AS/400
– DB2 for VSE & VM (formerly SQL/DS for VM and VSE)
– DRDA-compliant application servers from database vendors other than

IBM.

Notes:

1. DB2 for NUMA-Q supports the PTX operating system.
2. DB2 for SCO UnixWare 7 is only available for DB2 Version 5.2.

6 Application Building Guide

Supported Software by Platform

This section lists the compilers and related software supported by DB2 for the
platforms described in this book. The compiler information assumes that you
are using the DB2 precompiler for that platform, and not the precompiler
support that may be built into one of the listed compilers. Refer to the Quick
Beginnings book for your operating system for information on the
communication products it supports.

For the latest DB2 compiler information and related software updates, visit
the DB2 application development Web page at:

http://www.ibm.com/software/data/db2/udb/ad

Notes:

1. The DB2 Release Notes may contain updated compiler and operating
system information for supported platforms. The Release Notes are
available in flat text and HTML formats in the following paths on your
product CD-ROM, where <language_directory> is the directory for the
language you are using, and index.htm is the main HTML file:

Flat text file:
doc/<language_directory>/release.txt (UNIX)

Doc\<language_directory>\release.txt (OS/2 and Windows)

HTML file:
doc/<language_directory>/db2ir/index.htm (UNIX)

Doc\<language_directory>\db2ir\index.htm (OS/2 and Windows)
2. Fortran and REXX. DB2 will not enhance features for Fortran and REXX

beyond the level of support for these languages in DB2 Universal
Database Version 5.2.

3. Fortran. Fortran sample programs are not provided in DB2 version 7.1. For
information on obtaining Fortran samples for DB2 version 6.1, visit the
DB2 Application Development web page given above.

4. HP-UX. If you are migrating DB2 from HP-UX Version 10 or earlier to
HP-UX Version 11, your DB2 programs must be re-precompiled with DB2
on HP-UX Version 11 (if they include embedded SQL), and must be
re-compiled. This includes all DB2 applications, stored procedures,
user-defined functions and user exit programs. As well, DB2 programs that
are compiled on HP-UX Version 11 may not run on HP-UX Version 10 or
earlier. DB2 programs that are compiled and run on HP-UX Version 10
may connect remotely to HP-UX Version 11 servers.

5. Micro Focus COBOL. Any existing applications precompiled with DB2
Version 2.1.1 or earlier and compiled with Micro Focus COBOL should be
re-precompiled with the current version of DB2, and then recompiled with
Micro Focus COBOL. If these applications built with the earlier versions of

Chapter 1. Introduction 7

http://www.ibm.com/software/data/db2/udb/ad

the IBM precompiler are not re-precompiled, there is a possibility of
database corruption if abnormal termination occurs.

6. Perl. Release 0.71 of the DB2 UDB driver (DBD::DB2) for the Perl Database
Interface (Perl DBI) is available for AIX, HP-UX, Linux, Solaris and
Windows NT. This driver can be downloaded from:

http://www.ibm.com/software/data/db2/perl

7. REXX. IBM Object REXX for Windows NT/95 is no longer shipped with
DB2. For information on obtaining Object REXX, visit:

http://www.ibm.com/software/ad/obj-rexx/

AIX
DB2 for AIX supports the following operating system:

AIX/6000
Version 4.2.1 and later

(Version 4.3.3 and later for 64-bit)

DB2 for AIX supports the following programming languages and compilers:

C IBM C for AIX Version 3.6.6 (Version 3.6.6.3 for 64-bit)

C++ IBM C Set++ for AIX Version 3.6.6 (Version 3.6.6.3 for 64-bit)

IBM VisualAge C++ Version 4.0

COBOL
IBM COBOL Set for AIX Version 1.1

Micro Focus COBOL Version 4.0.20 (PRN 12.03 or later)

Micro Focus COBOL Version 4.1.10 (PRN 13.04 or later)

Fortran
IBM XL Fortran for AIX Versions 4.1 (for 32-bit) and 5.1.0 (for 32-bit
and 64-bit)

Java Java Development Kit (JDK) Version 1.1.8 and Java Runtime
Environment (JRE) Version 1.1.8 for AIX from IBM (installed with
DB2)

Java Development Kit (JDK) Version 1.2.2 and Java Runtime
Environment (JRE) Version 1.2.2 for AIX from IBM

Perl Release 0.71 of the DB2 UDB driver (DBD::DB2) for the Perl Database
Interface (Perl DBI) (see note above)

REXX IBM AIX REXX/6000 AISPO Product Number: 5764-057

IBM Object REXX for AIX Version 1.1

REXXSAA 4.00

8 Application Building Guide

http://www.ibm.com/software/data/db2/perl/
http://www.ibm.com/software/ad/obj-rexx/

Note: REXX support is for 32-bit only

HP-UX
DB2 for HP-UX supports the following operating systems:

HP-UX
Version 11.0 with the HP-UX Core OS Year 2000 Patch Bundle Version
B.11.00.A1214 (Y2K-1100), or later patch bundles.

DB2 for HP-UX supports the following programming languages and
compilers:

C HP C Compiler version A.11.00.03

C++ HP-UX C++ Version A.12.00

COBOL
Micro Focus COBOL Version 4.1

Fortran
HP Fortran/9000 Version 10.0

HP-UX F77 B.11.00.01

Java HP-UX Developer’s Kit for Java Release 1.1.8 from Hewlett-Packard

Perl Release 0.71 of the DB2 UDB driver (DBD::DB2) for the Perl Database
Interface (Perl DBI) (see note above)

Linux
DB2 for Linux supports the following operating system:

Linux kernel Version 2.2.12 or later, glibc Version 2.1.2 or later, libstdc++
Version 2.9.0, rpm (required to install), and the pdksh package (required to
run the DB2 command line processor)

DB2 for Linux supports the following programming languages and compilers:

C GNU/Linux gcc version egcs-2.91.66 (egcs-1.1.2 release)

C++ GNU/Linux g++ version egcs-2.91.66 (egcs-1.1.2 release)

Java IBM Developer kit and Runtime Environment for Linux, Version 1.1.8

Perl Release 0.71 of the DB2 UDB driver (DBD::DB2) for the Perl Database
Interface (Perl DBI) (see note above)

OS/2
DB2 for OS/2 supports the following operating systems:

OS/2 WARP 3.0, WARP 4.0, and WARP 4.5

DB2 for OS/2 supports the following programming languages:

Chapter 1. Introduction 9

C/C++ IBM VisualAge C++ for OS/2 Version 3 and 4.0

COBOL
IBM VisualAge COBOL for OS/2 Version 2.0

Micro Focus COBOL Version 4.0.20

FORTRAN
WATCOM FORTRAN 77 32 Version 10.5

Java Java Development Kit (JDK) Version 1.1.8 and Java Runtime
Environment (JRE) Version 1.1.8 for OS/2 from IBM (shipped with
DB2)

REXX IBM Procedures Language 2/REXX (supplied as part of OS/2)

PTX
DB2 for NUMA-Q supports the following operating system:

PTX Version 4.5

DB2 for NUMA-Q supports the following programming languages and
compilers:

C ptx/C Versions 4.5

C++ ptx/C++ Version 5.2

Java ptx/JSE Version 3.0

Silicon Graphics IRIX
DB2 for Silicon Graphics IRIX supports the following operating system:

Silicon Graphics IRIX
Version 6.2 and later

DB2 for Silicon Graphics IRIX supports the following programming languages
and compilers:

C MIPSpro C Compiler 7.2

C++ MIPSpro C++ 7.2

Fortran
MIPSpro Fortran-77 7.2

Java Java2 Software Development Kit Version 1.2.1 (JDK 1.2.1) from Silicon
Graphics, Inc.

Solaris
DB2 for Solaris supports the following operating system:

Solaris
Versions 2.6, Solaris 7, and Solaris 8

10 Application Building Guide

DB2 for Solaris supports the following programming languages and
compilers:

C SPARCompiler C Versions 4.2 (for 32-bit) and 5.0 (for 32-bit and
64-bit)

C++ SPARCompiler C++ Version 4.2 (for 32-bit) and 5.0 (for 32-bit and
64-bit)

COBOL
Micro Focus COBOL Version 4.0

Fortran
SPARCompiler Fortran Versions 4.2 and 5.0

Java Java Development Kit (JDK) Versions 1.1.8 and 1.2 for Solaris from
Sun Microsystems

Perl Release 0.71 of the DB2 UDB driver (DBD::DB2) for the Perl Database
Interface (Perl DBI) (see note above)

Windows 32-bit Operating Systems
DB2 for Windows 32-bit operating systems supports the following:

Microsoft Windows NT
Version 4.0 with Service Pack 4 or later.

Microsoft Windows 2000

Microsoft Windows 98

Microsoft Windows 95
Version 4.00.950 or later

DB2 for Windows 32-bit operating systems supports the following
programming languages:

Basic Microsoft Visual Basic Version 4.2 and Version 5.0 (no DB2
precompiler is supplied for this language)

C/C++ Microsoft Visual C++ Version 5.0 and 6.0

IBM VisualAge C++ for Windows Version 4.2 and Version 5.0

COBOL
Micro Focus COBOL Version 4.0.20

IBM VisualAge COBOL Version 2.0

REXX IBM Object REXX for Windows NT/95 Version 1.1 (See note above)

Java Java Development Kit (JDK) 1.1.8 and Java Runtime Environment
(JRE) 1.1.8 for Win32 from IBM (installed with DB2)

Java Development Kit (JDK) 1.2 for Win32 from Sun Microsystems

Chapter 1. Introduction 11

Microsoft Software Developer’s Kit for Java, Version 3.1

Perl Release 0.71 of the DB2 UDB driver (DBD::DB2) for the Perl Database
Interface (Perl DBI) (Available on Windows NT. See note above.)

Sample Programs

Notes:

1. This section describes sample programs for the programming languages
for all platforms supported by DB2. Not all sample programs have been
ported to all platforms or supported programming languages.

2. DB2 sample programs are provided ″as is″ without any warranty of any
kind. The user, and not IBM, assumes the entire risk of quality,
performance, and repair of any defects.

The sample programs come with the DB2 Application Development (DB2 AD)
Client. You can use the sample programs as templates to create your own
applications.

Sample program file extensions differ for each supported language, and for
embedded SQL and non-embedded SQL programs within each language. File
extensions may also differ for groups of programs within a language. These
different sample file extensions are categorized in the following tables:

Sample File Extensions by Language
Table 1 on page 13.

Sample File Extensions by Program Group
Table 2 on page 14.

The following tables document the sample programs by type:

DB2 API Sample Programs with No Embedded SQL
Table 3 on page 16.

DB2 API Embedded SQL Sample Programs
Table 4 on page 19.

Embedded SQL Sample Programs with No DB2 APIs
Table 5 on page 20.

User-Defined Function Sample Programs
Table 6 on page 22

DB2 CLI Sample Programs
Table 7 on page 22.

Java JDBC Sample Programs
Table 8 on page 24.

12 Application Building Guide

Java SQLJ Sample Programs
Table 9 on page 25.

SQL Procedure Sample Programs
Table 10 on page 26.

ActiveX Data Objects, Remote Data Objects, and Microsoft Transaction
Server Sample Programs

Table 11 on page 28.

Object Linking and Embedding (OLE) Automation Sample Programs
Table 12 on page 29.

Object Linking and Embedding Database (OLE DB) Table Functions
Table 13 on page 29.

Command Line Processor (CLP) Sample Programs
Table 14 on page 30.

Log Management User Exit Programs
Table 15 on page 31.

Notes:

1. Table 4 on page 19 contains programs that have both DB2 APIs and
embedded SQL statements. For all DB2 API sample programs, please see
both Table 3 on page 16 and Table 4 on page 19. For all embedded SQL
sample programs (except for Java SQLJ), please see both Table 4 on page 19
and Table 5 on page 20.

2. Table 6 on page 22 of UDF sample programs does not contain DB2 CLI
UDF programs. For these, please see Table 7 on page 22.

Table 1. Sample File Extensions by Language

Language Directory Embedded SQL Programs Non-embedded SQL
Programs

C samples/c
samples/cli (CLI programs)

.sqc .c

C++ samples/cpp .sqC (UNIX)
.sqx (Windows & OS/2)

.C (UNIX)

.cxx (Windows & OS/2)

COBOL samples/cobol
samples/cobol_mf

.sqb .cbl

JAVA samples/java .sqlj .java

REXX samples/rexx .cmd .cmd

Chapter 1. Introduction 13

Table 2. Sample File Extensions by Program Group

Sample Group Directory File Extension

ADO, RDO, MTS samples\ADO\VB (Visual Basic)
samples\ADO\VC (Visual C++)
samples\RDO
samples\MTS

.bas .frm .vbp (Visual Basic)

.cpp .dsp .dsw (Visual C++)

CLP samples/clp .db2

OLE samples\ole\msvb (Visual Basic)
samples\ole\msvc (Visual C++)

.bas .vbp (Visual Basic)

.cpp (Visual C++)

OLE DB samples\oledb .db2

SQL Procedures samples/sqlproc .db2
.c .sqc (Client Applications)

User Exit samples/c .cad (OS/2)
.cadsm (UNIX & Windows)
.cdisk (UNIX & Windows)
.ctape (UNIX)

Note:

Directory Delimiters
On UNIX are /. On OS/2 and Windows platforms, are \. In the
tables, the UNIX delimiters are used unless the directory is only
available on Windows and/or OS/2.

File Extensions
Are provided for the samples in the tables where only one
extension exists.

Embedded SQL Programs
Require precompilation, except for REXX embedded SQL
programs where the embedded SQL statements are interpreted
when the program is run.

IBM COBOL samples
Are only supplied for AIX, OS/2, and Windows 32-bit
operating systems in the cobol subdirectory.

Micro Focus Cobol Samples
Are only supplied for AIX, HP-UX, OS/2, Solaris Operating
Environment, and Windows 32-bit operating systems in the
cobol_mf subdirectory.

Java Samples
Are Java Database Connectivity (JDBC) applets, applications,
and stored procedures, embedded SQL for Java (SQLJ) applets,

14 Application Building Guide

applications, and stored procedures, as well as Java UDFs. Java
samples are available on all supported DB2 platforms.

REXX Samples
Are only supplied for AIX, OS/2, and Windows NT operating
systems.

CLP Samples
Are Command Line Processor scripts that execute SQL
statements.

OLE Samples
Are for Object Linking and Embedding (OLE) in Microsoft
Visual Basic and Microsoft Visual C++, supplied for Windows
32-bit operating systems only.

ADO, RDO, and MTS Samples
Are ActiveX Data Objects samples in Microsoft Visual Basic and
Microsoft Visual C++, and Remote Data Objects and Microsoft
Transaction Server samples in Microsoft Visual Basic, supplied
for Windows 32-bit operating systems only.

User Exit samples
Are Log Management User Exit programs used to archive and
retrieve database log files. The files must be renamed with a .c
extension and compiled as C language programs.

You can find the sample programs in the samples subdirectory of the directory
where DB2 has been installed. There is a subdirectory for each supported
language. The following examples show you how to locate the samples
written in C or C++ on each supported platform.
v On UNIX platforms.

You can find the C source code for embedded SQL and DB2 API programs
in sqllib/samples/c under your database instance directory; the C source
code for DB2 CLI programs is in sqllib/samples/cli. For additional
information about the programs in the samples tables, refer to the README
file in the appropriate samples subdirectory under your DB2 instance. The
README file will contain any additional samples that are not listed in this
book.

v On OS/2 and Windows 32-bit operating systems.

You can find the C source code for embedded SQL and DB2 API programs
in %DB2PATH%\samples\c under the DB2 install directory; the C source code
for DB2 CLI programs is in %DB2PATH%\samples\cli. The variable %DB2PATH%
determines where DB2 is installed. Depending on the drive where DB2 is
installed, %DB2PATH% will point to drive:\sqllib. For additional information
about the sample programs in the samples tables, refer to the README file in

Chapter 1. Introduction 15

the appropriate %DB2PATH%\samples subdirectory. The README file will
contain any additional samples that are not listed in this book.

The sample programs directory is typically read-only on most platforms.
Before you alter or build the sample programs, copy them to your working
directory.

DB2 API Non-Embedded SQL Samples

Table 3. DB2 API Sample Programs with No Embedded SQL

Sample Program Included APIs

backrest v sqlbftcq - Fetch Tablespace Container Query

v sqlbstsc - Set Tablespace Containers

v sqlfudb - Update Database Configuration

v sqlubkp - Backup Database

v sqluroll - Rollforward Database

v sqlurst - Restore Database

checkerr v sqlaintp - Get Error Message

v sqlogstt - Get SQLSTATE Message

cli_info v sqleqryi - Query Client Information

v sqleseti - Set Client Information

client v sqleqryc - Query Client

v sqlesetc - Set Client

d_dbconf v sqleatin - Attach

v sqledtin - Detach

v sqlfddb - Get Database Configuration Defaults

d_dbmcon v sqleatin - Attach

v sqledtin - Detach

v sqlfdsys - Get Database Manager Configuration Defaults

db_udcs v sqleatin - Attach

v sqlecrea - Create Database

v sqledrpd - Drop Database

db2mon v sqleatin - Attach

v sqlmon - Get/Update Monitor Switches

v sqlmonss - Get Snapshot

v sqlmonsz - Estimate Size Required for sqlmonss() Output
Buffer

v sqlmrset - Reset Monitor

16 Application Building Guide

Table 3. DB2 API Sample Programs with No Embedded SQL (continued)

Sample Program Included APIs

dbcat v sqlecadb - Catalog Database

v sqledcls - Close Database Directory Scan

v sqledgne - Get Next Database Directory Entry

v sqledosd - Open Database Directory Scan

v sqleuncd - Uncatalog Database

dbcmt v sqledcgd - Change Database Comment

v sqledcls - Close Database Directory Scan

v sqledgne - Get Next Database Directory Entry

v sqledosd - Open Database Directory Scan

v sqleisig - Install Signal Handler

dbconf v sqleatin - Attach

v sqlecrea - Create Database

v sqledrpd - Drop Database

v sqlfrdb - Reset Database Configuration

v sqlfudb - Update Database Configuration

v sqlfxdb - Get Database Configuration

dbinst v sqleatcp - Attach and Change Password

v sqleatin - Attach

v sqledtin - Detach

v sqlegins - Get Instance

dbmconf v sqleatin - Attach

v sqledtin - Detach

v sqlfrsys - Reset Database Manager Configuration

v sqlfusys - Update Database Manager Configuration

v sqlfxsys - Get Database Manager Configuration

dbsnap v sqleatin - Attach

v sqlmonss - Get Snapshot

dbstart v sqlepstart - Start Database Manager

dbstop v sqlefrce - Force Application

v sqlepstp - Stop Database Manager

Chapter 1. Introduction 17

Table 3. DB2 API Sample Programs with No Embedded SQL (continued)

Sample Program Included APIs

dcscat v sqlegdad - Catalog DCS Database

v sqlegdcl - Close DCS Directory Scan

v sqlegdel - Uncatalog DCS Database

v sqlegdge - Get DCS Directory Entry for Database

v sqlegdgt - Get DCS Directory Entries

v sqlegdsc - Open DCS Directory Scan

dmscont v sqleatin - Attach

v sqlecrea - Create Database

v sqledrpd - Drop Database

ebcdicdb v sqleatin - Attach

v sqlecrea - Create Database

v sqledrpd - Drop Database

migrate v sqlemgdb - Migrate Database

monreset v sqleatin - Attach

v sqlmrset - Reset Monitor

monsz v sqleatin - Attach

v sqlmonss - Get Snapshot

v sqlmonsz - Estimate Size Required for sqlmonss() Output
Buffer

nodecat v sqlectnd - Catalog Node

v sqlencls - Close Node Directory Scan

v sqlengne - Get Next Node Directory Entry

v sqlenops - Open Node Directory Scan

v sqleuncn - Uncatalog Node

restart v sqlerstd - Restart Database

setact v sqlesact - Set Accounting String

setrundg v sqlesdeg - Set Runtime Degree

sws v sqleatin - Attach

v sqlmon - Get/Update Monitor Switches

utilapi v sqlaintp - Get Error Message

v sqlogstt - Get SQLSTATE Message

18 Application Building Guide

DB2 API Embedded SQL Samples

Table 4. DB2 API Embedded SQL Sample Programs

Sample Program Included APIs

asynrlog v sqlurlog - Asynchronous Read Log

autocfg v db2AutoConfig -- Autoconfig

v db2AutoConfigMemory -- Autoconfig Free Memory

v sqlfudb -- Update Database Configuration

v sqlfusys -- Update Database Manager Configuration

v sqlesetc -- Set Client

v sqlaintp -- SQLCA Message

dbauth v sqluadau - Get Authorizations

dbstat v sqlureot - Reorganize Table

v sqlustat - Runstats

expsamp v sqluexpr - Export

v sqluimpr - Import

impexp v sqluexpr - Export

v sqluimpr - Import

loadqry v db2LoadQuery - Load Query

makeapi v sqlabndx - Bind

v sqlaprep - Precompile Program

v sqlepstp - Stop Database Manager

v sqlepstr - Start Database Manager

rebind v sqlarbnd - Rebind

rechist v sqlubkp - Backup Database

v sqluhcls - Close Recovery History File Scan

v sqluhgne - Get Next Recovery History File Entry

v sqluhops - Open Recovery History File Scan

v sqluhprn - Prune Recovery History File

v sqluhupd - Update Recovery History File

tabscont v sqlbctcq - Close Tablespace Container Query

v sqlbftcq - Fetch Tablespace Container Query

v sqlbotcq - Open Tablespace Container Query

v sqlbtcq - Tablespace Container Query

v sqlefmem - Free Memory

Chapter 1. Introduction 19

Table 4. DB2 API Embedded SQL Sample Programs (continued)

Sample Program Included APIs

tabspace v sqlbctsq - Close Tablespace Query

v sqlbftpq - Fetch Tablespace Query

v sqlbgtss - Get Tablespace Statistics

v sqlbmtsq - Tablespace Query

v sqlbotsq - Open Tablespace Query

v sqlbstpq - Single Tablespace Query

v sqlefmem - Free Memory

tload v sqluexpr - Export

v sqluload - Load

v sqluvqdp - Quiesce Tablespaces for Table

tspace v sqlbctcq - Close Tablespace Container Query

v sqlbctsq - Close Tablespace Query

v sqlbftcq - Fetch Tablespace Container Query

v sqlbftpq - Fetch Tablespace Query

v sqlbgtss - Get Tablespace Statistics

v sqlbmtsq - Tablespace Query

v sqlbotcq - Open Tablespace Container Query

v sqlbotsq - Open Tablespace Query

v sqlbstpq - Single Tablespace Query

v sqlbstsc - Set Tablespace Containers

v sqlbtcq - Tablespace Container Query

v sqlefmem - Free Memory

utilemb v sqlaintp - Get Error Message

v sqlogstt - Get SQLSTATE Message

Embedded SQL Samples With No DB2 APIs

Table 5. Embedded SQL Sample programs with No DB2 APIs

Sample Program
Name

Program Description

adhoc Demonstrates dynamic SQL and the SQLDA structure to process SQL commands
interactively. SQL commands are input by the user, and output corresponding to
the SQL command is returned.

advsql Demonstrates the use of advanced SQL expressions like CASE, CAST, and scalar
full selects.

20 Application Building Guide

Table 5. Embedded SQL Sample programs with No DB2 APIs (continued)

Sample Program
Name

Program Description

blobfile Demonstrates the manipulation of a Binary Large Object (BLOB), by reading a
BLOB value from the sample database and placing it in a file. The contents of this
file can be displayed using an external viewer.

columns Demonstrates the use of a cursor that is processed using dynamic SQL. This
program lists a result set from SYSCAT.COLUMNS under a desired schema name.

cursor Demonstrates the use of a cursor using static SQL.

delet Demonstrates static SQL to delete items from a database.

dynamic Demonstrates the use of a cursor using dynamic SQL.

joinsql Demonstrates using advanced SQL join expressions.

largevol Demonstrates parallel query processing in a partitioned environment, and the use
of an NFS file system to automate the merging of the result sets. Only available on
AIX.

lobeval Demonstrates the use of LOB locators and defers the evaluation of the actual LOB
data.

lobfile Demonstrates the use of LOB file handles.

lobloc Demonstrates the use of LOB locators.

lobval Demonstrates the use of LOBs.

openftch Demonstrates fetching, updating, and deleting of rows using static SQL.

recursql Demonstrates the use of advanced SQL recursive queries.

sampudf Demonstrates User-Defined Types (UDTs) and User-Defined Functions (UDFs)
implemented to modify table entries. All UDFs declared in this program are
sourced UDFs.

spclient A client application that calls stored procedures in the spserver shared library.

spcreate.db2 A CLP script that contains the CREATE PROCEDURE statements to register the
stored procedures created by the spserver program.

spdrop.db2 A CLP script that contains the DROP PROCEDURE statements necessary for
deregistering the stored procedures created by the spserver program.

spserver A server program demonstrating stored procedures. The client program is
spclient.

static Demonstrates static SQL to retrieve information.

tabsql Demonstrates the use of advanced SQL table expressions.

tbdefine Demonstrates creating and dropping tables.

Chapter 1. Introduction 21

Table 5. Embedded SQL Sample programs with No DB2 APIs (continued)

Sample Program
Name

Program Description

thdsrver Demonstrates the use of POSIX threads APIs for thread creation and management.
The program maintains a pool of contexts. A generate_work function is executed
from main, and creates dynamic SQL statements that are executed by worker
threads. When a context becomes available, a thread is created and dispatched to
do the specified work. The work generated consists of statements to delete entries
from either the STAFF or EMPLOYEE tables of the sample database. This program
is only available on UNIX platforms.

trigsql Demonstrates using advanced SQL triggers and constraints.

udfcli Demonstrates calling a user-defined function (UDF) created by the udfsrv
program, and stored on the server to access tables in the sample database.

updat Demonstrates static SQL to update a database.

varinp Demonstrates variable input to Embedded Dynamic SQL statement calls using
parameter markers.

User-Defined Function Samples

Table 6. User-Defined Function Sample programs

Sample Program
Name Program Description

DB2Udf.java A Java UDF that demonstrates several tasks, including integer division,
manipulation of Character Large Objects (CLOBs), and the use of Java instance
variables.

udfsrv.c Creates a library with the User-Defined Function ScalarUDF, to access the sample
database tables.

UDFsrv.java Demonstrates the use of Java User-Defined Functions (UDFs).

DB2 Call Level Interface Samples

Table 7. Sample CLI Programs in DB2 Universal Database

Sample Program
Name

Program Description

Common Utility Files

utilcli.c Utility functions used in CLI samples.

utilapi.c Utility functions that call DB2 APIs.

Application Level - Samples that deal with the application level of DB2 and CLI.

apinfo.c How to get and set application level information.

aphndls.c How to allocate and free handles.

apsqlca.c How to work with SQLCA data.

22 Application Building Guide

Table 7. Sample CLI Programs in DB2 Universal Database (continued)

Sample Program
Name

Program Description

Installation Image Level - Samples that deal with the installation image level of DB2 and CLI.

ilinfo.c How to get and set installation level information (such as the version of the CLI
driver).

Instance Level - Samples that deal with the instance level of DB2 and CLI.

ininfo.c How to get and set instance level information.

Database Level - Samples that deal with database objects in DB2.

dbconn.c How to connect and disconnect from a database.

dbinfo.c How to get and set information at a database level.

dbmconn.c How to connect and disconnect from multiple databases (uses DB2 APIs to
create and drop second database).

dbmuse.c How to perform transactions with multiple databases (uses DB2 APIs to create
and drop second database).

dbnative.c How to translate a statement that contains an ODBC escape clause to a data
source specific format.

dbuse.c How to work with database objects.

dbusemx.sqc How to use a single database in conjunction with embedded SQL.

Table Level - Samples that deal with table objects in DB2.

tbconstr.c How to work with table constraints.

tbconstr.c How to create, alter and drop tables.

tbinfo.c How to get and set information at a table level.

tbmod.c How to modify information in a table.

tbread.c How to read information in a table.

Data Type Level - Samples that deal with data types.

dtinfo.c How to get information about data types.

dtlob.c How to read and write LOB data.

dtudt.c How to create, use, and drop user defined distinct types.

UDF Level - Samples that demonstrate user defined functions.

udfcli.c Client application which calls the user defined function in udfsrv.c.

udfsrv.c User defined function ScalarUDF called by udfcli.c sample.

Stored Procedure Level - Samples that demonstrate stored procedures in CLI.

spcreate.db2 CLP script to issue CREATE PROCEDURE statements.

spdrop.db2 CLP script to drop stored procedures from the catalog.

spclient.c Client program used to call the server functions declared in spserver.c.

Chapter 1. Introduction 23

Table 7. Sample CLI Programs in DB2 Universal Database (continued)

Sample Program
Name

Program Description

spserver.c Stored procedure functions built and run on the server.

spcall.c Program to call any stored procedure.

Note: Other files in the samples/cli directory include:
v README - Lists all example files.
v makefile - Makefile for all files
v build files for applications and stored procedures

Java Samples

Table 8. Java Database Connectivity (JDBC) Sample Programs

Sample Program
Name Program Description

DB2Appl.java A JDBC application that queries the sample database using the invoking user’s
privileges.

DB2Applt.java A JDBC applet that queries the database using the JDBC applet driver. It uses the
user name, password, server, and port number parameters specified in
DB2Applt.html.

DB2Applt.html An HTML file that embeds the applet sample program, DB2Applt. It needs to be
customized with server and user information.

DB2UdCli.java A Java client application that calls the Java user-defined function, DB2Udf.

Dynamic.java Demonstrates a cursor using dynamic SQL.

MRSPcli.java This is the client program that calls the server program MRSPsrv. The program
demonstrates multiple result sets being returned from a Java stored procedure.

MRSPsrv.java This is the server program that is called by the client program, MRSPcli. The
program demonstrates multiple result sets being returned from a Java stored
procedure.

Outcli.java A Java client application that calls the SQLJ stored procedure, Outsrv.

PluginEx.java A Java program that adds new menu items and toolbar buttons to the DB2 Web
Control Center.

Spclient.java A JDBC client application that calls PARAMETER STYLE JAVA stored procedures
in the Spserver stored procedure class.

Spcreate.db2 A CLP script that contains the CREATE PROCEDURE statements to register the
methods contained in the Spserver class as stored procedures.

Spdrop.db2 A CLP script that contains the DROP PROCEDURE statements necessary for
deregistering the stored procedures contained in the Spserver class.

Spserver.java A JDBC program demonstrating PARAMETER STYLE JAVA stored procedures. The
client program is Spclient.java.

24 Application Building Guide

Table 8. Java Database Connectivity (JDBC) Sample Programs (continued)

Sample Program
Name Program Description

UDFcli.java A JDBC client application that calls functions in the Java user-defined function
library, UDFsrv.

UseThrds.java Shows how to use threads to run an SQL statement asynchronously (JDBC version
of CLI sample async.c).

V5SpCli.java A Java client application that calls the DB2GENERAL stored procedure, V5Stp.java.

V5Stp.java Demonstrates a DB2GENERAL stored procedure that updates the EMPLOYEE table
on the server, and returns new salary and payroll information to the client. The
client program is V5SpCli.java.

Varinp.java Demonstrates variable input to Embedded Dynamic SQL statement calls using
parameter markers.

Table 9. Embedded SQL for Java (SQLJ) Sample Programs

Sample Program
Name Program Description

App.sqlj Uses static SQL to retrieve and update data from the EMPLOYEE table of the
sample database.

Applt.sqlj An applet that queries the database using the JDBC applet driver. It uses the user
name, password, server, and port number parameters specified in Applt.html.

Applt.html An HTML file that embeds the applet sample program, Applt. It needs to be
customized with server and user information.

Cursor.sqlj Demonstrates an iterator using static SQL.

OpF_Curs.sqlj Class file for the Openftch program.

Openftch.sqlj Demonstrates fetching, updating, and deleting rows using static SQL.

Outsrv.sqlj Demonstrates a stored procedure using the SQLDA structure. It fills the SQLDA
with the median salary of the employees in the STAFF table of the sample database.
After the database processing (finding the median), the stored procedure returns
the filled SQLDA and the SQLCA status to the JDBC client application, Outcli.

Stclient.sqlj An SQLJ client application that calls PARAMETER STYLE JAVA stored procedures
created by the SQLJ stored procedure program, Stserver.

Stcreate.db2 A CLP script that contains the CREATE PROCEDURE statements to register the
methods contained in the Stserver class as stored procedures.

Stdrop.db2 A CLP script that contains the DROP PROCEDURE statements necessary for
deregistering the stored procedures contained in the Stserver class.

Stserver.sqlj An SQLJ program demonstrating PARAMETER STYLE JAVA stored procedures.
The client program is Stclient.sqlj.

Static.sqlj Uses static SQL to retrieve information.

Chapter 1. Introduction 25

Table 9. Embedded SQL for Java (SQLJ) Sample Programs (continued)

Sample Program
Name Program Description

Stp.sqlj A stored procedure that updates the EMPLOYEE table on the server, and returns
new salary and payroll information to the JDBC client program, StpCli.

UDFclie.sqlj A client application that calls functions from the Java user-defined function library,
UDFsrv.

Updat.sqlj Uses static SQL to update a database.

SQL Procedure Samples

Table 10. SQL Procedure Sample Programs

Sample Program
Name Program Description

basecase.db2 The UPDATE_SALARY procedure raises the salary of an employee identified by
the ″empno″ IN parameter in the ″staff″ table of the ″sample″ database. The
procedure determines the raise according to a CASE statement that uses the
″rating″ IN parameter.

basecase.sqc Calls the UPDATE_SALARY procedure.

baseif.db2 The UPDATE_SALARY_IF procedure raises the salary of an employee identified by
the ″empno″ IN parameter in the ″staff″ table of the ″sample″ database. The
procedure determines the raise according to an IF statement that uses the ″rating″
IN parameter.

baseif.sqc Calls the UPDATE_SALARY_IF procedure.

dynamic.db2 The CREATE_DEPT_TABLE procedure uses dynamic DDL to create a new table.
The name of the table is based on the value of the IN parameter to the procedure.

dynamic.sqc Calls the CREATE_DEPT_TABLE procedure.

iterate.db2 The ITERATOR procedure uses a FETCH loop to retrieve data from the
″department″ table. If the value of the ″deptno″ column is not ’D11’, modified data
is inserted into the ″department″ table. If the value of the ″deptno″ column is ’D11’,
an ITERATE statement passes the flow of control back to the beginning of the
LOOP statement.

iterate.sqc Calls the ITERATOR procedure.

leave.db2 The LEAVE_LOOP procedure counts the number of FETCH operations performed
in a LOOP statement before the ″not_found″ condition handler invokes a LEAVE
statement. The LEAVE statement causes the flow of control to exit the loop and
complete the stored procedure.

leave.sqc Calls the LEAVE_LOOP procedure.

loop.db2 The LOOP_UNTIL_SPACE procedure counts the number of FETCH operations
performed in a LOOP statement until the cursor retrieves a row with a space (’ ’)
value for column ″midinit″. The loop statement causes the flow of control to exit
the loop and complete the stored procedure.

26 Application Building Guide

Table 10. SQL Procedure Sample Programs (continued)

Sample Program
Name Program Description

loop.sqc Calls the LOOP_UNTIL_SPACE procedure.

nestcase.db2 The BUMP_SALARY procedure uses nested CASE statements to raise the salaries
of employees in a department identified by the dept IN parameter from the ″staff″
table of the ″sample″ database.

nestcase.sqc Calls the BUMP_SALARY procedure.

nestif.db2 The BUMP_SALARY_IF procedure uses nested IF statements to raise the salaries of
employees in a department identified by the dept IN parameter from the ″staff″
table of the ″sample″ database.

nestif.sqc Calls the BUMP_SALARY_IF procedure.

repeat.db2 The REPEAT_STMT procedure counts the number of FETCH operations performed
in a repeat statement until the cursor can retrieve no more rows. The condition
handler causes the flow of control to exit the repeat loop and complete the stored
procedure.

repeat.sqc Calls the REPEAT_STMT procedure.

rsultset.c Calls the MEDIAN_RESULT_SET procedure, displays the median salary, then
displays the result set generated by the SQL procedure. This client is written using
the CLI API, which can accept result sets.

rsultset.db2 The MEDIAN_RESULT_SET procedure obtains the median salary of employees in a
department identified by the ″dept″ IN parameter from the ″staff″ table of the
″sample″ database. The median value is assigned to the salary OUT parameter and
returned to the ″rsultset″ client. The procedure then opens a WITH RETURN cursor
to return a result set of the employees with a salary greater than the median. The
procedure returns the result set to the client.

spserver.db2 The SQL procedures in this CLP script demonstrate basic error-handling, nested
stored procedure calls, and returning result sets to the client application or the
calling application. You can call the procedures using the ″spcall″ application, in the
CLI samples directory. You can also use the ″spclient″ application, in the C and
CPP samples directories, to call the procedures that do not return result sets.

whiles.db2 The DEPT_MEDIAN procedure obtains the median salary of employees in a
department identified by the ″dept″ IN parameter from the ″staff″ table of the
″sample″ database. The median value is assigned to the salary OUT parameter and
returned to the ″whiles″ client. The whiles client then prints the median salary.

whiles.sqc Calls the DEPT_MEDIAN procedure.

Chapter 1. Introduction 27

ADO, RDO, and MTS Samples

Table 11. ADO, RDO, and MTS Sample Programs

Sample Program
Name Program Description

Bank.vbp An RDO program to create and maintain data for bank branches, with the ability to
perform transactions on customer accounts. The program can use any database
specified by the user as it contains the DDL to create the necessary tables for the
application to store data.

Blob.vbp This ADO program demonstrates retrieving BLOB data. It retrieves and displays
pictures from the emp_photo table of the sample database. The program can also
replace an image in the emp_photo table with one from a local file.

BLOBAccess.dsw This sample demonstrates highlighting ADO/Blob access using Microsoft Visual
C++. It is similar to the Visual Basic sample, Blob.vbp. The BLOB sample has two
main functions:

1. Read a BLOB from the Sample database and display it to the screen.

2. Read a BLOB from a file and insert it into the database. (Import)

Connect.vbp This ADO program will create a connection object, and establish a connection, to
the sample database. Once completed, the program will disconnect and exit.

Commit.vbp This application demonstrates the use of autocommit/manual-commit features of
ADO. The program queries the EMPLOYEE table of the sample database for
employee number and name. The user has an option of connecting to the database
in either autocommit or manual-commit mode. In the autocommit mode, all of the
changes that a user makes on a record are updated automatically in the database.
In the manual-commit mode, the user needs to begin a transaction before he/she
can make any changes. The changes made since the beginning of a transaction can
be undone by performing a rollback. The changes can be saved permanently by
committing the transaction. Exiting the program automatically rolls back the
changes.

db2com.vbp This Visual Basic project demonstrates updating a database using the Microsoft
Transaction Server. It creates a server DLL used by the client program, db2mts.vbp,
and has four class modules:

v UpdateNumberColumn.cls

v UpdateRow.cls

v UpdateStringColumn.cls

v VerifyUpdate.cls

For this program a temporary table, DB2MTS, is created in the sample database.

db2mts.vbp This is a Visual Basic project for a client program that uses the Microsoft
Transaction Server to call the server DLL created from db2com.vbp.

Select-Update.vbp This ADO program performs the same functions as Connect.vbp, but also provides
a GUI interface. With this interface, the user can view, update, and delete data
stored in the ORG table of the sample database.

28 Application Building Guide

Table 11. ADO, RDO, and MTS Sample Programs (continued)

Sample Program
Name Program Description

Sample.vbp This Visual Basic project uses Keyset cursors via ADO to provide a graphical user
interface to all data in the sample database.

VarCHAR.dsp A Visual C++ program that uses ADO to access VarChar data as textfields. It
provides a graphical user interface to allow users to view and update data in the
ORG table of the sample database.

Object Linking and Embedding Samples

Table 12. Object Linking and Embedding (OLE) Sample Programs

Sample Program
Name Program Description

sales Demonstrates rollup queries on a Microsoft Excel sales spreadsheet (implemented
in Visual Basic).

names Queries a Lotus Notes address book (implemented in Visual Basic).

inbox Queries Microsoft Exchange inbox e-mail messages through OLE/Messaging
(implemented in Visual Basic).

invoice An OLE automation user-defined function that sends Microsoft Word invoice
documents as e-mail attachments (implemented in Visual Basic).

bcounter An OLE automation user-defined function demonstrating a scratchpad using
instance variables (implemented in Visual Basic).

ccounter A counter OLE automation user-defined function (implemented in Visual C++).

salarysrv An OLE automation stored procedure that calculates the median salary of the
STAFF table of the sample database (implemented in Visual Basic).

salarycltvc A Visual C++ embedded SQL sample that calls the Visual Basic stored procedure,
salarysrv.

salarycltvb A Visual Basic DB2 CLI sample that calls the Visual Basic stored procedure,
salarysrv.

testcli An OLE automation embedded SQL client application that calls the stored
procedure, tstsrv (implemented in Visual C++).

tstsrv An OLE automation stored procedure demonstrating the passing of various types
between client and stored procedure (implemented in Visual C++).

Table 13. Object Linking and Embedding Database (OLE DB) Table Functions

Sample Program
Name Program Description

jet.db2 Microsoft.Jet.OLEDB.3.51 Provider

mapi.db2 INTERSOLV Connect OLE DB for MAPI

Chapter 1. Introduction 29

Table 13. Object Linking and Embedding Database (OLE DB) Table Functions (continued)

Sample Program
Name Program Description

msdaora.db2 Microsoft OLE DB Provider for Oracle

msdasql.db2 Microsoft OLE DB Provider for ODBC Drivers

msidxs.db2 Microsoft OLE DB Index Server Provider

notes.db2 INTERSOLV Connect OLE DB for Notes

sampprov.db2 Microsoft OLE DB Sample Provider

sqloledb.db2 Microsoft OLE DB Provider for SQL Server

Command Line Processor Samples

Table 14. Command Line Processor (CLP) Sample Programs.

Sample File
Name

File Description

const.db2 Creates a table with a CHECK CONSTRAINT clause.

cte.db2 Demonstrates a common table expression. The equivalent sample program
demonstrating this advanced SQL statement is tabsql.

flt.db2 Demonstrates a recursive query. The equivalent sample program demonstrating this
advanced SQL statement is recursql.

join.db2 Demonstrates an outer join of tables. The equivalent sample program demonstrating
this advanced SQL statement is joinsql.

stock.db2 Demonstrates the use of triggers. The equivalent sample program demonstrating this
advanced SQL statement is trigsql.

testdata.db2 Uses DB2 built-in functions such as RAND() and TRANSLATE() to populate a table
with randomly generated test data.

thaisort.db2 This script is particularly for Thai users. Thai sorting is by phonetic order requiring
pre-sorting/swapping of the leading vowel and its consonant, as well as post-sorting
in order to view the data in the correct sort order. The file implements Thai sorting
by creating UDF functions presort and postsort, and creating a table; then it calls the
functions against the table to sort the table data. To run this program, you first have
to build the user-defined function program, udf, from the C source file, udf.c.

30 Application Building Guide

Log Management User Exit Samples

Table 15. Log Management User Exit Sample Programs.

Sample File
Name

File Description

db2uext2.cadsm This is a sample User Exit utilizing ADSTAR DSM (ADSM) APIs to archive and
retrieve database log files. The sample provides an audit trail of calls (stored in a
separate file for each option) including a timestamp and parameters received. It also
provides an error trail of calls in error including a timestamp and an error isolation
string for problem determination. These options can be disabled. The file must be
renamed db2uext2.c and compiled as a C program. Available on UNIX and Windows
32-bit operating systems. The OS/2 version is db2uexit.cad.

db2uexit.cad This is the OS/2 version of db2uext2.cadsm. The file must be renamed db2uexit.c
and compiled as a C program.

db2uext2.cdisk This is a sample User Exit utilizing the system copy command for the particular
platform on which it ships. The program archives and retrieves database log files,
and provides an audit trail of calls (stored in a separate file for each option)
including a timestamp and parameters received. It also provides an error trail of calls
in error including a timestamp and an error isolation string for problem
determination. These options can be disabled. The file must be renamed db2uext2.c
and compiled as a C program. Available on UNIX and Windows 32-bit operating
systems.

db2uext2.ctape This is a sample User Exit utilizing system tape commands for the particular UNIX
platform on which it ships. The program archives and retrieves database log files. All
limitations of the system tape commands are limitations of this user exit. The sample
provides an audit trail of calls (stored in a separate file for each option) including a
timestamp and parameters received. It also provides an error trail of calls in error
including a timestamp and an error isolation string for problem determination. These
options can be disabled. The file must be renamed db2uext2.c and compiled as a C
program. Available on UNIX platforms only.

Chapter 1. Introduction 31

32 Application Building Guide

Chapter 2. Setup

Setting the OS/2 Environment 34
Setting the UNIX Environment 36
Setting the Windows 32-bit Operating
Systems Environment 37
Enabling Communications on the Server . . 38

Windows NT and Windows 2000 39

Creating, Cataloging, and Binding the Sample
Database 40

Creating 40
Cataloging 42
Binding 42

Where to Go Next 44

Creating a proper environment for building and running DB2 applications
requires properly setting up the following:
1. Compiler or interpreter
2. DB2 (database manager, DB2 AD Client, and client connection)
3. Operating system environment
4. DB2 Sample database (optional)

Checking your Compiler or Interpreter Environment

To develop DB2 programs, you must use a compiler or interpreter for one of
the supported programming languages for your operating system, listed in
“Supported Software by Platform” on page 7. It is recommended that you
ensure your existing compiler or interpreter environment is correctly set up by
first building a non-DB2 application. Then, if you encounter any problems,
please see the documentation that comes with your compiler or interpreter.

Setting Up the DB2 Environment

To set up your DB2 environment, the following must be installed and
working:
v The database manager on the server with the database instance for your

environment. Refer to “Appendix A. About Database Manager Instances”
on page 361 if you need information about database instances.

v The DB2 AD Client on the client or server workstation on which you are
going to develop applications.

v The connection to the remote server, if you are developing on a client
workstation.

Updating the Database Manager Configuration File

This file contains important settings for application development. You can
change these settings by entering:

db2 update dbm cfg using <keyword> <value>

© Copyright IBM Corp. 1993, 2000 33

and you can view the settings by entering:
db2 get dbm cfg

See the Command Reference for more information on using these commands.
v For stored procedures, the keyword KEEPDARI has the default value yes.

This keeps the stored procedure process alive. If you are developing a
stored procedure, you may want to test loading the same stored procedure
library a number of times. This default setting may interfere with reloading
the library. Its best to change the value of this keyword to no while
developing stored procedures, and then change it back to yes when you are
ready to load the final version of your stored procedure.

v For Java, update the JDK11_PATH keyword. See “Setting the Environment”
on page 64 for details.

For more detailed information on installation and setup, refer to the Quick
Beginnings book for your operating system.

When the above are installed and working, you can set up your operating
system environment by following the steps in one of the following sections:
v “Setting the OS/2 Environment” on page 34
v “Setting the UNIX Environment” on page 36
v “Setting the Windows 32-bit Operating Systems Environment” on page 37

After you set up your operating system environment, you may want to create
the sample database, which is used by the sample programs in this book. To
create the database, see “Creating, Cataloging, and Binding the Sample
Database” on page 40.

Setting the OS/2 Environment

Most OS/2 compilers use environment variables to control various options.
You can set these variables in your CONFIG.SYS file, or you can create
command files to set them.

CONFIG.SYS
The advantage of setting the environment variables in your
CONFIG.SYS file is that once entered, they are set every time you start
(boot) your computer.

Command File
The advantage of setting the environment variables in a command file
is that you can have a shorter path and the flexibility to use several
compilers. The disadvantage is that you must run the command file at
the start of each programming session.

34 Application Building Guide

If you set environment variables by running a command file, you must build
your applications in the same window in which you set the environment
variables. If you build your applications in another window, you will not be
using the same options you set in your first window.

When you install the DB2 AD Client, this statement is put into the
CONFIG.SYS file:

set LIB=%DB2PATH%\lib;%LIB%

The command files in this book assume that this statement is present. If you
edit the CONFIG.SYS file after installing the DB2 AD Client, make sure this
statement is not removed.

As well, these environment variables are automatically updated by DB2:
v PATH, to include the directory %DB2PATH%\bin

v LIBPATH, to include the directory %DB2PATH%\dll

For the Java environment variables updated by DB2, see “OS/2” on page 67.

In addition, if you are using one of the programming languages shown below,
the CONFIG.SYS file must have the appropriate statement:

C/C++ set INCLUDE=%DB2PATH%\include;%INCLUDE%

FORTAN
set FINCLUDE=%DB2PATH%\include;%FINCLUDE%

IBM COBOL
set SYSLIB=%SYSLIB%;%DB2PATH%\include\cobol_a

Micro Focus COBOL
set COBCPY=%DB2PATH%\include\cobol_mf;%COBCPY%

On OS/2, no DB2 environment variables should be defined in CONFIG.SYS
apart from DB2PATH and DB2INSTPROF. All DB2 variables should be
defined in the DB2 Instance Profile Registry either at the global level, the
instance level, or the instance node level (Parallel Edition). Use the db2set.exe
command to set, modify, and list the variables.

Note: DB2INSTANCE is not required if you set the DB2INSTDEF registry
variable. It defines the default instance name which is used if
DB2INSTANCE is not set.

Chapter 2. Setup 35

Setting the UNIX Environment

You need to set environment variables so you can access the database instance
that was created when the database manager was installed. The DB2 for UNIX
Quick Beginnings book provides general information about setting environment
variables. This section provides specific instructions on setting environment
variables to access a database instance.

Each database manager instance has two files, db2profile and db2cshrc,
which contain scripts to set the environment variables for that instance.
Depending on the shell you are using, run the script by entering:

For bash or Korn shell:
. $HOME/sqllib/db2profile

For C shell:
source $HOME/sqllib/db2cshrc

where $HOME is the home directory of the instance owner.

For your convenience, you may want to include this command in your
.profile or .login file, so that it runs automatically when you log on.

Depending on the UNIX platform you are on, the following environment
variables are automatically updated during DB2 instance creation:

AIX:

v PATH, to include several DB2 directories including sqllib/bin

v LIBPATH, to include the directory sqllib/lib

HP-UX:

v PATH, to include several DB2 directories including sqllib/bin

v SHLIB_PATH, to include the directory sqllib/lib

Linux, PTX, and Solaris:

v PATH, to include several DB2 directories including sqllib/bin

v LD_LIBRARY_PATH, to include the directory sqllib/lib

Silicon Graphics IRIX:

v PATH, to include several DB2 directories including sqllib/bin

v LD_LIBRARY_PATH, to include the directory sqllib/lib (needed
for o32 object type applications)

v LD_LIBRARYN32_PATH, to include the directory sqllib/lib32
(needed for n32 object type applications)

For the Java environment variables updated by DB2, see “Setting the
Environment” on page 64.

36 Application Building Guide

Setting the Windows 32-bit Operating Systems Environment

When you install the DB2 AD Client on Windows NT or Windows 2000, the
install program updates the configuration registry with the environment
variables INCLUDE, LIB, PATH, DB2PATH, and DB2INSTANCE. The default
instance is DB2.

For the Java environment variables updated by DB2, see “Windows 32-bit
Operating Systems” on page 72.

When you install the DB2 AD Client on Windows 98 or Windows 95, the
install program updates the autoexec.bat file.

You can override these environment variables to set the values for the
machine or the currently logged-on user. To override these values, use any of
the following:
v The Windows NT control panel
v The Windows 2000 control panel
v The Windows 95 or Windows 98 command window
v The Windows 95 or Windows 98 autoexec.bat file

Notes:

1. Exercise caution when changing these environment variables. Do not
change the DB2PATH environment variable.

2. When using the variable %DB2PATH% in a command, put the full path in
quotes, as in set LIB="%DB2PATH%\lib";%LIB%. In DB2 Version 7.1 the
default installation value for this variable is \Program Files\sqllib, which
contains a space, so not using quotes may cause an error.

These environment variables can be updated for running most programs on
Windows 32-bit operating systems. In addition, you must take the following
specific steps for running DB2 applications:
v When building C or C++ programs, you must ensure that the INCLUDE

environment variable contains %DB2PATH%\INCLUDE as the first directory.
For example, the Microsoft Visual C++ compiler environment setup file,
Vc\bin\vcvars32.bat, has the following command:

set INCLUDE=%MSVCDir%\INCLUDE;%MSVCDir%\...\ATL\INCLUDE;%INCLUDE%

To use this file with DB2, first move %INCLUDE%, which sets the
%DB2PATH%\INCLUDE path, from the end of the list to the beginning, as
follows:

set INCLUDE=%INCLUDE%;%MSVCDir%\INCLUDE;%MSVCDir%\...\ATL\INCLUDE;

v When building Micro Focus COBOL programs, set the COBCPY environment
variable to point to %DB2PATH%\INCLUDE\cobol_mf.

Chapter 2. Setup 37

v When building IBM COBOL programs, set the SYSLIB environment variable
to point to %DB2PATH%\INCLUDE\cobol_a.

v Ensure the LIB environment variable points to %DB2PATH%\lib by using:
set LIB="%DB2PATH%\lib";%LIB%

v Ensure that the DB2COMM environment variable is set at the server of a
remote database.

v Ensure that the security service has started at the server for SERVER
authentication, and at the client, depending on the level of CLIENT
authentication. To start the security service, use the
NET START DB2NTSECSERVER command.

Notes:

1. All DB2 environment variables can be defined in the user’s environment
or set up as registry variables. See the Administration Guide for information
on registry variables. See the Command Reference for information on the
db2set command.

2. DB2INSTANCE should only be defined at the user environment level. It is
not required if you make use of the DB2INSTDEF registry variable which
defines the default instance name to use if DB2INSTANCE is not set.

3. The database manager on a Windows NT or a Windows 2000 environment
is implemented as a Windows NT service or Windows 2000 service, and
hence does not return errors or warnings if the service is started
successfully, though other problems may have occurred. This means that
when you run the db2start or the NET START command, no warnings will
be returned if any communication subsystem failed to start. Therefore, the
user should always examine the Windows NT or Windows 2000 event
logs, or the DB2DIAG.LOG, for any errors that may have occurred during the
running of these commands.

Enabling Communications on the Server

This section explains how to connect to DB2 Universal Database servers.

Before you begin installing, cataloging, and binding the sample database, you
should ensure that the server is operational and configured to support the
protocol being cataloged. Do the following on the server:
1. Ensure that the db2comm environment variable is set. For example, if

TCP/IP is being used, enter:
db2set DB2COMM=tcpip

and ensure that the protocol for TCP/IP support is configured.

Refer to your platform’s Quick Beginnings book for instructions on adding
the TCP/IP settings to the Services file.

38 Application Building Guide

2. Start the database instance by entering:
db2start

The binding of the utilities to the sample database must be done from the
client. For more information, see “Binding” on page 42.

Windows NT and Windows 2000
In a production system for DB2 for Windows NT or DB2 for Windows 2000,
you have to start the database instance as a service. The steps are as follows:
v If using communications protocols, ensure that the db2comm environment

variable is set in the System Environment Variables section of the Windows
NT or Windows 2000 control panel.

v Start the security service. This can be done automatically (see the note
below), or you can start this service manually using the following
command:

NET START DB2NTSECSERVER

v Start the instance by entering:
db2start

Starting the Security Service automatically. Normally the only time you
would want to set the security service to start automatically is if the
workstation is acting as a DB2 client connecting to a server that is configured
for Client Authentication. To have the security service start automatically, do
the following:

Windows NT

1. Click on the ″Start″ button.
2. Click on ″Settings″.
3. Click on ″Control Panel″.
4. In the Control Panel, click on ″Services″.
5. In the Services window, highlight ″DB2 Security Server″.
6. If it does not have the settings ″Started″ and ″Automatic″ listed,

click on ″Startup″.
7. Click on ″Automatic″.
8. Click on ″OK″.
9. Reboot your machine to have the settings take effect.

Windows 2000

1. Click on the ″Start″ button.
2. Click on ″Settings″.
3. Click on ″Control Panel″.
4. Click on ″Administrative Tools″.

Chapter 2. Setup 39

5. Click on ″Services″.
6. In the Services window, highlight ″DB2 Security Server″.
7. If it does not have the settings ″Started″ and ″Automatic″ listed,

click on ″Action″ from the top menu.
8. Click on ″Properties″.
9. Make sure you are in the ″General″ tab.

10. Choose ″Automatic″ from the ’Startup Type’ drop-down menu.
11. Click on ″OK″.
12. Reboot your machine to have the settings take effect.

Creating, Cataloging, and Binding the Sample Database

To use the sample programs shipped with DB2, you need to create the sample
database on a server workstation. Refer to the SQL Reference for a listing of
the contents of the sample database.

If you will be using a remote client to access the sample database on the
server, you need to catalog the sample database on the client workstation.

Also, if you will be using a remote client to access the sample database on a
server that is running a different version of DB2, or running on a different
operating system, you need to bind the database utilities, including the DB2
CLI, to the sample database.

Creating
To create the sample database, you must have SYSADM authority. If you need
more information about SYSADM authority, refer to the Quick Beginnings book
for your operating system.

To create the database, do the following on the server:
1. Ensure that the location of db2sampl (the program that creates the sample

database) is in your path. The db2profile or db2cshrc file will put
db2sampl in your path, so it will remain there unless you change it.
v On UNIX servers, db2sampl is located in:

$HOME/sqllib/bin

where $HOME is the home directory of the DB2 instance owner.
v On OS/2 and Windows, db2sampl is located in:

%DB2PATH%\bin

where %DB2PATH% is where DB2 is installed.

40 Application Building Guide

2. Ensure that the DB2INSTANCE environment variable is set to the name of
the instance where you want to create the sample database. If it is not set,
you can set it with the following commands:
v On UNIX platforms:

you can do this for the bash or Korn shell by entering:
DB2INSTANCE=instance_name
export DB2INSTANCE

and for the C shell by entering:
setenv DB2INSTANCE instance_name

v On OS/2 and Windows, enter:
set DB2INSTANCE=instance_name

where instance_name is the name of the database instance.
3. Create the sample database by entering db2sampl followed by where you

want to create the sample database. On UNIX platforms, this is a path, and
would be entered as:

db2sampl path

On OS/2 and Windows, this is a drive, and would be entered as:
db2sampl drive

If you do not specify the path or drive, the installation program installs
the sample tables in the default path or drive specified by the
DFTDBPATH parameter in the database manager configuration file. If you
need information about the configuration file, refer to the Administration
Guide.

The authentication type for the database is the same as the instance in
which it is created. If you need more information about specifying
authentication when creating a database instance, refer to the Quick
Beginnings book.

Creating on Host or AS/400 Servers

If you want to run the sample programs against a Host server such as DB2 for
OS/390, or an AS/400 server, you need to create a database that contains the
sample tables described in the SQL Reference. You may want to refer to the
sample program, expsamp, which uses the STAFF and ORG tables to
demonstrate how APIs are used to import and export tables and table data to
and from a DB2 Connect database.

To create the database:
1. Create the sample database in a DB2 server instance using db2sampl.

Chapter 2. Setup 41

2. Connect to the sample database.
3. Export the sample tables to a file.
4. Connect to the DB2 Connect database.
5. Create the sample tables.
6. Import the sample tables.

If you need information about exporting and importing files, refer to the Data
Movement Utilities Guide and Reference. If you need information about
connecting to a database and creating tables, refer to the SQL Reference.

Cataloging
To access the sample database on the server from a remote client, you need to
catalog the sample database on the client workstation.

You do not need to catalog the sample database on the server workstation
because it was cataloged when you created it.

Cataloging updates the database directory on the client workstation with the
name of the database that the client application wants to access. When
processing client requests, the database manager uses the cataloged name to
find and connect to the database.

The Quick Beginnings book provides general information on cataloging
databases. This section provides specific instructions on cataloging the sample
database.

To catalog the sample database from the remote client workstation, enter:
db2 catalog database sample as sample at node nodename

where nodename is the name of the server node.

The Quick Beginnings book explains how to catalog nodes as part of setting up
communication protocols. You must also catalog the remote node before you
can connect to the database.

Binding
If you will be accessing the sample database on the server from a remote client
that is running a different version of DB2 or running on a different operating
system, you need to bind the database utilities, including the DB2 CLI, to the
sample database.

Binding creates the package that the database manager needs in order to
access the database when an application is executed. Binding can be done
explicitly by specifying the BIND command against the bind file created
during precompilation.

42 Application Building Guide

The Command Reference provides general information about binding the
database utilities. This section provides specific instructions to bind the
database utilities to the sample database.

You bind the database utilities differently depending on the platform of the
client workstation you are using.

On an OS/2 Client Workstation:

1. Connect to the sample database by entering:
db2 connect to sample user userid using password

where userid and password are the user ID and password of the instance
where the sample database is located.

The utilities will be automatically bound to the database by DB2 with this
command, so the user does not have to explicitly bind them.

2. Exit the Command Line Processor, and verify that the bind was successful
by checking the bind message file bind.msg.

On a UNIX Client Workstation:

1. Connect to the sample database by entering:
db2 connect to sample user userid using password

where userid and password are the user ID and password of the instance
where the sample database is located.

2. Bind the utilities to the database by entering:
db2 bind BNDPATH/@db2ubind.lst blocking all sqlerror continue \
messages bind.msg

db2 bind BNDPATH/@db2cli.lst blocking all sqlerror continue \
messages cli.msg

where BNDPATH is the path where the bind files are located, such as
$HOME/sqllib/bnd, where $HOME is the home directory of the DB2 instance
owner.

3. Verify that the bind was successful by checking the bind message files
bind.msg and cli.msg.

On a Client Workstation running a Windows 32-bit operating system:

1. From the Start Menu, select Programs.
2. From the Programs Menu, select IBM DB2.
3. From the IBM DB2 menu, select the DB2 Command Window.

The command window displays.
4. Connect to the sample database by entering:

Chapter 2. Setup 43

db2 connect to sample user userid using password

where userid and password are the user ID and password of the instance
where the sample database is located.

5. Bind the utilities to the database by entering:
db2 bind "%DB2PATH%\bnd\@db2ubind.lst" blocking all
sqlerror continue messages bind.msg

where %DB2PATH% is the path where DB2 is installed.
6. Exit the command window, and verify that the bind was successful by

checking the bind message file, bind.msg.

For all Platforms

If you created the sample database on a DRDA-compliant application server,
specify one of the following .lst files instead of db2ubind.lst :

ddcsmvs.lst
for DB2 for OS/390

ddcsvm.lst
for DB2 for VM

ddcsvse.lst
for DB2 for VSE

ddcs400.lst
for DB2 for AS/400

The Quick Beginnings book for your operating system provides general
information about binding the database utilities.

Where to Go Next

Once your environment is set up, you are ready to build your DB2
applications. The following chapters discuss the sample programs, and show
you how to compile, link, and run them. First read “Chapter 3. General
Information for Building DB2 Applications” on page 47, then the specific
chapter that follows for the applications you are building.

For programming with Java, see “Chapter 4. Building Java Applets and
Applications” on page 63.

For programming with SQL Procedures, see “Chapter 5. Building SQL
Procedures” on page 89.

For programming with DB2 APIs, DB2 CLI, and Embedded SQL, see the
’Building Applications’ chapter for your platform.

44 Application Building Guide

For further information, refer to the following books:
v The Application Development Guide for applications using embedded SQL,

JDBC, and SQLJ, and for user-defined functions (UDFs).
v The CLI Guide and Reference for applications using DB2 CLI or ODBC.
v The Administrative API Reference for DB2 API applications.

Chapter 2. Setup 45

46 Application Building Guide

Chapter 3. General Information for Building DB2
Applications

Build Files, Makefiles, and Error-checking
Utilities 48

Build Files 48
Makefiles 51
Error-checking Utilities 53

Java Applets and Applications 55
DB2 API Applications 55

DB2 Call Level Interface (CLI) Applications 56
Embedded SQL Applications 57
Stored Procedures 58
User-Defined Functions (UDFs) 60
Multi-threaded Applications 60
C++ Considerations for UDFs and Stored
Procedures 60

The information in this chapter applies to more than one operating system.
The majority of the topics apply to most DB2-supported platforms.

For the latest DB2 application development updates, visit the Web page at:
http://www.ibm.com/software/data/db2/udb/ad

General Points for Building and Running DB2 Programs

1. Application Environment:
v OS/2: if you set your environment variables by a command file rather

than in the CONFIG.SYS file, you must build your applications in the
same window.

v UNIX: you must build and run DB2 applications from a shell where
your environment variables are set. Depending on the shell you are
using, you can do this by running db2profile or db2cshrc.

v Windows 32-bit operating systems: you must build your applications in
a DB2 command window. Refer to “Chapter 2. Setup” on page 33 for
more information.

2. To build DB2 programs containing embedded SQL, or to run any DB2
programs, the database manager on the server must be started. To start the
database manager, you need SYSADM (system administration) authority.
Refer to Quick Beginnings for information on SYSADM authority.
Start the database manager (if it is not already running) by entering the
following command on the server:

db2start

3. When you are building applications for production, the DB2 runtime paths
that are built into the executables should be the install paths, and not the
paths of the local DB2 instance where you are developing your
applications. This book is designed to show you how to build applications
in a development environment, and therefore documents the instance

© Copyright IBM Corp. 1993, 2000 47

http://www.ibm.com/software/data/db2/udb/ad

copies of sqllib/include and sqllib/lib on UNIX, and
%DB2PATH%\include and %DB2PATH%\lib on OS/2 and Windows 32-bit
operating systems.

4. It is recommended that, before altering or building the sample programs,
you copy the samples of the language you will be using from
sqllib/samples on UNIX, or from %DB2PATH%\samples on OS/2 or
Windows 32-bit operating systems, to your own working directory. This
allows you to preserve the original samples in case you need to refer to
them in the future.

Build Files, Makefiles, and Error-checking Utilities

DB2 provides an array of building tools for your program development needs.
These tools make it easy to build the supplied sample programs, which
demonstrate the broad range of DB2 functionality. The tools also allow you to
build your own database programs. For each supported compiler, DB2
provides build files, makefiles, and error-checking utilities, which are made
available in the samples directory along with the sample programs. This
section explains how these tools can be used.

Build Files
Each of the following chapters uses files that contain compile and link
commands for building programs with the supported platform compilers.
These files are known as command files on OS/2, script files on UNIX, and
batch files on Windows 32-bit operating systems. We refer to them,
generically, as build files.

Build files are provided by DB2 for each language on supported platforms
where the types of programs they build are available, in the same directory as
the sample programs for each language. Table 16 lists the build files for all
languages on all supported platforms except for C++ on Windows 32-bit
operating systems. The filename extensions have been left off. For OS/2, the
extension is .cmd; for Windows 32-bit operating systems, the extension is .bat.
There is no extension for UNIX platforms.

For Windows 32-bit operating systems, there are two supported C++
compilers: Microsoft Visual C++ and IBM VisualAge C++. For these compilers,
respectively, an ″m″ or a ″v″ has been inserted after the ″bld″ for each build
file name, except for bldclisp, which becomes either bldmclis or bldvclis.
These build files are listed in Table 17 on page 49. The .bat extension has been
left off.

Table 16. DB2 Build Files

Build File Types of Programs Built

bldsqlj Java Embedded SQLJ applications.

48 Application Building Guide

Table 16. DB2 Build Files (continued)

Build File Types of Programs Built

bldsqljs Java Embedded SQLJ stored procedures.

bldcli DB2 CLI applications, with or without embedded SQL.

bldapi DB2 CLI applications, with or without embedded SQL, that
require linking in the utilapi utility file that contains DB2 APIs
for creating and dropping a database.

bldclisp DB2 CLI stored procedures (non-embedded SQL).

bldapp Application programs with or without embedded SQL.

bldsrv Embedded SQL stored procedures.

bldudf User-defined functions (UDFs).

bldmt Multi-threaded embedded SQL applications (only available for
C/C++ on supported UNIX platforms).

bldevm The event monitor sample program, evm (only available on AIX
and OS/2).

Table 17. C/C++ Build Files for Windows 32-bit operating systems

Build File Types of Programs Built

bldmcli Microsoft Visual C++ DB2 CLI applications, with or without
embedded SQL.

bldvcli VisualAge C++ DB2 CLI applications, with or without embedded
SQL.

bldmapi Microsoft Visual C++ DB2 CLI applications, with or without
embedded SQL, that require linking in the utilapi utility file that
contains DB2 APIs for creating and dropping a database.

bldvapi VisualAge C++ DB2 CLI applications, with or without embedded
SQL, that require linking in the utilapi utility file that contains
DB2 APIs for creating and dropping a database.

bldmclis Microsoft Visual C++ DB2 CLI stored procedures (non-embedded
SQL).

bldvclis VisualAge C++ DB2 CLI stored procedures (non-embedded SQL).

bldmapp Microsoft Visual C++ application programs with or without
embedded SQL.

bldvapp VisualAge C++ application programs with or without embedded
SQL.

bldmsrv Microsoft Visual C++ Embedded SQL stored procedures.

bldvsrv VisualAge C++ Embedded SQL stored procedures.

bldmudf Microsoft Visual C++ User-defined functions (UDFs).

Chapter 3. General Information for Building DB2 Applications 49

Table 17. C/C++ Build Files for Windows 32-bit operating systems (continued)

Build File Types of Programs Built

bldvudf VisualAge C++ User-defined functions (UDFs).

The build files are documented in this book because they demonstrate very
clearly the compile and link options that DB2 recommends for building
various kinds of programs with the supported compilers. There are generally
many other compile and link options available, and users are free to
experiment with them. See your compiler documentation for all the compile
and link options provided. Besides building the sample programs, developers
can also build their own programs with the build files. The sample programs
can be used as templates that can be modified by users to assist their
programming development.

Conveniently, the build files are designed to build a source file with any file
name allowed by the compiler. This is unlike the makefiles, where the
program names are hardcoded into the file. The build files use the $1 variable
on UNIX, or the %1 variable on OS/2 and Windows 32-bit operating systems,
to substitute internally for the program name. Other similarly named variables
substitute for other arguments that may be required. The build files allow for
quick and easy experimentation, as each one is suited to a specific kind of
program-building, such as DB2 APIs, DB2 CLI, embedded SQL, stored
procedures, or user-defined functions. Each type of build file is provided
wherever the specific kind of program it is designed for is supported by the
compiler.

The object and executable files produced by a build file are automatically
over-written each time a program is built, even if the source file is not
modified. This is unlike a makefile. It means a developer can rebuild an
existing program without having to delete previous object and executable
files, or modifying the source.

The build files contain a default setting for the sample database. If the user is
accessing another database, he or she can simply supply another parameter to
over-write the default. If they are using the other database consistently, they
may wish to hardcode this database name, replacing sample, within the build
file itself.

The build files used for embedded SQL programs call another file, embprep,
that contains the precompile and bind steps for embedded SQL programs.
These steps may require the optional parameters user ID and password,
depending on where the embedded SQL program is being built.

50 Application Building Guide

If a developer is building the program on a server instance where the
database is located, then the user ID and password will be common to both,
and therefore need not be provided. On the other hand, if a developer is in a
different instance, such as on a client machine accessing a server database
remotely, then these parameters would have to be provided. The embprep file
is also used by the makefile. See “Makefiles”, below, for more on this file.

Finally, the build files can be modified by the developer for his or her
convenience. Besides changing the database name in the build file (explained
above) the developer can easily hardcode other parameters within the file,
change compile and link options, or change the default DB2 instance path.
The simple, straightforward, and specific nature of the build files makes
tailoring them to your needs an easy task.

Makefiles
Each samples directory for a supported compiler includes a makefile for
building the supplied sample programs. The makefile builds most of the DB2
sample programs shipped for the compiler. It uses variables for many of the
common elements used for each sample program compilation. The syntax for
the makefiles and the output from their commands differ in some important
respects from that of the build files supplied. The make commands are simple
and powerful to use:

make <program_name>
Compiles and links the program specified.

make all
Compiles and links all programs listed in the makefile.

make clean
Deletes all intermediate files, such as object files, for all programs
listed in the makefile.

make cleanall
Deletes all intermediate and executable files for all programs listed in
the makefile.

Unlike the build files, the makefiles will not over-write existing intermediate
and executable files for programs listed within it. This makes it faster, using
the make all command, to create executables for some of the files if other files
already have executables, as make all will just ignore these files. But it also
assumes the need for the make clean and make cleanall commands, to get rid
of existing object and executable files when they are not needed.

The makefiles can be used for program development. They are less convenient
to use then the build files, but if you want the power and convenience of the
make commands, this is a route to consider. To include a new program in an

Chapter 3. General Information for Building DB2 Applications 51

existing makefile, code in the syntax for the program entry, using as a
template a similar kind of existing sample program. Note that the syntax
differs for DB2 API, DB2 CLI, and embedded SQL programs, as well as for
stored procedures and UDFs.

Here is an example of how you can use the supplied makefiles. This makefile,
from the samples/cli directory on AIX, builds all the supplied DB2 CLI
samples on AIX with the IBM C compiler. This example demonstrates how to
build the stored procedure program, spserver, into a shared library that can
be called by the client application, spclient.

Before using the makefile, you may need to edit the following variables
contained in the file:

DB The database being used. As the default, set to sample.

UID The user ID being used. As the default, no value is set.

PWD The password for the UID user ID. As the default, no value is set.

On AIX, the DB2 CLI makefile defines the variables DB2PATH, CC, COPY, ERASE,
CFLAGS, and LIBS as follows:

Set DB2PATH to where DB2 will be accessed.
The default is the instance path.
DB2PATH=$(HOME)/sqllib

CC = cc
COPY = cp
ERASE = rm -f

The required compiler flags
CFLAGS= -I$(DB2PATH)/include

The required libraries
LIBS= -L$(DB2PATH)/lib -Wl,-rpath,$(DB2PATH)/lib -ldb2

The makefile uses these variables when it compiles the stored procedure,
spserver, and copies the shared library to the function subdirectory:
spserver : utilcli.o

$(CC) -o spserver spserver.c utilcli.o $(CFLAGS) $(LIBS) \
-H512 -T512 -bE:spserver.exp -e outlanguage
$(ERASE) $(DB2PATH)/function/spserver
$(COPY) spserver $(DB2PATH)/function/spserver

For embedded SQL programs, the makefile calls the embprep file, which
contains the precompile and bind steps for these embedded SQL programs.
Making this a separate file, which is called for each embedded SQL program,
saves repeating these steps within the body of the makefile itself. This file

52 Application Building Guide

uses the parameters for user ID, password, and database name to connect to
the database on the server. The makefile passes these values to embprep when
it calls it.

The database variable, DB, is hardcoded by default to the sample database, and
can be changed by the user if another database is used. The user ID and
password variables, UID and PWD, are not set to any value by default. These
optional parameters do not need to be used if the user is already working in
the same instance as the server database. However, if this is not the case, for
example, if the user is remotely connecting to the server from a client
machine, then he or she can modify the makefile by giving the appropriate
values to the UID and PWD variables, and they will be automatically passed to
the embprep precompile and bind file. The following is an example of the
embprep file being called by the Micro Focus COBOL makefile on Windows
NT to build the embedded SQL application, updat:
updat.cbl : updat.sqb

embprep updat $(DB) $(UID) $(PWD)
updat.obj : updat.cbl

$(CC) updat.cbl;
updat : updat.obj checkerr.obj

$(LINK) updat.obj checkerr.obj $(LIBS)

Error-checking Utilities
The DB2 AD Client provides several utility files. These files have functions for
error-checking and printing out error information. The exception to this is the
CLI utility file, utilapi.c, which calls the DB2 APIs to create and drop a
database. Utility files are provided for each language in the samples directory.
When used with an application program, the error-checking utility files
provide helpful error information, and make debugging a DB2 program much
easier. Most of the error-checking utilities use the DB2 APIs
GET SQLSTATE MESSAGE and GETERROR MESSAGE to obtain pertinent SQLSTATE
and SQLCA information related to problems encountered in program
execution. The DB2 CLI utility file, utilcli.c, does not use these DB2 APIs;
instead it uses equivalent DB2 CLI statements. With all the error-checking
utilities, descriptive error messages are printed out to allow the developer to
quickly understand the problem.

Some DB2 programs, such as stored procedures and user-defined functions,
do not need to use the utilities. They are also not necessary for Java because
the SQLException object will be thrown if an exception occurs.

Here are the error-checking utility files used by DB2-supported compilers for
the different programming languages:

checkerr.cbl
For COBOL programs

Chapter 3. General Information for Building DB2 Applications 53

utilcli.c
For CLI programs

utilapi.c
For C non-embedded SQL programs

utilemb.sqc
For C embedded SQL programs

utilapi.C
For C++ non-embedded SQL programs

utilemb.sqC
For C++ embedded SQL programs

In order to use the utility functions, the utility file must first be compiled, and
then its object file linked in during the creation of the target program’s
executable. Both the makefile and build files in the samples directories do this
for the programs that require the error-checking utilities.

The following example demonstrates how the error-checking utilities are used
in DB2 programs. The utilemb.h header file defines the EMB_SQL_CHECK macro
which is substituted for the functions SqlInfoPrint() and TransRollback():
#define EMB_SQL_CHECK(MSG_STR) \

if(SqlInfoPrint(MSG_STR, &sqlca, __LINE__, __FILE__) != 0) TransRollback();

SqlInfoPrint() checks the SQLCODE flag. It prints out any available
information related to the specific error indicated by this flag. It also points to
where the error occurred in the source code. TransRollback() allows the
utility file to safely rollback a transaction where an error has occurred. It
requires embedded SQL statements to connect to the database and execute a
rollback. The following is an example of how the C++ program cursor calls
the utility functions by using the macro, supplying the value
"DECLARE CURSOR" for the MSG_STR parameter of the SqlInfoPrint() function:
Cursor::Fetch () {

EXEC SQL DECLARE c1 CURSOR FOR
SELECT name, dept FROM staff WHERE job='Mgr'
FOR UPDATE OF job;

EMB_SQL_CHECK("DECLARE CURSOR") ;

The EMB_SQL_CHECK macro ensures that if the DECLARE statement fails, the
transaction will be safely rolled back, and an appropriate error message
printed out.

Developers are encouraged to use and build upon these error-checking
utilities when creating their own DB2 programs.

54 Application Building Guide

Java Applets and Applications

To build Java applets and applications, you follow the same steps on all
platforms, so there is one chapter for this information, “Chapter 4. Building
Java Applets and Applications” on page 63. There is specific set up
information needed for each platform and this is given in separate sections in
this chapter. This setup information is in addition to the DB2 setup
information given in “Chapter 2. Setup” on page 33.

The Java chapter explains how to build JDBC programs that use the JDBC
driver, and SQLJ programs that use embedded SQL for Java support in
addition to using the JDBC driver. The chapter explains how to build JDBC
and SQLJ applets, applications and stored procedures. It also explains how to
build Java user-defined functions, which cannot contain JDBC or SQLJ
statements.

The samples directory contains a Java makefile and build files for the SQLJ
programs. JDBC programs are easy to build on the command line so no build
files are supplied for these.

DB2 API Applications

The DB2 AD Client includes sample programs that call DB2 APIs. The
″Building Applications″ chapters later in the book explain how to build the
sample programs for the supported compilers using the DB2 application build
files supplied with the DB2 AD Client for that platform. You can also use the
makefiles that are supplied. Both the makefiles and the build files show you
the compiler options you can use. These options are defined for each
platform’s supported compilers in the appropriate chapter. You might need to
modify the options for your environment.

The following sample program is used in this book to demonstrate the steps
for building and running DB2 API applications using the supported
programming languages. The steps you follow may vary, depending on your
environment:

client demonstrates the use of the following APIs: SET CLIENT, and
QUERY CLIENT

For a detailed description of all DB2 API sample programs, see “Sample
Program Tables” on page 12.

The source files for DB2 API sample programs, where supported, are in the
appropriate programming language subdirectory of sqllib/samples (UNIX),
and %DB2PATH%\samples (OS/2 and Windows 32-bit operating systems).

Chapter 3. General Information for Building DB2 Applications 55

After you build the sample programs, they can be used as templates to create
your own applications. You can build the DB2 API programs using either the
makefile or the build files provided.

Note: When writing your API applications, all API input structures should be
memset to 0 so that structure elements that are not explicitly set are
initialized to 0. This is important when recompiling applications that
have been coded against downlevel versions of APIs. When
recompiling, the new definition of the structure is used but all the
elements may not be initialized. The call to memset will ensure that
they are initialized. Here is an example showing the input data
structure, pLoadInStruct, memset to 0:

memset(pLoadInStruct, 0, sizeof(pLoadInStruct));

DB2 Call Level Interface (CLI) Applications

The DB2 AD Client comes with sample programs that use DB2 Call Level
Interface (DB2 CLI) function calls. You can study the samples to learn how to
access DB2 databases using these function calls in your applications.

DB2 CLI applications that conform to ODBC can be ported to work under
ODBC, provided you recompile the application using an ODBC SDK (not
included with DB2), and provided an ODBC driver manager is available on
the application platform.

The sample programs, the build files, and a makefile, are contained in the
directory sqllib/samples/cli on UNIX, or %DB2PATH%\samples\cli on OS/2
and Windows 32-bit operating systems. You may need to modify the compiler
options in the build files and the makefile for your environment.

The following are the sample programs used in this book to demonstrate the
steps for building and running DB2 CLI applications (the steps you follow
may vary, depending on your environment):

tbinfo Demonstrates how to get and set information at a table level.

dbusemx
Demonstrates how to use a single database in conjunction with
embedded SQL.

dbmconn
Demonstrates how to connect to, and disconnect from, multiple
databases.

spclient
is the client program of a client/server example; the server program is
spserver.

56 Application Building Guide

spserver
is the server program of a client/server example; the client program is
spclient.

udfcli uses the functions created by the user-defined function program,
udfsrv.

For a more detailed description of all the DB2 CLI sample programs, see
Table 7 on page 22. The CLI Guide and Reference explains how the samples
using DB2 CLI work.

Embedded SQL Applications

Note: Embedded SQL for Java (SQLJ) is not discussed here, but is fully
discussed in “Chapter 4. Building Java Applets and Applications” on
page 63.

The DB2 AD Client includes sample programs that embed SQL statements.
The ″Building Applications″ chapters later in the book explain how to build
the sample programs for the supported compilers using build files supplied
with the DB2 AD Client for that platform. You can also use the makefiles that
are supplied. Both the makefiles and the build files show you the compiler
options you can use. These options are defined for each platform’s supported
compilers in the appropriate chapter. You might need to modify the options
for your environment.

When you run a build file to build a sample program containing embedded
SQL, the build file executes the following steps:
v Connects to a database.
v Precompiles your source file.
v Binds your bind file to the database.
v Disconnects from the database.
v Compiles and links your source file.

The following are the sample programs used in this book to demonstrate the
steps for building and running embedded SQL applications using the
supported programming languages. The steps you follow may vary,
depending on your environment:

updat uses static SQL to update a database.

The following samples are used to demonstrate embedded SQL client
applications for stored procedures and user-defined functions (UDFs) using C
and C++:

Chapter 3. General Information for Building DB2 Applications 57

spclient
is the client program that demonstrates calling stored procedures; the
server program is spserver.

spserver
is the server program demonstrating stored procedures; the client
program is spclient.

udfcli uses the ScalarUDF function in the user-defined function library,
udfsrv.

The following samples are used to demonstrate stored procedures and
user-defined functions (UDFs) using COBOL:

outcli is the client program that demonstrates calling stored procedures; the
server program is outsrv.

outsrv is the server program demonstrating stored procedures; the client
program is outcli.

calludf
calls the functions in the user-defined function library, udf.

For a more detailed description of these sample programs, see “Sample
Program Tables” on page 12.

The source files for these sample programs, where supported, are in the
appropriate programming language subdirectory of sqllib/samples on UNIX,
and %DB2PATH%\samples on OS/2 and Windows 32-bit operating systems.

After you build the sample programs, they can be used as templates to create
your own applications. This can be done by modifying the sample programs
with your own SQL statements. You can build your programs using either the
makefile or the build files provided.

“Sample Programs” on page 12 lists all of the sample programs. The
Application Development Guide explains how the samples containing embedded
SQL work.

Stored Procedures

Stored procedures are built and stored on the server. They can be remotely
accessed by client applications. The stored procedure functions then perform
processing locally on the server database, and send back the results to the
client. This reduces network traffic and improves overall performance.

A stored procedure can be run as fenced or unfenced. An unfenced stored
procedure runs in the same address space as the database manager and

58 Application Building Guide

results in increased performance when compared to a fenced stored
procedure, which runs in an address space isolated from the database
manager. With unfenced stored procedures there is a danger that user code
could damage the database control structures. Therefore, you should only run
unfenced stored procedures when you need to maximize the performance
benefits. Ensure these programs are thoroughly tested before running them as
unfenced. Refer to the Application Development Guide for more information.

The stored procedures demonstrated in this book are stored on the server in
the path sqllib/function. For DB2DARI parameter style stored procedures
where the invoked procedure matches the shared library name, this location
indicates that the stored procedure is fenced. If you want this type of stored
procedure to be unfenced, you must move it to the sqllib/function/unfenced
directory. For all other types of DB2 stored procedures, you indicate whether
it is fenced or unfenced with the CREATE FUNCTION statement in the
calling program. For a full discussion on creating and using the different
types of DB2 stored procedures, please see the ″Stored Procedures″ chapter in
the Application Development Guide.

The following sample program is used to demonstrate the steps for building
and storing a stored procedure library on the server using SQL Procedures:

spserver.db2
is a CLP script containing SQL Procedures used to create a shared
library on the server. It can be called by the CLP call command, or
by the spclient application in the C, C++, and CLI directories.

The following sample program is used to demonstrate the steps for building
and storing a stored procedure library on the server using C and C++:

spserver
is the server program of a client/server example; the client program is
spclient.

The following sample program is used to demonstrate the steps for building
and storing a stored procedure library on the server using Java:

Spserver
is the server program of a client/server example; the client program is
Spclient.

The following sample program is used to demonstrate the steps for building
and storing a stored procedure library on the server using COBOL:

outsrv is the server program of a client/server example; the client program is
outcli.

Chapter 3. General Information for Building DB2 Applications 59

User-Defined Functions (UDFs)

User-defined functions allow you to write your own extensions of SQL for
your own requirements. Like stored procedures, user-defined functions are
stored on the server to be accessed by client applications. UDFs do not
contain embedded SQL statements.

The following sample programs are used in this book to demonstrate the
steps for building and storing a UDF library on the server:

udfsrv creates a library of user-defined functions (UDFs). It is available for C
and C++ only. The client application, udfcli, calls these functions.

udf creates a library of user-defined functions (UDFs). It is available for
COBOL only. The client application, calludf, calls these functions.

UDFsrv creates a library of user-defined functions (UDFs). It is available for
Java only. UDFcli, and UDFclie are the JDBC and SQLJ client
applications, respectively, that call these functions.

Multi-threaded Applications

DB2 supports C and C++ multi-threaded applications on supported UNIX
platforms. These applications allow the user to have several simultaneous
processes operating several simultaneous threads of execution. This allows the
handling of asynchronous events, and the creating of event-driven
applications without resorting to polling schemes. The following sample
program is used to demonstrate building a DB2 multi-threaded application:

thdsrver
demonstrates thread creation and management.

C++ Considerations for UDFs and Stored Procedures

Function names can be ’overloaded’ in C++. Two functions with the same
name can coexist if they have different arguments, as in:

int func(int i)

and
int func(char c)

C++ compilers ’type-decorate’ or ’mangle’ function names by default. This
means that argument type names are appended to their function names to
resolve them, as in func__Fi and func__Fc for the two earlier examples. The
mangled names will be different on each platform, so code that explicitly uses
a mangled name is not portable.

60 Application Building Guide

On OS/2 and Windows 32-bit operating systems, the type-decorated function
name can be determined from the .obj (object) file.

With the VisualAge C++ compiler on OS/2 and Windows, you can use the
cppfilt command to determine the type-decorated function name from the
.obj (object) file, as follows:

cppfilt -b /p myprog.obj

where myprog.obj is your program object file.

With the Microsoft Visual C++ compiler on Windows, you can use the
dumpbin command to determine the type-decorated function name from the
.obj (object) file, as follows:

dumpbin /symbols myprog.obj

where myprog.obj is your program object file.

On UNIX platforms, the type-decorated function name can be determined
from the .o (object) file, or from the shared library, using the nm command.
This command can produce considerable output, so we suggest you pipe the
output through grep to look for the right line, as follows:

nm myprog.o | grep myfunc

where myprog.o is your program object file, and myfunc is the function in the
program source file.

The output produced by all of these commands includes a line with the
mangled function name. On UNIX, for example, this line is similar to the
following:

myfunc__FPlT1PsT3PcN35| 3792|unamex| | ...

Once you have obtained the mangled function name from one of the above
commands, you can use it in the appropriate command. We demonstrate this
below using the mangled function name obtained from the UNIX example
above. A mangled function name obtained on OS/2 or Windows would be
used the same way.

When registering a UDF with CREATE FUNCTION, the EXTERNAL NAME
clause must specify the mangled function name:

CREATE FUNCTION myfunco(...) RETURNS...
...
EXTERNAL NAME '/whatever/path/myprog!myfunc__FPlT1PsT3PcN35'
...

Likewise, when calling a stored procedure, the CALL function must also specify
the mangled function name:

Chapter 3. General Information for Building DB2 Applications 61

CALL 'myprog!myfunc__FPlT1PsT3PcN35' (...)

If your stored procedure or UDF library does not contain overloaded C++
function names, you have the option of using extern "C" to force the
compiler to not type-decorate function names. (Note that you can always
overload the SQL function names given to UDFs, since DB2 resolves what
library function to call based on the name and the parameters it takes.)

In this example, the UDFs fold and findvwl are not type-decorated by the
compiler, and should be registered in the CREATE FUNCTION statement
using their plain names. Similarly, if a C++ stored procedure is coded with
extern "C", its undecorated function name would be used in the CALL
statement.

#include <string.h>
#include <stdlib.h>
#include "sqludf.h"

/*---*/
/* function fold: output = input string is folded at point indicated */
/* by the second argument. */
/* inputs: CLOB, input string */
/* LONG position to fold on */
/* output: CLOB folded string */
/*---*/
extern "C" void fold(

SQLUDF_CLOB *in1, /* input CLOB to fold */
...
...

}
/* end of UDF: fold */

/*---*/
/* function find_vowel: */
/* returns the position of the first vowel. */
/* returns error if no vowel. */
/* defined as NOT NULL CALL */
/* inputs: VARCHAR(500) */
/* output: INTEGER */
/*---*/
extern "C" void findvwl(

SQLUDF_VARCHAR *in, /* input smallint */
...
...

}
/* end of UDF: findvwl */

62 Application Building Guide

Chapter 4. Building Java Applets and Applications

Setting the Environment 64
AIX 64
HP-UX 65
Linux 66
OS/2 67
PTX 68
Silicon Graphics IRIX 69
Solaris 71
Windows 32-bit Operating Systems . . . 72

Java Sample Programs 74
JDBC Programs 75

Applets 75
Applications 75

Client Applications for Stored
Procedures 76

Client Applications for User-Defined
Functions 76

Stored Procedures 77
SQLJ Programs 77

Applets 80
Applications 81

Client Programs for Stored Procedures 82
Client Programs for User-Defined
Functions 82

Stored Procedures 82
User-Defined Functions (UDFs) 86
General Points for DB2 Java Applets 86

You can develop Java programs to access DB2 databases with the appropriate
Java Development Kit (JDK) for your platform. The JDK includes Java
Database Connectivity (JDBC), a dynamic SQL API for Java.

DB2 JDBC support is provided as part of the Java Enablement option on DB2
clients and servers. With this support, you can build and run JDBC
applications and applets. These contain dynamic SQL only, and use a Java call
interface to pass SQL statements to DB2.

DB2 Java embedded SQL (SQLJ) support is provided as part of the DB2 AD
Client. With DB2 SQLJ support, in addition to DB2 JDBC support, you can
build and run SQLJ applets and applications. These contain static SQL and
use embedded SQL statements that are bound to a DB2 database.

The SQLJ support provided by the DB2 AD Client includes:
v The DB2 SQLJ translator, sqlj, which replaces embedded SQL statements in

the SQLJ program with Java source statements, and generates a serialized
profile which contains information about the SQL operations found in the
SQLJ program.

v The DB2 SQLJ profile customizer, db2profc, which precompiles the SQL
statements stored in the serialized profile, customizes them into runtime
function calls, and generates a package in the DB2 database. For more
information on the db2profc command, see the Command Reference.

v The DB2 SQLJ profile printer, db2profp, which prints the contents of a DB2
customized version of a profile in plain text.

© Copyright IBM Corp. 1993, 2000 63

To run DB2 Java applications, you must install and invoke a Java Virtual
Machine (JVM) that provides native threads support. To execute a Java
application using native threads, you can use the -native option in your
command. For example, to run the Java sample application, App.class, you
can use the following command:

java -native App

You may be able to specify native threads as the default thread support for
some Java Virtual Machines. The information in this chapter assumes native
threads support is the default. Please refer to your JVM documentation for
instructions on making native threads the default on your system.

To run DB2 Java applets, you may invoke a Java Virtual Machine that
provides either native threads or green threads support.

For more information on DB2 programming in Java, refer to the
″Programming in Java″ chapter in the Application Development Guide.

For the latest, updated DB2 Java information, visit the Web Page at:
http://www.ibm.com/software/data/db2/java

Setting the Environment

AIX
To build Java applications on AIX with DB2 JDBC support, you need to install
and configure the following on your development machine:
1. One of the following:

v The Java Development Kit (JDK) Version 1.1.8 and Java Runtime
Environment (JRE) Version 1.1.8 for AIX from IBM. These are installed
with DB2. (Refer to http://www.ibm.com/software/data/db2/java.)

v The Java Development Kit (JDK) Version 1.2.2 and Java Runtime
Environment (JRE) Version 1.2.2 for AIX from IBM. (Refer to
http://www.ibm.com/software/data/db2/java.)

2. DB2 Java Enablement, provided on DB2 Universal Database Version 7.1 for
AIX clients and servers.

The JDBC 1.22 driver is still the default driver on all operating systems,
including AIX. To take advantage of the new features of JDBC 2.0, you must
install both the JDBC 2.0 driver and JDK 1.2 support for your platform. To
install the JDBC 2.0 driver for AIX, enter the usejdbc2 command from the
sqllib/java12 directory. This command performs the following tasks:
v Creates an sqllib/java11 directory for the 1.22 driver files
v Backs up the JDBC 1.22 driver files into the sqllib/java11 directory

64 Application Building Guide

http://www.ibm.com/software/data/db2/java
http://www.ibm.com/software/data/db2/java
http://www.ibm.com/software/data/db2/java

v Copies the JDBC 2.0 driver files from the sqllib/java12 directory into the
appropriate directories

To switch back to the JDBC 1.22 driver, execute the usejdbc1 command from
the sqllib/java12 directory.

To run DB2 Java stored procedures or UDFs, you need to update the DB2
database manager configuration on the server to include the path where the
JDK is installed on that machine. You can do this by entering the following on
the server command line:

db2 update dbm cfg using JDK11_PATH /home/db2inst/jdk11

where /home/db2inst/jdk11 is the path where the JDK is installed.

You can check the DB2 database manager configuration to verify the correct
value for the JDK11_PATH field by entering the following command on the
server:

db2 get dbm cfg

You may want to redirect the output to a file for easier viewing. The
JDK11_PATH field appears near the beginning of the output. For more
information on these commands, see the Command Reference.

To run JDBC and SQLJ programs on AIX with DB2 JDBC support, commands
to update the AIX Java environment are included in the database manager
files db2profile and db2cshrc. When a DB2 instance is created, .profile
and/or .cshrc are modified so that CLASSPATH includes:
v ″.″ (the current directory)
v the file sqllib/java/db2java.zip

To build SQLJ programs, CLASSPATH is also updated to include the file:
sqllib/java/sqlj.zip

To run SQLJ programs, CLASSPATH is also updated to include the file:
sqllib/java/runtime.zip

HP-UX
To build Java applications on HP-UX with DB2 JDBC support, you need to
install and configure the following on your development machine:
1. The HP-UX Developer’s Kit for Java Release 1.1.8 or later from

Hewlett-Packard (refer to http://www.ibm.com/software/data/db2/java).
2. DB2 Java Enablement, provided on DB2 Universal Database Version 7.1 for

HP-UX clients and servers.

Chapter 4. Building Java Applets and Applications 65

http://www.ibm.com/software/data/db2/java

To run DB2 Java stored procedures or UDFs, you also need to update the DB2
database manager configuration on the server to include the path where the
JDK is installed on that machine. You can do this by entering the following on
the server command line:

db2 update dbm cfg using JDK11_PATH /home/db2inst/jdk11

where /home/db2inst/jdk11 is the path where the JDK is installed.

You can check the DB2 database manager configuration to verify the correct
value for the JDK11_PATH field by entering the following command on the
server:

db2 get dbm cfg

You may want to redirect the output to a file for easier viewing. The
JDK11_PATH field appears near the beginning of the output. For more
information on these commands, see the Command Reference.

To run JDBC and SQLJ programs on HP-UX with DB2 JDBC support,
commands to update the HP-UX Java environment are included in the
database manager files db2profile and db2cshrc. When a DB2 instance is
created, .profile and/or .cshrc are modified so that:
1. THREADS_FLAG is set to ″native″.
2. CLASSPATH includes:

v ″.″ (the current directory)
v the file sqllib/java/db2java.zip

To build SQLJ programs, CLASSPATH is also updated to include the file:
sqllib/java/sqlj.zip

To run SQLJ programs, CLASSPATH is also updated to include the file:
sqllib/java/runtime.zip

Linux
To build Java applications on Linux with DB2 JDBC support, you need to
install and configure the following on your development machine:
1. IBM Developer kit and Runtime Environment for Linux, Version 1.1.8. (see

http://www.ibm.com/software/data/db2/java).
2. DB2 Java Enablement, provided on DB2 Universal Database Version 7.1 for

Linux clients and servers.

To run DB2 Java stored procedures or UDFs, you also need to update the DB2
database manager configuration on the server to include the path where the
JDK is installed on that machine. You can do this by entering the following on
the server command line:

66 Application Building Guide

http://www.ibm.com/software/data/db2/java

db2 update dbm cfg using JDK11_PATH /usr/local/jdk118

where /usr/local/jdk118 is the path where the JDK is installed.

You can check the DB2 database manager configuration to verify the correct
value for the JDK11_PATH field by entering the following command on the
server:

db2 get dbm cfg

You may want to redirect the output to a file for easier viewing. The
JDK11_PATH field appears near the beginning of the output. For more
information on these commands, see the Command Reference.

Note: On Linux, the Java Virtual Machine implementation does not work well
in programs that run in a ″setuid″ environment. The shared library that
contains the Java interpreter, libjava.so, may fail to load. As a
workaround, you can create a symbolic link to the JVM shared library
in /usr/lib, with a command similar to the following (depending on
where Java is installed on your machine):

ln -s /usr/local/jdk118/lib/linux/native_threads/libjava.so /usr/lib

For more information on this and other workarounds available, please
visit:

http://www.ibm.com/software/data/db2/java/faq.html

To run JDBC and SQLJ programs on Linux with DB2 JDBC support,
commands to update your Linux Java environment are included in the
database manager files db2profile and db2cshrc. When a DB2 instance is
created, .bashrc, .profile, and/or .cshrc are modified so that:
1. THREADS_FLAG is set to ″native″.
2. CLASSPATH includes:

v ″.″ (the current directory)
v the file sqllib/java/db2java.zip

To build SQLJ programs, CLASSPATH is also updated to include the file:
sqllib/java/sqlj.zip

To run SQLJ programs, CLASSPATH is also updated to include the file:
sqllib/java/runtime.zip

OS/2
To build Java applications on OS/2 with DB2 JDBC support, you need to
install and configure the following on your development machine:

Chapter 4. Building Java Applets and Applications 67

http://www.ibm.com/software/data/db2/java/faq.html

1. The Java Development Kit (JDK) Version 1.1.8 and Java Runtime
Environment (JRE) Version 1.1.8 for OS/2 from IBM. These are shipped
with DB2. (Refer to http://www.ibm.com/software/data/db2/java.)

2. DB2 Java Enablement, provided on DB2 Universal Database Version 7.1 for
OS/2 clients and servers.

The JDK must be installed in an HPFS drive to allow long filenames with
extensions greater than three characters, such as .java. Your Java working
directory must also be on an HPFS drive. If you will be running Java stored
procedures or UDFs on an OS/2 server, DB2 must be installed on an HPFS
drive on the server in order to allow the stored procedure or UDF .class files
to be placed in the %DB2PATH%\function directory.

To run DB2 Java stored procedures or UDFs, you need to update the DB2
database manager configuration on the server to include the path where the
JDK is installed on that machine. You can do this by entering the following on
the server command line:

db2 update dbm cfg using JDK11_PATH c:\jdk11

where c:\jdk11 is the path where the JDK is installed.

You can check the DB2 database manager configuration to verify the correct
value for the JDK11_PATH field by entering the following command on the
server:

db2 get dbm cfg

You may want to redirect the output to a file for easier viewing. The
JDK11_PATH field appears near the beginning of the output. For more
information on these commands, see the Command Reference.

To run JDBC and SQLJ programs on OS/2 with DB2 JDBC support, the
CLASSPATH environment variable is automatically updated when DB2 is
installed to include:
v ″.″ (the current directory)
v the file %DB2PATH%\java\db2java.zip

To build SQLJ programs, CLASSPATH is also updated to include the file:
%DB2PATH%\java\sqlj.zip

To run SQLJ programs, CLASSPATH is also updated to include the file:
%DB2PATH%\java\runtime.zip

PTX
To build Java applications on PTX with DB2 JDBC support, you need to install
and configure the following on your development machine:

68 Application Building Guide

http://www.ibm.com/software/data/db2/java

1. ptx/JSE Version 3.0, which is equivalent to Sun Microsystem’s JDK 1.2
(refer to http://www.ibm.com/software/data/db2/java).

2. DB2 Java Enablement, provided on DB2 Universal Database Version 7.1 for
NUMA-Q.

To run DB2 Java stored procedures or UDFs, you also need to update the DB2
database manager configuration on the server to include the path where the
ptx/JSE is installed on that machine. You can do this by entering the
following on the server command line:

db2 update dbm cfg using JDK11_PATH /opt/jse3.0

where /opt/jse3.0 is the path where the ptx/JSE is installed.

You can check the DB2 database manager configuration to verify the correct
value for the JDK11_PATH field by entering the following command on the
server:

db2 get dbm cfg

You may want to redirect the output to a file for easier viewing. The
JDK11_PATH field appears near the beginning of the output. For more
information on these commands, see the Command Reference.

To run JDBC and SQLJ programs on PTX with DB2 JDBC support, commands
to update the PTX Java environment are included in the database manager
files db2profile and db2cshrc. When a DB2 instance is created, .profile
and/or .cshrc are modified so that CLASSPATH includes:
v ″.″ (the current directory)
v the file sqllib/java/db2java.zip

To build SQLJ programs, CLASSPATH is also updated to include the file:
sqllib/java/sqlj.zip

To run SQLJ programs, CLASSPATH is also updated to include the file:
sqllib/java/runtime.zip

Silicon Graphics IRIX
To build Java applications on Silicon Graphics IRIX with DB2 JDBC support,
you need to install and configure the following on your development
machine:
1. Java2 Software Development Kit Version 1.2.1 (JDK 1.2.1) from Silicon

Graphics, Inc. (refer to http://www.ibm.com/software/data/db2/java).
2. DB2 Java Enablement, provided on DB2 Universal Database Version 7.1 for

Silicon Graphics IRIX clients.

Chapter 4. Building Java Applets and Applications 69

http://www.ibm.com/software/data/db2/java
http://www.ibm.com/software/data/db2/java

Note: SQLJ applications on Silicon Graphics IRIX can only be built with the
o32 object type. To change the Java default object type to o32, set the
environment variable SGI_ABI with the Korn shell using this command:

export SGI_ABI=-o32

and with the C shell using this command:
setenv SGI_ABI -o32

DB2 for Silicon Graphics IRIX is client-only. To run DB2 applications and
applets, and to build DB2 embedded SQL applications and applets, you need
to access a DB2 database on a server machine from your client machine. The
server machine will be running a different operating system. See DB2 for
UNIX Quick Beginnings for information on configuring client-to-server
communication.

Also, since you will be accessing a database on the server from a remote client
that is running on a different operating system, you need to bind the database
utilities, including the DB2 CLI, to the database. See “Binding” on page 42 for
more information.

To run DB2 Java stored procedures or UDFs, you also need to update the DB2
database manager configuration on the server to include the path where the
JDK is installed on that machine. You can do this by entering the following on
the server command line:

db2 update dbm cfg using JDK11_PATH /home/db2inst/jdk11

where /home/db2inst/jdk11 is the path where the JDK is installed.

You can check the DB2 database manager configuration to verify the correct
value for the JDK11_PATH field by entering the following command on the
server:

db2 get dbm cfg

You may want to redirect the output to a file for easier viewing. The
JDK11_PATH field appears near the beginning of the output. For more
information on these commands, see the Command Reference.

To run JDBC and SQLJ programs on Silicon Graphics IRIX with DB2 JDBC
support, commands to update the Silicon Graphics IRIX Java environment are
included in the database manager files db2profile and db2cshrc. When a DB2
instance is created, .profile and/or .cshrc are modified so that CLASSPATH
includes:
v ″.″ (the current directory)
v the file sqllib/java/db2java.zip

70 Application Building Guide

To build SQLJ programs, CLASSPATH is also updated to include the file:
sqllib/java/sqlj.zip

To run SQLJ programs, CLASSPATH is also updated to include the file:
sqllib/java/runtime.zip

Note: On Silicon Graphics IRIX, the connection context close() method may
cause a trap. As a work-around, leave the connection context to be
closed automatically during garbage collection.

Solaris
To build Java applications in the Solaris operating environment with DB2
JDBC support, you need to install and configure the following on your
development machine:
1. The Java Development Kit (JDK) Version 1.1.8 or 1.2 for Solaris from Sun

Microsystems (refer to http://www.ibm.com/software/data/db2/java).
2. DB2 Java Enablement, provided on DB2 Universal Database Version 7.1 for

Solaris clients and servers.

The JDBC 1.22 driver is still the default driver on all operating systems,
including Solaris. To take advantage of the new features of JDBC 2.0, you
must install both the JDBC 2.0 driver and JDK 1.2 support for your platform.
To install the JDBC 2.0 driver for Solaris, enter the usejdbc2 command from
the sqllib/java12 directory. This command performs the following tasks:
v Creates an sqllib/java11 directory for the 1.22 driver files
v Backs up the JDBC 1.22 driver files into the sqllib/java11 directory
v Copies the JDBC 2.0 driver files from the sqllib/java12 directory into the

appropriate directories

To switch back to the JDBC 1.22 driver, execute the usejdbc1 command from
the sqllib/java12 directory.

To run DB2 Java stored procedures or UDFs, you need to update the DB2
database manager configuration on the server to include the path where the
JDK is installed on that machine. You can do this by entering the following on
the server command line:

db2 update dbm cfg using JDK11_PATH /usr/java

where /usr/java is the path where the JDK is installed.

You can check the DB2 database manager configuration to verify the correct
value for the JDK11_PATH field by entering the following command on the
server:

db2 get dbm cfg

Chapter 4. Building Java Applets and Applications 71

http://www.ibm.com/software/data/db2/java

You may want to redirect the output to a file for easier viewing. The
JDK11_PATH field appears near the beginning of the output. For more
information on these commands, see the Command Reference.

Note: In the Solaris operating environment, some Java Virtual Machine
implementations do not work well in programs that run in a ″setuid″
environment. The shared library that contains the Java interpreter,
libjava.so, may fail to load. As a workaround, you can create symbolic
links for all needed JVM shared libraries in /usr/lib, with a command
similar to the following (and depending on where Java is installed on
your machine):

ln -s /usr/java/lib/*.so /usr/lib

For more information on this and other workarounds available, please
visit:

http://www.ibm.com/software/data/db2/java/faq.html

To run JDBC and SQLJ programs in the Solaris operating environment with
DB2 JDBC support, commands to update the Solaris Java environment are
included in the database manager files db2profile and db2cshrc. When a DB2
instance is created, .profile and/or .cshrc are modified so that:
1. THREADS_FLAG is set to ″native″.
2. CLASSPATH includes:

v ″.″ (the current directory)
v the file sqllib/java/db2java.zip

To build SQLJ programs, CLASSPATH is also updated to include the file:
sqllib/java/sqlj.zip

To run SQLJ programs, CLASSPATH is also updated to include the file:
sqllib/java/runtime.zip

Windows 32-bit Operating Systems
To build Java applications on a Windows 32-bit platform with DB2 JDBC
support, you need to install and configure the following on your development
machine:
1. One of the following:

v The Java Development Kit (JDK) 1.1.8 and Java Runtime Environment
(JRE) 1.1.8 for Win32 from IBM. These are installed with DB2. (Refer to
http://www.ibm.com/software/data/db2/java.)

v The Java Development Kit (JDK) Version 1.2 for Win32 from Sun
Microsystems (refer to http://www.ibm.com/software/data/db2/java).

v Microsoft Software Developer’s Kit for Java, Version 3.1 (refer to
http://www.ibm.com/software/data/db2/java).

72 Application Building Guide

http://www.ibm.com/software/data/db2/java/faq.html
http://www.ibm.com/software/data/db2/java
http://www.ibm.com/software/data/db2/java
http://www.ibm.com/software/data/db2/java

2. DB2 Java Enablement, provided on DB2 Universal Database Version 7.1 for
Windows 32-bit operating systems clients and servers.

The JDBC 1.22 driver is still the default driver on all operating systems,
including Windows 32-bit. To take advantage of the new features of JDBC 2.0,
you must install both the JDBC 2.0 driver and JDK 1.2 support for your
platform. To install the JDBC 2.0 driver for Windows 32-bit operating systems,
enter the usejdbc2 command from the sqllib\java12 directory. This
command performs the following tasks:
v Creates an sqllib\java11 directory for the 1.22 driver files
v Backs up the JDBC 1.22 driver files into the sqllib\java11 directory
v Copies the JDBC 2.0 driver files from the sqllib\java12 directory into the

appropriate directories

To switch back to the JDBC 1.22 driver, execute the usejdbc1 batch file from
the sqllib\java12 directory.

To run DB2 Java stored procedures or UDFs, you need to update the DB2
database manager configuration on the server to include the path where the
JDK is installed on that machine. You can do this by entering the following on
the server command line:

db2 update dbm cfg using JDK11_PATH c:\jdk11

where c:\jdk11 is the path where the JDK is installed.

Note: If the path where the JDK is installed contains a directory name with
one or more spaces, put the path in single quotes. For example:

db2 update dbm cfg using JDK11_PATH 'c:\Program Files\jdk11'

You can check the DB2 database manager configuration to verify the correct
value for the JDK11_PATH field by entering the following command on the
server:

db2 get dbm cfg

You may want to redirect the output to a file for easier viewing. The
JDK11_PATH field appears near the beginning of the output. For more
information on these commands, see the Command Reference.

To run JDBC and SQLJ programs on a supported Windows platform with DB2
JDBC support, CLASSPATH is automatically updated when DB2 is installed to
include:
v ″.″ (the current directory)
v the file %DB2PATH%\java\db2java.zip

To build SQLJ programs, CLASSPATH is also updated to include the file:

Chapter 4. Building Java Applets and Applications 73

%DB2PATH%\java\sqlj.zip

To run SQLJ programs, CLASSPATH is also updated to include the file:

%DB2PATH%\java\runtime.zip

To specify which Java Development Kit to use for DB2 SQLJ, DB2 installs the
environment variable DB2JVIEW on Windows 32-bit operating systems. It
applies to all DB2 SQLJ commands (db2profc, db2profp, profdb, profp and
sqlj).

If the default setting of ″DB2JVIEW=0″ is used, or DB2JVIEW is not set, the
Sun JDK will be used; that is, if you call ″profp″, it will run as ″java
sqlj.runtime.profile.util.ProfilePrinter″. If ″DB2JVIEW=1″, the Microsoft SDK
for Java will be used; that is, if you call ″profp″, it will run as ″jview
sqlj.runtime.profile.util.ProfilePrinter″.

Java Sample Programs

DB2 provides sample programs, used in the following sections, to
demonstrate building and running JDBC programs that exclusively use
dynamic SQL, and SQLJ programs that use static SQL. On UNIX platforms,
the Java samples are located in sqllib/samples/java. On OS/2 and Windows
32-bit operating systems, the samples are located in %DB2PATH%\samples\java.
The samples directory also contains a README, a makefile, and build files.

The Java makefile builds all the supplied sample programs. It requires a
compatible make executable program, which is not normally provided by Java
Development Kits. See the comment at the beginning of the text of the
makefile for more information. Some of the Java makefile commands differ
from other languages: the make clean command removes all files produced by
the java compiler, such as .class files. The make cleanall command removes
these files as well as any files produced by the SQLJ translator.

The JDBC programs are relatively simple to build on the command line so no
build files are included for them. There are two SQLJ build files provided:
bldsqlj builds SQLJ applets and applications; bldsqljs builds SQLJ stored
procedures. These build files are demonstrated in the section “SQLJ
Programs” on page 77.

OS/2

On OS/2, your working directory must be on an HPFS drive. Since DB2
sample programs are provided on OS/2 to be compatible with FAT drives,
filenames have at most a three character extension. To comply with this

74 Application Building Guide

restriction, Java sample file extensions have been truncated. After copying the
Java files to your working directory, you can rename the files with the
following commands:

move *.jav *.java
move *.htm *.html
move *.sql *.sqlj

JDBC Programs

Applets
DB2Applt demonstrates a dynamic SQL Java applet using the JDBC applet (or
″net″) driver to access a DB2 database.

To build and run this applet by commands entered at the command line:
1. Ensure that a web server is installed and running on your DB2 machine

(server or client).
2. Modify the DB2Applt.html file according to the instructions in the file.
3. Start the JDBC applet server on the TCP/IP port specified in

DB2Applt.html; for example, if in DB2Applt.html, you specified
param name=port value='6789', then you would enter:

db2jstrt 6789

4. Compile DB2Applt.java to produce the file DB2Applt.class with this
command:

javac DB2Applt.java

5. Ensure that your working directory is accessible by your web browser. If it
is not, copy DB2Applt.class and DB2Applt.html into a directory that is
accessible.

6. Copy the file %DB2PATH%\java\db2java.zip on OS/2 or Windows 32-bit
operating systems, or sqllib/java/db2java.zip on UNIX, into the same
directory as DB2Applt.class and DB2Applt.html.

7. On your client machine, start your web browser (which must support JDK
1.1) and load DB2Applt.html.

As an alternative to steps (1), (5) and (7), you can use the applet viewer that
comes with the Java Development Kit by entering the following command in
the working directory of your client machine:

appletviewer DB2Applt.html

You can also use the Java makefile to build this program.

Applications
DB2Appl demonstrates a dynamic SQL Java application using the JDBC
application (or ″app″) driver to access a DB2 database.

Chapter 4. Building Java Applets and Applications 75

To build and run this application by commands entered at the command line:
1. Compile DB2Appl.java to produce the file DB2Appl.class with this

command:
javac DB2Appl.java

2. Run the java interpreter on the application with this command:
java DB2Appl

You can also use the Java makefile to build this program.

Client Applications for Stored Procedures
Spclient is a client application that calls the Java stored procedure class,
Spserver, using the JDBC application driver. Before building and running this
client application, build the stored procedure class on the server. See “Stored
Procedures” on page 77.

To build and run this client program by commands entered at the command
line:
1. Compile Spclient.java to produce the file Spclient.class with this

command:
javac Spclient.java

2. Run the Java interpreter on the client program with this command:
java Spclient

You can also use the Java makefile to build this program.

Client Applications for User-Defined Functions
UDFcli is the client program that calls the user-defined functions implemented
in the user-defined function server program, UDFsrv, using the JDBC
application driver. Before building and running this client application, build
the user-defined function program, UDFsrv, on the server. See “User-Defined
Functions (UDFs)” on page 86.

To build and run this client program by commands entered at the command
line:
1. Compile UDFcli.java to produce the file UDFcli.class with this command:

javac UDFcli.java

2. Run the Java interpreter on the client program with this command:
java UDFcli

You can also use the Java makefile to build this program.

76 Application Building Guide

Stored Procedures
Spserver demonstrates dynamic SQL PARAMETER STYLE JAVA stored
procedures using the JDBC application driver. Stored procedures are compiled
and stored on a server. When called by a client application, they access the
server database and return information to the client application.

To build and run this program on the server by commands entered at the
command line:
1. Compile Spserver.java to produce the file Spserver.class with this

command:
javac Spserver.java

2. Copy Spserver.class to the %DB2PATH%\function directory on OS/2 and
Windows 32-bit operating systems, or to the sqllib/function directory on
UNIX.

3. Next, catalog the stored procedures by running the Spcreate.db2 script on
the server. First, connect to the database:

db2 connect to sample

If the stored procedures were previously cataloged, you can drop them
with this command:

db2 -td@ -vf Spdrop.db2

Then catalog them with this command:
db2 -td@ -vf Spcreate.db2

4. Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

5. Compile and run the Spclient client application to access the stored
procedure class. See “Client Applications for Stored Procedures” on page
76.

You can also use the Java makefile to build this program.

SQLJ Programs

Note: To build and run SQLJ programs with the IBM Java Development Kit
for UNIX, OS/2, and Windows 32-bit operating systems, you must turn
off the just-in-time compiler of the JDK with the following command
for your operating system:

OS/2 and Windows:
SET JAVA_COMPILER=NONE

UNIX: export JAVA_COMPILER=NONE

Chapter 4. Building Java Applets and Applications 77

The build file, bldsqlj, contains the commands to build an SQLJ applet or
application. On UNIX this is a script file. On OS/2, it is the command file,
bldsqlj.cmd, and on Windows, it is the batch file, bldsqlj.bat. The contents
of the command and batch files are the same, and this version is presented
first, followed by the UNIX script file. The applet and application building
sections that follow will refer back to these build files.

Note: The SQLJ translator shipped with DB2 compiles the translated .java
files into .class files. Therefore, the build files in this section do not
use the java compiler.

In the following build file for OS/2 and Windows 32-bit operating systems,
the first parameter, %1, specifies the name of your source file. The second
parameter, %2, specifies the name of the database to which you want to
connect. The third parameter, %3, specifies the user ID for the database, and %4
specifies the password. Only the first parameter, the source file name, is
required. Database name, user ID, and password are optional. If no database
name is supplied, the program uses the default sample database.
@echo off
rem bldsqlj -- OS/2 and Windows 32-bit operating systems
rem Builds a Java embedded SQL (SQLJ) program.
rem Usage: bldsqlj prog_name [db_name [userid password]]

if "%1" == "" goto error

rem Translate and compile the SQLJ source file
rem and bind the package to the database.
if "%2" == "" goto case1
if "%3" == "" goto case2
if "%4" == "" goto error
goto case3
:case1

sqlj %1.sqlj
db2profc -url=jdbc:db2:sample -prepoptions="package using %1" %1_SJProfile0
goto continue

:case2
sqlj -url=jdbc:db2:%2 %1.sqlj
db2profc -url=jdbc:db2:%2 -prepoptions="package using %1" %1_SJProfile0
goto continue

:case3
sqlj -url=jdbc:db2:%2 -user=%3 -password=%4 %1.sqlj
db2profc -url=jdbc:db2:%2 -user=%3 -password=%4 -prepoptions="package using %1"

%1_SJProfile0
goto continue

:continue

goto exit

:error
echo Usage: bldsqlj prog_name [db_name [userid password]]

78 Application Building Guide

:exit

@echo on

Translator and Precompile Options for bldsqlj

sqlj The SQLJ translator (also compiles the program).

%1.sqlj
The SQLJ source file.

%1.java
The translated Java file from the SQLJ source file.

db2profc
The DB2 for Java profile customizer.

-url Specifies a JDBC URL for establishing a database connection, such as
jdbc:db2:sample.

-user Specifies a user ID (optional parameter).

-password
Specifies a password (optional parameter).

-prepoptions
Specifies the package name for the database with the string
"package using %1", where %1 is the SQLJ source file name.

%1_SJProfile0
Specifies a serialized profile for the program.

In the following UNIX script file, the first parameter, $1, specifies the name of
your source file. The second parameter, $2, specifies the name of the database
to which you want to connect. The third parameter, $3, specifies the user ID
for the database, and $4 specifies the password. Only the first parameter, the
source file name, is required. Database name, user ID, and password are
optional. If no database name is supplied, the program uses the default
sample database.
#! /bin/ksh
bldsqlj script file -- UNIX platforms
Builds a Java embedded SQL (SQLJ) sample
Usage: bldsqlj <prog_name> [<db_name> [<userid> <password>]]

Translate and compile the SQLJ source file
and bind the package to the database.
if (($# < 2))
then

sqlj $1.sqlj
db2profc -url=jdbc:db2:sample -prepoptions="package using $1" $1_SJProfile0

elif (($# < 3))

Chapter 4. Building Java Applets and Applications 79

then
sqlj -url=jdbc:db2:$2 $1.sqlj
db2profc -url=jdbc:db2:$2 -prepoptions="package using $1" $1_SJProfile0

else
sqlj -url=jdbc:db2:$2 -user=$3 -password=$4 $1.sqlj
db2profc -url=jdbc:db2:$2 -user=$3 -password=$4 -prepoptions="package using $1"

$1_SJProfile0
fi

Translator and Precompile Options for bldsqlj

sqlj The SQLJ translator (also compiles the program).

$1.sqlj
The SQLJ source file.

$1.java
The translated Java file from the SQLJ source file.

db2profc
The DB2 for Java profile customizer.

-url Specifies a JDBC URL for establishing a database connection, such as
jdbc:db2:sample.

-user Specifies a user ID (optional parameter).

-password
Specifies a password (optional parameter).

-prepoptions
Specifies the package name for the database with the string
"package using $1", where $1 is the SQLJ source file name.

$1_SJProfile0
Specifies a serialized profile for the program.

Applets
Applt demonstrates an SQLJ applet that accesses a DB2 database.

To build this applet with the build file, bldsqlj, and then run it:
1. Ensure that a web server is installed and running on your DB2 machine

(server or client).
2. Modify the Applt.html file according to the instructions in the file.
3. Start the JDBC applet server on the TCP/IP port specified in Applt.html.

For example, if in Applt.html, you specified
param name=port value='6789', then you would enter:

db2jstrt 6789

4. Build the applet with this command:
bldsqlj Applt [<db_name> [<userid> <password>]]

80 Application Building Guide

where the optional parameter <db_name> allows you to access another
database instead of the default sample database. The optional parameters
<userid>, and <password> are needed if the database you are accessing is
on a different instance, such as if you are accessing a server from a remote
client machine.

5. Ensure that your working directory is accessible by your web browser. If it
is not, copy the following files into a directory that is accessible:

Applt.html, Applt.class,
Applt_Cursor1.class, Applt_Cursor2.class,
Applt_SJProfileKeys.class, Applt_SJProfile0.ser

6. Copy the files %DB2PATH%\java\db2java.zip and
%DB2PATH%\java\runtime.zip on OS/2 and Windows 32-bit operating
systems, or sqllib/java/db2java.zip and sqllib/java/runtime.zip on
UNIX, into the same directory as your other Applt files.

7. On your client machine, start your web browser (which must support JDK
1.1) and load Applt.html.

As an alternative to steps (1), (5) and (7), you can use the applet viewer that
comes with the Java Development Kit by entering the following command in
the working directory of your client machine:

appletviewer Applt.html

You can also use the Java makefile to build this program.

Applications
App demonstrates an SQLJ application that accesses a DB2 database.

To build this application with the build file, bldsqlj, enter this command:
bldsqlj App [<db_name> [<userid> <password>]]

where the optional parameter <db_name> allows you to access another
database instead of the default sample database. The optional parameters
<userid>, and <password> are needed if the database you are accessing is on a
different instance, such as if you are accessing a server from a remote client
machine.

Run the Java interpreter on the application with this command:
java App

You can also use the Java makefile to build this program.

Chapter 4. Building Java Applets and Applications 81

Client Programs for Stored Procedures
Stclient is the client program that calls the SQLJ stored procedure class,
Stserver, using the JDBC Application driver. Before building and running this
client application, build the stored procedure class on the server. See “Stored
Procedures” on page 82.

To build this client program with the build file bldsqlj, enter this command:
bldsqlj Stclient [<db_name> [<userid> <password>]]

where the optional parameter <db_name> allows you to access another
database instead of the default sample database. The optional parameters
<userid>, and <password> are needed if the database you are accessing is on a
different instance, such as if you are accessing a server from a remote client
machine.

Run the Java interpreter on the client application with this command:
java Stclient

You can also use the Java makefile to build this program.

Client Programs for User-Defined Functions
UDFclie is the client program that calls the user-defined functions
implemented in the server program, UDFsrv, using the JDBC application
driver. Before building and running this client application, build the UDFsrv
program on the server. See “User-Defined Functions (UDFs)” on page 86.

To build this SQLJ client program with the build file, bldsqlj, enter this
command:

bldsqlj UDFclie [<db_name> [<userid> <password>]]

where the optional parameter <db_name> allows you to access another
database instead of the default sample database. The optional parameters
<userid>, and <password> are needed if the database you are accessing is on a
different instance, such as if you are accessing a server from a remote client
machine.

Run the Java interpreter on client application with this command:
java UDFclie

You can also use the Java makefile to build this program.

Stored Procedures
The build file, bldsqljs, contains the commands to build an SQLJ stored
procedure. On UNIX this is a script file. On OS/2, it is the command file,

82 Application Building Guide

bldsqljs.cmd, and on Windows, it is a batch file, bldsqljs.bat. The contents
of the command and batch files are the same, and this version is presented
first, followed by the UNIX script file.

In the following build file for OS/2 and Windows 32-bit operating systems,
the first parameter, %1, specifies the name of your source file. The second
parameter, %2, specifies the name of the database to which you want to
connect. Since the stored procedure must be built on the same instance where
the database resides, there are no parameters for user ID and password.

Only the first parameter, the source file name, is required. If no database
name is supplied, the program uses the default sample database.
@echo off
rem bldsqljs -- OS/2 and Windows 32-bit operating systems
rem Builds a Java embedded SQL (SQLJ) stored procedure
rem Usage: bldsqljs prog_name [db_name]

if "%1" == "" goto error

rem Translate and compile the SQLJ source file
rem and bind the package to the database.
if "%2" == "" goto case1
goto case2
:case1

sqlj %1.sqlj
db2profc -url=jdbc:db2:sample -prepoptions="package using %1" %1_SJProfile0
goto continue

:case2
sqlj -url=jdbc:db2:%2 %1.sqlj
db2profc -url=jdbc:db2:%2 -prepoptions="package using %1" %1_SJProfile0

:continue

rem Copy the *.class and *.ser files to the 'function' directory.
copy %1*.class "%DB2PATH%\function"
copy %1*.ser "%DB2PATH%\function"

goto exit
:error
echo Usage: bldsqljs prog_name [db_name]
:exit
@echo on

Chapter 4. Building Java Applets and Applications 83

Translator and Precompile Options for bldsqljs

sqlj The SQLJ translator (also compiles the program).

%1.sqlj
The SQLJ source file.

%1.java
The translated Java file from the SQLJ source file.

db2profc
The DB2 for Java profile customizer.

-url Specifies a JDBC URL for establishing a database connection, such as
jdbc:db2:sample.

-prepoptions
Specifies the package name for the database with the string
"package using %1", where %1 is the SQLJ source file name.

%1_SJProfile0
Specifies a serialized profile for the program.

In the following UNIX script file, the first parameter, $1, specifies the name of
your source file. The second parameter, $2, specifies the name of the database
to which you want to connect. Since the stored procedure must be built on the
same instance where the database resides, there are no parameters for user ID
and password.

Only the first parameter, the source file name, is required. If no database
name is supplied, the program uses the default sample database.
#! /bin/ksh
bldsqljs script file -- UNIX platforms
Builds a Java embedded SQL (SQLJ) stored procedure
Usage: bldsqljs <prog_name> [<db_name>]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Translate and compile the SQLJ source file
and bind the package to the database.
if (($# < 2))
then

sqlj $1.sqlj
db2profc -url=jdbc:db2:sample -prepoptions="package using $1" $1_SJProfile0

else
sqlj -url=jdbc:db2:$2 $1.sqlj
db2profc -url=jdbc:db2:$2 -prepoptions="package using $1" $1_SJProfile0

fi

84 Application Building Guide

Copy the *.class and *.ser files to the 'function' directory.
rm -f $DB2PATH/function/$1*.class
rm -f $DB2PATH/function/$1*.ser
cp $1*.class $DB2PATH/function
cp $1*.ser $DB2PATH/function

Translator and Precompile Options for bldsqljs

sqlj The SQLJ translator (also compiles the program).

$1.sqlj
The SQLJ source file.

$1.java
The translated Java file from the SQLJ source file.

db2profc
The DB2 for Java profile customizer.

-url Specifies a JDBC URL for establishing a database connection, such as
jdbc:db2:sample.

-prepoptions
Specifies the package name for the database with the string
"package using $1", where $1 is the SQLJ source file name.

$1_SJProfile0
Specifies a serialized profile for the program.

Stserver demonstrates PARAMETER STYLE JAVA stored procedures using
the JDBC application driver to access a DB2 database. Stored procedures are
compiled and stored on a server. When called by a client application, they
access the server database and return information to the client application.

To build this stored procedure class with the build file, bldsqljs:
1. Enter the following command:

bldsqljs Stserver [<db_name>]

where the optional parameter <db_name> allows you to access another
database instead of the default sample database.

2. Next, catalog the stored procedures by running the Stcreate.db2 script on
the server. First, connect to the database:

db2 connect to sample

If the stored procedures were previously cataloged, you can drop them
with this command:

db2 -td@ -vf Stdrop.db2

Chapter 4. Building Java Applets and Applications 85

Then catalog them with this command:
db2 -td@ -vf Stcreate.db2

3. Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

4. Compile and run the Stclient client application to call the stored
procedures. See “Client Programs for Stored Procedures” on page 82.

You can also use the Java makefile to build this program.

User-Defined Functions (UDFs)

UDFsrv demonstrates Java user-defined functions. Since UDF programs do not
contain SQL statements, a Java UDF program cannot contain SQLJ statements.
Once the UDFsrv libary is created on the server, it may be accessed by a client
application. DB2 provides both a JDBC client application, UDFcli, and an SQLJ
client application, UDFclie. Either can be used to access the UDFsrv library.

To build and run the UDF program on the server by commands entered at the
command line:
1. Compile UDFsrv.java to produce the file UDFsrv.class with this command:

javac UDFsrv.java

2. Copy UDFsrv.class to the %DB2PATH%\function directory on OS/2 and
Windows 32-bit operating systems, or to the sqllib/function directory on
UNIX.

3. To access the UDFsrv library, you can use either JDBC or SQLJ client
applications. To compile and run the JDBC client application, UDFcli, see
“Client Applications for User-Defined Functions” on page 76. To compile
and run the SQLJ client application, UDFclie, see “Client Programs for
User-Defined Functions” on page 82.

UDFcli and UDFclie contain the CREATE FUNCTION SQL statement that you use
to register the UDFs contained in UDFsrv with the database. UDFcli and
UDFclie also contain SQL statements that make use of the UDFs, once they
have been registered.

General Points for DB2 Java Applets

1. For a larger JDBC or SQLJ applet that consists of several Java classes, you
may choose to package all its classes in a single JAR file. For an SQLJ
applet, you would also have to package its serialized profiles along with
its classes. If you choose to do this, add your JAR file into the archive
parameter in the ″applet″ tag. For details, see the JDK Version 1.1
documentation.

86 Application Building Guide

For SQLJ applets: some browsers do not yet have support for loading a
serialized object from a resource file associated with the applet. For
example, you will get the following error message when trying to load the
applet Applt in those browsers:

java.lang.ClassNotFoundException: Applt_SJProfile0

As a work-around, there is a utility which converts a serialized profile into
a profile stored in Java class format. The utility is a Java class called
sqlj.runtime.profile.util.SerProfileToClass. It takes a serialized
profile resource file as input and produces a Java class containing the
profile as output. Your profile can be converted using one of the following
commands:

profconv Applt_SJProfile0.ser

or

java sqlj.runtime.profile.util.SerProfileToClass Applt_SJProfile0.ser

The class Applt_SJProfile0.class is created as a result. Replace all
profiles in .ser format used by the applet with profiles in .class format,
and the problem should go away.

2. You may wish to place the file db2java.zip (and for SQLJ applets, also the
file runtime.zip) into a directory that is shared by several applets that
may be loaded from your Web site. These files are in the %DB2PATH%\java
directory on OS/2 and Windows 32-bit operating systems, and in the
sqllib/java directory on UNIX. You may need to add a codebase
parameter into the ″applet″ tag in the HTML file to identify the directory.
For details, see the JDK Version 1.1 documentation.

3. Since DB2 Version 5.2, signal handling has been added to the JDBC applet
server (listener), db2jd, to make it more robust. As a result, one cannot use
the CTRL-C command to kill db2jd. Therefore, the only way to terminate
the listener is to kill the process.

4. For information on running DB2 Java applets on a webserver, specifically
the Domino Go Webserver, see:

http://www.ibm.com/software/data/db2/db2lotus/gojava.htm

Chapter 4. Building Java Applets and Applications 87

http://www.ibm.com/software/data/db2/db2lotus/gojava.htm

88 Application Building Guide

Chapter 5. Building SQL Procedures

Setting the SQL Procedures Environment . . 89
Creating SQL Procedures. 93
Calling SQL Procedures 93

Using the CALL Command 93
OS/2 DB2 CLI Client Applications . . . 94
OS/2 Embedded SQL Client Applications 95

UNIX DB2 CLI Client Applications . . . 95
UNIX Embedded SQL Client Applications 95
Windows DB2 CLI Client Applications . . 96
Windows Embedded SQL Client
Applications 96

This chapter provides detailed information for building DB2 SQL Procedures.

DB2 SQL Procedure sample programs are in the sqllib/samples/sqlproc
directory on UNIX platforms, and in the %DB2PATH%\samples\sqlproc directory
on OS/2 and Windows 32-bit operating systems. For a description of the
sample programs, see Table 10 on page 26.

Setting the SQL Procedures Environment

These instructions are in addition to the instructions for setting up the DB2
environment in “Chapter 2. Setup” on page 33.

For SQL procedures support you have to install the Application Development
Client and a DB2 supported C or C++ compiler on the server. For information
on installing the Application Development Client, refer to the Quick Beginnings
book for your platform. For the C and C++ compilers supported by DB2 on
your platform, see “Supported Software by Platform” on page 7.

Note: On the OS/2 FAT file system, you are limited to a schema name for
SQL Procedures of eight characters or less. You have to use the HPFS
file system for schema names longer than eight characters.

Configuring the Compiler Environment

To create SQL procedures, configure DB2 to use a supported C or C++
compiler on the server by the following steps:
v Create an executable file that sets the environment for the compiler. This

will be a command file on OS/2, a script file on UNIX, or a batch file on
Windows. The compiler may require path, include, and library environment
variables.

v Set the DB2_SQLROUTINE_COMPILER_PATH DB2 registry variable to the
executable file with the following command:

db2set DB2_SQLROUTINE_COMPILER_PATH=executable_file

© Copyright IBM Corp. 1993, 2000 89

where executable_file is the full path name for the C compiler environment
file.

If you do not set the DB2_SQLROUTINE_COMPILER_PATH DB2 registry
variable, DB2 sets it to a default file. Depending on your operating system,
this file will have one of the following paths and file names:

OS/2: %DB2PATH%\function\routine\sr_cpath.cmd

UNIX: $HOME/sqllib/function/routine/sr_cpath

Windows:
%DB2PATH%\function\routine\sr_cpath.bat

You can use this default file as long as you modify it to reflect the settings
required for the server operating system and the C or C++ compiler you are
using.

Note: On Windows NT and Windows 2000, you do not have to set the
DB2_SQLROUTINE_COMPILER_PATH DB2 registry variable if you
store the environment variables for your compiler as SYSTEM variables.

Customizing Compiler Options

DB2 provides default values for one of the compilers it supports on each
platform. To use other compilers, set the SQL procedure compiler options
using the DB2_SQLROUTINE_COMPILE_COMMAND DB2 registry variable.
To specify customized C or C++ compiler options for SQL procedures, store
the entire command line, including all options, in the DB2 registry with the
following command:

db2set DB2_SQLROUTINE_COMPILE_COMMAND=compiler_command

where compiler_command is the C or C++ compile command, including the
options and parameters required to create stored procedures.

In the compiler command, use the keyword SQLROUTINE_FILENAME to replace
the filename for the generated SQC, C, PDB, DEF, EXP, messages log and
shared library files. For AIX only, use the keyword SQLROUTINE_ENTRY to
replace the entry point name.

As examples of the default values for the
DB2_SQLROUTINE_COMPILE_COMMAND for the supported C or C++
compilers, here are the default compiler values on AIX, Solaris, and Windows
32-bit operating systems. Also given are suggested changes to return
debugging information. Similar changes can be made to return debugging
information on other platforms.

90 Application Building Guide

AIX This is the default compiler command value for IBM C Set++ for AIX
Version 3.6.6:

xlC_r -+ -H512 -T512 -I$HOME/sqllib/include SQLROUTINE_FILENAME.c \
-bE:SQLROUTINE_FILENAME.exp -e SQLROUTINE_ENTRY \
-o SQLROUTINE_FILENAME -L$HOME/sqllib/lib -lc -ldb2

To return debug information, change the default to add the -g option
to the DB2_SQLROUTINE_COMPILE_COMMAND as follows:

db2set DB2_SQLROUTINE_COMPILE_COMMAND="xlC_r -+ -H512 -T512 -g \
-I$HOME/sqllib/include SQLROUTINE_FILENAME.c \
-bE:SQLROUTINE_FILENAME.exp -e SQLROUTINE_ENTRY \
-o SQLROUTINE_FILENAME -L$HOME/sqllib/lib -lc -ldb2"

where ″\″ is only used to indicate a carriage return.

Note: To compile 64-bit SQL procedures on AIX, add the -q64 option
to the above commands.

Solaris
This is the default compiler command value for SPARCompiler C++
Versions 4.2 and 5.0:

cc -# -Kpic -I$HOME/sqllib/include SQLROUTINE_FILENAME.c -G \
-o SQLROUTINE_FILENAME -L$HOME/sqllib/lib -R$HOME/sqllib/lib -ldb2

To return debug information, change the default to add the -g option
to the DB2_SQLROUTINE_COMPILE_COMMAND as follows:

db2set DB2_SQLROUTINE_COMPILE_COMMAND="cc -# -Kpic -g \
-I$HOME/sqllib/include SQLROUTINE_FILENAME.c -G \
-o SQLROUTINE_FILENAME -L$HOME/sqllib/lib \
-R$HOME/sqllib/lib -ldb2"

where ″\″ is only used to indicate a carriage return.

Note: To compile 64-bit SQL procedures on Solaris, add the -xarch=v9
option to the above commands.

Windows 32-bit operating systems
This is the default compiler command value for Microsoft Visual C++
Versions 5.0 and 6.0:

cl -Od -W2 /TC -D_X86_=1 -I%DB2PATH%\include SQLROUTINE_FILENAME.c
/link -dll -def:SQLROUTINE_FILENAME.def /out:SQLROUTINE_FILENAME.dll
%DB2PATH%\lib\db2api.lib

To return debug information, change the default as follows:
db2set DB2_SQLROUTINE_COMPILE_COMMAND="cl -Od -W2 /TC -D_X86_=1

-Z7 -I%DB2PATH%\include SQLROUTINE_FILENAME.c /link -dll
-def:SQLROUTINE_FILENAME.def /out:SQLROUTINE_FILENAME.dll
-debug:full -pdb:none -debugtype:cv %DB2PATH%\lib\db2api.lib"

Chapter 5. Building SQL Procedures 91

Note: You must enter the compiler command value on one line for
Windows 32-bit operating systems.

To return to the default compiler options, set the DB2 registry value for
DB2_SQLROUTINE_COMPILE_COMMAND to null with the following
command:

db2set DB2_SQLROUTINE_COMPILE_COMMAND=

Retaining Intermediate Files

When you issue a CREATE PROCEDURE statement, DB2 creates a number of
intermediate files that are normally deleted if DB2 successfully completes the
statement. If an SQL procedure does not perform as expected, you might find
it useful to examine the SQC, C, PDB, and message log files created by DB2.
To keep the files that DB2 creates during the successful execution of a
CREATE PROCEDURE statement, you must set the value of the
DB2_SQLROUTINE_KEEP_FILES DB2 registry variable to ″1″, ″y″ or ″yes″, as
in the following command:

db2set DB2_SQLROUTINE_KEEP_FILES=1

Depending on your operating system, the intermediate files are retained in
one of the following directories:

UNIX
$HOME/sqllib/function/routine/sqlproc/database_name/schema_name

where database_name and schema_name are the database and schema
used to create the SQL procedures.

OS/2 and Windows
%DB2PATH%\function\routine\sqlproc\database_name\schema_name

where database_name and schema_name are the database and schema
used to create the SQL procedures.

Customizing Precompile and Bind Options

The precompile and bind options can be customized by setting the
DB2_SQLROUTINE_PREPOPTS DB2 registry variable. These options cannot
be customized at procedure level. To specify customized precompilation
options for SQL procedures, put the list of precompile options to be used by
the DB2 precompiler in the DB2 registry with the following command:

db2set DB2_SQLROUTINE_PREPOPTS=options

where options specifies the list of precompile options to be used by the DB2
precompiler. Only the following options are allowed:

92 Application Building Guide

BLOCKING {UNAMBIG | ALL | NO}
DATETIME {DEF | USA | EUR | ISO | JIS | LOC}
DEGREE {1 | degree-of-parallelism | ANY}
DYNAMICRULES {BIND | RUN}
EXPLAIN {NO | YES | ALL}
EXPLAINSNAP {NO | YES | ALL}
INSERT {DEF | BUF}
ISOLATION {CS |RR |UR |RS |NC}
QUERYOPT optimization-level
SYNCPOINT {ONEPHASE | TWOPHASE | NONE}

Creating SQL Procedures

The DB2 Command Line Processor scripts in the sqllib/samples/sqlproc
directory on UNIX, and the %DB2PATH%\samples\sqlproc directory on OS/2
and Windows, (those ending with the .db2 extension) execute the CREATE
PROCEDURE statement that creates the stored procedure on the server. Before
executing this statement you must connect to the database. Each CLP script
has a corresponding client application file of the same name, with either a
.sqc, or a .c extension.

Before running a CREATE PROCEDURE CLP script, connect to the sample
database with the command:

db2 connect to sample user userid using password

where userid and password are the user ID and password of the instance where
the sample database is located.

To execute the CREATE PROCEDURE statement contained in the
rsultset.db2 script file, enter the following command:

db2 -td@ -vf rsultset.db2

Next, stop and restart DB2. Now, you can call the SQL procedures, as
explained in “Calling SQL Procedures”, below.

Calling SQL Procedures

You can call SQL procedures by using the command line processor (CLP) call
command or by building client applications.

Using the CALL Command
To use the call command, you must enter the stored procedure name plus
any IN or INOUT arguments that are required by that stored procedure. You
do not enter OUT parameters.

First, create the SQL procedure by following the steps in “Creating SQL
Procedures”.

Chapter 5. Building SQL Procedures 93

To call the SQL procedure, you must first connect to the database:
db2 connect to sample user userid using password

where userid and password are the user ID and password of the instance where
the sample database is located.

The parameters for a stored procedure are given in the CREATE PROCEDURE
statement for the stored procedure in the program source file. For example, in
the source file, whiles.db2, the CREATE PROCEDURE statement for the
DEPT_MEDIAN procedure begins:
CREATE PROCEDURE DEPT_MEDIAN
(IN deptNumber SMALLINT, OUT medianSalary DOUBLE)

To call this procedure, you need to put in a valid SMALLINT value for the IN
parameter, deptNumber. You can obtain a valid value from the corresponding
table in the sample database, or by checking the client calling program source
file for the value it uses. In whiles.sqc, you will find the value ″51″ is used:

printf("Use CALL with Host Variables to invoke the Server Procedure "
"named %s\n", procname);

dept = 51; /* get median for dept. 51 */

Enter the call command with the procedure name and the value for the IN
parameter. The procedure’s parameters must be enclosed in parentheses, and
quotes must be used, as follows:
db2 "call DEPT_MEDIAN (51)"

You should receive this result:
MEDIANSALARY: 1.76545000000000e+04

Keep the following points in mind when using the call command:
v There is a maximum of 1023 characters for a result column.
v The stored procedure being called must be defined in the catalog.
v LOBs and binary data (FOR BIT DATA, VARBINARY, LONGVARBINARY,

GRAPHIC, VARGRAPHIC, LONGVARGRAPHIC) are not supported.

OS/2 DB2 CLI Client Applications
The command file bldcli.cmd in %DB2PATH%\samples\sqlproc contains the
commands to build a DB2 CLI client application for SQL procedures. See
“DB2 CLI Applications” on page 216 for detailed information on bldcli.cmd.

To build the DB2 CLI client application, rsultset, from the source file
rsultset.c, enter:

bldcli rsultset

This command creates the executable file, rsultset.

94 Application Building Guide

To call the stored procedure, run the sample client application by entering the
executable file name, the name of the database to which you are connecting,
and the user ID and password of the database instance:

rsultset database userid password

OS/2 Embedded SQL Client Applications
The command file bldapp.cmd in %DB2PATH%\samples\sqlproc contains the
commands to build an embedded SQL client application for SQL procedures.
See “DB2 API and Embedded SQL Applications” on page 221 for detailed
information on bldapp.cmd.

To build the embedded SQL client application, basecase, from the source file
basecase.sqc, enter the command file name, the executable name, the
database to which you are connecting, and the user ID and password of the
database instance:

bldapp basecase database userid password

The result is an executable file, basecase.

To call the stored procedure, run the client application by entering:

basecase database userid password

UNIX DB2 CLI Client Applications
The script file bldcli in sqllib/samples/sqlproc contains the commands to
build a DB2 CLI client application for SQL procedures. For detailed
information on the bldcli script file, see the ″DB2 CLI Applications″ section
in the ″Building Applications″ chapter for your UNIX platform.

To build the DB2 CLI client application, rsultset, from the source file
rsultset.c, enter:

bldcli rsultset

This command creates the executable file, rsultset.

To call the stored procedure, run the sample client application by entering the
executable file name, the name of the database to which you are connecting,
and the user ID and password of the database instance:

rsultset database userid password

UNIX Embedded SQL Client Applications
The script file bldapp in sqllib/samples/sqlproc contains the commands to
build an embedded SQL client application for SQL procedures. For detailed

Chapter 5. Building SQL Procedures 95

information on the bldapp script file, see the ″DB2 API and Embedded SQL
Applications″ section in the ″Building Applications″ chapter for your UNIX
platform.

To build the embedded SQL client application, basecase, from the source file
basecase.sqc, enter the script file name, the executable name, the database to
which you are connecting, and the user ID and password of the database
instance:

bldapp basecase database userid password

The result is an executable file, basecase.

To call the stored procedure, run the sample client application by entering:

basecase database userid password

Windows DB2 CLI Client Applications
The %DB2PATH%\samples\sqlproc directory contains two build files for building
DB2 CLI client applications: bldmcliis for the Microsoft Visual C++ compiler,
and bldvcli is for the IBM VisualAge C++ compiler. For detailed information
on bldmcli, see “DB2 CLI Applications” on page 322. For detailed information
on bldvcli, see “DB2 CLI Applications” on page 337.

To build the DB2 CLI client application, rsultset, from the source file
rsultset.c, depending on the compiler you are using, enter either:

bldmcli rsultset

or
bldvcli rsultset

These commands create the executable file, rsultset.

To call the stored procedure, run the sample client application by entering the
executable file name, the name of the database to which you are connecting,
and the user ID and password of the database instance:

rsultset database userid password

Windows Embedded SQL Client Applications
The %DB2PATH%\samples\sqlproc directory contains two build files for building
embedded SQL client applications: bldmapp is for the Microsoft Visual C++
compiler, and bldvapp is for the IBM VisualAge C++ compiler. For detailed
information on bldmapp, see “DB2 API and Embedded SQL Applications” on
page 328. For detailed information on bldvapp, see “DB2 API and Embedded
SQL Applications” on page 342.

96 Application Building Guide

To build the embedded SQL client application, basecase, from the source file
basecase.sqc, enter script file name, the executable name, the database to
which you are connecting, and the user ID and password of the database
instance. Depending on the compiler you are using, this command would be
either:

bldmapp basecase database userid password

or
bldvapp basecase database userid password

The result is an executable file, basecase.

To call the stored procedure, run the sample client application by entering:

basecase database userid password

Chapter 5. Building SQL Procedures 97

98 Application Building Guide

Chapter 6. Building AIX Applications

Important Considerations 100
Installing and Running IBM and Micro
Focus COBOL 100
Entry Points for Stored Procedures and
UDFs 100
Stored Procedures and the CALL
Statement 101
UDFs and the CREATE FUNCTION
Statement 103

IBM C 104
DB2 CLI Applications 104

Building and Running Embedded SQL
Applications 106

DB2 CLI Applications with DB2 APIs . . 106
DB2 CLI Stored Procedures 107
DB2 API and Embedded SQL
Applications 109

Building and Running Embedded SQL
Applications 112

Embedded SQL Stored Procedures . . . 112
User-Defined Functions (UDFs) 115
Multi-threaded Applications 118

IBM C Set++ 119
DB2 API and Embedded SQL
Applications 119

Building and Running Embedded SQL
Applications 122

Embedded SQL Stored Procedures . . . 122

User-Defined Functions (UDFs) 125
Multi-threaded Applications 128

VisualAge C++ Version 4.0 129
DB2 CLI Applications 130

Building and Running Embedded SQL
Applications 131

DB2 CLI Applications with DB2 APIs . . 132
DB2 CLI Stored Procedures 133
DB2 API Applications 136
Embedded SQL Applications 137
Embedded SQL Stored Procedures . . . 139
User-Defined Functions (UDFs) 142

IBM COBOL Set for AIX 144
Using the Compiler 144
DB2 API and Embedded SQL
Applications 145

Building and Running Embedded SQL
Applications 147

Embedded SQL Stored Procedures . . . 147
Micro Focus COBOL 150

Using the Compiler 150
DB2 API and Embedded SQL
Applications 151

Building and Running Embedded SQL
Applications 153

Embedded SQL Stored Procedures . . . 154
Exiting the Stored Procedure 158

REXX 158

This chapter provides detailed information for building applications on AIX.
In the script files, commands that begin with db2 are Command Line
Processor (CLP) commands. Refer to the Command Reference if you need more
information about CLP commands.

For the latest DB2 application development updates for AIX, visit the Web
page at:

http://www.ibm.com/software/data/db2/udb/ad

Note: To build 64-bit applications with the build files in this chapter, you can
either uncomment the indicated command in each build file, or set the
64-bit object mode environment with the following command:

export OBJECT_MODE=64

© Copyright IBM Corp. 1993, 2000 99

http://www.ibm.com/software/data/db2/udb/ad

Important Considerations

This section gives AIX-specific information for building DB2 applications on
various supported compilers. It includes:
v Installing and Running IBM and Micro Focus COBOL
v Entry Points for Stored Procedures and UDFs
v Stored Procedures and the CALL statement
v UDFs and the CREATE FUNCTION statement

Installing and Running IBM and Micro Focus COBOL
Because of the way AIX loads stored procedures and resolves library
references within them, there are requirements on how COBOL should be
installed. These requirements become a factor when a COBOL program loads
a shared library (stored procedure) at run time.

When a stored procedure is loaded, the chain of libraries it refers to must also
be loaded. When AIX searches for a library only indirectly referenced by your
program, it must use the path compiled into the library that referenced it
when it was built by the language provider (IBM COBOL or Micro Focus
COBOL). This path may very well not be the same path in which the compiler
was installed. If the library in the chain cannot be found, the stored procedure
load will fail, and you will receive SQLCODE -10013.

To ensure this does not happen, install the compiler wherever you want, then
create symbolic links of all language libraries from the install directory into
/usr/lib (a directory that is almost always searched when a library needs to
be loaded). You could link the libraries into sqllib/function (the stored
procedure directory), but this only works for one database instance; /usr/lib
works for everyone on the machine. It is strongly recommended that you do
not copy the libraries in; this especially applies to Micro Focus COBOL when
multiple copies of the libraries exist.

A sample symbolic link of Micro Focus COBOL is provided below (assuming
it is installed in /usr/lpp/cobdir):

[1]> su root
[2]> cd /usr/lib
[1]> ln -sf /usr/lpp/cobdir/coblib/*.a .

Entry Points for Stored Procedures and UDFs
Stored procedures are programs that access the database and return
information to your client application. User-Defined Functions (UDFs) are
your own scalar or table functions. Stored procedures and UDFs are compiled
on the server, and stored and executed in shared libraries on the server. These
shared libraries are created when you compile the stored procedures and
UDFs.

100 Application Building Guide

Each shared library has an entry point, which is called from the server to
access procedures in the shared library. The IBM C compiler on AIX allows
you to specify any exported function name in the library as the default entry
point. This is the function that is called if only the library name is specified in
a stored procedure call or CREATE FUNCTION statement. This can be done
with the -e option in the link step. For example:

-e funcname

makes funcname the default entry point. For information on how this relates to
the CREATE FUNCTION statement, see “UDFs and the CREATE FUNCTION
Statement” on page 103.

On other UNIX platforms, no such mechanism exists, so the default entry
point is assumed by DB2 to be the same name as the library itself.

AIX requires you to provide an export file which specifies which global
functions in the library are callable from outside it. This file must include the
names of all stored procedures and/or user-defined functions in the library.
Other UNIX platforms simply export all global functions in the library. This is
an example of an AIX export file:

The export file outsrv.exp lists the stored procedure outsrv. The linker uses
outsrv.exp to create the shared library outsrv that contains the stored
procedure of the same name.

Note: After the shared library is built, it is typically copied into a directory
from which DB2 will access it. When attempting to replace either a
stored procedure or a user-defined function shared library, you should
either run /usr/sbin/slibclean to flush the AIX shared library cache,
or remove the library from the target directory and then copy the
library from the source directory to the target directory. Otherwise, the
copy operation may fail because AIX keeps a cache of referenced
libraries and does not allow the library to be overwritten.

The AIX compiler documentation has additional information on export files.

Stored Procedures and the CALL Statement
The Application Development Guide describes how to code your stored
procedure. The SQL Reference describes how to invoke your stored procedure
at the location of a database using the CALL statement. This section tells you
how to compile and link your stored procedure in line with the information
you provide in the CALL statement.

#! outsrv export file
outsrv

Chapter 6. Building AIX Applications 101

When you compile and link your program, you can identify functions in two
ways:
v Using the -e option.

For example, you can specify the following in the link step:
-e modify

This indicates that the default entry point for the linked library is the
function modify.

If you are linking a library mystored in a directory /u/mydir/procs, and you
want to use the default entry point modify as specified above, code your
CALL statement as follows:
CALL '/u/mydir/procs/mystored'

The library mystored is loaded into memory, and the function modify is
picked up by DB2 as the default entry point, and is executed.

v Using an export file specified using the -bE: option.
Generally speaking, you would use this link option when you have more
than one stored procedure in your library, and you want to access
additional functions as stored procedures.
To continue the example from above, suppose that the library mystored
contains three stored procedures: modify as above, remove, and add. You
identify modify as the default entry point, as above, and indicate in the link
step that remove and add are additional entry points by including them in
an export file.
In the link step, you specify:
-bE:mystored.exp

which identifies the export file mystored.exp.

The export file would be a list of the stored procedure functions, with the
default entry point listed first:

Finally, your two CALL statements for the stored procedures, which invoke
the remove and add functions, are coded as follows:
CALL '/u/mydir/procs/mystored!remove'

and
CALL '/u/mydir/procs/mystored!add'

modify
remove
add

102 Application Building Guide

UDFs and the CREATE FUNCTION Statement
The Application Development Guide describes how to code your UDF. The SQL
Reference describes how to register your UDF with DB2 using the CREATE
FUNCTION statement. This section explains the relation between compiling
and linking your UDF and the information you provide in the EXTERNAL
NAME clause of the CREATE FUNCTION statement.

When you compile and link your program, you can identify functions in two
ways:
v Using the -e option.

For example, you can specify the following in the link step:
-e modify

This indicates that the default entry point for the linked library is the
function modify.

If you are linking a library myudfs in a directory /u/mydir/procs, and you
want to use the default entry point modify as specified above, include the
following in your CREATE FUNCTION statement:
EXTERNAL NAME '/u/mydir/procs/myudfs'

DB2 picks up the default entry point of the library myudfs, which is the
function modify.

v Using an export file specified using the -bE: option.
Generally speaking, you would use this link option when you have more
than one UDF in your library, and you want to access additional functions
as UDFs.
To continue the example from above, suppose that the library myudfs
contains three UDFs: modify as above, remove, and add. You identify modify
as the default entry point, as above, and indicate in the link step that
remove and add are additional entry points by including them in an export
file.
In the link step, you specify:
-bE:myudfs.exp

which identifies the export file myudfs.exp.

The export file looks like this:

* additional entry points for myudfs
#!
remove
add

Chapter 6. Building AIX Applications 103

Finally, your two CREATE FUNCTION statements for the UDFs, which are
implemented by the remove and add functions, would contain these
EXTERNAL NAME clauses:
EXTERNAL NAME '/u/mydir/procs/myudfs!remove'

and
EXTERNAL NAME '/u/mydir/procs/myudfs!add'

IBM C

This section explains how to use IBM C with the following kinds of DB2
interfaces:
v DB2 CLI
v DB2 APIs
v Embedded SQL

DB2 CLI Applications
The script file bldcli in sqllib/samples/cli contains the commands to build
a DB2 CLI program. The parameter, $1, specifies the name of your source file.

This is the only required parameter, and the only one needed for CLI
programs that do not contain embedded SQL. Building embedded SQL
programs requires a connection to the database so three optional parameters
are also provided: the second parameter, $2, specifies the name of the
database to which you want to connect; the third parameter, $3, specifies the
user ID for the database, and $4 specifies the password.

If the program contains embedded SQL, indicated by the .sqc extension, then
the embprep script is called to precompile the program, producing a program
file with a .c extension.
#! /bin/ksh
bldcli script file -- AIX
Builds a CLI program with IBM C.
Usage: bldcli <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

If an embedded SQL program, precompile and bind it.
if [[-f $1".sqc"]]
then

embprep $1 $2 $3 $4
fi

To compile 64 bit programs, uncomment the following line.
BUILD_64BIT=true

if ["$BUILD_64BIT" != ""]

104 Application Building Guide

then
CFLAGS_64=-q64

else
CFLAGS_64=

fi

Compile the error-checking utility.
xlc $CFLAGS_64 -I$DB2PATH/include -c utilcli.c

Compile the program.
xlc $CFLAGS_64 -I$DB2PATH/include -c $1.c

Link the program.
xlc $CFLAGS_64 -o $1 $1.o utilcli.o -L$DB2PATH/lib -ldb2

Compile and Link Options for bldcli

Compile Options:

xlc The IBM C compiler.

$CFLAGS_64
Contains ″-q64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

-c Perform compile only; no link. This script has separate compile and link
steps.

Link Options:

xlc Use the compiler as a front end for the linker.

$CFLAGS_64
Contains ″-q64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-o $1 Specify the executable program.

$1.o Specify the object file.

utilcli.o
Include the utility object file for error checking.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, the compiler assumes
the following path: /usr/lib:/lib.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Chapter 6. Building AIX Applications 105

To build the sample program tbinfo from the source file tbinfo.c, enter:

bldcli tbinfo

The result is an executable file, tbinfo. You can run the executable file by
entering the executable name:

tbinfo

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, dbusemx, from
the source file dbusemx.sqc:
1. If connecting to the sample database on the same instance, enter:

bldcli dbusemx

2. If connecting to another database on the same instance, also enter the
database name:

bldcli dbusemx database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldcli dbusemx database userid password

The result is an executable file, dbusemx.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
dbusemx

2. If accessing another database on the same instance, enter the executable
name and the database name:

dbusemx database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

dbusemx database userid password

DB2 CLI Applications with DB2 APIs
DB2 includes CLI sample programs that use DB2 APIs to create and drop a
database in order to demonstrate using CLI functions on more than one
database. The descriptions of the CLI sample programs in Table 7 on page 22
indicates the samples that use DB2 APIs.

The script file bldapi in sqllib/samples/cli contains the commands to build
a DB2 CLI program with DB2 APIs. This file compiles and links in the
utilapi utility file, which contains the DB2 APIs to create and drop a
database. This is the only difference between this file and the bldcli script.

106 Application Building Guide

Please see “DB2 CLI Applications” on page 104 for the compile and link
options common to both bldapi and bldcli.

To build the sample program dbmconn from the source file dbmconn.c, enter:

bldapi dbmconn

The result is an executable file dbmconn. You can run the executable file by
entering the executable name:

dbmconn

DB2 CLI Stored Procedures
The script file bldclisp in sqllib/samples/cli contains the commands to
build a DB2 CLI stored procedure. The parameter, $1, specifies the name of
your source file; $2, specifies the stored procedure function that is the entry
point to the shared library.
#! /bin/ksh
bldclisp script file -- AIX
Builds a CLI stored procedure in IBM C.
Usage: bldclisp <prog_name> [<entry_point>]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

To compile 64 bit programs, uncomment the following line.
BUILD_64BIT=true

if ["$BUILD_64BIT" != ""]
then

CFLAGS_64=-q64
else

CFLAGS_64=
fi

Compile the error-checking utility.
xlc $CFLAGS_64 -I$DB2PATH/include -c utilcli.c

Compile the program.
xlc $CFLAGS_64 -I$DB2PATH/include -c $1.c

Link the program.
xlc $CFLAGS_64 -o $1 $1.o utilcli.o -L$DB2PATH/lib \

-ldb2 -lm -H512 -T512 -bE:$1.exp -e $2

Copy the shared library to the sqllib/function subdirectory.
Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Chapter 6. Building AIX Applications 107

Compile and Link Options for bldclisp

Compile Options:

xlc The IBM C compiler.

$CFLAGS_64
Contains ″-q64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

Link Options:

xlc Use the compiler as a front end for the linker.

$CFLAGS_64
Contains ″-q64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-o $1 Specify the executable program.

$1.o Specify the object file.

utilcli.o
Include the utility object file for error checking.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, the compiler assumes
the following path: /usr/lib:/lib.

-ldb2 Link with the DB2 library.

-lm Link with the math library.

-H512 Specify output file alignment.

-T512 Specify output file text segment starting address.

-bE:$.exp
Specify an export file. The export file contains a list of the stored procedures.

-e $2 Specify the default entry point to the shared library.

Refer to your compiler documentation for additional compiler options.

To build the sample program spserver from the source file spserver.c, enter
the build file name, program name, and the name of the stored procedure
function that is the entry point to the shared library:

bldclisp spserver outlanguage

108 Application Building Guide

The script file copies the stored procedure to the sqllib/function directory.

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database:

db2 connect to sample

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

Then you can catalog them with this command:
db2 -td@ -vf spcreate.db2

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the shared library, spserver, you can build the CLI client
application, spclient, that calls the stored procedures within the shared
library.

You can build spclient by using the script file, bldcli. Refer to “DB2 CLI
Applications” on page 104 for details.

To access the shared library, run the sample client application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The output is
returned to the client application.

DB2 API and Embedded SQL Applications
The build file, bldapp, in sqllib/samples/c, contains the commands to build a
DB2 application program.

Chapter 6. Building AIX Applications 109

The first parameter, $1, specifies the name of your source file. This is the only
required parameter, and the only one needed for DB2 API programs that do
not contain embedded SQL. Building embedded SQL programs requires a
connection to the database so three optional parameters are also provided: the
second parameter, $2, specifies the name of the database to which you want to
connect; the third parameter, $3, specifies the user ID for the database, and $4
specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind file, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.
#! /bin/ksh
bldapp script file -- AIX
Builds a C application program.
Usage: bldapp <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

To compile 64 bit programs, uncomment the following line.
BUILD_64BIT=true

if ["$BUILD_64BIT" != ""]
then

CFLAGS_64=-q64
else

CFLAGS_64=
fi

If embedded SQL program, precompile and bind it.
if [[-f $1".sqc"]]
then

embprep $1 $2 $3 $4
Compile the utilemb.c error-checking utility.
xlc $CFLAGS_64 -I$DB2PATH/include -c utilemb.c

else
Compile the utilapi.c error-checking utility.
xlc $CFLAGS_64 -I$DB2PATH/include -c utilapi.c

fi

Compile the program.
xlc $CFLAGS_64 -I$DB2PATH/include -c $1.c

if [[-f $1".sqc"]]
then

Link the program with utilemb.o
xlc $CFLAGS_64 -o $1 $1.o utilemb.o -ldb2 -L$DB2PATH/lib

110 Application Building Guide

else
Link the program with utilapi.o
xlc $CFLAGS_64 -o $1 $1.o utilapi.o -ldb2 -L$DB2PATH/lib

fi

Compile and Link Options for bldapp

Compile Options:

xlc The IBM C compiler.

$CFLAGS_64
Contains ″-q64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-c Perform compile only; no link. Compile and link are separate steps.

Link Options:

xlc Use the compiler as a front end for the linker.

$CFLAGS_64
Contains ″-q64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-o $ Specify the executable program.

$1.o Specify the program object file.

utilemb.o
If an embedded SQL program, include the embedded SQL utility object file
for error checking.

utilapi.o
If not an embedded SQL program, include the DB2 API utility object file for
error checking.

-ldb2 Link to the database manager library.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, the compiler assumes
the following path: /usr/lib:/lib.

Refer to your compiler documentation for additional compiler options.

To build the DB2 API non-embedded SQL sample program, client, from the
source file client.c, enter:

bldapp client

The result is an executable file, client.

Chapter 6. Building AIX Applications 111

To run the executable file, enter the executable name:
client

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, updat, from the
source file updat.sqc:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, also enter the
database name:

bldapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp updat database userid password

The result is an executable file, updat.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Embedded SQL Stored Procedures
The script file bldsrv, in sqllib/samples/c, contains the commands to build a
stored procedure. The script file compiles the stored procedure into a shared
library that can be called by a client application.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the stored procedure function that is the entry point to
the shared library. The third parameter, $3, specifies the name of the database
to which you want to connect. Since the stored procedure must be built on the
same instance where the database resides, there are no parameters for user ID
and password.

Only the first two parameters, source file name and entry point, are required.
Database name is optional. If no database name is supplied, the program uses
the default sample database.

112 Application Building Guide

#! /bin/ksh
bldsrv script file -- AIX
Builds a C stored procedure
Usage: bldsrv <prog_name> <entry_point> [<db_name>]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Precompile and bind the program.
embprep $1 $3

To compile 64 bit programs, uncomment the following line.
BUILD_64BIT=true

if ["$BUILD_64BIT" != ""]
then

CFLAGS_64=-q64
else

CFLAGS_64=
fi

Compile the program.
xlc $CFLAGS_64 -I$DB2PATH/include -c $1.c

Link the program using the export file $1.exp,
creating shared library $1 with entry point $2.
xlc $CFLAGS_64 -o $1 $1.o -ldb2 -L$DB2PATH/lib -H512 -T512 -bE:$1.exp -e $2

Copy the shared library to the sqllib/function subdirectory.
Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Compile and Link Options for bldsrv

Compile Options:

xlc The IBM C compiler.

$CFLAGS_64
Contains ″-q64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-c Perform compile only; no link. Compile and link are separate steps.

Chapter 6. Building AIX Applications 113

Compile and Link Options for bldsrv

Link options:

xlc Use the compiler as a front end for the linker.

$CFLAGS_64
Contains ″-q64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-o $1 Specify the output as a shared library file.

$1.o Specify the stored procedure object file.

-ldb2 Link with the DB2 library.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, the compiler assumes
the following path: /usr/lib:/lib.

-H512 Specify output file alignment.

-T512 Specify output file text segment starting address.

-bE:$1.exp
Specify an export file. The export file contains a list of the stored procedures.

-e $1 Specify the default entry point to the shared library.

Refer to your compiler documentation for additional compiler options.

To build the sample program spserver from source file spserver.sqc, if
connecting to the sample database, enter the build file name, program name,
and the name of the stored procedure function that is the entry point to the
shared library:

bldsrv spserver outlanguage

If connecting to another database, also enter the database name:
bldsrv spserver outlanguage database

The script file copies the stored procedure to the server in the path
sqllib/function.

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database:

db2 connect to sample

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

114 Application Building Guide

Then catalog them with this command:
db2 -td@ -vf spcreate.db2

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the shared library, spserver, you can build the client
application, spclient, that accesses the shared library.

You can build spclient by using the script file, bldapp. Refer to “DB2 API and
Embedded SQL Applications” on page 109 for details.

To call the stored procedure, run the sample client application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The output is
returned to the client application.

User-Defined Functions (UDFs)
The script file bldudf, in sqllib/samples/c, contains the commands to build a
UDF. UDFs are compiled like stored procedures. They cannot contain SQL
statements. This means to build a UDF program, you do not connect to a
database, precompile, and bind the program.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the stored procedure function that is the entry point to
the shared library. The script file uses the source file name, $1, for the shared
library name.
#! /bin/ksh
bldudf script file -- AIX
Builds a C UDF library
Usage: bldudf <prog_name> <entry_point>

Set DB2PATH to where DB2 will be accessed.

Chapter 6. Building AIX Applications 115

The default is the standard instance path.
DB2PATH=$HOME/sqllib

To compile 64 bit programs, uncomment the following line.
BUILD_64BIT=true

if ["$BUILD_64BIT" != ""]
then

CFLAGS_64=-q64
else

CFLAGS_64=
fi

Compile the program.
xlc $CFLAGS_64 -I$DB2PATH/include -c $1.c

Link the program.
xlc $CFLAGS_64 -o $1 $1.o -ldb2 -ldb2apie -L$DB2PATH/lib -H512 -T512

-bE:$1.exp -e $2

Copy the shared library to the sqllib/function subdirectory.
Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Compile and Link Options for bldudf

Compile Options:

xlc The IBM C compiler.

$CFLAGS_64
Contains ″-q64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

116 Application Building Guide

Compile and Link Options for bldudf

Link Options:

xlc Use the compiler as a front end for the linker.

$CFLAGS_64
Contains ″-q64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-o $1 Specify the output as a shared library file.

$1.o Specify the shared library object file.

-ldb2 Link with the database manager library.

-ldb2apie
Link with the DB2 API Engine library to allow the use of LOB locators.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, the compiler assumes
the following path: /usr/lib:/lib.

-H512 Specify output file alignment.

-T512 Specify output file text segment starting address.

-bE:$1.exp
Specify an export file. The export file contains a list of the UDFs.

-e $2 Specify the default entry point to the shared library.

Refer to your compiler documentation for additional compiler options. Refer to
“UDFs and the CREATE FUNCTION Statement” on page 103 for more information
on creating UDFs.

To build the user-defined function program, udfsrv, from the source file
udfsrv.c, enter the build file name, program name, and UDF function that is
the entry point to the shared library:

bldudf udfsrv ScalarUDF

The script file copies the UDF to the sqllib/function directory.

If necessary, set the file mode for the UDF so the client application can access
it.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. DB2 CLI and embedded SQL versions of this program are provided.

Chapter 6. Building AIX Applications 117

You can build the DB2 CLI udfcli program from the source file udfcli.c, in
sqllib/samples/cli, using the script file bldcli. Refer to “DB2 CLI
Applications” on page 104 for details.

You can build the embedded SQL udfcli program from the source file
udfcli.sqc, in sqllib/samples/c, using the script file bldapp. Refer to “DB2

API and Embedded SQL Applications” on page 109 for details.

To call the UDF, run the sample calling application by entering the executable
name:

udfcli

The calling application calls the ScalarUDF function from the udfsrv library.

Multi-threaded Applications
C multi-threaded applications on AIX Version 4 need to be compiled and
linked with the xlc_r compiler instead of the xlc compiler or, for C++, with
the xlC_r compiler instead of the xlC compiler. If you are using AIX 4.3 or
later for 32-bit applications, use the xlc_r7 or xlC_r7 compiler. The _r
versions (as well as the other multi-threaded compiler front ends) set the
appropriate preprocessor defines for multi-threaded compilation, and supply
the appropriate threaded library names to the linker.

Additional information about compiler and link flag settings using the
multi-threaded compiler front ends can be obtained from /etc/xlC.cfg when
using the 3.1 compiler, or /etc/ibmcxx.cfg when using the 3.6 or newer
compilers.

The script file bldmt, in sqllib/samples/c, contains the commands to build an
embedded SQL multi-threaded program. The first parameter, $1, specifies the
name of your source file. The second parameter, $2, specifies the name of the
database to which you want to connect. Parameter $3 specifies the user ID for
the database, and $4 specifies the password. Only the first parameter, the
source file name, is required. Database name, user ID, and password are
optional. If no database name is supplied, the program uses the default
sample database.
#! /bin/ksh
bldmt script file -- AIX
Builds a C multi-threaded embedded SQL program.
Usage: bldmt <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Precompile and bind the program.
embprep $1 $2 $3 $4

118 Application Building Guide

To compile 64 bit programs, uncomment the following line.
BUILD_64BIT=true

if ["$BUILD_64BIT" != ""]
then

CFLAGS_64=-q64
else

CFLAGS_64=
fi

Compile the program.
xlc_r $CFLAGS_64 -I$DB2PATH/include -c $1.c

Link the program.
xlc_r $CFLAGS_64 -o $1 $1.o -L$DB2PATH/lib -ldb2

Besides the xlc_r compiler, discussed above, and the absence of a utility file
linked in, the compile and link options are the same as those used for the
embedded SQL script file, bldapp. For information on these options, see “DB2
API and Embedded SQL Applications” on page 109.

To build the multi-threaded sample program, thdsrver, from the source file
thdsrver.sqc, enter:

bldmt thdsrver

The result is an executable file, thdsrver. To run the executable file against the
sample database, enter the executable name:

thdsrver

IBM C Set++

This section contains the following topics:
v DB2 API and Embedded SQL Applications
v Embedded SQL Stored Procedures
v User-Defined Functions (UDFs)
v Multi-threaded Applications

DB2 API and Embedded SQL Applications
The build file, bldapp, in sqllib/samples/cpp, contains the commands to build
DB2 API and embedded SQL applications.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter, and the only one needed for DB2 API programs that do
not contain embedded SQL. Building embedded SQL programs requires a
connection to the database so three optional parameters are also provided: the

Chapter 6. Building AIX Applications 119

second parameter, $2, specifies the name of the database to which you want to
connect; the third parameter, $3, specifies the user ID for the database, and $4
specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind file, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.
#! /bin/ksh
bldapp script file -- AIX
Builds a C++ application program.
Usage: bldapp <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

To compile 64 bit programs, uncomment the following line.
BUILD_64BIT=true

if ["$BUILD_64BIT" != ""]
then

CFLAGS_64=-q64
else

CFLAGS_64=
fi

If an embedded SQL program, precompile and bind it.
if [[-f $1".sqC"]]
then

embprep $1 $2 $3 $4
Compile the utilemb.C error-checking utility.
xlC $CFLAGS_64 -I$DB2PATH/include -c utilemb.C

else
Compile the utilapi.C error-checking utility.
xlC $CFLAGS_64 -I$DB2PATH/include -c utilapi.C

fi

Compile the program.
xlC $CFLAGS_64 -I$DB2PATH/include -c $1.C

if [[-f $1".sqC"]]
then

Link the program with utilemb.o
xlC $CFLAGS_64 -o $1 $1.o utilemb.o -ldb2 -L$DB2PATH/lib

else
Link the program with utilapi.o
xlC $CFLAGS_64 -o $1 $1.o utilapi.o -ldb2 -L$DB2PATH/lib

fi

120 Application Building Guide

Compile and Link Options for bldapp

Compile Options:

xlC The IBM C Set++ compiler.

$CFLAGS_64
Contains ″-q64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-c Perform compile only; no link. Compile and link are separate steps.

Link options:

xlC Use the compiler as a front end for the linker.

$CFLAGS_64
Contains ″-q64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-o $1 Specify the executable program.

-o $1 Specify the program object file.

utilapi.o
Include the API utility object file for non-embedded SQL programs.

utilemb.o
Include the embedded SQL utility object file for embedded SQL programs.

-ldb2 Link with the database manager library.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, the compiler assumes
the following path /usr/lib:/lib.

Refer to your compiler documentation for additional compiler options.

To build the non-embedded SQL sample program client from the source file
client.C, enter:

bldapp client

The result is an executable file, client. You can run the executable file against
the sample database by entering:

client

Chapter 6. Building AIX Applications 121

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, updat, from the
source file updat.sqC:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, also enter the
database name:

bldapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp updat database userid password

The result is an executable file, updat.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Embedded SQL Stored Procedures

Note: Please see the information for building C++ stored procedures in “C++
Considerations for UDFs and Stored Procedures” on page 60.

The script file bldsrv, in sqllib/samples/cpp, contains the commands to build
a stored procedure. The script file compiles the stored procedure into a shared
library that can be called by a client application.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the stored procedure function that is the entry point to
the shared library. The third parameter, $3, specifies the name of the database
to which you want to connect. Since the stored procedure must be build on
the same instance where the database resides, you do not need parameters for
user ID and password.

Only the first two parameters, source file name and entry point, are required.
Database name is optional. If no database name is supplied, the program uses
the default sample database.

122 Application Building Guide

#! /bin/ksh
bldsrv script file -- AIX
Builds a C++ stored procedure
Usage: bldsrv <prog_name> [<db_name>]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Precompile and bind the program.
embprep $1 $2

To compile 64 bit programs, uncomment the following line.
BUILD_64BIT=true

if ["$BUILD_64BIT" != ""]
then

CFLAGS_64=-q64
LFLAGS_64=-X64

else
CFLAGS_64=
LFLAGS_64=

fi

Compile the program.
xlC $CFLAGS_64 -I$DB2PATH/include -c $1.C

Link using export file $1.exp, creating shared library $1
makeC++SharedLib $LFLAGS_64 -p 1024 -o $1 $1.o -L$DB2PATH/lib -ldb2 -E $1.exp

Copy the shared library to the sqllib/function subdirectory.
Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Compile and Link Options for bldsrv

Compile Options:

xlC The IBM C Set++ compiler.

$CFLAGS_64
Contains ″-q64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-c Perform compile only; no link. Compile and link are separate steps.

Chapter 6. Building AIX Applications 123

Compile and Link Options for bldsrv

Link options:

makeC++SharedLib
Linker script for stored procedures with static constructors.

$LFLAGS_64
Contains ″-X64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-p 1024
Set the priority to the arbitrary value of 1024.

-o $1 Specify the output as a shared library file.

$1.o Specify the program object file.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, the compiler assumes
the following path: /usr/lib:/lib.

-ldb2 Link with the database manager library.

-E $1.exp
Specify an export file. The export file contains a list of the stored procedures.

-e $2 Specify an entry point to the shared library.

Refer to your compiler documentation for additional compiler options.

To build the sample program spserver from the source file spserver.sqC, if
connecting to the sample database, enter the build file name, program name,
and the name of the stored procedure function that is the entry point to the
shared library:

bldsrv spserver outlanguage

If connecting to another database, also enter the database name:
bldsrv spserver outlanguage database

The script file copies the shared library to the server in the path
sqllib/function.

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database:

db2 connect to sample

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

124 Application Building Guide

Then catalog them with this command:
db2 -td@ -vf spcreate.db2

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the shared library, spserver, you can build the client
application spclient that calls the stored procedures within it.

You can build spclient by using the script file, bldapp. Refer to “DB2 API and
Embedded SQL Applications” on page 119 for details.

To call the stored procedure, run the sample client application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the shared library, spserver, which executes a
number of stored procedure functions on the server database, and then
returns the output to the client application.

User-Defined Functions (UDFs)

Note: Please see the information for building C++ UDFs in “C++
Considerations for UDFs and Stored Procedures” on page 60.

The script file bldudf, in sqllib/samples/cpp, contains the commands to build
a UDF. UDFs cannot contain embedded SQL statements. Therefore, to build a
UDF program, you do not need to connect to a database, precompile, and
bind the program.

Parameter $1 specifies the name of your source file. Parameter $2 specifies the
user-defined function that is the entry point to the shared library. The script
file uses the source file name, $1, for the shared library name.
#! /bin/ksh
bldudf script file -- AIX
Builds a C++ UDF library

Chapter 6. Building AIX Applications 125

Usage: bldudf <prog_name>

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

To compile 64 bit programs, uncomment the following line.
BUILD_64BIT=true

if ["$BUILD_64BIT" != ""]
then

CFLAGS_64=-q64
LFLAGS_64=-X64

else
CFLAGS_64=
LFLAGS_64=

fi

Compile the program.
if [[-f $1".c"]]
then

xlC $CFLAGS_64 -I$DB2PATH/include -c $1.c
elif [[-f $1".C"]]
then

xlC $CFLAGS_64 -I$DB2PATH/include -c $1.C
fi

Link using export file $1.exp, creating shared library $1
makeC++SharedLib $LFLAGS_64 -p 1024 -o $1 $1.o -L$DB2PATH/lib -ldb2 -ldb2apie

-E $1.exp

Copy the shared library to the sqllib/function subdirectory.
Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Compile and Link Options for bldudf

Compile Options:

xlC The IBM C Set++ compiler.

$CFLAGS_64
Contains ″-q64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

126 Application Building Guide

Compile and Link Options for bldudf

Link Options:

makeC++SharedLib
Linker script for stored procedures with static constructors.

$LFLAGS_64
Contains ″-X64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-p 1024
Set the priority to the arbitrary value of 1024.

-o $1 Specify the output as a shared library file.

$1.o Specify the program object file.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, the compiler assumes
the following path: /usr/lib:/lib.

-ldb2 Link with the database manager library.

-ldb2apie
Link with the DB2 API Engine library to allow the use of LOB locators.

-E $1.exp
Specify an export file. The export file contains a list of the stored procedures.

Refer to your compiler documentation for additional compiler options. Refer to
“UDFs and the CREATE FUNCTION Statement” on page 103 for more information
on creating UDFs.

To build the user-defined function program udfsrv from the source file
udfsrv.c, enter the build file name, program name, and UDF function that is
the entry point to the shared library:

bldudf udfsrv ScalarUDF

The script file copies the UDF to the server in the path sqllib/function.

If necessary, set the file mode for the UDF so the DB2 instance can run it.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. You can build the udfcli program from the udfcli.sqC source file in
sqllib/samples/cpp using the script file bldapp. Refer to “DB2 API and
Embedded SQL Applications” on page 119 for details.

To call the UDF, run the sample calling application by entering the executable
name:

udfcli

Chapter 6. Building AIX Applications 127

The calling application calls the ScalarUDF function in the udfsrv library.

Multi-threaded Applications
C++ multi-threaded applications on AIX Version 4 need to be compiled and
linked with the xlC_r compiler instead of the xlC compiler or, for C, with the
xlc_r compiler instead of the xlc compiler. If you are using AIX 4.3 or later
for 32-bit applications, use the xlC_r7 or xlc_r7 compiler. The _r versions (as
well as the other multi-threaded compiler front ends) set the appropriate
preprocessor defines for multi-threaded compilation and supply the
appropriate threaded library names to the linker.

Additional information about compiler and link flag settings using the
multi-threaded compiler front ends can be obtained from /etc/xlC.cfg when
using the 3.1 compiler, or /etc/ibmcxx.cfg when using the 3.6 or newer
compilers.

The script file bldmt, in sqllib/samples/cpp, contains the commands to build
an embedded SQL multi-threaded program.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. Parameter $3 specifies the user ID for the database, and $4 specifies
the password. Only the first parameter, the source file name, is required.
Database name, user ID, and password are optional. If no database name is
supplied, the program uses the default sample database.
#! /bin/ksh
bldmt script file -- AIX
Builds a C++ multi-threaded embedded SQL program
Usage: bldmt <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Precompile and bind the program.
embprep $1 $2 $3 $4

To compile 64 bit programs, uncomment the following line.
BUILD_64BIT=true

if ["$BUILD_64BIT" != ""]
then

CFLAGS_64=-q64
else

CFLAGS_64=
fi

Compile the program.
xlC_r $CFLAGS_64 -I$DB2PATH/include -c $1.C

128 Application Building Guide

Link the program.
xlC_r $CFLAGS_64 -o $1 $1.o -L$DB2PATH/lib -ldb2

Besides the xlC_r compiler, discussed above, and no utility file linked in, the
compile and link options are the same as those used in the embedded SQL
script file, bldapp. For information on these options, see “DB2 API and
Embedded SQL Applications” on page 119.

To build the multi-threaded sample program, thdsrver, from the source file
thdsrver.sqC, enter:

bldmt thdsrver

The result is an executable file, thdsrver. To run the executable file against the
sample database, enter the executable name:

thdsrver

VisualAge C++ Version 4.0

This VisualAge C++ compiler is for AIX, OS/2, and Windows 32-bit operating
systems. The information in this section applies to all these platforms.

The VisualAge C++ compiler differs from other compilers documented in this
book. To compile a program with VisualAge C++ Version 4.0, you must first
make a configuration file. See the documentation that comes with the
compiler to learn more about this.

DB2 provides configuration files for the different types of DB2 programs you
can build with the VisualAge C++ compiler. To use a DB2 configuration file,
you first set an environment variable to the program name you wish to
compile. Then you compile the program with a command supplied by
VisualAge C++. Here are the configuration files provided by DB2, and the
sections describing how they can be used to compile your programs:

cli.icc
DB2 CLI configuration file. For details, see “DB2 CLI Applications” on
page 130.

cliapi.icc
DB2 CLI with DB2 APIs configuration file. For details, see “DB2 CLI
Applications with DB2 APIs” on page 132.

clis.icc
DB2 CLI stored procedure configuration file. For details, see “DB2 CLI
Stored Procedures” on page 133.

Chapter 6. Building AIX Applications 129

api.icc
DB2 API configuration file. For details, see “DB2 API Applications” on
page 136.

emb.icc
Embedded SQL configuration file. For details, see “Embedded SQL
Applications” on page 137.

stp.icc
Embedded SQL stored procedure configuration file. For details, see
“Embedded SQL Stored Procedures” on page 139.

udf.icc
User-defined function configuration file. For details, see “User-Defined
Functions (UDFs)” on page 142.

DB2 CLI Applications
The configuration file, cli.icc, in sqllib/samples/cli on AIX, and in
%DB2PATH%\samples\cli on OS/2 and Windows 32-bit operating systems,
allows you to build DB2 CLI programs.
// cli.icc configuration file for DB2 CLI applications
// for VisualAge C++ Version 4.0
// To use on AIX, enter: 'export CLI=prog_name'
// To use on OS/2 and Windows, enter: 'set CLI=prog_name'
// Then compile the program by entering: 'vacbld cli.icc'

if defined($CLI)
{

prog_name = $CLI
}
else
{

error "Environment Variable CLI is not defined."
}

infile = prog_name".c"
utilcli = "utilcli.c"

if defined($__TOS_AIX__)
{

// Set db2path to where DB2 will be accessed.
// The default is the standard instance path.
db2path = $HOME"/sqllib"
outfile = prog_name
group lib = "libdb2.a"
option opts = link(libsearchpath, db2path"/lib"),

incl(searchPath, db2path"/include")
}
else // if defined($__TOS_OS2__) | defined($__TOS_WIN__)
{

db2path = $DB2PATH
outfile = prog_name".exe"
group lib = "db2cli.lib"

130 Application Building Guide

option opts = link(libsearchpath, db2path"\\lib"),
incl(searchPath, db2path"\\include")

}

option opts
{

target type(exe) outfile
{

source infile
source utilcli
source lib

}
}

VisualAge C++ Version 4.0 defines one of the following environment variables
depending on the operating system on which it is installed: __TOS_AIX__,
__TOS_OS2__, __TOS_WIN__.

To use the configuration file to build the DB2 CLI sample program tbinfo
from the source file tbinfo.c, do the following:
1. Set the CLI environment variable to the program name by entering:

export CLI=tbinfo

2. If you have a cli.ics file in your working directory, produced by building
a different program with the cli.icc file, delete the cli.ics file with this
command:

rm cli.ics

An existing cli.ics file produced for the same program you are going to
build again does not have to be deleted.

3. Compile the sample program by entering:
vacbld cli.icc

Note: The vacbld command is provided by VisualAge C++ Version 4.0.

The result is an executable file, tbinfo. You can run the program by entering
the executable name:

tbinfo

Building and Running Embedded SQL Applications
You can use the cli.icc configuration file to compile an embedded SQL
program after the program is precompiled with the embprep file on AIX,
embprep.cmd on OS/2, or embprep.bat on Windows 32-bit operating systems.
This file precompiles the source file and binds the program to the database.

There are three ways to precompile the embedded SQL application, dbusemx,
from the source file dbusemx.sqc:
1. If connecting to the sample database on the same instance, enter:

Chapter 6. Building AIX Applications 131

embprep dbusemx

2. If connecting to another database on the same instance, also enter the
database name:

embprep dbusemx database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

embprep dbusemx database userid password

The result is a precompiled C file, dbusemx.c.

After it is precompiled, the C file can be compiled with the cli.icc file, as
follows:
1. Set the CLI environment variable to the program name by entering:

export CLI=dbusemx

2. If you have a cli.ics file in your working directory, produced by building
a different program with the cli.icc file, delete the cli.ics file with this
command:

rm cli.ics

An existing cli.ics file produced for the same program you are going to
build again does not have to be deleted.

3. Compile the sample program by entering:
vacbld cli.icc

Note: The vacbld command is provided by VisualAge C++ Version 4.0.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
dbusemx

2. If accessing another database on the same instance, enter the executable
name and the database name:

dbusemx database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

dbusemx database userid password

DB2 CLI Applications with DB2 APIs
DB2 includes CLI sample programs that use DB2 APIs to create and drop a
database in order to demonstrate using CLI functions with more than one
database. The descriptions of the CLI sample programs in Table 7 on page 22
indicates the samples that use DB2 APIs. The configuration file, cliapi.icc, in

132 Application Building Guide

sqllib/samples/cli on AIX, and in %DB2PATH%\samples\cli on OS/2 and
Windows 32-bit operating systems, allows you to build DB2 CLI programs
with DB2 APIs.

This file compiles and links in the utilapi utility file, which contains the DB2
APIs to create and drop a database. This is the only difference between this
file and the cli.icc configuration file.

To build the DB2 CLI sample program, dbmconn, from the source file
dbmconn.c, do the following:
1. Set the CLIAPI environment variable to the program name by entering:

export CLIAPI=dbmconn

2. If you have a cliapi.ics file in your working directory, produced by
building a different program with the cliapi.icc file, delete the
cliapi.ics file with this command:

rm cliapi.ics

An existing cliapi.ics file produced for the same program you are going
to build again does not have to be deleted.

3. Compile the sample program by entering:
vacbld cliapi.icc

Note: The vacbld command is provided by VisualAge C++ Version 4.0.

The result is an executable file, dbmconn. You can run the program by entering
the executable name:

dbmconn

DB2 CLI Stored Procedures
The configuration file, clis.icc, in sqllib/samples/cli on AIX, and in
%DB2PATH%\samples\cli on OS/2 and Windows 32-bit operating systems,
allows you to build DB2 CLI stored procedures.
// clis.icc configuration file for DB2 CLI stored procedures
// for VisualAge C++ Version 4.0
// To use on AIX, enter: 'export CLIS=prog_name'
// To use on OS/2 and Windows, enter: 'set CLIS=prog_name'
// Then compile the program by entering: 'vacbld clis.icc'

if defined($CLIS)
{

prog_name = $CLIS
}
else
{

error "Environment Variable CLIS is not defined."
}

Chapter 6. Building AIX Applications 133

infile = prog_name".c"
utilcli = "utilcli.c"
expfile = prog_name".exp"

if defined($__TOS_AIX__)
{

// Set db2path to where DB2 will be accessed.
// The default is the standard instance path.
db2path = $HOME"/sqllib"
outfile = prog_name
group lib = "libdb2.a"
option opts = link(exportList, expfile),

link(libsearchpath, db2path"/lib"),
incl(searchPath, db2path"/include")

cpcmd = "cp"
funcdir = db2path"/function"

}
else /* if defined($__TOS_OS2__) | defined($__TOS_WIN__) */
{

db2path = $DB2PATH
outfile = prog_name".dll"
if defined($__TOS_WIN__)
{

expfile = prog_name"v4.exp"
}
group lib = "db2cli.lib"
option opts = link(exportList, expfile),

link(libsearchpath, db2path"\\lib"),
incl(searchPath, db2path"\\include")

cpcmd = "copy"
funcdir = db2path"\\function"

}

option opts
{

target type(dll) outfile
{

source infile
source utilcli
source lib

}
}

if defined($__TOS_AIX__)
{

rmcmd = "rm -f"
run after rmcmd " " funcdir "/" outfile

}

run after cpcmd " " outfile " " funcdir

VisualAge C++ Version 4.0 defines one of the following environment variables
depending on the operating system on which it is installed: __TOS_AIX__,
__TOS_OS2__, __TOS_WIN__.

134 Application Building Guide

To use the configuration file to build the DB2 CLI stored procedure spserver
from the source file spserver.c, do the following:
1. Set the CLIS environment variable to the program name by entering:

export CLIS=spserver

2. If you have a clis.ics file in your working directory, produced by
building a different program with the clis.icc file, delete the clis.ics
file with this command:

rm clis.ics

An existing clis.ics file produced for the same program you are going to
build again does not have to be deleted.

3. Compile the sample program by entering:
vacbld clis.icc

Note: The vacbld command is provided by VisualAge C++ Version 4.0.

The stored procedure is copied to the server in the path sqllib/function on
AIX, and in the path %DB2PATH%\function on OS/2 and Windows 32-bit
operating systems.

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database with the user ID and password of the
instance where the database is located:

db2 connect to sample userid password

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

Then catalog them with this command:
db2 -td@ -vf spcreate.db2

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the stored procedure spserver, you can build the CLI client
application spclient that calls the stored procedure. You can build spclient
by using the configuration file, cli.icc. Refer to “DB2 CLI Applications” on
page 130 for details.

To call the stored procedure, run the sample client application by entering:

spclient database userid password

Chapter 6. Building AIX Applications 135

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its remote alias, or some other name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The output is
returned to the client application.

DB2 API Applications
The configuration file, api.icc, in sqllib/samples/c and in
sqllib/samples/cpp on AIX, and in %DB2PATH%\samples\c and in
%DB2PATH%\samples\c on OS/2 and Windows 32-bit operating systems, allows
you to build DB2 API programs in C or C++.
// api.icc configuration file for DB2 API programs
// for VisualAge C++ Version 4.0
// To use on AIX, enter: 'export API=prog_name'
// To use on OS/2 and Windows, enter: 'set API=prog_name'
// Then compile the program by entering: 'vacbld api.icc'

if defined($API)
{

prog_name = $API
}
else
{

error "Environment Variable API is not defined."
}

infile = prog_name".c"
util = "utilapi.c"

if defined($__TOS_AIX__)
{

// Set db2path to where DB2 will be accessed.
// The default is the standard instance path.
db2path = $HOME"/sqllib"
outfile = prog_name
group lib = "libdb2.a"
option opts = link(libsearchpath, db2path"/lib"),

incl(searchPath, db2path"/include")
}
else // if defined($__TOS_OS2__) | defined($__TOS_WIN__)
{

db2path = $DB2PATH
outfile = prog_name".exe"
group lib = "db2api.lib"

136 Application Building Guide

option opts = link(libsearchpath, db2path"\\lib"),
incl(searchPath, db2path"\\include")

}

option opts
{

target type(exe) outfile
{

source infile
source util
source lib

}
}

VisualAge C++ Version 4.0 defines one of the following environment variables
depending on the operating system on which it is installed: __TOS_AIX__,
__TOS_OS2__, __TOS_WIN__.

To use the configuration file to build the DB2 API sample program client
from the source file client.c, do the following:
1. Set the API environment variable to the program name by entering:

export API=client

2. If you have an api.ics file in your working directory, produced by
building a different program with the api.icc file, delete the api.ics file
with this command:

rm api.ics

An existing api.ics file produced for the same program you are going to
build again does not have to be deleted.

3. Compile the sample program by entering:
vacbld api.icc

Note: The vacbld command is provided by VisualAge C++ Version 4.0.

The result is an executable file, client. You can run the program by entering
the executable name:

client

Embedded SQL Applications
The configuration file, emb.icc, in sqllib/samples/c and sqllib/samples/cpp
on AIX, and in %DB2PATH%\samples\c and %DB2PATH%\samples\cpp on OS/2
and Windows 32-bit operating systems, allows you to build DB2 embedded
SQL applications in C and C++.
// emb.icc configuration file for embedded SQL applications
// for VisualAge C++ Version 4.0
// To use on AIX, enter: 'export EMB=prog_name'
// To use on OS/2 and Windows, enter: 'set EMB=prog_name'

Chapter 6. Building AIX Applications 137

// Then compile the program by entering: 'vacbld emb.icc'

if defined($EMB)
{

prog_name = $EMB
}
else
{

error "Environment Variable EMB is not defined."
}

// To connect to another database, replace "sample"
// For user ID and password, update 'user' and 'passwd'
// and take out the comment in the line: 'run before "embprep "'
dbname = "sample"
user = ""
passwd = ""

// Precompiling the source program file
run before "embprep " prog_name " " dbname // " " user " " passwd

infile = prog_name".c"
util = "utilemb.sqc"

if defined($__TOS_AIX__)
{

// Set db2path to where DB2 will be accessed.
// The default is the standard instance path.
db2path = $HOME"/sqllib"
outfile = prog_name
group lib = "libdb2.a"
option opts = link(libsearchpath, db2path"/lib"),

incl(searchPath, db2path"/include")
}
else // if defined($__TOS_OS2__) | defined($__TOS_WIN__)
{

db2path = $DB2PATH
outfile = prog_name".exe"
group lib = "db2api.lib"
option opts = link(libsearchpath, db2path"\\lib"),

incl(searchPath, db2path"\\include")
}

option opts
{

target type(exe) outfile
{

source infile
source util
source lib

}
}

138 Application Building Guide

VisualAge C++ Version 4.0 defines one of the following environment variables
depending on the operating system on which it is installed: __TOS_AIX__,
__TOS_OS2__, __TOS_WIN__.

To use the configuration file to build the embedded SQL application updat
from the source file updat.sqc, do the following:
1. Set the EMB environment variable to the program name by entering:

export EMB=updat

2. If you have an emb.ics file in your working directory, produced by
building a different program with the emb.icc file, delete the emb.ics file
with this command:

rm emb.ics

An existing emb.ics file produced for the same program you are going to
build again does not have to be deleted.

3. Compile the sample program by entering:
vacbld emb.icc

Note: The vacbld command is provided by VisualAge C++ Version 4.0.

The result is an executable file, updat. You can run the program by entering
the executable name:

updat

Embedded SQL Stored Procedures
The configuration file, stp.icc, in sqllib/samples/c and sqllib/samples/cpp
on AIX, and in %DB2PATH%\samples\c and %DB2PATH%\samples\cpp on OS/2
and Windows 32-bit operating systems, allows you to build DB2 embedded
SQL stored procedures in C and C++.
// stp.icc configuration file for embedded SQL stored procedures
// for VisualAge C++ Version 4.0
// To use on AIX, enter: 'export STP=prog_name'
// To use on OS/2 and Windows, enter: 'set STP=prog_name'
// Then compile the program by entering: 'vacbld emb.icc'

if defined($STP)
{

prog_name = $STP
}
else
{

error "Environment Variable STP is not defined."
}

// To connect to another database, replace "sample"
// For user ID and password, update 'user' and 'passwd'
// and take out the comment in the line: 'run before "embprep "'
dbname = "sample"

Chapter 6. Building AIX Applications 139

user = ""
passwd = ""

// Precompiling the source program file
run before "embprep " prog_name " " dbname // " " user " " passwd

infile = prog_name".c"
expfile = prog_name".exp"

if defined($__TOS_AIX__)
{

// Set db2path to where DB2 will be accessed.
// The default is the standard instance path.
db2path = $HOME"/sqllib"
outfile = prog_name
group lib = "libdb2.a"
option opts = link(exportList, expfile),

link(libsearchpath, db2path"/lib"),
incl(searchPath, db2path"/include")

cpcmd = "cp"
funcdir = db2path"/function"

}
else // if defined($__TOS_OS2__) | defined($__TOS_WIN__)
{

db2path = $DB2PATH
outfile = prog_name".dll"
if defined($__TOS_WIN__)
{

expfile = prog_name"v4.exp"
}
group lib = "db2api.lib"
option opts = link(exportList, expfile),

link(libsearchpath, db2path"\\lib"),
incl(searchPath, db2path"\\include")

cpcmd = "copy"
funcdir = db2path"\\function"

}

option opts
{

target type(dll) outfile
{

source infile
source lib

}
}

if defined($__TOS_AIX__)
{

rmcmd = "rm -f"
run after rmcmd " " funcdir "/" outfile

}

run after cpcmd " " outfile " " funcdir

140 Application Building Guide

VisualAge C++ Version 4.0 defines one of the following environment variables
depending on the operating system on which it is installed: __TOS_AIX__,
__TOS_OS2__, __TOS_WIN__.

To use the configuration file to build the embedded SQL stored procedure
spserver from the source file spserver.sqc, do the following:
1. Set the STP environment variable to the program name by entering:

export STP=spserver

2. If you have an stp.ics file in your working directory, produced by
building a different program with the stp.icc file, delete the stp.ics file
with this command:

rm stp.ics

An existing stp.ics file produced for the same program you are going to
build again does not have to be deleted.

3. Compile the sample program by entering:
vacbld stp.icc

Note: The vacbld command is provided by VisualAge C++ Version 4.0.

The stored procedure is copied to the server in the path sqllib/function on
AIX, and in the path %DB2PATH%\function on OS/2 and Windows 32-bit
operating systems.

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database:

db2 connect to sample

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

Then catalog them with this command:
db2 -td@ -vf spcreate.db2

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the stored procedure, spserver, you can build the client
application, spclient, that calls the stored procedure. You can build spclient
using the configuration file, emb.icc. Refer to “Embedded SQL Applications”
on page 137 for details.

Chapter 6. Building AIX Applications 141

To call the stored procedure, run the sample client application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its remote alias, or some other name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The output is
returned to the client application.

User-Defined Functions (UDFs)
The configuration file, udf.icc, in sqllib/samples/c and sqllib/samples/cpp
on AIX, and in %DB2PATH%\samples\c and %DB2PATH%\samples\cpp on OS/2
and Windows 32-bit operating systems, allows you to build user-defined
functions in C and C++.
// udf.icc configuration file for user-defined functions
// for VisualAge C++ Version 4.0
// To use on AIX, enter: 'export UDF=prog_name'
// To use on OS/2 and Windows, enter: 'set UDF=prog_name'
// Then compile the program by entering: 'vacbld udf.icc'

if defined($UDF)
{

prog_name = $UDF
}
else
{

error "Environment Variable UDF is not defined."
}

infile = prog_name".c"
expfile = prog_name".exp"

if defined($__TOS_AIX__)
{

// Set db2path to where DB2 will be accessed.
// The default is the standard instance path.
db2path = $HOME"/sqllib"
outfile = prog_name
group lib = "libdb2.a", "libdb2apie.a"
option opts = link(exportList, expfile),

link(libsearchpath, db2path"/lib"),
incl(searchPath, db2path"/include")

142 Application Building Guide

cpcmd = "cp"
funcdir = db2path"/function"

}
else // if defined($__TOS_OS2__) | defined($__TOS_WIN__)
{

db2path = $DB2PATH
outfile = prog_name".dll"
if defined($__TOS_WIN__)
{

expfile = prog_name"v4.exp"
}
group lib = "db2api.lib", "db2apie.lib"
option opts = link(exportList, expfile),

link(libsearchpath, db2path"\\lib"),
incl(searchPath, db2path"\\include")

cpcmd = "copy"
funcdir = db2path"\\function"

}

option opts
{

target type(dll) outfile
{

source infile
source lib

}
}
if defined($__TOS_AIX__)
{

rmcmd = "rm -f"
run after rmcmd " " funcdir "/" outfile

}

run after cpcmd " " outfile " " funcdir

VisualAge C++ Version 4.0 defines one of the following environment variables
depending on the operating system on which it is installed: __TOS_AIX__,
__TOS_OS2__, __TOS_WIN__.

To use the configuration file to build the user-defined function program
udfsrv from the source file udf.c, do the following:
1. Set the UDF environment variable to the program name by entering:

export UDF=udfsrv

2. If you have a udf.ics file in your working directory, produced by building
a different program with the udf.icc file, delete the udf.ics file with this
command:

rm udf.ics

An existing udf.ics file produced for the same program you are going to
build again does not have to be deleted.

Chapter 6. Building AIX Applications 143

3. Compile the sample program by entering:
vacbld udf.icc

Note: The vacbld command is provided by VisualAge C++ Version 4.0.

The UDF library is copied to the server in the path sqllib/function.

If necessary, set the file mode for the user-defined function so the DB2
instance can run it.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. DB2 CLI and embedded SQL versions of this program are provided.

You can build the DB2 CLI udfcli program from the source file udfcli.c, in
sqllib/samples/cli on AIX, and in %DB2PATH%\samples\cli on OS/2 and
Windows 32-bit operating systems, by using the configuration file cli.icc.
Refer to “DB2 CLI Applications” on page 130 for details.

You can build the embedded SQL udfcli program from the source file
udfcli.sqc, in sqllib/samples/c on AIX, and in %DB2PATH%\samples\cli on
OS/2 and Windows 32-bit operating systems, by using the configuration file
emb.icc. Refer to “Embedded SQL Applications” on page 137 for details.

To call the UDF, run the sample calling application by entering the executable
name:

udfcli

The calling application calls the ScalarUDF function from the udfsrv library.

IBM COBOL Set for AIX

This section includes the following topics:
v Using the Compiler
v DB2 API and Embedded SQL Applications
v Embedded SQL Stored Procedures

Using the Compiler
If you develop applications that contain embedded SQL and DB2 API calls,
and you are using the IBM COBOL Set for AIX compiler, keep the following
points in mind:
v When you precompile your application using the command line processor

command db2 prep, use the target ibmcob option.
v Do not use tab characters in your source files.

144 Application Building Guide

v You can use the PROCESS and CBL keywords in the first line of your source
files to set compile options.

v If your application contains only embedded SQL, but no DB2 API calls, you
do not need to use the pgmname(mixed) compile option. If you use DB2 API
calls, you must use the pgmname(mixed) compile option.

v If you are using the ″System/390 host data type support″ feature of the
IBM COBOL Set for AIX compiler, the DB2 include files for your
applications are in the following directory:
$HOME/sqllib/include/cobol_i

If you are building DB2 sample programs using the script files provided,
the include file path specified in the script files must be changed to point to
the cobol_i directory and not the cobol_a directory.

If you are NOT using the ″System/390 host data type support″ feature of
the IBM COBOL Set for AIX compiler, or you are using an earlier version of
this compiler, then the DB2 include files for your applications are in the
following directory:
$HOME/sqllib/include/cobol_a

Specify COPY file names to include the .cbl extension as follows:
COPY "sql.cbl".

DB2 API and Embedded SQL Applications
The build file, bldapp, in sqllib/samples/cobol, contains the commands to
build a DB2 application program.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter for programs that do not contain embedded SQL. Building
embedded SQL programs requires a connection to the database so three
optional parameters are also provided: the second parameter, $2, specifies the
name of the database to which you want to connect; the third parameter, $3,
specifies the user ID for the database, and $4 specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind file, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.
#! /bin/ksh
bldapp script file -- AIX
Builds an IBM COBOL application program
Usage: bldapp <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.

Chapter 6. Building AIX Applications 145

DB2PATH=$HOME/sqllib

If an embedded SQL program, precompile and bind it.
if [[-f $1".sqb"]]
then

embprep $1 $2 $3 $4
fi

Compile the checkerr.cbl error checking utility.
cob2 -qpgmname\(mixed\) -qlib -I$DB2PATH/include/cobol_a \

-c checkerr.cbl

Compile the program.
cob2 -qpgmname\(mixed\) -qlib -I$DB2PATH/include/cobol_a \

-c $1.cbl

Link the program.
cob2 -o $1 $1.o checkerr.o -ldb2 -L$DB2PATH/lib

Compile and Link Options for bldapp

Compile Options:

cob2 The IBM COBOL Set compiler.

-qpgmname\(mixed\)
Instructs the compiler to permit CALLs to library entry points with
mixed-case names.

-qlib Instructs the compiler to process COPY statements.

-I$DB2PATH/include/cobol_a
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include/cobol_a.

-c Perform compile only; no link. Compile and link are separate steps.

Link options:

cob2 Use the compiler as a front end for the linker.

-o $1 Specify the executable program.

$1.o Specify the program object file.

checkerr.o
Include the utility object file for error-checking.

-ldb2 Link with the database manager library.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, the compiler assumes
the following path: /usr/lib:/lib.

Refer to your compiler documentation for additional compiler options.

146 Application Building Guide

To build the non-embedded SQL sample program client from the source file
client.cbl, enter:

bldapp client

The result is an executable file client. You can run the executable file against
the sample database by entering:

client

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, updat, from the
source file updat.sqb:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, also enter the
database name:

bldapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp updat database userid password

The result is an executable file, updat.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Embedded SQL Stored Procedures
The script file bldsrv, in sqllib/samples/cobol, contains the commands to
build a stored procedure. The script file compiles the stored procedure into a
shared library that can be called by a client application.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. Since the stored procedure must be build on the same instance where
the database resides, there are no parameters for user ID and password.

Chapter 6. Building AIX Applications 147

Only the first parameter, source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database.

The script file uses the source file name, $1, for the shared library name, and
for the entry point to the shared library. If you are building stored procedures
where the entry point function name is different from the source file name,
you can modify the script file to accept another parameter for the entry point.
We recommend renaming the database parameter to $3. Then you can change
the entry point link option to -e $2, and specify the additional parameter on
the command line when you run the script file.
#! /bin/ksh
bldsrv script file -- AIX
Builds an IBM COBOL stored procedure
Usage: bldsrv <prog_name> [<db_name>]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Precompile and bind the program.
embprep $1 $2

Compile the checkerr.cbl error checking utility.
cob2 -qpgmname\(mixed\) -qlib -I$DB2PATH/include/cobol_a \

-c checkerr.cbl

Compile the program.
cob2 -qpgmname\(mixed\) -qlib -c -I$DB2PATH/include/cobol_a $1.cbl

Link the program using the export file $1.exp
creating shared library $1 with entry point $1.
cob2 -o $1 $1.o checkerr.o -H512 -T512 -e $1 -bE:$1.exp \

-L$DB2PATH/lib -ldb2

Copy the shared library to the sqllib/function subdirectory of the DB2 instance.
This assumes the user has write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

148 Application Building Guide

Compile and Link Options for bldsrv

Compile Options:

cob2 The IBM COBOL Set compiler.

-qpgmname\(mixed\)
Instructs the compiler to permit CALLs to library entry points with
mixed-case names.

-qlib Instructs the compiler to process COPY statements.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

-I$DB2PATH/include/cobol_a
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include/cobol_a.

Link Options:

cob2 Use the compiler to link edit.

-o $1 Specify the output as a shared library file.

$1.o Specify the stored procedure object file.

checkerr.o
Include the utility object file for error-checking.

-H512 Specify output file alignment.

-T512 Specify output file text segment starting address.

-e $1 Specify the default entry point to the shared library.

-bE:$1.exp
Specify an export file. The export file contains a list of the stored procedures.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, the compiler assumes
the following path: /usr/lib:/lib.

-ldb2 Link with the database manager library.

Refer to your compiler documentation for additional compiler options.

To build the sample program outsrv from the source file outsrv.sqb,
connecting to the sample database, enter:

bldsrv outsrv

If connecting to another database, also include the database name:
bldsrv outsrv database

Chapter 6. Building AIX Applications 149

The script file copies the stored procedure to the server in the path
sqllib/function.

If necessary, set the file mode for the stored procedure so the client
application can access it.

Once you build the stored procedure outsrv, you can build the client
application outcli that calls the stored procedure. You can build outcli using
the script file bldapp. Refer to “DB2 API and Embedded SQL Applications” on
page 145 for details.

To call the stored procedure, run the sample client application by entering:
outcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its remote alias, or some other name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the shared library, outsrv, and executes the
stored procedure function of the same name on the server database, and then
returns the output to the client application.

Micro Focus COBOL

This section includes the following topics:
v Using the Compiler
v DB2 API and Embedded SQL Applications
v Embedded SQL Stored Procedures

Using the Compiler
If you develop applications that contain embedded SQL and DB2 API calls,
and you are using the Micro Focus COBOL compiler, keep the following
points in mind:
v When you precompile your application using the command line processor

command db2 prep, use the target mfcob option (the default).
v In order to use the built-in precompiler front-end, runtime interpreter or

Animator debugger, add the DB2 Generic API entry points to the Micro
Focus runtime module rts32 by executing the mkrts command provided by
Micro Focus, as follows:

150 Application Building Guide

1. Log in as root.
2. Execute mkrts with the arguments supplied in the following directory:

/usr/lpp/db2_06_01/lib/db2mkrts.args

v You must include the DB2 COBOL COPY file directory in the Micro Focus
COBOL environment variable COBCPY. The COBCPY environment variable
specifies the location of the COPY files. The DB2 COPY files for Micro
Focus COBOL reside in sqllib/include/cobol_mf under the database
instance directory.
To include the directory, enter:
export COBCPY=$COBCPY:$HOME/sqllib/include/cobol_mf

Note: You might want to set COBCPY in the .profile file.

DB2 API and Embedded SQL Applications
The build file, bldapp, in sqllib/samples/cobol_mf, contains the commands to
build a DB2 application program.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter for programs that do not contain embedded SQL. Building
embedded SQL programs requires a connection to the database so three
optional parameters are also provided: the second parameter, $2, specifies the
name of the database to which you want to connect; the third parameter, $3,
specifies the user ID for the database, and $4 specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind file, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.

Chapter 6. Building AIX Applications 151

Compile and Link Options for bldmfapi

Compile Options:

cob The COBOL compiler.

-c Perform compile only; no link.

-x Produce an executable program.

#! /bin/ksh
bldapp script file -- AIX
Builds a Micro Focus COBOL application program
Usage: bldapp <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

If an embedded SQL program, precompile and bind it.
if [[-f $1".sqb"]]
then

embprep $1 $2 $3 $4
fi

Set COBCPY to include the DB2 COPY files directory.
export COBCPY=$DB2PATH/include/cobol_mf:$COBCPY

Compile the checkerr.cbl error checking utility.
cob -c -x checkerr.cbl

Compile the program.
cob -c -x $1.cbl

Link the program.
cob -x -o $1 $1.o checkerr.o -ldb2 -ldb2gmf -L$DB2PATH/lib

152 Application Building Guide

Compile and Link Options for bldmfapi

Link Options:

cob Use the compiler as a front end for the linker.

-x Produce an executable program.

-o $1 Specify the executable program.

$1.o Specify the program object file.

-ldb2 Link to the DB2 library.

-ldb2gmf
Link to the DB2 exception-handler library for Micro Focus COBOL.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, the compiler assumes
the following path: /usr/lib:/lib.

Refer to your compiler documentation for additional compiler options.

To build the non-embedded SQL sample program, client, from the source file
client.cbl, enter:

bldapp client

The result is an executable file client. You can run the executable file against
the sample database by entering:

client

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, updat, from the
source file updat.sqb:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, also enter the
database name:

bldapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp updat database userid password

The result is an executable file, updat.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:

Chapter 6. Building AIX Applications 153

updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Embedded SQL Stored Procedures

Notes:

1. Before building a stored procedure on AIX 4.3 using the Micro Focus 4.1
compiler, execute the following commands:

db2stop
db2set DB2LIBPATH=$LIBPATH
db2set DB2ENVLIST="COBDIR LIBPATH"
db2set
db2start

Ensure that db2stop stops the database and LIBPATH is set properly in your
shell environment. The last db2set command is issued to display your
settings: make sure DB2LIBPATH and DB2ENVLIST are set correctly.

2. Some of the more recent versions of the Micro Focus COBOL compiler,
used on an AIX Version 4 platform, cannot be used to create a
statically-linked stored procedure. As such, the makefile and script file,
bldsrv, have been adapted to allow for the creation of a
dynamically-linked stored procedure.
In order for a remote client application to successfully call this
dynamically-linked stored procedure, it is necessary for a Micro Focus
COBOL routine, cobinit(), to be called on the server where the stored
procedure resides just before the stored procedure is executed. A wrapper
program which accomplishes this is created during the execution of the
makefile, or the script file bldsrv. It is then linked with the stored
procedure code to form the stored procedure shared library. Due to the use
of this wrapper program, in order for a client application to call a stored
procedure named x, it must call x_wrap instead of x.
The details of the wrapper program are explained later in this section.

The script file bldsrv, in sqllib/samples/cobol_mf, contains the commands to
build a stored procedure. The script file compiles the stored procedure into a
shared library that can be called by a client application.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. Since the stored procedure must be build on the same instance where
the database resides, there are no parameters for user ID and password.

154 Application Building Guide

Only the first parameter, source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database.

The script file uses the source file name, $1, for the shared library name, and
for the entry point to the shared library. If you are building stored procedures
where the entry point function name is different from the source file name,
you can modify the script file to accept another parameter for the entry point.
We recommend renaming the database parameter to $3. Then you can change
the entry point link option to -e $2, and specify the additional parameter on
the command line when you run the script file.
#! /bin/ksh
bldsrv script file -- AIX
Builds a Micro Focus COBOL stored procedure
Usage: bldsrv <prog_name> [<db_name>]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Precompile and bind the program.
embprep $1 $2

Set COBCPY to include the DB2 COPY files directory.
export COBCPY=$DB2PATH/include/cobol_mf:$COBCPY

Compile the program.
cob -c -x $1.cbl

Create the wrapper program for the stored procedure.
wrapsrv $1

Link the program using export file ${1}_wrap.exp
creating shared library $1 with entry point ${1}_wrap.
cob -x -o $1 ${1}_wrap.c $1.o -Q -bE:${1}_wrap.exp -Q "-e $1" \
-Q -bI:$DB2PATH/lib/db2g.imp -ldb2gmf -L$DB2PATH/lib

Copy the shared library to the sqllib/function subdirectory.
Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Compile and Link Options for bldsrv

Compile Options:

cob The COBOL compiler.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

-x Produce an executable program.

Chapter 6. Building AIX Applications 155

Compile and Link Options for bldsrv

Link Options:

cob Use the compiler to link edit.

-x Produce an executable program.

-o $1 Specify the executable program.

-o ${1}_wrap.c
Specify the wrapper program.

$1.o Specify the program object file.

-Q -bE:${1}_wrap.exp
Specify an export file. The export file contains a list of the stored procedure
entry points. If a stored procedure is called x, then its entry point will be
x_wrap.

-Q "-e $1"
Specify the default entry point to the shared library.

-Q -bI:$DB2PATH/lib/db2g.imp
Provides a list of entry points to the DB2 application library.

-ldb2gmf
Link to the DB2 exception-handler library for Micro Focus COBOL.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, the compiler assumes
the following path: /usr/lib:/lib.

Refer to your compiler documentation for additional compiler options.

The wrapper program, wrapsrv, causes the Micro Focus COBOL routine,
cobinit(), to be called right before the stored procedure is executed. Its
contents are shown below.

156 Application Building Guide

To build the sample program outsrv from the source file outsrv.sqb, if
connecting to the sample database, enter:

bldsrv outsrv

If connecting to another database, also enter the database name:
bldsrv outsrv database

The script file copies the shared library to the server in the path
sqllib/function.

If necessary, set the file mode for the shared library so the client application
can access it.

Once you build the stored procedure outsrv, you can build the client
application outcli that calls it. You can build outcli using the script file,
bldapp. Refer to “DB2 API and Embedded SQL Applications” on page 151 for
details.

To call the stored procedure, run the sample client application by entering:
outcli database userid password

where

#! /bin/ksh
wrapsrv script file
Creates the wrapper program for Micro Focus COBOL stored procedures
Usage: wrapsrv <stored_proc>

Note: The client program calls "<stored_proc>_wrap" not "<stored_proc>"

Create the wrapper program for the stored procedure.
cat << WRAPPER_CODE > ${1}_wrap.c
#include <stdio.h>
void cobinit(void);
int $1(void *p0, void *p1, void *p2, void *p3);

int main(void)
{

return 0;
}

int ${1}_wrap(void *p0, void *p1, void *p2, void *p3)
{

cobinit();
return $1(p0, p1, p2, p3);

}
WRAPPER_CODE
Create the export file for the wrapper program
echo $1_wrap > ${1}_wrap.exp

Chapter 6. Building AIX Applications 157

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the shared library, outsrv, and executes the
stored procedure function of the same name on the server database. The
output is then returned to the client application.

Exiting the Stored Procedure
When you develop a stored procedure, exit the stored procedure using the
following statement:

move SQLZ-HOLD-PROC to return-code.

With this statement, the stored procedure returns correctly to the client
application. This is especially important when the stored procedure is called
by a local COBOL client application.

REXX

You do not precompile or bind REXX programs.

To run DB2 REXX/SQL programs on AIX, you must set the LIBPATH
environment variable to include sqllib/lib under the DB2 install directory.

Enter:
export LIBPATH=$LIBPATH:/lib:/usr/lib:/usr/lpp/db2_07_01/sqllib/lib

On AIX, your application file can have any file extension. You can run your
application using either of the following two methods:
1. At the shell command prompt, enter rexx name where name is the name of

your REXX program.
2. If the first line of your REXX program contains a ″magic number″, (#!),

and identifies the directory where the REXX/6000 interpreter resides, you
can run your REXX program by entering its name at the shell command
prompt. For example, if the REXX/6000 interpreter file is in the /usr/bin
directory, include the following as the very first line of your REXX
program:
#! /usr/bin/rexx

Then, make the program executable by entering the following command at
the shell command prompt:

158 Application Building Guide

chmod +x name

Run your REXX program by entering its file name at the shell command
prompt.

REXX sample programs are in the directory sqllib/samples/rexx. To run the
sample REXX program updat.cmd, do one of the following:
v Add the line, "#! /usr/bin/rexx", to the top of the program source file, if

it’s not already there. Then, run the program directly by entering:
updat.cmd

v Specify the REXX interpreter and the program by entering:
rexx updat.cmd

For further information on REXX and DB2, refer to the chapter, ″Programming
in REXX″, in the Application Development Guide.

Chapter 6. Building AIX Applications 159

160 Application Building Guide

Chapter 7. Building HP-UX Applications

HP-UX C 162
DB2 CLI Applications 162

Building and Running Embedded SQL
Applications 164

DB2 CLI Applications with DB2 APIs . . 165
DB2 CLI Stored Procedures 165
DB2 API and Embedded SQL
Applications 168

Building and Running Embedded SQL
Applications 170

Embedded SQL Stored Procedures . . . 170
User-Defined Functions (UDFs) 173
Multi-threaded Applications 175

HP-UX C++. 176
DB2 API and Embedded SQL
Applications 176

Building and Running Embedded SQL
Applications 178

Embedded SQL Stored Procedures . . . 179
User-Defined Functions (UDFs) 181
Multi-threaded Applications 183

Micro Focus COBOL 184
Using the Compiler 185
DB2 API and Embedded SQL
Applications 186

Building and Running Embedded SQL
Applications 187

Embedded SQL Stored Procedures . . . 188
Exiting the Stored Procedure 190

This chapter provides detailed information for building DB2 applications on
HP-UX. In the script files, commands that begin with db2 are Command Line
Processor (CLP) commands. Refer to the Command Reference if you need more
information about CLP commands.

For the latest DB2 application development updates for HP-UX, visit the DB2
application development Web page at:
http://www.ibm.com/software/data/db2/udb/ad

Notes:

1. The +DAportable option is used in the compile and link steps of the DB2
build files and makefiles. This option generates code compatible across
PA_RISC 1.1 and 2.0 workstations. The use of this option comes with a
slight performance cost. To improve performance, you can remove the
+DAportable option from the build files and makefiles provided in the
sqllib/samples directory. Without this option, you may get a warning
similar to the following when building HP-UX programs:

(Warning) At least one PA 2.0 object file (<filename>.o) was detected.
The linked object may not run on a PA 1.x system.

where <filename> is the program file you are compiling.

Unless you have a PA_RISC 1.1 or 2.0 system, this warning does not apply.
2. If you are migrating DB2 from HP-UX Version 10 or earlier to HP-UX

Version 11, your DB2 programs must be re-precompiled with DB2 on
HP-UX Version 11 (if they include embedded SQL), and must be

© Copyright IBM Corp. 1993, 2000 161

http://www.ibm.com/software/data/db2/udb/ad

re-compiled. This includes all DB2 applications, stored procedures,
user-defined functions and user exit programs. As well, DB2 programs that
are compiled on HP-UX Version 11 may not run on HP-UX Version 10 or
earlier. DB2 programs that are compiled and run on HP-UX Version 10
may connect remotely to HP-UX Version 11 servers.

HP-UX C

This section includes the following topics:
v DB2 CLI Applications
v DB2 CLI Stored Procedures
v DB2 API and Embedded SQL Applications
v Embedded SQL Stored Procedures
v User-Defined Functions (UDFs)
v Multi-threaded Applications

DB2 CLI Applications
The script file bldcli in sqllib/samples/cli contains the commands to build
a DB2 CLI program. The parameter, $1, specifies the name of your source file.

This is the only required parameter, and the only one needed for CLI
programs that do not contain embedded SQL. Building embedded SQL
programs requires a connection to the database so three optional parameters
are also provided: the second parameter, $2, specifies the name of the
database to which you want to connect; the third parameter, $3, specifies the
user ID for the database, and $4 specifies the password.

If the program contains embedded SQL, indicated by the .sqc extension, then
the embprep script is called to precompile the program, producing a program
file with a .c extension.

162 Application Building Guide

Compile and Link Options for bldcli

Compile Options:

cc Use the C compiler.

+DAportable
Generates code compatible across PA_RISC 1.x and 2.0 workstations.

-Aa Use ANSI standard mode.

+e Enables HP value-added features while compiling in ANSI C mode.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

-c Perform compile only; no link. Compile and link are separate steps.

#! /bin/ksh
bldcli script file -- HP-UX
Builds a CLI program with HP-UX C.
Usage: bldcli <prog_name> [<db_name> [<userid> <password>]]
Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

If an embedded SQL program, precompile and bind it.
if [[-f $1".sqc"]]
then

embprep $1 $2 $3 $4
fi

Compile the error-checking utility.
cc +DAportable -Aa +e -I$DB2PATH/include -c utilcli.c

Compile the program.
cc +DAportable -Aa +e -I$DB2PATH/include -c $1.c

Link the program.
cc +DAportable -o $1 $1.o utilcli.o -L$DB2PATH/lib -ldb2

Chapter 7. Building HP-UX Applications 163

Compile and Link Options for bldcli

Link Options:

cc Use the compiler as a front end for the linker.

+DAportable
Use code compatible across PA_RISC 1.x and 2.0 workstations.

-o $1 Specify the executable program.

-o $1.o
Specify the object file.

utilcli.o
Include the utility object file for error checking.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example,
$HOME/sqllib/lib

-ldb2 Link with the database manager library.

Refer to your compiler documentation for additional compiler options.

To build the sample program tbinfo from the source file tbinfo.c, enter:

bldcli tbinfo

The result is an executable file tbinfo. You can run the executable file by
entering the executable name:

tbinfo

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, dbusemx, from
the source file dbusemx.sqc:
1. If connecting to the sample database on the same instance, enter:

bldcli dbusemx

2. If connecting to another database on the same instance, also enter the
database name:

bldcli dbusemx database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldcli dbusemx database userid password

The result is an executable file, dbusemx.

There are three ways to run this embedded SQL application:

164 Application Building Guide

1. If accessing the sample database on the same instance, simply enter the
executable name:

dbusemx

2. If accessing another database on the same instance, enter the executable
name and the database name:

dbusemx database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

dbusemx database userid password

DB2 CLI Applications with DB2 APIs
DB2 includes CLI sample programs that use DB2 APIs to create and drop a
database in order to demonstrate using CLI functions on more than one
database. The descriptions of the CLI sample programs in Table 7 on page 22
indicates the samples that use DB2 APIs.

The script file bldapi in sqllib/samples/cli contains the commands to build
a DB2 CLI program with DB2 APIs. This file compiles and links in the
utilapi utility file, which contains the DB2 APIs to create and drop a
database. This is the only difference between this file and the bldcli script.
Please see “DB2 CLI Applications” on page 162 for the compile and link
options common to both bldapi and bldcli.

To build the sample program dbmconn from the source file dbmconn.c, enter:

bldapi dbmconn

The result is an executable file dbmconn. You can run the executable file by
entering the executable name:

dbmconn

DB2 CLI Stored Procedures
The script file bldclisp in sqllib/samples/cli contains the commands to
build a DB2 CLI stored procedure. The parameter, $1, specifies the name of
your source file.

Only the first parameter, source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database.

Chapter 7. Building HP-UX Applications 165

Compile and Link Options for bldclisp

Compile Options:
cc The C compiler.
+DAportable

Generates code compatible across PA_RISC 1.x and 2.0 workstations.
+u1 Allow unaligned data access. Use only if your application uses unaligned

data.
+z Generate position-independent code.
-Aa Use ANSI standard mode (for the C compiler only).
+e Enables HP value-added features while compiling in ANSI C mode.
-I$DB2PATH/include

Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

#! /bin/ksh
bldclisp script file -- HP-UX
Builds a CLI stored procedure in HP-UX C.
Usage: bldclisp <prog_name>

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Compile the error-checking utility.
cc +DAportable +u1 +z -Aa +e -I$DB2PATH/include -c utilcli.c

Compile the program.
cc +DAportable +u1 +z -Aa +e -I$DB2PATH/include -c $1.c

Link the program.
ld -b -o $1 $1.o utilcli.o -L$DB2PATH/lib -ldb2

Copy the shared library to the sqllib/function subdirectory.
Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

166 Application Building Guide

Compile and Link Options for bldclisp

Link Options:
ld Use the linker to link edit.
-b Create a shared library rather than a normal executable.
-o $1 Specify the executable.
$1.o Specify the object file.
-L$DB2PATH/lib

Specify the location of the DB2 runtime shared libraries. For example:
-L$HOME/sqllib/lib. If you do not specify the -L option, /usr/lib:/lib is
assumed.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the sample program spserver from source file spserver.c, if
connecting to the sample database, enter:

bldclisp spserver

The script file copies the shared library to the server in the path
sqllib/function.

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database:

db2 connect to sample

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

Then catalog them with this command:
db2 -td@ -vf spcreate.db2

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the shared library, spserver, you can build the CLI client
application spclient that accesses the shared library.

You can build spclient by using the script file, bldcli. Refer to “DB2 CLI
Applications” on page 162 for details.

To access the shared library, run the sample client application by entering:

Chapter 7. Building HP-UX Applications 167

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the shared library, spserver, which executes a
number of stored procedure functions on the server database, and then
returns the output to the client application.

DB2 API and Embedded SQL Applications
The script file, bldapp, in sqllib/samples/c, contains the commands to build a
DB2 application program.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter, and the only one needed for DB2 API programs that do
not contain embedded SQL. Building embedded SQL programs requires a
connection to the database so three optional parameters are also provided: the
second parameter, $2, specifies the name of the database to which you want to
connect; the third parameter, $3, specifies the user ID for the database, and $4
specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind file, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.
#! /bin/ksh
bldapp script file -- HP-UX
Builds a C application program
Usage: bldapp <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

If an embedded SQL program, precompile and bind it.
if [[-f $1".sqc"]]
then

embprep $1 $2 $3 $4
Compile the utilemb.c error-checking utility.
cc +DAportable -Aa +e -I$DB2PATH/include -c utilemb.c

else

168 Application Building Guide

Compile the utilapi.c error-checking utility.
cc +DAportable -Aa +e -I$DB2PATH/include -c utilapi.c

fi

Compile the program.
cc +DAportable -Aa +e -I$DB2PATH/include -c $1.c

if [[-f $1".sqc"]]
then

Link the program with utilemb.o
cc +DAportable -o $1 $1.o utilemb.o -L$DB2PATH/lib -ldb2

else
Link the program with utilapi.o
cc +DAportable -o $1 $1.o utilapi.o -L$DB2PATH/lib -ldb2

fi

Compile and Link Options for bldapp

Compile Options:
cc The C compiler.
+DAportable

Generates code compatible across PA_RISC 1.x and 2.0 workstations.
-Aa Use ANSI standard mode (for the C compiler only).
+e Enables HP value-added features while compiling in ANSI C mode.
-I$DB2PATH/include

Specify the location of the DB2 include files. For example:
-I$DB2PATH/include

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

Link Options:
cc Use the compiler to link edit.
+DAportable

Use code compatible across PA_RISC 1.x and 2.0 workstations.
-o $1 Specify the executable.
$1.o Specify the program object file.
utilemb.o

If an embedded SQL program, include the embedded SQL utility object file
for error checking.

utilapi.o
If a non-embedded SQL program, include the DB2 API utility object file for
error checking.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
-L$DB2PATH/lib. If you do not specify the -L option, /usr/lib:/lib is
assumed.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Chapter 7. Building HP-UX Applications 169

To build the DB2 API non-embedded SQL sample program, client, from the
source file client.c, enter:

bldapp client

The result is an executable file, client.

To run the executable file, enter the executable name:
client

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, updat, from the
source file updat.sqc:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, also enter the
database name:

bldapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp updat database userid password

The result is an executable file, updat.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Embedded SQL Stored Procedures
The script file bldsrv, in sqllib/samples/c, contains the commands to build
an embedded SQL stored procedure. The script file compiles the stored
procedure into a shared library that can be called by a client application.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. Since the stored procedure must be build on the same instance where
the database resides, you do not have to specify parameters for user ID and
password.

170 Application Building Guide

Only the first parameter, source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database.
#! /bin/ksh
bldsrv script file -- HP-UX
Builds a C stored procedure
Usage: bldsrv <prog_name> [<db_name>]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Precompile and bind the program.
embprep $1 $2

Compile the program.
cc +DAportable +u1 +z -Aa +e -I$DB2PATH/include -c $1.c

Link the program to create a shared library
ld -b -o $1 $1.o -L$DB2PATH/lib -ldb2

Copy the shared library to the sqllib/function subdirectory
The user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Compile and Link Options for bldsrv

Compile Options:
cc The C compiler.
+DAportable

Generates code compatible across PA_RISC 1.x and 2.0 workstations.
+u1 Allow unaligned data access. Use only if your application uses unaligned

data.
-Aa Use ANSI standard mode (for the C compiler only).
+z Generate position-independent code.
+e Enables HP value-added features while compiling in ANSI C mode.
-I$DB2PATH/include

Specify the location of the DB2 include files. For example:
-I$DB2PATH/include.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

Chapter 7. Building HP-UX Applications 171

Compile and Link Options for bldsrv

Link Options:
ld Use the linker to link edit.
-b Create a shared library rather than a normal executable.
-o $1 Specify the output as a shared library file.
$1.o Specify the program object file.
-L$DB2PATH/lib

Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, /usr/lib:/lib is
assumed.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the sample program spserver from the source file spserver.sqc, if
connecting to the sample database, enter:

bldsrv spserver

If connecting to another database, also enter the database name:
bldsrv spserver database

The script file copies the shared library to the server in the path
sqllib/function.

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database:

db2 connect to sample

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

Then catalog them with this command:
db2 -td@ -vf spcreate.db2

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the shared library, spserver, you can build the client
application spclient that accesses it.

You can build spclient by using the script file, bldapp. Refer to “DB2 API and
Embedded SQL Applications” on page 168 for details.

172 Application Building Guide

To call the stored procedures in the shared library, run the sample client
application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The output is
returned to the client application.

User-Defined Functions (UDFs)
The script file bldudf, in sqllib/samples/c, contains the commands to build a
UDF. UDFs are compiled like stored procedures. They cannot contain
embedded SQL statements. This means to build a UDF program, you do not
need to connect to a database, precompile, and bind the program.

The parameter, $1, specifies the name of your source file. The script file uses
the source file name for the shared library name.

#! /bin/ksh
bldudf script file -- HP-UX
Builds a C UDF library
Usage: bldudf <prog_name>

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Compile the program.
cc +DAportable +u1 +z -Aa +e -I$DB2PATH/include -c $1.c

Link the program and create a shared library.
ld -b -o $1 $1.o -L$DB2PATH/lib -ldb2 -ldb2apie

Copy the shared library to the sqllib/function subdirectory.
The user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Chapter 7. Building HP-UX Applications 173

Compile and Link Options for bldudf

Compile Options:
cc The C compiler.
+DAportable

Generates code compatible across PA_RISC 1.x and 2.0 workstations.
+u1 Allow unaligned data access. Use only if your application uses unaligned

data.
-Aa Use ANSI standard mode (for the C compiler only).
+z Generate position-independent code.
+e Enables HP value-added features while compiling in ANSI C mode.
-I$DB2PATH/include

Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

Link Options:
ld Use the linker to link edit.
-b Create a shared library rather than a normal executable.
-o $1 Specify the output as a shared library file.
$1.o Specify the program object file.
-L$DB2PATH/lib

Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, /usr/lib:/lib is
assumed.

-ldb2 Link with the DB2 library.
-ldb2apie

Link with the DB2 API Engine library to allow the use of LOB locators.

Refer to your compiler documentation for additional compiler options.

To build the user-defined function program udfsrv from the source file
udfsrv.c, enter:

bldudf udfsrv

The script file copies the UDF to the sqllib/function directory.

If necessary, set the file mode for the UDF so the client application can access
it.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. DB2 CLI and embedded SQL versions of this program are provided.

174 Application Building Guide

You can build the DB2 CLI udfcli program from the source file udfcli.c, in
sqllib/samples/cli, using the script file bldcli. Refer to “DB2 CLI
Applications” on page 162 for details.

You can build the embedded SQL udfcli program from the source file
udfcli.sqc, in sqllib/samples/c, using the script file bldapp. Refer to “DB2

API and Embedded SQL Applications” on page 168 for details.

To call the UDF, run the sample calling application by entering the executable
name:

udfcli

The calling application calls the ScalarUDF function from the udfsrv library.

Multi-threaded Applications

Note: HP-UX provides a POSIX thread library and a DCE thread library.
Multi-threaded applications using the POSIX thread library are
supported by DB2.

Multi-threaded applications on HP-UX need to have _REENTRANT defined
for their compilation. The HP-UX documentation recommends compiling with
-D_POSIX_C_SOURCE=199506L. This will also ensure _REENTRANT is
defined. Applications also need to be linked with -lpthread.

The script file, bldmt, in sqllib/samples/c, contains the commands to build an
embedded SQL multi-threaded program. The first parameter, $1, specifies the
name of your source file. The second parameter, $2, specifies the name of the
database to which you want to connect. The third parameter, $3, specifies the
user ID for the database, and $4 specifies the password. Only the first
parameter, the source file name, is required. Database name, user ID, and
password are optional. If no database name is supplied, the program uses the
default sample database.
#! /bin/ksh
bldmt script file -- HP-UX
Builds a C multi-threaded embedded SQL program
Usage: bldmt <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Precompile and bind the program.
embprep $1 $2 $3 $4

Compile the program.
cc +DAportable -Aa +e -I$DB2PATH/include -D_POSIX_C_SOURCE=199506L -c $1.c

Chapter 7. Building HP-UX Applications 175

Link the program
cc +DAportable -o $1 $1.o -L$DB2PATH/lib -ldb2 -lpthread

Besides the -D_POSIX_C_SOURCE=199506L compile option, and the -lpthread
link option, discussed above, and the absence of a utility file being linked in,
the other compile and link options are the same as those used for the bldapp
file. For information on these options, see “DB2 API and Embedded SQL
Applications” on page 168.

To build the sample program, thdsrver, from the source file thdsrver.sqc,
enter:

bldmt thdsrver

The result is an executable file, thdsrver. To run the executable file against the
sample database, enter the executable name:

thdsrver

HP-UX C++

This section covers the following topics:
v DB2 API and Embedded SQL Applications
v Embedded SQL Stored Procedures
v User-Defined Functions (UDFs)
v Multi-threaded Applications

DB2 API and Embedded SQL Applications
The script file bldapp, in sqllib/samples/cpp, contains the commands to build
a DB2 application program.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter for programs not containing embedded SQL. Building
embedded SQL programs requires a connection to the database so three
optional parameters are also provided: the second parameter, $2, specifies the
name of the database to which you want to connect; the third parameter, $3,
specifies the user ID for the database, and $4 specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind file, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.
#! /bin/ksh
bldapp script file -- HP-UX
Builds a C++ application program
Usage: bldapp <prog_name> [<db_name> [<userid> <password>]]

176 Application Building Guide

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

If an embedded SQL program, precompile and bind it.
if [[-f $1".sqC"]]
then

embprep $1 $2 $3 $4
Compile the utilemb.C error-checking utility.
CC +DAportable +a1 -ext -I$DB2PATH/include -c utilemb.C

else
Compile the utilapi.C error-checking utility.
CC +DAportable +a1 -ext -I$DB2PATH/include -c utilapi.C

fi

Compile the program.
CC +DAportable +a1 -ext -I$DB2PATH/include -c $1.C

if [[-f $1".sqC"]]
then

Link the program with utilemb.o
CC +DAportable -o $1 $1.o utilemb.o -L$DB2PATH/lib -ldb2

else
Link the program with utilapi.o
CC +DAportable -o $1 $1.o utilapi.o -L$DB2PATH/lib -ldb2

fi

Compile and Link Options for bldapp

Compile Options:
CC The C compiler.
+DAportable

Generates code compatible across PA_RISC 1.x and 2.0 workstations.
+a1 Instruct the compiler to use ANSI C/C++.
-ext Allow various C++ extensions including ″long long″ support.
-I$DB2PATH/include

Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

Chapter 7. Building HP-UX Applications 177

Compile and Link Options for bldapp

Link Options:
CC Use the compiler as a front end for the linker.
+DAportable

Uses code compatible across PA_RISC 1.x and 2.0 workstations.
-o $1 Specify the executable.
$1.o Specify the program object file.
utilemb.o

If an embedded SQL program, include the embedded SQL utility object file
for error checking.

utilapi.o
If a non-embedded SQL program, include the DB2 API utility object file for
error checking.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, /usr/lib:/lib is
assumed.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the non-embedded SQL DB2 API sample program client from the
source file client.C, enter:

bldapp client

The result is an executable file, client. You can run the executable file against
the sample database by entering:

client

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, updat, from the
source file updat.sqC:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, also enter the
database name:

bldapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp updat database userid password

The result is an executable file, updat.

178 Application Building Guide

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Embedded SQL Stored Procedures

Note: Please see the information for building C++ stored procedures in “C++
Considerations for UDFs and Stored Procedures” on page 60.

The script file bldsrv, in sqllib/samples/cpp, contains the commands to build
an embedded SQL stored procedure. The script file compiles the stored
procedure into a shared library that can be called by a client application.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. Since the stored procedure must be build on the same instance where
the database resides, you do not need parameters for user ID and password.

Only the first parameter, the source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database.

The script file uses the source file name, $1, for the shared library name.
#! /bin/ksh
bldsrv script file -- HP-UX
Builds a C++ stored procedure
Usage: bldsrv <prog_name> [<db_name>]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Precompile and bind the program.
embprep $1 $2

Compile the program. First ensure it is coded with extern "C".
CC +DAportable +a1 +z -ext -I$DB2PATH/include -c $1.C

Link the program to create a shared library.
ld -b -o $1 $1.o -L$DB2PATH/lib -ldb2

Chapter 7. Building HP-UX Applications 179

Copy the shared library to the sqllib/function subdirectory.
The user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Compile and Link Options for bldsrv

Compile Options:
CC The C++ compiler.
+DAportable

Generates code compatible across PA_RISC 1.x and 2.0 workstations.
+a1 Instruct the compiler to use ANSI C/C++.
+z Generate position-independent code.
-ext Allow various C++ extensions including ″long long″ support.
-I$DB2PATH/include

Specify the location of the DB2 include files. For example: $DB2PATH/include
-c Perform compile only; no link. This book assumes that compile and link are

separate steps.

Link Options:
ld Use the linker to link edit.
-b Create a shared library rather than a normal executable.
-o $1 Specify the executable.
$1.o Specify the program object file.
-L$DB2PATH/lib

Specify the location of the DB2 runtime shared libraries. For example:
-L$DB2PATH/lib. If you do not specify the -L option, /usr/lib:/lib is
assumed.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the sample program spserver from the source file spserver.sqC, if
connecting to the sample database, enter:

bldsrv spserver

If connecting to another database, also enter the database name:
bldsrv spserver database

The script file copies the shared library to the server in the path
sqllib/function.

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database:

db2 connect to sample

180 Application Building Guide

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

Then catalog them with this command:
db2 -td@ -vf spcreate.db2

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the shared libary, spserver, you can build the client
application spclient that calls the stored procedures within the shared library.

You can build spclient by using the script file, bldapp. Refer to “DB2 API and
Embedded SQL Applications” on page 176 for details.

To call the stored procedures in the shared library, run the sample client
application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The stored
procedures return the output to the client application.

User-Defined Functions (UDFs)

Note: Please see the information for building C++ UDFs in “C++
Considerations for UDFs and Stored Procedures” on page 60.

The script file bldudf, in sqllib/samples/c, contains the commands to build a
UDF. User-defined programs cannot contain embedded SQL statements. This
means to build a UDF program, you do not need to connect to a database,
precompile, and bind the program.

Chapter 7. Building HP-UX Applications 181

Parameter $1, specifies the name of your source file. The script file uses the
source file name for the shared library name.

Compile and Link Options for bldudf

Compile Options:
CC The C++ compiler.
+DAportable

Generates code compatible across PA_RISC 1.x and 2.0 workstations.
-ext Allow various C++ extensions including ″long long″ support.
+a1 Instruct the compiler to use ANSI C/C++.
+z Generate position-independent code.
-I$DB2PATH/include

Specify the location of the DB2 include files. For example: $DB2PATH/include
-c Perform compile only; no link. This book assumes that compile and link are

separate steps.

#! /bin/ksh
bldudf script file -- HP-UX
Builds a C or C++ UDF library
Usage: bldudf <prog_name>

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Compile the program.
if [[-f $1".c"]]
then

CC +DAportable -ext +a1 +z -I$DB2PATH/include -c $1.c
elif [[-f $1".C"]]
then

CC +DAportable -ext +a1 +z -I$DB2PATH/include -c $1.C
fi

Link the program.
CC +DAportable -b -o $1 $1.o -L$DB2PATH/lib -ldb2

Copy the shared library to the sqllib/function subdirectory.
Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

182 Application Building Guide

Compile and Link Options for bldudf

Link options:
CC Use the compiler as a front end for the linker.
-b Create a shared library rather than a normal executable.
-o $1 Specify the executable.
$1.o Specify the program object file.
-L$DB2PATH/lib

Specify the location of the DB2 runtime shared libraries. For example:
-L$DB2PATH/lib. If you do not specify the -L option, /usr/lib:/lib is
assumed.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the user-defined function program udfsrv from the source file
udfsrv.c, enter:

bldudf udfsrv

The script file copies the UDF to the sqllib/function directory.

If necessary, set the file mode for the UDF so the client application can access
it.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. You can build the udfcli program from the udfcli.sqC source file in
sqllib/samples/cpp using the script file bldapp. Refer to “DB2 API and
Embedded SQL Applications” on page 176 for details.

To call the UDF, run the sample calling application by entering the executable
name:

udfcli

The calling application calls the ScalarUDF function in the udfsrv library.

Multi-threaded Applications

Note: HP-UX provides a POSIX thread library and a DCE thread library.
Multi-threaded applications using the POSIX thread library are
supported by DB2 on HP-UX.

Multi-threaded applications on HP-UX need to have _REENTRANT defined
for their compilation. The HP-UX documentation recommends compiling with
-D_POSIX_C_SOURCE=199506L. This will also ensure _REENTRANT is
defined. For the HP-UX C++ compiler, -D_HPUX_SOURCE must also be used in
order to define rand_r. Applications also need to be linked with -lpthread.

Chapter 7. Building HP-UX Applications 183

The script file, bldmt, in sqllib/samples/cpp, contains the commands to build
an embedded SQL multi-threaded program.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. The third parameter, $3, specifies the user ID for the database, and $4
specifies the password. Only the first parameter, the source file name, is
required. Database name, user ID, and password are optional. If no database
name is supplied, the program uses the default sample database.
#! /bin/ksh
bldmt script file -- HP-UX
Builds a C++ multi-threaded embedded SQL program
Usage: bldmt <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Precompile and bind the program.
embprep $1 $2 $3 $4

Compile the program.
CC +DAportable +a1 -ext -I$DB2PATH/include \

-D_HPUX_SOURCE -D_POSIX_C_SOURCE=199506L -c $1.C

Link the program
CC -o $1 $1.o -L$DB2PATH/lib -ldb2 -lpthread

Besides the -D_HPUX_SOURCE and -D_POSIX_C_SOURCE=199506L compile options,
and the -lpthread link option, discussed above, and the absence of a utility
file linked in, the other compile and link options are the same as those used
for the embedded SQL script file, bldapp. For information on these options,
see “DB2 API and Embedded SQL Applications” on page 176.

To build the sample program, thdsrver, from the source file thdsrver.sqC,
enter:

bldmt thdsrver

The result is an executable file, thdsrver. To run the executable file against the
sample database, enter the executable name:

thdsrver

Micro Focus COBOL

This section contains the following topics:
v Using the Compiler
v DB2 API and Embedded SQL Applications
v Embedded SQL Stored Procedures

184 Application Building Guide

Using the Compiler
If you develop applications that contain embedded SQL and DB2 API calls,
and you are using the Micro Focus COBOL compiler, keep the following
points in mind:
v When you precompile your application using the command line processor

command db2 prep, use the target mfcob option (the default).
v In order to use the built-in precompiler front-end, runtime interpreter or

Animator debugger, you have to add the DB2 Generic API entry points to
the Micro Focus runtime module rts32 by executing the mkrts command
provided by Micro Focus. You also need to run mkcheck to update the check
file. If this is not run, you will receive a 173 error in SQLGSTRT.
Before running mkrts and mkcheck, COBOPT must be set in the following
steps:
1. Log in as root.
2. From the directory $COBDIR/src/rts enter:

COBOPT=/opt/IBMdb2/V7.1/lib/db2mkrts.args; export COBOPT
ksh mkrts
mv $COBDIR/rts32 $COBDIR/rts32.orig
cp rts32 $COBDIR/rts32

3. You must also rebuild the check executable which Hewlett-Packard
ships with the product. If you do not rebuild the check executable
located in your $COBDIR directory, attempts to compile using cob -C SQL
will fail with a run-time system 173 error because the DB2 pre-processor
calls the DB2 library. To rebuild check, you should change to the
src/sql directory under your $COBDIR directory as root and run the
mkcheck script. Once the script completes, you need to move the
resulting check executable to your $COBDIR directory. From the directory
$COBDIR/src/sql, enter:

COBOPT=/opt/IBMdb2/V7.1/lib/db2mkrts.args; export COBOPT
ksh mkcheck
mv $COBDIR/check $COBDIR/check.orig
cp check $COBDIR/check

Now you can execute mkrts with the arguments supplied in the following
directory:

/opt/IBMdb2/V7.1/lib/db2mkrts.args

v You must include the DB2 COBOL COPY file directory in the Micro Focus
COBOL environment variable COBCPY. The COBCPY environment variable
specifies the location of COPY files. The DB2 COPY files for Micro Focus
COBOL reside in sqllib/include/cobol_mf under the database instance
directory.
To include the directory, enter:

export COBCPY=$COBCPY:/opt/IBMdb2/V7.1/include/cobol_mf

Note: You might want to set COBCPY in the .profile file.

Chapter 7. Building HP-UX Applications 185

DB2 API and Embedded SQL Applications
The script file bldapp, in sqllib/samples/cobol_mf, contains the commands to
build DB2 API and embedded SQL application programs.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter, and the only one needed for DB2 API programs that do
not contain embedded SQL. Building embedded SQL programs requires a
connection to the database so three optional parameters are also provided: the
second parameter, $2, specifies the name of the database to which you want to
connect; the third parameter, $3, specifies the user ID for the database, and $4
specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind file, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.
#! /bin/ksh
bldapp script file -- HP-UX
Builds a Micro Focus COBOL application program
Usage: bldapp <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

If an embedded SQL program, precompile and bind it.
if [[-f $1".sqb"]]
then

embprep $1 $2 $3 $4
fi

Set COBCPY to include the DB2 COPY files directory.
export COBCPY=$COBCPY:$DB2PATH/include/cobol_mf

Compile the checkerr.cbl error checking utility.
cob +DAportable -cx checkerr.cbl

Compile the program.
cob +DAportable -cx $1.cbl

Link the program.
cob +DAportable -x $1.o checkerr.o -L$DB2PATH/lib -ldb2 -ldb2gmf

186 Application Building Guide

Compile and Link Options for bldapp

Compile Options:
cob The Micro Focus COBOL compiler.
+DAportable

Generates code compatible across PA_RISC 1.x and 2.0 workstations.
-cx Compile to object module.

Link options:
cob Use the compiler as a front end for the linker.
+DAportable

Use code compatible across PA_RISC 1.x and 2.0 workstations.
-x Specify an executable program.
$1.o Include the program object file.
checkerr.o

Include the utility object file for error checking.
-L$DB2PATH/lib

Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib.

-ldb2 Link to the DB2 library.
-ldb2gmf

Link to the DB2 exception-handler library for Micro Focus COBOL.

Refer to your compiler documentation for additional compiler options.

To build the non-embedded SQL sample program, client, from the source file
client.cbl, enter:

bldapp client

The result is an executable file client. You can run the executable file against
the sample database by entering:

client

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, updat, from the
source file updat.sqb:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, also enter the
database name:

bldapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp updat database userid password

Chapter 7. Building HP-UX Applications 187

The result is an executable file, updat.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Embedded SQL Stored Procedures
The script file bldsrv, in sqllib/samples/cobol_mf, contains the commands to
build an embedded SQL stored procedure. The script file compiles the stored
procedure into a shared library on the server that can be called by a client
application.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. Since the stored procedure must be build on the same instance where
the database resides, there are no parameters for user ID and password.

Only the first parameter, source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database. The script file uses the source file name, $1, for the shared
library name.
#! /bin/ksh
bldsrv script file -- HP-UX
Builds a Micro Focus COBOL stored procedure
Usage: bldsrv <prog_name> [<db_name>]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Precompile and bind the program.
embprep $1 $2

Set COBCPY to include the DB2 COPY files directory.
export COBCPY=$COBCPY:$DB2PATH/include/cobol_mf

Compile the program.
cob +DAportable +z -cx $1.cbl

Link the program.
ld -b -o $1 $1.o -L$DB2PATH/lib -ldb2 -ldb2gmf \

188 Application Building Guide

-L$COBDIR/coblib -lcobol -lcrtn

Copy the shared library to the sqllib/function subdirectory.
The user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Compile and Link Options for bldsrv

Compile Options:
cob The COBOL compiler.
+DAportable

Generates code compatible across PA_RISC 1.x and 2.0 workstations.
+z Generate position-independent code.
-cx Compile to object module.

Link Options:
ld Use the linker to link edit.
-b Create a shared library rather than a normal executable file.
-o $1 Specify the executable.
$1.o Include the program object file.
-L$DB2PATH/lib

Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib

-ldb2 Link to the DB2 shared library.
-ldb2gmf

Link to the DB2 exception-handler library for Micro Focus COBOL.
-L$COBDIR/coblib

Specify the location of the COBOL runtime libraries.
-lcobol

Link to the COBOL library.
-lcrtn Link to the crtn library.

Refer to your compiler documentation for additional compiler options.

To build the sample program outsrv from the source file outsrv.sqb, if
connecting to the sample database, enter:

bldsrv outsrv

If connecting to another database, also enter the database name:
bldsrv outsrv database

The script file copies the stored procedure to the sqllib/function directory.

If necessary, set the file mode for the stored procedure so the client
application can access it.

Chapter 7. Building HP-UX Applications 189

Once you build the stored procedure outsrv, you can build the client
application outcli that calls the stored procedure. You can build outcli using
the script file, bldapp. Refer to “DB2 API and Embedded SQL Applications”
on page 186 for details.

To call the stored procedure, run the sample client application by entering:
outcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the stored procedure library, outsrv, which
executes the stored procedure function of the same name on the server
database, and then returns the output to the client application.

Exiting the Stored Procedure
When you develop your stored procedures, exit your stored procedure using
the following statement:

move SQLZ-HOLD-PROC to return-code.

With this statement, the stored procedure returns correctly to the client
application.

190 Application Building Guide

Chapter 8. Building Linux Applications

Linux C 191
DB2 CLI Applications 191

Building and Running Embedded SQL
Applications 193

DB2 CLI Applications with DB2 APIs . . 194
DB2 CLI Stored Procedures 194
DB2 API and Embedded SQL
Applications 196

Building and Running Embedded SQL
Applications 199

Embedded SQL Stored Procedures . . . 199

User-Defined Functions (UDFs) 202
Multi-threaded Applications 204

Linux C++ 205
DB2 API and Embedded SQL
Applications 205

Building and Running Embedded SQL
Applications 207

Embedded SQL Stored Procedures . . . 208
User-Defined Functions (UDFs) 211
Multi-threaded Applications 213

This chapter provides detailed information for building applications on Linux.
In the script files, commands that begin with db2 are Command Line
Processor (CLP) commands. Refer to the Command Reference if you need more
information about CLP commands.

For the latest DB2 application development updates for Linux, visit the Web
page at:

http://www.ibm.com/software/data/db2/udb/ad

Linux C

This section includes the following topics:
v DB2 CLI Applications
v DB2 CLI Stored Procedures
v DB2 API and Embedded SQL Applications
v Embedded SQL Stored Procedures
v User-Defined Functions (UDFs)
v Multi-threaded Applications

DB2 CLI Applications
The script file bldcli in sqllib/samples/cli contains the commands to build
a DB2 CLI program. The parameter, $1, specifies the name of your source file.

This is the only required parameter, and the only one needed for CLI
programs that do not contain embedded SQL. Building embedded SQL
programs requires a connection to the database so three optional parameters
are also provided: the second parameter, $2, specifies the name of the
database to which you want to connect; the third parameter, $3, specifies the
user ID for the database, and $4 specifies the password.

© Copyright IBM Corp. 1993, 2000 191

http://www.ibm.com/software/data/db2/udb/ad

If the program contains embedded SQL, indicated by the .sqc extension, then
the embprep script is called to precompile the program, producing a program
file with a .c extension.

Compile and Link Options for bldcli

Compile Options:

cc The C compiler.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

-c Perform compile only; no link. The script file has separate compile and link
steps.

#! /bin/ksh
bldcli script file -- Linux
Builds a CLI program with Linux C
Usage: bldcli <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

If an embedded SQL program, precompile and bind it.
if [[-f $1".sqc"]]
then

embprep $1 $2 $3 $4
fi

Compile the error-checking utility.
cc -I$DB2PATH/include -c utilcli.c

Compile the program.
cc -I$DB2PATH/include -c $1.c

Link the program.
cc -o $1 $1.o utilcli.o -L$DB2PATH/lib -Wl,-rpath,$DB2PATH/lib -ldb2

192 Application Building Guide

Compile and Link Options for bldcli

Link options:

cc Use the compiler as a front end for the linker.

-o $1 Specify the executable.

$1.o Include the program object file.

utilcli.o
Include the utility object file for error checking.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-Wl,-rpath,$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example:
$HOME/sqllib/lib.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the sample program tbinfo from the source file tbinfo.c, enter:

bldcli tbinfo

The result is an executable file tbinfo. You can run the executable file by
entering the executable name:

tbinfo

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, dbusemx, from
the source file dbusemx.sqc:
1. If connecting to the sample database on the same instance, enter:

bldcli dbusemx

2. If connecting to another database on the same instance, also enter the
database name:

bldcli dbusemx database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldcli dbusemx database userid password

The result is an executable file, dbusemx.

There are three ways to run this embedded SQL application:

Chapter 8. Building Linux Applications 193

1. If accessing the sample database on the same instance, simply enter the
executable name:

dbusemx

2. If accessing another database on the same instance, enter the executable
name and the database name:

dbusemx database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

dbusemx database userid password

DB2 CLI Applications with DB2 APIs
DB2 includes CLI sample programs that use DB2 APIs to create and drop a
database in order to demonstrate using CLI functions on more than one
database. The descriptions of the CLI sample programs in Table 7 on page 22
indicates the samples that use DB2 APIs.

The script file bldapi in sqllib/samples/cli contains the commands to build
a DB2 CLI program with DB2 APIs. This file compiles and links in the
utilapi utility file, which contains the DB2 APIs to create and drop a
database. This is the only difference between this file and the bldcli script.
Please see “DB2 CLI Applications” on page 191 for the compile and link
options common to both bldapi and bldcli.

To build the sample program dbmconn from the source file dbmconn.c, enter:

bldapi dbmconn

The result is an executable file dbmconn. You can run the executable file by
entering the executable name:

dbmconn

DB2 CLI Stored Procedures
The script file bldclisp in sqllib/samples/cli contains the commands to
build a DB2 CLI stored procedure. The parameter, $1, specifies the name of
your source file.
#! /bin/ksh
bldclisp script file -- Linux
Builds a CLI stored procedure in Linux C.
Usage: bldclisp <prog_name>

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Compile the error-checking utility.
cc -I$DB2PATH/include -c utilcli.c

194 Application Building Guide

Compile the program.
cc -I$DB2PATH/include -c $1.c

Link the program.
cc -o $1 $1.o utilcli.o -shared -L$DB2PATH/lib -Wl,-rpath,$DB2PATH/lib -ldb2

Copy the shared library to the function subdirectory.
The user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Compile and Link Options for bldclisp

Compile Options:

cc The C compiler.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-c Perform compile only; no link. This script file has separate compile and link
steps.

Link Options:

cc Use the compiler as a front end for the linker.

-o $1 Specify the executable.

$1.o Include the program object file.

utilcli.o
Include the utility object file for error-checking.

-shared
Generate a shared library.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-Wl,-rpath,$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example:
$HOME/sqllib/lib.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the sample program spserver from source file spserver.c, enter:
bldclisp spserver

The script file copies the shared library to the sqllib/function directory.

Chapter 8. Building Linux Applications 195

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database:

db2 connect to sample

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

Then catalog them with this command:
db2 -td@ -vf spcreate.db2

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the shared library, spserver, you can build the CLI client
application spclient that calls the shared library.

You can build spclient by using the script file, bldcli. Refer to “DB2 CLI
Applications” on page 191 for details.

To access the shared library, run the sample client application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The output is
returned to the client application.

DB2 API and Embedded SQL Applications
The script file bldapp, in sqllib/samples/c, contains the commands to build a
DB2 application program.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter, and the only one needed for DB2 API programs that do
not contain embedded SQL. Building embedded SQL programs requires a

196 Application Building Guide

connection to the database so three optional parameters are also provided: the
second parameter, $2, specifies the name of the database to which you want to
connect; the third parameter, $3, specifies the user ID for the database, and $4
specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind script, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.

#! /bin/ksh
bldapp script file -- Linux
Builds a C application program.
Usage: bldapp <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

If an embedded SQL program, precompile and bind it.
if [[-f $1".sqc"]]
then

embprep $1 $2 $3 $4
Compile the utilemb.c error-checking utility.
cc -I$DB2PATH/include -c utilemb.c

else
Compile the utilapi.c error-checking utility.
cc -I$DB2PATH/include -c utilapi.c

fi

Compile the program.
cc -I$DB2PATH/include -c $1.c

if [[-f $1".sqc"]]
then

Link the program with utilemb.o.
cc -o $1 $1.o utilemb.o -L$DB2PATH/lib \

-Wl,-rpath,$DB2PATH/lib -ldb2
else

Link the program with utilapi.o.
cc -o $1 $1.o utilapi.o -L$DB2PATH/lib \

-Wl,-rpath,$DB2PATH/lib -ldb2
fi

Chapter 8. Building Linux Applications 197

Compile and Link Options for bldapp

Compile Options:

cc The C compiler.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

-c Perform compile only; no link. This script file has separate compile and link
steps.

Link options:

cc Use the compiler as a front end for the linker.

-o $1 Specify the executable.

$1.o Specify the object file.

utilemb.o
If an embedded SQL program, include the embedded SQL utility object file
for error checking.

utilapi.o
If a non-embedded SQL program, include the DB2 API utility object file for
error checking.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-Wl,-rpath,$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example:
$HOME/sqllib/lib.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the DB2 API non-embedded SQL sample program, client, from the
source file client.c, enter:

bldapp client

The result is an executable file, client.

To run the executable file, enter the executable name:
client

198 Application Building Guide

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, updat, from the
source file updat.sqc:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, also enter the
database name:

bldapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp updat database userid password

The result is an executable file, updat.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Embedded SQL Stored Procedures
The script file bldsrv, in sqllib/samples/c, contains the commands to build
an embedded SQL stored procedure. The script file compiles the stored
procedure into a shared library that can be called by a client application.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. Since the stored procedure must be build on the same instance where
the database resides, you do not have to specify parameters for user ID and
password.

Only the first parameter, source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database.
#! /bin/ksh
bldsrv script file -- Linux
Builds a C stored procedure
Usage: bldsrv <prog_name> [<db_name>]

Set DB2PATH to where DB2 will be accessed.

Chapter 8. Building Linux Applications 199

The default is the standard instance path.
DB2PATH=$HOME/sqllib

Precompile and bind the program.
embprep $1 $2

Compile the program.
cc -I$DB2PATH/include -c $1.c

Link the program and create a shared library
cc -shared -o $1 $1.o -L$DB2PATH/lib -Wl,-rpath,$DB2PATH/lib -ldb2

Copy the shared library to the function subdirectory.
The user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Compile and Link Options for bldsrv

Compile Options:

cc The C compiler.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

-c Perform compile only; no link. This script file has separate compile and link
steps.

Link Options:

cc Use the compiler as a front end for the linker.

-shared
Generate a shared library.

-o $1 Specify the executable.

$1.o Include the program object file.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-Wl,-rpath,$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example:
$HOME/sqllib/lib.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

200 Application Building Guide

To build the sample program spserver from source file spserver.sqc, if
connecting to the sample database, enter:

bldsrv spserver

If connecting to another database, also enter the database name:
bldsrv spserver database

The script file copies the shared library to the server in the path
sqllib/function.

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database:

db2 connect to sample

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

Then catalog them with this command:
db2 -td@ -vf spcreate.db2

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the shared library, spserver, you can build the client
application spclient that accesses it.

You can build spclient by using the script file, bldapp. Refer to “DB2 API and
Embedded SQL Applications” on page 196 for details.

To call the stored procedures in the shared library, run the sample client
application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

Chapter 8. Building Linux Applications 201

The client application accesses the stored procedure library, spserver, and
executes a number of stored procedure functions on the server database. The
output is returned to the client application.

User-Defined Functions (UDFs)
The script file bldudf in sqllib/samples/c contains the commands to build a
UDF. A UDF does not contain embedded SQL statements. So to build a UDF
program, you do not need to connect to a database or precompile and bind
the program.

The parameter, $1, specifies the name of your source file. The script file also
uses this source file name for the shared library name.
#! /bin/ksh
bldudf script file -- Linux
Builds a C UDF library
Usage: bldudf <prog_name>

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Compile the program.
cc -I$DB2PATH/include -c $1.c

Link the program and create a shared library.
cc -o $1 $1.o -shared -L$DB2PATH/lib -Wl,-rpath,$DB2PATH/lib -ldb2 -ldb2apie

Copy the shared library to the function subdirectory.
The user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Compile and Link Options for bldudf

Compile Options:

cc The C compiler.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-c Perform compile only; no link. This script file has separate compile and link
steps.

202 Application Building Guide

Compile and Link Options for bldudf

Link Options:

cc Use the compiler as a front end for the linker.

-o $1 Specify the executable.

$1.o Include the program object file.

-shared
Generate a shared library.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-Wl,-rpath,$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example:
$HOME/sqllib/lib.

-ldb2 Link with the DB2 library.

-ldb2apie
Link with the DB2 API Engine library to allow the use of LOB locators.

Refer to your compiler documentation for additional compiler options.

To build the user-defined function program udfsrv from the source file
udfsrv.c, enter:

bldudf udfsrv

The script file copies the UDF to the sqllib/function directory.

If necessary, set the file mode for the UDF so the DB2 instance can run it.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. DB2 CLI and embedded SQL versions of this program are provided.

You can build the DB2 CLI udfcli program from the source file udfcli.c, in
sqllib/samples/cli, using the script file bldcli. Refer to “DB2 CLI
Applications” on page 191 for details.

You can build the embedded SQL udfcli program from the source file
udfcli.sqc, in sqllib/samples/c, using the script file bldapp. Refer to “DB2

API and Embedded SQL Applications” on page 196 for details.

To call the UDF, run the sample calling application by entering the executable
name:

Chapter 8. Building Linux Applications 203

udfcli

The calling application calls the ScalarUDF function from the udfsrv library.

Multi-threaded Applications
Multi-threaded applications using Linux C need to be compiled with
-D_REENTRANT and linked with -lpthread.

The script file, bldmt, in sqllib/samples/c, contains the commands to build an
embedded SQL multi-threaded program.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. The third parameter, $3, specifies the user ID for the database, and $4
specifies the password. Only the first parameter, the source file name, is
required. Database name, user ID, and password are optional. If no database
name is supplied, the program uses the default sample database.
#! /bin/ksh
bldmt script file -- Linux
Builds a C multi-threaded embedded SQL program.
Usage: bldmt <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Precompile and bind the program.
embprep $1 $2 $3 $4

Compile the program.
cc -I$DB2PATH/include -c $1.c -D_REENTRANT

Link the program.
cc -o $1 $1.o -lpthread -L$DB2PATH/lib -Wl,-rpath,$DB2PATH/lib -ldb2

Besides the -D_REENTRANT and -lpthread options, discussed above, and the
absence of a utility file linked in, the other compile and link options are the
same as those used for the embedded SQL script file, bldapp. For information
on these options, see “DB2 API and Embedded SQL Applications” on page
196.

To build the sample program, thdsrver, from the source file thdsrver.sqc,
enter:

bldmt thdsrver

The result is an executable file, thdsrver. To run the executable file against the
sample database, enter:

thdsrver

204 Application Building Guide

Linux C++

This section covers the following topics:
v DB2 API and Embedded SQL Applications
v Embedded SQL Stored Procedures
v User-Defined Functions
v Multi-threaded Applications

DB2 API and Embedded SQL Applications
The script file bldapp, in sqllib/samples/cpp, contains the commands to build
a sample C++ program.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter, and the only one needed for DB2 API programs that do
not contain embedded SQL. Building embedded SQL programs requires a
connection to the database so three optional parameters are also provided: the
second parameter, $2, specifies the name of the database to which you want to
connect; the third parameter, $3, specifies the user ID for the database, and $4
specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind file, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.

Chapter 8. Building Linux Applications 205

Compile and Link Options for bldapp

Compile Options:

g++ The C++ compiler.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

-c Perform compile only; no link. This script file has separate compile and link
steps.

#! /bin/ksh
bldapp script file -- Linux
Builds a C++ application program.
Usage: bldapp <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

If an embedded SQL program, precompile and bind it.
if [[-f $1".sqC"]]
then

embprep $1 $2 $3 $4
Compile the utilemb.C error-checking utility.
g++ -I$DB2PATH/include -c utilemb.C

else
Compile the utilapi.C error-checking utility.
g++ -I$DB2PATH/include -c utilapi.C

fi

Compile the program.
g++ -I$DB2PATH/include -c $1.C

if [[-f $1".sqC"]]
then

Link the program with utilemb.o
g++ -o $1 $1.o utilemb.o -L$DB2PATH/lib -Wl,-rpath,$DB2PATH/lib -ldb2

else
Link the program with utilapi.o
g++ -o $1 $1.o utilapi.o -L$DB2PATH/lib -Wl,-rpath,$DB2PATH/lib -ldb2

fi

206 Application Building Guide

Compile and Link Options for bldapp

Link Options:

g++ Use the compiler as a front end for the linker.

-o $1 Specify the executable.

$1.o Include the program object file.

utilemb.o
If an embedded SQL program, include the embedded SQL utility object file
for error checking.

utilapi.o
If a non-embedded SQL program, include the DB2 API utility object file for
error checking.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-Wl,-rpath,$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example:
$HOME/sqllib/lib.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the non-embedded SQL sample program client from the source file
client.C, enter:

bldapp client

The result is an executable file, client. You can run the executable file against
the sample database by entering:

client

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, updat, from the
source file updat.sqC:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, also enter the
database name:

bldapp updat database

Chapter 8. Building Linux Applications 207

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp updat database userid password

The result is an executable file, updat.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Embedded SQL Stored Procedures

Note: Please see the information for building C++ stored procedures in “C++
Considerations for UDFs and Stored Procedures” on page 60.

The script file bldsrv, in sqllib/samples/cpp, contains the commands to build
an embedded SQL stored procedure. The script file compiles the stored
procedure into a shared library that can be called by a client application.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. Since the stored procedure must be build on the same instance where
the database resides, you do not need parameters for user ID and password.

Only the first parameter, the source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database. The script file uses the source file name, $1, for the shared
library name.
#! /bin/ksh
bldsrv script file -- Linux
Builds a C++ stored procedure
Usage: bldsrv <prog_name> [<db_name>]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Precompile and bind the program.
embprep $1 $2

208 Application Building Guide

Compile the program.
g++ -I$DB2PATH/include -c $1.C

Link the program and create a shared library.
g++ -shared -o $1 $1.o -L$DB2PATH/lib -Wl,-rpath,$DB2PATH/lib -ldb2

Copy the shared library to the function subdirectory.
The user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Compile and Link Options for bldsrv

Compile Options:

g++ The C++ compiler.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

-c Perform compile only; no link. This script file has separate compile and link
steps.

Link Options:

g++ Use the compiler as a front end for the linker.

-shared
Generate a shared library.

-o $1 Specify the executable.

$1.o Include the program object file.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-Wl,-rpath,$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example:
$HOME/sqllib/lib.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the sample program spserver from the source file spserver.sqC, if
connecting to the sample database, enter:

bldsrv spserver

If connecting to another database, also enter the database name:
bldsrv spserver database

Chapter 8. Building Linux Applications 209

The script file copies the shared library to the server in the path
sqllib/function.

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database:

db2 connect to sample

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

Then catalog them with this command:
db2 -td@ -vf spcreate.db2

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the shared libary, spserver, you can build the client
application spclient that calls the stored procedures within the shared library.

You can build spclient by using the script file, bldapp. Refer to “DB2 API and
Embedded SQL Applications” on page 205 for details.

To call the stored procedures in the shared library, run the sample client
application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The stored
procedures return the output to the client application.

210 Application Building Guide

User-Defined Functions (UDFs)

Note: Please see the information for building C++ UDFs in “C++
Considerations for UDFs and Stored Procedures” on page 60.

The script file bldudf in sqllib/samples/cpp contains the commands to build
a UDF. A UDF does not contain embedded SQL statements. This means to
build a UDF program, you do not need to connect to a database, precompile,
and bind the program.

The parameter, $1, specifies the name of your source file. The script file uses
this source file name for the shared library name.
#! /bin/ksh
bldudf script file -- Linux
Builds a C++ UDF library
Usage: bldudf <prog_name>

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Compile the program.
if [[-f $1".c"]]
then

g++ -I$DB2PATH/include -c $1.c

elif [[-f $1".C"]]
then

g++ -I$DB2PATH/include -c $1.C
fi

Link the program.
g++ -o $1 $1.o -shared -L$DB2PATH/lib -Wl,-rpath,$DB2PATH/lib -ldb2 -ldb2apie

Copy the shared library to the function subdirectory.
The user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Compile and Link Options for bldudf

Compile Options:

g++ The C++ compiler.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-c Perform compile only; no link. This script file has separate compile and link
steps.

Chapter 8. Building Linux Applications 211

Compile and Link Options for bldudf

Link Options:

g++ Use the compiler as a front end for the linker.

-o $1 Specify the executable.

$1.o Include the program object file.

-shared
Generate a shared library.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-Wl,-rpath,$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example:
$HOME/sqllib/lib.

-ldb2 Link with the DB2 library.

-ldb2apie
Link with the DB2 API Engine library to allow the use of LOB locators.

Refer to your compiler documentation for additional compiler options.

To build the user-defined function program udfsrv from the source file
udfsrv.c, enter:

bldudf udfsrv

The script file copies the UDF to the sqllib/function directory.

If necessary, set the file mode for the UDF so the client application can access
it.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. You can build the udfcli program from the udfcli.sqC source file in
sqllib/samples/cpp using the script file bldapp. Refer to “DB2 API and
Embedded SQL Applications” on page 205 for details.

To call the UDF, run the sample calling application by entering the executable
name:

udfcli

The calling application calls the ScalarUDF function in the udfsrv library.

212 Application Building Guide

Multi-threaded Applications
Multi-threaded applications using Linux C++ need to be compiled with
-D_REENTRANT and linked with -lpthread.

The script file, bldmt, in sqllib/samples/cpp, contains the commands to build
an embedded SQL multi-threaded program.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. The third parameter, $3, specifies the user ID for the database, and $4
specifies the password. Only the first parameter, the source file name, is
required. Database name, user ID, and password are optional. If no database
name is supplied, the program uses the default sample database.
#! /bin/ksh
bldmt script file -- Linux
Builds a C++ multi-threaded embedded SQL program.
Usage: bldmt <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

If an embedded SQL program, precompile and bind it.
embprep $1 $2 $3 $4

Compile the program.
g++ -D_REENTRANT -I$DB2PATH/include -c $1.C

Link the program.
g++ -lpthread -o $1 $1.o -L$DB2PATH/lib -Wl,-rpath,$DB2PATH/lib -ldb2

Besides the -D_REENTRANT and -lpthread options, discussed above, and the
absence of a utility file linked in, the other compile and link options are the
same as those used for the embedded SQL script file, bldapp. For information
on these options, see “DB2 API and Embedded SQL Applications” on page
205.

To build the sample program, thdsrver, from the source file thdsrver.sqC,
enter:

bldmt thdsrver

The result is an executable file, thdsrver. To run the executable file against the
sample database, enter:

thdsrver

Chapter 8. Building Linux Applications 213

214 Application Building Guide

Chapter 9. Building OS/2 Applications

IBM VisualAge C++ for OS/2 Version 3 . . 215
DB2 CLI Applications 216

Building and Running Embedded SQL
Applications 217

DB2 CLI Applications with DB2 APIs . . 218
DB2 CLI Stored Procedures 218
DB2 API and Embedded SQL
Applications 221

Building and Running Embedded SQL
Applications 223

Embedded SQL Stored Procedures . . . 224
User-Defined Functions (UDFs) 226

IBM VisualAge C++ for OS/2 Version 4.0 229
IBM VisualAge COBOL for OS/2 229

Using the Compiler 229
Embedded SQL Applications 230

Building and Running Embedded SQL
Applications 232

Embedded SQL Stored Procedures . . . 232
Micro Focus COBOL 234

Using the Compiler 234
DB2 API and Embedded SQL
Applications 235

Building and Running Embedded SQL
Applications 237

Embedded SQL Stored Procedures . . . 237
REXX 239

This chapter provides detailed information for building applications on OS/2.
In the command files, commands that begin with db2 are Command Line
Processor (CLP) commands. Refer to the Command Reference if you need more
information about CLP commands.

For the latest DB2 application development updates for OS/2, visit the Web
page at:

http://www.ibm.com/software/data/db2/udb/ad

Note: Compound SQL statements containing user-defined SQLDAs are not
permitted in a 16-bit application on OS/2.

IBM VisualAge C++ for OS/2 Version 3

This section includes the following topics:
v DB2 CLI Applications
v DB2 CLI Stored Procedures
v DB2 API and Embedded SQL Applications
v Embedded SQL Stored Procedures
v User-Defined Functions (UDFs)

Note: The VisualAge C++ compiler is used for both C and C++ sample
programs supplied in the %DB2PATH%\samples\c and
%DB2PATH%\samples\cpp directories. The same command files are in both
these directories. They contain commands to accept either a C or C++
source file, depending on the file extension.

© Copyright IBM Corp. 1993, 2000 215

http://www.ibm.com/software/data/db2/udb/ad

DB2 CLI Applications
The command file bldcli, in %DB2PATH%\samples\cli, contains the commands
to build a DB2 CLI program. The parameter, %1, specifies the name of your
source file.

This is the only required parameter, and the only one needed for CLI
programs that do not contain embedded SQL. Building embedded SQL
programs requires a connection to the database so three optional parameters
are also provided: the second parameter, $2, specifies the name of the
database to which you want to connect; the third parameter, $3, specifies the
user ID for the database, and $4 specifies the password.

If the program contains embedded SQL, indicated by the .sqc extension, then
the embprep command file is called to precompile the program, producing a
program file with a .c extension.
@echo off
rem bldcli command file - OS/2
rem Builds a CLI program with IBM VisualAge C++.
rem Usage: bldcli prog_name [db_name [userid password]]

if exist "%1.sqc" call embprep %1 %2 %3 %4
if exist "%1.sqx" call embprep %1 %2 %3 %4
if "%1" == "" goto error

rem Compile the error-checking utility.
icc -C+ -O- -Ti+ utilcli.c

rem Compile the program.
if exist "%1.sqx" goto cpp
icc -C+ -O- -Ti+ %1.c
goto link_step
:cpp
icc -C+ -O- -Ti+ %1.cxx

rem Link the program.
:link_step
ilink /NOFREE /NOI /DEBUG /ST:64000 /PM:VIO %1.obj

utilcli.obj,%1.exe,NUL,db2cli.lib;

goto exit
:error
echo Usage: bldcli prog_name [db_name [userid password]]
:exit
@echo on

216 Application Building Guide

Compile and Link Options for bldcli

Compile Options:
icc The IBM VisualAge C++ compiler.
-C+ Perform compile only; no link. This book assumes that compile and link are

separate steps.
-O- No optimization. It is easier to use a debugger with optimization off.
-Ti+ Generate debugger information

Link Options:
ilink Use the ilink linker to link edit.
/NOFREE

No free format.
/NOI No Ignore Case. Force case sensitive identifiers.
/DEBUG Include debugging information.
/ST:64000

Specify a stack size of at least 64 000.
/PM:VIO

Enable the program to run in an OS/2 window.
%1.obj Include the object file.
utilcli.obj

Include the utility object file for error checking.
%1.exe Specify the executable.
NUL Accept the default value.
db2cli.lib

Link with the DB2 CLI library.

Refer to your compiler documentation for additional compiler options.

To build the sample program tbinfo from the source file tbinfo.c, enter:

bldcli tbinfo

The result is an executable file, tbinfo.exe. You can run the executable file by
entering the executable name (without the extension):

tbinfo

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, dbusemx, from
the source file dbusemx.sqc:
1. If connecting to the sample database on the same instance, enter:

bldcli dbusemx

2. If connecting to another database on the same instance, also enter the
database name:

bldcli dbusemx database

Chapter 9. Building OS/2 Applications 217

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldcli dbusemx database userid password

The result is an executable file, dbusemx.exe.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name (without the extension):
dbusemx

2. If accessing another database on the same instance, enter the executable
name and the database name:

dbusemx database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

dbusemx database userid password

DB2 CLI Applications with DB2 APIs
DB2 includes CLI sample programs that use DB2 APIs to create and drop a
database in order to demonstrate using CLI functions on more than one
database. The descriptions of the CLI sample programs in Table 7 on page 22
indicates the samples that use DB2 APIs.

The command file bldapi in %DB2PATH%\samples\cli contains the commands
to build a DB2 CLI program with DB2 APIs. This file compiles and links in
the utilapi utility file, which contains the DB2 APIs to create and drop a
database. This is the only difference between this file and the bldcli
command file. Please see “DB2 CLI Applications” on page 216 for the compile
and link options common to both bldapi and bldcli.

To build the sample program dbmconn from the source file dbmconn.c, enter:

bldapi dbmconn

The result is an executable file, dbmconn.exe. You can run the executable file
by entering the executable name (without the extension):

dbmconn

DB2 CLI Stored Procedures
The command file bldclisp, in %DB2PATH%\samples\cli, contains the
commands to build a CLI stored procedure. The command file builds the
stored procedure into a DLL on the server.

The parameter, %1, specifies the name of your source file. The command file
uses the source file name, %1, for the DLL name.

218 Application Building Guide

@echo off
rem bldclisp command file - OS/2
rem Builds a CLI stored procedure using the IBM VisualAge C++ compiler.
rem Usage: bldclisp <prog_name>

if "%1" == "" goto error

rem Compile the error-checking utility.
icc -C+ -Ti+ -Ge- -Gm+ -W2 utilcli.c
rem Compile the program.
if exist "%1.cxx" goto cpp
icc -C+ -Ti+ -Ge- -Gm+ -W2 %1.c
goto link_step
:cpp
icc -C+ -Ti+ -Ge- -Gm+ -W2 %1.cxx

:link_step
rem Link the program and produce a DLL.
ilink /NOFREE /MAP /NOI /DEBUG /ST:64000 %1.obj

utilcli.obj,%1.dll,,db2cli.lib,%1.def;

rem Copy the stored procedure DLL to the 'function' directory
copy %1.dll %DB2PATH%\function

goto exit
:error
echo Usage: bldclisp prog_name
:exit
@echo on

Compile and Link Options for bldclisp

Compile Options:
icc The IBM VisualAge C++ compiler.
-C+ Perform compile only; no link. The command file has separate compile and

link steps.
-Ti+ Generate debugger information.
-Ge- Build a .DLL file. Use the version of the run-time library that is statically

linked.
-Gm+ Link with multi-tasking libraries.
-W2 Output warning, error, and severe and unrecoverable error messages.

Chapter 9. Building OS/2 Applications 219

Compile and Link Options for bldclisp

Link Options:
ilink Use the ilink linker to link edit.
/NOFREE

No free format.
/MAP Generate a map file.
/NOI No Ignore Case. Force case sensitive identifiers.
/DEBUG Include debugging information.
/ST:64000

Specify a stack size of at least 64000.
%1.obj Include the object file.
%1.dll Create a dynamic link library.
db2cli.lib

Link with the DB2 CLI library.
%1.def Module definition file.

Refer to your compiler documentation for additional compiler options.

To build the sample program spserver from the source file spserver.c, enter:
bldclisp spserver

The script file copies the shared library to the server in the path
%DB2PATH%\function.

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database:

db2 connect to sample

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

Then catalog them with this command:
db2 -td@ -vf spcreate.db2

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the shared library, spserver, you can build the CLI client
application spclient that calls the stored procedures in the shared library.

You can build spclient by using the command file, bldcli. Refer to “DB2 CLI
Applications” on page 216 for details.

220 Application Building Guide

To access the shared library, run the sample client application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The output is
returned to the client application.

DB2 API and Embedded SQL Applications
The command file bldapp.cmd, in %DB2PATH%\samples\c, and in
%DB2PATH%\samples\cpp, contains the commands to build a DB2 application
program.

The first parameter, %1, specifies the name of your source file. This is the only
required parameter for programs that do not contain embedded SQL. Building
embedded SQL programs requires a connection to the database so three
optional parameters are also provided: the second parameter, %2, specifies the
name of the database to which you want to connect; the third parameter, %3,
specifies the user ID for the database, and %4 specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind command file, embprep. If no database name is supplied,
the default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.
@echo off
rem bldapp command file -- OS/2
rem Builds a VisualAge C++ application program
rem Usage: bldapp <prog_name> [<db_name> [<userid> <password>]]

if exist "%1.sqx" goto embedded
if exist "%1.sqc" goto embedded
goto non_embedded

:embedded
rem Precompile and bind the program.
call embprep %1 %2 %3 %4
rem Compile the program.
if exist "%1.cxx" goto cpp_embedded

Chapter 9. Building OS/2 Applications 221

icc -c utilemb.c
icc -C+ -O- -Ti+ %1.c
goto link_embedded
:cpp_embedded
icc -c utilemb.cxx
icc -C+ -O- -Ti+ %1.cxx
goto link_embedded

:non_embedded
rem Compile the program.
if exist "%1.cxx" goto cpp
icc -c utilapi.c
icc -C+ -O- -Ti+ %1.c
goto link_non_embedded
:cpp
icc -c utilapi.cxx
icc -C+ -O- -Ti+ %1.cxx
goto link_non_embedded

rem Link the program.
:link_embedded
ilink /NOFREE /NOI /DEBUG /ST:64000 /PM:VIO %1.obj utilemb.obj,,,db2api;
goto exit
:link_non_embedded
ilink /NOFREE /NOI /DEBUG /ST:64000 /PM:VIO %1.obj utilapi.obj,,,db2api;
:exit
@echo on

Compile and Link Options for bldapp

Compile Options:
icc The IBM VisualAge C++ compiler.
-C+ Perform compile only; no link. This book assumes that compile and link are

separate steps.
-O- No optimization. It is easier to use a debugger with optimization off.
-Ti+ Generate debugger information

222 Application Building Guide

Compile and Link Options for bldapp

Link Options:
ilink Use the ilink linker to link edit.
/NOFREE

No free format.
/NOI No Ignore Case. Force case sensitive identifiers.
/DEBUG Include debugging information.
/ST:64000

Specify a stack size of at least 64000.
/PM:VIO

Enable the program to run in an OS/2 window.
utilemb.obj

If an embedded SQL program, include the embedded SQL utility object file
for error checking.

utilapi.obj
If not an embedded SQL program, include the DB2 API utility object file for
error checking.

db2api Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the DB2 API non-embedded SQL sample program, client, from the
source file client.c, enter:

bldapp client

The result is an executable file, client.exe.

To run the executable file, enter the executable name (without the extension):
client

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, updat, from the
source file updat.sqc:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, also enter the
database name:

bldapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp updat database userid password

The result is an executable file, updat.exe.

Chapter 9. Building OS/2 Applications 223

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name (without the extension):
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Embedded SQL Stored Procedures
The command file bldsrv, in %DB2PATH%\samples\c, and in
%DB2PATH%\samples\cpp, contains the commands to build an embedded SQL
stored procedure. The command file compiles the stored procedure into a DLL
on the server.

The first parameter, %1, specifies the name of your source file. The second
parameter, %2, specifies the name of the database to which you want to
connect. Since the stored procedure must be build on the same instance where
the database resides, there are no parameters for user ID and password.

Only the first parameter, source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database.

The command file uses the source file name, %1, for the DLL name.
@echo off
rem bldsrv command file -- OS/2
rem Builds a VisualAge C++ stored procedure
rem Usage: bldsrv <prog_name> [<db_name>]

rem Precompile and bind the program.
call embprep %1 %2

rem Compile the program.
if exist "%1.cxx" goto cpp
icc -C+ -Ti+ -Ge- -Gm+ -W2 %1.c
goto link_step
:cpp
icc -C+ -Ti+ -Ge- -Gm+ -W2 %1.cxx

:link_step
rem Link the program.
ilink /NOFREE /NOI /DEBUG /ST:64000 %1.obj,%1.dll,,db2api,%1.def;

224 Application Building Guide

rem Copy the stored procedure to the %DB2PATH%\function directory.
copy %1.dll %DB2PATH%\function
@echo on

Compile and Link Options for bldsrv

Compile Options:
icc The IBM VisualAge C++ compiler.
-C+ Perform compile only; no link. The command file has separate compile and

link steps.
-Ti+ Generate debugger information.
-Ge- Build a .DLL file. Use the version of the run-time library that is statically

linked.
-Gm+ Link with multi-tasking libraries.
-W2 Output warning, error, and severe and unrecoverable error messages.

Link Options:
ilink Use the ilink linker to link edit.
/NOFREE

No free format.
/NOI No Ignore Case. Force case sensitive identifiers.
/DEBUG Include debugging information.
/ST:64000

Specify a stack size of at least 64000.
%1.dll Create a dynamic link library.
db2api Link with the DB2 library.
%1.def Module definition file.

Refer to your compiler documentation for additional compiler options.

To build the sample program spserver from source file spserver.sqc, if
connecting to the sample database, enter:

bldsrv spserver

If connecting to another database, also enter the database name:
bldsrv spserver database

The command file copies the shared library to the server in the path
%DB2PATH%\function.

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database:

db2 connect to sample

Chapter 9. Building OS/2 Applications 225

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

Then catalog them with this command:
db2 -td@ -vf spcreate.db2

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the shared library, spserver, you can build the client
application spclient that accesses the shared library.

You can build spclient by using the command file, bldapp. Refer to “DB2 API
and Embedded SQL Applications” on page 221 for details.

To call the stored procedure, run the sample client application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the shared libary, spserver, and executes a
number of stored procedure functions on the server database. The output is
returned to the client application.

User-Defined Functions (UDFs)
The command file bldudf, in %DB2PATH%\samples\c, and in
%DB2PATH%\samples\cpp, contains the commands to build a UDF.

UDFs cannot contain embedded SQL statements. Therefore, to build a UDF
program, you do not connect to a database to precompile and bind the
program.

The command file takes one parameter, %1, which specifies the name of your
source file. It uses the source file name, %1, for the DLL name.

226 Application Building Guide

@echo off
rem bldudf command file -- OS/2
rem Builds a VisualAge C++ user-defined function (UDF)
rem Usage: bldudf <prog_name>

if "%1" == "" goto error

rem Compile the program.
if exist "%1.cxx" goto cpp
icc -C+ -Ti+ -Ge- -Gm+ -W2 %1.c
goto link_step
:cpp
rem icc -C+ -Ti+ -Ge- -Gm+ -W2 %1.cxx

:link_step
rem Link the program.
ilink /NOFREE /MAP /NOI /DEBUG /ST:64000 %1.obj,%1.dll,,db2api db2apie,%1.def;

rem Copy the UDF to the %DB2PATH%\function directory
copy %1.dll %DB2PATH%\function

goto exit
:error
echo Usage: bldudf prog_name
:exit
@echo on

Compile and Link Options for bldudf

Compile Options:
icc The IBM VisualAge C++ compiler.
-C+ Perform compile only; no link. The command file has separate compile and

link steps.
-Ti+ Generate debugger information.
-Ge- Build a .DLL file. Use the version of the run-time library that is statically

linked.
-Gm+ Link with multi-tasking libraries.
-W2 Output warning, error, and severe and unrecoverable error messages.

Chapter 9. Building OS/2 Applications 227

Compile and Link Options for bldudf

Link Options:
ilink Use the ilink linker to link edit.
/NOFREE

No free format.
/MAP Generate a map file.
/NOI No Ignore Case. Force case sensitive identifiers.
/DEBUG Include debugging information.
/ST:64000

Specify a stack size of at least 64000.
%1.dll Create a dynamic link library.
db2api Link with the DB2 library.
db2apie

Link with the DB2 API Engine library.
%1.def Module definition file.

Refer to your compiler documentation for additional compiler options.

To build the user-defined function program udfsrv from the source file
udfsrv.c, enter:

bldudf udfsrv

The script file copies the UDF to the server in the path %DB2PATH%\function.

If necessary, set the file mode for the UDF so the client application can access
it.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. DB2 CLI and embedded SQL versions of this program are provided.

You can build the DB2 CLI udfcli program from the udfcli.c source file in
%DB2PATH%\samples\cli using the command file bldcli.cmd. Refer to “DB2
CLI Applications” on page 216 for details.

You can build the embedded SQL udfcli program from the source file
udfcli.sqc, in %DB2PATH%\samples\c, using the command file, bldapp. Refer

to “DB2 API and Embedded SQL Applications” on page 221 for details.

To call the UDF, run the sample calling application by entering the executable
name (without the extension):

udfcli

The calling application calls the ScalarUDF function from the udfsrv library.

228 Application Building Guide

IBM VisualAge C++ for OS/2 Version 4.0

Application building information for the VisualAge C++ version 4 compiler is
common to AIX, OS/2 and Windows 32-bit operating systems. See “VisualAge
C++ Version 4.0” on page 129 for this information.

IBM VisualAge COBOL for OS/2

This section contains the following topics:
v Using the Compiler
v DB2 API and Embedded SQL Applications
v Embedded SQL Stored Procedures

Using the Compiler
These points will help you use the IBM VisualAge COBOL compiler with
DB2.

Workaround for Creating Bind Files

When creating applications using DB2 for OS/2 and IBM Cobol, the DB2
precompiler will often fail to create bind files. This is due to a file handle limit
within OS/2.

The fix makes OS/2 allow more file handles on the machine performing the
compiling. The line:

SET SHELLHANDLESINC=20

should be inserted into the CONFIG.SYS file on the machine where DB2 for
OS/2 is installed. Alternately, one can use the NODATA option when
compiling (this is an IBM Cobol option).

Embedded SQL and DB2 API Calls

If you develop applications that contain embedded SQL and DB2 API calls,
and you are using the IBM VisualAge COBOL compiler, keep the following
points in mind:
v When you precompile your application using the command line processor

command, db2 prep, use the target ibmcob option.
v Do not use tab characters in your source files.
v You can use the PROCESS and CBL keywords in your source files to set

compile options. Place the keywords in columns 8 to 72 only.
v If your application contains only embedded SQL, but no DB2 API calls, you

do not need to use the pgmname(mixed) compile option. If you use DB2 API
calls, you must use the pgmname(mixed) compile option.

Chapter 9. Building OS/2 Applications 229

v If you are using the ″System/390 host data type support″ feature of the
IBM VisualAge COBOL compiler, the DB2 include files for your
applications are in the following directory:
%DB2PATH%\include\cobol_i

If you are building DB2 sample programs using the command files
provided, the include file path specified in the command files must be
changed to point to the cobol_i directory and not the cobol_a directory.

If you are NOT using the ″System/390 host data type support″ feature of
the IBM VisualAge COBOL compiler, or you are using an earlier version of
this compiler, then the DB2 include files for your applications are in the
following directory:
%DB2PATH%\include\cobol_a

Specify COPY file names to include the .cbl extension as follows:
COPY "sql.cbl".

Embedded SQL Applications
The command file bldapp.cmd, in %DB2PATH%\samples\cobol, contains the
commands to build a DB2 application program.

The first parameter, %1, specifies the name of your source file. This is the only
required parameter for programs that do not contain embedded SQL. Building
embedded SQL programs requires a connection to the database so three
optional parameters are also provided: the second parameter, %2, specifies the
name of the database to which you want to connect; the third parameter, %3,
specifies the user ID for the database, and %4 specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind command file, embprep. If no database name is supplied,
the default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.
@echo off
rem bldapp command file -- OS/2
rem Builds a VisualAge COBOL application program
rem Usage: bldapp <prog_name> [<db_name> [<userid> <password>]]

rem If an embedded SQL program, precompile and bind it.
if exist "%1.sqb" goto prepbind
goto compile_step
:prepbind
call embprep %1 %2 %3 %4

:compile_step
rem Compile the checkerr error checking utility.
cob2 -c -g -qpgmname(mixed) -qlib -I%DB2PATH%\include\cobol_a checkerr.cbl

230 Application Building Guide

rem Compile the program.
cob2 -c -g -qpgmname(mixed) -qlib -I%DB2PATH%\include\cobol_a %1.cbl

rem Link the program.
ilink %1.obj checkerr.obj db2api.lib /ST:64000 /PM:VIO /NOI /DEBUG
@echo on

Compile and Link Options for bldapp

Compile Options:
cob2 The IBM VisualAge COBOL compiler.
-c Perform compile only; no link. This book assumes that compile and link are

separate steps.
-g Include debug information.
-qpgmname(mixed)

Instructs the compiler to permit CALLs to library entry points with
mixed-case names.

-qlib Instructs the compiler to process COPY statements.
-Ipath Specify the location of the DB2 include files. For example:

-I%DB2PATH%\include\cobol_a.

Link Options:
ilink Use the ilink linker to link edit.
checkerr.obj

Include the error-checking utility object file.
db2api.lib

Link with the DB2 library.
/ST:64000

Specify a stack size of at least 64000.
/PM:VIO

Enable the program to run in an OS/2 window.
/NOI Do not ignore case when linking.
/DEBUG Include debugging information.

Refer to your compiler documentation for additional compiler options.

To build the non-embedded SQL sample program client from the source file
client.cbl, enter:

bldapp client

The result is an executable file client.exe. You can run the executable file
against the sample database by entering the executable name (without the file
extension):

client

Chapter 9. Building OS/2 Applications 231

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, updat, from the
source file updat.sqb:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, also enter the
database name:

bldapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp updat database userid password

The result is an executable file, updat.exe.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name (without the file extension):
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Embedded SQL Stored Procedures
The command file bldsrv, in %DB2PATH%\samples\cobol, contains the
commands to build a stored procedure. The command file compiles the stored
procedure into a DLL on the server.

The first parameter, %1, specifies the name of your source file. The second
parameter, %2, specifies the name of the database to which you want to
connect. Since the stored procedure must be built on the same instance where
the database resides, there are no parameters for user ID and password.

Only the first parameter, source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database.

The command file uses the source file name, %1, for the DLL name.
@echo off
rem bldsrv command file -- OS/2
rem Builds a VisualAge COBOL stored procedure
rem Usage: bldsrv <prog_name> [<db_name>]

232 Application Building Guide

rem Precompile and bind the program.
call embprep %1 %2

rem Compile the program.
cob2 -c -g -qpgmname(mixed) -qlib -I%DB2PATH%\include\cobol_a %1.cbl

rem Link the program.
ilink %1.obj checkerr.obj %1.def db2api.lib /ST:64000 /PM:VIO /NOI /DEBUG

rem Copy stored procedure to the %DB2PATH%\function directory.
copy %1.dll %DB2PATH%\function
@echo on

Compile and Link Options for bldsrv

Compile Options:
cob2 The IBM VisualAge COBOL compiler.
-c Perform compile only; no link. This book assumes that compile and link are

separate steps.
-g Include debug information.
-qpgmname(mixed)

Instructs the compiler to permit CALLs to library entry points with
mixed-case names.

-qlib Instructs the compiler to process COPY statements.
-Ipath Specify the location of the DB2 include files. For example:

-I%DB2PATH%\include\cobol_a.

Link Options:
ilink Use the ilink linker to link edit.
checkerr.obj

Include the error-checking utility object file.
%1.def Module definition file.
db2api.lib

Link with the DB2 library.
/ST:64000

Specify a stack size of at least 64000.
/PM:VIO

Enable the program to run in an OS/2 window.
/NOI Do not ignore case when linking.
/DEBUG Include debugging information.

Refer to your compiler documentation for additional compiler options.

To build the sample program outsrv from the source file outsrv.sqb,
connecting to the sample database, enter:

bldsrv outsrv

Chapter 9. Building OS/2 Applications 233

If connecting to another database, also include the database name:
bldsrv outsrv database

The command file uses the module definition file, outsrv.def, contained in
the same directory as the sample programs, to build the DLL. The command
file copies the stored procedure DLL, outsrv.dll, on the server in the path
%DB2PATH%\function.

If necessary, set the file mode for the DLL so the client application can access
it.

Once you build the DLL, outsrv, you can build the client application outcli
that accesses the DLL. You can build outcli using the command file, bldapp.
Refer to “Embedded SQL Applications” on page 230 for details.

To call the stored procedure, run the client application by entering:
outcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its remote alias, or some other name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the DLL, outsrv, and executes the stored
procedure function of the same name on the server database, and then returns
the output to the client application.

Micro Focus COBOL

This section contains the following topics:
v Using the Compiler
v DB2 API and Embedded SQL Applications
v Embedded SQL Stored Procedures

Using the Compiler
DB2 does not support the link386 linker that comes with the Micro Focus
COBOL compiler. To link DB2 Micro Focus COBOL programs, you must use
the ilink linker that is available from IBM compiler products. The cbllink
command, used in the script files in this section, calls the ilink linker.

234 Application Building Guide

When building applications with the Micro Focus COBOL compiler that
contain embedded SQL and DB2 API calls, keep the following points in mind:
v When you precompile your application using the command line processor

command db2 prep, use the target mfcob option, the default.
v Ensure the LIB environment variable points to %DB2PATH%\lib like this:

set LIB=%DB2PATH%\lib;%LIB%

v The DB2 COPY files for Micro Focus COBOL reside in
%DB2PATH%\include\cobol_mf. Set the COBCPY environment variable to
include the directory like this:

set COBCPY=%DB2PATH%\include\cobol_mf;%COBCPY%

Calls to all DB2 application programming interfaces must be made using
calling convention 8. The DB2 COBOL precompiler automatically inserts a
CALL-CONVENTION clause in a SPECIAL-NAMES paragraph. If the
SPECIAL-NAMES paragraph does not exist, the DB2 COBOL precompiler
creates it, as follows:

Identification Division
Program-ID. "static".
special-names.

call-convention 8 is DB2API.

Also, the precompiler automatically places the symbol DB2API, which is used
to identify the calling convention, after the ″call″ keyword whenever a DB2
API is called. This occurs, for instance, whenever the precompiler generates a
DB2 API run-time call from an embedded SQL statement.

If calls to DB2 APIs are made in an application which is not precompiled, you
should manually create a SPECIAL-NAMES paragraph in the application,
similar to that given above. If you are calling a DB2 API directly, then you
will need to manually add the DB2API symbol after the ″call″ keyword.

DB2 API and Embedded SQL Applications
The command file bldapp, in %DB2PATH%\samples\cobol_mf, contains the
commands to build a DB2 application program.

The first parameter, %1, specifies the name of your source file. This is the only
required parameter for programs that do not contain embedded SQL. Building
embedded SQL programs requires a connection to the database so three
optional parameters are also provided: the second parameter, %2, specifies the
name of the database to which you want to connect; the third parameter, %3,
specifies the user ID for the database, and %4 specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind command file, embprep. If no database name is supplied,

Chapter 9. Building OS/2 Applications 235

the default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.
@echo off
rem bldapp command file -- OS/2
rem Builds a Micro Focus COBOL application program
rem Usage: bldapp <prog_name> [<db_name> [<userid> <password>]]

rem If an embedded SQL program, precompile and bind it.
if exist "%1.sqb" goto prepbind
goto compile_step
:prepbind
call embprep %1 %2 %3 %4

:compile_step
rem Compile the error-checking utility.
cobol checkerr.cbl;

rem Compile the program.
cobol %1.cbl;

rem Link the program.
cbllink %1.obj checkerr.obj db2api.lib db2gmf32.lib
@echo on

Compile and Link Options for bldapp

Compile Option:

cobol The Micro Focus COBOL compiler.

Link Options:

cbllink
Use the linker to link edit.

checkerr.obj
Include the error-checking utility object file.

db2api.lib
Link with the DB2 API library.

db2gmf32.lib
Link with the DB2 exception-handler library for M. F. COBOL.

Refer to your compiler documentation for additional compiler options.

To build the non-embedded SQL sample program, client, from the source file
client.cbl, enter:

bldapp client

236 Application Building Guide

The result is an executable file client.exe. You can run the executable file
against the sample database by entering the executable name (without the file
extension):

client

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, updat, from the
source file updat.sqb:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, also enter the
database name:

bldapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp updat database userid password

The result is an executable file, updat.exe.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name (without the file extension):
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Embedded SQL Stored Procedures
The command file bldsrv, in %DB2PATH%\samples\cobol_mf, contains the
commands to build an embedded SQL stored procedure. The command file
compiles the stored procedure into a DLL on the server.

The first parameter, %1, specifies the name of your source file. The second
parameter, %2, specifies the name of the database to which you want to
connect. Since the stored procedure must be built on the same instance where
the database resides, there are no parameters for user ID and password.

Only the first parameter, source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database. The command file uses the source file name, %1, for the DLL
name.

Chapter 9. Building OS/2 Applications 237

@echo off
rem bldsrv command file -- OS/2
rem Builds a Micro Focus COBOL stored procedure
rem Usage: bldsrv <prog_name> [<db_name>]

rem Precompile and bind the program.
call embprep %1 %2

rem Compile the stored procedure.
cobol %1.cbl;

rem Link the stored procedure and create a shared library.
cbllink /d %1.obj db2api.lib db2gmf32.lib

rem Copy the stored procedure to the %DB2PATH%\function directory.
copy %1.dll %DB2PATH%\function
@echo on

Compile and Link Options for bldsrv

Compile Option:

cobol The Micro Focus COBOL compiler.

Link Options:

cbllink
Use the Micro Focus COBOL linker to link edit.

/d Create a .dll file.

db2api.lib
Include the DB2 API library.

db2gmf32.lib
Link with the DB2 exception-handler library for M. F. COBOL.

Refer to your compiler documentation for additional compiler options.

To build the sample program outsrv from the source file outsrv.sqb, if
connecting to the sample database, enter:

bldsrv outsrv

If connecting to another database, also enter the database name:
bldsrv outsrv database

The linker uses a default entry point unspecified by the user. The /d option is
used to create the .dll file in order to build the stored procedure. The
command file copies the stored procedure DLL, outsrv.dll, on the server in
the path %DB2PATH%\function.

238 Application Building Guide

If necessary, set the file mode for the DLL so the client application can access
it.

Once you build the DLL, outsrv, you can build the client application outcli
that accesses it. You can build outcli using the command file, bldapp. Refer to
“DB2 API and Embedded SQL Applications” on page 235 for details.

To call the stored procedure, run the sample client application by entering:
outcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the DLL, outsrv, and executes the stored
procedure function of the same name on the server database. The output is
then returned to the client application.

REXX

You do not compile or bind REXX programs.

On OS/2, your application file must have a .cmd extension. After creation,
you can run your application directly from the operating system command
prompt.

An OS/2 REXX program must contain a comment that begins in the first
column of the first line, to distinguish it from a batch command:
/* Any comment will do. */

REXX sample programs can be found in the directory
%DB2PATH%\samples\rexx. To run the sample REXX program updat, enter:

updat

For further information on REXX and DB2, refer to the chapter, ″Programming
in REXX″, in the Application Development Guide.

Chapter 9. Building OS/2 Applications 239

240 Application Building Guide

Chapter 10. Building PTX Applications

ptx/C. 241
DB2 CLI Applications 241

Building and Running Embedded SQL
Applications 243

DB2 CLI Applications with DB2 APIs . . 244
DB2 CLI Stored Procedures 244
DB2 API and Embedded SQL
Applications 247

Building and Running Embedded SQL
Applications 249

Embedded SQL Stored Procedures . . . 249

User-Defined Functions (UDFs) 252
Multi-threaded Applications 254

ptx/C++ 255
DB2 API and Embedded SQL
Applications 255

Building and Running Embedded SQL
Applications 257

Embedded SQL Stored Procedures . . . 258
User-Defined Functions (UDFs) 260
Multi-threaded Applications 262

This chapter provides detailed information for building applications on PTX
with DB2 for NUMA-Q. In the script files, commands that begin with db2 are
Command Line Processor (CLP) commands. Refer to the Command Reference if
you need more information about CLP commands.

For the latest DB2 application development updates for PTX, visit the Web
page at:
http://www.ibm.com/software/data/db2/udb/ad

ptx/C

This section covers the following topics:
v DB2 CLI Applications
v DB2 CLI Applications with DB2 APIs
v DB2 CLI Stored Procedures
v DB2 API and Embedded SQL Applications
v Embedded SQL Stored Procedures
v User-defined Functions (UDFs)
v Multi-threaded Applications

DB2 CLI Applications
The script file bldcli in sqllib/samples/cli contains the commands to build
a DB2 CLI program. The parameter, $1, specifies the name of your source file.

This is the only required parameter, and the only one needed for CLI
programs that do not contain embedded SQL. Building embedded SQL
programs requires a connection to the database so three optional parameters
are also provided: the second parameter, $2, specifies the name of the
database to which you want to connect; the third parameter, $3, specifies the
user ID for the database, and $4 specifies the password.

© Copyright IBM Corp. 1993, 2000 241

http://www.ibm.com/software/data/db2/udb/ad

If the program contains embedded SQL, indicated by the .sqc extension, then
the embprep script is called to precompile the program, producing a program
file with a .c extension.

Compile and Link Options for bldcli

Compile Options:

cc Use the C compiler.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

-c Perform compile only, no link. Compile and link are separate steps.

#! /bin/ksh
bldcli script file -- PTX
Builds a DB2 CLI program
Usage: bldcli <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

If an embedded SQL program, precompile and bind it.
if [[-f $1".sqc"]]
then

embprep $1 $2 $3 $4
fi

Compile the error-checking utility.
cc -I$DB2PATH/include -c utilcli.c

Compile the program.
cc -I$DB2PATH/include -c $1.c

Link the program.
cc -o $1 $1.o utilcli.o -L$DB2PATH/lib -ldb2

242 Application Building Guide

Compile and Link Options for bldcli

Link Options:

cc Use the compiler as a front end for the linker.

-o $1 Specify the executable program.

$1.o Include the program object file.

utilcli.o
Include the utility object file for error checking.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example, $HOME/sqllib/lib

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the sample program tbinfo from the source file tbinfo.c, enter:

bldcli tbinfo

The result is an executable file tbinfo. You can run the executable file by
entering the executable name:

tbinfo

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, dbusemx, from
the source file dbusemx.sqc:
1. If connecting to the sample database on the same instance, enter:

bldcli dbusemx

2. If connecting to another database on the same instance, also enter the
database name:

bldcli dbusemx database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldcli dbusemx database userid password

The result is an executable file, dbusemx.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
dbusemx

Chapter 10. Building PTX Applications 243

2. If accessing another database on the same instance, enter the executable
name and the database name:

dbusemx database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

dbusemx database userid password

DB2 CLI Applications with DB2 APIs
DB2 includes CLI sample programs that use DB2 APIs to create and drop a
database in order to demonstrate using CLI functions on more than one
database. The descriptions of the CLI sample programs in Table 7 on page 22
indicates the samples that use DB2 APIs.

The script file bldapi in sqllib/samples/cli contains the commands to build
a DB2 CLI program with DB2 APIs. This file compiles and links in the
utilapi utility file, which contains the DB2 APIs to create and drop a
database. This is the only difference between this file and the bldcli script.
Please see “DB2 CLI Applications” on page 241 for the compile and link
options common to both bldapi and bldcli.

To build the sample program dbmconn from the source file dbmconn.c, enter:

bldapi dbmconn

The result is an executable file dbmconn. You can run the executable file by
entering the executable name:

dbmconn

DB2 CLI Stored Procedures
The script file bldclisp in sqllib/samples/cli contains the commands to
build a DB2 CLI stored procedure. The parameter, $1, specifies the name of
your source file.

244 Application Building Guide

Compile and Link Options for bldclisp

Compile Options:

cc The C compiler.

-KPIC Generate position-independent code for shared libraries.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-c Perform compile only, no link. Compile and link are separate steps.

#! /bin/ksh
bldclisp script file -- PTX
Builds a DB2 CLI stored procedure
Usage: bldclisp <prog_name>

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Compile the error-checking utility.
cc -KPIC -I$DB2PATH/include -c utilcli.c

Compile the program.
cc -KPIC -I$DB2PATH/include -c $1.c

Link the program.
cc -G -o $1 $1.o utilcli.o -L$DB2PATH/lib -ldb2

Copy the shared library to the sqllib/function subdirectory.
Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Chapter 10. Building PTX Applications 245

Compile and Link Options for bldclisp

Link Options:

cc Use the compiler as a front end for the linker.

-G Generate a shared library.

-o $1 Specify the executable.

$1.o Include the program object file.

utilcli.o
Include the utility object file for error-checking.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the sample program spserver from source file spserver.c, enter:
bldclisp spserver

The script file copies the shared library to the server in the path
sqllib/function.

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database:

db2 connect to sample

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

Then catalog them with this command:
db2 -td@ -vf spcreate.db2

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the shared library, spserver, you can build the CLI client
application spclient that accesses the shared library.

You can build spclient by using the script file, bldcli. Refer to “DB2 CLI
Applications” on page 241 for details.

246 Application Building Guide

To access the shared library, run the sample client application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the shared library, spserver, which executes a
number of stored procedure functions on the server database, and then
returns the output to the client application.

DB2 API and Embedded SQL Applications
The build file, bldapp, in sqllib/samples/c, contains the commands to build
DB2 API and embedded SQL programs.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter, and the only one needed for DB2 API programs that do
not contain embedded SQL. Building embedded SQL programs requires a
connection to the database so three optional parameters are also provided: the
second parameter, $2, specifies the name of the database to which you want to
connect; the third parameter, $3, specifies the user ID for the database, and $4
specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind file, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.
#! /bin/ksh
bldapp script file -- PTX
Builds a C application program.
Usage: bldapp <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to the location where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

if an embedded SQL program, precompile and bind it.
if [[-f $1".sqc"]]
then

embprep $1 $2 $3 $4
Compile the utilemb.c error-checking utility.

Chapter 10. Building PTX Applications 247

cc -I$DB2PATH/include -c utilemb.c
else

Compile the utilapi.c error-checking utility.
cc -I$DB2PATH/include -c utilapi.c

fi

Compile the program.
cc -I$DB2PATH/include -c $1.c

if [[-f $1".sqc"]]
then

Link the program with utilemb.o
cc -o $1 $1.o utilemb.o -L$DB2PATH/lib -ldb2

else
Link the program with utilapi.o
cc -o $1 $1.o utilapi.o -L$DB2PATH/lib -ldb2

fi

Compile and Link Options for bldapp

Compile Options:

cc The C compiler.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

-c Perform compile only, no link. Compile and link are separate steps.

Link Options:

cc Use the compiler as a front end for the linker.

-o $1 Specify the executable.

$1.o Include the program object file.

util.o Include the utility object file for error-checking.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the non-embedded SQL sample program, client, from the source file
client.c, enter:

bldapp client

The result is an executable file, client.

248 Application Building Guide

To run the executable file, enter the executable name:
client

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, updat, from the
source file updat.sqc:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, also enter the
database name:

bldapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp updat database userid password

The result is an executable file, updat.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Embedded SQL Stored Procedures
The script file, bldsrv, in sqllib/samples/c, contains the commands to build
an embedded SQL stored procedure. The script file compiles the stored
procedure into a shared library that can be called by a client application.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. Since the stored procedure must be build on the same instance where
the database resides, you do not have to specify parameters for user ID and
password.

Only the first parameter, source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database.

Chapter 10. Building PTX Applications 249

#! /bin/ksh
bldsrv script file -- PTX
Builds a C stored procedure
Usage: bldsrv <prog_name> [<db_name>]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Precompile and bind the program.
embprep $1 $2

Compile the program.
cc -KPIC -I$DB2PATH/include -c $1.c

Link the program and create a shared library.
cc -G -o $1 $1.o -L$DB2PATH/lib -ldb2

Copy the shared library to the sqllib/function subdirectory.
Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Compile and Link Options for bldsrv

Compile Options:

cc The C compiler.

-KPIC Generate position-independent code for shared libraries.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
-I$DB2PATH/include

-c Perform compile only, no link. Compile and link are separate steps.

Link Options:

cc Use the compiler as a front end for the linker.

-G Generate a shared library.

-o $1 Specify the executable.

$1.o Include the program object file.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

250 Application Building Guide

To build the sample program spserver from the source file spserver.sqc, if
connecting to the sample database, enter:

bldsrv spserver

If connecting to another database, also enter the database name:
bldsrv spserver database

The script file copies the shared library to the server in the path
sqllib/function.

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database:

db2 connect to sample

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

Then catalog them with this command:
db2 -td@ -vf spcreate.db2

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the shared library, spserver, you can build the client
application spclient that accesses it.

You can build spclient by using the script file, bldapp. Refer to “DB2 API and
Embedded SQL Applications” on page 247 for details.

To call the stored procedures in the shared library, run the sample client
application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

Chapter 10. Building PTX Applications 251

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The output is
returned to the client application.

User-Defined Functions (UDFs)
The script file, bldudf, in sqllib/samples/c, contains the commands to build a
UDF. UDFs do not contain embedded SQL statements. Therefore, to build a
UDF program, you do not need to connect to a database or precompile and
bind the program.

The parameter, $1, specifies the name of your source file. The script file uses
the source file name for the shared library name.

Compile and Link Options for bldudf

Compile Options:

cc The C compiler.

-KPIC Generate position-independent code for shared libraries.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-c Perform compile only, no link. Compile and link are separate steps.

#! /bin/ksh
bldudf script file -- PTX
Builds a C user-defined function library
Usage: bldudf <prog_name>

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Compile the program.
cc -KPIC -I$DB2PATH/include -c $1.c

Link the program and create a shared library.
cc -G -o $1 $1.o -L$DB2PATH/lib -ldb2 -ldb2apie

Copy the shared library to the sqllib/function subdirectory.
Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

252 Application Building Guide

Compile and Link Options for bldudf

Link Options:

cc Use the compiler as a front end for the linker.

-G Generate a shared library.

-o $1 Specify the executable.

$1.o Include the program object file.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-ldb2 Link with the DB2 library.

-ldb2apie
Link with the DB2 API Engine library to allow the use of LOB locators.

Refer to your compiler documentation for additional compiler options.

To build the user-defined function program udfsrv from the source file
udfsrv.c, enter:

bldudf udfsrv

The script file copies the UDF to the sqllib/function directory.

If necessary, set the file mode for the UDF so the client application can access
it.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. DB2 CLI and embedded SQL versions of this program are provided.

You can build the DB2 CLI udfcli program from the source file udfcli.c, in
sqllib/samples/cli, using the script file bldcli. Refer to “DB2 CLI
Applications” on page 241 for details.

You can build the embedded SQL udfcli program from the source file
udfcli.sqc, in sqllib/samples/c, using the script file bldapp. Refer to “DB2

API and Embedded SQL Applications” on page 247 for details.

To call the UDF, run the sample calling application by entering the executable
name:

udfcli

The calling application calls the ScalarUDF function from the udfsrv library.

Chapter 10. Building PTX Applications 253

Multi-threaded Applications
Multi-threaded applications using ptx/C need to be compiled and linked with
-Kthread.

The script file, bldmt, in sqllib/samples/c, contains the commands to build an
embedded SQL multi-threaded program.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. The third parameter, $3, specifies the user ID for the database, and $4
specifies the password. Only the first parameter, the source file name, is
required. Database name, user ID, and password are optional. If no database
name is supplied, the program uses the default sample database.
#! /bin/ksh
bldmt script file -- PTX
Builds a C multi-threaded embedded SQL program.
Usage: bldmt <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to the location where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Precompile and bind the program.
embprep $1 $2 $3 $4

Compile the program.
cc -Kthread -I$DB2PATH/include -c $1.c

Link the program.
cc -Kthread -o $1 $1.o -L$DB2PATH/lib -ldb2

Besides the -Kthread option, discussed above, and the absence of a utility file
linked in, the other compile and link options are the same as those used for
the embedded SQL script file, bldapp. For information on these options, see
“DB2 API and Embedded SQL Applications” on page 247.

To build the sample program, thdsrver, from the source file thdsrver.sqc,
enter:

bldmt thdsrver

The result is an executable file, thdsrver. To run the executable file against the
sample database, enter:

thdsrver

254 Application Building Guide

ptx/C++

This section covers the following topics:
v DB2 API and Embedded SQL Applications
v Embedded SQL Stored Procedures
v User-defined Functions (UDFs)
v Multi-threaded Applications

DB2 API and Embedded SQL Applications
The build file, bldapp, in sqllib/samples/cpp, contains the commands to build
DB2 API and embedded SQL programs.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter, and the only one needed for DB2 API programs that do
not contain embedded SQL. Building embedded SQL programs requires a
connection to the database so three optional parameters are also provided: the
second parameter, $2, specifies the name of the database to which you want to
connect; the third parameter, $3, specifies the user ID for the database, and $4
specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind file, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.

Chapter 10. Building PTX Applications 255

Compile and Link Options for bldapp

Compile Options:

c++ The C++ compiler.

-I$DB2PATH/include
Specifies the location of the DB2 include files. For example:
$HOME/sqllib/include

-D_RWSTD_COMPILE_INSTANTIATE=0
Do not instantiate the rogue wave classes.

-c Perform compile only, no link. Compile and link are separate steps.

#! /bin/ksh
bldapp script file -- PTX
Builds a C++ application program
Usage: bldapp <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to the location where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

if an embedded SQL program, precompile and bind it.
if [[-f $1".sqC"]]
then

embprep $1 $2 $3 $4
Compile the utilemb.C error-checking utility.
c++ -I$DB2PATH/include -D_RWSTD_COMPILE_INSTANTIATE=0 -c utilemb.C

else
Compile the utilapi.C error-checking utility.
c++ -I$DB2PATH/include -D_RWSTD_COMPILE_INSTANTIATE=0 -c utilapi.C

fi

Compile the program.
c++ -I$DB2PATH/include -D_RWSTD_COMPILE_INSTANTIATE=0 -c $1.C

if [[-f $1".sqC"]]
then

Link the program with utilemb.o
c++ -o $1 $1.o utilemb.o -L$DB2PATH/lib -ldb2 -lseq

else
Link the program with utilapi.o
c++ -o $1 $1.o utilapi.o -L$DB2PATH/lib -ldb2 -lseq

fi

256 Application Building Guide

Compile and Link Options for bldapp

Link Options:

c++ Use the compiler as a front end for the linker.

-o $1 Specify the executable.

$1.o Include the program object file.

utilemb.o
If an embedded SQL program, include the embedded SQL utility object file
for error checking.

utilapi.o
If a non-embedded SQL program, include the DB2 API utility object file for
error checking.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-ldb2 Link with the DB2 library.

-lseq Link with the Sequent library.

Refer to your compiler documentation for additional compiler options.

To build the DB2 API non-embedded SQL sample program, client, from the
source file client.C, enter:

bldapp client

The result is an executable file, client.

To run the executable file, enter the executable name:
client

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, updat, from the
source file updat.sqC:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, add the database
name:

bldapp updat database

3. If connecting to a database on another instance, add the user ID and
password of the database instance:

bldapp updat database userid password

Chapter 10. Building PTX Applications 257

The result is an executable file, updat.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Embedded SQL Stored Procedures

Note: Please see the information for building C++ stored procedures in “C++
Considerations for UDFs and Stored Procedures” on page 60.

The script file, bldsrv, in sqllib/samples/cpp, contains the commands to
build an embedded SQL stored procedure. The script file compiles the stored
procedure into a shared library that can be called by a client application.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter. Building embedded SQL programs requires a connection
to the database so an additional optional parameter, $2, specifies the name of
the database to which you want to connect. If no database name is supplied,
the default sample database is used. Since the stored procedure must be built
on the same instance where the database resides, no additional parameters for
user ID and password are needed. The script file, bldsrv, passes the
parameters to the precompile and bind file, embprep.

The source file name, $1, is used for the shared library name.
#! /bin/ksh
bldsrv script file -- PTX
Builds a C++ stored procedure
Usage: bldsrv <prog_name> [<db_name>]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Precompile and bind the program.
embprep $1 $2

Compile the program. First ensure it is coded with extern "C".
c++ -KPIC -I$DB2PATH/include -D_RWSTD_COMPILE_INSTANTIATE=0 -c $1.C

258 Application Building Guide

Link the program and create a shared library.
c++ -G -o $1 $1.o -L$DB2PATH/lib -ldb2

Copy the shared library to the sqllib/function subdirectory.
Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1.so $DB2PATH/function/$1

Compile and Link Options for bldsrv

Compile Options:

c++ The C++ compiler.

-KPIC Generate position-independent code for shared libraries.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
-I$DB2PATH/include

-D_RWSTD_COMPILE_INSTANTIATE=0
Do not instantiate the rogue wave classes.

-c Perform compile only, no link. This book assumes that compile and link are
separate steps.

Link Options:

c++ Use the compiler as a front end for the linker.

-G Generate a shared library.

-o $1 Specify the executable.

$1.o Include the program object file.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the sample program spserver from the source file spserver.sqC, if
connecting to the sample database, enter:

bldsrv spserver

If connecting to another database, also enter the database name:
bldsrv spserver database

The script file copies the shared library to the server in the path
sqllib/function.

Chapter 10. Building PTX Applications 259

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database:

db2 connect to sample

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

Then catalog them with this command:
db2 -td@ -vf spcreate.db2

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the shared libary, spserver, you can build the client
application spclient that calls the stored procedures within the shared library.

You can build spclient by using the script file, bldapp. Refer to “DB2 API and
Embedded SQL Applications” on page 255 for details.

To call the stored procedures in the shared library, run the sample client
application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The stored
procedures return the output to the client application.

User-Defined Functions (UDFs)

Note: Please see the information for building C++ UDFs in “C++
Considerations for UDFs and Stored Procedures” on page 60.

260 Application Building Guide

The script file, bldudf, in sqllib/samples/cpp, contains the commands to
build a UDF. UDFs do not contain embedded SQL statements. Therefore, to
build a UDF program, you do not need to connect to a database or
precompile and bind the program.

The parameter, $1, specifies the name of your source file. The script file uses
the source file name for the shared library name.

Compile and Link Options for bldudf

Compile Options:

c++ The C++ compiler.

-KPIC Generate position-independent code for shared libraries.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-D_RWSTD_COMPILE_INSTANTIATE=0
Do not instantiate the rogue wave classes.

-c Perform compile only, no link. This book assumes that compile and link are
separate steps.

#! /bin/ksh
bldudf script file -- PTX
Builds a C++ user-defined function library
Usage: bldudf <prog_name>

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Compile the program.
c++ -KPIC -I$DB2PATH/include -D_RWSTD_COMPILE_INSTANTIATE=0 -c $1.c

Link the program and create a shared library.
c++ -G -o $1 $1.o -L$DB2PATH/lib -ldb2 -ldb2apie

Copy the shared library to the sqllib/function subdirectory.
Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1.so $DB2PATH/function/$1

Chapter 10. Building PTX Applications 261

Compile and Link Options for bldudf

Link Options:

c++ Use the compiler as a front end for the linker.

-G Generate a shared library.

-o $1 Specify the executable.

$1.o Include the program object file.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-ldb2 Link with the DB2 library.

-ldb2apie
Link with the DB2 API Engine library to allow the use of LOB locators.

Refer to your compiler documentation for additional compiler options.

To build the user-defined function program udfsrv from the source file
udfsrv.c, enter:

bldudf udfsrv

The script file copies the UDF to the server in the path sqllib/function.

If necessary, set the file mode for the UDF so the client application can access
it.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. You can build the udfcli program from the udfcli.sqC source file in
sqllib/samples/cpp using the script file bldapp. Refer to “DB2 API and
Embedded SQL Applications” on page 255 for details.

To call the UDF, run the sample calling application by entering the executable
name:

udfcli

The calling application calls the ScalarUDF function in the udfsrv library.

Multi-threaded Applications
Multi-threaded applications using ptx/C++ need to be compiled and linked in
with -Kthread.

The script file, bldmt, in sqllib/samples/cpp, contains the commands to build
an embedded SQL multi-threaded program.

262 Application Building Guide

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. The third parameter, $3, specifies the user ID for the database, and $4
specifies the password. Only the first parameter, the source file name, is
required. Database name, user ID, and password are optional. If no database
name is supplied, the program uses the default sample database.
#! /bin/ksh
bldmt script file -- PTX
Builds a C++ multi-threaded embedded SQL program
Usage: bldmt <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to the location where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Precompile and bind the program.
embprep $1 $2 $3 $4

Compile the program.
c++ -Kthread -I$DB2PATH/include -D_RWSTD_COMPILE_INSTANTIATE=0 -c $1.C

Link the program.
c++ -Kthread -o $1 $1.o -L$DB2PATH/lib -ldb2 -lseq

Besides the -Kthread option, discussed above, and the absence of a utility file
linked in, the other compile and link options are the same as those used for
the embedded SQL script file, bldapp. For information on these options, see
“DB2 API and Embedded SQL Applications” on page 255.

To build the sample program, thdsrver, from the source file thdsrver.sqC,
enter:

bldmt thdsrver

The result is an executable file, thdsrver. To run the executable file against the
sample database, enter:

thdsrver

Chapter 10. Building PTX Applications 263

264 Application Building Guide

Chapter 11. Building Silicon Graphics IRIX Applications

MIPSpro C 266
DB2 CLI Applications 266

Building and Running Embedded SQL
Applications 269

DB2 CLI Applications with DB2 APIs . . 269
DB2 CLI Client Applications for Stored
Procedures 269
DB2 CLI Client Applications for UDFs 270
DB2 API and Embedded SQL
Applications 270

Building and Running Embedded SQL
Applications 273
Embedded SQL Client Applications for
Stored Procedures. 273

Client Applications for User-defined
Functions (UDFs) 274

Multi-threaded Applications 274
MIPSpro C++ 275

DB2 API and Embedded SQL
Applications 275

Embedded SQL Client Applications for
Stored Procedures. 278
Embedded SQL Client Application for
UDFs 278

Multi-threaded Applications 279

This chapter provides detailed information for building DB2 applications on
Silicon Graphics IRIX. In the script files, commands that begin with db2 are
Command Line Processor (CLP) commands. Refer to the Command Reference if
you need more information about CLP commands.

For the latest DB2 application development updates for Silicon Graphics IRIX,
visit the Web page at:
http://www.ibm.com/software/data/db2/udb/ad

DB2 for Silicon Graphics IRIX is client-only. To run DB2 applications, and to
build DB2 embedded SQL applications, you need to access a DB2 database on
a server machine from your client machine. The server machine will be
running a different operating system. See DB2 for UNIX Quick Beginnings for
information on configuring client-to-server communication.

Also, since you will be accessing a database on the server from a remote client
that is running on a different operating system, you need to bind the database
utilities, including the DB2 CLI, to the database. See “Binding” on page 42 for
more information.

DB2 Library Support

Silicon Graphics IRIX provides three separate and incompatible object types:
o32 (the default), n32 (the new 32 object type), and 64 (the 64 object type).
DB2 does not yet support 64, but does support the o32 and n32 object types.

© Copyright IBM Corp. 1993, 2000 265

http://www.ibm.com/software/data/db2/udb/ad

The operating system has two separate and incompatible versions of thread
APIs: the sproc interface and the POSIX threads API. DB2 provides support
for the POSIX threads API.

Applications which use the sproc interface can use the non-threaded versions
of the DB2 library , libdb2, which is not thread safe. Care should be taken
when using the sproc interface because libdb2 is not sproc safe.

To accommodate this range of functionality, DB2 provides the following
library support:

lib/libdb2.so
o32 with no threads

lib/libdb2_th.so
o32 with POSIX threads

lib32/libdb2.so
n32 with no threads

lib32/libdb2_th.so
n32 with POSIX threads

To use the n32 object type, programs must be compiled and linked with the
-n32 option, as well as linked with the lib32/libdb2.so or
lib32/libdb2_th.so library. To use the default o32 object type, programs must
be linked to either the lib/libdb2.so or lib/libdb2_th.so libraries without
the -n32 option.

Note: To build n32 object type applications with a build file documented in
this chapter, uncomment the indicated command.

MIPSpro C

This section explains how to use MIPSpro C with the following kinds of DB2
interfaces:
v DB2 CLI
v DB2 APIs
v Embedded SQL

DB2 CLI Applications
The script file bldcli in sqllib/samples/cli contains the commands to build
a DB2 CLI program. The parameter, $1, specifies the name of your source file.

This is the only required parameter, and the only one needed for CLI
programs that do not contain embedded SQL. Building embedded SQL
programs requires a connection to the database so three optional parameters
are also provided: the second parameter, $2, specifies the name of the

266 Application Building Guide

database to which you want to connect; the third parameter, $3, specifies the
user ID for the database, and $4 specifies the password.

If the program contains embedded SQL, indicated by the .sqc extension, then
the embprep script is called to precompile the program, producing a program
file with a .c extension.
#! /bin/ksh
bldcli script file -- Silicon Graphics IRIX
Builds a CLI program with MIPSpro C.
Usage: bldcli <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the instance path.
DB2PATH=$HOME/sqllib

If an embedded SQL program, precompile and bind it.
if [[-f $1".sqc"]]
then

embprep $1 $2 $3 $4
fi

To compile with n32 object support, uncomment the following line.
IRIX_OBJECT_MODE=-n32

if ["$IRIX_OBJECT_MODE" = "-n32"] ; then
Link with db2 n32 object type libraries.
DB2_LIBPATH=$DB2PATH/lib32

else
Link with db2 o32 object type libraries.
DB2_LIBPATH=$DB2PATH/lib

fi

Compile the error-checking utility.
cc $IRIX_OBJECT_MODE -I$DB2PATH/include -c utilcli.c

Compile the program.
cc $IRIX_OBJECT_MODE -I$DB2PATH/include -c $1.c

Link the program.
cc $IRIX_OBJECT_MODE -o $1 $1.o utilcli.o -L$DB2_LIBPATH -rpath $DB2_LIBPATH

-lm -ldb2

Chapter 11. Building Silicon Graphics IRIX Applications 267

Compile and Link Options for bldcli

Compile Options:

cc Use the C compiler.

$IRIX_OBJECT_MODE
Contains ″-n32″ if ’IRIX_OBJECT_MODE=-n32’ is uncommented; otherwise,
it contains no value.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

Link Options:

cc Use the compiler as a front end for the linker.

$IRIX_OBJECT_MODE
Contains ″-n32″ if ’IRIX_OBJECT_MODE=-n32’ is uncommented; otherwise,
it contains no value.

-o $1 Specify the executable.

$1.o Include the program object file.

utilcli.o
Include the utility object file for error checking.

-L$DB2_LIBPATH
Specify the location of the DB2 static and shared libraries at link-time. For
o32 object type, it points to: $DB2PATH/lib; For n32 object type, it points to:
$DB2PATH/lib32. If you do not specify the -L option, /usr/lib:/lib is
assumed.

-rpath $DB2_LIBPATH
Specify the location of the DB2 shared libraries at run-time. For o32 object
type, it points to: $DB2PATH/lib; For n32 object type, it points to:
$DB2PATH/lib32.

-lm Link with the math library.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the sample program tbinfo from the source file tbinfo.c, enter:

bldcli tbinfo

268 Application Building Guide

The result is an executable file tbinfo. You can run the executable file by
entering the executable name, database name, and user ID and password for
the instance where the database is located:

tbinfo database userid password

Building and Running Embedded SQL Applications
To build dbusemx from the source file dbusemx.sqc, include parameters for the
database, and the user ID and password for the instance where the database
is located:

bldcli dbusemx database userid password

The result is an executable file, dbusemx. To run an embedded SQL application,
enter the executable name, database name, and user ID and password for the
instance where the database is located:

dbusemx database userid password

DB2 CLI Applications with DB2 APIs
DB2 includes CLI sample programs that use DB2 APIs to create and drop a
database in order to demonstrate using CLI functions on more than one
database. The descriptions of the CLI sample programs in Table 7 on page 22
indicates the samples that use DB2 APIs.

The script file bldapi in sqllib/samples/cli contains the commands to build
a DB2 CLI program with DB2 APIs. This file compiles and links in the
utilapi utility file, which contains the DB2 APIs to create and drop a
database. This is the only difference between this file and the bldcli script.
Please see “DB2 CLI Applications” on page 266 for the compile and link
options common to both bldapi and bldcli.

To build the sample program dbmconn from the source file dbmconn.c, enter:

bldapi dbmconn

The result is an executable file dbmconn. You can run the executable file by
entering the executable name, database name, and user ID and password for
the instance where the database is located:

dbmconn database userid password

DB2 CLI Client Applications for Stored Procedures
Stored procedures are programs that access the database and return
information to the client application. You compile and store stored procedures
on the server. The server runs on another platform.

Chapter 11. Building Silicon Graphics IRIX Applications 269

To build the DB2 CLI stored procedure spserver on a DB2-supported platform
server, refer to the ″Building Applications″ chapter for that platform in this
book. For other servers accessible by DB2 clients, see “Supported Servers” on
page 6.

Once you build the stored procedure spserver, you can build the client
application that calls the stored procedure, spclient, from the source file
spclient.c, by using the script file bldcli. Refer to “DB2 CLI Applications”
on page 266 for details.

You can call the stored procedure by entering the executable name, database
name, and user ID and password for the instance where the database is
located:

spclient database userid password

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The output is
returned to the client application.

DB2 CLI Client Applications for UDFs
User-defined functions (UDFs) are your own scalar and table functions that
you compile and store on the server. The server runs on another platform. To
build the user-defined function program, udfsrv, on a DB2-supported
platform server, refer to the ″Building Applications″ chapter for that platform
in this book. For other servers accessible by DB2 clients, see “Supported
Servers” on page 6.

Once you build udfsrv, you can build the DB2 CLI client application, udfcli,
that calls it, from the udfcli.c source file in sqllib/samples/cli, using the
DB2 CLI script file bldcli. Refer to “DB2 CLI Applications” on page 266 for
details.

To call the UDF program, run the calling application by entering the
executable name, database name, and user ID and password for the instance
where the database is located:

udfcli database userid password

The calling application calls the ScalarUDF function from the udfsrv library.

DB2 API and Embedded SQL Applications
The script file bldapp, in sqllib/samples/c, contains the commands to build a
DB2 application program. The first parameter, $1, specifies the name of your
source file. This is the only required parameter, and the only one needed for
DB2 API programs that do not contain embedded SQL. Building embedded
SQL programs requires a connection to the database so three optional
parameters are also provided: the second parameter, $2, specifies the name of

270 Application Building Guide

the database to which you want to connect; the third parameter, $3, specifies
the user ID for the database, and $4 specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind file, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.
#! /bin/ksh
bldapp script file -- Silicon Graphics IRIX
Builds a C application program.
Usage: bldapp <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

To compile with n32 object support, uncomment the following line.
IRIX_OBJECT_MODE=-n32

if ["$IRIX_OBJECT_MODE" = "-n32"] ; then
Link with db2 n32 object type libraries.
DB2_LIBPATH=$DB2PATH/lib32

else
Link with db2 o32 object type libraries.
DB2_LIBPATH=$DB2PATH/lib

fi

If an embedded SQL program, precompile and bind it.
if [[-f $1".sqc"]]
then

embprep $1 $2 $3 $4
Compile the utilemb.c error-checking utility.
cc $IRIX_OBJECT_MODE -I$DB2PATH/include -c utilemb.c

else
Compile the utilapi.c error-checking utility.
cc $IRIX_OBJECT_MODE -I$DB2PATH/include -c utilapi.c

fi

Compile the program.
cc $IRIX_OBJECT_MODE -I$DB2PATH/include -c $1.c

if [[-f $1".sqc"]]
then

Link the program with utilemb.o
cc $IRIX_OBJECT_MODE -o $1 $1.o utilemb.o -L$DB2_LIBPATH -rpath $DB2_LIBPATH

-lm -ldb2
else

Link the program with utilapi.o
cc $IRIX_OBJECT_MODE -o $1 $1.o utilapi.o -L$DB2_LIBPATH -rpath $DB2_LIBPATH

-lm -ldb2
fi

Chapter 11. Building Silicon Graphics IRIX Applications 271

Compile and Link Options for bldapp

Compile Options:

cc Use the C compiler.

$IRIX_OBJECT_MODE
Contains ″-n32″ if ’IRIX_OBJECT_MODE=-n32’ is uncommented; otherwise,
it contains no value.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

Link Options:

cc Use the compiler as a front end for the linker.

$IRIX_OBJECT_MODE
Contains ″-n32″ if ’IRIX_OBJECT_MODE=-n32’ is uncommented; otherwise,
it contains no value.

-o $1 Specify the executable.

$1.o Include the program object file.

utilemb.o
If an embedded SQL program, include the embedded SQL utility object file
for error checking.

utilapi.o
If a non-embedded SQL program, include the DB2 API utility object file for
error checking.

-L$DB2_LIBPATH
Specify the location of the DB2 static and shared libraries at link-time. For
o32 object type, it points to: $DB2PATH/lib; For n32 object type, it points to:
$DB2PATH/lib32. If you do not specify the -L option, /usr/lib:/lib is
assumed.

-rpath $DB2_LIBPATH
Specify the location of the DB2 shared libraries at run-time. For o32 object
type, it points to: $DB2PATH/lib; For n32 object type, it points to:
$DB2PATH/lib32.

-lm Link with the math library.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

272 Application Building Guide

To build the DB2 API non-embedded SQL sample program, client, from the
source file client.c, enter:

bldapp client

The result is an executable file, client.

To run the executable file, enter the executable name, database name, and user
ID and password for the instance where the database is located:

client database userid password

Building and Running Embedded SQL Applications
To build the sample program updat from the source file updat.sqc, include
parameters for the database, and the user ID and password for the instance
where the database is located:

bldapp updat database userid password

The result is an executable file, updat. To run the executable file against the
sample database, enter the executable name, database name, and user ID and
password for the instance where the database is located:

updat database userid password

Embedded SQL Client Applications for Stored Procedures
Stored procedures are programs that access the database and return
information to the client application. You compile and store stored procedures
on the server. The server runs on another platform.

To build the embedded SQL stored procedure spserver on a DB2-supported
platform server, refer to the ″Building Applications″ chapter for that platform
in this book. For other servers accessible by DB2 clients, see “Supported
Servers” on page 6.

Once you build the stored procedure spserver, you can build the client
application that calls the stored procedure. You can build spclient from the
source file spclient.sqc, by using the script file bldapp. Refer to “DB2 API
and Embedded SQL Applications” on page 270 for details.

To call the stored procedure, run the client application by entering the
executable name, database name, and user ID and password for the instance
where the database is located:

spclient database userid password

The client application accesses the stored procedure library, spserver, and
executes a number of stored procedure functions on the server database. The
output is returned to the client application.

Chapter 11. Building Silicon Graphics IRIX Applications 273

Client Applications for User-defined Functions (UDFs)
User-defined functions (UDFs) are your own scalar and table functions that
you compile and store on the server. The server runs on another platform. To
build the user-defined function program, udfsrv, on a DB2-supported
platform server, refer to the ″Building Applications″ chapter for that platform
in this book. For other servers accessible by DB2 clients, see “Supported
Servers” on page 6.

Once you build udfsrv, you can build the embedded SQL client application,
udfcli, that calls it, from the udfcli.sqc source file in sqllib/samples/c using
the script file bldapp. Refer to “DB2 API and Embedded SQL Applications” on
page 270 for details.

To call the UDF program, run the calling application by entering the
executable name, database name, and user ID and password for the instance
where the database is located:

udfcli database userid password

The calling application calls the ScalarUDF function from the udfsrv library.

Multi-threaded Applications
Multi-threaded applications on Silicon Graphics IRIX need to be linked with
the POSIX threads version of the DB2 library for either the o32 or n32 object
types, using the -ldb2_th and -lpthread link options.

The script file bldmt, in sqllib/samples/c, contains the commands to build an
embedded SQL multi-threaded program. The first parameter, $1, specifies the
name of your source file. The second parameter, $2, specifies the name of the
database to which you want to connect. The third parameter, $3, specifies the
user ID for the database, and $4 specifies the password.
#! /bin/ksh
bldmt script file -- Silicon Graphics IRIX
Builds a C multi-threaded embedded SQL program
Usage: bldmt <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

To compile with n32 object support, uncomment the following line.
IRIX_OBJECT_MODE=-n32

if ["$IRIX_OBJECT_MODE" = "-n32"] ; then
Link with db2 n32 object type libraries.
DB2_LIBPATH=$DB2PATH/lib32

else
Link with db2 o32 object type libraries.
DB2_LIBPATH=$DB2PATH/lib

fi

274 Application Building Guide

Precompile and bind the program.
embprep $1 $2 $3 $4

Compile the program.
cc $IRIX_OBJECT_MODE -I$DB2PATH/include -c $1.c

Link the program.
cc $IRIX_OBJECT_MODE -o $1 $1.o -L$DB2_LIBPATH -rpath $DB2_LIBPATH

-lm -ldb2_th -lpthread

Besides the -ldb2_th and -lpthread link options, discussed above, and the
absence of a utility file being linked in, the other compile and link options are
the same as those used for the embedded SQL script file, bldapp. For
information on these options, see “DB2 API and Embedded SQL Applications”
on page 270.

To build the sample program, thdsrver, from the source file thdsrver.sqc,
include parameters for the database, and the user ID and password for the
instance where the database is located:

bldmt thdsrver database userid password

The result is an executable file, thdsrver.

To run the executable file, enter the executable name, database name, and user
ID and password for the instance where the database is located:

thdsrver database userid password

MIPSpro C++

This section includes the following topics:
v DB2 API and Embedded SQL Applications
v Multi-threaded Applications

DB2 API and Embedded SQL Applications
The script file bldapp, in sqllib/samples/cpp, contains the commands to build
a DB2 application program.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter for non-embedded SQL applications. Building embedded
SQL programs requires a connection to the database so three optional
parameters are also provided: the second parameter, $2, specifies the name of
the database to which you want to connect; the third parameter, $3, specifies
the user ID for the database, and $4 specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind file, embprep.

Chapter 11. Building Silicon Graphics IRIX Applications 275

#! /bin/ksh
bldapp script file -- Silicon Graphics IRIX
Builds a C++ application program
Usage: bldapp <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

To compile with n32 object support, uncomment the following line.
IRIX_OBJECT_MODE=-n32

if ["$IRIX_OBJECT_MODE" = "-n32"] ; then
Link with db2 n32 object type libraries.
DB2_LIBPATH=$DB2PATH/lib32

else
Link with db2 o32 object type libraries.
DB2_LIBPATH=$DB2PATH/lib

fi

If an embedded SQL program, precompile and bind it.
if [[-f $1".sqC"]]
then

embprep $1 $2 $3 $4
Compile the utilemb.C error-checking utility.
CC $IRIX_OBJECT_MODE -I$DB2PATH/include -c utilemb.C

else
Compile the utilapi.c error-checking utility.
CC $IRIX_OBJECT_MODE -I$DB2PATH/include -c utilapi.C

fi

Compile the program.
CC $IRIX_OBJECT_MODE -I$DB2PATH/include -c $1.C

if [[-f $1".sqc"]]
then

Link the program with utilemb.o
CC $IRIX_OBJECT_MODE -o $1 $1.o utilemb.o -L$DB2_LIBPATH -rpath $DB2_LIBPATH

-lm -ldb2
else

Link the program with utilapi.o
CC $IRIX_OBJECT_MODE -o $1 $1.o utilapi.o -L$DB2_LIBPATH -rpath $DB2_LIBPATH

-lm -ldb2
fi

276 Application Building Guide

Compile and Link Options for bldapp

Compile Options:

CC Use the C++ compiler.

$IRIX_OBJECT_MODE
Contains ″-n32″ if ’IRIX_OBJECT_MODE=-n32’ is uncommented; otherwise,
it contains no value.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

-c Perform compile only; no link. This script has separate compile and link
steps.

Link Options:

CC Use the compiler as a front end for the linker.

$IRIX_OBJECT_MODE
Contains ″-n32″ if ’IRIX_OBJECT_MODE=-n32’ is uncommented; otherwise,
it contains no value.

-o $1 Specify the executable.

$1.o Include the program object file.

utilemb.o
If an embedded SQL program, include the embedded SQL utility object file
for error checking.

utilapi.o
If a non-embedded SQL program, include the DB2 API utility object file for
error checking.

-L$DB2_LIBPATH
Specify the location of the DB2 static and shared libraries at link-time. For
o32 object type, it points to: $DB2PATH/lib; For n32 object type, it points to:
$DB2PATH/lib32. If you do not specify the -L option, /usr/lib:/lib is
assumed.

-rpath $DB2_LIBPATH
Specify the location of the DB2 shared libraries at run-time. For o32 object
type, it points to: $DB2PATH/lib; For n32 object type, it points to:
$DB2PATH/lib32.

-lm Link with the math library.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Chapter 11. Building Silicon Graphics IRIX Applications 277

To build the sample program updat from the source file updat.sqC, include
parameters for the database, and the user ID and password for the instance
where the database is located:

bldapp updat database userid password

The result is an executable file, updat, To run the executable file, enter the
executable name, database name, and user ID and password for the instance
where the database is located:

updat database userid password

Embedded SQL Client Applications for Stored Procedures
Stored procedures are programs that access the database and return
information to the client application. You compile and store stored procedures
on the server. The server runs on another platform.

To build the embedded SQL stored procedure spserver on a DB2-supported
platform server, refer to the ″Building Applications″ chapter for that platform
in this book. For other servers accessible by DB2 clients, see “Supported
Servers” on page 6.

Once you build the stored procedure spserver, you can build the client
application that calls the stored procedure. You can build spclient from the
source file spclient.sqC, by using the script file bldapp. Refer to “DB2 API
and Embedded SQL Applications” on page 275 for details.

To call the stored procedure, run the client application by entering the
executable name, database name, and user ID and password for the instance
where the database is located:

spclient database userid password

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The stored
procedures return the output to the client application.

Embedded SQL Client Application for UDFs
User-defined functions (UDFs) are your own scalar functions that you compile
and store on the server. The server runs on another platform. To build the
user-defined function program, udfsrv, on a DB2-supported platform server,
refer to the ″Building Applications″ chapter for that platform in this book. For
other servers accessible by DB2 clients, see “Supported Servers” on page 6.

Once you build udfsrv, you can build the embedded SQL client application,
udfcli, that calls it, from the udfcli.sqC source file in sqllib/samples/cpp
using the script file bldapp. Refer to “DB2 API and Embedded SQL
Applications” on page 275 for details.

278 Application Building Guide

To call the UDF program, run the calling application by entering the
executable name, database name, and user ID and password for the instance
where the database is located:

udfcli database userid password

The calling application calls the ScalarUDF function from the udfsrv library.

Multi-threaded Applications
Multi-threaded applications on Silicon Graphics IRIX need to be linked with
the POSIX threads version of the DB2 library for either the o32 or n32 object
types, using the -ldb2_th and -lpthread link options.

The script file bldmt, in sqllib/samples/cpp, contains the commands to build
an embedded SQL multi-threaded program.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. The third parameter, $3, specifies the user ID for the database, and
$4, specifies the password.
#! /bin/ksh
bldmt script file -- Silicon Graphics IRIX
Builds a C++ multi-threaded embedded SQL program
Usage: bldmt <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

To compile with n32 object support, uncomment the following line.
IRIX_OBJECT_MODE=-n32

if ["$IRIX_OBJECT_MODE" = "-n32"] ; then
Link with db2 n32 object type libraries.
DB2_LIBPATH=$DB2PATH/lib32

else
Link with db2 o32 object type libraries.
DB2_LIBPATH=$DB2PATH/lib

fi

Precompile and bind the program.
embprep $1 $2 $3 $4

Compile the program.
CC $IRIX_OBJECT_MODE -I$DB2PATH/include -c $1.C

Link the program.
CC $IRIX_OBJECT_MODE -o $1 $1.o -L$DB2_LIBPATH -rpath $DB2_LIBPATH

-lm -ldb2_th -lpthread

Besides the -ldb2_th and -lpthread link options, discussed above, and the
absence of a utility file linked in, the other compile and link options are the

Chapter 11. Building Silicon Graphics IRIX Applications 279

same as those used for the embedded SQL script file, bldapp. For information
on these options, see “DB2 API and Embedded SQL Applications” on page
275.

To build the sample program, thdsrver, from the source file thdsrver.sqC,
include parameters for the database, and the user ID and password for the
instance where the database is located:

bldmt thdsrver database userid password

The result is an executable file, thdsrver.

To run the executable file against the sample database, enter the executable
name, database name, and user ID and password for the instance where the
database is located:

thdsrver database userid password

280 Application Building Guide

Chapter 12. Building Solaris Applications

SPARCompiler C 282
DB2 CLI Applications 282

Building and Running Embedded SQL
Applications 284

DB2 CLI Applications with DB2 APIs . . 284
DB2 CLI Stored Procedures 285
DB2 API and Embedded SQL
Applications 287

Building and Running Embedded SQL
Applications 290

Embedded SQL Stored Procedures . . . 290
User-Defined Functions (UDFs) 293
Multi-threaded Applications 296

SPARCompiler C++ 297
DB2 API and Embedded SQL
Applications 297

Building and Running Embedded SQL
Applications 299

Embedded SQL Stored Procedures . . . 300
User-Defined Functions (UDFs) 303
Multi-threaded Applications 306

Micro Focus COBOL 307
Using the Compiler 307
DB2 API and Embedded SQL
Applications 307

Building and Running Embedded SQL
Applications 309

Embedded SQL Stored Procedures . . . 310
Exiting the Stored Procedure 314

This chapter provides detailed information for building applications in the
Solaris operating environment. In the script files, commands that begin with
db2 are Command Line Processor (CLP) commands. Refer to the Command
Reference if you need more information about CLP commands.

For the latest DB2 application development updates for the Solaris operating
environment, visit the Web page at:

http://www.ibm.com/software/data/db2/udb/ad

Notes:

1. The -mt multi-threaded option is used in the link steps of the DB2 build
files and makefiles due to the way threads are implemented in the Solaris
operating environment. This comes with a slight performance cost. If
optimum performance is a consideration, you could try to link your
applications without this option, and with the non-threaded libdb2.so
library. However, if the -mt switch is not used, the application may see an
error such as the following when the application is run:

libc internal error: _rmutex_unlock: rmutex not held

Or, the application may hang and not give any error message.
2. To build 64-bit applications with the build files documented in this

chapter, uncomment the indicated command.

© Copyright IBM Corp. 1993, 2000 281

http://www.ibm.com/software/data/db2/udb/ad

SPARCompiler C

This section includes the following topics:
v DB2 CLI Applications
v DB2 CLI Applications with DB2 APIs
v DB2 CLI Stored Procedures
v DB2 API and Embedded SQL Applications
v Embedded SQL Stored Procedures
v User-Defined Functions (UDFs)
v Multi-threaded Applications

DB2 CLI Applications
The script file bldcli in sqllib/samples/cli contains the commands to build
a DB2 CLI program. The parameter, $1, specifies the name of your source file.

This is the only required parameter for CLI programs that do not contain
embedded SQL. Building embedded SQL programs requires a connection to
the database so three optional parameters are also provided: the second
parameter, $2, specifies the name of the database to which you want to
connect; the third parameter, $3, specifies the user ID for the database, and $4
specifies the password.

If the program contains embedded SQL, indicated by the .sqc extension, then
the embprep script is called to precompile the program, producing a program
file with a .c extension.
#! /bin/ksh
bldcli script file -- Solaris
Builds a DB2 CLI program.
Usage: bldcli <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

If an embedded SQL program, precompile and bind it.
if [[-f $1".sqc"]]
then

embprep $1 $2 $3 $4
fi

To compile 64 bit programs, uncomment the following line.
BUILD_64BIT=true

if ["$BUILD_64BIT" != ""]
then

CFLAGS_64=-xarch=v9
else

CFLAGS_64=

282 Application Building Guide

fi

Compile the error-checking utility.
cc $CFLAGS_64 -I$DB2PATH/include -c utilcli.c

Compile the program.
cc $CFLAGS_64 -I$DB2PATH/include -c $1.c

Link the program.
cc $CFLAGS_64 -o $1 $1.o utilcli.o -L$DB2PATH/lib -R$DB2PATH/lib -ldb2

Compile and Link Options for bldcli

Compile Options:

cc Use the C compiler.

$CFLAGS_64
Contains ″-xarch=v9″ value if ’BUILD_64BIT=true’ is uncommented;
otherwise, it contains no value.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

-c Perform compile only; no link. This script has separate compile and link
steps.

Link Options:

cc Use the compiler as a front end for the linker.

$CFLAGS_64
Contains ″-xarch=v9″ value if ’BUILD_64BIT=true’ is uncommented;
otherwise, it contains no value.

-o $1 Specify the executable program.

$1.o Include the program object file.

utilcli.o
Include the utility object file for error checking.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example, $HOME/sqllib/lib

-R$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example,
$HOME/sqllib/lib

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Chapter 12. Building Solaris Applications 283

To build the sample program tbinfo from the source file tbinfo.c, enter:

bldcli tbinfo

The result is an executable file tbinfo. You can run the executable file by
entering the executable name:

tbinfo

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, dbusemx, from
the source file dbusemx.sqc:
1. If connecting to the sample database on the same instance, enter:

bldcli dbusemx

2. If connecting to another database on the same instance, also enter the
database name:

bldcli dbusemx database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldcli dbusemx database userid password

The result is an executable file, dbusemx.

There are three ways to run the embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
dbusemx

2. If accessing another database on the same instance, enter the executable
name and the database name:

dbusemx database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

dbusemx database userid password

DB2 CLI Applications with DB2 APIs
DB2 includes CLI sample programs that use DB2 APIs to create and drop a
database in order to demonstrate using CLI functions on more than one
database. The descriptions of the CLI sample programs in Table 7 on page 22
indicates the samples that use DB2 APIs.

The script file bldapi in sqllib/samples/cli contains the commands to build
a DB2 CLI program with DB2 APIs. This file compiles and links in the
utilapi utility file, which contains the DB2 APIs to create and drop a
database. This is the only difference between this file and the bldcli script.

284 Application Building Guide

Please see “DB2 CLI Applications” on page 282 for the compile and link
options common to both bldapi and bldcli.

To build the sample program dbmconn from the source file dbmconn.c, enter:

bldapi dbmconn

The result is an executable file dbmconn. You can run the executable file by
entering the executable name:

dbmconn

DB2 CLI Stored Procedures
The script file bldclisp in sqllib/samples/cli contains the commands to
build a DB2 CLI stored procedure. The parameter, $1, specifies the name of
your source file.
#! /bin/ksh
bldclisp script file -- Solaris
Builds a DB2 CLI stored procedure.
Usage: bldclisp <prog_name>

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

To compile 64 bit programs, uncomment the following line.
BUILD_64BIT=true

if ["$BUILD_64BIT" != ""]
then

CFLAGS_64=-xarch=v9
else

CFLAGS_64=
fi

Compile the error-checking utility.
cc $CFLAGS_64 -Kpic -I$DB2PATH/include -c utilcli.c

Compile the program.
cc $CFLAGS_64 -Kpic -I$DB2PATH/include -c $1.c

Link the program.
cc $CFLAGS_64 -G -o $1 $1.o utilcli.o -L$DB2PATH/lib -R$DB2PATH/lib -ldb2

Copy the shared library to the sqllib/function subdirectory.
Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Chapter 12. Building Solaris Applications 285

Compile and Link Options for bldclisp

Compile options:

cc The C compiler.

$CFLAGS_64
Contains ″-xarch=v9″ value if ’BUILD_64BIT=true’ is uncommented;
otherwise, it contains no value.

-Kpic Generate position-independent code for shared libraries.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

Link Options:

cc Use the compiler as a front end for the linker.

$CFLAGS_64
Contains ″-xarch=v9″ value if ’BUILD_64BIT=true’ is uncommented;
otherwise, it contains no value.

-o $1 Specify the executable.

$1.o Include the program object file.

utilcli.o
Include the utility object file for error-checking.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-R$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example:
$HOME/sqllib/lib.

-ldb2 Link with the DB2 library.

-G Generate a shared library.

Refer to your compiler documentation for additional compiler options.

To build the sample program spserver from source file spserver.c, enter:
bldclisp spserver

The script file copies the stored procedure to the server in the path
sqllib/function.

286 Application Building Guide

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database:

db2 connect to sample

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

Then catalog them with this command:
db2 -td@ -vf spcreate.db2

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the stored procedure spserver, you can build the CLI client
application spclient that calls the stored procedure.

You can build spclient by using the script file, bldcli. Refer to “DB2 CLI
Applications” on page 282 for details.

To call the stored procedure, run the sample client application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the stored procedure library, spserver, which
executes a number of stored procedure functions on the server database. The
output is returned to the client application.

DB2 API and Embedded SQL Applications
The script file, bldapp, in sqllib/samples/c, contains the commands to build a
DB2 application program.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter for programs that do not contain embedded SQL. Building
embedded SQL programs requires a connection to the database so three

Chapter 12. Building Solaris Applications 287

optional parameters are also provided: the second parameter, $2, specifies the
name of the database to which you want to connect; the third parameter, $3,
specifies the user ID for the database, and $4 specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind file, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.
#! /bin/ksh
bldapp script file -- Solaris
Builds a C application program.
Usage: bldapp <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

To compile 64 bit programs, uncomment the following line.
BUILD_64BIT=true

if ["$BUILD_64BIT" != ""]
then

CFLAGS_64=-xarch=v9
else

CFLAGS_64=
fi

If an embedded SQL program, precompile and bind it.
if [[-f $1".sqc"]]
then

embprep $1 $2 $3 $4
Compile the utilemb.c error-checking utility.
cc $CFLAGS_64 -I$DB2PATH/include -c utilemb.c

else
Compile the utilapi.c error-checking utility.
cc $CFLAGS_64 -I$DB2PATH/include -c utilapi.c

fi

Compile the program.
cc $CFLAGS_64 -I$DB2PATH/include -c $1.c

if [[-f $1".sqc"]]
then

Link the program with utilemb.o
cc $CFLAGS_64 -o $1 $1.o utilemb.o -L$DB2PATH/lib -R$DB2PATH/lib -ldb2

else
Link the program with utilapi.o
cc $CFLAGS_64 -o $1 $1.o utilapi.o -L$DB2PATH/lib -R$DB2PATH/lib -ldb2

fi

288 Application Building Guide

Compile and Link Options for bldapp

Compile Options:

cc The C compiler.

$CFLAGS_64
Contains ″-xarch=v9″ value if ’BUILD_64BIT=true’ is uncommented;
otherwise, it contains no value.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

-c Perform compile only; no link. This script has separate compile and link
steps.

Link Options:

cc Use the compiler as a front end for the linker.

$CFLAGS_64
Contains ″-xarch=v9″ value if ’BUILD_64BIT=true’ is uncommented;
otherwise, it contains no value.

-o $1 Specify the executable.

$1.o Include the program object file.

utilemb.o
If an embedded SQL program, include the embedded SQL utility object file
for error checking.

utilapi.o
If not an embedded SQL program, include the DB2 API utility object file for
error checking.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-R$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example:
$HOME/sqllib/lib.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the DB2 API non-embedded SQL sample program, client, from the
source file client.c, enter:

bldapp client

Chapter 12. Building Solaris Applications 289

The result is an executable file, client.

To run the executable file, enter the executable name:
client

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, updat, from the
source file updat.sqc:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, also enter the
database name:

bldapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp updat database userid password

The result is an executable file, updat.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Embedded SQL Stored Procedures
The script file, bldsrv, in sqllib/samples/c, contains the commands to build
an embedded SQL stored procedure. The script file compiles the stored
procedure into a shared library that can be called by a client application.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. Since the stored procedure must be build on the same instance where
the database resides, there are no parameters for user ID and password.

Only the first parameter, source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database.

290 Application Building Guide

#! /bin/ksh
bldsrv script file -- Solaris
Builds a C stored procedure
Usage: bldsrv <prog_name> [<db_name>]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Precompile and bind the program.
embprep $1 $2

To compile 64 bit programs, uncomment the following line.
BUILD_64BIT=true

if ["$BUILD_64BIT" != ""]
then

CFLAGS_64=-xarch=v9
else

CFLAGS_64=
fi

Compile the program.
cc $CFLAGS_64 -Kpic -I$DB2PATH/include -c $1.c

Link the program and create a shared library
cc $CFLAGS_64 -G -o $1 $1.o -L$DB2PATH/lib -R$DB2PATH/lib -ldb2

Copy the shared library to the sqllib/function subdirectory.
Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Compile and Link Options for bldsrv

Compile Options:

cc The C compiler.

$CFLAGS_64
Contains ″-xarch=v9″ value if ’BUILD_64BIT=true’ is uncommented;
otherwise, it contains no value.

-Kpic Generate position-independent code for shared libraries.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
-I$DB2PATH/include

-c Perform compile only; no link. This script has separate compile and link
steps.

Chapter 12. Building Solaris Applications 291

Compile and Link Options for bldsrv

Link Options:

cc Use the compiler as a front end for the linker.

$CFLAGS_64
Contains ″-xarch=v9″ value if ’BUILD_64BIT=true’ is uncommented;
otherwise, it contains no value.

-G Generate a shared library.

-o $1 Specify the executable.

$1.o Include the program object file.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-R$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example:
$HOME/sqllib/lib.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the sample program spserver from the source file spserver.sqc, if
connecting to the sample database, enter:

bldsrv spserver

If connecting to another database, also enter the database name:
bldsrv spserver database

The script file copies the stored procedure to the sqllib/function directory.

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database:

db2 connect to sample

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

Then catalog them with this command:
db2 -td@ -vf spcreate.db2

292 Application Building Guide

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the stored procedure spserver, you can build the client
application spclient that calls the stored procedure.

You can build spclient by using the script file, bldapp. Refer to “DB2 API and
Embedded SQL Applications” on page 287 for details.

To call the stored procedure, run the sample client application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the stored procedure library, spserver, and
executes a number of stored procedure functions on the server database. The
output is returned to the client application.

User-Defined Functions (UDFs)
The script file, bldudf, in sqllib/samples/c, contains the commands to build a
UDF. UDFs do not contain embedded SQL statements. Therefore, to build a
UDF program, you do not connect to a database or precompile and bind the
program.

The parameter, $1, specifies the name of your source file. The script file uses
the source file name for the shared library name.
#! /bin/ksh
bldudf script file -- Solaris
Builds a C UDF library
Usage: bldudf <prog_name>

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

To compile 64 bit programs, uncomment the following line.
BUILD_64BIT=true

if ["$BUILD_64BIT" != ""]

Chapter 12. Building Solaris Applications 293

then
CFLAGS_64=-xarch=v9

else
CFLAGS_64=

fi

Compile the program.
cc $CFLAGS_64 -Kpic -I$DB2PATH/include -c $1.c

Link the program and create a shared library.
cc $CFLAGS_64 -G -o $1 $1.o -L$DB2PATH/lib -R$DB2PATH/lib -ldb2 -ldb2apie

Copy the shared library to the sqllib/function subdirectory.
Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Compile and Link Options for bldudf

Compile Options:

cc The C compiler.

$CFLAGS_64
Contains ″-xarch=v9″ value if ’BUILD_64BIT=true’ is uncommented;
otherwise, it contains no value.

-Kpic Generate position-independent code for shared libraries.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-c Perform compile only; no link. This script has separate compile and link
steps.

294 Application Building Guide

Compile and Link Options for bldudf

Link Options:

cc Use the compiler as a front end for the linker.

$CFLAGS_64
Contains ″-xarch=v9″ value if ’BUILD_64BIT=true’ is uncommented;
otherwise, it contains no value.

-o $1 Specify the executable.

$1.o Include the program object file.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-R$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example:
$HOME/sqllib/lib.

-ldb2 Link with the DB2 library.

-ldb2apie
Link with the DB2 API Engine library to allow the use of LOB locators.

-G Generate a shared library.

Refer to your compiler documentation for additional compiler options.

To build the user-defined function program udfsrv from the source file
udfsrv.c, enter:

bldudf udfsrv

The script file copies the UDF to the sqllib/function directory.

If necessary, set the file mode for the UDF so the client application can access
it.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. DB2 CLI and embedded SQL versions of this program are provided.

You can build the DB2 CLI udfcli program from the source file udfcli.c, in
sqllib/samples/cli, using the script file bldcli. Refer to “DB2 CLI
Applications” on page 282 for details.

You can build the embedded SQL udfcli program from the source file
udfcli.sqc, in sqllib/samples/c, using the script file bldapp. Refer to “DB2

API and Embedded SQL Applications” on page 287 for details.

Chapter 12. Building Solaris Applications 295

To call the UDF, run the sample calling application by entering the executable
name:

udfcli

The calling application calls the ScalarUDF function from the udfsrv library.

Multi-threaded Applications
Multi-threaded applications using SPARCompiler C on Solaris need to be
compiled and linked with -mt. This will pass -D_REENTRANT to the
preprocessor, and -lthread to the linker. POSIX threads also require -lpthread
to be passed to the linker. In addition, using the compiler option
-D_POSIX_PTHREAD_SEMANTICS allows POSIX variants of functions such as
getpwnam_r().

The script file, bldmt, in sqllib/samples/c, contains the commands to build an
embedded SQL multi-threaded program.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. The third parameter, $3, specifies the user ID for the database, and $4
specifies the password. Only the first parameter, the source file name, is
required. Database name, user ID, and password are optional. If no database
name is supplied, the program uses the default sample database.
#! /bin/ksh
bldmt script file -- Solaris
Builds a C multi-threaded embedded SQL program.
Usage: bldmt <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Precompile and bind the program.
embprep $1 $2 $3 $4

To compile 64 bit programs, uncomment the following line.
BUILD_64BIT=true

if ["$BUILD_64BIT" != ""]
then

CFLAGS_64=-xarch=v9
else

CFLAGS_64=
fi

Compile the program.
cc $CFLAGS_64 -mt -D_POSIX_PTHREAD_SEMANTICS -I$DB2PATH/include -c $1.c

Link the program.
cc $CFLAGS_64 -mt -o $1 $1.o -L$DB2PATH/lib -R$DB2PATH/lib -ldb2 -lpthread

296 Application Building Guide

Besides the -mt, -D_POSIX_PTHREAD_SEMANTICS, and -lpthread options,
discussed above, and the absence of a utility file linked in, the other compile
and link options are the same as those used for the embedded SQL script file,
bldapp. For information on these options, see “DB2 API and Embedded SQL
Applications” on page 287.

To build the sample program, thdsrver, from the source file thdsrver.sqc,
enter:

bldmt thdsrver

The result is an executable file, thdsrver. To run the executable file against the
sample database, enter:

thdsrver

SPARCompiler C++

This section includes the following topics:
v DB2 API and Embedded SQL Applications
v Embedded SQL Stored Procedures
v User-Defined Functions (UDFs)
v Multi-threaded Applications

DB2 API and Embedded SQL Applications
The script file, bldapp, in sqllib/samples/cpp, contains the commands to
build a DB2 application program.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter for programs not containing embedded SQL. Building
embedded SQL programs requires a connection to the database so three
optional parameters are also provided: the second parameter, $2, specifies the
name of the database to which you want to connect; the third parameter, $3,
specifies the user ID for the database, and $4 specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind file, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.
#! /bin/ksh
bldapp script file -- Solaris
Builds a C++ application program.
Usage: bldapp <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Chapter 12. Building Solaris Applications 297

To compile 64 bit programs, uncomment the following line.
BUILD_64BIT=true

if ["$BUILD_64BIT" != ""]
then

CFLAGS_64=-xarch=v9
else

CFLAGS_64=
fi

If an embedded SQL program, precompile and bind it.
if [[-f $1".sqC"]]
then

embprep $1 $2 $3 $4
Compile the utilemb.C error-checking utility.
CC $CFLAGS_64 -I$DB2PATH/include -c utilemb.C

else
Compile the utilapi.C error-checking utility.
CC $CFLAGS_64 -I$DB2PATH/include -c utilapi.C

fi

Compile the program.
CC $CFLAGS_64 -I$DB2PATH/include -c $1.C

if [[-f $1".sqC"]]
then

Link the program with utilemb.o
CC $CFLAGS_64 -o $1 $1.o utilemb.o -L$DB2PATH/lib -R$DB2PATH/lib -ldb2 -mt

else
Link the program with utilapi.o
CC $CFLAGS_64 -o $1 $1.o utilapi.o -L$DB2PATH/lib -R$DB2PATH/lib -ldb2 -mt

fi

Compile and Link Options for bldapp

Compile Options:

CC The C++ compiler.

$CFLAGS_64
Contains ″-xarch=v9″ value if ’BUILD_64BIT=true’ is uncommented;
otherwise, it contains no value.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

-c Perform compile only; no link. This script has separate compile and link
steps.

298 Application Building Guide

Compile and Link Options for bldapp

Link options:

CC Use the compiler as a front end for the linker.

$CFLAGS_64
Contains ″-xarch=v9″ value if ’BUILD_64BIT=true’ is uncommented;
otherwise, it contains no value.

-o $1 Specify the executable.

$1.o Include the program object file.

utilemb.o
If an embedded SQL program, include the embedded SQL utility object file
for error checking.

utilapi.o
If a non-embedded SQL program, include the DB2 API utility object file for
error checking.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-R$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example:
$HOME/sqllib/lib.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the non-embedded SQL DB2 API sample program client from the
source file client.C, enter:

bldapp client

The result is an executable file, client. You can run the executable file against
the sample database by entering:

client

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, updat, from the
source file updat.sqC:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

Chapter 12. Building Solaris Applications 299

2. If connecting to another database on the same instance, also enter the
database name:

bldapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp updat database userid password

The result is an executable file, updat.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Embedded SQL Stored Procedures

Note: Please see the information for building C++ stored procedures in “C++
Considerations for UDFs and Stored Procedures” on page 60.

The script file bldsrv, in sqllib/samples/cpp, contains the commands to build
an embedded SQL stored procedure. The script file compiles the stored
procedure into a shared library that can be called by a client application.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. Since the stored procedure must be build on the same instance where
the database resides, you do not need parameters for user ID and password.

Only the first parameter, the source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database.

The script file uses the source file name, $1, for the shared library name.
#! /bin/ksh
bldsrv script file -- Solaris
Builds a C++ stored procedure
Usage: bldsrv <prog_name> [<db_name>]

Set DB2PATH to where DB2 will be accessed.

300 Application Building Guide

The default is the standard instance path.
DB2PATH=$HOME/sqllib

Precompile and bind the program.
embprep $1 $2

To compile 64 bit programs, uncomment the following line.
BUILD_64BIT=true

if ["$BUILD_64BIT" != ""]
then

CFLAGS_64=-xarch=v9
else

CFLAGS_64=
fi

Compile the program.
CC $CFLAGS_64 -Kpic -I$DB2PATH/include -c $1.C

Link the program and create a shared library
CC $CFLAGS_64 -G -o $1 $1.o -L$DB2PATH/lib -R$DB2PATH/lib -ldb2 -mt

Copy the shared library to the sqllib/function subdirectory.
Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Compile and Link Options for bldsrv

Compile Options:

CC The C++ compiler.

$CFLAGS_64
Contains ″-xarch=v9″ value if ’BUILD_64BIT=true’ is uncommented;
otherwise, it contains no value.

-Kpic Generate position-independent code for shared libraries.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
-I$DB2PATH/include

-c Perform compile only; no link. This script has separate compile and link
steps.

Chapter 12. Building Solaris Applications 301

Compile and Link Options for bldsrv

Link Options:

CC Use the compiler as a front end for the linker.

$CFLAGS_64
Contains ″-xarch=v9″ value if ’BUILD_64BIT=true’ is uncommented;
otherwise, it contains no value.

-G Generate a shared library.

-o $1 Specify the executable.

$1.o Include the program object file.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-R$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example:
$HOME/sqllib/lib.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the sample program spserver from the source file spserver.sqC, if
connecting to the sample database, enter:

bldsrv spserver

If connecting to another database, also enter the database name:
bldsrv spserver database

The script file copies the shared library to the server in the path
sqllib/function.

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database:

db2 connect to sample

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

Then catalog them with this command:
db2 -td@ -vf spcreate.db2

302 Application Building Guide

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the shared libary, spserver, you can build the client
application spclient that calls the stored procedures within the shared library.

You can build spclient by using the script file, bldapp. Refer to “DB2 API and
Embedded SQL Applications” on page 297 for details.

To call the stored procedures in the shared library, run the sample client
application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The stored
procedures return the output to the client application.

User-Defined Functions (UDFs)

Note: Please see the information for building C++ UDFs in “C++
Considerations for UDFs and Stored Procedures” on page 60.

The script file, bldudf, in sqllib/samples/cpp, contains the commands to
build a UDF. UDFs do not contain embedded SQL statements. Therefore, to
build a UDF program, you do not connect to a database or precompile and
bind the program.

The parameter, $1, specifies the name of your source file. The script file uses
the source file name for the shared library name.
#! /bin/ksh
bldudf script file -- Solaris
Builds a C++ UDF library
Usage: bldudf <prog_name>

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.

Chapter 12. Building Solaris Applications 303

DB2PATH=$HOME/sqllib

To compile 64 bit programs, uncomment the following line.
BUILD_64BIT=true

if ["$BUILD_64BIT" != ""]
then

CFLAGS_64=-xarch=v9
else

CFLAGS_64=
fi

Compile the program.
if [[-f $1".c"]]
then

CC $CFLAGS_64 -Kpic -I$DB2PATH/include -c $1.c
elif [[-f $1".C"]]
then

CC $CFLAGS_64 -Kpic -I$DB2PATH/include -c $1.C
fi

Link the program and create a shared library.
CC $CFLAGS_64 -G -o $1 $1.o -L$DB2PATH/lib -R$DB2PATH/lib -ldb2 -ldb2apie

Copy the shared library to the sqllib/function subdirectory.
Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Compile and Link Options for bldudf

Compile Options:

CC The C++ compiler.

$CFLAGS_64
Contains ″-xarch=v9″ value if ’BUILD_64BIT=true’ is uncommented;
otherwise, it contains no value.

-Kpic Generate position-independent code for shared libraries.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-c Perform compile only; no link. This script has separate compile and link
steps.

304 Application Building Guide

Compile and Link Options for bldudf

Link Options:

CC Use the compiler as a front end for the linker.

$CFLAGS_64
Contains ″-xarch=v9″ value if ’BUILD_64BIT=true’ is uncommented;
otherwise, it contains no value.

-G Generate a shared library.

-o $1 Specify the executable.

$1.o Include the program object file.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-R$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example:
$HOME/sqllib/lib.

-ldb2 Link with the DB2 library.

-ldb2apie
Link with the DB2 API Engine library to allow the use of LOB locators.

Refer to your compiler documentation for additional compiler options.

To build the user-defined function program udfsrv from the source file
udfsrv.c, enter:

bldudf udfsrv

The script file copies the UDF to the sqllib/function directory.

If necessary, set the file mode for the UDF so the client application can access
it.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. You can build the udfcli program from the udfcli.sqC source file in
sqllib/samples/cpp using the script file bldapp. Refer to “DB2 API and
Embedded SQL Applications” on page 297 for details.

To call the UDF, run the sample calling application by entering the executable
name:

udfcli

The calling application calls the ScalarUDF function in the udfsrv library.

Chapter 12. Building Solaris Applications 305

Multi-threaded Applications
Multi-threaded applications using SPARCompiler C++ on Solaris need to be
compiled and linked with -mt. This will pass -D_REENTRANT to the
preprocessor, and -lthread to the linker. POSIX threads also require -lpthread
to be passed to the linker. In addition, using the compiler option
-D_POSIX_PTHREAD_SEMANTICS allows POSIX variants of functions such as
getpwnam_r().

The script file, bldmt, in sqllib/samples/cpp, contains the commands to build
an embedded SQL multi-threaded program.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. The third parameter, $3, specifies the user ID for the database, and $4
specifies the password. Only the first parameter, the source file name, is
required. Database name, user ID, and password are optional. If no database
name is supplied, the program uses the default sample database.
#! /bin/ksh
bldmt script file -- Solaris
Builds a C++ multi-threaded embedded SQL program
Usage: bldmt <prog_name> [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Precompile and bind the program.
embprep $1 $2 $3 $4

To compile 64 bit programs, uncomment the following line.
BUILD_64BIT=true

if ["$BUILD_64BIT" != ""]
then

CFLAGS_64=-xarch=v9
else

CFLAGS_64=
fi

Compile the program.
CC $CFLAGS_64 -mt -D_POSIX_PTHREAD_SEMANTICS -I$DB2PATH/include -c $1.C

Link the program.
CC $CFLAGS_64 -mt -o $1 $1.o -L$DB2PATH/lib -R$DB2PATH/lib -ldb2 -lpthread

Besides the -mt, -D_POSIX_PTHREAD_SEMANTICS, and -lpthread options,
discussed above, and the absence of a utility file linked in, the other compile
and link options are the same as those used for the embedded SQL script file,
bldapp. For information on these options, see “DB2 API and Embedded SQL
Applications” on page 297.

306 Application Building Guide

To build the sample program, thdsrver, from the source file thdsrver.sqC,
enter:

bldmt thdsrver

The result is an executable file, thdsrver. To run the executable file against the
sample database, enter:

thdsrver

Micro Focus COBOL

This section contains the following topics:
v Using the Compiler
v DB2 API and DB2 Embedded Applications
v Embedded SQL Stored Procedures

Using the Compiler
If you develop applications that contain embedded SQL and DB2 API calls,
and you are using the Micro Focus COBOL compiler, keep the following
points in mind:
v When you precompile your application using the command line processor

command db2 prep, use the target mfcob option (the default).
v In order to use the built-in precompiler front-end, run-time interpreter or

Animator debugger, add the DB2 Generic API entry points to the Micro
Focus run-time module rts32 by executing the mkrts command provided
by Micro Focus, as follows:
1. Log in as root.
2. Execute mkrts with the arguments supplied in the following directory:

/opt/IBMdb2/V7.1/lib/db2mkrts.args

v You must include the DB2 COBOL COPY file directory in the Micro Focus
COBOL environment variable COBCPY. The COBCPY environment variable
specifies the location of COPY files. The DB2 COPY files for Micro Focus
COBOL reside in sqllib/include/cobol_mf under the database instance
directory.
To include the directory, enter:

export COBCPY=$COBCPY:$HOME/sqllib/include/cobol_mf

Note: You might want to set COBCPY in the .profile file.

DB2 API and Embedded SQL Applications
The script file bldapp, in sqllib/samples/cobol_mf, contains the commands to
build a DB2 application program.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter for programs that do not contain embedded SQL. Building

Chapter 12. Building Solaris Applications 307

embedded SQL programs requires a connection to the database so three
optional parameters are also provided: the second parameter, $2, specifies the
name of the database to which you want to connect; the third parameter, $3,
specifies the user ID for the database, and $4 specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind file, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.
#! /bin/ksh
bldapp script file -- Solaris
Builds a Micro Focus COBOL application program
Usage: bldapp [<db_name> [<userid> <password>]]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

If an embedded SQL program, precompile and bind it.
if [[-f $1".sqb"]]
then

embprep $1 $2 $3 $4
fi

Set COBCPY to include the DB2 COPY files directory.
export COBCPY=$DB2PATH/include/cobol_mf:$COBCPY

Compile the checkerr.cbl error-checking utility.
cob -cx checkerr.cbl

Compile the program.
cob -cx $1.cbl

Link the program.
cob -x $1.o checkerr.o -L$DB2PATH/lib -ldb2 -ldb2gmf

Compile and Link Options for bldapp

Compile Options:

cob The Micro Focus COBOL compiler.

-cx Compile to object module.

308 Application Building Guide

Compile and Link Options for bldapp

Link Options:

cob Use the compiler as a front end for the linker.

-x Specify an executable program.

$1.o Include the program object file.

checkerr.o
Include the utility object file for error-checking.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib.

-ldb2 Link with the DB2 library.

-ldb2gmf
Link with the DB2 exception-handler library for Micro Focus COBOL.

Refer to your compiler documentation for additional compiler options.

To build the non-embedded SQL sample program, client, from the source file
client.cbl, enter:

bldapp client

The result is an executable file client. You can run the executable file against
the sample database by entering:

client

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, updat, from the
source file updat.sqb:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, also enter the
database name:

bldapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp updat database userid password

The result is an executable file, updat.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:

Chapter 12. Building Solaris Applications 309

updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Embedded SQL Stored Procedures

Notes:

1. Before building Micro Focus stored procedures on Solaris, run the
following commands:

db2stop
db2set DB2LIBPATH=$LD_LIBRARY_PATH
db2set DB2ENVLIST="COBDIR LD_LIBRARY_PATH"
db2set
db2start

Ensure that db2stop stops the database. The last db2set command is
issued to check your settings: make sure DB2LIBPATH and DB2ENVLIST are
set correctly.

2. Some of the more recent versions of the Micro Focus COBOL compiler
used on Solaris cannot be used to create a statically-linked stored
procedure. As such, the makefile and script file, bldsrv, have been adapted
to allow for the creation of a dynamically-linked stored procedure.
In order for a remote client application to successfully call this
dynamically-linked stored procedure, it is necessary for a Micro Focus
COBOL routine, cobinit(), to be called on the server where the stored
procedure resides just before the stored procedure is executed. A wrapper
program which accomplishes this is created during the execution of the
makefile, or the script file bldsrv. It is then linked with the stored
procedure code to form the stored procedure shared library. Due to the use
of this wrapper program, in order for a client application to call a stored
procedure named x, it must call x_wrap instead of x.
The details of the wrapper program are explained later in this section.

The script file bldsrv, in sqllib/samples/cobol_mf, contains the commands to
build a stored procedure. The script file compiles the stored procedure into a
shared library that can be called by a client application.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. Since the stored procedure must be build on the same instance where
the database resides, there are no parameters for user ID and password.

310 Application Building Guide

Only the first parameter, source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database.

The script file uses the source file name, $1, for the shared library name.
#! /bin/ksh
bldsrv script file -- Solaris
Builds a Micro Focus COBOL stored procedure
Usage: bldsrv <prog_name> [<db_name>]

Set DB2PATH to where DB2 will be accessed.
The default is the standard instance path.
DB2PATH=$HOME/sqllib

Precompile and bind the program.
embprep $1 $2

Set COBCPY to include the DB2 COPY files directory.
export COBCPY=$DB2PATH/include/cobol_mf:$COBCPY

Compile the program.
cob -cx $1.cbl

Create the wrapper program for the stored procedure.
wrapsrv $1

Link the program creating shared library $1 with main entry point ${1}_wrap
cob -x -o $1 ${1}_wrap.c $1.o -Q -G -L$DB2PATH/lib -ldb2 -ldb2gmf

Copy the shared library to the sqllib/function subdirectory.
The user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Compile and Link Options for bldsrv

Compile Options:

cob The COBOL compiler.

-cx Compile to object module.

Chapter 12. Building Solaris Applications 311

Compile and Link Options for bldsrv

Link Options:

cob Use the compiler to link edit.

-x Produce an executable program.

-o $1 Specify the executable program.

${1}_wrap.c
Specify the wrapper program.

$1.o Specify the program object file.

-Q

-G

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, the compiler assumes
the following path: /usr/lib:/lib.

-ldb2 Link to the DB2 library.

-ldb2gmf
Link to the DB2 exception-handler library for Micro Focus COBOL.

Refer to your compiler documentation for additional compiler options.

The wrapper program, wrapsrv, causes the Micro Focus COBOL routine,
cobinit(), to be called right before the stored procedure is executed. Its
contents are shown below.

312 Application Building Guide

To build the sample program outsrv from the source file outsrv.sqb, if
connecting to the sample database, enter:

bldsrv outsrv

If connecting to another database, also enter the database name:
bldsrv outsrv database

The script file copies the stored procedure to the server in the path
sqllib/function.

If necessary, set the file mode for the stored procedure so the client
application can access it.

Once you build the stored procedure outsrv, you can build the client
application outcli that calls the stored procedure. You can build outcli using
the script file, bldapp. Refer to “DB2 API and Embedded SQL Applications”
on page 307 for details.

To call the stored procedure, run the sample client application by entering:
outcli database userid password

where

#! /bin/ksh
wrapsrv script file
Creates the wrapper program for Micro Focus COBOL stored procedures
Usage: wrapsrv <stored_proc>

Note: The client program calls "<stored_proc>_wrap" not "<stored_proc>"

Create the wrapper program for the stored procedure.
cat << WRAPPER_CODE > ${1}_wrap.c
#include <stdio.h>
void cobinit(void);
int $1(void *p0, void *p1, void *p2, void *p3);

int main(void)
{

return 0;
}

int ${1}_wrap(void *p0, void *p1, void *p2, void *p3)
{

cobinit();
return $1(p0, p1, p2, p3);

}
WRAPPER_CODE

Chapter 12. Building Solaris Applications 313

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the stored procedure library, outsrv, which
executes the stored procedure function of the same name on the server
database, and then returns the output to the client application.

Exiting the Stored Procedure
When you develop a stored procedure, exit the stored procedure using the
following statement:

move SQLZ-HOLD-PROC to return-code.

With this statement, the stored procedure returns correctly to the client
application. This is especially important when the stored procedure is called
by a local COBOL client application.

314 Application Building Guide

Chapter 13. Building Applications for Windows 32-bit
Operating Systems

Microsoft Visual Basic 317
ActiveX Data Objects (ADO) 317
Remote Data Objects (RDO) 318
Object Linking and Embedding (OLE)
Automation 320

OLE Automation UDFs and Stored
Procedures 320

Microsoft Visual C++ 321
ActiveX Data Objects (ADO) 321
Object Linking and Embedding (OLE)
Automation 322

OLE Automation UDFs and Stored
Procedures 322

DB2 CLI Applications 322
Building and Running Embedded SQL
Applications 325

DB2 CLI Applications with DB2 APIs . . 325
DB2 CLI Stored Procedures 326
DB2 API and Embedded SQL
Applications 328

Building and Running Embedded SQL
Applications 331

Embedded SQL Stored Procedures . . . 331
User-Defined Functions (UDFs) 334

IBM VisualAge C++ Version 3.5 337
DB2 CLI Applications 337

Building and Running Embedded SQL
Applications 339

DB2 CLI Applications with DB2 APIs . . 339
DB2 CLI Stored Procedures 340
DB2 API and Embedded SQL
Applications 342

Building and Running Embedded SQL
Applications 344

Embedded SQL Stored Procedures . . . 345
User-Defined Functions (UDFs) 348

IBM VisualAge C++ Version 4.0 350
IBM VisualAge COBOL 350

Using the Compiler 350
DB2 API and Embedded SQL
Applications 351

Building and Running Embedded SQL
Applications 353

Embedded SQL Stored Procedures . . . 353
Micro Focus COBOL 355

Using the Compiler 355
DB2 API and Embedded SQL
Applications 356

Building and Running Embedded SQL
Applications 357

Embedded SQL Stored Procedures . . . 358
Object REXX 360

This chapter provides detailed information for building applications on
Windows 32-bit operating systems. In the batch files, commands that begin
with db2 are Command Line Processor (CLP) commands. Refer to the
Command Reference if you need more information about DB2 commands.

For the latest DB2 application development updates for Windows 32-bit
operating systems, visit the Web page at:

http://www.ibm.com/software/data/db2/udb/ad

Notes:

1. All applications on Windows 32-bit operating systems, both embedded
SQL and non-embedded SQL, must be built in a DB2 command window,
and not from an operating system command prompt.

2. Any path names used in your programs that include the variable
%DB2PATH% should be enclosed in quotes, as in: "%DB2PATH%\function", as

© Copyright IBM Corp. 1993, 2000 315

http://www.ibm.com/software/data/db2/udb/ad

the default installation for DB2 on Windows 32-bit operating systems for
Version 7.1 is \Program Files\sqllib, which contains a space. If quotes are
not used, you may get an error such as: ″the syntax of the command is
incorrect″. In this chapter, such a path name is only enclosed in quotes if
given as part of a command or code example.

WCHARTYPE CONVERT Precompile Option

The WCHARTYPE precompile option handles graphic data in either
multi-byte format or wide-character format using the wchar_t data type. More
information on this option can be found in the Application Development Guide.

For DB2 for Windows 32-bit operating systems, the WCHARTYPE CONVERT
option is supported for applications compiled with the Microsoft Visual C++
compiler. However, do not use the CONVERT option with this compiler if
your application inserts data into a DB2 database in a code page that is
different from the database code page. DB2 normally performs a code page
conversion in this situation; however, the Microsoft C run-time environment
does not handle substitution characters for certain double byte characters.
This could result in run time conversion errors.

The WCHARTYPE CONVERT option is not supported for applications
compiled with the IBM VisualAge C++ compiler. For this compiler, use the
default NOCONVERT option for WCHARTYPE. With the NOCONVERT
option, no implicit character conversion occurs between application and the
database manager. Data in a graphic host variable is sent to and received from
the database manager as unaltered Double Byte Character Set (DBCS)
characters.

If you need to convert your graphic data to multi-byte format from
wide-character format, use the wcstombs() function. For example:

wchar_t widechar[200];
wchar_t mb[200];
wcstombs((char *)mb,widechar,200);

EXEC SQL INSERT INTO TABLENAME VALUES(:mb);

Similarly, you can use the mbstowcs() function to convert from multi-byte to
wide-character format.

Do not issue a setlocale() call from your application if your application is
statically bound to the C run-time libraries, as this may lead to C run-time
conversion errors. Using setlocale() is not a problem if your application is
dynamically bound to the C run-time library. This is also the case for stored
procedures.

Object Linking and Embedding Database (OLE DB) Table Functions

316 Application Building Guide

DB2 supports OLE DB table functions. For these functions, there is no
application building needed besides creating the CREATE FUNCTION DDL. OLE
DB table function sample files are provided by DB2 in the
%DB2PATH%\samples\oledb directory. These are Command Line Processor (CLP)
files. They can be built with the following steps:
1. db2 connect to database_name
2. db2 -t -v -f file_name.db2
3. db2 terminate

where database_name is the database you are connecting to, and file_name is
the name of the CLP file, with extension .db2.

For a full description of OLE DB table functions, see the Application
Development Guide.

Microsoft Visual Basic

Note: The DB2 AD Client for Windows 32-bit operating systems does not
supply a precompiler for Microsoft Visual Basic.

This section covers the following topics:
v ActiveX Data Objects (ADO)
v Remote Data Objects (RDO)
v Object Linking and Embedding (OLE) Automation

ActiveX Data Objects (ADO)
ActiveX Data Objects (ADO) allow you to write an application to access and
manipulate data in a database server through an OLE DB provider. The
primary benefits of ADO are high speed, ease of use, low memory overhead,
and a small disk footprint.

To use ADO with Microsoft Visual Basic, you need to establish a reference to
the ADO type library. Do the following:
1. Select ″References″ from the Project menu
2. Check the box for ″Microsoft ActiveX Data Objects <version_number>

Library″

3. Click ″OK″.

where <version_number> is the current version the ADO library.

Once this is done, ADO objects, methods, and properties will be accessible
through the VBA Object Browser and the IDE Editor.

Chapter 13. Building Applications for Windows 32-bit Operating Systems 317

A full Visual Basic program includes forms and other graphical elements, and
you need to view it inside the Visual Basic environment. Here are Visual Basic
commands as part of a program to access the DB2 sample database, cataloged
in ODBC:

Establish a connection:
Dim db As Connection
Set db = New Connection

Set client-side cursors supplied by the local cursor library:
db.CursorLocation = adUseClient

Set the provider so ADO will use the Microsoft ODBC Driver, and open
database ″sample″ with no user id/password; that is, use the current user:

db.Open "SAMPLE"

Create a record set:
Set adoPrimaryRS = New Recordset

Use a select statement to fill the record set:
adoPrimaryRS.Open "select EMPNO,LASTNAME,FIRSTNME,MIDINIT,EDLEVEL,JOB
from EMPLOYEE Order by EMPNO", db

From this point, the programmer can use the ADO methods to access the data
such as moving to the next record set:

adoPrimaryRS.MoveNext

Deleting the current record in the record set:
adoPrimaryRS.Delete

As well, the programmer can do the following to access an individual field:
Dim Text1 as String
Text1 = adoPrimaryRS!LASTNAME

DB2 provides Visual Basic ADO sample programs in the
%DB2PATH%\samples\ADO\VB directory.

Remote Data Objects (RDO)
Remote Data Objects (RDO) provide an information model for accessing
remote data sources through ODBC. RDO offers a set of objects that make it
easy to connect to a database, execute queries and stored procedures,
manipulate results, and commit changes to the server. It is specifically
designed to access remote ODBC relational data sources, and makes it easier
to use ODBC without complex application code, and is a primary means of
accessing a relational database that is exposed with an ODBC driver. RDO

318 Application Building Guide

implements a thin code layer over the Open Database Connectivity (ODBC)
API and driver manager that establishes connections, creates result sets and
cursors, and executes complex procedures using minimal workstation
resources.

To use RDO with Microsoft Visual Basic, you need to establish a reference to
your Visual Basic project. Do the following:
1. Select ″References″ from the Project menu
2. Check the box for ″Microsoft Remote Data Object <Version Number>″

3. Click ″OK″.

where <version_number> is the current RDO version.

A full Visual Basic program includes forms and other graphical elements, and
you need to view it inside the Visual Basic environment. Here are Visual Basic
commands as part of a DB2 program that connects to the sample database,
opens a record set that selects all the columns from the EMPLOYEE table, and
then displays the employee names to a message window, one by one:

Dim rdoEn As rdoEngine
Dim rdoEv As rdoEnvironment
Dim rdoCn As rdoConnection
Dim Cnct$
Dim rdoRS As rdoResultset
Dim SQLQueryDB As String

Assign the connection string:
Cnct$ = "DSN=SAMPLE;UID=;PWD=;"

Set the RDO environment:
Set rdoEn = rdoEngine
Set rdoEv = rdoEn.rdoEnvironments(0)

Connect to the database:
Set rdoCn = rdoEv.OpenConnection("", , , Cnct$)

Assign the SELECT statement for the record set:
SQLQueryDB = "SELECT * FROM EMPLOYEE"

Open the record set and execute the query:
Set rdoRS = rdoCn.OpenResultset(SQLQueryDB)

While not at the end of the record set, display Message Box with
LASTNAME, FIRSTNME from table, one employee at a time:

While Not rdoRS.EOF
MsgBox rdoRS!LASTNAME & ", " & rdoRS!FIRSTNME

Chapter 13. Building Applications for Windows 32-bit Operating Systems 319

Move to the next row in the record set:
rdoRS.MoveNext
Wend

Close the program:
rdoRS.Close
rdoCn.Close
rdoEv.Close

DB2 provides Visual Basic RDO sample programs in the
%DB2PATH%\samples\RDO directory.

Object Linking and Embedding (OLE) Automation
This section describes Object Linking and Embedding (OLE) automation UDFs
in Microsoft Visual Basic as well as accessing a sample OLE automation
controller for stored procedures.

You can implement OLE automation UDFs and stored procedures in any
language, as OLE is language independent, by exposing methods of OLE
automation servers, and registering the methods as UDFs with DB2.
Application development environments which support the development of
OLE automation servers include certain versions of the following: Microsoft
Visual Basic, Microsoft Visual C++, Microsoft Visual J++, Microsoft FoxPro,
Borland Delphi, Powersoft PowerBuilder, and Micro Focus COBOL. Also, Java
beans objects that are wrapped properly for OLE, for example with Microsoft
Visual J++, can be accessed via OLE automation.

You need to refer to the documentation of the appropriate application
development environment for further information on developing OLE
automation servers. For more detailed information on DB2 programming
using OLE automation, see the Application Development Guide.

OLE Automation UDFs and Stored Procedures
Microsoft Visual Basic supports the creation of OLE automation servers. A
new kind of object is created in Visual Basic by adding a class module to the
Visual Basic project. Methods are created by adding public sub-procedures to
the class module. These public procedures can be registered to DB2 as OLE
automation UDFs and stored procedures. Refer to the Microsoft Visual Basic
manual, Creating OLE Servers, Microsoft Corporation, 1995, and to the OLE
samples provided by Microsoft Visual Basic, for further documentation on
creating and building OLE servers.

DB2 provides self-containing samples of OLE automation UDFs and stored
procedures in Microsoft Visual Basic, located in the directory
%DB2PATH%\samples\ole\msvb. For information on building and running the
OLE automation UDF and stored procedure samples, please see the README
file in %DB2PATH%\samples\ole.

320 Application Building Guide

Microsoft Visual C++

This section includes the following topics:
v ActiveX Data Objects (ADO)
v Object Linking and Embedding (OLE) Automation
v DB2 CLI Applications
v DB2 CLI Stored Procedures
v DB2 API and Embedded SQL Applications
v Embedded SQL Stored Procedures
v User-Defined Functions (UDFs)

Note: The Visual C++ compiler is used for both C and C++ sample programs
supplied in the %DB2PATH%\samples\c and %DB2PATH%\samples\cpp
directories. The same batch files have been placed in these two
directories. They contain commands to accept either a C or C++ source
file, depending on the file extension. Batch files are used in this section
to demonstrate building programs, except in the first two topics,
″ActiveX Data Objects (ADO)″ and ″Object Linking and Embedding
(OLE) Automation″.

ActiveX Data Objects (ADO)
DB2 ADO programs using Visual C++ can be compiled the same as regular
C++ programs, once you make the following change.

To have your C++ source program run as an ADO program, you can put the
following import statement at the top of your source program file:
#import "C:\program files\common files\system\ado\msado<VERSION NUMBER>.dll" \
no_namespace \
rename("EOF", "adoEOF")

where <VERSION NUMBER> is the version number of the ADO library.

When the program is compiled, the user will need to verify that the
msado<VERSION NUMBER>.dll is in the path specified. An alternative is to add
C:\program files\common files\system\ado to the environment variable
LIBPATH, and then use this shorter import statement in your source file:
#import <msado<VERSION NUMBER>.dll> \
no_namespace \
rename("EOF", "adoEOF")

This is the method used in the DB2 sample program, BLOBAccess.dsp.

With this IMPORT statement, your DB2 program will have access to the ADO
library. You can now compile your Visual C++ program as you would any
other program. If you are also using another programming interface, such as
DB2 APIs, or DB2 CLI, refer to the appropriate section in this chapter for
additional information on building your program.

Chapter 13. Building Applications for Windows 32-bit Operating Systems 321

DB2 provides Visual C++ ADO sample programs in the
%DB2PATH%\samples\ADO\VC directory.

Object Linking and Embedding (OLE) Automation
This section describes Object Linking and Embedding (OLE) automation UDFs
in Microsoft Visual C++, as well as a sample OLE automation controller for
stored procedures.

You can implement OLE automation UDFs and stored procedures in any
language, as OLE is language independent, by exposing methods of OLE
automation servers, and registering the methods as UDFs with DB2.
Application development environments which support the development of
OLE automation servers include certain versions of the following: Microsoft
Visual Basic, Microsoft Visual C++, Microsoft Visual J++, Microsoft FoxPro,
Borland Delphi, Powersoft PowerBuilder, and Micro Focus COBOL. Also, Java
beans objects that are wrapped properly for OLE, for example with Microsoft
Visual J++, can be accessed via OLE automation.

You need to refer to the documentation of the appropriate application
development environment for further information on developing OLE
automation servers. For more detailed information on DB2 programming
using OLE automation, refer to the Application Development Guide.

OLE Automation UDFs and Stored Procedures
Microsoft Visual C++ supports the creation of OLE automation servers.
Servers can be implemented using Microsoft Foundation Classes and the
Microsoft Foundation Class application wizard, or implemented as Win32
applications. Servers can be DLLs or EXEs. Refer to the Microsoft Visual C++
documentation and to the OLE samples provided by Microsoft Visual C++ for
further information. For information on building Visual C++ UDFs for DB2,
see “User-Defined Functions (UDFs)” on page 334. For information on
building Visual C++ stored procedures with DB2 CLI, see “DB2 CLI Stored
Procedures” on page 326. For information on building Visual C++ embedded
SQL stored procedures for DB2, see “Embedded SQL Stored Procedures” on
page 331.

DB2 provides self-containing samples of OLE automation UDFs and stored
procedures in Microsoft Visual C++, located in the directory
%DB2PATH%\samples\ole\msvc. For information on building and running the
OLE automation UDF and stored procedure samples, please see the README
file in %DB2PATH%\samples\ole.

DB2 CLI Applications
The batch file bldmcli.bat, in %DB2PATH%\samples\cli, contains the commands
to build a DB2 CLI program.

The parameter, %1, specifies the name of your source file.

322 Application Building Guide

This is the only required parameter, and the only one needed for CLI
programs that do not contain embedded SQL. Building embedded SQL
programs requires a connection to the database so three optional parameters
are also provided: the second parameter, %2, specifies the name of the
database to which you want to connect; the third parameter, %3, specifies the
user ID for the database, and %4 specifies the password.

If the program contains embedded SQL, indicated by the .sqc or .sqx
extension, then the embprep batch file is called to precompile the program,
producing a program file with either a .c or a .cxx extension, respectively.
@echo off
rem bldmcli batch file - Windows 32-bit Operating Systems
rem Builds a CLI program with Microsoft Visual C++.
rem Usage: bldmcli prog_name [db_name [userid password]]

if exist "%1.sqc" call embprep %1 %2 %3 %4
if exist "%1.sqx" call embprep %1 %2 %3 %4

rem Compile the error-checking utility.
cl -Z7 -Od -c -W1 -D_X86=1 -DWIN32 utilcli.c

rem Compile the program.
if exist "%1.sqx" goto cpp
cl -Z7 -Od -c -W1 -D_X86=1 -DWIN32 %1.c
goto link_step
:cpp
cl -Z7 -Od -c -W2 -D_X86_=1 -DWIN32 %1.cxx

rem Link the program.
:link_step
link -debug:full -debugtype:cv -OUT:%1.exe %1.obj utilcli.obj db2cli.lib
@echo on

Chapter 13. Building Applications for Windows 32-bit Operating Systems 323

Compile and Link Options for bldmcli

Compile Options:

cl The Microsoft Visual C++ compiler.

-Z7 C7 style CodeView information generated.

-Od Disable optimizations. It is easier to use a debugger with optimization off.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

-W1 Set warning level.

-D_X86_=1
Compiler option necessary for Windows 32-bit operating systems to run on
Intel-based computers.

-DWIN32
Compiler option necessary for Windows 32-bit operating systems.

Link Options:

link Use the 32-bit linker to link edit.

-debug:full
Include debugging information.

-debugtype:cv
Indicate the debugger type.

-OUT:%1.exe
Specify the executable.

%1.obj Include the object file.

utilcli.obj
Include the utility object file for error checking.

db2cli.lib
Link with the DB2 CLI library.

Refer to your compiler documentation for additional compiler options.

To build the sample program tbinfo from the source file tbinfo.c, enter:

bldmcli tbinfo

The result is an executable file tbinfo. You can run the executable file by
entering the executable name:

tbinfo

324 Application Building Guide

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, dbusemx, from
the source file dbusemx.sqc:
1. If connecting to the sample database on the same instance, enter:

bldmcli dbusemx

2. If connecting to another database on the same instance, also enter the
database name:

bldmcli dbusemx database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldmcli dbusemx database userid password

The result is an executable file, dbusemx.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
dbusemx

2. If accessing another database on the same instance, enter the executable
name and the database name:

dbusemx database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

dbusemx database userid password

DB2 CLI Applications with DB2 APIs
DB2 includes CLI sample programs that use DB2 APIs to create and drop a
database in order to demonstrate using CLI functions on more than one
database. The descriptions of the CLI sample programs in Table 7 on page 22
indicates the samples that use DB2 APIs.

The script file bldmapi in sqllib/samples/cli contains the commands to build
a DB2 CLI program with DB2 APIs. This file compiles and links in the
utilapi utility file, which contains the DB2 APIs to create and drop a
database. This is the only difference between this file and the bldmcli batch
file. Please see “DB2 CLI Applications” on page 322 for the compile and link
options common to both bldmapi and bldmcli.

To build the sample program dbmconn from the source file dbmconn.c, enter:

bldmapi dbmconn

The result is an executable file dbmconn. You can run the executable file by
entering the executable name:

Chapter 13. Building Applications for Windows 32-bit Operating Systems 325

dbmconn

DB2 CLI Stored Procedures
The batch file bldmclis.bat, in %DB2PATH%\samples\cli, contains the
commands to build a CLI stored procedure. The batch file builds the stored
procedure into a DLL on the server.

The parameter, %1, specifies the name of your source file. The batch file uses
the source file name, %1, for the DLL name.
@echo off
rem bldmclis.bat file - Windows 32-bit Operating Systems
rem Builds a CLI stored procedure using the Microsoft Visual C++ compiler.
rem Usage: bldmclis prog_name

if "%1" == "" goto error

rem Compile the program.
if exist "%1.cxx" goto cpp
cl -Z7 -Od -c -W2 -D_X86_=1 -DWIN32 %1.c utilcli.c
goto link_step
:cpp
cl -Z7 -Od -c -W2 -D_X86_=1 -DWIN32 %1.cxx utilcli.c

rem Link the program.
:link_step
link -debug:full -debugtype:cv -dll -out:%1.dll %1.obj utilcli.obj db2cli.lib

-def:%1.def

rem Copy the stored procedure DLL to the 'function' directory
copy %1.dll "%DB2PATH%\function"

goto exit
:error
echo Usage: bldmclis prog_name
:exit
@echo on

326 Application Building Guide

Compile and Link Options for bldmclis

Compile Options:

cl The Microsoft Visual C++ compiler.

-Z7 C7 style CodeView information generated.

-Od Disable optimizations. It is easier to use a debugger with optimization off.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

-W2 Set warning level.

-D_X86_=1
Compiler option necessary for Windows 32-bit operating systems to run on
Intel-based computers.

-DWIN32
Compiler option necessary for Windows 32-bit operating systems.

Link Options:

link Use the 32-bit linker to link edit.

-debug:full
Include debugging information.

-debugtype:cv
Indicate the debugger type.

-OUT:%1.dll
Build a .DLL file.

%1.obj Include the object file.

utilcli.obj
Include the utility object file for error-checking.

db2cli.lib
Link with the DB2 CLI library.

-def:%1.def
Use the module definition file.

Refer to your compiler documentation for additional compiler options.

To build the spserver stored procedure from the source file spserver.c, enter:
bldmclis spserver

The batch file uses the module definition file spserver.def, contained in the
same directory as the CLI sample programs, to build the stored procedure.
The batch file copies the stored procedure DLL, spserver.dll, to the server in
the path %DB2PATH%\function.

Chapter 13. Building Applications for Windows 32-bit Operating Systems 327

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database:

db2 connect to sample

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

Then catalog them with this command:
db2 -td@ -vf spcreate.db2

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the stored procedure spserver, you can build the CLI client
application spclient that calls the stored procedure.

You can build spclient by using the script file, bldmcli. Refer to “DB2 CLI
Applications” on page 322 for details.

To call the stored procedure, run the sample client application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the stored procedure library, spserver, which
executes a number of stored procedure functions on the server database. The
output is returned to the client application.

DB2 API and Embedded SQL Applications
The batch file bldmapp.bat, in %DB2PATH%\samples\c, and in
%DB2PATH%\samples\cpp, contains the commands to build an embedded SQL
program.

The first parameter, %1, specifies the name of your source file. This is the only
required parameter for programs that do not contain embedded SQL. Building

328 Application Building Guide

embedded SQL programs requires a connection to the database so three
additional, optional, parameters are also provided: the second parameter, %2,
specifies the name of the database to which you want to connect; the third
parameter, %3, specifies the user ID for the database, and %4 specifies the
password.

For an embedded SQL program, bldmapp passes the parameters to the
precompile and bind file, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.
@echo off
rem bldmapp.bat -- Windows 32-bit operating systems
rem Builds a Microsoft Visual C++ application program
rem Usage: bldmapp prog_name [db_name [userid password]]

if exist "%1.sqx" goto embedded
if exist "%1.sqc" goto embedded
goto non_embedded

:embedded
rem Precompile and bind the program.
call embprep %1 %2 %3 %4
rem Compile the program.
if exist "%1.cxx" goto cpp_emb
cl -Z7 -Od -c -W2 -D_X86_=1 -DWIN32 %1.c utilemb.c
goto link_embedded
:cpp_emb
cl -Z7 -Od -c -W2 -D_X86_=1 -DWIN32 %1.cxx utilemb.cxx
rem Link the program.
:link_embedded
link -debug:full -debugtype:cv -out:%1.exe %1.obj utilemb.obj db2api.lib
goto exit

:non_embedded
rem Compile the program.
if exist "%1.cxx" goto cpp_non
cl -Z7 -Od -c -W2 -D_X86_=1 -DWIN32 %1.c utilapi.c
goto link_non_embedded
:cpp_non
cl -Z7 -Od -c -W2 -D_X86_=1 -DWIN32 %1.cxx utilapi.cxx
rem Link the program.
:link_non_embedded
link -debug:full -debugtype:cv -out:%1.exe %1.obj utilapi.obj db2api.lib
:exit
@echo on

Chapter 13. Building Applications for Windows 32-bit Operating Systems 329

Compile and Link Options for bldmapp

Compile Options:

cl The Microsoft Visual C++ compiler.

-Z7 C7 style CodeView information generated.

-Od Disable optimizations. It is easier to use a debugger with optimization off.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

-W2 Set warning level.

-D_X86_=1
Compiler option necessary for Windows 32-bit operating systems to run on
Intel-based computers.

-DWIN32
Compiler option necessary for Windows 32-bit operating systems.

Link Options:

link Use the 32-bit linker to link edit.

-debug:full
Include debugging information.

-debugtype:cv
Indicate the debugger type.

-out:%1.exe
Specify a filename

%1.obj Include the object file

utilemb.obj
If an embedded SQL program, include the embedded SQL utility object file
for error checking.

utilapi.obj
If not an embedded SQL program, include the DB2 API utility object file for
error checking.

db2api.lib
Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the DB2 API non-embedded SQL sample program, client, from
either the source file client.c, in %DB2PATH%\samples\c, or from the source file
client.cxx, in %DB2PATH%\samples\cpp, enter:

bldmapp client

330 Application Building Guide

The result is an executable file, client.exe. You can run the executable file by
entering the executable name (without the extension) on the command line:

client

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, updat, from the
C source file updat.sqc in %DB2PATH%\samples\c, or from the C++ source file
updat.sqx in %DB2PATH%\samples\cpp:
1. If connecting to the sample database on the same instance, enter:

bldmapp updat

2. If connecting to another database on the same instance, also enter the
database name:

bldmapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldmapp updat database userid password

The result is an executable file updat.exe.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Embedded SQL Stored Procedures
The batch file bldmsrv.bat, in %DB2PATH%\samples\c, and in
%DB2PATH%\samples\cpp, contains the commands to build an embedded SQL
stored procedure. The batch file builds the stored procedure into a DLL on the
server.

The first parameter, %1, specifies the name of your source file. The second
parameter, %2, specifies the name of the database to which you want to
connect. Since the stored procedure must be build on the same instance where
the database resides, there are no parameters for user ID and password.

Only the first parameter, the source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database.

Chapter 13. Building Applications for Windows 32-bit Operating Systems 331

The batch file uses the source file name, %1, for the DLL name.
@echo off
rem bldmsrv.bat -- Windows 32-bit operating systems
rem Builds a Microsoft Visual C++ stored procedure
rem Usage: bldmsrv prog_name [db_name]

rem Precompile and bind the program.
call embprep %1 %2

rem Compile the program.
if exist "%1.cxx" goto cpp
cl -Z7 -Od -c -W2 -D_X86_=1 -DWIN32 %1.c
goto link_step
:cpp
cl -Z7 -Od -c -W2 -D_X86_=1 -DWIN32 %1.cxx

:link_step
rem Link the program.
link -debug:full -debugtype:cv -out:%1.dll -dll %1.obj db2api.lib -def:%1.def

rem Copy the stored procedure DLL to the 'function' directory
copy %1.dll "%DB2PATH%\function"
@echo on

Compile and Link Options for bldmsrv

Compile Options:

cl The Microsoft Visual C++ compiler.

-Z7 C7 style CodeView information generated.

-Od Disable optimization.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

-W2 Output warning, error, and severe and unrecoverable error messages.

-D_X86_=1
Compiler option necessary for Windows 32-bit operating systems to run on
Intel-based computers.

-DWIN32
Compiler option necessary for Windows 32-bit operating systems.

332 Application Building Guide

Compile and Link Options for bldmsrv

Link Options:

link Use the linker to link edit.

-debug:full
Include debugging information.

-debugtype:cv
Indicates the debugger type.

-out:%1.dll
Build a .DLL file.

%1.obj Include the object file.

db2api.lib
Link with the DB2 library.

-def:%1.def
Module definition file.

Refer to your compiler documentation for additional compiler options.

To build the spserver stored procedure DLL from either the C source file,
spserver.sqc, or the C++ source file, spserver.sqx, enter:

bldmsrv spserver

If connecting to another database, also enter the database name:
bldmsrv spserver database

The batch file uses the module definition file spserver.def, contained in the
same directory as the sample programs, to build the DLL. The batch file
copies the DLL, spserver.dll, to the server in the path %DB2PATH%\function.

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database:

db2 connect to sample

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

Then catalog them with this command:
db2 -td@ -vf spcreate.db2

Chapter 13. Building Applications for Windows 32-bit Operating Systems 333

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the stored procedure DLL, spserver, you can build the client
application spclient that calls it.

You can build spclient by using the script file, bldmapp. Refer to “DB2 API
and Embedded SQL Applications” on page 328 for details.

To call the stored procedure, run the sample client application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the stored procedure DLL, spserver, and
executes a number of stored procedure functions on the server database. The
output is returned to the client application.

User-Defined Functions (UDFs)
The batch file bldmudf, in %DB2PATH%\samples\c, and in
%DB2PATH%\samples\cpp, contains the commands to build a UDF.

UDFs cannot contain embedded SQL statements. Therefore, to build a UDF
program, you do not need to connect to a database to precompile and bind
the program.

The batch file takes one parameter, %1, which specifies the name of your
source file. It uses the source file name, %1, for the DLL name.
@echo off
rem bldmudf.bat -- Windows 32-bit operating systems
rem Builds a Microsoft Visual C++ user-defined function (UDF).
rem Usage: bldmudf udf_prog_name

if "%1" == "" goto error

rem Compile the program.
if exist "%1.cxx" goto cpp
cl -Z7 -Od -c -W2 -D_X86_=1 -DWIN32 %1.c

334 Application Building Guide

goto link_step
:cpp
cl -Z7 -Od -c -W2 -D_X86_=1 -DWIN32 %1.cxx

:link_step
rem Link the program.
link -debug:full -debugtype:cv -dll -out:%1.dll %1.obj db2api.lib db2apie.lib

-def:%1.def

rem Copy the UDF DLL to the 'function' directory
copy %1.dll "%DB2PATH%\function"

goto exit
:error
echo Usage: bldmudf prog_name
:exit
@echo on

Compile and Link Options for bldmudf

Compile Options:

cl The Microsoft Visual C++ compiler.

-Z7 C7 style CodeView information generated.

-Od Disable optimization.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

-W2 Output warning, error, and severe and unrecoverable error messages.

-D_X86_=1
Compiler option necessary for Windows 32-bit operating systems to run on
Intel-based computers.

-DWIN32
Compiler option necessary for Windows 32-bit operating systems.

Chapter 13. Building Applications for Windows 32-bit Operating Systems 335

Compile and Link Options for bldmudf

Link Options:

link Use the linker to link edit.

-debug:full
Include debugging information.

-debugtype:cv
Indicates the debugger type.

-dll Create a DLL.

-out:%1.dll
Build a .DLL file.

%1.obj Include the object file.

db2api.lib
Link with the DB2 library.

db2apie.lib
Link with the DB2 API Engine library.

-def:%1.def
Module definition file.

Refer to your compiler documentation for additional compiler options.

To build the user-defined function udfsrv from the source file udfsrv.c, enter:
bldmudf udfsrv

The batch file uses the module definition file udfsrv.def, contained in the
same directory as the sample programs, to build the user-defined function.
The batch file copies the user-defined function DLL, udfsrv.dll, to the server
in the path %DB2PATH%\function.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. DB2 CLI, as well as embedded SQL C and C++ versions of this program
are provided.

You can build the DB2 CLI udfcli program from the udfcli.c source file in
%DB2PATH%\samples\cli using the batch file bldmcli. Refer to “DB2 CLI
Applications” on page 322 for details.

You can build the embedded SQL C udfcli program from the udfcli.sqc
source file in %DB2PATH%\samples\c using the batch file bldmapp. Refer to “DB2
API and Embedded SQL Applications” on page 328 for details.

336 Application Building Guide

You can build the embedded SQL C++ udfcli program from the udfcli.sqx
source file in %DB2PATH%\samples\cpp using the batch file bldmapp. Refer to
“DB2 API and Embedded SQL Applications” on page 328 for details.

To run the UDF, enter:
udfcli

The calling application calls the ScalarUDF function from the udfsrv DLL.

IBM VisualAge C++ Version 3.5

This section contains the following topics:
v DB2 CLI Applications
v DB2 CLI Stored Procedures
v DB2 API and Embedded SQL Applications
v Embedded SQL Stored Procedures
v User-Defined Functions (UDFs)

Note: The VisualAge C++ compiler is used for both C and C++ sample
programs supplied in the %DB2PATH%\samples\c and
%DB2PATH%\samples\cpp directories. The same batch files have been
placed in both these directories. They contain commands to accept
either a C or C++ source file, depending on the file extension.

DB2 CLI Applications
The batch file bldvcli.bat, in %DB2PATH%\samples\cli, contains the commands
to build a DB2 CLI program in IBM VisualAge C++.

The parameter, %1, specifies the name of your source file.

This is the only required parameter for CLI programs that do not contain
embedded SQL. Building embedded SQL programs requires a connection to
the database so three optional parameters are also provided: the second
parameter, %2, specifies the name of the database to which you want to
connect; the third parameter, %3, specifies the user ID for the database, and %4
specifies the password.

If the program contains embedded SQL, indicated by the .sqc or the .sqx
extension, then the embprep batch file is called to precompile the program,
producing a program file with either a .c or .cxx extension, respectively.
@echo off
rem bldvcli batch file - Windows 32-bit Operating Systems
rem Builds a CLI program with IBM VisualAge C++.
rem Usage: bldvcli prog_name

Chapter 13. Building Applications for Windows 32-bit Operating Systems 337

if exist "%1.sqc" call embprep %1 %2 %3 %4
if exist "%1.sqx" call embprep %1 %2 %3 %4

rem Compile the error-checking utility.
icc -c -Ti -W1 /I"%DB2PATH%\include" utilcli.c

rem Compile the program.
if exist "%1.sqx" goto cpp
icc -c -Ti -W1 /I"%DB2PATH%\include" %1.c
goto link_step
:cpp
icc -c -Ti -W1 /I"%DB2PATH%\include" %1.cxx

rem Link the program.
:link_step
ilink /MAP /DEBUG /ST:32000 /PM:VIO %1.obj utilcli.obj db2cli.lib
@echo on

Compile and Link Options for bldvcli

Compile Options:

icc The IBM VisualAge C++ compiler.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

-Ti Generate debugger information.

-W1 Output warning, error, and severe and unrecoverable error messages.

Link Options:

ilink Use the resource linker to link edit.

/MAP Generate a map file.

/DEBUG Include debugging information.

/ST:32000
Specify a stack size of at least 32 000.

/PM:VIO
Enable the program to run in a window or in a full screen.

%1.obj Include the object file.

utilcli.obj
Include the utility object file for error checking.

db2cli.lib
Link with the DB2 CLI library.

Refer to your compiler documentation for additional compiler options.

To build the sample program tbinfo from the source file tbinfo.c, enter:

338 Application Building Guide

bldvcli tbinfo

The result is an executable file tbinfo. You can run the executable file by
entering the executable name:

tbinfo

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, dbusemx, from
the source file dbusemx.sqc:
1. If connecting to the sample database on the same instance, enter:

bldvcli dbusemx

2. If connecting to another database on the same instance, also enter the
database name:

bldvcli dbusemx database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldvcli dbusemx database userid password

The result is an executable file, dbusemx.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
dbusemx

2. If accessing another database on the same instance, enter the executable
name and the database name:

dbusemx database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

dbusemx database userid password

DB2 CLI Applications with DB2 APIs
DB2 includes CLI sample programs that use DB2 APIs to create and drop a
database in order to demonstrate using CLI functions on more than one
database. The descriptions of the CLI sample programs in Table 7 on page 22
indicates the samples that use DB2 APIs.

The script file bldvapi in sqllib/samples/cli contains the commands to build
a DB2 CLI program with DB2 APIs. This file compiles and links in the
utilapi utility file, which contains the DB2 APIs to create and drop a
database. This is the only difference between this file and the bldvcli batch
file. Please see “DB2 CLI Applications” on page 337 for the compile and link
options common to both bldvapi and bldvcli.

Chapter 13. Building Applications for Windows 32-bit Operating Systems 339

To build the sample program dbmconn from the source file dbmconn.c, enter:

bldvapi dbmconn

The result is an executable file dbmconn. You can run the executable file by
entering the executable name:

dbmconn

DB2 CLI Stored Procedures
The batch file bldvclis.bat, in %DB2PATH%\samples\cli, contains the
commands to build a CLI stored procedure. The batch file builds the stored
procedure into a DLL on the server.

The parameter, %1, specifies the name of your source file. The batch file uses
the source file name, %1, for the DLL name.
@echo off
rem bldvclis.bat file - Windows 32-bit Operating Systems
rem Builds a CLI stored procedure using the IBM VisualAge C++ compiler
rem Usage: bldvclis prog_name

if "%1" == "" goto error

rem Compile the program.
if exist "%1.cxx" goto cpp
icc -c+ -Ti -Ge- -Gm+ -W1 %1.c utilcli.c
goto link_step
:cpp
icc -c+ -Ti -Ge- -Gm+ -W1 %1.cxx utilcli.c

:link_step
rem Import the library and create an export file.
rem The function name in the .def file must be decorated to be consistent
rem with the function name in the .map file. Typically, this is done by
rem prepending "_" and appending "@" and the number of bytes of arguments,
rem as in: "@16". In spserverva.def, for example, the IBM VisualAge C++
rem compiler requires "EXPORTS _outlanguage@16" and not "EXPORTS outlanguage".
ilib /GI %1va.def

rem Link the program and produce a DLL.
ilink /ST:64000 /PM:VIO /MAP /DLL %1.obj utilcli.obj %1va.exp db2cli.lib

rem Copy the stored procedure DLL to the 'function' directory
copy %1.dll "%DB2PATH%\function"

goto exit
:error
echo Usage: bldvclis prog_name
:exit
@echo on

340 Application Building Guide

Compile and Link Options for bldvclis

Compile Options:

icc The IBM VisualAge C++ compiler.

-c+ Perform compile only; no link. This batch file has separate compile and link
steps.

-Ti Generate debugger information.

-Ge- Build a .DLL file. Use the version of the run-time library that is statically
linked.

-Gm+ Link with multi-tasking libraries.

-W1 Output warning, error, and severe and unrecoverable error messages.

Link Options:

ilink Use the resource linker to link edit.

/ST:64000
Specify a stack size of at least 64 000.

/PM:VIO
Enable the program to run in a window or in a full screen.

/MAP Generate a map file.

/DLL Build a .DLL file.

%1.obj Include the object file.

%1.exp Include the VisualAge export file.

db2cli.lib
Link with the DB2 CLI library.

Refer to your compiler documentation for additional compiler options.

To build the spserver stored procedure from the source file spserver.c, enter:
bldvclis spserver

The batch file uses the module definition file, spserverva.def, contained in
the same directory as the CLI sample programs, to build the stored procedure.
The batch file copies the stored procedure DLL, spserver.dll, to the server in
the path %DB2PATH%\function.

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database:

db2 connect to sample

Chapter 13. Building Applications for Windows 32-bit Operating Systems 341

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

Then catalog them with this command:
db2 -td@ -vf spcreate.db2

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the stored procedure spserver, you can build the CLI client
application spclient that calls the stored procedure.

You can build spclient by using the batch file, bldvcli. Refer to “DB2 CLI
Applications” on page 337 for details.

To call the stored procedure, run the sample client application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the stored procedure library, spserver, and
executes a number of stored procedure functions on the server database. The
output is returned to the client application.

DB2 API and Embedded SQL Applications
The batch file bldvapp.bat, in %DB2PATH%\samples\c, and in
%DB2PATH%\samples\cpp, contains the commands to build a DB2 application
program.

The first parameter, %1, specifies the name of your source file. This is the only
required parameter for programs that do not contain embedded SQL. Building
embedded SQL programs requires a connection to the database so three
optional parameters are also provided: the second parameter, %2, specifies the
name of the database to which you want to connect; the third parameter, %3,
specifies the user ID for the database, and %4 specifies the password.

342 Application Building Guide

For an embedded SQL program, bldvapp passes the parameters to the
precompile and bind batch file, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.
@echo off
rem bldvapp.bat -- Windows 32-bit operating systems
rem Builds a VisualAge C++ application program
rem Usage: bldvapp prog_name [db_name [userid password]]

if exist "%1.sqx" goto embedded
if exist "%1.sqc" goto embedded
goto non_embedded

:embedded
rem Precompile and bind the program.
call embprep %1 %2 %3 %4
rem Compile the program.
if exist "%1.cxx" goto cpp_emb
icc -c -Ti -W1 %1.c utilemb.c
goto link_embedded
:cpp_emb
icc -c -Ti -W1 %1.cxx utilemb.cxx
rem Link the program.
:link_embedded
ilink /MAP /DEBUG /ST:32000 /PM:VIO %1.obj utilemb.obj db2api.lib
goto exit

:non_embedded
rem Compile the program.
if exist "%1.cxx" goto cpp_non
icc -c -Ti -W1 %1.c utilapi.c
goto link_non_embedded
:cpp_non
icc -c -Ti -W1 %1.cxx utilapi.cxx
rem Link the program.
:link_non_embedded
ilink /MAP /DEBUG /ST:32000 /PM:VIO %1.obj utilapi.obj db2api.lib
:exit
@echo on

Compile and Link Options for bldvapp

Compile Options:

icc The IBM VisualAge C++ compiler.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

-Ti Generate debugger information.

-W1 Output warning, error, and severe and unrecoverable error messages.

Chapter 13. Building Applications for Windows 32-bit Operating Systems 343

Compile and Link Options for bldvapp

Link Options:

ilink Use the resource linker to link edit.

/MAP Generate a map file.

/DEBUG Include debugging information.

/ST:32000
Specify a stack size of at least 32 000.

/PM:VIO
Enable the program to run in a window or in a full screen.

%1.obj Include the object file.

utilemb.obj
If an embedded SQL program, include the embedded SQL utility object file
for error checking.

utilapi.obj
If not an embedded SQL program, include the DB2 API utility object file for
error checking.

db2api.lib
Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the DB2 API non-embedded SQL sample program, client, from
either the source file client.c, in %DB2PATH%\samples\c, or from the source file
client.cxx, in %DB2PATH%\samples\cpp, enter:

bldvapp client

The result is an executable file, client.exe. You can run the executable file by
entering the executable name (without the extension) on the command line:

client

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, updat, from the
C source file updat.sqc in %DB2PATH%\samples\c, or from the C++ source file
updat.sqx in %DB2PATH%\samples\cpp:
1. If connecting to the sample database on the same instance, enter:

bldvapp updat

2. If connecting to another database on the same instance, also enter the
database name:

bldvapp updat database

344 Application Building Guide

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldvapp updat database userid password

The result is an executable file updat.exe.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Embedded SQL Stored Procedures
The batch file bldvsrv.bat, in %DB2PATH%\samples\c, and in
%DB2PATH%\samples\cpp, contains the commands to build an embedded SQL
stored procedure. The batch file compiles the stored procedure into a DLL,
and stores it on the server.

The first parameter, %1, specifies the name of your source file. The second
parameter, %2, specifies the name of the database to which you want to
connect. Since the stored procedure must be built on the same instance where
the database resides, there are no parameters for user ID and password.

Only the first parameter, source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database.

The batch file uses the source file name, %1, for the DLL name.
@echo off
rem bldvsrv.bat -- Windows 32-bit operating systems
rem Builds a VisualAge C++ stored procedure
rem Usage: bldvsrv prog_name [db_name]

rem Precompile and bind the program.
call embprep %1 %2

rem Compile the program.
if exist "%1.cxx" goto cpp
icc -c+ -Ti -Ge- -Gm+ -W1 %1.c
goto link_step
:cpp
icc -c+ -Ti -Ge- -Gm+ -W1 %1.cxx

Chapter 13. Building Applications for Windows 32-bit Operating Systems 345

:link_step
rem Import the library and create a definition file.
rem The function name in the .def file must be decorated to be consistent
rem with the function name in the .map file. Typically, this is done by
rem prepending "_" and appending "@" and the number of bytes of arguments,
rem for example, "@16". In spserverva.def, the IBM VisualAge C++ compiler requires
rem "EXPORTS _outlanguage@16" and not "EXPORTS outlanguage".
ilib /GI %1va.def

rem Link the program and produce a DLL.
ilink /ST:64000 /PM:VIO /MAP /DLL %1.obj %1va.exp db2api.lib

rem Copy the Stored Procedure DLL to the 'function' directory.
copy %1.dll "%DB2PATH%\function"
@echo on

Compile and Link Options for bldvsrv

Compile Options:

icc The IBM VisualAge C++ compiler.

-c+ Perform compile only; no link. This batch file has separate compile and link
steps.

-Ti Generate debugger information.

-Ge- Build a .DLL file. Use the version of the run-time library that is statically
linked.

-Gm+ Link with multi-tasking libraries.

-W1 Output warning, error, and severe and unrecoverable error messages.

Link Options:

ilink Use the resource linker to link edit.

/ST:64000
Specify a stack size of least of 64 000.

/PM:VIO
Enable the program to run in a window or full screen.

/MAP Generate a MAP file.

/DLL Build a .DLL file.

%1.obj Include the object file.

%1va.exp
VisualAge export file.

db2api.lib
Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

346 Application Building Guide

To build the spserver stored procedure DLL from either the C source file,
spserver.sqc, or the C++ source file, spserver.sqx, enter:

bldvsrv spserver

If connecting to another database, also enter the database name:
bldmsrv spserver database

The batch file uses the module definition file spserverva.def, contained in the
same directory as the sample programs, to build the stored procedure. The
batch file copies the stored procedure DLL, spserver.dll, to the server in the
path %DB2PATH%\function.

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database:

db2 connect to sample

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

Then catalog them with this command:
db2 -td@ -vf spcreate.db2

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the stored procedure DLL, spserver, you can build the client
application spclient that calls it.

You can build spclient by using the script file, bldvapp. Refer to “DB2 API
and Embedded SQL Applications” on page 342 for details.

To call the stored procedure, run the sample client application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

Chapter 13. Building Applications for Windows 32-bit Operating Systems 347

password
Is a valid password.

The client application accesses the stored procedure DLL, spserver, and
executes a number of stored procedure functions on the server database. The
output is returned to the client application.

User-Defined Functions (UDFs)
The batch file bldvudf, in %DB2PATH%\samples\c, and in
%DB2PATH%\samples\cpp, contains the commands to build a UDF.

UDFs cannot contain embedded SQL statements. Therefore, to build a UDF
program, you do not connect to a database, or precompile and bind the
program.

The parameter, %1, specifies the name of your source file. The batch file uses
the source file name, %1, for the DLL name.
@echo off
rem bldvudf.bat -- Windows 32-bit operating systems
rem Builds a VisualAge C++ user-defined function (UDF)
rem Usage: bldvudf program_name

if "%1" == "" goto error

rem Compile the program.
if exist "%1.cxx" goto cpp
icc -Ti -c+ -Ge- -Gm+ -W1 %1.c
goto link_step
:cpp
icc -Ti -c+ -Ge- -Gm+ -W1 %1.cxx

:link_step
rem Generate an import library and export file using a definition file.
rem Function(s) in the .def file are prepended with an underscore, and
rem appended with the @ sign and number of bytes of arguments (in decimal).
rem Parameters of less than four bytes are rounded up to four bytes.
rem Structure size is rounded up to a multiple of four bytes.
rem For example, function fred prototyped as: "int fred(int, int, short);"
rem would appear as: "_fred@12" in the .def file.
rem These decorated function names can also be found in %1.map
rem after running the following ilink command without %1va.exp.
ilib /gi %1va.def

rem Link the program to a dynamic link library
ilink /ST:64000 /PM:VIO /MAP /DLL %1.obj %1va.exp db2api.lib db2apie.lib

rem Copy the UDF DLL to the 'function' directory.
copy %1.dll "%DB2PATH%\function"

goto exit

348 Application Building Guide

:error
echo Usage: bldvudf prog_name
:exit
@echo on

Compile and Link Options for bldvudf

Compile Options:

icc The IBM VisualAge C++ compiler.

-Ti Generate debugger information.

-c+ Perform compile only; no link. This book assumes that compile and link are
separate steps.

-Ge- Build a .DLL file. Use the version of the run-time library that is statically
linked.

-Gm+ Link with multi-tasking libraries.

-W1 Output warning, error, and severe and unrecoverable error messages.

Link Options:

ilink Use the resource linker to link edit.

/ST:64000
Specify a stack size of at least 64000.

/PM:VIO
Enable the program to run in a window or a full screen.

/MAP Generate a MAP file.

/DLL Build a .DLL file.

%1.obj Include the object file.

%1va.exp
Include the VisualAge export file.

db2api.lib
Link with the DB2 library.

db2apie.lib
Link with the DB2 API Engine library.

Refer to your compiler documentation for additional compiler options.

To build the user-defined function udfsrv from the source file udf.c, enter:
bldvudf udfsrv

Chapter 13. Building Applications for Windows 32-bit Operating Systems 349

The batch file uses the module definition file udfsrv.def, contained in the
same directory as the sample programs, to build the user-defined function.
The batch file copies the user-defined function DLL, udfsrv.dll, to the server
in the path %DB2PATH%\function.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. DB2 CLI, as well as embedded SQL C and C++ versions of this program
are provided.

You can build the DB2 CLI udfcli program from the udfcli.c source file in
%DB2PATH%\samples\cli using the batch file bldvcli. Refer to “DB2 CLI
Applications” on page 337 for details.

You can build the embedded SQL C udfcli program from the udfcli.sqc
source file in %DB2PATH%\samples\c using the batch file bldvapp. Refer to “DB2
API and Embedded SQL Applications” on page 342 for details.

You can build the embedded SQL C++ udfcli program from the udfcli.sqx
source file in %DB2PATH%\samples\cpp using the batch file bldvapp. Refer to
“DB2 API and Embedded SQL Applications” on page 342 for details.

To run the UDF, enter:
udfcli

The calling application calls the ScalarUDF function from the udfsrv DLL.

IBM VisualAge C++ Version 4.0

Application building information for the VisualAge C++ version 4 compiler is
common to AIX, OS/2 and Windows 32-bit operating systems. See “VisualAge
C++ Version 4.0” on page 129 for this information.

IBM VisualAge COBOL

This section contains the following topics:
v Using the Compiler
v DB2 API and Embedded SQL Applications
v Embedded SQL Stored Procedures

Using the Compiler
If you develop applications that contain embedded SQL and DB2 API calls,
and you are using the IBM VisualAge COBOL compiler, keep the following
points in mind:
v When you precompile your application using the command line processor

command db2 prep, use the target ibmcob option, the default.

350 Application Building Guide

v Do not use tab characters in your source files.
v You can use the PROCESS and CBL keywords in your source files to set

compile options. Place the keywords in columns 8 to 72 only.
v If your application contains only embedded SQL, but no DB2 API calls, you

do not need to use the pgmname(mixed) compile option. If you use DB2 API
calls, you must use the pgmname(mixed) compile option.

v If you are using the ″System/390 host data type support″ feature of the
IBM VisualAge COBOL compiler, the DB2 include files for your
applications are in the following directory:
%DB2PATH%\include\cobol_i

If you are building DB2 sample programs using the batch files provided,
the include file path specified in the batch files must be changed to point to
the cobol_i directory and not the cobol_a directory.

If you are NOT using the ″System/390 host data type support″ feature of
the IBM VisualAge COBOL compiler, or you are using an earlier version of
this compiler, then the DB2 include files for your applications are in the
following directory:
%DB2PATH%\include\cobol_a

Specify COPY file names to include the .cbl extension as follows:
COPY "sql.cbl".

DB2 API and Embedded SQL Applications
The batch file bldapp.bat, in %DB2PATH%\samples\cobol, contains the
commands to build a DB2 application program.

The first parameter, %1, specifies the name of your source file. This is the only
required parameter for programs that do not contain embedded SQL. Building
embedded SQL programs requires a connection to the database so three
optional parameters are also provided: the second parameter, %2, specifies the
name of the database to which you want to connect; the third parameter, %3,
specifies the user ID for the database, and %4 specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind file, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.
@echo off
rem bldapp.bat -- Windows 32-bit operating systems
rem Builds a VisualAge COBOL application program
rem Usage: bldapp <prog_name> [<db_name> [<userid> <password>]]

rem If an embedded SQL program, precompile and bind it.

Chapter 13. Building Applications for Windows 32-bit Operating Systems 351

if not exist "%1.sqb" goto compile_step
call embprep %1 %2 %3 %4

:compile_step
rem Compile the error-checking utility.
cob2 -qpgmname(mixed) -c -qlib -I"%DB2PATH%\include\cobol_a" checkerr.cbl

rem Compile the program.
cob2 -qpgmname(mixed) -c -qlib -I"%DB2PATH%\include\cobol_a" %1.cbl

rem Link the program.
cob2 %1.obj checkerr.obj db2api.lib
@echo on

Compile and Link Options for bldapp

Compile Options:
cob2 The IBM VisualAge COBOL compiler.
-qpgmname(mixed)

Instructs the compiler to permit CALLs to library entry points with
mixed-case names.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

-qlib Instructs the compiler to process COPY statements.
-Ipath Specify the location of the DB2 include files. For example:

-I"%DB2PATH%\include\cobol_a".
checkerr.cbl

Compile the error-checking utility.

Link Options:
cob2 Use the compiler to link edit.
checkerr.obj

Include the error-checking utility object file.
db2api.lib

Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the non-embedded SQL sample program client from the source file
client.cbl, enter:

bldapp client

The result is an executable file client.exe. You can run the executable file
against the sample database by entering the executable name (without the
extension):

client

352 Application Building Guide

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, updat, from the
source file updat.sqb:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, also enter the
database name:

bldapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp updat database userid password

The result is an executable file, updat.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Embedded SQL Stored Procedures
The batch file bldsrv.bat, in %DB2PATH%\samples\cobol, contains the
commands to build an embedded SQL stored procedure. The batch file
compiles the stored procedure into a DLL on the server.

The first parameter, %1, specifies the name of your source file. The second
parameter, %2, specifies the name of the database to which you want to
connect. Since the stored procedure must be build on the same instance where
the database resides, there are no parameters for user ID and password.

Only the first parameter, source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database.

The batch file uses the source file name, %1, for the DLL name.
@echo off
rem bldsrv.bat -- Windows 32-bit operating systems
rem Builds a VisualAge COBOL stored procedure
rem Usage: bldsrv <prog_name> [<db_name>]

Chapter 13. Building Applications for Windows 32-bit Operating Systems 353

rem Precompile and bind the program.
call embprep %1 %2

rem Compile the stored procedure.
cob2 -qpgmname(mixed) -c -qlib -I"%DB2PATH%\include\cobol_a" %1.cbl

rem Link the stored procedure and create a shared library.
ilib /nol /gi:%1 %1.obj
ilink /free /nol /dll db2api.lib %1.exp %1.obj iwzrwin3.obj

rem Copy stored procedure to the %DB2PATH%\function directory.
copy %1.dll "%DB2PATH%\function"
@echo on

Compile and Link Options for bldsrv

Compile Options:
cob2 The IBM VisualAge COBOL compiler.
-qpgmname(mixed)

Instructs the compiler to permit CALLs to library entry points with
mixed-case names.

-c Perform compile only; no link. This batch file has separate compile and link
steps.

-qlib Instructs the compiler to process COPY statements.
-Ipath Specify the location of the DB2 include files. For example:

-I"%DB2PATH%\include\cobol_a".

Link Options:
ilink Use the IBM VisualAge COBOL linker.
/free Free format.
/nol No logo.
/dll Create the DLL with the source program name.
db2api.lib

Link with the DB2 library.
%1.exp Include the export file.
%1.obj Include the program object file.
iwzrwin3.obj

Include the object file provided by IBM VisualAge COBOL.

Refer to your compiler documentation for additional compiler options.

To build the sample program outsrv from the source file outsrv.sqb,
connecting to the sample database, enter:

bldsrv outsrv

If connecting to another database, also include the database name:
bldsrv outsrv database

354 Application Building Guide

The script file copies the stored procedure to the server in the path
sqllib/function.

If necessary, set the file mode for the stored procedure so the DB2 instance
can run it.

Once you build the stored procedure outsrv, you can build the client
application outcli that calls the stored procedure. You can build outcli using
the batch file bldapp. Refer to “DB2 API and Embedded SQL Applications” on
page 351 for details.

To call the stored procedure, run the sample client application by entering:
outcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its remote alias, or some other name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the stored procedure library, outsrv, which
executes the stored procedure function of the same name on the server
database, and then returns the output to the client application.

Micro Focus COBOL

This section includes the following topics:
v Using the Compiler
v DB2 API and Embedded SQL Applications
v Embedded SQL Stored Procedures

Using the Compiler
If you develop applications that contain embedded SQL and DB2 API calls,
and you are using the Micro Focus compiler, keep the following points in
mind:
v When you precompile your application using the command line processor

command db2 prep, use the target mfcob option, the default.
v Ensure the LIB environment variable points to %DB2PATH%\lib like this:

set LIB="%DB2PATH%\lib;%LIB%"

Chapter 13. Building Applications for Windows 32-bit Operating Systems 355

v The DB2 COPY files for Micro Focus COBOL reside in
%DB2PATH%\include\cobol_mf. Set the COBCPY environment variable to
include the directory like this:
set COBCPY="%DB2PATH%\include\cobol_mf;%COBCPY%"

Calls to all DB2 application programming interfaces must be made using
calling convention 74. The DB2 COBOL precompiler automatically inserts a
CALL-CONVENTION clause in a SPECIAL-NAMES paragraph. If the
SPECIAL-NAMES paragraph does not exist, the DB2 COBOL precompiler
creates it, as follows:
Identification Division
Program-ID. "static".
special-names.

call-convention 74 is DB2API.

Also, the precompiler automatically places the symbol DB2API, which is used
to identify the calling convention, after the ″call″ keyword whenever a DB2
API is called. This occurs, for instance, whenever the precompiler generates a
DB2 API run-time call from an embedded SQL statement.

If calls to DB2 APIs are made in an application which is not precompiled, you
should manually create a SPECIAL-NAMES paragraph in the application,
similar to that given above. If you are calling a DB2 API directly, then you
will need to manually add the DB2API symbol after the ″call″ keyword.

DB2 API and Embedded SQL Applications
The batch file bldapp, in %DB2PATH%\samples\cobol_mf, contains the commands
to build a DB2 application program.

The first parameter, %1, specifies the name of your source file. This is the only
required parameter for programs that do not contain embedded SQL. Building
embedded SQL programs requires a connection to the database so three
optional parameters are also provided: the second parameter, %2, specifies the
name of the database to which you want to connect; the third parameter, %3,
specifies the user ID for the database, and %4 specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind batch file, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.
@echo off
rem bldapp.bat -- Windows 32-bit operating systems
rem Builds a Micro Focus Cobol application program
rem Usage: bldapp <prog_name> [<db_name> [<userid> <password>]]

rem If an embedded SQL program, precompile and bind it.
if not exist "%1.sqb" goto compile_step

356 Application Building Guide

call embprep %1 %2 %3 %4

:compile_step
rem Compile the error-checking utility.
cobol checkerr.cbl;

rem Compile the program.
cobol %1.cbl;

rem Link the program.
cbllink -l %1.obj checkerr.obj db2api.lib
@echo on

Compile and Link Options for bldapp

Compile Option:

cobol The Micro Focus COBOL compiler.

Link Options:

cbllink
Use the linker to link edit.

-l Link with the lcobol library.

checkerr.obj
Link with the error-checking utility object file.

db2api.lib
Link with the DB2 API library.

Refer to your compiler documentation for additional compiler options.

To build the non-embedded SQL sample program, client, from the source file
client.cbl, enter:

bldapp client

The result is an executable file client.exe. You can run the executable file
against the sample database by entering the executable name (without the
extension):

client

Building and Running Embedded SQL Applications
There are three ways to build the embedded SQL application, updat, from the
source file updat.sqb:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, also enter the
database name:

Chapter 13. Building Applications for Windows 32-bit Operating Systems 357

bldapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp updat database userid password

The result is an executable file, updat.exe.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name (without the extension):
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Embedded SQL Stored Procedures
The batch file bldsrv, in %DB2PATH%\samples\cobol_mf, contains the commands
to build an embedded SQL stored procedure. The batch file compiles the
stored procedure into a DLL on the server.

The first parameter, %1, specifies the name of your source file. The second
parameter, %2, specifies the name of the database to which you want to
connect. Since the stored procedure must be build on the same instance where
the database resides, there are no parameters for user ID and password.

Only the first parameter, source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database.

The batch file uses the source file name, %1, for the DLL name.
@echo off
rem bldsrv.bat -- Windows 32-bit operating systems
rem Builds a Micro Focus Cobol stored procedure
rem Usage: bldsrv <prog_name> [<db_name>]

rem Precompile and bind the program.
call embprep %1 %2

rem Compile the stored procedure.
cobol %1.cbl /case;

rem Link the stored procedure and create a shared library.
cbllink /d %1.obj db2api.lib

358 Application Building Guide

rem Copy the stored procedure to the %DB2PATH%\function directory.
copy %1.dll "%DB2PATH%\function"
@echo on

Compile and Link Options for bldsrv

Compile Options:

cobol The Micro Focus COBOL compiler.

/case Prevent external symbols being converted to upper case.

Link Options:

cbllink
Use the Micro Focus COBOL linker to link edit.

/d Create a .dll file.

db2api.lib
Link with the DB2 API library.

Refer to your compiler documentation for additional compiler options.

To build the sample program outsrv from the source file outsrv.sqb, if
connecting to the sample database, enter:

bldsrv outsrv

If connecting to another database, also enter the database name:
bldsrv outsrv database

The script file copies the DLL to the server in the path sqllib/function.

If necessary, set the file mode for the DLL so the client program can access it.

Once you build the DLL outsrv, you can build the client application outcli
that calls it. You can build outcli using the batch file, bldapp. Refer to “DB2
API and Embedded SQL Applications” on page 356 for details.

To call the stored procedure, run the sample client application by entering:
outcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another name.

userid Is a valid user ID.

Chapter 13. Building Applications for Windows 32-bit Operating Systems 359

password
Is a valid password.

The client application accesses the DLL, outsrv, and executes the stored
procedure function of the same name on the server database. The output is
then returned to the client application.

Object REXX

Object REXX is an object-oriented version of the REXX language.
Object-oriented extensions have been added to classic REXX, but its existing
functions and instructions have not changed. The Object REXX interpreter is
an enhanced version of its predecessor, with additional support for:
v Classes, objects, and methods
v Messaging and polymorphism
v Single and multiple inheritance

Object REXX is fully compatible with classic REXX. In this section, whenever
we refer to REXX, we are referring to all versions of REXX, including Object
REXX.

You do not precompile or bind REXX programs.

On Windows NT, REXX programs are not required to start with a comment.
However, for portability reasons you are recommended to start each REXX
program with a comment that begins in the first column of the first line. This
will allow the program to be distinguished from a batch command on other
platforms:
/* Any comment will do. */

REXX sample programs can be found in the directory
%DB2PATH%\samples\rexx. To run the sample REXX program updat, do the
following:
1. Start the database manager on the server, if it is not already running, by

entering:
db2start

2. Enter:
rexx updat.cmd

For further information on REXX and DB2, refer to the chapter, ″Programming
in REXX″, in the Application Development Guide.

360 Application Building Guide

Appendix A. About Database Manager Instances

DB2 supports multiple database manager instances on the same machine. A
database manager instance has its own configuration files, directories, and
databases.

Each database manager instance can manage several databases. However, a
given database belongs to only one instance. Figure 1 shows this relationship.

Database manager instances give you the flexibility to have multiple database
environments on the same machine. For example, you can have one database
manager instance for development, and another instance for production.

With UNIX servers you can have different DB2 versions on different database
manager instances. For example, you can have one database manager instance
running DB2 Universal Database Version 6.1, and another running DB2

Database

Connect to

Machine

Database Manager
Instance

Database Manager
Instance

Database

Table TableTable TableTable Table

User/
Application

Figure 1. Database Manager Instances

© Copyright IBM Corp. 1993, 2000 361

Universal Database Version 7.1. However, within a version level, only one
release and modification level are supported. For example, DB2 Version 5.0
and DB2 Version 5.2 cannot coexist on a UNIX server.

With OS/2, Windows NT and Windows 2000 servers, you must have the same
DB2 version, release, and modification level on each database manager
instance. You cannot have one database manager instance running DB2
Universal Database Version 6.1, and another instance running DB2 Universal
Database Version 7.1.

You need to know the following for each instance you use:

instance name
For UNIX platforms, this is a valid username that you specify when
you create the database manager instance.

For OS/2, Windows NT and Windows 2000, this is an alphanumeric
string of up to eight characters. An instance named ″DB2″ is created
for you during install.

instance directory
The home directory where the instance is located.

For UNIX platforms, the instance directory is $HOME/sqllib, where
$HOME is the home directory of the instance owner.

For OS/2, Windows NT and Windows 2000, the instance directory is
%DB2PATH%\instance_name. The variable %DB2PATH% determines where
DB2 is installed. Depending on which drive DB2 is installed,
%DB2PATH% will point to drive:\sqllib.

The instance path on OS/2, Windows NT and Windows 2000 is
created based on either:

%DB2PATH%\%DB2INSTANCE% (for example, C:\SQLLIB\DB2)

or, if DB2INSTPROF is defined:

%DB2INSTPROF%\%DB2INSTANCE% (for example, C:\PROFILES\DB2)

The DB2INSTPROF environment variable is used on OS/2, Windows
NT and Windows 2000 to support running DB2 on a network drive in
which the client machine has only read access. In this case, DB2 will
be set to point to drive:\sqllib, and DB2INSTPROF will be set to
point to a local path (for example, C:\PROFILES) which will contain all
instance specific information such as catalogs and configurations,
since DB2 requires update access to these files.

For information about creating and managing database manager instances,
refer to the Quick Beginnings book for your platform.

362 Application Building Guide

Appendix B. Migrating Your Applications

When you upgrade to DB2 Universal Database Version 7.1 from a Version 2 or
later installation of DB2, DB2 Client Application Enabler, or DB2 Software
Developer’s Kit, your database and node directories are migrated
automatically. To migrate from DB2 Version 1, you must first migrate to DB2
Universal Database Version 5. Then you can migrate from Version 5 to Version
7.1. To migrate your existing databases, use the tools described in the
Administration Guide.

Notes:

1. HP-UX. If you are migrating DB2 from HP-UX Version 10 or earlier to
HP-UX Version 11, your DB2 programs must be re-precompiled with DB2
on HP-UX Version 11 (if they include embedded SQL), and must be
re-compiled. This includes all DB2 applications, stored procedures,
user-defined functions and user exit programs. As well, DB2 programs that
are compiled on HP-UX Version 11 may not run on HP-UX Version 10 or
earlier. DB2 programs that are compiled and run on HP-UX Version 10
may connect remotely to HP-UX Version 11 servers.

2. Linux. DB2 does not support migration from DB2 Universal Database for
Linux Version 5.2 (Beta).

3. Micro Focus COBOL. Any existing applications precompiled with DB2
Version 2.1.1 or earlier and compiled with Micro Focus COBOL should be
re-precompiled with the current version of DB2, and then recompiled with
Micro Focus COBOL. If these applications built with the earlier versions of
the IBM precompiler are not re-precompiled, there is a possibility of
database corruption if abnormal termination occurs.

Note: The following, as well as the ″Questions″ and ″Conditions″ sections,
apply to UNIX platforms only.

If you have applications from DB2 Version 1, DB2 Version 2, DB2 Version 5, or
DB2 Version 6.1, and you want them to run in both a database instance of the
previous version as well as a DB2 Version 7.1 instance on the same machine,
you may need to make some changes to your environment. To determine
what changes to make, answer the following questions, and then review the
″Conditions″ section to see if any of the conditions apply to your situation.

An AIX system is used to explain the points raised. The same concepts apply
to other UNIX platforms, but the details may differ, such as environment
variables and specific commands. If you are unfamiliar with these details for
your operating system, please see the Administration Guide or the ″Migrating

© Copyright IBM Corp. 1993, 2000 363

from Previous Versions of DB2″ section in the ’Planning for Installation’
chapter of the DB2 for UNIX Quick Beginnings book.

Questions

Question 1: How was the application on the previous DB2 version linked to
the DB2 client run-time library, for example, libdb2.a on AIX?

To determine the embedded shared library search path for an executable, use
one of the following system commands:

AIX /usr/bin/dump -H executable_filename

HP-UX
/usr/bin/chatr executable_filename

Linux /usr/bin/objdump -p executable_filename

PTX /usr/bin/dump -Lv executable_filename

Silicon Graphics IRIX
/bin/elfdump -Lv executable_filename

Solaris
/usr/bin/dump -Lv executable_filename

where executable_filename is the name of the executable file for the application.

The following is a sample dump listing from a DB2 Version 1 for AIX
application:

──

dbcat:

Loader Section
Loader Header Information

VERSION# #SYMtableENT #RELOCent LENidSTR
0x00000001 0x00000012 0x00000029 0x00000064

#IMPfilID OFFidSTR LENstrTBL OFFstrTBL
0x00000004 0x000003bc 0x00000077 0x00000420

Import File Strings
INDEX PATH BASE MEMBER
0 /usr/lpp/db2_01_01_0000/lib:/usr/lpp/xlC/lib:/usr/lib:/lib

1 libc.a shr.o
2 libC.a shr.o
3 libdb2.a shr.o

364 Application Building Guide

──

Line 0 (zero) shows the directory paths that the executable searches to find the
shared libraries to which it is linked. Lines 1, 2, and 3 show the shared
libraries to which the application is linked.

Depending on how the application was built, you may see the following
paths: /usr/lpp/db2_01_01_0000/lib, INSTHOME/sqllib/lib (where INSTHOME is
the home directory of the database instance owner), or just the /usr/lib:/lib
combination.

Question 2: How are the DB2 run-time libraries configured on your system?

When either of DB2 Versions 1, 2, 5, 6.1 or 7.1 is installed, there is an optional
step which creates symbolic links from the system default shared library path
/usr/lib to the DB2 install path which contains the DB2 client run-time
libraries.

The install paths for the different DB2 versions are as follows:

Version 1
/usr/lpp/db2_01_01_0000/lib

Version 2
/usr/lpp/db2_02_01/lib

Version 5
/usr/lpp/db2_05_00/lib

Version 6.1
/usr/lpp/db2_06_01/lib

Version 7.1
/usr/lpp/db2_07_01/lib

In all cases, the run-time shared libraries are named libdb2.a.

Only one version of these libraries can be the default at any one time. DB2
provides this default so that when you build an application, it does not
depend on a particular version of DB2.

Question 3: Do you specify different search paths in your environment?

You can override the shared library search path coded in your application
using the LIBPATH environment variable on AIX, SHLIB_PATH on HP-UX,
and LD_LIBRARY_PATH on Linux, PTX, Silicon Graphics IRIX and Solaris.

Appendix B. Migrating Your Applications 365

Note: For n32 object type applications on Silicon Graphics IRIX, use the
LD_LIBRARYN32_PATH environment variable.

You can see the library search path using the appropriate system command
for your platform given in the answer to Question 1.

Conditions

Once you have the answers to the questions above, you may need to make
changes to your environment. Read the conditions listed below. If one of the
conditions applies to your situation, make the necessary changes.

Condition 1: If a Version 6.1 application loads a shared library out of the AIX
default shared library path /usr/lib/libdb2.a, and
v If there is a symbolic link from /usr/lib/libdb2.a to

/usr/lpp/db2_06_01/lib/libdb2.a, and the database server is DB2
Universal Database Version 7.1 for AIX, do one of the following:
– Change the symbolic link to point to:

/usr/lpp/db2_07_01/lib/libdb2.a

DB2 for UNIX Quick Beginnings has information about setting links
between libraries. As root, you can change links using the ″db2ln″
command as follows:

/usr/lpp/db2_07_01/cfg/db2ln

– Set the LIBPATH environment variable to point to
/usr/lpp/db2_07_01/lib or INSTHOME/sqllib/lib, where INSTHOME is
the home directory of the Version 7.1 DB2 instance owner.

– Configure a TCP/IP connection from the application (client) instance to
the server instance. Refer to the Installation and Configuration Supplement
for information about configuring TCP/IP.

v If there is a symbolic link from /usr/lib/libdb2.a to
/usr/lpp/db2_07_01/lib/libdb2.a, and the database server is DB2 Version
6.1, configure a TCP/IP connection from the application (client) instance to
the server instance. Refer to the Installation and Configuration Supplement for
information about configuring TCP/IP.

Condition 2: If a Version 6.1 application loads a shared library out of the
$HOME path of a DB2 Version 6.1 instance owner
($HOME/sqllib/lib/libdb2.a), and the database server is DB2 Universal
Database Version 7.1 for AIX, do one of the following:
v Migrate the application instance to the same version as the database server

instance.
v Set the LIBPATH environment variable to point to /usr/lpp/db2_07_01/lib

or INSTHOME/sqllib/lib, where INSTHOME is the home directory of the
Version 7.1 instance owner.

366 Application Building Guide

v Configure a TCP/IP connection from the application (client) instance to the
server instance. Refer to the Installation and Configuration Supplement for
information about configuring TCP/IP.

Condition 3: If a Version 6.1 application loads a shared library out of the DB2
Version 6.1 install path (/usr/lpp/db2_06_01/lib/libdb2.a), and the database
server is DB2 Universal Database Version 7.1 for AIX, do one of the following:
v Set the LIBPATH environment variable to point to /usr/lpp/db2_07_01/lib

or INSTHOME/sqllib/lib, where INSTHOME is the home directory of the
database instance owner.

v Configure a TCP/IP connection from the application (client) instance to the
server instance. Refer to the Installation and Configuration Supplement for
information about configuring TCP/IP.

Condition 4: If a Version 6.1 application loads a shared library out of the DB2
Universal Database Version 7.1 for AIX install path
(/usr/lpp/db2_07_01/lib/libdb2.a), and the database server is DB2 Version
6.1, configure a TCP/IP connection from the application (client) instance to
the server instance. Refer to the Installation and Configuration Supplement for
information about configuring TCP/IP.

Other Migration Considerations

Consider the following points when you develop your applications. They will
help make your applications portable:
v On UNIX, use only the default path, /usr/lib:/lib, in your applications.

On OS/2 and Windows 32-bit operating systems, ensure the LIB
environment variable points to %DB2PATH%\lib by using:

set LIB=%DB2PATH%\lib;%LIB%

Also, create symbolic links between the default path and the version of DB2
you are using. Ensure that the link is to the minimum level of DB2 required
by your applications. Refer to the Quick Beginnings book for your platform
for information about setting links.

v If your application requires a particular version of DB2, code the path that
specifies the DB2 version in your application. For example, if your AIX
application requires DB2 Version 5, code /usr/lpp/db2_05_00/lib.
Ordinarily, you do not need to do this.

v When you are building an application for production, rather than internal
development, the path in your application should not point to the instance
owner’s copy of the sqllib/lib directory on UNIX, or the %DB2PATH%\lib
directory on OS/2 and Windows 32-bit operating systems. This makes
applications highly dependent on specific user names and environments.

Appendix B. Migrating Your Applications 367

v Generally, do not use the LIBPATH environment variable, or the LIB
environment variable on Windows 32-bit operating systems, to alter search
paths in a particular environment. The variable overrides the search paths
specified in the applications running in that environment. Applications
might not be able to find the libraries or the files that they need.

v In DB2 Universal Database Versions 6.1 and 7.1, all character array items
with string semantics have type char, instead of other variations, such as
unsigned char. Any applications you code with DB2 Universal Database
Version 6.1 or Version 7.1 should follow this practice.
If you have DB2 Version 1 applications which use unsigned char, your
compiler might produce warnings or errors because of type clashes between
unsigned char in Version 1 applications and char in Version 6.1 or Version
7.1 function prototypes. If this occurs, use the compiler option -DSQLOLDCHAR
to eliminate the problem.

v Refer to the SQL Reference for a list of incompatibilities between DB2
Universal Database Version 7.1 and previous versions of DB2. Refer to the
Administrative API Reference for a list of API incompatibilities between DB2
Universal Database Version 7.1 and previous versions of DB2.

368 Application Building Guide

Appendix C. Problem Determination

You may encounter the following kinds of problems when building or
running your applications:
v Client or server problems, such as failing to connect to the database during

a build or when running your application.
v Operating system problems, such as not being able to find files during a

build.
v Compiler option problems during a build.
v Syntax and coding problems during a build or when running your

application.

You can use the following sources of information to resolve these problems:

Build files
For build problems such as connecting to a database, precompiling,
compiling, linking, and binding, you can use the build files shown in
this book to see command line processor commands and compiler
options that work.

Compiler documentation
For compiler option problems not covered by the build script files.

Application Development Guide
Refer to the Application Development Guide for syntax and other coding
problems.

CLI Guide and Reference
Refer to the CLI Guide and Reference for syntax, the CLI Trace facility,
configuration keywords, and coding problems related to CLI
programs.

SQL Reference
Refer to the SQL Reference for syntax of SQL statements and functions.

SQLCA data structure
If your application issues SQL statements or calls database manager
APIs, it must check for error conditions by examining the SQLCA data
structure.

The SQLCA data structure returns error information in the SQLCODE
and SQLSTATE fields. The database manager updates the structure
after every SQL statement is executed, and after most database
manager API calls.

© Copyright IBM Corp. 1993, 2000 369

Your application can retrieve and print the error information or
display it on the screen. Refer to the Application Development Guide for
more information.

Online error messages
Different components of DB2, including the database manager,
database administration utility, installation and configuration process,
and command line processor, generate online error messages. Each of
these messages has a unique prefix and a four or five digit message
number following the prefix. A single letter is displayed after the
message number indicating the severity of the error.

You can use the command line processor to see the help for the
message by entering:
db2 "? xxxnnnn"

where xxx is the message prefix, and nnnn is the message number.
Include the quotes.

For the full list and description of DB2 error messages, see the Message
Reference.

Diagnostic tools and error log
These are provided for build or runtime problems you cannot resolve
using the other sources of information. The diagnostic tools include a
trace facility, system log, and message log, among others. DB2 puts
error and warning conditions in an error log based on priority and
origin. Refer to the Troubleshooting Guide for more information. There
is also a CLI trace facility specifically for debugging CLI programs.
For more information, refer to the CLI Guide and Reference.

370 Application Building Guide

Appendix D. Using the DB2 Library

The DB2 Universal Database library consists of online help, books (PDF and
HTML), and sample programs in HTML format. This section describes the
information that is provided, and how you can access it.

To access product information online, you can use the Information Center. For
more information, see “Accessing Information with the Information Center”
on page 385. You can view task information, DB2 books, troubleshooting
information, sample programs, and DB2 information on the Web.

DB2 PDF Files and Printed Books

DB2 Information
The following table divides the DB2 books into four categories:

DB2 Guide and Reference Information
These books contain the common DB2 information for all platforms.

DB2 Installation and Configuration Information
These books are for DB2 on a specific platform. For example, there are
separate Quick Beginnings books for DB2 on OS/2, Windows, and
UNIX-based platforms.

Cross-platform sample programs in HTML
These samples are the HTML version of the sample programs that are
installed with the Application Development Client. The samples are
for informational purposes and do not replace the actual programs.

Release notes
These files contain late-breaking information that could not be
included in the DB2 books.

The installation manuals, release notes, and tutorials are viewable in HTML
directly from the product CD-ROM. Most books are available in HTML on the
product CD-ROM for viewing and in Adobe Acrobat (PDF) format on the DB2
publications CD-ROM for viewing and printing. You can also order a printed
copy from IBM; see “Ordering the Printed Books” on page 381. The following
table lists books that can be ordered.

On OS/2 and Windows platforms, you can install the HTML files under the
sqllib\doc\html directory. DB2 information is translated into different

© Copyright IBM Corp. 1993, 2000 371

languages; however, all the information is not translated into every language.
Whenever information is not available in a specific language, the English
information is provided

On UNIX platforms, you can install multiple language versions of the HTML
files under the doc/%L/html directories, where %L represents the locale. For
more information, refer to the appropriate Quick Beginnings book.

You can obtain DB2 books and access information in a variety of ways:
v “Viewing Information Online” on page 384
v “Searching Information Online” on page 388
v “Ordering the Printed Books” on page 381
v “Printing the PDF Books” on page 380

Table 18. DB2 Information

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Guide and Reference Information

Administration Guide Administration Guide: Planning provides
an overview of database concepts,
information about design issues (such as
logical and physical database design),
and a discussion of high availability.

Administration Guide: Implementation
provides information on implementation
issues such as implementing your
design, accessing databases, auditing,
backup and recovery.

Administration Guide: Performance
provides information on database
environment and application
performance evaluation and tuning.

You can order the three volumes of the
Administration Guide in the English
language in North America using the
form number SBOF-8934.

SC09-2946
db2d1x70

SC09-2944
db2d2x70

SC09-2945
db2d3x70

db2d0

Administrative API
Reference

Describes the DB2 application
programming interfaces (APIs) and data
structures that you can use to manage
your databases. This book also explains
how to call APIs from your applications.

SC09-2947

db2b0x70

db2b0

372 Application Building Guide

Table 18. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Application Building
Guide

Provides environment setup information
and step-by-step instructions about how
to compile, link, and run DB2
applications on Windows, OS/2, and
UNIX-based platforms.

SC09-2948

db2axx70

db2ax

APPC, CPI-C, and SNA
Sense Codes

Provides general information about
APPC, CPI-C, and SNA sense codes that
you may encounter when using DB2
Universal Database products.

Available in HTML format only.

No form number

db2apx70

db2ap

Application Development
Guide

Explains how to develop applications
that access DB2 databases using
embedded SQL or Java (JDBC and
SQLJ). Discussion topics include writing
stored procedures, writing user-defined
functions, creating user-defined types,
using triggers, and developing
applications in partitioned environments
or with federated systems.

SC09-2949

db2a0x70

db2a0

CLI Guide and Reference Explains how to develop applications
that access DB2 databases using the DB2
Call Level Interface, a callable SQL
interface that is compatible with the
Microsoft ODBC specification.

SC09-2950

db2l0x70

db2l0

Command Reference Explains how to use the Command Line
Processor and describes the DB2
commands that you can use to manage
your database.

SC09-2951

db2n0x70

db2n0

Connectivity Supplement Provides setup and reference information
on how to use DB2 for AS/400, DB2 for
OS/390, DB2 for MVS, or DB2 for VM as
DRDA application requesters with DB2
Universal Database servers. This book
also details how to use DRDA
application servers with DB2 Connect
application requesters.

Available in HTML and PDF only.

No form number

db2h1x70

db2h1

Appendix D. Using the DB2 Library 373

Table 18. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Data Movement Utilities
Guide and Reference

Explains how to use DB2 utilities, such
as import, export, load, AutoLoader, and
DPROP, that facilitate the movement of
data.

SC09-2955

db2dmx70

db2dm

Data Warehouse Center
Administration Guide

Provides information on how to build
and maintain a data warehouse using
the Data Warehouse Center.

SC26-9993

db2ddx70

db2dd

Data Warehouse Center
Application Integration
Guide

Provides information to help
programmers integrate applications with
the Data Warehouse Center and with the
Information Catalog Manager.

SC26-9994

db2adx70

db2ad

DB2 Connect User’s Guide Provides concepts, programming, and
general usage information for the DB2
Connect products.

SC09-2954

db2c0x70

db2c0

DB2 Query Patroller
Administration Guide

Provides an operational overview of the
DB2 Query Patroller system, specific
operational and administrative
information, and task information for the
administrative graphical user interface
utilities.

SC09-2958

db2dwx70

db2dw

DB2 Query Patroller
User’s Guide

Describes how to use the tools and
functions of the DB2 Query Patroller.

SC09-2960

db2wwx70

db2ww

Glossary Provides definitions for terms used in
DB2 and its components.

Available in HTML format and in the
SQL Reference.

No form number

db2t0x70

db2t0

Image, Audio, and Video
Extenders Administration
and Programming

Provides general information about DB2
extenders, and information on the
administration and configuration of the
image, audio, and video (IAV) extenders
and on programming using the IAV
extenders. It includes reference
information, diagnostic information
(with messages), and samples.

SC26-9929

dmbu7x70

dmbu7

Information Catalog
Manager Administration
Guide

Provides guidance on managing
information catalogs.

SC26-9995

db2dix70

db2di

374 Application Building Guide

Table 18. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Information Catalog
Manager Programming
Guide and Reference

Provides definitions for the architected
interfaces for the Information Catalog
Manager.

SC26-9997

db2bix70

db2bi

Information Catalog
Manager User’s Guide

Provides information on using the
Information Catalog Manager user
interface.

SC26-9996

db2aix70

db2ai

Installation and
Configuration Supplement

Guides you through the planning,
installation, and setup of
platform-specific DB2 clients. This
supplement also contains information on
binding, setting up client and server
communications, DB2 GUI tools, DRDA
AS, distributed installation, the
configuration of distributed requests,
and accessing heterogeneous data
sources.

GC09-2957

db2iyx70

db2iy

Message Reference Lists messages and codes issued by DB2,
the Information Catalog Manager, and
the Data Warehouse Center, and
describes the actions you should take.

You can order both volumes of the
Message Reference in the English
language in North America with the
form number SBOF-8932.

Volume 1
GC09-2978

db2m1x70
Volume 2
GC09-2979

db2m2x70

db2m0

OLAP Integration Server
Administration Guide

Explains how to use the Administration
Manager component of the OLAP
Integration Server.

SC27-0787

db2dpx70

n/a

OLAP Integration Server
Metaoutline User’s Guide

Explains how to create and populate
OLAP metaoutlines using the standard
OLAP Metaoutline interface (not by
using the Metaoutline Assistant).

SC27-0784

db2upx70

n/a

OLAP Integration Server
Model User’s Guide

Explains how to create OLAP models
using the standard OLAP Model
Interface (not by using the Model
Assistant).

SC27-0783

db2lpx70

n/a

OLAP Setup and User’s
Guide

Provides configuration and setup
information for the OLAP Starter Kit.

SC27-0702

db2ipx70

db2ip

OLAP Spreadsheet Add-in
User’s Guide for Excel

Describes how to use the Excel
spreadsheet program to analyze OLAP
data.

SC27-0786

db2epx70

db2ep

Appendix D. Using the DB2 Library 375

Table 18. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

OLAP Spreadsheet Add-in
User’s Guide for Lotus
1-2-3

Describes how to use the Lotus 1-2-3
spreadsheet program to analyze OLAP
data.

SC27-0785

db2tpx70

db2tp

Replication Guide and
Reference

Provides planning, configuration,
administration, and usage information
for the IBM Replication tools supplied
with DB2.

SC26-9920

db2e0x70

db2e0

Spatial Extender User’s
Guide and Reference

Provides information about installing,
configuring, administering,
programming, and troubleshooting the
Spatial Extender. Also provides
significant descriptions of spatial data
concepts and provides reference
information (messages and SQL) specific
to the Spatial Extender.

SC27-0701

db2sbx70

db2sb

SQL Getting Started Introduces SQL concepts and provides
examples for many constructs and tasks.

SC09-2973

db2y0x70

db2y0

SQL Reference, Volume 1
and Volume 2

Describes SQL syntax, semantics, and the
rules of the language. This book also
includes information about
release-to-release incompatibilities,
product limits, and catalog views.

You can order both volumes of the SQL
Reference in the English language in
North America with the form number
SBOF-8933.

Volume 1
SC09-2974

db2s1x70

Volume 2
SC09-2975

db2s2x70

db2s0

System Monitor Guide and
Reference

Describes how to collect different kinds
of information about databases and the
database manager. This book explains
how to use the information to
understand database activity, improve
performance, and determine the cause of
problems.

SC09-2956

db2f0x70

db2f0

Text Extender
Administration and
Programming

Provides general information about DB2
extenders and information on the
administration and configuring of the
text extender and on programming using
the text extenders. It includes reference
information, diagnostic information
(with messages) and samples.

SC26-9930

desu9x70

desu9

376 Application Building Guide

Table 18. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Troubleshooting Guide Helps you determine the source of
errors, recover from problems, and use
diagnostic tools in consultation with DB2
Customer Service.

GC09-2850

db2p0x70

db2p0

What’s New Describes the new features, functions,
and enhancements in DB2 Universal
Database, Version 7.

SC09-2976

db2q0x70

db2q0

DB2 Installation and Configuration Information

DB2 Connect Enterprise
Edition for OS/2 and
Windows Quick
Beginnings

Provides planning, migration,
installation, and configuration
information for DB2 Connect Enterprise
Edition on the OS/2 and Windows 32-bit
operating systems. This book also
contains installation and setup
information for many supported clients.

GC09-2953

db2c6x70

db2c6

DB2 Connect Enterprise
Edition for UNIX Quick
Beginnings

Provides planning, migration,
installation, configuration, and task
information for DB2 Connect Enterprise
Edition on UNIX-based platforms. This
book also contains installation and setup
information for many supported clients.

GC09-2952

db2cyx70

db2cy

DB2 Connect Personal
Edition Quick Beginnings

Provides planning, migration,
installation, configuration, and task
information for DB2 Connect Personal
Edition on the OS/2 and Windows 32-bit
operating systems. This book also
contains installation and setup
information for all supported clients.

GC09-2967

db2c1x70

db2c1

DB2 Connect Personal
Edition Quick Beginnings
for Linux

Provides planning, installation,
migration, and configuration information
for DB2 Connect Personal Edition on all
supported Linux distributions.

GC09-2962

db2c4x70

db2c4

DB2 Data Links Manager
Quick Beginnings

Provides planning, installation,
configuration, and task information for
DB2 Data Links Manager for AIX and
Windows 32-bit operating systems.

GC09-2966

db2z6x70

db2z6

Appendix D. Using the DB2 Library 377

Table 18. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Enterprise - Extended
Edition for UNIX Quick
Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition on
UNIX-based platforms. This book also
contains installation and setup
information for many supported clients.

GC09-2964

db2v3x70

db2v3

DB2 Enterprise - Extended
Edition for Windows Quick
Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition for
Windows 32-bit operating systems. This
book also contains installation and setup
information for many supported clients.

GC09-2963

db2v6x70

db2v6

DB2 for OS/2 Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on the OS/2
operating system. This book also
contains installation and setup
information for many supported clients.

GC09-2968

db2i2x70

db2i2

DB2 for UNIX Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on
UNIX-based platforms. This book also
contains installation and setup
information for many supported clients.

GC09-2970

db2ixx70

db2ix

DB2 for Windows Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on Windows
32-bit operating systems. This book also
contains installation and setup
information for many supported clients.

GC09-2971

db2i6x70

db2i6

DB2 Personal Edition
Quick Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database Personal
Edition on the OS/2 and Windows 32-bit
operating systems.

GC09-2969

db2i1x70

db2i1

DB2 Personal Edition
Quick Beginnings for
Linux

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database Personal
Edition on all supported Linux
distributions.

GC09-2972

db2i4x70

db2i4

378 Application Building Guide

Table 18. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Query Patroller
Installation Guide

Provides installation information about
DB2 Query Patroller.

GC09-2959

db2iwx70

db2iw

DB2 Warehouse Manager
Installation Guide

Provides installation information for
warehouse agents, warehouse
transformers, and the Information
Catalog Manager.

GC26-9998

db2idx70

db2id

Cross-Platform Sample Programs in HTML

Sample programs in
HTML

Provides the sample programs in HTML
format for the programming languages
on all platforms supported by DB2. The
sample programs are provided for
informational purposes only. Not all
samples are available in all
programming languages. The HTML
samples are only available when the DB2
Application Development Client is
installed.

For more information on the programs,
refer to the Application Building Guide.

No form number db2hs

Release Notes

DB2 Connect Release
Notes

Provides late-breaking information that
could not be included in the DB2
Connect books.

See note #2. db2cr

DB2 Installation Notes Provides late-breaking
installation-specific information that
could not be included in the DB2 books.

Available on
product
CD-ROM only.

DB2 Release Notes Provides late-breaking information about
all DB2 products and features that could
not be included in the DB2 books.

See note #2. db2ir

Notes:

1. The character x in the sixth position of the file name indicates the
language version of a book. For example, the file name db2d0e70 identifies
the English version of the Administration Guide and the file name db2d0f70
identifies the French version of the same book. The following letters are
used in the sixth position of the file name to indicate the language version:

Language Identifier
Brazilian Portuguese b

Appendix D. Using the DB2 Library 379

Bulgarian u
Czech x
Danish d
Dutch q
English e
Finnish y
French f
German g
Greek a
Hungarian h
Italian i
Japanese j
Korean k
Norwegian n
Polish p
Portuguese v
Russian r
Simp. Chinese c
Slovenian l
Spanish z
Swedish s
Trad. Chinese t
Turkish m

2. Late breaking information that could not be included in the DB2 books is
available in the Release Notes in HTML format and as an ASCII file. The
HTML version is available from the Information Center and on the
product CD-ROMs. To view the ASCII file:
v On UNIX-based platforms, see the Release.Notes file. This file is located

in the DB2DIR/Readme/%L directory, where %L represents the locale
name and DB2DIR represents:
– /usr/lpp/db2_07_01 on AIX
– /opt/IBMdb2/V7.1 on HP-UX, PTX, Solaris, and Silicon Graphics

IRIX
– /usr/IBMdb2/V7.1 on Linux.

v On other platforms, see the RELEASE.TXT file. This file is located in the
directory where the product is installed. On OS/2 platforms, you can
also double-click the IBM DB2 folder and then double-click the Release
Notes icon.

Printing the PDF Books
If you prefer to have printed copies of the books, you can print the PDF files
found on the DB2 publications CD-ROM. Using the Adobe Acrobat Reader,
you can print either the entire book or a specific range of pages. For the file
name of each book in the library, see Table 18 on page 372.

380 Application Building Guide

You can obtain the latest version of the Adobe Acrobat Reader from the
Adobe Web site at http://www.adobe.com.

The PDF files are included on the DB2 publications CD-ROM with a file
extension of PDF. To access the PDF files:
1. Insert the DB2 publications CD-ROM. On UNIX-based platforms, mount

the DB2 publications CD-ROM. Refer to your Quick Beginnings book for
the mounting procedures.

2. Start the Acrobat Reader.
3. Open the desired PDF file from one of the following locations:

v On OS/2 and Windows platforms:
x:\doc\language directory, where x represents the CD-ROM drive and
language represent the two-character country code that represents your
language (for example, EN for English).

v On UNIX-based platforms:
/cdrom/doc/%L directory on the CD-ROM, where /cdrom represents the
mount point of the CD-ROM and %L represents the name of the desired
locale.

You can also copy the PDF files from the CD-ROM to a local or network drive
and read them from there.

Ordering the Printed Books

You can order the printed DB2 books either individually or as a set (in North
America only) by using a sold bill of forms (SBOF) number. To order books,
contact your IBM authorized dealer or marketing representative, or phone
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada. You can
also order the books from the Publications Web page at
http://www.elink.ibmlink.ibm.com/pbl/pbl.

Two sets of books are available. SBOF-8935 provides reference and usage
information for the DB2 Warehouse Manager. SBOF-8931 provides reference
and usage information for all other DB2 Universal Database products and
features. The contents of each SBOF are listed in the following table:

Appendix D. Using the DB2 Library 381

Table 19. Ordering the printed books

SBOF Number Books Included

SBOF-8931 v Administration Guide: Planning

v Administration Guide: Implementation

v Administration Guide: Performance

v Administrative API Reference

v Application Building Guide

v Application Development Guide

v CLI Guide and Reference

v Command Reference

v Data Movement Utilities Guide and
Reference

v Data Warehouse Center Administration
Guide

v Data Warehouse Center Application
Integration Guide

v DB2 Connect User’s Guide

v Installation and Configuration
Supplement

v Image, Audio, and Video Extenders
Administration and Programming

v Message Reference, Volumes 1 and 2

v OLAP Integration Server
Administration Guide

v OLAP Integration Server Metaoutline
User’s Guide

v OLAP Integration Server Model User’s
Guide

v OLAP Integration Server User’s Guide

v OLAP Setup and User’s Guide

v OLAP Spreadsheet Add-in User’s
Guide for Excel

v OLAP Spreadsheet Add-in User’s
Guide for Lotus 1-2-3

v Replication Guide and Reference

v Spatial Extender Administration and
Programming Guide

v SQL Getting Started

v SQL Reference, Volumes 1 and 2

v System Monitor Guide and Reference

v Text Extender Administration and
Programming

v Troubleshooting Guide

v What’s New

SBOF-8935 v Information Catalog Manager
Administration Guide

v Information Catalog Manager User’s
Guide

v Information Catalog Manager
Programming Guide and Reference

v Query Patroller Administration Guide

v Query Patroller User’s Guide

DB2 Online Documentation

Accessing Online Help
Online help is available with all DB2 components. The following table
describes the various types of help.

382 Application Building Guide

Type of Help Contents How to Access...

Command Help Explains the syntax of
commands in the command
line processor.

From the command line processor in interactive
mode, enter:

? command

where command represents a keyword or the entire
command.

For example, ? catalog displays help for all the
CATALOG commands, while ? catalog database
displays help for the CATALOG DATABASE
command.

Client Configuration
Assistant Help

Command Center
Help

Control Center Help

Data Warehouse
Center Help

Event Analyzer Help

Information Catalog
Manager Help

Satellite
Administration Center
Help

Script Center Help

Explains the tasks you can
perform in a window or
notebook. The help includes
overview and prerequisite
information you need to
know, and it describes how
to use the window or
notebook controls.

From a window or notebook, click the Help push
button or press the F1 key.

Appendix D. Using the DB2 Library 383

Type of Help Contents How to Access...

Message Help Describes the cause of a
message and any action you
should take.

From the command line processor in interactive
mode, enter:

? XXXnnnnn

where XXXnnnnn represents a valid message
identifier.

For example, ? SQL30081 displays help about the
SQL30081 message.

To view message help one screen at a time, enter:

? XXXnnnnn | more

To save message help in a file, enter:

? XXXnnnnn > filename.ext

where filename.ext represents the file where you
want to save the message help.

SQL Help Explains the syntax of SQL
statements.

From the command line processor in interactive
mode, enter:

help statement

where statement represents an SQL statement.

For example, help SELECT displays help about the
SELECT statement.
Note: SQL help is not available on UNIX-based
platforms.

SQLSTATE Help Explains SQL states and
class codes.

From the command line processor in interactive
mode, enter:

? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL
state and class code represents the first two digits
of the SQL state.

For example, ? 08003 displays help for the 08003
SQL state, while ? 08 displays help for the 08 class
code.

Viewing Information Online
The books included with this product are in Hypertext Markup Language
(HTML) softcopy format. Softcopy format enables you to search or browse the
information and provides hypertext links to related information. It also makes
it easier to share the library across your site.

384 Application Building Guide

You can view the online books or sample programs with any browser that
conforms to HTML Version 3.2 specifications.

To view online books or sample programs:
v If you are running DB2 administration tools, use the Information Center.
v From a browser, click File —>Open Page. The page you open contains

descriptions of and links to DB2 information:
– On UNIX-based platforms, open the following page:

INSTHOME/sqllib/doc/%L/html/index.htm

where %L represents the locale name.
– On other platforms, open the following page:

sqllib\doc\html\index.htm

The path is located on the drive where DB2 is installed.

If you have not installed the Information Center, you can open the page
by double-clicking the DB2 Information icon. Depending on the system
you are using, the icon is in the main product folder or the Windows
Start menu.

Installing the Netscape Browser
If you do not already have a Web browser installed, you can install Netscape
from the Netscape CD-ROM found in the product boxes. For detailed
instructions on how to install it, perform the following:
1. Insert the Netscape CD-ROM.
2. On UNIX-based platforms only, mount the CD-ROM. Refer to your Quick

Beginnings book for the mounting procedures.
3. For installation instructions, refer to the CDNAVnn.txt file, where nn

represents your two character language identifier. The file is located at the
root directory of the CD-ROM.

Accessing Information with the Information Center
The Information Center provides quick access to DB2 product information.
The Information Center is available on all platforms on which the DB2
administration tools are available.

You can open the Information Center by double-clicking the Information
Center icon. Depending on the system you are using, the icon is in the
Information folder in the main product folder or the Windows Start menu.

You can also access the Information Center by using the toolbar and the Help
menu on the DB2 Windows platform.

Appendix D. Using the DB2 Library 385

The Information Center provides six types of information. Click the
appropriate tab to look at the topics provided for that type.

Tasks Key tasks you can perform using DB2.

Reference DB2 reference information, such as keywords, commands, and
APIs.

Books DB2 books.

Troubleshooting
Categories of error messages and their recovery actions.

Sample Programs
Sample programs that come with the DB2 Application
Development Client. If you did not install the DB2
Application Development Client, this tab is not displayed.

Web DB2 information on the World Wide Web. To access this
information, you must have a connection to the Web from
your system.

When you select an item in one of the lists, the Information Center launches a
viewer to display the information. The viewer might be the system help
viewer, an editor, or a Web browser, depending on the kind of information
you select.

The Information Center provides a find feature, so you can look for a specific
topic without browsing the lists.

For a full text search, follow the hypertext link in the Information Center to
the Search DB2 Online Information search form.

The HTML search server is usually started automatically. If a search in the
HTML information does not work, you may have to start the search server
using one of the following methods:

On Windows
Click Start and select Programs —> IBM DB2 —> Information —>
Start HTML Search Server.

On OS/2
Double-click the DB2 for OS/2 folder, and then double-click the Start
HTML Search Server icon.

Refer to the release notes if you experience any other problems when
searching the HTML information.

Note: The Search function is not available in the Linux, PTX, and Silicon
Graphics IRIX environments.

386 Application Building Guide

Using DB2 Wizards
Wizards help you complete specific administration tasks by taking you
through each task one step at a time. Wizards are available through the
Control Center and the Client Configuration Assistant. The following table
lists the wizards and describes their purpose.

Note: The Create Database, Create Index, Configure Multisite Update, and
Performance Configuration wizards are available for the partitioned
database environment.

Wizard Helps You to... How to Access...

Add Database Catalog a database on a client workstation. From the Client Configuration
Assistant, click Add.

Backup Database Determine, create, and schedule a backup
plan.

From the Control Center, right-click
the database you want to back up
and select Backup —> Database
Using Wizard.

Configure Multisite
Update

Configure a multisite update, a distributed
transaction, or a two-phase commit.

From the Control Center, right-click
the Databases folder and select
Multisite Update.

Create Database Create a database, and perform some basic
configuration tasks.

From the Control Center, right-click
the Databases folder and select
Create —> Database Using
Wizard.

Create Table Select basic data types, and create a primary
key for the table.

From the Control Center, right-click
the Tables icon and select Create
—> Table Using Wizard.

Create Table Space Create a new table space. From the Control Center, right-click
the Table Spaces icon and select
Create —> Table Space Using
Wizard.

Create Index Advise which indexes to create and drop for
all your queries.

From the Control Center, right-click
the Index icon and select Create
—> Index Using Wizard.

Performance
Configuration

Tune the performance of a database by
updating configuration parameters to match
your business requirements.

From the Control Center, right-click
the database you want to tune and
select Configure Performance
Using Wizard.

For the partitioned database
environment, from the Database
Partitions view, right-click the first
database partition you want to
tune and select Configure
Performance Using Wizard.

Appendix D. Using the DB2 Library 387

Wizard Helps You to... How to Access...

Restore Database Recover a database after a failure. It helps
you understand which backup to use, and
which logs to replay.

From the Control Center, right-click
the database you want to restore
and select Restore —> Database
Using Wizard.

Setting Up a Document Server
By default, the DB2 information is installed on your local system. This means
that each person who needs access to the DB2 information must install the
same files. To have the DB2 information stored in a single location, perform
the following steps:
1. Copy all files and subdirectories from \sqllib\doc\html on your local

system to a Web server. Each book has its own subdirectory that contains
all the necessary HTML and GIF files that make up the book. Ensure that
the directory structure remains the same.

2. Configure the Web server to look for the files in the new location. For
information, refer to the NetQuestion Appendix in the Installation and
Configuration Supplement.

3. If you are using the Java version of the Information Center, you can
specify a base URL for all HTML files. You should use the URL for the list
of books.

4. When you are able to view the book files, you can bookmark commonly
viewed topics. You will probably want to bookmark the following pages:
v List of books
v Tables of contents of frequently used books
v Frequently referenced articles, such as the ALTER TABLE topic
v The Search form

For information about how you can serve the DB2 Universal Database online
documentation files from a central machine, refer to the NetQuestion
Appendix in the Installation and Configuration Supplement.

Searching Information Online
To find information in the HTML files, use one of the following methods:
v Click Search in the top frame. Use the search form to find a specific topic.

This function is not available in the Linux, PTX, or Silicon Graphics IRIX
environments.

v Click Index in the top frame. Use the index to find a specific topic in the
book.

v Display the table of contents or index of the help or the HTML book, and
then use the find function of the Web browser to find a specific topic in the
book.

388 Application Building Guide

v Use the bookmark function of the Web browser to quickly return to a
specific topic.

v Use the search function of the Information Center to find specific topics. See
“Accessing Information with the Information Center” on page 385 for
details.

Appendix D. Using the DB2 Library 389

390 Application Building Guide

Appendix E. Notices

IBM may not offer the products, services, or features discussed in this
document in all countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 1993, 2000 391

improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
1150 Eglinton Ave. East
North York, Ontario
M3C 1H7
CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

392 Application Building Guide

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source
language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using,
marketing or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All
rights reserved.

Appendix E. Notices 393

Trademarks

The following terms, which may be denoted by an asterisk(*), are trademarks
of International Business Machines Corporation in the United States, other
countries, or both.

ACF/VTAM
AISPO
AIX
AIX/6000
AIXwindows
AnyNet
APPN
AS/400
BookManager
CICS
C Set++
C/370
DATABASE 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Extenders
DB2 OLAP Server
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
eNetwork
Extended Services
FFST
First Failure Support Technology

IBM
IMS
IMS/ESA
LAN DistanceMVS
MVS/ESA
MVS/XA
Net.Data
OS/2
OS/390
OS/400
PowerPC
QBIC
QMF
RACF
RISC System/6000
RS/6000
S/370
SP
SQL/DS
SQL/400
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WebExplorer
WIN-OS/2

The following terms are trademarks or registered trademarks of other
companies:

Microsoft, Windows, and Windows NT are trademarks or registered
trademarks of Microsoft Corporation.

Java or all Java-based trademarks and logos, and Solaris are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States,
other countries, or both.

394 Application Building Guide

UNIX is a registered trademark in the United States, other countries or both
and is licensed exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a
double asterisk(**) may be trademarks or service marks of others.

Appendix E. Notices 395

396 Application Building Guide

Index

A
about the DB2 AD Client 4
about this book 1
ActiveX Data Objects

support in the DB2 AD Client 4
using Visual Basic on

Windows 317
using Visual C++ on

Windows 321
add database wizard 387, 388
AIX/6000, supported versions 8
APIs, DB2

about 55
APIs to enable precompiler support

in the DB2 AD Client 4
applets

general points for 86
Java 63
Java JDBC 75
Java SQLJ 80

Application Development (DB2 AD)
client, about the DB2 4

applications
DB2 CLI 56
embedded SQL 57
Java 63
Java JDBC 75
Java SQLJ 81

AS/400 servers, Creating on 41

B
background knowledge you need 3
backup database wizard 387
batch files on Windows

bldapp for IBM VisualAge
COBOL 351

bldapp for Micro Focus
COBOL 356

bldcli for Visual C++ 322
bldmapp for Visual C++ 328
bldmclis for Visual C++ 326
bldmsrv for Visual C++ stored

procedures 331
bldmudf for Visual C++

UDFs 334
bldsqlj for Java SQLJ 77
bldsqljs for Java SQLJ 82
bldsrv for Micro Focus COBOL

stored procedures 358

batch files on Windows (continued)
bldsrv for VisualAge COBOL

stored procedures 353
bldvapp for VisualAge C++ 342
bldvcli for VisualAge C++ 337
bldvclis for VisualAge C++ 340
bldvsrv for VisualAge C++ stored

procedures 345
bldvudf for VisualAge C++ 3.5

UDFs 348
binding the sample database 40
bldapp script file for C++ on

AIX 119
bldapp script file for C on AIX 109
bldapp script file for embedded SQL

for Micro Focus COBOL on
Solaris 307

using HP-UX C 168
using Linux C 196
using Linux C++ 205
using MIPSpro C on Silicon

Graphics IRIX 270
using ptx/C++ on PTX 255
using ptx/C on PTX 247
using SPARCompiler C on

Solaris 287
bldapp script file for HP-UX

C++ 176
bldapp script file for IBM COBOL

Set for AIX 145
bldapp script file for Micro Focus

COBOL on HP-UX 186
bldapp script file for MIPSpro C++

on Silicon Graphics IRIX 275
bldapp script file for SPARCompiler

C++ on Solaris 297
bldcli script file on AIX 104
bldcli script file on HP-UX 162
bldcli script file on Linux 191
bldcli script file on PTX 241
bldcli script file on Silicon Graphics

IRIX 266
bldcli script file on Solaris 282
bldclisp script file on AIX 107
bldclisp script file on HP-UX 165
bldclisp script file on Linux 194
bldclisp script file on PTX 244
bldclisp script file on Solaris 285
bldsqlj build file for Java SQLJ 77

bldsqljs build file for Java SQLJ 82
bldsrv batch file for IBM VisualAge

COBOL stored procedures on
Windows NT 353

bldsrv script file for C stored
procedures on AIX 112

bldsrv script file for HP-UX C++
stored procedures 179

bldsrv script file for IBM C Set++ for
AIX stored procedures 122

bldsrv script file for IBM COBOL Set
for AIX stored procedures 147

bldsrv script file for Linux C++
stored procedures 208

bldsrv script file for Micro Focus
COBOL stored procedures on
AIX 154

bldsrv script file for Micro Focus
COBOL stored procedures on
HP-UX 188

bldsrv script file for Micro Focus
COBOL stored procedures on
Solaris 310

bldsrv script file for SPARCompiler
C++ for Solaris stored
procedures 300

bldsrv script file for stored
procedures

using HP-UX C 170
using Linux C 199
using ptx/C++ on PTX 258
using ptx/C on PTX 249
using SPARCompiler C on

Solaris 290
bldudf script file for C UDFs on

AIX 115
bldudf script file for HP-UX C++

UDFs 181
bldudf script file for IBM C Set++

for AIX UDFs 125
bldudf script file for Linux C++

UDFs 211
bldudf script file for SPARCompiler

C++ for Solaris UDFs 303
bldudf script file for UDFs

using HP-UX C 173
using Linux C 202
using ptx/C++ on PTX 260
using ptx/C on PTX 252

© Copyright IBM Corp. 1993, 2000 397

bldudf script file for UDFs
(continued)

using SPARCompiler C on
Solaris 293

book, about this 1
books 371, 381
build files, about 48

C
C++

UDFs and stored procedures 60
C/C++ compilers, supported

versions 8
CALL CLP command 93
CALL statement and stored

procedures on AIX 101
calludf sample program 57
cataloging the sample database 40
checkerr.cbl for COBOL error

checking 53
CLI, DB2

about 56
AIX applications 104
AIX stored procedures 107
applications with VisualAge C++

on AIX 130
HP-UX applications 162
HP-UX stored procedures 165
Linux applications 191
Linux stored procedures 194
OS/2 VisualAge Version 3

applications 216
OS/2 VisualAge Version 3 stored

procedures 218
problem determination 369
PTX applications 241
PTX stored procedures 244
sample programs 12
Silicon Graphics IRIX

applications 266
Silicon Graphics IRIX client

application for stored
procedures 269

Silicon Graphics IRIX client
application for UDFs 270

Solaris applications 282
Solaris stored procedures 285
Static SQL xiii
stored procedures with VisualAge

C++ on AIX 133
VisualAge 3.5 for Windows

applications 337
VisualAge 3.5 for Windows

stored procedures 340
Windows applications 322
Windows stored procedures 326

client problems 369
CLP sample files 12
COBOL compilers

installing and running 100
supported versions 8
using the IBM COBOL Set for

AIX compiler 144
using VisualAge COBOL for

OS/2 229
using VisualAge COBOL on

Windows 350
code samples, included in the DB2

AD client 4
command files on OS/2

bldapp for Micro Focus
COBOL 235

bldapp for VisualAge C++ 221
bldapp for VisualAge

COBOL 230
bldcli for VisualAge C++ 216
bldclisp for VisualAge C++ 218
bldsqlj for Java SQLJ 77
bldsqljs for Java SQLJ 82
bldsrv for Micro Focus COBOL

stored procedures 237
bldsrv for VisualAge C++ stored

procedures 224
bldsrv for VisualAge COBOL

stored procedures 232
bldudf for VisualAge C++

UDFs 226
Command Line Processor (CLP)

files 12
Command Line Processor (CLP) in

the DB2 AD Client 4
comments in REXX programs 239,

360
communications, enabling on the

server 38
compilers

problems 369
supported versions 8

configuration files
api.icc on AIX 136
cli.icc on AIX 130
clis.icc on AIX 133
emb.icc on AIX 137
stp.icc on AIX 139
udf.icc on AIX 142
using VisualAge C++ for

OS/2 229
using VisualAge C++ for

Windows 350
using VisualAge C++ Version

4 129

configure multisite update
wizard 387

configuring communications
protocol 38

contents of this book 3
CONVERT option on Windows

NT 316
create database wizard 387
CREATE FUNCTION statement and

UDFs 103
create table space wizard 387
create table wizard 387
Creating the sample database 40

D
database manager instances

about 361
Creating 33

DB2 CLI, about 56
DB2 library

books 371
Information Center 385
language identifier for

books 379
late-breaking information 380
online help 382
ordering printed books 381
printing PDF books 380
searching online

information 388
setting up document server 388
structure of 371
viewing online information 384
wizards 387

db2sampl, using to create the sample
database 40

development environment provided
by the DB2 AD Client 4

DFTDBPATH, using to specify the
default path 40

diagnostic tools 369
directories that contain sample

programs 12
documentation, related 1
Domino Go 86

E
embedded SQL

building applications 57
sample programs 12

enabling communications on the
server 38

environment
setting the OS/2 34
setting the UNIX 36
setting the Windows 37

398 Application Building Guide

error checking utilities 53
error messages and error log 369
example text, use of 3
expsamp program, using to export

tables 41
EXTERNAL NAME clause and

UDFs 103

F
Flagger, about the SQL 92 and MVS

Conformance 4
Fortran compilers, supported

versions 8

H
home directory, instance 361
host servers, Creating on 41
how to use this book 3
HP-UX, supported versions 9
HTML

sample programs 379

I
include files in the DB2 AD

Client 4
index wizard 387
Information Center 385
installing

Netscape browser 385
instance name and home

directory 361
italics, use of 3

J
Java

about 55
build files 77
building a JDBC applet 75
building a JDBC application 75
building a JDBC stored

procedure 77
building an SQLJ application 81
building SQLJ applets 80
building SQLJ programs 77
building SQLJ stored

procedures 82
building UDFs 86
client application for JDBC stored

procedure 76
general points for DB2

applets 86
HPFS drive for OS/2 74
JDBC client application for

UDF 76
sample programs 12, 74
setting the AIX environment 64

Java (continued)
setting the HP-UX

environment 65
setting the Linux

environment 66
setting the OS/2

environment 67
setting the Silicon Graphics IRIX

environment 69
setting the Solaris

environment 71
setting the Windows

environment 72
support in the DB2 AD Client 4
supporting platforms 8

JDBC
building a stored procedure 77
building an applet 75
building an application 75
client application for stored

procedure 76
client application for UDF 76
DB2 JDBC support 63
programs 75
support in the DB2 AD Client 4

L
language identifier

books 379
languages, supported 8
late-breaking information 380
Linux, supported versions 9
log, error 369
Lotus Domino Go 86

M
makefile

about 51
for Java 74

mbstowcs() function on Windows
NT 316

messages, online error 369
Micro Focus COBOL

DB2 API linkage call convention
74 on Windows 355

DB2 API linkage call convention
8 on OS/2 234

DB2API.lib on OS/2 234
DB2API.lib on Windows 355
installing and running 100
supporting platforms 8
using the compiler on AIX 150
using the compiler on

HP-UX 185
using the compiler on OS/2 234

Micro Focus COBOL (continued)
using the compiler on

Solaris 307
using the compiler on

Windows 355
wrapper program for stored

procedures on AIX 156
wrapper program for stored

procedures on Solaris 312
Microsoft ODBC supported in the

DB2 AD Client 4
Microsoft Windows 32-bit, supported

versions 11
migrating applications 363
Multi-threaded Applications

about 60
using HP-UX C 175
using HP-UX C++ 183
using IBM C on AIX 118
using IBM C Set++ on AIX 128
using Linux C 204
using Linux C++ 213
using MIPSpro C++ on Silicon

Graphics IRIX 279
using MIPSpro C on Silicon

Graphics IRIX 274
using ptx/C++ on PTX 262
using ptx/C on PTX 254
using SPARCompiler C++ on

Solaris 306
using SPARCompiler C on

Solaris 296

N
Netscape browser

installing 385
NOCONVERT option on Windows

NT 316

O
Object REXX

running programs on Windows
NT 360

ODBC
and supported servers 6
supported in the DB2 AD

client 4
OLE Automation

support in the DB2 AD Client 4
using Visual Basic on

Windows 320
using Visual C++ on

Windows 322
Visual Basic Stored Procedures on

Windows 320

Index 399

OLE Automation (continued)
Visual Basic UDFs on

Windows 320
Visual C++ Stored Procedures on

Windows 322
Visual C++ UDFs on

Windows 322
OLE DB table functions

support in the DB2 AD Client 4
using on Windows 316

OLE sample programs 12
online error messages 369
online help 382
online information

searching 388
viewing 384

operating system problems 369
operating systems

AIX 8
HP-UX 9
Linux 9
OS/2 9
PTX 10
Silicon Graphics IRIX 10
Solaris 10
Windows 32-bit 11

ORG table, creating and
exporting 41

OS/390 servers, Creating on 41
outcli sample program 57
outsrv sample program 57

P
PDF 380
performance configuration

wizard 387
precompilers

included in the DB2 AD
Client 4

prefixes, error message 369
prerequisites

compilers 8
environment setup 33
operating system 8
programming knowledge you

need 3
printing PDF books 380
problem determination 369
programming interfaces

DB2 APIs 1
DB2 CLI 1
embeddded SQL for Java

(SQLJ) 1
embedded SQL 1
Java Database Connectivity

(JDBC) 1

PTX, supported versions 10
publications, related 1

R
related publications 1
release notes 380
Remote Data Objects (RDO)

support in the DB2 AD Client 4
using Visual Basic on

Windows 318
remote server connections 33
restore wizard 387
REXX

running programs on OS/2 239
running programs on Windows

NT 360
setting up and running programs

on AIX 158
support in the DB2 AD Client 4
supported version on AIX 8

S
sample database, Creating 40
sample programs

cross-platform 379
HTML 379
listing 12
with embedded SQL 57

searching
online information 386, 388

servers
configuring communications

protocol 38
problems 369
starting communications 38
supported 6

setlocale() function on Windows
NT 316

setting up document server 388
setting up your environment 33
Silicon Graphics IRIX, supported

versions 10
SmartGuides

wizards 387
software, supported 8
Solaris, supported versions 10
SPECIAL-NAMES paragraph 234,

355
SQL Procedures

and the CLP CALL
command 93

and the CREATE PROCEDURE
statement 93

Setting the Environment 89
SQLCA data structure 369

SQLJ
applets 80
bldsqlj build file 77
bldsqljs build file 82
building an application 81
building programs 77
client application for stored

procedures 82
client application for UDFs 82
DB2 SQLJ support 63
stored procedures 82
support in the DB2 AD Client 4

STAFF table, creating and
exporting 41

Static SQL in CLI xiii
Stored Procedure Builder

as a database tool xxv
support in the DB2 AD Client 4

stored procedures
AIX entry points 100
and OLE Automation with Visual

Basic on Windows 320
and OLE Automation with Visual

C++ on Windows 322
and the CALL statement on

AIX 101
C++ considerations 60
for embedded SQL Micro Focus

COBOL on Windows 358
for embedded SQL using Visual

C++ on Windows 331
for embedded SQL using

VisualAge C++ Version 3 on
OS/2 224

Java JDBC 77
Java JDBC client application 76
Java SQLJ 82
Java SQLJ client application

for 82
Micro Focus COBOL on

AIX 154
Micro Focus COBOL on

OS/2 237
Micro Focus COBOL on

Solaris 310
Silicon Graphics IRIX DB2 CLI

client application for 269
Silicon Graphics IRIX MIPSpro

C++ embedded SQL client
application for 278

Silicon Graphics IRIX MIPSpro C
embedded SQL client
application for 273

using HP-UX C 165, 170
using HP-UX C++ 179

400 Application Building Guide

stored procedures (continued)
using IBM C for CLI on

AIX 107
using IBM C on AIX 112
using IBM C Set++ for AIX 122
using IBM COBOL Set for

AIX 147
using Linux C 199
using Linux C++ 208
using Linux C for CLI 194
using Micro Focus COBOL on

HP-UX 188
using ptx/C++ on PTX 258
using ptx/C for CLI on PTX 244
using ptx/C on PTX 249
using SPARCompiler C++ for

Solaris 300
using SPARCompiler C for CLI

on Solaris 285
using SPARCompiler C on

Solaris 290
using Visual C++ for CLI on

Windows 326
using VisualAge 3.5 C++ for CLI

on Windows 340
using VisualAge C++ 3.5 on

Windows 345
using VisualAge C++ on

AIX 139
using VisualAge C++ Version 3

for CLI on OS/2 218
using VisualAge COBOL on

Windows 353
VisualAge C++ on AIX 133
VisualAge COBOL for OS/2 232
wrapper program for Micro

Focus COBOL on AIX 156
wrapper program for Micro

Focus COBOL on Solaris 312
structure of this book 3
syntax problems 369

T
tools

diagnostic 369
in the DB2 AD Client 4

U
udf sample program 57
updat sample program 57
user-defined functions (UDFs)

about 60
AIX entry points 100
and EXTERNAL NAME clause

on AIX 103

user-defined functions (UDFs)
(continued)

and OLE Automation with Visual
Basic on Windows 320

and OLE Automation with Visual
C++ on Windows 322

and the CREATE FUNCTION
statement on AIX 103

C++ considerations 60
Java 86
Java JDBC client application 76
Java SQLJ client application 82
Silicon Graphics IRIX DB2 CLI

client application for 270
Silicon Graphics IRIX MIPSpro

C++ embedded SQL client
application for 278

Silicon Graphics IRIX MIPSpro C
embedded SQL client
application for 274

using HP-UX C 173
using HP-UX C++ 181
using IBM C on AIX 115
using IBM C Set++ for AIX 125
using Linux C 202
using Linux C++ 211
using ptx/C++ on PTX 260
using ptx/C on PTX 252
using SPARCompiler C++ for

Solaris 303
using SPARCompiler C on

Solaris 293
using Visual C++ on

Windows 334
using VisualAge C++ 3.5 on

Windows 348
using VisualAge C++ on

AIX 142
VisualAge C++ Version 3 on

OS/2 226
using this book 1
utilapi.C for C++ error checking 53
utilapi.c for C error checking 53
utilapi.c for CLI error checking 53
utilcli.c for CLI error checking 53
utilemb.sqC for C++ error

checking 53
utilemb.sqc for C error checking 53
utilities for error checking 53

V
versions of compilers supported 8
viewing

online information 384

W
WCHARTYPE CONVERT

precompile option on Windows
NT 316

wcstombs() function on Windows
NT 316

web server 86
who should use this book 3
wide-character format on Windows

NT 316
Windows 32-bit, supported

versions 11
wizards

add database 387, 388
backup database 387
completing tasks 387
configure multisite update 387
create database 387
create table 387
create table space 387
index 387
performance configuration 387
restore database 387

wrapsrv script file for Micro Focus
COBOL stored procedures on
AIX 156

wrapsrv script file for Micro Focus
COBOL stored procedures on
Solaris 312

Index 401

402 Application Building Guide

Contacting IBM

If you have a technical problem, please review and carry out the actions
suggested by the Troubleshooting Guide before contacting DB2 Customer
Support. This guide suggests information that you can gather to help DB2
Customer Support to serve you better.

For information or to order any of the DB2 Universal Database products
contact an IBM representative at a local branch office or contact any
authorized IBM software remarketer.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-237-5511 for customer support
v 1-888-426-4343 to learn about available service options

Product Information

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) or 1-800-3IBM-OS2 (1-800-342-6672) to

order products or get general information.
v 1-800-879-2755 to order publications.

http://www.ibm.com/software/data/
The DB2 World Wide Web pages provide current DB2 information
about news, product descriptions, education schedules, and more.

http://www.ibm.com/software/data/db2/library/
The DB2 Product and Service Technical Library provides access to
frequently asked questions, fixes, books, and up-to-date DB2 technical
information.

Note: This information may be in English only.

http://www.elink.ibmlink.ibm.com/pbl/pbl/
The International Publications ordering Web site provides information
on how to order books.

http://www.ibm.com/education/certify/
The Professional Certification Program from the IBM Web site
provides certification test information for a variety of IBM products,
including DB2.

© Copyright IBM Corp. 1993, 2000 403

ftp.software.ibm.com
Log on as anonymous. In the directory /ps/products/db2, you can
find demos, fixes, information, and tools relating to DB2 and many
other products.

comp.databases.ibm-db2, bit.listserv.db2-l
These Internet newsgroups are available for users to discuss their
experiences with DB2 products.

On Compuserve: GO IBMDB2
Enter this command to access the IBM DB2 Family forums. All DB2
products are supported through these forums.

For information on how to contact IBM outside of the United States, refer to
Appendix A of the IBM Software Support Handbook. To access this document,
go to the following Web page: http://www.ibm.com/support/, and then
select the IBM Software Support Handbook link near the bottom of the page.

Note: In some countries, IBM-authorized dealers should contact their dealer
support structure instead of the IBM Support Center.

404 Application Building Guide

����

Part Number: CT7XXNA

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-2948-00

CT
7X

XN
A

	Contents
	Welcome to DB2 Application Development
	The DB2 Developer's Edition
	Installation Information

	DB2 Application Development Books
	DB2 Programming Interfaces
	Using Embedded SQL Statements
	Embedded SQL for Java (SQLJ)

	Using the DB2 Call Level Interface
	DB2 CLI Versus Embedded Dynamic SQL
	Using Java Database Connectivity (JDBC)
	Using DB2 APIs
	Using ActiveX Data Objects (ADO) and Remote Data Objects (RDO)
	Using IBM, Third-Party, and ODBC End-User Tools

	DB2 Features
	Constraints
	User-Defined Types (UDTs) and Large Objects (LOBs)
	Stored Procedures
	User-Defined Functions (UDFs)
	OLE DB Table Functions

	OLE Automation UDFs and Stored Procedures
	Triggers
	DB2 Universal Database Tools

	Chapter 1. Introduction
	Who Should Use This Book
	How To Use This Book
	Highlighting Conventions
	About the DB2 Application Development Client
	Supported Servers
	Supported Software by Platform
	AIX
	HP-UX
	Linux
	OS/2
	PTX
	Silicon Graphics IRIX
	Solaris
	Windows 32-bit Operating Systems

	Sample Programs
	DB2 API Non-Embedded SQL Samples
	DB2 API Embedded SQL Samples
	Embedded SQL Samples With No DB2 APIs
	User-Defined Function Samples
	DB2 Call Level Interface Samples
	Java Samples
	SQL Procedure Samples
	ADO, RDO, and MTS Samples
	Object Linking and Embedding Samples
	Command Line Processor Samples
	Log Management User Exit Samples

	Chapter 2. Setup
	Setting the OS/2 Environment
	Setting the UNIX Environment
	Setting the Windows 32-bit Operating Systems Environment
	Enabling Communications on the Server
	Windows NT and Windows 2000

	Creating, Cataloging, and Binding the Sample Database
	Creating
	Cataloging
	Binding

	Where to Go Next

	Chapter 3. General Information for Building DB2Applications
	Build Files, Makefiles, and Error-checking Utilities
	Build Files
	Makefiles
	Error-checking Utilities

	Java Applets and Applications
	DB2 API Applications
	DB2 Call Level Interface (CLI) Applications
	Embedded SQL Applications
	Stored Procedures
	User-Defined Functions (UDFs)
	Multi-threaded Applications
	C++ Considerations for UDFs and Stored Procedures

	Chapter 4. Building Java Applets and Applications
	Setting the Environment
	AIX
	HP-UX
	Linux
	OS/2
	PTX
	Silicon Graphics IRIX
	Solaris
	Windows 32-bit Operating Systems

	Java Sample Programs
	JDBC Programs
	Applets
	Applications
	Client Applications for Stored Procedures
	Client Applications for User-Defined Functions

	Stored Procedures

	SQLJ Programs
	Applets
	Applications
	Client Programs for Stored Procedures
	Client Programs for User-Defined Functions

	Stored Procedures

	User-Defined Functions (UDFs)
	General Points for DB2 Java Applets

	Chapter 5. Building SQL Procedures
	Setting the SQL Procedures Environment
	Creating SQL Procedures
	Calling SQL Procedures
	Using the CALL Command
	OS/2 DB2 CLI Client Applications
	OS/2 Embedded SQL Client Applications
	UNIX DB2 CLI Client Applications
	UNIX Embedded SQL Client Applications
	Windows DB2 CLI Client Applications
	Windows Embedded SQL Client Applications

	Chapter 6. Building AIX Applications
	Important Considerations
	Installing and Running IBM and Micro Focus COBOL
	Entry Points for Stored Procedures and UDFs
	Stored Procedures and the CALL Statement
	UDFs and the CREATE FUNCTION Statement

	IBM C
	DB2 CLI Applications
	Building and Running Embedded SQL Applications

	DB2 CLI Applications with DB2 APIs
	DB2 CLI Stored Procedures
	DB2 API and Embedded SQL Applications
	Building and Running Embedded SQL Applications

	Embedded SQL Stored Procedures
	User-Defined Functions (UDFs)
	Multi-threaded Applications

	IBM C Set++
	DB2 API and Embedded SQL Applications
	Building and Running Embedded SQL Applications

	Embedded SQL Stored Procedures
	User-Defined Functions (UDFs)
	Multi-threaded Applications

	VisualAge C++ Version 4.0
	DB2 CLI Applications
	Building and Running Embedded SQL Applications

	DB2 CLI Applications with DB2 APIs
	DB2 CLI Stored Procedures
	DB2 API Applications
	Embedded SQL Applications
	Embedded SQL Stored Procedures
	User-Defined Functions (UDFs)

	IBM COBOL Set for AIX
	Using the Compiler
	DB2 API and Embedded SQL Applications
	Building and Running Embedded SQL Applications

	Embedded SQL Stored Procedures

	Micro Focus COBOL
	Using the Compiler
	DB2 API and Embedded SQL Applications
	Building and Running Embedded SQL Applications

	Embedded SQL Stored Procedures
	Exiting the Stored Procedure

	REXX

	Chapter 7. Building HP-UX Applications
	HP-UX C
	DB2 CLI Applications
	Building and Running Embedded SQL Applications

	DB2 CLI Applications with DB2 APIs
	DB2 CLI Stored Procedures
	DB2 API and Embedded SQL Applications
	Building and Running Embedded SQL Applications

	Embedded SQL Stored Procedures
	User-Defined Functions (UDFs)
	Multi-threaded Applications

	HP-UX C++
	DB2 API and Embedded SQL Applications
	Building and Running Embedded SQL Applications

	Embedded SQL Stored Procedures
	User-Defined Functions (UDFs)
	Multi-threaded Applications

	Micro Focus COBOL
	Using the Compiler
	DB2 API and Embedded SQL Applications
	Building and Running Embedded SQL Applications

	Embedded SQL Stored Procedures
	Exiting the Stored Procedure

	Chapter 8. Building Linux Applications
	Linux C
	DB2 CLI Applications
	Building and Running Embedded SQL Applications

	DB2 CLI Applications with DB2 APIs
	DB2 CLI Stored Procedures
	DB2 API and Embedded SQL Applications
	Building and Running Embedded SQL Applications

	Embedded SQL Stored Procedures
	User-Defined Functions (UDFs)
	Multi-threaded Applications

	Linux C++
	DB2 API and Embedded SQL Applications
	Building and Running Embedded SQL Applications

	Embedded SQL Stored Procedures
	User-Defined Functions (UDFs)
	Multi-threaded Applications

	Chapter 9. Building OS/2 Applications
	IBM VisualAge C++ for OS/2 Version 3
	DB2 CLI Applications
	Building and Running Embedded SQL Applications

	DB2 CLI Applications with DB2 APIs
	DB2 CLI Stored Procedures
	DB2 API and Embedded SQL Applications
	Building and Running Embedded SQL Applications

	Embedded SQL Stored Procedures
	User-Defined Functions (UDFs)

	IBM VisualAge C++ for OS/2 Version 4.0
	IBM VisualAge COBOL for OS/2
	Using the Compiler
	Embedded SQL Applications
	Building and Running Embedded SQL Applications

	Embedded SQL Stored Procedures

	Micro Focus COBOL
	Using the Compiler
	DB2 API and Embedded SQL Applications
	Building and Running Embedded SQL Applications

	Embedded SQL Stored Procedures

	REXX

	Chapter 10. Building PTX Applications
	ptx/C
	DB2 CLI Applications
	Building and Running Embedded SQL Applications

	DB2 CLI Applications with DB2 APIs
	DB2 CLI Stored Procedures
	DB2 API and Embedded SQL Applications
	Building and Running Embedded SQL Applications

	Embedded SQL Stored Procedures
	User-Defined Functions (UDFs)
	Multi-threaded Applications

	ptx/C++
	DB2 API and Embedded SQL Applications
	Building and Running Embedded SQL Applications

	Embedded SQL Stored Procedures
	User-Defined Functions (UDFs)
	Multi-threaded Applications

	Chapter 11. Building Silicon Graphics IRIX Applications
	MIPSpro C
	DB2 CLI Applications
	Building and Running Embedded SQL Applications

	DB2 CLI Applications with DB2 APIs
	DB2 CLI Client Applications for Stored Procedures
	DB2 CLI Client Applications for UDFs
	DB2 API and Embedded SQL Applications
	Building and Running Embedded SQL Applications
	Embedded SQL Client Applications for Stored Procedures
	Client Applications for User-defined Functions (UDFs)

	Multi-threaded Applications

	MIPSpro C++
	DB2 API and Embedded SQL Applications
	Embedded SQL Client Applications for Stored Procedures
	Embedded SQL Client Application for UDFs

	Multi-threaded Applications

	Chapter 12. Building Solaris Applications
	SPARCompiler C
	DB2 CLI Applications
	Building and Running Embedded SQL Applications

	DB2 CLI Applications with DB2 APIs
	DB2 CLI Stored Procedures
	DB2 API and Embedded SQL Applications
	Building and Running Embedded SQL Applications

	Embedded SQL Stored Procedures
	User-Defined Functions (UDFs)
	Multi-threaded Applications

	SPARCompiler C++
	DB2 API and Embedded SQL Applications
	Building and Running Embedded SQL Applications

	Embedded SQL Stored Procedures
	User-Defined Functions (UDFs)
	Multi-threaded Applications

	Micro Focus COBOL
	Using the Compiler
	DB2 API and Embedded SQL Applications
	Building and Running Embedded SQL Applications

	Embedded SQL Stored Procedures
	Exiting the Stored Procedure

	Chapter 13. Building Applications for Windows 32-bitOperating Systems
	Microsoft Visual Basic
	ActiveX Data Objects (ADO)
	Remote Data Objects (RDO)
	Object Linking and Embedding (OLE) Automation
	OLE Automation UDFs and Stored Procedures

	Microsoft Visual C++
	ActiveX Data Objects (ADO)
	Object Linking and Embedding (OLE) Automation
	OLE Automation UDFs and Stored Procedures

	DB2 CLI Applications
	Building and Running Embedded SQL Applications

	DB2 CLI Applications with DB2 APIs
	DB2 CLI Stored Procedures
	DB2 API and Embedded SQL Applications
	Building and Running Embedded SQL Applications

	Embedded SQL Stored Procedures
	User-Defined Functions (UDFs)

	IBM VisualAge C++ Version 3.5
	DB2 CLI Applications
	Building and Running Embedded SQL Applications

	DB2 CLI Applications with DB2 APIs
	DB2 CLI Stored Procedures
	DB2 API and Embedded SQL Applications
	Building and Running Embedded SQL Applications

	Embedded SQL Stored Procedures
	User-Defined Functions (UDFs)

	IBM VisualAge C++ Version 4.0
	IBM VisualAge COBOL
	Using the Compiler
	DB2 API and Embedded SQL Applications
	Building and Running Embedded SQL Applications

	Embedded SQL Stored Procedures

	Micro Focus COBOL
	Using the Compiler
	DB2 API and Embedded SQL Applications
	Building and Running Embedded SQL Applications

	Embedded SQL Stored Procedures

	Object REXX

	Appendix A. About Database Manager Instances
	Appendix B. Migrating Your Applications
	Questions
	Conditions
	Other Migration Considerations

	Appendix C. Problem Determination
	Appendix D. Using the DB2 Library
	DB2 PDF Files and Printed Books
	DB2 Information
	Printing the PDF Books
	Ordering the Printed Books

	DB2 Online Documentation
	Accessing Online Help
	Viewing Information Online
	Installing the Netscape Browser
	Accessing Information with the Information Center

	Using DB2 Wizards
	Setting Up a Document Server
	Searching Information Online

	Appendix E. Notices
	Trademarks

	Index
	Contacting IBM
	Product Information

