
IBM® DB2® Universal Database

Data Warehouse Center
Application Integration Guide
Version 7

SC26-9994-00

���

IBM® DB2® Universal Database

Data Warehouse Center
Application Integration Guide
Version 7

SC26-9994-00

���

Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 303.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1998, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book vii
Who should read this book vii

Part 1. Integrating Applications . . 1

Chapter 1. Planning to integrate your
applications 3
How partner applications can work with the
Data Warehouse Center and the Information
Catalog Manager 3

Managing partner applications 5
Managing metadata 6

Integration scenarios 9
Hardware and software requirements . . . 11

Chapter 2. Importing and exporting
metadata. 13
Importing metadata into the Data Warehouse
Center 13

Building the tag language file 13
Importing metadata from the tag language
file 33
Preparing the steps to run 34

Exporting metadata from the Data Warehouse
Center 35

Selecting objects for which to export
metadata 35
Exporting metadata into a tag language
file 36

Chapter 3. Importing and exporting
metadata with the Information Catalog
Manager 39
Importing metadata into an information
catalog 39

Selecting metadata to import 39
Importing metadata from a tag language
file 39

Exporting metadata from Information Catalog
Manager 44

Selecting metadata to export 45
Exporting tag language files. 45

Chapter 4. Ensuring that users can start
programs from the Information Catalog
Manager 49
Additional requirements for Information
Catalog Manager for the Web users 49

Part 2. Metadata reference 51

Chapter 5. Metadata templates 53
AgentSite.tag. 55

Tokens 55
Examples of values 57

Column.tag 57
Tokens 57
Examples of values 62

HeaderInfo.tag 63
Tokens 63
Examples of values 63

Process.tag 63
Tokens 64
Examples of values 65

StarSchema.tag 65
Tokens 65
Examples of values 66

StarSchemaInputTable.tag 67
Tokens 67
Examples of values 67

Step.tag 68
Tokens 68
Examples of values 71

StepCascade.tag 72
Tokens 72
Examples of values 73

StepInputTable.tag 73
Tokens 73
Examples of values 74

StepOutputTable.tag 74
Tokens 75
Examples of values 75

StepVWPOutputTable.tag 76
Tokens 76
Examples of values 76

StepVWPProgramInstance.tag 77
Tokens 77

© Copyright IBM Corp. 1998, 2000 iii

Examples of values 78
SourceDataBase.tag 78

Tokens 78
Examples of values 81

SubjectArea.tag 82
Tokens 82
Examples of values 83

Table.tag 83
Tokens 84
Examples of values 88

VWPGroup.tag 89
Tokens 89
Examples of values 90

VWPProgramInstanceParameter.tag 90
Tokens 91
Examples of values 92

VWPProgramTemplate.tag 93
Tokens 93
Examples of values 95

VWPProgramTemplateParameter.tag 95
Tokens 96
Examples of values 97

WarehouseDataBase.tag 98
Tokens 98
Examples of values 101

Chapter 6. Data Warehouse Center
metadata 103
DATABASE object 103

Properties 103
Relationships 107

TABLES object 108
Properties 108
Relationships 113

COLUMN object 114
Properties 114
Relationships 117

Chapter 7. Information Catalog Manager
system tables and metadata models. . . 119
FLG.ATCHREL table 119
FLG.CHECKPT table. 120
FLG.COMMENTS table 121
FLG.EXCHANGE table 123
FLG.HISTORY table 123
FLG.NAMEINST table 124
FLG.OBJTYREG table 125
FLG.OVERDESC table 126
FLG.PARMS table 127
FLG.PROGRAMS table 129

FLG.PROPERTY table 131
FLG.RELINST table 132
FLG.USERS table 133
FLG.WINICON table. 134
Information Catalog Manager metadata
models 135

Model for Information Catalog Manager
system tables 135
Logical metadata model. 139

Using SQL to access metadata 142

Chapter 8. Information Catalog Manager
object types 147
Default properties for all object types . . . 147

Default property summary. 148
Guidelines for extendible objects types 148

Predefined Information Catalog Manager
object types 151
Predefined object type models 154

Predefined object type descriptions . . . 158
Predefined program objects 211

Chapter 9. Tag language 215
Rules for writing tag language files 215
How the Information Catalog Manager reads
tag language files 216
Valid data types for Information Catalog
Manager descriptive data 217
How to read the tag language syntax
diagrams. 218
ACTION.OBJINST 218

Context 219
Syntax 219
Options 219

ACTION.OBJTYPE 223
Context 223
Syntax 223
Options 223

ACTION.RELATION. 227
Context 227
Syntax 227
Options 227

COMMENT. 228
Syntax 228
Rules 229

COMMIT 229
Context 229
Syntax 229
Keywords 230
Rules 230

iv Data Warehouse Center Application Integration Guide

DISKCNTL 230
Context 230
Syntax 230
Keywords 231
Rules 231

INSTANCE 231
Context 231
Syntax 231

NL. 236
Syntax 236
Rules 237

OBJECT 237
Context 237
Syntax 237

PROPERTY 242
Syntax 243
Context 243
Keywords 243
Rules 245

RELTYPE 246
Syntax 246
Context 246
Keywords 246

TAB 247
Syntax 247
Rules 248

Chapter 10. What a tag language file
should look like 249
Start your tag language file with DISKCNTL 249
Define your additions, changes, and
deletions 249

Defining what you want to do 249
Defining the information 249
Putting it all together 250

Committing changes to the database . . . 251
Putting comments in the tag language file 251

Part 3. Supplied program and
macro reference 253

Chapter 11. Supplied Data Warehouse
Center programs 255
VWPEXUNX 255

Parameters 255
Return codes 256
Log files 257

ISV_Sample 258

Chapter 12. Net.Data® macros 259
Information Catalog Manager for the Web
files 259

Part 4. Appendixes 265

Appendix A. Template planning
worksheet 267

Appendix B. Templates supported by
Visual Warehouse 5.2 279
BusinessView.tag 280

Tokens 280
Examples of values 284

BusinessViewInputTable.tag 285
Tokens 285
Examples of values 286

BusinessViewOutputTable.tag 286
Tokens 287
Examples of values 287

BusinessViewVWPOutputTable.tag 288
Tokens 288
Examples of values 289

ConcurrentCascade.tag 289
Tokens 289
Examples of values 290

PostCascade.tag 290
Tokens 290
Examples of values 291

VWPProgramInstance.tag 291
Tokens 291
Examples of values 292

Appendix C. Writing your own program to
use with the Data Warehouse Center . . 295
Passing parameters 296
Returning status information 297

Transferring the information to the Data
Warehouse Center 297
Format of the feedback file. 298
How the feedback determines the step
status 299

Notices 303
Trademarks 306

Bibliography 309

Index. 311

Contents v

Contacting IBM 319 Product Information 319

vi Data Warehouse Center Application Integration Guide

About this book

This book is designed to help developers of data warehousing solutions to
integrate their applications with the Data Warehouse Center and the
Information Catalog Manager. You can use this book to write programs that
transfer and transform an application’s metadata into a format that the Data
Warehouse Center and the Information Catalog Manager can use. You can also
use the information in this book to tailor the format of the Information
Catalog Manager.

Who should read this book

This book is intended for developers of data warehousing solutions who are
creating an automated interface between another company’s data warehousing
application and the Data Warehouse Center, the Information Catalog Manager,
or both.

You must have some information processing support experience, but might
need the assistance of other support personnel in the enterprise at times. You
must be familiar with the Data Warehouse Center and the Information
Catalog Manager before you use the integration features described in this
book. Specifically, you must know how to do the tasks listed in the following
table:

Task For more information, see:

Create an information catalog Information Catalog Manager Administration
Guide

Import and export metadata Information Catalog Manager Administration
Guide

Define a warehouse agent site Data Warehouse Center Administration Guide
and the Data Warehouse Center online
help

Create, promote, run, and monitor steps Data Warehouse Center Administration Guide
and the Data Warehouse Center online
help

Create Data Warehouse Center programs
and use them in a step

Data Warehouse Center Administration Guide
and the Data Warehouse Center online
help

Modify parameters for Data Warehouse
Center programs

Data Warehouse Center Administration Guide
and the Data Warehouse Center online
help

© Copyright IBM Corp. 1998, 2000 vii

Task For more information, see:

Import and export metadata Data Warehouse Center Administration Guide
and the Data Warehouse Center online
help

For a list of publications for the Data Warehouse Center and Information
Catalog Manager, see “Bibliography” on page 309.

viii Data Warehouse Center Application Integration Guide

Part 1. Integrating Applications

© Copyright IBM Corp. 1998, 2000 1

2 Data Warehouse Center Application Integration Guide

Chapter 1. Planning to integrate your applications

You can use the DB2 Universal Database™ Data Warehouse Center to bring
together various applications that help users build and manage a data
warehouse. You can identify the data that you want to manage and transform
that data into information that will be meaningful for warehouse users.

You can use the Data Warehouse Center to provide a variety of information
and services to other data warehousing applications, including:
v Providing metadata about source data and target data that is used in the

warehouse.
v Transforming data by issuing SQL or by running another warehousing

application.
v Scheduling extracts and transformations of data that is based on the date

and time or on an event.
v Publishing metadata for warehouse users to use.

When you integrate your applications with the Data Warehouse Center, you
provide a single point of control for warehouse administrators, while enabling
them to use the best warehousing applications.

How partner applications can work with the Data Warehouse Center and the
Information Catalog Manager

In this book, a partner application is an application that runs independently
from the Data Warehouse Center and provides some kind of support for a
data warehousing solution. You can define the application to the Data
Warehouse Center to include it in a warehouse-building process that can
include multiple applications.

For example, assume that you want to unload operational data from an IMS™

database, clean the data, and load the cleansed data into a DB2® warehouse
database. Users then query the cleansed data. You have three partner
applications:
v Partner application 1 unloads data from a database, performs simple

transformations, such as joining tables, and writes the transformed data to a
warehouse database.

v Partner application 2 cleans the data to prepare the data for the warehouse.

© Copyright IBM Corp. 1998, 2000 3

v Partner application 3 queries and reports on the data in the warehouse. It
contains metadata about the tables in the warehouse that users can search
for specific attributes. Users use the metadata to determine which tables
have the data that they need.

You use these three applications together in the following process:
1. Partner application 1 extracts data from multiple segments in a source IMS

database.
2. Partner application 1 joins the data from the source segments, and writes

the joined data to file 1.
3. Partner application 1 writes the joined data to file 1.
4. Partner application 2 reads the data from file 1.
5. Partner application 2 cleans the data by matching names and by using

other data cleansing techniques.
6. Partner application 2 writes the cleansed data to file 2.
7. Partner application 1 reads the data from file 2.
8. Partner application 1 writes the data to a warehouse database.
9. Partner application 3 displays the data in the warehouse or reports about

the data in the warehouse when users select tables to query.

Figure 1 on page 5 illustrates how the three partner applications work
together.

4 Data Warehouse Center Application Integration Guide

Managing partner applications
You can use Data Warehouse Center steps to manage the process. A step is a
single operation on data in a warehouse process. In most cases, a step
includes a warehouse source, the transformation, or movement of data, and a

Source database

Table 2Table 2

Table 1
Partner

application
1

File 1

Table 2 Partner
application

2

Target database

Table 2Table 3

Partner
application

3

Table 3

File 2

Table 2

Partner
application

1

Figure 1. Using partner applications together to build a warehouse

Chapter 1. Planning to integrate your applications 5

warehouse target. A step can be run according to a schedule, or it can cascade
from another step. You use steps to define and schedule each step in the
extraction, transformation, and writing of the data.

A basic step performs the following tasks:
v It extracts data from at least one table or file.
v It uses Data Warehouse Center SQL processing to transform the data, or

calls a program that transforms the data.
v It writes the transformed data to a table.

In the partner application example, you define three steps, one for each
source-to-target transformation:
v The Unload step performs tasks 1 through 3.
v The Clean step performs tasks 4 through 6.
v The Load step performs tasks 7 through 8.

Because Partner application 3 transforms data at user request in task 9, you
do not define a step for task 9.

In the definition of the step, you can schedule a date and time to run the step.
At that time, the Data Warehouse Center begins the process that the step
defines by issuing SQL statements or starting the program. You can also
specify that a second step is to start after the first step finishes processing.

You can schedule the first step to run at a particular date and time. You can
schedule the second step to start after the first step runs. You schedule the
third step to start after the second step runs. In this manner, you can
automate the process of running multiple partner applications.

Managing metadata
To define this process, you import partner metadata into the Data Warehouse
Center. In this book, partner metadata is metadata that partner applications use
and store outside of the Data Warehouse Center.

In the partner application example, you import the following metadata into
the Data Warehouse Center:
v From Partner application 1, metadata about the databases, File 1, and the

application
v From Partner application 2, metadata about File 2 and the application

You can then export the metadata about the files to the partner applications so
that both partner applications use the same information:
v You export metadata about File 2 to Partner application 1.
v You export metadata about File 1 to Partner application 2.

6 Data Warehouse Center Application Integration Guide

You can also export metadata from the Data Warehouse Center to the
Information Catalog Manager to provide information about the data in the
warehouse to users of the warehouse. You can import metadata for the
sources and targets, as well as the transformations of the data from its source
format to its target format. The users of your warehouse can obtain
information about the lineage of the data in the warehouse from the metadata
that you import.

In the partner application example, you export metadata about the table in the
warehouse, Table 3, to the Information Catalog Manager.

You can import metadata into the Information Catalog Manager directly from
the Data Warehouse Center. You can also import metadata into the
Information Catalog Manager if the partner applications support metadata in
MDIS format.

You can export metadata from the Information Catalog Manager to a partner
metadata store. In the partner application example, you export metadata
about Table 3 from the Information Catalog Manager to the metadata store for
Partner application 3. Users view the metadata for Table 3 to determine its
contents.

Figure 2 on page 8 shows the flow of metadata among the partner
applications, the Data Warehouse Center, and the Information Catalog
Manager.

Chapter 1. Planning to integrate your applications 7

The rest of this book covers these topics in more detail:
v For more information about importing metadata into the Data Warehouse

Center, see “Importing metadata into the Data Warehouse Center” on
page 13.

v For more information about exporting metadata from the Data Warehouse
Center, see “Exporting metadata from the Data Warehouse Center” on
page 35.

Partner 1
metadata store

Table 2

Table 1

Source
database

Partner
application

Data Warehouse Center
metadata store

Partner 2
metadata store

Table 2

Warehouse
database

Partner
application 2

Information
catalog

Table 3

Partner 3
metadata store

Table 3

Figure 2. The flow of metadata among the partner applications, the Data Warehouse Center, and
the Information Catalog Manager

8 Data Warehouse Center Application Integration Guide

v For more information about importing metadata into the Information
Catalog Manager, see “Importing metadata into an information catalog” on
page 39.

v For more information about exporting metadata from the Information
Catalog Manager, see “Exporting metadata from Information Catalog
Manager” on page 44.

Integration scenarios

Table 1 lists some common types of warehousing applications and describes
how you can integrate them with the Data Warehouse Center.

Table 1. Integration scenarios

Type of application Integration process

Data warehousing design To use data from data warehousing design applications in
the Data Warehouse Center:

1. Import metadata into the Data Warehouse Center.

2. Use metadata synchronization to propagate metadata
into the Information Catalog Manager.

Operational data
descriptions

Import metadata into the Data Warehouse Center and
business metadata into the Information Catalog Manager.

If the metadata is for source data that is included for
lineage only and not to define source tables or files, import
the metadata into the Information Catalog Manager directly.

Chapter 1. Planning to integrate your applications 9

Table 1. Integration scenarios (continued)

Type of application Integration process

Data cleansing To clean operational data:

1. Determine which application will manage the
movement of the source data and target data: the Data
Warehouse Center or the partner application.

Different applications can manage the source data and
the target data.

2. Import source and target definitions, or export source
and target definitions, or both. Do so to avoid typing
the definitions again.

3. Define the partner application as a Data Warehouse
Center program, or write a Data Warehouse Center
program that starts the partner application.

4. Develop a user interface that sets the partner
application parameters.

5. Import the metadata into the Data Warehouse Center so
that the Data Warehouse Center can run the data
cleansing application.

You can schedule programs by sequence as well as date
and time.

6. Import business metadata into the Information Catalog
Manager for use by users.

Alternate data storage
(such as DB2 OLAP
Server™)

To load operational data into alternate data storage:

1. From the Data Warehouse Center, export the data
definitions that are needed to build the partner storage.

2. Define the load programs as a Data Warehouse Center
program, or write a Data Warehouse Center program
that starts the load programs.

3. Develop a user interface that sets the partner
application parameters.

4. Import definitions of the load programs into the Data
Warehouse Center.

Use the load programs to synchronize the values in the
operational data store and in the partner data store.

5. Import business metadata for the partner data store into
the Information Catalog Manager.

10 Data Warehouse Center Application Integration Guide

Table 1. Integration scenarios (continued)

Type of application Integration process

Reporting (such as Brio
or Cognos)

To integrate reporting applications with the Data
Warehouse Center:

1. Export business metadata from the Information Catalog
Manager into the report application.

2. Import descriptions of the reports into the Information
Catalog Manager.

3. Enable starting of the report application from an
information catalog.

Hardware and software requirements

The models and templates that are described in this book require Data
Warehouse Center Version 7.1 which is available in the DB2 Universal
Database package, Information Catalog Manager Administrator Version 7.1
which is available in the Warehouse Manager package, and their prerequisite
products.

For information about the prerequisite products for the Data Warehouse
Center and the Information Catalog Manager, see the Quick Beginnings book
for your platform and the DB2 Warehouse Manager Installation Guide.

Chapter 1. Planning to integrate your applications 11

12 Data Warehouse Center Application Integration Guide

Chapter 2. Importing and exporting metadata

This chapter provides detailed information about how to import metadata
directly into, and export metadata directly from, the Data Warehouse Center.

Importing metadata into the Data Warehouse Center

You import metadata into the Data Warehouse Center so that the Data
Warehouse Center can extract and transform data for the warehouse or run
partner applications that extract and transform data.

Importing metadata into the Data Warehouse Center involves the following
tasks:
1. Build a tag language file (a file that contains the metadata for the objects to

import).
2. Import the tag language file.
3. Prepare the steps to run on your data warehouse.

Building the tag language file
To build the tag language file:
1. Select the objects for which to import metadata.
2. Define the metadata for each object by using the Data Warehouse Center

metadata templates. The Data Warehouse Center metadata templates are
subsets of the tag language file that include tokens to represent a partner
metadata value. Your program can search for the tokens and substitute
values for them without referring to the syntax of the tag language file.

Selecting objects for which to import metadata
You can import metadata for the following types of objects into the Data
Warehouse Center:

Agent sites

A warehouse agent performs the actual transfer of data between the
source database or file (warehouse source), and the target database
(warehouse target). It also performs any transformation of that data.
The warehouse agent receives commands from the warehouse server.
Then, the agent issues SQL commands, starts a partner application, or
starts a Data Warehouse Center program that starts a partner
application. A warehouse agent can also import table definitions.

© Copyright IBM Corp. 1998, 2000 13

An agent site is the machine on which an agent runs. The agent site
must have access to the machine that contains the source database
and the target database.

Warehouse sources and warehouse targets
A source database or source file is the database or file from which the
Data Warehouse Center or a partner application extracts data for
further processing. The generic term source means a database or a
group of one or more files. A source is associated with one or more
tables, files or segments. A table, file or segment is associated with
one or more columns or fields. A warehouse source is a subset of
tables and views from a single database, or a set of files, that have
been defined to the Data Warehouse Center.

A warehouse target or target file is the database or file to which the Data
Warehouse Center or a partner application writes the data after
processing it. The generic term target means a database or a group of
one or more files. A target is associated with one or more tables or
files. A table or file is associated with one or more columns or fields.
A warehouse target is a subset of tables, or a set of files, that are
managed by the Data Warehouse Center.

A warehouse target is the database that contains the warehouse that
users will use to run queries and reports.

Data Warehouse Center programs
A Data Warehouse Center program is a user-written or partner
application that performs some kind of data transformation. You
define the program to the Data Warehouse Center so that you can
schedule it to run and monitor its operations as part of a step. A Data
Warehouse Center program is generally associated with one or more
parameters. You can group related Data Warehouse Center programs
together by associating them with a Data Warehouse Center program
group.

Subject areas
You use a subject area to logically group the processes (and the steps,
warehouse sources, and warehouse targets within the processes) that
are related to a particular topic or function. For example, if you have
a series of processes that move and transform sales data, you create a
Sales subject area, and create the processes within the subject area.
Similarly, you group Marketing processes under a Marketing subject
area.

Processes
A process is a a series of steps, which commonly operates on source
data, that changes data from its original form into a form conducive

14 Data Warehouse Center Application Integration Guide

to decision support. A Data Warehouse Center process commonly
consists of one or more warehouse sources, one or more steps, and
one or more warehouse targets.

Steps A step is a single operation on data in a Data Warehouse Center
process. A process commonly consists of one or more warehouse
sources, one or more steps, and one or more warehouse targets. In
most cases, a step includes a warehouse source, a description of the
transformation or movement of data, and a warehouse target. You use
steps to define and schedule each step in the extraction,
transformation, and writing of the data. The metadata for a step
includes the source and target tables on which the Data Warehouse
Center or the partner application is to operate. It also includes the
SQL statements to issue or the program to start to perform the
transformation.

Cascade relationships between steps
A cascade relationship is a schedule for a step that is based on the
processing status of another step. You can schedule a step to run after
another step finishes running.

Relationships between Data Warehouse Center objects
The metadata for Data Warehouse Center objects describes
relationships to other objects. For example, the metadata for a step
describes relationships to the warehouse source and warehouse target
tables that the step uses.

Defining objects with the Data Warehouse Center metadata templates
To define objects that you want to import into the Data Warehouse Center,
you build a tag language file from one or more Data Warehouse Center
metadata templates.

Each template corresponds to an object, such as a table, or a subset of an
object, such as a column. You combine templates to define all the details about
an object. For example, if you want to define a source database, you combine
database, table, and column templates.

You must write a program that obtains values from the partner metadata store
and use these values to replace tokens in the template. This book calls this
type of program an interchange program.

Each template contains tokens for which your interchange program must
specify values. For example, the token *TableDescription represents the
description of a table. Your interchange program would search for
*TableDescription and change it to the string that contains the description of
the table specified in the relational catalog. For a DB2™ Universal Database
table, the description is in the REMARKS field of the syscat.tables table of the

Chapter 2. Importing and exporting metadata 15

system catalog. Because your interchange program replaces the tokens with a
value, you do not need to know the syntax of the underlying tag language
that identifies metadata in the file.

Installing the metadata templates: You can choose to install the templates
when you install the Application Development Client.

To install the templates:
1. Click Custom on the installation Setup Type window.
2. Click Data Warehouse ISV Toolkit.
3. Select the directory for the templates.

The default directory for the ISV Toolkit is x:\sqllib\templates. The Data
Warehouse Center sets the VWS_TEMPLATES environment variable to the
location of the ISV Toolkit. Your program can query the value of
VWS_TEMPLATES to locate the templates.

The Data Warehouse Center installs the files in subdirectories of the directory
that is set by VWS_TEMPLATES. Table 2 lists the types of files that are
installed and the subdirectories in which the files are installed.

Table 2. File types and subdirectories for templates

Type of file Subdirectory

Templates ISV

Samples Samples

Header files Include

Writing an interchange program: When you write an interchange program,
you need to:
v Include the header file.
v Copy and change the appropriate templates.
v Set checkpoints in each copy of a template.
v Append the changed copies of the templates to the tag language file.

You can also log processing messages in the same directory that the Data
Warehouse Center uses to log processing messages.

Including the ISV_defines.h header file: Use of the ISV_Defines.h header file
allows your program logic to stay the same even if the template’s tokens
change. You simply need to recompile your program.

Copying and changing templates: Your program must use the following
procedure to work with the templates:

16 Data Warehouse Center Application Integration Guide

1. Use the VWS_TEMPLATES environment variable to obtain the directory in
which the templates are stored. Append \ISV\ to the value to obtain the
complete path for the templates.

2. Read a copy of the templates locally into your program.
3. Search the templates for the tokens in the templates and replace the tokens

with the metadata from the partner application.
Use a search and replace methodology, rather than programming to the
format of the tag language file. Use of the tokens enables your program to
be independent of changes to the tag language that is used in the template
file.
In the templates, each token is enclosed in parentheses; the closing
parenthesis identifies the end of the value. Your program should substitute
values for only the token and not remove the parentheses.
Any string that is to replace a token value must follow the following rules:
v The string must not contain embedded tab characters.
v Any parenthesis in the string must be enclosed in single quotation

marks.
For example, if you want to replace the *DatabaseNotes token with the
value:
This is my database (managed by the Finance group).

You must change the value to:
This is my database '('managed by the Finance group')'.

If your interchange program does not have a value for a token, it should
replace the token with the constant ISV_DEFAULTVALUE (defined in
ISV_defines.h). However, you must specify a value other than
ISV_DEFAULTVALUE for any token that is required.

Because there is no template for security groups, your program must
specify the value ISV_DEFAULTSECURITYGROUP for any instances of the
*SecurityGroup token.

The templates use default values for Data Warehouse Center specific
metadata. For example, retry count and retry interval for warehouse
sources and warehouse targets are set to their Data Warehouse Center
default values.

Setting checkpoints: Each template contains a *CurrentCheckPointID++ token,
which you can use to track progress when you import the tag language file.
When your program sets values for the tokens, it should set the first
occurrence of *CurrentCheckPointID++ to 0. Your program should increase the
value of *CurrentCheckPointID++ by 1 each time it appears. The Data
Warehouse Center will write these checkpoints to the log file as the tag
language file is being imported.

Chapter 2. Importing and exporting metadata 17

Appending templates to the tag language file: Tables 3, 4, and 5 list the order in
which your program must append templates to the tag language file. They
also provide the conditions under which the template is required or optional.

Except for the header, you can define as many copies of each template as you
need. You must define only one copy of the header in each tag language file.

Table 3. Relationships between templates and conditions

Order Template Required or optional

1 HeaderInfo.tag Always required

2 AgentSite.tag Required if you do not use the
default agent site

3 VWPGroup.tag Required if you are defining Data
Warehouse Center programs

4 VWPProgramTemplate.tag Required if you are defining Data
Warehouse Center programs

5 VWPProgramTemplateParameter.tag Required if you are defining Data
Warehouse Center programs

6 SourceDataBase.tag

WarehouseDataBase.tag

Required if you are defining
warehouse sources or warehouse
targets

7 Table.tag Required if you are defining
warehouse sources or warehouse
targets

8 Column.tag Required if you are defining
warehouse sources or warehouse
targets

After you append the Column.tag template to the tag language file, the series
of templates and the order in which the templates are appended to the tag
language file depend on whether you want to define a step or a star schema.

If you are defining a step, append the following templates to the tag language
file in the order shown in Table 4.

Table 4. Relationships between templates and conditions when defining a step

Order Template Required or optional

9 SubjectArea.tag Required if you are defining steps.

10 Process.tag Required if you are defining steps.

18 Data Warehouse Center Application Integration Guide

Table 4. Relationships between templates and conditions when defining a
step (continued)

11 Step.tag Required if you are generating SQL
transformations between source and
target data or defining programs
that the Data Warehouse Center is
to execute.

12 StepInputTable.tag Required if you are defining a step
of type:

ISV_StepType_Editioned_Append

ISV_StepType_Full_Replace

ISV_StepType_Uneditioned_Append

Optional if you are defining a step
of type:

ISV_StepType_VWP_Population

13 StepOutputTable.tag Required if you are defining a step
of type:

ISV_StepType_Editioned_Append

ISV_StepType_Full_Replace

ISV_StepType_Uneditioned_Append

StepOutputTable cannot be used for
steps of type:

ISV_StepType_VWP_Population

14 StepVWPOutputTable.tag Optionalif you are defining a step
of type:

ISV_StepType_VWP_Population

15 StepCascade.tag Required in order to link steps in a
cascaded relationship

16 StepVWPProgramInstance.tag Required if the step uses a Data
Warehouse Center program

17 VWPProgramInstanceParameter.tag Required if the step uses a Data
Warehouse Center program which
expects parameters to be passed
and has parameters.

Chapter 2. Importing and exporting metadata 19

If you are defining a star schema, append the following templates to the tag
language file in the order shown in Table 5.

Table 5. Relationships between templates and conditions for defining a star schema

Order Template Required or optional

9 StarSchema.tag Required if you are defining a star
schema.

10 StarSchemaInputTable.tag Required if you are defining a star
schema.

For detailed information about these templates, see “Chapter 5. Metadata
templates” on page 53.

Logging processing messages: Your interchange program can write log
processing messages or trace files to the directory that the VWS_LOGGING
environment variable specifies. The Data Warehouse Center uses this directory
for its log files and its trace files.

Defining the header for the tag language file: To define the objects that a
tag language file can contain, you must define the header.

To define the header:
1. Copy the applicable template.
2. Substitute actual values for tokens.

Copying templates: Your program must copy and change the HeaderInfo.tag
template file.

Substituting values: Your program must supply the following values:
v The default security group, ISV_DEFAULTSECURITYGROUP
v The value of the CurrentCheckPointID++ token for the metadata for the

header

For information about the tokens in the template, see “HeaderInfo.tag” on
page 63.

Program logic: Figure 3 on page 21 is a pseudocode example of the logic that
your program can use to build the header portion of the tag language file.

20 Data Warehouse Center Application Integration Guide

The ISV_Sample program provides an example of the header portion of the
tag language file. You can find the source code for the program in the
Samples subdirectory of the directory that is set by the VWS_TEMPLATES
environment variable.

Defining agent sites
You can use one of the following agent site types:
v An agent site that is already defined in the warehouse control database.

To use an existing agent site, replace all occurrences of the *AgentSite token
with the agent site name.

v The default agent site.
To use the default agent site, replace all occurrences of the *AgentSite token
with ISV_DEFAULTAGENTSITE.

v A new agent site that you define using the AgentSite template.
To define a new agent site, specify values for the tokens in the AgentSite
template. Replace all occurrences of the *AgentSite token with the name of
the new agent site.

To define a new agent site:
1. Copy the applicable template.
2. Substitute actual values for tokens.

Copying templates: Your program must copy and change the AgentSite.tag
template file. The AgentSite.tag template requires the HeaderInfo.tag template
as a prerequisite.

Substituting values: To define a new agent site, your program must obtain
metadata about the workstation on which the warehouse agent is installed.
Your program must substitute the values that it obtains for the appropriate
tokens in the template.

Program logic: Figure 4 on page 22 shows a pseudocode example of the logic
your program can use to add a new agent site to the tag language file.

Initialize native metadata environment (need to include ISV_defines.h)
Read a copy of the HeaderInfo.tag template (from the templates directory)
Search for and replace tokens with the metadata from your native metadata

store (or defaults)
Write the output to a target file

Figure 3. Pseudocode for adding the header to the tag language file

Chapter 2. Importing and exporting metadata 21

The ISV_Sample program provides an example of adding an agent site that is
specific to a partner tool to the tag language file. You can find the source code
for the program in the Samples subdirectory of the directory that is set by the
VWS_TEMPLATES environment variable.

Defining sources and targets
You define sources if you want the Data Warehouse Center or a partner
application to read data from those sources. Similarly, you define targets if
you want the Data Warehouse Center or a partner application to write data to
those targets. You must define any sources and targets that are used, except
under the following conditions:
v The source or target is already in the warehouse control database.
v You are using only the steps that use Data Warehouse Center programs.

To define sources and targets:
1. Copy the applicable templates.
2. Substitute actual values for tokens.

Copying templates: You can define the following types of source objects:
v Relational databases
v IMS databases
v File systems
v Files

You can define relational databases as target objects.

Tables 6 and 7 list the templates that your program must copy and change to
define each type of source and target object.

Relational tables: Table 6 on page 23 lists the templates that your program
must copy to define a relational database.

If the ISV wants to create an AgentSite specific to the ISV:
Read a copy of the AgentSite.tag template from the template directory
Search for and replace tokens with the metadata from your native

metadata store (or defaults)
Append the output to a target file

Else
Set AgentSite token to default agentsite value

Figure 4. Pseudocode example of modifying the AgentSite.tag template

22 Data Warehouse Center Application Integration Guide

Table 6. Templates for relational source and target definitions

Source or target
definition

Number of copies
of template Template to copy Prerequisite template

Database One copy for each
database you want
to use

SourceDataBase.tag (see page
78)

WarehouseDataBase.tag (see
page 98)

HeaderInfo.tag (see page 63)

AgentSite.tag (see page 55) if
you are not using the default
agent

Table One copy for each
table that you want
to define in the
database

Table.tag (see page 83) SourceDataBase.tag (see page
78)

WarehouseDataBase.tag (see
page 98)

Column One copy for each
column that you
want to define in
each table

Column.tag (see page 57) Table.tag (see page 83)

You relate the templates for the tables to the template for the database by
specifying common values in the templates. Similarly, you relate templates for
the columns to the template for the table by specifying common values in the
templates.

Figure 5 shows the relationship between the database, table, and column
templates. The 1 to m notation indicates a one to many relationship, where
many is inclusive of zero.

IMS databases: Table 7 lists the templates that your program must copy to
define an IMS database. You must use the Data Warehouse Center ODBC
drivers to access these IMS objects.

Table 7. Templates for IMS source definitions

Source or target
definition

Number of copies
of template Template to copy Prerequisite template

Database One copy for each
database you want
to use

SourceDataBase.tag (see page
78)

HeaderInfo.tag (see page 63)

AgentSite.tag (see page 55) if
you are not using the default
agent

AgentSite.tag
(or default agent)

SourceDataBase.tag
WarehouseDataBase.tag

m m
Table.tag1 m Column.tag1 m

Figure 5. Relationship between the DataBase.tag, Table.tag, and Column.tag templates

Chapter 2. Importing and exporting metadata 23

Table 7. Templates for IMS source definitions (continued)

Source or target
definition

Number of copies
of template Template to copy Prerequisite template

Segment One copy for each
segment that you
want to use in the
database

Table.tag (see page 83) SourceDataBase.tag (see page
78)

Field One copy for each
field that you want
to use in each
segment

Column.tag (see page 57) Table.tag (see page 83)

You define relationships between the templates for the database, segments,
and fields in the same manner that you define relationships for tables. (See
Figure 5 on page 23.)

Files: Table 7 on page 23 lists the templates that your program must copy to
define either a file system and its associated files, or a single file.

Table 8. Templates for file systems or a single file

Source or target
definition

Number of copies
of template Template to copy Prerequisite template

File system One copy for each
file system

SourceDataBase.tag (see page
78)

HeaderInfo.tag (see page 63)

AgentSite.tag (see page 55) if
you are not using the default
agent

File One copy for each
file that you want
to use in the file
system

Table.tag (see page 83) SourceDataBase.tag (see page
78)

Field One copy for each
field that you want
to use in each file

Column.tag (see page 57) Table.tag (see page 83)

You define relationships between the templates for the file system, files, and
fields in the same manner that you define relationships for tables. (See
Figure 5 on page 23.)

Substituting values: Your program must obtain values that describe
databases or files from the partner metadata store. Your program must
substitute the values that it obtains for the appropriate tokens in the template.

24 Data Warehouse Center Application Integration Guide

Databases: Your program must supply the following metadata about the
source databases or the target databases:
v The source databases to define or the target databases to define
v The machines on which the databases reside
v The tables in each database to define
v The columns in each table to define

Files: Your program must supply the following metadata about the source
files:
v The file system that contains the files
v The source files to define or target files to define
v The machines on which the files reside
v The fields in each file to define

Program logic: Figure 6 shows a pseudocode example of the logic that your
program can use to create or update data resources for source or target
definitions.

The ISV_Sample program provides an example of creating or updating data
sources for source or target definitions. You can find the source code for the
program in the Samples subdirectory of the directory that is set by the
VWS_TEMPLATES environment variable.

For each source or target to be defined:
Read a copy of the SourceDatabase.tag or WarehouseDatabase.tag template
Search for and replace tokens with the metadata from your native metadata source

(or defaults)
Append the output to a target file

For each table, file, or segment that is to be defined:
Read a copy of the Table.tag template
Search for and replace tokens with the metadata from your native metadata source

(or defaults)
Append the output to a target file

For each column or field that the table contains:
Read a copy of the Column.tag template
Search for and replace tokens with the metadata from your native metadata source

(or defaults)
Append the output to a target file

End (for each column)
End (for each table)

End (for each source or target data source)

Figure 6. Pseudocode for creating or updating data resources for source and target definitions. Use this logic for each
source or target definition that you want to create or update.

Chapter 2. Importing and exporting metadata 25

Defining Data Warehouse Center programs
If you want the Data Warehouse Center to schedule and run a partner
application, you must first define the application as a Data Warehouse Center
program. Then you can schedule and run the program by using it in one or
more steps.

If your tag language file is to contain Data Warehouse Center programs, you
must define the following objects, in order:
1. One or more program groups to contain the Data Warehouse Center

programs.
2. One or more Data Warehouse Center program templates, which provide

the base definition of the program to the Data Warehouse Center.
3. One or more Data Warehouse Center program template parameters, which

provide the default parameters that the Data Warehouse Center passes to
the program.
You can change the parameters that are used in a particular step by
defining an instance of the program parameters for the step. For more
information about using a Data Warehouse Center program in a step, see
“Defining steps” on page 28.

For information about writing a program for use with the Data Warehouse
Center, see “Appendix C. Writing your own program to use with the Data
Warehouse Center” on page 295.

To define a Data Warehouse Center program:
1. Copy the applicable template.
2. Substitute actual values for tokens.

Copying templates: Table 9 lists the templates that your program must copy
and change to define Data Warehouse Center programs.

Table 9. Templates for Data Warehouse Center programs

Definition

Number of
copies of
template Template to copy Prerequisite template

Data
Warehouse
Center program
group

One copy for
each program
group to
define

VWPGroup.tag (see page 89) HeaderInfo.tag (see page 63)

26 Data Warehouse Center Application Integration Guide

Table 9. Templates for Data Warehouse Center programs (continued)

Definition

Number of
copies of
template Template to copy Prerequisite template

Data
Warehouse
Center program
template

One copy for
each Data
Warehouse
Center
program in
the program
group

VWPProgramTemplate.tag (see page
93)

VWPGroup.tag (see page 89)

Data
Warehouse
Center program
template
parameter

One copy for
each
parameter
passed to
theData
Warehouse
Center
program

VWPProgramTemplateParameter.tag
(see page 95)

VWPProgramTemplate.tag (see
page 93)

You relate the templates for the Data Warehouse Center program group to the
template for the Data Warehouse Center program by specifying common
values in the templates. Similarly, you relate templates for the parameters to
the template for the Data Warehouse Center program by specifying common
values in the templates.

Figure 7 shows the relationship between the Data Warehouse Center program
group, the Data Warehouse Center program, and the Data Warehouse Center
program parameters.

For information about relating a Data Warehouse Center program to a step,
see “Defining steps” on page 28.

Substituting values: Your program must obtain values that describe the Data
Warehouse Center programs from the partner metadata store:

VWPGroup.tag VWPProgramTemplate.tag1 m VWPProgramTemplateParameter.tag1 m

StepVWPProgramInstance.tag

1

m

VWPProgramInstanceParameter.tag1 m

Figure 7. Relationship between the VWPGroup.tag, VWPProgramTemplate.tag, and
VWPProgramTemplateParameter.tag templates

Chapter 2. Importing and exporting metadata 27

v The Data Warehouse Center program groups to define
v The Data Warehouse Center programs to define
v The parameters in each Data Warehouse Center program to define

Your program must substitute the values that it obtains for the appropriate
tokens in the templates.

Program logic: Figure 8 shows a pseudocode example of the logic that your
program can use to define applications that will be managed and run by the
Data Warehouse Center.

The ISV_Sample program provides an example of adding Data Warehouse
Center programs to the tag language file. You can find the source code for the
program in the Samples subdirectory of the directory that is set by the
VWS_TEMPLATES environment variable.

Defining steps
A step is a single operation on data in a warehouse process. In most cases, a
step includes a warehouse source, a transformation or movement of data, and
a warehouse target. A step can be run according to a schedule, or it can
cascade from another step. You use steps to define and schedule each step in
the extraction, transformation, and writing of the data. You must define a step
for each part of the transformation process that you want the Data Warehouse
Center to manage. Use the information in this section to determine how to
define your steps, rather than the information in the Data Warehouse Center
online help. The templates require different relationships from steps that are
defined using the user interface.

Read a copy of the VWPGroup.tag template
Search for and replace tokens with the metadata from your native metadata store

(or defaults)
Append the output to a target file

For each application that is to be managed by the Data Warehouse Center:
Read a copy of the VWPProgramTemplate.tag template
Search for and replace tokens with the metadata from your native metadata store

(or defaults)
Append the output to a target file

For each parameter the application needs passed:
Read a copy of the VWPProgramTemplateParameter.tag template
Search for and replace tokens with the metadata from your native metadata store

(or defaults)
Append the output to a target file

End (for each parameter)
End (for each application)

Figure 8. Pseudocode for defining Data Warehouse Center programs

28 Data Warehouse Center Application Integration Guide

You must define a subject area for the steps. You can use subject areas to
group steps that use a particular partner application.

If your tag language file contains steps, you must define the following objects,
in order:
1. One or more subject areas to contain the proceses.
2. One or more processes to contain steps.
3. One or more steps.
4. For each step, a relationship to one or more source tables and a target

table if the step uses SQL to do the source-target mapping. If the step uses
a Data Warehouse Center program, the source tables and target table are
optional.

5. If the step uses a Data Warehouse Center program:
a. An instance of the Data Warehouse Center program.
b. The parameters associated with the Data Warehouse Center program.
c. Optionally, the output table for the Data Warehouse Center program.

To define steps:
1. Copy the applicable template.
2. Substitute actual values for tokens.

Copying templates: Table 10 lists the templates that your program must copy
and change to define steps.

Table 10. Templates for steps

Definition Number of
copies of
template Template to copy Prerequisite template

Subject area One copy for
each subject
area

SubjectArea.tag (see page 82) HeaderInfo.tag (see page 63)

AgentSite.tag (see page 55) if you
are not using the default agent

Process One copy for
each process

Process.tag (see page 63) SubjectArea.tag(see page 82)

Step One copy for
each step

Step.tag (see page 68) SubjectArea.tag (see page 82)

Process.tag (see page 63)

Source table
for the step

One copy for
each source
table for the
step

StepInputTable.tag (see page 73) Table.tag (see page 83)

Step.tag (see page 68)

Process.tag (see page 63)

Chapter 2. Importing and exporting metadata 29

Table 10. Templates for steps (continued)

Definition Number of
copies of
template Template to copy Prerequisite template

Target table
for the step

One copy if
the step has a
target table

StepOutputTable.tag (see page 74) Table.tag (see page 83)

Step.tag (see page 68)

Process.tag (see page 63)

Target table
for a step
which uses a
Data
Warehouse
Center
program

One copy to
document
each target
table updated
by the
program

StepOutputTable.tag(see page 74) Table.tag (see page 83)

Step.tag (see page 68)

Data
Warehouse
Center
program
instance

One copy if
the step uses
a Data
Warehouse
Center
program

StepVWPProgramInstance.tag(see
page 77)

VWPProgramTemplate.tag (see
page 93)

Step.tag (see page 68)

Data
Warehouse
Center
program
instance
parameters

One copy for
each
parameter
used in the
step

VWPProgramInstanceParameter.tag
(see page 90)

StepVWPProgramInstance.tag(see
page 77)

You relate the templates for the subject area to the templates for the process
by specifying common values in the templates. Similarly, you relate templates
for the steps to the templates for input tables and output tables by specifying
common values in the templates. You can also relate the template for the step
to a template for the program instance by specifying common values in the
templates.

Figure 9 on page 31 shows the relationship between the subject area, step,
stepinput table, stepoutput table, stepVWP program instance, and the VWP
program instance parameter tags.

30 Data Warehouse Center Application Integration Guide

Substituting values: Your program must obtain values that describe the
subject areas and steps from the partner metadata store:
v The subject areas to contain the process which contains the steps
v The steps to define
v The source tables for each step
v The target table for each step, if applicable
v The Data Warehouse Center program and parameters for the step, if

applicable

Your program must substitute the values that it obtains for the appropriate
tokens in the templates.

Program logic: Figure 10 on page 32 shows pseudocode of the logic that your
program can use to define steps in the tag language file.

SubjectArea.tag Step.tag
m m

StepInputTable.tag1

StepVWPProgramInstance.tag

StepOutputTable.tag StepVWPOutputTable.tag

VWPProgramInstanceParameter.tag

1

1

1

1

1

1

m

m

m

Figure 9. Relationship between the SubjectArea.tag, Process.tag, Step.tag, StepInputTable.tag,
StepOutputTable.tag, StepVWPOutputTable.tag,StepVWPProgramInstance.tag, and
VWPProgramInstanceParameter.tag templates. See Figure 7 on page 27 to see how the Data
Warehouse Center program instance templates relate to the other Data Warehouse Center
program templates.

Chapter 2. Importing and exporting metadata 31

The ISV_Sample program provides an example of adding steps to the tag
language file. You can find the source code for the program in the Samples
subdirectory of the directory that is set by the VWS_TEMPLATES environment
variable.

Defining cascading steps
In your tag language file, you can specify that steps start other steps:

Read a copy of the SubjectArea.tag template
Search for and replace tokens with the metadata from your native metadata store (or defaults)
Append the output to a target file
Read a copy of the process

For each step to be defined:
Read a copy of the Step.tag template
Search for and replace tokens with the metadata from your native metadata store
(or defaults)

Append the output to a target file
If the step is to execute your application:

Read a copy of the StepVWPProgramInstance.tag template
Search for and replace tokens with the metadata from your native metadata store

(or defaults)
Append the output to a target file
For each parameter that your application needs:

Read a copy of the VWPProgramInstanceParameter.tag template
Search for and replace tokens with the metadata from your native metadata store

(or defaults)
Append the output to a target file

End (for each parameter)

If the step is to be related to its VWP output target data:
Read a copy of the StepVWPOutputTable.tag template
Search for and replace tokens with the metadata from your native metadata store

(or defaults)
Append the output to a target file

End (step relation to its output)
End (if step to execute your application)

If the step is to be related to its input source data:
Read a copy of the StepInputTable.tag template
Search for and replace tokens with the metadata from your native metadata store
(or defaults)
Append the output to a target file

End (step relation to its source)
If the step is to be related to its output target data:

Read a copy of the StepOutputTable.tag template
Search for and replace tokens with the metadata from your native metadata store
(or defaults)
Append the output to a target file

End (step relation to its target)
End (for each step)

Figure 10. Pseudocode for defining steps in the tag language file

32 Data Warehouse Center Application Integration Guide

v You can specify that one step starts after another step successfully finishes
processing by defining a post-processing cascade relationship.

To define the cascading steps:
1. Copy the applicable template.
2. Substitute actual values for tokens.

Copying templates: Table 11 lists the templates that your program must copy
and change to define cascade relationships.

Table 11. Templates for cascade relationships

Definition
Number of copies of
template Template to copy Prerequisite template

Step cascade relationship One copy for each
relationship

“StepCascade.tag” on
page 72

“StepCascade.tag” on
page 72

Substituting values: Your program must supply the name of a step and the
name of another step to:
v Start after the first step.

Your program must substitute the values it obtains for the appropriate tokens
in the templates.

Program logic: Figure 11 shows pseudocode of the logic that your program
can use if you want your application to relate two steps together so that one
step starts at the completion of another step.

The ISV_Sample program provides an example of how to relate steps for
cascaded processing in the tag language file. You can find the source code for
the program in the Samples subdirectory of the directory that is set by the
VWS_TEMPLATES environment variable.

Importing metadata from the tag language file
You can import metadata from the tag language file by using a command
window or the user interface. This section describes how to use the command
window. For information about using the user interface, see the Data
Warehouse Center online help.

Read a copy of the StepCascade.tag template
Search for and replace tokens with the metadata from your native metadata store

(or defaults)
Append the output to a target file
End (relate steps for cascaded processing)

Figure 11. Pseudocode for relating steps for cascaded processing

Chapter 2. Importing and exporting metadata 33

To import a tag language file, enter the following command at a DOS
command prompt:
iwh2imp2 tag-filename log-pathname target-control-db userid password

[PREFIX = schema]

tag-filename
The full path and file name of the tag language file.

log-pathname
The fully qualified path name of the log file.

target-control-db
The name of the warehouse control database that is the target
database for the import.

userid The user ID to use to access the warehouse control database.

password
The password to use to access the warehouse control database.

[PREFIX = schema]
The table qualifier for the metadata tables.

If a prefix is not specified, the default value is IWH.

To get help for the import command parameters, enter the command only.

When the import utility imports metadata from a tag language file, it creates a
log file with:
v The same file name as the tag language file.
v A file extension of LOG.

The import process records the return code and the last completed checkpoint
at the end of the log file.

You can also code the return code into your interchange program by using the
system() call or the rexec() call. The call to use depends on the operating
system on which your program is running.

For more information about importing metadata into the Data Warehouse
Center, see the Data Warehouse Center Administration Guide.

Preparing the steps to run
After you import the metadata into the Data Warehouse Center, you must
complete the following procedure to set up an automated process for your
warehouse:
1. Specify passwords for the following objects:

v Any agent sites that you imported

34 Data Warehouse Center Application Integration Guide

v Any warehouse sources or warehouse targets (sources and targets) that
you imported

2. For SQL steps, if the source tables or files map directly to the target table,
map the source columns to the target columns.

3. After the objects are created in the Data Warehouse Center, define specific
date and time schedules for the steps using the Data Warehouse Center.
You can also define cascade relationships if you did not do so in the tag
language file.

4. Promote the steps to test mode.
5. To test the steps, run them by selecting them in the Run New Step

window.
If you need to make changes:
a. Demote the steps to development mode if necessary.
b. Make the changes.
c. Promote the steps to test mode again.

Be sure to update your program to account for these changes.
6. Promote the steps to production mode to activate their schedules.

Your steps will now run on an automated schedule.

Exporting metadata from the Data Warehouse Center

You export metadata from the Data Warehouse Center if you want your
partner application to operate on data sources or targets that are defined in
the Data Warehouse Center.

Exporting metadata from the Data Warehouse Center involves the following
procedures:
1. Select the objects for which to export metadata.
2. Export the metadata to a tag language file.

Selecting objects for which to export metadata
Most Data Warehouse Center objects are specific to the Data Warehouse
Center. However, you can use metadata about databases, tables, and columns
to define source and target databases for partner applications. You can use
this capability to share source and target information between partner
applications that transform data for the same warehouse.

For example, one partner tool might unload data from a database into a target
file. Another partner tool might use the file as a source file and:
v Read data from that file.
v Transform the data.
v Write the data to another data file.

Chapter 2. Importing and exporting metadata 35

A third partner tool might read the data from the file and load it into a target
database. If you export the metadata for the databases and files from the Data
Warehouse Center, you can make sure that all the partner tools are using the
same data definitions.

To define source databases, export one or more warehouse sources (all tables
and columns are included automatically). To define a target database, export a
warehouse target (all tables and columns are included automatically).

When you export the objects, the Data Warehouse Center writes the objects in
a file, using tag language format. For information about the tags that are used
to identify metadata for source databases and target databases, see “Chapter 6.
Data Warehouse Center metadata” on page 103. For the syntax and structure
of a tag language file, see “Chapter 9. Tag language” on page 215 and
“Chapter 10. What a tag language file should look like” on page 249.

Table 12 shows the mapping between the logical Data Warehouse Center
objects and the tag language object that represents the logical object.

Table 12. Logical objects for source and target databases

Data Warehouse
Center logical
object

Object in tag language
file

Description See:

Warehouse Source DATABASE Source database or
file

“DATABASE
object” on
page 103

Warehouse Target DATABASE Target database or
file

“DATABASE
object” on
page 103

Table TABLES Table, file, or
segment in source
or target database

“TABLES object”
on page 108

Column COLUMN Column or field in
table or field in file

“COLUMN
object” on
page 114

Exporting metadata into a tag language file
You can use the Data Warehouse Center user interface or a command window
to export metadata from the Data Warehouse Center. This section covers how
to use the command window. For information about using the user interface,
see the Data Warehouse Center online help and the Data Warehouse Center
Administration Guide.

First, you create an .INP file with the list of warehouse sources and
warehouse targets that you want to export. For example:

36 Data Warehouse Center Application Integration Guide

<IR>
LOG_STAT_IR
LOG_STAT_REP

LOG_STAT_IR is a warehouse source, and LOG_STAT_REP is a warehouse
target. The Data Warehouse Center automatically exports the tables and
columns that are associated with LOG_STAT_IR and LOG_STAT_REP.

Then, to export the tag language file, enter the following command at a DOS
command prompt:
iwh2exp2 INPfilename controlDBname userid password [PREFIX = schema]

INPfilename
The full path and file name of the .INP file.

Create this file in a read/write directory because the Data Warehouse
Center will write the tag language file in this directory. The Data
Warehouse Center names the tag language file INPfilename.TAG.

controlDBname
The name of the control database.

userID The user ID required to access the control database.

password
The password that is required to access the control database.

[PREFIX = schema]
The table qualifier for the metadata tables.

If a prefix is not specified, the default value is IWH.

For more information about exporting metadata from the Data Warehouse
Center, see the Data Warehouse Center Administration Guide.

The import formats and the export formats are release-dependent. You cannot
use exported files from a previous release to migrate from one release of the
Data Warehouse Center to another. For more information on migration, see
the Quick Beginnings book for your platform.

Chapter 2. Importing and exporting metadata 37

38 Data Warehouse Center Application Integration Guide

Chapter 3. Importing and exporting metadata with the
Information Catalog Manager

This chapter provides detailed information about how to import metadata
directly into, and export metadata directly from, the Information Catalog
Manager.

Importing metadata into an information catalog

You can import metadata from the Data Warehouse Center to provide
information about the data in a warehouse for the users of the warehouse.
You can import metadata from partner applications that also provide some
cataloging facilities.

Import metadata into the Information Catalog Manager involves the following
tasks:
1. Select the types of metadata to import.
2. Import the metadata into the Information Catalog Manager.

Selecting metadata to import
When you import metadata into an information catalog, you can import the
tag language in two formats:
v A format that is used by both the Information Catalog Manager and the

Data Warehouse Center
v A format that conforms to MDIS.

Importing metadata from a tag language file
You can import metadata from tag language files that are in MDIS format or
in the format used by the Information Catalog Manager and the Data
Warehouse Center. See “Chapter 8. Information Catalog Manager object types”
on page 147 for mappings of the Information Catalog Manager object types to
MDIS names. For more information on MDIS tag language format, visit the
Meta Data Coalition’s Web site at http://www.MDCinfo.com.

If you are using MDIS with other products and Visual Warehouse 3.1, see the
note in “Exporting tag language files” on page 45.

If you want to convert MDIS tag language into an Information Catalog
Manager tag language file, see Information Catalog Manager Administration
Guide.

© Copyright IBM Corp. 1998, 2000 39

Importing MDIS-conforming tag language files
To import an MDIS tag language file directly into your information catalog,
enter the Information Catalog Manager command from a an MS-DOS
command prompt. Adhere to the following rules for the command syntax:
v All the parts, except where specified, are case-insensitive.
v Either a slash (/) or a hyphen must precede each keyword (-).
v All keywords that follow the DGUIDE command are required. All

keywords that follow the /MDIS_IMPORT keyword are required.
v Underlined choices are defaults.

For example, to import MDIS metadata into your information catalog, type
the following command (do not enter a line break):
DGUIDE /USERID longods /PASSWORD secret /DGNAME ICMSAMP /ADMIN
/MDIS_IMPORT c:\mdis.tag /LOGFILE c:\mdis.log

/ADMIN
Specifies that you are logging on as an administrator. You must log on as
an administrator to import metadata.

/DGNAME
Your information catalog name.

If the information catalog is local, specify the database name. If the
information catalog is remote, specify the alias under which it was
cataloged.

Example:
/DGNAME ICMSAMP

/LOGFILE
This parameter is required.

Specifies the file destination for messages that the Information Catalog
Manager generates during MDIS import or MDIS export. Unless you
specify a full drive, path, and file name, the Information Catalog Manager
places the file in the path specified on the DGWPATH environment
variable. You must specify a fixed drive.

Example:
/LOGFILE d:\tagfile.log

/MDIS_IMPORT
Imports the MDIS-conforming tag language file that you specify. Unless

DGUIDE /USERID userid /PASSWORD password /DGNAME dgname /MDIS_IMPORT filename
/LOGFILE filename name/ADMIN

Optional keywords:

/TRACE 0|1|2|3|4

40 Data Warehouse Center Application Integration Guide

you specify the full drive, path, and file name, the Information Catalog
Manager assumes that the file is in the path specified on the DGWPATH
environment variable.

Example:
/MDIS_IMPORT d:\tagfile.tag

The information catalog into which you import MDIS metadata must
include, but is not limited to, valid MDIS object type definitions.

/PASSWORD
Your password for this user ID.

Example:
/PASSWORD secret

Passwords are case-sensitive for accessing databases on the following
operating systems, you must type them exactly as specified.
v AIX
v Windows NT and Windows 2000
v Solaris Operating Environment

/TRACE
The level of trace information to send to the Information Catalog Manager
trace file. Each higher level includes the functions of the levels below it
(for example 3 includes the functions of levels 0, 1, 2, and 3). You might
need to specify a higher level if you call IBM Software Support to
diagnose the Information Catalog Manager problems.

0 The default. Includes all messages and warning, error, and severe
error conditions.

1 Includes entry and exit records of the highest level Information
Catalog Manager functions.

2 Includes extremely granular entry and exit records of the
Information Catalog Manager functions.

3 Includes input and output parameters (that exclude input or
output structures).

4 Includes all input or output structures that are passed to and used
by the Information Catalog Manager.

/USERID
Your information catalog user ID. Type the user ID required by the
database where the information catalog resides. For example, the user ID
might be your local, LAN, AS/400, AIX, or OS/390 TSO user ID.

Example:

Chapter 3. Importing and exporting metadata with the Information Catalog Manager 41

/USERID longods

Importing a tag language file from the command line
Use the DGUIDE command to open an information catalog and import a tag
language file from an MS-DOS command prompt. When you use the DGUIDE
command, keep in mind the following rules for the command syntax:
v None of the parts, except where specified, are case sensitive.
v Each keyword must be preceded by either a slash (/) or hyphen (-)

character.
v All keywords that follow /IMPORT as shown in Figure 12 are required if

you choose to import.
v Underlined choices are defaults.

The following example shows the required parameters you specify to open
the sample information catalog as an administrator.
DGUIDE /USERID longods /PASSWORD secret /DGNAME ICMSAMP /ADMIN

The following list shows the parameters you can add to the DGUIDE
command. Optional and required keywords for importing a tag language file
are noted.

/ADMIN
Specifies that you are logging on as an administrator. If you do not
specify this optional keyword for the DGUIDE command, you are logged
on as a user, and you cannot perform administrator tasks.

/DGNAME
Your information catalog name.

If the information catalog is local, give the database name. If the
information catalog is remote, give the alias under which it was cataloged.

Example:
/DGNAME ICMSAMP

DGUIDE /USERID userid /PASSWORD password /DGNAME dgname

Optional keywords:

/ADMIN
/TRACE 0|1|2|3|4
/IMPORT filename /LOGFILE filename /RESTART B|C

Optional import keyword:

/ICOPATH iconpath

Figure 12. DGUIDE command parameters for opening an î and importing metadata

42 Data Warehouse Center Application Integration Guide

/ICOPATH
Valid only with /IMPORT; optional.

Indicates that you are importing icons and specifies the icon path that the
import function will use. The Information Catalog Manager assumes that
the path is the same as the one where you installed the Information
Catalog Manager unless you specify a full drive and path. You must
specify a fixed drive.

Example:
/ICOPATH d:\icons\

/IMPORT
Imports the tag language file you specify. Unless you specify the full
drive, path, and file name, the Information Catalog Manager assumes that
the file is in the path specified on the DGWPATH environment variable.

Example:
/IMPORT d:\tagfile.tag

This keyword bypasses the Information Catalog Manager user interface
and performs the import function as a batch process.

/LOGFILE
Valid only with /IMPORT; required with /IMPORT.

Specifies the file destination for messages the Information Catalog
Manager generates during import. Unless you specify a full drive, path,
and file name, the Information Catalog Manager places the file in the path
specified on the DGWPATH environment variable. You must specify a
fixed drive.

Example:
/LOGFILE d:\tagfile.log

/PASSWORD
Your password for this user ID.

Example:
/PASSWORD secret

Passwords are case-sensitive for accessing databases on the following
operating systems, you must type them exactly as specified.
v AIX
v Windows NT and Windows 2000
v Solaris Operating Environment

/RESTART
Valid only with /IMPORT; required with /IMPORT.

Chapter 3. Importing and exporting metadata with the Information Catalog Manager 43

Indicates which option the import function uses. The valid options are:

B Imports the tag language file from the beginning.

C The default. Imports the tag language file from the last point at
which the Information Catalog Manager successfully committed
changes to the information catalog.

/TRACE
The level of trace information to send to the trace file. Each higher level
includes the functions of the levels below it (3 includes the functions of
levels 0, 1, 2, and 3). You might have to specify a higher level if you call
IBM Software Support to diagnose Information Catalog Manager
problems.

0 The default. Includes all messages and warning, error, and severe
error conditions.

1 Includes entry and exit records of the highest level Information
Catalog Manager functions.

2 Includes extremely granular entry and exit records of the
Information Catalog Manager functions.

3 Includes input and output parameters (excluding input or output
structure).

4 Includes all input or output structures that are passed to and used
by the Information Catalog Manager.

/USERID
Your information catalog user ID. Depending on the database location of
the information catalog you are opening, type the user ID required by the
database. For example, the user ID might be your local, LAN, AS/400,
AIX, or OS/390 TSO user ID.

Example:
/USERID longods

Exporting metadata from Information Catalog Manager

You can export metadata from the Information Catalog Manager for use by
partner applications. For example, you can export Information Catalog
Manager metadata for use by a CASE tool that application developers use to
develop applications for the data warehouse.

Exporting metadata from the Information Catalog Manager involves the
following tasks:
1. Select the types of metadata to export.
2. Export the metadata from the Information Catalog Manager.

44 Data Warehouse Center Application Integration Guide

When you export metadata from the Information Catalog Manager, you can
generate tag language in two formats. For example:
v If you export using the Information Catalog Manager product windows or

the FLGExport API, the tag language generated is in the Information
Catalog Manager tag language format. You can export metadata from the
Windows® 95, Windows NT®, or Windows 2000 command line. For more
information, see the Information Catalog Manager Administration Guide.

v If you export using the FLGMdisExport API, the tag language generated is
in MDIS format. For more information on Information Catalog Manager
APIs, see the Information Catalog Manager Programming Guide and Reference.

Selecting metadata to export
The metadata that you can export from the Information Catalog Manager is in
the form of object types. An object type is a classification for objects that is
used to reflect a type of business information, such as a table, report, or
image.

An information catalog can contain predefined object types and object types
that the information catalog administrators define. Predefined object types are
object types whose definitions are shipped with the Information Catalog
Manager. See “Chapter 8. Information Catalog Manager object types” on
page 147 for a description of those object types.

For information on creating object types using the Information Catalog
Manager product windows or tag language, see the Information Catalog
Manager Administration Guide.

Exporting tag language files
Note to those currently using MDIS with other products and Visual
Warehouse 3.1: If you already had MDIS configuration and profile files, the
Visual Warehouse installation program did not overwrite them. However,
before you use the MDIS function of the Information Catalog Manager for the
first time, you must merge the information in the Information Catalog
Manager MDIS profile and configuration files with your existing files.
Complete the following steps:
1. Check the MDIS environment variable setting to locate your existing MDIS

profile file (MDISTOOL.PRO) and configuration file (MDISTOOL.CFG).
2. Using a text editor, append the contents of

X:\VWSLIB\METADATA\PROFILES\MDISTOOL.PRO to your existing
profile file. (X is the drive where you installed the Information Catalog
Manager.)

3. Using a text editor, append the contents of
X:\VWSLIB\METADATA\PROFILES\MDISTOOL.CFG to your existing
configuration file. (X is the drive where you installed the Information
Catalog Manager.)

Chapter 3. Importing and exporting metadata with the Information Catalog Manager 45

Exporting MDIS-conforming tag language files
To export an MDIS tag language file directly from your information catalog,
enter the DGUIDE command from an MS-DOS command prompt. Adhere to
the following rules for the command syntax:
v All the parts, except where specified, are case-insensitive.
v Either a slash (/) or a hyphen must precede each keyword (-).
v All keywords that follow the DGUIDE command are required. All

keywords that follow the /MDIS_EXPORT keyword are required.

For example, to export MDIS metadata from your information catalog to a
file, type the following command (do not enter line breaks):
DGUIDE /USERID longods /PASSWORD secret /DGNAME ICMSAMP /ADMIN
/MDIS_EXPORT c:\mdis.tag /LOGFILE c:\mdis.log
/OBJTYPE database /OBJECTS server01.payroll.valdezma

/ADMIN
Specifies that you are logging on as an administrator. If you do not
specify this optional keyword for the DGUIDE command, you log on as a
user. You can export metadata as a user; however, you cannot perform all
administrator tasks.

/DGNAME
Your information catalog name.

If the information catalog is local, specify the database name. If the
information catalog is remote, specify the alias under which it was
cataloged.

Example:
/DGNAME ICMSAMP

/LOGFILE
Specifies the file destination for messages that the Information Catalog
Manager generates during MDIS import or MDIS export.

Unless you specify a full drive, path, and file name, the Information
Catalog Manager places the file in the path specified on the DGWPATH
environment variable. You must specify a fixed drive.

Example:
/LOGFILE d:\tagfile.log

DGUIDE /USERID userid /PASSWORD password /DGNAME dgname /MDIS_EXPORT filename
/LOGFILE filename /OBJTYPE object_type /OBJECTS name

Optional keywords:

/ADMIN
/TRACE 0|1|2|3|4

46 Data Warehouse Center Application Integration Guide

/MDIS_EXPORT
Exports MDIS-conforming metadata into an MDIS-conforming tag
language file with the name that you specify. Unless you specify the full
drive, path, and file name, the Information Catalog Manager places the
file in the path specified on the DGWPATH environment variable.

Example:
/MDIS_EXPORT d:\tagfile.tag

The information catalog from which you export MDIS metadata can
contain metadata other than MDIS metadata, but /MDIS_EXPORT exports
only metadata that conforms to MDIS.

/OBJECTS
This parameter is required.

Specifies the objects you want to export. Depending on the object type
that you specified on the /OBJTYPE keyword, the name value is from
three to five property values, separated by periods.

/OBJTYPE /OBJECTS

Database ServerName.DatabaseName.OwnerName

Dimension ServerName.DatabaseName.OwnerName.DimensionName

Subschema ServerName.DatabaseName.OwnerName.SubschemaName

Record ServerName.DatabaseName.OwnerName.RecordName

Element ServerName.DatabaseName.OwnerName.RecordName.ElementName

In this list, the parts of the name are represented with their MDIS name.
To find the equivalent information catalog names, see Data Warehouse
Center Application Integration Guide, available from the Data Warehouse
Center Web site at http://www.software.ibm.com/data/vw/.

/OBJTYPE
This is a required parameter.

Specifies one of the following MDIS object types that you want to export:
Database
Dimension
Subschema
Record
Element

The object type name is not case sensitive.

Example:
/MDIS_EXPORT d:\tagfile.tag /OBJTYPE record

Chapter 3. Importing and exporting metadata with the Information Catalog Manager 47

/PASSWORD
Your password for this user ID.

Example:
/PASSWORD secret

Passwords are case-sensitive for accessing databases on the following
operating systems, you must type them exactly as specified.
v AIX
v Windows NT and Windows 2000
v Solaris Operating Environment

/TRACE
The level of trace information to send to the Information Catalog Manager
trace file. Each higher level includes the functions of the levels below it
(for example 3 includes the functions of levels 0, 1, 2, and 3). You might
need to specify a higher level if you call IBM Software Support to
diagnose the Information Catalog Manager problems.

0 The default. Level includes all messages and warning, error, and
severe error conditions.

1 Includes entry and exit records of the highest level Information
Catalog Manager functions.

2 Includes extremely granular entry and exit records of the
Information Catalog Manager functions.

3 Includes input and output parameters (that exclude input or
output structures).

4 Includes all input or output structures that are passed to and used
by the Information Catalog Manager.

/USERID
Your information catalog user ID. Type the user ID required by the
database where the information catalog resides. For example, the user ID
might be your local, LAN, AS/400, AIX, or OS/390 TSO user ID.

Example:
/USERID longods

48 Data Warehouse Center Application Integration Guide

Chapter 4. Ensuring that users can start programs from
the Information Catalog Manager

You set up the objects in your information catalog so that your users can run
application programs to work with the actual information that the objects
describe. Users can run the application programs that they are familiar with,
including the programs that were originally used to create the information.

Ensure that the following requirements are met:
v Your users need the appropriate application software installed on their

workstations or on the LAN.
v Users can launch any program that can be started from the command line

with the command start program_name without a path, regardless of where
the program is installed.
Many programs write their path to the program registry when they are
installed. The start command retrieves the path. If a program does not
write its path to the program registry, you might need to add the directory
path of the program to the path environment variable on users’
workstations.

v Your users need the necessary authorization to the databases or file systems
where the information that they need is stored.

v The Programs objects in the information catalog must include the correct
invocation syntax for the operating systems on which your users will run
the programs.

Additional requirements for Information Catalog Manager for the Web users

When you set up the Web environment for Information Catalog Manager for
the Web users, ensure that the following requirements are met:
v The data that users want to use with the application program must be

accessible to the Web server. For example, the Information Catalog Manager
sample data file is located in a directory on the Web server.

v The program that users want to start must be installed on the Web client.
For example, if users are accessing a Lotus® 1-2-3 file®, then Lotus 1-2-3
must be installed on the Web client.
If the application program is a Java™ applet, the application does not need
to be installed; it can be accessed directly from the Web browser.
The client should also have any necessary browser plug-in programs. The
Information Catalog Manager for the Web server must be able to locate any
associated files that are used by the plug-in program. For example, if the

© Copyright IBM Corp. 1998, 2000 49

users want to view Adobe Acrobat files, they need the browser plug-in
program for the Acrobat Reader installed on the Information Catalog
Manager for the Web client. The Information Catalog Manager for the Web
server must be able to locate the file that the user wants to view to
download it to the client.

v The required MIME types must be identified in the Web server
configuration file for the application program that users will start. An
AddType directive with the file extension of the program that users want to
start must be included in the configuration file. For example, if users want
to use Lotus 1-2-3 spreadsheets with a file type of WK4, define the
AddType directive for Lotus Domino™ Go Webserver as shown in this
example:
AddType .WK4 application/x-lotus1-2-3 binary

If users are using a Web server other than Lotus Domino Go Webserver, the
MIME types are defined differently. See your Web server documentation for
more information.

v If you are using Websphere IBM HTTP WebServer, the MIME types are
defined in the \conf\mime.types file as shown in this example:
application/vnd.lotus-1-2-3 wks 123 wk1 wk2 wk3 wk4

v For some versions of Netscape Navigator, helper programs recognize file
types and start the corresponding application program. Microsoft Internet
Explorer does not use helper programs. Instead, Internet Explorer uses file
type and program associations that are used by Windows Explorer; no
setup is required for Internet Explorer to recognize a file type.

v The URL to access data property must be defined for the object from which
users want to start the program. The value for the property is a link to
directly launch the program.

To start a program from an Information Catalog Manager for the Web object:
1. In the list pane, click on the object from which you want to start the

program.
The object description page opens in the description pane.

2. Find the URL to access data property.
3. Click the property value.

The Web browser is launched using the Web address that is specified by
the property value.

Ensuring that users can start programs from the Information Catalog Manager

50 Data Warehouse Center Application Integration Guide

Part 2. Metadata reference

© Copyright IBM Corp. 1998, 2000 51

52 Data Warehouse Center Application Integration Guide

Chapter 5. Metadata templates

This chapter provides detailed information about each template that is
provided with the Data Warehouse Center and the Information Catalog
Manager. The section for each template lists the tokens for the template. It
provides the allowed values and lengths of values for each token.

If your interchange program does not have a value for a token, it should set
the token to ISV_DEFAULTVALUE. However, you must specify a value other than
ISV_DEFAULTVALUE for any token that is required.

Because there is no template for security groups, your program must specify
the value ISV_DEFAULTSECURITYGROUP for any instances of the *SecurityGroup
token.

If the template does not set a Data Warehouse Center parameter, the Data
Warehouse Center definition will have the default value of the parameter. For
example, the Data Warehouse Center sets the Retry Count and Retry Interval
parameters for source databases to their default values.

Table 13 lists the metadata templates that are supplied with the Data
Warehouse Center and the section that covers each template.

Table 13. Metadata templates supplied with the Data Warehouse Center

Template Description See:

AgentSite.tag Defines an agent site from
which the agent accesses
the data source or target
warehouse, or on which a
Data Warehouse Center
program runs.

“AgentSite.tag” on page 55

Column.tag Defines a column or field
in a table, segment, or file.

“Column.tag” on page 57

HeaderInfo.tag Declares all the object type
definitions needed by the
Data Warehouse Center to
declare a tag language file.

“HeaderInfo.tag” on page 63

Process.tag Defines a process. “Process.tag” on page 63

StarSchema.tag Defines a star schema. “StarSchema.tag” on page 65

© Copyright IBM Corp. 1998, 2000 53

Table 13. Metadata templates supplied with the Data Warehouse Center (continued)

Template Description See:

StarSchemaInputTable.tag Defines the relationship
between tables and a star
schema.

“StarSchemaInputTable.tag” on
page 67

Step.tag Defines a step. “Step.tag” on page 68

StepCascade.tag Defines a cascade
relationship between steps.

“StepCascade.tag” on page 72

StepInputTable.tag Defines the relationship
between a step and its
source tables.

“StepInputTable.tag” on page 73

StepOutputTable.tag Defines the relationship
between a step and its
target.

“StepOutputTable.tag” on page 74

StepVWPOutputTable.tag Defines the relationship
between a step and a
warehouse target.

“StepVWPOutputTable.tag” on
page 76

StepVWPProgramInstance.tag Defines an instance of a
specific template used by a
step.

“StepVWPProgramInstance.tag” on
page 77

SourceDataBase.tag Defines a warehouse
source.

“SourceDataBase.tag” on page 78

SubjectArea.tag Defines a subject area to
contain the processes and
steps being created.

“SubjectArea.tag” on page 82

Table.tag Defines a table or file that
the Data Warehouse Center
is to access.

“Table.tag” on page 83

VWPGroup.tag Defines a group that is to
contain any Data
Warehouse Center program
being defined.

“VWPGroup.tag” on page 89

VWPProgramInstanceParameter.tag Adds or modifies a
parameter that the Data
Warehouse Center passes
to an instance of a Data
Warehouse Center program
used by a specific step.

“VWPProgramInstanceParameter.tag”
on page 90

VWPProgramTemplate.tag Defines a Data Warehouse
Center program.

“VWPProgramTemplate.tag” on
page 93

54 Data Warehouse Center Application Integration Guide

Table 13. Metadata templates supplied with the Data Warehouse Center (continued)

Template Description See:

VWPProgramTemplateParameter.tag Defines a parameter that
the Data Warehouse Center
is to pass to a Data
Warehouse Center
program.

“VWPProgramTemplateParameter.tag”
on page 95

WarehouseDataBase.tag Defines a warehouse
target.

“WarehouseDataBase.tag” on page 98

AgentSite.tag

Use this template to define an agent site:
v From which the agent accesses the data sources or target warehouses.
v On which a Data Warehouse Center program runs.

You can use one of the following agent site types:
v An agent site that is already defined in the warehouse control database.

To use an existing agent site, replace all occurrences of the *AgentSite token
with the agent site name.

v The default agent site.
To use the default agent site, replace all occurrences of the *AgentSite token
with ISV_DEFAULTAGENTSITE.

v A new agent site that you define using the AgentSite.tag template.
To define a new agent site, specify values for the tokens in the
AgentSite.tag template. Replace all occurrences of the *AgentSite token with
the name of the new agent site.

Tokens
Table 14 provides information about each token in the template.

Table 14. AgentSite.tag tokens

Token Description Allowed values

Entity parameters

Chapter 5. Metadata templates 55

Table 14. AgentSite.tag tokens (continued)

Token Description Allowed values

*AgentSite The name of a new agent site,
or the name of the default
agent site, if the agent is not
new.

If you specify a new name, it
must be unique within the
warehouse control database.

This token is required, but
you can specify the default
agent site,
ISV_DEFAULTAGENTSITE

A text string, up to 80 bytes in length.

If you do not want to create a new
agent site, use ISV_DEFAULTAGENTSITE for
the default agent site.

*AgentSiteContact The name of the person or
organization responsible for
this agent.

A text string.

*AgentSiteDescription The short description of the
agent site.

This token is optional.

A text string, up to 254 bytes in length.

*AgentSiteNotes The long description of the
agent site.

This token is optional.

A text string, up to 32700 bytes in
length.

*AgentSiteOSType The type of operating system
that runs on the agent site.

This token is required.

One of the following values:

ISV_windowsNT
Windows NT®

ISV_AIX
AIX®

ISV_os2
OS/2®

ISV_as400
AS/400®

ISV_Solaris
SUN

ISV_MVS
MVS

*AgentSiteTCP/IPHostname The TCP/IP host name of the
agent site.

This token is required.

A text string, up to 200 bytes in length.

AgentSite.tag

56 Data Warehouse Center Application Integration Guide

Table 14. AgentSite.tag tokens (continued)

Token Description Allowed values

*AgentSiteUserid The user ID under which the
agent runs.

This token is required.

A text string, up to 36 bytes in length.

Relationship parameters

*CurrentCheckPointID++ An index, starting with 0, that
increases each time it is
substituted in a token.

This token is required.

A numeric value.

Examples of values
Table 15 provides example values for each token to illustrate the kind of
metadata you might provide for each token.

Table 15. Example values for AgentSite.tag tokens

Token Example value

*AgentSite My agent site

*AgentSiteContact DEPT W24A

*AgentSiteDescription This is the description of my agent site

*AgentSiteNotes These are the notes for my agent site.

*AgentSiteOSType ISV_Solaris

*AgentSiteTCP/IPHostname CHI11W71.stl.ibm.com

*AgentSiteUserid VWADMIN

*CurrentCheckPointID++ 1

Column.tag

Use this template to define a column in a table, or a field in a segment or file.
You can use this template to define columns or fields for both sources and
targets.

The template defines the relationship between the column or field and the
table, segment, or file that contains the column or field. You must include this
template if you defined sources or targets by using the Table.tag template (see
page 83).

Tokens
Table 16 on page 58 provides information about each token in the template.

AgentSite.tag

Chapter 5. Metadata templates 57

Table 16. Column.tag tokens

Token Description Allowed values

Entity parameters

*ColumnName The name of the column or
field.

The name must be unique
within a table or field.

This token is required.

A text string, up to 80 bytes in length.

*ColumnDescription The short description of the
column or field.

This token is optional.

A text string, up to 254 bytes in length.

*ColumnNotes The long description of the
column or field.

This token is optional.

A text string, up to 32700 bytes in length.

*ColumnOffsetFromZero The offset in bytes from the
start of the file to where the
data for this field starts.

A numeric value or 0.

*ColumnOrdinalNumber The ordinal position of the
column. Usually the same
as the
*ColumnPositionNumber.

A numeric value or 0.

*ColumnUserActions The actions that a user can
perform on this column or
field.

This token is optional.

A text string, up to 254 bytes in length.

*ColumnLength The length of the column or
field being created.

This token is required.

A numeric value.

*ColumnPrecision The precision of the column
or field for columns or
fields with a decimal data
type.

This token is required.

A numeric value or 0.

*ColumnKeyPosition If this column is part of a
key, the column’s position
within the key.

This token is required.

A numeric value. If there is no precision
value, specify 0.

Column.tag

58 Data Warehouse Center Application Integration Guide

Table 16. Column.tag tokens (continued)

Token Description Allowed values

*ColumnPositionNumber A number, starting with 0,
that indicates the order of
the column within the row.

This token is required.

A numeric value.

*ColumnAllowsNulls A flag that specifies whether
the column or field allows
null data.

This token is required.

One of the following values:

ISV_NULLSYES
The column allows null data.

ISV_NULLSNO
The column does not allow null
data.

*ColumnDataIsText A flag that specifies whether
the column or field contains
only text data for character
types.

This token is required.

One of the following values:

ISV_ISTEXTYES
The column contains only text
data.

ISV_ISTEXTNO
The column does not contain
only text data.

*ColumnEditionType Identifies whether the
column holds Data
Warehouse Center edition
information.

One of the following values:

ISV_ColumnIsEditionColumn
The column is an edition column.

ISV_ColumnIsNormal
The column is a normal column.

Column.tag

Chapter 5. Metadata templates 59

Table 16. Column.tag tokens (continued)

Token Description Allowed values

*ColumnNativeDataType The data type of the column
or field as defined to the
database manager or file
system.

This token is required.

One of the following values:

ISV_NATIVE_CHAR

ISV_NATIVE_VARCHAR

ISV_NATIVE_LONGVARCHAR

ISV_NATIVE_VARCHAR2

ISV_NATIVE_GRAPHIC

ISV_NATIVE_VARGRAPHIC

ISV_NATIVE_LONGVARGRAPHIC

ISV_NATIVE_CLOB

ISV_NATIVE_INT

ISV_NATIVE_TINYINT

ISV_NATIVE_BLOB

ISV_NATIVE_SMALLINT

ISV_NATIVE_INTEGER

ISV_NATIVE_FLOAT

ISV_NATIVE_SMALLFLOAT

ISV_NATIVE_DOUBLE

ISV_NATIVE_REAL

ISV_NATIVE_DECIMAL

ISV_NATIVE_SMALLMONEY

ISV_NATIVE_MONEY

ISV_NATIVE_NUMBER

Column.tag

60 Data Warehouse Center Application Integration Guide

Table 16. Column.tag tokens (continued)

Token Description Allowed values

*ColumnNativeDataType
(continued)

The data type of the column
or field as defined to the
database manager or file
system.

This token is required.

One of the following values:

ISV_NATIVE_NUMERIC

ISV_NATIVE_DATE

ISV_NATIVE_TIME

ISV_NATIVE_TIMESTAMP

ISV_NATIVE_LONG

ISV_NATIVE_RAW

ISV_NATIVE_LONGRAW

ISV_NATIVE_DATETIME

ISV_NATIVE_SMALLDATETIME

ISV_NATIVE_SYSNAME

ISV_NATIVE_TEXT

ISV_NATIVE_BINARY

ISV_NATIVE_VARBINARY

ISV_NATIVE_LONGVARBINARY

ISV_NATIVE_BIT

ISV_NATIVE_IMAGE

ISV_NATIVE_SERIAL

ISV_NATIVE_DBCLOB

ISV_NATIVE_BIGINT

ISV_NATIVE_DATETIMEYEARTOFRACTION

Relationship parameters

*CurrentCheckPointID++ An index, starting with 0,
that increases each time it is
substituted in a token.

This token is required.

A numeric value.

*DatabaseName The business name of the
warehouse source or
warehouse target.

This token is required.

A text string, up to 40 bytes in length.

*TablePhysicalName The physical name of the
table or file that contains
the column as defined to
the database manager or file
system.

This token is required.

A text string, up to 80 bytes in length.

Column.tag

Chapter 5. Metadata templates 61

Table 16. Column.tag tokens (continued)

Token Description Allowed values

*TableOwner The owner, high-level
qualifier, collection, or
schema of the table that
contains the column.

This token is required.

A text string, up to 15 bytes in length.

*CurrentCheckPointID++ An index, starting with 0,
that increases each time it is
substituted in a token.

This token is required.

A numeric value.

Examples of values
Table 17 provides example values for each token to illustrate the kind of
metadata that you might provide for each token.

Table 17. Example values for Column.tag tokens

Token Example value

*ColumnName Country_code

*ColumnDescription This column contains the country code

*ColumnNotes The valid values for this column can be
found in the Geography reference manual

*ColumnOffsetFromZero 0

*ColumnOrdinalNumber 0

*ColumnUserActions User cannot directly view a single column

*ColumnLength 10

*ColumnPrecision 0

*ColumnKeyPosition 0

*ColumnAllowsNulls ISV_NULLSNO

*ColumnDataIsText ISV_ISTEXTYES

*ColumnNativeDataType ISV_NATIVE_CHAR

*DatabasePhysicalName FINANCE

*TableOwner DB2ADMIN

*TablePhysicalName GEOGRAPHY

*CurrentCheckPointID++ 8

Column.tag

62 Data Warehouse Center Application Integration Guide

HeaderInfo.tag

Use this template to declare all of the object type definitions that are needed
by the Data Warehouse Center to process a tag language file. The template
also contains definitions that the Data Warehouse Center associates with other
definitions, such as the security group that is to contain the objects that you
are importing. This template is always required and must be present in the
beginning of the tag language file.

Tokens
Table 18 provides information about each token in the template.

Table 18. HeaderInfo.tag tokens. This template contains only relationship parameters.

Token Description Allowed values

*SecurityGroup The security group that is to
contain all the objects that
you are importing.

This token is required, and
you must specify the default
security group.

ISV_DEFAULTSECURITYGROUP for the default
security group.

*CurrentCheckPointID++ An index, starting with 0,
that increases each time it is
substituted in a token.

This token is required.

A numeric value.

Examples of values
Table 19 provides example values for each token to illustrate the kind of
metadata that you might provide for each token.

Table 19. Example values for Header.tag tokens

Token Example value

*SecurityGroup ISV_DEFAULTSECURITYGROUP

*CurrentCheckPointID++ 0

Process.tag

Use this template to define a process to group steps. Each step must be in
only one process. The process is related to subject areas, and each partner
application must have at least one subject area that any processes resides in.
The template defines the relationship between the subject area and the partner
application’s security group as well as between the process and the subject
area.

HeaderInfo.tag

Chapter 5. Metadata templates 63

This template is required if the partner application is defining steps to the
Data Warehouse Center.

If you create a new process object, the value that you provide for the
*ProcessName token must be unique to all processes defined in the warehouse
control database.

Tokens

Table 20 provides information about each token in the template.

Table 20. Process.tag tokens. This template contains only relationship parameters.

Token Description Allowed values

Entity parameters

*ProcessName The unique name of the
process.

A text string, up to 80 bytes in length.

*ProcessDescription The description that is
associated with the process.

A text string, up to 254 bytes in length.

*ProcessNotes The long description that is
associated with the process.

A text string, up to 32,700 bytes in length.

*ProcessContact The name of a person or
group to contact for
questions or concerns about
this step.

A text string.

*ProcessType The processing options if
there was no source data.

One of the following values:

ISV_ProcessType_Normal
Process is a normal user process.

Relationship parameters

*SubjectArea The name of a subject area
that is to contain this
process and thesteps being
created or being added to
this process.

A text string, up to 80 bytes in length.

*SecurityGroup The security group that is to
contain all the objects that
you are importing.

This token is required, and
you must specify the default
security group.

ISV_DEFAULTSECURITYGROUP for the default
security group.

Process.tag

64 Data Warehouse Center Application Integration Guide

Table 20. Process.tag tokens (continued). This template contains only relationship parameters.

Token Description Allowed values

*CurrentCheckPointID An index, starting with 0,
that increases each time it is
substituted in a token.

This token is required.

A numeric value.

Examples of values
Table 21 provides example values for each token to illustrate the kind of
metadata that you might provide for each token.

Table 21. Example values for Process.tag tokens

Token Example value

*ProcessName Marketing process

*ProcessDescription A collection of steps that is used by the
marketing organization

*ProcessNotes Steps that create the star schema that is
used by the marketing organization

*ProcessContact Marketing

*ProcessType ISV_ProcessType_2

*SubjectArea Group of processes generated for this
partner application

*SecurityGroup ISV_DEFAULTSECURITYGROUP

*CurrentCheckPointID 9

StarSchema.tag

Use this template to define a star schema as a mechanism to group tables that
are related. The star schema can be used to relate tables within the same
physical database (for further use by the DB2 OLAP Integration Server) or for
logical grouping by relating tables from multiple databases.

Tokens
Table 22 provides information about each token in the template.

Table 22. StarSchema.tag tokens

Token Description Allowed values

Entity parameters

Process.tag

Chapter 5. Metadata templates 65

Table 22. StarSchema.tag tokens (continued)

Token Description Allowed values

*StarSchemaName The unique name of the star
schema that is being created
or related.

A text string, up to 80 bytes in length.

*StarSchemaDescription A description that is
associated with the star
schema.

A text string, up to 254 bytes in length.

*StarSchemaNotes The long description that is
associated with the step.

A text string, up to 32,700 bytes in length.

*StarSchemaContact The name of a person or
group to contact for
questions or concerns about
this step.

A text string.

*StarSchemaDBName The business name of the
database that is being
created.

A text string.

Relationship parameters

*CurrentCheckPointID++ An index, starting with 0,
that increases each time that
it is substituted in a token.

This token is required.

A numeric value.

Examples of values
Table 23 provides example values for each token to illustrate the kind of
metadata that you might provide for each token.

Table 23. Example values for StarSchema.tag tokens

Token Example value

*StarSchemaName Marketing schema

*StarSchemaDescription This star schema represents the marketing
division’s internal databases

*StarSchemaNotes Tables used for the marketing division

*StarSchemaContact Marketing group

*StarSchemaDBName Marketing

*CurrentCheckPointID++ 3

StarSchema.tag

66 Data Warehouse Center Application Integration Guide

StarSchemaInputTable.tag

Use this template to define the relationship between a star schema and its
input source. This relationship is required for all star schemas.

Tokens
Table 24 provides information about each token in the template.

Table 24. SourceDataBase.tag tokens

Token Description Allowed values

Entity parameters

*StarSchemaName The name of the star schema
that is being created or
related.

A text string.

Relationship parameters

*DatabaseName The business name of the
database that is being
created.

A text string.

*TableOwner The owner, high-level
qualifier, collection, or
schema of the table that is
being described.

This value must be a valid
qualifier as defined by the
rules of ODBC.

A text string.

*TablePhysicalName The physical table name as it
is known to ODBC (the
system DSN name).

A text string.

*CurrentCheckPointID++ An index, starting with 0,
that increases each time it is
substituted in a token.

This token is required.

A numeric value.

Examples of values
Table 25 provides example values for each token to illustrate the kind of
metadata that you might provide for each token.

Table 25. Example values for SourceDataBase.tag tokens

Token Example value

*StarSchemaName Finance schema

*DatabaseName Finance Warehouse

*TableOwner DB2ADMIN

StarSchemaInputTable.tag

Chapter 5. Metadata templates 67

Table 25. Example values for SourceDataBase.tag tokens (continued)

Token Example value

*TablePhysicalName DB2ADMIN.GEOGRAPHY

*CurrentCheckPointID++ 7

Step.tag

Use this template to define a step that will be managed by the Data
Warehouse Center. This template includes information about the relationships
to security group, process, and agent site.

This template is required for all partner applications that are generating
relationships between source and target data or defining programs that the
Data Warehouse Center is to run.

If you create a new step object, the value that you provide for the *StepName
token must be unique to all steps that are defined in the warehouse control
database.

Tokens
Table 26 provides information about each token in the template.

Table 26. Step.tag tokens

Token Description Allowed values

Entity parameters

*StepName The unique name of the step
that is being created or related.

A text string, up to 80 bytes in length.

*StepDescription The description that is
associated with the step.

A text string, up to 254 bytes in length.

*StepNotes The long description that is
associated with the step.

A text string, up to 32,700 bytes in
length.

StarSchemaInputTable.tag

68 Data Warehouse Center Application Integration Guide

Table 26. Step.tag tokens (continued)

Token Description Allowed values

*StepDataNotPresent The processing options if there
was no source data.

One of the following values:

ISV_StepDataNotPresent_OK
If data is not present, continue
processing.

ISV_StepDataNotPresent_Warning
If data is not present, issue a
warning and continue
processing.

ISV_StepDataNotPresent_Error
If data is not present, issue an
error message and stop
processing.

*StepSelectStatementGenerated A flag that specifies whether the
Data Warehouse Center is to
generate the SQL, or whether
the SQL statement is included
by the token
*StepSelectStatement.

One of the following values:

ISV_StepSelectStatementNo
The SELECT statement is not
generated, but is included in
the *StepSelectStatement.

ISV_StepSelectStatementYes
The SELECT statement is
generated, and
*StepSelectStatement is ignored.

*StepSelectStatement The SQL statement to be issued
if ISV_StepSelectStatementNo.

A SQL string.

*StepContact The name of a person or group
to contact for questions or
concerns about this step.

A text string.

*StepExternalPopulation A flag that indicates that the
step is expected to be run
outside the Data Warehouse
Center environment..

One of the following values:

ISV_StepExternalNo
The table will not be
externally populated by other
means.

ISV_StepExternalYes
The table will be externally
populated by other means.

Step.tag

Chapter 5. Metadata templates 69

Table 26. Step.tag tokens (continued)

Token Description Allowed values

*StepType The type of step that is being
created.

One of the following values:

ISV_StepType_Editioned_Append
The data in the table will be
appended when the Step is
run.

ISV_StepType_Full_Replace
The data in the table will be
replaced when the Step is run.

ISV_StepType_Uneditioned_Append
The data in the table will be
appended when the Step is
run.

ISV_StepType_VWP_Population
The data in the table is
populated by a Data
Warehouse Center program.

*StepSQLWarning The processing options if an
SQL warning occurs.

One of the following values:

ISV_StepSQLWarning_OK
If an SQL warning occurs,
continue processing.

ISV_StepSQLWarning_Warning
If an SQL warning occurs,
issue a warning and continue
processing.

ISV_StepSQLWarning_Error
If an SQL warning occurs,
issue an error and stop
processing.

*StepCommit A flag that specifies if the Data
Warehouse Center is to
intermittently commit after
*StepCommitAfterNumberRows is
inserted into the target table of
the step.

One of the following values:

ISV_Step_Incremental_Commit_On
The data is to be incrementally
committed at the target.

ISV_Step_Incremental_Commit_Off
The data is not to be
incrementally committed at
the target.

Step.tag

70 Data Warehouse Center Application Integration Guide

Table 26. Step.tag tokens (continued)

Token Description Allowed values

*StepCommitAfterNumberRows The number of rows to insert
before committing.

A numeric value.

Relationship parameters

*SecurityGroup The security group that is to
contain all the objects that you
are importing.

This token is required, and you
must specify the default security
group.

ISV_DEFAULTSECURITYGROUP for the
default security group.

*ProcessName The name of the process.

This token is required.

A text string, up to 80 bytes in length.

*AgentSite The name of a new agent site,
or the name of the default agent
site, if the agent is not new.

If you specify a new name, it
must be unique within the Data
Warehouse Center control
database.

This token is required, but you
can specify the default agent
site, ISV_DEFAULTAGENTSITE

A text string, up to 80 bytes in length.

If you do not want to create a new
agent site, use ISV_DEFAULTAGENTSITE
for the default agent site.

*CurrentCheckPointID++ An index, starting with 0, that
increases each time it is
substituted in a token.

This token is required.

A numeric value.

Examples of values
Table 27 provides example values for each token to illustrate the kind of
metadata that you might provide for each token.

Table 27. Example values for Step.tag tokens

Token Example value

*StepName Revenue by location

*StepDescription This step will pull data to create the revenue for each
location in a DB2 table

*StepNotes Revenue for Geography 7 comes from 4 source Oracle
tables

Step.tag

Chapter 5. Metadata templates 71

Table 27. Example values for Step.tag tokens (continued)

Token Example value

*StepDataNotPresent ISV_StepDataNotPresent_Error

*StepSelectStatementGenerated ISV_StepSelectStatementNo

*StepSelectStatement SELECT * FROM IWH.REVENUE_BY_LOCATION

*StepContact Jason Smythe

*StepExternalPopulation ISV_StepExternalNo

*StepType ISV_StepType_Full_Replace

*StepSQLWarning ISV_StepSQLWarning_Warning

*StepCommit ISV_Step_Incremental_Commit_On

*StepCommitAfterNumberRows 10000

*SecurityGroup ISV_DEFAULTSECURITYGROUP

*ProcessName Marketing process

*AgentSite My agent site

*CurrentCheckPointID++ 5

StepCascade.tag

Use this template to define a relationship between two steps to specify that
another step is to be started at the completion of the named step.

This template is required only if the partner application links steps in a
cascaded relationship.

Tokens
Table 28 provides information about each token in the template.

Table 28. StepCascade.tag tokens

Token Description Allowed values

Entity parameters

*StepName The name of the step that is
being related.

A text string.

*PostStepName The name of the step that is
to be run after the
completion of another step.

A text string.

Relationship parameters

Step.tag

72 Data Warehouse Center Application Integration Guide

Table 28. StepCascade.tag tokens (continued)

Token Description Allowed values

*CurrentCheckPointID++ An index, starting with 0,
that increases each time that
it is substituted in a token.

This token is required.

A numeric value.

Examples of values
Table 29 provides example values for each token to illustrate the kind of
metadata that you might provide for each token.

Table 29. Example values for StepCascade.tag tokens

Token Example value

*StepName Revenue by location

*PostStepName Revenue for all Geographies

*CurrentCheckPointID++ 12

StepInputTable.tag

This template defines the relationship between a step and its input source.

This relationship is required for steps of type
ISV_StepType_Editioned_Append, ISV_StepType_Full_Replace, and
ISV_StepType_Uneditioned_Append.

This relationship is optional for steps of type ISV_StepType_VWP_Population.

The ISV can relate multiple input sources to the step by reusing the template
for each unique instance of an input source.

Tokens
Table 30 provides information about each token in the template.

Table 30. StepInputTable.tag tokens

Token Description Allowed values

Entity parameters

*StepName The name of the step that is being
related.

A text string.

Relationship parameters

*DatabaseName The business name of the database
that is being created.

A text string.

StepCascade.tag

Chapter 5. Metadata templates 73

Table 30. StepInputTable.tag tokens (continued)

Token Description Allowed values

*TableOwner The owner, high-level qualifier,
collection, or schema of the table
that is being described.

This value must be a valid
qualifier as defined by the rules of
ODBC.

A text string.

*TablePhysicalName The physical table name as it is
known to ODBC (the system DSN
name).

A text string.

*ProcessName The name of the process that is
being related.

A text string.

*CurrentCheckPointID++ An index, starting with 0, that
increases each time that it is
substituted in a token.

This token is required.

A numeric value.

Examples of values
Table 31 provides example values for each token to illustrate the kind of
metadata that you might provide for each token.

Table 31. Example values for StepInputTable.tag tokens

Token Example value

*StepName Revenue by product

*DatabaseName Finance Warehouse

*TableOwner FINADMIN

*TablePhysicalName INVENTORY

*ProcessName Inventory process

*CurrentCheckPointID++ 6

StepOutputTable.tag

Use this template to define the relationship between a step and its output
target.

This relationship is required for steps of type
ISV_StepType_Editioned_Append, ISV_StepType_Full_Replace,
ISV_StepType_Uneditioned_Append.

StepInputTable.tag

74 Data Warehouse Center Application Integration Guide

Tokens
Table 32 provides information about each token in the template.

Table 32. SourceDataBase.tag tokens

Token Description Allowed values

Entity parameters

*StepName The name of the step that is
being created or related.

A text string.

Relationship parameters

*DatabaseName The business name of the
database that is being
related.

A text string.

*TableOwner The owner, high-level
qualifier, collection, or
schema of the table being
described.

This value must be a valid
qualifier as defined by the
rules of ODBC.

A text string.

*TablePhysicalName The physical table name as it
is known to ODBC (the
system DSN name).

A text string.

*ProcessName The name of the process that
is being related.

A text string.

*CurrentCheckPointID++ An index, starting with 0,
that increases each time that
it is substituted in a token.

This token is required.

A numeric value.

Examples of values
Table 33 provides example values for each token to illustrate the kind of
metadata you might provide for each token.

Table 33. Example values for StepOutputTable.tag tokens

Token Example value

*StepName Revenue by product

*DatabaseName Finance Warehouse

*TableOwner FINADMIN

*TablePhysicalName INVENTORY

*ProcessName Marketing process

StepOutputTable.tag

Chapter 5. Metadata templates 75

Table 33. Example values for StepOutputTable.tag tokens (continued)

Token Example value

*CurrentCheckPointID++ 4

StepVWPOutputTable.tag

Use this template to optionally define the relationship between a step of type
ISV_StepType_VWP_Population and its output targets.

Tokens
Table 34 provides information about each token in the template.

Table 34. StepVWPOutputTable.tag tokens

Token Description Allowed values

Entity parameters

*StepName The name of the step that is
being related.

A text string.

Relationship parameters

*DatabaseName The business name of the
database that is being
created.

A text string.

*TableOwner The owner, high-level
qualifier, collection, or
schema of the table that is
being described.

This value must be a valid
qualifier as defined by the
rules of ODBC.

A text string.

*TablePhysicalName The physical table name as it
is known to ODBC (the
system DSN name).

A text string.

*ProcessName The name of the processthat
is being created or related

A text string.

*CurrentCheckPointID++ An index, starting with 0,
that increases each time that
it is substituted in a token.

This token is required.

A numeric value.

Examples of values
Table 35 on page 77 provides example values for each token to illustrate the
kind of metadata that you might provide for each token.

StepOutputTable.tag

76 Data Warehouse Center Application Integration Guide

Table 35. Example values for StepVWPOutputTable.tag tokens

Token Example value

*StepName Revenue by product

*DatabaseName Finance Warehouse

*TableOwner FINADMIN

*TablePhysicalName INVENTORY

*ProcessName Marketing process

*CurrentCheckPointID++ 1

StepVWPProgramInstance.tag

Use this template to define an instance of a Data Warehouse Center program
that is run by a warehouse agent. This template also defines the relationship
to the Data Warehouse Center program definition, called the VWPTemplate, as
well as the step that uses the Data Warehouse Center program. This template
is required for each step that utilizes the Data Warehouse Center program.

Tokens
Table 36 provides information about each token in the template.

Table 36. StepVWPProgramInstance.tag tokens

Token Description Allowed values

Entity parameters

*VWPProgramInstanceKey Key that uniquely identifies
this program instance. The
key must be unique from all
other keys in the tag
language file.

Tip: Finish processing the
VWPProgramInstance.tag
template before increasing
the value of the key.

This token is required.

A numeric value.

Relationship parameters

*StepName The name of the step that is
being related.

A text string.

*VWPProgramTemplateName The business name of the
Data Warehouse Center
program template that is
being created.

A text string.

StepVWPOutputTable.tag

Chapter 5. Metadata templates 77

Table 36. StepVWPProgramInstance.tag tokens (continued)

Token Description Allowed values

*CurrentCheckPointID++ An index, starting with 0,
that increases each time that
it is substituted in a token.

This token is required.

A numeric value.

Examples of values
Table 37 provides example values for each token to illustrate the kind of
metadata that you might provide for each token.

Table 37. Example values for StepVWPProgramInstance.tag tokens

Token Example value

*VWPProgramInstanceKey 070001

*StepName Revenue by location

*VWPProgramTemplateName My ISV Program

*CurrentCheckPointID++ 2

SourceDataBase.tag

Use this template to define source databases, file systems, or files to import
into the Data Warehouse Center. You can use this template to define a
relational non-DB2 source database as well as a DB2 source database.

This template also defines the relationship between the following objects:
v The source databases
v The agent site to use for the source database
v The security group in which to define the source database

Tokens
Table 38 provides information about each token in the template.

Table 38. SourceDataBase.tag tokens

Token Description Allowed values

Entity parameters

StepVWPProgramInstance.tag

78 Data Warehouse Center Application Integration Guide

Table 38. SourceDataBase.tag tokens (continued)

Token Description Allowed values

*DatabaseName The name of the database.

The name must be unique
within the warehouse control
database.

This token is required.

A text string, up to 80 bytes in length.

*DatabaseDescription The short description of the
database.

This token is optional.

A text string, up to 254 bytes in length.

*DatabaseNotes The long description of the
database.

This token is optional.

A text string, up to 32700 bytes in length.

*DatabaseContact The person to contact for
information about this
database.

This token is optional.

A text string, up to 64 bytes in length.

*DatabaseServerName The name of the server on
which the database resides.

This token is required for
Flat File LAN files.
Otherwise, it is optional.

A text string, up to 64 bytes in length.

*DatabaseVersion The version of the database. A text string.

*DatabasePhysicalName The physical database name
of the database as defined to
the database manager, as
known to ODBC.

This token is required.

A text string, up to 40 bytes in length.

SourceDataBase.tag

Chapter 5. Metadata templates 79

Table 38. SourceDataBase.tag tokens (continued)

Token Description Allowed values

*DatabaseType The type of database family.

This token is required.

One of the following values:

ISV_IR_DB2Family
DB2 Family

ISV_IR_Oracle
Oracle

ISV_IR_Sybase
Sybase

ISV_IR_MSSQLServer
Microsoft® SQLServer

ISV_IR_Informix
Informix

ISV_IR_GenericODBC
Generic ODBC

ISV_IR_FFLan
Flat File LAN

ISV_IR_VSAM
VSAM

ISV_IR_IMS
IMS

*DatabaseTypeExtended The type of AS/400 system
or file.

This token is required.

One of the following values:

ISV_IR_DB2400CISC
DB2 UDB for AS/400 for CISC

ISV_IR_DB2400RISC
DB2 UDB for AS/400 for RISC

ISV_IR_FFLanLocalCmd
Local flat file

ISV_IR_FFLanFTPCopy
Local flat file sent using FTP from
a remote system

*DatabaseUserid The user ID with which to
access the database.

This token is optional.

A text string, up to 36 bytes in length.

Relationship parameters

SourceDataBase.tag

80 Data Warehouse Center Application Integration Guide

Table 38. SourceDataBase.tag tokens (continued)

Token Description Allowed values

*SecurityGroup The security group in which
to create the source or target
database.

This token is required, and
you must specify the default
security group.

ISV_DEFAULTSECURITYGROUP for the default
security group.

*AgentSite The agent site to use for the
source or target database.

This token is required, but
you can specify the default
agent site.

A text string, up to 80 bytes in length.

ISV_DEFAULTAGENTSITE for the default
agent site.

*CurrentCheckPointID++ An index, starting with 0,
that increases each time that
it is substituted in a token.

This token is required.

A numeric value.

Examples of values
Table 39 provides example values for each token to illustrate the kind of
metadata you might provide for each token.

Table 39. Example values for SourceDataBase.tag tokens

Token Example value

*DatabaseName Finance Warehouse

*DatabaseDescription This database contains financial
information.

*DatabaseNotes This is the warehouse where all
geographies keep financial information.

*DatabaseContact Valerie Zieman

*DatabaseServerName CHI11W71

*DatabaseVersion V6.1.0

*DatabasePhysicalName FINANCE

*DatabaseType ISV_IR_DB2Family

*DatabaseTypeExtended ISV_DEFAULTVALUE

*DatabaseUserid DB2ADMIN

*SecurityGroup ISV_DEFAULTSECURITYGROUP

*AgentSite My agent site

SourceDataBase.tag

Chapter 5. Metadata templates 81

Table 39. Example values for SourceDataBase.tag tokens (continued)

Token Example value

*CurrentCheckPointID++ 5

SubjectArea.tag

Use this template to define a subject area to contain the processes and steps
that you create. Each tag language file must have at least one subject area to
contain any processes and steps that you create. This template is required if
you are defining processes and steps.

This template also defines the relationship between the subject area and the
security group that the header file specifies (see “HeaderInfo.tag” on page 63).

Tokens
Table 40 provides information about each token in the template.

Table 40. SubjectArea.tag tokens

Token Description Allowed values

Entity parameters

*SubjectArea The name of a group that is
to contain all of the
processes and steps that are
created or added to a
particular subject area.

The name must be unique
within the warehouse control
database. This token is
required.

A text string, up to 80 bytes in length.

*SubjectAreaContact The name of the person or
organization that is
responsible for this subject
area.

A text string.

*SubjectAreaDescription A short description of the
group of processes and
steps.

This token is optional.

A text string, up to 254 bytes in length.

*SubjectAreaNotes A long description of the
group of processes and
steps.

This token is optional.

A text string, up to 32700 bytes in length.

SourceDataBase.tag

82 Data Warehouse Center Application Integration Guide

Table 40. SubjectArea.tag tokens (continued)

Token Description Allowed values

Relationship parameters

*SecurityGroup The security group in which
to create the subject area.

This token is required, and
you must specify the default
security group.

ISV_DEFAULTSECURITYGROUP for the default
security group.

*CurrentCheckPointID++ An index, starting with 0,
that increases each time that
it is substituted in a token.

This token is required.

A numeric value.

Examples of values
Table 41 provides example values for each token to illustrate the kind of
metadata that you might provide for each token.

Table 41. Example values for SubjectArea.tag tokens

Token Example value

*SubjectArea Group of processes and steps generated
for the partner tool

*SubjectAreaContact DEPT W24A

*SubjectAreaDescription This subject area contains all the processes
and steps generated for Data Warehouse
Center by the partner tool.

*SubjectAreaNotes The processes and steps in this subject
area will be used to evaluate the product.

*SecurityGroup ISV_DEFAULTSECURITYGROUP

*CurrentCheckPointID++ 9

Table.tag

You can use this template to define both source and target tables as well as
source files and segments that Data Warehouse Center is to access. You can
use this template to define source and target tables, files, and segments.

The template defines all the metadata that the Data Warehouse Center
requires to define a table in an ODBC data source as well as a DB2 target
table. The template also defines the relationships between the table and the
database that contains the table.

SubjectArea.tag

Chapter 5. Metadata templates 83

Tokens
Table 42 provides information about each token in the template.

Table 42. Table.tag tokens

Token Description Allowed values

Entity parameters

*TableFullName The fully qualified name
of a relational table or a
file.

For a table, this name is
the concatenation of the
value of the *TableOwner
and *TablePhysicalName
tokens, separated by a
period.

For a file, the *TableOwner
value should be left blank,
and the *TableFullName
and *TablePhysicalName
values should be the
same.

The name must be unique
within the warehouse
control database.

This token is required.

A text string, up to 80 bytes in length.

*TableDescription The short description of
the table.

This token is optional.

A text string, up to 254 bytes in length.

*TableNotes The long description of
the table.

This token is optional.

A text string, up to 32700 bytes in length.

*TableOwner The owner, high-level
qualifier, collection, or
schema of the table.

This token is required.

A text string, up to 15 bytes in length.

*TablePhysicalName The physical table name
as defined to the database
manager or file system.

This token is required.

A text string, up to 80 bytes in length.

Table.tag

84 Data Warehouse Center Application Integration Guide

Table 42. Table.tag tokens (continued)

Token Description Allowed values

*TableBinaryIfFile A flag that specifies
whether the file contains
only binary data if the
table represents a file.

This token is optional.

One of the following values:

ISV_DR_FILE_IS_BINARY
The file is binary.

ISV_DR_FILE_IS_NOT_BINARY
The file is in ASCII or mixed format.

*TableFirstRowNamesIfFile A flag that specifies
whether the first row of
the file contains column
names if the table
represents a file.

This token is optional.

One of the following values:

ISV_DR_ROW_CONTAINS_NAMES
The first row of the file contains
column names.

ISV_DR_ROW_DOES_NOT_CONTAIN_NAMES

The first row of the file contains data.

*TableTypeIfFile The type of file if the
table represents a file.

This token is optional.

One of the following values:

ISV_DR_REL_TABLE
The table is a relational table.

ISV_DR_COMMA_DELIMITED
The columns in the file are separated
by commas.

ISV_DR_FIXED_FORMAT
The columns in the file are in fixed
format.

ISV_DR_TAB_DELIMITED
The columns in the file are separated
by tabs.

ISV_DR_CHAR_DELIMITED
The columns in the file are separated
by the value of *TableDelimiterIfFile.

*TableDelimiterIfFile The value of the delimiter
to separate fields if the
file type is
ISV_DR_CHAR_DELIMITED.

This token is optional.

A text string, 1 byte in length.

Table.tag

Chapter 5. Metadata templates 85

Table 42. Table.tag tokens (continued)

Token Description Allowed values

*TableIsAView A token that specifies
whether the table is a
view.

One of the following values:

ISV_TableIsAView
The table is a view.

ISV_TableIsNotAView
The table is not a view.

*TableIsADimensionTable A token that specifies
whether the table is a part
of a star schema and
contains dimensional
data.

One of the following values:

ISV_TableIsADimensionalTable
The table is a dimensional table.

ISV_TableIsNotADimensionalTable
The table is not a dimensional table.

*TableIsAnAlias A token that specifies
whether the table is
actually an alias of
another table.

One of the following values:

ISV_TableIsAnAlias
This table is an alias for another
table.

ISV_TableIsNotAnAlias
This table is not an alias for another
table.

*TableCreatedByDWC A token that specifies
whether the Data
Warehouse Center should
create and manage this
table.

One of the following values:

ISV_TableIsToBeCreatedByDWC
The table is to be created by the
Data Warehouse Center.

ISV_TableIsNotToBeCreatedByDWC
The table is not to be created by the
Data Warehouse Center.

*TableGrantedToPublic A token that specifies
whether the Data
Warehouse Center should
grant public access to this
table when the table is
created. This is only valid
if the Data Warehouse
Center creates the table.

One of the following values:

ISV_GrantTableAccessToPublic
The Data Warehouse Center is to
grant PUBLIC access to this table.

ISV_DoNotGrantTableAccessToPublic
The Data Warehouse Center is not to
grant PUBLIC access to this table.

Table.tag

86 Data Warehouse Center Application Integration Guide

Table 42. Table.tag tokens (continued)

Token Description Allowed values

*TableIsPersistent A token that specifies
whether the data in the
table is to persist between
executions of the steps
that use this table. If the
table is not persistent, the
data in the table will be
deleted after each use.

One of the following values:

ISV_TableIsPersistent
The table is to be considered
persistent.

ISV_TableIsTransient
The table is to be considered
transient.

*TableMaximumEditions The maximum number of
editions the table is to
have, if the table supports
editions.

A numeric value.

*TableGenerateCreateStatement A token that specifies
whether the Data
Warehouse Center is to
generate the create table
statement.

One of the following values:

ISV_GenerateCreateTableStmt
The Data Warehouse Center should
generate the CREATE TABLE
statement.

ISV_DoNotGenerateCreateTableStmt
The Data Warehouse Center should
not generate the CREATE TABLE
statement.

*TableIsAFactTable A token that specifies
whether the table is part
of a star schema, and the
table contains the fact
information.

One of the following values:

ISV_TableIsAFactTable
The table is a fact table.

ISV_TableIsNotAFactTable
The table is not a fact table.

*TableCreateStatement The DDL to create the
table.

Use this token only if the
ISV_DoNotGenerateCreateTableStmt
has been specified.

A text string.

Relationship parameters

Table.tag

Chapter 5. Metadata templates 87

Table 42. Table.tag tokens (continued)

Token Description Allowed values

*DatabaseName The name of the database
that contains the table.

The name must be unique
within the warehouse
control database.

This token is required.

A text string, up to 80 bytes in length.

*DatabasePhysicalName The physical database
name of the database that
contains the table.

This token is required.

A text string, up to 40 bytes in length.

*CurrentCheckPointID++ An index, starting with 0,
that increases each time
that it is substituted in a
token.

This token is required.

A numeric value.

Examples of values
Table 43 provides examples of values for each token to illustrate the kind of
metadata that you might provide for each token.

Table 43. Example values for Table.tag tokens

Token Example value

*TableFullName DB2ADMIN.GEOGRAPHY

*TableDescription Contains geography information

*TableNotes This table contains all the information
about geographies serviced by our
company

*TableOwner DB2ADMIN

*TablePhysicalName GEOGRAPHY

*TableBinaryIfFile ISV_DEFAULTVALUE

*TableFirstRowNamesIfFile ISV_DEFAULTVALUE

*TableTypeIfFile ISV_DEFAULTVALUE

*TableDelimiterIfFile ISV_DEFAULTVALUE

*TableIsAView ISV_TableIsAView

*TableIsADimensionTable ISV_TableIsNotADimensionTable

*TableIsAnAlias ISV_TableIsAnAlias

Table.tag

88 Data Warehouse Center Application Integration Guide

Table 43. Example values for Table.tag tokens (continued)

Token Example value

*TableCreatedByDWC ISV_TableIsToBeCreatedByDWC

*TableGrantedToPublic ISV_GrantTableAccessToPublic

*TableIsPersistent ISV_TableIsTransient

*TableMaximumEditions 12

*TableGenerateCreateStatement ISV_GenerateCreateTableStmt

*TableIsAFactTable ISV_TableIsAFactTable

*TableCreateStatement Create table xyz

*DatabaseName Finance warehouse

*DatabasePhysicalName FINANCE

*CurrentCheckPointID++ 7

VWPGroup.tag

Use this template to define a group that is to contain any Data Warehouse
Center programs that you are defining. This template is required if you are
defining Data Warehouse Center programs.

Tokens
Table 44 provides information about each token in the template.

Table 44. VWPGroup.tag tokens

Token Description Allowed values

Entity parameters

*VWPGroup The unique name of a
program group that is to
contain all of the Data
Warehouse Center programs
being created.

The name must be unique
within the warehouse control
database.

This token is required.

A text string, up to 80 bytes in length.

*VWPGroupDescription The short description of the
group of Data Warehouse
Center programs.

This token is optional.

A text string, up to 254 bytes in length.

Table.tag

Chapter 5. Metadata templates 89

Table 44. VWPGroup.tag tokens (continued)

Token Description Allowed values

*VWPGroupNotes The long description of the
group of Data Warehouse
Center programs.

This token is optional.

A text string, up to 32700 bytes in length.

Relationship parameters

*CurrentCheckPointID++ An index, starting with 0,
that increases each time that
it is substituted in a token.

This token is required.

A numeric value.

Examples of values
Table 45 provides example values for each token to illustrate the kind of
metadata that you might provide for each token.

Table 45. Example values for VWPGroup.tag tokens

Token Example value

*VWPGroup Group of programs for the partner tool

*VWPGroupDescription This group contains all the programs used
by Data Warehouse Center for the partner
tool

*VWPGroupNotes These programs can be used to determine
the relationship between sales and
location.

*CurrentCheckPointID++ 2

VWPProgramInstanceParameter.tag

Use this template to add or change a parameter that the Data Warehouse
Center passes to an instance of a Data Warehouse Center program for a
specific step. For example, you set a default value for a host name parameter
in the VWPProgramTemplateParameter.tag file (see page 95). You use this
template to change the value that is passed to the Data Warehouse Center
program when this particular step runs.

This template is required if the Data Warehouse Center program requires the
Data Warehouse Center to pass parameters to it. You can specify that the Data
Warehouse Center pass multiple parameters to the program by including this
template for each parameter.

VWPGroup.tag

90 Data Warehouse Center Application Integration Guide

The template also defines the relationship between the parameter and its
program instance.

Tokens
Table 46 provides information about each token in the template.

Table 46. VWPProgramInstanceParameter.tag tokens

Token Description Allowed values

Entity parameters

*VWPProgramInstanceParameterName The unique name or
description of a parameter
that is to be passed to a Data
Warehouse Center program.

This token is required.

A text string, up to 80 bytes in
length.

*VWPProgramInstanceParameterOrder A number, starting with 0,
that indicates the order of the
parameter in the parameter
list.

This token is required.

A numeric value.

*VWPProgramInstanceParameterData The data that is passed to the
Data Warehouse Center
program as the value of the
parameter.

This token is required.

A text string or a numeric
value up to 240 bytes in length.

*VWPProgramInstanceParameterKey A key that uniquely
identifies this program
parameter instance. The key
must be unique from all
other parameter keys in the
interchange file.
Tip: Finish processing the
VWPProgramInstanceParameter.tag
template before increasing
the value of the key.

This token is required.

A text value, up to 10 bytes in
length.

VWPProgramInstanceParameter.tag

Chapter 5. Metadata templates 91

Table 46. VWPProgramInstanceParameter.tag tokens (continued)

Token Description Allowed values

*VWPProgramInstanceParameterType The type of value that this
parameter contains. For
example, character, numeric,
or password data.

One of the following values:

ISV_ParameterTypeNone
The parameter type is
unknown or not
applicable.

ISV_ParameterTypeCharacter
The parameter type is
character.

ISV_ParameterTypeNumeric
The parameter type is
numeric.

ISV_ParameterTypePassword
The parameter type is
password.

Relationship parameters

*VWPProgramInstanceKey A key that uniquely
identifies this program
instance. The key must be
unique from all other keys in
the interchange file.
Tip: Finish processing the
VWPProgramInstance.tag
template before increasing
the value of the key.

This token is required.

A text value, up to 10 bytes in
length

*CurrentCheckPointID++ An index, starting with 0,
that increases each time that
it is substituted in a token.

This token is required.

A numeric value.

Examples of values
The following table provides example values for each token to illustrate the
kind of metadata that you might provide for each token.

Table 47. Example values for VWPProgramInstanceParameter.tag tokens

Token Example value

*VWPProgramInstanceParameterName DB2 UDB user ID

*VWPProgramInstanceKey 070000

VWPProgramInstanceParameter.tag

92 Data Warehouse Center Application Integration Guide

Table 47. Example values for VWPProgramInstanceParameter.tag tokens (continued)

Token Example value

*VWPProgramInstanceParameterOrder++ 1

*VWPProgramInstanceParameterData my_userid

*VWPProgramInstanceParameterKey 012994

*VWPProgramInstanceParameterType ISV_ParameterTypeNumeric

*VWPProgramInstanceKey 070001

*CurrentCheckPointID++ 12

VWPProgramTemplate.tag

Use this template to define a Data Warehouse Center program. This template
is required if the tag language file refers to a Data Warehouse Center
program, unless the warehouse program already exists in the Data Warehouse
Center control database.

The template also defines the relationship between the warehouse program
definition and the Data Warehouse Center program group to which the
program belongs.

Tokens
Table 48 provides information about each token in the template.

Table 48. VWPProgramTemplate.tag tokens

Token Description Allowed values

Entity parameters

*VWPProgramTemplateName The name of the Data
Warehouse Center program
template.

The name must be unique
within the warehouse
control database.

This token is required.

A text string, up to 80 bytes in
length.

*VWPProgramTemplateDescription The short description of the
Data Warehouse Center
program and what it does.

This token is optional.

A text string, up to 254 bytes in
length.

VWPProgramInstanceParameter.tag

Chapter 5. Metadata templates 93

Table 48. VWPProgramTemplate.tag tokens (continued)

Token Description Allowed values

*VWPProgramTemplateNotes The long description of the
Data Warehouse Center
program and what it does.

This token is optional.

A text string, up to 32700 bytes
in length.

*VWPProgramTemplateExecutableName The fully qualified program
name of the Data
Warehouse Center program
that is to run when the step
runs.

If the Data Warehouse
Center program is installed
in the system path, the
warehouse program name
need not be fully qualified.

This token is required.

A text string, up to 240 bytes in
length.

*VWPProgramTemplateType The type of program.

This token is required.

One of the following values:

ISV_PROGRAMTYPEDLL
The Data Warehouse
Center program is
loaded from a dynamic
link library (DLL) or is
a load module.

ISV_PROGRAMTYPECOMMAND

The Data Warehouse Center program is a command file.

ISV_PROGRAMTYPEEXECUTABLE

The Data Warehouse Center program is an executable file.

*VWPProgramTemplateFunctionName The name of the entry point
in the DLL that the Data
Warehouse Center is to
invoke if the value of
*VWPProgramTemplateType is
ISV_PROGRAMTYPEDLL.

This token is required if the
value of
*VWPProgramTemplateType is
ISV_PROGRAMTYPEDLL.

A text string, up to 80 bytes in
length.

Relationship parameters

VWPProgramTemplate.tag

94 Data Warehouse Center Application Integration Guide

Table 48. VWPProgramTemplate.tag tokens (continued)

Token Description Allowed values

*VWPGroup The name of the group that
is to contain the Data
Warehouse Center program.

This token is required.

A text string, up to 80 bytes in
length.

*CurrentCheckPointID++ An index, starting with 0,
that increases each time that
it is substituted in a token.

This token is required.

A numeric value.

*AgentSite The agent site to use for the
source or target.

This token is required.

A text string, up to 80 bytes in
length.

Specify ISV_DEFAULTAGENTSITE
for the default agent site.

Examples of values
Table 49 provides example values for each token to illustrate the kind of
metadata that you might provide for each token.

Table 49. Example values for VWPProgramTemplate.tag tokens

Token Example value

*VWPProgramTemplateName My ISV program

*VWPProgramTemplateDescription This program exports data from an ODBC
database.

*VWPProgramTemplateNotes This program will export data from an
ODBC database, process it, and place it
into another database.

*VWPProgramTemplateExecutableName c:\ISV\BIN\MYPROG.EXE

*VWPProgramTemplateType ISV_PROGRAMTYPEEXECUTABLE

*VWPProgramTemplateFunctionName My_Prog_Func_Name

*VWPGroup Group of programs for partner tool

*CurrentCheckPointID++ 3

VWPProgramTemplateParameter.tag

Use this template to define a parameter that the Data Warehouse Center is to
pass to a Data Warehouse Center program.

VWPProgramTemplate.tag

Chapter 5. Metadata templates 95

This template is required if the Data Warehouse Center program requires that
the Data Warehouse Center pass parameters to it. You can specify that
multiple parameters are passed to the Data Warehouse Center program by
including this template for each parameter.

Use this template with the VWPProgramTemplate.tag file
(“VWPProgramTemplate.tag” on page 93). This template defines the
relationship between the parameter and its Data Warehouse Center program
definition (VWPProgramTemplate.tag).

Tokens
Table 50 provides information about each token in the template.

Table 50. VWProgramTemplateParameter.tag tokens

Token Description Allowed values

Entity parameters

*VWPProgramTemplateParameterName The name or description of a
parameter that is to be passed
to a Data Warehouse Center
program.

The name must be unique
within the Data Warehouse
Center program.

This token is required.

A text string, up to 80 bytes in
length.

*VWPProgramTemplateParameterOrder A number, starting with 0, that
indicates the order of the
parameter in the parameter list.

This token is required.

A numeric value.

*VWPProgramTemplateParameterData The data that is passed to the
Data Warehouse Center
program as the value of the
parameter.

This token is required.

A text string or a numeric
value up to 240 bytes in
length.

VWPProgramTemplateParameter.tag

96 Data Warehouse Center Application Integration Guide

Table 50. VWProgramTemplateParameter.tag tokens (continued)

Token Description Allowed values

*VWPProgramTemplateParameterKey A key that uniquely identifies
this program parameter
template. The key must be
unique from all other keys in
the interchange file.
Tip: Finish processing the
VWPProgramTemplateParameter.tag
template before increasing the
value of the key.

This token is required.

A numeric value.

*VWPProgramInstanceParameterType The type of value that this
parameter contains. For
example, character, numeric, or
password data.

One of the following values:

ISV_ParameterTypeNone
The parameter type
is unknown or not
applicable.

ISV_ParameterTypeCharacter
The parameter type
is character.

ISV_ParameterTypeNumeric
The parameter type
is numeric.

ISV_ParameterTypePassword
The parameter type
is password.

Relationship parameters

*VWPProgramTemplateName The name of the Data
Warehouse Center program that
is to use this parameter.

This token is required.

A text string, up to 80 bytes in
length.

*CurrentCheckPointID++ An index, starting with 0, that
increases each time that it is
substituted in a token.

This token is required.

A numeric value.

Examples of values
Table 51 on page 98 provides example values for each token to illustrate the
kind of metadata that you might provide for each token.

VWPProgramTemplateParameter.tag

Chapter 5. Metadata templates 97

Table 51. Example values for VWPProgramTemplateParameter.tag tokens

Token Example value

*VWPProgramTemplateParameterName DB2 UDB user ID

*VWPProgramTemplateParameterOrder 1

*VWPProgramInstanceKey 070000

*VWPProgramTemplateParameterData my_userid

*VWPProgramTemplateParameterKey 012994

*VWPProgramInstanceParameterType ISV_ParameterTypePassword

*VWPProgramTemplateName My ISV program

*CurrentCheckPointID++ 4

WarehouseDataBase.tag

Use this template to define target warehouse databases to import into the
Data Warehouse Center.

This template also defines the relationship between the following objects:
v The target warehouse database
v The agent site to use for the target warehouse database
v The security group in which to define the target warehouse database

Tokens
Table 52 provides information about each token in the template.

Table 52. WarehouseDataBase.tag tokens

Token Description Allowed values

Entity parameters

*DatabaseName The unique name of the
database.

The name must be
unique within the
warehouse control
database.

This token is required.

A text string, up to 80 bytes in length.

*DatabaseDescription The short description of
the database.

This token is optional.

A text string, up to 254 bytes in length.

VWPProgramTemplateParameter.tag

98 Data Warehouse Center Application Integration Guide

Table 52. WarehouseDataBase.tag tokens (continued)

Token Description Allowed values

*DatabaseNotes The long description of
the database.

This token is optional.

A text string, up to 32700 bytes in length.

*DatabaseContact The person to contact
for information about
this database.

This token is optional.

A text string, up to 64 bytes in length.

*DatabaseServerName The name of the server
on which the database
resides.

This token is optional.

A text string, up to 64 bytes in length.

*DatabaseVersion The version of the
database.

A text string.

*DatabasePhysicalName The physical database
name of the database as
defined to the database
manager.

This token is required.

A text string, up to 40 bytes in length.

WarehouseDataBase.tag

Chapter 5. Metadata templates 99

Table 52. WarehouseDataBase.tag tokens (continued)

Token Description Allowed values

*DatabaseType The type of database
family.

This token is required.

One of the following values:

ISV_IR_DB2Family
DB2 Family

ISV_IR_Oracle
Oracle

ISV_IR_Sybase
Sybase

ISV_IR_MSSQLServer
Microsoft SQLServer

ISV_IR_Informix
Informix

ISV_IR_GenericODBC
Generic ODBC

ISV_IR_FFLan
Flat File LAN

ISV_IR_VSAM
VSAM

ISV_IR_IMS
IMS

*DatabaseTypeExtended The type of AS/400
system or file.

This token is required.

One of the following values:

ISV_IR_DB2400CISC
DB2 UDB for AS/400 for CISC

ISV_IR_DB2400RISC
DB2 UDB for AS/400 for RISC

ISV_IR_FFLanLocalCmd
Local flat file

ISV_IR_FFLanFTPCopy
Local flat file sent using FTP from a
remote system

*DatabaseUserid The user ID with which
to access the database.

This token is optional.

A text string, up to 36 bytes in length.

Relationship parameters

WarehouseDataBase.tag

100 Data Warehouse Center Application Integration Guide

Table 52. WarehouseDataBase.tag tokens (continued)

Token Description Allowed values

*SecurityGroup The security group in
which to create the
source or target
database.

This token is required,
but you can specify the
default security group.

A text string, up to 80 bytes in length.

Specify ISV_DEFAULTSECURITYGROUP for the
default security group.

*AgentSite The agent site to use for
the source or target.

This token is required.

A text string, up to 80 bytes in length.

Specify ISV_DEFAULTAGENTSITE for the default
agent site.

*CurrentCheckPointID++ An index, starting with
0, that increases each
time that it is
substituted in a token.

This token is required.

A numeric value.

Examples of values
Table 53 provides examples of values for each token to illustrate the kind of
metadata that you might provide for each token.

Table 53. example values for WarehouseDataBase.tag tokens

Token Example value

*DatabaseName Finance Warehouse

*DatabaseDescription This database contains financial
information.

*DatabaseNotes This is the warehouse where all
geographies keep financial information.

*DatabaseContact Valerie Zieman

*DatabaseServerName CHI11W71

*DatabaseVersion V6.1.0

*DatabasePhysicalName FINANCE

*DatabaseType DB2 Family

*DatabaseTypeExtended ISV_DEFAULTVALUE

*DatabaseUserid DB2ADMIN

*SecurityGroup ISV_DEFAULTSECURITYGROUP

*AgentSite My agent site

WarehouseDataBase.tag

Chapter 5. Metadata templates 101

Table 53. example values for WarehouseDataBase.tag tokens (continued)

Token Example value

*CurrentCheckPointID++ 6

WarehouseDataBase.tag

102 Data Warehouse Center Application Integration Guide

Chapter 6. Data Warehouse Center metadata

This chapter describes the Data Warehouse Center metadata that describes
source databases and target databases. Other applications can export the
metadata to share information about the databases.

Table 54 describes the mapping between each object in the tag language file
and the corresponding logical object in the Data Warehouse Center.

Table 54. Logical objects for source and target databases

Object in tag language file
Data Warehouse Center
logical object See:

DATABASE A warehouse source or
warehouse target

“DATABASE object”

TABLE A table, file, or IMS segment “TABLES object” on
page 108

COLUMN A column or field “COLUMN object” on
page 114

The Data Warehouse Center also defines relationships between the database,
tables, and columns. The section for each object lists the relationships in
which the object participates that are useful for partner applications.

DATABASE object

The DATABASE object contains metadata about a source database or target
database, file system, or file.

Properties
Table 55 provides information about the properties of the DATABASE object.

Table 55. Properties of the DATABASE object

Tag language
property name Description Allowed values

NAME The business name of the source. A text string, up to 80 bytes in
length.

© Copyright IBM Corp. 1998, 2000 103

Table 55. Properties of the DATABASE object (continued)

Tag language
property name Description Allowed values

DBNAME The physical database name as defined to
the database manager.

This value is null for generic ODBC
databases, Sybase databases, IMS
databases, generic ODBC databases, and
file systems.

A text string, up to 40 bytes in
length.

SHRTDESC The short description of the source. A text string, up to 200 bytes in
length.

LONGDESC The long description of the source. A text string, up to 32700 bytes in
length.

DBTYPE The database or file family. One of the following values:

1 DB2 Family

20 Oracle

30 Sybase

40 Microsoft SQLServer

50 Informix

60 Generic ODBC

70 Flat File LAN

80 VSAM

90 IMS

DATABASE object

104 Data Warehouse Center Application Integration Guide

Table 55. Properties of the DATABASE object (continued)

Tag language
property name Description Allowed values

DBETYPE The type of database or file within a
family.

One of the following values:

1 DB2/2

3 DB2 MVS

4 AS/400 CISC

5 AS/400 RISC

6 DB2/6000

8 DB2 HP

9 DB2 SUN

11 DB2 NT

12 DB2 VM

13 DB2 SINIX

14 DB2 SCO

15 DB2 VSE

16 DB2 EEE

18 DB2 family

19 DataJoiner

20 Oracle

30 Sybase

40 Microsoft SQLServer

50 Informix

60 User-defined ODBC

DBETYPE (continued) The type of database or file within a
family.

One of the following values:

70 Flat File LAN Local
Command

71 Flat File LAN FTP Copy

80 VSAM

90 IMS

DATABASE object

Chapter 6. Data Warehouse Center metadata 105

Table 55. Properties of the DATABASE object (continued)

Tag language
property name Description Allowed values

ISWH A flag that indicates whether this source
is a warehouse target or warehouse
source.

One of the following values:

Y This source is a warehouse
target.

N This source is a warehouse
source.

USERID The user ID that the Data Warehouse
Center uses to connect to the source.

A text string, up to 36 bytes in
length.

CONTACT The name of the person who is
responsible for the source.

A text string, up to 64 bytes in
length.

USEODBC A flag that specifies whether to use the
user-supplied connect string or to
generate the string. Use N for files.

One of the following values:

Y Use the user-defined connect
string.

N Generate the connect string.

ODBCSTR The user-defined ODBC connect string to
use if USEODBC is set to Y. Otherwise,
this property is null.

A text string, up to 254 bytes in
length.

PREACCMD If the source is a local Flat File LAN
source, a command to run to access the
remote file.

A text string, up to 64 bytes in
length.

POSTACMD If the source is a local Flat File LAN
source, a command to run after accessing
the remote file.

A text string, up to 64 bytes in
length.

RETRYCNT The number of times to try to extract
data from this source in case of an error.

A numeric value.

RETRYINT The time that is to elapse between
attempts to extract data.

A numeric value.

VERSION The version of DB2 in use. A text string, up to 128 bytes in
length.

DBMSSERV The database instance/subsystem/server
name for ODBC connect.

A text string, up to 128 bytes in
length.

DFLTDEL The System 390 database default
character string delimiter.

A text string, up to 1 byte in length.

Figure 13 on page 107 shows an example of a DATABASE object instance that
defines a target warehouse database.

DATABASE object

106 Data Warehouse Center Application Integration Guide

Figure 14 shows an example of a DATABASE object instance that defines a
source file.

Relationships
Table 56 on page 108 shows the relationship in which the DATABASE object
participates and that is useful for partner applications. The Source column and
the Target column indicate how many times the source object or the target
object of the relationship can participate in the relationship. For example, in
Table 56 on page 108, the values 1 and M indicate that one database can relate
to many tables, but a table can relate only to one database.

:COMMENT. Begin DATABASE Instance
:COMMENT.
:ACTION.OBJINST(MERGE)
:OBJECT.TYPE(DATABASE)
:INSTANCE.

NAME(iwhtar)
DBNAME(IWHTAR)
DBTYPE(1)
DBETYPE(11)
ISWH(Y)
USERID(marlow)
USEODBC(N)
CODEPAGE(437)
RETRYCNT(3)
RETRYINT(30)

Figure 13. Target DATABASE object instance

:ACTION.OBJINST(MERGE)
:OBJECT.TYPE(DATABASE)
:INSTANCE.

NAME(TBC Operations)
SHRTDESC(The Beverage Company operational data sources)
DBTYPE(70)
DBETYPE(70)
ISWH(N)
LOCATION(Thirsty City)
USERID(XXXXXXXX)
USEODBC(N)
CODEPAGE(437)
RETRYCNT(0)
RETRYINT(0)

Figure 14. Source file DATABASE object instance

DATABASE object

Chapter 6. Data Warehouse Center metadata 107

Table 56. Relationships in which the DATABASE object participates

Source

Source tag
language
object type Relation type Target

Target tag
language object
type Description

1 DATABASE CONTAIN M TABLES Tables or files that
are contained in
the database or file
system.

Figure 15 shows an example of a relationship between a DATABASE object
instance and a TABLES object instance.

TABLES object

This object contains metadata about a warehouse source table, segment, or
file, or a target table. It is associated with a DATABASE object (see
“DATABASE object” on page 103).

Properties
Table 57 provides information about the properties of the TABLES object.

Table 57. Properties of the TABLES object

Tag language
property name Description Allowed values

NAME The name of the table, file, or IMS
segment.

The table name includes the high-level
qualifier, schema or collection, such as
IWH.TABLE1.

The combination of the database name
and the table name is unique.

This property is the fully qualified path
and file name for a file.

A text string, up to 80 bytes in
length.

:COMMENT. Relation: DATABASE to TABLES
:COMMENT.
:ACTION.RELATION(ADD)
:RELTYPE.TYPE(CONTAIN) SOURCETYPE(DATABASE) TARGETYPE(TABLES)
:INSTANCE.

SOURCEKEY(NAME(TBC Operations) DBNAME())
TARGETKEY(DBNAME(TBC Operations) OWNER() TABLES(d:\iwhdemo\outcusti.txt))

Figure 15. Linking DATABASE object instance to TABLES object instance

DATABASE object

108 Data Warehouse Center Application Integration Guide

Table 57. Properties of the TABLES object (continued)

Tag language
property name Description Allowed values

SHRTDESC The short description of the file or
segment.

A text string, up to 200 bytes in
length.

LONGDESC The long description of the table. A text string, up to 32700 bytes in
length.

DBNAME The business name of the source that
contains this table or file.

A text string, up to 80 bytes in
length.

OWNER The owner, high-level qualifier, or
collection of the table.

This property is null for files and IMS
segments.

A text string, up to 15 bytes in
length.

TABLES The physical table, file, or segment name
as defined to the database manager or file
system.

For files and IMS segments, this value is
the same as the value of NAME.

A text string, up to 80 bytes in
length.

TBLISBIN A flag that specifies the file transfer mode
for Flat File LAN files.

One of the following values:

Y The file transfer mode is
binary.

N The file transfer mode is
ASCII.

TBLNAMESP The name of the DB2 table space. A text string, up to 90 bytes in
length.

TBLFTYPE For files, the type of the file. One of the following values:

1 Fixed

2 Comma

3 Tab

4 Character

TBLL1NAM A flag that specifies whether the first row
of the file contains column names.

One of the following values:

Y The first row of the file
contains column names.

N The first row of the file
contains data.

TABLES object

Chapter 6. Data Warehouse Center metadata 109

Table 57. Properties of the TABLES object (continued)

Tag language
property name Description Allowed values

CHARDELM For files, the character separator if the file
type is character.

A text string that is 1 byte in length.

CREATYPE The method used to define the table in the
Data Warehouse Center.

One of the following values:

1 The table was defined
manually.

2 The table definition was
imported from the database
manager.

3 The table definition was
imported from the
Information Catalog
Manager.

4 The table was created by the
Data Warehouse Center for a
step when the step was
promoted to test mode.

TABALIAS A flag that specifies whether the table has
an alias.

One of the following values:

Y The table has an alias.

N The table does not have an
alias.

IWHCRTAR A flag that specifies whether the target
table is created by the Data Warehouse
Center.

One of the following values:

Y The target table is created by
the Data Warehouse Center.

N The target table is not
created by the Data
Warehouse Center.

IWHGRANT A flag that specifies whether GRANT TO
PUBLIC is enabled for the table.

One of the following values:

Y GRANT TO PUBLIC is
enabled for the table.

N GRANT TO PUBLIC is been
enabled for the table.

TABLES object

110 Data Warehouse Center Application Integration Guide

Table 57. Properties of the TABLES object (continued)

Tag language
property name Description Allowed values

IWHDRATN The warehouse target duration, either
transient or persistent.

One of the following values:

Y The table is persistent.

N The table is transient.

IWHMAXED The maximum number of editions of the
table.

A numeric value.

IWHCREGN A flag that specifies whether the create
statement is automatically generated.

One of the following values:

Y The Create statement is
automatically generated.

N The Create statement is not
automatically generated.

IWHCRERU The create statement for the table. A text string, up to 32,700 bytes in
length.

IDSFACT A flag that specifies whether the table is
used as a fact table.

One of the following values:

Y The table is used as a fact
table.

N The table is not used as a
fact table.

CDSSCHEMA The table schema for replication. A text string, up to 128 bytes in
length.

CDTABNAM The table name for replication. A text string, up to 128 bytes in
length.

BEFORIMG The replication before-image prefix. A text string, up to 4 bytes in length.

IDSREPL A flag that specifies whether the table is
used for replication.

One of the following values:

Y The table is used for
replication.

N The table is not used for
replication.

NAMINDEX The DB2 table name index. A text string, up to 90 bytes in
length.

TABLES object

Chapter 6. Data Warehouse Center metadata 111

Table 57. Properties of the TABLES object (continued)

Tag language
property name Description Allowed values

PARTTBSP A flag that specifies whether the table is in
a partitioned table space.

One of the following values:

Y The table is in a partitioned
table space.

N The table is not in a
partitioned table space.

DBNAM390 The System 390 database name. A text string, up to 8 bytes in length.

Figure 16 shows an example of a TABLES object instance for a relational table.

Figure 17 on page 113 shows an example of a TABLES object instance for a
file.

:COMMENT. Begin TABLES Instance
:COMMENT.
:ACTION.OBJINST(MERGE)
:OBJECT.TYPE(TABLES)
:INSTANCE.

NAME(IWH.ATOMICED)
DBNAME(iwhtar)
OWNER(IWH)
TABLES(ATOMICED)
TBLISBIN(N)
TBLFTYPE(0)
TBLL1NAM(N)
CREATYPE(4)

:COMMENT.
:COMMENT. End TABLES Instance

Figure 16. TABLES object instance for a relational table

TABLES object

112 Data Warehouse Center Application Integration Guide

Relationships
Table 58 lists the relationships in which the TABLES object participates and
that are useful for partner applications. The Source column and the Target
column indicate how many times the source object or target object of the
relationship can participate in the relationship.

Table 58. Relationships in which the TABLES object participates

Source

Source tag
language
object type Relation type Target

Target tag
language object
type Description

1 DATABASE CONTAIN M TABLES Database or file
system with which
this table or file is
associated.

1 TABLE CONTAIN M COLUMN Columns
associated with
this table.

Figure 18 on page 114 shows an example of a relationship between a TABLES
object instance and a DATABASE object instance.

:COMMENT. Begin TABLES Instance
:COMMENT.
:ACTION.OBJINST(MERGE)
:OBJECT.TYPE(TABLES)
:INSTANCE.

NAME(d:\iwhdemo\outcusti.txt)
SHRTDESC(File containing operational data for Institutions Customers)
DBNAME(TBC Operations)
OWNER()
TABLES(d:\iwhdemo\outcusti.txt)
TBLISBIN(Y)
TBLFTYPE(3)
TBLL1NAM(N)
CREATYPE(1)

:COMMENT.
:COMMENT. End TABLES Instance

Figure 17. TABLES object instance for a file

TABLES object

Chapter 6. Data Warehouse Center metadata 113

Figure 19 shows an example of a relationship between a TABLES object
instance and a COLUMN object instance.

COLUMN object

The COLUMN object contains metadata about a column or field in a source
table, target table, or file. It is associated with a TABLES object (see “TABLES
object” on page 108).

Properties
Table 59 provides information about the properties of the COLUMN object.

Table 59. Properties of the COLUMN object

Tag language
property name Description Allowed values

NAME The name of the column or field.

The combination of the database name,
table name, and column name is unique.

A text string, up to 80 bytes in length.

SHRTDESC The short description of the column or
field.

A text string, up to 200 bytes in length.

LONGDESC The long description of the column or
field.

A text string, up to 32700 bytes in
length.

:COMMENT. Relation: DATABASE to TABLES
:COMMENT.
:ACTION.RELATION(ADD)
:RELTYPE.TYPE(CONTAIN) SOURCETYPE(DATABASE) TARGETYPE(TABLES)
:INSTANCE.

SOURCEKEY(NAME(TBC Operations) DBNAME())
TARGETKEY(DBNAME(TBC Operations) OWNER() TABLES(d:\iwhdemo\outcusti.txt))

Figure 18. Linking TABLES object instance to DATABASE object instance

:COMMENT. Relation: TABLES to COLUMN
:COMMENT.
:ACTION.RELATION(ADD)
:RELTYPE.TYPE(CONTAIN) SOURCETYPE(TABLES) TARGETYPE(COLUMN)
:INSTANCE.

SOURCEKEY(DBNAME(TBC Operations) OWNER() TABLES(d:\iwhdemo\outcusti.txt))
TARGETKEY(DBNAME(TBC Operations) OWNER() TABLES(d:\iwhdemo\outcusti.txt)

COLUMNS(Zipcode))

Figure 19. Linking TABLES object instance to COLUMN object instance

TABLES object

114 Data Warehouse Center Application Integration Guide

Table 59. Properties of the COLUMN object (continued)

Tag language
property name Description Allowed values

DATATYPE The ODBC data type to which the
database manager data type maps.

The Data Warehouse Center derives the
data type from the native data type.

You cannot add a GRAPHIC data type
column to a table in a VSAM database.

One of the following values:
CHAR
NUMERIC
DECIMAL
INTEGER
SMALLINT
FLOAT
DOUBLE
DATE
TIME
TIMESTAMP
VARCHAR
LONG_VARCHAR
GRAPHIC
VARGRAPHIC
LONG_VARGRAPHIC
BLOB
CLOB
DBCLOB
TINYINT
BIT
REAL
BIGINT

LENGTH The length of the column or field. A numeric value.

SCALE The precision of the column or field for
columns or fields with a decimal data
type.

A numeric value.

POSNO An index, starting with 0, of the column
or field in the row of the table or file.

A numeric value.

NULLS A flag that specifies whether the column
or field allows null data.

One of the following values:

Y The column allows null data.

N The column does not allow
null data.

ISTEXT A flag that specifies whether the column
or field data is binary or text data.

One of the following values:

Y The column data is binary
data.

N The column data is text data.

DBNAME The business name of the source or
target that contains this table or file.

A text string, up to 80 bytes in length.

COLUMN object

Chapter 6. Data Warehouse Center metadata 115

Table 59. Properties of the COLUMN object (continued)

Tag language
property name Description Allowed values

OWNER The owner, high-level qualifier, or
collection of the table.

This property is null for files and IMS
segments.

A text string, up to 15 bytes in length.

TABLES The physical table, file, or segment name
as defined to the database manager or
file system.

For files and IMS segments, this value is
the same as the value of NAME.

A text string, up to 80 bytes in length.

NATIVEDT Native data type of the column or field. The data type for the column as
defined to the database manager.

The data type is a text string, up to 40
bytes in length.

In most cases, the value of this
property will match the value of
DATATYPE.

For the mapping of the database
manager data types to ODBC data
types, see the Data Warehouse Center
online help.

ORDINAL Column or field ordinality. A numeric value.

OFFSET The offset of the field in a fixed-length
file.

A numeric value.

COLTYPE The column type for DPropR. One of the following values:

A After image column

B Before image column

Figure 20 on page 117 shows an example of a COLUMN object instance.

COLUMN object

116 Data Warehouse Center Application Integration Guide

Relationships
Table 60 shows the relationship in which the COLUMN object participates.
This relationship is useful for partner applications. The Source column and the
Target column indicate how many times the source object or the target object
of the relationship can participate in the relationship.

Table 60. Relationship in which the COLUMN object participates

Source

Source tag
language
object type Relation type Target

Target tag language
object type Description

1 TABLES CONTAIN M COLUMN The table with
which this
column is
associated.

Figure 21 on page 118 shows an example of a relationship between a
COLUMN object instance and a TABLES object instance.

:ACTION.OBJINST(MERGE)
:OBJECT.TYPE(COLUMN)
:INSTANCE.

NAME(CORR_COEF)
SHRTDESC(Correlation Coefficient)
DATATYPE(DOUBLE)
LENGTH(0)
SCALE(0)
POSNO(4)
NULLS(Y)
ISTEXT(N)
DBNAME(TRANSFORMER_TARGET)
OWNER(IWH)
TABLES(TR_CORRELATION_06)
COLUMNS(CORR_COEFF)
NATIVEDT(DOUBLE)
TRANSNAM(Correlation Coefficient(r))

Figure 20. COLUMN object instance

COLUMN object

Chapter 6. Data Warehouse Center metadata 117

:COMMENT. Relation: TABLES to COLUMN
:COMMENT.
:ACTION.RELATION(ADD)
:RELTYPE.TYPE(CONTAIN) SOURCETYPE(TABLES) TARGETYPE(COLUMN)
:INSTANCE.

SOURCEKEY(DBNAME(TBC Operations) OWNER() TABLES(d:\iwhdemo\outcusti.txt))
TARGETKEY(DBNAME(TBC Operations) OWNER() TABLES(d:\iwhdemo\outcusti.txt)
COLUMNS(Zipcode))

Figure 21. Linking COLUMN object instance to TABLES object instance

COLUMN object

118 Data Warehouse Center Application Integration Guide

Chapter 7. Information Catalog Manager system tables and
metadata models

The following tables are defined for Information Catalog Manager system
usage:
v Attachment Relation table: FLG.ATCHREL
v Check Point Working table: FLG.CHECKPT
v Comments table: FLG.COMMENTS
v Exchange table: FLG.EXCHANGE
v History table: FLG.HISTORY
v Object Name Instance table: FLG.NAMEINST
v Object Type Register table: FLG.OBJTYREG
v Long Description Overflow table: FLG.OVERDESC
v System Parameter table: FLG.PARMS
v Programs table: FLG.PROGRAMS
v Object Type Property table: FLG.PROPERTY
v Relation Instance table: FLG.RELINST
v Users table: FLG.USERS
v Windows Icons table: FLG.WINICON

FLG.ATCHREL table

The FLG.ATCHREL table is used to define a relationship between an object
instance and a comment.

The RELTYPE, SOURCE, and TARGET columns form the primary key of
table.

The RELTYPE column is an index of the table.

Table 61 on page 120 provides information about each column found in the
FLG.ATCHREL table.

© Copyright IBM Corp. 1998, 2000 119

Table 61. FLG.ATCHREL table column properties

Column name Data type Description Nullable NLS

RELTYPE CHAR(1) Relation type:

A Attachment relation

L Link relation

M Comments relation

No SBCS

SOURCE CHAR(16) The FLGID that represents the source
object instance.

No SBCS

TARGET CHAR(16) The FLGID that represents the target
object instance

No SBCS

Note:

NLS: National Language Support

SBCS: Single Byte Character Set

DBCS: Double Byte Character Set

FLG.CHECKPT table

The FLG.CHECKPT table is used by the Import API to restart the import
process at a checkpoint.

The table is populated by the Import API. At any time, this table can contain
zero to many rows.

The TAGFNAME column is the primary key of table.

The COMMITID, LASTUPDT, and USERID columns are all indexes of the
table.

Table 62 provides information about each column found in the FLG.CHECKPT
table.

Table 62. FLG.CHECKPT table column properties

Column name Data type Description Nullable NLS

TAGFNAME VARCHAR(240) The name of the tag language file (without
the path information).

No Both SBCS
and DBCS

120 Data Warehouse Center Application Integration Guide

Table 62. FLG.CHECKPT table column properties (continued)

Column name Data type Description Nullable NLS

COMMITID CHAR(26) The identifier of the last COMMIT
checkpoint. This identifier is supplied by
the user in a COMMIT tag placed at
appropriate locations in the tag language
file. It can be a system timestamp or any
series of characters.

No Both SBCS
and DBCS

LASTUPDT TIMESTAMP The system timestamp when this entry was
either created or updated. The Last Update
field will not need padding, because it will
always occupy the full 26 bytes.

No None

USERID CHAR(8) The user ID of the information catalog
administrator.

No Both SBCS
and DBCS

ENTSAVED INTEGER The total number of entries that have been
saved in the save area.

No None

SAVEAREA LONG
VARCHAR

Storage area for a list of object type names.
Each object type name is 8 bytes.

No SBCS

Note:

NLS: National Language Support

SBCS: Single Byte Character Set

DBCS: Double Byte Character Set

FLG.COMMENTS table

The FLG.COMMENTS table contains all the comments on objects in the
Information Catalog Manager information catalog.

At any time, this table may contain zero to many rows.

The INSTIDNT column is the primary key of the table.

The NAME, CREATOR, and CREATSTP columns form the unique index of
the table.

The NAME, CREATOR, CREATSTP, and UPDATIME columns are indexes of
the table.

Table 63 on page 122 provides information about each column found in the
FLG.COMMENTS table.

Chapter 7. Information Catalog Manager system tables and metadata models 121

Table 63. FLG.COMMENTS table column properties

Column name Data type Description Nullable NLS

OBJTYPID CHAR(6) This six-digit object type ID, generated by
the Information Catalog Manager,
represents a specific object type in the
information catalog.

No SBCS

INSTIDNT CHAR(10) The unique instance ID generated by the
Information Catalog Manager. It is the
second part of the FLGID, the 10-digits
serial number that will uniquely identify
this instance within its own object type.

No SBCS

NAME VARCHAR(80) The name entered by the information
catalog user to identify each user-defined
object instance.

No Both
SBCS and
DBCS

UPDATIME CHAR(26) The date and time of the metadata
creation or last update. This date is
generated by the Information Catalog
Manager.

Yes None

UPDATEBY CHAR(8) The user ID of the information catalog
administrator who last updated the
instance.

Yes Both
SBCS and
DBCS

CREATOR CHAR(8) The creator of the Comments object. The
system will set the creator value to the
current user ID.

No Both
SBCS and
DBCS

CREATSTP CHAR(26) A timestamp indicating the date and time
the Comments object instance was created.
This timestamp is supplied by the system
when the instance is created.

No None

STATUS CHAR(80) The status of the comment. Users can
design their own conventions for this
value.

Yes Both
SBCS and
DBCS

ACTIONS VARCHAR(250) Specifies what action the user should take. Yes Both
SBCS and
DBCS

EXTRA VARCHAR(80) Used for extra information. Yes Both
SBCS and
DBCS

Note:

NLS: National Language Support

SBCS: Single Byte Character Set

DBCS: Double Byte Character Set

122 Data Warehouse Center Application Integration Guide

FLG.EXCHANGE table

The FLG.EXCHANGE table is used to keep track of the object sychronized
between the Information Catalog Manager, the Data Warehouse Center, and
DB2 OLAP Server™.

This table is populated by the metadata interchange at installation time.

The OBJNAME and OBJTYPE columns form the primary key of the table.

Table 64 provides information about each column found in the
FLG.EXCHANGE table.

Table 64. FLG.EXCHANGE table column properties

Column name Data type Description Nullable NLS

PRODUCT VARCHAR(40) The combination of product, version, and
release numbers.

No SBCS

OBJNAME VARCHAR(200) The object name, for example, step. No Both
SBCS
and
DBCS

IMPDATE TIMESTAMP The import timestamp. No None

OBJTYPE CHAR(5) OBJTYPE can be one of the following
values:

v IR represents source metadata exchanged

v DR represents target metadata

v BV represents step metadata

v OLAP represents OLAP metadata

No SBCS

Note:

NLS: National Language Support

SBCS: Single Byte Character Set

DBCS: Double Byte Character Set

FLG.HISTORY table

The FLG.HISTORY table is used to keep track of object instances that have
been deleted from the Information Catalog Manager and the Data Warehouse
Center.

The table is populated when the user deletes an object instance and the
recording delete history flag is ON. At any time, this table can contain zero to
many rows.

Chapter 7. Information Catalog Manager system tables and metadata models 123

The HISSEQ column is the primary key of the table.

Table 65 provides information about each column found in the FLG.HISTORY
table.

Table 65. FLG.HISTORY table column properties

Column name Data type Description Nullable NLS

HISSEQ TIMESTAMP The sequence number of the delete history. No None

HISTYPE INTEGER The type of the delete history.

v A value of 1 in this column indicates a
deletion from the information catalog.

v A value of 2 in this column indicates a
deletion from the Data Warehouse
Center.

No None

HISTAG LONG
VARCHAR

This column will store the identifier of the
object to be deleted.

Yes Both
SBCS and
DBCS

Note:

NLS: National Language Support

SBCS: Single Byte Character Set

DBCS: Double Byte Character Set

FLG.NAMEINST table

The FLG.NAMEINST table contains the name of every object in the
information catalog.

The FLGID column is the primary key of the table.

The INSTNAME and TYPENAME columns are indexes of the table.

Table 66 provides information about each column found in the
FLG.NAMEINST table.

Table 66. FLG.NAMEINST table column properties

Column name Data type Description Nullable NLS

FLGID CHAR(16) The 16-character object instance ID. No SBCS

TYPENAME VARCHAR(80) The external name of the object type. No Both
SBCS and
DBCS

124 Data Warehouse Center Application Integration Guide

Table 66. FLG.NAMEINST table column properties (continued)

Column name Data type Description Nullable NLS

INSTNAME VARCHAR(80) The external name of an object instance. No Both
SBCS and
DBCS

Note:

NLS: National Language Support

SBCS: Single Byte Character Set

DBCS: Double Byte Character Set

FLG.OBJTYREG table

The FLG.OBJTYREG table is used to keep track of all objects and their object
types, as well as tables created by the Information Catalog Manager.

The OBJTYPID column is the primary key of FLG.OBJTYREG that uniquely
identifies an object type in the information catalog and is used as the prefix
for all instance IDs.

The columns PTNAME, NAME, and DPNAME are unique index keys of the
FLG.OBJTYREG table.

The columns CATEGORY, CREATOR, and UPDATEBY are index keys of the
table.

Table 67 provides information about each column found in the
FLG.OBJTYREG table.

Table 67. FLG.OBJTYREG table column properties

Column name Data type Description Nullable NLS

OBJTYPID CHAR(6) The six-digit object type ID generated by
the Information Catalog Manager. The ID
represents a specific object type in the
information catalog.

No SBCS

PTNAME CHAR(30) The name of the object type. The name is
also used as the name of the user’s table.
The actual size of PTNAME is determined
by the value of ENVSIZE on the
FLG.PARMS table, which is defined
during installation.

No SBCS

DPNAME CHAR(8) The unique object type name within an
information catalog.

No SBCS

Chapter 7. Information Catalog Manager system tables and metadata models 125

Table 67. FLG.OBJTYREG table column properties (continued)

Column name Data type Description Nullable NLS

NAME VARCHAR(80) The external name of this object type. No Both
SBCS and
DBCS

CATEGORY CHAR(1) The Information Catalog Manager
categories: Elemental E, Grouping G,
Program P, Contact C, Dictionary D,
Support S, and Attachment A.

No SBCS

CREATOR CHAR(8) The user ID of the information catalog
administrator who created the object type.
It will be blank when the object type is
registered. It will also contain a blank after
the object type is deleted but before the
registration is removed.

Yes Both
SBCS and
DBCS

UPDATIME CHAR(26) The date and time of the object type that
was created or that had its properties
extended.

Yes SBCS

UPDATEBY CHAR(8) The user ID of the information catalog
administrator who last extended the object
type (appended properties).

Yes Both
SBCS and
DBCS

LASTINID INTEGER The last system-generated instance ID for
this object type.

This is an internal property, and it will not
be visible to the information catalog user.
It is accessed and updated by the Create
Instance IPI only.

No None

OBJICON LONG VARCHAR
FOR BIT DATA

The icon bitmap corresponding to the
object type.

No None

Note:

NLS: National Language Support

SBCS: Single Byte Character Set

DBCS: Double Byte Character Set

FLG.OVERDESC table

The FLG.OVERDESC table contains all long description properties. Each long
description is divided into 3-KB chunks.

The OBJTYPID, INSTIDNT, PHYPRPNM, and SEQNO columns form the
primary key of table FLG.OVERDESC.

126 Data Warehouse Center Application Integration Guide

Table 68 provides information about each column found in the
FLG.OVERDESC table.

Table 68. FLG.OVERDESC table column properties

Column name Data type Description Nullable NLS

OBJTYPID CHAR(6) The six-digit, object type ID generated by
the Information Catalog Manager,
represents a specific object type in the
information catalog.

No SBCS

INSTIDNT CHAR(10) The unique instance ID generated by the
Information Catalog Manager. The ID is the
second part of the FLGID, the 10-digit
portion of the serial number that uniquely
identifies this instance within its own object
type.

No SBCS

PHYPRPNM CHAR(8) The original property or column name
defined by the user.

No SBCS

SEQNO SMALLINT A sequence number to keep track of how
many rows reflect the same incoming
source.

No None

ODESC VARCHAR(3000) This entry keeps the segments of a long
description, which can be up to 32700
bytes, in a smaller and more manageable
buffer.

No Both
SBCS and
DBCS

Note:

NLS: National Language Support

SBCS: Single Byte Character Set

DBCS: Double Byte Character Set

FLG.PARMS table

The FLG.PARMS table does not contain metadata. It contains internal, global
parameters for the Information Catalog Manager. The table is a global storage
area for persistent Information Catalog Manager parameters such as version,
logon message, and code page.

FLG.PARMS stores system parameters. The values in this table are set when
you use the Information Catalog Manager Create Catalog Utility (see
Information Catalog Manager Administration Guide). You can also use the
Information Catalog Manager APIs (see the Information Catalog Manager
Programming Guide and Reference) to change the values.

Chapter 7. Information Catalog Manager system tables and metadata models 127

Table 69 provides information about each column found in the FLG.PARMS
table.

Table 69. FLG.PARMS table column properties

Column name Data type Description Nullable NLS

VERSION CHAR(20) The version of the information catalog, for
example, V1R0M0 or V1R1M0; which is
populated at the installation or migration
time.

Yes SBCS

LOGONMSG VARCHAR(254) Information Catalog Manager logon
message, for example, ″Welcome to the
Information Catalog Manager!″

Yes Both
SBCS and
DBCS

CODEPAGE CHAR(4) Code page number of the information
catalog.

Yes SBCS

LANGUAGE CHAR(4) Language code, for example, ENU (US
English). It is loaded from a string file.

Yes SBCS

DTOKEN CHAR(1) The default token of the Information
Catalog Manager environment used to
represent an unspecified data field. This
not-applicable symbol is used by the
import and export functions.

This value is set during installation.

Yes SBCS

ENVSIZE SMALL
INTEGER

Database server environment size.

This value is set during installation, and is
used to specify the proper name length for
Information Catalog Manager tables,
columns, and indexes.

This value can be 10 for DB2 UDB for
AS/400, 18 for most other IBM relational
databases, and up to a maximum of 30
bytes for non-IBM databases.

Yes None

LASTYPID INTEGER The last system-generated ID for an object
type. The ID is accessed and updated by
the Create Registration IPI only.

Yes None

LISTMAX INTEGER The maximum number of retrievable
objects from a listing or search result.

Yes None

ISTGROUP CHAR(8) The index storage group name for the DB2
for OS/390® database.

Yes SBCS

TSTGROUP CHAR(8) The table storage group name for the DB2
for OS/390 database.

Yes SBCS

MDBNAME CHAR(8) The DB2 for OS/390 database name. Yes SBCS

128 Data Warehouse Center Application Integration Guide

Table 69. FLG.PARMS table column properties (continued)

Column name Data type Description Nullable NLS

TBSPAC32 CHAR(8) The 32 KB table space name for the DB2 for
OS/390 database.

Yes SBCS

TBSPAC04 CHAR(8) The 4 KB table space name for DB2 for
OS/390 database.

Yes SBCS

PARMFLAG INTEGER A flag indicator.

FLG_PARMS_RECORD_DELETE_HISTORY
Records the delete history.

FLG_PARMS_MVS_FOLD_UP
Saves the object values in
uppercase in the DB2 for OS/390
information catalog. You can
search these values in uppercase or
lowercase in the Information
Catalog Manager.

Yes None

CMTSTAT VARCHAR(800) This column stores a list of comments
status. Each status is 80 bytes.

Yes Both
SBCS and
DBCS

Note:

NLS: National Language Support

SBCS: Single Byte Character Set

DBCS: Double Byte Character Set

FLG.PROGRAMS table

The FLG.PROGRAMS table is used to keep track of all program objects in the
information catalog.

The INSTIDNT column is the primary key of the table FLG.PROGRAMS.

The UUICLASS, UUIQUAL1, UUIQUAL2, UUIQUAL3, and UUIDENT
columns form the unique index of table FLG.PROGRAMS.

The NAME, UPDATEBY, UPDATIME, UUICLASS, UUIQUAL1, UUIQUAL2,
UUIQUAL3, UUIDENT, and HANDLES columns are indexes of the table.

Table 70 on page 130 provides information about each column found in the
FLG.PROGRAMS table.

Chapter 7. Information Catalog Manager system tables and metadata models 129

Table 70. FLG.PROGRAMS table column properties

Column name Data type Description Origin NLS

OBJTYPID CHAR(6) The six-digit object type ID, generated by
the Information Catalog Manager,
represents a specific object type.

No SBCS

INSTIDNT CHAR(10) The unique instance ID generated by the
Information Catalog Manager. It is the
second part of the FLGID, the 10-digit
serial number that uniquely identifies this
instance within its own object type.

No SBCS

NAME VARCHAR(80) This name is entered by the information
catalog user to identify each user-defined
object instance.

No Both
SBCS and
DBCS

UPDATIME CHAR(26) The date and time of metadata creation or
last update. This is generated by the
Information Catalog Manager.

Yes SBCS

UPDATEBY CHAR(8) The user ID of the information catalog
administrator who last updated the
instance.

Yes Both
SBCS and
DBCS

UUICLASS CHAR(25) The part1 name of the universal unique
identifier (UUI).

No Both
SBCS and
DBCS

UUIQUAL1 VARCHAR(48) The part2 name of the (UUI). No Both
SBCS and
DBCS

UUIQUAL2 VARCHAR(48) The part3 name of the (UUI). No Both
SBCS and
DBCS

UUIQUAL3 VARCHAR(48) The part4 name of the (UUI). No Both
SBCS and
DBCS

UUIDENT VARCHAR(70) The part5 name of the (UUI). No Both
SBCS and
DBCS

HANDLES CHAR(8) The object type that this program handles. Yes SBCS

STARTCMD VARCHAR(250) The program name to be invoked. The
program can have an extension of .exe,
.cmd, .com, or .bat.

No Both
SBCS and
DBCS

PARMLIST VARCHAR(1800) If a parameter list is required to handle
object instances, the value of the
parameter is specified by the HANDLES
property.

Yes Both
SBCS and
DBCS

130 Data Warehouse Center Application Integration Guide

Table 70. FLG.PROGRAMS table column properties (continued)

Column name Data type Description Origin NLS

SHRTDESC VARCHAR(250) The short description of the program. Yes Both
SBCS and
DBCS

Note:

NLS: National Language Support

SBCS: Single Byte Character Set

DBCS: Double Byte Character Set

FLG.PROPERTY table

The FLG.PROPERTY table is used to define a property for an object type.
There is one row for each property of each object type defined in this table.
For a description of Information Catalog Manager object types and object type
properties, see “Chapter 8. Information Catalog Manager object types” on
page 147.

The OBJTYPID column is the index of the table.

Table 71 provides information about each column found in the
FLG.PROPERTY table.

Table 71. FLG.PROPERTY table column properties

Column name Data type Description Nullable NLS

OBJTYPID CHAR(6) System-generated ID that is a unique 6
digits for each object type.

No SBCS

PHYPRPNM CHAR(8) The physical name of the property in the
object type. This name will be used to
generate the column name in the user’s
object table.

No SBCS

PROPNAME VARCHAR(80) The external name of this object type
property.

No Both
SBCS and
DBCS

DATATYPE CHAR(30) Property data type, CHAR, VARCHAR,
LONG VARCHAR and TIMESTAMP.

No SBCS

LENGTH INTEGER Property length. No None

Chapter 7. Information Catalog Manager system tables and metadata models 131

Table 71. FLG.PROPERTY table column properties (continued)

Column name Data type Description Nullable NLS

OPTIONS CHAR(1) A value flag used to indicate if this field
allows null values.

R Value required (not nullable)

O Optional value (nullable)

S System generated value

No SBCS

UUISEQNO CHAR(1) The UUI sequence number of the property
in the object type.

Yes SBCS

PROPSEQ INTEGER The sequence number of the property No None

Note:

NLS: National Language Support

SBCS: Single Byte Character Set

DBCS: Double Byte Character Set

FLG.RELINST table

The FLG.RELINST table defines relationships between two objects. The table
contains one row for each source-to-target object instance relationship.

The RELTYPE, SOURCE, and TARGET columns form the primary key of the
table.

The RELTYPE, SRCCAT, SOURCE, SRCTNAME, SRCINAME, TRGCAT,
TARGET, TRGTNAME, and TRGINAME columns are indexes of the table.

Table 72 provides information about each column found in the FLG.RELINST
table.

Table 72. FLG.RELINST table column properties

Column name Data type Description Nullable NLS

RELTYPE CHAR(1) Relation type:

C Contains

T Contact

No SBCS

SRCCAT CHAR(1) Category of the source object. No SBCS

132 Data Warehouse Center Application Integration Guide

Table 72. FLG.RELINST table column properties (continued)

Column name Data type Description Nullable NLS

SOURCE CHAR(16) The FLGID that represents the source
object instance.

No SBCS

SRCTNAME VARCHAR(80) The external name of the source object
type.

No Both
SBCS and
DBCS

SRCINAME VARCHAR(80) The external name of the source object
instance.

No Both
SBCS and
DBCS

TRGCAT CHAR(1) The category of the target object. No SBCS

TARGET CHAR(16) The FLGID that represents the target
object instance.

No SBCS

TRGTNAME VARCHAR(80) The external name of the target object
type.

No Both
SBCS and
DBCS

TRGINAME VARCHAR(80) The external name of the target object
instance.

No Both
SBCS and
DBCS

Note:

NLS: National Language Support

SBCS: Single Byte Character Set

DBCS: Double Byte Character Set

FLG.USERS table

The FLG.USERS table contains a list of all the information catalog
administrators and users with special administrative privileges. Unlike most
of the other Information Catalog Manager store tables, the FLG.USERS table
does not contain metadata. It contains definitions of different types of
information catalog users and their status.

The USERTYPE and DGUSER columns form the primary key of the table.

The DGUSER column is an index of the table.

Table 73 on page 134 provides information about each column found in the
FLG.USERS table.

Chapter 7. Information Catalog Manager system tables and metadata models 133

Table 73. FLG.USERS table column properties

Column name Data type Description Nullable NLS

DGUSER CHAR(8) The user ID of the information catalog
administrator. The ID is entered at
installation.

No Both
SBCS
and
DBCS

USERTYPE CHAR(1) Type of DGUSER. The type can be an
information catalog administrator, a user
with special update privileges, or a user.

This value is set during installation.

No SBCS

ACTIVEKA CHAR(1) A flag to indicate the information catalog
administrator who is currently logged on
to the Information Catalog Manager. Only
one information catalog administrator can
be logged on at a time.

Yes SBCS

Note:

NLS: National Language Support

SBCS: Single Byte Character Set

DBCS: Double Byte Character Set

FLG.WINICON table

The FLG.WINICON table contains the associated Windows icon for each
object type.

The OBJTYPID column is the primary key of the table.

Table 74 provides information about each column found in the FLG.WINICON
table.

Table 74. FLG.WINICON table column properties

Column name Data type Description Nullable NLS

OBJTYPID CHAR(6) The six-character object type ID. No SBCS

OBJICON LONG
VARCHAR FOR
BIT DATA
(30000)

The bitmap for the Windows icon. Yes None

134 Data Warehouse Center Application Integration Guide

Table 74. FLG.WINICON table column properties (continued)

Column name Data type Description Nullable NLS

Note:

NLS: National Language Support

SBCS: Single Byte Character Set

DBCS: Double Byte Character Set

Information Catalog Manager metadata models

The following sections describe the Information Catalog Manager metadata
models. “Model for Information Catalog Manager system tables” describes the
relationships between Information Catalog Manager system tables. “Logical
metadata model” on page 139 describes the relationships between objects in
the Information Catalog Manager object type categories.

Model for Information Catalog Manager system tables
The following illustrations show the relationships between the different
Information Catalog Manager system tables as well as the object-type tables.
For example, a relationship can be a join between two columns. The following
Information Catalog Manager system tables are not related to the other system
tables:
v FLG.PARMS
v FLG.HISTORY
v FLG.USERS
v FLG.EXCHANGE
v FLG.CHECKPT

See the notes following this figure for each numbered relationship.

Chapter 7. Information Catalog Manager system tables and metadata models 135

Notes to Figure 22

1. The relationship between the two tables exists when the values in the
OBJTYPID columns of the tables are equal. The relationship is a join
between the two tables based on the OBJTYPID column.

2. The relationship between the two tables exists when the values in the
OBJTYPID columns of the tables are equal. The relationship is a join
between the two tables based on the OBJTYPID column.

3. The relationship between the two tables exists when the values in the
DPNAME and HANDLES columns of the tables are equal. The
relationship is a join between the two tables based on the DPNAME and
HANDLES columns.

4. The relationship between the tables is derived from the PTNAME and
CREATOR columns of the FLG.OBJTYREG table, and the physical name of
the FLG.COMMENTS table.

……

FLG.ATCHREL

…

FLG.NAMEINST

…

FLG.RELINST

…

FLG.OVERDESC

…

FLG.PROPERTY

…

FLG.OBJTYREG

…

FLG.WINICON

…

FLG.PROGRAMS

…

FLG.COMMENTS

…

1

2

5
3

4

6

7

8

9
9

7

xxx.yyyyyyy
(object type)

7

Figure 22. Information Catalog Manager system tables

136 Data Warehouse Center Application Integration Guide

For example, in Figure 23, the first entry in the PTNAME column is
COMMENTS, and the first entry in the CREATOR column is FLG.
Together these values form the fully qualified FLG.COMMENTS table
name.

5. The relationship between the FLG.OBJTYPREG table and an object type
table is derived by concatenating the PTNAME and CREATOR columns of
the FLG.OBJTYPREG table. The resulting name is the name of the object
type table.
For example in Figure 23, the second entry in the PTNAME column is
PRESENT, and the second entry in the CREATOR column is DGADMIN.
Together these values form the fully qualified name DGADMIN.PRESENT.

FLG.OBJTYREG

OBJTYPID PTNAME DPNAME NAME CATEGORY CREATOR ...

00001 COMMENTS COMMENTS Comments G FLG ...

000002 PRESENT PRESENT Presentations E DGADMIN ...

000003 COLUMNS COLUMN Columns or fields
in a relational DB

G DGADMIN ...

FLG.COMMENTS

OBJTYPID INSTIDNT Name UPDATIME UPDATEBY SHRTDESC

000001

000001

000001

000001

0000016465 Comment for "My
Presentation" object

...

0000003435 This is a comment for
the XYZ presentation

...

0000064459 this is comment3

DGADMIN.PRESENT

OBJTYPID INSTIDNT Name UPDATIME UPDATEBY SHRTDESC

000002

0000021

0000001111 My presentation This is a presentation object

0000002222 XYZ presentation This is another presentation
object in the information catalog

... ...

Figure 23. Relationship between table FLG.OBJTYREG and the object type table

Chapter 7. Information Catalog Manager system tables and metadata models 137

6. If a relationship is of type A (attaches), the relationship that is stored in the
FLG.ATCHREL table is derived by concatenating the object type ID and
instance ID of a source table with the object type and instance ID of a
target table.
For example, in Figure 24, the object type and instance ID for
DGADMIN.PRESENT are concatenated in the source column of the
FLG.ATCHREL table. The concatenated object type and instance ID of the
associated comment attached to the presentation object in
DGADMIN.PRESENT are stored in the target column.

7. The relationship between each pair of tables is derived from the FLGID of
the tables. The FLGID represents the concatenation of the OBJTYPID
column and the INSTIDNT column of the tables.

FLG.ATCHREL

RELTYPE SOURCE TARGET

0000020000001111 0000010000016465

A 0000020000002222 0000010000003435

A 0000030000123456 0000010000004459

FLG.COMMENTS

OBJTYPID INSTIDNT Name UPDATIME UPDATEBY SHRTDESC

A

000001

000001

000001

0000016465 Comment for "My
Presentation" object

...

0000003435 This is a comment for
the XYZ presentation

...

0000064459 this is comment3

DGADMIN.PRESENT

OBJTYPID INSTIDNT Name UPDATIME UPDATEBY SHRTDESC

000002

000002

0000001111 My presentation This is a presentation object

0000002222 XYZ presentation This is another presentation
object in the information catalog

... ...

Figure 24. Relationship between FLG.ATCHREL table, source, and target

138 Data Warehouse Center Application Integration Guide

8. The relationship stored in FLG.RELINST is for the following relationships:
Contains, Link, and Contact. (See “Logical metadata model” for more
information on object category relationships.) The relationship is derived
from the FLGID columns of the source table and the target table. See
“Predefined Information Catalog Manager object types” on page 151 for
more information on Information Catalog Manager object types.

9. The relationship between each pair of tables is derived from the FLGID of
the two tables. There might be multiple rows of data in the
FLG.OVERDESC table. If so, the rows are sequenced by the SEQNO
column of the FLG.OVERDESC table.

Logical metadata model
Every object type must belong to an Information Catalog Manager category.
An object type’s category affects how the Information Catalog Manager
handles it. The following list describes the object types that you can create in
each of the Information Catalog Manager categories:

Grouping
Object types that can contain other object types.

Elemental
Non-Grouping object types that are the building blocks for other
Information Catalog Manager object types.

Contact
Object types that identify a reference for more information about an
object. More information might include the name of the person who
created the information that the object represents, or the department
responsible for maintaining the information.

Program
A Programs object type that identifies and describes applications
capable of processing the actual information represented by
Information Catalog Manager objects types. The only object type that
belongs to the Program category is the Programs object type, which is
defined when you create an information catalog.

Dictionary
Object types that define terminology that is specific to your business.

Support
Object types that provide additional information about your
information catalog or enterprise.

Attachment
A Comments object type that identifies additional information
attached to another Information Catalog Manager object. The only
object type that belongs to the Attachment category is the Comments
object type, which is defined when you create an information catalog.

Chapter 7. Information Catalog Manager system tables and metadata models 139

Table 75 summarizes the relationships among the Information Catalog
Manager object type categories. Figure 25 on page 141 shows a graphical
representation of the relationships.

Table 75. Information Catalog Manager category relationships

Category
Can contain/is
contained by Links with

Contacts
associated

Comments
attached

Programs
launch from

Grouping Contains other
Grouping or
Elemental
objects

Other Grouping
or Elemental
objects

Yes Yes Yes

Elemental Contained by
any Grouping
object

Other Grouping
or Elemental
objects

Yes Yes Yes

Contact None None No Yes Yes

Program None None No Yes No

Dictionary None None No Yes Yes

Support None None No Yes Yes

Attachment None None No No Yes

You can establish object types for your information catalog in any of three
ways:
v Use the object types that come with the Information Catalog Manager in the

sample information catalog (see “Predefined Information Catalog Manager
object types” on page 151 for information about creating the sample
information catalog and a description of the object types that it includes).

v Modify the object types that come with the Information Catalog Manager to
fit your organization’s needs (see Information Catalog Manager Administration
Guide for information about modifying an object type).

v Create your own object types.

Figure 25 on page 141 shows how objects within object type categories are
related. In the illustration, parentheses around an object type category name
indicate that an object type category is not extendible. Parentheses around an
object type name indicate that object type is not extendible. See “Chapter 8.
Information Catalog Manager object types” on page 147 for more information
on extendible object types.

140 Data Warehouse Center Application Integration Guide

In Figure 25 above, the following relationships are shown:

Contains
An object can contain many objects, or an object can be contained by
many objects.

For example, a Grouping object can contain many Elemental objects,
and an Elemental object can be contained by many Grouping objects.

Link An object can be linked to many objects. Objects in a linked
relationship are peers, rather than one being an underlying object of
the other.

For example, a Grouping object can be linked to many Elemental
objects, and an Elemental object can be linked to many Grouping
objects.

Contact
An object can have many Contact objects associated with it, or one
Contact object can be associated with many objects.

Grouping Dictionary

(Attachment)

Support

Contact

(Comments)

(Program)

Programs
Handles all
object types

except programs

Elemental

Attaches

ContainsLink

Link Contains

Link

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

Attaches AttachesContact

Contact Attaches Attaches

Figure 25. Relationships between object type categories

Chapter 7. Information Catalog Manager system tables and metadata models 141

For example, a Grouping object can be associated with many Contact
objects, and a Contact object can be associated with many Grouping
and Elemental objects.

Attaches
An object can have many Attachment objects associated with it;
however, one Attachment object can be associated with only one
object.

For example, a Grouping object can have many Attachment objects
associated with it; however, one Attachment object can be related to
only one Grouping object.

Program
In this relationship, one object type can have many Program object
instances associated with it. However, one Program object instance can
be associated with only one object type.

For example, an Elemental object type can have many Program object
instances associated with it; however, one Program object instance can
be associated with only one object type.

Using SQL to access metadata

You can use SQL to extract metadata directly from the database tables that
make up the information catalog; this section provides examples.
1. To determine what object type definitions exist in the information catalog,

enter the following SQL statement:
SELECT OBJTYPID, DPNAME, NAME, CREATOR, PTNAME FROM FLG.OBJTYREG

This statement returns the following information:

OBJTYPID
Internal identifier for the object type

DPNAME
Object type name

NAME
External object type name

CREATOR,PTNAME
The table (object instance table) where object instances of that type
are stored

2. To determine the property names for a specific object type after you
determine the object type ID (from step 1), enter the following SQL
statement:

142 Data Warehouse Center Application Integration Guide

SELECT PHYPRPNM, PROPNAME, DATATYPE, LENGTH, OPTIONS, UUISEQNO,
PROPSEQ FROM FLG.PROPERTY WHERE OBJTYPID = 'object_type_ID'
ORDER BY PROPSEQ

This statement returns the following information (in the order that the
properties were created):

PHYPRPNM
Physical column name in the object instance table that maps to an
object type property

PROPNAME
Business name of the property

DATATYPE
Data type of the property

LENGTH
Length of the property

OPTIONS
Indicates whether a value is required for this property in the object
instance

UUISEQNO
UUI indicator, and sequence number if not 0

PROPSEQ
The order that the properties were added to the properties table

3. To find an instance of a specific object type after you determine the
physical tables where the object is stored (from step1 on page 142) and the
properties that you want (from step 2 on page 142), enter the following
SQL statement:
SELECT OBJTYPID, INSTIDNT, NAME,phyprpnm1,phyprpnm2...

FROM creator.ptname
WHERE phyprpnm LIKE '%search_criteria%'

This statement returns the following information:

OBJTYPID
Internal identifier for the object type

INSTIDNT
Internal identifier for an instance of this object type

phyprpnm1
Value for the property specified in the SELECT statement

phyprpnm2
Value for the property specified in the SELECT statement

Chapter 7. Information Catalog Manager system tables and metadata models 143

In addition, you must enter the following SELECT statement to retrieve
any property values that are of the data type long variable character
(LONG VARCHAR):
SELECT PHYPRPNM, ODESC FROM FLG.OVERDESC

WHERE OBJTYPID = object_type_ID
AND INSTIDNT = object_instance_ID
ORDER BY SEQNO

Where object_type_ID and object_instance_ID are the values that you
obtained after you generated the SELECT statement in step 3 on page 143.
This statement returns the following information:

PHYPRPNM
Physical property name of the property that is a long variable
character

ODESC
Value of the long variable character (there might be more than one
ODESC for each property value; the order is by sequence)

4. To retrieve a list of all objects in the information catalog, enter the
following SQL statement:
SELECT FLGID, INSTNAME, TYPENAME FROM FLG.NAMEINST

This statement returns the following information:

FLGID
Concatenated object type and instance IDs for the object

INSTNAME
External name of the object

TYPENAME
Type of object (external name for the object type)

5. To determine hierarchical or contact relationships between objects, enter
the following statement:
SELECT SOURCE, TARGET, RELTYPE FROM FLG.RELINST

This statement returns the following information:

SOURCE
Concatenated object type and instance ID for the object that is the
source in a relationship

TARGET
Concatenated object type and instance ID for the object that is the
target of a relationship

RELTYPE
Relationship type (C for container or T for contact)

144 Data Warehouse Center Application Integration Guide

To determine linked or attachment relationships between objects, enter the
following SQL statement:
SELECT SOURCE, TARGET, RELTYPE FROM FLG.ATCHREL

This statement returns the following information:

SOURCE
Concatenated object type and instance ID for the object that is the
source in a relationship

TARGET
Concatenated object type and instance ID for the object that is the
target of a relationship

RELTYPE
Relationship type (A for attachment or L for linked)

You can use the SOURCE and TARGET values to look up the object
instance information in the object tables. You can also qualify an SQL
statement to select specific object values as shown in step 4 on page 146.

Example: You have an application for which you want to display the metadata
about a relational table named Employee, and show all of its columns. The
object type for Employee is TABLES, and the object type for the columns is
COLUMN. Your application includes the following SQL statements:
1. To retrieve the name of the table where TABLES object instances are

stored:
SELECT OBJTYPID, DPNAME, NAME, CREATOR, PTNAME FROM FLG.OBJTYREG
WHERE DPNAME = 'TABLES'

The statement returns the following information:
'000001', 'TABLES', 'Relational Tables', 'USERXYZ', 'TABLES'

2. To retrieve the OBJTYPID of the COLUMN object:
SELECT OBJTYPID, DPNAME, CREATOR, PTNAME from FLG.OBJTYREG
WHERE DPNAME = 'COLUMN'

The statement returns the following information:
'000007', 'COLUMN', 'Columns or fields', 'USERXYZ', 'COLUMN'

3. To retrieve the information about the specific TABLES object for which you
want to display metadata:
SELECT OBJTYPID, INSTIDNT, NAME, DBNAME, OWNER, TABLES

FROM USERXYZ.TABLES
WHERE NAME = 'Employee'

The statement returns the following information:
'000001', '0040608795', 'Employee', 'MYDBASE', 'USERABC', 'EMPL_TAB'

Chapter 7. Information Catalog Manager system tables and metadata models 145

4. To retrieve the relationships between the TABLES instance SOURCE and
COLUMN instance TARGET:
SELECT TARGET FROM FLG.RELINST
WHERE SOURCE = '0000010040608795'

AND TARGET LIKE '000007%'
AND RELTYPE = 'C'

The statement returns the following two objects:
('0000079238400354')
('0000079843095410')

5. To retrieve the information about the two returned COLUMN objects:
SELECT NAME, SHRTDESC, DATATYPE, LENGTH FROM USERXYZ.COLUMNS
WHERE INSTIDNT IN ('9238400354', 9843095410')

The statement returns the following information:
('Name', 'Employee name information', 'CHAR', '80')
('Address', 'Employee address information', 'CHAR', '220')

146 Data Warehouse Center Application Integration Guide

Chapter 8. Information Catalog Manager object types

This chapter provides detailed information about Information Catalog
Manager object types.

Default properties for all object types

The Information Catalog Manager provides a set of default properties for the
generic object type. These default properties serve as the base for any
user-defined tables. Some properties are generated by the Information Catalog
Manager; some are required; and some are optional.

FLGID
An ID, generated by the Information Catalog Manager, that uniquely
identifies an instance.

The FLGID ID is 16 digits, with the first 6 digits used for the object
type ID (OBJTYPID) and the next 10 digits used for the instance ID
(INSTIDNT). FLGID has the following format:

Name Name of the step. The name can be used on glossary, news queries,
and other objects. This is a required property, and it is not nullable. It
is displayed in the Information Catalog Manager windows.

UPDATIME
A system time stamp that indicates the date and time of the creation
or last update to the instance.

UPDATEBY
The user ID of the information catalog administrator or user with
special privileges who last updated the instance. For Attachment
objects, this field can be the user ID of an information catalog user.

6 digits of serial number as part of the object type ID

161 6 7

10 digits of number as a primary
key within the table

(OBJTYPID)
Object type ID

(INSTIDNT)
Instance ID

Figure 26. FLGID Format

© Copyright IBM Corp. 1998, 2000 147

Default property summary
The information catalog administrator can use the predefined template to
create an object type. The information catalog administrator can append
attributes to the template to customize it for the organization. The predefined
template has several optional fields. Table 76 shows the default properties.

Table 76. Default properties of the predefined template

Column
name Data type Description Nullable NLS

OBJTYPID CHAR(6) A six-digit object type ID, generated by the
Information Catalog Manager, that represents a
specific object type.

No SBCS

INSTIDNT CHAR(10) The unique instance ID generated by the
Information Catalog Manager. It is the second part
of the FLGID, the 10-digit serial number that
uniquely identifies this instance within its own
object type.

No SBCS

NAME VARCHAR(80) This name is entered by the information catalog
user to identify each user-defined object instance in
the product.

No Both
SBCS
and
DBCS

UPDATIME CHAR (26) The date and time of metadata creation or last
update. This value is generated by the Information
Catalog Manager.

No SBCS

UPDATEBY CHAR(8) The user ID of the information catalog
administrator or user with special update
privileges who last updated the instance. For
attachment objects this field might be the user ID
of the information catalog user. This value is
generated by the Information Catalog Manager.

No Both
SBCS
and
DBCS

Note:

NLS: National Language Support

SBCS: Single Byte Character Set

DBCS: Double Byte Character Set

Guidelines for extendible objects types
1. An object type is extendible if it can be changed. An object type category

is extendible if other objects can be added to it. Most Information Catalog
Manager objects are extendible including PROGRAMS, QUERY, IMAGE,
REPORT, business group (BUSNSGP), TABLES, COLUMNS, GLOSSARY,
CONTACTS, and NEWS. The COMMENTS object type is not extendible.
The Programs and Attachments categories are not extendible.

Default properties for all object types

148 Data Warehouse Center Application Integration Guide

2. All Information Catalog Manager objects are organized into the following
categories:

Elemental (E)
An object type that cannot have any objects within it, for example,
REPORT, QUERY, and IMAGE objects.

Grouping (G)
An object type that can contain other Grouping or Elemental
objects, for example, INFOGRPS, and TABLES object types.

Program (P)
An executable object type, for example, the PROGRAMS object
type.

Contact (C)
A special object type used to identify a person or organization to
contact if a question arises about another object, for example, the
CONTACTS object type.

Dictionary (D)
An object type that helps the user find the definition or synonyms
of the terminology used in the user’s business environment, for
example, the GLOSSARY object type.

Support (S)
An object type that provides additional information about the
information catalog or business environment, for example, the
NEWS object type.

Attachment (A)
An object type that is used to attach additional information to
another object, for example, the COMMENTS object type.

The process used to create, delete, and update object types is identical for
all object types, except for the PROGRAMS and COMMENTS object types.

The PROGRAMS object type is predefined by the Information Catalog
Manager and is the only object type used within the Program category.
You cannot create another object type under the Program category, and
you cannot delete the PROGRAMS object type.

The COMMENTS object type is predefined by the Information Catalog
Manager and is the only object type used within the Attachment category.
You cannot create another object type under the Attachment category, and
you cannot delete the COMMENTS object type.

3. With a new object type such as VIDEO or AUDIO, you can create your
own object type, if the DPname of the object type is unique within the
Information Catalog Manager.

Default properties for all object types

Chapter 8. Information Catalog Manager object types 149

4. All objects must include a universal unique identifier, UUI, as part of their
object type definition. The UUI is used to compare with a similar identifier
in the target information catalog during the import process.

5. If the property has a data type such as LONG VARCHAR, the Information
Catalog Manager will automatically put the property and its metadata into
a separate overflow table and split the property into smaller segments so a
user can search for it. The search will proceed slowly because of the size of
the property.

6. The Information Catalog Manager supports five data types:

CHAR
A fixed character string, up to 254 characters.

VARCHAR
A variable-length character string, up to 4000 characters. The
maximum length of a row of a table is also 4000.

LONG VARCHAR
A variable-length character string, up to 32700 characters.

The Information Catalog Manager keeps metadata of this type in a
separate table and divides the metadata into smaller segments so
that you can search for the string. When the metatdata is retrieved,
the Information Catalog Manager puts the segments back together.

TIMESTAMP
A seven-part value that consists of year, month, day, hour, minute,
second, and microsecond in a character string of 26 bytes. It has
the format yyyy-mm-dd-hh.mm.ss.nnnnnn.

LONG VARCHAR FOR BIT DATA
Binary data such as a bitmap.

Relation types
1. The Information Catalog Manager supports the following types of

relationships that are created and deleted through the same FLGRelation
API. Different APIs, such as FLGNavigate, FLGWhereUsed, and
FLGListContacts are used to access each type of the relationship. These
APIs call their corresponding IPIs to complete the user’s request.
a. Contains (C)

For example: a hierarchical business structure or a relational table to
the relational columns.
This relation is retrieved by APIs such as FLGNavigate and
FLGWhereUsed.

b. Contact (T)
For example: the name of a person providing services for specified
objects.

Default properties for all object types

150 Data Warehouse Center Application Integration Guide

The FLGListContacts API is used to access this relation.
c. Attaches relationship (A)

For example: comments for a specified object.
The FLGListAssociates and FLGFoundIn API are used to retrieve this
relation.

d. Link relationship (L)
A grouping or elemental category object type instance can link to any
other grouping or elemental category object type instance.
The FLGListAssociates API is used to retrieve this relation.

2. The relation rules based on the Information Catalog Manager defined
categories are described in “Logical metadata model” on page 139.

Objects are not required to have relationships. You can find all objects by
using the Information Catalog Manager windows (see the Information Catalog
Manager Administration Guide), the FLGSearch API, or by viewing the
FLG.NAMEINST table. See the Information Catalog Manager Programming Guide
and Reference for more information on Information Catalog Manager APIs. See
“FLG.NAMEINST table” on page 124 for information on the FLG.NAMEINST
table.

Relation instance
If there is a relation between two object instances, this instance-to-instance
relation is added to the relation instance table.

The table has the following format:
┌──────────────┬───────────────┬───────┐
│ FLGID of │ FLGID of │RelType│
│ source │ target │C/T/L/A│
│ (16 digits) │ (16 digits) │ │
└──────────────┴───────────────┴───────┘

See “FLG.RELINST table” on page 132 for more information on the properties
in the table.

Predefined Information Catalog Manager object types

The Information Catalog Manager includes predefined object types that can be
exchanged with metadata from other Data Warehouse Center components and
other MDIS-conforming products from IBM and other companies. This section
describes all of the predefined Information Catalog Manager object types,
including how the object type properties map to MDIS object types. For
information about the Metadata Interchange Specification, including complete
MDIS object type definitions, go to the Meta Data Coalition’s Web site at
http://www.MDCinfo.com.

Default properties for all object types

Chapter 8. Information Catalog Manager object types 151

The Information Catalog Manager provides both the predefined object types
and sample objects of each type within the sample information catalog. The
sample information catalog includes at least one object type for each of the
seven Information Catalog Manager categories. This section describes how to
create the sample information catalog. For details of Information Catalog
Manager object type capabilities, see the Information Catalog Manager
Administration Guide.

Table 77 lists all the object types in the sample information catalog. Object
types can represent data or a relationship between two object types.

Object types that represent data
Most predefined object types represent types of data such as the
Charts or Documents object types.

Object types that represent relationships
The Transformations object type is a special object type that represents
a relationship between two other object types. Specifically, it
represents the transformation of data from the data’s source format to
its target format. You can use Transformations object types to provide
information about the lineage of the data within a target relational
database.

Table 77. Predefined data object types summary

Object type name Description
Properties defined

on page

Application data Internal use only 160

Audio clips Represents files that contain audio
information

193

Business subject
areas

Represents logical grouping of objects 162

Charts Represents either printed or electronic
charts

194

Columns or fields Represents columns within a relational
table, fields within a file, or fields within
an IMS segment

163

Comments Contains comments about other objects in
the information catalog

211

Databases Represents relational databases 166

Information Catalog
Manager news

Conveys information about changes to
the information catalog

207

Dimensions within a
multi-dimensional
database

Represents dimensions within a
multidimensional database

167

Predefined Information Catalog Manager object types

152 Data Warehouse Center Application Integration Guide

Table 77. Predefined data object types summary (continued)

Object type name Description
Properties defined

on page

Documents Represents books, manuals, and technical
papers

195

Elements Represents MDIS Element objects that do
not map directly to the “Columns or
fields” object type

170

Files Represents a file within a file system 172

Glossary entries Represents definitions for terms used in
the information catalog

205

Images or graphics Represents graphic images, such as
bitmaps

196

IMS database
definitions (DBD)

Represents IMS database definitions 174

IMS program control
blocks (PCB)

Represents IMS program control blocks 176

IMS program
specification blocks
(PSB)

Represents IMS program specification
blocks

177

IMS segments Represents IMS segments 178

Internet documents Represents Web sites and other
documents on the Internet that might be
of interest

198

Lotus® Approach®

queries
Represents available Lotus Approach
queries for use with your organization’s
data

199

Members within a
multidimensional
database

Represents a member within a
multidimensional database

180

Multidimensional
databases

Represents multidimensional databases 183

Online news services Represents news and information services
that can be accessed online

208

Online publications Represents publications and other
documents that can be accessed from
online services

209

People to contact Identifies a person or group that is
responsible for single or multiple objects
within the information catalog

204

Predefined Information Catalog Manager object types

Chapter 8. Information Catalog Manager object types 153

Table 77. Predefined data object types summary (continued)

Object type name Description
Properties defined

on page

Presentations Represents printed or electronic
presentations

200

Programs that can
be invoked from
Information Catalog
Manager objects

Defines an application capable of
processing a particular object type

210

Records Represents MDIS Record objects that do
not map directly to the “Files” or
“Relational tables or views” object type

184

Relational tables and
views

Represents tables or views of relational
databases

186

Subschemas Represents logical groupings of records
within a database

189

Transformations Represents expressions or logic used to
populate columns of data within the
target relational database

191

Spreadsheets Represents desktop spreadsheets (for
example, Lotus 1-2-3® or Microsoft Excel
spreadsheets)

201

Text-based reports Represents either printed or electronic
reports

202

Video clips Represents files that contain video
information

203

Predefined object type models

The Information Catalog Manager predefined object types participate in the
six data models shown in Figures 27 through 32.

Figure 27 shows the object types that participate in the relational model.

Predefined Information Catalog Manager object types

154 Data Warehouse Center Application Integration Guide

Figure 28 shows the object types that participate in the hierarchical models.

Figure 29 shows the object types that participate in the file models.

Database
objects

Table
objects

Column
objects

Transformation
model

Transformation
model

Transformation
model

Figure 27. Relational model and the predefined object types

IMS DBD
objects

IMS segment
objects

IMS segment
objects

Column
objects

Column
objects

Transformation
model

Transformation
model

Transformation
model

Transformation
model

IMS PSB
objects

IMS PCB
objects

Figure 28. Hierarchical models and the predefined object types

Predefined object type models

Chapter 8. Information Catalog Manager object types 155

Figure 30 shows the object types that participate in the multi-dimensional
(OLAP) model.

Figure 31 shows the object types that participates in the transformation
models.

Database
objects

File
objects

Column
objects

Transformation
model

Transformation
model

Transformation
model

Figure 29. File models and the predefined object types

Database
objects

Dimension
(with domain)

objects

Member
objects

Transformation
objects

Transformation
objects

Figure 30. Multi–dimensional model and the predefined object types

Predefined object type models

156 Data Warehouse Center Application Integration Guide

Figure 32 shows the object types that participates in the subject area model.

Transformation
object

Transformation
object

Transformation
object

Transformation
object

Transformation
object

Transformation
object

Transformation
object

Transformation
model

Transformation
model

Transformation
model

Transformation
model

Transformation
model

Transformation
model

Transformation
model

Database
model

File
model

Table
model

Record
model

Segment
model

Dimension
model

Column
model

Figure 31. Transformation model and the predefined object types

Predefined object type models

Chapter 8. Information Catalog Manager object types 157

Predefined object type descriptions
Sample Information Catalog Manager object types are organized by category
and defined in the tables that start on page 160.

Each table lists the properties for that object type. Each property is described
in terms of its property specifications. A property’s specifications govern the
value that you can give that property when creating or updating an object of
that object type.

The property specifications are:

EXTNAME The name of the property; for example,
Business Name.

DT The data type of the property’s value; for
example, CHAR or VARCHAR.

DL The length (maximum length for
VARCHAR or LONG VARCHAR data
types) of the value for the property.

SHRTNAME The name used to identify the property
within the Information Catalog Manager
data store.

Subject
area

model

Subject
area

model

Subject
area

model

Subject
area

model

Other
model

Subject
area

model

Other
model

Other
object
type

Subject
area

model

Other
model

Other
model

Other
object
type

Other
model

Other
object
type

Figure 32. Subject area model and the predefined object types

Predefined object types in the sample information catalog

158 Data Warehouse Center Application Integration Guide

NULLS R A value for the property is
required; value for NULLS in the
tag language is N.

O A value for the property is
optional; value for NULLS in the
tag language is Y.

S A value generated by the
Information Catalog Manager that
indicates that provides a value
for the property when any object
is created. You cannot specify this
value.

UUISEQ If the property is part of the UUI, then
this number indicates its position within
the UUI.

MDIS mappings
Tables that describe Information Catalog Manager object type properties begin
on page 160. For each object type that conforms to the Metadata Interchange
Specification (MDIS), the MDIS equivalent for each property appears in the
column titled Maps to MDIS name.
1. Find the table for the object type you are exporting.
2. Find the MDIS name in the Maps to MDIS name column.
3. Find the equivalent Information Catalog Manager names in the Property

name and Property short name columns.

Each property described in the following object type property tables
corresponds to a column with the same property short name in the
Information Catalog Manager DB2 storage table XXX.object_type_name, where
object_type_name is the name of the object type described in the table. If the
property data type is LONG VARCHAR, the property corresponds to a row in
the Information Catalog Manager DB2 storage table FLG.OVERDESC.

Grouping category
The Grouping category contains the following object types:
v “Application data” on page 160
v “Business subject areas” on page 161
v “Columns or fields” on page 162
v “Databases” on page 165
v “Dimensions within a multidimensional database” on page 167
v “DWC Process” on page 169
v “Elements” on page 170
v “Files” on page 171

Predefined object types in the sample information catalog

Chapter 8. Information Catalog Manager object types 159

v “IMS database definitions (DBD)” on page 173
v “IMS program control blocks (PCB)” on page 175
v “IMS program specification blocks (PSB)” on page 177
v “IMS segments” on page 178
v “Members within a multidimensional database” on page 180
v “Multidimensional databases” on page 182
v “Records” on page 184
v “Relational tables and views” on page 186
v “Star Schemas” on page 188
v “Subschemas” on page 189
v “Transformations” on page 190

Application data: Used by the Information Catalog Manager for some MDIS
metadata exchanges. Objects of this object type might appear in your
information catalog, but you do notuse this object type to create objects.

The tag language for defining this object type is in the file FLGNYAPL.TYP in
the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.APPLDATA. For more information on table names, see “MDIS
mappings” on page 159.

Table 78 provides information about the properties of the Application data
object type.

Table 78. Properties of the Application data object type

Property
name Data type Size

Property
short name Value flag UUI order

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME O

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O

Predefined object types in the sample information catalog

160 Data Warehouse Center Application Integration Guide

Table 78. Properties of the Application data object type (continued)

Property
name Data type Size

Property
short name Value flag UUI order

Long
description

LONG
VARCHAR

32700 LONGDESC O

Source object
identifier

CHAR 16 FLGID R 1

Application
data field 0

LONG
VARCHAR

32700 APPLDAT0 O

Application
data field 1

LONG
VARCHAR

32700 APPLDAT1 O

Application
data field 2

LONG
VARCHAR

32700 APPLDAT2 O

Application
data field 3

LONG
VARCHAR

32700 APPLDAT3 O

Application
data field 4

LONG
VARCHAR

32700 APPLDAT4 O

Application
data field 5

LONG
VARCHAR

32700 APPLDAT5 O

Application
data field 6

LONG
VARCHAR

32700 APPLDAT6 O

Application
data field 7

LONG
VARCHAR

32700 APPLDAT7 O

Application
data field 8

LONG
VARCHAR

32700 APPLDAT8 O

Application
data field 9

LONG
VARCHAR

32700 APPLDAT9 O

Timestamp
source
definition
created

CHAR 26 CRTTIME O

Timestamp
source
definition
last changed

CHAR 26 SRCDATCF O

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Business subject areas: Represents logical groupings of objects.

The tag language for defining this object type is in the file FLGNYINF.TYP in
the \VWSWIN\DGWIN\TYPES directory.

Application data

Chapter 8. Information Catalog Manager object types 161

The Information Catalog Manager DB2 storage table name for this object type
is XXX.INFOGRPS. For more information on table names, see “MDIS
mappings” on page 159.

Table 79 provides information about the properties of the Business subject
areas object type.

Table 79. Properties of the Business subject areas object type

Property
name Data type Size

Property
short name Value flag UUI order

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R 1

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O

Long
description

LONG
VARCHAR

32700 LONGDESC O

Actions VARCHAR 254 ACTIONS O

Filename VARCHAR 254 FILENAME O

URL to
access data

VARCHAR 254 URL O

For more
information .
. .

VARCHAR 80 CONTACT O

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Columns or fields: Represents columns within a relational table, fields
within a file, or fields within an IMS segment.

The tag language for defining this object type is in the file FLGNYCOL.TYP in
the \VWSWIN\DGWIN\TYPES directory.

Business subject areas

162 Data Warehouse Center Application Integration Guide

The Information Catalog Manager DB2 storage table name for this object type
is XXX.COLUMNS. For more information on table names, see “MDIS
mappings” on page 159.

Table 80 provides information about the properties of the Columns or fields
object type.

Table 80. Properties of the Columns or fields object type. The MDIS name for this object type is Element.

Property name Data type Size
Property
short name Value flag

UUI
order Maps to MDIS name

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R ElementLongName

Last Changed
Date and Time

TIMESTAMP 26 UPDATIME S

Last Changed
By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O BriefDescription

Long
description

LONG
VARCHAR

32700 LONGDESC O LongDescription

Actions VARCHAR 254 ACTIONS O ApplicationData

Catalog
remarks

VARCHAR 254 REMARKS O ApplicationData

For further
information...

VARCHAR 80 RESPNSBL O ContactName

Column or
field last
refreshed

CHAR 26 FRESHDAT O ElementLastRefreshDate

Data type of
column or
field

CHAR 30 DATATYPE O ElementDataType

Length of
column or
field

CHAR 20 LENGTH O ElementLength

Scale of
column or
field

CHAR 5 SCALE O ApplicationData

Columns or fields

Chapter 8. Information Catalog Manager object types 163

Table 80. Properties of the Columns or fields object type (continued). The MDIS name for this object
type is Element.

Property name Data type Size
Property
short name Value flag

UUI
order Maps to MDIS name

Precision of
column or
field

CHAR 5 PRECDIG O ElementPrecision

Can column or
field be null

CHAR 1 NULLS O ElementNulls

Column or
field ordinality

CHAR 5 ORDINAL O ElementOrdinality

Column or
field position

CHAR 5 POSNO O ElementPosition

Byte offset of
column or
field from start

CHAR 10 STARTPOS O ApplicationData

Is column or
field part of a
key

CHAR 1 ISKEY O ApplicationData

Is column or
field a unique
key

CHAR 1 UNIQKEY O ApplicationData

Position of
column or
field within
key

CHAR 5 KEYPOSNO O ElementKeyPosition

Database host
server name

VARCHAR 80 SERVER O ServerName

Database or
subsystem
name

VARCHAR 80 DBNAME R 1 DatabaseName

Table owner VARCHAR 80 OWNER R 2 OwnerName

Table name VARCHAR 80 TABLES R 3 RecordName

Column or
field name

VARCHAR 254 COLUMNS R 4 ElementName

Filename VARCHAR 254 FILENAME R 5 ApplicationData

URL to access
data

VARCHAR 254 URL O ApplicationData

Containing
dimension

VARCHAR 80 DIMENSION O DimensionName

Columns or fields

164 Data Warehouse Center Application Integration Guide

Table 80. Properties of the Columns or fields object type (continued). The MDIS name for this object
type is Element.

Property name Data type Size
Property
short name Value flag

UUI
order Maps to MDIS name

Is data a
before or after
image, or
computed

CHAR 50 COLIMAGE O ApplicationData

Source column
or field name
or expression
used to
populate
column

VARCHAR 254 COLEXPR O ApplicationData

String used to
represent null
values

VARCHAR 30 IDSNREP O ApplicationData

Resolution of
dates

CHAR 1 IDSRES O ApplicationData

Is data text CHAR 1 ISTEXT O ApplicationData

Timestamp
source
definition
created

CHAR 26 CRTTIME O DateCreated, TimeCreated

Timestamp
source
definition last
changed

CHAR 26 SRCDATCF O DateUpdated,
TimeUpdated

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Databases: Represents relational databases.

The tag language for defining this object type is in the file FLGNYDAT.TYP in
the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.DATABAS. For more information on table names, see “MDIS
mappings” on page 159.

Table 81 on page 166 provides information about the properties of the
Databases object type.

Columns or fields

Chapter 8. Information Catalog Manager object types 165

Table 81. Properties of the Databases object type. The MDIS name for this object type is Database.

Property
name Data type Size

Property
short name

Value
flag

UUI
order Maps to MDIS name:

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R DatabaseLongName

Last Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last Changed
By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O BriefDescription

Long
description

LONG
VARCHAR

32700 LONGDESC O LongDescription

Actions VARCHAR 254 ACTIONS O ApplicationData

For further
information...

VARCHAR 80 RESPNSBL O ContactName

Database
owner

VARCHAR 80 OWNER O OwnerName

Database host
server name

VARCHAR 80 SERVER R 1 ServerName

Database
server type

VARCHAR 80 SRVRTYPE O ServerType

Database or
subsystem
name

VARCHAR 80 DBNAME R 2 DatabaseName

Database type VARCHAR 80 DBTYPE R 3 DatabaseType

Database
extended type

VARCHAR 40 DBETYPE O DatabaseExtendedType

Database
status

VARCHAR 80 DBSTAT O DatabaseStatus

Database
location

VARCHAR 80 LOCATION O ApplicationData

URL to access
data

VARCHAR 254 URL O ApplicationData

System code
page

VARCHAR 10 CODEPAGE O ApplicationData

Databases

166 Data Warehouse Center Application Integration Guide

Table 81. Properties of the Databases object type (continued). The MDIS name for this object type is
Database.

Property
name Data type Size

Property
short name

Value
flag

UUI
order Maps to MDIS name:

Agent type VARCHAR 80 AGENTYPE O ApplicationData

Timestamp
source
definition
created

CHAR 26 CRTTIME O DateCreated, TimeCreated

Timestamp
source
definition last
changed

CHAR 26 SRCDATCF O DateUpdated,
TimeUpdated

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Dimensions within a multidimensional database: Represents dimensions
within a multidimensional database. A dimension is comprised of members.

The tag language for defining this object type is in the file FLGNYDIM.TYP in
the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.DIMENSION. For more information on table names, see “MDIS
mappings” on page 159.

Table 82 provides information about the properties of the dimensions within a
multidimensional database object type.

Table 82. Properties of the Dimensions within a multidimensional database object type. The MDIS name
for this object type is Dimension.

Property
name Data type Size

Property
short name Value flag

UUI
order Maps to MDIS name:

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R DimensionLongName

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Databases

Chapter 8. Information Catalog Manager object types 167

Table 82. Properties of the Dimensions within a multidimensional database object type (continued). The
MDIS name for this object type is Dimension.

Property
name Data type Size

Property
short name Value flag

UUI
order Maps to MDIS name:

Short
description

VARCHAR 250 SHRTDESC O BriefDescription

Long
description

LONG
VARCHAR

32700 LONGDESC O LongDescription

Actions VARCHAR 254 ACTIONS O ApplicationData

For further
information...

VARCHAR 80 RESPNSBL O ContactName

Database last
refreshed

CHAR 26 FRESHDAT O ApplicationData

Database
host server
name

VARCHAR 80 SERVER R 1 ServerName

Database or
subsystem
name

VARCHAR 80 DBNAME R 2 DatabaseName

Using
application
name

VARCHAR 80 APPLNAME R 3 ApplicationData

Dimension
owner

VARCHAR 80 OWNER O OwnerName

Dimension
name

VARCHAR 80 DIMENSON R 4 DimensionName

Dimension
class or type

VARCHAR 80 TYPE O DimensionType

Total
member
count

CHAR 10 TOTALCNT O DimensionCount

Level count CHAR 10 LEVELCNT O DimensionLevelCount

Application-
specific
information

VARCHAR 512 APPLDATA O ApplicationData

URL to
access data

VARCHAR 254 URL O ApplicationData

Timestamp
source
definition
created

CHAR 26 CRTTIME O DateCreated, TimeCreated

Dimensions within a multidimensional database

168 Data Warehouse Center Application Integration Guide

Table 82. Properties of the Dimensions within a multidimensional database object type (continued). The
MDIS name for this object type is Dimension.

Property
name Data type Size

Property
short name Value flag

UUI
order Maps to MDIS name:

Timestamp
source
definition
last changed

CHAR 26 SRCDATCF O DateUpdated, TimeUpdated

Note: S = generated by the Information Catalog Manager, R = required, O = optional

DWC Process: Represents a process in the Data Warehouse Center.

The tag language for defining this object type is in the file FLGNYINF.TYP in
the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.DWCPROC. For more information on table names, see “MDIS
mappings” on page 159.

Table 83 provides information about the properties of the Business subject
areas object type.

Table 83. Properties of the DWC Process object type

Property
name Data type Size

Property
short name Value flag UUI order

Name VARCHAR 80 NAME R 1

Short
description

VARCHAR 250 SHRTDESC O

Long
description

LONG
VARCHAR

32700 LONGDESC O

Actions VARCHAR 254 ACTIONS O

For further
information .
. .

VARCHAR 80 RESPNSBL O

URL to
access data

VARCHAR 254 URL O

Timestamp
source
definition
last changed

CHAR 26 SRCDATCF O

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Dimensions within a multidimensional database

Chapter 8. Information Catalog Manager object types 169

Elements: Represents MDIS element objects that do not map directly to the
Columns or fields object type.

The tag language for defining this object type is in the file FLGNYELE.TYP in
the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.ELEMENT. For more information on table names, see “MDIS
mappings” on page 159.

Table 84 provides information about the properties of the Elements object
type.

Table 84. Properties of the Elements object type. The MDIS name for this object type is
Element.

Property
name Data type Size

Property
short name Value flag UUI order

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O

Long
description

LONG
VARCHAR

32700 LONGDESC O

Actions VARCHAR 254 ACTIONS O

For further
information...

VARCHAR 80 RESPNSBL O

Element last
refreshed

CHAR 26 FRESHDAT O

Database
host server
name

VARCHAR 80 SERVER R 1

Database or
subsystem
name

VARCHAR 80 DBNAME R 2

Elements

170 Data Warehouse Center Application Integration Guide

Table 84. Properties of the Elements object type (continued). The MDIS name for this
object type is Element.

Property
name Data type Size

Property
short name Value flag UUI order

Element
owner

VARCHAR 80 OWNER R 3

Dimension
or record
name

VARCHAR 80 DIMRECNM R 4

Element
name

VARCHAR 80 ELEMNAME R 5

URL to
access data

VARCHAR 254 URL O

Data type of
element

CHAR 30 DATATYPE O

Length of
element

CHAR 20 LENGTH O

Scale of
element

CHAR 5 SCALE O

Precision of
element

CHAR 5 PRECDIG O

Can element
be null

CHAR 1 NULLS O

Position of
element
within
primary key

CHAR 5 KEYPOSNO O

Element
position

CHAR 5 POSNO O

Element
ordinality

CHAR 5 ORDINAL O

Timestamp
source
definition
created

CHAR 26 CRTTIME O

Timestamp
source
definition
last changed

CHAR 26 SRCDATCF O

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Files: Represents a file within a file system.

Elements

Chapter 8. Information Catalog Manager object types 171

The tag language for defining this object type is in the file FLGNYFIL.TYP in
the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.FILE. For more information on table names, see “MDIS mappings” on
page 159.

Table 85 provides information about the properties of the Files object type.

Table 85. Properties of the Files object type. The MDIS name for this object type is Record.

Property
name Data type Size

Property
short name Value flag

UUI
order Maps to MDIS name:

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R RecordLongName

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Short
Description

VARCHAR 250 SHRTDESC O BriefDescription

Long
Description

LONG
VARCHAR

32700 LONGDESC O LongDescription

Actions VARCHAR 254 ACTIONS O ApplicationData

For further
information...

VARCHAR 80 RESPNSBL O ContactName

Database
host server
name

VARCHAR 80 SERVER R 1 ServerName

Database or
subsystem
name

VARCHAR 80 DBNAME R 2 DatabaseName

File owner VARCHAR 80 OWNER R 3 OwnerName

File path or
directory

VARCHAR 254 FILEPATH R 4 ApplicationData

File filename VARCHAR 254 FILENAME R 5 RecordName

File data last
refreshed

CHAR 26 FRESHDAT O RecordLastRefreshDate

Files

172 Data Warehouse Center Application Integration Guide

Table 85. Properties of the Files object type (continued). The MDIS name for this object type is Record.

Property
name Data type Size

Property
short name Value flag

UUI
order Maps to MDIS name:

Transformation
program last
run

CHAR 26 LASTRUN O ApplicationData

Transformation
program run
frequency

VARCHAR 80 RUNFREQ O RecordUpdateFrequency

Transformation
program type

VARCHAR 32 SOURCE O ApplicationData

Partial or full
file
copy/update

CHAR 1 COPYCOMP O ApplicationData

Copied/updated
data is in a
consistent
state

CHAR 1 CONSIST O ApplicationData

Transformation
program last
changed

CHAR 26 PGMGEND O ApplicationData

Transformation
program last
compiled

CHAR 26 PGMCOMP O ApplicationData

File class or
type

VARCHAR 80 TYPE O RecordType

URL to
access data

VARCHAR 254 URL O ApplicationData

Timestamp
source
definition
created

CHAR 26 CRTTIME O DateCreated, TimeCreated

Timestamp
source
definition
last changed

CHAR 26 SRCDATCF O DateUpdated, TimeUpdated

Note: S = generated by the Information Catalog Manager, R = required, O = optional

IMS database definitions (DBD): Represents IMS database definitions.

The tag language for defining this object type is in the file FLGNYDBD.TYP in
the \VWSWIN\DGWIN\TYPES directory.

Files

Chapter 8. Information Catalog Manager object types 173

The Information Catalog Manager DB2 storage table name for this object type
is XXX.IMSDBD. For more information on table names, see “MDIS mappings”
on page 159.

Table 86 provides information about the properties of the IMD database
definitions (DBD) object type.

Table 86. Properties of the IMS database definitions (DBD) object type. The MDIS name for this object
type is Database.

Property
name Data type Size

Property
short name Value flag

UUI
order Maps to MDIS name:

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R DatabaseLongName

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O BriefDescription

Long
description

LONG
VARCHAR

32700 LONGDESC O LongDescription

Actions VARCHAR 254 ACTIONS O ApplicationData

Database last
refreshed

CHAR 26 FRESHDAT O ApplicationData

For further
information...

VARCHAR 80 RESPNSBL O ContactName

Database
owner

VARCHAR 80 OWNER O OwnerName

Database
host server
name

VARCHAR 80 SERVER R 1 ServerName

Database
server type

VARCHAR 80 SRVRTYPE O ServerType

Database or
subsystem
name

VARCHAR 80 DBNAME R 2 DatabaseName

IMS database definitions (DBD)

174 Data Warehouse Center Application Integration Guide

Table 86. Properties of the IMS database definitions (DBD) object type (continued). The MDIS name for
this object type is Database.

Property
name Data type Size

Property
short name Value flag

UUI
order Maps to MDIS name:

Database
type

VARCHAR 80 DBTYPE R 3 DatabaseType

Database
extended
type

VARCHAR 40 DBETYPE O ApplicationData

Database
status

VARCHAR 80 DBSTAT O DatabaseStatus

IMS access
method

VARCHAR 80 IMSACC O ApplicationData

Operating
system
access
method

VARCHAR 80 OSACC O ApplicationData

Shared index
names

VARCHAR 320 SHRINDEX O ApplicationData

URL to
access data

VARCHAR 254 URL O ApplicationData

Timestamp
source
definition
created

CHAR 26 CRTTIME O DateCreated, TimeCreated

Timestamp
source
definition
last changed

CHAR 26 SRCDATCF O DateUpdated,
TimeUpdated

Note: S = generated by the Information Catalog Manager, R = required, O = optional

IMS program control blocks (PCB): Represents IMS program control blocks.

The tag language for defining this object type is in the file FLGNYPCB.TYP in
the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.IMSPCB. For more information on table names, see “MDIS mappings”
on page 159.

Table 87 on page 176 provides information about the properties of the IMS
program control blocks (PCB) object type.

IMS database definitions (DBD)

Chapter 8. Information Catalog Manager object types 175

Table 87. Properties of the IMS program control blocks (PCB) object type. The MDIS name for this object
type is Subschema.

Property
name Data type Size

Property
short name Value flag

UUI
order Maps to MDIS name:

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R SubschemaLongName

Last Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last Changed
By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O BriefDescription

Long
description

LONG
VARCHAR

32700 LONGDESC O LongDescription

Actions VARCHAR 254 ACTIONS O ApplicationData

For further
information...

VARCHAR 80 RESPNSBL O ContactName

Database host
server name

VARCHAR 80 SERVER R 1 ServerName

Database or
subsystem
name

VARCHAR 80 DBNAME R 2 DatabaseName

PCB name VARCHAR 80 PCBNAME R 3 SubschemaName

PCB owner VARCHAR 80 OWNER O OwnerName

URL to access
data

VARCHAR 254 URL O ApplicationData

Timestamp
source
definition
created

CHAR 26 CRTTIME O DateCreated, TimeCreated

Timestamp
source
definition last
changed

CHAR 26 SRCDATCF O DateUpdated,
TimeUpdated

Note: S = generated by the Information Catalog Manager, R = required, O = optional

IMS program control blocks (PCB)

176 Data Warehouse Center Application Integration Guide

IMS program specification blocks (PSB): Represents IMS program
specification blocks.

The tag language for defining this object type is in the file FLGNYPSB.TYP in
the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.PSB. For more information on table names, see “MDIS mappings” on
page 159.

Table 87 on page 176 provides information about the properties of the IMS
program specification blocks (PSB) object type.

Table 88. Properties of the IMS program specification blocks (PSB) object type. The MDIS name for this
object type is Subschema.

Property name Data type Size
Property
short name Value flag

UUI
order Maps to MDIS name:

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R DatabaseLongName

Last Changed
Date and Time

TIMESTAMP 26 UPDATIME S

Last Changed
By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O BriefDescription

Long
description

LONG
VARCHAR

32700 LONGDESC O LongDescription

Actions VARCHAR 254 ACTIONS O ApplicationData

For further
information...

VARCHAR 80 RESPNSBL O ContactName

Database host
server name

VARCHAR 80 SERVER R 1 ServerName

Database
server type

VARCHAR 80 SRVRTYPE O ServerType

Database type VARCHAR 80 DBTYPE R 3 DatabaseType

Database
extended type

VARCHAR 40 DBETYPE O ApplicationData

Database
status

VARCHAR 80 DBSTAT O DatabaseStatus

IMS program specification blocks (PSB)

Chapter 8. Information Catalog Manager object types 177

Table 88. Properties of the IMS program specification blocks (PSB) object type (continued). The MDIS
name for this object type is Subschema.

Property name Data type Size
Property
short name Value flag

UUI
order Maps to MDIS name:

PSB name VARCHAR 80 PSBNAME R 2 DatabaseName

PSB owner VARCHAR 80 OWNER O OwnerName

URL to access
data

VARCHAR 254 URL O ApplicationData

Timestamp
source
definition
created

CHAR 26 CRTTIME O DateCreated, TimeCreated

Timestamp
source
definition last
changed

CHAR 26 SRCDATCF O DateUpdated,
TimeUpdated

Note: S = generated by the Information Catalog Manager, R = required, O = optional

IMS segments: Represents IMS segments.

The tag language for defining this object type is in the file FLGNYSEG.TYP in
the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.IMSSEG. For more information on table names, see “MDIS mappings”
on page 159.

Table 89 provides information about the properties of the IMS segments object
type.

Table 89. Properties of the IMS segments object type. The MDIS name for this object type is Record.

Property name Data type Size
Property
short name Value flag

UUI
order Maps to MDIS name:

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R RecordLongName

Last Changed
Date and Time

TIMESTAMP 26 UPDATIME S

Last Changed
By

CHAR 8 UPDATEBY S

IMS program specification blocks (PSB)

178 Data Warehouse Center Application Integration Guide

Table 89. Properties of the IMS segments object type (continued). The MDIS name for this object type is
Record.

Property name Data type Size
Property
short name Value flag

UUI
order Maps to MDIS name:

Short
Description

VARCHAR 250 SHRTDESC O BriefDescription

Long
Description

LONG
VARCHAR

32700 LONGDESC O LongDescription

Actions VARCHAR 254 ACTIONS O ApplicationData

Segment last
refreshed

CHAR 26 FRESHDAT O RecordLastRefreshDate

For further
information...

VARCHAR 80 RESPNSBL O ContactName

Database host
server name

VARCHAR 80 SERVER O ServerName

Database or
subsystem
name

VARCHAR 80 DBNAME R 1 DatabaseName

Segment name VARCHAR 80 SEGNAME R 2 RecordName

Segment
owner

VARCHAR 80 OWNER O OwnerName

Segment type VARCHAR 80 TYPE O RecordType

Segment
maximum
length

CHAR 5 MAXLEN O ApplicationData

Segment
minimum
length

CHAR 5 MINLEN O ApplicationData

Real logical
child segment
source

CHAR 20 PSEGSRC O ApplicationData

Logical parent
concatenated
key source

CHAR 20 LPCKSRC O ApplicationData

Transformation
program last
run

CHAR 26 LASTRUN O ApplicationData

Transformation
program run
frequency

VARCHAR 80 RUNFREQ O RecordUpdateFrequency

IMS segments

Chapter 8. Information Catalog Manager object types 179

Table 89. Properties of the IMS segments object type (continued). The MDIS name for this object type is
Record.

Property name Data type Size
Property
short name Value flag

UUI
order Maps to MDIS name:

URL to access
data

VARCHAR 254 URL O ApplicationData

Timestamp
source
definition
created

CHAR 26 CRTTIME O DateCreated, TimeCreated

Timestamp
source
definition last
changed

CHAR 26 SRCDATCF O DateUpdated,
TimeUpdated

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Members within a multidimensional database: Represents a member within
a multidimensional database. A member is part of a dimension, and a
dimension is part of a multidimensional database.

The tag language for defining this object type is in the file FLGNYMEM.TYP
in the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.MEMBER. For more information on table names, see “MDIS
mappings” on page 159.

Table 90 provides information about the properties of the Members within a
multidimensional database object type.

Table 90. Properties of the Members within a multidimensional database object type. The MDIS name for
this object type is Element.

Property
name Data type Size

Property
short name Value flag

UUI
order Maps to MDIS name:

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name CHAR 80 NAME R ElementLongName

Last Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

IMS segments

180 Data Warehouse Center Application Integration Guide

Table 90. Properties of the Members within a multidimensional database object type (continued). The
MDIS name for this object type is Element.

Property
name Data type Size

Property
short name Value flag

UUI
order Maps to MDIS name:

Last Changed
By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O BriefDescription

Long
description

LONG
VARCHAR

32700 LONGDESC O LongDescription

Actions VARCHAR 254 ACTIONS O ApplicationData

For further
information

VARCHAR 80 RESPNSBL O ContactName

Member last
refreshed

CHAR 26 FRESHDAT O ElementLastRefreshDate

Member
owner

VARCHAR 80 OWNER O OwnerName

Database host
server name

VARCHAR 80 SERVER R 1 ServerName

Database or
subsystem
name

VARCHAR 80 DBNAME R 2 DatabaseName

Using
application
name

VARCHAR 80 APPLNAME R 3 ApplicationData

Dimension
name

VARCHAR 80 DIMENSON R 4 DimensionName

Member
name

VARCHAR 80 MEMBER R 5 ElementName

Data type of
member

CHAR 30 DATATYPE O ElementDataType

Length of
member

CHAR 20 LENGTH O ElementLength

Scale of
member

CHAR 5 SCALE O ApplicationData

Precision of
member

CHAR 5 PRECDIG O ElementPrecision

Can member
be null

CHAR 1 NULLS O ElementNulls

Members within a multidimensional database

Chapter 8. Information Catalog Manager object types 181

Table 90. Properties of the Members within a multidimensional database object type (continued). The
MDIS name for this object type is Element.

Property
name Data type Size

Property
short name Value flag

UUI
order Maps to MDIS name:

Position of
member
within
primary key

CHAR 5 KEYPOSNO O ElementKeyPosition

Member
position

CHAR 5 POSNO O ElementPosition

Member
ordinality

CHAR 5 ORDINAL O ElementOrdinality

Derived
from...

VARCHAR 512 DERIVED O ApplicationData

Application-
specific
information

VARCHAR 512 APPLDATA O ApplicationData

URL to access
data

VARCHAR 254 URL O ApplicationData

Timestamp
source
definition
created

CHAR 26 CRTTIME O DateCreated, TimeCreated

Timestamp
source
definition last
changed

CHAR 26 SRCDATCF O DateUpdated,
TimeUpdated

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Multidimensional databases: Represents multidimensional databases.

The tag language for defining this object type is in the file FLGNYOLA.TYP in
the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.OLAPMODL. For more information on table names, see “MDIS
mappings” on page 159.

Table 91 on page 183 provides information about the properties of the
Multidimensional databases object type.

Members within a multidimensional database

182 Data Warehouse Center Application Integration Guide

Table 91. Properties of the Multidimensional databases object type. The MDIS name for this object type
is Database.

Property
name Data type Size

Property
short name Value flag

UUI
order Maps to MDIS name:

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R DatabaseLongName

Last Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last Changed
By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O BriefDescription

Long
description

LONG
VARCHAR

32700 LONGDESC O LongDescription

Actions VARCHAR 254 ACTIONS O ApplicationData

For further
information...

VARCHAR 80 RESPNSBL O ContactName

Database last
refreshed

CHAR 26 FRESHDAT O ApplicationData

Database
owner

VARCHAR 80 OWNER O OwnerName

Database host
server name

VARCHAR 80 SERVER R 1 ServerName

Database
server type

VARCHAR 80 SRVRTYPE O ServerType

Database or
subsystem
name

VARCHAR 80 DBNAME R 2 DatabaseName

Database type VARCHAR 80 DBTYPE O DatabaseType

Database
extended type

VARCHAR 20 DBETYPE O ApplicationData

Database
status

VARCHAR 80 DBSTAT O DatabaseStatus

Using
application
name

VARCHAR 80 APPLNAME R 3 ApplicationData

Multidimensional databases

Chapter 8. Information Catalog Manager object types 183

Table 91. Properties of the Multidimensional databases object type (continued). The MDIS name for this
object type is Database.

Property
name Data type Size

Property
short name Value flag

UUI
order Maps to MDIS name:

Application-
specific
information

VARCHAR 512 APPLDATA O ApplicationData

URL to access
data

VARCHAR 254 URL O ApplicationData

Timestamp
source
definition
created

CHAR 26 CRTTIME O DateCreated, TimeCreated

Timestamp
source
definition last
changed

CHAR 26 SRCDATCF O DateUpdated,
TimeUpdated

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Records: Represents MDIS Record objects that do not map directly to the
“Files” or “Relational tables or views” object types. Records are comprised of
elements.

The tag language for defining this object type is in the file FLGNYREC.TYP in
the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.RECORD. For more information on table names, see “MDIS
mappings” on page 159.

Table 92 provides information about the properties of the Records object type.

Table 92. Properties of the Records object type. The MDIS name for this object type is Record.

Property
name Data type Size

Property
short name Value flag

UUI
order Maps to MDIS name:

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R RecordLongName

Last Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Multidimensional databases

184 Data Warehouse Center Application Integration Guide

Table 92. Properties of the Records object type (continued). The MDIS name for this object type is
Record.

Property
name Data type Size

Property
short name Value flag

UUI
order Maps to MDIS name:

Last Changed
By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O BriefDescription

Long
description

LONG
VARCHAR

32700 LONGDESC O LongDescription

Actions VARCHAR 254 ACTIONS O ApplicationData

For further
information...

VARCHAR 80 RESPNSBL O ContactName

Database host
server name

VARCHAR 80 SERVER R 1 ServerName

Database or
subsystem
name

VARCHAR 80 DBNAME R 2 DatabaseName

Record owner VARCHAR 80 OWNER R 3 OwnerName

Record name VARCHAR 80 RECNAME R 4 RecordName

Record data
last refreshed

CHAR 26 FRESHDAT O RecordLastRefreshDate

Transformation
program last
run

CHAR 26 LASTRUN O ApplicationData

Transformation
program run
frequency

VARCHAR 80 RUNFREQ O RecordUpdateFrequency

Record type VARCHAR 80 TYPE O RecordType

URL to access
data

VARCHAR 254 URL O ApplicationData

Timestamp
source
definition
created

CHAR 26 CRTTIME O DateCreated, TimeCreated

Timestamp
source
definition last
changed

CHAR 26 SRCDATCF O DateUpdated,
TimeUpdated

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Records

Chapter 8. Information Catalog Manager object types 185

Relational tables and views: Represents tables or views of relational
databases.

The tag language for defining this object type is in the file FLGNYTAB.TYP in
the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.TABLES. For more information on table names, see “MDIS mappings”
on page 159.

Table 93 provides information about the properties of the Relational tables and
views object type.

Table 93. Properties of the Relational tables and views object type. The MDIS name for this object type
is Record.

Property
name Data type Size

Property
short name Value flag

UUI
order Maps to MDIS name:

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R RecordLongName

Last Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last Changed
By

CHAR 8 UPDATEBY S

Short
Description

VARCHAR 250 SHRTDESC O BriefDescription

Long
Description

LONG
VARCHAR

32700 LONGDESC O LongDescription

Actions VARCHAR 254 ACTIONS O ApplicationData

Catalog
remarks

VARCHAR 254 REMARKS O ApplicationData

For further
information...

VARCHAR 80 RESPNSBL O ContactName

Database host
server name

VARCHAR 80 SERVER O ServerName

Local
database alias

CHAR 8 DBALIAS O ApplicationData

Relational tables and views

186 Data Warehouse Center Application Integration Guide

Table 93. Properties of the Relational tables and views object type (continued). The MDIS name for this
object type is Record.

Property
name Data type Size

Property
short name Value flag

UUI
order Maps to MDIS name:

Database or
subsystem
name

VARCHAR 80 DBNAME R 1 DatabaseName

Table owner VARCHAR 80 OWNER R 2 OwnerName

Table name VARCHAR 80 TABLES R 3 RecordName

Base table
owner name

CHAR 30 SRCOWNER O ApplicationData

Base table
name

CHAR 128 SRCTBNAM O ApplicationData

Table data last
refreshed

CHAR 26 FRESHDAT O RecordLastRefreshDate

Transformation
program run
mode

CHAR 30 RUNMODE O ApplicationData

Transformation
program last
run

CHAR 26 LASTRUN O ApplicationData

Transformation
program run
frequency

VARCHAR 80 RUNFREQ O RecordUpdateFrequency

Transformation
program type

VARCHAR 32 SOURCE O ApplicationData

Partial or full
table
copy/update

CHAR 1 COPYCOMP O ApplicationData

Copied/updated
data is in a
consistent
state

CHAR 1 CONSIST O ApplicationData

Catalog
refresh/update
frequency

VARCHAR 80 REFRESH O ApplicationData

Transformation
program last
changed

CHAR 26 PGMGEND O ApplicationData

Transformation
program last
compiled

CHAR 26 PGMCOMP O ApplicationData

Relational tables and views

Chapter 8. Information Catalog Manager object types 187

Table 93. Properties of the Relational tables and views object type (continued). The MDIS name for this
object type is Record.

Property
name Data type Size

Property
short name Value flag

UUI
order Maps to MDIS name:

Table type VARCHAR 80 TYPE O RecordType

Definition
represents a
view

CHAR 1 TABLVIEW O ApplicationData

Internal name
of table

CHAR 18 IDSINAME O ApplicationData

Table is used
as a
dimension
table

CHAR 1 IDSDIM O ApplicationData

URL to access
data

VARCHAR 254 URL O ApplicationData

Timestamp
source
definition
created

CHAR 26 CRTTIME O DateCreated, TimeCreated

Timestamp
source
definition last
changed

CHAR 26 SRCDATCF O DateUpdated,
TimeUpdated

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Star Schemas: Represents relational data.

The tag language for defining this object type is in the file FLGNYSUB.TYP in
the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.STARSCHM. For more information on table names, see “MDIS
mappings” on page 159.

Table 94 provides information about the properties of the Business subject
areas object type.

Table 94. Properties of the Star Schemas object type

Property
name Data type Size

Property
short name Value flag UUI order

Name VARCHAR 80 NAME R 1

Relational tables and views

188 Data Warehouse Center Application Integration Guide

Table 94. Properties of the Star Schemas object type (continued)

Property
name Data type Size

Property
short name Value flag UUI order

Short
description

VARCHAR 250 SHRTDESC O

Long
description

LONG
VARCHAR

32700 LONGDESC O

Actions VARCHAR 254 ACTIONS O

For further
information .
. .

VARCHAR 80 RESPNSBL O

URL to
access data

VARCHAR 254 URL O

Timestamp
source
definition
last changed

CHAR 26 SRCDATCF O

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Subschemas: Represents logical groupings of records within a database.

The tag language for defining this object type is in the file FLGNYSUB.TYP in
the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.SUBSCHEM. For more information on table names, see “MDIS
mappings” on page 159.

Table 95 provides information about the properties of the Subschemas object
type.

Table 95. Properties of the Subschemas object type. The MDIS name for this object type is Subschema.

Property
name Data type Size

Property
short name Value flag

UUI
order Maps to MDIS name:

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R SubschemaLongName

Star Schemas

Chapter 8. Information Catalog Manager object types 189

Table 95. Properties of the Subschemas object type (continued). The MDIS name for this object type is
Subschema.

Property
name Data type Size

Property
short name Value flag

UUI
order Maps to MDIS name:

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O BriefDescription

Long
description

LONG
VARCHAR

32700 LONGDESC O LongDescription

Actions VARCHAR 254 ACTIONS O ApplicationData

For further
information...

VARCHAR 80 RESPNSBL O ContactName

Database
host server
name

VARCHAR 80 SERVER R 1 ServerName

Database or
subsystem
name

VARCHAR 80 DBNAME R 2 DatabaseName

Subschema
owner

VARCHAR 80 OWNER O OwnerName

Subschema
name

VARCHAR 80 SSNAME R 3 SubschemaName

URL to
access data

VARCHAR 254 URL O ApplicationData

Timestamp
source
definition
created

CHAR 26 CRTTIME O DateCreated, TimeCreated

Timestamp
source
definition
last changed

CHAR 26 SRCDATCF O DateUpdated,
TimeUpdated

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Transformations: Represents expressions or logic used to populate columns
of data within the target relational database. Transformations objects indicate

Subschemas

190 Data Warehouse Center Application Integration Guide

either the expression used to convert source operational data to target
columns or the one-to-one mapping of source fields to target columns.

The tag language for defining this object type is in the file FLGNYFLT.TYP in
the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.FILTER. For more information on table names, see “MDIS mappings”
on page 159.

Table 96 provides information about the properties of the Transformations
object type.

Table 96. Properties of the Transformations object type. The MDIS name for this object type is
Relationship.

Property
name Data type Size

Property
short name Value flag

UUI
order Maps to MDIS name:

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R RelationshipLongName

Last Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last Changed
By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O BriefDescription

Long
description

LONG
VARCHAR

32700 LONGDESC O LongDescription

Actions VARCHAR 254 ACTIONS O ApplicationData

Transformation
program
name

VARCHAR 80 FPNAME R 1 ApplicationData

Transformation
identifier

VARCHAR 254 FIDENT R 2 RelationshipName

Transformation
class or type

VARCHAR 80 TYPE R 3 RelationshipType

Transformations

Chapter 8. Information Catalog Manager object types 191

Table 96. Properties of the Transformations object type (continued). The MDIS name for this object type
is Relationship.

Property
name Data type Size

Property
short name Value flag

UUI
order Maps to MDIS name:

Source
column/field
name,
expression or
parameters

LONG
VARCHAR

32700 FEXPRESS O RelationshipExpression

Database host
server name

VARCHAR 80 SERVER O ServerName

Transformation
owner

VARCHAR 80 OWNER O OwnerName

Source
sequence

CHAR 5 SRCSEQ O SourceSequenceOrder

Transformation
ordinality

CHAR 5 ORDINAL O RelationshipOrdinality

Transformation
bi-directionality

CHAR 1 DIRECT O RelationshipBidirectional

URL to access
data

VARCHAR 254 URL O ApplicationData

Timestamp
source
definition
created

CHAR 26 CRTTIME O DateCreated, TimeCreated

Timestamp
source
definition last
changed

CHAR 26 SRCDATCF O DateUpdated,
TimeUpdated

For further
information...

VARCHAR 80 RESPNSBL ContactName

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Elemental category
The Elemental category contains the following object types:
v “Audio clips” on page 193
v “Charts” on page 194
v “Documents” on page 195
v “Images or graphics” on page 196
v “Internet documents” on page 197
v “Lotus Approach queries” on page 198

Transformations

192 Data Warehouse Center Application Integration Guide

v “Presentations” on page 199
v “Spreadsheets” on page 200
v “Text-based reports” on page 201
v “Video clips” on page 203

Audio clips: Represents files that contain audio information. These objects
might represent electronic (AUD files) or printed (for example, CDs, tapes)
audio information.

The tag language for defining this object type is in the file FLGNYAUD.TYP
in the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.AUDIO. For more information on table names, see “MDIS mappings”
on page 159.

Table 97 provides information about the properties of the Audio clips object
type.

Table 97. Properties of the Audio clips object type

Property
name Data type Size

Property
short name Value flag UUI order

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O

Long
description

LONG
VARCHAR

32700 LONGDESC O

Actions VARCHAR 254 ACTIONS O

Audio clip
filename

VARCHAR 254 FILENAME R 1

Audio clip
class or type

VARCHAR 80 TYPE R 2

Elemental category

Chapter 8. Information Catalog Manager object types 193

Table 97. Properties of the Audio clips object type (continued)

Property
name Data type Size

Property
short name Value flag UUI order

URL to
access data

VARCHAR 254 URL O

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Charts: Represents either printed or electronic charts.

The tag language for defining this object type is in the file FLGNYCHA.TYP
in the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.CHARTS. For more information on table names, see “MDIS mappings”
on page 159.

Table 98 provides information about the properties of the Charts object type.

Table 98. Properties of the Charts object type

Property
name Data type Size

Property
short name Value flag UUI order

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O

Long
description

LONG
VARCHAR

32700 LONGDESC O

Actions VARCHAR 254 ACTIONS O

Chart title VARCHAR 254 TITLE O

Chart
publication
date

CHAR 26 RPRTDATE O

Audio clips

194 Data Warehouse Center Application Integration Guide

Table 98. Properties of the Charts object type (continued)

Property
name Data type Size

Property
short name Value flag UUI order

Chart
presentation
format

VARCHAR 80 RPRTFRMT O

Chart
presentation
requirements

VARCHAR 254 DPPRESNT O

Chart owner VARCHAR 80 OWNER O

Chart
filename

VARCHAR 254 FILENAME R 1

Chart class
or type

VARCHAR 80 TYPE R 2

URL to
access data

VARCHAR 254 URL O

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Documents: Represents books and technical papers. These publications
might be printed or electronic, found locally or within a library.

The tag language for defining this object type is in the file FLGNYDOC.TYP
in the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.DOCS. For more information on table names, see “MDIS mappings” on
page 159.

Table 99 provides information about the properties of the Documents object
type.

Table 99. Properties of the Documents object type

Property
name Data type Size

Property
short name Value flag UUI order

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R

Charts

Chapter 8. Information Catalog Manager object types 195

Table 99. Properties of the Documents object type (continued)

Property
name Data type Size

Property
short name Value flag UUI order

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O

Long
description

LONG
VARCHAR

32700 LONGDESC O

Actions VARCHAR 254 ACTIONS O

Document
author

VARCHAR 80 AUTHOR R 1

Document
location

VARCHAR 254 LOCATION R 2

Document
filename

VARCHAR 254 FILENAME R 3

URL to
access data

VARCHAR 254 URL O

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Images or graphics: Represents graphic images, such as bitmaps.

The tag language for defining this or graphics object type is in the file
FLGNYIMA.TYP in the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.IMAGES. For more information on table names, see “MDIS mappings”
on page 159.

Table 100 provides information about the properties of the Images or graphics
object type.

Table 100. Properties of the Images or graphics object type

Property
name Data type Size

Property
short name Value flag UUI order

Object type
identifier

CHAR 6 OBJTYPID S

Documents

196 Data Warehouse Center Application Integration Guide

Table 100. Properties of the Images or graphics object type (continued)

Property
name Data type Size

Property
short name Value flag UUI order

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O

Long
description

LONG
VARCHAR

32700 LONGDESC O

Actions VARCHAR 254 ACTIONS O

Image
filename

VARCHAR 254 FILENAME R 1

Image class
or type

VARCHAR 80 TYPE R 2

URL to
access data

VARCHAR 254 URL O

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Internet documents: Represents Web sites and other documents on the
Internet that might be of interest.

The tag language for defining this object type is in the file FLGNYINT.TYP in
the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.INTERNET. For more information on table names, see “MDIS
mappings” on page 159.

Table 101 on page 198 provides information about the properties of the
Internet documents object type.

Images or graphics

Chapter 8. Information Catalog Manager object types 197

Table 101. Properties of the Internet documents object type

Property
name Data type Size

Property
short name Value flag UUI order

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O

Long
description

LONG
VARCHAR

32700 LONGDESC O

Actions VARCHAR 254 ACTIONS O

URL to
access data

VARCHAR 254 URL R 1

Local
filename

VARCHAR 254 FILENAME R 2

Internet
document
class or type

VARCHAR 80 TYPE O

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Lotus Approach queries: Represents Lotus Approach queries for available
use with your organization’s data.

The tag language for defining this object type is in the file FLGNYAPR.TYP in
the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.APPROACH. For more information on table names, see “MDIS
mappings” on page 159.

Table 102 on page 199 provides information about the properties of the Lotus
Approach queries object type.

Internet documents

198 Data Warehouse Center Application Integration Guide

Table 102. Properties of the Lotus Approach queries object type

Property
name Data type Size

Property
short name Value flag UUI order

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O

Long
description

LONG
VARCHAR

32700 LONGDESC O

Actions VARCHAR 254 ACTIONS O

Approach
object
filename

VARCHAR 254 FILENAME R 1

URL to
access data

VARCHAR 254 URL O

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Presentations: Represents printed or electronic presentations. These
presentations might include product, customer, quality, and status
presentations.

The tag language for defining this object type is in the file FLGNYPRE.TYP in
the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.PRESENT. For more information on table names, see “MDIS
mappings” on page 159.

Table 103 on page 200 provides information about the properties of the
Presentations object type.

Lotus Approach queries

Chapter 8. Information Catalog Manager object types 199

Table 103. Properties of the Presentations object type

Property
name Data type Size

Property
short name Value flag UUI order

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O

Long
description

LONG
VARCHAR

32700 LONGDESC O

Actions VARCHAR 254 ACTIONS O

Presentation
filename

VARCHAR 254 FILENAME R 1

Presentation
class or type

VARCHAR 80 TYPE O

Presentation
script

VARCHAR 254 SCRIPTFN O

URL to
access data

VARCHAR 254 URL O

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Spreadsheets: Represents desktop spreadsheets (for example, Lotus 1-2-3 or
Microsoft Excel spreadsheets).

The tag language for defining this object type is in the file FLGNYSSH.TYP in
the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.SSHEETS. For more information on table names, see “MDIS
mappings” on page 159.

Table 104 on page 201 provides information about the properties of the
Spreadsheets object type.

Presentations

200 Data Warehouse Center Application Integration Guide

Table 104. Properties of the Spreadsheets object type

Property
name Data type Size

Property
short name Value flag UUI order

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O

Long
description

LONG
VARCHAR

32700 LONGDESC O

Actions VARCHAR 254 ACTIONS O

Spreadsheet
class or type

VARCHAR 80 TYPE O

Spreadsheet
filename

VARCHAR 254 FILENAME R 1

Spreadsheet
bitmap
<captured>
filename

VARCHAR 254 BITMAP O

URL to
access data

VARCHAR 254 URL O

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Text-based reports: Represents either printed or electronic reports.

The tag language for defining this object type is in the file FLGNYREP.TYP in
the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.REPORTS. For more information on table names, see “MDIS
mappings” on page 159.

Table 105 on page 202 provides information about the properties of the
Text–based reports object type.

Spreadsheets

Chapter 8. Information Catalog Manager object types 201

Table 105. Properties of the Text-based reports object type

Property
name Data type Size

Property
short name Value flag UUI order

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O

Long
description

LONG
VARCHAR

32700 LONGDESC O

Actions VARCHAR 254 ACTIONS O

Report title VARCHAR 254 TITLE R

Report
publication
date

CHAR 26 RPRTDATE O

Report
presentation
format

VARCHAR 80 RPRTFRMT O

Report
presentation
requirements

VARCHAR 254 DPPRESNT O

Report
owner

VARCHAR 80 OWNER O

Report
filename

VARCHAR 254 FILENAME R 1

Report class
or type

VARCHAR 80 TYPE R 2

URL to
access data

VARCHAR 254 URL O

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Text-based reports

202 Data Warehouse Center Application Integration Guide

Video clips: Represents files that contain video information. These objects
might represent electronic (AVI files) or printed (for example, video tapes or
laser disks) video information.

The tag language for defining this object type is in the file FLGNYVID.TYP in
the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.VIDEO. For more information on table names, see “MDIS mappings”
on page 159.

Table 106 provides information about the properties of the Video clips object
type.

Table 106. Properties of the Video clips object type

Property
name Data type Size

Property
short name Value flag UUI order

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O

Long
description

LONG
VARCHAR

32700 LONGDESC O

Actions VARCHAR 254 ACTIONS O

Video clip
filename

VARCHAR 254 FILENAME R 1

Video clip
class or type

VARCHAR 80 TYPE R 2

URL to
access data

VARCHAR 254 URL O

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Video clips

Chapter 8. Information Catalog Manager object types 203

Contact category
The Contact category contains the “People to contact” object type.

People to contact: The People to contact object type identifies a person or
group that is responsible for objects within the information catalog.

The tag language for defining the People to contact object type is in the file
FLGNYCON.TYP in the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.CONTACT. For more information on table names, see “MDIS
mappings” on page 159.

Table 107 provides information about the properties of the People to contact
object type.

Table 107. Properties of the People to contact object type

Property
name Data type Size

Property
short name Value flag UUI order

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R 1

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O

Long
description

LONG
VARCHAR

32700 LONGDESC O

Actions VARCHAR 254 ACTIONS O

Contact’s
responsibility

VARCHAR 254 RESPONSE R 2

Contact’s
phone
number

CHAR 15 PHONE R

Contact’s
e-mail
address

VARCHAR 254 EMAIL R

Contact category

204 Data Warehouse Center Application Integration Guide

Table 107. Properties of the People to contact object type (continued)

Property
name Data type Size

Property
short name Value flag UUI order

Contact’s
picture
filename

VARCHAR 254 FILENAME O

URL to
access data

VARCHAR 254 URL O

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Dictionary category
The Dictionary category contains the “Glossary entries” object type.

Glossary entries: The Glossary entries object type represents definitions for
terms used in the information catalog. Its properties are shown in Table 108.

The tag language for defining the Glossary entries object type is in the file
FLGNYGLO.TYP in the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.GLOSSARY. For more information on table names, see “MDIS
mappings” on page 159.

Table 108 provides information about the properties of the Glossary entries
object type.

Table 108. Properties of the Glossary entries object type

Property
name Data type Size

Property
short name Value flag UUI order

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R 1

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O

People to contact

Chapter 8. Information Catalog Manager object types 205

Table 108. Properties of the Glossary entries object type (continued)

Property
name Data type Size

Property
short name Value flag UUI order

Long
description

LONG
VARCHAR

32700 LONGDESC O

Actions VARCHAR 254 ACTIONS O

Keywords VARCHAR 254 KEYWORD O

Context of
glossary
definition

CHAR 32 CONTEXT O

Filename
containing
glossary
definition

VARCHAR 254 FILENAME O

Glossary
class or type

VARCHAR 80 TYPE O

URL to
access data

VARCHAR 254 URL O

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Support category
The Support category contains the following object types:
v “Information Catalog Manager news”
v “Online news services” on page 207
v “Online publications” on page 208

Information Catalog Manager news: The Information Catalog Manager
news object type contains information about changes to the information
catalog.

The tag language for defining the Information Catalog Manager news object
type is in the file FLGNYDGN.TYP in the \VWSWIN\DGWIN\TYPES
directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.DGNEWS. For more information on table names, see “MDIS
mappings” on page 159.

Table 109 on page 207 provides information about the properties of the
Information Catalog Manager news object type.

Glossary entries

206 Data Warehouse Center Application Integration Guide

Table 109. Properties of the Information Catalog Manager news object type

Property
name Data type Size

Property
short name Value flag UUI order

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R 1

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O

Long
description

LONG
VARCHAR

32700 LONGDESC O

Actions VARCHAR 254 ACTIONS O

News item
date

CHAR 26 NEWSDATE R

News clip VARCHAR 254 ABSTRACT R

Full news
item

LONG
VARCHAR

32700 NEWSITEM O

URL to
access data

VARCHAR 254 URL O

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Online news services: The Online news services object type represents news
and information services that can be accessed online.

The tag language for defining the Online news services object type is in the
file FLGNYOLN.TYP in the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.OLNEWS. For more information on table names, see “MDIS
mappings” on page 159.

Table 110 on page 208 provides information about the properties of the Online
news services object type.

Information Catalog Manager news

Chapter 8. Information Catalog Manager object types 207

Table 110. Properties of the Online news services object type

Property
name Data type Size

Property
short name Value flag UUI order

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R 1

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O

Long
description

LONG
VARCHAR

32700 LONGDESC O

Actions VARCHAR 254 ACTIONS O

Service name VARCHAR 254 SERVNAME R

URL to
access data

VARCHAR 254 URL O

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Online publications: The Online publications object type represents
publications and other documents that can be accessed with online services.

The tag language for defining the Online publications object type is in the file
FLGNYOLP.TYP in the \VWSWIN\DGWIN\TYPES directory.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.OLPUBS. For more information on table names, see “MDIS mappings”
on page 159.

Table 111 on page 209 provides information about the properties of the Online
publications object type.

Online news services

208 Data Warehouse Center Application Integration Guide

Table 111. Properties of the Online publications object type

Property
name Data type Size

Property
short name Value flag UUI order

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R 1

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Short
description

VARCHAR 250 SHRTDESC O

Long
description

LONG
VARCHAR

32700 LONGDESC O

Actions VARCHAR 254 ACTIONS O

Service name VARCHAR 254 SERVNAME R

URL to
access data

VARCHAR 254 URL O

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Program category
The Program category can only contain the Programs object type.

The Programs object type is created when an information catalog is created. In
the sample information catalog, DGV5SAMP, the Programs object type is
named Programs that can be invoked from Information Catalog Manager objects.

Programs that can be invoked from Information Catalog Manager objects:
Used to define an application that is capable of processing a particular object
type.

The Information Catalog Manager DB2 storage table name for this object type
is XXX.GLOSSARY. For more information on table names, see “MDIS
mappings” on page 159.

Table 112 on page 210 provides information about the properties of the
Programs that can be invoked from Information Catalog Manager objects object type.

Online publications

Chapter 8. Information Catalog Manager object types 209

Table 112. Properties of the ″Programs that can be invoked from Information Catalog
Manager objects″ object type

Property
name 1 Data type Size

Property
short name Value flag 2 UUI order

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Class CHAR 25 UUICLASS R 1

Qualifier 1 VARCHAR 48 UUIQUAL1 R 2

Qualifier 2 VARCHAR 48 UUIQUAL2 R 3

Qualifier 3 VARCHAR 48 UUIQUAL3 R 4

Identifier VARCHAR 70 UUIDENT R 5

Object type
this program
handles

CHAR 8 HANDLES O

Start by
invoking

VARCHAR 250 STARTCMD R

Parameter
list is

VARCHAR 1800 PARMLIST O

Short
description

VARCHAR 250 SHRTDESC O

Note:

1. Descriptions and examples of the required properties are in Information Catalog
Manager Administration Guide.

2. S = generated by the Information Catalog Manager, R = required, O = optional

Attachment category
The Attachment category can contain only the “Comments” object type.

The Comments object type is created when an information catalog is created.

Comments: Used to comment on other objects in the information catalog.

Programs that can be invoked from Information Catalog Manager objects

210 Data Warehouse Center Application Integration Guide

Table 113 provides information about the properties of the Comments object
type.

Table 113. Properties of the Comments object type

Property
name Data type Size

Property
short name Value flag UUI order

Object type
identifier

CHAR 6 OBJTYPID S

Instance
identifier

CHAR 10 INSTIDNT S

Name VARCHAR 80 NAME R 1

Last
Changed
Date and
Time

TIMESTAMP 26 UPDATIME S

Last
Changed By

CHAR 8 UPDATEBY S

Creator CHAR 8 CREATOR R 2

Creation
time stamp

TIMESTAMP 26 CREATSTP R 3

Status CHAR 80 STATUS O

Actions VARCHAR 250 ACTIONS O

Extra
Information

VARCHAR 80 EXTRA O

Long
Description

LONG
VARCHAR

32700 LONGDESC O

Note: S = generated by the Information Catalog Manager, R = required, O = optional

Predefined program objects
Program object types shown in Table 114 are provided in the sample
information catalog. The table also shows the property name that you use to
associate with the Information Catalog Manager program object when
launching a program.

Table 114. Generic predefined program objects in the sample information catalog

Type of information Program name Object type Property name

Multimedia files Microsoft Media Player Audio clips Audio clip filename

Microsoft Media Player Business subject areas Filename

Microsoft Media Player Presentations Presentation filename

Microsoft Media Player Video clips Video clip filename

Comments

Chapter 8. Information Catalog Manager object types 211

Table 114. Generic predefined program objects in the sample information catalog (continued)

Type of information Program name Object type Property name

Bitmap files Microsoft Paint Images or graphics Graphic filename

Microsoft Paint People to contact Contact’s picture
filename

Spreadsheet files Microsoft Excel Spreadsheets Spreadsheet filename

Microsoft Paint Spreadsheets Spreadsheet filename

Lotus 1-2-3 Spreadsheets Spreadsheet filename

Web pages Netscape Navigator Online news URL to access data

Netscape Navigator Online publications URL to access data

Microsoft Internet
Explorer

Internet documents URL to access data

Microsoft Internet
Explorer

Online news URL to access data

Microsoft Internet
Explorer

Online publications URL to access data

Table 115 lists specific IBM Business Partners who have applications that are
integrated with the Information Catalog Manager. The information in this
table similar to that in Table 114 on page 211.

Table 115. Predefined program objects in sample information catalog — IBM Business Partners

Type of information Program name Object type Property name

Lotus Approach Lotus Approach Approach object
filename

Freelance Graphics Presentations Presentation object
filename

Hyperion Lotus 1-2-3 with Essbase
Spreadsheet add-in

Spreadsheets Spreadsheet filename

Microsoft Excel with
Essbase Spreadsheet
add-in

Spreadsheets Spreadsheet filename

Brio Brio Query Text based reports Report filename

Netscape Navigator (use
with Brio.Insights
plug-in)

Text based reports URL to access data

Microsoft Internet
Explorer (use with
Brio.Insights plug-in)

Text based reports URL to access data

Predefined program objects

212 Data Warehouse Center Application Integration Guide

Table 115. Predefined program objects in sample information catalog — IBM Business
Partners (continued)

Type of information Program name Object type Property name

BusinessObjects BusinessObjects Databases None

BusinessObjects Text based reports Report filename

Microsoft Excel (used
with BusinessQuery
add-in)

Spreadsheets Spreadsheet filename

Microsoft Internet
Explorer (used to access
WebIntelligence Java®

applet)

Internet documents URL to access data

Netscape Navigator
(used to access
WebIntelligence Java
applet)

Internet documents URL to access data

Cognos PowerPlay Text-based reports Report filename

Impromptu Text-based reports Report filename

Microsoft Internet
Explorer (used with
Impromtu Web Query)

Internet documents URL to access data

Netscape Navigator
(used with Impromptu
Web Query)

Internet documents URL to access data

Netscape Navigator
(used to access
PowerPlay Web edition
HTML pages)

Internet documents URL to access data

Wired for OLAP Wired for OLAP View Text-based reports configure Default user
login, and Startup
options

Wired for OLAP Home
Page within Netscape

Text-based reports configure Default user
login, and Startup
options

Wired for OLAP Home
Page within Microsoft
Internet Explorer

Text-based reports configure Default user
login, and Startup
options

Seagate Crystal Reports Text-based reports Report filename

Microsoft Access Microsoft Access Database

Microsoft PowerPoint Microsoft PowerPoint
Viewer

Text-based reports Report filename

Predefined program objects

Chapter 8. Information Catalog Manager object types 213

Table 115. Predefined program objects in sample information catalog — IBM Business
Partners (continued)

Type of information Program name Object type Property name

Microsoft PowerPoint
Viewer within Netscape

Text-based reports URL to access data

Microsoft PowerPoint
Viewer within Microsoft
Internet Explorer

Text-based reports URL to access data

Predefined program objects

214 Data Warehouse Center Application Integration Guide

Chapter 9. Tag language

The Information Catalog Manager tag language allows you to format your
descriptive data so that you can import it into your information catalog. The
tag language tells the Information Catalog Manager what to do with the
descriptive data that it imports. The Information Catalog Manager also
exports descriptive data into tag language files so that you can back up your
information catalog or transfer data from one information catalog to another.

By formatting descriptive data with the tag language, you can move
descriptive data from one information catalog to another and define
Information Catalog Manager object types and objects. You can also write and
use extract programs to extract descriptive data from other sources, such as a
relational database catalog, that you can import to your information catalog
Table 116 shows the tags in the tag language and the actions that these tags
perform.

Table 116. Information Catalog Manager tags

Task Tag names For details

Record diskette sequence DISKCNTL see page 230

Identify action to be taken
on input data

ACTION.OBJINST
ACTION.OBJTYPE
ACTION.RELATION

see page 218
see page 223
see page 227

Describe data to the
information catalog

OBJECT
PROPERTY
INSTANCE
RELTYPE

see page 237
see page 242
see page 231
see page 246

Identify when changes are
committed and where check
point occurs

COMMIT see page 229

Identify user comments COMMENT see page 228

Format data NL
TAB

see page 236
see page 247

Rules for writing tag language files

The rules explained in this section apply to all tag language files.
v Each tag name must start with a colon and end with a period. Do not put

spaces between the colon and the tag name, or between the tag name and
the period. For example:

© Copyright IBM Corp. 1998, 2000 215

:ACTION.OBJINST.

The tag name must be one of the tag names that are listed in Table 116 on
page 215.

v Include at least one keyword with all tags except COMMENT, NL, or TAB.
v Write the keyword and its value like this:

keyword(value)

v Specify keywords in any order. The only exception is that the SOURCEKEY
keyword of the INSTANCE tag must be the first keyword.

v Use a blank to separate keywords.
v Enclose in parentheses the value of a keyword. If the value contains a

parenthesis, enclose the parenthesis in a pair of apostrophes; for example:
keyword(value'('1')')

v Do not use OBJTYPID, INSTIDNT, UPDATIME, or UPDATEBY as property
short names (short_names) with the PROPERTY or INSTANCE tags.

v These property names are reserved by Information Catalog Manager:
OBJTYPID
INSTIDNT
NAME
UPDATIME
UPDATEBY

You can specify NAME as the short_name on the PROPERTY tag if you
identify NAME as a UUI property for an object type when using
ACTION.OBJTYPE(ADD) or ACTION.OBJTYPE(MERGE), as shown:
:PROPERTY.SHRTNAME(NAME) UUISEQ(1)

How the Information Catalog Manager reads tag language files

When you code a tag language file, consider how the Information Catalog
Manager reads tag language files:
v The Information Catalog Manager reads the entire tag language file as a

continuous data stream.
v The Information Catalog Manager treats any character with a hexadecimal

value under X’20’ (except for tab and new line character tags that are
specified in property values) as a control character and ignores that
character.

v The Information Catalog Manager considers a tag complete when it
encounters the next tag in the tag language file.

v Tags and keywords are not translated into national languages.
v Only the values for the keywords in Table 117 on page 217 are enabled for

double-byte character set (DBCS) support.

216 Data Warehouse Center Application Integration Guide

Table 117. Keyword values enabled for DBCS

Tag name Keywords Variable value

OBJECT EXTNAME
ICWFILE

ext_name
Windows_ICON_file_name

PROPERTY EXTNAME ext_name

COMMIT CHKPID checkpt_id

INSTANCE UUI_short_name
or
short_name

UUI_property_value
or
property_value

All user-defined property values can use DBCS characters.
v The Information Catalog Manager accepts DBCS blanks only in the

keyword values that are shown in Table 118. If DBCS blanks appear
anywhere else in the tag language file, errors can occur.

Table 118. Keyword values enabled for DBCS blank characters

Tag name Keywords

ACTION OBJTYPE
OBJINST
RELATION

OBJECT All keywords

PROPERTY All keywords

RELTYPE All keywords

COMMIT CHKPID

INSTANCE UUI_short_name
or
short_name

Valid data types for Information Catalog Manager descriptive data

Table 119 shows the valid data types for Information Catalog Manager
descriptive data.

Table 119. Valid data types for Information Catalog Manager descriptive data

Data type Description

CHAR Fixed-length character string between 1 and 254 bytes long.

Pad the value on the right with trailing blanks if the value is
shorter than the defined data length for the property.

TIMESTAMP 26-character timestamp in the following format:
yyyy-mm-dd-hh.mm.ss.nnnnnn

Chapter 9. Tag language 217

Table 119. Valid data types for Information Catalog Manager descriptive
data (continued)

Data type Description

LONG VARCHAR Long varying-length character string between 1 and 32 700
bytes long.

You cannot specify a property with a data type of LONG
VARCHAR as a UUI property.

VARCHAR Varying-length character string between 1 and 4 000 bytes long.

The Information Catalog Manager automatically removes trailing blanks from
variable values and adjusts their length accordingly before validating and
accepting the request.

If a required value is not specified or contains all blanks, the Information
Catalog Manager inserts the values that are shown in Table 120.

Table 120. Information Catalog Manager-supplied values

Data type Supplied value

CHAR A not-applicable symbol as the first character and
padded with trailing blanks to fill the defined length.

TIMESTAMP 9999-12-31-24.00.00.000000

LONG VARCHAR A not-applicable symbol

VARCHAR A not-applicable symbol

How to read the tag language syntax diagrams

Code the tags and keywords exactly as they are shown in the text. The tags
and keywords are represented like this:
:tagname.keyword() keyword()

Valid values that you can substitute for variables are described in the
keyword list. The values are represented like this: variable

In tag descriptions, a vertical bar in each pair of keywords or values indicates
that you must include one of the pair with the tag. For example, the syntax
for the PROPERTY tag includes the NULLS keyword values NULLS(Y|N).
You must code either NULLS(Y) or NULLS(N).

ACTION.OBJINST

Identifies the action to be performed on the object that is described with the
tags that follow the ACTION tag.

218 Data Warehouse Center Application Integration Guide

Context
ACTION.OBJINST is used to create, delete, or maintain Information Catalog
Manager objects.

ACTION.OBJINST is followed by one or more OBJECT and INSTANCE tags,
which define the object to act on.

Syntax

Options
The following options are valid for ACTION.OBJINST:

ADD
DELETE
DELETE_TREE_ALL
DELETE_TREE_REL
MERGE
UPDATE

ACTION.OBJINST(ADD)
Adds an object.

Context:

Rules:

v The object must not already exist.
v Both the OBJECT tag and the INSTANCE tag must follow the

ACTION.OBJINST(ADD) tag.
– The OBJECT tag identifies the object type for the new object.
– The INSTANCE tag specifies the property values for the new object.

v One or more INSTANCE tags can follow a single OBJECT tag, if the objects
are for the same object type.

:ACTION.OBJINST(option)

:ACTION.OBJINST(ADD)
:OBJECT.TYPE()
:INSTANCE.short_name()
:INSTANCE.short_name()

:OBJECT.TYPE()
:INSTANCE.short_name()
:INSTANCE.short_name()

Figure 33. Using the ACTION.OBJINST tag when adding objects

ACTION.OBJINST

Chapter 9. Tag language 219

v One or more sets of an OBJECT tag with INSTANCE tags can follow an
ACTION.OBJINST(ADD) tag to describe objects of different object types to
add.

ACTION.OBJINST(DELETE)
Deletes an object.

Context:

Rules:

v The specified object must already exist.
v Both the OBJECT tag and the INSTANCE tag must follow the

ACTION.OBJINST(DELETE) tag.
– The OBJECT tag identifies the object type for the object to be deleted.
– The INSTANCE tag specifies the UUI property values for the object to be

deleted.
v One or more INSTANCE tags can follow a single OBJECT tag, if the objects

are for the same object type.
v One or more sets of an OBJECT tag with INSTANCE tags can follow an

ACTION.OBJINST(DELETE) tag to describe objects of different object types
to delete.

v If the object to delete is a Grouping object, it cannot contain another object.
If it does, the delete fails. Use ACTION.OBJINST(DELETE_TREE_ALL)
instead.

ACTION.OBJINST(DELETE_TREE_ALL)
Deletes a Grouping category object, all Comments objects that are attached to
it, and all ATTACHMENT, CONTACT, and LINK relationships in which it
participates. Deletes all objects that are contained in the Grouping category
object, all Comments objects attached to them, and all ATTACHMENT,
CONTACT, and LINK relationships in which they participate.

:ACTION.OBJINST(DELETE)
:OBJECT.TYPE()
:INSTANCE.SOURCEKEY(UUI_short_name()...)

:OBJECT.TYPE()
:INSTANCE.SOURCEKEY(UUI_short_name()...)

Figure 34. Using the ACTION.OBJINST tag when deleting objects

ACTION.OBJINST

220 Data Warehouse Center Application Integration Guide

Context:

Rules:

v The specified object must already exist and be a Grouping category object.
v Both the OBJECT tag and the INSTANCE tag must follow the

ACTION.OBJINST(DELETE_TREE_ALL) tag.
– The OBJECT tag identifies the object type for the object to delete.
– The INSTANCE tag specifies the UUI property values for the object that

is being deleted.
v One or more INSTANCE tags can follow a single OBJECT tag, if the objects

are for the same object type.
v One or more sets of an OBJECT tag with INSTANCE tags can follow an

ACTION.OBJINST(DELETE_TREE_ALL) tag to describe objects of different
object types to be deleted.

ACTION.OBJINST(DELETE_TREE_REL)
Deletes a Grouping category object, all Comments objects attached to it, and
all ATTACHMENT, CONTACT, CONTAIN, and LINK relationships in which
it participates.

Context:

Rules:

v The specified object must already exist and be a Grouping category object.
v Both the OBJECT tag and the INSTANCE tag must follow the

ACTION.OBJINST(DELETE_TREE_REL) tag.

:ACTION.OBJINST(DELETE_TREE_ALL)
:OBJECT.TYPE()
:INSTANCE.SOURCEKEY(UUI_short_name()...)

:OBJECT.TYPE()
:INSTANCE.SOURCEKEY(UUI_short_name()...)

Figure 35. Using the ACTION.OBJINST tag when deleting Grouping category objects and
contained objects

:ACTION.OBJINST(DELETE_TREE_REL)
:OBJECT.TYPE()
:INSTANCE.SOURCEKEY(UUI_short_name()...)

:OBJECT.TYPE()
:INSTANCE.SOURCEKEY(UUI_short_name()...)

Figure 36. Using the ACTION.OBJINST tag when deleting Grouping category objects and
relationships

ACTION.OBJINST

Chapter 9. Tag language 221

– The OBJECT tag identifies the object type for the object being deleted.
– The INSTANCE tag specifies the UUI property values for the object

being deleted.
v One or more INSTANCE tags can follow a single OBJECT tag, if the objects

are for the same object type.
v One or more sets of an OBJECT tag with INSTANCE tags can follow an

ACTION.OBJINST(DELETE_TREE_REL) tag to describe objects of different
object types to be deleted.

ACTION.OBJINST(MERGE)
Searches for the input object’s UUI in the information catalog to see whether
the input object exists.

If the object exists, the Information Catalog Manager updates the property
values of the object in the information catalog. If the object does not exist, the
Information Catalog Manager creates a new object.

Context:

Rules:

v If the object exists, the Information Catalog Manager updates the property
values of the object in the information catalog. If the object does not exist,
the Information Catalog Manager creates a new object.

v Both the OBJECT tag and the INSTANCE tag must follow the
ACTION.OBJINST(MERGE) tag.
– The OBJECT tag identifies the object type for the object being merged.
– The INSTANCE tag specifies the property values for the object being

merged.
v You must have an ACTION.OBJTYPE(MERGE) tag for a given object type

earlier in the tag language file than the ACTION.OBJINST(MERGE) tag for
the same object type. This ensures that the object type exists in the
information catalog that you are importing to before the Information
Catalog Manager can add or update (merge) objects.
You cannot use ACTION.OBJTYPE(MERGE) for an object type that belongs
to the Program or Attachment categories, because you cannot create new

:ACTION.OBJTYPE(MERGE)
:OBJECT.TYPE() CATEGORY() EXTNAME() PHYNAME() ICOFILE() ICWFILE()
:PROPERTY.EXTNAME() DT() DL() SHRTNAME() NULLS() UUISEQ()

:ACTION.OBJINST(MERGE)
:OBJECT.TYPE()
:INSTANCE.short_name()

Figure 37. Using the ACTION.OBJINST tag when merging objects

ACTION.OBJINST

222 Data Warehouse Center Application Integration Guide

Program or Attachment object types. However, you can use
ACTION.OBJINST(MERGE) with Program objects, without specifying the
ACTION.OBJTYPE(MERGE) first.

ACTION.OBJINST(UPDATE)
Updates the value of an object.

Context:

Rules:

v The specified object must already exist.
v Both the OBJECT tag and the INSTANCE tag must follow the

ACTION.OBJINST(UPDATE) tag.
– The OBJECT tag identifies the object type for the object being updated.
– The INSTANCE tag specifies the UUI property values, which identify the

object to be updated, and the property values that are being updated.

Only the property values specified on the INSTANCE tag are updated.

ACTION.OBJTYPE

Identifies the action to perform on the object type that is described with the
tags that follow ACTION.OBJTYPE.

Context
ACTION.OBJTYPE is used to create, delete, or maintain Information Catalog
Manager object types.

ACTION.OBJTYPE is followed by one or more OBJECT and PROPERTY tags,
which define the object type being acted on.

Syntax

Options
The following options are valid with ACTION.OBJTYPE:

ADD
APPEND
DELETE

:ACTION.OBJINST(UPDATE)
:OBJECT.TYPE()
:INSTANCE.SOURCEKEY(UUI_short_name()...) short_name()

Figure 38. Using the ACTION.OBJINST tag when updating objects

:ACTION.OBJTYPE(option)

ACTION.OBJINST

Chapter 9. Tag language 223

DELETE_EXT
MERGE
UPDATE

ACTION.OBJTYPE(ADD)
Creates the object type.

Context:

Rules:

v The object type must not exist.
v An OBJECT tag and its associated PROPERTY tags must immediately

follow the ACTION.OBJTYPE(ADD) tag.
– The OBJECT tag defines the attributes of the new object type.
– The PROPERTY tags define the properties that belong to the new object

type. The Information Catalog Manager automatically defines the
following required properties for every object type:

OBJTYPID
INSTIDNT
NAME
UPDATIME
UPDATEBY

v You cannot add object types that belong to the Program or Attachment
categories.

ACTION.OBJTYPE(APPEND)
Appends a property to an existing object type.

Context:

Rules:

v The object type must exist.

:ACTION.OBJTYPE(ADD)
:OBJECT.TYPE() CATEGORY() EXTNAME() PHYNAME() ICOFILE() ICWFILE()
:PROPERTY.EXTNAME() DT() DL() SHRTNAME() NULLS() UUISEQ()
:PROPERTY.EXTNAME() DT() DL() SHRTNAME() NULLS() UUISEQ()

Figure 39. Using the ACTION.OBJTYPE tag when adding object types

:ACTION.OBJTYPE(APPEND)
:OBJECT.TYPE()
:PROPERTY.EXTNAME() DT() DL() SHRTNAME() NULLS() UUISEQ()

Figure 40. Using the ACTION.OBJTYPE tag when adding properties to object types

ACTION.OBJTYPE

224 Data Warehouse Center Application Integration Guide

v The property being appended must not exist.
v Do not assign the property a UUISEQ value other than 0 (the default).

Appended properties must be optional with NULLS(Y) and cannot be part
of the UUI.

v An OBJECT tag and one or more PROPERTY tags must immediately follow
the ACTION.OBJTYPE(APPEND) tag.
– The OBJECT tag identifies the object type being appended.
– Each PROPERTY tag defines a property being appended.

v You cannot append to object types that belong to the Attachment category.

ACTION.OBJTYPE(DELETE)
Deletes the object type.

Context:

Rules:

v The object type must exist. No objects of the object type can exist.
v One or more OBJECT tags must follow an ACTION.OBJTYPE(DELETE) tag.

Each OBJECT tag identifies the object type being deleted.
v You cannot delete object types that belong to the Program or Attachment

categories.

ACTION.OBJTYPE(DELETE_EXT)
Deletes the object type and objects of that object type.

Context:

Rules:

v The object type must exist.
v The object cannot contain objects of a different object type.
v One or more OBJECT tags must follow the ACTION.OBJTYPE(DELETE)

tag. Each OBJECT tag identifies the object type being deleted.

:ACTION.OBJTYPE(DELETE)
:OBJECT.TYPE()

Figure 41. Using the ACTION.OBJTYPE tag when deleting object types

:ACTION.OBJTYPE(DELETE_EXT)
:OBJECT.TYPE()

Figure 42. Using the ACTION.OBJTYPE tag when deleting object types and all objects of that type

ACTION.OBJTYPE

Chapter 9. Tag language 225

v You cannot delete object types that belong to the Program or Attachment
categories.

ACTION.OBJTYPE(MERGE)
Checks the information catalog for the input object type name to see if the
object type exists.

If the object type exists, the Information Catalog Manager compares properties
of the input object type to the properties of the stored object type. If the
properties match, then the object types are treated as identical; if not, the
input object type is not valid.

If the object type does not exist, the Information Catalog Manager creates a
new object type.

Context:

Rules:

v An OBJECT tag and its associated PROPERTY tags must immediately
follow the ACTION.OBJTYPE(MERGE) tag.
– The OBJECT tag defines the object type being merged.
– Each PROPERTY tag defines a property that belongs to the object type.

v Before you can merge objects, you must merge object types to ensure that a
valid object type exists in the target information catalog. Therefore, an
ACTION.OBJTYPE(MERGE) tag must appear before an
ACTION.OBJINST(MERGE) tag in the tag language file.

v You cannot merge object types that belong to the Program or Attachment
categories.

ACTION.OBJTYPE(UPDATE)
Changes an object-type external name and ICON file information.

:ACTION.OBJTYPE(MERGE)
:OBJECT.TYPE() CATEGORY() EXTNAME() PHYNAME() ICOFILE() ICWFILE()
:PROPERTY.EXTNAME() DT() DL() SHRTNAME() NULLS() UUISEQ()

:ACTION.OBJINST(MERGE)
:OBJECT.TYPE()
:INSTANCE.short_name()

Figure 43. Using the ACTION.OBJTYPE tag when merging object types

ACTION.OBJTYPE

226 Data Warehouse Center Application Integration Guide

Context:

Rules:
v The object type must already exist.
v One or more OBJECT tags must follow the ACTION tag.

ACTION.RELATION

Identifies the action to perform on the relationship that is described with the
tags that follow ACTION.RELATION.

Context
ACTION.RELATION is used to create or delete information catalog
relationships.

ACTION.RELATION is followed by one or more RELTYPE and INSTANCE
tags, which define the relationships being acted on.

Syntax

Options
The following options are valid with ACTION.RELATION:

ADD
DELETE

ACTION.RELATION(ADD)
Defines an ATTACHMENT, CONTACT, CONTAIN, or LINK relationship.

Context:

Rules:

v If the specified relationship does not exist, the relationship is added. If the
specified relationship exists, the Information Catalog Manager writes an
informational message and continues processing.

:ACTION.OBJTYPE(UPDATE)
:OBJECT.TYPE() EXTNAME() ICOFILE() ICWFILE()

Figure 44. Using the ACTION.OBJTYPE tag when updating object types

:ACTION.RELATION(option)

:ACTION.RELATION(ADD)
:RELTYPE.TYPE() SOURCETYPE() TARGETYPE()
:INSTANCE.SOURCEKEY(UUI_short_name()...) TARGETKEY(UUI_short_name()...)

Figure 45. Using the ACTION.RELATION tag when adding relationships

ACTION.OBJTYPE

Chapter 9. Tag language 227

v A RELTYPE tag and one or more INSTANCE tags must immediately follow
the ACTION.RELATION(ADD) tag.
– The RELTYPE tag defines the type of relationship that is being added

and specifies the object types of the objects to associate.
– Each INSTANCE tag specifies the UUI property values that identify the

two objects that are being associated.

ACTION.RELATION(DELETE)
Deletes a relationship.

Context:

Rules:

v The relationship is deleted if it exists; otherwise, the Information Catalog
Manager writes an informational message and continues processing.

v A RELTYPE tag and one or more INSTANCE tags must immediately follow
the ACTION.RELATION(DELETE) tag.
– The RELTYPE tag defines the type of relationship that is being deleted

and specifies the object types of the associated objects.
– Each INSTANCE tag specifies the UUI property values that identify the

two associated objects.

COMMENT

Identifies comments in the tag language file. Place this tag between any
complete tag specifications in your file.

The Information Catalog Manager ignores comments when importing a tag
language file.

Syntax

:ACTION.RELATION(DELETE)
:RELTYPE.TYPE() SOURCETYPE() TARGETYPE()
:INSTANCE.SOURCEKEY(UUI_short_name()...) TARGETKEY(UUI_short_name()...)

Figure 46. Using the ACTION.RELATION tag when deleting relationships

:COMMENT.your comments

:COMMENT.This is the text of a comment.

Figure 47. Example of a COMMENT tag

ACTION.RELATION

228 Data Warehouse Center Application Integration Guide

Rules
v You cannot place a COMMENT tag between another tag and its keywords

or between keywords.
v The comment text must not contain any Information Catalog Manager tags

(for example :ACTION.), because each tag ends either at the end of the file
or at the beginning of the next valid tag.

COMMIT

Identifies a commit point. Requests that the Information Catalog Manager
commit the current changes to the database.

If the Information Catalog Manager encounters an error while importing a tag
language file, it rolls back all changes that are made to the information catalog
since the last time changes were committed.

Include COMMIT checkpoints at regular intervals so that you import
Information Catalog Manager tag language files more efficiently.

Including COMMIT checkpoints before and after defining or deleting object
types, sets of objects, and sets of relationships can help maintain the integrity
of your descriptive data.

Regular COMMIT checkpoints limit the number of changes that the
Information Catalog Manager cancels when it rolls back the information
catalog.

Frequent COMMIT checkpoints make the echo file easier to read if there are
errors in the tag language file. When the COMMIT tag is processed
successfully, the Information Catalog Manager clears the echo file of the tags
that were processed before the COMMIT tag. The echo file then contains only
tags that describe uncommitted changes.

Context
Place this tag after one or more complete action specifications (a set of
ACTION, OBJECT, RELTYPE, and INSTANCE tags).

Syntax

:COMMIT.CHKPID(checkpt_id)

:COMMIT.CHKPID(Added_relationships)

Figure 48. Example of a COMMIT tag

COMMENT

Chapter 9. Tag language 229

Keywords

CHKPID
Required keyword.

checkpt_id
An identifier that the Information Catalog Manager saves when it
processes a COMMIT tag.

If the import of a tag language file fails after a COMMIT tag processes
successfully, you need to import the rest of the tag language file starting
at the last checkpoint. This option is available with the import function.
The Information Catalog Manager uses the stored checkpt_id to locate the
proper COMMIT tag.

The value of checkpt_id must be unique within each tag language file.
Otherwise, the results of restart processing are unpredictable.

The maximum length of checkpt_id is 26 characters.

checkpt_id is not case-sensitive.

Rules
Specify a COMMIT tag when the data is consistent.

To prevent the target information catalog transaction log from filling up,
specify COMMIT tags at regular intervals in the tag language file.

An ACTION tag must follow the COMMIT tag, if additional data in the same
tag language file needs to be processed.

DISKCNTL

Identifies the diskette sequence number when the tag language file is stored
on one or more diskettes.

Context
When one tag language file is stored on one or more diskettes, DISKCNTL is
the first tag on each diskette.

Syntax

:DISKCNTL.SEQUENCE(nn, + | −)

:DISKCNTL.SEQUENCE(01,+)

Figure 49. Example of a DISKCNTL tag for the first of a sequence of diskettes

COMMIT

230 Data Warehouse Center Application Integration Guide

Keywords

SEQUENCE
Required keyword

nn A one-digit or two-digit number that indicates the number of the diskette
in sequence.

The first number for any sequence of disks must be 1 or 01. This value
increases by 1 for subsequent diskettes. The numbers for a set of three
diskettes are 1, 2, 3, or 01, 02, 03.

+ Additional diskettes containing the tag language file follow this one.

− The last or only diskette that contains the tag language file.

Rules
If this tag is specified, it must be the first tag in each tag language file. If the
tag is missing and the tag language file is on diskette, the import program
assumes that the tag language file is contained on one diskette.

If a tag language file is stored on the hard disk, this tag is not applicable. If
the tag is present, it is ignored.

INSTANCE

Defines or identifies objects or relationships to be acted on.

Context
This tag is required following:

:ACTION.OBJINST The INSTANCE tag follows an OBJECT tag.

:ACTION.RELATION The INSTANCE tag follows a RELTYPE tag.

Syntax
There are four formats for the INSTANCE tag, depending on the format of the
ACTION tag:

ACTION.OBJINST(ADD) or ACTION.OBJINST(MERGE)
Adding or merging objects

:INSTANCE.short_name (property_value) . . .

DISKCNTL

Chapter 9. Tag language 231

Context:

Keywords:

short_name
Identifies each property by its 8-character short name. This value is not
case sensitive; you can specify this value by using uppercase or lowercase
characters. If an INSTANCE tag has multiple short names associated with
it, use only one INSTANCE tag followed the short names as shown in
Figure 51.

property_value
Specifies the value of the property for the given object. This value is case
sensitive.

Rules:

v When adding an object:
– You must specify all UUI values, a value for the NAME property, and

values for any other properties that are defined as required.
– You can omit a property that does not have a value to add from the

INSTANCE tag. However, if an omitted property is a required property
with a CHAR, VARCHAR, or LONG VARCHAR data type, a
not-applicable symbol is generated and stored in the information catalog.
If an omitted required property has a TIMESTAMP data type, then the
Information Catalog Manager generates and stores the value
9999-12-31-24.00.00.000000.

v When merging an object:
– You must specify all UUI values, to ensure that matching objects can be

identified.

:ACTION.OBJINST(ADD)
:OBJECT.TYPE()
:INSTANCE.short_name()

Figure 50. Using the INSTANCE tag when adding objects

:ACTION.OBJINST(MERGE)
:OBJECT.TYPE()
:INSTANCE.short_name()
:short_name()
:short_name()

Figure 51. Using the INSTANCE tag when merging objects

INSTANCE

232 Data Warehouse Center Application Integration Guide

– You can omit a property that does not have a value to be added or
updated. However, if the defined object does not exist, and the omitted
property is required, then a not-applicable symbol is generated and
stored in the information catalog.

ACTION.OBJINST(DELETE) or ACTION.OBJINST(DELETE_TREE_ALL) or
ACTION.OBJINST(DELETE_TREE_REL)
Deleting an object

Context:

Keywords:

SOURCEKEY
Specifies the UUI property values that identify a particular object.

SOURCEKEY must be the first keyword of the INSTANCE tag.

UUI_short_name
Identifies a UUI property name by its 8-character short name. Specify all
of the UUI_short_name(UUI_property_value) combinations. The
UUI_short_name is not case sensitive; you can specify this value by using
uppercase or lowercase characters.

UUI_property_value
Specifies the value of a UUI property for a particular object. This value is
case sensitive.

:INSTANCE.SOURCEKEY(UUI_short_name (UUI_property_value) . . .)

:ACTION.OBJINST(DELETE)
:OBJECT.TYPE()
:INSTANCE.SOURCEKEY(UUI_short_name()...)

Figure 52. Using the INSTANCE tag when deleting objects

:ACTION.OBJINST(DELETE_TREE_ALL)
:OBJECT.TYPE()
:INSTANCE.SOURCEKEY(UUI_short_name()...)

Figure 53. Using the INSTANCE tag when deleting Grouping category objects and contained
objects

:ACTION.OBJINST(DELETE_TREE_REL)
:OBJECT.TYPE()
:INSTANCE.SOURCEKEY(UUI_short_name()...)

Figure 54. Using the INSTANCE tag when deleting Grouping category objects and relationships

INSTANCE

Chapter 9. Tag language 233

Rules: You must specify one UUI_short_name(value) combination for each
property that is defined as a UUI property for the object type. Each object
type has one or more properties defined as UUI properties. These properties
uniquely identify an object in the information catalog.

ACTION.OBJINST(UPDATE)
Updating property values for an object

Context:

Keywords:

SOURCEKEY
Specifies the UUI property values that identify a particular object.

SOURCEKEY must be the first keyword of the INSTANCE tag.

UUI_short_name
Identifies a UUI property by its 8-character short name. The
UUI_short_name is not case sensitive; you can specify this value by using
uppercase or lowercase characters.

UUI_property_value
This value is case sensitive. With UUI_short_name, specifies the value of a
UUI property for a particular object.

short_name
Identifies the property to be updated by its 8-character short name. The
short_name is not case sensitive; you can specify this value by using
uppercase or lowercase characters.

You cannot specify the following property short names because you
cannot update these properties: OBJTYPID, INSTIDNT, UPDATIME,
UPDATEBY.

property_value
With short_name, specifies the new value of the property for the given
object. This value is case sensitive.

Rules: You must specify one UUI_short_name(value) combination for each
property that is defined as a UUI property for the object type. Each object

:INSTANCE.SOURCEKEY(UUI_short_name (UUI_property_value) . . .)
short_name (property_value) . . .

:ACTION.OBJINST(UPDATE)
:OBJECT.TYPE()
:INSTANCE.SOURCEKEY(UUI_short_name()...) short_name()

Figure 55. Using the INSTANCE tag when updating objects

INSTANCE

234 Data Warehouse Center Application Integration Guide

type has one or more properties defined as UUI properties. These properties
uniquely identify an object in the information catalog.

If you specify a property value, that value is updated in the information
catalog. If you do not specify a property value, the value is not updated.

ACTION.RELATION(ADD) or ACTION.RELATION(DELETE)
Adding or deleting relationships

Context:

Keywords:

SOURCEKEY
Specifies the UUI property values that identify the first object in a
relationship.

When the relationship is: The SOURCEKEY identifies:

Contains The Grouping category object

Contact The object the contact is for

Attachment The object the comment is for

Link Either object to link

SOURCEKEY must be the first keyword of the INSTANCE tag.

TARGETKEY
Specifies the UUI property values that identify the second object in a
relationship.

When the relationship is: The TARGETKEY identifies:

Contains The Elemental category object

:INSTANCE.SOURCEKEY(UUI_short_name (UUI_property_value)...)
TARGETKEY(UUI_short_name (UUI_property_value)...)

:ACTION.RELATION(ADD)
:RELTYPE.TYPE() SOURCETYPE() TARGETYPE()
:INSTANCE.SOURCEKEY(UUI_short_name()...) TARGETKEY(UUI_short_name()...)

Figure 56. Using the INSTANCE tag when adding relationships

:ACTION.RELATION(DELETE)
:RELTYPE.TYPE() SOURCETYPE() TARGETYPE()
:INSTANCE.SOURCEKEY(UUI_short_name()...) TARGETKEY(UUI_short_name()...)

Figure 57. Using the INSTANCE tag when deleting relationships

INSTANCE

Chapter 9. Tag language 235

Contact The Contact category object

Attachment The Attachment category object

Link Either object to link

TARGETKEY must be the second keyword of the INSTANCE tag.

UUI_short_name
Identifies a UUI property name by its 8-character short name. This value
is not case sensitive; you can specify this value by using uppercase or
lowercase characters.

UUI_property_value
Specifies the value of a UUI property for a particular object. This value is
case sensitive.

Rules: For each object, you must specify one UUI_short_name(value)
combination for each property that is defined as a UUI property for the object
type. Each object type has one or more properties defined as UUI properties.
These properties uniquely identify an object in the information catalog.

You must separate each UUI_short_name(value) and short_name(value) pair with
a blank, as shown in Figure 58.

Leading blanks that are included between the parentheses for a value become
part of the value; trailing blanks are removed. The Information Catalog
Manager counts these blanks as part of the data length when determining
whether the length of the value is valid. An error occurs if you include extra
leading blanks or trailing blanks on a value that make the entire value longer
than the maximum allowed length.

NL

Specifies a new line within a property value.

The Information Catalog Manager manager reads only NL tags that are
specified within non-UUI property values and ignores all others.

Syntax

:INSTANCE.SOURCEKEY(UUIname1(value1) UUIname2(value2)) sname3(value3) sname4(value4)

Figure 58. Example of an INSTANCE tag with several short names

:NL.

INSTANCE

236 Data Warehouse Center Application Integration Guide

Rules
Use NL tags only within the specification of property_values in INSTANCE
tags.

OBJECT

Defines the attributes for an object type or identifies an object type.

Context
This tag is required immediately following:

ACTION.OBJTYPE
ACTION.OBJINST

Syntax

Different OBJECT tag keywords are required or valid depending on the type
of ACTION tag the OBJECT tag follows.

ACTION.OBJTYPE(ADD) or ACTION.OBJTYPE(MERGE)
Adding or merging object types

Context:

Keywords:

TYPE
Specifies the name of an object type.

Required keyword.

type
Defines and identifies the short name for a specific object type.

:OBJECT.TYPE(type) CATEGORY(category) EXTNAME(ext_name)
PHYNAME(table_name) ICOFILE()

ICWFILE(Windows_ICON_file_name)

:ACTION.OBJTYPE(ADD)
:OBJECT.TYPE() CATEGORY() EXTNAME() PHYNAME() ICOFILE() ICWFILE()
:PROPERTY.EXTNAME() DT() DL() SHRTNAME() NULLS() UUISEQ()

Figure 59. Using the OBJECT tag when adding object types

:ACTION.OBJTYPE(MERGE)
:OBJECT.TYPE() CATEGORY() EXTNAME() PHYNAME() ICOFILE() ICWFILE()
:PROPERTY.EXTNAME() DT() DL() SHRTNAME() NULLS() UUISEQ()

Figure 60. Using the OBJECT tag when merging object types

NL

Chapter 9. Tag language 237

The value of type must be unique to an object type across all related
information catalogs that contain the same object type. This ensures that
objects of this object type can be shared among the related information
catalogs. If the value of type already exists, it is used as a search
argument.

The maximum length for the value is 8 characters. The value is stored in
uppercase characters. This value can start with the characters A - Z, @, #,
or $, and can contain any of these characters plus 0 - 9 and _. No leading
blanks or embedded blanks are allowed.

After you create the object type, you cannot change the value of type.

CATEGORY
Specifies which category this object type belongs to.

Required keyword.

category
Specifies an Information Catalog Manager object category. This value can
be one of the following:

GROUPING
ELEMENTAL
SUPPORT
CONTACT
DICTIONARY

You cannot specify PROGRAM or ATTACHMENT as the category for a
new object type.

You cannot change the information on this keyword after the object type
is defined.

EXTNAME
Specifies a longer, descriptive name for the object type. Required keyword.

ext_name
Specifies an extended, descriptive name for the object type. The maximum
length for ext_name is 80 characters.

This name must be unique within related information catalogs.

The value of ext_name is stored in mixed case.

You can change the information on this keyword after the object type is
defined.

PHYNAME
Specifies the name to use when creating the database table that contains
information about this object type.

Optional keyword.

OBJECT

238 Data Warehouse Center Application Integration Guide

table_name
Specifies the name to use when creating the database table that contains
object type information.

The maximum length of the name is defined when the Information
Catalog Manager is installed. The table_name value must be unique within
the information catalog and cannot contain any SQL reserved words.

By default, table_name is the type that is specified for the TYPE keyword.
This value is not case sensitive; you can specify this value with uppercase
or lowercase characters.

This value can start with the characters A - Z, @, #, or $, and can contain
any of these characters, plus 0 - 9 and _. No leading blanks or embedded
blanks are allowed. This value cannot be any of the SQL reserved words
for the database that is used for the information catalog.

After the table is created, you cannot change its name.

ICWFILE
Specifies the file that contains the Windows icon that is associated with
the object type.

Optional keyword.

Windows_ICON_file_name
Specifies the name of the Windows icon file to associate with the object
type. The maximum length of Windows_ICON_file_name is 254 characters.
However, this name, combined with the icon path (ICOPATH), can have a
maximum length of 259, so the true maximum length depends on the
length of the icon path. This file can have any extension. This value is not
case sensitive; you can specify this value by using uppercase or lowercase
characters.

You cannot specify the drive and path information that identifies where
the icon file resides using this keyword. You must specify this information
as an input parameter for the FLGImport API call (see the Information
Catalog Manager Programming Guide and Reference), the import function on
the user interface (see “Importing a tag language file from the command
line” on page 42), or the IMPORT option of the DGUIDE command (see
“Importing a tag language file from the command line” on page 42).

You can change this value after the object type is created by using
ACTION.OBJTYPE(UPDATE). After you specify an icon file to associate
with an object type, you can change the associated icon, but the object
type must always be associated with an icon.

OBJECT

Chapter 9. Tag language 239

ACTION.OBJTYPE(APPEND)

Context:

Keywords:

TYPE
Specifies the name (type) of an object type.

Required keyword.

type
Identifies a specific object type by its 8-character short name.

ACTION.OBJTYPE(DELETE) or ACTION.OBJTYPE(DELETE_EXT)
Deleting an existing object type.

Context:

Keywords:

TYPE
Specifies the name (type) of an object type.

Required keyword.

type
Identifies a specific object type by its 8-character short name.

ACTION.OBJTYPE(UPDATE)
Updating object type information.

:ACTION.OBJTYPE(APPEND)
:OBJECT.TYPE()
:PROPERTY.EXTNAME() DT() DL() SHRTNAME() NULLS() UUISEQ()

Figure 61. Using the OBJECT tag when adding properties to object types

:ACTION.OBJTYPE(DELETE)
:OBJECT.TYPE()

Figure 62. Using the OBJECT tag when deleting object types

:ACTION.OBJTYPE(DELETE_EXT)
:OBJECT.TYPE()

Figure 63. Using the OBJECT tag when deleting object types and all objects of that type

OBJECT

240 Data Warehouse Center Application Integration Guide

Context:

Keywords:

TYPE
Specifies the name (type) of an object type.

Required keyword.

type
Identifies a specific object type by its 8-character short name. You cannot
update this value.

EXTNAME
Specifies a descriptive name for the object type. Optional keyword.

ext_name
Specifies an extended, descriptive name for the object type. The maximum
length for ext_name is 80 characters.

You can update this value.

This name must be unique within related information catalogs.

The value of ext_name is stored in mixed case.

ICWFILE
Specifies the file that contains the Windows icon that is associated with
the object type.

Optional keyword.

Windows_ICON_file_name
Specifies the name of the Windows icon file to associate with the object
type.

You can update this value.

The maximum length of Windows_ICON_file_name is 254 characters. You
cannot use this keyword to specify the drive and path information that
identifies where the ICON file resides. You must specify this information
as an input parameter for the FLGImport API call, the import function on
the user interface, or the IMPORT option of the Information Catalog
Manager command.

ACTION.OBJINST
Adding, updating, deleting, or merging objects

:ACTION.OBJTYPE(UPDATE)
:OBJECT.TYPE() EXTNAME() ICOFILE() ICWFILE()

Figure 64. Using the OBJECT tag when updating object types

OBJECT

Chapter 9. Tag language 241

Context:

Keywords:

TYPE
Specifies the name (type) of an object type.

Required keyword.

type
Identifies a specific object type by its 8-character short name.

PROPERTY

Defines a property that belongs to an object type.

This tag is required following these ACTION tags:
:ACTION.OBJTYPE(ADD)
:ACTION.OBJTYPE(MERGE)
:ACTION.OBJTYPE(APPEND)

:ACTION.OBJINST(ADD)
:OBJECT.TYPE()
:INSTANCE.short_name()

Figure 65. Using the OBJECT tag when adding objects

:ACTION.OBJINST(MERGE)
:OBJECT.TYPE()
:INSTANCE.short_name()

Figure 66. Using the OBJECT tag when merging objects

:ACTION.OBJINST(UPDATE)
:OBJECT.TYPE()
:INSTANCE.SOURCEKEY(UUI_short_name()...) short_name()

Figure 67. Using the OBJECT tag when updating objects

:ACTION.OBJINST(DELETE)
:OBJECT.TYPE()
:INSTANCE.SOURCEKEY(UUI_short_name()...)

Figure 68. Using the OBJECT tag when deleting objects

OBJECT

242 Data Warehouse Center Application Integration Guide

Syntax

Context

Keywords

EXTNAME
Specifies a descriptive name for the property.

Required keyword.

ext_name
Specifies an extended descriptive name.

The maximum length of ext_name is 80 characters. The ext_name must be
unique within the object type. ext_name is stored in mixed case.

DT
Specifies the data type for the property.

Required keyword.

data_type
The data type for the property. You can specify this value in either
uppercase or lowercase. Valid values are:

C Character

V Variable character

:PROPERTY.EXTNAME(ext_name) DT(data_type) DL(data_length)
SHRTNAME(short_name) NULLS(Y | N) UUISEQ(UUI_number)

:ACTION.OBJTYPE(ADD)
:OBJECT.TYPE() CATEGORY() EXTNAME() PHYNAME() ICOFILE() ICWFILE()
:PROPERTY.EXTNAME() DT() DL() SHRTNAME() NULLS() UUISEQ()

Figure 69. Using the PROPERTY tag when adding object types

:ACTION.OBJTYPE(MERGE)
:OBJECT.TYPE() CATEGORY() EXTNAME() PHYNAME() ICOFILE() ICWFILE()
:PROPERTY.EXTNAME() DT() DL() SHRTNAME() NULLS() UUISEQ()

Figure 70. Using the PROPERTY tag when merging object types

:ACTION.OBJTYPE(APPEND)
:OBJECT.TYPE()
:PROPERTY.EXTNAME() DT() DL() SHRTNAME() NULLS() UUISEQ()

Figure 71. Using the PROPERTY tag when adding properties to object types

PROPERTY

Chapter 9. Tag language 243

L Long variable character

T Timestamp

DL
Specifies the data length or maximum data length for the property.

Required property.

data_length
The data length or maximum data length for the property. Valid values
for data_length depend on the data_type that is defined for this property:

data_type Maximum value for data_length

C (character) Maximum length is 254

V (variable character) Maximum length is 4000

L (long variable character) Maximum length is 32700

T (timestamp) Always 26 characters

SHRTNAME
Specifies the property short name.

Required keyword.

short_name
The short name for the property. The short_name value can be up to 8
characters long. This value can contain only SBCS characters.

This value is stored as uppercase characters; any lowercase characters are
converted to uppercase.

This value can start with the characters A - Z, @, #, or $, and can contain
any of these characters, plus 0 - 9 and _. No leading blanks or embedded
blanks are allowed.

This value cannot be any of the SQL reserved words for the database that
is used for the information catalog. Do not specify the property short
names of the following required properties for every Information Catalog
Manager object type: OBJTYPID, INSTIDNT, UPDATIME, or UPDATEBY.

NULLS
Specifies whether a value for the property is required for every object.
This value can be specified in uppercase or lowercase.

Required keyword.

Y indicates that this value can be null. When appending a new property
with the ACTION.OBJTYPE(APPEND) tag, you must specify NULLS(Y),
because appended properties must be optional.

PROPERTY

244 Data Warehouse Center Application Integration Guide

N indicates that a value for this property is required. If no data exists for
a required property when an object is added to the information catalog, a
not-applicable symbol is entered for the required value for data types of
CHAR, VARCHAR, and LONG VARCHAR. For a required value with a
data type of TIMESTAMP, the following value is entered:
9999-12-31-24.00.00.000000

UUISEQ
Identifies the properties that are used in the UUI.

Optional keyword; the default value is 0. The UUISEQ keyword is
optional for properties that are not part of the UUI. The UUI is a set of
properties that are defined by the administrator as the key that uniquely
identifies each object.

UUI_number
Specifies the position of the property in the UUI sequence. Valid values
are 0, 1, 2, 3, 4, and 5. The value 0 means that the property is not part of
the UUI. A nonzero value for UUI_number indicates that the property is
part of the UUI.

All object types defined in the tag language file must have at least one
property that is part of the UUI. The UUI can consist of up to 5
properties.

At least one property must be defined as part of the UUI.

When assigning UUI_number values to more than one property, the
numbers of the UUI properties must range from 1 to the number of
properties in the UUI. For example, if three properties are defined as part
of the UUI, the UUI_number values must be 1, 2, and 3. You cannot skip
numbers in the sequence. The UUI_number values do not need to be in the
same order that the properties are specified.

Rules
v You can define the reserved property NAME as part of the UUI when you

add a new object type or merge object types. Figure 72 shows the general
syntax for identifying NAME as a UUI property.

Empty parentheses in this figure denote values that you must provide in a
tag language file.

v The maximum length of the UUI fields is 254 bytes.

:ACTION.OBJTYPE(ADD)
:OBJECT.TYPE() CATEGORY() EXTNAME() PHYNAME() ICOFILE() ICWFILE()
:PROPERTY.SHRTNAME(NAME) UUISEQ()

Figure 72. Example of specifying the NAME property as part of the UUI

PROPERTY

Chapter 9. Tag language 245

RELTYPE

Identifies the type of relationship that to add or delete and the object types of
the objects involved in the relationship.

This tag is required immediately following these tags:
:ACTION.RELATION(ADD)
:ACTION.RELATION(DELETE)

Syntax

Context

Keywords

TYPE
Specifies the type of relationship.

Required keyword.

Valid values are:

ATTACHMENT
Attachment relationship: target object is attached to the source
object.

CONTACT
Contact relationship: Source object is associated with the target
Contact object.

CONTAIN
Contains relationship: source object contains the target object.

LINK Link relationship: source object is linked with the target object.

:RELTYPE.TYPE(CONTAIN | CONTACT | ATTACHMENT | LINK)
SOURCETYPE(source_type) TARGETYPE(target_type)

:ACTION.RELATION(ADD)
:RELTYPE.TYPE() SOURCETYPE() TARGETYPE()
:INSTANCE.SOURCEKEY(UUI_short_name()...) TARGETKEY(UUI_short_name()...)

Figure 73. Using the RELTYPE tag when adding relationships

:ACTION.RELATION(DELETE)
:RELTYPE.TYPE() SOURCETYPE() TARGETYPE()
:INSTANCE.SOURCEKEY(UUI_short_name()...) TARGETKEY(UUI_short_name()...)

Figure 74. Using the RELTYPE tag when deleting relationships

RELTYPE

246 Data Warehouse Center Application Integration Guide

SOURCETYPE
Identifies the source object type.

Required keyword.

source_type
The source object type name source_type corresponds to the type value for
the TYPE keyword of the OBJECT tag. The maximum length for
source_type is 8 characters. This value is not case sensitive; you can specify
this value with uppercase or lowercase characters.

For an Attachment relationship, source_type is a non-Attachment
object-type name.

For a Contains relationship, source_type is the container object type name.

For a Contact or link relationship source_type is the Grouping or Elemental
object type name.

TARGETYPE
Identifies the target object type.

Required keyword.

target_type
The target object type name. target_type corresponds to the type value for
the TYPE keyword on the OBJECT tag. The maximum length for
target_type is 8 characters. This value is not case sensitive; you can specify
this value with uppercase or lowercase characters.

For an Attachment relationship, target_type is the Attachment object-type
name.

For a Contains relationship, target_type is the contained object type name.

For a Contact relationship, target_type is the Contact object-type name.

For a link relationship, target_type is a Grouping or Elemental object type
name.

TAB

Specifies a tab within a property value.

The Information Catalog Manager reads only TAB tags that are specified
within non-UUI property values and ignores all others.

Syntax

:TAB.

RELTYPE

Chapter 9. Tag language 247

Rules
Use TAB tags only within the specification of property_values in INSTANCE
tags.

TAB

248 Data Warehouse Center Application Integration Guide

Chapter 10. What a tag language file should look like

You can use the tags to add, delete, and update object types and objects.
Information Catalog Manager tags are contextual; you specify tags in different
combinations depending on what you want to do.

Start your tag language file with DISKCNTL

Start the tag language file with a DISKCNTL tag if the file is on a removable
disk, such as a diskette. For example:
:DISKCNTL.SEQUENCE(01,+)

If the tag language file is on more than one diskette, then DISKCNTL must be
the first tag in each section of the tag language file on each diskette. If the tag
language file is on a fixed disk, then DISKCNTL is ignored.

Define your additions, changes, and deletions

You use the tag language to define actions and the objects of those actions.

Defining what you want to do
The ACTION tag tells Information Catalog Manager what you want to do.
The keyword tells the Information Catalog Manager what kind of information
you want to maintain. The option tells the Information Catalog Manager what
task you want to perform.

:ACTION.OBJINST(option)
Maintaining objects.

:ACTION.OBJTYPE(option)
Maintaining object types.

:ACTION.RELTYPE(option)
Maintaining object relationships.

Defining the information
After you have specified what you want to do, you need to define precisely
what information you are adding, changing, or deleting.

To define: Use these tags:
Existing object type OBJECT
Object type to be merged OBJECT and PROPERTY
New object type OBJECT and PROPERTY
New properties for an object type OBJECT and PROPERTY

© Copyright IBM Corp. 1998, 2000 249

To define: Use these tags:
New or existing object OBJECT and INSTANCE
New or existing object relationship RELTYPE and INSTANCE

Putting it all together
The keywords and values that are required for OBJECT, INSTANCE, and
PROPERTY tags are different depending on what they are identifying to add,
change, or delete. The sequence of tags within each ACTION tag is:

:ACTION.OBJINST(option)
:ACTION.OBJINST(ADD)
:OBJECT.TYPE()
:INSTANCE.short_name() ...

:ACTION.OBJINST(DELETE)
:OBJECT.TYPE()
:INSTANCE.SOURCEKEY(UUI_short_name()...)

:ACTION.OBJINST(DELETE_TREE_ALL)
:OBJECT.TYPE()
:INSTANCE.SOURCEKEY(UUI_short_name()...)

:ACTION.OBJINST(DELETE_TREE_REL)
:OBJECT.TYPE()
:INSTANCE.SOURCEKEY(UUI_short_name()...)

:ACTION.OBJINST(MERGE)
:OBJECT.TYPE()
:INSTANCE.short_name() ...

:ACTION.OBJINST(UPDATE)
:OBJECT.TYPE()
:INSTANCE.SOURCEKEY(UUI_short_name()...) short_name()

:ACTION.OBJTYPE(option)
:ACTION.OBJTYPE(ADD)
:OBJECT.TYPE() CATEGORY() EXTNAME() PHYNAME() ICOFILE()
:PROPERTY.EXTNAME() DT() DL() SHRTNAME() NULLS() UUISEQ()

:ACTION.OBJTYPE(APPEND)
:OBJECT.TYPE()
:PROPERTY.EXTNAME() DT() DL() SHRTNAME() NULLS() UUISEQ()

:ACTION.OBJTYPE(DELETE)
:OBJECT.TYPE()

:ACTION.OBJTYPE(DELETE_EXT)
:OBJECT.TYPE()

:ACTION.OBJTYPE(MERGE)
:OBJECT.TYPE() CATEGORY() EXTNAME() PHYNAME() ICOFILE() ICWFILE()
:PROPERTY.EXTNAME() DT() DL() SHRTNAME() NULLS() UUISEQ()

:ACTION.OBJTYPE(UPDATE)
:OBJECT.TYPE() EXTNAME() ICOFILE() ICWFILE()

:ACTION.RELATION(option)

250 Data Warehouse Center Application Integration Guide

:ACTION.RELATION(ADD)
:RELTYPE.TYPE(CONTAIN | CONTACT | ATTACHMENT | LINK) SOURCETYPE(type)
TARGETYPE(type)
:INSTANCE.SOURCEKEY(UUI_short_name()...) TARGETKEY(UUI_short_name()...)
:ACTION.RELATION(DELETE)
:RELTYPE.TYPE(CONTAIN | CONTACT | ATTACHMENT | LINK) SOURCETYPE(type)
TARGETYPE(type)
:INSTANCE.SOURCEKEY(UUI_short_name()...) TARGETKEY(UUI_short_name()...)

For specific information about the format of the INSTANCE, OBJECT, and
PROPERTY tags, see “INSTANCE” on page 231, “OBJECT” on page 237, or
“PROPERTY” on page 242.

Committing changes to the database

The COMMIT tag commits changes to the information catalog database. When
a COMMIT tag processes, the echo file is emptied before the next set of tags
starts processing. This ensures that the echo file contains only tags that
describe uncommitted changes.

If the Information Catalog Manager encounters an error, it rolls back the
database to the last committed checkpoint. Insert COMMIT tags in your file to
keep your data consistent, and to limit the number of changes that are
canceled when the database is rolled back.

You can insert a COMMIT tag after any complete set of tags that define an
action. Do not insert a COMMIT tag between the ACTION tag and the last
tag that defines the data that is associated with the ACTION tag.
:COMMIT.CHKPT(20)

Putting comments in the tag language file

You can use the COMMENT tag to put information in the tag language file,
such as notes and labels, that you do not want to import into your
information catalog.
:COMMENT.Updating the LASTDATE property

Chapter 10. What a tag language file should look like 251

252 Data Warehouse Center Application Integration Guide

Part 3. Supplied program and macro reference

© Copyright IBM Corp. 1998, 2000 253

254 Data Warehouse Center Application Integration Guide

Chapter 11. Supplied Data Warehouse Center programs

The Data Warehouse Center supplies the following programs to support
integration with the Data Warehouse Center:
v VWPEXUNX
v ISV_Sample

VWPEXUNX

The VWPEXUNX program remotely issues a command or runs a program.
VWPEXUNX runs on Windows NT, Windows 2000, and UNIX®.

If you are running the VWPEXUNX program on Windows NT or Windows
2000, the REXECD program must also be running on the workstation.

Parameters
Table 121 shows the parameter list for the VWPEXUNX program. The list
includes the predefined token for a parameter if one exists.

Table 121. Parameters for VWPEXUNX

Order Description

1 The remote host name.

2 The remote user ID.

3 The remote program to execute.

4 The remote error file.

5 The remote warning file. If there is no warning file, specify - (the
not-applicable symbol).

6 The remote log (summary) file. If there is no log file, specify - (the
not-applicable symbol).

7 The remote operating system type. Specify either UNIX, WINNT, or
WIN2000.

8 The password type. Specify either PasswordNotRequired,
EnterPassword, or GetPassword.

© Copyright IBM Corp. 1998, 2000 255

Table 121. Parameters for VWPEXUNX (continued)

Order Description

9 The password value if the password type is EnterPassword.

- (not-applicable symbol) if the password type is PasswordNot
Required.

The password program if password type is GetPassword. The
password program must reside on the agent site that is selected for the
step. The program must write a file that contains the password to use
in the first line of the file. It must return 0 if it runs correctly.

10 The password program parameters if the password type is
GetPassword

The following example shows how to start the VWPEXUNX program from a
command prompt. The command must be typed all on one line. The line
break shown in this example is not significant.
vwpexunx tomari labriejj db2cmd \usr\labriejj\db2cmd.err - -
UNIX EnterPassword mypass

tomari The name of the remote host

labriejj The user ID used to access the remote host

db2cmd The remote program to run

\usr\labriejj\db2cmd.err
The path and name of the remote error file

- No remote warning file exists

- No remote log (summary) file exists

UNIX The remote operating system

EnterPassword
The password type

mypass The password

Return codes
The VWPEXUNX program uses the remote error file to determine the success
or failure of the remote command or program:
v If the error file is empty or nonexistent, the VWPEXUNX program returns

an error code that indicates success.
v If the error file is not empty, the VWPEXUNX program:

– Saves the contents of the error file in a temporary file.
– Returns an error code that indicates failure.

256 Data Warehouse Center Application Integration Guide

The VWPEXUNX program does not check the contents of the remote error
file.

Table 122 lists the return codes for the VWPEXUNX program.

Table 122. Return codes for the VWPEXUNX program

Return code Description

0 The program ran successfully.

4 The program ran with a warning.

The program could not erase the password file after the password
program ran.

8 Parameter error.

Too few or too many parameters were supplied to the program, or an
invalid value was supplied for a parameter.

16 Internal error.

The program detected an internal error, such as the inability to open,
create, or write to a temporary file.

48 Environment variable error.

The VWS_LOGGING environment variable was not set.

52 Get password program error.

The program detected a password program error, such as a missing
program, an invalid name, or the wrong number of parameters

56 Remote execution error.

The program detected a remote execution error, such as the following
errors:

v An incorrect user ID or password was supplied.

v A remote file was not found.

v A remote host is not responding.

v The supplied user ID is not authorized to create or read the remote
file.

Log files
The VWPEXUNX program writes a trace file to the directory that the
VWS_LOGGING environment variable specifies.

Chapter 11. Supplied Data Warehouse Center programs 257

ISV_Sample

The ISV_Sample program reads metadata from ODBC data sources and
generates Data Warehouse Center objects from the metadata. The ISV_Sample
program runs on Windows NT and Windows 2000.

Table 123 shows the parameter list for the ISV_Sample program.

No predefined tokens exist for the parameters.

Table 123. Parameters for ISV_Sample

Order Description

1 ODBC DSN from which to extract metadata

2 ODBC user ID

3 ODBC password

The following example shows how to start the ISV_Sample program:
ISV_Sample SAMPLE labriejj mypass

SAMPLE The ODBC DSN from which to read metadata

labriejj The user ID used to access the ODBC DSN

mypass The password used to access the ODBC DSN

The ISV_Sample program uses the ISV_VWP program. Steps call the
ISV_VWP program to write the input parameters to an output file.

258 Data Warehouse Center Application Integration Guide

Chapter 12. Net.Data® macros

The Information Catalog Manager for the Web uses Net.Data® macros to
display data on the Web and search for data in a database. If you are familiar
with Net.Data and its macros, you can customize these macros to meet the
requirements of your organization.

For example, the Information Catalog Manager for the Web requires a user ID
and password by default. You can customize the macros to call your own
security program instead.

This chapter lists the files that are included with the Information Catalog
Manager for the Web. For more information about Net.Data and its macros,
see the Net.Data Programming Guide and Net.Data Reference Guide.

Information Catalog Manager for the Web files

To work with Information Catalog Manager for the Web files, you must first
perform a custom installation of the Administration Client and select
Information Catalog Manager for the Web. The files are installed in the
x:\sqllib\icuweb directory.

The file names are lowercase to follow the AIX® naming convention.

Table 124 lists the Information Catalog Manager for the Web files that contain
Net.Data macros, which are located in the x:\sqllib\icuweb\macro directory.

Table 124. Information Catalog Manager Web Net.Data macros

File name Description

dg_list.mac Displays the results of a search, tree, or
subject call

dg_desc.mac Displays the results of a description view

dg_frame.mac Creates the three-frame page

dg_advsearch.mac Performs an advanced search

dg_comment.mac Creates or updates a comment

dg_home.mac Displays the Information Catalog Manager
home page

dg_tableviewer.mac Displays sample data

© Copyright IBM Corp. 1998, 2000 259

Table 125 lists the Information Catalog Manager for the Web files that contain
Net.Data include files, which are located in the x:\sqllib\icuweb\macro
directory.

Table 125. Net.Data include files

File name Description

dg_desc.hti Include file with common functions for
description view

dg_home.hti Include file with a list of information
catalogs to display on the Information
Catalog Manager home page

dg_strings.hti Include file with translatable strings

dg_config.hti Include file with installation configurable
variables

dg_graphics.hti Include file with graphics look and feel
definitions

Table 126 displays the Information Catalog Manager for the Web files that
contain HTML, which are located in the x:\sqllib\icuweb\html directory.

Table 126. Information Catalog Manager for the Web HTML files

File Name Description

*.htm Help files

Table 127 lists the Information Catalog Manager for the Web graphic files,
which are located in the x:\sqllib\icuweb\icons directory.

In addition to the graphics files listed below, you can also create unique icons
for any new object type that you create in the Information Catalog Manager.
For more information on creating object type icons, see the Information Catalog
Manager Administration Guide.

Table 127. Information Catalog Manager for the Web graphics files

File name Description

dg_ibmlogo.gif IBM logo

dg_lgudblogo.gif Large DB2 logo on Home

dg_smudblogo.gif Small DB2 logo on header

dg_curve.gif Small curve joining header and menu

dg_lgappldata.gif Large Application Data

dg_smappldata.gif Small Application Data

Information Catalog Manager for the Web files

260 Data Warehouse Center Application Integration Guide

Table 127. Information Catalog Manager for the Web graphics files (continued)

File name Description

dg_lgapproach.gif Large Lotus Approach

dg_smapproach.gif Small Lotus Approach

dg_lgaudio.gif Large Audio Clips

dg_smaudio.gif Small Audio Clips

dg_lgcharts.gif Large Charts

dg_smcharts.gif Small Charts

dg_lgcolumns.gif Large Columns

dg_smcolumns.gif Small Columns

dg_lgcomments.gif Large Comments

dg_smcomments.gif Small Comments

dg_lgcontact.gif Large People to contact

dg_smcontact.gif Small People to contact

dg_lgdatabas.gif Large Databases

dg_smdatabas.gif Small Databases

dg_lgimsdbd.gif Large IMS database definitions (DBD)

dg_smimsdbd.gif Small IMS database definitions (DBD)

dg_lgdgnews.gif Large News

dg_smdgnews.gif Small News

dg_lgdimenson.gif Large Dimensions within a
multi-dimensional database

dg_smdimenson.gif Small Dimensions within a
multi-dimensional database

dg_lgdocs.gif Large Documents

dg_smdocs.gif Small Documents

dg_lgelement.gif Large Elements

dg_smelement.gif Small Elements

dg_lgfile.gif Large Files

dg_smfile.gif Small Files

dg_lgfilter.gif Large Transformations

dg_smfilter.gif Small Transformations

dg_lgglossary.gif Large Glossary entries

dg_smglossary.gif Small Glossary entries

dg_lgimages.gif Large Images or graphics

Information Catalog Manager for the Web files

Chapter 12. Net.Data® macros 261

Table 127. Information Catalog Manager for the Web graphics files (continued)

File name Description

dg_smimages.gif Small Images or graphics

dg_lginfogrps.gif Large Business subject areas

dg_sminfogrps.gif Small Business subject areas

dg_lginternet.gif Large Internet documents

dg_sminternet.gif Small Internet documents

dg_lgmember.gif Large Members within a multidimensional
database

dg_smmember.gif Small ″Members within a
multidimensional database

dg_lgolapmodl.gif Large Multidimensional database

dg_smolapmodl.gif Small Multidimensional database

dg_lgolnews.gif Large Online news services

dg_smolnews.gif Small Online news services

dg_lgolpubs.gif Large Online news services

dg_smolpubs.gif Small Online news services

dg_lgiimspcb.gif Large IMS program control block (PCB)

dg_smimspcb.gif Small IMS program control block (PCB)

dg_lgpresent.gif Large Presentations

dg_smpresent.gif Small Presentations

dg_lgimspsb.gif Large IMS program specifications (PSB)

dg_smimspsb.gif Small IMS program specifications (PSB)

dg_lgrecord.gif Large Records

dg_smrecord.gif Small Records

dg_lgreports.gif Large Text-based reports

dg_smreports.gif Small Text-based reports

dg_lgmsseg.gif Large IMS segment

dg_smimsseg.gif Small IMS segment

dg_lgssheets.gif Large Spreadsheet

dg_smssheets.gif Small Spreadsheet

dg_lgsubschem.gif Large Subschemas

dg_smsubschem.gif Small Subschemas

dg_lgtables.gif Large Relational tables and views

dg_smtables.gif Small Relational tables and views

Information Catalog Manager for the Web files

262 Data Warehouse Center Application Integration Guide

Table 127. Information Catalog Manager for the Web graphics files (continued)

File name Description

dg_lgvideo.gif Large Video clips

dg_smvideo.gif Small Video clips

dg_lggrouping.gif Large Grouping - default category icon

dg_smgrouping.gif Small Grouping- default category icon

dg_lgelemental.gif Large Elemental- default category icon

dg_smelemental.gif Small Elemental- default category icon

dg_lgcontact.gif Large Contact- default category icon

dg_smcontact.gif Small Contact- default category icon

dg_lgdictionary.gif Large Dictionary- default category icon

dg_smdictionary.gif Small Dictionary- default category icon

dg_lgsupport.gif Large Support- default category icon

dg_smsupport.gif Small Support- default category icon

dg_lgattachment.gif Large Attachment- default category icon

dg_smattachment.gif Small Attachment- default category icon

dg_collapse.gif tree - collapse icon

dg_expand.gif tree - expand icon

dg_lmore.gif description - long property (more arrow)

dg_clear.gif clear graphic for spacing

Information Catalog Manager for the Web files

Chapter 12. Net.Data® macros 263

Information Catalog Manager for the Web files

264 Data Warehouse Center Application Integration Guide

Part 4. Appendixes

© Copyright IBM Corp. 1998, 2000 265

266 Data Warehouse Center Application Integration Guide

Appendix A. Template planning worksheet

Use this worksheet to collect the values that your partner application needs to
provide.

Write the value of the token in the table. For tokens that have a specific list of
allowed values, circle one of the allowed values.

Table 128. Tokens for required metadata in the templates

Token Value

*AgentSite

*AgentSiteContact

*AgentSiteDescription

*AgentSiteNotes

*AgentSiteOSType One of the following values:

ISV_windowsNT
Windows NT

ISV_AIX
AIX

ISV_os2
OS/2

ISV_as400
AS/400

ISV_Solaris
SUN

ISV_MVS
MVS

*AgentSiteTCPIPHostName

*AgentSiteUserid

*ColumnAllowsNulls One of the following values:

ISV_NULLSYES
The column allows null data.

ISV_NULLSNO
The column does not allow null data.

© Copyright IBM Corp. 1998, 2000 267

Table 128. Tokens for required metadata in the templates (continued)

Token Value

*ColumnDataIsText One of the following values:

ISV_ISTEXTYES
The column contains only text data.

ISV_ISTEXTNO
The column does not contain only text
data.

*ColumnDescription

*ColumnEditionType One of the following values:

ISV_ColumnIsEditionColumn
The column is an edition column.

ISV_ColumnIsNormal
The column is a normal column.

*ColumnKeyPosition

*ColumnLength

*ColumnName

268 Data Warehouse Center Application Integration Guide

Table 128. Tokens for required metadata in the templates (continued)

Token Value

*ColumnNativeDataType One of the following values:

ISV_NATIVE_CHAR

ISV_NATIVE_VARCHAR

ISV_NATIVE_LONGVARCHAR

ISV_NATIVE_VARCHAR2

ISV_NATIVE_GRAPHIC

ISV_NATIVE_VARGRAPHIC

ISV_NATIVE_LONGVARGRAPHIC

ISV_NATIVE_CLOB

ISV_NATIVE_INT

ISV_NATIVE_TINYINT

ISV_NATIVE_BLOB

ISV_NATIVE_SMALLINT

ISV_NATIVE_INTEGER

ISV_NATIVE_FLOAT

ISV_NATIVE_SMALLFLOAT

ISV_NATIVE_DOUBLE

ISV_NATIVE_REAL

ISV_NATIVE_DECIMAL

ISV_NATIVE_SMALLMONEY

ISV_NATIVE_MONEY

ISV_NATIVE_NUMBER

ISV_NATIVE_NUMERIC

ISV_NATIVE_DATE

ISV_NATIVE_TIME

ISV_NATIVE_TIMESTAMP

ISV_NATIVE_LONG

ISV_NATIVE_RAW

ISV_NATIVE_LONGRAW

ISV_NATIVE_DATETIME

ISV_NATIVE_SMALLDATETIME

ISV_NATIVE_SYSNAME

ISV_NATIVE_TEXT

ISV_NATIVE_BINARY

Appendix A. Template planning worksheet 269

Table 128. Tokens for required metadata in the templates (continued)

Token Value

*ColumnNativeDataType (continued) One of the following values:

ISV_NATIVE_VARBINARY

ISV_NATIVE_LONGVARBINARY

ISV_NATIVE_BIT

ISV_NATIVE_IMAGE

ISV_NATIVE_SERIAL

ISV_NATIVE_DATETIMEYEARTOFRACTION

ISV_NATIVE_DBCLOB

ISV_NATIVE_BIGINT

*ColumnNotes

*ColumnOffsetFromZero

*ColumnOrdinalNumber

*ColumnPositionNumber

*ColumnPrecision

*ColumnUserActions

*CurrentCheckPointID++

*DatabaseContact

*DatabaseDescription

*DatabaseName

*DatabaseNotes

*DatabasePhysicalName

270 Data Warehouse Center Application Integration Guide

Table 128. Tokens for required metadata in the templates (continued)

Token Value

*DatabaseType One of the following values:

ISV_IR_DB2Family
DB2 Family

ISV_IR_Oracle
Oracle

ISV_IR_Sybase
Sybase

ISV_IR_MSSQLServer
Microsoft SQLServer

ISV_IR_Informix
Informix

ISV_IR_GenericODBC
Generic ODBC

ISV_IR_FFLan
Flat File LAN

ISV_IR_VSAM
VSAM

ISV_IR_IMS
IMS

*DatabaseTypeExtended One of the following values:

ISV_IR_DB2400CISC
DB2 UDB for AS/400® for CISC

ISV_IR_DB2400RISC
DB2 UDB for AS/400 for RISC

ISV_IR_FFLanLocalCmd
Local flat file

ISV_IR_FFLanFTPCopy
Local flat file sent using FTP from a
remote system

*DatabaseServerName

*DatabaseUserid

*DatabaseVersion

*PostStepName

*ProcessContact

Appendix A. Template planning worksheet 271

Table 128. Tokens for required metadata in the templates (continued)

Token Value

*ProcessDescription

*ProcessName

*ProcessNotes

*ProcessType One of the following values:

ISV_ProcessType_Normal
Process is a normal user process.

ISV_ProcessType_Meta_pub
Process is a metadata publication
process.

ISV_ProcessType_Notify
Process is a notification process.

*SecurityGroup ISV_DEFAULTSECURITYGROUP

*StarSchemaContact

*StarSchemaDBName

*StarSchemaDescription

*StarSchemaName

*StarSchemaNotes

*StepCommit One of the following values:

ISV_Step_Incremental_Commit_On
The data is to be incrementaly commited
at the target.

ISV_Step_Incremental_Commit_Off
The data is not to be incrementaly
commited at the target.

*StepCommitAfterNumberRows

*StepContact

272 Data Warehouse Center Application Integration Guide

Table 128. Tokens for required metadata in the templates (continued)

Token Value

*StepDataNotPresent One of the following values:

ISV_StepDataNotPresent_OK
If data is not present, continue
processing.

ISV_StepDataNotPresent_Warning
If data is not present, issue a warning
and continue processing.

ISV_StepDataNotPresent_Error
If data is not present, issue an error
message and stop processing.

*StepDescription

*StepExternalPopulation One of the following values:

ISV_StepExternalNo
The table will not be externally
populated by other means.

ISV_StepExternalYes
The table will be externally populated
by other means.

*StepName

*StepNotes

*StepSelectStatement

*StepSelectStatementGenerated One of the following values:

ISV_StepSelectStatementNo
The SELECT statement is not generated,
but is included in the
*StepSelectStatement.

ISV_StepSelectStatementYes
The SELECT statement is generated, and
*StepSelectStatement is ignored.

Appendix A. Template planning worksheet 273

Table 128. Tokens for required metadata in the templates (continued)

Token Value

*StepSQLWarning One of the following values:

ISV_StepSQLWarning_OK
If an SQL warning occurs, continue
processing.

ISV_StepSQLWarning_Warning
If an SQL warning occurs, issue a
warning and continue processing.

ISV_StepSQLWarning_Error
If an SQL warning occurs, issue an error
and stop processing.

*StepType One of the following values:

ISV_StepType_Editioned_Append
The data in the table will be appended
when the Step is run.

ISV_StepType_Full_Replace
The data in the table will be replaced
when the Step is run.

ISV_StepType_Uneditioned_Append
The data in the table will be appended
when the Step is run.

ISV_StepType_VWP_Population
The data in the table is populated by a
Data Warehouse Center program.

*SubjectArea

*SubjectAreaContact

*SubjectAreaDescription

*SubjectAreaNotes

*TableBinaryIfFile One of the following values:

ISV_DR_FILE_IS_BINARY
The file is binary.

ISV_DR_FILE_IS_NOT_BINARY
The file is in ASCII or mixed format.

274 Data Warehouse Center Application Integration Guide

Table 128. Tokens for required metadata in the templates (continued)

Token Value

*TableCreatedByDWC One of the following values:

ISV_TableIsToBeCreatedByDWC
The table is to be created by the Data
Warehouse Center.

ISV_TableIsNotToBeCreatedByDWC
The table is not to be created by the
Data Warehouse Center.

*TableCreateStatement

*TableDelimiterIfFile

*TableDescription

*TableFirstRowNamesIfFile One of the following values:

ISV_DR_ROW_CONTAINS_NAMES
The first row of the file contains column
names.

ISV_DR_ROW_DOES_NOT_CONTAIN_NAMES

The first row of the file contains data.

*TableFullName

*TableGenerateCreateStatement One of the following values:

ISV_GenerateCreateTableStmt
The Data Warehouse Center should
generate the CREATE TABLE statement.

ISV_DoNotGenerateCreateTableStmt
The Data Warehouse Center should not
generate the CREATE TABLE statement.

*TableGrantedToPublic One of the following values:

ISV_GrantTableAccessToPublic
Grant PUBLIC access to this table.

ISV_DoNotGrantTableAccessToPublic
Do not grant PUBLIC access to this
table.

Appendix A. Template planning worksheet 275

Table 128. Tokens for required metadata in the templates (continued)

Token Value

*TableIsAnAlias One of the following values:

ISV_TableIsAnAlias
This table is an alias for another table.

ISV_TableIsNotAnAlias
This table is not an alias for another
table.

*TableIsADimensionTable One of the following values:

ISV_TableIsADimensionalTable
The table is a dimensional table.

ISV_TableIsNotADimensionalTable
The table is not a dimensional table.

*TableIsAFactTable One of the following values:

ISV_TableIsAFactTable
The table is a fact table.

ISV_TableIsNotAFactTable
The table is not a fact table.

*TableIsAView One of the following values:

ISV_TableIsAView
The table is a view.

ISV_TableIsNotAView
The table is not a view.

*TableIsPersistent One of the following values:

ISV_TableIsPersistent
The table is to be considered persistent.

ISV_TableIsTransient
The table is to be considered transient.

*TableMaximumEditions

*TableNotes

*TableOwner

*TablePhysicalName

276 Data Warehouse Center Application Integration Guide

Table 128. Tokens for required metadata in the templates (continued)

Token Value

*TableTypeIfFile One of the following values:

ISV_DR_REL_TABLE
The table is a relational table.

ISV_DR_COMMA_DELIMITED
The columns in the file are separated by
commas.

ISV_DR_FIXED_FORMAT
The columns in the file are in fixed
format.

ISV_DR_TAB_DELIMITED
The columns in the file are separated by
tabs.

ISV_DR_CHAR_DELIMITED
The columns in the file are separated by
the value of *TableDelimiterIfFile.

*VWPGroup

*VWPGroupDescription

*VWPGroupNotes

*VWPProgramInstanceKey

*VWPProgramInstanceParameterData

*VWPProgramInstanceParameterKey

*VWPProgramInstanceParameterName

*VWPProgramInstanceParameterOrder

*VWPProgramInstanceParameterType One of the following values:

ISV_ParameterTypeNone
The parameter type is unknown.

ISV_ParameterTypeCharacter
The parameter type is character.

ISV_ParameterTypeNumeric
The parameter type is numeric.

ISV_ParameterTypePassword
The parameter type is password.

*VWPProgramTemplateDescription

*VWPProgramTemplateExecutableName

Appendix A. Template planning worksheet 277

Table 128. Tokens for required metadata in the templates (continued)

Token Value

*VWPProgramTemplateFunctionName

*VWPProgramTemplateName

*VWPProgramTemplateNotes

*VWPProgramTemplateType One of the following values:

ISV_PROGRAMTYPEDLL
The Data Warehouse Center program is
loaded from a dynamic link library
(DLL) or is a load module.

ISV_PROGRAMTYPECOMMAND
The Data Warehouse Center program is
a command file.

ISV_PROGRAMTYPEEXECUTABLE
The Data Warehouse Center program is
an executable file.

*VWPProgramTemplateParameterData

*VWPProgramTemplateParameterKey

*VWPProgramTemplateParameterName

*VWPProgramTemplateParameterOrder

*VWPProgramTemplateParameterType One of the following values:

ISV_ParameterTypeNone
The parameter type is unknown.

ISV_ParameterTypeCharacter
The parameter type is character.

ISV_ParameterTypeNumeric
The parameter type is numeric.

ISV_ParameterTypePassword
The parameter type is password.

278 Data Warehouse Center Application Integration Guide

Appendix B. Templates supported by Visual Warehouse 5.2

Refer to this chapter for detailed information about templates that are offered
with and supported by Version 5.2 of Visual Warehouse and DataGuide®. The
section for each template lists the tokens for the template. It provides the
allowed values and lengths of values for each token.

Note: The templates described in this chapter have been deprecated and will
not be enhanced.

If your interchange program does not have a value for a token, it should set
the token to ISV_DEFAULTVALUE. However, you must specify a value other than
ISV_DEFAULTVALUE for any token that is required.

Because there is no template for security groups, your program must specify
the value ISV_DEFAULTSECURITYGROUP for any instances of the *SecurityGroup
token.

If the template does not set a Visual Warehouse parameter, the Visual
Warehouse definition will have the default value of the parameter. For
example, Visual Warehouse sets the Retry Count and Retry Interval
parameters for source databases to their default values.

Table 129 lists the metadata templates that are supplied with Visual
Warehouse and the section that covers each template.

Table 129. Metadata templates supported by Visual Warehouse 5.2

BusinessView.tag Defines a business view that
is to be managed by Visual
Warehouse.

“BusinessView.tag” on page 280

BusinessViewInputTable.tag Specifies that a business
view uses a given source
table.

“BusinessViewInputTable.tag” on
page 285

BusinessViewOutputTable.tag Specifies that a business
view uses a given target
table.

“BusinessViewOutputTable.tag” on
page 286

BusinessViewVWPOutputTable.tag Specifies a relationship
between a business view
that uses a Visual
Warehouse program and the
output table for the Visual
Warehouse program.

“BusinessViewVWPOutputTable.tag”
on page 288

© Copyright IBM Corp. 1998, 2000 279

Table 129. Metadata templates supported by Visual Warehouse 5.2 (continued)

ConcurrentCascade.tag Indicates that two business
views are to be started at
the same time.

“ConcurrentCascade.tag” on page 289

VWPProgramInstance Modifies the definition of a
Visual Warehouse program
for use by a specific
business view.

“VWPProgramInstance.tag” on
page 291

BusinessView.tag

Use this template to define a business view. You must use this template if
your partner application generates relationships between data sources and
targets or contains programs that Visual Warehouse is to run.

The template also includes relationships to a security group, a subject area,
and one or more agent sites.

Tokens
Table 130 provides information about each token in the template.

Table 130. BusinessView.tag tokens

Token Description Allowed values

Window or
notebook:
field

Entity parameters

*BVName Name of the business
view.

The name must be
unique within the
Visual Warehouse
control database.

This token is required.

A text string, up to 80 bytes in
length.

Business
View:
Business
Name

*BVDescription Short description of the
business view.

This token is optional.

A text string, up to 200 bytes in
length.

Business
View:
Description

*BVNotes Long description of the
business view.

This token is optional.

A text string, up to 32700 bytes in
length.

Business
View: Notes

280 Data Warehouse Center Application Integration Guide

Table 130. BusinessView.tag tokens (continued)

Token Description Allowed values

Window or
notebook:
field

*BVDataNotPresent Setting for how to
handle warnings when
the agent finds no data
to extract for the
business view.

This token is required.

One of the following values:

ISV_BVDataNotPresent_OK
The business view is to
successfully process if the
agent finds no data to
extract.

ISV_BVDataNotPresent_Warning
The business view is to fail
if the agent finds no data
to extract.

ISV_BVDataNotPresent_Error
The business view is to
process with a warning if
the agent finds no data to
extract.

Business
View: No
Rows
Returned
Processing
Options

*BVSelectStatementGenerated Flag indicating whether
Visual Warehouse is to
generate the SQL, or if
the SQL is provided as
the value of the
*BVSelectStatement
token.

This token is required.

One of the following values:

ISV_BVSELECTSTATEMENTYES
Visual Warehouse is to
generate the SQL.

ISV_BVSELECTSTATEMENTNO
The SQL is provided as the
value of the
*BVSelectStatement token.

None

*BVSelectStatement SQL statement to be
executed.

This token is required if
*BVSelectStatementGenerated
is set to N.

An SQL statement, up to 32700
bytes in length.

Modify
Business
View SQL:
SQL
Statement

*BVContact Name of a person or
group to contact for
questions about this
business view.

This token is optional.

A text string, up to 64 bytes in
length.

Business
View: Admin
Contact

BusinessView.tag

Appendix B. Templates supported by Visual Warehouse 5.2 281

Table 130. BusinessView.tag tokens (continued)

Token Description Allowed values

Window or
notebook:
field

*BVExternalPopulation Flag indicating whether
an external application
can populate the table.

This token is required.

One of the following values:

ISV_BVEXTERNALYES
An external application
can populate the table.

ISV_BVEXTERNALNO
Only Visual Warehouse
can populate the table.

Business
View:
Externally
Populated

*BVCreateTargetTable Flag indicating if Visual
Warehouse is to create
the target table when
the business view is
promoted to test status.

This token is required.

One of the following values:

ISV_BVCREATETABLEYES
Visual Warehouse is to
create the target table.

ISV_BVCREATETABLENO
Visual Warehouse is not to
create the target table.

Business
View: Visual
Warehouse
Created Table

*BVType Type of the business
view.

This token is required.

One of the following values:

ISV_BVType_EditionedAppend
Append a new edition of
data to the target table
each time the business
view runs.

ISV_BVType_Full_Replace
Replace all the data in the
target table each time the
business view runs.

ISV_BVType_Uneditioned_Append
Append new data to the
existing data each time the
business view runs.

ISV_BVType_VWP_Population
Use a Visual Warehouse
program to manage the
data.

None

BusinessView.tag

282 Data Warehouse Center Application Integration Guide

Table 130. BusinessView.tag tokens (continued)

Token Description Allowed values

Window or
notebook:
field

*BVSQLWarning Setting for whether the
business view continues
processing if an SQL
warning code is issued.

This token is required.

One of the following values:

ISV_BVSQLWarning_OK
The business view is to
process successfully if an
SQL warning code is
issued.

ISV_BVSQLWarning_Warning
The business view is to
process with a warning if
an SQL warning code is
issued.

ISV_BVSQLWarning_Error
The business view is to fail
if an SQL warning code is
issued.

Business
View: SQL
Warning
Processing
Options

Relationship parameters

*SecurityGroup Security group in which
to create all the objects
being imported.

This token is required,
and you must specify
the default security
group.

ISV_DEFAULTSECURITYGROUP for the
default security group.

Business
View: Update
Security
Group

*SubjectArea Name of the group of
business views.

This token is required.

A text string, up to 80 bytes in
length.

Subject:
Name

*AgentSite Agent site to use for
the business view:
either a new agent site
or the default agent
site.

This token is required,
but you can specify the
default agent site.

A text string, up to 80 bytes in
length.

Specify ISV_DEFAULTAGENTSITE for
the default agent site.

Business
View: Agent
Site

BusinessView.tag

Appendix B. Templates supported by Visual Warehouse 5.2 283

Table 130. BusinessView.tag tokens (continued)

Token Description Allowed values

Window or
notebook:
field

*CurrentCheckPointID++ Index, starting with 0,
that increases each time
it is substituted in a
token.

This token is required.

A numeric value. None

Examples of values
Table 131 provides example values for each token to illustrate the kind of
metadata you might provide for each token.

Table 131. Example values for BusinessView.tag tokens

Token Example value

*BVName Revenue_by_Geography_7

*BVDescription This business view will extract Geography
7 data and write it to an UDB table

*BVNotes The Revenue for Geography 7 data comes
from four source Oracle tables.

*BVDataNotPresent ISV_BVDataNotPresent_Warning1

*BVSelectStatementGenerated ISV_BVSELECTSTATEMENTNO

*BVSelectStatement ″SELECT * FROM
IWH.REVENUE_BY_GEOGRAPHY7″

*BVContact Greg Holland

*BVExternalPopulation ISV_BVEXTERNALNO

*BVCreateTargetTable ISV_CREATETABLEYES

*BVType ISV_BVType_VWP_Population

*BVSQLWarning ISV_BVSQLWarning_Error

*SecurityGroup ISV_DEFAULTSECURITYGROUP

*Subject Area Group of business views generated for the
partner tool

*AgentSite My agent site

*CurrentCheckPointID++ 10

BusinessView.tag

284 Data Warehouse Center Application Integration Guide

BusinessViewInputTable.tag

Use this template to define a relationship between a business view and its
source table. You can relate multiple source tables to the business view by
reusing the template for each unique instance of a source table.

You must include this template for the following types of business views:
v Append editions (*BVType is ISV_BVType_EditionedAppend)
v Replace existing data (*BVType is ISV_BVType_Full_Replace)
v Append data without editions (*BVType is

ISV_BVType_Uneditioned_Append)

This template is optional for business views that use a Visual Warehouse
program (*BVType is ISV_BVType_VWP_Population).

Tokens
Table 132 provides information about each token in the template.

Table 132. BusinessViewInputTable.tag tokens. This template contains only relationship parameters.

Token Description Allowed values

Window or
notebook:
field

*BVName Name of the business
view.

The name must be
unique within the Visual
Warehouse control
database.

This token is required.

A text string, up to 80 bytes in
length.

Business
View:
Business
Name

*DatabaseName Name of the database
that contains the table.

This token is required.

A text string, up to 80 bytes in
length.

Information
resource:
Database

*TableOwner Owner, high-level
qualifier, collection, or
schema of the table.

The owner must be a
valid qualifier by the
rules of ODBC.

This token is required.

A text string, up to 15 bytes in
length.

Table: Name

Business
View: Table
Name
Qualifier

BusinessViewInputTable.tag

Appendix B. Templates supported by Visual Warehouse 5.2 285

Table 132. BusinessViewInputTable.tag tokens (continued). This template contains only relationship
parameters.

Token Description Allowed values

Window or
notebook:
field

*TablePhysicalName Physical table name as
defined to the database
manager or file system.

This token is required.

A text string, up to 80 bytes in
length.

Table: Name

Business
View:
Database
Table Name

*CurrentCheckPointID++ Index, starting with 0,
that increases each time
it is substituted in a
token.

This token is required.

A numeric value. None

Examples of values
Table 133 provides example values for each token to illustrate the kind of
metadata you might provide for each token.

Table 133. Example values for BusinessViewInputTable.tag tokens

Token Example value

*BVName Revenue_by_Geography_1

*DatabaseName Operational_system_files

*TableOwner ISV_DEFAULTVALUE

*TablePhysicalName z:\geography\regions\geo1.file

*CurrentCheckPointID++ 13

BusinessViewOutputTable.tag

Use this template to define the relationship between a business view and its
output target.

You must include this template for the following types of business views:
v Append editions (*BVType is ISV_BVType_EditionedAppend)
v Replace existing data (*BVType is ISV_BVType_Full_Replace)
v Append data without editions (*BVType is

ISV_BVType_Uneditioned_Append)

This template is optional for business views that use a Visual Warehouse
program (*BVType is ISV_BVType_VWP_Population).

BusinessViewInputTable.tag

286 Data Warehouse Center Application Integration Guide

Tokens
Table 134 provides information about each token in the template.

Table 134. BusinessViewOutputTable.tag tokens. This template contains only relationship parameters.

Token Description Allowed values

Window or
notebook:
field

*BVName Name of the business
view.

This token is required.

A text string, up to 80 bytes in
length.

Business
View:
Business
Name

*DatabaseName Name of the database
that contains the table.

This token is required.

A text string, up to 80 bytes in
length.

Information
resource:
Database

*TableOwner Owner, high-level
qualifier, collection, or
schema of the table.

This token is required.

A text string, up to 15 bytes in
length.

Table: Name

Business
View: Table
Name
Qualifier

*TablePhysicalName Physical table name as
defined to the database
manager or file system.

This token is required.

A text string, up to 80 bytes in
length.

Table: Name

Business
View:
Database
Table Name

*CurrentCheckPointID++ Index, starting with 0,
that increases each time
it is substituted in a
token.

This token is required.

A numeric value. None

Examples of values
Table 135 provides example values for each token to illustrate the kind of
metadata you might provide for each token.

Table 135. Example values for BusinessViewOutputTable.tag tokens

Token Example value

*BVName Revenue_by_Geography_7

*DatabaseName Finance Warehouse

*TableOwner DB2ADMIN

*TablePhysicalName GEOGRAPHY

BusinessViewOutputTable.tag

Appendix B. Templates supported by Visual Warehouse 5.2 287

Table 135. Example values for BusinessViewOutputTable.tag tokens (continued)

Token Example value

*CurrentCheckPointID++ 14

BusinessViewVWPOutputTable.tag

Use this template to define the relationship between a business view that uses
a Visual Warehouse program and the output targets for the Visual Warehouse
program.

Tokens
Table 136 provides information about each token in the template.

Table 136. BusinessViewVWPOutputTable.tag tokens. This template contains only relationship
parameters.

Token Description Allowed values

Window or
notebook:
field

*BVName Name of the business
view.

This token is required.

A text string, up to 80 bytes in
length.

Business
View:
Business
Name

*DatabaseName Name of the database
that contains the table.

This token is required.

A text string, up to 80 bytes in
length.

Information
resource:
Database

*TableOwner Owner, high-level
qualifier, collection, or
schema of the table.

This token is required.

A text string, up to 15 bytes in
length.

Table: Name

Business
View: Table
Name
Qualifier

*TablePhysicalName Physical table name as
defined to the database
manager or file system.

This token is required.

A text string, up to 80 bytes in
length.

Table: Name

Business
View:
Database
Table Name

*CurrentCheckPointID++ Index, starting with 0,
that increases each time
it is substituted in a
token.

This token is required.

A numeric value. None

BusinessViewOutputTable.tag

288 Data Warehouse Center Application Integration Guide

Examples of values
Table 137 provides example values for each token to illustrate the kind of
metadata you might provide for each token.

Table 137. Example values for VWPOutputTable.tag tokens

Token Example value

*BVName Revenue_by_Geography_7

*DatabaseName Finance Warehouse

*TableOwner DB2ADMIN

*TablePhysicalName GEOGRAPHY

*CurrentCheckPointID++ 15

ConcurrentCascade.tag

Use this template to specify that Visual Warehouse is to start two business
views at the same time. This template is required only if you want the
business views to start at the same time.

Tokens
Table 138 provides information about each token in the template.

Table 138. ConcurrentCascade.tag tokens. This template contains only relationship parameters.

Token Description Allowed values

Window or
notebook:
field

*BVName Name of the business
view.

This token is required.

A text string, up to 80 bytes in
length.

Business
View:
Business
Name

*ConcurrentBVName Name of the business
view that is to be started
concurrently with the
other business view.

This token is required.

A text string, up to 80 bytes in
length.

Business
View:
Concurrently
Starts:
Business
View Name

*CurrentCheckPointID++ Index, starting with 0,
that increases each time
it is substituted in a
token.

This token is required.

A numeric value. None

BusinessViewVWPOutputTable.tag

Appendix B. Templates supported by Visual Warehouse 5.2 289

Examples of values
Table 139 provides example values for each token to illustrate the kind of
metadata you might provide for each token.

Table 139. Example values for ConcurrentCascade.tag tokens

Token Example value

*BVName Revenue_by_Geography_7

*ConcurrentBVName Revenue_by_Geography_6

*CurrentCheckPointID++ 16

PostCascade.tag

Use this template to identify that Visual Warehouse is to start another
business view after the named business view finishes processing. This
template is required only if you want to link business views in a cascaded
relationship.

Tokens
Table 140 provides information about each token in the template.

Table 140. PostCascade.tag tokens. This template contains only relationship parameters.

Token Description Allowed values

Window or
notebook:
field

*BVName Name of the business
view that is to finish
processing before
starting the next
business view.

This token is required.

A text string, up to 80 bytes in
length.

Business
View:
Business
Name

*PostBVName Name of the business
view that is to start
processing when the
other business view
finishes processing.

This token is required.

A text string, up to 80 bytes in
length.

Business
View: Starts:
Business
View Name

*CurrentCheckPointID++ Index, starting with 0,
that increases each time
it is substituted in a
token.

This token is required.

A numeric value. None

ConcurrentCascade.tag

290 Data Warehouse Center Application Integration Guide

Examples of values
Table 141 provides example values for each token to illustrate the kind of
metadata you might provide for each token.

Table 141. Example values for PostCascade.tag tokens

Token Example value

*BVName Revenue by geography 7

*PostBVName Revenue for all geographies

*CurrentCheckPointID++ 17

VWPProgramInstance.tag

Use this template to change the definition of a Visual Warehouse program for
use by a specific business view. This template is required for each business
view that uses the Visual Warehouse program.

Before using this template, you must define the base definition of the Visual
Warehouse program in VWPProgramTemplate.tag (see page 93). This template
defines the relationship to the base Visual Warehouse program definition
(VWPProgramTemplate.tag) as well as to the business view that uses the
Visual Warehouse program.

Tokens
Table 142 provides information about each token in the template.

Table 142. VWPProgramInstance.tag tokens

Token Description Allowed values

Window or
notebook:
field

Entity parameters

*VWPInstanceNotes Long description of the
Visual Warehouse
program and what it
does.

This token is optional.

A text string, up to 32700 bytes in
length.

None

PostCascade.tag

Appendix B. Templates supported by Visual Warehouse 5.2 291

Table 142. VWPProgramInstance.tag tokens (continued)

Token Description Allowed values

Window or
notebook:
field

*VWPProgramInstanceKey Key that uniquely
identifies this program
instance. The key must
be unique from all other
keys in the tag language
file.
Tip: Finish processing
the
VWPProgramInstance.tag
template before
increasing the value of
the key.

This token is required.

A numeric value. None

Relationship parameters

*BVName Name of the business
view.

This token is required.

Business
View:
Business
Name

*VWPProgramTemplateNameName of the parent
Visual Warehouse
program template for
this Visual Warehouse
program instance.

This token is required.

A text string, up to 80 bytes in
length.

Program:
Business
Name

*CurrentCheckPointID++ Index, starting with 0,
that increases each time
it is substituted in a
token.

This token is required.

A numeric value. None

Examples of values
Table 143 provides example values for each token to illustrate the kind of
metadata you might provide for each token.

Table 143. Example values for VWPProgramInstance.tag tokens

Token Example value

*VWPInstanceNotes This program exports data from the
Geography database.

VWPProgramInstance.tag

292 Data Warehouse Center Application Integration Guide

Table 143. Example values for VWPProgramInstance.tag tokens (continued)

Token Example value

*VWPProgramInstanceKey 070000

*BVName Revenue by geography

*VWPProgramTemplateName My partner program

*CurrentCheckPointID++ 11

VWPProgramInstance.tag

Appendix B. Templates supported by Visual Warehouse 5.2 293

VWPProgramInstance.tag

294 Data Warehouse Center Application Integration Guide

Appendix C. Writing your own program to use with the
Data Warehouse Center

You can write Data Warehouse Center programs in any language that
supports one of the following program types: executable, batch program, or
dynamic link library.

If the program has a program type of executable, command file, or dynamic
link library, it must reside on the agent site. The Data Warehouse Center agent
starts the program at the scheduled time. On Windows NT and Windows
2000, the agent runs as a system process by default. The program cannot
access resources or programs that require a user ID. Also, any environment
variables that the program needs to access must be system variables.

To change the Data Warehouse Center server, logger, and agent daemon
processes to run as user processes:
1. Double-click the Services icon in the Control Panel folder.
2. Stop the Agent service.
3. Select the Agent service and click Startup.
4. Click This Account.
5. Click the push button after the This Account field to select a user ID.

The user ID must have administrator authority in Windows NT or
Windows 2000 and authorization to any required network drive.

6. Type the password for the user ID twice.
7. Click OK.
8. Restart the workstation.

If you write programs that use Object REXX, complete the following
procedure to enable these programs to run on Windows NT or Windows 2000:
1. Define the Data Warehouse Center agent or server service as a system

process that can interact with the Windows NT or Windows 2000 desktop:
a. Select the agent or server service from the Service list.
b. Click Startup.
c. Click System Account.
d. Select the Allow Service to Interact with Desktop check box.

2. Initialize the Object REXX environment before the agent or server starts
the program. You can initialize the environment by running any Object
REXX program from the command line.

© Copyright IBM Corp. 1998, 2000 295

3. If your Object REXX program issues a DB2 CONNECT statement, verify
that the statement includes the user ID and password, as in the following
example:
DB2 CONNECT TO testdb USER vwadmin USING vwpass

Passing parameters

At run time, the Data Warehouse Center generates a command-line parameter
list that it passes as input to your program. Whenever possible, test your
program from the command line before using it in a step.

Example: The Data Warehouse Center program VW 5.2 DB2 load replace
(VWPLOADR) selects data from a file and loads the data into a database. It
uses the following parameters:
v Source file name
v Target database name
v Target database user ID
v Target database password
v Target table name
v Column delimiter

The program gets the parameters as shown in Figure 75:

The program uses the target parameters to connect to the target database, as
shown in Figure 76 on page 297:

char * sourceFile;
sourceFile = argv[1]:
char * dbName;
dbName = argv[2];
char * dbUser;
dbUser = argv[3];
char * dbPassword
dbPassword = argv[4];
char * dbTable;
dbTable = argv[5]
char * fileMod;
if(argc>6) fileMod = argv[6];
else fileMod = NULL;

Figure 75. Reading parameters from the command line

296 Data Warehouse Center Application Integration Guide

The program then uses the DB2 load utility to load data into the database.

Returning status information

After your Data Warehouse Center program runs, it must return a return code
to the step that uses the program. The return code must be a positive integer.
If your program does not return a return code, the step using the program
fails. The Data Warehouse Center displays the return code in the Error RC2
field of the Log Details window when the value of Error RC1 is 8410.

Your Data Warehouse Center program can return additional status
information to the Data Warehouse Center:
v Another return code, which can be the same as or different from the code

that is returned by the Data Warehouse Center program.
v A warning flag that indicates that the Data Warehouse Center is to treat the

return code as a warning. When your program sets this flag, the step that
uses this program will have Warning status in the Operations Work in
Progress window.

v A message, which is displayed in the System Message field of the Log
Viewer Details window

v The number of rows of data that the program processed.
The Data Warehouse Center displays the number in the Log Viewer Details
window for the step.

v The number of bytes of data that the program processed.
The Data Warehouse Center displays the number in the Log Viewer Details
window for the step.

v The SQLSTATE return code, which the Data Warehouse Center displays in
the SQL state field of the Log Viewer Details window.

The Data Warehouse Center agent transfers the additional status information
to the warehouse server.

Transferring the information to the Data Warehouse Center
To transfer the additional status information to the warehouse agent, your
program must create a file, called a feedback file, containing the additional
status information. The path and file name for the feedback file must be the
value of the VWP_LOG environment variable. (The file name is processid.log,
where processid is the ID of the agent process.) The agent sets VWP_LOG

rc = SQLConnect (hdbc, (SQLCHAR *)dbName, SQL_NTS,
(SQLCHAR *)dbUser, SQL_NTS, /* UID */
(SQLCHAR *)dbPassword, SQL_NTS); /* Password */

Figure 76. Connecting to the target database

Appendix C. Writing your own program to use with the Data Warehouse Center 297

before it calls the program. After the program finishes running, the agent
checks whether the feedback file exists. If it exists, the agent processes the file.
Otherwise, the agent will do nothing. If the program cannot create the file, it
should continue to run.

Format of the feedback file
Your program can write the additional status information to the feedback file
in any order, but must use the following format to identify information.
Enclose each returned item within the begin tag <tag> and end tag </tag> in
the following list. Each begin tag must be followed by its end tag; you cannot
include two begin tags in a row. For example, the following tag format is
valid:

<RC>...</RC>...<MSG>...</MSG>

The following embedded tag format is not valid:

<RC>...<MSG>...</RC>...</MSG>

You can specify the following information in the feedback file:

Return code
<RC>return code</RC>, where return code is a positive integer.

Return code warning flag
<WARNING>1</WARNING> sets the return code warning flag to
On.

Data Warehouse Center system message
<MSG>message text\n</MSG>

message text
The text of one or more messages

\n The new line character. Include this character at the end of
each message if there are multiple messages.

Comment
<COMMENT>comment text</COMMENT>, where comment text is the
text of the comment.

Number of rows of data processed
<ROWS>number of rows</ROWS>, where number of rows is any
positive integer.

Number of bytes processed
<BYTES>number of bytes</BYTES>, where number of bytes is any
positive integer.

298 Data Warehouse Center Application Integration Guide

SQLSTATE
<SQLSTATE>sqlstate string</SQLSTATE>, where sqlstate string is any
string whose length is greater than 0 and less than or equal to 5
digits.

Figure 77 shows an example of the feedback file.

How the feedback determines the step status
The return codes and step status for the program that are displayed in the
Log Viewer vary. They depend on the following values set by the program:
v The value of the return code that the program returned
v Whether a feedback file exists
v The value of the return code in the feedback file
v Whether the warning flag is set to On

Table 144 on page 300 lists the possible combinations of these values and the
results that they produce.

<RC> 20</RC>
<ROWS>2345</ROWS>
<MSG>The parameter type is not correct</MSG>
<COMMENT> Please supply the correct parameter type (PASSWORD

NOTREQUIRED, GETPASSWORD, ENTERPASSWORD)</COMMENT>
<BYTES> 123456</BYTES>
<WARNING> 1</WARNING>
<SQLSTATE>12345</SQLSTATE>

Figure 77. Example of the feedback file

Appendix C. Writing your own program to use with the Data Warehouse Center 299

Table 144. Feedback file conditions and results

Conditions Results

Step status¹ Values of
Error RC1
and RC2

Data
Warehouse
Center
program
return code
is 0

No feedback file exists² Successful RC1 = 0;
RC2 = 0

A feedback
file exists²

The value of
<RC> in the
feedback file
is 0³

<WARNING>
is not set in
the feedback
file

Successful RC1 = 0;
RC2 = 0

The value of
<WARNING>
in the
feedback file
is 1

Warning RC1 = 0;
RC2 = 0

The value of
<RC> in the
feedback file
is non-0³

<WARNING>
is not set in
the feedback
file

Failed RC1 = 8410
(the program
failed); RC2
= the value
of <RC> in
the feedback
file

The value of
<WARNING>
in the
feedback file
is 1

Warning RC1 = 0;
RC2 = the
value of
<RC> in the
feedback file

300 Data Warehouse Center Application Integration Guide

Table 144. Feedback file conditions and results (continued)

Conditions Results

Step status¹ Values of
Error RC1
and RC2

The Data
Warehouse
Center
program
return code
is nonzero

No feedback file exists² Failed RC1 = 8410
(the Data
Warehouse
Center
program
failed); RC2
= the code
returned by
the Data
Warehouse
Center
program

A feedback
file exists²

The value of
<RC> in the
feedback file
is 0³

<WARNING>
is not set in
the feedback
file

Successful RC1 = 0;
RC2 = 0

The value of
<WARNING>
in the
feedback file
is 1

Warning RC1 = 0;
RC2 = 0

The value of
<RC> in the
feedback file
is non-0

<WARNING>
is not set in
the feedback
file

Failed RC1 = 8410
(the Data
Warehouse
Center
program
failed); RC2
= the code
returned by
the Data
Warehouse
Center
program

The value of
<WARNING>
in the
feedback file
is 1

Warning RC1 = 0;
RC2 = the
value of
<RC> in the
feedback file

Appendix C. Writing your own program to use with the Data Warehouse Center 301

Table 144. Feedback file conditions and results (continued)

Conditions Results

Step status¹ Values of
Error RC1
and RC2

Notes:

1. The step processing status, which is displayed in the Work in Progress window.

2. The Data Warehouse Center checks for the existence of the feedback file,
regardless of whether the return code for the program is 0 or nonzero.

3. The Data Warehouse Center always displays the value of <RC> in the feedback
file as the value of the RC2 field in the Log Details window.

302 Data Warehouse Center Application Integration Guide

Notices

IBM may not offer the products, services, or features discussed in this
document in all countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 1998, 2000 303

improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
1150 Eglinton Ave. East
North York, Ontario
M3C 1H7
CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

304 Data Warehouse Center Application Integration Guide

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source
language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using,
marketing or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All
rights reserved.

Notices 305

Trademarks

The following terms, which may be denoted by an asterisk(*), are trademarks
of International Business Machines Corporation in the United States, other
countries, or both.

ACF/VTAM
AISPO
AIX
AIX/6000
AIXwindows
AnyNet
APPN
AS/400
BookManager
CICS
C Set++
C/370
DATABASE 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Extenders
DB2 OLAP Server
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
eNetwork
Extended Services
FFST
First Failure Support Technology

IBM
IMS
IMS/ESA
LAN DistanceMVS
MVS/ESA
MVS/XA
Net.Data
OS/2
OS/390
OS/400
PowerPC
QBIC
QMF
RACF
RISC System/6000
RS/6000
S/370
SP
SQL/DS
SQL/400
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WebExplorer
WIN-OS/2

The following terms are trademarks or registered trademarks of other
companies:

Microsoft, Windows, and Windows NT are trademarks or registered
trademarks of Microsoft Corporation.

Java or all Java-based trademarks and logos, and Solaris are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States,
other countries, or both.

306 Data Warehouse Center Application Integration Guide

UNIX is a registered trademark in the United States, other countries or both
and is licensed exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a
double asterisk(**) may be trademarks or service marks of others.

Notices 307

308 Data Warehouse Center Application Integration Guide

Bibliography

For information about how to use the Data Warehouse Center, see the online
help. The Data Warehouse Center provides help for specific windows and for
general tasks, such as creating warehouse sources and steps.

For information about IBM products that are related to the Data Warehouse
Center, go to the IBM Data Management Web site at
http://www.software.ibm.com/data/

The Data Warehouse Center library includes the following publications:
IBM DB2: DB2 Warehouse Manager Installation Guide, SC26-3496
IBM DB2: Messages and Reason Codes (HTML book that is included in the
Data Warehouse Center folder)
IBM DB2: Information Catalog Manager Administration Guide, SC26-3362
IBM DB2: Information Catalog Manager Programming Guide and Reference,
SC26-3368
IBM DB2 OLAP Server: Using DB2 OLAP Server, SC26-9235

© Copyright IBM Corp. 1998, 2000 309

310 Data Warehouse Center Application Integration Guide

Index

A
ACTION tag

OBJINST keyword 218, 233
OBJTYPE keyword 223
RELATION keyword 227
sequence 250
tag language reference 218, 228
tips 249

ADD option
ACTION.OBJINST 219
ACTION.OBJTYPE 224, 237
ACTION.RELATION 227

agent 13
agent site

definition 14
pseudocode 21
template 21
values to supply 21

AgentSite.tag template
example values 57
tokens 55

APPEND option 224
Application data sample object

type 160
Attachment category

definition of 139
relationships with other

categories 140
Attachment category, Comments

object type defined 210
ATTACHMENT keyword 246
Audio clips sample object type 193

B
blanks removed from variable

values 218
Business subject areas sample object

type 162
BusinessView.tag template

example values 284
tokens 280

BusinessViewInputTable.tag template
example values 286
tokens 285

BusinessViewOutputTable.tag
template

example values 287
tokens 287

BusinessViewVWPOutputTable.tag
template

example values 289
tokens 288

C
cascade relationship 15
cascading step 33
category

Attachment
Comments object types

defined 210
definition of 139
relationships with other

categories 140
Contact

definition of 139
object type in sample

information catalog 204
People to contact object type

in sample information
catalog 204

relationships with other
categories 140

Dictionary
definition of 139
Glossary entries object type in

sample information
catalog 205

object type in sample
information catalog 205

relationships with other
categories 140

Elemental
Audio clips object type in

sample information
catalog 193

Charts object type in sample
information catalog 194

definition of 139
Documents object type in

sample information
catalog 195

Images or graphics object type
in sample information
catalog 196

Internet documents object
type in sample information
catalog 197

category (continued)
Elemental (continued)

Lotus Approach queries object
type in sample information
catalog 198

object types in sample
information catalog 192

Presentations object type in
sample information
catalog 199

relationships with other
categories 140

Spreadsheets object type in
sample information
catalog 200

Text-based reports object type
in sample information
catalog 201

Video clips object type in
sample information
catalog 203

Grouping
Application data object type

in sample information
catalog 160

Business subject areas object
type in sample information
catalog 162

Columns or fields object type
in sample information
catalog 162

Databases object type in
sample information
catalog 165

definition of 139
Dimensions within a

multidimensional database
object type in sample
information catalog 167

DWC Process object type in
sample information
catalog 169

Elements object type in
sample information
catalog 170

Files object type in sample
information catalog 171

© Copyright IBM Corp. 1998, 2000 311

category (continued)
IMS database definitions

(DBD) object type in sample
information catalog 173

IMS program control blocks
(PCB) object type in sample
information catalog 175

IMS program specification
blocks (PSB) object type in
sample information
catalog 177

IMS segments object type in
sample information
catalog 178

Members within a
multidimensional database
object type in sample
information catalog 180

Multidimensional databases
object type in sample
information catalog 182

object types in sample
information catalog 159

Records object type in sample
information catalog 184

Relational tables and views
object type in sample
information catalog 186

relationships with other
categories 140

Star Schemas object type in
sample information
catalog 188

Subschemas object type in
sample information
catalog 189

Transformations object type in
sample information
catalog 190

Program
relationships with other

categories 140
Program, Programs object type

defined 209
Support

definition of 139
Information Catalog Manager

news object type in sample
information catalog 206

object types in sample
information catalog 206

Online news services object
type in sample information
catalog 207

category (continued)
Support (continued)

Online publications object
type in sample information
catalog 208

relationships with other
categories 140

CATEGORY keyword 237
character data type, PROPERTY

tag 243
Charts sample object type 194
checkpt_id identifier 230
CHKPID keyword 230
COLUMN object

properties 114
relationships 117

Column.tag template
example values 62
tokens 57

Columns or fields sample object
type 162

command
DGUIDE, for opening an

information catalog 42
COMMENT tag

tag language reference 228
tips 251

Comments object type 210
commit checkpoint 229
COMMIT tag

tag language reference 229, 230
tips 251

ConcurrentCascade.tag template
example values 290
tokens 289

Contact category
definition of 139
object type

People to contact, provided in
sample information
catalog 204

sample information
catalog 204

relationships with other
categories 140

CONTACT keyword 246
CONTAIN keyword 246

D
data types 217, 243
Data Warehouse Center

agent 13
metadata

column 114
DATABASE object 103
exporting 35

Data Warehouse Center (continued)
metadata (continued)

importing 13
table 108

tag language
building 13
exporting 36
importing 33

Data Warehouse Center program
and step status 299
changing agent to user

process 295
DB2 UDB load replace 296
definition 14
feedback 297
location 295
Object REXX for Windows 295
parameters 296
pseudocode 28
return code 297
templates 26
values to supply 27
writing 295

database
rollback 251
warehouse source 14
warehouse target 14

DATABASE object
properties 103
relationships 107

Databases sample object type 165
DB2 UDB load replace Data

Warehouse Center program 296
DBCS 216
DELETE_EXT option on

ACTION.OBJTYPE 225
DELETE option

ACTION.OBJINST 220
ACTION.OBJTYPE 225
ACTION.RELATION 228
OBJINST keyword 233

DELETE_TREE_ALL option
ACTION.OBJINST 220
OBJINST keyword 233

DELETE_TREE_REL option
ACTION.OBJINST 221
OBJINST keyword 233

DGUIDE command 45
ADMIN keyword 42
DGNAME keyword, for

specifying information
catalog 42

IMPORT keywords
ICOPATH 43
LOGFILE 43

312 Data Warehouse Center Application Integration Guide

DGUIDE command 45 (continued)
RESTART 43

PASSWORD keyword 43
TRACE keyword 44
USERID keyword 44

DGUIDE command for invoking
Information Catalog Manager 40,
46

ADMIN keyword 40, 46
DGNAME keyword, for

specifying information
catalog 40, 46

LOGFILE, MDIS_IMPORT
keyword 40, 46

MDIS_EXPORT keywords
LOGFILE 40, 46
OBJECT 47
OBJTYPE 47

PASSWORD keyword 41, 48
TRACE keyword 41, 48
USERID keyword 41, 48

DGV3SAMP sample information
catalog 158

Dictionary category
definition of 139
object type 205

Glossary entries, provided in
sample information
catalog 205

relationships with other
categories 140

Dimensions within a
multidimensional database sample
object type 167

DISKCNTL tag
tag language reference 230
tips 249

DL keyword 243
Documents sample object type 195
double-byte character set

(DBCS) 216
DT keyword 243
DWC Process sample object

type 169

E
echo (ECH) file 251
Elemental category

definition of 139
object types

Audio clips, provided in
sample information
catalog 193

Charts, provided in sample
information catalog 194

Elemental category (continued)
object types (continued)

Documents, provided in
sample information
catalog 195

Images or graphics, provided
in sample information
catalog 196

Internet documents, provided
in sample information
catalog 197

Lotus Approach queries,
provided in sample
information catalog 198

Presentations, provided in
sample information
catalog 199

sample information catalog,
provided in 192

Spreadsheets, provided in
sample information
catalog 200

Text-based reports, provided
in sample information
catalog 201

Video clips, provided in
sample information
catalog 203

relationships with other
categories 140

Elements sample object type 170
examples

COLUMN object instance 116
DATABASE object instance

source 107
target 106

defining tag language file
header 20

relationship
COLUMN to TABLES object

instance 117
DATABASE object

instance 108
TABLE to COLUMN object

instance 114
TABLES to DATABASE object

instance 113
TABLE object instance

file 112
relational table 112

exporting Data Warehouse Center
metadata 35

EXTNAME keyword
on OBJECT tag 237, 241
on PROPERTY tag 243

F
feedback file 297
Files sample object type 171

G
Glossary entries sample object

type 205
Grouping category

definition of 139
object types

Application data, provided in
sample information
catalog 160

Business subject areas,
provided in sample
information catalog 162

Columns or fields, provided
in sample information
catalog 162

Databases, provided in
sample information
catalog 165

Dimensions within a
multidimensional database,
provided in sample
information catalog 167

DWC Process, provided in
sample information
catalog 169

Elements, provided in sample
information catalog 170

Files, provided in sample
information catalog 171

IMS database definitions
(DBD), provided in sample
information catalog 173

IMS program control blocks
(PCB), provided in sample
information catalog 175

IMS program specification
blocks (PSB), provided in
sample information
catalog 177

IMS segments, provided in
sample information
catalog 178

Members within a
multidimensional database,
provided in sample
information catalog 180

Multidimensional databases,
provided in sample
information catalog 182

Records, provided in sample
information catalog 184

Index 313

Grouping category (continued)
Relational tables and views,

provided in sample
information catalog 186

sample information catalog,
provided in 159

Star Schemas, provided in
sample information
catalog 188

Subschemas, provided in
sample information
catalog 189

Transformations, provided in
sample information
catalog 190

relationships with other
categories 140

H
HeaderInfo.tag template 63

I
ICOFILE keyword 237

tag language reference 241
ICWFILE keyword 237

tag language reference 241
Images or graphics sample object

type 196
IMS database definitions (DBD)

sample object type 173
IMS program control blocks (PCB)

sample object type 175
IMS program specification blocks

(PSB) sample object type 177
IMS segments sample object

type 178
information catalog

establishing object types in 140
exporting MDIS metadata

from 40, 45, 46
importing MDIS metadata

into 40, 45, 46
opening from command line 42
sample provided with

Information Catalog Manager
object types defined in 158
predefined program

objects 211
Information Catalog Manager

metadata models 135
opening information catalog from

the command line 42
Information Catalog Manager for the

Web
graphics files 260
HTML files 260

Information Catalog Manager for the
Web (continued)

Net.Data files 259
Information Catalog Manager news

sample object type 206
INSTANCE tag

ACTION.OBJINST
(ADD) 231
(DELETE) 233
(DELETE_TREE_ALL) 233
(DELETE_TREE_REL) 233
(MERGE) 231
(UPDATE) 234

ACTION.RELATION
(ADD) 235
(DELETE) 235

tag language reference 231, 236
interchange program

definition 15
writing 16

Internet documents sample object
type 197

ISV_defines.h file 16

K
keyword

ATTACHMENT 246
CATEGORY 237
CHKPID 230
CONTACT 246
CONTAIN 246
context-sensitive 250
DL tag language reference 243
DT tag language reference 243
EXTNAME

on OBJECT tag 237, 241
on PROPERTY tag 243

ICOFILE, optional keyword on
OBJECT 237, 241

ICWFILE, optional keyword on
OBJECT 237, 241

LINK 246
not supported for national

languages 216
OBJTYPE 223
PHYNAME 237
RELATION 227
RELTYPE 246, 247
SEQUENCE 231
SOURCEKEY 233

ACTION.OBJINST 234
ACTION.RELATION 235

SOURCETYPE 246
TARGETKEY 235
TARGETYPE 246

keyword (continued)
TYPE

OBJTYPE(ADD) 237
OBJTYPE(APPEND) 240
OBJTYPE(DELETE) 240, 242
OBJTYPE(MERGE) 237
OBJTYPE(UPDATE) 241, 242
RELTYPE 246

UUISEQ 243

L
LINK keyword 246
logging on to the Information

Catalog Manager
from the command line 42

long variable character data type,
PROPERTY tag 243

Lotus Approach queries sample
object type 198

M
macros

Net.Data 259
MDIS 151

predefined object types that map
to 151

Columns or fields 162
Databases 165
Dimensions within a

multidimensional
database 167

Elements 170
Files 171
IMS database definitions

(DBD) 173
IMS program control blocks

(PCB) 175
IMS program specification

blocks (PSB) 177
IMS segments 178
Members within a

multidimensional
database 180

Multidimensional
databases 182

Records 184
Relational tables and

views 186
Subschemas 189
Transformations 190

tag language files, exporting 46
tag language files, importing 40

Members within a multidimensional
database sample object type 180

MERGE option
ACTION.OBJINST 222

314 Data Warehouse Center Application Integration Guide

MERGE option (continued)
ACTION.OBJTYPE 226, 237

metadata
column

properties 114
relationships 117

exporting from Data Warehouse
Center 35

importing to Data Warehouse
Center 13

Information Catalog Manager
models 135

table
properties 108
relationships 113

warehouse source 103
Metadata Interchange Specification

(MDIS) 7
Multidimensional databases sample

object type 182

N
national language support

(NLS) 216
Net.Data

include files
Information Catalog Manager

for the Web 260
macros

Information Catalog Manager
for the Web 259

NL tag 236
not-applicable symbol

specifying for use during MDIS
export 47

NULLS keyword 243

O
object

COLUMN
properties 114
relationship 117

DATABASE
properties 103
relationships 107

TABLES
properties 108
relationships 113

Object REXX for Windows 295
OBJECT tag

ACTION.OBJTYPE
(ADD) 237
(APPEND) 240
(DELETE) 240
(DELETE_EXT) 240
(MERGE) 237

OBJECT tag (continued)
ACTION.OBJTYPE (continued)

(UPDATE) 240
tag language reference 237, 242

object type

Attachment category
Comments object type

defined 210
Contact category

People to contact, provided in
sample information
catalog 204

sample information
catalog 204

Dictionary category
Glossary entries, provided in

sample information
catalog 205

sample information
catalog 205

Elemental category
Audio clips, provided in

sample information
catalog 193

Charts, provided in sample
information catalog 194

Documents, provided in
sample information
catalog 195

Images or graphics, provided
in sample information
catalog 196

Internet documents, provided
in sample information
catalog 197

Lotus Approach queries,
provided in sample
information catalog 198

Presentations, provided in
sample information
catalog 199

sample information catalog,
provided in 192

Spreadsheets, provided in
sample information
catalog 200

Text-based reports, provided
in sample information
catalog 201

Video clips, provided in
sample information
catalog 203

establishing in information
catalog 140

object type (continued)
Grouping category

Application data, provided in
sample information
catalog 160

Business subject areas,
provided in sample
information catalog 162

Columns or fields, provided
in sample information
catalog 162

Databases, provided in
sample information
catalog 165

Dimensions within a
multidimensional database,
provided in sample
information catalog 167

DWC Process, provided in
sample information
catalog 169

Elements, provided in sample
information catalog 170

Files, provided in sample
information catalog 171

IMS database definitions
(DBD), provided in sample
information catalog 173

IMS program control blocks
(PCB), provided in sample
information catalog 175

IMS program specification
blocks (PSB), provided in
sample information
catalog 177

IMS segments, provided in
sample information
catalog 178

Members within a
multidimensional database,
provided in sample
information catalog 180

Multidimensional databases,
provided in sample
information catalog 182

Records, provided in sample
information catalog 184

Relational tables and views,
provided in sample
information catalog 186

sample information catalog,
provided in 159

Star Schemas, provided in
sample information
catalog 188

Index 315

object type (continued)
Subschemas, provided in

sample information
catalog 189

Transformations, provided in
sample information
catalog 190

Program category, Programs
object type defined 209

relationships between 140
Support category

Information Catalog Manager
news, provided in sample
information catalog 206

Online news services,
provided in sample
information catalog 207

Online publications, provided
in sample information
catalog 208

sample information catalog,
provided in 206

Online news services sample object
type 207

Online publications sample object
type 208

option

ACTION.RELATION 235
ADD

ACTION.OBJINST 219
ACTION.OBJTYPE 224, 237
ACTION.RELATION 227,

235
APPEND 224
DELETE 235

ACTION.OBJINST 220
ACTION.OBJTYPE 225
ACTION.RELATION 228
on OBJINST 233

DELETE_EXT 225
DELETE_TREE_ALL

ACTION.OBJINST 220
on OBJINST 233

DELETE_TREE_REL
ACTION.OBJINST 221
on OBJINST 233

MERGE
ACTION.OBJINST 222
ACTION.OBJTYPE 226, 237

UPDATE
ACTION.OBJINST 223, 234
ACTION.OBJTYPE 226

P
partner application 3
partner metadata 6
People to contact sample object

type 204
PHYNAME keyword 237
PostCascade.tag template 290
Presentations sample object

type 199
Program category

relationships with other
categories 140

Program category, Programs object
type defined 209

programs, starting from the
Information Catalog Manager 49

Programs object type 209
Programs that can be invoked from

Information Catalog Manager
objects 209

property
specifications 158
specifications for Attachment

category object type,
Comments 210

specifications for Contact
category sample object type,
People to contact 204

specifications for Dictionary
category sample object type,
Glossary entries 205

specifications for Elemental
category sample object types

Audio clips 193
Charts 194
Documents 195
Images or graphics 196
Internet documents 197
Lotus Approach queries 198
Presentations 199
Spreadsheets 200
Text-based reports 201
Video clips 203

specifications for Grouping
category sample object types

Application data 160
Business subject areas 162
Columns or fields 162
Databases 165
Dimensions within a

multidimensional
database 167

DWC Process 169
Elements 170
Files 171

property (continued)
specifications for Grouping

category sample object types
(continued)

IMS database definitions
(DBD) 173

IMS program control blocks
(PCB) 175

IMS program specification
blocks (PSB) 177

IMS segments 178
Members within a

multidimensional
database 180

Multidimensional
databases 182

Records 184
Relational tables and

views 186
Star Schemas 188
Subschemas 189
Transformations 190

specifications for Program
category object type 209

specifications for Support
category sample object types

Information Catalog Manager
news 206

Online news services 207
Online publications 208

value 158
PROPERTY tag 242, 246
pseudocode

agent site 21
Data Warehouse Center

program 28
source and target databases 25
step 31, 33

R
reading syntax diagrams 218
Records sample object type 184
Relational tables and views sample

object type 186
relationship between object

types 140
RELTYPE tag 246, 247
reserved words 215
restarting the echo file 251
rolling back data 251

S
sample information catalog

object types defined in 158
predefined program objects 211

SEQUENCE keyword 231

316 Data Warehouse Center Application Integration Guide

SHRTNAME keyword 243
source

template 22
values to supply 24

source database
definition 14
pseudocode 25

source file 14
SourceDataBase.tag template

example values 81
tokens 78

SOURCEKEY keyword
ACTION.OBJINST

(DELETE) 234
ACTION.RELATION 235
tag language reference 233

SOURCETYPE keyword 246
Spreadsheets sample object

type 200
Star Schemas sample object

type 188
step

Data Warehouse Center program
feedback 299

definition 5
pseudocode 31, 33
status 299
templates 29
values to supply 31

SubjectArea.tag template
example values 83
tokens 82

Subschemas sample object type 189
Support category

definition of 139
object types

Information Catalog Manager
news, provided in sample
information catalog 206

Online news services,
provided in sample
information catalog 207

Online publications, provided
in sample information
catalog 208

sample information catalog,
provided in 206

relationships with other
categories 140

syntax diagrams 218
syntax rules for tag language 215
system process 295

T
TAB tag 247

TABLE object
properties 108
relationships 113

Table.tag template
example values 88
tokens 84

tag language
Data Warehouse Center

building 13
exporting 36
importing 33

defining information 249
definition 13
file

how Information Catalog
Manager reads 216

MDIS-conforming, importing
and exporting 40, 45, 46

objects
COLUMN 114
TABLE 108

overview 215
reference 215, 247
syntax rules 215

tag language file header 20
tags

ACTION
OBJINST keyword 233
sequence 250
tag language reference 218,

228
tips 249

COMMENT
tag language reference 228
tips 251

COMMIT
tag language reference 229,

230
tips 251

contextual use of 249
DISKCNTL

tag language reference 230
tips 249

INSTANCE 231, 236
NL 236
not supported for national

languages 216
NULLS 243
PROPERTY 242, 246
TAB 247
to define information 249

target
file 14
template 22
values to supply 24

target database
definition 14
pseudocode 25

TARGETKEY keyword 235
TARGETYPE keyword 246
template

AgentSite.tag
example values 57
token 55

BusinessView.tag
example values 284
tokens 280

BusinessViewInputTable.tag
example values 286
tokens 285

BusinessViewOutputTable.tag
example values 287
tokens 287

BusinessViewVWPOutputTable.tag
example values 289
tokens 288

Column.tag
example values 62
tokens 57

ConcurrentCascade.tag
example values 290
tokens 289

definition 13
header file 16
HeaderInfo.tag 63
PostCascade.tag 290
SourceDataBase.tag

example values 81
tokens 78

SubjectArea.tag
example values 83
tokens 82

Table.tag
example values 88
tokens 84

VWPGroup.tag 89
VWPProgramInstance.tag

example values 292
tokens 291

VWPProgramInstanceParameter.tag
example values 92
tokens 91

VWPProgramParameter.tag
example values 97
tokens 96

VWPProgramTemplate.tag
example values 95
tokens 93

WarehouseDataBase.tag
example values 101

Index 317

template (continued)
tokens 98

Text-based reports sample object
type 201

timestamp data type, PROPERTY
tag 243

Transformations sample object
type 190

TYPE keyword
OBJTYPE(ADD) 237
OBJTYPE(APPEND) 240
OBJTYPE(DELETE) 240, 242
OBJTYPE(MERGE) 237
OBJTYPE(UPDATE) 241, 242
RELTYPE 246

U
universal unique identifier

property values 234
unsupported tags and

keywords 216
UPDATE option

ACTION.OBJINST 223, 234
ACTION.OBJTYPE 226

user process 295
UUI

property values 234
UUI_property_value 233
UUI_short_name value 233
UUISEQ keyword 243

V
variable character data type,

PROPERTY tag 243
variable values 218
Video clips sample object type 203
VWPGroup.tag template 89
VWPProgramInstance.tag template

example values 292
tokens 291

VWPProgramInstanceParameter.tag
template

example values 92
tokens 91

VWPProgramTemplate.tag template
example values 95
tokens 93

VWPProgramTemplateParameter.tag
template

example values 97
tokens 96

W
warehouse database 14
warehouse source metadata

properties 103

warehouse source metadata
(continued)

relationships 107

warehouse target metadata

properties 103
relationships 107

WarehouseDataBase.tag template

example values 101
tokens 98

writing tag language files 215

318 Data Warehouse Center Application Integration Guide

Contacting IBM

If you have a technical problem, please review and carry out the actions
suggested by the Troubleshooting Guide before contacting DB2 Customer
Support. This guide suggests information that you can gather to help DB2
Customer Support to serve you better.

For information or to order any of the DB2 Universal Database products
contact an IBM representative at a local branch office or contact any
authorized IBM software remarketer.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-237-5511 for customer support
v 1-888-426-4343 to learn about available service options

Product Information

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) or 1-800-3IBM-OS2 (1-800-342-6672) to

order products or get general information.
v 1-800-879-2755 to order publications.

http://www.ibm.com/software/data/
The DB2 World Wide Web pages provide current DB2 information
about news, product descriptions, education schedules, and more.

http://www.ibm.com/software/data/db2/library/
The DB2 Product and Service Technical Library provides access to
frequently asked questions, fixes, books, and up-to-date DB2 technical
information.

Note: This information may be in English only.

http://www.elink.ibmlink.ibm.com/pbl/pbl/
The International Publications ordering Web site provides information
on how to order books.

http://www.ibm.com/education/certify/
The Professional Certification Program from the IBM Web site
provides certification test information for a variety of IBM products,
including DB2.

© Copyright IBM Corp. 1998, 2000 319

ftp.software.ibm.com
Log on as anonymous. In the directory /ps/products/db2, you can
find demos, fixes, information, and tools relating to DB2 and many
other products.

comp.databases.ibm-db2, bit.listserv.db2-l
These Internet newsgroups are available for users to discuss their
experiences with DB2 products.

On Compuserve: GO IBMDB2
Enter this command to access the IBM DB2 Family forums. All DB2
products are supported through these forums.

For information on how to contact IBM outside of the United States, refer to
Appendix A of the IBM Software Support Handbook. To access this document,
go to the following Web page: http://www.ibm.com/support/, and then
select the IBM Software Support Handbook link near the bottom of the page.

Note: In some countries, IBM-authorized dealers should contact their dealer
support structure instead of the IBM Support Center.

320 Data Warehouse Center Application Integration Guide

Contacting IBM 321

����

Part Number: CT60KNA

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-9994-00

CT
60

KN
A

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
IB

M
®

D
B

2®
U

ni
ve

rs
al

D
at

ab
as

e
D

at
a

W
ar

eh
ou

se
Ce

nt
er

Ap
pl

ic
at

io
n

In
te

gr
at

io
n

G
ui

de
Ve

rs
io

n
7

	Contents
	About this book
	Who should read this book

	Part 1. Integrating Applications
	Chapter 1. Planning to integrate your applications
	How partner applications can work with the Data Warehouse Center and theInformation Catalog Manager
	Managing partner applications
	Managing metadata

	Integration scenarios
	Hardware and software requirements

	Chapter 2. Importing and exporting metadata
	Importing metadata into the Data Warehouse Center
	Building the tag language file
	Selecting objects for which to import metadata
	Defining objects with the Data Warehouse Center metadata templates
	Defining agent sites
	Defining sources and targets
	Defining Data Warehouse Center programs
	Defining steps
	Defining cascading steps

	Importing metadata from the tag language file
	Preparing the steps to run

	Exporting metadata from the Data Warehouse Center
	Selecting objects for which to export metadata
	Exporting metadata into a tag language file

	Chapter 3. Importing and exporting metadata with theInformation Catalog Manager
	Importing metadata into an information catalog
	Selecting metadata to import
	Importing metadata from a tag language file
	Importing MDIS-conforming tag language files
	Importing a tag language file from the command line

	Exporting metadata from Information Catalog Manager
	Selecting metadata to export
	Exporting tag language files
	Exporting MDIS-conforming tag language files

	Chapter 4. Ensuring that users can start programs fromthe Information Catalog Manager
	Additional requirements for Information Catalog Manager for the Web users

	Part 2. Metadata reference
	Chapter 5. Metadata templates
	AgentSite.tag
	Tokens
	Examples of values

	Column.tag
	Tokens
	Examples of values

	HeaderInfo.tag
	Tokens
	Examples of values

	Process.tag
	Tokens
	Examples of values

	StarSchema.tag
	Tokens
	Examples of values

	StarSchemaInputTable.tag
	Tokens
	Examples of values

	Step.tag
	Tokens
	Examples of values

	StepCascade.tag
	Tokens
	Examples of values

	StepInputTable.tag
	Tokens
	Examples of values

	StepOutputTable.tag
	Tokens
	Examples of values

	StepVWPOutputTable.tag
	Tokens
	Examples of values

	StepVWPProgramInstance.tag
	Tokens
	Examples of values

	SourceDataBase.tag
	Tokens
	Examples of values

	SubjectArea.tag
	Tokens
	Examples of values

	Table.tag
	Tokens
	Examples of values

	VWPGroup.tag
	Tokens
	Examples of values

	VWPProgramInstanceParameter.tag
	Tokens
	Examples of values

	VWPProgramTemplate.tag
	Tokens
	Examples of values

	VWPProgramTemplateParameter.tag
	Tokens
	Examples of values

	WarehouseDataBase.tag
	Tokens
	Examples of values

	Chapter 6. Data Warehouse Center metadata
	DATABASE object
	Properties
	Relationships

	TABLES object
	Properties
	Relationships

	COLUMN object
	Properties
	Relationships

	Chapter 7. Information Catalog Manager system tables andmetadata models
	FLG.ATCHREL table
	FLG.CHECKPT table
	FLG.COMMENTS table
	FLG.EXCHANGE table
	FLG.HISTORY table
	FLG.NAMEINST table
	FLG.OBJTYREG table
	FLG.OVERDESC table
	FLG.PARMS table
	FLG.PROGRAMS table
	FLG.PROPERTY table
	FLG.RELINST table
	FLG.USERS table
	FLG.WINICON table
	Information Catalog Manager metadata models
	Model for Information Catalog Manager system tables
	Logical metadata model

	Using SQL to access metadata

	Chapter 8. Information Catalog Manager object types
	Default properties for all object types
	Default property summary
	Guidelines for extendible objects types
	Relation types
	Relation instance

	Predefined Information Catalog Manager object types
	Predefined object type models
	Predefined object type descriptions
	MDIS mappings
	Grouping category
	Elemental category
	Contact category
	Dictionary category
	Support category
	Program category
	Attachment category

	Predefined program objects

	Chapter 9. Tag language
	Rules for writing tag language files
	How the Information Catalog Manager reads tag language files
	Valid data types for Information Catalog Manager descriptive data
	How to read the tag language syntax diagrams
	ACTION.OBJINST
	Context
	Syntax
	Options
	ACTION.OBJINST(ADD)
	ACTION.OBJINST(DELETE)
	ACTION.OBJINST(DELETE_TREE_ALL)
	ACTION.OBJINST(DELETE_TREE_REL)
	ACTION.OBJINST(MERGE)
	ACTION.OBJINST(UPDATE)

	ACTION.OBJTYPE
	Context
	Syntax
	Options
	ACTION.OBJTYPE(ADD)
	ACTION.OBJTYPE(APPEND)
	ACTION.OBJTYPE(DELETE)
	ACTION.OBJTYPE(DELETE_EXT)
	ACTION.OBJTYPE(MERGE)
	ACTION.OBJTYPE(UPDATE)

	ACTION.RELATION
	Context
	Syntax
	Options
	ACTION.RELATION(ADD)
	ACTION.RELATION(DELETE)

	COMMENT
	Syntax
	Rules

	COMMIT
	Context
	Syntax
	Keywords
	Rules

	DISKCNTL
	Context
	Syntax
	Keywords
	Rules

	INSTANCE
	Context
	Syntax
	ACTION.OBJINST(ADD) or ACTION.OBJINST(MERGE)
	ACTION.OBJINST(DELETE) or ACTION.OBJINST(DELETE_TREE_ALL) orACTION.OBJINST(DELETE_TREE_REL)
	ACTION.OBJINST(UPDATE)
	ACTION.RELATION(ADD) or ACTION.RELATION(DELETE)

	NL
	Syntax
	Rules

	OBJECT
	Context
	Syntax
	ACTION.OBJTYPE(ADD) or ACTION.OBJTYPE(MERGE)
	ACTION.OBJTYPE(APPEND)
	ACTION.OBJTYPE(DELETE) or ACTION.OBJTYPE(DELETE_EXT)
	ACTION.OBJTYPE(UPDATE)
	ACTION.OBJINST

	PROPERTY
	Syntax
	Context
	Keywords
	Rules

	RELTYPE
	Syntax
	Context
	Keywords

	TAB
	Syntax
	Rules

	Chapter 10. What a tag language file should look like
	Start your tag language file with DISKCNTL
	Define your additions, changes, and deletions
	Defining what you want to do
	Defining the information
	Putting it all together

	Committing changes to the database
	Putting comments in the tag language file

	Part 3. Supplied program and macro reference
	Chapter 11. Supplied Data Warehouse Center programs
	VWPEXUNX
	Parameters
	Return codes
	Log files

	ISV_Sample

	Chapter 12. Net.Data® macros
	Information Catalog Manager for the Web files

	Part 4. Appendixes
	Appendix A. Template planning worksheet
	Appendix B. Templates supported by Visual Warehouse 5.2
	BusinessView.tag
	Tokens
	Examples of values

	BusinessViewInputTable.tag
	Tokens
	Examples of values

	BusinessViewOutputTable.tag
	Tokens
	Examples of values

	BusinessViewVWPOutputTable.tag
	Tokens
	Examples of values

	ConcurrentCascade.tag
	Tokens
	Examples of values

	PostCascade.tag
	Tokens
	Examples of values

	VWPProgramInstance.tag
	Tokens
	Examples of values

	Appendix C. Writing your own program to use with theData Warehouse Center
	Passing parameters
	Returning status information
	Transferring the information to the Data Warehouse Center
	Format of the feedback file
	How the feedback determines the step status

	Notices
	Trademarks

	Bibliography
	Index
	Contacting IBM
	Product Information

